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Abstract 

In recent years, the search for understanding the pathophysiology of obesity has been 

intense, especially the satiety signs in the hypothalamus and brain regions associated with hormonal 

signalling in orexigenic and anorexigenic neurons. Such signs are quite complex and often associated 

with energy expenditure and feelings of hunger and satiety in mammals. Recent studies have shown 

that some key peptides promote exacerbation or inactivation of these pathways. Different phenotypes 

regarding body composition, however, are resulted from mutations (allelic variants) in the genes 

encoding these proteins, especially peptide receptors. In particular, the hormone receptor ghrelin 

(GHSR), located on the surface of orexigenic neurons, has been associated with the regulation of 

hunger. Furthermore, allelic variants of the GHSR gene may compromise significant changes in 

signalling provided by the GHSR, providing altered hormone-binding phenotypes and its receptor. In 

this sense, searching for allelic variants that can explain the different phenotypes of thinness or 

overweight/obesity can help understand the pathway and define new strategies for early laboratory 

diagnosis. Initially, mining was carried out on the dbSNP which presented 373 non-synonymous 

Single nucleotide polymorphisms (SNPs) located in coding regions (missense). After being filtered by 

minor allele frequency (MAF) lower than 1%, and submitted to 8 different in silico predictions tools 

we found eight variations: L91F, R237W, I134T, V216A, V46F, S174N, N319H, and D194Y. 

Variants were analyzed at the HOPE project web server and Swiss-Model database. The results and 

future analyses of these mutations may give us a better elucidation of the implication of mutations and 

their possible correlation with the pathophysiology of obesity. 

 

Keywords: obesity; ghrelin; GHSR; receptor; variants; genes.  
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1. Introduction 

Human ghrelin (GR) is encoded by the GHRL gene, located on the short arm of chromosome 

3 (3p25-26), and contains 6 exons and 4 introns [1]. GR is a peptide hormone produced by the epsilon 

cells of the stomach and pancreas with an endocrine function that stimulates the release of growth 

hormone (GH), thus acting in growth hormone cells located in the pituitary and hypothalamus [2]. In 

addition to its role as a stimulator of GH release, GR is also able to stimulate gastric acid secretion in 

humans. Studies have shown that in rats, GR can increase food intake stimulated by gastric emptying 

provided by controlled fasting. The results showed that, when centrally administered, it was able to 

induce eating behaviour within five minutes after administration [3]. These studies were crucial to a 

better understanding of genetic resources and their role in hunger. Recently, studies have shown that in 

humans, GR affected appetite regulation, stimulated food intake [4,5,6,7], metabolic pathways, and 

increased adiposity, triglyceride synthesis and gluconeogenesis [8]. 

The GR receptor, the so-called growth hormone secretagogue receptor (GHS-R), belongs to 

the large family of G-coupled receptors, encoded by the gene GHSR located on chromosome 3 

(3q26.2), with two introns and two exons [1]. GR and its receptor GHS-R constitute the "ghrelin axis" 

and play a role in regulating many metabolic outcomes, such as appetite regulation, effects on insulin 

and glucose homeostasis, energy balance, and lipogenesis [9]. In this sense, data on the metabolic 

effects of ghrelin and its hypothalamic receptors are known, and the ghrelin axis is a promising target 

for intervention in obesity and type 2 diabetes [9]  

Neurotensin, motilin, neuromedin and GPR39 receptors, as well as GHSR, are also examples 

of G protein-coupled receptors (GPCR). [10]. The first report of GHSR, more specifically GHSR1a, 

describes its functionality through the Gα q11 subunit of protein G, increasing the intracellular 

concentrations of Ca2+ through the inositol signalling pathway 1,4,5-triphosphate [11, 12]. Studies also 

have shown that cAMP, phospholipase C, protein kinases A and C and AMP kinase contribute to the 

downstream transduction of the ghrelin pathway [13,14, 15]. 

