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Can you reach me? No, you can’t (Aha).
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Resumo

A computação quântica adiabática (CQA) tem sido estudada co-
mo uma alternativa ao modelo de computação quântica baseado
em circuitos, especialmente tratando-se de problemas de otimização.
Estudos recentes mostraram a aplicabilidade da CQA no contexto
da fatoração de inteiros. Este trabalho propõe uma fórmula gené-
rica para um operador Hamiltoniano, que codifica a solução para
o problema da fatoração de inteiros. Esta fórmula inclui simplifica-
ções booleanas, seguidas da quadratização do Hamiltoniano através
de dois métodos diferentes. Este trabalho também apresenta uma
comparação entre estes dois métodos de quadratização, consideran-
do métricas como o número de variáveis auxiliares necessário e o
intervalo de coefiecientes dos Hamiltonianos resultantes.

Palavras-chaves: Fatoração de inteiros. Computação quântica adia-
bática. Quadratização de Hamiltonianos. Funções pseudo-booleanas.





Abstract

Adiabatic quantum computing (AQC) has been studied as an al-
ternative for the circuit-based quantum computing model, specially
regarding optimization problems. Recent studies have shown the ap-
plicability of AQC in the context of integer factorization. We have
provided a general formula for a Hamiltonian operator, which en-
codes the solution to the integer factorization problem. This formula
includes Boolean simplifications, followed by a Hamiltonian quadra-
tization via two different methods. We also present a comparison be-
tween these two quadratization methods, considering metrics such
as the number of auxiliary variables required and the range of coef-
ficients in the resulting Hamiltonians.

Keywords: Integer factorization. Adiabatic quantum computing. Hamil-
tonian quadratization. Pseudo-Boolean functions.
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Introduction

The integer factorization problem poses the question: given
a positive integer N , what are its prime factors? At first, this might
seem like an easy question to answer. Naively, one may simply at-
tempt to check every number between 1 and N , and discover which
of them divides N perfectly. In fact, this is fine for small numbers,
since we don’t have to check many values before finding a prime
factor for N .

The problem arises when N is a very large number, with
hundreds, if not thousands of bits. It is easy to see that, as the
number of bits n increases1, the search space grows at a rate of about
2n. Thus, the naive approach of checking every number becomes
rapidly intractable.

On the other hand, if we take a less naive path, one might
consider using the General Number Field Sieve (GNFS) algorithm,
proposed by Lenstra et al. (1993), which is the best known classical
algorithm for factoring integers. Still, this algorithm only provides
a sub-exponential runtime, expressed in the L-notation as follows:

Ln

1
3 ,
(64

9

)1
3


Surprisingly, though, and despite its importance, the exact

1 Throughout this study, we will always refer to N as the number being factored,
and n as the number of bits of N . Notice that n ≈ log2 N .
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complexity of the integer factorization problem remains unknown
(KNUTH, 1997). It is therefore possible – although unlikely – that
an efficient classical algorithm, capable of factoring integers in poly-
nomial time, is still waiting to be discovered.

For now, though, since no one has ever found an efficient
classical algorithm for factorization, it is believed that finding the
factors of a number is a hard problem for classical computers to solve,
in general. It also turns out that this assumed difficulty on trying
to factor large numbers can be taken advantage of by cryptography
schemes, such as the RSA (Rivest-Shamir-Adleman) cryptosystem.
The RSA cryptosystem is a public-key cryptography scheme widely
used around the world, for secure data transmission and digital sig-
natures (NIELSEN; CHUANG, 2010, p. 11).

The RSA scheme involves a pair of public and private keys.
These keys are generated from a large number N , which is the prod-
uct of two large primes p and q, of about the same size. The security
provided by RSA comes from the fact that it is computationally very
difficult to derive a private key from someone’s public key, unless one
knows the factorization of N = pq. Thus, the advent of a new, more
powerful factoring algorithm is of great interest, because it poses a
threat to such cryptosystems (STALLINGS, 2013, p. 272-275).

Usually, minor advances in factorization can be overcome
by RSA, by simply choosing larger key-sizes (i.e., choosing a larger
N). Since 2015, the National Institute of Standards and Technology
(NIST) recommends key-sizes of at least 2048 bits for RSA, which
are considered secure nowadays (BARKER; DANG, 2015).

Currently, the world record for largest RSA number ever
factored is known as RSA-250, which has 250 decimal digits (or 829
bits). It was factored in February 2020 using the GNFS algorithm,
and it took researchers almost 2700 CPU core-years2 of processing
in a classical computer (BOUDOT et al., 2020).

Unfortunately, as the current size of transistors approaches
a physical limit, and quantum effects start interfering with the be-
havior of conventional electronic circuits, the growth rate of classical
2 Using the 2.1GHz Intel Xeon Gold 6130 CPU as a reference.
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computing power predicted by Moore’s Law3 has decreased. There-
fore, it seems unlikely for the near future that RSA schemes should
be threatened solely by classical computers.

In that sense, quantum computing is being studied as a
model of computation alternative to classical computing. It is be-
lieved to be impossible for a classical computer to efficiently simu-
late a quantum computer. Thus, the quantum paradigm seems to
offer a welcome advantage when compared to classical computing.

In fact, there are certain quantum algorithms whose effi-
ciency overcomes that of any known classical algorithm. Perhaps
the most famous example of this is the algorithm proposed by Shor
(1994), which is capable of factoring a number N in a polynomial
number of steps4, using a (circuit-based) quantum computer. Unfor-
tunately, the current technology of quantum circuits does not allow
for any meaningful, practical implementation of Shor’s algorithm, be-
cause today’s noisy intermediate-scale quantum (NISQ) computers
simply do not offer a significant amount of error-corrected qubits.

The current record for largest number ever factored using
Shor’s algorithm, in an actual quantum computer, was achieved in
2012. The number factored in that occasion was N = 21, which is
obviously very small (MARTÍN-LÓPEZ et al., 2012).

Nonetheless, this result goes to show that efficient factoriza-
tion through quantum computing may one day be a reality. This
is a relevant topic, because, as mentioned before, being able to ef-
ficiently factor large integers makes it possible to efficiently break
certain types of encryption. Hence, it is speculated that the dawn of
a powerful quantum computer could lead to Internet security issues
in the future (STALLINGS, 2013).

Meanwhile, as the notion of circuit-based quantum comput-
ers grows in popularity – so much as to have become the standard
model of quantum computation –, other approaches to quantum
computing are also being developed. An example of that is the idea
3 Moore’s Law, formulated in 1965 by Gordon Moore, stated that the computa-

tional power of classical computers would double regularly every two years. Ac-
cording to Nielsen and Chuang (2010), this prediction remained approximately
correct from the 1960s until the early 2000s.

4 Regarding the number of bits n of the input number.
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of using adiabatic evolution as the means for achieving quantum
computation. This paradigm is commonly referred to as adiabatic
quantum computing, or AQC for short.

Initially proposed by Farhi et al. (2000), in the context of
quantum computing via adiabatic evolution, a given problem is en-
coded in the construction of a quantum operator, called the Hamil-
tonian operator. The quantum system is then evolved adiabatically
– that is, slowly – to match the ground state of said Hamiltonian,
which in turn yields the solution to the problem.

Several examples of integer factorization achieved using AQC
– and also using quantum annealing, which is a similar technique –
can be found in recent literature. For instance, Peng et al. (2008)
showed the factorization of the number 21 via adiabatic quantum
computing. Some time later, Xu et al. (2012) successfully factored
the number 143 in a quantum device. In 2014, however, Dattani
and Bryans (2014) explained that the same Hamiltonian employed
by the previous paper is sufficient to factor larger numbers, such
as 3599, 11663, and 56153. They also demonstrate the factorization
of the number 175, which is the product of three primes (i.e., the
product of 5× 5× 7).

Although targeted with some criticism5 for only consider-
ing hand-picked, easy instances of the integer factorization problem,
these studies present promising results for factorization through adi-
abatic evolution. Additionally, most of the proposed Hamiltonians
seem to require some type of quadratization method, that trans-
forms 3- and 4-body interactions into 2-body interactions, due to
physical limitations in current quantum devices.

Consequently, different quadratization methods for pseudo-
Boolean functions6 have been proposed in recent years7. Following
some new developments8, it is clear that different quadratization
methods can affect the adiabatic computation in different ways –
5 See Mosca and Verschoor (2019).
6 Boros and Hammer (2002) define pseudo-Boolean functions as mappings from

strings of binary digits to real (or integer) values. They are usually denoted in
the form f : Bn −→ R.

7 See Freedman and Drineas (2005); Ishikawa (2011); Dattani and Chau (2019).
8 See Dattani (2019).
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these include the number of qubits needed and the range of coupling
strengths between those qubits.

For these reasons, the present study aims at exploring the ef-
fects that different quadratization methods have on the Hamiltonian
for integer factorization. We will specifically address the methods
proposed by Ishikawa (2011) and Dattani and Chau (2019).

OBJECTIVE

The present work aims at studying the complexity of integer
factorization, using the adiabatic quantum computing model as a
background. The main goal is to study how different quadratization
methods affect the Hamiltonian for the integer factorization problem.
Below, we also provide a list of specific goals and results this study
hopes to attain:

1. Study different ways to encode the integer factorization prob-
lem into a Hamiltonian operator.

2. Present a general formula for the integer factorization Hamil-
tonian.

3. Implement the quadratization methods proposed by Ishikawa
(2011) and Dattani and Chau (2019) over the integer factoriza-
tion Hamiltonian, and explore their effects on the final Hamil-
tonian.

4. Provide a comparison between the quadratization methods pro-
posed by Ishikawa (2011) and Dattani and Chau (2019), con-
sidering the following set of metrics:

a) The number of auxiliary variables added by each method.

b) The number of resulting quadratic monomials in the final
Hamiltonian.

c) The estimated connectivity between the qubits.

d) The range of coefficients in the final Hamiltonian.
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WORK OUTLINE

This document is organized as follows: Chapter 1 character-
izes the foundations of adiabatic quantum computing. It also dives
into some concepts from quantum mechanics, including the very im-
portant adiabatic theorem. Chapter 2 focuses on the actual integer
factorization problem, dealing with its precise definition and how it
can be encoded into the Hamiltonian operator.

Moreover, Chapter 3 presents a comparison between two
Hamiltonian simplification (or rather quadratization) methods, in-
cluding the calculation of different metrics that help evaluate each
methods’ cost and effectiveness. Finally, the last chapter summarizes
what has been achieved during this study, and discusses potential
future works.

We also provide two appendices. Appendix A explains the
main concepts of quantum information and quantum computation,
all the way from quantum bits to quantum circuits and gates. Mean-
while, Appendix B provides a proof for the equality of two Hamilto-
nian expressions, which are discussed in detail in Chapter 2.

At the end of this work, we also provide an annex comprised
of an article summarizing the present study’s achievements and main
results.



Chapter 1

Adiabatic Quantum Computing

The adiabatic quantum computing (AQC) model is a fairly
recently proposed quantum computational paradigm. It distinguishes
itself quite a lot from the standard circuit-based quantum model,
because it is not based around sequences of unitary quantum gates.
Rather, in AQC the solution to a problem is encoded in the state
of a Hermitian operator, known as the Hamiltonian operator – or
simply Hamiltonian.

The idea behind AQC is to slowly evolve a quantum system
from an initial Hamiltonian, whose ground state is known and easy
to prepare, into another Hamiltonian, whose ground state is initially
unknown, but which encodes the solution to a given problem. In
theory, the system is guaranteed to converge to the ground state
of the final Hamiltonian, as long as the conditions imposed by the
adiabatic theorem are met (ALBASH; LIDAR, 2018).

This chapter aims to explain the general idea behind adia-
batic quantum computing, including the adiabatic theorem which
makes AQC possible. We begin by establishing some concepts bor-
rowed from quantum mechanics, which are necessary to properly
understand this model.
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1.1 QUANTUM MECHANICS

In physics, an observable is any physical quantity that can
be measured, such as the position or momentum of a body, for ex-
ample. In classical physics, these observables are described by real-
valued functions. In quantum systems, however, they are described
by Hermitian operators, as per Nielsen and Chuang (2010, Postulate
3, p. 85) and Griffiths (2004, p. 97).

A Hermitian operator is a matrix H that obeys the rela-
tion H = H†, meaning it is self-adjoint. In particular, the result
of measuring a quantum observable is always an eigenvalue of the
associated Hermitian operator.

1.1.1 The Hamiltonian Operator

The Hermitian operator associated with the total energy of a
quantum system receives a special name: it is called the Hamiltonian
operator.

Definition 1.1.1 (Hamiltonian Operator). A Hamiltonian operator is
a hermitian operator associated with the observable that represents
the total energy of a quantum system.

Moreover, letH be the Hamiltonian of a particular quantum
system. Let {λ0, λ1, ..., λn} be the set of eigenvalues of H, which
corresponds to the energy spectrum of the system. Without loss of
generality, assume λ0 ≤ λ1 ≤ ... ≤ λn. Thus, a measurement of
the energy level of this system is only allowed to yield energy levels
Ei, that are exactly defined by the set of eigenvalues of H, meaning
Ei = λi. Additionally, the lowest energy level – or levels, since there
can be multiple states with the same energy level – is called the
ground state of that system.

