
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CAMPUS FLORIANÓPOLIS

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE AUTOMAÇÃO E
SISTEMAS

Alexander Silva Barbosa

Hierarchization and contextual information management for performing
collaborative tasks in land mobile robots

Florianópolis - SC
2022

Alexander Silva Barbosa

Hierarchization and contextual information management for performing
collaborative tasks in land mobile robots

Dissertação submetida ao Programa de Pós-Graduação
em Engenharia de Automação e Sistemas da Univer-
sidade Federal de Santa Catarina para a obtenção do tí-
tulo de mestre em Engenharia de Automação e Sis-
temas.
Supervisor:: Prof. Edson Roberto de Pieri, Dr.
Coorientadora: Patricia Della Méa Plentz, Dra.

Florianópolis - SC
2022

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Barbosa, Alexander Silva
 Hierarchization and contextual information management
for performing collaborative tasks in land mobile robots /
Alexander Silva Barbosa ; orientador, Edson Roberto de
Pieri, coorientadora, Patricia Della Méa Plentz, 2022.
 56 p.

 Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Engenharia de Automação e Sistemas, Florianópolis, 2022.

 Inclui referências.

 1. Engenharia de Automação e Sistemas. 2. Sistemas multi
robôs. 3. Árvore de comportamento. 4. Aprendizado de
máquina. 5. Alocação de tarefas multi-robôs. I. Pieri, Edson
Roberto de. II. Plentz, Patricia Della Méa. III.
Universidade Federal de Santa Catarina. Programa de Pós
Graduação em Engenharia de Automação e Sistemas. IV. Título.

Alexander Silva Barbosa

Hierarchization and contextual information management for performing
collaborative tasks in land mobile robots

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca
examinadora composta pelos seguintes membros:

Prof. Jônata Tiska Carvalho, Dr.
INE/UFSC

Prof. Marcelo Ricardo Stemmer, Dr.
DAS/UFSC

Prof. Ricardo Alexandre Reinaldo de Moraes, Dr.
CIN/UFSC

Certificamos que esta é a versão original e final do trabalho de conclusão que foi
julgado adequado para obtenção do título de mestre em Engenharia de Automação e
Sistemas.

Coordenação do Programa de
Pós-Graduação

Prof. Edson Roberto de Pieri, Dr.
Supervisor:

Patricia Della Méa Plentz, Dra.
Coorientadora

Florianópolis - SC, 2022.

Dedico este trabalho inicialmente aos meus pais, Edneia
e Adalmo, por sempre me apoiarem a seguir meus

objetivos e sempre serem minhas maiores inspirações.
Também aos meus irmãos, Igor e Jéssica, por estarem
sempre ao meu lado, mesmo que distantes fisicamente.

Dedico também ao Romulo por me apoiar e estar ao
meu lado durante todo o processo deste trabalho, nos

bons e nos maus momentos. Agradeço aos meus
queridos orientadores, Edson e Patrícia, sem eles este

trabalho não teria sido possível, ambos foram
excelentes do início ao fim. Agradeço também aos meus

professores de graduação, especialmente Leonardo
Olivi, Ana Sophia, Exuperry e Elias, eles foram minhas

motivações. Este trabalho é também dedicado aos meus
colegas, em especial ao Afonso, Geovana e Willian,

foram essenciais.

ACKNOWLEDGEMENTS

The authors are grateful for the financial support granted by CNPq and CAPES
to this research at the Graduate Program in Automation and Systems Engineering
of the Federal University of Santa Catarina as well as the CAPES/PRINT - Call no.
41/2017 Senior Visiting Professor at Biomimetics and Intelligent Systems Group - BISG,
University of Oulu, Finland.

RESUMO

Um Sistema Multi-robô (Multi-Robot System - MRS) é um grupo de vários robôs que
se comunicam e cooperam para realizar algum comportamento coletivo. Nesse con-
texto, a Alocação de Tarefas Multi-Robô (Multi-robot Task Allocation - MRTA) é um
dos problemas de um sistema multi-robô que consiste em atribuir tarefas aos robôs
de forma eficiente. Uma Árvore de comportamento (Behavior Tree - BT) é uma estru-
tura hierárquica composta por nós, e é responsável pela tomada de decisão em um
agente artificial inteligente. Este trabalho apresenta um novo framework para MRTA,
consistindo em uma árvore de comportamento, um sistema de comunicação descen-
tralizado e um sistema de aprendizado de máquina. A árvore de comportamento é
responsável por coordenar a alocação de tarefas em cada robô ao mesmo tempo que
o mantém seguro, permitindo a negociação e transferência da tarefa considerando as
restrições do sistema em tempo real. O sistema foi validado em ambiente de simulação,
considerando diversos cenários variando o número de robôs e de tarefas.

Palavras-chave: Robótica. Robôs móveis. Árvore de comportamento. Tomada de de-
cisão hierárquica. Inteligência artificial. Sistemas multi-robôs. Alocação de tarefas multi-
robô. Tomada de decisões. Árvores de decisão. Multiplos robôs. Redes neurais artifici-
ais. Redes neurais profundas. Aprendizado de máquina.

ABSTRACT

A Multi-robot System (MRS) is a group of multiple robots communicating and cooper-
ating to perform some collective behavior. In this context, Multi-robot Task Allocation
(MRTA) is one of the problems of a multi-robot system consisting of assigning tasks to
robots in an efficient way. A Behavior Tree (BT) is a hierarchical structure composed
of nodes and responsible for the decision-making in an intelligent artificial agent. This
work proposes a novel framework for MRTA, consisting of a Behavior Tree, a decen-
tralized communication system and a machine learning system. The BT is responsible
for coordinating the task allocation on each robot while keeping it safe, allowing the
task negotiation and transference considering the system’s constraints in real-time. The
system was validated in a simulated environment, considering many scenarios varying
the number of robots and tasks.

Keywords: Robotics. Mobile robots. Behavior tree. Hierarchical decision making. Ar-
tificial intelligence. Multi-robot systems. Multi-robot task allocation. Decision making.
Decision trees. Multiple robots. Artificial neural networks. Deep neural networks. Ma-
chine learning.

LIST OF FIGURES

Figure 1 – A high level BT carrying out a task consisting of first finding, then
picking and finally placing a ball. 20

Figure 2 – The action ’Pick Ball’ from the BT in Figure 1 is expanded into a sub-
BT. The Ball is approached until it is considered close, and then the
action ’grasp’ is executed until the ball is securely grasped. 20

Figure 3 – Simple neural network for the XOR problem 22
Figure 4 – Selector node . 25
Figure 5 – Sequence node . 25
Figure 6 – Parallel node . 26
Figure 7 – Invert node . 26
Figure 8 – Success node . 27
Figure 9 – Failure node . 27
Figure 10 – Condition node . 28
Figure 11 – Flipper node . 28
Figure 12 – Auto arrange disabled . 29
Figure 13 – Auto arrange enabled . 29
Figure 14 – Attached nodes . 30
Figure 15 – BT exported as image . 31
Figure 16 – BT exported as LATEX . 31
Figure 17 – Condition is true . 32
Figure 18 – Condition is false . 32
Figure 19 – Main screen of the software . 33
Figure 20 – Proposed BT . 34
Figure 21 – Keep alive selector . 35
Figure 22 – Transfer Task sub-tree . 35
Figure 23 – Return and Recharge sub-tree . 35
Figure 24 – Task selector . 36
Figure 25 – Task negotiation sequence . 36
Figure 26 – Execution sequence . 37
Figure 27 – Neural Network Structure . 39
Figure 28 – Linear activation function and its derivative 39
Figure 29 – Loss and accuracy of the training process with synthetic data 44
Figure 30 – Loss and accuracy of the training process with simulation data . . . 45
Figure 31 – Difference between the predicted and spent time to finish the tasks

for the case of synthetic data . 46
Figure 32 – Difference between the predicted and spent battery to finish the tasks

for the case of synthetic data . 46

Figure 33 – Difference between the predicted and spent time to finish the tasks
for the case of simulation data . 47

Figure 34 – Difference between the predicted and spent battery to finish the tasks
for the case of simulation data . 47

Figure 35 – Absolute error between the predicted and spent time to finish the
tasks for the case of synthetic data 48

Figure 36 – Absolute error between the predicted and spent battery to finish the
tasks for the case of synthetic data 48

Figure 37 – Total time for all robots comparison for the case of synthetic data . . 49
Figure 38 – Total traveled distance for all robots comparison for the case of syn-

thetic data . 49
Figure 39 – Total time for all robots comparison for the case of simulation data . 50
Figure 40 – Total traveled distance for all robots comparison for the case of simu-

lation data . 50

LIST OF TABLES

Table 1 – Task definition . 37
Table 2 – Summary of layers in the DNN . 40
Table 3 – Simulation parameters . 45

LIST OF ABBREVIATIONS AND ACRONYMS

AND Logical operator ’AND’
ANN Artificial Neural Network
BT Behavior Tree
CID Context Information Database
FSM Finite State Machine
GP Genetic Programming
MAE Mean Absolute Error
ML Machine Learning
MRS Multi-robot System
MRTA Multi-robot Task Allocation
NN Neural Network
NPC Non-Player Character
OR Logical operator ’OR’

