
FEDERAL UNIVERSITY OF SANTA CATARINA
TECHNOLOGY CENTER

AUTOMATION AND SYSTEMS DEPARTMENT
UNDERGRADUATE COURSE IN CONTROL AND AUTOMATION ENGINEERING

Maurício Losso Salvador

Development of a Data Acquisition Software for Heidenhain Controllers to
Achieve Process Monitoring and Workpiece Quality Prediction

Aachen
2022

Maurício Losso Salvador

Development of a Data Acquisition Software for Heidenhain Controllers to
Achieve Process Monitoring and Workpiece Quality Prediction

Final report of the subject DAS5511 (Course Final
Project) as a Concluding Dissertation of the Under-
graduate Course in Control and Automation Engi-
neering of the Federal University of Santa Catarina.
Academic Advisor: Prof. Rômulo Silva de Oliveira,
Dr.
Local Supervisor: Sven Schiller, M.Sc.

Aachen
2022

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Salvador, Maurício Losso
 Development of a data acquisition software for
Heidenhain controllers to achieve process monitoring and
workpiece quality prediction / Maurício Losso Salvador ;
orientador, Rômulo Silva de Oliveira, coorientador, Sven
Schiller, 2022.
 102 p.

 Trabalho de Conclusão de Curso (graduação) -
Universidade Federal de Santa Catarina, Centro Tecnológico,
Graduação em Engenharia de Controle e Automação,
Florianópolis, 2022.
 Inclui referências.
 1. Engenharia de Controle e Automação. 2. Aquisição de
dados. 3. Controladores Heidenhain. 4. Usinagem. 5.
Monitoramento de processo. I. Oliveira, Rômulo Silva de.
II. Schiller, Sven. III. Universidade Federal de Santa
Catarina. Graduação em Engenharia de Controle e Automação.
IV. Título.

Maurício Losso Salvador

Development of a Data Acquisition Software for Heidenhain Controllers to
Achieve Process Monitoring and Workpiece Quality Prediction

This dissertation was evaluated in the context of the subject DAS5511 (Course Final
Project) and approved in its final form by the Undergraduate Course in Control and

Automation Engineering

Florianópolis, December 16, 2022.

Prof. Hector Bessa Silveira, Dr.
Course Coordinator

Examining Board:

Prof. Rômulo Silva de Oliveira, Dr.
Advisor

UFSC/CTC/DAS

Sven Schiller, M.Sc.
Supervisor

Fraunhofer IPT and gemineers GmbH

Prof. Rodrigo Lange, Dr.
Evaluator

IFRS

Prof. Eduardo Camponogara, Dr.
Board President
UFSC/CTC/DAS

ABSTRACT

The demands for large-scale production of complex workpieces is increasing worldwide.
These complicated part designs lead manufacturers to employ CNCs in manufacturing
in order to attain better efficiency and higher quality. Despite this fact, due to machining
factors and the associated technology, it is still difficult to get the end products to the
required specifications, as well as to monitor and inspect such workpieces and their
production processes. A novel approach to solve these problems rely on technologies
from the Industry 4.0, which consist in the implementation of data acquisition software
for process-parallel monitoring machine tool operations. This change in the production
line can offer more precise process control and quality defect analysis from part digitiza-
tion. Considering this technological proposal, this thesis, along with gemineers GmbH,
aims to develop a data acquisition software for machine tools operated by Heidenhain
controllers. To develop the desired application, initial studies were conducted to have
its requirements and modeling defined, resulting in a multi-threaded implementation
based on four threads that function as state machines. Together, they were built for
connecting to machine tools and obtaining data in both high and low frequency that, in
turn, are further sent to a web server over the network using a communication protocol.
When the development was over, the software was tested with an emulated controller
setup for simulating the machining of a part. The data acquired from the operation
was dispatched to the company’s other services, which transform the information into a
digital twin of the machined workpiece, later displayed in the existing Front-End. With
digital visualization, the functionality of the data acquisition software was evaluated by
comparing the shown results with the initially expected ones. In the end, performance
tests were also conducted to analyze the behavior of the developed application and the
related services. From the observations made, optimizations were proposed and imple-
mented to achieve overall improvements for the gemineers’ product. Visual results and
in-depth analyses presented a successful data acquisition that obtains the necessary
information to create a digital twin for process monitoring.

Keywords: Data acquisition. Heidenhain controllers. Machining. Process monitoring.
Digital twin.

RESUMO

As demandas pela produção em larga escala de peças complexas está aumentando
em todo o mundo. Esses modelos complicados de peças levam os fabricantes a em-
pregar CNCs na fabricação a fim de alcançar uma melhor eficiência e maior qualidade.
Apesar desse fato, devido a fatores de usinagem e à tecnologia associada, ainda é
difícil levar os produtos finais às especificações exigidas, assim como monitorar e inspe-
cionar tais peças e seus processos de produção. Uma nova abordagem para resolver
esses problemas reside nas tecnologias da Indústria 4.0, que consistem na implemen-
tação de software de aquisição de dados para monitoramento paralelo ao processo das
máquinas de usinagem em operação. Essa mudança na linha de produção pode ofere-
cer um controle mais preciso do processo e análise de defeitos de qualidade a partir da
digitalização de peças. Considerando essa proposta tecnológica, este projeto de fim
de curso, juntamente com a gemineers GmbH, visa desenvolver um software de aqui-
sição de dados para máquinas de usinagem operadas por controladores Heidenhain.
Para desenvolver a aplicação desejada, foram realizados estudos iniciais para ter seus
requisitos e modelagem definidos, resultando em uma implementação multi-tarefa ba-
seada em quatro threads que funcionam como máquinas de estado. Juntas, elas foram
construídas para conexão com máquinas de usinagem e obtenção de dados em alta e
baixa frequência que, por sua vez, são posteriormente enviados para um servidor na
internet através da rede usando um protocolo de comunicação. Quando o desenvolvi-
mento terminou, o software foi testado com a configuração de um controlador emulado
para simular a usinagem de uma peça. Os dados adquiridos da operação foram envia-
dos aos outros serviços da empresa, que transformam as informações em um gêmeo
digital da peça usinada, e posteriormente exibido no Front-End existente. Com a visua-
lização digital, a funcionalidade do software de aquisição de dados foi avaliada através
da comparação dos resultados mostrados com os inicialmente esperados. No final,
também foram realizados testes de desempenho para analisar o comportamento da
aplicação desenvolvida e dos serviços relacionados. A partir das observações feitas,
foram propostas e implementadas otimizações para alcançar melhorias gerais para o
produto da gemineers. Resultados visuais e análises aprofundadas apresentaram uma
aquisição de dados bem sucedida que obtém as informações necessárias para criar
um gêmeo digital para o monitoramento do processo de usinagem.

Palavras-chave: Aquisição de dados. Controladores Heidenhain. Usinagem. Monitora-
mento de processo. Gêmeo Digital.

LIST OF FIGURES

Figure 1 – Blade Integrated Disk (Blisk). 13
Figure 2 – gemineers logo. 15
Figure 3 – Digital twin example for a blisk. 19
Figure 4 – gemineers product areas. 20
Figure 5 – Structure of the Data Ground area. 21
Figure 6 – Working principle of the selected communication protocol. 22
Figure 7 – Threads from Batcher. 23
Figure 8 – Process Scheduler working principle. 25
Figure 9 – Application Programming Interface (API)s working principle. 26
Figure 10 – Usual coordinate system for a Computer Numerical Control (CNC). . 28
Figure 11 – CNC architecture. 29
Figure 12 – Open- and Closed-Loop systems for CNCs. 30
Figure 13 – Programming Station Software of a Heidenhain iTNC 530 controller. 31
Figure 14 – Overall Heidenhain Data Acquisition (DAQ) operating model. 35
Figure 15 – Activity diagram of Main Thread. 37
Figure 16 – Output data of the Identify Controller step. 38
Figure 17 – Standard procedure to connect and send data to DGServer. 39
Figure 18 – Activity diagram of Low-Frequency (LF) Streamer Thread. 43
Figure 19 – Example of low frequency data output from the LF Streamer 45
Figure 20 – Activity diagram of High-Frequency (HF) Acquisition Thread. 46
Figure 21 – Feed Rate channel metadata from the Scope area. 47
Figure 22 – Scope Information area structure. 48
Figure 23 – Activity diagram of HF Dispatch Thread. 50
Figure 24 – Original house geometry from iTNC 530 Programming Station. . . . 53
Figure 25 – Initial Programming Station setup for simulating a machining operation. 54
Figure 26 – Output data from the Batcher for the house.H. 55
Figure 27 – Resulting house geometry from gemineers’ data processing services. 55
Figure 28 – gemineers’ Front-End. 56
Figure 29 – Feed Rate data displayed as a point cloud in the Front-End. 57
Figure 30 – Heidenhain DAQ performance for Central Processing Unit (CPU) and

memory. 60
Figure 31 – DGServer performance for CPU and memory. 60
Figure 32 – Batcher performance for CPU and memory. 61
Figure 33 – Different ways to handle batch data in the Data Ground services. . . 63
Figure 34 – Result comparison of single and batch data dispatching in the Front-

End. 66

Figure 35 – Heidenhain DAQ performance for CPU and memory with two hundred
batch data. 67

Figure 36 – DGServer performance for CPU and memory with two hundred batch
data. 68

Figure 37 – Batcher performance for CPU and memory with two hundred batch
data. 69

Figure 38 – Top view comparison of single and batch data dispatching in the
Front-End for Feed Rate signal. 79

Figure 39 – Heidenhain DAQ performance for CPU and memory with twenty
batch data. 79

Figure 40 – DGServer performance for CPU and memory with twenty batch data. 80
Figure 41 – Batcher performance for CPU and memory with twenty batch data. . 80
Figure 42 – Heidenhain DAQ performance for CPU and memory with five hundred

batch data. 80
Figure 43 – DGServer performance for CPU and memory with five hundred batch

data. 81
Figure 44 – Batcher performance for CPU and memory with five hundred batch

data. 81
Figure 45 – Performance comparison of Data Ground services according to the

batch size. 82
Figure 46 – Performance comparison of batch size according to the Data Ground

services. 83

LIST OF TABLES

Table 1 – Data types and the associated frequency of acquisition. 34
Table 2 – Compression level and its respective closing time and final batch size. 71

LIST OF CODES

Code Snippet 1 First Heidenhain controller identification. 38
Code Snippet 2 First DGServer identification. 40
Code Snippet 3 Start of acquisition threads. 41
Code Snippet 4 Monitoring of the acquisition threads. 41
Code Snippet 5 Reset DAQ procedure. 41
Code Snippet 6 Low frequency data streaming. 44
Code Snippet 7 Scope channel selection for high frequency data acquisition. . 48
Code Snippet 8 Receiving high frequency data from the controller. 49
Code Snippet 9 Dispatching of high frequency data to the DGServer. 51
Code Snippet 10 Example of a general batch data function. 64
Code Snippet 11 Example of a general dispatch data function. 64

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface
Blisk Blade Integrated Disk
CAD Computer Aided Design
CAM Computer Aided Manufacturing
CNC Computer Numerical Control
CPU Central Processing Unit
DAQ Data Acquisition
G-Code Geometric Code
HF High-Frequency
HMI Human Machine Interface
HTTP Hypertext Transfer Protocol
IBM International Business Machines
IP Internet Protocol
IPT Institute for Production Technology
LF Low-Frequency
M-Code Miscellaneous Code
MCS Machine Coordinate System
SLM Service Lifecycle Management
STL Standard Triangle Language
TCP Transmission Control Protocol
UML Unified Modeling Language
WCS Workpiece Coordinate System

CONTENTS

1 INTRODUCTION . 13
1.1 MOTIVATION . 13
1.2 GEMINEERS GMBH . 15
1.3 OBJECTIVES . 16
1.4 DOCUMENT STRUCTURE . 17
2 STATE OF THE ART . 18
2.1 GEMINEERS PRODUCT . 18
2.1.1 Digital Twin . 18
2.1.2 Microservices Architecture . 19
2.1.2.1 Data Ground Area . 20
2.1.2.2 Information Management Area . 24
2.1.2.3 Data Processing Area . 25
2.1.2.4 Interfaces Area . 26
2.2 HEIDENHAIN CONTROLLERS SCOPE 27
2.2.1 Working Principle . 27
2.2.2 Auxiliary Technologies . 31
2.2.2.1 Programming Station . 31
2.2.2.2 TNCscope . 32
2.2.2.3 TNCremo . 32
3 HEIDENHAIN DATA ACQUISITION IMPLEMENTATION 33
3.1 REQUIREMENTS . 33
3.2 SOLUTION MODELING . 35
3.3 DEVELOPMENT . 36
3.3.1 Main Thread . 36
3.3.1.1 Identify Controller . 37
3.3.1.2 Identify DGServer . 39
3.3.1.3 Start Acquisition Threads . 40
3.3.1.4 Monitor Acquisition Threads . 41
3.3.1.5 Reset DAQ . 41
3.3.2 Low Frequency Streamer Thread 42
3.3.2.1 Stream Data . 44
3.3.3 High Frequency Acquisition Thread 46
3.3.3.1 Select Channels From Controller . 47
3.3.3.2 Receive Data From Controller . 49
3.3.4 High Frequency Dispatch Thread 49
3.3.4.1 Dispatch Acquired Data . 51
4 TESTS AND RESULT ANALYSIS . 52

4.1 DATA ACQUISITION FUNCTIONALITY 52
4.2 COMPARISON TO SIEMENS DATA ACQUISITION 58
4.3 DATA GROUND SERVICES PERFORMANCE 59
5 SERVICE OPTIMIZATIONS . 62
5.1 DATA GROUND IN BATCHES . 62
5.1.1 Implementation to Data Ground Services 62
5.1.2 Optimization Tests and Results . 65
5.2 BALANCED CLOSING OF BATCHER FILES 70
6 CONCLUSION AND FUTURE WORK 72
6.1 FUTURE WORK . 73
6.2 PERSONAL OBSERVATIONS . 73

References . 75
APPENDIX A – ADDITIONAL RESULTS FOR BATCH DATA OPTI-

MIZATION . 79
A.1 FUNCTIONALITY COMPARISON IN THE FRONT-END 79
A.2 OPTIMIZED SERVICE PERFORMANCE 79

13

1 INTRODUCTION

Over time, the demands of large-scale industrial production of parts and tools
have become more and more stringent. To meet these requirements, new different
Industry 4.0 technologies are being developed day by day. These technological im-
provements are taken into consideration for the development of this project, which
aims to assist companies in achieving higher quality workpieces and more efficient
production lines.

This first chapter presents the scope of the work developed. Firstly, the motivation
is introduced in Section 1.1, where the general knowledge about the problem and the
current plausible solutions addressed are mentioned. The company where the work
was carried out and the associated project are then described in Section 1.2, along with
the specific objectives of the work in question in Section 1.3. Finally, the structure of
the document is discussed in Section 1.4, situating the reader on the content of each
chapter of this report.

1.1 MOTIVATION

The demand for high quality, sustainable workpieces is increasing for many
different types of industries around the world. For the turbomachinery and aircraft
industry, a key technology part that has been used in recent years is the Blisk - see
Figure 1 - a turbine component designed for higher fuel efficiency and reduced CO2
emissions [1]. These elements with better aerodynamics offer lower weight and drag,
being 8% more efficient when compared to conventional blade and disk assembly [2].

Figure 1 – Blisk.

Source: Fraunhofer IPT.