Definition 1.1.2 (Ground State). The ground state of a system is
the state with the lowest energy level among all possible states. If a
Hamiltonian has more than one ground state, it is called a degener-
ate Hamiltonian (GRIFFITHS, 2004).

Also, each energy level (eigenvalue) has an eigenstate associ-
ated to it, meaning that for some state vectors, the following relation
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holds:

H |ψi〉 = Ei |ψi〉

1.1.2 Time Evolution of a Quantum System

The time evolution of a closed quantum system can be ex-
pressed in at least two different ways. According to Nielsen and
Chuang (2010, Postulate 2, p. 81), it is natural to represent the evo-
lution of a closed quantum system from an initial state |ψi〉 to a
final state |ψf 〉 as:

|ψf 〉 = U |ψi〉 ,

where U is a unitary operator.
In the context of circuit-based quantum computing, U can

be interpreted as being associated with a sequence of one or more
quantum gates. This interpretation directly corresponds to the idea
of quantum circuits, in which the computation occurs in somewhat
discrete steps.

Another way to define this evolution is to describe it in
terms of a Hermitian operator. This can be done through the time-
dependent Schrödinger equation (NIELSEN; CHUANG, 2010, Pos-
tulate 2’, p. 82):

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 . (1.1)

Here, H is the Hamiltonian operator and |ψ(t)〉 is the state
of the quantum system, which is a function of time. Note, however,
that we can write the Hamiltonian as a function of time as well, thus
arriving at Equation 1.2:

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 . (1.2)

By writing it this way, not only does H(t) describe the sys-
tem evolution through time, but the Hamiltonian itself also changes
with time. This is important, because it allows us to evolve an ini-
tial Hamiltonian into a final Hamiltonian, effectively swapping the
operators amid a computation. This idea will be discussed in more
detail later.
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1.1.3 Adiabaticity

The word adiabatic (from the Greek adiabátos, meaning im-
passable) can mean different things depending on the field of study.
In thermodynamics, for example, it is used to describe a system
isolated from any heat transfer. In quantum mechanics, however, it
refers to a slowly changing system, which suffers interference from
the outside world, but in a very gradual manner.

1.1.3.1 Adiabatic Process

As claimed by Griffiths (2004, p. 368), in quantum mechan-
ics, an adiabatic process is defined by a gradual change of external
conditions. The author uses the following analogy: imagine a perfect
pendulum, with no friction or air resistance, oscillating in a vertical
plane inside a box (see Figure 1.1). If a person grabs hold of the box
and shakes it, the pendulum will lose its regular motion, and transi-
tion into a chaotic movement regime. On the other hand, however, if
the person moves the box slowly and gently, the pendulum will suf-
fer some small disturbance, but will tend to maintain its oscillating
regular motion in approximately the same vertical plane as before.

1.1.3.2 The Adiabatic Theorem

The adiabatic approximation, given in the definition of an
adiabatic process, can be cast into a theorem, for the context of
quantum processes.

According to Albash and Lidar (2018), it was Born and Fock
(1928) who first proposed the modern version of the adiabatic ap-
proximation. Later, Kato (1950) is said to have formalized the first
quantum adiabatic theorem in more strict, mathematical terms.

Below, we give a less rigorous definition for the adiabatic
theorem, which is mainly based in the description given by Albash
and Lidar (2018).

Theorem 1.1 (The Adiabatic Theorem). A system prepared in the
ground state |ψ0(0)〉 of a time-dependent Hamiltonian H(t) will re-
main in the instantaneous ground state |ψ0(t)〉 of H(t), provided
that:
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Figure 1.1 – Example of adiabatic motion.

The picture shows the drawing of a person holding a box with a pendulum inside.
It serves as an analogy for the adiabatic process. If the box is handled gently and
steadly, the pendulum inside the box will keep swinging with the same amplitude.
Source: extracted from (GRIFFITHS, 2004, Figure 10.1)

1. H(t) varies slowly and gradually enough.

2. The energy gap between the ground state energy level E0 and
the first excited state energy level E1 is sufficiently large.

In other words, if a quantum system, prepared in its ground
state |ψ0(t)〉, suffers small interferences from the outside world, caus-
ing its HamiltonianH(t) to change very gradually, the system should
still remain in its ground state. Although the ground state per se at
a time t = t0 may be different from the ground state at the initial
time t = 0 (because it is time-dependent and thus varies with time),
the system itself will be in a state which is the ground state at said
time t = t0.

This notion of the current ground state of an evolving sys-
tem is usually called the instantaneous ground state, meaning the
ground state of H(t) at a fixed time t = t0, or rather the ground
state of H(t = t0).

Note, however, that this is only guaranteed if both condi-
tions from the adiabatic theorem are met. This means that not only
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should the evolution be adiabatic – slow, gradual –, but the gap be-
tween the minimum energy level and all other energy levels should
be large enough. This second condition is necessary to ensure that
no unwanted state transitions occur during the evolution.

Take Figure 1.2 as an example. This picture shows the evo-
lution of the energy levels of an arbitrary Hamiltonian H(t). The
line in red, at the bottom, shows the minimum energy level at each
moment – i.e., the energy level of the ground state of the system.
If this line were to cross any other energy level, a state transition
could occur, and thus the adiabatic theorem would not apply.

Figure 1.2 – Evolution of energy levels.

The graph shows the evolution of energy levels of an arbitrary Hamiltonian. The
line in red marks the evolution of the minimum energy level, which corresponds to
the energy level of the ground state of the system. Source: developed by the author.
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1.2 THE ADIABATIC MODEL OF COMPUTATION

Consider a quantum system such as the one described in
Theorem 1.1. One can view the time-dependent Hamiltonian H(t)
as an interpolation between an initial Hamiltonian Hi, and a final
Hamiltonian Hf . This gives rise to the usual description of adiabatic
quantum computing.

Assume the ground state ofHi is known and easy to prepare.
On the other hand, imagine we can encode the solution to a problem
in the ground state of the Hf

1. If we are able to evolve the system
from Hi to Hf adiabatically, then the adiabatic theorem ensures
the system will approach the ground state of Hf , which encodes the
solution to our problem. This is the general idea for a computation
in the adiabatic quantum computing paradigm.

Definition 1.2.1 (Computation – AQC). A computation, in the con-
text of AQC, is represented by the evolution of a quantum system, in
adiabatic conditions, from an initial Hamiltonian Hi – whose ground
state is known and easy to prepare – into a final Hamiltonian Hf ,
whose ground state encodes the solution to a problem.

Additionally, we can also describe the time-dependent Hamil-
tonian H(t) through an equation, which marks the interpolation
between Hi and Hf .

To do so, let T be the total time for a computation. Let
t ∈ [0, T ] mark the evolution of time inside the system. It can be
convenient to work with a normalized interval, so let us define s =
t/T such that s ∈ [0, 1]. Thus, we say the computation starts at time
s = 0 and ends at time s = 1.

Instead of working with H(t), let us consider H(s) without
any loss of generality. It is possible to write the time-dependent
Hamiltonian as follows:

H(s) = f0(s)Hi + f1(s)Hf , (1.3)

where f0, f1 : [0, 1] −→ R are interpolation functions.
1 Note we do not know the ground state of Hf a priori, since knowing it would

imply we also know the solution to the problem we are trying to solve.
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Note that, ideally, we want a smooth adiabatic interpolation
between the initial and final Hamiltonians, such that:

H(s = 0) = Hi, and

H(s = 1) = Hf .

Thus, some restrictions must be applied to the functions in
Equation 1.3, such that:

f0(s = 0) = 1, f1(s = 0) = 0, and
f0(s = 1) = 0, f1(s = 1) = 1.

The simplest example of such an interpolation is to choose
f0(s) = (1− s) and f1(s) = s, yielding the Hamiltonian:

H(s) = (1− s)Hi + (s)Hf .

1.2.0.1 Time Complexity and Gap Dependence

Moreover, note that the adiabatic theorem does not give an
actual value for the total time of computation T . This is actually
an important issue, because the time it takes to evolve the Hamilto-
nian will dictate the overall complexity of the problem that is being
computed.

In this sense, given what has been established so far, we
can define the minimum energy gap, described in Theorem 1.1, as
follows:

∆min = min
s∈[0,1]

(E1(s)− E0(s)),

where E0 and E1 are energy levels of the system.
Well, it turns out that, according to Albash and Lidar (2018),

a result proposed by Elgart and Hagedorn (2012) sets a rigorous up-
per bound for T , provided that H(s) satisfies some additional con-
straints – namely, H(s) must belong to the Gevrey class Gα. Here,
H(s) is said to belong to Gα if:

dH(s)
ds

6= 0, ∀s ∈ [0, 1],
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and there are constants C,R > 0 such that, for every k ≥ 1:

max
s∈[0,1]

||H(k)(s)|| ≤ CRkkαk.

This specific result from Elgart and Hagedorn (2012) estab-
lishes that T scales with the inverse of the minimum gap squared
∆2
min, except for a logarithmic correction.

Although this upper bound only applies for a certain class
of Hamiltonians, it gives an idea as to how the computation time
should scale – particularly in comparison to the minimum energy
gap. It is clear from this result that the energy gap directly impacts
the complexity of the computation.

1.2.0.2 Universality of Adiabatic Quantum Computing

It is famously known that the circuit-based quantum com-
puting model is, in fact, universal for quantum computing – meaning
it can efficiently simulate a quantum Turing machine.

Beyond that, it is also known that the circuit-based model
and the adiabatic quantum computing model are equivalent – except
for a polynomial amount of resources –, meaning they can also sim-
ulate each other efficiently. This is enough to establish that AQC is
also a universal model of quantum computation (ALBASH; LIDAR,
2018).





Chapter 2

Integer Factorization

This chapter shifts focus to explore the integer factorization
problem, and how it can be encoded into the Hamiltonian opera-
tor. Firstly, we impose some conditions, in order to properly define
the problem of interest. Then, this chapter explores how it is pos-
sible to construct a Hamiltonian that encodes the solution to the
factorization problem.

Further on, we study how some Boolean simplifications can
be applied over said Hamiltonian, in order to reduce the degree of
certain monomials that contain repeated variables. This will even-
tually lead to a general simplified formula for the integer factoriza-
tion problem. Lastly, we are finally able to explore two methods
of quadratization for our Hamiltonian: the first was proposed by
Ishikawa (2011), and the second, by Dattani and Chau (2019).

2.1 FORMALIZATION

In order to simplify the process of factoring an integer N ,
we can impose certain conditions over said number, which can help
to better study the problem. Note that verifying certain conditions
prior to factoring a number is very standard – even Shor’s algorithm
has a classical pre-processing step to it –, and helps to focus on the
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actual difficult part of factorization.
Firstly, the most trivial simplification one can think of is

to impose that N be an odd number, since even numbers have a
trivial factor 2. Secondly, N must be a composite number – i.e., not
a prime. Checking if a number is composite is a bit less trivial, but
can be achieved in polynomial time through an algorithm such as
the AKS primality test (AGRAWAL; KAYAL; SAXENA, 2004).

Lastly, we may want to impose that N have exactly two
factors – let us call them p and q from now on. This is acceptable
because it directly corresponds to RSA numbers, which are consid-
ered to be the hardest instances of factorization (that is, numbers
with exactly two factors of about the same size).

After having established these simplifications, we can prop-
erly define the factorization problem we are interested in.

Definition 2.1.1 (Integer Factorization Problem). Let N be a pos-
itive, odd, composite integer with exactly two non-trivial factors.
Find these two non-trivial factors p and q such that N = pq.

2.2 FACTORIZATION VIA ADIABATIC EVOLUTION

If we want to solve factorization via AQC, we must first find
a way to construct a Hamiltonian H from an instance of factoriza-
tion, such that the ground state of H encodes the solution to the
problem.

To do so, it can be useful to define a cost function, which
attributes more energy to configurations of factors that do not satisfy
our instance, and less energy to configurations that give the correct
factorization of our number N . Initially, let us consider a very simple
cost function fN : Z2 −→ Z, for a given integer N :

fN (x, y) = (N − xy)2. (2.1)

Notice that fN is always non-negative, and that fN = 0 if
and only if N = xy. For any other values of x, y that do not multiply
to give N , fN (x, y) will be evaluated to a value larger than zero.
Thus, intuitively, minimizing fN for some value of x, y is enough to
solve the problem of factoring N .
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Suppose we want to write x and y in their binary forms.
Although, in general, we do not know the length – in binary digits –
of the factors of N , let us assume for a moment that we do. Let us
call nx the length of bits of x. Similarly, let us call ny the number
of bits in y. Then, if we let xi be the i-th bit in x and so on, we can
write both factors in their binary form as such:

x = |xnx
xnx−1 ... x2 x1 x0|(2),

y = |yny yny−1 ... y2 y1 y0|(2).

