
FEDERAL UNIVERSITY OF SANTA CATARINA
TECHNOLOGY CENTER

AUTOMATION AND SYSTEMS DEPARTMENT
UNDERGRADUATE COURSE IN CONTROL AND AUTOMATION ENGINEERING

David Steiner Sand

A Framework for Scalable Web Data Collection

Florianópolis
2022

David Steiner Sand

A Framework for Scalable Web Data Collection

Final report of the subject DAS5511 (Course Final
Project) as a Concluding Dissertation of the Under-
graduate Course in Control and Automation Engi-
neering of the Federal University of Santa Catarina.
Supervisor: Prof. Carlos Montez, Dr.
Co-supervisor: Rafael Jung, Eng.

Florianópolis
2022

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Sand, David Steiner
 A Framework for scalable web data collection / David
Steiner Sand ; orientador, Carlos Montez, coorientador,
Rafael Jung, 2022.
 70 p.

 Trabalho de Conclusão de Curso (graduação) ­
Universidade Federal de Santa Catarina, Centro Tecnológico,
Graduação em Engenharia de Controle e Automação,
Florianópolis, 2022.

 Inclui referências.

 1. Engenharia de Controle e Automação. 2. Scalability.
3. Big data. 4. Software Architecture. I. Montez, Carlos.
II. Jung, Rafael. III. Universidade Federal de Santa
Catarina. Graduação em Engenharia de Controle e Automação.
IV. Título.

David Steiner Sand

A Framework for Scalable Web Data Collection

This dissertation was evaluated in the context of the subject DAS5511 (Course Final
Project) and approved in its final form by the Undergraduate Course in Control and

Automation Engineering

Florianópolis, December 1, 2022.

Prof. Hector Silveira, Dr.
Course Coordinator

Examining Board:

Prof. Carlos Montez, Dr. Advisor
UFSC/CTC/DAS

Rafael Jung, Eng.
Supervisor

Company Jungsoft GmbH

Prof. Jomi Fred Hubner, Dr.
Evaluator

UFSC/CTC/DAS

Prof. Eduardo Camponogara, Dr.
Board President
UFSC/CTC/DAS

To my family, for dedicating their time, love and
knowledge to my personal growth throughout my entire

life.

ACKNOWLEDGEMENTS

To the entire Jungsoft and especially Rafael Jung, Gabriel Prá and Eduardo
Schmidt for this opportunity, cooperativeness and advisory.

ABSTRACT

In order to stand out in today’s highly competitive European market, companies tend to
rely more and more on information regarding the market itself and competitors. Jung-
soft GmbH is a long-term focused technology development company for highly demand-
ing projects, which works with the author of this document and with a European client
focused on turning data into a competitive advantage by combining high-quality big
data, modern analytics and deep automotive expertise. The client sells many prod-
ucts to solve its objective, all of which rely on having abundant, high-quality data. The
project hereby presented aims to provide the basis to these products, by allowing the
fast collection of data on the web. To do so, a distributed, scalable, easy-to-use and with
well-defined interfaces tool was created from scratch. As with every new creation, many
obstacles arose in the way, such as: how to design, implement and deploy a scalable
software architecture; how fast could new websites be included in the data collection
pipeline; and how could inexperienced developers contribute to the project’s growth.
The project was successfully implemented and currently runs in production, being used
by many developers and collecting millions of data points per day.

Keywords: Scalability. Big data. Software Architecture.

RESUMO

A fim de se destacar no mercado europeu altamente competitivo de hoje, empresas
tendem a depender cada vez mais em informações relativas ao próprio mercado e aos
seus concorrentes. A Jungsoft GmbH é uma empresa de desenvolvimento de software
de longo prazo para projetos altamente exigentes, que trabalha com o autor deste
documento e com um cliente europeu focado em transformar dados em vantagem
competitiva, combinando big data de alta qualidade, análises modernas e profunda
experiência automotiva. O cliente vende muitos produtos para resolver seu objetivo,
todos os quais dependem de ter dados abundantes e de alta qualidade. O projeto
aqui apresentado visa fornecer a base para estes produtos, permitindo a rápida coleta
de dados na web. Para isso, foi criada uma ferramenta distribuída, escalável, fácil de
usar e com interfaces bem definidas. Como em toda nova criação, muitos obstáculos
surgiram no caminho, tais como: como projetar uma arquitetura de software escalável;
quão rápido poderiam ser incluídos novos websites na coleta de dados; e como desen-
volvedores inexperientes poderiam contribuir para o crescimento do projeto. O projeto
foi implementado com sucesso e atualmente está em produção, sendo utilizado por
muitos desenvolvedores e coletando milhões de pontos de dados por dia.

Palavras-chave: Escalabilidade. Big Data. Arquitetura de Software.

LIST OF FIGURES

Figure 1 – Scaling . 16
Figure 2 – Planned time line . 22
Figure 3 – Git branches . 25
Figure 4 – Agile Methodology . 26
Figure 5 – Code review . 27
Figure 6 – Infrastructure Overview . 29
Figure 7 – Micro services overview in Production 31
Figure 8 – Docker Container Symbol . 32
Figure 9 – Message Broker . 34
Figure 10 – Maestro . 36
Figure 11 – N8N workflow . 38
Figure 12 – Grafana Chart . 42
Figure 13 – Metabase Chart . 43
Figure 14 – Opony Pipeline . 45
Figure 15 – Communication between CLI, Server, Broker and Workers 49
Figure 16 – Example of Opony server UI for an Endpoint 50
Figure 17 – Validation Report Overview . 52
Figure 18 – Validation Report Attribute View . 53
Figure 19 – Validation Report Alerts . 54
Figure 20 – CI CD Gitlab’s UI . 55
Figure 21 – Micro services overview in Development 58
Figure 22 – Object Store Interface . 59
Figure 23 – Micro services overview in Homologation 61
Figure 24 – Nomad Cluster . 63
Figure 25 – Nomad File . 64

LIST OF TABLES

Table 1 – Technical Requirements . 21
Table 2 – Comparison Between Environments 57
Table 3 – Comparison Between Services in Environments 57

CONTENTS

1 INTRODUCTION . 12
1.1 OBJECTIVES . 12
1.2 STRUCTURE OF THE DOCUMENT 12
2 WEB DATA COLLECTION FUNDAMENTALS 14
2.1 WHAT IS A WEB BOT . 14
2.2 WEB COMMUNICATION . 14
2.3 DATA COLLECTION IN SCALE . 15
2.4 THE VALUE OF WEB BOTS TO THE CLIENT 16
2.5 FINAL COMMENTS . 17
3 PROBLEM DESCRIPTION . 18
3.1 FINAL COMMENTS . 20
4 PLANNING . 21
4.1 REQUIREMENTS . 21
4.2 TIMELINE . 21
4.3 MANAGEMENT . 23
4.3.1 Communication . 23
4.3.2 Tasks and People Management . 23
4.3.3 Code Management . 24
4.3.3.1 Git . 24
4.3.4 Work Methodology . 25
4.3.4.1 Workflow . 26
4.4 OUT-OF-THE-BOX SOLUTIONS . 28
4.5 FINAL COMMENTS . 28
5 SOLUTION . 29
5.1 FULFILLING THE REQUIREMENTS 32
5.1.1 Scalability . 33
5.1.2 Download . 35
5.1.3 Data Persistence . 36
5.1.4 Saving the Progress . 37
5.1.5 Standardization . 37
5.1.6 Cron job . 38
5.1.7 Rate limit . 39
5.1.8 Monitoring . 39
5.1.9 Cache . 43
5.1.10 Requirements Conclusion . 44
5.2 BASIC FUNCTIONALITY . 44
5.2.1 Command Line Interface (CLI) . 48

5.2.2 Data Validation . 52
5.3 DEPLOYMENT . 54
5.3.1 Docker . 55
5.3.2 Environments . 56
5.3.2.1 Comparing the Environments . 56
5.3.2.2 Development . 57
5.3.2.3 Homologation . 60
5.3.2.4 Production . 62
5.4 FINAL COMMENTS . 65
6 CONCLUSION . 66

References . 67

12

1 INTRODUCTION

This document describes the development of a scalable distributed web data
collection tool as part of a project in partnership with Jungsoft GmbH (JUNGSOFT. . . ,
n.d.) for a German client.

The client aims to give its automotive industry customers a competitive advan-
tage through data collection and analysis. They have been working in this market for
years, but the technical part of the company (responsible for collecting, storing, handling,
and presenting data), has developed in a disorganized way.

Jungsoft is a technology development company focused on long-term highly de-
manding projects. It is based in Berlin, has a multi-national team, and currently works
with many clients in a business-to-business model. Jungsoft defines its objective on
its website (JUNGSOFT. . . , n.d.) with the following words: "We help both startups with
non-technical co-founders and established companies by assuming complete technol-
ogy ownership and responsibility. We help with Vision and Roadmapping, Architecture
Design, Innovation Products, Hiring, Processes, Infrastructure, Optimization and all
aspects of innovative digital transformation. Our end goal is to help you validate your
product and then hire our replacement team when the time comes."

In order to accomplish its objective in this project, Jungsoft started a long-term
business contract with the client related to this work to rebuild its technical sector, which
can be unfolded into 3 main areas: frontend, backend and data. This work impacts both
the backend and the data areas, focusing on populating the backend database with
web data. Jungsoft hired the author of this report to help accomplish this objective.

1.1 OBJECTIVES

This work aims to rebuild the client’s data collection area. The objective can be
broken down into the following goals:

• Be able to collect data from hundreds of websites periodically;

• Enable rapid development of bots by programmers with little experience;

• Make the data available in a standardized way to the database;

• Allow easy observability of the collection status, in order to quickly visualize per-
formance and identify problems.

1.2 STRUCTURE OF THE DOCUMENT

This report is divided into 6 chapters, where the current chapter focuses on
giving an introduction to the work done. A short summary of the objective of the next
chapters follows:

Chapter 1. Introduction 13

• Chapter 2 - Web Data Collection Fundamentals: Presents fundamental concepts
of web data collection.

• Chapter 3 - Problem description: Identifies problems in the previous solution used
by the client.

• Chapter 4 - Planning: Lists requirements for the new solution, presents the
methodology used and managerial process, as well as exploring out-of-the-box
solutions.

• Chapter 5 - Solution: Presents a detailed explanation of the solution implemented.

• Chapter 6 - Conclusion: Concludes the work done, recapping what was done,
how it improved the previous solution and how the objectives were accomplished.

14

2 WEB DATA COLLECTION FUNDAMENTALS

This chapter focuses on clarifying important concepts for understanding the
problem faced by the client and the solution for this project.

2.1 WHAT IS A WEB BOT

A web bot is a program that interacts with the World Wide Web. Web bots are
usually built to automate repetitive tasks, doing them in a much more efficient and
cheaper way than humans would.

Both web scrapers and crawlers are web bots that visit web pages in order to
collect information. Crawlers focus on finding pages that could be visited (by looking for
links). This process is called "URL discovery". Scrapers focus on collecting data from
already known links and sending this information to whoever wants it.