Chapter 1. Introduction 14

However, new demanding requirements, such as improved efficiency, tend to
lead to more complicated part designs. Consequently, to achieve large-scale quality
production of these complex workpieces, manufacturers in the metal industry have been
driven to widely employ CNCs, since 1989 [3], in the machining processes. Despite this
fact, due to various mechanical factors related to the machining itself, it is still difficult
to get the desired end products to the required specifications. Blisks, in particular, still
represent a machining challenge in an economic and technological way [4]. These
complex thin-walled components with tight tolerances take days to be produced in
strong and expensive alloys such as titanium [2] [4]. Moreover, their requirements are
crucial for safety reasons, since the failure of blisks has already led to serious accidents.
One example was the Pensacola aircraft crash in 1996, when a tiny quality deficiency
prevented the cooling fluid from having the proper effect [5].

In addition to the challenging new specifications for part manufacturing, the
monitoring and inspection of the machining processes and the finished workpieces
is also an arduous task that few companies are able to perform [5]. To ensure the
high quality of these complex components in the end, time and money are invested in
conventional measuring methods such as optical and tactile metrology. Depending on
the industry, these procedures can take up to 25% of production costs and 20% of lead
times [6], besides the possibility of distorting or marking the part [2]. In the current case
of blisks, this uncertainty of piece quality during the machining process generates about
25% rework at the end, since the result can only be seen when the part is definitely
ready [5].

Nowadays, a trendy suitable way to solve these multiple issues is to implement a
data acquisition software to process-parallel monitor machine tool operations [5]. There-
fore, conventional measuring methods are replaced by workpiece digitization, which can
bring more detail into process at a much faster rate, leading to a more reliable, faster,
and accurate process control [2]. As an example, errors and quality defects can be
detected at an early stage of production, preventing the reworking of parts and enabling
instantaneous optimizations even before milling is finished. This improved quality pre-
diction and assurance also has an economic and sustainable advantage, as resources
invested in less efficient machining and metrology are reduced [6]. The digitization also
impacts in the final blisk aspect, and even the slightest improvement in quality means
safer components, better fuel efficiency and, in turn, lower CO2 emissions. It has been
estimated, for example, that for a 2% improvement in the quality of blisks, 16 million
metric tons of CO2 could be saved per year [5].

Bearing this in mind, gemineers GmbH proposes a similar approach for efficient
workpiece measurements and quality assurance. The company’s main idea is to de-
velop a software capable of acquiring machine tool data for further development of a
digital twin (a virtual representation that serves as the real-time digital counterpart of

Chapter 1. Introduction 15

the finished component). This digitized part will be then virtually analyzed and com-
pared with the Computer Aided Design (CAD) model of the element, providing a precise
evaluation of the process and the final piece [6].

1.2 GEMINEERS GMBH

Envisioned in April 2019 and officially founded in July 2021, the gemineers
GmbH - logo displayed in Figure 2 - is a spin-off startup associated with the High
Performance Cutting department of Fraunhofer Institute for Production Technology (IPT).
This subdivision of the Process Technology area is known for solutions and technologies
for machining operations along the entire process chain, mainly in simultaneous multi-
axis milling of thin-walled components for turbomachinery and aircraft applications [7]
[8].

Figure 2 – gemineers logo.

Source: [9].

Due to a great motivation of the department to develop better blisks for the mar-
ket, the main company’s objective is to build a software that goes all the way into pro-
duction, from machining data acquisition to information processing and extraction. The
application, in this way, provides the user with easy access to previously undiscovered
manufacturing data [6]. Hence, benefits that could be gained by the proposed solution
are the reduction of conventional inspection efforts and the costs of post machining
operations, time savings through targeted optimization, simple quality assessment, and
a complete digital documentation of processes and products based on digital twins [9].

To achieve the goal of a functional and useful digital twin for the user, the tech-
nology of gemineers is divided into three different core elements [9]:

• Machine and sensor data acquisition for all common machine controls and
sensor systems;

• Fully automated Digital Twinnig using high performance technology models;

• User-friendly quality dashboard browser-based.

Chapter 1. Introduction 16

This thesis is related to the first mentioned area, where a data acquisition system
for CNCs is needed. The information acquired from the machine tool will be used in the
entire product’s process chain, as this is the basis of the digital twins presented to the
user at the end.

1.3 OBJECTIVES

The main objective of this project is to develop a data acquisition software to
process-parallel monitor machine tool operations. The application must be able to
acquire low and high frequency information from the controllers to ensure that all details
of a process are obtained. These data will further serve as an input to other services of
the company that must handle storage and processing.

Considering the CNC producers worldwide, it is notable that Heidenhain con-
trollers are one of the leading and most important when it comes to machining [10].
These CNCs reach a large part of the current global market and, according to gem-
ineers’ experience, tend to be challenging in the matter of data acquisition. Conse-
quently, an application capable of safely and accurately acquiring data for Heidenhain
controllers is of extreme interest to the company and is the ultimate goal of the work
presented.

Based on this stipulated objective, specific tasks have been defined in order to
achieve a functional software that is well suited to the gemineers’ project as whole:

• Gather the application requirements and build its workflow;

• Define data types and their respective frequency to be acquired from the machine
tool;

• Research the possibility of sending high frequency messages to a web server;

• Search libraries and auxiliary technologies to access Heidenhain controllers;

• Implement a secure connection between the application and the CNC;

• Determine and implement a mechanism to access controller areas that store data;

• Acquire and handle high and low frequency data from the machine tool;

• Connect and dispatch the obtained data to a web server;

• Perform functionality and performance testing for the data acquisition software
and related applications using machine tool simulations;

• Propose and develop optimizations for these services.

Chapter 1. Introduction 17

1.4 DOCUMENT STRUCTURE

This document is divided into six chapters to further explain the development of
the proposed solution. In Chapter 2, the state of the art is introduced, where the basic
concepts and subjects are shown for a complete understanding of the subsequent ac-
tivities. The company’s microservices structure, technologies used and communication
protocols necessary for the final application are explained in depth.

The implementation activities of the data acquisition software for Heidenhain
controllers are discussed in Chapter 3. The requirements established for the desired
application, the modeling of the solution, and the development process for each ex-
pected service step are explained in more detail.

Chapter 4 presents testing and analysis of results for services associated with the
data acquisition area. The tests performed for software functionality and performance
are shown along with their respective overall results obtained.

From information acquired within the testing phase, service optimizations are
proposed in Chapter 5 for the data acquisition area. In addition, each reported opti-
mization is here implemented and tested once more. As soon as the new results are
achieved, a comparison is performed between the two software versions.

Finally, in Chapter 6 the conclusion takes place, where the finished work is
summarized, as well as ideas for next steps related to the scope of this thesis are
exposed.

18

2 STATE OF THE ART

This chapter is intended to further explain the scope in which this data acquisition
software falls. Firstly, Section 2.1 extensively discusses gemineers’ current product,
presenting in detail the internal composition of the entire application. Subsequently,
in Section 2.2, the operation of Heindenhain controllers are described together with
possible technologies associated with them.

2.1 GEMINEERS PRODUCT

Aiming to assist and improve production lines, gemineers develops a software
capable of acquiring, analyzing, and evaluating data from manufacturing processes. In
order to achieve these features, a digital twin is created by the final program for each
machined component. The Subsection 2.1.1 further explains how this concept works
within and outside the company’s scope.

Furthermore, since gemineers product is a complex software that handles mul-
tiple different functionalities at the same time, a microservices architecture has been
implemented. Each of these framework applications is responsible for a certain step of
the project as a whole. The connections between these services are further explored
in Subsection 2.1.2.

2.1.1 Digital Twin

First introduced into manufacturing in 2002 by Dr. Michael Grieves, a digital twin
is a digitized representation of a physical object, process, or service. The development
of this concept consists of extensive real-time data acquisition from sensors attached
to the original workpiece and the application of mathematical models to replicate and
simulate an element from the real world in the virtual environment. Once developed,
digital twins are commonly used to run simulations and tests in place of the original
object to study and predict the properties and performance of the part before the
processes associated with it are even initiated [11] [12].

Being an up-to-date and accurate copy of a physical counterpart, digital twins
present numerous additional benefits to large-scale manufacturing. Some of them are
related to monitoring and analyzing products and processes during the production line,
leading to early detection of flaws, instant insights for improvements, and better final
quality [11] [12]. The studied concept has also proven useful for improving efficiency in
manufacturing, such as with IBM and Siemens’ Service Lifecycle Management (SLM)
project [13] that minimizes downtime in production [14].

Due to their countless benefits and with today’s technological advances, digital
twins have been a key development for automation in Industry 4.0. Their common

Chapter 2. State of the Art 19

applications can range from automotive and aircraft industries to healthcare services
and urban planning. Furthermore, according to International Business Machines (IBM),
the future of this concept is nearly limitless, due to the fact that increasing amounts of
cognitive power are constantly being devoted to their use [11]. It is estimated that by
2027, the digital twin market will be valued at USD 73.5 billion [15].

Following this same path, gemineers and Fraunhofer IPT aim to implement an
application for production lines based heavily on the concept of digital twins. From this
technology, the company pursue to monitor machining processes on 5-axis machines
in order to achieve more efficient and less expensive production and higher quality and
safer products [6]. An example of the desired future implementation of digital twins by
gemineers is shown in Figure 3, in which a blisk is again used as a sample. The colored
lines on each blade essentially represent the data acquired in each machine cutting
point.

Figure 3 – Digital twin example for a blisk.

Source: Fraunhofer IPT and gemineers GmbH.

2.1.2 Microservices Architecture

A microservices architecture defines a framework for an application that brings
together a set of smaller services. Within this structure, each microservice is a minor
software built to handle specific features and tasks from the whole application that can
communicate with each other through simple interfaces [16] [17]. The gemineers’ archi-
tecture was designed to separate the developed services based on their tasks into four
different operational areas: Data Ground, Data Processing, Information Management,
and Interfaces. Figure 4 illustrates the proposed subdivision.

Chapter 2. State of the Art 20

Figure 4 – gemineers product areas.

Data Ground
Data

Processing
Information

Management
Interfaces

Source: Author.

An in-depth explanation of each area and how they are correlated is shown in
the following subsections, focusing on the Data Ground, where the Data Acquisition
software are placed.

2.1.2.1 Data Ground Area

The Data Ground is the first area of the entire gemineers’ software to be triggered
when a machining operation is taking place on the machine tool. The Data Acquisition
(DAQ) software in here developed are the main responsible for starting the whole
process chain that will be followed by the next areas of the application.

The objective of this area is to connect to operating machine tools to acquire
necessary data, to standardize this information and to send a raw data batch to the
next services. This procedure is heavily built on the Data Acquisition software, the
Data Ground Server (commonly called DGServer in the company’s scope), and the
Batcher, which together handle most of the required processes of this stage. The
secondary applications within the Data Ground are not fully needed to the data workflow
to function, even though they do provide additional features for the mentioned area.
Figure 5 presents the structure of the Data Ground services and how they communicate
to each other.

Chapter 2. State of the Art 21

Figure 5 – Structure of the Data Ground area.

VSEDAQ
GCode
Reader

IO-Link
Adapter

Watchdog
TCC

Adapter

DAQ DGServer BatcherMachining Process

Source: Author.

The five smaller components connected to the main server at the top of the
image represent the supplementary applications that will not be covered in this report.
DAQ, DGServer, and Batcher, in the center, are the primary services in this area and will
be explained in sequence for a complete understanding of the data flow. The leftmost
block characterizes a machining operation on the machine tool from which the data will
be acquired.

Data Acquisition Software
DAQ applications are the first step in getting the gemineers product started,

as they are directly connected to machine tools that are performing 5-axis machining
processes. Once the hardware and software are coupled, these high-performance
services are able to acquire the desired information from the machine in both low and
high frequency manner for further dispatching to the Data Ground Server over the
network. At the current state of the company, there is only one Data Acquisition service
running, and it is designed for Siemens controllers.

This existing DAQ follows the framework just mentioned. Its workflow begins by
establishing a connection to the operating machine tool. Once connected, the software
specifies the controller variables that store the desired data type (such as for example,
the coordinates) and correctly calls the functions that are able to read this information.
These methods are, in this Siemens case, available based on specific libraries designed
for these controls.

Each single value acquired by this program is standardized in programming
objects and translated into a message to be sent to the DGServer via the network. The
selected network communication protocol allows developers to build faster real-time
applications for sending message-based data. It starts in the same way as an Hypertext
Transfer Protocol (HTTP), based on a request of a resource. When acknowledged by
the server, it returns a handshake signal that keeps the Transmission Control Protocol

Chapter 2. State of the Art 22

(TCP) connections alive even after the response is received. This behavior provides
a full-duplex communication channel that permits messages to be passed back and
forth (bi-directional) between the client and the server. Figure 6 represents the working
principle just mentioned.

Figure 6 – Working principle of the selected communication protocol.

Server
Client

HTTP Request

Handshake

Bi-directional messages

Source: Author.

This protocol was selected for the data acquisition scope especially because
of the high frequency data acquired and dispatched to the DGServer. With the TCP
connections still available, the DAQ can stream plenty of information without exceeding
the network load due to multiple requests necessary for other communication protocols,
such as the HTTP, for example.

Data Ground Server
As the core service of the Data Ground, the DGServer’s job is to receive data

coming from the DAQ and redirect it to the interested services, maintaining a common
and structured interface for different types of data. The server is developed on top of a
query language that turns possible to define the exact data desired, replacing numerous
requests from any other API with a single call.

The language is built on three main operations: queries, mutations, and sub-
scriptions that interact with a schema, a predefined data structure that defines types,
and a list of associated fields.

Bearing this in mind, it is time to better comprehend the workflow from the
gemineers’ service that hosts this query language. The Data Ground Server starts its
execution when connections to Data Acquisition are established. When coupled, the
DAQ is able to transmit real-time data that simulates mutations to the server. Thus,
for each message, mutation behaviors are performed, updating the schema with the
most recent obtained values. As soon as data are modified within the DGServer, the
publishers notify and trigger the subscribed services and transfer the acquired data to
them. This process is repeated over and over again in a millisecond range.

Chapter 2. State of the Art 23

Currently, the Data Ground Server only works with one data point at a time
for each type, which means that when new values arrive for the same type, the old
information is forgotten within the terms of the server.

Batcher
The Batcher, also known as the Batching Service, is responsible for organizing

and agglomerating data that are passing through the server in batches. This informa-
tion is obtained based on queries and subscription calls to the Data Ground Server
that transfer its temporarily stored data to the service in question. For each type, an
individual file is created that stores all data acquired during a machining operation. In
the end, these files are placed together in a zip folder, the so called batch, to be further
sent to the next areas of the entire application.

A normal Batcher run begins by creating two complementary threads designated
for different purposes. The first one connects to the Data Ground Server via the se-
lected protocol mentioned before and acquires all its transient data to create a batch of
information. The second is responsible for establishing connections over HTTP with the
gemineers API (better explained in Subsubsection 2.1.2.4) to send the batches created
to the next services. A simplified illustration of how the threads work and are correlated
is presented in Figure 7.

Figure 7 – Threads from Batcher.

.zip API

Thread 2Thread 1

Server data

Metadata

Metadata

Source: Author.

When a query or subscription retrieves information from the metadata type, a
flag is set inside the Batcher to start a new batch. If the program has just been started,
the acquisition of data begins sequentially, based on returned messages coming from
queries and subscriptions. If an existing batch is already running in the service, this older
batch is closed and a new one is instantiated to continue the acquisition. A metadata

Chapter 2. State of the Art 24

is directly associated with an operation running on the machine tool, which means that
when this information is read, a new operation has started and, consequently, a new
batch should also be.