LIST OF SYMBOLS

xI Initial position in meters (x)
yI Initial position in meters (y)
xF Target position in meters (x)
yF Target position in meters (y)
np Number of path segments
d Length of the path in meters (real estimated distance)
B Robot battery (%)
V Robot speed (m/s)
TR Task requirements
ΔB Required battery (%)
ΔT Required time (minutes)
FB Final battery level (%)
ΔBi Required battery for the initial virtual task (%)
ΔTi Required time for the initial virtual task (minutes)
FBi Final Robot battery after completing the first virtual task(%)
ΔBt Required battery for the real task (%)
ΔTt Required time for the real task (minutes)
Bi Final Robot battery after completing the first virtual task(%)
FBt Final Robot battery after completing the real task(%)
ΔBf Required battery for the final virtual task (%)
ΔTf Required time for the final virtual task (minutes)
Bt Final Robot battery after completing the real task(%)
Bf Final Robot battery after reaching the station (%)
BID Bid for the robots auction
D Distance from initial position to target position in meters
TNT Total number of tasks
NR Number of robots
NT Number of tasks per robot

CONTENTS

1 INTRODUCTION . 14
1.1 OBJECTIVES . 15
1.1.1 General objective . 15
1.1.2 Specific objectives . 15
1.1.3 Research delimitation . 16
1.1.4 Scientific contribution . 16
2 BACKGROUND . 18
2.1 MULTI-ROBOT SYSTEMS . 18
2.2 BEHAVIOR TREES . 19
2.3 BEHAVIOR TREE DESIGNING . 21
2.3.1 AIPaint . 21
2.3.2 Groot . 21
2.3.3 Intera Studio . 21
2.4 ARTIFICIAL NEURAL NETWORK . 22
2.5 MULTI-ROBOT TASK ALLOCATION 22
3 DEVELOPMENT . 24
3.1 BEHAVIOR TREE DESIGNER . 24
3.1.1 Nodes . 24
3.1.2 Features . 28
3.1.3 Interface . 32
3.2 FRAMEWORK . 33
3.2.1 Behavior Tree Architecture . 34
3.3 CONTEXT INFORMATION DATABASE 37
3.3.1 Task definition . 37
3.3.2 Context Information Database Structure 38
3.3.3 Neural Network . 39
3.3.4 Negotiation . 40
3.3.5 Continue/Return . 42
3.3.6 Training . 42
4 RESULTS . 44
5 CONCLUSION . 51

REFERÊNCIAS . 53

14

1 INTRODUCTION

Robotics has succeed in the industry where predominantly ground manipulator
robots are used, which perform precision tasks in repetitive applications and are limited
by an operational space defined by the robot’s physical extensions and restrictions im-
posed on its movement. Among the tasks most commonly performed by these systems
are painting, welding (actively applied in the automobile and electronics industry), ma-
nipulation of objects in biologically controlled environments, and maintenance services
in unhealthy environments (GARCIA et al., 2007). Mobile robotics has evolved and
should become a solution for industry and several other sectors of society, using its
ability to move, quickly adapt to little-known environments, and constantly change the
physical configuration. The main current tasks using mobile robots are the transport of
parts, surveillance, maintenance, the inspection of pipelines and in hostile environments
(GARCIA et al., 2007).

For a mobile robot to perform intelligent navigation, it must, as a human, perceive
the environment and use the information to adapt its behavior to the current scenario,
making it as independent of intervention as possible (DE LUCCA SIQUEIRA; DELLA
MEA PLENTZ; DE PIERI, 2016). The autonomy of a mobile robot can be improved
using information about the environment, which can be provided by sensors installed
in the robot or by information shared by several robots collaborating in the execution
of tasks and the information provided by sensors in the environment. This research
field involving several robots is known as a swarm of robots or cooperative robots
and have several research topics that need formalization and scientific contributions.
Several works deal with the problem, and the subject has deserved the attention of
several researchers, with different results presented in congresses, symposia, and
specialized magazines. Interest in multi-robot systems research is increasing day by
day as multiple robots can perform tasks that are impossible or too costly for a single
robot (CAO; FUKUNAGA; KAHNG, 1997).

The cooperation of multiple robots can involve many moving in environments
with static and dynamic obstacles, which can be problematic. One way to analyze this
problem is to hierarchize the tasks and consider real-time restrictions. The information
that is made available for a robot to perform a task free of an obstacle can also be
hierarchical, establishing priorities and formalizing activities that should prioritize others.
Such tasks can be battery recharging, task redefinition between different robots, etc.,
which are cases in which must make real-time decisions.

According to (KHAMIS, Alaa; HUSSEIN, Ahmed; ELMOGY, 2015a), a Multi-
robot System (MRS) is a group of robots designed to perform some collective behavior.
An MRS can solve problems of significant complexity allowing the increase of perfor-
mance and reliability. One difficulty of MRS is known as Multi-robot Task Allocation

Chapter 1. Introduction 15

(MRTA), which is the act of assigning a group of robots to a group of tasks considering
a set of constraints to optimize the overall system performance (KORSAH; STENTZ;
DIAS, 2013).

Behavior trees (BTs) are a type of Hybrid Dynamical Systems that has emerged
as a tool to create intelligent agents in computer games and later spread to other areas,
especially in robotics. According to iovino2020survey, btmod6942752 and Ogren588170,
BTs can be seen as a recent addition to a long research because of increasing modu-
larity, robustness, and the safety of robot control software. Due to its hierarchical nature,
a behavior tree offers a simple and efficient way of creating reactive agents, but the
BT is a static structure. It cannot learn or adapt its behavior decisions directly. Different
from a BT, an Artificial Neural Network (ANN) is a structure designed to model the way
the brain performs a task or a function of interest, which allows it to learn over time
using data from experience (HAYKIN, S. S., 2009).

This work seeks to contribute to the Multi-robot task allocation area using the
modularity of behavior trees with the system constraints as a key tool, as the behavior
tree allows the robot to be naturally reactive. It tries to solve the problem of the BT
being a static structure by using an artificial neural network to allow that some specific
nodes of the BT improve its decision based on the robot experience and specificities.
The document is organized as follows: Chapter 2 presents an overview of the main
areas required for this work. In Chapter 3 it is presented tool developed to analyse
the behavior trees, the proposed BT architecture and the CID module. The results of
simulations are discussed in Chapter 4 and the conclusions are provided in Chapter 5.

1.1 OBJECTIVES

This section formalizes the general and the specific objectives of this dissertation
project.

1.1.1 General objective

This dissertation aims to formalize the problem of cooperation of land mobile
robots using behavior trees with local and contextual information and incorporating
real-time constraints, so that it uses this static tool to work as a dynamic structure.
It also aims to conduct experimental robot testing in simulation by performing target
achievement tasks with obstacle avoidance in environments with static and dynamic
obstacles.

1.1.2 Specific objectives

1. Develop a tool to create, simulate and analyze behavior trees;

Chapter 1. Introduction 16

2. Formalization of the land mobile robot cooperation problem using behavior
trees and hierarchical methods;

3. Definition of an information exchange architecture between robots;

4. Definition of a robot and real-time constraints for task planning, incorporating
tasks that require sequencing and/or prioritization;

5. Adaptation of the behavior tree of item 2 to integrate the constraints of item
4;

6. Implementation of a path planning algorithm that considers the real-time
constraints and avoidance of static and dynamic obstacles;

7. Implementation of a robot selection algorithm based on items 2 and 4.

8. Implementation of a machine learning model that can learn and predict the
time for a given task and the robot battery level.

1.1.3 Research delimitation

Some conditions are taken into account to delimit the research, being them:
1. The robots will use well-known computer vision-based algorithms for navigat-

ing in a way that computer vision tasks are not in this research;

2. Robots can communicate globally and locally;

3. There are fixed stations in the environment where robots can recharge and
from where they receive primary tasks;

4. A station delegating a task can communicate with at least one robot.

5. There is a global coordinate system used by all robots so that the positions of
targets detected by different robots can be translated into a single coordinate
system;

6. The size of an environment is bounded by the communication range among
robots and the fixed stations;

7. The robots have access to the static environment map, so it is not in the
scope of this research the construction of the maps.

8. The system will use well-known frameworks for machine learning so that
implementing of the underlying system for ML is not in the scope of this
research.

1.1.4 Scientific contribution

1. Obtaining a tool for behavior trees design and evaluation;

2. Obtaining of a behavior tree model of the mobile robot cooperation problem;

Chapter 1. Introduction 17

3. Adaptation of the primary model to accomplish the system constraints ;

4. Adaptation of a path planning algorithm to consider the model and constraints
of item 3;

5. A robot selection algorithm based on system constraints.

18

2 BACKGROUND

This chapter presents the background areas used to compose this work. Each
area area is described so that the reader can understand what is needed to fully
understand the whole research.

In (NEHMZOW, 2006), mobile robots are defined as embedded, situated agents.
It is embedded because it interacts with its environment through its actions and situated
because its actions affect future states. The set of actions that a robot can perform
in the environment depends on which tools it has, like wheels, legs, arms, grasps,
and many others. The mobile robot itself and any tool it can use is powered by a
battery, which creates a restriction on how long the robot can work before recharging.
A mobile robot also has other restrictions like maximum speed and navigable terrain
and battery restriction. When multiple robots work together, other aspects need to be
considered while modeling the system, like the robot selection for a task and collision-
free navigation.