Googlebot (GOOGLEBOT. . . , n.d.) is a good example of a web crawler. It is the
mechanism used by Google Search to crawl the internet looking for new websites or
revisiting known ones, in order to keep its content up to date.

Usually, just web scraping/crawling is not enough to create a final product. All
the collected information must be smartly stored and presented in order to create value
from it. Using Google Search’s example, 2 more processes are applied to the data after
it is crawled by Googlebot: indexing and serving results. Indexing focuses on scraping
the page, looking for valuable information in it, and storing it in a concise and smart way
in Google’s website index storage. Serving results aims to match the find in the index
storage as the best match for a given search phrase, this way, Google can provide
structured and objective data about your search.

2.2 WEB COMMUNICATION

A user of the internet might download data in many ways. A common way to
do it, especially when talking about simple websites, is using the Transmission Control
Protocol (TCP) (TCP. . . , n.d.). TCP is a communication protocol that allows programs to
communicate with each other through a network. It is widely used, especially because
of it’s end-to-end data delivery assurance. Other protocols, like User Datagram Protocol
(UDP) (UDP. . . , n.d.), do not guarantee delivery, but speed it up.

Relying on the TCP standard, HTTP (HTTP. . . , n.d.) is another protocol which
focuses on specifying instructions on how data should be read and processes. In the
HTTP protocol, clients can make requests to servers asking for information. These
requests usually contain an URL, which indicates where the data is located, essentially
the destination of the requests. They might also contain a body and headers - additional
information which might affect what data is returned by the server.

Chapter 2. Web Data Collection Fundamentals 15

HTTP requests also require a verb - an argument which indicates what action
should take place once the request reaches the server. For example, GET HTTP re-
quests indicate to the server that the request aims to only collect data from the server
and POST requests tells the server that the client wants to change the state of the
server using the request’s body.

Web browsers (WEB-BROWSER. . . , n.d.) are softwares that perform networking
requests, like HTTP requests, to present data to users in a user interface (UI). Browsers
like Google Chrome and Firefox are popular especially because they facilitate the
interaction between humans and the World Wide Web.

The first step to scrape/crawl websites is to communicate with them and down-
load their data. A bot can download the data in many ways, performing HTTP requests
directly to the website, creating browsers and using its UI to gather data, or through
other protocols not mentioned here, like the File Transfer Protocol (FTP), which allows
direct transmission of files between computers.

Although this project focuses more in scalability of web applications, rather that
on the specificities of network communication, these concepts were essential for build-
ing a generic and powerful Framework, that allows bots to communicate to websites
using a variety of tools

2.3 DATA COLLECTION IN SCALE

Usually creating a synchronous bot that downloads a link, scrapes/crawls its
content and stores it is not such a big challenge. This might get much harder as the
number of links and bots increases: if a big website containing hundreds of thousands
of links must be daily scraped, the challenge and the solutions become much more
complex. Multiple the number of bots by hundreds and add websites with blocking
mechanisms in the middle and the difficulty increases even more. To surpass these
difficulties, the solution built must be very well planned and implemented.

A central idea of this project is scaling distributedly and horizontally (SCAL-
ING. . . , n.d.). A scalable system is a system that can handle the demand, growing
and shrinking as the demand varies. This elasticity allows for savings in resources (e.g.
CPU and memory), but also for spending resources when the time comes. Scaling
vertically means increasing or lowering the power of the machines that already run the
system in question, by adding more CPU to it or replacing it for a more suitable machine.
In the other hand, scaling horizontally means adding or removing machines from the
infrastructure as shown in image 1.

Chapter 2. Web Data Collection Fundamentals 16

Figure 1 – Scaling

Source: Personal Archive

Scaling vertically might bring complications for big systems, as it is a single point
of failure, meaning the system will go down if the server crashes. Also, a machine
cannot scale vertically forever, as they will eventually reach resource limits that can only
be surpassed by adding more machines. Scaling horizontally is usually more suitable
for these situations. When done correctly, it allows for machines to be turned off and still
keep the health of the system intact. It also allows scaling to much greater magnitudes,
as one more machine can always be added to the system, increasing its power.

The disadvantage of systems that scale horizontally is mostly in complexity.
More machines mean more software/hardware maintenance, a communication channel
between them and load balancing so that one machine is not overloaded while the
others are idle.

The decision of how a system should scale must be done in the early stages
of any software project. The mechanism used for horizontal scaling is usually deeply
ingrained in the applications developed, so changing from one approach to the other
may be too costly to be done once the software is already in production.

The project of this document scales horizontally. A deep explanation of how this
happens is given in the next chapters.

2.4 THE VALUE OF WEB BOTS TO THE CLIENT

Web scrapers/crawling bots are a central tool used by the client to achieve its goal
of providing a competitive advantage through data analysis and collection. Gathering
data from many sources allows the centralization of information and the consequent
ease of data handling.

Although on a much smaller scale and specific use case, the final product built
for the client can be analogous to Google’s search engine (see section 2.1). It will collect

Chapter 2. Web Data Collection Fundamentals 17

data, index it and store it in a structured way. Finally, the data can be presented to the
end user in a concise and organized way.

2.5 FINAL COMMENTS

Now that the key concepts of web bots are clear, the problem faced by the
company can be clearly explained in the next chapter.

18

3 PROBLEM DESCRIPTION

The data collection solution implemented by the client in the past had many
issues. The technologies used were outdated/poorly used and the whole data collection
pipeline was built with little planning, from the bot tools used to the insertion of data in
a database. The specific problems identified are listed below.

1. The bots were built in the programming language PHP. Although used a lot in the
past for this purpose, there are more suitable tools nowadays that accomplish
the same objective, but have more community support, are simpler to use and
have better libraries and maintenance. Examples to replace it are Python, Go and
Ruby.

2. The building of bots did not follow any framework. Frameworks for web scrap-
ers/crawlers enforce the developer to build bots following given interfaces and
provide many built-in functionalities which speed up development, avoid mistakes
and improve quality overall.

3. The system scaled vertically. As mentioned in the last chapter, this can become a
big problem once more complex demands reach the system. In this case, some
bots developed in the old system were not able to run as fast as required.

4. The bots had too many responsibilities.

• Each bot implemented its own download logic. No abstraction was created
with built-in retry logic, proxy usage, rate limiting, and cache.

• Each bot parsed the data in its own way, there was no abstraction that was
used by all bots to standardize the data output.

• Each bot inserted data directly into the database. This is highly problematic
for many reasons:

– Each bot needed to know the database schema and follow it strictly. Any
database schema changes would require all bots to be updated.

– The number of interactions with the database increased as more data
was collected from the web. This means that the fastest data is collected,
the more connections are opened with the database, which will overload
it at some point.

– The bots were responsible for handling database errors. This is one more
responsibility that each bot will need to have and will need to know how
to handle. As will be seen further in this document, ideally each bot has
the minimum responsibility possible, so that new ones can be built fast
and reliably.

Chapter 3. Problem Description 19

5. There was no safety in case of failure. if any problem occurred, the bot would fail
and its data collection progress would be lost.

6. The database was poorly designed. For relational databases that contain billions
of records, like in this case, good planning is necessary. Usually optimizations
like Elasticsearch (ELASTIC. . . , n.d.) and Timescale (TIMESCALE. . . , n.d.) are
necessary in order to drastically reduce query durations. No optimization tool was
used, instead the database was broken down into many table to speed up queries.
This decision increased the complexity of the database a lot, making the process
of inserting and extracting data from it very complicated.

7. It was not built for scalability.

• As mentioned, database interactions were a problem as the system grew.

• The development of new bots was unreliable and relatively slow since each
bot did not follow a well-defined interface and had too many responsibilities.
Also, there were no auxiliary tools to help developers debug bots or visualize
the collected data in a quick way.

• bots would always run synchronously. This means that every bot would run its
commands step-by-step, instead of doing more than one thing at a time when
possible. This considerably slowed down the performance of the system.

• The deployment of bots was mostly manual and not inside Docker containers
(see section 5.3.1 for Docker information).

8. There was no easy way to automatically start the bots periodically. Instead, there
were employees focused on accessing many virtual machines and starting bots
manually every day. In case a bot failed, the employee would again access the
virtual machine and restart it.

9. No reliable proxy provider was used, where reliable proxies from a big pool of
proxies are used. Instead, the company had a fixed set of proxies and always
picked a random one from the set when downloading. This is prone to problems
since proxies might go offline or just be blocked on certain websites.

Due to the high number of problems ingrained into the whole technical structure of the
company, the decision to rebuild everything from scratch was made. This was surely
the most time-consuming and challenging part of the project.

The managerial part was also restructured, and the main problems identified are
listed below.

• There was no standard process to request the creation of a bot;

Chapter 3. Problem Description 20

– As for every team project, a tool to centralize all tasks, delegate them, and
set deadlines is essential. Although managing tools were used, no clear
process was defined, formalizing how a task should be executed. Instead,
superficially defined tasks were created, saying for example "collect data from
google.com". This made it really hard for the developer to know what had to
be done, and a lot of communication was required between the developer
and the business-level employees. This brought a lot of inefficiency to the
process, slowing down development.

• Onboarding new developers was really hard;

– Besides the lack of a framework to help new developers start programming
quicker and also a standard process to manage developers, each developer
needed to have a lot of knowledge about the data to be collected. The in-
formation to be scraped from the page was only formalized as relational
database columns with no further description, so the developers needed to
have access to the database to know the names of columns, which were not
descriptive enough by themselves. Also, usually the data collected from a
website needs to be transformed before being inserted into a database, but
there was no manual on how to do it.

3.1 FINAL COMMENTS

In the next chapter, requirements for the new solution will be created from the
problems identified in this chapter. Furthermore, the planning of the project will be
presented.

21

4 PLANNING

This chapter lists the requirements for the project, then presents a timeline and
the methodology used and ends by presenting rejected out-of-the-box solutions for the
problem.

4.1 REQUIREMENTS

Based on the problems identified, the requirements for the project were defined,
which are depicted in the table 1.

1 Create a system capable of
robustly collecting web data on a large scale

Description Once the requirements are met, any website of interest
which allows data collection should have its data in the company’s database.

Code Name Restriction Obligatory Permanent
1.1 Download The framework must be able to down-

load data from any website that allows
it, providing an easy and robust down-
loading method, that handles proxies,
cache, and retries.

x x

1.2 Standardization The framework must allow easy stan-
dardization of downloaded data.

x x

1.3 Scalability The framework must scale horizontally
and in a distributed way, supporting
hundreds of bots and millions of daily
requests.

x x

1.4 Save the
progress

The framework must be able to save
all bots’ progress, so that an error does
not force the bot to restart from the be-
ginning.

x x

1.5 Data persis-
tence

The framework must save scraped data
in persistent storage. The storage must
not be overloaded at any point.

x x

1.6 Rate limit There must be a way to limit the down-
load rate of any given domain in order
to avoid overflooding a platform with re-
quests.

x x

1.7 Cache The raw downloaded data must be
stored somewhere so that in the future
it can easily be reused/reparsed.

x x

1.8 Cron job The bots should be automatically
started periodically by a cron job.

x x

1.9 Monitoring There must be an easy way to moni-
tor web bots and the data collected by
them.

x x

Table 1 – Technical Requirements

4.2 TIMELINE

A timeline was planned for the project and it is presented in image 2.