Since we assume N is an odd number, we know x and y

must also be odd. Thus, we can set the least significant bit of x and
y to be x0 = y0 = 1.

x = |xnx xnx−1 ... x2 x1 1|(2),

y = |yny yny−1 ... y2 y1 1|(2).

Additionally, suppose we write x as a binary expansion, such
that each Boolean variable xi with coefficient 2i represents the i-th
bit of x. Suppose we do the same to y, but with a different index k:

x =
nx∑
i=1

2ixi + 1, and y =
ny∑
k=1

2kyk + 1.

Then, we can rewrite fN as a pseudo-Boolean1 function FN :
Bnx+ny −→ Z, which will describe our Hamiltonian HN , such that:

FN (x1, ..., xnx , y1, ..., yny ) =
[
N −

(
nx∑
i=1

2ixi + 1
)( ny∑

k=1
2kyk + 1

)]2

.

(2.2)

From Equation 2.2 it is easy to construct a Hamiltonian: we
just have to replace each Boolean variable xi, yk with the appropriate
quantum operator x̂i, ŷk. A very natural choice for these operators
1 Pseudo-Boolean functions are functions of the form f : Bn −→ R, that is, func-

tions defined in the Boolean domain, with real – or integer – codomain. For the
purposes of this study, we will only deal with pseudo-Boolean functions with in-
teger codomain Z.
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is given below:

x̂i = I − σzi
2 , and ŷk = I − σzk

2 ,

where σz is the Z Pauli matrix and I is simply the identity matrix.
Finally, we arrive at Equation 2.3, which describes the Hamil-

tonian for the problem, such as the one presented by Hegade et al.
(2021).

HN =
[
NI −

(
nx∑
i=1

2ix̂i + I

)( ny∑
k=1

2kŷk + I

)]2

. (2.3)

2.2.1 Bounds on the Length of Factors

Note that, to construct the Hamiltonian for Equation 2.3
we assumed the lengths of x, y in bits were nx and ny respectively.
However, we do not know these exact values before factoring N .

Thankfully, though, there are certain bounds we can use for
the lengths of x and y. For example, Hegade et al. (2021) mentions
a result from Peng et al. (2008) that sets an upper bound on the
values of nx and ny. To achieve that, Peng et al. (2008) imposes,
without loss of generality, the following conditions:

1. x ≤ y,

2. and 3 ≤ x ≤
√
N ,

3. and
√
N ≤ y ≤ N/3.

Then, provided these conditions are met, the authors define
the length bounds as follows2:

nx = dlog2b
√
Ncodde − 1, and ny = dlog2b

N

3 ce − 1. (2.4)

2.3 GENERAL SIMPLIFIED FORMULA

When expanded, the Hamiltonian presented in Equation 2.2
looks like a pseudo-Boolean polynomial of degree four. However,
2 Here, b·codd means the largest odd integer not larger than (·).
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some of its terms can be further simplified. Let us look at an ex-
ample for when N = 21:

H21 = 16x2
1y

2
1 + 64x2

1y1y2 + 16x2
1y1 + 64x2

1y
2
2 + 32x2

1y2 + 4x2
1

+ 16x1y
2
1 + 64x1y1y2 − 152x1y1 + 64x1y

2
2 − 304x1y2

− 80x1 + 4y2
1 + 16y1y2 − 80y1 + 16y2

2 − 160y2 + 400.

We can see this Hamiltonian involves only three Boolean
variables: x1, y1 and y2. Yet, several of its terms involve repeated
variables (e.g., the first term 16x2

1y
2
1 involves x1 twice and y1 twice),

which leads to some squared Boolean variables in our formula. This
needn’t be the case, and we can simplify this Hamiltonian by getting
rid of these squared variables.

Of course, this simplification is only possible because we
know all of our variables are Boolean variables, which means they
can only take the discrete values 0 and 1. Therefore, it is easy to see
that any Boolean variable b ∈ B remains unchanged under exponen-
tiation, meaning bm = b, because 0m = 0 and 1m = 1, at least as
long as the exponent m is an integer. Knowing this, we can go back
to our Hamiltonian H21 and replace every x2

i with just xi. We do
the same for every yk variable:

H21 = 16x1y1 + 64x1y1y2 + 16x1y1 + 64x1y2 + 32x1y2 + 4x1

+ 16x1y1 + 64x1y1y2 − 152x1y1 + 64x1y2 − 304x1y2

− 80x1 + 4y1 + 16y1y2 − 80y1 + 16y2 − 160y2 + 400
H21 = 128x1y1y2 − 104x1y1 − 144x1y2 − 76x1 + 16y1y2

− 76y1 − 144y2 + 400.

Naturally, we would like to be able to apply this simplifi-
cation to the general case. To do so, we must work on expanding
the function from Equation 2.2. Also, to simplify notation, we will
from now on refer to the function FN as simply HN , which is our
Hamiltonian.

Firstly, let us expand the product x × y (in their binary
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expansions) from Equation 2.2, which will take us to the following:

HN =
[
N −

(
nx∑
i=1

2ixi
ny∑
k=1

2kyk +
nx∑
i=1

2ixi +
ny∑
k=1

2kyk + 1
)]2

=
[
(N − 1)−

(
nx∑
i=1

2ixi
ny∑
k=1

2kyk

)
−
(
nx∑
i=1

2ixi

)
−
( ny∑
k=1

2kyk

)]2

.

Secondly, we must expand the outermost square that sur-
rounds the whole formula. Doing so will yield a larger, messier for-
mula which is shown next. In addition to that, we change some
indexes from i to j (regarding x variables) and from k to l (regard-
ing y variables) to avoid confusion. This has been done to preserve
the integrity of the products between different summations.

HN =
(
nx∑
i=1

2ixi
ny∑
k=1

2kyk

)2

+
(
nx∑
i=1

2ixi

)2

+
( ny∑
k=1

2kyk

)2

+ 2

 nx∑
i=1

2ixi
nx∑
j=1

2jxj
ny∑
k=1

2kyk

− 2(N − 1)
(
nx∑
i=1

2ixi

)

+ 2
(
nx∑
i=1

2ixi
ny∑
k=1

2kyk
ny∑
l=1

2lyl

)
− 2(N − 1)

( ny∑
k=1

2kyk

)

− 2(N − 2)
(
nx∑
i=1

2ixi
ny∑
k=1

2kyk

)
+ (N − 1)2.

(2.5)

Further on, the first three terms in Equation 2.5 are squared,
so we should resolve them too. Once again, we change some indexes
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to avoid confusion:

HN =

 nx∑
i=1

2ixi
nx∑
j=1

2jxj
ny∑
k=1

2kyk
ny∑
l=1

2lyl


+

 nx∑
i=1

2ixi
nx∑
j=1

2jxj

+
( ny∑
k=1

2kyk
ny∑
l=1

2lyl

)

+ 2

 nx∑
i=1

2ixi
nx∑
j=1

2jxj
ny∑
k=1

2kyk

− 2(N − 1)
(
nx∑
i=1

2ixi

)

+ 2
(
nx∑
i=1

2ixi
ny∑
k=1

2kyk
ny∑
l=1

2lyl

)
− 2(N − 1)

( ny∑
k=1

2kyk

)

− 2(N − 2)
(
nx∑
i=1

2ixi
ny∑
k=1

2kyk

)
+ (N − 1)2.

(2.6)

Finally, we can move the coefficients that are outside the
parenthesis to inside the summations, so they can be written to-
gether with the coefficients that are already there.

HN =

 nx∑
i=1

2ixi
nx∑
j=1

2jxj
ny∑
k=1

2kyk
ny∑
l=1

2lyl


+

 nx∑
i=1

2ixi
nx∑
j=1

2jxj

+
( ny∑
k=1

2kyk
ny∑
l=1

2lyl

)

+

 nx∑
i=1

2i+1xi

nx∑
j=1

2jxj
ny∑
k=1

2kyk

−( nx∑
i=1

2i+1(N − 1)xi

)

+
(
nx∑
i=1

2i+1xi

ny∑
k=1

2kyk
ny∑
l=1

2lyl

)
−
( ny∑
k=1

2k+1(N − 1)yk

)

−
(
nx∑
i=1

2i+1(N − 2)xi
ny∑
k=1

2kyk

)
+ (N − 1)2.

(2.7)

Now, we must deal with the products between summations
with different indexes. It is not hard to see that some of them will
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produce terms with repeated variables – which is what we are trying
to get rid of, in order to simplify the final expression. Take, for
instance, the second term on Equation 2.7, which is the product of
two summations over x:

nx∑
i=1

2ixi
nx∑
j=1

2jxj . (2.8)

As we can see, the first summation is indexed with i and the
second, with j. For that reason, we should consider three different
cases:

nx∑
i=1

2ixi
nx∑
j=1

2jxj =



∑
1≤i<j≤nx

2i+jxixj , i < j∑
1≤j<i≤nx

2i+jxixj , i > j∑
1≤i≤nx

22ix2
i , i = j.

(2.9)

Note however, that if we replace i for j and vice-versa in the
second case, we can write i < j for both the first and second cases.
Because they are symmetric in relation to each other (both i and
j vary from 1 through nx), we can transform the first and second
cases into one single expression. Moreover, as we’ve seen before, any
Boolean variable squared equals itself. Thus, we can reduce the x2

i

in the third case of Equation 2.9 into simply xi.

nx∑
i=1

2ixi
nx∑
j=1

2jxj =


∑

1≤i<j≤nx

2i+j+1xixj , i < j∑
1≤i≤nx

22ixi, i = j.
(2.10)

Finally, we arrive at the simplified Equation 2.11 for that
single term shown in Equation 2.8.

nx∑
i=1

2ixi
nx∑
j=1

2jxj =

 ∑
1≤i<j≤nx

2i+j+1xixj +
∑

1≤i≤nx

22ixi

 . (2.11)

Naturally, we can repeat this process for all the terms in
the Hamiltonian from Equation 2.7. This will yield the longer – yet
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simpler – Hamiltonian presented below.

HN =

 ∑
1≤i<j≤nx

1≤k<l≤ny

2i+j+k+l+2xixjykyl +
∑

1≤i<j≤nx

1≤k≤ny

2i+j+2k+1xixjyk

+
∑

1≤i≤nx

1≤k<l≤ny

22i+k+l+1xiykyl +
∑

1≤i≤nx

1≤k≤ny

22i+2kxiyk


+

 ∑
1≤i<j≤nx

2i+j+1xixj +
∑

1≤i≤nx

22ixi


+

 ∑
1≤k<l≤ny

2k+l+1ykyl +
∑

1≤k≤ny

22kyk



+

 ∑
1≤i<j≤nx

1≤k≤ny

2i+j+k+2xixjyk +
∑

1≤i≤nx

1≤k≤ny

22i+k+1xiyk


−

 ∑
1≤i≤nx

2i+1(N − 1)xi



+

 ∑
1≤i≤nx

1≤k<l≤ny

2i+k+l+2xiykyl +
∑

1≤i≤nx

1≤k≤ny

2i+2k+1xiyk


−

 ∑
1≤k≤ny

2k+1(N − 1)yk



−

 ∑
1≤i≤nx

1≤k≤ny

2i+k+1(N − 2)xiyk

+ (N − 1)2.

(2.12)

Now, if we rearrange some terms and join them with terms
involving the same variables, we arrive at the following expression,
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which we will refer to as our general simplified formula:

HN =
∑

1≤i<j≤nx

1≤k<l≤ny

2i+j+k+l+2xixjykyl

+
∑

1≤i<j≤nx

1≤k≤ny

(2i+j+2k+1 + 2i+j+k+2)xixjyk

+
∑

1≤i≤nx

1≤k<l≤ny

(22i+k+l+1 + 2i+k+l+2)xiykyl

+
∑

1≤i≤nx

1≤k≤ny

[22i+2k + 22i+k+1 + 2i+2k+1 − 2i+k+1(N − 2)]xiyk

+
∑

1≤i<j≤nx

2i+j+1xixj +
∑

1≤k<l≤ny

2k+l+1ykyl

+
∑

1≤i≤nx

[22i − 2i+1(N − 1)]xi +
∑

1≤k≤ny

[22k − 2k+1(N − 1)]yk

+ (N − 1)2.

(2.13)

2.4 HAMILTONIAN QUADRATIZATION

The process of quadratizing a Hamiltonian – or any pseudo-
Boolean function, for that matter – consists of transforming all its
terms of degree d > 2 into quadratic terms (i.e., d = 2). Usually,
this is done at the expense of adding auxiliary binary variables to
the initial expression.

Normally, one would want to do this quadratization process
in order to reduce the complexity of implementing a Hamiltonian
in a real physical system. This is because two-body physical interac-
tions occur more naturally than interactions involving many bodies
(DATTANI, 2019). Thus, it is generally easier to implement Hamil-
tonians with at most two-body interactions, than it is to implement
those with cubic and quartic terms, for example.

For this reason, in this section we will explore two general
methods for quadratization. The first one was proposed by Ishikawa
(2011) and the second, by Dattani and Chau (2019). We will look at
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them both in the context of the Hamiltonian for factorization that
we have defined in the previous section, in Equation 2.13.