Recent studies have documented that genetics plays an important role in the development of 

obesity, with an estimated heritability between 40% and 70% [16, 17, 18]. Obesity exists in 

monogenic and polygenic forms. Monogenic obesity, mainly caused by genetic mutations in a single 

gene, is responsible for a small number of cases of extreme early obesity [19, 20, 21]. Studies of this 

rare form of obesity have identified genetic variants in several genes and provided preliminary 

information on the pathogenesis of monogenic obesity [22]. However, recent Broad Genomic 

Association (GWAS) studies have so far identified 751 genetic variants (single nucleotide 

polymorphisms, SNPs) in genes associated with various phenotypes of overweight and obesity 

associated with BMI confirming polygenic obesity. However, polygenic obesity is characterized by 
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remission through a healthy lifestyle, including physical activity [23] and adhering to healthy eating 

patterns. In this sense, understanding the role of different genetic mutations and their implications in 

the pathophysiology and clinical practice of obesity will benefit the search for more effective methods 

to diagnose and mitigate metabolic diseases. 

Different types of variants and their consequences on phenotype, in addition to population 

frequency, mediate genetic effects that have great importance on the body weight of individuals. 

Variants that have a lower frequency allelic (MAF) of 5% in a population are considered common, 

since they have between 1 and 5% are considered intermediate, and finally, as with frequency, less 

than 1% are considered rare [24]. 

Bioinformatics plays a vital role when one wishes to understand genomic variations, several 

computational tools have been developed to predict whether a certain variation is deleterious or not to 

the protein. Each platform uses different methods and principles, which are based on protein structure 

analysis, conservation evolutionary analysis, sequence environment, functional annotations, and 

biochemical and physical properties of amino acids. Platforms such as SIFT [25, 26], PANTHER [27], 

and PROVEAN [28] are based on evolutionary conservation, instruments such as PhD-SNP [29], 

PolyPhen-2 [30], SNAP2 [31] MAPP [32], and PON-P2 [33] combine evolutionary conservation data 

and other types of resources, while tools such as HOPE [34] and PredictSNP [35] are meta-predictors 

that make consensus predictions based on other tool results. 

Many variants of different genes have been implicated in human disease phenotypes but, in the 

absence of functional assays, the related pathogenicity of many remains unclassified. Several in silico 

tools have been developed to predict the effect of missense variants. Some of these tools are used 

routinely by diagnostic labs to advise clinicians of disease likelihood in the absence of previous 

evidence.  

Therefore, this study aimed to search for missense allelic variants of the GHSR gene in the 

public domain database that contain a large collection of simple genetic polymorphisms and associate 

them with loss or gain of function of GHSR protein through in silico prediction study.  
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2. Methods 

2.1 Database collection 

The Single Nucleotide Polymorphisms Database (dbSNP, http://www.ncbi.nlm.nih.gov/SNP/) 

was queried for the GHSR gene (Gene ID: 2693) in May 2022. All missense variants were collected 

and filtered using a global MAF of 1% [36] for further analysis. MAF was also confirmed in The 

Genome Aggregation Database (GnomAD) (https://gnomad.broadinstitute.org/) v2 release, composed 

of 125,748 exomes and 15,708 genomes (GRCh37). 

 

2.2 Amino acid substitution prediction tools 

For prediction analysis, PolyPhen-2, PON-P2, SIFT, PhD-SNP, PROVEAN, PANTHER, 

SNAP, Predict SNP, and MAPP tools were used. 

The PolyPhen-2 (Polymorphism Phenotyping v2) is a sequence-based feature tool, capable of 

predicting the possible impact that can be the replacement of given amino acid, both in the structure 

and function of a human protein [30]. For each amino acid substitution, there is a qualitative prediction 

("probably damaging", "potentially damaging", "benign" or "unknown"), determining a score ranging 

from 0.0 (tolerated) to 1.0 (deleterious) [30]. 

PON-P2 is a random “forest predictor” that aims to determine the association of pathogenicity 

of amino acid substitution. The “forest predictor” algorithm classifies the resources surveyed 

according to the mean decrease in the Gini index (an index that aims to calculate any distribution), that 

is, the greater the decrease of this index, the more critical the characteristic [33]. For tolerance 

forecasts, we use the reliability estimate of the forecasts and group the variants as pathogenic, neutral, 

or unknown [33]. 

SIFT (Sorting Intolerant From Tolerant) classifies intolerant and tolerant substitutions as 

deleterious or tolerated. To predict whether the change will affect protein function, the platform 

considers the position in which the change occurs. Based on sequential homology and physical 

properties of amino acids, it calculates the tolerance of a given substitution with a tolerance index, and 

mutations above 0.05 are tolerated [25, 26]. 