Chapter 4. Planning 22

Figure 2 – Planned time line

Source: Personal Archive

As can be seen in the image, the first month of the project would focus on ex-
ploration and planning. During this period, the main technologies that would fulfill the
requirements would be defined. As it is hard to specifically define all technologies in
advance for a project of this magnitude, the decisions taken during this period would
only define generic concepts that could be implemented in many different ways. Follow-
ing the requirements, the plan was to determine important architectural decisions and
explore possible implementations of them, mainly in the 3 big areas of data collection:
downloading, scalability and data persistence using the backend.

The improvement phase would provide an MVP of the final solution, using what
was discovered in the exploration phase. It also forecasted hiring the first developers to
start building bots using the tool and establishing all technologies and tools that would
be used in the final solution.

The scaling phase aimed to have a solid version of the tool running in production
by improving it and including more capabilities, like monitoring and other proxy providers.
Also, by the end of this phase, it was expected that a team focused on collecting data
would be already established, as well as having 60 bots running.

Chapter 4. Planning 23

4.3 MANAGEMENT

This section aims to describe how overall management takes place, commenting
about: how people would communicate with each other; how tasks would be created
and documented; how developers would receive tasks; how the work of developers
would be tracked; how the code base would be managed and stored; what was the
work methodology for creating value efficiently.

4.3.1 Communication

Slack is a widely used communication tool that allows private messaging, group
messaging, message storage, calls and integrations with other apps. It is mostly used
for communication with the bots team, the backend team, and the company board of
directors. It is also integrated with other tools for allowing bots to notify the team, like
n8n (N8N. . . , n.d.), which will be explained in the future.

4.3.2 Tasks and People Management

Clickup (CLICKUP. . . , n.d.) is a management tool used to organize projects. It
is a cloud-based solution that allows storing documents, collaborative work, creating
tasks, and assigning them to people. Clickup is used by Jungsoft in many projects, so
it was natural to also use it for this one.

Clickup is used in many ways in the data collection project. For instance, it allows
structured communication between the business part of the company and the technical
part. Weekly meetings with the client’s business sector would take place, where the
objective is to identify what was done, what is in progress, and what needs to be done
in the future by the team. Every decision would then be converted into Clickup tasks,
with a deadline and an assignee. Later on, the technical team would discuss how the
task at hand could be translated into technical terms to be later implemented.

There are mainly 2 boards relevant to this project: the framework board and the
bots board. The framework board holds tasks relevant to building the framework, while
the bots board contains requests for building bots for specific websites. The author of
this document was responsible for maintaining and implementing the framework board.
The bots board was also the responsibility of the author in the first months of the project
but was later delegated to somebody else as the number of tasks grew too quickly. Note
that the requirements listed in the table 1 are all related to the framework board, not to
specific bots. This report will not describe any bots in detail, but only framework-related
tasks.

Beyond organizing tasks, Clickup is also used as a knowledge database, es-
pecially for the bot-building team. Some examples of information stored there are:
techniques for downloading data from complicated websites; a catalog of attributes to

Chapter 4. Planning 24

be collected from websites for a given market (e.g. prices of products, tax rates, brands,
etc); explanations of how attributes should be parsed and transformed.

Clickup solved the communication problem previously observed in the company.
Also, having a manager who focused on listening for busines-level tasks requests and
formalizing them into Clickup tasks separated business employees and developers
almost completely, increasing productivity.

4.3.3 Code Management

Every big coding project requires a good version control tool to allow organization
of work coordination between many developers. The version control tool used is Git
(GIT. . . , n.d.).

4.3.3.1 Git

Git is a free, open-source, and distributed version control tool. It allows any writ-
ten project to be versioned, be it code or just raw text. Projects that use Git are viewed
by it as repositories, that are capable of tracking the project’s changes (versioning) and
easily being uploaded to cloud-based Git hosts. Github (GITHUB. . . , n.d.) and Gitlab
(GITLAB. . . , n.d.) are 2 examples of cloud-based hosts for Git repositories, which allow
the management of repositories remotely. This project was built using Gitlab, since
Jungsoft uses it for every project and pays for an enhanced version of it.

New versions of a given repository can be registered by commiting, which is
done by running the git commit command. This adds a commit to the repository’s
timeline, an atomic alteration of the software that organizes it in an understandable and
manageable way.

Many parallel versions of the same software can also be created at the same
time, though the concept of branches. Branches usually are created to contain new
features of the software or to resolve a specific problem and are usually implemented
by a single developer. They are an important part of the methodology presented in
subsection 4.3.4.

Image 3 illustrates how many branches might work together in the same reposi-
tory. Considering time moves from left to right, the software starts with an initial commit
(the round symbols in the image) in the master branch, the branch which contains
validated code. As time passes, more branches are created, which contain their own
commits.

Chapter 4. Planning 25

Figure 3 – Git branches

Source: (GIT-BRANCHES:. . . , n.d.)

Once the work done in a branch is done, someone can request to merge it with
the work already available in the master branch, a process also described in subsection
4.3.4.

4.3.4 Work Methodology

The methodology used for developing the framework followed a similar idea as
the Agile Methodology, see image 4.

Chapter 4. Planning 26

Figure 4 – Agile Methodology

Source: (AGILE. . . , n.d.)

Weekly meetings with the client’s board of directors and Jungsoft advisors would
take place, where the first and second steps of the Agile Methodology would be com-
pleted: new requirements would be presented based on the performance of the previ-
ous week. The requirements would be transformed into Clickup tasks, as shown in the
workflow at 4.3.4.1.

4.3.4.1 Workflow

The flow of work followed the following pipeline:

1. Create a Clickup task;

2. Rank task by importance level and set a deadline;

3. Augment task with technical descriptions, indicating how it should be implemented;

4. Assign a responsible for the task;

5. Once the task is ready to be implemented, the assignee should create a branch
in the project’s repository, upload it to Gitlab and link it to the respective Clickup
task;

6. Once the developer thinks the implementation is good enough, a code reviewer
should be assigned to the task. A code reviewer should be a developer different

Chapter 4. Planning 27

from the one that implemented the task, preferably with more experience. Gitlab
has a good interface for code reviews, as shown in image 5. It allows users to
create discussions, which need to be resolved before the branch in question is
merged into the main branch. The interface also allows anyone with access to the
Gitlab project to monitor what is being done in each branch.

7. The developer and reviewer iteratively discuss and implement improvements for
the branch’s work, until an acceptable implementation is reached (refers to the
fourth step of image 4). Once this happens, the reviewer can merge the branch,
adding its code to the main code base.

8. Since the master branch is now updated, it can be deployed. For deployment
information, see section 5.3.

9. The deployment would be monitored frequently, where bugs and improvements
could take place for the next sprint.

Figure 5 – Code review

Source: Personal Archive

The workflow for building bots followed the same idea as the framework one,
presented at 4.3.4.1. It only contained one additional step, after the step 6: data review.
The environment Homologation (explained in subsection 5.3.2.3) was used for this step;
it allowed developers to easily access the Data Validation Report, shown in section
5.2.2 and create a diagnosis of the data collected by the bot. Just like in code reviews, a
developer was assigned to the data review. In case the data was not good enough, the

Chapter 4. Planning 28

developer implementing the task would then fix the bot and re-submit it to data review,
in an iterative process until its data was acceptable.

4.4 OUT-OF-THE-BOX SOLUTIONS

At first, bot services that complete the whole data collection pipeline were ex-
plored (out-of-the-box solutions). Services like Zyte (ZYTE. . . , n.d.) would download
the data and make it available in a standard way in a database. But since the project in
question is quite big, a solution like this would be really expensive. Another possibility
would be to only use the infrastructure of these services, where they accept bots written
in a certain framework as input and run them in scale in their infrastructure. As this
creates too much dependency between the company and the bot service, this approach
was also not taken. So a completely ready-to-use solution was rejected.

Since the bots would have to be built, a programming language had to be chosen.
Python was the winner here for 2 main reasons: it is widely used for web bots, so there
are many tools available to support a project like this one, as well as a big community;
developers would need to be hired in the future to build the bots, and Python developers
are the easiest ones to find, especially for not so complex tasks.

The following article gave the team a good starting point for a solution: (MEDIUM. . . ,
2020). In the article, an idea for a scraping framework is superficially explained, com-
menting on how it could scale and keep the state of bots even in case of failure. The
article also mentions Scrapy (SCRAPY. . . , n.d.), a popular Python scraping framework,
explaining how it can become hard to implement more complex logic in it, which was
an obstacle also observed by the author of this document. Scrapy was rejected and
it was decided that an in-house (i.e. by the author of this document and Jungsoft)
Python-based solution would be developed.

4.5 FINAL COMMENTS

In this chapter, the planning of the project was presented, as well as reasons for
the necessity of building the solution to be presented in the next chapter.

29

5 SOLUTION

This chapter focuses on presenting the solution implemented. First, an overview
provided by Jungsoft representing almost the entire new technical structure of the
company is presented in image 6. This is important to explain that this project is a part
of Jungsoft’s solution, focusing on the data collection, which will be presented right after
Jungsoft’s overview.

Figure 6 – Infrastructure Overview

Source: Jungsoft Archive

The next paragraphs will use bold text to reference elements in image 6.
Starting in the right corner of the image 6, Users represent clients of the client

of this project, i.e. buyers of the products of the client. Users are usually companies
that sell products and are interested in comparing their prices with other companies. To
provide a good user interface (UI) and user experience (UX) to Users, Jungsoft built a
Frontend (Client Interface (React)) using React (REACT. . . , n.d.), a popular Javascript
library for building UIs.

The Frontend communicates with the Backend (Core Backend (Elixir)), writ-
ten in the language elixir (ELIXIR. . . , n.d.), through Graphql (GRAFANA. . . , n.d.)
queries to access the data in the central database (PostgreSQL + TimescaleDB).
The central Postgres (POSTGRES. . . , n.d.) relational database uses TimescaleDB
(TIMESCALE. . . , n.d.) and ElasticSearch (ELASTIC. . . , n.d.) (Product Database (Elas-
ticSearch)) to provide a quick way to interact with the stored data. By using these

Chapter 5. Solution 30

technologies, Jungsoft noticed that some queries that in the old client’s solution took
minutes to complete now take less than a second.

Moreover, the system is accessed by other types of users. Internal Users have
an Admin access to the backend and database, allowing them to perform operations
that Users are not allowed to. Because of this, Internal Users could easily perform
Data Validation, making sure the data collected was of good quality.

The web data collection mechanism, the focus of this work, collects data from
many different sources. The data ends up being inserted into the central database. How-
ever, a lot of the data collected from different sources reference the same information,
e.g. website A may sell the exact same product as website B. The problem with this is
that it may be very hard to identify that a product from website A is the same as the one
from website B. I.e. it is very hard to match products between websites. Since this is
very important to provide price comparisons for a given product, a reliable mechanism
is essential here. No automated solution exists at this point in time, so the client has a
Data Matching Team, which matches millions of products from hundreds of websites
using a Matching Interface (React) built by Jungsoft.