In the meantime of the reading of the two metadata signals, all other data of
various types are aggregated and appended to the computer’s local buffer, being asso-
ciated in this way to the last metadata/operation acquired. Once the batch has to be
closed, the buffered data are transformed into files and then zipped together.

The second mentioned thread operates once the batching is done and the zip
folder is well prepared. A request to the gemineers’ API is sent, attaching the batch of
raw data to the message. With the data sent to the next areas of the application, the
entire workflow of the Data Ground area is finished.

2.1.2.2 Information Management Area

Consisting basically of a software called Process Scheduler, the Information
Management area is mainly responsible for being the brain of the whole application
when it comes to communication between services. It mainly benefits from two impor-
tant technologies: the gemineers’ database; and a queue-structured message broker,
which allows multiple information to be rerouted to different services.

The Process Scheduler works on scheduling tasks for different software based
on inputs and outputs coming from other applications across the process chain. This
service receives an output data posted to a specific queue, and redirects it to the correct
queue that is consumed as input by the next application, creating a continuous data
flow among services. Still using the output information, the Process Scheduler is able
to update the data objects within the database, providing always up-to-date instances
of the "geminis", the way digital twins are called in the company’s scope.

For a better understanding, the Figure 8 presents an example with the raw data
outputted by the Data Ground area. The API sends the data-based message containing
the zip folder to the broker’s rawData queue, which is then redirected to the toCleanData
by the Process Scheduler. The Cleaner, a service from the Data Processing area, then
consumes the latter queue and uses the resulting data as an input for its activities.

Chapter 2. State of the Art 25

Figure 8 – Process Scheduler working principle.

…

toCleanData

…

…

…

…

…

…

…

rawData

Cleaner
Process

Scheduler
API /

Database

Source: Author.

2.1.2.3 Data Processing Area

To produce meaningful information from the raw data acquired, a series of ap-
plied mathematical calculations and computations must be performed by the Data
Processing area. The main goal of the services associated here is to transform all the
data from the machining process into understandable information for the end user of
the software.

The Cleaner is the primary application in this area and is responsible for re-
moving useless data and outliers, a data point that deviates significantly from similar
information in a sample [18], thus creating cleaned data. This service and all others in
the Data Processing area work in sequence, one building on the output of the other.
Consequently, with each execution of each software, more relevant calculated informa-
tion are added to the geminies that will be presented at the end.

The basic operational process of getting and sending data to other services
is common to all applications within this area. As seen in Figure 8 with the Cleaner
example, they generally receive their inputs based on a queued consumption. Once
the data arrives, the activities of each software are triggered to execute and the output
is sent back to the message broker. This procedure is done until every message is
consumed from the queue. The Information Management area is then responsible for
handling the information received and updating the database with the latest outputs
from these services, as previously shown.

As soon as the data flow has finished its passage through the Data Process-
ing applications, the acquired and calculated machining operation information can be
viewed in the Front-End interface as a digital twin representation.

Chapter 2. State of the Art 26

2.1.2.4 Interfaces Area

The Interfaces area is basically composed of two different services: the API and
the Front-End. The gemineers API, previously mentioned, is designed to communicate
different applications with each other and with the database. Being one of the most
important points in a microservice architecture, this interface handles different opera-
tions for the data flow, from saving the output of the Data Ground to the data bank until
sending information to the Front-End.

Generally, web APIs, such as the gemineers’, are developed on top of HTTP.
The service that wants to perform database operations needs to make a request to
this interface which returns a success or failure response depending on whether the
operation was performed or not. This procedure provides better security and standard-
ization to larger software, since the database is not directly accessible by any other
application. A visual illustration of the working principle and communication of an API
is summarized in Figure 9.

Figure 9 – APIs working principle.

Client

HTTP Request

APIHTTP Response Data

Data Operation

Database

Source: Author.

The Front-End is the final service of the whole application, since it is the one that
interacts with the user, providing different resources directly accessed through simple
clicks in a web interface. The Front-End of gemineers is able to visually display, in the
form of digital twins, all the data that was acquired by the Data Ground and processed by
the Data Processing area, allowing the user to easily visualize different information from
the machining operations. The processes that are to be analyzed, must be selected by
an operator in the online platform. Each of these desired processes represents a call
from the Front-End to the API, since the Front-End does not have direct access to the
database. This service then makes an HTTP request to the middleware interface, in
the same way as presented in Figure 9, which responds successfully if the process has
been found, returning the necessary stored data.

Once the digital twins are displayed, the operators are able to define whether
or not a machined part has the desired quality, just by visualizing and comparing the

Chapter 2. State of the Art 27

results presented with the developed CAD model. This procedure defines the final step
of the data flow and one of the last features to which the entire gemineers application
was designed. From there, based on the digital twins provided, the end user can study
each operation and workpiece to define the next steps in the overall manufacturing
production.

2.2 HEIDENHAIN CONTROLLERS SCOPE

To develop a software that can acquire data from Heidenhain controllers, it is
first necessary to better understand their operational basis and how the desired infor-
mation can be accessed by an external application. The Subsection 2.2.1 discusses
the working principle of these controllers for 5-axis machining operations in CNCs.

Additionally, to be able to acquire the desired data and to test the implemented
application, a number of different Heidenhain-related auxiliary software and develop-
ment libraries are of utmost importance. The technologies used in this project are
further explored in Subsection 2.2.2.

2.2.1 Working Principle

A Computer Numerical Control is essentially a digitized computer capable of
automating and controlling an industrial machine. The machine tools studied for this
project are built on five axes, three linear (X, Y, and Z) and two rotational (ranging
from A, B, and C) that together can perform complex machining operations. Typically,
X and Y axes are used to move the worktable where the piece is positioned, while
the Z axis is responsible for the cutting tool vertical movements [19]. The A, B, and C
axes specify angular positions about the X, Y, and Z axes, respectively - see Figure 10.
The two main coordinate systems used by CNCs are: Workpiece Coordinate System
(WCS), where the workpiece is used as the reference for the Cartesian coordinates;
and Machine Coordinate System (MCS), when the machine is used as such reference.
The most important operation for this project is called CNC machining, a manufacturing
process performed by a machine tool and controls to remove material from a workpiece
to produce the desired part [20] [21].

Chapter 2. State of the Art 28

Figure 10 – Usual coordinate system for a CNC.

Source: Author.

Digital files containing detailed instructions must be provided to allow the con-
troller to perform the operations required to machine a part properly [22]. Therefore, the
CNC machining process begins with the design of parts in a 3D computer model, which
determines dimensions and properties of the final workpiece. These CAD models then
go through Computer Aided Manufacturing (CAM) software to extract their geometry
and to create CNC programs [20] [21] [22].

These machine tool-understandable programming codes are, in essence, infor-
mation that is read by the controller to perform a physical operation [23]. They are
divided into two different types: Geometric Code (G-Code), which defines the speed
and movements of the cutting head, based on a set of coordinates; and Miscellaneous
Code (M-Code), that covers additional information, for example coolant data and tool
changes [22]. Once these files have been generated, they are loaded into the CNC
machine [20]. The last step before performing a machining operation is to set the cor-
rect parameters for the process, such as the cutting tool, spindle speed and feed rate
(further explained in the next chapter) [22]. When each mentioned stage is finished, the
programs can run in the CNC and, consequently, start the process on the machine tool.

The controller handles the execution of files in a complex manner and in a
specific sequence of steps to ensure the stability of the machine tool when in operation.
In addition to the main CNC controller, they are composed by interpreter and interpolator
modules, and by a series of drivers that are directly connected to the motors of a
machine tool [24]. Figure 11 summarizes the step-by-step process of how a CNC
controller works, since the CAD creation until data retrieval to the DAQ software. The
hatched part highlights the actual control unit structure and division.

Chapter 2. State of the Art 29

Figure 11 – CNC architecture.

CAD/CAM Software

CAD Model G-Code and M-Code

DAQ Software

Interpolator

Drivers

Machine tool motors Sensors

CNC Controller

Source: Author.

To produce the stipulated motion in the physical machine, the CNC files must
first be interpreted by the controller and translated into understandable signals for the
other components of the architecture. Since these signals are primarily composed of
a set of coordinate values that take the cutting tool from point A to B, for example,
the interpolator module is responsible for interpolating data points between these two
specified references from the G-Code file, producing a smooth and synchronized tool
path [19] [24]. Considering Heidenhain controllers, this interpolation process occurs
within a three millisecond interval. Once the data are well converted into interpolated
signals, they are sent to the Drivers, also known as Servo Controllers. These elements
are able to transfer the acquired signal to produce torque and activate the machine tool
motors, since they are directly connected. The motors, in turn, based on the impulse
forwarded by the Drivers, move the axes and change the tool speed, performing, in fact,
the movements predefined by the G-Code file in a sophisticated way.

The internal process continues depending on how the architecture is structured,
based on Open-Loop or Closed-Loop systems [23] [25]. Open-Loops do not feature any

Chapter 2. State of the Art 30

feedback subsystem to verify if the desired positions and velocity have been achieved,
and have no correction if the results deviate from what is expected [25]. Closed-Loops,
on the other hand, are much more complex since they implement a feedback subsystem
based on sensor measurements that returns the actual values of the machine tool axes
to the Drivers. When these signals are transferred back, the controller corrects any
potential error, ensuring its accuracy [25]. Both frameworks are better presented in
Figure 12, where a visual comparison takes place.

Figure 12 – Open- and Closed-Loop systems for CNCs.

Source: [25].

Heidenhain controllers are based on the Closed-Loop, as they consist in com-
plex CNCs that are capable of performing high-precision operations with a machine tool.
The example previously shown in Figure 11 explores a simple implementation of this
process, where measurements are constantly taken by sensors to check the positions
and speed of the axes. The acquired information is returned directly to the Servo Con-
trollers that transfer the signal back to the main CNC controller’s run-time memory for
complete feedback on the executed operation. The idea of a data acquisition software
is to access these specific controller memory locations to obtain the respective cached
data for each machine parameter of interest.

Moreover, high frequency data, such as axis positions, are particularly stored in a
"Scope Information" section of the Heindenhain controllers’ memory. In order to access
this reserved area of the CNC with a DAQ, auxiliary software and libraries are needed.
This procedure adds a new degree of complexity for the desired gemineers’ application
that will be handled with the auxiliary technologies presented in the following.

Chapter 2. State of the Art 31

2.2.2 Auxiliary Technologies

To assist in the development of a Data Acquisition application for Heidenhain
controllers, a number of auxiliary tools are needed to handle multiple different opera-
tions. In the following subsections, each Heidenhain software used is presented, such
as Programming Stations, TNCscope, and TNCremo.

2.2.2.1 Programming Station

Heidenhain Programming Stations are software that are capable to completely
emulate a CNC controller. Since these applications are based on the same software
as normal controls, they are able to create, test and optimize programs away from a
suitable machine [26]. Their interfaces simulate an Human Machine Interface (HMI) of a
machine tool that also features simulation of machining processes from the workpiece’s
point of view and the machine’s kinematics (the way the axes are shown and move
in space). Figure 13 illustrates an example of such application, where the coordinate
positions (left side) and the kinematics (right side) are presented.

Figure 13 – Programming Station Software of a Heidenhain iTNC 530 controller.

Source: Author.

The Programming Stations even simulate the connections and communications
of a real controller, which means that they are also accessible from external services
in the same way. Therefore, while machining operations are being simulated on them,
data can be acquired by an attached DAQ software. The Programming Station used
for this project is for the iTNC 530 controller emulation since it is a simpler version to
work with. Nevertheless, there are several of these applications available for different
Heidenhain models.

Chapter 2. State of the Art 32

2.2.2.2 TNCscope

Related to the scope information previously mentioned, the TNCscope is a Hei-
denhain software capable of recording and monitoring scope data from the controller’s
memory. In this application’s interface, the desired machine variables are listed and
selected to have their values graphically displayed in parallel with the execution of a
machining operation.

This application is used within the company to check if the Scope variables
(high frequency data) read by the developed Data Acquisition are the same as those
displayed in the official Heidenhain software, as well as for a later comparison of both
values. When a new machine parameter needs to be acquired, a normal procedure is
to verify its data in the TNCscope interface and only then start the implementation for
the gemineers’ service.

2.2.2.3 TNCremo

TNCremo is a Heidenhain software that easily enables users to transfer data files
between a local computer and a real CNC controller when connected by remote access,
or a Programming Station. This bidirectional transference can occur via Ethernet or
serial interfaces [27].

Within gemineers, TNCremo is used extensively to exchange part programs and
tool tables that are usually sent from a normal computer to the Programming Station.
These G-Code files are, in essence, simple machining programs that are simulated
on the emulated controller to test whether the developed DAQ is working as intended.
Tool tables are transferred to update the simulation software with additional kinematics
configuration not available in the original version.

Putting these three applications together with further libraries for code develop-
ment makes it possible to implement the Heidenhain DAQ software, which is better
discussed in Chapter 3.

33

3 HEIDENHAIN DATA ACQUISITION IMPLEMENTATION

Considering the gemineers product and the auxiliary technologies for working
with CNCs, this chapter aims to present the implementation of a software for data
acquisition of machining operations from Heidenhain controllers. The Section 3.1 further
discusses the requirements of the desired application that will be translated into a
solution model described in Section 3.2. The actual code development for this service
is shown first in Section 3.3 and in its respective subsections. Each part of the latter
presents different programmed threads for a clearer understanding of the project.

3.1 REQUIREMENTS

In order to fully work as expected by the company, the Heidenhain DAQ needs
to meet key requirements regarding its overall execution. To maintain a standard, this
Data Acquisition software should run similarly to the existing Siemens DAQ (previously
mentioned in Chapter 2), performing related tasks but taking into account the unique-
ness of Heidenhain controllers. When the program starts, it must be able to perform
connections to an operating machine tool and to the Data Ground Server based on
Internet Protocol (IP) addresses provided by the user. These first identifications and
coupling with the hardware and the DGServer are necessary to prepare the service to
carry on a clean data stream.

There are several types of data considered important to the company in a ma-
chining process that are constantly updated in the controller. Such information can refer
to the mechanical operation itself or to the current state of the machine tool performing
the work. gemineers separate these data into high and low frequency, depending on
how often it needs to be acquired by the software. Mechanical information is primarily
considered high frequency (and must be obtained as fast as possible, in a millisec-
ond range), as each data point is of utmost importance for digitizing workpieces into
digital twins. Additional information and machine tool metadata is essentially acquired
at low frequency (only read a couple of times per second), since it is used to orga-
nize processes and to correctly associate the corresponding mechanical data with the
respective machining operation performed.

The desired Heidenhain DAQ must be able to access specific areas of the con-
troller’s memory to properly read all this stored information. Each major data type that
must be handled by the service in question is better explained in the following, along
with its respective acquisition frequency shown in Table 1.

• Coordinates: the precise position of the cutting tool, translated into five axes,
three linear and two rotational;

Chapter 3. Heidenhain Data Acquisition Implementation 34

• Spindle and Axis Loads: the load applied to each axis and spindle (the shaft at
the center of the rotating axis) of the machine tool;

• Spindle Speed: the speed of the running spindle in the machine tool;

• Feed Rate: the velocity at which the cutting tool is advanced against the workpiece
[28];

• Presets: the offset of each axis compared to the defined machine tool zero point;

• Tool data: the information concerning the cutting tool, such as radius, length and
name;

• Program data: the G-Code information, including file names and contents, run-
ning on the machine tool;

• Machine tool status: the current state of the machine tool (stopped, running,
etc.);

• Machine tool execution mode: the current mode that the machine tool is in
(manual, automatic, etc.).