PhD-SNP (Predictor of human Deleterious Single Nucleotide Polymorphisms) predicts whether 

a certain amino acid substitution, classifying it as pathogenic or benign. The classification is made 

from a probabilistic score between 0 and 1, when this score is >0.5 the mutation is pathogenic, 

otherwise, it is given as benign [29]. 

PROVEAN predicts how the variation of a given amino acid affects protein function. The 

analysis of PROVEAN is based on two steps, first performs the collection of a set of homologous and 

distant sequences using the NCBI database. In the second stage, for each sequence of the set, a delta 

http://www.ncbi.nlm.nih.gov/SNP/
https://gnomad.broadinstitute.org/
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score calculated by the platform itself is calculated [28]. The variation is considered "exclusion" if the 

score is equal to or super to a threshold established by the platform, already if the score is above the 

threshold is considered "neutral" [28]. 

PANTHER (Protein Analysis Through Evolutionary Relationships) classifies proteins according 

to their function. For this it uses the probabilities of amino acids of a specific position to establish an 

SNP score. Thus, it can determine whether the amino acid substitution performed is deleterious or 

neutral [27]. 

SNAP (Screening For Nonacceptable Polymorphisms) from the input sequence, using a neural 

network-based method (it is a computational model inspired by an animal's Central Nervous System, 

having the ability to perform machine learning and recognize patterns). The tool enables us to predict 

the functional effects of "Single Nucleotide Polymorphisms (SNPs)" not synonymous [31]. 

PredictSNP can be defined as a consensus classifier capable of combining some of the best-

developed tools (MAPP, SNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT, and 

SNAP), thus predicting the expected effects of the mutation chosen in the protein function [35]. 

MAPP (Multivariate Analysis of Protein Polymorphism) quantifies the physical-chemical 

variation of mutations. Also calculating the deviation of substitutions of candidate amino acids from 

this required mutation. Therefore, the higher the calculated deviation, the greater the probability that 

this substitution will impair the protein function, thus generating a may effect on protein function [32]. 

 

2.3 3D modelling analysis and HOPE analyses 

For biochemical and conservation analyses, the platform chosen was HOPE project web server 

(https://www3.cmbi.umcn.nl/hope/). It can collect structural information from different sources, 

ranging from calculations of the 3D protein structure and annotations on the protein sequence in 

UniProt, in addition to these, provides data on hydrophobicity, the size of mutant residues, and 

conservation of wild-type residues. Finally, based on this information, HOPE compiles these data and 

identifies an analysis of the effect of a given mutation on the protein structure [34]. The HOPE tool 

was used for 3D modelling of the wild-type and variants to analyze the molecular surface of the wild-

type and protein variants, as well as the formation of intramolecular hydrogen bridges. Homology 

modelling of the receptor domain was performed using the SWISS-MODEL software 

(https://swissmodel.expasy.org/).  

https://www3.cmbi.umcn.nl/hope/
https://swissmodel.expasy.org/
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3. Results 

3.1 General information 

The GHSR gene is located at chromosome 3q26.31, and is a protein-coding gene that consists 

of 2 exons. GHSR has 366 nucleotides in length (NCBI Gene ID: 2693) and two transcripts 

(ensemble.org). This gene encodes a peptide receptor, a member of the G-protein coupled receptor 

family, called growth hormone secretagogue receptor transcript. The transcript 1a (GHSR1a) encodes 

the functional protein, the receptor for the GR ligand, and defines a neuroendocrine pathway for 

growth hormone release. The second transcript (1b) retains the intron and does not function as a 

receptor.  

 

3.2 SNPs in the GHSR gene 

The analysis of the dbSNP revealed a total of 3,001 variants in the GHSR gene, 803 (26.7%) 

of them were classified as intronic. Among coding variants, 207 (25.8 %) were classified as 

synonymous, and five were inframe deletions (0.62%). Missense substitutions accounted for 373 (46.4 

%) of all reported mutations. Further, the percentages of transitions for these variants were assessed 

and for G > A transition was 22.8%, A > G, 11.3%, C > T 21.4%, and T > C 12.6% while 

transversions such as A > C were 4.8% and C > G, 11.3%, C > A, 12.9%, G > C, 8.6%, T > A, 2.9%, 

T > G, 4.5%, G > T, 10.4%, and A > T, 2.9%. 