The data collection solution consists of the top part of image 6. The author of
this work, although having participated also in backend features and data validation,
focused a majority of his time on this part. The implementation of the data collection
system was done by the author with the advisory of Jungsoft.

Image 7 shows an overview of the data collection solution. Note that image 7 and
image 6 intercept each other, as elements like RabbitMQ, RequestStorage(MINIO),
Workflow Manager (n8n.io) appear in both images. Every element in image 7 will
be deeply explained in this chapter, since they are part of the data collection solution,
differently from the other elements shown in image 6.

Chapter 5. Solution 31

Figure 7 – Micro services overview in Production

Source: Personal Archive

In the next sections, elements present in image 7 will be written using bold text.
The main part of the data collection solution is the web data collection framework,

called Opony, which consists of a mix of microservices (MICROSERVICES. . . , n.d.). At
the center of it, the Python Application microservice works as the brain of the solution,
allowing communication between the microservices. It is also shown in image 6 as Data
Collectors.

Each rectangular frame in the image 7 represents a microservice. Note that all
microservice contain the symbol shown in image 8, which indicates that the microser-
vice is run inside a Docker Container. Docker containers will be further explained in
section 5.3.

Chapter 5. Solution 32

Figure 8 – Docker Container Symbol

Source: Personal Archive

Each microservice is included in Opony to accomplish a specific objective, which
helps to fulfill one or more requirements.

Each requirement described in table 1 has a different level of complexity and
urgency. In the list 5, they are ordered from highest priority to lowest, to know which
one should be tackled first.

• Scalability

• Download

• Data persistence

• Save the progress

• Standardization

• Cron job

• Rate limit

• Monitoring

• Cache

Next, a deep explanation of each requirement will be given, followed by how the
implemented solution relates to each requirement and how each microservice helps
accomplish the final goal.

5.1 FULFILLING THE REQUIREMENTS

Each requirement demanded the planning and implementation of various types
of solutions, which are described in this section. Each solution proposed had to be care-
fully thought out since it may affect other solutions and make a requirement unfeasible
to have.

Chapter 5. Solution 33

5.1.1 Scalability

Building a scalable system is a delicate subject since the features that make it
scalable are usually deeply ingrained in its root mechanism. All other requirements are
affected by the decisions taken here, not only performance-wise, but also in the way
they will be implemented. In other words, it is essential to get this part right, otherwise
one may find itself with a useless tool once the demand for data grows. Therefore, this
was the focus from the beginning, where the goal was to build a distributed system that
could scale horizontally, i.e. a system that is able to run on many servers simultaneously
and also accepts the inclusion of more servers always when needed.

The microservice-oriented approach shown in image 7 allows such scalability
since each microservice shown in the image can run on different machines. Beyond the
services of the distributed system, a central and also distributed Python Application
shown in image 7 served as the orchestrator of the services. It communicated with the
other services through well-defined communication protocols, e.g. HTTP and AMQP.

The Python Application, as mentioned, was also distributed. Always when
more power was needed, more Docker containers could be run to horizontally scale the
application, allowing faster data collection.

In order to delegate tasks to container of the Python Application and store the
data they output, a Message broker (MESSAGE-BROKERS. . . , 2022) was used: Rab-
bitMQ.

• What is a Message broker?
A Message broker is a service that allows communication between services
by sending messages of defined formats using a message protocol. This allows
communication between machines and applications, even if these are written in
different languages. Beyond this, Message brokers can validate and also store
data. For this project, the storing capability of the broker was widely used, as will
be shown in the next sections. A basic diagram representing how a broker works
is shown in figure 9.

Chapter 5. Solution 34

Figure 9 – Message Broker

Source: Personal Archive

The Message broker service itself is represented in the middle. It accepts data,
holds it, and releases it when required. The broker used, RabbitMQ, has 2 main
building blocks:

– Queue - A FIFO queue that holds information. An instance of the broker
might have many queues.

– Exchange - An abstraction that decides how to handle incoming information.
When a message is published to the broker, it never goes directly to a queue
- the exchange always decides before how and to which queues the message
will go. The message may be duplicated and go to many queues, it may go
to a single queue or even be discarded, depending on how the exchange is
configured and how the message look like.

A given application must follow the messaging protocols imposed by the broker
to speak to it. In the case of RabbitMQ, the AMQP protocol was used, which
runs over a TCP connection that is much less prone to errors or data loss, when
compared to UDP for example. AMQP also is more complex than other messaging
protocols, like MQTT, but offers more features, so it was the picked choice since
it was not clear at the beginning of the project how much complexity would be
involved.

To interact with the Message broker, producers and consumers must be defined
in the application. Producers send data to the broker’s exchange and consumers
get data from the broker’s queues. Once a consumer gets a message, it can
acknowledge it if desired, meaning the message is safe for the consumer and the
broker can erase it from its memory without further concerns.

Chapter 5. Solution 35

Many client libraries are available for RabbitMQ for Python, where the one used
was Kombu (KOMBU. . . , 2022), which is used by Celery (CELERY. . . , 2022).

• What is Celery?
Celery is a Python library and an abstraction above Kombu, which provides
Python utilities that allow easy interaction with brokers. Celery defines itself as
a distributed task queue software. It allows python programs to easily publish
and consumes messages to the broker. By defining tasks, functions that pro-
cess messages, a given python application can easily become distributed and
asynchronous.

5.1.2 Download

Downloading data is prioritized second as it handles all the data input of the
system. Once the data is in the system, it can be handled and transformed, but to get
to this point, a robust and scalable downloading architecture is required. Here the focus
is to define download mechanisms that are fast and reliable, to collect as much data as
possible in a smaller interval. The main challenge is to define a proxy architecture that
is able to handle the data load.

As mentioned before, the old data collection system used to have all the down-
loaded data passed through a static pool of proxies. When a download was made, one
of the proxies in the pool would be chosen, but problems occurred since proxies might
go offline or be blocked.

A solution for this problem is to implement a Proxy Provider: a service that
provides proxies on demand, that would then be used by the Python Application to
make requests to websites, see image 7. Initially, ready-to-used paid services were
explored, like Brightdata (BRIGHTDATA. . . , 2022) and Smartproxy (SMARTPROXY. . . ,
2022). The conclusion was that it would be too expensive to pay for all the data required
by the company. Instead, they would only be used as backup Proxy Providers by
Opony, i.e. they are only used if the main solution fails. The main solution was built and
deployed in-house.

The requirements for the built Proxy Provider were:

• To be able to dynamically create and destroy proxies;

• To have a blacklist mechanism so that problematic proxies or proxies blocked in a
given platform would not be used sequentially for the same platform.

• To be scalable since potentially millions of requests would be made to the provider
and to its proxies daily.

• To be able to accept many different proxy accounts. Each proxy account could
have a limit of simultaneous connections.

Chapter 5. Solution 36

The solution is called Maestro, and it was built using the programming language
Elixir. Elixir was chosen for many reasons: it is a very efficient compiled language, unlike
Python; it is built on top of the Erlang virtual machine, excellent for concurrency, scala-
bility and distribution; it is part of Jungsoft’s and the author‘s programming languages
stack. The core of Maestro’s application was built by the author with the advisory of
Jungsoft, and it was later maintained and improved by Jungsoft.

A simplification of how Maestro works is depicted in the image 10.

Figure 10 – Maestro

Source: Personal Archive

Maestro runs in a Docker container (to be explained in section 5.3.1). It consists
of a server, which accepts HTTP requests, and runs Docker containers that contain
the image of a Proxy. Maestro looks at the content of the request and at the Mnesia
Database to decide how many proxy containers should run, and runs them, returning
to the request’s client the address of the proxy. Once the client has the address of a
proxy, a request to a website can be easily made using the given proxy.

Mnesia is a database management system that synchronizes disc and memory
to provide fast access to the database, which is extremely necessary since Opony
performs almost as many requests to Maestro as to all websites. The database is used
to store information about proxies that were not used successfully on a given website.
This allows Maestro to know what are the best proxies for any given website already
accessed.

5.1.3 Data Persistence

Data persistence aims to save the data once it is downloaded. As mentioned,
the old system only used a relational database to persist information, which can be
a big problem in big data systems, since relational databases are usually not built
for hundreds of concurrent connections. Having hundreds of bots inserting data in

Chapter 5. Solution 37

the database concurrently caused peaks of demand in the database, causing serious
performance issues. Also, since the bots were responsible for inserting data, they had
to also handle insertion errors, increasing their complexity.

Rabbitmq, beyond enabling communication within the distributed system, per-
sists the data before it reaches the main database. Messages published to the broker
do not need to follow any schema but are structured as JSONs, differently from rela-
tional databases. This intermediate step in the data lifecycle, where it passes through
the broker, removes the responsibility of inserting the data in the Central Database
from the bots and moves it to the Backend, as shown in image 7. The Backend runs a
process that consumes messages in batches from the broker and inserts them into the
database. This approach is also more flexible, allowing the Backend to parse the data
before insertion.

Note that in case of failure, be it in the bots or in the Backend, no data in the
broker is lost, as messages are only acknowledged after success.

5.1.4 Saving the Progress

Saving the progress of bots was a challenge, but not such a critical one as the
previous ones. The goal here is to force all bots to constantly persist their progress in
the message-broker so that an error could occur at any time and nothing would be lost.

In order to constantly save the progress of any bot, the bots had to be imple-
mented in a certain way. Opony forces bots to implement 3 methods: download, scrape
and crawl, all explained in detail at subsection 5.2 and used by the Opony Pipeline,
which also explained at subsection 5.2. The bots should implement these methods
in a minimalistic way so that download performs preferably only 1 download, scrape
scrapes only 1 page and crawl crawls only 1 page. This allows the progress to be saved
always after the Opony Pipeline is run, where new messages are published to the
broker and therefore saved.

5.1.5 Standardization

Standardization is mainly defined inside the application, so no architecture was
altered by it. To achieve it, the bots are forced to publish standard messages to the
Message Broker, so that messages can be retrieved from the broker and inserted in
the Central Database.

To enforce standardization, the Python library Pydantic (PYDANTIC. . . , n.d.)
is used. Pydantic basically allows developers to easily validate data with its built-in
features. For example, a smartphone could be represented in a Smartphone class,
which contains fields like size, battery capacity and price. Then, Pydantic validations
could be defined for each field, saying for example, that a price must be an integer,
never a string. In case a validation fails, the Opony Pipeline (explained at subsection

Chapter 5. Solution 38

5.2) will alert about the error and move the message to a separate dead letter queue
in the broker. A dead letter queue is a queue in the broker which holds messages that
cannot be delivered to their destination queue, so they are a great fit for holding failed
messages in this case.

5.1.6 Cron job

Since most of the client’s data of interest must be collected every day, an au-
tomatic way to start hundreds of bots is necessary. Also, the exact period when each
individual bot should be triggered (cron time) should be easily configured.

Therefore, another solution was explored. N8N (N8N. . . , n.d.) is a workflow tool
that integrates easily with many popular apps, providing an easy to use UI also. Image
11 shows an example of a workflow used by the data collection tool.