2.4.1 Ishikawa’s Quadratization Method

Ishikawa (2011) presents a method for quadratizing a gen-
eral monomial of degree d, which is an extension of another quadra-
tization method proposed by Freedman and Drineas (2005). The au-
thor proposes this method in the context of Markov Random Fields
(MRF) minimization applied to computer vision. Nonetheless, it can
also be employed to quadratize general pseudo-Boolean functions,
such as the factorization Hamiltonian from Equation 2.13. But first,
we must look at the method itself, which is explained below.

Consider a d-degree monomial of the form αx1x2...xd, such
that xi are Boolean variables and α is a real coefficient. Let us also
define two symmetric polynomials using these variables:

S1 =
d∑
i=1

xi, and S2 =
d−1∑
i=1

d∑
j=i+1

xixj = S1(S1 − 1)
2 .

Now, according to Ishikawa (2011), we must consider two
different cases for α, should we want to quadratize this monomial.
They are given below:

Case 1: α < 0. When α is negative, the quadratization is
done via a simple substitution given by the equation:

αx1 · · ·xd = αmin
b∈B

b(S1 − d+ 1), (2.14)

where b is a newly introduced auxiliary binary variable. This equa-
tion comes directly from the method initially proposed by Freedman
and Drineas (2005).

Case 2: α > 0. When α is positive, on the other hand, the
substitution is a bit more convoluted:

αx1 · · ·xd = α min
b1···bnd

∈B

nd∑
i=1

bi(ci,d(−S1 + 2i)− 1) + αS2, (2.15)

where:

nd =
⌊
d− 1

2

⌋
, ci,d =

{
1, if d is odd and i = nd

2, otherwise.
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As can be seen above, both cases are based around a mini-
mization expression, which involves the function min parametrized
with one or more auxiliary variables bi. In both cases, the idea is
that the monomial on the left side of the equation equals the expres-
sion on the right, as long as bi takes on values which minimize said
expression.

This is generally fine in the context of adiabatic quantum
computing, because all computations are essentially trying to find
the global minimum of a cost function, which is interpreted as the
Hamiltonian’s ground state – which in turn encodes the solution
to a problem. Naturally, this is also the case for our factorization
Hamiltonian HN , whose ground state encodes the factors of N . In
that sense, it is perfectly okay to introduce new auxiliary variables
to our expression, because they will be minimized together with
the variables that are already part of our Hamiltonian (namely our
xi and yk variables). For this reason, we can essentially ignore the
extra min function added by the Ishikawa substitution, since our
Hamiltonian will be minimized anyway, throughout the adiabatic
evolution.

Furthermore, it is interesting to note that in the first case
(α < 0), only one extra variable per monomial is needed for the
quadratization. But in the second case (α > 0), nd extra variables
are needed, in which the exact number of variables depends on the
degree d of the monomial we wish to quadratize.

Let us now look at how this method can be applied to our
factorization Hamiltonian. From Equation 2.13, it is easy to see that
only the first three summations produce monomials with degree d =
3 and d = 4. Thus, the Hamiltonian of interest can be rewritten in
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an abbreviated manner, like this:

HN =
∑

1≤i<j≤nx

1≤k<l≤ny

2i+j+k+l+2xixjykyl

+
∑

1≤i<j≤nx

1≤k≤ny

(2i+j+2k+1 + 2i+j+k+2)xixjyk

+
∑

1≤i≤nx

1≤k<l≤ny

(22i+k+l+1 + 2i+k+l+2)xiykyl

+ (original terms of degree less than 3 ).

(2.16)

Moreover, it is also clear that the coefficients of the monomi-
als of interest are all positive, meaning α > 0. Therefore, we only care
about the second case of Ishikawa’s quadratization method, namely
Equation 2.15, when applied to the monomials of degree d = 3 and
d = 4. Thus, we can calculate the values for nd=3 and nd=4:

nd=3 =
⌊3− 1

2

⌋
=
⌊2

2

⌋
= 1,

nd=4 =
⌊4− 1

2

⌋
=
⌊3

2

⌋
= 1.

It turns out that in both cases nd = 1, meaning each mono-
mial needs only one extra variable. Furthermore, we can also calcu-
late the constants c(i=1,d=3) and c(i=1,d=4) which are used in Equa-
tion 2.15.

c(i=1,d=3) = c1,3 = 1, because d is odd and i = nd=3 = 1,
c(i=1,d=4) = c1,4 = 2, because d is even.

Now we have everything we need to rewrite Equation 2.15
for our specific cases of d = 3 and d = 4:
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Case 2.1: α > 0 and d = 3.

αx1x2x3 = αmin
b∈B

b(c1,3(−S1 + 2)− 1) + αS2

= αmin
b∈B

b(−S1 + 2− 1) + αS2

= αmin
b∈B

b(1− S1) + αS2

= αmin
b∈B

b(1− (x1 + x2 + x3)) + α(x1x2 + x1x3 + x2x3)

= αmin
b∈B

b(1− x1 − x2 − x3) + α(x1x2 + x1x3 + x2x3)

= αb(1− x1 − x2 − x3) + α(x1x2 + x1x3 + x2x3).

Case 2.2: α > 0 and d = 4.

αx1x2x3x4 = αmin
b∈B

b(c1,4(−S1 + 2)− 1) + αS2

= αmin
b∈B

b(2(−S1 + 2)− 1) + αS2

= αmin
b∈B

b(−2S1 + 4− 1) + αS2

= αmin
b∈B

b(3− 2S1) + αS2

= αmin
b∈B

b(3− 2(x1 + x2 + x3 + x4))

+ α(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)
= αmin

b∈B
b(3− 2x1 − 2x2 − 2x3 − 2x4)

+ α(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)
= αb(3− 2x1 − 2x2 − 2x3 − 2x4)

+ α(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4).

Finally, based on the equations from cases 2.1 and 2.2, it is
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possible to fully quadratize the Hamiltonian from Equation 2.16:

HN =
∑

1≤i<j≤nx

1≤k<l≤ny

2i+j+k+l+2βijkl

+
∑

1≤i<j≤nx

1≤k≤ny

(2i+j+2k+1 + 2i+j+k+2)βijk

+
∑

1≤i≤nx

1≤k<l≤ny

(22i+k+l+1 + 2i+k+l+2)βikl

+ (original terms of degree less than 3 ).

(2.17)

where:

βijkl = [bijkl(3− 2xi − 2xj − 2yk − 2yl)
+ xixj + xiyk + xiyl + xjyk + xjyl + ykyl]

βijk = [bijk0(1− xi − xj − yk) + xixj + xiyk + xjyk]
βikl = [bi0kl(1− xi − yk − yl) + xiyk + xiyl + ykyl].

Note that now the Hamiltonian contains monomials of at
most degree d = 2, meaning it is entirely composed of at most two-
body physical interactions. Also note that we have parametrized
each auxiliary variable b as either bijkl, bijk0 or bi0kl to avoid confu-
sion, but also to emphasize that each of them is a different extra vari-
able. Having said that, finally, the full formula for the factorization
Hamiltonian is shown below, now quadratized using the Ishikawa
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method, and without abbreviations:

HN =
∑

1≤i<j≤nx

1≤k<l≤ny

2i+j+k+l+2[bijkl(3− 2xi − 2xj − 2yk − 2yl)

+ xixj + xiyk + xiyl + xjyk + xjyl + ykyl]

+
∑

1≤i<j≤nx

1≤k≤ny

(2i+j+2k+1 + 2i+j+k+2)

∗ [bijk0(1− xi − xj − yk) + xixj + xiyk + xjyk]

+
∑

1≤i≤nx

1≤k<l≤ny

(22i+k+l+1 + 2i+k+l+2)

∗ [bi0kl(1− xi − yk − yl) + xiyk + xiyl + ykyl]

+
∑

1≤i≤nx

1≤k≤ny

[22i+2k + 22i+k+1 + 2i+2k+1 − 2i+k+1(N − 2)]xiyk

+
∑

1≤i<j≤nx

2i+j+1xixj +
∑

1≤k<l≤ny

2k+l+1ykyl

+
∑

1≤i≤nx

[22i − 2i+1(N − 1)]xi +
∑

1≤k≤ny

[22k − 2k+1(N − 1)]yk

+ (N − 1)2.

(2.18)

2.4.2 Dattani-Chau’s Quadratization Method

The second quadratization method we are going to explore
is the one proposed by Dattani and Chau (2019). The authors of
this paper show that any 4-variable pseudo-Boolean function can be
perfectly quadratized with just one auxiliary variable. This result is
cast into a theorem (Theorem 1), which is then proven by showing
explicit quadratizations for various different cases. In each case, the
authors consider the following function of Boolean variables xi ∈ B
and real-valued coefficients α:

f(x1, x2, x3, x4) = α1234x1x2x3x4 + α123x1x2x3 + α124x1x2x4

+ α134x1x3x4 + α234x2x3x4.

(2.19)
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From there, Dattani and Chau (2019) provide four lemmas
(Lemmas 1-4) that give explicit quadratizations for a few specific
configurations of the α coefficients. Then, they extend the applica-
bility of these lemmas by allowing bit-flips over the function from
Equation 2.19. This process results in 35 different cases, for which
the authors provide explicit quadratizations. In each case, the paper
suggests a quadratization procedure, which is always a combination
of a substitution (described by one of the Lemmas 1-4), plus a list
of variables of f(x1, x2, x3, x4) that should be bit-flipped.

For the purposes of this study, we will not go into the details
of all 35 cases, because our Hamiltonian really only needs the first
quadratization case, described by Lemma 1, and does not require
any bit-flips. In summary, this first lemma states that, if α1234 ≥ 0
and αijk ≥ 0 for all ijk, then Equation 2.19 is perfectly quadratized
by the following:3α1234 +

∑
ijk

αijk

 b+
∑
ij

α1234 +
∑
k/∈ij

αijk

xixj
−
∑
i

2α1234 +
∑

jk;i/∈jk
αijk

 bxi,
(2.20)

where, once again, b is an auxiliary binary variable.
Now, this means it is possible to quadratize up to five mono-

mials (one of degree 4 and another four of degree 3) using only one
extra variable, which seems better than the method proposed by
Ishikawa (2011). But, of course, the factorization Hamiltonian from
Equation 2.16 is far from the form of Equation 2.19. Therefore, for
it to work, this quadratization must be performed over small groups
of 4-variable sub-functions of HN . Let us consider an example. Take,
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for instance, the Hamiltonian for N = 33.

H33 = 256x1x2y1y2 + 512x1x2y1y3 + 128x1x2y1 + 1024x1x2y2y3

+ 384x1x2y2 + 1280x1x2y3 + 16x1x2 + 128x1y1y2 − 200x1y1

+ 256x1y1y3 + 512x1y2y3 − 336x1y2 − 416x1y3 + 384x2y1y2

+ 768x2y1y3 − 336x2y1 + 1536x2y2y3 − 480x2y2 − 192x2y3

− 240x2 − 124x1 + 16y1y2 + 32y1y3 − 124y1 + 64y2y3

− 240y2 − 448y3 + 1024.

It is possible to rearrange the terms of H33 in order to sepa-
rate quartic and cubic monomials from those of quadratic and linear
degree. While doing so, one can also try to divide those monomials
of higher degree into groups, that share the same variables:

H33 = f1212 + f1213 + f1223

+ 16x1x2 − 200x1y1 − 336x1y2 − 416x1y3 − 336x2y1

− 124x1 − 480x2y2 − 192x2y3 − 240x2 + 16y1y2 + 32y1y3

− 124y1 + 64y2y3 − 240y2 − 448y3 + 1024.
(2.21)

where:

f1212 = 256x1x2y1y2 + 128x1x2y1 + 384x1x2y2 + 128x1y1y2

+ 384x2y1y2

f1213 = 512x1x2y1y3 + 1280x1x2y3 + 256x1y1y3 + 768x2y1y3

f1223 = 1024x1x2y2y3 + 512x1y2y3 + 1536x2y2y3.

This way, each sub-function f is of the form presented in
Equation 2.19. Therefore, they can each be quadratized individually
using the Expression 2.20, like such:

f1212 = 768x1x2 + 512x1y1 + 768x1y2 + 768x2y1 + 1024x2y2

+ 768y1y2 + b1(1792− 1152x1 − 1408x2 − 1152y1 − 1408y2)
f1213 = 1792x1x2 + 768x1y1 + 2048x1y3 + 1280x2y1 + 2560x2y3

+ 1536y1y3 + b2(3840− 2560x1 − 3072x2 − 2048y1 − 3328y3)
f1223 = 1024x1x2 + 1536x1y2 + 1536x1y3 + 2560x2y2 + 2560x2y3

+ 3072y2y3 + b3(5120− 2560x1 − 3584x2 − 4096y2 − 4096y3).
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And then we can substitute these back into H33, so that the
whole Hamiltonian is fully quadratized with just 3 auxiliary variables
b1, b2 and b3:

H33 = −1152b1x1 − 1408b1x2 − 1152b1y1 − 1408b1y2 + 1792b1

− 2560b2x1 − 3072b2x2 − 2048b2y1 − 3328b2y3 + 3840b2

− 2560b3x1 − 3584b3x2 − 4096b3y2 − 4096b3y3 + 5120b3

+ 3600x1x2 + 1080x1y1 + 1968x1y2 + 3168x1y3 − 124x1

+ 1712x2y1 + 3104x2y2 + 4928x2y3 − 240x2 + 784y1y2

+ 1568y1y3 − 124y1 + 3136y2y3 − 240y2 − 448y3 + 1024.