As a starting point for filtering out the missense variants, MAF >1% (0.001) was used. For 

additional classification of the variants that could be considered obesity-related mutations, missense 

substitutions were investigated more precisely. Table 1 shows all the 20 missense alterations after the 

filter global MAF 0.001 was applied. 

Table 1. Data extracted from the dbSNP platform 

ID variant Nucleotide change Amino acid change Allelic frequency 

    

rs79053943 c.271C>T p.Leu91Phe 0.00091 (gnomAD) 

rs140224509 c.124C>G p.Leu42Val 0.00027 (gnomAD) 

rs149430564 c.68C>T p.Ala23Val 0.00009 (gnomAD) 

rs150344113 c.1072G>A p.Ala358Thr 0.00042 (gnomAD) 

rs199588904 c.709A>T p.Arg237Trp 0.00006 (gnomAD) 

rs202112906 c.1070G>A p.Arg357Gln 0.00015 (gnomAD) 

rs4988511 c.401T>C p.Ile134Thr 0.00002 (gnomAD) 

rs34273140 
c.829G>C 

c.829G>A 

p.Ala277Pro 

p.Ala277Thr 
0.0002 (1000G) 

rs141596022 
c.817A>G 

c.817A>C 

p.Ile273Val 

p.Ile273Leu 
0.00064 (gnomAD) 

rs150332148 c.840C>T p.Ile280Met 0.00329 (gnomAD) 
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c.840C>G 

rs200019512 c.193A>G p.Met65Val 0.00000 (gnomAD) 

rs200380996 c.97G>A p.Glu33Lys 0.00005 (gnomAD) 

rs200570638 
c.919G>T 

c.919G>A 

p.Val307Leu 

p.Val307Met 
0.00000 (gnomAD) 

rs200619653 c.647T>C p.Val216Ala 0.00005 (gnomAD) 

rs201085948 c.440T>A p.Phe147Tyr 0.00004 (gnomAD) 

rs201558252 
c.136G>T 

c.136G>C 

p.Val46Phe 

p.Val46Leu 
0.0002 (1000G) 

rs201988616 c.521G>A p.Ser174Asn 0.00000 (gnomAD) 

rs537833793 c.955A>C p.Asn319His 0.0002 (1000G) 

rs538035493 c.580G>T p.Asp194Tyr 0.00000 (gnomAD) 

rs547944988 c.1033C>A p.Gln345Lys 0.00003 (gnomAD) 

rs554096465 
c.472G>A 

c.472G>C 

p.Gly158Arg 

p.Gly158Arg 
0.0004 (1000G) 

rs565546689 c.838A>G p.Ile280Val 0.0002 (1000G) 

rs150332148 c.840C>G p.Ile280Met 0.00329 (gnomAD) 

A = adenine; C = cytosine; G = guanine; T = thymine; Ile = Isoleucine; Met = methionine; Val = 

valine; Gly = glycine; Arg = Arginine; Lys = lysine; Ser = serine; Tyr = tyrosine; His = histidine; Asn 

= asparagine; Phe = phenylalanine; Leu = leucine; Ala = alanine; Thr = threonine; Trp = tryptophan; 

Gln = glutamine; Glu = glutamine; Pro = proline; > = indicate the replacement. 

 

3.3 The predicted impact of SNPs on protein function 

Out of 373 variants, 20 variants were finally selected based on allele frequencies. After that, 

variants were submitted to nine predicted SNP tools (PredictSNP, MAPP, PhD-SNP, PolyPhen-1, 

PolyPhen-2, SIFT, SNAP, PANTHER, and PROVEAN) and only deleterious mutations were selected. 

The selection criterion used was to present a deleterious/pathogenic result in four or more of the tools, 

suggesting the pathogenic nature of these mutants. Additionally, the pathogenic strength and stability 

of eight variants were further inspected for 3D modelling and HOPE analysis. These 8 variants were:  

L91F (rs79053943), R237W (rs199588904), I134T (rs4988511), V216A (rs200619653), V46F 

(rs201558252), S174N (rs201988616), N319H (rs537833793) and D194Y (rs538035493), are show in 

a 2D -snake plot of GHS-R. 

All 8 mutations were submitted on the HOPE project platform using the FASTA sequence 

obtained from Uniprot (https://www.uniprot.org/uniprotkb/Q92847/entry), to acquire the biochemical 

and structural analysis of the wild-type protein and with mutations.  