Figure 11 – N8N workflow

Source: Personal Archive

The cron block triggers 2 different HTTP requests and sends a message to Slack,
notifying the team that the request was made.

The request labeled HTTP Request Opony sends an HTTP request to Opony’s
server, which triggers a new bot to be started.

The request labeled HTTP Request Backend sends an HTTP request to the
Backend. To understand why this request happens, the type of data collected by Opony
needs to be shortly explained. Data collected from Opony can be divided into 2 cat-
egories: scans and details. Scans is data that needs to be collected periodically, like
price data, since the client is interested in tracking this kind of information over time.
Details on the other hand is information that does not vary over time, such as a certain

Chapter 5. Solution 39

product specification, e.g. the size of a specific smartphone or the nominal power of
a certain engine. The target websites usually store this information on different pages,
e.g. there are pages that show a list of prices and each price contains a link to the
details of that specific product. To spare requests, Opony only goes through the prices
pages periodically, not the details page. Each details page only needs to be visited
once, since its information does not change. To know what are the detail pages of every
website and if these pages were visited already or not, the Central Database is used.
Therefore the request HTTP Request Backend is made to the Backend, telling it to let
Opony know which detail pages still need to be visited. This request is done periodically
since new prices might appear on the websites, which contain details not present on
the websites before, but the Backend only sends non-visited details to Opony.

Both HTTP requests are also depicted in image 7, departing from the N8N
microservice.

5.1.7 Rate limit

The idea here is to avoid overflooding a certain website with requests while
trying to collect data too quickly from it. There needs to be a mechanism to throttle the
download speed in the framework. This is not such an easy task, since the framework
works in a distributed way, i.e. many different machines maybe be collecting data at
the same time from the same website. In order to solve this, the information of which
website is being downloaded at any given point is centralized in a Key-Value Store - in
this case, Redis.

Redis (REDIS. . . , n.d.) is a fast-access data store that is widely used for dis-
tributed systems. The Python Application makes a request to Redis (represented by the
connection "Check Rate Limit" in image 7) any time a download is about to happen. The
domain of the URL to be requested and rate limit information is sent to Redis, which
checks if there was a recent request to the given domain registered in its memory. The
response of Redis defines rather Opony continues and makes the request to the URL
or if it postpones the request.

5.1.8 Monitoring

Monitoring is a big part of Opony. It is not an essential mechanism for the Frame-
work, but it gets more and more important as the system grows in size. Monitoring can
be divided into 3 areas: error monitoring, bots monitoring and data monitoring.

• Error Monitoring
At any given time, a bot might fail for many kinds of reasons: the website from
where the bot is collecting data might be offline, the bot might have been imple-
mented wrongly, the website might have changed its structure and the bot built is

Chapter 5. Solution 40

not capable of parsing its content anymore, etc. In order to capture errors, Sentry
(SENTRY. . . , n.d.) was used, a tool that provides dashboards for real-time moni-
toring of crashes in applications. With Sentry, any error in the application can be
almost instantly detected, located and quickly fixed.

Sentry is a paid service and therefore it applies a limit for the number of errors
it accepts in a given period, depending on which plan is chosen. Since Opony
does a lot of computation, an error in the application might result in thousands of
error reports in Sentry. To avoid flooding Sentry and consequently maxing out its
limit, Opony filters its errors before reporting them. E.g. Some errors are just not
relevant enough to be sent to Sentry and the ones that are can be throttled so
that the same error is not reported many times in a short period of time.

• Bots Monitoring
Bots monitoring aims to understand what is happening in every bot in Opony
at any given point in time. To achieve this goal, a log aggregating service, Loki
(LOKI. . . , n.d.), is used, as is shown in image 7. A log aggregating service gathers
the logs of an application in a smart way and provides a language to query data
from it, in this case, the language is called LogQL (LOGQL. . . , n.d.). LogQL, like
SQL, is a database query language, but while SQL queries data from relational
databases, LogQL queries data from an unstructured database. The code shown
below is an example of a LogQL query.

sum (

rate(

{application=~"opony"}

|~ "Fetching document"

[1m]

)

)

The query is explained line by line in the items below.

– application="opony" - Collects log lines that are labeled with the application
"opony".

– |~"Fetching document" - filters any lines that match the regex expression
"Fetching document". Opony logs "Fetching document" every time a down-
load is happening, so finding these log lines allows Loki to know how many
downloads happen in a period of time.

Chapter 5. Solution 41

– [1m] - For each data point found, collect every data point 1 minute in the past
that also matches the application and the filter, creating many vectors, one
for each data point.

– rate - Calculates the number of log lines per second of every vector created,
resulting in a rate value for each data point.

– sum - Sums all rate values that refer to the same point in time. Opony sends
log to Loki from many locations, since it is a distributed system. This line
tells Loki to sum the values from these locations and return a single vector.

Therefore, for this example, Loki will provide a time series indicating the rate (per
second) of log lines that match the given filter, i.e. the rate of download per second.
Many queries like this one were created to help monitor Opony, each one with its
own purpose.

Grafana (GRAFANA. . . , n.d.) was used to make these queries to Loki and show
their results in dashboards. Grafana is an interactive platform for data visualization
and alerting. By combining Loki and Grafana, many monitoring dashboards were
created, some examples of metrics observed are: download rate per domain;
memory usage; amount of data points collected per domain; most common errors
per domain; time required to collect all data of a given website; proxy providers
performance; interactions with the cache.

An example of a query and its result is shown in image 12.

Chapter 5. Solution 42

Figure 12 – Grafana Chart

Source: Personal Archive

The image shows Grafana’s user interface. The chart in the image displays the
rate over time of log lines that match the query. Grafana also allows the user to
define what time window will be used, in the image 12 it is set for "Last 1 hour"
in the top right corner. This allows developers to easily visualize past data and
locate unexpected behavior.

• Data Monitoring

Data is monitored through 2 main tools: Data validation report, shown in section
5.2.2 and Metabase (METABASE. . . , n.d.). Metabase is a business intelligence
tool, which integrates with many databases and provides a user interface that
allows easy creation of charts.

While the Data validation report is used mostly for the Development (section
5.3.2.2) and Homologation (section 5.3.2.3) environments, Metabase is used
mainly for Production (subsection 5.3.2.4) data, since in Production the volume of
data is much bigger and more detailed analysis is necessary. Metabase connects
to the Backend Central Database, as shown in images 6 and 7.

Image 13 shows an example of a dashboard created using Metabase. For each
day, it shows the number of scans collected (tall bars) - which basically represent
price points - and the number of unique scans (low bars) - which represents the

Chapter 5. Solution 43

number of products reached. The number of scans is greater than the number of
unique scans, since there may be many price points for a given product.

Figure 13 – Metabase Chart

Source: Personal Archive

Data is the resource extracted by the bots, so the data quality is a very good indi-
cator of the bot’s performance. Therefore, by looking at this and other charts every
day, the team is capable of having a good understanding of the performance of the
bots, knowing which ones are working well and which ones need maintenance.

5.1.9 Cache

After downloading a page of a website, Opony bots extract information that
seems relevant (scraping) and discard the rest. The relevant information is published
to the Message Broker and inserted in the database in the future, as shown in image
7. The problem on relying solely on this this approach is that there might have been
some relevant information lost in the discarded data. To avoid this problem, all raw
downloaded data is cached in the Object Store before scraping. Images 7 and 6 show
the Object Store service: Minio.

By storing raw data, Opony is able to revisit websites as they were in the past,
analyze if any changes occurred in them and collect more information, which was
discarded in the past.

Chapter 5. Solution 44

The textbfObject Store can also be very useful in development, where someone
building a bot can fetch website data from it instead of always re-downloading data,
making the process faster.

5.1.10 Requirements Conclusion

Solutions for all requirements have now been presented. The next sections aim
to explain how Opony can be accessed, deployed and used to quickly build web bots.

5.2 BASIC FUNCTIONALITY

This subsection aims to gather the services presented in the previous section
and explain how they could work together in a harmonious way.

As shown in image 7, the Python Application is at the center of Opony. It
is responsible for deciding how to handle incoming requests and for how to use all
available microservices.

The Python Application revolved around the concept of the Opony Pipeline.
The Opony Pipeline can be thought of as a Data Pipeline (DATA-PIPELINE. . . , n.d.)
since it consists of a series of data processing steps. A Data Pipeline has 3 key com-
ponents: a source, a processing step, and a destination. The Opony Pipeline can be
thought of as a more specific Data Pipeline, where its source is a website, its processing
step is scraping/crawling and its destination is storing the data somewhere.

A simplified implementation of the Opony Pipeline in Python is shown in the
image 14.

Chapter 5. Solution 45

Figure 14 – Opony Pipeline

Source: Personal Archive

The first thing to notice is that the pipeline is defined as a Celery task, as can be
seen in the line @celery_app.task(). This means that a Celery consumer (i.e. worker)
of the Message Broker can eventually call this function.

If a message is published to a queue of the Message Broker that is being
consumed by a worker, some things will happen: the worker will identify if the message
contains the expected format and if so, will call the function opony_pipeline. When
the function (or task) is called, the content of the consumed message is passed as
arguments to it, in this case, job and configs.

While a job is an abstraction that defines where and how data must be collected
from, configs contains generic configurations which might override global configu-
rations of Opony. For example, while a job might say "download data from the url
https://moodle.ufsc.br/ using user "x" and password y", configs might say "check if this
information is already stored in the cache before downloading it from the website". A

Chapter 5. Solution 46

job might finish successfully or fail, depending on whether any error is raised during
the pipeline or not.

The next items explain what the Opony Pipeline does.

• check_expired(job) - each job has an expiry date. Jobs that fail for any reason
(e.g. the source of data is offline) can be retried as many times as desired, always
after the job fails. This is possible since the failed jobs are stored in dead letter
queues. This may cause jobs to never be successfully finished. Therefore, expiring
jobs after a while allows cleanup of the broker from time to time.

• configure(configs) - Configures the pipeline, answering the following questions
for the given job:

– Will the cache be used?

– Which cache will be used?

– Which Key-Value Store will be used?

– Which Proxy Provider will be used?

– Should scraping occur?

– Should crawling occur?

– Where will the scraped data be sent to?

• find_bot(job) - Finds the bot which is able to do the job. The index used to find
bots is the domain of the url of a job. E.g. a job containing the url https://moodle.ufsc.br/
would cause Opony to try to find the bot related to the domain ufsc.br.

• snapshot = bot.download(job) - Downloads data from a website following the
job specification and retrieves a snapshot : a representation of the downloaded
data. The download can happen in many ways, and it is up to the bot to decide
how it will occur. Opony provides many Downloaders - classes that implement
methods to help the download to happen in a reliable way, which can be used by
the bots. Downloaders can work by doing direct HTTP requests or by simulating
a browser and working with cookies and sessions.

• items = bot.scrape(snapshot) - Scrapes the snapshot, collecting relevant in-
formation from it (items). Most bots used BeautifulSoup (BEAUTIFULSOUP. . . ,
n.d.) to help the scraping process, a python library that parses HTML strings into
python objects.