Table 1 – Data types and the associated frequency of acquisition.

Data type Frequency of acquisition

Coordinates High
Spindle and Axis Loads High
Spindle Speed High
Feed Rate High
Presets Low
Tool data Low
Program data Low
Machine tool status Low
Machine tool execution mode Low

Source: Author.

The acquired low frequency data should be used to build a metadata structure
for each machine tool operation. This created information should function as a unique
label to sort processes into future geminies, and a trigger for further applications of the
entire gemineers’ software.

Since these different types of data come in distinct forms from the controller
output, they first need to be standardized into a common interface. Therefore, the Hei-
denhain DAQ needs to be able to transform each piece of acquired information into
individual programming objects. These instances, after being systematized, must be
translated into understandable messages and then dispatched to the server via the se-
lected communication protocol. This procedure takes place in a matter of milliseconds,

Chapter 3. Heidenhain Data Acquisition Implementation 35

at the expense of the high frequency data. Once completed, the workflow of the desired
application is finished.

3.2 SOLUTION MODELING

The development of a complex multi-threaded software is proposed as a solution
to accomplish a Heidenhain DAQ with the requirements discussed in the previous
section. The concept of multi-threading is applied in the given service to be able to
perform different operations simultaneously within the code, such as in handling data
types at distinct frequencies. The developed model for this Data Acquisition software is
better presented in Figure 14.

Figure 14 – Overall Heidenhain DAQ operating model.

Source: Author.

The event columns, denoted by the initial circle in a Unified Modeling Language
(UML) diagram, represent major threads of the application, totaling four: Main, LF
Streamer, HF Acquisition, and HF Dispatch. Each thread, in turn, constitutes a state
machine, where the operation steps of the different scenarios are written in blocks and
connected by arrows in Figure 14. This DAQ service is designed in the form of multiple

Chapter 3. Heidenhain Data Acquisition Implementation 36

state machines because its operational steps are well-defined and distinct from each
other, being also easier to develop and debug the code when tested.

A summary of the entire software workflow begins with an instance of the Main
Thread that establishes connections to the machine tool and to the Data Ground Server,
coupling them together as expected by the requirements shown. Once connected, it
initializes the acquisition threads that handle the data stream within the given application.
The LF Streamer is responsible for acquiring and directly sending the low frequency
data to the server, while the high frequency is assigned to the HF Acquisition and the
HF Dispatch to avoid overloading only one thread, since the amount of information is
considerably large. As the names suggest, the former reads the scope data from the
controller while the latter dispatches it to the server.

The data transfer between the two high frequency threads is based on a buffer.
While the HF Acquisition writes newly acquired data to the buffer, the HF Dispatch
simultaneously reads and consumes this information, ensuring synchronicity to the
process.

At the end of the operation, each state machine features a Reset step that checks
whether the data acquisition is complete or not. If the stop flag is triggered, all threads
are finished and the program comes to an end. Otherwise, an error has occurred and
the thread itself just restarts its execution from the first stage.

3.3 DEVELOPMENT

Considering the proposed solution model, the current section aims to introduce
the entire development of the data acquisition software for Heidenhain controllers. The
following subsections present the implementation of each thread already discussed,
along with their respective states illustrated in Figure 14. Nevertheless, steps that
repeat among the four threads will not be covered twice. To accomplish this explanation
and still preserve company confidentiality, more detailed diagrams and pseudo-code
snippets are further shown.

The first operation performed when the Heidenhain DAQ starts is reading a
configuration file developed within its repository. This document contains all basic infor-
mation for the software, which allows users to directly change elementary data, such
as IP addresses without the need to dig into the source code. This information is then
stored in variables that serve as a first input for starting the Main Thread.

3.3.1 Main Thread

Built based on five states (Identify Controller, Identify DGServer, Start Acquisi-
tion Threads, Monitor Running Threads, and Reset DAQ), the Main is the thread that
performs the initial steps of the software itself, since it is the first one to be initialized.

Chapter 3. Heidenhain Data Acquisition Implementation 37

Its stages are connected to each other according to Figure 15.

Figure 15 – Activity diagram of Main Thread.

Source: Author.

A successful execution of the workflow shown in Figure 15 starts with the iden-
tification of the CNC controller, where a connection is established to the machine tool.
Similarly, a link is also made with the Data Ground Server, identifying which machine
tool is being used. After the elementary recognitions are completed, the Main Thread
serves as a facilitator for the other threads, as it initiates and monitors them during
the entire data acquisition process. The Reset state, at the ending, is responsible for
handling the finished threads and redirecting the program to an end or to the beginning
once again. The code implementation for each step is further discussed below.

3.3.1.1 Identify Controller

To correctly perform the identification of Heidenhain controllers, additional li-
braries are indispensable for handling requests and the communication between an
external service and the machine tool. The Code Snippet 1 exemplifies its use to prop-
erly obtain a connection and basic information from CNCs.

Chapter 3. Heidenhain Data Acquisition Implementation 38

Code Snippet 1 – First Heidenhain controller identification.

1 if (identify_controller) {
2 bool ok = ConnectToMachine ();
3 ok = AcquireBasicInfo ();
4

5 // Verify if functions were successful
6 if (ok)
7 GoToNextStep ();
8 else
9 StopProgram ();

10

11 DisconnectToMachine ();
12 }

To start this recognition procedure, the first step is to open a connection with
the controller. The pseudo function ConnectToMachine executes a couple of standard
methods that are needed to connect to the CNC and to access areas of its memory.

Once a connection is established, functions represented by the AcquireBasicInfo
are called to acquire the controller’s elementary data. The logic using if (ok) statements
in Code Snippet 1 ensures that the next subroutine is only executed if the last one
returns a success flag, as the boolean ok is updated after each method. To better ex-
emplify this execution, Figure 16 shows a common output of the developed application.

Figure 16 – Output data of the Identify Controller step.

Source: Author.

Chapter 3. Heidenhain Data Acquisition Implementation 39

From top to bottom, Figure 16 first presents the control type, in this case an iTNC
530 controller, and the machine type, which consists of a 5-axis machine tool operating
with the rotational axes B and C, already discussed in Chapter 2. Sequentially, the
five axes are identified along with the spindle parameter (named S) and are properly
associated with their respective internal metadata, such as ID and type. The unit system
is further pointed out by a mock declaration for the imperial one. And finally, the current
preset value for each coordinate axis (X, Y, Z, B, and C) is displayed.

At the end of the Identify Controller state, if the processes were successful,
the next step is set to Identify DGServer. Otherwise, an error is thrown and the DAQ
is terminated. When the entire workflow is over, the DisconnectToMachine pseudo
function is called to avoid accumulating open connections with the CNC.

3.3.1.2 Identify DGServer

A connection between this DAQ and the server is required to send the data
acquired to the next applications. Following the Siemens case, the Heidenhain one
must also perform a series of operations to connect and dispatch information to the
server through the network. Figure 17 further explores the steps of these processes that
will be repeated several times during the execution of this Data Acquisition software.

Figure 17 – Standard procedure to connect and send data to DGServer.

Source: Author.

Chapter 3. Heidenhain Data Acquisition Implementation 40

In order for both the DAQ and the server to properly communicate with each other,
a subprotocol must be selected that specifies how the data structure to be dispatched
is constructed. Once these services are well predefined, an initial acknowledgment
message is sent by the DAQ to the DGServer. Given a successful execution, this
message is acknowledged by the server, which becomes able to receive new data from
this software until a disconnect call is made.

Moreover, a couple of steps are necessary to actually transfer the acquired
information to the DGServer. First, as previously mentioned, it needs to be standardized
to a common interface, which in this case are programming objects. Once transformed,
one dispatch function is created for each data type on the DAQ side in order to translate
these data into valid and understandable messages for the server, and then send
them out. If there are any problems with sending the information over a connection, a
reconnect subroutine is immediately triggered. In essence, as soon as the execution of
this acquisition application is complete, the multiple connections to the DGServer are
closed. A simple example of such operations is implemented in Code Snippet 2, where
the first identification of the server takes place in the Heidenhain DAQ.

Code Snippet 2 – First DGServer identification.

1 if (identify_dgserver) {
2 int connection = ConnectToDGServer ();
3

4 // If the connection was successful
5 if (connection >= 0) {
6 DispatchBasicData ();
7 GoToNextStep ();
8 }
9 else

10 GoToReset ();
11 }

The connection attempt is performed based on the pseudo function Connect-
ToDGServer. The behavior of this method depends on the used library and returns an
integer, which specifies the number of the connection established. If the mentioned rou-
tine succeeds, the basic data are standardized into an object and dispatched directly to
the DGServer, which is represented by the pseudo method DispatchBasicData. When
both operations are completed, the state is set to Start Acquisition Threads and code
execution proceeds. If any error occurs during the connect call, the next stage is set to
Reset DAQ.

3.3.1.3 Start Acquisition Threads

Once the controller and the DGServer are properly identified, the acquisition
threads (LF Streamer, HF Acquisition, and HF Dispatch) are initialized to run their own

Chapter 3. Heidenhain Data Acquisition Implementation 41

internal steps. Code Snippet 3 shows how the Main Thread instantiates the others,
starting the data acquisition process itself.

Code Snippet 3 – Start of acquisition threads.

1 if (start_threads) {
2 run_threads = true;
3 stop_threads = false;
4

5 InstantiateThreads ();
6 GoToNextStep ();
7 }

To aid code development and to track the status of these threads (instantiated
based on the InstantiateThreads pseudo function), the flags for running and stopping
them are updated. After they are successfully executed, the new state is set to Monitor
Acquisition Threads.

3.3.1.4 Monitor Acquisition Threads

The process of monitoring the acquisition threads is implemented based only on
an if statement, as visualized in Code Snippet 4. The idea of this step is to constantly
check if any of the running threads is finished or threw an error, changing, in fact, the
value of the run_threads flag. If they are all running, nothing happens but a delay call
to perform this same validation within 100 milliseconds. As soon as the bool variable
switches, the state is set to Reset to evaluate whether the program is continued or not.

Code Snippet 4 – Monitoring of the acquisition threads.

1 if (monitor_threads) {
2 if (run_threads)
3 Sleep (100);
4 else
5 GoToReset ();
6 }

3.3.1.5 Reset DAQ

The Main Thread’s Reset state is the responsible for handling the program’s
behavior based on any error or end flags. As previously seen, it can be called from
multiple steps in the code when the normal processes do not follow as expected. The
basic operations performed by this stage are better presented in Code Snippet 5.

Code Snippet 5 – Reset DAQ procedure.

1 if (reset) {
2 stop_threads = true;
3

Chapter 3. Heidenhain Data Acquisition Implementation 42

4 DisconnectToDGServer ();
5 JoinAllThreads ();
6

7 // Finish or restart the program based on a stop flag
8 if (stop_daq)
9 run_daq = false;

10 else
11 GoToFirstState ();
12 }

To avoid keeping useless connections open to the Data Ground Server, the
Reset state performs a disconnect function to an existing connection based on the
DisconnectToDGServer. The acquisition threads, when finished, are also further closed
in this step by the pseudo routine JoinAllThreads, providing a safe and correct way to
abort the entire program flow. Once the threads are terminated and all connections are
shut down, the Reset state defines, again based on boolean flags, the execution path
to follow. If the stop_daq is set to true, a bool signal triggers the end of the program.
Otherwise, the processes have to be restarted and the workflow returns to the initial
step of the controller identification.

Considering the known states of the Main Thread, it is notable that this branch
of the code remains in an idle status while the acquisition threads are running. The Low
Frequency Streamer, being one of them, is introduced as follows, explaining in detail its
corresponding operations and their respective implementations.

3.3.2 Low Frequency Streamer Thread

The LF Streamer Thread is directly responsible for the acquisition and dispatch-
ing of all low frequency data, previously seen in Table 1. Similar to the Main case, the
defined states of this thread (Connect to DGServer, Connect to Machine Tool, Stream
Data, and Reset Thread) work in an ordered sequence, which is shown in Figure 18.

Chapter 3. Heidenhain Data Acquisition Implementation 43

Figure 18 – Activity diagram of LF Streamer Thread.

Source: Author.

After being instantiated, the LF Streamer first performs connections to the server
and to the operating machine tool in order to establish a unique communication channel
between them for these types of data. When these routines are successfully completed,
the information stream is initiated in a loop, which consists of repeatedly acquiring
the selected data from the controller, manipulating it in a simple way and dispatching it
directly to the DGServer, until the acquisition is finished. Once all the desired information
is collected from a single run, it is brought together to build and send a metadata object,
which labels and organizes machining processes in future company applications.

A procedure comparable to the Main Thread, described in Code Snippet 2, is
required for the LF Streamer to also connect to the DGServer. Again, the server’s
connection subroutine dictates the thread execution path. If the method is successful
and the coupling of both services is indeed true, the next state is set to Connect to
Machine Tool. Otherwise, an error message is thrown and the Reset stage is triggered
to handle the problem.

Furthermore, an additional connection to the machine tool must be established

Chapter 3. Heidenhain Data Acquisition Implementation 44

to properly access the controller’s memory and acquire the desired low frequency
data. As previously described in the Main Thread, this procedure is heavily based
on the used library and can be simply implemented with a call of the pseudo routine
ConnectToMachine, seen in Code Snippet 1. If this method returns success, the Stream
Data state is executed, where most of the logic part of this thread is located.

3.3.2.1 Stream Data

When a clean data stream path is built upon open connections to the operat-
ing CNC controller and to the DGServer, the acquisition and dispatching of the low
frequency data takes place in a loop form. In this case, each type of information is ac-
quired sequentially and its results are subsequently manipulated and dispatched to the
server one by one via their respective dispatch methods created. The main processes
running within the Stream Data state are summarized in the Code Snippet 6.

Code Snippet 6 – Low frequency data streaming.

1 if (stream) {
2 bool ok = AcquireLowFrequencyData ();
3

4 if (ok)
5 HandleLowFrequencyData ();
6

7 // Create and dispatch metadata object
8 HandleMetaDataObject ();
9 }

The machine data acquisition is mainly performed by a couple of specific func-
tions, represented in here together by the pseudo routine AcquireLowFrequencyData,
which together satisfy the low frequency requirements. They are designed for each de-
sired data type and developed based on internal subroutines. These methods are able
to access the controller’s memory and retrieve the stored values, that are further used
to correctly run the dispatch steps of an execution (illustrated by the HandleLowFre-
quencyData function). Figure 19 shows an example output of this low frequency data.

Chapter 3. Heidenhain Data Acquisition Implementation 45

Figure 19 – Example of low frequency data output from the LF Streamer

Source: Author.

At the top of Figure 19, the execution point provides information about the path
and name of the selected and active program running on the machine tool which, in
this case, are the same. The "blockNr" also shown, specifies the selectedProgram’s
line that is currently being read by the controller. Next, the cutting tool data is displayed,
followed by the machine’s status and the execution mode at the end.

A boolean is returned by the acquisition function in Code Snippet 6, representing
a success or failure in the corresponding process. In case it is executed correctly, a
couple of sequential operations are performed within the if (ok) statement: check if the
new values of the data variables are the same as the last ones, standardize the data into
programming objects and dispatch them to the server with the respective dispatcher
function. This validation of two consecutive data points is necessary to prevent this
DAQ Software from sending repeated low frequency data to the other services in the
chain, since for larger machining processes it is common for the acquisition methods to
read the same data several times. However, when they are different, the two remaining
activities cited are accomplished in sequence.