A Behavior Tree is a mathematical model of plan execution in an autonomous
agent such as a virtual entity in a computer game or a robot (COLLEDANCHISE,
Michele; ÖGREN, 2017). As BTs are modular by design, they are a very efficient way
of creating reactive and modular systems, and this has led to its spread to artificial
intelligence and robotics (IOVINO et al., 2020).

This research aims to apply behavior trees to solve the task allocation problem
in a multi-robot context considering the robot and the task constraints. Together with the
behavior tree, a new module called CID (Context Information Database) is introduced
(Context information is considered as all information related to the sensing of the robot,
its state or any other meaningful information for a task). This module stores the robot
context information and using this at runtime to predict the robot capacity to accept or
continue executing a given task.

2.1 MULTI-ROBOT SYSTEMS

As mentioned in (ARAI; PAGELLO; PARKER, L. E., 2002), several robotics ap-
plication areas can benefit from the use of multi-robot systems as it can deal with tasks
that are difficult or even impossible for a single robot. (ARAI; PAGELLO; PARKER, L. E.,
2002) identified seven main topic areas of MRS:

• Biological Inspirations;

• Communication;

• Architectures, task allocation, and control;

• Localization, mapping, and exploration;

• Object transport and manipulation;

Chapter 2. Background 19

• Motion coordination;

• Reconfigurable robots.
In an MRS, robots must be able to work on different parts of a higher-level goal at

the same time and eventually in the same workspace. In this context, the MRS allocates
tasks to each robot, providing some communication between the robots, coordinating
a group of robots, and also ensuring that one robot does not interfere with each other
(PARKER, Lynne E., 2007).

Another essential characteristic of MRS is that it makes possible to achieve two
desired features in robotics: adaptivity and fault-tolerance (IOCCHI; NARDI; SALERNO,
2001). These two features are possible in an MRS because it can change itself dy-
namically with the environment. A fault in one or some robots does not have the same
impact on the overall system as in a single robot system.

2.2 BEHAVIOR TREES

Modularity is crucial for code reuse and incremental design of features. The
control structures of Non-Player Characters (NPCs) in games were often formulated as
a Finite State Machine (FSM). Just like Petri Nets is an alternative to FSMs allowing the
design of concurrent systems, the Behavior Trees is an alternative view of FSMs that
supports the design of modular systems (COLLEDANCHISE, Michele; ÖGREN, 2017).

A BT is formally a directed rooted tree composed of control flow nodes, dec-
orators and execution nodes, where all leaf nodes are execution nodes, a decorator
applies a function to a node, and control flow nodes are all the other nodes. A common
terminology of parent and child is used for each connected node, where the root is a
node without parents. The number of children of all the control flow nodes varies from
one to many children. (COLLEDANCHISE, Michele; ÖGREN, 2017).

When executing, the root node generates a signal called a tick. The tick has a
frequency defined by the application and is propagated to the root child. According to
the rules of the nodes, the tick is forwarded to its children. A node executes if and only
if it receives a tick signal. Each node can return three responses to its parent: Success,
Failure or Running.

Following the success in the game industry, BTs have spread to other areas, as
robotics being one of them. A simple BT performing a Pick and Place task can be seen
in Figures 1 and 2, where Figure 1 shows the high-level task and Figure 2 shows the
task at a lower level.

There are seven basic types of nodes in a BT: Root, Selector, Sequence, Parallel,
Inverter, Condition, and Action.

Chapter 2. Background 20

Figure 1 – A high level BT carrying out a task consisting of first finding, then picking
and finally placing a ball.

→

Place ballPick ballFind ball

Figure 2 – The action ’Pick Ball’ from the BT in Figure 1 is expanded into a sub-BT. The
Ball is approached until it is considered close, and then the action ’grasp’ is
executed until the ball is securely grasped.

→

Place ballPick ball
→

?

Grasp ballBall grasped

?

Approach ballBall close

Find ball

The node "Root", represented by the symbol ∅, is responsible to periodically
send a tick to its only child in a way that the only rule to tick is forwarded is that the
child exists. The "Selector" (?) and "Sequence" (→) nodes act like the logical ports AND
and OR. The node "Selector" sends the tick to its first child, from left to right, returning
success if the child succeeds or forwarding to the next if it fails. If all children fail, then
the selector also fails, acting like an OR port. The node "Sequence" acts as an AND
port, returning success only if all children succeed. The execution order is also from left
to right, and when a child fails, the sequence instantly fails too.

The "Parallel" node (⇒), as the name suggests, executes all of its children in
parallel, returning a value based on a policy. The most common approaches are to
return immediately when a child fails or succeeds and to return the opposite when all
children meet the policy condition. "Inverter" (!) is a node that can have only one child,
and its status is the opposite of its child. This node only returns the same of its child if
the status is "running".

The node "Condition", represented by an ellipse, returns only success or failure
but never returns the running status. It checks a condition, something like True or False,
from common programming languages. Last but not least, the "Action" node (an empty
rectangle) executes a task and return the execution status.

One of the key features of BTs is modularity, allowing specific functionalities of
a system to be implemented as an individual BT that later can be coupled to other
higher-level BT representing a higher level of the system. That coupling can be done
until the whole is described as a BT (GONZALEZ-PEREZ; HENDERSON-SELLERS;
DROMEY, 2005). This modular modeling aspect makes evident another feature of BTs:

Chapter 2. Background 21

the easy visualization of the whole system, even when the complete behavior tree is
complex.

BTs are traditionally designed manually for a specific application. Still, they can
also be evolved and optimized using genetic programming (GP) as it is formally a
way to represent a computer program. When using this method, each individual in
the population is a complete BT, and the results may be better than a handmade BT
(ZHANG et al., 2018). Using GP also allows finding BTs that are too difficult to design
manually.

2.3 BEHAVIOR TREE DESIGNING

There is a wide range of tools capable of designing behavior trees presented in
the literature, where each one has its special ability to differentiate it from the others.
Below are some of them:

2.3.1 AIPaint

This tool was developed to solve the problem of designing a behavior-tree for
games independently of the game itself. The tool allows the game’s agent behavior to
be modified at run-time with the game paused. As stated in (BECROFT et al., 2011), the
authors consider the game designer as a director who needs to evaluate and change
the behavior of the agents, seeing how they act and telling them to stop when happens
something it doesn’t like.

2.3.2 Groot

From the authors of colledanchise2017behavior, the tools BehaviorTree.CPP
behaviortreecpp and Groot groot are respectively: A BT framework focused on robotics
projects; and a BT graphical editor. The structure consists of the main library easily
integrated with ROS (STANFORD ARTIFICIAL INTELLIGENCE LABORATORY ET
AL., 2018) that allows the execution of a previously designed BT that can be fully
embedded in the code or loaded dynamically. Working integrated with the framework,
Groot enables the visualization of the BTs and its execution at runtime, so that executing
nodes are highlighted.

2.3.3 Intera Studio

Intera Studio is a commercial tool from Rethink Robotics developed to work with
its robotic manipulator platform, Sawyer (ROBOTICS, 2020b). Intera Studio (ROBOTICS,
2020a) allows the designing of BTs using a pick-and-place interface and the online eval-
uation in the robot through a network connection or in a simulation screen.

Chapter 2. Background 22

2.4 ARTIFICIAL NEURAL NETWORK

In literature, there is no consensus and definitive definitions of Artificial Neural
Networks (ANNs). A good explanation is found in (HAYKIN, S., 1994), which describes
ANNs as a massively parallel distributed processor made up of simple processing
units with the ability to acquire knowledge from a learning process and store it in its
connections.

In the conventional programming approach, a programmer tells the computer
what to do by breaking big problems into smaller ones, precisely defined tasks that
the computer can efficiently perform. In a neural network (NN), it is not needed to tell
the computer how to solve the problem. And instead, it learns from observational data.
Figure 3 presents a simple neural network structure to solve the XOR problem (LI;
DA, 2000). The input and the hidden layers have a bias value, allowing to shift of the
activation function to the left or right.

Figure 3 – Simple neural network for the XOR problem

1 1

Input layer Hidden layer Output layer

A neural network can be used for classification when an input predicts the class
for these values (classify images, voice data, groups of data, etc...). Another use is for
regression when the NN indicates an output based on the input, so that the NN will be
modeling a function that maps the inputs to the outputs.

2.5 MULTI-ROBOT TASK ALLOCATION

The act of distributing a set of T tasks among a group of R robots is known
as Multi-Robot Task Allocation (MRTA). This problem consists of finding an optimal
assignment from tasks to robots to optimize the overall system performance subject
to constraints. The whole problem is a dynamic decision and thus should be solved
iteratively over time ((KHAMIS, Alaa; HUSSEIN, Ahmed; ELMOGY, 2015a)).

The problem can be formulated as:

Chapter 2. Background 23

1. R: a team of mobile robots ri ; {i = 1, 2, . . . , n};

2. T : a set of tasks tij ; {j = 1, 2, . . . , t};

3. U: a set of robots’ utilities, uij is the utility of robot i to execute task j .
With the assignment of tasks to robots being defined as:

A : T → R (1)

Two MRTA approaches can be divided into two main categories, centralized and
decentralized. In the centralized case, each robot or system agent is connected to a
central agent responsible for distributing the tasks to all other agents in the system. The
second category consists of an architecture where the agents exchange information to
negotiate the tasks by themselves or achieve the mission efficiently.