Naturally, one would like to generalize this procedure. One
way to do this would be to construct the Hamiltonian using Equation
2.13, and then add a pre-processing step devoted to grouping similar
monomials and quadratizing each group individually. This would
work fine, but would not provide insight as to how the Hamiltonian
looks in the general case. For that reason, it is preferable to construct
a general formula for the quadratized Hamiltonian.

The goal here is to find a reliable way to group certain mono-
mials together. The challenge, though, is that there are multiple
ways one could construct these sub-functions inside the Hamiltonian
expression.

Consider, for instance, the term 128x1x2y1 in the Hamilto-
nian H33 from Equation 2.21. In the previous example, we chose to
put this monomial in the sub-function f1212, but it could have just as
easily been grouped with the other monomials from the sub-function
f1213, since they also share the same variables. For the purposes of
this quadratization method, both choices would have worked.

Thus, in order to avoid this ambiguity, one can define a set
of grouping rules that will dictate which cubic monomials will be
grouped with what quartic monomials. We have chosen a somewhat
arbitrary set of grouping rules, which follows a lexicographic order-
ing:

1. Monomials of the form xixjyl should be grouped with:

a) xixjy1y2, if l = 1.
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b) xixjy1yl, otherwise.

2. Monomials of the form xjykyl should be grouped with:

a) x1x2ykyl, if j = 1.
b) x1xjykyl, otherwise.

From these rules, we have empirically constructed a set of
nine different groupings for different intervals, in order to cover all
the monomials from the Hamiltonian, but without any overlaps.
These groupings are listed in Table 2.1.

Table 2.1 – Nine non-overlapping monomial groupings.

# Quartic monomial Cubic monomials Intervals

1 x1x2y1y2

x1x2y1
x1x2y2
x1y1y2
x2y1y2

-

2 x1x2y1yl

x1x2yl

x1y1yl

x2y1yl

l ≥ 3

3 x1xjy1y2

x1xjy1
x1xjy2
xjy1y2

j ≥ 3

4 x1xjy1yl
x1xjyl

xjy1yl
j ≥ 3, l ≥ 3

5 x1x2ykyl
x1ykyl

x2ykyl
k ≥ 2, l > k

6 xixjy1y2
xixjy1
xixjy2

i ≥ 2, j > i

7 x1xjykyl xjykyl j ≥ 3, k ≥ 2, l > k
8 xixjy1yl xixjyl i ≥ 2, j > i, l ≥ 3
9 xixjykyl - i ≥ 2, j > i, k ≥ 2, l > k

Source: developed by the author.

Notice how each of the cubic monomials in Table 2.1 is
grouped with its corresponding quartic monomial, according to the
grouping rules we have previously established. From these, it is pos-
sible to build nine sub-functions (f1 through f9), that will split our
Hamiltonian from Equation 2.16 into smaller, non-overlapping parts.
These sub-functions are presented below. We note that the coeffi-



2.4. Hamiltonian Quadratization 53

cients for each term also come directly from Equation 2.16.

f1 = 28x1x2y1y2 + 27x1x2y1 + 3 ∗ 27x1x2y2 + 27x1y1y2

+ 3 ∗ 27x2y1y2

f2 =
∑

3≤l≤ny

2l+6x1x2y1yl + 2l+5x1y1yl + (2l+5 + 22l+4)x1x2yl

+ (2l+5 + 2l+6)x2y1yl

f3 =
∑

3≤j≤nx

2j+6x1xjy1y2 + 2j+5x1xjy1 + (2j+5 + 2j+6)x1xjy2

+ (2j+5 + 22j+4)xjy1y2

f4 =
∑

3≤j≤nx

3≤l≤ny

2j+l+4x1xjy1yl + (2j+l+3 + 2j+2l+2)x1xjyl

+ (2j+l+3 + 22j+l+2)xjy1yl

f5 =
∑

2≤k<l≤ny

2k+l+5x1x2ykyl + 2k+l+4x1ykyl

+ (2k+l+4 + 2k+l+5)x2ykyl

f6 =
∑

2≤i<j≤nx

2i+j+5xixjy1y2 + 2i+j+4xixjy1

+ (2i+j+4 + 2i+j+5)xixjy2

f7 =
∑

3≤j≤nx

2≤k<l≤ny

2j+k+l+3x1xjykyl + (2j+k+l+2 + 22j+k+l+1)xjykyl

f8 =
∑

2≤i<j≤nx

3≤l≤ny

2i+j+l+3xixjy1yl + (2i+j+l+2 + 2i+j+2l+1)xixjyl

f9 =
∑

2≤i<j≤nx

2≤k<l≤ny

2i+j+k+l+2xixjykyl.



54 Chapter 2. Integer Factorization

Finally, the point is that we can rewrite the Hamiltonian
from Equation 2.16 as the sum of all these sub-functions that we
have created, such that:

HN = f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9

+ (original terms of degree less than 3.)
(2.22)

In Appendix B of this document we provide a complete proof
as to why the Hamiltonians from Equations 2.16 and 2.22 are indeed
equal.

Beyond that, since each sub-function fi is written in the
form of Equation 2.19 (except for the summations, of course), we
can employ the method proposed by Dattani and Chau (2019), and
use the substitution from Expression 2.20 to quadratize each sub-
function individually. Naturally, this will lead to the quadratization
of the entire Hamiltonian from Equation 2.22, which is presented
next.

Once again, notice that each b auxiliary variable has been
parameterized with indexes ijkl to avoid confusion, since each bijkl
is a different variable introduced by the quadratization method. Fur-
thermore, this time we have also included the original quadratic and
linear terms from Equation 2.13, which had previously been abbre-
viated.

HN = f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9

+
∑

1≤i≤nx

1≤k≤ny

[22i+2k + 22i+k+1 + 2i+2k+1 − 2i+k+1(N − 2)]xiyk

+
∑

1≤i<j≤nx

2i+j+1xixj +
∑

1≤k<l≤ny

2k+l+1ykyl

+
∑

1≤i≤nx

[22i − 2i+1(N − 1)]xi +
∑

1≤k≤ny

[22k − 2k+1(N − 1)]yk

+ (N − 1)2,

(2.23)
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where:

f1 = 28(3x1x2 + 2x1y1 + 3x1y2 + 3x2y1 + 4x2y2 + 3y1y2)
− 27(9x1 + 11x2 + 9y1 + 11y2 − 14)b1212

f2 =
∑

3≤l≤ny

22l+4(x1x2 + x1yl + x2yl)

+ 2l+5(3x1x2 + 3x1y1 + 4x1yl + 5x2y1 + 6x2yl + 6y1yl)
− 2l+5(6x1 + 8x2 + 8y1 + 9yl − 11)b121l

− 22l+4(x1 + x2 + yl − 1)b121l

f3 =
∑

3≤j≤nx

22j+4(xjy1 + xjy2 + y1y2)

+ 2j+5(6x1xj + 3x1y1 + 5x1y2 + 4xjy1 + 6xjy2 + 3y1y2)
− 2j+5(8x1 + 9xj + 6y1 + 8y2 − 11)b1j12

− 22j+4(xj + y1 + y2 − 1)b1j12

f4 =
∑

3≤j≤nx

3≤l≤ny

−2j+l+3(5 ∗ x1 + 5 ∗ y1 + 6 ∗ xj + 6 ∗ yl − 8)b1j1l

+ 2j+l+3(2x1y1 + 3x1xj + 3x1yl + 3xjy1 + 3y1yl + 4xjyl)
+ 2j+2l+2(x1xj + x1yl + xjyl)
+ 22j+l+2(xjy1 + y1yl + xjyl)
− 2j+2l+2(x1 + xj + yl − 1)b1j1l

− 22j+l+2(y1 + xj + yl − 1)b1j1l

f5 =
∑

2≤k<l≤ny

−2k+l+4(5x1 + 7x2 + 8yk + 8yl − 10)b12kl

+ 2k+l+4(2x1x2 + 3x1yk + 3x1yl + 5x2yk + 5x2yl + 6ykyl)

f6 =
∑

2≤i<j≤nx

−2i+j+4(8xi + 8xj + 5y1 + 7y2 − 10)bij12

+ 2i+j+4(6xixj + 3xiy1 + 3xjy1 + 5xiy2 + 5xjy2 + 2y1y2)
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f7 =
∑

3≤j≤nx

2≤k<l≤ny

2j+k+l+3(x1xj + x1yk + x1yl)

+ (3 ∗ 2j+k+l+2 + 22j+k+l+1)(xjyk + xjyl + ykyl)
− (5 ∗ 2j+k+l+2 + 22j+k+l+1)(xj + yk + yl)b1jkl

− 2j+k+l+4b1jklx1 + (7 ∗ 2j+k+l+2 + 22j+k+l+1)b1jkl

f8 =
∑

2≤i<j≤nx

3≤l≤ny

2i+j+l+3(xiy1 + xjy1 + y1yl)

+ (3 ∗ 2i+j+l+2 + 2i+j+2l+1)(xixj + xiyl + xjyl)
− (5 ∗ 2i+j+l+2 + 2i+j+2l+1)(xi + xj + yl)bij1l
− 2i+j+l+4bij1ly1 + (7 ∗ 2i+j+l+2 + 2i+j+2l+1)bij1l

f9 =
∑

2≤i<j≤nx

2≤k<l≤ny

2i+j+k+l+2(xixj + xiyk + xiyl + xjyk + xjyl + ykyl)

− 2 ∗ 2i+j+k+l+2(xi + xj + yk + yl)bijkl
+ 3 ∗ 2i+j+k+l+2bijkl.



Chapter 3

Results

This chapter aims at drawing a quantitative comparison be-
tween the two quadratization methods presented earlier. For each
case, we wish to evaluate certain metrics, such as:

– How the number of auxiliary variables grows.

– What is the number of resulting quadratic terms in the final
Hamiltonian expression.

– What is the connectivity between qubits of the Hamiltonian.

– The range of coupling strengths required for the computation.

3.1 AUXILIARY VARIABLES

As we have seen before, the cost of quadratizing a Hamilto-
nian can be expressed in the number of new auxiliary variables that
are introduced by the quadratization process. We have also seen that
the method from Ishikawa (2011) is expected to introduce one aux-
iliary variable for each monomial of degree greater than 2. In our
case, this only applies for monomials of the 3rd- and 4th-degree. On
the other hand, Dattani and Chau (2019) proposed a method that
introduces one auxiliary variable for each monomial of degree equal
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to four. Hence, a simple way to evaluate how many extra variables
are introduced by each method is to count how many cubic and
quartic monomials appear in the Hamiltonian from Equation 2.13.

From observing said equation, we find that the 3rd-degree
monomials appear in one of two forms: xixjyk (two x’s and one y)
or xiykyl (one x and two y’s). Meanwhile, the 4th-degree monomials
have only one form: xixjykyl.

Let us establish the following notation:

#(format) = "Number of monomials in said format".

In this context, we can view each monomial form as a com-
bination of multiple x and y variables, for which we know the counts
are nx and ny, respectively. Let us also remind ourselves that the
total number of different combinations of p elements taken from a
set of n elements is given by the expression:

Cnp = n!
p!(n− p)! . (3.1)

Thus, we can view the number of 3rd-degree monomials in-
volving two x variables and one y variable to be the number of
combinations of two x’s, that is Cnx

2 , multiplied by the number of
combinations of a single y, or simply Cny

1 .

#(xixjyk) = Cnx
2 ∗ Cny

1

= nx!
2!(nx − 2)! ∗

ny!
1!(ny − 1)!

= nx(nx − 1)[(nx − 2)!]
2!(nx − 2)! ∗ ny[(ny − 1)!]

1!(ny − 1)!

= nx(nx − 1)
2! ∗ ny

1!

= nxny(nx − 1)
2 .

A similar argument can be made for 3rd-degree monomials that con-
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tain one x variable and two y variables, leading us to:

#(xiykyl) = Cnx
1 ∗ Cny

2

= nx!
1!(nx − 1)! ∗

ny!
2!(ny − 2)!

= nx[(nx − 1)!]
1!(nx − 1)! ∗ ny(ny − 1)[(ny − 2)!]

2!(ny − 2)!

= nx
1! ∗

ny(ny − 1)
2!

= nxny(ny − 1)
2 .

Finally, the number of quartic monomials of the format
xixjykyl is equal to the number of quadratic monomials composed
only of x variables, multiplied by the number of quadratic monomi-
als composed of y variables. In other words:

#(xixjykyl) = Cnx
2 ∗ Cny

2

= nx!
2!(nx − 2)! ∗

ny!
2!(ny − 2)!

= nx(nx − 1)[(nx − 2)!]
2!(nx − 2)! ∗ ny(ny − 1)[(ny − 2)!]