Once all instructions are completed, the acquired information is gathered to-
gether to build and dispatch a metadata that identifies a unique machining operation
with its associated data and a serial number, represented, in this case, by the Han-
dleMetaDataObject function. A metadata object is only constructed when a new cutting
tool or a newly selected program is read.

If any state of the LF Streamer returns an error, the Reset Thread stage is
triggered to properly handle the situation. Like the similar stage of the Main Thread, the
connections here are safely closed with the DGServer and the machine tool, aborting
the corresponding workflow. In the end, if a stop flag is set to true, the thread is simply
terminated. Otherwise, the LF Streamer is started again from the first connection to the
server.

Chapter 3. Heidenhain Data Acquisition Implementation 46

Meanwhile the low frequency data are being acquired, high frequency threads
are also running in the background in order to fill in all the information of a machining
process. The in-depth explanation and implementation of such threads are discussed
below, starting with the High Frequency Acquisition Thread.

3.3.3 High Frequency Acquisition Thread

As the name suggests, the HF Acquisition Thread mainly conducts the acquisi-
tion of the high frequency data types, described in Table 1. Following the example of the
threads already shown, it represents a state machine that features different and well-
defined sequential steps (Connect to Machine Tool, Select Machine Channels, Receive
Machine Data, and Reset Thread), which are visually explicit in Figure 20.

Figure 20 – Activity diagram of HF Acquisition Thread.

Source: Author.

A special connection to the machine tool to access the Scope Information area
is needed first for this thread to work as expected. This part of the controller memory
is built on multiple channels, in which each is associated with a single type of high

Chapter 3. Heidenhain Data Acquisition Implementation 47

frequency data. Once the DAQ and the CNC are connected, the channels are selected
by the user in order to get the exact type desired and to prepare the control to send the
specific data that is of interest to this program. When the channels are chosen correctly,
the information is received by this software, with the help of particular functions from
the used library, and directly written to a buffer, which communicates the HF acquisition
with the dispatch thread.

To properly enter the controller’s scope area, a more sophisticated connection is
required than those implemented for the threads already presented. In addition to the
known connect function, a login is needed to specify particular passwords to access this
part of the memory. Furthermore, in order to obtain auxiliary information to work with the
scope, additional methods from the library must be invoked to acquire general details
about this region of the control and to gather metadata about all channels available on
the CNC. An output example of these routines is shown in Figure 21, where information
only regarding the Feed Rate channel is exposed. Such metadata is useful and is better
explained in the Select Channels step of this thread.

Figure 21 – Feed Rate channel metadata from the Scope area.

Source: Author.

The same logic using if (ok) statements is also implemented in this connection
stage, aiming to run the next function only when a successful execution of the previous
one has been performed. With all methods executed correctly, the Select Channels
state is set. Otherwise, the Reset Thread is triggered just like the other branches of the
code, as seen in Figure 20.

3.3.3.1 Select Channels From Controller

The channels that build the scope area are mainly composed of three properties:
ID, PLCAddress, and Index. Together, they are able to define the exact location where
the desired high frequency data type is stored within the control memory. When a
user needs to perform a channel selection to properly obtain an information, these
three attributes must be set to valid values according to results similar to that shown in
Figure 21. How the Scope Information is constructed is better illustrated in Figure 22.

Chapter 3. Heidenhain Data Acquisition Implementation 48

Figure 22 – Scope Information area structure.

Scope Information

Channel 1

Channel 2

Channel 3

Channel 4

…

ID

PLCAddress

Index Desired data

Source: Author.

Considering the output content of the example in Figure 21, the displayed fields
show the necessary information to correctly set the channel properties and, conse-
quently, select a channel itself. "ChannelId" defines the channel identifier within the
scope area. "Name" specifies the data type. "IndexStringFields" represents the axis
names and their corresponding indexes. "NameDim" stands for the unit of the acquired
signal. "SamplingIntervals" refers to the sampling interval in microseconds. And finally,
"Type" explains the channel type in the control. To regulate the three attributes men-
tioned in Figure 22, the "ChannelId" and "Type" keys need to be taken into account.

For the Feed Rate channel, for example, the ID is set to 8 (according to "Chan-
nelId"), the PLCAddress to -1, and the Index to 0. These last two settings are based on
the "Type" being 0, since these are specifications from the used library documentation.
An implementation for this case is exposed in Code Snippet 7.

Code Snippet 7 – Scope channel selection for high frequency data acquisition.

1 if (select_channels) {
2 // Select channel with the correct attribute values
3 bool ok = SelectChannel (8, -1, 0);
4

5 // If the channel was successfully selected
6 if (ok)
7 GoToNextStep ();
8 else
9 GoToReset ();

10 }

Despite showing only the Feed Rate example in Code Snippet 7, the channel se-
lection is also performed for all axis signals, such as coordinates and loads, and spindle
speed and load, effectively achieving the requirements imposed in Section 3.1. Once
the values of each wanted channel are found, they must be passed to the controller,

Chapter 3. Heidenhain Data Acquisition Implementation 49

in this case, performed by the pseudo function SelectChannel, to define them within
its scope. If this method is successful, the channels have been rightly chosen and the
CNC is prepared to send the proper information, that will be received by the Receive
Data state. Otherwise, an error has occurred and the Reset is set.

3.3.3.2 Receive Data From Controller

After the channels are selected, the acquisition of high frequency data is finally
started. The receiving of such information is mainly performed by two functions that
are triggered sequentially during the acquisition process. This procedure runs in a loop
that ideally maintains the HF Acquisition Thread in this state during the entire execution.
Code Snippet 8 addresses the implementation of these operations.

Code Snippet 8 – Receiving high frequency data from the controller.

1 if (receive_data) {
2 bool ok = AcquireHFData ();
3

4 if (!ok)
5 GoToReset ();
6 }

Every time a new piece of data is received by the pseudo routine AcquireHFData,
a callback function is directly triggered. This callback method is primarily responsible
for organizing the information into an array and writing it to the common high frequency
buffer, as seen in Figure 20. For each execution of the loop, the acquisition function
returns a success or failure flag represented by the boolean ok. Based on this result,
the code constantly checks if an error appears. If any problem occurs on this reception,
an error message is thrown and the Reset Thread state is set.

Serving as the corresponding state of the other threads, the Reset is set to
provide a safe and clean way to handle any HF Acquisition issue. Based, again, on
the DisconnectToMachine function from Code Snippet 1, this stage closes, in a correct
manner, the connection previously established with the machine tool. Following the
same pattern, a stop flag defines whether the current thread is terminated or restarted.

Taking into consideration the amount of data and operations performed in a
small period of time, the high frequency threads are separated in two, aiming to avoid
overloading a single one. The information that was earlier acquired and written to the
buffer is further read and handled by the HF Dispatch, explained in the next subsection,
which finishes the whole acquisition process.

3.3.4 High Frequency Dispatch Thread

The last implemented thread, the HF Dispatch, is responsible for sending the
acquired high frequency data to the server in order to continue the company’s processes.

Chapter 3. Heidenhain Data Acquisition Implementation 50

Just like the other threads, its steps are well defined in different states (Connect to
DGServer, Dispatch Acquired Data, and Reset Thread), that are internally connected
according to Figure 23.

Figure 23 – Activity diagram of HF Dispatch Thread.

Source: Author.

A successful run for this thread starts with multiple connections established to
the DGServer, one for each desired data type, to also avoid the overhead of a single
network connection. Once connected, the sending routine is executed in a loop: first,
the information in the common buffer is read and then transformed into programming
objects that are sent to the server via the respective dispatch function created.

To perform such connections to the DGServer, the procedure is similar to the
corresponding ones seen in the Main Thread and in the LF Streamer. However, instead
of connecting only once, here it should be at least six times due to the number of
high frequency data types of interest. Considering this, the known ConnectToDGServer
pseudo function is called within a for loop, returning six connections that are stored
in a vector, thus allowing index-based access. When each execution of this method is
successful, data can be sent to the server by the Dispatch Acquired Data state.

If any error occurs during the attachment of this HF Dispatch to the server, the
Reset Thread is triggered to solve the problem. In this step, each open connection is

Chapter 3. Heidenhain Data Acquisition Implementation 51

closed individually with a DisconnectToDGServer method call inside a for loop. Fulfilling
the same pattern as the other Reset stages, a boolean flag defines whether the thread
restarts or the acquisition is terminated.

3.3.4.1 Dispatch Acquired Data

While the high frequency data are being written to the buffer by the HF Acquisition
thread, the HF Dispatch is simultaneously reading this information in order to send it
to the connected server. Code Snippet 9 presents the simplified implementation of the
operations performed for this state.

Code Snippet 9 – Dispatching of high frequency data to the DGServer.

1 if (dispatch) {
2 if (buffer has data) {
3 double data = buffer pop front;
4 DispatchHFData(data);
5 }
6 }

Since the dispatch process must only occurs when data is being acquired from
the machine tool, it is necessary to check, in this high frequency case, whether there is
information being written to the buffer. If the buffer is empty, no data is stored and this
thread enters in an idle state until the next verification of the loop. Otherwise, the front
data is obtained and popped from the buffer to continue the next steps.

Having this information available, each type of high frequency data can then
be asynchronously transformed into programming objects and dispatched to a single
connection to the server over the network, finalizing, in turn, the entire Heidenhain DAQ
workflow. Such process is summarized in Code Snippet 9 based on the pseudo function
DispatchHFData.

Once the operations of this HF Dispatch thread are finished, the entire service is
completely covered and all requirements listed in Section 3.1 are successfully achieved.
With all four threads working together, the Heidenhain Data Acquisition software is
ready for testing and to have its results analyzed.

52

4 TESTS AND RESULT ANALYSIS

When the appropriate tasks are performed by the four threads of the Heidenhain
DAQ, the high and low frequency data are sent to the server that forwards them to
the other applications of the company. This information, in turn, triggers various data
processing operations and their respective management in the database, until it reaches
the Front-End, the final service that displays the acquired and processed data in the
form of digital twins. In order to present this gemineers’ product operation and its results,
this DAQ needs to be tested in a proper manufacturing process.

Therefore, Section 4.1 of this chapter aims to describe the testing activities con-
ducted by the student for the developed software, as well as its corresponding results
that are directly reflected in the visualization in the Front-End. Then, in Section 4.2,
a comparison with the company’s main acquisition service, Siemens DAQ, is shown
with the intention of analyzing their differences and providing possible improvements
and future work regarding both data acquisitions. An in-depth analysis of the perfor-
mance of each primary Data Ground application is introduced in Section 4.3, where
tests evaluating the memory and processor usage of the local computer are taken into
consideration.

4.1 DATA ACQUISITION FUNCTIONALITY

In order to explore the functionality of the developed Heidenhain DAQ, a ma-
chining operation is first required to correctly trigger the activities performed by this
software. Since there are no machine tools operated by Heidenhain controllers avail-
able in the company at the time the tests are carried out, the iTNC 530 Programming
Station (previously shown in Chapter 2) is widely used to emulate these controls and to
simulate milling cuts on a block of raw material. The simulation application along with
the necessary Data Ground services (Data Acquisition, DGServer, and Batcher) are
then started on a computer that has an Intel(R) Core(TM) i5-8265U 1.60 GHz CPU with
8 GB of RAM to properly experiment the entire workflow of the related area.

After these applications are initialized and rightly connected to each other ac-
cording to the steps presented in the implementation chapter, the test procedure begins
with the setup of a machining operation in the mentioned Programming Station. First,
the kinematics are chosen to correctly simulate a real manufacturing process, and their
respective parameters are passed to the DAQ configuration file. The kinematics defined
for this testing phase replicate the old Heidenhain machine tool of the High Performance
Cutting department of Fraunhofer IPT.

Next, the "Program run, full sequence" option is selected to fully execute a G-
Code routine, also specified by the user, within the emulated controller. For this test
occasion, to properly analyze the Heidenhain DAQ and, consequently, the next services

Chapter 4. Tests and Result Analysis 53

of gemineers, the program "house.H," from the internal folders of the simulation soft-
ware, is used. This file consists of multiple 5-axis machine tool instructions for turning a
rough block into a birdhouse, based on various milling operations, effectively providing
an environment to completely experience the features of the developed application. The
final house workpiece, according to the Programming Station data, should have the
geometry illustrated in Figure 24. The solid is displayed in two different perspectives
placed side by side to show all the holes and cuts that are made by the cutting tool in
the initial rectangular part.

Figure 24 – Original house geometry from iTNC 530 Programming Station.

Source: Author.

Once each mentioned step is performed, the machining simulation is started and
further controlled based on the virtual keyboard provided. Figure 25 shows an example
of the initialization of such tests in the Programming Station. On the left side of the
image, the picked program is displayed, along with the chosen kinematics on the right,
and the axes and their initial positions at the bottom. When in execution, the blue line
highlighted in the G-Code advances to the next ones, visually realizing the described
motion in the machine tool, represented by the kinematics and the coordinate values.
In addition, several other different functionalities can be achieved with this simulation
software, but this is already beyond the scope of this project.

Chapter 4. Tests and Result Analysis 54

Figure 25 – Initial Programming Station setup for simulating a machining operation.

Source: Author.

While the simulated machining operations are taking place, the data acquisition
processes are running in the background. Since the Heidenhain DAQ is directly con-
nected to the virtual machine tool, each movement is being recorded, along with the
other desired information, to accurately obtain all cuts and hoes performed by the tool
tip. For a simple validation of the high frequency data, the TNCscope software (intro-
duced in Chapter 2) is manually checked to make sure that the information acquired by
the developed application is in accordance with Heidenhain’s official data. If they are
equal, the activities continue and all the information from low and high frequency is sent
to the DGServer, which triggers the Batcher execution with the subscriptions behavior.

The Batching Service, in turn, gets the acquisition data to group it into batches,
effectively linking the metadata with the corresponding mechanical information. For
the house example, an output from the Batcher is presented in Figure 26, where the
data for each type is stored in unique files within a single zip folder. Unfortunately, the
Heidenhain Programming Stations do not feature the loads for any axis and spindle,
which is why such desired information is omitted. Furthermore, from Figure 26 it is also
noticeable the difference in quantity between the high and low frequency data, as all LF
documents (at the bottom rectangle) are represented by 1 KB and the smallest HF file
(at the top) reaches about 14 MB.

Chapter 4. Tests and Result Analysis 55

Figure 26 – Output data from the Batcher for the house.H.

Source: Author.

From the Batcher’s thread, the batched data, represented by the zip folder, is
forwarded to the gemineers API to further start refining such information. From the exe-
cution of the Data Processing area services, the raw data acquired from the controller is
cleaned, treated, and converted into a virtual representation of the finished workpiece,
based on the transformation into a Standard Triangle Language (STL) file. Thus, con-
sidering once again the example of the house, Figure 27 presents one of the results of
these processing steps, formed over the information obtained by the Heidenhain DAQ
from the machining simulations previously performed by the Programming Station.

Figure 27 – Resulting house geometry from gemineers’ data processing services.

Source: Author.

Chapter 4. Tests and Result Analysis 56

By comparing Figure 24 and Figure 27, it is possible to conclude that the Hei-
denhain DAQ is effective at acquiring data from the controller, at least in terms of tool
movements and axis positions. This is due to the fact that all the cuts and holes ex-
pected by the original workpiece were correctly mapped into the result of the gemineers
data processing, thus successfully achieving the desired digital twin. To further ana-
lyze the information acquired for different types, the visualization is needed within the
Front-End, where the data is sent and loaded after it has been processed.