One of the decentralized trending approaches is Market-based techniques such
as auctions, which have gained considerable attention because of several desirable
features, such as efficiency, robustness, and scalability. These techniques are inspired
by economic systems, as in economic theory, an auction is defined by any mechanism
of trading rules for exchange (KHAMIS, Alaa; HUSSEIN, Ahmed; ELMOGY, 2015b). In
this kind of system, the robots must pay the price to acquire an auctioned task, and then
payback is done to the robot once the task is completed (TALEBPOUR; MARTINOLI,
2018).

Auctions are computationally low-cost and do not have high communication
requirements. In practical applications it can be performed centrally by an auctioneer
or distributively by the robots (HUSSEIN, A.; KHAMIS, A., 2013).

24

3 DEVELOPMENT

This chapter presents the developed system and all of its modules. The system
is composed of a software to design the behavior trees, a framework to manage the
communication between robots and stations, a behavior tree to coordinate the hierar-
chization of the robot tasks and a database of contextual information, used to store
data and extract information.

3.1 BEHAVIOR TREE DESIGNER

The developed software for behavior trees in this work can design any BT through
a simple interface, allowing the use and simulation of many types of nodes (BARBOSA;
PLENTZ; DE PIERI, 2020). This software was developed using C# language. One of
the main reasons to use this language is the great set of tools available in the .Net
Framework, allowing the fast and robust development of graphical interfaces. Another
key feature while choosing the C# language was its modularity, allowing new features
and nodes to be easily implemented. This section describes the nodes supported by the
tool and the procedure to extend them. Besides, there is a description of the software
and its features.

3.1.1 Nodes

Mostly, BT can have three categories of nodes (Composite, Decorator, and Leaf)
with six basic types, being four of them for control flow (Selector, Sequence, Parallel,
and Decorator) and two for execution (Action and Condition). By default, there are three
decorator nodes and a new execution node in the developed tool.

Along with the control flow nodes (Selector, Sequence, Parallel, Invert, Success
and Failure) and execution nodes (Action, Condition, and Flipper) implemented, the
tool also adds new nodes by extending the base class Node. The default nodes are
described below:

Root: This node is represented by the symbol ∅ and is responsible for executing
the BT. At every interval time, ΔT , the node sends a signal Tick to its child, which will
be forwarded to other nodes according to that node’s behavior.

Selector: this is a composite node, which means it implements a behavior to
execute its children. The selector node allows selecting a successful child node by
executing the children nodes in sequence, from left to right, until any of them succeeds,
as shown in Figure 4 and Algorithm 1. If a child returns success, the Selector returns
success too, if all the children fails then the Selector fails and if any child returns running,
then the Selector also returns running.

Sequence: allows selecting a failed child node by executing the children nodes,

Chapter 3. Development 25

Figure 4 – Selector node

Selector
?

Child N. . .Child 2Child 1

Algorithm 1: Selector node with N children
1 for i ← 1 to N do
2 status← Tick (child(i))
3 if status = success then
4 return success
5 else
6 if status = running then
7 return running
8 end
9 end

10 end
11 return failure

from left to right, until any of them fails, as can be seen in Figure 5 and Algorithm
2. When a child returns failure then the Sequence instantly returns failure, and the
same occurs with the running status. If all children return success, then the Sequence
succeeds.

Figure 5 – Sequence node

Sequence
→

Child N. . .Child 2Child 1

Algorithm 2: Sequence node with N children
1 for i ← 1 to N do
2 status← Tick (child(i))
3 if status = failure then
4 return failure
5 else
6 if status = running then
7 return running
8 end
9 end

10 end
11 return success

Chapter 3. Development 26

Parallel: it is a particular node that runs all children in parallel. It is important
to note that "parallel" does not mean that all children will run, even if some libraries
implement this node that way, it is just a way to execute several nodes at once concep-
tually. The parallel node, shown in Figure 6 and Algorithm 3, uses a Sequence policy,
so when any of the children fail, the parallel node immediately fails, stopping all children
with the running status. When all the children succeed, the node also returns success.
The more significant difference of this node with the Sequence node is that the Parallel
node allows more then child to be in the running status.

Figure 6 – Parallel node

Parallel
⇒

Child N. . .Child 2Child 1

Algorithm 3: Parallel node with N children
1 for i ← 1 to N do
2 status← Tick (child(i))
3 if status = failure then
4 return failure
5 end
6 end
7 return success

Invert: this node is a decorator, so it has only one child and changes the child’s
status. The invert node inverts the status of its child. If a child returns success, this
node returns failure, if the child status is failure, the return will be success. If the child
status is running, the Invert node also returns running. That behavior can be seen in
Figure 7 and Algorithm 4.

Figure 7 – Invert node

Invert
!

Child

Success: this node always return success if the child status is not running, as
seen in Figure 8 and Algorithm 5.

Failure: like the Success node, this node always returns failure when the child
status is not running, as shown in Figure 9 and Algorithm 6.

Chapter 3. Development 27

Algorithm 4: Invert node
1 status← Tick (child)
2 if status = failure then
3 return success
4 else
5 if status = success then
6 return failure
7 end
8 end
9 return running

Figure 8 – Success node

Success
X

Child

Algorithm 5: Success node
1 status← Tick (child)
2 if status = running then
3 return running
4 end
5 return success

Action: this node is a leaf node, so it has no children. When ticked, this node
executes some function defined by designer and returns a status (success, failure or
running).

Condition: Just like the Action node, this node also returns a status, but instead
of running a function, a boolean condition is checked, returning success for True or
failure for False. This node never returns running.

Flipper: This node is a special node that changes its status at every Tick signal.
It starts by returning success and when ticked, the status is changed to failure. When
ticked again, the status is again changed to failure, and that behavior repeats as long

Figure 9 – Failure node

Failure
×

Child

Chapter 3. Development 28

Algorithm 6: Failure node
1 status← Tick (child)
2 if status = running then
3 return running
4 end
5 return failure

Figure 10 – Condition node

Condition
A > B

Algorithm 7: Condition node
1 if condition is true then
2 return success
3 end
4 return failure

as the BT is running.

Figure 11 – Flipper node

Flipper
⇔

To create a new node, a programmer must create a new class extending the
Node class and override the Run method. This is the method that controls the behavior
of the node. The programmer must also define the new node type in its constructor
(Composite, Decorator, or Leaf).

3.1.2 Features

The developed tool implements a set of features to make it easier to develop
BTs, being some of those features present in other tools from Section 2.3, and some
specially developed to fill the gaps detected in that tools. The features implemented are
divided into four major categories: Basic, Interface, Integration and Debug.

The Basic features are expected in any BT designing software like add nodes,
link nodes, undo, redo, copy, paste and cut. Nodes can be added and linked with mouse
gestures like click, drag and drop in the developed tool.

The Interface features control how the BT are drawn on the screen. The Grid
feature draws a grid on the screen and aligns nodes based on that grid. Another feature
in that category is the "Auto arrange": When designing a BT the designer cannot

Chapter 3. Development 29

Algorithm 8: Flipper node
1 if stored status = failure then
2 stored status← success
3 return stored status
4 end
5 stored status← failure
6 return stored status

organize the nodes, especially if BT has many nodes. This feature runs an algorithm in
any node and calculates the best position for that node to keep the entire tree as visible
as possible and without links crossing nodes and other links. The result of this feature
is shown in Figure 13.

Figure 12 – Auto arrange disabled

Figure 13 – Auto arrange enabled

Chapter 3. Development 30

Some BTs have leaf nodes that must always return the same status, even if
they are in totally different positions on the tree, and for that, the developed software
implements a concept of attached nodes. The designer can link two or more leaf nodes if
they are of the same type, and these nodes become twin nodes. The twin nodes’ status
is always the same, for example, if a node is a condition and the designer changes
the node status, the twin node status is also changed for the equal value. Figure 14
presents an example of that feature being used, the blue link means that the nodes
are attached, and the status of the nodes is always the same, making it easy to create
blocks mutually exclusives.

Figure 14 – Attached nodes

The Integration features allows the tool to interact with external tools. The BTs
can be saved and loaded as expected. While saving a BT there are two file formats to
choose from. A binary format keeps the tree accurately as it is presented in the tool, but
only the software can open it. The other format is an XML format compatible with the
BehaviorTree.CPP tool from the Section 2.3 and allows that one can design and debug
a BT using the software presented in this paper and deploy it using the well-established
BT library.

As modularity is one of the key features of BTs, the software also allows import-
ing a BT inside another, making it easier to work with modules to compose a more
complex BT. The software also allows exporting the BT as an image or as LATEX. Later,
the package tikz will ensure the tree is drawn as vectors, guaranteeing good quality in-
dependently of zoom and resolution. Figures 15 and 16 presents the same BT exported
in both formats.

The last set of features is used for debugging BT and is the greatest differential
from other tools. When pressing the F5 key or selecting "Always running" from the
menu, the software starts to ticking the tree from the root node. The tick interval can
be selected, and the ticking occurs even if the designer is modifying the BT. With this

Chapter 3. Development 31

Figure 15 – BT exported as image

Figure 16 – BT exported as LATEX

∅

Selector
?

Action 2Action 1

mode enabled, every node reached by the Tick signal shows a little box indicating its
current status, being blue for success, green for running and red for failure. The same
color scheme is used in the links between nodes. If the signal does not reach a node,
the colored box is not shown, and the link to that node remains black. With this color
feature, it is possible to visualize in real-time the nodes being executed and the behavior
of the tree as a whole.