• export(items) - Exports the scraped items to the desired location. Opony always
exported the items a queue in it’s Message Broker, as shown in image 7.

Chapter 5. Solution 47

• new_jobs = bot.crawl(snapshot) - Crawls the snapshot looking for information
that could generate more jobs. If it does, store the new jobs in the new_jobs
variable.

• generate(new_jobs) - Creates new tasks using the new_jobs variable. As ex-
plained, tasks are simply messages that are published to the broker to be con-
sumed by a worker. This is also what brings data persistence and parallelism to
Opony. Having a minimalistic Opony Pipeline, that does the minimum work possi-
ble, makes Opony constantly generate jobs, publishing messages to the Message
Broker. Once the jobs are in the Message Broker, the bot’s progress is saved in
the disk, so the system can crash and nothing will be lost. Parallelism is achieved
here, since a bot might generate many jobs, publishing many messages to the
Message Broker, which will be consumed by workers. If there is only 1 worker
active, the bot will be processed synchronously. However, as shown in image 7,
many worker Docker containers can be run at the same time, and even in differ-
ent machines, which allows true parallelism, where many workers can consume
messages from the same bot.

• register_successful_job() - Makes a request to the Key-Value Store registering
that a job was successfully finished. This allows the Key-Value Store (e.g. Redis)
to track the progress of bots, knowing how many jobs are successful and how
many still need to be processed, information important for monitoring bots (see
Monitoring 5.1.8).

• postpone_task() - To avoid downloading data too fast from a website, Opony
uses the Key-Value Store to register every time a download happens (see Rate
Limit ??). The error RateLimitedError is raised by Opony when it is downloading
data too fast. The Opony Pipeline catches the error here and postpones the task
to a later time in order to avoid this problem.

• register_fail_job() - Generic errors (Exception) are caught by Opony (see Mon-
itoring 5.1.8) so that they can be correctly handled. In this case, the Key-Value
Store (Redis) is updated, registering this specific job failed.

• send_to_dead_letter_queue(job) - Here the job is sent to a dead letter queue.
The jobs in the dead letter queue can be later on republished to their original
queue.

• register_finished_job() - The Finally block runs its content independently if an
exception is caught or not. This commands updates the Key-Value Store (Redis)
marking this job as finished.

Chapter 5. Solution 48

• webhook() - Finally, Opony supports Webhooks. Webhooks are callback func-
tions that allow communication between 2 or more applications. Adding a webhook
here allows Opony to warn other applications that a certain job or a group of jobs
(a batch) is finished. Opony is then capable of sending for example a message to
a Slack group telling the team that the bot x has finished its job.

5.2.1 Command Line Interface (CLI)

Opony offers an easy-to-use CLI to interact with its resources. The CLI of Opony
can be accessed by running the following command inside a session with Opony in-
stalled:

$ python −m opony

The output of this command guides the user on how to use the tool, explaining
what other commands are available. The CLI has 3 main command groups:

• Bots: Manages bots to allow easy testing. 3 commands are available here:

– python -m opony bots list: provides the user with all unique identifiers of
all available bots.

– python -m opony bots run: runs the Opony Pipeline for a given bot, given
an URL and some configurations as parameters. E.g. python -m opony
bots run –url="https://google.com" would trigger Opony to look for a bot
related to the domain "google.com" and send the url to it, which would run
the Opony Pipeline and return the result.

– python -m opony bots report: looks for all data scraped by bots and gen-
erated a Pandas Profiling (PANDAS. . . , n.d.) report with it. See subsection
5.2.2 for more information.

All Bots commands can also be run remotely, by setting the environment vari-
ables SERVER_HOST and SERVER_PORT. This would cause a request to be
performed to the configured server agent (to be defined in the next item), which
would then run the commands using its local configurations.

This can prove really useful since it provides a way to act on a deployed version of
Opony without having access to the machine where it runs and without having to
worry about how the specific configurations of the command should be set given
that the deployed server configurations would be used in this case.

The information flow for these commands can be seen in figure 15.

Chapter 5. Solution 49

Figure 15 – Communication between CLI, Server, Broker and Workers

Source: Personal Archive

Note that CLI commands could also interact directly with the Message Broker,
instead of always having the Server as an intermediary.

• Agent Creates processes that run until an external signal stops them.

– python -m opony agent –worker: Creates a worker - process that waits idly
until there are messages in the Messaging Broker to be consumed. Once
a message is consumed, the worker goes through the Opony Pipeline.

This command can be run many times in different sessions or even ma-
chines. Many workers can point to the same Message Broker, allowing
scalability and distribution. If there are too many jobs in the Message Bro-
ker, more worker agents could be created and jobs would be completed
more frequently, accelerating the data collection process.

– python -m opony agent –server: A process that runs a web server and is
available through an endpoint.

The server is used mainly outside the Development environment (see ??,
as an easy way to communicate with Opony, although it is also available
in Development, simply by accessing an endpoint in the localhost of the
browser. The browser interface can be used to test, visualize and run bots.
An example of an endpoint is presented in image 16.

Chapter 5. Solution 50

Figure 16 – Example of Opony server UI for an Endpoint

Source: Personal Archive

All CLI commands, with the exception of the Agent group commands, are
available as an endpoint as well.

The server and interface are created with the help of the popular Python

Chapter 5. Solution 51

library FastAPI (FASTAPI. . . , n.d.).

– python -m opony agent –dev: A process that runs both a worker agent
and a server agent, one in its own thread, as shown in the diagram of image
21. This command is designed to be used in the Development environment
(see subsection 5.3.2.2) and allows the developer to easily access all Opony
features.

• Jobs

– python -m opony jobs list: Allows the user to list all jobs in the broker
quickly. Allow easy visualization of which jobs would be done by workers in
the future.

– python -m opony jobs create: Creates jobs for a given bot, aiming to collect
all data of the bot’s related website. The main required argument for this
command is the domain argument, which triggers Opony to look for a bot
that matched the given domain, using the same mechanism described at the
command python -m opony bots run. Differently from python -m opony
bots run, this command does not trigger the Opony Pipeline, as it only
creates jobs to be published to the broker and consumed by workers in the
future, which would then run the Opony Pipeline, possibly generating more
jobs. The jobs created by this command are defined based on bot attributes,
which define the starting point of the batch. A batch is defined as a group
of jobs, and jobs usually contains a batch_id, used for monitoring the batch
of jobs of the bot. Once the first jobs are created and published, workers can
consume them and generate more jobs in the Opony Pipeline, which would
also contain the same batch_id as the predecessor job.

– python -m opony jobs reparse: Reparses downloaded content stored in
the Object Store. It’s important to remember here that there are 3 main
steps in the Opony Pipeline: download, scrape and crawl. This command
aims to skip the download step, fetching the data from the Object Store (e.g.
Minio) instead of downloading it from the website of interest. This allowed
flexibility since sometimes data is downloaded but it was not yet clear how it
should be scraped or crawled. This way, data can be collected before clients
are sure of how the data should be structured and sent to them.

– python -m opony jobs retry: Allows failed jobs to be reprocessed by the
Opony Pipeline. Sometimes jobs fail: the website can be offline, there might
be a bug in the bot, or something totally unexpected might happen. When
any of these scenarios occur, jobs are sent to a separate queue in the broker,
called dead letter queue. This way, failed jobs are not lost, but just stored in

Chapter 5. Solution 52

a separate place. This allows developers to investigate the problem and fix it.
After that, running this command triggers Opony to take jobs from dead letter
queue and publish them back to their origin queue, triggering the Opony
Pipeline once again and successfully finishing the jobs.

Just like the Bots commands, Jobs commands also have the capability of perform-
ing a request to a given server by setting the environment variables SERVER_HOST
and SERVER_PORT.

5.2.2 Data Validation

Opony is capable of generating a data report using Pandas Profiling (PANDAS. . . ,
n.d.). The aim here is to allow the developer to easily debug a bot by looking at the
data it outputs and statistics about the data. Many statistical indicators are available in
the report, from generic statistics which describe all data collected to deeply detailed
insights regarding a single attribute.

Image 17 shows generic statistics about the data, which is always formatted
as a table. By analyzing the shape and missing data quantities, the developer can
sometimes already infer if there is a problem with the bot or not.

Figure 17 – Validation Report Overview

Source: Personal Archive

Image 18 shows how the report allows for a deep visualization of a single vari-
able (in this case the variable is called raw_price_cents). Visualizing statistics like a
histogram, minimum and maximum values, amount of missing values, mean, median,
percentiles, sum, variance and other metrics allows the developer to identify flaws in
the bot quickly.

Chapter 5. Solution 53

Figure 18 – Validation Report Attribute View

Source: Personal Archive

Finally, image 18 provides alerts that might also identify common errors in the
data. Each column in the table passes through standard checks, that generate alerts if
they fail. Some examples are: checking if a column is constant, checking if a categorical
column has too many different values (high cardinality) and checking if too many values
of a given column are empty.

Chapter 5. Solution 54

Figure 19 – Validation Report Alerts

Source: Personal Archive

5.3 DEPLOYMENT

Software deployment is the process of making an application available for users.
Deployment is usually broken down into some steps: install the software and its depen-
dencies in the host machine(s); test the software to make sure it is working as expected;
run it using the desired configurations; monitor its performance.

As the deployed system run on a different machine than the one used for de-
velopment, it is essential to make sure both use compatible operating systems and
software dependencies, otherwise, the deployment may be successful in one machine,
but not in the other. To avoid this problem, every deployment outside the Development
environment (to be explained at section 5.3.2.2) happens inside Docker containers,
explained in section 5.3.1.

To automate the deployment process, Gitlab’s CI/CD (CI/CD. . . , n.d.) mecha-
nism is used. CI/CD stands for continuous integration/continuous deployment. It is the
process of deploying the code of a repository continuously so that the latest version of
the code is available as soon as possible.

In the case of Opony, each time a Git push operation happens to Gitlab’s Opony
repository, the CI/CD pipeline is triggered. The CI/CD is defined in a configuration file in-
side Opony, that follows certain standards that Gitlab establishes. Opony’s configuration
file defines 3 steps:

• Build: installs the application dependencies and encapsulates them in a file, called

Chapter 5. Solution 55

a Docker image (to be explained at 5.3.1). The installation is done through Pipenv
(PIPENV. . . , n.d.), a virtual environment and package manager tool. The Docker
image is stored in Gitlab’s registry, a database for storing Docker images, that can
be used to deploy Opony from anywhere.

• Test: runs the unit tests defined in the application.

• Publish: Starts the application in the Homologation environment (see section
5.3.2.3) using the built image.

Gitlab provides a UI for the CI/CD pipeline of every branch in the repository, as
shown in image 20.

Figure 20 – CI CD Gitlab’s UI

Source: Personal Archive

By clicking in each pipeline step, a developer is able to visualize the logs of the
CI/CD, identifying for example, why a certain unit test failed.

5.3.1 Docker

Docker is a software that runs on top of the machine’s operating system (OS)
kernel to provide application isolation in the form of containers. As described by Docker
itself, "Docker containers are a standardized unit of software that allows developers to
isolate their app from its environment, solving the ’it works on my machine’ headache".