The gemineers’ Front-End service is a browser platform for the user to monitor
the machining processes of the shop floor. Among its features is the analysis of the data
acquired by the DAQ over the original piece geometry in a 3D environment. Figure 28
illustrates with the house example the current state of such an application, with the
visualization (in the center) of the selected data (on the right) displayed on the screen.

Figure 28 – gemineers’ Front-End.

Source: Author.

When any process data is loaded into the visualization frame, a mesh of points is
displayed to simulate the path taken by the cutting tool to machine the desired part. Each
of these cut points represents a data instance acquired by the DAQ, which contains the
values of the mechanical information synced with the positions in the space.

To manipulate how these data are displayed, a small navigation bar is imple-
mented at the bottom of the view. This component allows the user to select how and
what type of information is presented in order to monitor any obtained mechanical
variable of the machining process. These data are explicitly shown point by point on a
color scale, along with a legend to correctly identify the respective values acquired by
the DAQ for a given position. Such representation for the house geometry is visually

Chapter 4. Tests and Result Analysis 57

exemplified in the Front-End application in Figure 29, where the Feed Rate signal is
highlighted. The images on the left side illustrate the colored point cloud over the 3D
model of the workpiece, while on the right, only the point mesh is exposed. At the
bottom of Figure 29, a top view of the part and hence of the data points is exhibited to
further analyze the holes drilled by the cutting tool in the roof of the birdhouse.

Figure 29 – Feed Rate data displayed as a point cloud in the Front-End.

Source: Author.

Considering the results in Figure 29, it can be inferred that the developed Hein-
denhain DAQ software is also capable of collecting and sending information of different
types of data, as exemplified by the Feed Rate. Such a statement can be confirmed
from the analysis of the color scale and the legend in the upper left corner, which
translates and associates the value of the signal in question for each cutting tool point
acquired during machining and displayed in the space. For the case shown, the Feed
Rate ranging from 225 mm/min, in regions where the tool is definitely milling the work-
piece to 4786 mm/min in places where touching the part does not occur, is consistent
with what is expected for the house process.

Moreover, to obtain the visualization of all information synchronized with the cor-
responding machining operations of the selected geometry, the metadata and all other

Chapter 4. Tests and Result Analysis 58

types of low frequency data, which are responsible for this association, need to have
reached the other services of gemineers. With this in mind and the results presented
so far, it can be concluded that the Heidenhain DAQ was successful in achieving all the
objectives set for the project, since the stipulated low and high frequency data were ac-
quired and handled until the final Front-End application in a digital twin form. When the
Data Acquisition software is ready for use and properly attached to the other services,
the company can then finally attain the desired process monitoring and further predict
and assure better quality for the production line and the manufactured workpieces.

Now that the Heidenhain DAQ results have been discussed and visually dis-
played in the gemineers’ Front-End, its features need to be compared to the Siemens
DAQ, the other existing data acquisition application. This comparison, better introduced
in the following section, is necessary in the scope of the company to validate and verify
the common functionalities of these services, aiming to analyze possible improvements
for both acquisitions, taking into account the uniqueness of each control.

4.2 COMPARISON TO SIEMENS DATA ACQUISITION

The data acquisition from Siemens controllers is the main DAQ software of the
company nowadays, since it has been in development for a long time and has constant
updates for new features. In order to keep the Heidenhain DAQ in sync with such an
application, given that they have the same objectives, their primary similarities and
differences are further studied and listed with the goal of keeping both services even
and delivering to the end user a complete software regardless of the controller used.

In terms of the overall data acquisition requirements, it can be stated that the two
applications are successful. This is due to the fact that both the Siemens DAQ and the
Heidenhain DAQ are able to connect to the respective machine tools, acquire their base
data and forward it to the DGServer over the network. The major differences between
them are, in turn, based on three points: the ease of software development, the quantity
of available data types to be obtained from the CNC, and the service’s frequency of
acquisition of the selected information.

The facility of developing the software is indirectly linked, in this case, with the
amount of variables that can be acquired from the control. This relationship exists due
to the libraries applied for both applications. For the Siemens scenario, the imported
coding packages are better equipped with documentation, providing the developer with
a simpler understanding of the architecture and how to properly obtain the desired data.
Besides being easier to use, the range of data types that can be acquired in these
controllers with the corresponding library is greater than that of Heidenhain, and there
is no restriction on the number of variables that can be selected at the same time.

When it comes to the Heidenhain case, the library documentation lacks details
and implementation support, making it more difficult to understand the data structure,

Chapter 4. Tests and Result Analysis 59

access the memory areas of the controller, obtain specific types of information, and
therefore develop code. Additionally, a number of high frequency variables are limited
to the Scope area, restricting the amount of data that can be obtained by this DAQ. To
adequately deal with such problems and achieve all the features that Siemens has, an
even deeper study of the library available for Heidenhain is required.

Regarding the acquisition speed, the Heidenhain DAQ performs better in com-
parison to the Siemens service. The former is capable of acquiring data at a constant
frequency of about 330 Hz, while the latter obtains information at 110 - 250 Hz un-
steadily. The reason for this difference is, besides the velocity of the specific read
functions, that the Siemens DAQ implements the sending of data sequentially on the
same thread as the acquisition, and has to wait until the dispatching is complete before
the next data can actually be obtained. The Heidenhain DAQ, on the other hand, sepa-
rates and executes the acquisition and sending operations simultaneously on different
threads, making both high frequency and stability effective.

Given the computational cost that is required to operate all main Data Ground ser-
vices at a 330 Hz acquisition rate for the Heidenhain case, the next section aims to ex-
plore the computer-wise performance of each application (Heidenhain DAQ, DGServer,
and Batcher) during a machining process.

4.3 DATA GROUND SERVICES PERFORMANCE

In the current state of the gemineers software, the entire Data Ground area
works with one data point at a time. This means that for each unique information
acquired by the DAQ, a single dispatch is executed that triggers isolated operations in
the DGServer and in the Batcher. For a 330 Hz acquisition achieved by the developed
Heidenhain application, this amount of processes happening simultaneously and in
multiple services is computationally expensive and needs to be studied.

Thus, to verify the computational performance of each Data Ground software
and to better understand how they behave for this high frequency acquisition, tests are
performed in this regard. The testing takes place with the help of an existing python
script within the company’s scope, which records sample information about CPU and
memory usage and plots it on graphs. These processing data that are further shown
in this section were obtained during the simulations of the house program, previously
discussed in Section 4.1, in the same computer already presented.

The three services are explored in sequence according to their order of execution,
i.e., the Data Acquisition, the DGServer, and then the Batcher. Figure 30 first illustrates
the computer-wise performance of the Heidenhain DAQ during a complete run of the
gemineers product for a manufacturing process. On the left, the chart relating CPU
usage is shown, while on the right, memory is exposed, both as a percentage of the
corresponding total amount available in the computer.

Chapter 4. Tests and Result Analysis 60

Figure 30 – Heidenhain DAQ performance for CPU and memory.

Source: Author.

From Figure 30, it can be concluded that the developed Data Acquisition uses
a lot of CPU and little memory, taking into account the entire computer, since the
respective averages are around 18% and 0.147%. This behavior can be explained, for
the CPU, due to the high number of threads and operations that need to be performed
in a short period of time, and, for the memory, due to the volatility of the data, as the
acquired values are overwritten repeatedly at each iteration on the same variables
created within the application.

This mentioned principle of CPU and computer memory usage can be applied
also for the DGServer and the Batcher, as seen in Figure 31 and Figure 32, correspond-
ingly. The layout of the graphs in these two following figures is the same as the one
shown in Figure 30 for the Heidenhain DAQ.

Figure 31 – DGServer performance for CPU and memory.

Source: Author.

Chapter 4. Tests and Result Analysis 61

Considering that the DGServer performs fewer operations, generally with mu-
tations and subscriptions, in the same period of time when compared to the Data
Acquisition software, it is visible in Figure 31 that the server’s CPU usage is also
lower, averaging about 10%. When it comes to memory, on the other hand, DGSserver
reaches a higher value than the DAQ, coming close to 1% of the overall available. Al-
though the data is still volatile and is overwritten every iteration, this happens because
the service in question makes use of more complex and nested data structures and not
of native types such as strings and doubles as seen in the Heidenhain application.

The Batcher, in turn, since most of the time it is just appending each acquired
data point to a buffer, presents the lowest CPU usage, of about 3.5% - see Figure 32.
Because of the size of this buffer, its memory utilization ends up exceeding the other
services studied, reaching up to 1.2%.

Figure 32 – Batcher performance for CPU and memory.

Source: Author.

In view of all the results presented in the current section, it is conclusive that
the Data Ground applications can be improved regarding computational performance,
at least when it comes to CPU usage, since three services occupy approximately
31.5% of the available processing time in the computer. With this in mind, possible
optimizations need to be proposed and developed, as explained in the next chapter,
in order to decrease their CPU utilization and make the software accessible to less
powerful computers.

62

5 SERVICE OPTIMIZATIONS

Software optimizations are constantly needed to provide overall improvements
in a technology company’s product. For the gemineers’ services, these enhancements
are also necessary, especially for the Data Ground applications, which strongly rely
on computer performance due to the amount of processes performed. Taking this into
consideration, two optimizations are proposed and developed in this chapter. First, Sec-
tion 5.1 presents a change in the general structure of how information is handled within
the Data Ground area, moving to working with batches of data instead of single points
in an attempt to improve CPU usage, as discussed in Chapter 4. Then, Section 5.2
addresses the optimal point for closing a batch operation in the Batcher, balancing time
taken by the computer and the compression rate of the data in the zip folders.

5.1 DATA GROUND IN BATCHES

Knowing the excessive use of computational resources by the Data Ground
applications, previously introduced, which work through singular data points, a grouped
data acquisition is devised in order to solve such a problem. The idea is to maintain
the high frequency acquisition of the Heidenhain DAQ in the same way, but gathering
the obtained mechanical data in batches to be sent together and less often to the other
services of the area in question. Thereby, the amount of operations performed in a short
period of time by the Data Acquisition software (especially by the HF Dispatch thread),
the DGServer and the Batcher can be drastically reduced, and as a consequence, also
the computer processor usage.

Considering the proposed optimization in the data handling for the entire Data
Ground, it is therefore necessary to make small adjustments in the way the related
applications work and route the information. Thus, Subsection 5.1.1 presents the imple-
mentation of the changes applied to the software based on pseudo-code snippets, and
at the end, in Subsection 5.1.2, the new results are exposed and compared with those
shown in the previous chapter.

5.1.1 Implementation to Data Ground Services

To properly start developing the batch data acquisition itself, it is first needed
to define how the high frequency information should be grouped and dispatched from
the DAQ to the other services in the process chain. Hence, two main possibilities
are considered: use an array of specific programming objects created, which already
contain all necessary properties within the instances; or apply and assemble a group of
separate vectors, where each is responsible for sending information regarding a single
attribute of a data type. Both alternatives are better illustrated in Figure 33 through a

Chapter 5. Service Optimizations 63

coordinates example. On the left, the list filled with the corresponding programming
objects is identified, while on the right, the individual elements are put together and
presented in different arrays that store their results.

Figure 33 – Different ways to handle batch data in the Data Ground services.

{
timestamp: [<double>],
x: [<double>],
y: [<double>],
z: [<double>],
b: [<double>],
c: [<double>]

}

{
coordinates: [<programming

objects>]
}

Programming objects array Individual attribute arrays

Source: Author.

Although both options in Figure 33 have their respective pros and cons in the
development of the batch dispatching, the selected alternative for the implementation
in the Data Ground is the one that bundles the constructed programming objects into
a single array (left side). This selection is due to the fact that the association of the
attributes in a unique structure is required anyway in the current process workflow,
and is more efficient and faster executed on the DAQ side than in the DGServer or
the Batcher (right option in Figure 33). In addition, even though the second possibility
mentioned presents prospects for performance improvements in the Batching Service,
concerning appending information to a buffer, the overall organization of this application
would need major changes to assimilate this data format. Consequently, the latter option
is discarded, as the end result would be unfeasible to achieve during the development
time of the current project.

In order to develop the former idea, of collecting programming objects in an
array, within the Heidenhain DAQ software, these changes have to be applied to one
of the high frequency threads, since they are the goals of the proposed optimization.
Considering that the HF Acquisition must be solely responsible for getting the data
from the controller, aiming to maintain the previously attained frequency of 330 Hz,
the HF Dispatch needs to be the host of the respective alterations. In the "Dispatch
Acquired Data" state of the dispatcher thread, the initial steps are still followed, reading
the data points of each acquisition iteration from the common buffer, whose size has
been increased for this application, to properly create the objects for the corresponding

Chapter 5. Service Optimizations 64

types. Thereafter, the minor changes with respect to dispatching information occur and
are visually displayed in Code Snippet 10.

Code Snippet 10 – Example of a general batch data function.

1 void HandleBatchData ()
2 {
3 Create programming object;
4 Append it to an array;
5

6 if (array reaches max size)
7 DispatchBatchData ();
8 }

In the case just shown, instead of the objects being sent directly to the server one
at a time by the existing dispatch functions, as formerly seen, they are now temporarily
accumulated in an array that is related to their data type. Once the size of the vector
reaches a stipulated maximum value, all the information acquired so far is dispatched to
the DGServer together in a batch form. This sending procedure is performed using new
dispatch methods created especially for this purpose. Moreover, to avoid increasing
the memory usage of the computer, as soon as the information is sent, the vector is
emptied, freeing space for the next batch.

The Code Snippet 10 is also executed multiple times in a loop. Despite this
behavior, the new implementation is expected to show overall improvements in CPU
usage, since in most iterations, only appending operations to an array are required.
Furthermore, functions that really demand processor utilization, such as the dispatch
ones, although they now need more CPU to handle several data at once, are called
considerably less often than the previous model, triggering the other services in the
chain fewer times and hence accounting for the achievement of the proposed goal.

The DispatchBatchData, for example, from Code Snippet 10 represents one
routine from this new group of functions that are designed to transform the programming
object data array into understandable messages for the DGServer. These messages
consist, again, of strings that simulate mutations within the query language, necessary
to properly forward information acquired by the Heidenhain DAQ over the network. The
development of the discussed function is presented in Code Snippet 11 in order to
better explain the respective operations performed.

Code Snippet 11 – Example of a general dispatch data function.

1 void DispatchBatchData () {
2 ConstructMutationMessage ();
3 SendMessage ();
4 }

The message construction of the two mentioned implementations is remarkably
similar. The main difference concerns its manipulation, which in the occasion just shown

Chapter 5. Service Optimizations 65

happens inside the ConstructMutationMessage pseudo function. The dispatch of the
message built with the data is actually executed at the end (in the SendMessage pseudo
routine), where the communication with the server through the selected protocol is
performed with the help of the used library for this purpose.

For these batch data to properly arrive at the DGServer application, the corre-
sponding schema, mutations and subscriptions need to be adjusted in order to handle
the acquisition and sending of information in an array form. As soon as the specific
alterations are performed, the Batcher does not need major modifications for being able
to acquire the transient information from within the server. The only change required is
in calling the subscriptions inside the Batching Service with the appropriate new names
for each data type of interest.

Once all main Data Ground applications have been properly updated to work with
groups of data, tests must be performed to visualize their functionality and performance
against the findings formerly analyzed in Chapter 4. Such a topic is introduced in more
detail in the next subsection.