To verify how a status change in the leaf nodes affects the tree, the designer
can double click a leaf node to change its status. That feature is available for the Action
and Condition nodes, as they are the only nodes that depend on external resources to
obtain its status. As expected, when the status of an attached node is changed, its twin
nodes automatically have their status changed. If the designer double-click a leaf node
that is not reached by the tick signal, the new status will be discarded in the next tick so
this.

Figures 17 and 18 presents the BT from 14 being executed. In Figure 17 the
condition "C1 > C2" is true, making that the status of the first condition node is success,
allowing the "Action 1" to be executed. In Figure 18, the condition is false and then
its status is failure, allowing the "Action 2" to be executed. It can be seen that the two
attached nodes always have the same status.

Chapter 3. Development 32

Figure 17 – Condition is true

Figure 18 – Condition is false

3.1.3 Interface

The implemented software interface was developed with the "easy-of-use" in
mind, putting all the most useful features right in front of the user. The software’s main
screen is focused on designing and debugging the BT, and in this way, a large empty
area is presented, where the user can drag and drop nodes to design the tree. Initially,
the only node present is the root node, from where the user must start creating the tree.
A bar with the nodes is located in the left panel. The user can select the nodes from
this panel and add them to the screen.

The other software features are all available through buttons in the software
menu at the top and using shortcuts, such as "F5" to start debugging or "Del" to delete
a node. The whole interface works with a touch display in the same way as with a
Mouse-Keyboard, and that is why all functions are available from buttons and shortcuts.
Figure 19 presents the main screen of the software.

Chapter 3. Development 33

Figure 19 – Main screen of the software

3.2 FRAMEWORK

As can be seen in (DE LUCCA SIQUEIRA; DELLA MEA PLENTZ; DE PIERI,
2016), BT can be used as a solution for the problem of a single robot executing a patrol
task subjected to interruptions due to the battery recharging as BT can provide the
reactiveness required for such tasks.

The work from (COLLEDANCHISE, M. et al., 2016) explores the fault tolerance
nature of BTs associated with the inherited fault tolerance in an MRS. After a brief
introduction about BTs for a single robot, this work presents a BT architecture for when
many robots can execute a group of tasks, and replace any robots.

In (YANG et al., 2019) the authors present a BT-based framework focusing on
the multi-robot task allocation problem. The proposed solution is an architecture that
allows the robots to negotiate which one will get which task at runtime based on a
priority system based on the characteristics of the individual robots.

Based on this literature review, a novel framework is proposed. The framework
is composed of a library that can be used with ROS or any other system that provides
the minimum required features, being those integrations done by a plug-in system. The
current implementation already provides support out of the box for ROS (STANFORD
ARTIFICIAL INTELLIGENCE LABORATORY ET AL., 2018).

The only required features for a system to integrate this framework is:

Chapter 3. Development 34

• It supports controlling the robot based on the linear and angular velocity

• Provides a map of the environment

• Provides the current position of the robot

• Provides the current velocity of the robot

• Provides the current battery state of the robot

3.2.1 Behavior Tree Architecture

This new framework allows the robots to negotiate tasks in real-time, considering
the tasks and robot constraints. The framework also allows the tasks to be transferred
to a most capable robot, making the now-free robot get a new simple task or return to
a recharge station.

Figure 20 presents the base structure of the BT. It can be seen that the whole ap-
plication is a sequence, so for it to return success, all the direct children must also return
success. The "Emergency Selector" guarantees that when something goes wrong with
the robot application, the robot calls help as it is not working properly. The "Call help"
action is executed only when the robot cannot even move, it must be a simple recurrent
task of sending a help signal using the robot’s network. This signal must contain the
robot position, the robot identification, and, when possible, why that robot is calling for
help.

Figure 20 – Proposed BT

∅

Emergency sel.
?

Call helpApplication
→

Task selection
?

Keep alive
?

Perception

The "Perception" action obtains the robot sensing of the world in the current tick,
like reading sensors and so on. This leaf is not expected to fail, but if it does, the robot
immediately must call help as it cannot do any work if its perception of the world is not
precise enough.

The node "Keep-alive" is a selector responsible for keeping the robot working as
long as possible and informing the system if it cannot continue. As can be seen in Figure
21, there are two possible situations for this selector, when the robot is committed to a
task, Figure 22, and when it still does not have a task, Figure 23.

Chapter 3. Development 35

Figure 21 – Keep alive selector

Keep-alive
?

If not committed
→

If committed
→

Figure 22 – Transfer Task sub-tree

If committed
→

Cont. or Transfer
?

Transfer
taskCan continue (CID)

Is committed

Figure 23 – Return and Recharge sub-tree

If not committed
→

Return and
rechargeCan return (CID)

Inverter
!

Is committed

When the robot is committed, the "Can continue" checks if the robot can continue
the task by verifying the current state of the robot and its perception, passing all this
information to the underlying CID module, which will give the final response. If this node
determines a robot cannot continue, it tries to transfer the task to another robot on
the node "Transfer Task", calling help if the transference fails. The information about
the task, the robot’s current state, and its perception are saved in CID when a task is
transferred, allowing to use of this information to improve the subsequent task-related
decisions made by the robot.

While transferring a task, the robot adds the exchanging requirements to the
current task if needed, i.e: The ability to transfer a package to another robot.

If the robot is not committed, the block "Can return" checks if the robot can
return to the nearest fixed station for a recharge, which is also done by using the CID.
If it cannot return or if the action "Return and recharge" fails, the robot also calls help
because it is probably without charge or physically cannot continue. When calling help,

Chapter 3. Development 36

the robot always informs the reason.
When the "Keep-alive" block succeeds, the robot can eventually execute a task,

and to do so, the selector "Task selection" is executed, as seen in Figure 24. This node
can perform three different behaviors: Try to get a task if the robot is not committed,
execute the current task if the robot is committed, or succeed if the robot commitment
has changed, the robot was committed and then transferred its task in the current tick.

Figure 24 – Task selector

Task selection
?

Just transferred
Execute
→

Get a task
→

The "Get a task" sequence, Figure 25, first checks if the robot is not committed,
as the robot cannot get a new task if it has not finished the current one. If the robot is
available, being in the station or currently returning to it, it tries to negotiate a task with
other available robots. The negotiation can be done through an auction with the bids
given by the CID. If the robot tries to negotiate a task, the "Get a task" selector always
returns success as the fact that the robot didn’t get a task does not mean a problem,
and it is still available to get a new task.

Figure 25 – Task negotiation sequence

Get a task
→

Success
X

Negotiate (CID)

Inverter
↔

Is committed

The "Execute" sequence, Figure 26, continues the task execution and notify the
system when it finishes. The "Execute the task" action can be any required task, and a
sub-tree can even replace it. The "Notify finish" action sends a notification to the system
that the robot finished the task and stores the data collected during the task execution
considering the task properties, robot state, and perception in CID. This stored data is
used to improve the system negotiation phase.

Chapter 3. Development 37

Figure 26 – Execution sequence

Execute
→

Notify finishExecute
the taskIs committed

3.3 CONTEXT INFORMATION DATABASE

To make the robot decision in the negotiation phase to be always improved
based on the robot experience, it was developed a module called Context Information
Database, which is able to store the context information for a given task and provides
methods to use this information for future decisions, in this case, it is used to predict
the time and required a battery for each task. As described in Section 3.2, three nodes
require the CID evaluation, one for negotiation and two for checking if the robot can
continue or return. This section will first present the definition of a task for this work,
then the CID structure and how it stores data, and then use it for negotiation and
continue/return.

3.3.1 Task definition

In this work it was chosen a formal definition for tasks that allow other robots
to continue a task if the task is transferred. All tasks are composed of a header and a
body. The header describes the auctioneer, the task’s initial and final position, and its
restrictions. The body describes the task itself with all the sub-tasks. The task definition
is presented in Table 1.

Table 1 – Task definition

Header

Name The auctioneer name

Address The auctioneer address

xR ,yR ,θR Initial position for the task

x , y , θ Current position for the task

x , y , θ Final position for the task

Requirements list The list of requirements for the task. i.e: Can walk; can fly; size restrictions; weight restrictions; speed restrictions; can pick; can take picture; ...

Body

Sub-task 1 Done or not done

Sub-task 2 Done or not done
...

...

Sub-task n Done or not done

The name and address of the auctioneer in the task header allows a robot
receiving this task to identify for which robot it needs to send a response back.

When a robot is executing a task, it marks the sub-tasks as done, so when it tries
to transfer a task, other robot can continue without doing the whole task again. While

Chapter 3. Development 38

transferring the task, its initial position is also adjusted so that the robot will not return
to the initial point of the task.

3.3.2 Context Information Database Structure

The CID was designed to store information about the robot state perception and
the task data. It also implements a Neural Network that uses this information. For this
purpose, a set of parameters was chosen that allow the use of the same structure for
all three kinds of checking required by the BT and analyze the system overall. Not all
the stored fields are used in the neural network.

• xI, yI: Initial position (m)

• xF , yF : Target position (m)

• np: Number of path segments

• d : Length of the path in meters (real estimated distance)

• B: Robot battery (%)

• V : Robot speed (m/s)

• TR: Task requirements

The initial position is a point in the current map expressed in meters from the
origin of the map. This position can be either the robot position or the initial position of
the task. In the same way, the target position is also expressed in meters and can be
the final position of the task or a station position. In these parameters, the orientation
of the positions is not considered as it does not considerably affect the time and battery
required, as detected in experiments.