Unlike virtual machines, docker emulates the operating system in which the
application is run, not the hardware itself. This allows many containers, each containing
totally isolated software, to be quickly deployed to one or many host machines, enabling
fast deployment and scalability.

Docker containers are run from Docker images. A Docker image is a file that
provides resources to a container so that it can run. A Docker image can be built from
a Dockerfile. The code below is an example of a Dockerfile.

Chapter 5. Solution 56

FROM alpine:3.4

RUN apk add curl

If a Docker image is built using this example Dockerfile, the image will contain
the alpine (ALPINE. . . , n.d.) distribution of the Linux operating system (OS) and the
curl (CURL. . . , n.d.) command, which allows developers to transfer data to and from
servers. This is all the container will have, the Alpine OS and the curl command. The
container can be run on any machine that has Docker installed. The machine might run
on any operating system, and the Docker container will simply work. That is the power
of Docker, as it provides an easy way to release code anywhere.

Opony has it’s own Dockerfile, and an Opony Docker image is built each time
the CI/CD Pipeline is successfully finished.

5.3.2 Environments

The data collection system can be deployed in many different ways, configured
in different environments, each one with its own purpose. In each environment, the
system adapts itself to supply the user with its needs. A single environment variable
called ENVIRONMENT controls which environment is used.

This subsection first presents a superficial comparison between the environ-
ments, then moves on to explain each one deeply.

5.3.2.1 Comparing the Environments

The differences between Opony instances running in different environments are
presented here.

Table 2 summarizes the differences in characteristics between the environments
and table 3 shown differences in services.

In table 2 an X is used to mark whether each environment has a certain charac-
teristics.

Chapter 5. Solution 57

Environments
Characteristics Development Homologation Production
Good for developing Bots X
Used by developers X X
Fast setup time X X
Persists state X X
Allows data validation X X X
Accessible from anywhere X X
Good for running long-lasting processes X X
Uses Docker X X
Deployed in a server X X
Runs many Opony workers X
Distributed X
Scalable X

Table 2 – Comparison Between Environments

Environments
Service Development Homologation Production
Key-Value Store Memory Redis Redis
Object Store Filesystem Minio Minio
Message Broker Filesystem RabbitMQ RabbitMQ
Backend Elixir Application Elixir Application
Data Validation Data Validation Report Data Validation Report Metabase
Logs Terminal Containers logs Loki + Grafana
Proxy Provider Maestro + Backups Maestro + Backups
Cron Service N8N

Table 3 – Comparison Between Services in Environments

The comparisons show that each environment is different, making some suitable
for situations where others are not. It’s also noticeable that there is an increase in
complexity when moving from the Development environment to the Production one,
which is natural since Production is supposed to do the heavy lifting, demanding more
services and power.

5.3.2.2 Development

In the Development environment, it is essential that the user can quickly create
and test bots. In order to do so, Opony has the capability of adapting itself to reduce its
complexity and help the developer.

Firstly, Docker is not required in Development. The Python Application runs di-
rectly in the host’s machine by the virtual environment Python interpreter. This reduces
the complexity to run the system but makes it more vulnerable to incompatibilities
between machines, since different machines run different operating systems and hard-
ware. This is solved by forcing users to install the system in a virtual environment, using
Pipenv.

As can be seen in the image 21, many of the services used in production (rep-
resented by image 7) are not available here. Instead, the host machine’s memory and

Chapter 5. Solution 58

filesystem are used. This replacement can be done since the system in Development
did not need to be scalable, distributed or accessible through many machines. It simply
needed to run smoothly in the user’s machine.

Figure 21 – Micro services overview in Development

Source: Personal Archive

The following replacements are made:

• Message Broker: instead of RabbitMQ, messages are simply stored in the host
machine’s filesystem, and can be easily accessed by the developer.

• Object Store: instead of Minio, the machine’s filesystem is used, where docu-
ments are stored in the disk.

• Key-Value Store: instead of Redis, the memory is used, both for tracking each
bot and for storing rate limit information.

• Grafana Loki: not used in development since all logs are available on the user’s
terminal.

• N8N: not used, since there is no need to run bots periodically in development

• Backend: not used. The Backend is responsible for consuming all the data from
the Message Broker and storing it in the Central Database in Production. In
Development, there is no need to do so, since the idea here is not to collect a lot
of data.

Chapter 5. Solution 59

This allows Opony to fully run just by installing it, with no need to run microser-
vices.

The easy substitution of services is possible due to well-defined object-oriented
programming interfaces. Taking the Object Store as an example, an abstract class is
defined called ObjectStore (see image 22), which defines methods (put, get) that have
to be implemented by the concrete classes.

Figure 22 – Object Store Interface

Source: Personal Archive

This approach is also used for the Key-Value Store and the Proxy Provider.
The concrete classes to be used by Opony would be then controlled by the already
mentioned ENVIRONMENT environment variable.

Generally, inheritances are avoided in the Python Application, since it may
cause readability issues and make the code cumbersome. Instead, a more functional
approach is used, with the use of dependency injection to allow easy testing of the
software.

After installation using Pipenv, the user can directly run the command:

$ python −m opony agent −−dev

This ran both a worker and a server, each in a process, as shown in figure 21.

Chapter 5. Solution 60

5.3.2.3 Homologation

The Development environment does not replicate completely the production en-
vironment. As mentioned, it does not run in Docker containers, the backend is not
available and some services are replaced. Also, it is not meant to run bots for a pro-
longed period of time, but to develop bots quickly. Running bots for long periods in the
Development environment would require the user’s machine to stay awake during this
period, which is not ideal. Finally and more importantly, access to the Development
environment is restricted to the developer who has access to the local machine running
Opony, i.e. this prevents someone else to check how the bot is running and how its data
looks.

To solve these problems, another environment was defined: Homologation. Its
objective is to serve as a collaborative testing environment, by approximating the bot
to the Production environment and allowing many developers to interact with bots and
validate their data. Homologation includes some of the production environment services
shown in image 7, but has a limited number of worker containers. Its infrastructure is
shown in image 23.

Chapter 5. Solution 61

Figure 23 – Micro services overview in Homologation

Source: Personal Archive

The main differences here are:

• Only one worker container is available. This limits the speed of data collection,
but since the Homologation environment is not meant to collect data in scale, this
is not a problem.

• No log aggregation service is available. Since in Homologation there is not so
much work being done by Opony workers, and therefore the amount of logs
generated is of low quantity, a log aggregation service is not necessary. Instead,
the Docker container logs can be accessed directly.

As mentioned in the work methodology section (4.3.4), Homologation was used
to perform the final data validation of a given bot. The data validation report, shown in
subsection 5.2.2 is available in a URL, allowing access to it by any developer.

Beyond the data validation URL, there are also other URLs available in the
Homologation, all automatically created by the CI/CD publish (5.3) step. Examples of

Chapter 5. Solution 62

URLs available in Homologation are: Opony Server URL, to allow the user to interact
with Opony; Message Broker user interface URL; Database UI URL, where users can
make SQL queries to visualize the collected data; Backend server URL.

Also, every URL contains the Git branch name in it, so it is possible to have an
isolated Opony instance (running in the Homologation environment) available for each
branch in the repository, allowing developers to make changes to Opony and easily test
them just by pushing commits to Gitlab, which triggers the CI/CD pipeline and creates
a fresh Opony instance in Homologation from scratch for that branch.

The Opony instance created is fresh since in Homologation no data is stored in
disk, so starting Opony by pushing changes to Gitlab and triggering the CI/CD pipeline
clears all data that was previously in that branch’s Opony instance and starts everything
from zero. Therefore, all messages in the Message Broker are lost, as well as all
data in Redis and in the Backend. This allows a bot to be tested with no external
interference, in an isolated way, making debugging much easier than in Production.

5.3.2.4 Production

Finally, Opony in the Production environment runs all services shown in the
image 7, which provides the full power and scalability of the Framework.

To run Opony Production, many Docker images are used. While some services
are built in-house, as well as their respective Docker images, other services are open-
source, and their Docker images are pulled from public repositories.

To run Opony containers using the Docker images, these must be pulled by the
server(s) that will host the system. However, allocating the containers is not a simple
task, as it requires: managing secret configuration in a safe way; configuring networks
to allow communication between the services and access to services; allocating the
containers in an efficient way not to waste the server’s resources; defining restart
logic in case the containers stop at some point due to an error; distributing containers
throughout many machines since one is not enough for Opony; etc.

In order to do so, a container orchestrator/cluster tool is used: Nomad (NO-
MAD. . . , n.d.). Image 24 represents a cluster containing 3 nodes (e.g. machines):
Client1, Server and Client2 - where Nomad is installed in each one of them, establish-
ing communication between the machines and therefore establishing a cluster.

Chapter 5. Solution 63

Figure 24 – Nomad Cluster

Source: Personal Archive

All nodes run Docker Containers, which in the case of Opony, might be Redis,
Loki, Grafana, etc. To run a Docker Container in the cluster, a Nomad job must be
defined. A Nomad job is a definition of how to run services. It might be formalized in a
configuration file (called Nomad file) that tells Nomad how to run a given service.

Chapter 5. Solution 64

Figure 25 – Nomad File

Source: Personal Archive

Image 25 shows a simple example of what a Nomad configuration file might
look like. There are 3 main structures in the file: job, group and task. A job defines
what will be run by Nomad once it receives these configurations. It might define many
groups, each one to be run in a single node, but different groups might run in different
nodes. Each group then defines tasks, which creates a unit of work, such as a Docker
container.

In the example of image 25, the job opony asks Nomad to run all tasks of group
opony-workers twice, as indicated by the attribute count. The group also defines a
restart behavior, telling all tasks in the group to attempt restart 3 times, in case the task

Chapter 5. Solution 65

fail for some reason.
The worker task defines what will be run. In this case, docker will be used to

run a container using the image opony-worker-docker-image. The container will be
started using the command python -m opony agent –worker and its logs will contain
the label application=opony.

Also, the task defines resources, telling Nomad that it uses usually 500MHz of
CPU and 200MB of memory, and if the 500MB memory threshold set by memory_max
is reached, Nomad is allowed to terminate the task. This feature was very useful for
Opony, since a memory leak happened at some point, making opony workers consume
much more memory than expected. Nomad killed the leaked containers and avoided
possible server crashes due to memory overflow.

Finally, the block env accepts environment variables to be set for the container. In
the example of image 25, only the environment variable ENVIRONMENT is set, telling
Opony to run in the production mode.

Once the job is ready for deployment, it can be sent to the Server node, as
shown in image 24. The Server is the brain of the cluster, deciding in which node the
tasks of the job should be run.

Nomad also provides an user interface, allowing users to deploy jobs, visualize
resources used by nodes and tasks, see logs of tasks and interacts with tasks using a
shell.

Opony was one of the first projects related to Jungsoft to be deployed using
Nomad. Deploying Opony using it was a join effort of Jungsoft and the author of this
document, and it served as a proof of concept of the new orchestration tool and vali-
dated that it was indeed very powerful and relatively easy to use. After Opony, many
other projects were also migrated to Nomad by Jungsoft, and it is currently Jungsoft’s
standard deployment tool.