2!(ny − 2)!

= nx(nx − 1)
2! ∗ ny(ny − 1)

2!

= nxny(ny − 1)(ny − 1)
4 .

From these results, we can conclude exactly how many 3rd
and 4th-degree monomials of each type we expect to be part of
the Hamiltonian from Equation 2.13. This leads us to the values
presented in Table 3.1.

3.1.1 Ishikawa

We know that the method proposed by Ishikawa (2011), as
presented in the previous chapter, introduces an auxiliary variable
for each monomial of degree 3 and 4. Given the counts in Table 3.1,
we show that the total number of extra variables introduced by this
method is given by Theorem 3.1.
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Table 3.1 – Number of monomials in factoring Hamiltonian.

Degree Monomial format Monomial count

3 xixjyk
nxny(nx − 1)

2

3 xiykyl
nxny(ny − 1)

2

4 xixjykyl
nxny(nx − 1)(ny − 1)

4
Source: developed by the author.

Theorem 3.1 (Ishikawa’s Auxiliary Variables Theorem). The number
of auxiliary variables introduced into the integer factorization Hamil-
tonian by Ishikawa’s quadratization method, referred to as MIshi, is
given by the count of 3rd- and 4th-degree monomials that appear in
the Hamiltonian:

MIshi = nxny(nx − 1)
2 + nxny(ny − 1)

2 + nxny(nx − 1)(ny − 1)
4

= nxny
2

(
(nx − 1) + (ny − 1) + (nx − 1)(ny − 1)

2

)
= nxny

2

(2(nx − 1) + 2(ny − 1) + (nx − 1)(ny − 1)
2

)
= nxny

2

(2nx − 2 + 2ny − 2 + nxny − nx − ny + 1
2

)
= nxny

2

(
nxny + nx + ny − 3

2

)
= nxny(nxny + nx + ny − 3)

4 .

3.1.2 Dattani-Chau

Similarly, we have seen in the previous chapter that the
quadratization method proposed by Dattani and Chau (2019) intro-
duces one extra binary variable for each 4th-degree monomial in our
Hamiltonian. Therefore, the total number of auxiliary variables used
by this method is given by Theorem 3.2.
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Theorem 3.2 (Dattani-Chau’s Auxiliary Variables Theorem). The
number of auxiliary variables introduced into the integer factorization
Hamiltonian by Dattani-Chau’s quadratization method, referred to as
MDatt, is equal to the number of quartic monomials present in the
Hamiltonian:

MDatt = nxny(nx − 1)(ny − 1)
4

= nxny(nxny − nx − ny + 1)
4 .

3.1.3 Comparison

From Theorems 3.1 and 3.2 we can conclude that both meth-
ods introduce a similar amount of extra variables, because both ex-
pressions present a growth of O(n4) in terms of the number of bits
of N . This can be seen more clearly if we recall our previous defini-
tion for nx and ny from Equations 2.4, where both nx and ny are
defined as growing with a rate of about O(lgN), which is equivalent
to O(n), where n is the number of bits in N .

Thus, we argue that a simple estimate for the asymptotic
growth of both MIshi and MDatt is to replace every nx and ny in
those expressions with just n. In this case, as N grows to become
a very large number and tends to infinity, it is fair to say that the
growth of both these expressions is of about O(n4).

For small values of N , however, the Dattani-Chau method
presents a considerable advantage over Ishikawa’s approach, since
it reduces the number of auxiliary variables needed by about a cu-
bic polynomial-worth of qubits, which is the difference between the
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values MIshi and MDatt:

MIshi −MDatt = nxny(nxny + nx + ny − 3)
4 − nxny(nx − 1)(ny − 1)

4

= nxny(nxny + nx + ny − 3)
4 − nxny(nxny − nx − ny + 1)

4

= nxny((nxny + nx + ny − 3)− (nxny − nx − ny + 1))
4

= nxny(nxny + nx + ny − 3− nxny + nx + ny − 1)
4

= nxny(2nx + 2ny − 4)
4

= nxny(nx + ny − 2)
2 .

3.2 NUMBER OF TERMS

We can also estimate the maximum number of quadratic
terms that each quadratization method is expected to produce. For
this, we should consider the five different formats of quadratic mono-
mials that we expect to see in the final Hamiltonian. They are:

– xx,

– xy,

– yy,

– bx,

– and by,

where b are the auxiliary variables introduced by each method.
Since we know all the counts for each type of variable –

meaning nx for x variables, ny for y variables and MMethod for b
variables –, we can estimate the number of quadratic terms for both
methods.

Let us first estimate the count for quadratic monomials of
the forms xx, xy and yy. If we observe the Hamiltonian formula
from Equation 2.13, we notice these three summations:
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(a)
∑

1≤i≤nx

1≤k≤ny

[22i+2k + 22i+k+1 + 2i+2k+1 − 2i+k+1(N − 2)]xiyk,

(b)
∑

1≤i<j≤nx
2i+j+1xixj ,

(c) and
∑

1≤k<l≤ny
2k+l+1ykyl.

We argue that these three components (a), (b) and (c) al-
ready involve all possible monomials of the forms xx, xy and yy for
a single Hamiltonian. Moreover, since these components are also car-
ried over to the method-specific Hamiltonians from Equations 2.18
and 2.23, then we know they will be the same for both methods
(except maybe for their coefficients, which we do not care about for
the purpose of counting these monomials).

From this, we conclude that the number of monomials of the
format xx can be expressed as the combination of two elements taken
from a set of nx elements. In other words, retrieving the notation
we used before, we have:

#(xx) = Cnx
2

= nx(nx − 1)
2 .

The same argument applies, of course, for monomials of the
form xy and yy, where we have:

#(xy) = Cnx
1 ∗ C

ny

1

= nxny,

and also:

#(yy) = C
ny

2

= ny(ny − 1)
2 .

Further on, we should now address the count for monomials
of the formats bx and by, which are specific to each method.

3.2.1 Ishikawa

We have already seen that Ishikawa’s method introduces one
auxiliary variable b for each monomial of degree three and four in
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the original Hamiltonian. We can clearly see in Equation 2.18 that,
after applying the quadratization method, each b will be involved in
three or four quadratic monomials, depending on whether it comes
from a 3rd- or 4th-degree term.

From this, we can view each b variable as being connected to
either 3 or 4 other variables (namely x’s and y’s). Since we also know
that each b is associated to either a 3rd- or a 4th-degree monomial,
then the number of quadratic monomials that involve b variables is
given as follows:

#(bx)Ishi = 2 ∗#(xixjyk) + 1 ∗#(xiykyl) + 2 ∗#(xixjykyl), and
#(by)Ishi = 1 ∗#(xixjyk) + 2 ∗#(xiykyl) + 2 ∗#(xixjykyl).

But we already now the counts for the number of 3rd- and
4th-degree monomials, which we calculated in the previous section.
So we can just substitute these values:

#(bx)Ishi = 2 ∗#(xixjyk) + 1 ∗#(xiykyl) + 2 ∗#(xixjykyl)

= 2nxny(nx − 1)
2 + nxny(ny − 1)

2 + 2nxny(nx − 1)(ny − 1)
4

= 2nxny(nx − 1) + nxny(ny − 1) + nxny(nx − 1)(ny − 1)
2

= nxny[2(nx − 1) + (ny − 1) + (nx − 1)(ny − 1)]
2

= nxny(2nx − 2 + ny − 1 + nxny − nx − ny + 1)
2

= nxny(nxny + nx − 2)
2 ,
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and also:

#(by)Ishi = 1 ∗#(xixjyk) + 2 ∗#(xiykyl) + 2 ∗#(xixjykyl)

= nxny(nx − 1)
2 + 2nxny(ny − 1)

2 + 2nxny(nx − 1)(ny − 1)
4

= nxny(nx − 1) + 2nxny(ny − 1) + nxny(nx − 1)(ny − 1)
2

= nxny[(nx − 1) + 2(ny − 1) + (nx − 1)(ny − 1)]
2

= nxny(nx − 1 + 2ny − 2 + nxny − nx − ny + 1)
2

= nxny(nxny + ny − 2)
2 .

3.2.2 Dattani-Chau

For Dattani-Chau’s method, however the count for bx and
by monomials is simpler. Since we know this method introduces one
variable for each 4th-degree monomial, we can simply estimate the
number of resulting quadratic monomials directly from the following
expressions:

#(bx)Datt = 2 ∗#(xixjykyl)

= 2 ∗ nxny(nx − 1)(ny − 1)
4

= nxny(nx − 1)(ny − 1)
2

= nxny(nxny − nx − ny + 1)
2 ,

#(by)Datt = 2 ∗#(xixjykyl)

= 2 ∗ nxny(nx − 1)(ny − 1)
4

= nxny(nx − 1)(ny − 1)
2

= nxny(nxny − nx − ny + 1)
2 .

As expected, given the symmetry of this quadratization method,
we see that #(bx)Datt and #(by)Datt are in fact equal.
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3.2.3 Comparison

We have compiled the results from the previous sections into
Table 3.2, in order to better compare the two methods. These results
show that even though the counts for monomials of the types xx, xy
and yy are the same for both methods, the amount of monomials
of the types bx and by are different – namely, Ishikawa’s method
presents more monomials of these two formats.

This result agrees with our findings from the previous sec-
tion that stated that Ishikawa’s Hamiltonian contains more b auxil-
iary qubits, so it makes sense for it to also contains more quadratic
terms involving these variables.

Table 3.2 – Number of resulting quadratic terms for each method.

Monomial format Ishikawa’s count Dattani-Chau’s count

xx
nx(nx − 1)

2
nx(nx − 1)

2

xy nxny nxny

yy
ny(ny − 1)

2
ny(ny − 1)

2

bx
nxny(nxny + nx − 2)

2
nxny(nxny − nx − ny + 1)

2

by
nxny(nxny + ny − 2)

2
nxny(nxny − nx − ny + 1)

2
Source: developed by the author.

3.3 TOPOLOGY

Further on, we should also consider the connectivity aspects
of the qubits in our Hamiltonian. To do so, let us first consider an
example for a small value of N , so we can look at the expressions
for each method.

Let us consider the case where N = 85 = 5 ∗ 17. We expect,
of course, that x = 5 and y = 17, since we previously defined that
x < y. If we assume that we don’t know these values from the start,
we can use the formulas from Equations 2.4 to find an approximation
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for the length of each factor, in number of bits, thus finding nx and
ny to be:

nx = dlog2b
√

85codde − 1
= dlog2b9.22codde − 1
= dlog2 9e − 1
= d3.17e − 1
= 4− 1
= 3,

ny = dlog2b
85
3 ce − 1

= dlog2b28.33ce − 1
= dlog2 28e − 1
= d4.8e − 1
= 5− 1
= 4.

Now, using our Equation 2.13, we reach the following Hamil-



68 Chapter 3. Results

tonian H85:

H85 = 256x1x2y1y2 + 512x1x2y1y3 + 1024x1x2y1y4

+ 1024x1x2y2y3 + 2048x1x2y2y4 + 4096x1x2y3y4

+ 512x1x3y1y2 + 1024x1x3y1y3 + 2048x1x3y1y4

+ 2048x1x3y2y3 + 4096x1x3y2y4 + 8192x1x3y3y4

+ 1024x2x3y1y2 + 2048x2x3y1y3 + 4096x2x3y1y4

+ 4096x2x3y2y3 + 8192x2x3y2y4 + 16384x2x3y3y4

+ 128x1x2y1 + 384x1x2y2 + 1280x1x2y3 + 4608x1x2y4

+ 256x1x3y1 + 768x1x3y2 + 2560x1x3y3 + 9216x1x3y4

+ 128x1y1y2 + 256x1y1y3 + 512x1y1y4 + 512x1y2y3

+ 1024x1y2y4 + 2048x1y3y4 + 512x2x3y1 + 1536x2x3y2

+ 5120x2x3y3 + 18432x2x3y4 + 384x2y1y2 + 768x2y1y3

+ 1536x2y1y4 + 1536x2y2y3 + 3072x2y2y4 + 6144x2y3y4

+ 1280x3y1y2 + 2560x3y1y3 + 5120x3y1y4 + 5120x3y2y3

+ 10240x3y2y4 + 20480x3y3y4 + 16x1x2 + 32x1x3 − 616x1y1

− 1168x1y2 − 2080x1y3 − 3136x1y4 + 64x2x3 − 1168x2y1

− 2144x2y2 − 3520x2y3 − 3968x2y4 − 2080x3y1 − 3520x3y2

− 4480x3y3 + 1280x3y4 + 16y1y2 + 32y1y3 + 64y1y4

+ 64y2y3 + 128y2y4 + 256y3y4 − 332x1 − 656x2 − 1280x3

− 332y1 − 656y2 − 1280y3 − 2432y4 + 7056.