The path segments and the path length are calculated using an estimated path
found by a pathfinder algorithm from the initial point to the target. In this case, it was
chosen empirically the time-efficient version of the A* algorithm (GURUJI; AGARWAL;
PARSEDIYA, 2016). The path obtained is stored in the CID as the total length (real
estimated distance) and the number of segments of that path.

The robot battery is the current battery level of the robot. The robot speed can
have two meanings depending on the BT’s node. It can be the robot’s current linear
velocity when the CID checks if the robot can continue a task, or it can be the robot’s
average linear velocity when the CID decides if the robot must accept a task or not.

The task requirements are the requirements for a task to be chosen by a robot,
which are analyzed by the CID when the robot first receives the task.

The CID predicts two pieces of information about the task (ΔB and ΔT) using the
information gathered from another task. When the CID still does not have a sufficient
amount of data from the robot, it uses a neural network trained with synthetic data.

• ΔB: Required battery (%)

Chapter 3. Development 39

• ΔT : Required time (minutes)

The required battery level is expressed as a percentage, and the required time
is given in minutes. For each time that an evaluation is done, the final battery level (FB)
is calculated according to the Eq. (2). If FB is smaller than zero, then it means that the
robot has not enough energy for the task, and, in this case, ΔB is considered infinity.

FB = B – ΔB

If FB < 0 then ΔB = +∞
(2)

3.3.3 Neural Network

The neural network structure was chosen experimentally using a cross-validation,
in a way that it was added many hidden layers and neurons, then they were removed
until the mean absolute error (MAE) of the output increases. Based on this, the final
structure is composed of two hidden layers, as showed in Figure 27.

Figure 27 – Neural Network Structure

Input
4x1

Hidden
Layer
20x1

Hidden
Layer
20x1

Output
2x1

With this structure, there is a 4 inputs layer (distance, number of path segments,
current level of battery, and speed), followed by two hidden layers with 20 neurons each
and finally, the output layer with 2 neurons (predicted time and battery required). All the
layers uses the linear activation function, Figure 28, so the input is the output multiplied
by a constant, or f (x) = αx . The summary of the layers is presented in Table 2.

Figure 28 – Linear activation function and its derivative

For the optimization algorithm, Adam (KINGMA; BA, 2017) is used, it is an
adaptive learning rate method, meaning that it computes individual learning rates for
different parameters. Adam can be seen as a combination of RMSprop, and Stochastic
Gradient Descent with momentum (RUDER, 2017). It uses the squared gradients to

Chapter 3. Development 40

Table 2 – Summary of layers in the DNN

Type Shape Activation
function Parameters

Input 4,1
Dense 20,1 Linear 100
Dense 20,1 Linear 420
Output 2,1 Linear 42

scale the learning rate just like RMSprop does and takes advantage of momentum
by using the moving average of the gradient and not the gradient itself like SGD with
momentum.

3.3.4 Negotiation

For the negotiation, the system uses an auction with the bids governed by the
CID. According to (SCHNEIDER et al., 2015), auctions for multi-robot task allocation
have a performance close to an optimal allocation, with the advantage of scaling much
better.

The communication was developed based on the UDP protocol (KUMAR; RAI,
2012), it means that a node on the network (fixed stations or a robot) can broadcast
messages to the network and any other node can receive the messages, at the same
time that one node can send messages directly to another. The UDP protocol consumes
less energy but it also does not guarantee that a message is received, but the auction
algorithms developed for this research can deal with this without any problem.

In this system, at the first moment, the robot receives the task basic info and
requirements (header) from the fixed stations or other robots trying to transfer their
tasks. With this information, the robot evaluates three sets of inputs to the CID:

1. One virtual task that makes the robot go from its current position to the start
position of the task, generating the outputs ΔBi and ΔTi . The battery input
considered here is the current battery level of the robot, and the final battery
level is given by FBi = B – ΔBi .

2. The real task generating the outputs ΔBt and ΔTt . For this evaluation, the
battery level considered is the final battery level after the first virtual task,
given by Bi = FBi , and the final battery level is given by FBt = Bi – ΔBt .

3. Another virtual task that makes the robot go from the final task position to the
nearest fixed recharge station, which generates the outputs ΔBf and ΔTf . For
this virtual task, the battery input used is based on the output of the real task
(Bt = FBt), so the final battery level is given by Bf = Bt – ΔBf .

As the robot’s speed for the task trajectory is not known at the evaluation time,

Chapter 3. Development 41

the velocity input used is the average speed of the robot in the last task. All these three
evaluations can estimate the time and battery required for the whole estimated task
trajectory. The total estimated battery and time required are given simply by the sum of
the outputs of each task evaluation, as showed in the Equation (3). For each task, if the
required battery is more than the battery available (FB < 0), the final battery required
ΔB is considered infinity.

ΔT = ΔTi + ΔTt + ΔTf

ΔB = ΔBi + ΔBt + ΔBf
(3)

With the results of the Equation (3), the system calculates the final BID for the
action, which is given by the Equation (4). The less time and battery the robot spends
on the task, the lower will be the value of the bid, which will be in the interval [0 – +∞].
If the robot does not meet the task requirements, the BID is also considered∞ as the
robot cannot accept this task.

BID = ΔB × ΔT (4)

After calculating the BID, the robot sends this value to the auctioneer, following
the "less is better" policy and choosing the winner for the task. The auction pseudo-
codes for auctioneer and bidder are presented in Algorithm 9 and Algorithm 10.

Algorithm 9: Auctioneer algorithm
1 broadcasts the header t for task t ;
2 proposals← [];
3 while proposals max time not passed do
4 if receive proposal p then
5 add p to proposals list;
6 end
7 end
8 if length of proposals greater than 0 then
9 bp ← best proposal;

10 remove bp from proposals;
11 send task t directly to the proposer of bp;
12 if task t is accepted by the proposer then
13 mark task t as accepted;
14 else
15 go to line 8;
16 end
17 else
18 schedule task t for later;
19 end

Chapter 3. Development 42

Algorithm 10: Bidder algorithm
1 if receive a header h for a task then
2 if not committed then
3 calculates a bid for h;
4 reply the bid directly to the auctioneer;
5 end
6 end
7 if receive a complete task t then
8 if not committed then
9 current task← t ;

10 reply to the auctioneer that task was accepted;
11 else
12 reply to the auctioneer that task t was not accepted;
13 end
14 end

3.3.5 Continue/Return

For checking if the robot can continue a task or return to the nearest station, just
one virtual task needs to be evaluated. If the robot is executing a task, the virtual task
has a final position in the final position of the task. If the robot is returning to a station,
the final task position is the position of that station. In both cases, the initial position is
the robot’s current position, and the speed is the current robot speed.

After evaluating, as the checking nodes are of the type "Condition", they must
return a boolean value indicating "yes" or "no". The return value is based only in the
battery output, according to Equation (5).

ContinueOrReturn = FB > 0 (5)

3.3.6 Training

The initial training of the ANN is done with synthetic data, which is the same for
all robots. These data is generated according to some simple rules:

1. Generates the initial position (from –50m to 50m): xI, yI

2. Generates the final position (from –50m to 50m): xF , yF

3. Generates a battery level (from 10% to 100%): B

4. Generates a speed (from 0.1m/s to 0.5m/s): V

5. Calculates the distance required:

D =
√

(xF – xI)2 + (yF – yI)2

6. Calculates the required time in minutes:

ΔT = (D/V)/60

Chapter 3. Development 43

7. Calculates the required battery considering 5% per minute:

ΔB = ΔT × 0.05
These generated data is far from ideal when individualized, and thus when used

to train the ANN it gives sub-optimal results. The results given by the network trained
with this data consider that there are no obstacles in the environment. It also considers
that all robots have a battery with a linear discharge rate and with the same max/min
speed.

To fix this problem over time, every time the robot returns to a fixed station for
recharge, it is checked if it can retrain its neural network, this is done by calculating
the ratio of new vs old data, if more than a percentage threshold of the data have
changed, defined as 20% for this simulation, the the network is retrained, being one
network by robot. The real data of the robot is generated when the robot finishes a task
(real or virtual) and when it aborts it. A new row of data is stored at all these moments
considering a rule of smart replace: If there is already a row with the same initial and
final position, then replace that row with the current one. Otherwise, append the data as
a new row. When the robot is recharging, it does not need to negotiate tasks or do any
other task, so if there are sufficient data, it trains a copy of its ANN with the new data,
and when finished, it replaces its neural network with the new one. When new rows of
data are added to the training dataset, the old ones are always removed to keep a fixed
number of rows and not train the network with data from ancient tasks.

With this training scheme, the robot is incrementally improving its negotiation ca-
pabilities, and indirectly, it is modeling the battery discharge curve, the robot movement
details, and the map specificities.

44

4 RESULTS

Before evaluating the system, the ANN was trained and evaluated individually
to ensure that the BT nodes that depend on this would work properly. The simulation
considers an area of 50m × 50m, varying the number of robots and number of tasks.

The training process was set to execute for as many epochs are necessary to get
an accuracy greater than a target, defined as 96% for the simulation. The initial data is
composed of a set of 10000 entries (synthetic data) and was split for cross-validation
in sets of 80% for train and 20% for tests. In Figure 29, it is presented the training loss
and accuracy over the epochs until the desired accuracy is reached for the synthetic
data, and Figure 30 presents the training loss and accuracy for the data gathered from
the first simulation.