5.1.2 Optimization Tests and Results

To accurately and fairly compare the results of the batch data with the acquisi-
tion of a single data point at a time, the testing phase for the developed optimization is
carried out identically to that presented in the previous chapter. Therefore, the Program-
ming Station and the improved Data Ground services are first started in the computer
to perform their respective tasks in an acquisition process. For the controller emulator
software, the configurations applied are equivalent to those earlier selected for both
the kinematics of the virtual machine tool (Figure 25) and the machining program to be
simulated, "house.H" (Figure 24), which transforms a rectangular block into a birdhouse.

The implemented improvements do not change the overall flow and working
principle of the entire software. For this reason, while the manufacturing simulation
is running, the acquisition operations continue to execute in the background, even
though they are now retrieving the desired data in batches. Nevertheless, the grouped
information, after going through the Batcher, is also converted into individual files for
each data type, just like shown in Figure 26, thus allowing the Data Processing services
to correctly handle the information until its output is displayed in the Front-End.

In view of this and taking into account a complete execution of the gemineers’
applications with the developed changes, the right side of Figure 34 shows the final
result in the Front-End for a dispatch of two hundred data in a batch. Next to it, on the
left side of Figure 34, the result of a single data point sending is presented for further
comparison. Both images feature the geometry of the birdhouse in a 3D environment
together with the Feed Rate signal in the form of a colored point cloud and its legend.

Chapter 5. Service Optimizations 66

Figure 34 – Result comparison of single and batch data dispatching in the Front-End.

Single data point Batch data

Source: Author.

From Figure 34, it can be inferred that the functionality of the Data Ground,
and consequently the software as a whole, for batch data was a success, since the
final results are very similar to what was expected and what was achieved without any
optimization. Besides presenting no perceptible loss of information, it is also remarkable
that all the features displayed by the model on the left are found in the right one, from the
complete development of the 3D digital twin to the respective mapping of the Feed Rate
values colored by the mesh of points in space, properly demonstrating the movements
taken by the cutting tool.

It is worth reiterating that this discussed result was reached by dispatching two
hundred simultaneous data points, although any amount set by the developer would
emerge in minimal visual alterations from what was shown. This is mainly due to the fact
that the data acquisition itself still remains at the same attained frequency of 330 Hz,
since the HF Acquisition thread has not been changed for the current optimization. The
only modifications employed refer to the dispatch processes, which basically control
when the obtained information is actually sent to the server.

Despite the significant achievements regarding the functioning of the applica-
tions, the main changes implemented aimed at improvements with respect to the
computer-wise performance of the Data Ground’s services. For this reason, the test-
ing procedures conducted in Section 4.3 are applied to this optimization case as well,
in order to verify the new results and compare them with those acquired before the
development of the grouped data.

Therefore, as in the previously performed tests, an existing python script is re-
sponsible for recording information regarding the computer’s CPU and memory usage,
for each application of interest, but now during the batch data acquisition processes of

Chapter 5. Service Optimizations 67

the house program simulation. These computational data obtained from this strategy
are again displayed in graphs in the following figures of the current subsection to pro-
vide a better visualization of the resources utilization. Moreover, the computer used to
carry out these activities remains the same as in the previous model in an effort to keep
comparisons concise and honest.

In light of this, the three optimized Data Ground services are discussed next in
their corresponding order of execution, going from the Data Acquisition to the DGServer,
and finally to the Batcher, all considering batches of two hundred data points as in
the preceding example. First, Figure 35 presents the performance of the enhanced
Heidenhain DAQ during the execution of the gemineers’ software, where the graph on
the left shows CPU usage and the one on the right illustrates the memory. Both values
are represented in percentage of the respective total amount available in the computer.

Figure 35 – Heidenhain DAQ performance for CPU and memory with two hundred batch
data.

Source: Author.

Given the results in Figure 35, two conclusions can be drawn when compared
with those previously obtained in Figure 30: the considerable decrease in processor
usage (from an approximate average of 18% to 5.5%); and the increase in memory
utilization (growing from 0.147% to around an averaged value of 0.224%). This inverse
correlation is noticeable in a logical way from the implementation of the data sending in
a batch format.

As for the reduction in CPU usage, this is due to the fact that fewer processes
are now carried out by the Heidenhain DAQ within a short period of time. This happens
since the computationally expensive high frequency dispatch routines are executed
just a few times during the program flow, while mostly only appending operations to
an array are performed, as seen in Code Snippet 10. For this case of batches of two
hundred data points, for example, just one dispatch method is realized in the period

Chapter 5. Service Optimizations 68

that two hundred append tasks are done. The increase in memory, in turn, occurs due
to the same procedures mentioned, in which batch information is temporarily stored in
different arrays for each data type, thus expanding the amount required to handle all
these data together inside the application.

The behavior observed on these computer properties for the Heidenhain DAQ
is also expected to appear for the other services in the Data Ground area, since they
work as a chain, where the next applications are only triggered to run when new data
is sent by the Data Acquisition. To further analyze this reaction, the computer-wise
performance for the DGServer and the Batcher are shown in Figure 36 and Figure 37,
respectively. The layout of the graphs in both figures is the same as those already
presented, with the CPU information on the left side and the memory on the right one.

Figure 36 – DGServer performance for CPU and memory with two hundred batch data.

Source: Author.

Bearing in mind the results for the DGServer for batches of two hundred data,
seen in Figure 36, it can be inferred that CPU usage has improved substantially com-
pared to the previous version, indicated in Figure 31, as the average went from 10% to
2.5%. When it comes to memory, the pattern is as expected, with a slight increase from
0.95% to close to 1%. The explanations for such an event again rely on the information
being dispatched to the server less frequently, triggering the respective mutation and
subscription functions of the DGServer fewer times. However, since the transient data
is now handled in vectors as well, the memory utilization tends to rise in order to meet
the demands of this service.

Regarding the optimized Batcher instance, whose performance for batches of
two hundred data is visually presented in Figure 37, the CPU also decreased in usage
when compared to the one analyzed in Figure 32, going from around 3.5% to an average
of about 1%. Memory, meanwhile, showed a similar behavior to the normal acquisition
processes, although a mild increase is noticeable in its overall utilization.

Chapter 5. Service Optimizations 69

Figure 37 – Batcher performance for CPU and memory with two hundred batch data.

Source: Author.

Although the attained results in the last figures take into account two hundred
data points at a time, the maximum batch size can be set to any desired number, in
order to produce different values for CPU and memory used. In Appendix A, graphs
demonstrating the results obtained for batches of twenty and five hundred points are
shown for a richer analysis of how the developed optimization works.

Analyzing both examples, it is conclusive that the smaller the batch sizes, the
more CPU and less memory is used, while for larger batches, the opposite is true. This
again follows the logical relationship described between the amount of data temporarily
stored in the applications and the quantity of operations performed by them. From this,
it can be deduced that the closer the arrays are to a single data, the more similar
the performance values will be to those of the previous model exposed in Chapter 4.
Furthermore, it is also worth noting that for very large batch proportions, as is the case of
five hundred, the computer-wise performance tends to be noisier. This is due to the fact
that these dispatching routines and the functions triggered by them end up demanding
much more memory and processor usage for such a lot of points, expressing an even
greater difference to simple append operations.

Finally, it can be concluded that the proposed optimization was successful. First,
it was clear that the developed solution did not provide any noticeable loss of features
or data, as discussed with Figure 34, thus maintaining the previous functionality and
once more achieving the requirements of the project as a whole. Regarding computer
performance, despite the fact that the total amount of memory utilization has increased
slightly with the batch data, it is insignificant when compared to the reduction in proces-
sor usage attained by the three main Data Ground services together, which was the
main goal of the implementation. Adding up the computer processing time of the new
Heidenhain DAQ, DGServer and Batcher results in a final value of approximately 9%,

Chapter 5. Service Optimizations 70

showing the considerable difference from the 31.5% previously obtained, and conse-
quently the success achieved by the batch data optimization.

Even though the batch data presents significant improvements in the overall ac-
quisition process, its main optimizations do not affect the batch closing on the Batching
Service side. In order to implement changes also to the end operations of the entire
Data Ground area, the following section discusses the possibility of enhancing such
procedures considering a balance between their elapsed time and the compression
ratio of the final zip folders.

5.2 BALANCED CLOSING OF BATCHER FILES

Upon the signal coming from the metadata, already discussed in Chapter 2,
the Batcher must perform the respective operations to properly close a batch. These
processes basically consist of converting the data stored in the computer’s buffer into
several files, and then assembling them into a zip folder. Considering this, it is desirable,
for the Batching Service, these procedures to be performed as quickly as possible and
with the maximum compression rate available.

Nevertheless, the two mentioned desires work in opposite ways, i.e. the higher
the wanted compression, the more running time and computational costs are necessary
by the application. Therefore, a balance point between the two objectives is required,
where both can reach satisfactory values for the closing of a batch.

To address such a problem and adequately operate the zip folders, a zip library
is applied in the service in question. Among its various functionalities, there is the
possibility of manipulating and customizing the compression of the zips, enabling the
selection between ten levels, where, in theory, the higher the level, the smaller the folder
size is at the end, and hence the longer the time needed to run.

Taking this into account and the objective of balancing both variables, tests
were carried out with the data acquired from the previously simulated house program.
Table 2 presents the numerical results for the ten performed closing procedures, one for
each available compression level. The second column of the table identifies the time in
seconds taken to convert the files and their compression, while the third column gives
the final folder size in KB.

Chapter 5. Service Optimizations 71

Table 2 – Compression level and its respective closing time and final batch size.

Compression level Closing time (s) Zip size (KB)

0 1.906 68710
1 2.913 10719
2 2.991 10452
3 3.243 10369
4 3.472 8733
5 3.879 8298
6 4.418 8290
7 4.957 8283
8 7.275 8290
9 9.193 8293

Source: Author.

The current state of the gemineers service is at compression level 0 in Table 2,
where the closing time is the fastest possible and there is no compression in the folder.
In view of the other results and by making a simple qualitative selection of the data,
the compression rate should be changed to level 1. This is due to the fact that the final
size jump from level 0 to level 1 is much larger than for the other classifications, which
remain at similar values even as the processing time increases. In addition, it is still
desired to execute the code as fast as possible, but now effectively compressing the
file, thus converging again to the optimal level 1.

By implementing this change in the Batcher, the closing processes take longer
to happen, but now the zip folders are considerably smaller in size for an easier storage,
actually balancing both requirements. This update does not affect the batch data from
Section 5.1, and so the results previously shown remain the same. Once both opti-
mizations have been correctly implemented to the respective Data Ground applications,
the ideas proposed earlier can be considered developed and completed. Suggestions
for further and substantial improvements are discussed in Chapter 6, where an overall
project summary is also presented.

72

6 CONCLUSION AND FUTURE WORK

Facing the urge for a more efficient and high-quality production, manufacturing
industries are currently pursuing technologies to digitize produced workpieces and
their respective production processes. This approach, besides bringing more reliable
results due to accuracy, serves to save time, money and rework for defective parts,
representing considerable improvements over the conventional methods widely used
today. To properly achieve such a goal, data acquisition software are required in order
to obtain the necessary information to create the virtual piece. Considering this novel
solution and the objectives of developing a digital twin of the workpiece, the project
presented in this document, along with gemineers GmbH, aims to implement a data
acquisition application for machine tools operated by Heidenhain controllers.

Based on studies conducted for the requirements definition and software mod-
eling, the Heidenhain DAQ was implemented in a multi-threaded solution, where four
different threads were developed to work together to interact to a machine tool and to a
web server. By connecting to both, the application prepares a data stream to acquire
information from the controller and directly dispatch to the server over the network, in
low and high frequency, as expected by the objectives proposed in Chapter 1.

The DAQ testing procedure started with the configuration of an emulated Hei-
denhain controller to adequately simulate a machining process. Therefore, the activities
of the developed software were triggered and the obtained data were sent to the other
gemineers’ services. From them, the information was processed and the acquisition
results were properly presented in the existing Front-End in the form of digital twins.

Comparing the displayed virtual piece built on top of the machine data with the
expected result from the simulated control, it can be concluded that the Heidenhain
DAQ operations were all successful. The final 3D geometry mapped the correct cuts
and holes previously defined by the selected machining process, creating an exact
copy of the workpiece in a digital environment. The high frequency data, such as the
Feed Rate, were successfully obtained, as it was illustrated point by point in a color
palette around the resulting part, demonstrating the cutting path taken by the tool tip.
Furthermore, the low frequency information was also acquired correctly, as the results
showed the different types of machine data synchronized to each other in the space,
as formerly envisioned by the requirements.

Bearing in mind such results, it is possible to infer that the main objectives and
specifications discussed in the first chapters of this document have all been attained.
Considering the digital twins displayed in the Front-End, the user is finally able to
virtually monitor and inspect workpieces and their respective production processes
executed on Heidenhain controllers, also giving an opening for future quality prediction.
The Data Acquisition software together with the other microservices of the company

Chapter 6. Conclusion and Future Work 73

provide gemineers with a path towards complete part digitization, which can in the
next steps replace conventional technologies, saving resources and reaching better
efficiency for production lines.

At the end, performance tests were applied to analyze the behavior of the ser-
vices related to data acquisition. Taking into account the unsatisfactory results reached,
optimizations were proposed and directly implemented in order to attain a more reli-
able software. Changing the structure on how information was handled within the Data
Ground applications from single to batch data provided a better computer-wise perfor-
mance when compared to the previous solution. Despite the significant and successful
outcomes, there is still room for improvements on the Heidenhain DAQ, as further
introduced in the next section.

6.1 FUTURE WORK

For a simplified and complete use of the software in production, some activities
remain to be performed and features implemented. First, deeper studies of the used
libraries are needed in an attempt to obtain information from the controller for different
types, such as those only present in Siemens DAQ.

Moreover, as the developed Data Acquisition was implemented and tested for
only one type of controller, the iTNC 530, further tests and possible modifications
are necessary in order to generalize the application to different controls, such as the
TNC 640, for instance. The differentiation of controllers is a common problem with
Heidenhain machines, due to the fact that for distinct models, the data output is not
identical, nor is the way the connections work and are handled within the machine tool.

Lastly, an automated selection of channels from the Scope Information area
may present possible improvements for the development of the Heidenhain DAQ. A
feasible implementation could be realized in a way that the scope properties (as shown
in Chapter 3) would be set in the existing "config" file, without the need for the font code
to be changed. The internal operations, after reading the passed values, would perform
the appropriate communication with the machine tool for the desired variable, allowing
a simple data querying that can be provided by any user.

In light of all that has been presented in this document for the development of the
project, the author’s personal observations about the impact of the work on the student
and the correlation with the Control and Automation Engineering course are discussed
in the following section.

6.2 PERSONAL OBSERVATIONS

At the end of the project in question and in view of the time spent as an intern at
gemineers GmbH, the student can realize the high impact on professional life that this

Chapter 6. Conclusion and Future Work 74

opportunity has provided. The acquired knowledge was not only in the technical area
but also in the inter-personal relations.

In terms of the practical experiences, it can be inferred that new technologies
were learned by the author during the internship. For the mechanical part, it was pos-
sible to closely analyze and understand how the manufacturing processes are carried
out on the shop floor. With the application of high quality CNCs and milling techniques
only previously discussed in a theoretical way, the intern was also able to realize how
scientific research really works, especially in the field of machining. On the subject
of programming, additional languages and overall technologies could be discovered,
opening the range of the student’s specific knowledge in the area of computer science.
Regarding programming languages already known, the skills in relation to them have
been enhanced by implementing more complex software solutions different from those
the author had worked on before.