5.4 FINAL COMMENTS

This chapter presented a deep explanation of how the solution was implemented.
It explained which microservices Opony uses, how the Python Application work, how
Opony interacts with the Backend, how it can be used by developers through the CLI
and the Opony server UI and how it can be deployed in many environments. The next
and final chapter concludes the work done, explaining how Opony improved the data
collection solution of the client.

66

6 CONCLUSION

This chapter concludes the report, giving final remarks on the work done.
The objectives presented in section 1.1 were successfully implemented, where

the old system was successfully replaced by the new one.
Many developers are using/have used Opony to create more than a hundred

bots performing more than a million daily requests and providing millions of daily data
points.

The number of bot developers in the team has increased over time, where it was
reported that the tool is easy to use and powerful, even for programmers with not much
experience. The same feedback was given in favor of Opony when the developers that
worked both on the old data collection tool and on Opony were asked to compare the 2
systems.

The data provided by Opony is reliably and continuously inserted in the central
database. Opony handles errors very well, being able to endure code bugs, errors in
services used and server downtime periods with minimum loss of data and performance.
The data is used constantly by the backend to provide structured information to many
products of the client.

The system can be easily observed and monitored through many tools, such as
Grafana, Metabase and Slack, allowing quick response time for problem-solving and a
centralized view of the distributed system, used to support technical and business-level
decisions. A quick response time for bugs in bots is crucial to provide good data to
clients continuously and has been proven to be a reality since bots are many times
fixed before they run 2 times with errors, a feat which was rarely possible in the old
system.

The client is very satisfied with the implemented solution and will continue using
it in the next years. Jungsoft’s goal - to help clients to build and validate products and
then hire a replacement team when the time comes - was also accomplished. Opony is
now used by developers hired by the client, while the author of this work and Jungsoft
have minimum interference in it and soon will have none.

67

REFERENCES

AGILE - The Agile Process 101: Understanding the Benefits of Using Agile
Methodology. [S.l.: s.n.]. Available from:
https://www.nvisia.com/insights/agile-methodology.

ALPINE - Linux distribution. [S.l.: s.n.]. Available from:
https://www.alpinelinux.org/.

BEAUTIFULSOUP - a Python library that makes it easy to scrape information from
web pages. [S.l.: s.n.]. Available from:
https://www.crummy.com/software/BeautifulSoup/bs4/doc/.

BRIGHTDATA - Award-winning proxy networks, powerful web scrapers, and
ready-to-use datasets for download. [S.l.: s.n.], 2022. Available from:
https://brightdata.com/.

CELERY - Python task queue library. [S.l.: s.n.], 2022. Available from:
https://docs.celeryq.dev/en/stable/getting-started/introduction.html.

CI/CD - a tool for software development using the continuous methodologies.
[S.l.: s.n.]. Available from: https://docs.gitlab.com/ee/ci/.

CLICKUP - One app to replace them all. [S.l.: s.n.]. Available from:
https://clickup.com/.

CURL. [S.l.: s.n.]. Available from: https://curl.se/.

DATA-PIPELINE - What Is a Data Pipeline? [S.l.: s.n.]. Available from:
https://hazelcast.com/glossary/data-pipeline/.

ELASTIC - Search. Solve. Succeed. [S.l.: s.n.]. Available from:
https://www.elastic.co/pt/what-is/elasticsearch.

ELIXIR - Elixir is a dynamic, functional language for building scalable and maintainable
applications. [S.l.: s.n.]. Available from: https://elixir-lang.org/.

https://www.nvisia.com/insights/agile-methodology
https://www.alpinelinux.org/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://brightdata.com/
https://docs.celeryq.dev/en/stable/getting-started/introduction.html
https://docs.gitlab.com/ee/ci/
https://clickup.com/
https://curl.se/
https://hazelcast.com/glossary/data-pipeline/
https://www.elastic.co/pt/what-is/elasticsearch
https://elixir-lang.org/

References 68

FASTAPI - a modern, fast (high-performance), web framework for building APIs with
Python 3.7+ based on standard Python type hints. [S.l.: s.n.]. Available from:
https://fastapi.tiangolo.com/.

GIT - A free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency. [S.l.: s.n.].
Available from: https://git-scm.com/.

GIT-BRANCHES: List, Create, Switch to, Merge, Push, Delete. [S.l.: s.n.]. Available
from: https://www.nobledesktop.com/learn/git/git-branches.

GITHUB - Harnessed for productivity. Designed for collaboration. Celebrated for built-in
security. Welcome to the platform developers love. [S.l.: s.n.]. Available from:
https://github.com.

GITLAB - From planning to production, GitLab brings teams together to shorten cycle
times, reduce costs, strengthen security, and increase developer productivity.
[S.l.: s.n.]. Available from: https://gitlab.com.

GOOGLEBOT. [S.l.: s.n.]. Available from:
https://developers.google.com/search/docs/crawling-indexing/googlebot.

GRAFANA - Operational dashboards for your data here, there, or anywhere. [S.l.: s.n.].
Available from: https://grafana.com/.

HTTP - What is HTTP? [S.l.: s.n.]. Available from:
https://sematext.com/glossary/http-requests/.

JUNGSOFT - We don’t just write software, we build fascinating digital products.
[S.l.: s.n.]. Available from: https://jungsoft.io/.

KOMBU - Messaging library for Python. [S.l.: s.n.], 2022. Available from:
https://github.com/celery/kombu.

LOGQL - Log query language. [S.l.: s.n.]. Available from:
https://grafana.com/docs/loki/latest/logql/.

https://fastapi.tiangolo.com/
https://git-scm.com/
https://www.nobledesktop.com/learn/git/git-branches
https://github.com
https://gitlab.com
https://developers.google.com/search/docs/crawling-indexing/googlebot
https://grafana.com/
https://sematext.com/glossary/http-requests/
https://jungsoft.io/
https://github.com/celery/kombu
https://grafana.com/docs/loki/latest/logql/

References 69

LOKI - A horizontally-scalable, highly-available, multi-tenant log aggregation system
inspired by Prometheus. [S.l.: s.n.]. Available from:
https://github.com/grafana/loki.

MEDIUM - Developing a distributed web scraper using Celery. [S.l.: s.n.], 2020.
Available from: https://medium.com/nam-r/developing-a-distributed-web-
scraper-using-celery-24c17df4cc63.

MESSAGE-BROKERS - Key Models, Use Cases Tools Simplified 101. [S.l.: s.n.],
2022. Available from: https://hevodata.com/learn/message-brokers/#intro.

METABASE - The BI tool with the friendly UX and integrated tooling to let your
company explore data on their own. [S.l.: s.n.]. Available from:
https://www.metabase.com/.

MICROSERVICES - What are microservices? [S.l.: s.n.]. Available from:
https://microservices.io/.

N8N - The workflow automation platform that doesn’t box you in, that you never
outgrow. [S.l.: s.n.]. Available from: https://n8n.io/.

NOMAD - Orchestration Made Easy. [S.l.: s.n.]. Available from:
https://www.nomadproject.io/.

PANDAS Profiling - A Python library that generates profile reports from a pandas
DataFrame. [S.l.: s.n.]. Available from:
https://github.com/ydataai/pandas-profiling.

PIPENV - Python Development Workflow for Humans. [S.l.: s.n.]. Available from:
https://pypi.org/project/pipenv/.

POSTGRES - The World’s Most Advanced Open Source Relational Database.
[S.l.: s.n.]. Available from: https://www.postgresql.org/.

PYDANTIC - Data validation using Python type hints. [S.l.: s.n.]. Available from:
https://github.com/pydantic/pydantic.

REACT - A JavaScript library for building user interfaces. [S.l.: s.n.]. Available from:
https://reactjs.org/.

https://github.com/grafana/loki
https://medium.com/nam-r/developing-a-distributed-web-scraper-using-celery-24c17df4cc63
https://medium.com/nam-r/developing-a-distributed-web-scraper-using-celery-24c17df4cc63
https://hevodata.com/learn/message-brokers/#intro
https://www.metabase.com/
https://microservices.io/
https://n8n.io/
https://www.nomadproject.io/
https://github.com/ydataai/pandas-profiling
https://pypi.org/project/pipenv/
https://www.postgresql.org/
https://github.com/pydantic/pydantic
https://reactjs.org/

References 70

REDIS - The open source, in-memory data store used by millions of developers as a
database, cache, streaming engine, and message broker. [S.l.: s.n.]. Available from:
https://redis.io/.

SCALING - Horizontal Vs. Vertical Scaling: How Do They Compare? [S.l.: s.n.].
Available from:
https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling.

SCRAPY - An open source and collaborative framework for extracting the data you
need from websites. [S.l.: s.n.]. Available from: https://scrapy.org/.

SENTRY - Take action on broken lines of code, crashes, and busted API calls with the
only developer-first app monitoring platform built to give you answers - not clues.
[S.l.: s.n.]. Available from: https://sentry.io/.

SMARTPROXY - Access competitive business data anywhere in the world with proxies.
[S.l.: s.n.], 2022. Available from: https://smartproxy.com/.

TCP - What is Transmission Control Protocol TCP/IP? [S.l.: s.n.]. Available from:
https://www.fortinet.com/resources/cyberglossary/tcp-ip.

TIMESCALE - Postgres for time-series. [S.l.: s.n.]. Available from:
https://www.timescale.com/.

UDP - What is User Datagram Protocol (UDP/IP)? [S.l.: s.n.]. Available from: https:
//www.cloudflare.com/learning/ddos/glossary/user-datagram-protocol-udp/.

WEB-BROWSER - What is a Web browser? [S.l.: s.n.]. Available from:
https://www.techopedia.com/definition/288/web-browser.

ZYTE - Web Data Made Easy. [S.l.: s.n.]. Available from: https://www.zyte.com/.

https://redis.io/
https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling
https://scrapy.org/
https://sentry.io/
https://smartproxy.com/
https://www.fortinet.com/resources/cyberglossary/tcp-ip
https://www.timescale.com/
https://www.cloudflare.com/learning/ddos/glossary/user-datagram-protocol-udp/
https://www.cloudflare.com/learning/ddos/glossary/user-datagram-protocol-udp/
https://www.techopedia.com/definition/288/web-browser
https://www.zyte.com/

	Title page
	Approval
	Dedication
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Objectives
	Structure of the document

	Web Data Collection Fundamentals
	What is a web bot
	Web Communication
	Data collection in scale
	The value of web bots to the client
	Final Comments

	Problem Description
	Final Comments

	Planning
	Requirements
	Timeline
	Management
	Communication
	Tasks and People Management
	Code Management
	Git

	Work Methodology
	Workflow

	Out-of-the-box solutions
	Final Comments

	Solution
	Fulfilling the Requirements
	Scalability
	Download
	Data Persistence
	Saving the Progress
	Standardization
	Cron job
	Rate limit
	Monitoring
	Cache
	Requirements Conclusion

	Basic Functionality
	Command Line Interface (CLI)
	Data Validation

	Deployment
	Docker
	Environments
	Comparing the Environments
	Development
	Homologation
	Production

	Final Comments

	Conclusion
	References