The Loss is the measurement of how far the predicted value is from the real value,
while the accuracy measures the ratio of the number of correct predictions to the total
number of input samples. As the training is a stochastic process, the same procedure
of was ran 100 times and the resulting graph is the mean of all of them. As the this is a
regression network, for calculating the accuracy, the outputs were considered equal to
the target if the error were smaller than 5%.

Figure 29 – Loss and accuracy of the training process with synthetic data

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Epoch

0

10

20

30

40

Lo
ss

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
Epoch

25

50

75

100

Ac
cu

ra
cy
 (%

)

For evaluating the system, it was configured a simulation in Gazebo 3D Simulator
according to the Table 3. As the map has some obstacles, we can expect that the results
of the system will increase over time as the ANN learns how to give better predictions
considering the trajectory of robots through the map.

The simulation was executed twice, considering two different cases: The first
case uses the initial training of the ANN, considering the synthetic data, and the second
one uses the data from the first simulation to retrain the ANN.

Figures 31 and 32 present the difference between the predictions and the real
required time and battery, respectively for tasks when considering the case of synthetic

Chapter 4. Results 45

Figure 30 – Loss and accuracy of the training process with simulation data

0 5 10 15 20 25
Epoch

0

5

10

15

Lo
ss

0 5 10 15 20 25
Epoch

0

25

50

75

100
Ac

cu
ra
cy
 (%

)

Table 3 – Simulation parameters

Parameter Value
Number of robots 1, 2, 4, 8
Number of tasks 12, 24, 36, 48

Max speed 0.5 m/s
Number of runs 10

Area size 50 m x 50 m

data. It can be seen in those figures that both time and battery differs very much from
the predicted values, and this is quite comprehensive for a system trained with generic
data created randomly not taking all system constraints into account. When looking at
the time is possible to visualize that it is almost the double of the predict values, while
the required battery can get to 10 times easily, clearly showing that the approximation
used for battery discharge is extremely inaccurate. With the training of the system with
simulation data, is expected that the predicted and real values tend to be equal or very
close.

Figures 33 and 34 presents the same for the second case, when the data gath-
ered from the first simulation is used to train the ANN. As can be seem, with the neural
network trained with the data from simulation, the absolute error tends to be smaller
as the network now considers the main characteristics of the robot and not only some
generic data. The system still present differences between the predicted and the real
values, but those are very small compared to the training without the simulation data.

Considering the isolated analysis from the Figures 31, 32, 33, 34, we can com-
bine the results to analyze the absolute error for the predictions. In Figure 35 it is
presented the absolute error between the predicted and the real required time before
and after training the system with the simulation data. The same is applied for the
battery in Figure 36. Considering the isolated results, the lower prediction errors after
using the simulation data is an expected result.

Chapter 4. Results 46

Figure 31 – Difference between the predicted and spent time to finish the tasks for the
case of synthetic data

0 10 20 30 40
Task (#)

0.0

0.5

1.0

1.5

2.0
Ti
m
e
(m
in
ut
es
)

Time elapsed predicted and effectivelly required with synthetic data
Required
Predicted

Figure 32 – Difference between the predicted and spent battery to finish the tasks for
the case of synthetic data

0 10 20 30 40
Task (#)

0

2

4

6

8

10

12

14

16

Ba
tte

ry
 (%

)

Battery consuption predicted and effectivelly required with synthetic data
Required
Predicted

The predicted time and battery are used to compute the bid for the tasks auction.
Improving the prediction allows the robots to make a better decision of which robot
is the best option for some task, and this best decision can be analyzed using the
distance and time required by the robots to finish a set of tasks. The Figures 37 and
38 presents the results for the overall time and the overall traveled distance for the first
case when only the synthetic data is taken into account. The time grow quicker than
distance because the more robots on the map, more obstacles to deviate. In these and

Chapter 4. Results 47

Figure 33 – Difference between the predicted and spent time to finish the tasks for the
case of simulation data

0 10 20 30 40
Task (#)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Ti
m
e
(m

in
ut
es
)

Time elapsed predicted and effectivelly required with simulation data
Required
Predicted

Figure 34 – Difference between the predicted and spent battery to finish the tasks for
the case of simulation data

0 10 20 30 40
Task (#)

0

2

4

6

8

Ba
tte

ry
 (%

)

Battery consuption predicted and effectivelly required with simulation data
Required
Predicted

all following figures, the number of tasks is per robot, and because of this, the time and
distance increases as the number of tasks also increases. The total number of running
tasks is:

TNT = NR × NT (6)

Figures 39 and 40 presents the same for the simulation data. As seen in the

Chapter 4. Results 48

Figure 35 – Absolute error between the predicted and spent time to finish the tasks for
the case of synthetic data

0 10 20 30 40
Task (#)

0.0

0.2

0.4

0.6

0.8

1.0
M

SE
 T

im
e

(m
in

ut
es

)

Mean square error for predicted and effectivelly time required
Before training
After training

Figure 36 – Absolute error between the predicted and spent battery to finish the tasks
for the case of synthetic data

0 10 20 30 40
Task (#)

0

2

4

6

8

10

12

14

16

M
SE

 B
at

te
ry

 (%
)

Mean square error for predicted and effectivelly battery required
Before training
After training

comparison, after retraining the system with the data from the first simulation, the
results compare quite well and give much better results, mainly when comparing the
traveled distance, which is expected as the ANN is now considering the disturbance in
the trajectory caused by the obstacles.

Chapter 4. Results 49

Figure 37 – Total time for all robots comparison for the case of synthetic data

12 24 36 48
Tasks (#)

0

100

200

300

400

500

To
ta
l t
im

e
(m

in
)

Total time spent by the robots
1 robot
2 robots
4 robots
8 robots

Figure 38 – Total traveled distance for all robots comparison for the case of synthetic
data

12 24 36 48
Tasks (#)

0

1000

2000

3000

4000

5000

To
ta
l d

ist
an

ce
 (m

)

Total distance travalled by the robots
1 robot
2 robots
4 robots
8 robots

Chapter 4. Results 50

Figure 39 – Total time for all robots comparison for the case of simulation data

12 24 36 48
Tasks (#)

0

50

100

150

200

250
To
ta
l t
im

e
(m

in
)

Total time spent by the robots
1 robot
2 robots
4 robots
8 robots

Figure 40 – Total traveled distance for all robots comparison for the case of simulation
data

12 24 36 48
Tasks (#)

0

500

1000

1500

2000

2500

3000

3500

4000

To
ta
l d

ist
an

ce
 (m

)

Total distance travalled by the robots
1 robot
2 robots
4 robots
8 robots

51

5 CONCLUSION

One of the main problems in the literature for the robotic field is allocating tasks
for multi-robot systems. Even with the last advances in this area, this is still an opened-
problem with many points to be explored.

This work develops a framework focused on multi-robot systems considering
real-time constraints and using behavior trees as a vital tool and a deep neural network
as the underlying intelligence to improve task allocation. As the system is a framework,
it doesn’t require many programming skills to be used and provides tools to manage a
multi-robot system as a whole (task allocation, communication, individual data).

The framework allows a group of robots to organize themselves to finish tasks
optimized with no centralized control. The framework also provides that the experience
of the robots continuously improves the system.

This new framework can be easily integrated into any system that allows one
to control a robot, a simulator or a real robot, with the integration with ROS already
developed and tested on the Gazebo Simulator.

Based on the results presented in Chapter 4, a BT can be used with success
to coordinate the task allocation among multiple robots only with a single instance of
the BT being executed in each robot. The coupled ANN considers the system and
robot constraints during the negotiation phase with the developed framework. It also
considers the robot state at every tick, allowing the dynamic and fast task-transference
in case the robot cannot conclude the task.

The results also showed that with experience, the robot learned quite well how
to allocate the tasks better than the initial allocation based on the ANN trained with
synthetic data, allowing that the overall time and traveled distance of each robot to be
improved by its own experience.

The system presented good results but is still not mature yet to be used in a real
scenario. The whole framework considers that all robots will be connected to a network
all the time, in the range of at least of the fixed station, and this is not the case of most
applications where the robots often lose their connection but still need to do their job.

Another problem with the framework is that it still cannot deal with one of the
research delimitations, it was assumed that the robots would be able to communicate
locally, but the framework itself lacks support for that.

One way that this work can be improved is by optimizing the way the system
deals with sub-tasks. In the current implementation, all tasks must be in the form of
"go from A to B", a better implementation should allow tasks defined by a sequence of
atomic sub-tasks so that complex real-world tasks could be used.

Another improvement for this framework is to allow the robots to work with a
mesh network (K.C, 2016), improving coverage and network connectivity.

Chapter 5. Conclusion 52

Considering the navigation of the robots, a great improvement would be to work
without a static map, but working with Simultaneous Localization and Mapping - SLAM
(DURRANT-WHYTE; BAILEY, 2006), so that the robots would construct the maps as
they are navigating to the environment.

53

REFERÊNCIAS

ARAI, T.; PAGELLO, E.; PARKER, L. E. Guest editorial advances in multirobot systems.
IEEE Transactions on Robotics and Automation, v. 18, n. 5, p. 655–661, Oct. 2002.
ISSN 2374-958X.