When it comes to social skills, the intern was able to understand the processes of
a fully functioning company composed of diverse workers. During the time at gemineers,
teamwork was experienced day after day, using the agile SCRUM framework for an
organized and piecemeal development of the software as a whole. Furthermore, it is
worth mentioning the importance of working in an international team, where the official
language is English, providing the necessary experience for a fluid communication with
people and companies around the world.

Moreover, as the Control and Automation Engineering is directly correlated to
projects involving technology advancements, just like the gemineers product, it can be
seen throughout the work the practical application of various subjects learned during
the college years. The software development in its essence is strongly related to the
computer science part and programming disciplines of the course that led the student to
get the work done. Subjects such as Software Development Methodology were useful
as well for a complete understanding of the processes and requirements that were
applied in UML diagrams for further implementation. For the network communication
between services, disciplines such as Computer Networks were helpful to establish con-
nections, keeping the separate steps developed working as one. In terms of machining
process to which the data acquisition is related, lessons from Manufacturing Automation
Introduction were important to understand the mechanical side of the project.

Despite all the help related to these courses, one suggestion for Control and
Automation Engineering is to apply more programming subjects or more in-depth disci-
plines in its plan, where different languages are covered and the computational theory
is explained, since the job market for developers is considerably increasing recently.

75

REFERENCES

1 ROLLS-ROYCE. Rolls-Royce ships 10,000th blisk from Oberursel. Last
access: 02/07/2022. 2019. Available from:
https://www.rolls-royce.com/media/press-releases/2019/11-04-2019-

ships-10000-blisk-from-oberursel.aspx.

2 HEXAGON. Non-Contact Measurement of Blisk Aerofoils and Gas Path
Features: HTA Solution for Measurement of Aeroengine Components. Last
access: 02/07/2022. 2022. Available from:
https://www.hexagonmi.com/solutions/applications/blisks/non-contact-

measurement-of-blisk-aerofoils-and-gas-path-features.

3 BARON MACHINE COMPANY. The Evolution of CNC Machining. Last access:
29/07/2022. Available from:
https://baronmachine.com/news/the-evolution-of-cnc-machining/.

4 CALLEJA, A.; GONZÁLEZ, H.; POLVOROSA, R.; GÓMEZ, G.; AYESTA, I.;
BARTON, M.; LACALLE, L. LópezN. de. Blisk blades manufacturing technologies
analysis. Procedia Manufacturing, v. 41, p. 714–722, 2019. ISSN 23519789.
DOI: 10.1016/j.promfg.2019.09.062.

5 ERICSSON. A case study on real-time control in manufacturing. Stockholm:
Ericsson, 2018.

6 FRAUNHOFER IPT. Project "Quantify": Data-driven prediction of component
quality to increase profitability and digital resilience of metal-cutting
manufacturing systems. Last access: 02/07/2022. Available from:
https://www.ipt.fraunhofer.de/en/projects/quantify.html.

7 FRAUNHOFER IPT. High Performance Cutting: Modern Machining in the
Digital Age. Last access: 02/07/2022. Available from:
https://www.ipt.fraunhofer.de/en/Competencies/processtechnology/

Highperformancecutting.html.

8 FRAUNHOFER IPT. The Digital Twin in Turbomachinery Manufacturing. Last
access: 02/07/2022. Available from:
https://digitaltwininturbomachinerymanufacturing.dashboards.vfk.ipt.

fraunhofer.de/.

https://www.rolls-royce.com/media/press-releases/2019/11-04-2019-ships-10000-blisk-from-oberursel.aspx
https://www.rolls-royce.com/media/press-releases/2019/11-04-2019-ships-10000-blisk-from-oberursel.aspx
https://www.hexagonmi.com/solutions/applications/blisks/non-contact-measurement-of-blisk-aerofoils-and-gas-path-features
https://www.hexagonmi.com/solutions/applications/blisks/non-contact-measurement-of-blisk-aerofoils-and-gas-path-features
https://baronmachine.com/news/the-evolution-of-cnc-machining/
https://doi.org/10.1016/j.promfg.2019.09.062
https://www.ipt.fraunhofer.de/en/projects/quantify.html
https://www.ipt.fraunhofer.de/en/Competencies/processtechnology/Highperformancecutting.html
https://www.ipt.fraunhofer.de/en/Competencies/processtechnology/Highperformancecutting.html
https://digitaltwininturbomachinerymanufacturing.dashboards.vfk.ipt.fraunhofer.de/
https://digitaltwininturbomachinerymanufacturing.dashboards.vfk.ipt.fraunhofer.de/

References 76

9 GEMINEERS. The smartest quality assurance since the beginning of
machining- already in manufacturing. Last access: 02/07/2022. Available from:
https://en.gemineers.com/.

10 ANITA ADROIT. Global Computer Numerical Control (CNC) System Market
2022-2028 by Major Players: Fanuc, Siemens, Mitsubishi Electric, Bosch
Rexroth, Heidenhain, etc. . .. Last access: 28/07/2022. 2022. Available from:
https://thepost.nz/2022/07/26/global-computer-numerical-control-cnc-

system-market-2022-2028-by-major-players-fanuc-siemens-mitsubishi-

electric-bosch-rexroth-heidenhain-etc/.

11 IBM. How does a digital twin work? Last access: 02/09/2022. Available from:
https://www.ibm.com/topics/what-is-a-digital-twin.

12 TWI. What is Digital Twin Technology and How Does it Work? Last access:
02/09/2022. Available from: https://www.twi-global.com/technical-
knowledge/faqs/what-is-digital-twin.

13 SIEMENS. Service Lifecycle Management. Last access: 04/09/2022. Available
from: https://www.plm.automation.siemens.com/global/en/products/
collaboration/service-management.html.

14 IBM. Siemens and IBM Deliver Service Lifecycle Management Solution. Last
access: 04/09/2022. 2020. Available from: https://newsroom.ibm.com/2020-06-
17-Siemens-and-IBM-Deliver-Service-Lifecycle-Management-Solution.

15 AASHISH MEHRA. Digital Twin Market by Enterprise, Application (Predictive
Maintenance, Business optimization), Industry (Aerospace, Automotive &
Transportation, Healthcare, Infrastructure, Energy & Utilities) and
Geography - Global Forecast to 2027. Last access: 04/09/2022. 2022. Available
from: https://www.marketsandmarkets.com/PressReleases/digital-twin.asp.

16 GOOGLE CLOUD. What is microservices architecture? Last access:
04/09/2022. Available from:
https://cloud.google.com/learn/what-is-microservices-architecture.

17 CHRIS RICHARDSON. What are microservices? Last access: 04/09/2022.
Available from: https://microservices.io/.

https://en.gemineers.com/
https://thepost.nz/2022/07/26/global-computer-numerical-control-cnc-system-market-2022-2028-by-major-players-fanuc-siemens-mitsubishi-electric-bosch-rexroth-heidenhain-etc/
https://thepost.nz/2022/07/26/global-computer-numerical-control-cnc-system-market-2022-2028-by-major-players-fanuc-siemens-mitsubishi-electric-bosch-rexroth-heidenhain-etc/
https://thepost.nz/2022/07/26/global-computer-numerical-control-cnc-system-market-2022-2028-by-major-players-fanuc-siemens-mitsubishi-electric-bosch-rexroth-heidenhain-etc/
https://www.ibm.com/topics/what-is-a-digital-twin
https://www.twi-global.com/technical-knowledge/faqs/what-is-digital-twin
https://www.twi-global.com/technical-knowledge/faqs/what-is-digital-twin
https://www.plm.automation.siemens.com/global/en/products/collaboration/service-management.html
https://www.plm.automation.siemens.com/global/en/products/collaboration/service-management.html
https://newsroom.ibm.com/2020-06-17-Siemens-and-IBM-Deliver-Service-Lifecycle-Management-Solution
https://newsroom.ibm.com/2020-06-17-Siemens-and-IBM-Deliver-Service-Lifecycle-Management-Solution
https://www.marketsandmarkets.com/PressReleases/digital-twin.asp
https://cloud.google.com/learn/what-is-microservices-architecture
https://microservices.io/

References 77

18 FRANK E. GRUBBS. Procedures for Detecting Outlying Observations in Samples.
v. 11, n. 1, p. 1–21, 1969. DOI: 10.1080/00401706.1969.10490657. Available from:
https://www.tandfonline.com/doi/abs/10.1080/00401706.1969.10490657.

19 PENG ZHANG. CHAPTER 7 - Industrial intelligent controllers. Ed. by Peng
Zhang. Oxford: William Andrew Publishing, 2010. P. 257–305. ISBN
978-1-4377-7807-6. DOI: 10.1016/B978-1-4377-7807-6.10007-5. Available
from: https:
//www.sciencedirect.com/science/article/pii/B9781437778076100075.

20 DASSAULT SYSTÈMES. CNC machining: Discover what is the
manufacturing process CNC Machining and its usages in the industry. Last
access: 11/09/2022. Available from:
https://www.3ds.com/make/guide/process/cnc-machining.

21 JIGA. Ultimate Guide to CNC Machining. Last access: 11/09/2022. 2021.
Available from: https://jiga.io/resource-center/cnc-machining/what-is-
cnc-machining-guide/.

22 ANDREAS VELLING. What Is CNC Machining? Working Principles,
Capabilities & More. Last access: 11/09/2022. 2020. Available from:
https://fractory.com/what-is-cnc-machining/.

23 PENG ZHANG. 4 - Digital Controllers for Industrial Control. Ed. by Peng
Zhang. Norwich, NY: William Andrew Publishing, 2008. P. 429–568. ISBN
978-0-8155-1571-5. DOI: 10.1016/B978-081551571-5.50005-0. Available from:
https:

//www.sciencedirect.com/science/article/pii/B9780815515715500050.

24 SPRINGER. CNC Architecture Design. In: THEORY and Design of CNC Systems.
London: Springer London, 2008. P. 315–352. ISBN 978-1-84800-336-1. DOI:
10.1007/978-1-84800-336-1_9.

25 PENG ZHANG. CHAPTER 2 - Industrial control engineering. Ed. by Peng
Zhang. Oxford: William Andrew Publishing, 2010. P. 41–70. ISBN
978-1-4377-7807-6. DOI: 10.1016/B978-1-4377-7807-6.10002-6. Available
from: https:
//www.sciencedirect.com/science/article/pii/B9781437778076100026.

https://doi.org/10.1080/00401706.1969.10490657
https://www.tandfonline.com/doi/abs/10.1080/00401706.1969.10490657
https://doi.org/10.1016/B978-1-4377-7807-6.10007-5
https://www.sciencedirect.com/science/article/pii/B9781437778076100075
https://www.sciencedirect.com/science/article/pii/B9781437778076100075
https://www.3ds.com/make/guide/process/cnc-machining
https://jiga.io/resource-center/cnc-machining/what-is-cnc-machining-guide/
https://jiga.io/resource-center/cnc-machining/what-is-cnc-machining-guide/
https://fractory.com/what-is-cnc-machining/
https://doi.org/10.1016/B978-081551571-5.50005-0
https://www.sciencedirect.com/science/article/pii/B9780815515715500050
https://www.sciencedirect.com/science/article/pii/B9780815515715500050
https://doi.org/10.1007/978-1-84800-336-1_9
https://doi.org/10.1016/B978-1-4377-7807-6.10002-6
https://www.sciencedirect.com/science/article/pii/B9781437778076100026
https://www.sciencedirect.com/science/article/pii/B9781437778076100026

References 78

26 DR. JOHANNES HEIDENHAIN GMBH. Programming stations for lathe and
milling controls. Last access: 13/09/2022. Available from: https:
//www.heidenhain.com/products/cnc-controls/programming-stations.

27 DR. JOHANNES HEIDENHAIN GMBH. TNCremo. Last access: 13/09/2022.
Available from: https://www.klartext-portal.de/pc-software/tncremo/#.

28 RAPID DIRECT. Difference Between Feed Rate and Cutting Speed in CNC
Machining. Last access: 27/06/2022. 2021. Available from:
https://www.rapiddirect.com/blog/difference-between-feed-rate-and-

cutting-speed/.

https://www.heidenhain.com/products/cnc-controls/programming-stations
https://www.heidenhain.com/products/cnc-controls/programming-stations
https://www.klartext-portal.de/pc-software/tncremo/#
https://www.rapiddirect.com/blog/difference-between-feed-rate-and-cutting-speed/
https://www.rapiddirect.com/blog/difference-between-feed-rate-and-cutting-speed/

79

APPENDIX A – ADDITIONAL RESULTS FOR BATCH DATA OPTIMIZATION

A.1 FUNCTIONALITY COMPARISON IN THE FRONT-END

Figure 38 – Top view comparison of single and batch data dispatching in the Front-End
for Feed Rate signal.

Single data point Batch data

Source: Author.

A.2 OPTIMIZED SERVICE PERFORMANCE

Figure 39 – Heidenhain DAQ performance for CPU and memory with twenty batch data.

Source: Author.

APPENDIX A. Additional Results for Batch Data Optimization 80

Figure 40 – DGServer performance for CPU and memory with twenty batch data.

Source: Author.

Figure 41 – Batcher performance for CPU and memory with twenty batch data.

Source: Author.

Figure 42 – Heidenhain DAQ performance for CPU and memory with five hundred batch
data.

Source: Author.

APPENDIX A. Additional Results for Batch Data Optimization 81

Figure 43 – DGServer performance for CPU and memory with five hundred batch data.

Source: Author.

Figure 44 – Batcher performance for CPU and memory with five hundred batch data.

Source: Author.

APPENDIX A. Additional Results for Batch Data Optimization 82

Figure 45 – Performance comparison of Data Ground services according to the batch
size.

1
D

at
a

P
oi

nt
20

0
D

at
a

P
oi

nt
s

50
0

D
at

a
P

oi
nt

s

Source: Author.

APPENDIX A. Additional Results for Batch Data Optimization 83

Figure 46 – Performance comparison of batch size according to the Data Ground ser-
vices.

H
ei

de
nh

ai
n

D
A

Q
D

G
S

er
ve

r
B

at
ch

er

Source: Author.

	Title page
	Approval
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Motivation
	gemineers GmbH
	Objectives
	Document Structure

	State of the Art
	gemineers Product
	Digital Twin
	Microservices Architecture
	Data Ground Area
	Information Management Area
	Data Processing Area
	Interfaces Area

	Heidenhain Controllers Scope
	Working Principle
	Auxiliary Technologies
	Programming Station
	TNCscope
	TNCremo

	Heidenhain Data Acquisition Implementation
	Requirements
	Solution Modeling
	Development
	Main Thread
	Identify Controller
	Identify DGServer
	Start Acquisition Threads
	Monitor Acquisition Threads
	Reset DAQ

	Low Frequency Streamer Thread
	Stream Data

	High Frequency Acquisition Thread
	Select Channels From Controller
	Receive Data From Controller

	High Frequency Dispatch Thread
	Dispatch Acquired Data

	Tests and Result Analysis
	Data Acquisition Functionality
	Comparison to Siemens Data Acquisition
	Data Ground Services Performance

	Service Optimizations
	Data Ground in Batches
	Implementation to Data Ground Services
	Optimization Tests and Results

	Balanced closing of Batcher files

	Conclusion and Future Work
	Future Work
	Personal Observations

	References
	Additional Results for Batch Data Optimization
	Functionality Comparison in the Front-End
	Optimized Service Performance