Moreover, we can use our Equation 2.18 to skip ahead and
find the expression for the same Hamiltonian H85, but quadratized
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via the Ishikawa method, which we will denote as HIshi
85 :

HIshi
85 = − 512b1(x1 + x2 + y1 + y2) + 768b1

− 1024b2(x1 + x2 + y1 + y3) + 1536b2

− 2048b3(x1 + x2 + y1 + y4) + 3072b3

− 2048b4(x1 + x2 + y2 + y3) + 3072b4

− 4096b5(x1 + x2 + y2 + y4) + 6144b5

− 8192b6(x1 + x2 + y3 + y4) + 12288b6

− 1024b7(x1 + x3 + y1 + y2) + 1536b7

− 2048b8(x1 + x3 + y1 + y3) + 3072b8

− 4096b9(x1 + x3 + y1 + y4) + 6144b9

− 4096b10(x1 + x3 + y2 + y3) + 6144b10

− 8192b11(x1 + x3 + y2 + y4) + 12288b11

− 16384b12(x1 + x3 + y3 + y4) + 24576b12

− 2048b13(x2 + x3 + y1 + y2) + 3072b13

− 4096b14(x2 + x3 + y1 + y3) + 6144b14

− 8192b15(x2 + x3 + y1 + y4) + 12288b15

− 8192b16(x2 + x3 + y2 + y3) + 12288b16

− 16384b17(x2 + x3 + y2 + y4) + 24576b17

− 32768b18(x2 + x3 + y3 + y4) + 49152b18

− 128b19(x1 + x2 + y1 − 1)− 384b20(x1 + x2 + y2 − 1)
− 1280b21(x1 + x2 + y3 − 1)− 4608b22(x1 + x2 + y4 − 1)
− 256b23(x1 + x3 + y1 − 1)− 768b24(x1 + x3 + y2 − 1)
− 2560b25(x1 + x3 + y3 − 1)− 9216b26(x1 + x3 + y4 − 1)
− 512b27(x2 + x3 + y1 − 1)− 1536b28(x2 + x3 + y2 − 1)
− 5120b29(x2 + x3 + y3 − 1)− 18432b30(x2 + x3 + y4 − 1)
− 128b31(x1 + y1 + y2 − 1)− 256b32(x1 + y1 + y3 − 1)
− 512b33(x1 + y1 + y4 − 1)− 512b34(x1 + y2 + y3 − 1)
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− 1024b35(x1 + y2 + y4 − 1)− 2048b36(x1 + y3 + y4 − 1)
− 384b37(x2 + y1 + y2 − 1)− 768b38(x2 + y1 + y3 − 1)
− 1536b39(x2 + y1 + y4 − 1)− 1536b40(x2 + y2 + y3 − 1)
− 3072b41(x2 + y2 + y4 − 1)− 6144b42(x2 + y3 + y4 − 1)
− 1280b43(x3 + y1 + y2 − 1)− 2560b44(x3 + y1 + y3 − 1)
− 5120b45(x3 + y1 + y4 − 1)− 5120b46(x3 + y2 + y3 − 1)
− 10240b47(x3 + y2 + y4 − 1)− 20480b48(x3 + y3 + y4 − 1)
+ 15376x1x2 + 30752x1x3 + 6040x1y1 + 11632x1y2

+ 21472x1y3 + 35776x1y4 + 61504x2x3 + 11120x2y1

+ 21408x2y2 + 39488x2y3 + 65664x2y4 + 18400x3y1

+ 35392x3y2 + 65152x3y3 + 107776x3y4 + 3600y1y2

+ 7200y1y3 + 14400y1y4 + 14400y2y3 + 28800y2y4

+ 57600y3y4 − 332x1 − 656x2 − 1280x3 − 332y1

− 656y2 − 1280y3 − 2432y4 + 7056.

Additionally, we can calculate the expression for the Hamil-
tonian H85 quadratized via the Dattani-Chau method, which will
be denoted as HDatt

85 . This is a direct application of Equation 2.23:
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HDatt
85 = (1792− 1152x1 − 1408x2 − 1152y1 − 1408y2)b1

+ (3840− 2560x1 − 3072x2 − 2048y1 − 3328y3)b2

+ (9728− 7168x1 − 8192x2 − 4096y1 − 8704y4)b3

+ (3840− 2048x1 − 3328x3 − 2560y1 − 3072y2)b4

+ (8192− 4608x1 − 7168x3 − 4608y1 − 7168y3)b5

+ (20480− 13312x1 − 18432x3 − 9216y1 − 18432y4)b6

+ (5120− 2560x1 − 3584x2 − 4096y2 − 4096y3)b7

+ (10240− 5120x1 − 7168x2 − 8192y2 − 8192y4)b8

+ (20480− 10240x1 − 14336x2 − 16384y3 − 16384y4)b9

+ (11264− 4096x1 − 9216x3 − 9216y2 − 9216y3)b10

+ (22528− 8192x1 − 18432x3 − 18432y2 − 18432y4)b11

+ (45056− 16384x1 − 36864x3 − 36864y3 − 36864y4)b12

+ (5120− 4096x2 − 4096x3 − 2560y1 − 3584y2)b13

+ (11264− 9216x2 − 9216x3 − 4096y1 − 9216y3)b14

+ (30720− 26624x2 − 26624x3 − 8192y1 − 26624y4)b15

+ (12288− 8192x2 − 8192x3 − 8192y2 − 8192y3)b16

+ (24576− 16384x2 − 16384x3 − 16384y2 − 16384y4)b17

+ (49152− 32768x2 − 32768x3 − 32768y3 − 32768y4)b18

+ 15376x1x2 + 30752x1x3 + 6040x1y1 + 11632x1y2

+ 21472x1y3 + 35776x1y4 + 61504x2x3 + 11120x2y1

+ 21408x2y2 + 39488x2y3 + 65664x2y4 + 18400x3y1

+ 35392x3y2 + 65152x3y3 + 107776x3y4 + 3600y1y2

+ 7200y1y3 + 14400y1y4 + 14400y2y3 + 28800y2y4

+ 57600y3y4 − 332x1 − 656x2 − 1280x3 − 332y1

− 656y2 − 1280y3 − 2432y4 + 7056.

We can see from the polynomial expressions that HIshi
85 in-

volves more extra bi variables than HDatt
85 , as we expected. Now,

if we interpret each qubit of a Hamiltonian as a node, and each
quadratic monomial as an undirected edge, then we can represent
each quadratized Hamiltonian as an undirected graph. By doing this,
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we can view the quadratic polynomial expressions that describe each
methods’ Hamiltonian in a more visual manner, which may help us
understand how each operator is organized in terms of its linear
monomials (nodes) and quadratic monomials (edges).

These visualizations are given in Figure 3.1 for HIshi
85 and in

Figure 3.2 for HDatt
85 .

Figure 3.1 – Graph representation of Ishikawa’s Hamiltonian.

(a) Graph representation of HIshi
85 , pre-

viously given in polynomial form.
(b) Same graph representation of HIshi

85 ,
but showing only edges connected
to variable x1.

Graph representation for theHIshi
85 Hamiltonian, previously shown in its polynomial

form. Variables are represented as nodes (usual x and y qubits in black, auxiliary
b qubits added by the method in white). Black edges show the positive-coefficient
connections between x and y variables. Red edges show negative-coefficient connec-
tions, which in this case always involve auxiliary variables.

From these graphs, we can see more clearly that each Hamil-
tonian contains one fully connected core of x and y variables, repre-
sented in black, plus the set of b variables, which are more abundant,
yet less connected. We note this arrangement has more to do with
the way we chose to encode the factorization problem into the Hamil-
tonian, rather than to do with the quadratization methods.

Once again, we note that Ishikawa’s method produces more
auxiliary variables, and thus has more qubit connections overall,
when compared to Dattani-Chau’s formula.



3.4. Connectivity 73

Figure 3.2 – Graph representation of Dattani-Chau’s Hamiltonian.

(a) Graph representation of HDatt
85 , pre-

viously given in polynomial form.
(b) Same graph representation of HDatt

85 ,
but showing only edges connected
to variable x1.

Graph representation for the HDatt
85 Hamiltonian, previously shown in its poly-

nomial form. Variables are represented as nodes (usual x and y qubits in black,
auxiliary b qubits added by the method in white). Black edges show the positive-
coefficient connections between x and y variables. Red edges show negative-
coefficient connections, which in this case always involve auxiliary variables.

3.4 CONNECTIVITY

Moreover, we can also estimate the connectivity of the qubits
in each Hamiltonian, by which we mean the average number of con-
nections per qubit. We can easily calculate this metric for both
Hamiltonians if we view them as graphs, since the value we are
after can be expressed as the number of connections (edges) divided
by the number of qubits, or nodes. This value is sometimes called
the graph’s beta index, or simply β. The higher the graph’s beta
index, the more connected it is:

β = E

V
= "Number of edges"

"Number of nodes"
.

From what we have seen so far, we know the number of
qubits (nodes) in our Hamiltonians is given by the sum of x and
y variables, plus the number of b auxiliary variables, denoted by
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MMethod, which is method-specific as per Theorems 3.1 and 3.2:

V = nx + ny +MMethod.

As for the number of connections, or edges, it is the same as
the number of quadratic monomials in the quadratized Hamiltonian
expression. Therefore, it can be expressed as the sum of the counts
of each monomial format, previously shown in Table 3.2:

E = #(xx) + #(xy) + #(yy) + #(bx) + #(by).

With this in mind, and using the values from Table 3.2, let
us calculate the number of edges for Ishikawa’s Hamiltonian, which
we will refer to as EIshi:

EIshi = nx(nx − 1)
2 + nxny + ny(ny − 1)

2

+ nxny(nxny + nx − 2)
2 + nxny(nxny + ny − 2)

2

= nx(nx − 1) + ny(ny − 1)
2

+ 2nxny + nxny(nxny + nx − 2) + nxny(nxny + ny − 2)
2

= nx(nx − 1) + ny(ny − 1)
2

+ nxny(nxny + nxny + ny + nx − 2− 2 + 2)
2

= nx(nx − 1) + ny(ny − 1) + nxny(2nxny + ny + nx − 2)
2 .
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And we calculate the same for Dattani-Chau’s Hamiltonian:

EDatt = nx(nx − 1)
2 + nxny + ny(ny − 1)

2

+ nxny(nxny − nx − ny + 1)
2

+ nxny(nxny − nx − ny + 1)
2

= nx(nx − 1) + ny(ny − 1)
2

+ 2nxny + nxny(nxny − nx − ny + 1)
2

+ nxny(nxny − nx − ny + 1)
2

= nx(nx − 1) + ny(ny − 1)
2

+ nxny(nxny + nxny − nx − ny − nx − ny + 1 + 1 + 2)
2

= nx(nx − 1) + ny(ny − 1) + nxny(2nxny − 2nx − 2ny + 4)
2

= nx(nx − 1) + ny(ny − 1) + 2nxny(nxny − nx − ny + 2)
2 .

Finally, it is possible to calculate both βIshi, as shown below:

βIshi = EIshi

VIshi

= 1
2
nx(nx − 1) + ny(ny − 1) + nxny(2nxny + ny + nx − 2)

nx + ny +MIshi

= 1
2
nx(nx − 1) + ny(ny − 1) + nxny(2nxny + ny + nx − 2)

nx + ny + nxny(nxny + nx + ny − 3)
4

= 2nx(nx − 1) + ny(ny − 1) + nxny(2nxny + ny + nx − 2)
4nx + 4ny + nxny(nxny + nx + ny − 3) ,
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and also βDatt:

βDatt = EDatt

VDatt

= 1
2
nx(nx − 1) + ny(ny − 1) + 2nxny(nxny − nx − ny + 2)

nx + ny +MDatt

= 1
2
nx(nx − 1) + ny(ny − 1) + 2nxny(nxny − nx − ny + 2)

nx + ny + nxny(nx − 1)(ny − 1)
4

= 2nx(nx − 1) + ny(ny − 1) + 2nxny(nxny − nx − ny + 2)
4nx + 4ny + nxny(nxny − nx − ny + 1) .

3.4.1 Comparison

In this section we aim to compare the beta indexes of each
method. First, we will look at the graph for both expressions. This is
given in Figure 3.3. In the plot, we notice that for very large values
of N (x-axis) both βIshi and βDatt seem to approach the value 4.

The beta index for Ishikawa’s Hamiltonian, however, presents
a slight advantage, since its value is smaller than βDatt for pretty
much every value of N we have analysed. A way to interpret these
values is to consider that, for the same value of N , Ishikawa’s quadra-
tized Hamiltonian presents more qubits overall (and consequently
more connections), but its graph is slightly less connected, meaning
the edge-node count ratio (i.e. the beta index) is smaller than that
of Dattani-Chau’s Hamiltonian.

This measure, however, does not mean Ishikawa’s Hamilto-
nian is simpler or uses less connections than Dattani-Chau’s. In fact,
as we have seen in the example for Figures 3.1 and 3.2, the opposite
is true.

In reality, this difference in beta indexes can be explained
by once again considering that Ishikawa’s quadratization method
introduces b variables for both 3rd- and 4th-degree monomials, while
Dattani-Chau’s only introduces b variables for 4th-degree monomials.
The fact that Ishikawa’s method produces some auxiliary variables
that only connect to three other variables (meaning those originating
from the individual quadratization of 3rd-degree monomials) tends
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Figure 3.3 – Growth of beta indexes.