BARBOSA, Alexander S.; PLENTZ, Patricia D. M.; DE PIERI, Edson R. A Behavior
Tree Designing Tool for Online Evaluation. In: IECON 2020 The 46th Annual
Conference of the IEEE Industrial Electronics Society. [S.l.: s.n.], Oct. 2020.
P. 537–542.

BECROFT, David; BASSETT, Jesse; MEJIA, Adrián; RICH, Charles;
SIDNER, Candace. AIPaint: A Sketch-Based Behavior Tree Authoring Tool. In:
PROCEEDINGS of the Seventh AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment. Stanford, California, USA: AAAI Press, 2011.
(AIIDE’11), p. 2–7.

CAO, Y Uny; FUKUNAGA, Alex S; KAHNG, Andrew. Cooperative Mobile Robotics:
Antecedents and Directions. Autonomous Robots, v. 4, n. 1, p. 7–27, Mar. 1997.
ISSN 1573-7527.

COLLEDANCHISE, M.; MARZINOTTO, A.; DIMAROGONAS, D. V.; OEGREN, P. The
Advantages of Using Behavior Trees in Mult-Robot Systems. In: PROCEEDINGS of
ISR 2016: 47st International Symposium on Robotics. [S.l.: s.n.], June 2016. P. 1–8.

COLLEDANCHISE, Michele; ÖGREN, Petter. Behavior Trees in Robotics and AI: An
Introduction. Computing Research Repository (CoRR), abs/1709.00084, 2017.
arXiv: 1709.00084.

DE LUCCA SIQUEIRA, F.; DELLA MEA PLENTZ, P.; DE PIERI, E. R. Semantic
trajectory applied to the navigation of autonomous mobile robots. In: 2016 IEEE/ACS
13th International Conference of Computer Systems and Applications (AICCSA).
[S.l.: s.n.], Nov. 2016. P. 1–8.

DURRANT-WHYTE, H.; BAILEY, T. Simultaneous localization and mapping: part I.
IEEE Robotics Automation Magazine, v. 13, n. 2, p. 99–110, June 2006. ISSN
1558-223X.

https://arxiv.org/abs/1709.00084

REFERÊNCIAS 54

GARCIA, E.; JIMENEZ, M. A.; DE SANTOS, P. G.; ARMADA, M. The evolution of
robotics research. IEEE Robotics Automation Magazine, v. 14, n. 1, p. 90–103, Mar.
2007. ISSN 1558-223X.

GONZALEZ-PEREZ, C.; HENDERSON-SELLERS, B.; DROMEY, G. A metamodel for
the behavior trees modelling technique. In: THIRD International Conference on
Information Technology and Applications (ICITA’05). [S.l.: s.n.], July 2005. v. 1, 35–39
vol.1.

GURUJI, Akshay Kumar; AGARWAL, Himansh; PARSEDIYA, D.K. Time-efficient A*
Algorithm for Robot Path Planning. Procedia Technology, v. 23, p. 144–149, 2016.
3rd International Conference on Innovations in Automation and Mechatronics
Engineering 2016, ICIAME 2016 05-06 February, 2016. ISSN 2212-0173.

HAYKIN, Simon. Neural Networks: A Comprehensive Foundation. 1st. USA:
Prentice Hall PTR, 1994. ISBN 0023527617.

HAYKIN, Simon S. Neural networks and learning machines. Third. Upper Saddle
River, NJ: Pearson Education, 2009.

HUSSEIN, A.; KHAMIS, A. Market-based approach to Multi-robot Task Allocation. In:
2013 International Conference on Individual and Collective Behaviors in Robotics
(ICBR). [S.l.: s.n.], Dec. 2013. P. 69–74.

IOCCHI, Luca; NARDI, Daniele; SALERNO, Massimiliano. Reactivity and Deliberation:
A Survey on Multi-Robot Systems. In: BALANCING Reactivity and Social Deliberation
in Multi-Agent Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. P. 9–32.

IOVINO, Matteo; SCUKINS, Edvards; STYRUD, Jonathan; ÖGREN, Petter;
SMITH, Christian. A Survey of Behavior Trees in Robotics and AI. [S.l.: s.n.], 2020.
arXiv: 2005.05842 [cs.RO].

K.C, Karthika. Wireless mesh network: A survey. In: 2016 International Conference on
Wireless Communications, Signal Processing and Networking (WiSPNET). [S.l.: s.n.],
Mar. 2016. P. 1966–1970.

KHAMIS, Alaa; HUSSEIN, Ahmed; ELMOGY, Ahmed. Multi-robot Task Allocation: A
Review of the State-of-the-Art. In: Cooperative Robots and Sensor Networks 2015.

https://arxiv.org/abs/2005.05842

REFERÊNCIAS 55

Ed. by Anis Koubâa and J.Ramiro Martínez-de Dios. Cham: Springer International
Publishing, 2015. P. 31–51. ISBN 978-3-319-18299-5.

KHAMIS, Alaa; HUSSEIN, Ahmed; ELMOGY, Ahmed. Multi-robot Task Allocation: A
Review of the State-of-the-Art. In: [s.l.: s.n.], May 2015. v. 604, p. 31–51. ISBN
978-3-319-18299-5.

KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic Optimization.
[S.l.: s.n.], 2017. arXiv: 1412.6980 [cs.LG].

KORSAH, G.; STENTZ, Anthony; DIAS, M. A comprehensive taxonomy for multi-robot
task allocation. International Journal of Robotics Research, v. 32, p. 1495–1512,
Oct. 2013.

KUMAR, Santosh; RAI, Sonam. Article: Survey on Transport Layer Protocols: TCP
UDP. International Journal of Computer Applications, v. 46, n. 7, p. 20–25, May
2012. Full text available.

LI, Hong-Xing; DA, Xu Li. A neural network representation of linear programming.
European Journal of Operational Research, v. 124, n. 2, p. 224–234, 2000. ISSN
0377-2217.

NEHMZOW, U. Scientific Methods in Mobile Robotics: Quantitative Analysis of
Agent Behaviour. [S.l.]: Springer London, 2006. (Springer series in advanced
manufacturing). ISBN 9781846282607.

PARKER, Lynne E. Distributed Intelligence: Overview of the Field and Its Application in
Multi-Robot Systems. In: FININ, Tim; KAGAL, Lalana; KENDALL, Elisa F.; LI, Jason H.;
LYELL, Margaret; TRUSZKOWSKI, Walt (Eds.). Regarding the Intelligence in
Distributed Intelligent Systems, Papers from the 2007 AAAI Fall Symposium,
Arlington, Virginia, USA, November 9-11, 2007. [S.l.]: AAAI Press, 2007. FS-07-06.
(AAAI Technical Report), p. 1–6.

ROBOTICS, Rethink. Intera Studio. [S.l.: s.n.], 2020. Available from:
https://www.rethinkrobotics.com/intera. Visited on: 19 May 2020.

ROBOTICS, Rethink. Sawyer. [S.l.: s.n.], 2020. Available from:
https://www.rethinkrobotics.com/sawyer. Visited on: 19 May 2020.

https://arxiv.org/abs/1412.6980
https://www.rethinkrobotics.com/intera
https://www.rethinkrobotics.com/sawyer

REFERÊNCIAS 56

RUDER, Sebastian. An overview of gradient descent optimization algorithms.
[S.l.: s.n.], 2017. arXiv: 1609.04747 [cs.LG].

SCHNEIDER, Eric; SKLAR, Elizabeth I.; PARSONS, Simon; ÖZGELEN, A. Tuna.
Auction-Based Task Allocation for Multi-robot Teams in Dynamic Environments. In:
DIXON, Clare; TUYLS, Karl (Eds.). Towards Autonomous Robotic Systems. Cham:
Springer International Publishing, 2015. P. 246–257.

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY ET AL. Robotic Operating
System. [S.l.: s.n.], 23 May 2018. Available from: https://www.ros.org.

TALEBPOUR, Z.; MARTINOLI, A. Multi-Robot Coordination in Dynamic Environments
Shared with Humans. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA). [S.l.: s.n.], May 2018. P. 4593–4600.

YANG, Q.; LUO, Z.; SONG, W.; PARASURAMAN, R. Self-Reactive Planning of
Multi-Robots with Dynamic Task Assignments. In: 2019 International Symposium on
Multi-Robot and Multi-Agent Systems (MRS). [S.l.: s.n.], Aug. 2019. P. 89–91.

ZHANG, Q.; XU, K.; JIAO, P.; YIN, Q. Behavior Modeling for Autonomous Agents
Based on Modified Evolving Behavior Trees. In: 2018 IEEE 7th Data Driven Control
and Learning Systems Conference (DDCLS). [S.l.: s.n.], May 2018. P. 1140–1145.

https://arxiv.org/abs/1609.04747
https://www.ros.org

	Title page
	Approval
	Dedication
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Objectives
	General objective
	Specific objectives
	Research delimitation
	Scientific contribution

	Background
	Multi-robot systems
	Behavior Trees
	Behavior Tree Designing
	AIPaint
	Groot
	Intera Studio

	Artificial Neural Network
	Multi-robot Task Allocation

	Development
	Behavior Tree Designer
	Nodes
	Features
	Interface

	Framework
	Behavior Tree Architecture

	Context Information Database
	Task definition
	Context Information Database Structure
	Neural Network
	Negotiation
	Continue/Return
	Training

	Results
	Conclusion
	REFERÊNCIAS

		2022-07-27T15:59:52-0300

		2022-07-27T17:50:32-0300

		2022-07-27T20:00:26-0300