The 8 variants had their structures evaluated in the SWISS-MODEL platform 

(https://swissmodel.expasy.org/), analysing both the wild-type and the mutation. The illustrative 

comparison between wild type and mutation allows visualizing the difference in the region of the 

amino acid when mutated. In variant L91F, both amino acids are non-polar. Similar results were 

https://www.uniprot.org/uniprotkb/Q92847/entry
https://swissmodel.expasy.org/
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obtained in V216A and V46F. In R237W there was a change between a non-polar amino acid 

(phenylalanine) for a basic (arginine). In I134T there was the substitution of a non-polar amino acid 

(isoleucine) for a polar (threonine). In S174N the alteration was between two polars amino acids, 

serine and asparagine. In N319H, the polar asparagine was replaced by a basic histidine. Finally, in 

D194Y, there was a change of aspartic acid (acidic) by tyrosine (polar). 
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4. Discussion 

 

The GHSR gene is a potential candidate for causing metabolic diseases, many variants are 

related in tentative to explain the several phenotypes associated with short stature due to growth 

hormone secretagogue receptor deficiency and obesity/adipose tissue-related diseases. After subjecting 

them to platforms capable of building their prediction, analyzing missense variants can be useful to 

compose a group of diagnostic tests and understand diseases involving both metabolism and hunger. 

More recent studies have been able to elucidate the relationship between GHSR gene variants, 

correlated with the regulation of body weight or short stature in humans [37]. In these studies, it was 

not possible to establish a relationship between SNPs and the regulation of weight or GH secretion. 

However, other studies [38] seek to establish the pharmacological consequences of known missense 

mutations in the receptor, demonstrating that changes in a single amino acid in GHSR can result in a 

wide range of pharmacological changes. 

When the GHSR of children with idiopathic short stature (ISS) was analyzed [39], 5 variations 

in a subgroup of patients with constitutional growth retardation and puberty (CDGP), 4 of them 

(p.Ser84Ile (c.251G>T), p.Ala169Thr (c.505G>A), p.Val182Ala (c.545 T>C) and p.Ala358Thr 

(c.1072G>A) ), were in highly conserved positions except for p.Ala358Thr, were missense. The five 

new variants of GHSR in patients with constitutional delay of growth and puberty (CDGP), or ISS, 

these were absent in a large population ethnically paired, using prediction and in vitro analysis, 

instigating the possibility that there was an association between the GHSR mutations observed and the 

CDGP phenotype.  

Another study [40] attempted to associate an SNP in the GHSR gene with the alcohol use 

disorders identification test (AUDIT) score and smoking, reflecting that the association with smoking 

was not mediated by the association with the AUDIT and vice versa. Findings showed associations 

between AUDIT scores, smoking, and an SNP in the GHSR gene, supported by preclinical data 

showing the role of GHSR-1a in drug reward and it might be associated with the hedonic regulation of 

feeding promoted by GR [41].  
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Regarding the prevalence of the GHSR mutation, in one study [39], based on a German cohort 

with 326 patients, a prevalence of 1.1% of pathogenic mutations in the GHSR gene was observed in 

severely obese individuals. In a study with 127 Japanese individuals of short stature, or short 

idiopathic stature [43] 4 pathogenic mutations in the GHSR gene, ΔQ36, P108L, C173R and D246A 

were found, and these mutations were found in 6 patients, with a prevalence of 4.7%. 

Of the 8 variants obtained, only one was previously reported (rs199588904, R237W). All the 

reports [39, 42, 43] about the variant R237W, seek to establish the relationship between the variant at 

the short stature (SS). Until now, there is no study in the literature with the same objectives as this 

work, to establish the correlation between the variant and the SS, not obesity. 

Only two (rs199588904 and rs79053943) variants were submitted in Clinvar presenting a 

clinical condition of short stature due to growth hormone secretagogue receptor deficiency, and the 

inborn genetic disease, respectively. Inborn genetic diseases are diseases caused by genetic mutations 

present during embryo or fetal development, although they may be observed later in life. 

In this study we found 8 variants with a high risk for dysfunction of the GHSR, this 

dysfunction may be compromising the binding of GR with its receptor and contributing to phenotypes 

of obesity and short stature, or both. Future analyses of these mutations may give us a better 

elucidation of the implication of mutations and their possible correlation with the pathophysiology of 

obesity.  
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