Plot showing the growth of beta indexes βIshi (in red) and βDatt (in black) in rela-
tion to the number N, in the x-axis. Note that the x-axis is presented in logarithmic
scale.

to bring down the average of edges-per-node, in the graph, to a value
less than 4.

But, as the plot in Figure 3.3 suggests, both of these values
get closer and closer to 4 as N grows to become a very large number.
This can be justified by looking at the limits for βIshi and βDatt when
N tends to infinity. In this context, both nx and ny also tend to
infinity, so we can write:

lim
nx→∞
ny→∞

βIshi

= lim
nx→∞
ny→∞

2nx(nx − 1) + ny(ny − 1) + nxny(2nxny + ny + nx − 2)
4nx + 4ny + nxny(nxny + nx + ny − 3) .

Analyzing this limit, we can see that most small terms will
be overtaken by the larger terms, as the values tend to infinity. In
this context, even if we are not being very rigorous, we can still
cancel out most small terms, leaving only the ones highlighted in
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red in the equation below:

= lim
nx→∞
ny→∞

2nx(nx − 1) + ny(ny − 1) + nxny(2nxny + ny + nx − 2)
4nx + 4ny + nxny(nxny + nx + ny − 3)

= lim
nx→∞
ny→∞

2nxny(2nxny)
nxny(nxny)

= 2 lim
nx→∞
ny→∞

2n2
xn

2
y

n2
xn

2
y

= 2 lim
nx→∞
ny→∞

2

= 4.

A similar argument can be made for the limit of βDatt when
N tends to infinity:

lim
nx→∞
ny→∞

βDatt

= lim
nx→∞
ny→∞

2nx(nx − 1) + ny(ny − 1) + 2nxny(nxny − nx − ny + 2)
4nx + 4ny + nxny(nxny − nx − ny + 1)

= lim
nx→∞
ny→∞

2nx(nx − 1) + ny(ny − 1) + 2nxny(nxny − nx − ny + 2)
4nx + 4ny + nxny(nxny − nx − ny + 1)

= lim
nx→∞
ny→∞

22nxny(nxny)
nxny(nxny)

= 2 lim
nx→∞
ny→∞

2n2
xn

2
y

n2
xn

2
y

= 2 lim
nx→∞
ny→∞

2

= 4.

In the end, we see that both beta indexes do indeed approach
4 at infinity, which corroborates our initial intuition and suggests
that the connectivity between qubits in each Hamiltonian is very
similar for both methods.
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3.5 RANGE OF COEFFICIENTS

Furthermore, we should also look at how the range of coef-
ficients grows as the number N gets larger. In Figure 3.4 we show
the curves for the highest and lowest monomial coefficient in the
Hamiltonian polynomials. The x-axis denotes the values of N . In the
y-axis, Ishikawa’s expression is shown in red, while Dattani-Chau’s
Hamiltonian is represented by the black dotted lines.

Figure 3.4 – Range of coefficients.

Plot showing the growing range of coefficients for each Hamiltonian expression. The
y-axis, in logarithmic scale, shows the coefficient range for both Ishikawa’s (red)
and Dattani-Chau’s (black dotted) Hamiltonian. The x-axis shows values of N. The
negative areas show the range of least-to-most negative coefficients for said value of
N, while positive areas of course show the range of least-to-most positive coefficients
for that same value. The green curves show positive and negative values of N 3 for
comparison.

From this plot, we take away three things: first, even for
relatively small values of N , such as N = 2048, the monomial coeffi-
cients reach the ranges of about [−231,+231], which are considerably
large numbers. Second, the ranges of coefficients for both methods
are very similar, and there is not much difference between the two
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methods considering this aspect.
And third, we can see from the plot that up until N = 2048,

the monomial coefficients for both methods stay bounded by the
green curves, which represent the range [−N3,+N3]. Although we
could not prove this characteristic for larger values of N , it does sug-
gest a trend that says the absolute value of these coefficients tends
to range around (possibly strictly below) N3. This is important, be-
cause it indicates that these values don’t blow up exponentially as
N grows larger, but rather can be bounded by a polynomial in terms
of the number N – not to be confused with the number of bits of N ,
or simply n.

3.6 ESTIMATE FOR LARGE RSA KEYS

In this section, we will provide an estimate for what our
Hamiltonian would look like for large RSA keys, considering num-
bers with n = 1024 and n = 2048 bits, or N = 21024 and N = 22048,
respectively.

Using our Equations 2.4 for nx and ny, we get:

For N = 21024:

nx = 511,
ny = 1022.

For N = 22048:

nx = 1023,
ny = 2046.

From this, we can estimate the number of auxiliary variables
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for each method, given by Theorems 3.1 and 3.2:

For N = 21024:

MIshi = nxny(nxny + nx + ny − 3)
4

= 511 ∗ 1022(511 ∗ 1022 + 511 + 1022− 3)
4 .

= 68383934206
≈ 6.838 ∗ 1010,

MDatt = nxny(nx − 1)(ny − 1)
4

= 511 ∗ 1022(511− 1)(1022− 1)
4

= 67984157955
≈ 6.798 ∗ 1010.

For N = 22048:

MIshi = nxny(nxny + nx + ny − 3)
4

= 1023 ∗ 2046(1023 ∗ 2046 + 1023 + 2046− 3)
4

= 1096827276798
≈ 1.097 ∗ 1012,

MDatt = nxny(nx − 1)(ny − 1)
4

= 1023 ∗ 2046(1023− 1)(2046− 1)
4

= 1093617572355
≈ 1.094 ∗ 1012.

Finally, we compile these results in Table 3.3. Once again,
we note that Dattani-Chau’s Hamiltonian performs slightly better
than Ishikawa’s, considering it requires fewer extra variables. But,
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for these large numbers, the differences are already quite small in
comparison.

Table 3.3 – Estimate for number of variables on large RSA keys.

nx ny MIshi MDatt

n = 1024 bits 511 1022 6.838 ∗ 1010 6.798 ∗ 1010

n = 2048 bits 1023 2046 1.097 ∗ 1012 1.094 ∗ 1012

Source: developed by the author.

At this point, we should say that even though numbers with
1024 and 2048 bits are indeed very large and notably hard to factor,
we have not identified anything about the internal structure of our
Hamiltonian which would provide an improvement to integer factor-
ization in general. This knowledge, combined with the number of
variables estimated in Table 3.3, suggests it is not feasible to use
this approach to factor large numbers, since it would require billions
(or even trillions) of auxiliary variables to interact with just a few
thousand x and y variables.

In reality, we should not expect this arrangement of variables
to be possible to implement, since the number of connections to the
x-y-core seen in the graphs from Figures 3.1 and 3.2 would be too
great to physically arrange.

We argue this limitation is mostly due to the structure of
the cost function – meaning fN (x, y) = (N−xy)2 – that we chose in
the beginning of this study. Nonetheless, this formulation was useful
for evaluating the two quadratization methods that we sought out to
compare. In future works, however, we wish to explore different con-
figurations for the cost function and different methods for encoding
the factorization problem into the Hamiltonian operator.

3.7 DISCUSSION

Throughout this chapter, we have discussed different metrics
for evaluating each method’s quadratized Hamiltonian. Finally, we
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have compiled the overall results of our analysis, which are presented
in Table 3.4.

Table 3.4 – Comparison of quadratization methods.

Feature Ishikawa Dattani-Chau

(1) Lower number of extra variables

See Theorems 3.1 and 3.2.

× X

(2) Lower number of quadratic terms

See Table 3.2.

× X

(3) Lower connectivity (beta index)

See Figure 3.3.

X ×

(4) Smaller range of coefficients

See Figure 3.4.

× ×

Source: developed by the author.

From these results, we can conclude that Dattani-Chau’s
method is better at quadratizing the original Hamiltonian using the
least amount of extra variables (item 1). As a consequence of this,
the resulting Hamiltonian also contains less quadratic monomials
(item 2) than the one from Ishikawa’s method.

Further on, we have also looked at the topology and con-
nectivity regarding each method’s Hamiltonian. Previously, we have
shown that Ishikawa’s Hamiltonian always presents a smaller beta
index (item 3) than Dattani-Chau’s. In this context, the former
method seems to have an advantage over the latter. However, we
have also explained that this feature holds little importance, be-
cause Ishikawa’s Hamiltonian, when interpreted as a graph, still uti-
lizes more nodes and edges than the other method, and can only
be considered the lesser-connected Hamiltonian (meaning the one
with the smaller beta index) precisely because it uses more nodes
(or qubits) to do so.

Moreover, we have also estimated how the range of coeffi-
cients (item 4) in the Hamiltonian grows for each method. We have
shown that, at least for reasonably small values of N , the Hamilto-
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nian coefficients tend to stay inside the interval [−N3,+N3], and
thus seem to be polynomially bounded in relation to the value of N .
Other than that, we were not able to identify any significant differ-
ence between the two methods’ expected range of coefficients, and
therefore we have considered this feature a draw.

Finally, with all that was presented, we conclude that Dattani-
Chau’s quadratization method is overall better than Ishikawa’s, con-
sidering the Hamiltonian that was the object of analysis and the
scope of this study.



Conclusions and Future Work

The main goal of this work was to study how different
quadratization methods – specifically the ones proposed by Ishikawa
(2011) and Dattani and Chau (2019) –, can affect the Hamiltonian
for the integer factorization problem. As of yet, we have provided a
general formula for this Hamiltonian, which includes simplifications
regarding monomials with repeated binary variables. We have also
provided:

1. A second general formula for the factorization Hamiltonian,
quadratized via the method proposed by Ishikawa (2011).

2. And a third general formula for the same Hamiltonian, but
instead quadratized through the method proposed by Dattani
and Chau (2019).

Moreover, we have evaluated different metrics for both quadra-
tization methods, which were then used to compare each methods’
cost and effectiveness in simplifying the original Hamiltonian opera-
tor. For each case, we have explored:

– How the number of auxiliary variables grows.

– What is the number of resulting quadratic terms in the final
expression.

– What is the connectivity between qubits of the Hamiltonian.

– What is the range of coefficients (i.e. coupling strengths) re-
quired for the computation.
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We have shown that the approach proposed by Dattani and
Chau (2019) is better suited for quadratizing our Hamiltonian, since
it outperforms Ishikawa’s method in almost every aspect we have
analysed.

On top of that, we have also made estimates for what our
Hamiltonian operator would look like if it were employed to factor
large RSA numbers, with 1024 and 2048 bits. We have concluded
that our approach would not be physically possible to implement,
but that it still serves as a framework for comparing the aforemen-
tioned quadratization methods.

In future works, this study wishes to explore alternative
ways of encoding the factorization problem into the Hamiltonian
operator, aiming at approaches with better scalability that are based
in different cost functions, or different multiplication algorithms.

We also intend to explore other quadratization techniques,
when applicable, in order to better understand the impacts that any
quadratization process has on the Hamiltonian operators that are
related to the factorization problem.

Finally, we also wish to perform actual examples of factor-
ization via adiabatic quantum computing, so we can compare how
each quadratization method affects the overall performance of the
computation. Preferably, this should be done in an actual quantum
computer, such as the ones provided by D-Wave Systems1. Depend-
ing on availability, however, this may also be performed using a
quantum simulator.

1 See https://www.dwavesys.com/.

https://www.dwavesys.com/
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APPENDIX A

Quantum Information

The idea behind using quantum interactions as an alterna-
tive – perhaps more powerful – universal computational model, has
been around since the 1980s. Nowadays, the circuit-based model of
quantum computing has evolved a lot, and is considered the stan-
dard model for quantum computers (ALBASH; LIDAR, 2018).

This appendix serves as an introduction to the standard
model of quantum computing, and aims to explain the more basic
concepts involved in quantum information. Note that this is done
from the perspective of classical computing, so the more fundamen-
tal differences between the two models can be explored.

A.1 QUANTUM BITS

In classical computing, a binary digit, or simply a bit, is the
smallest unit of information, and can be found in exactly one of two
binary states: 0 or 1. Similarly, in quantum computing there is the
concept of a quantum bit, or qubit. The state of a qubit is represented
by a two-dimensional unit vector inside the vector space C2, which
is a Hilbert space (NIELSEN; CHUANG, 2010, p. 13).

Just like the classical bit, a quantum bit can be in the bi-
nary states represented by the vectors |0〉 and |1〉. However, the key
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difference is that the qubit can also be in states which are linear
combinations – or superpositions – of the vectors |0〉 and |1〉. In
general, the state |ψ〉 of a qubit can be written as:

|ψ〉 = α |0〉+ β|1〉,

where α and β are complex numbers, and |α|2 + |β|2 = 1. This is
possible because the vectors |0〉 and |1〉 correspond to a basis in the
vector space C2, known as the computational basis. In practice, any
pair of linearly independent unit vectors serves as a basis in C2. For
simplicity, the computational basis is established as a convention.

A.1.1 Dirac Notation

Conventionally, quantum computing borrows a certain math-
ematical notation from quantum mechanics. This is called the Dirac
Notation, or the bra-ket notation, and it is used for algebraically rep-
resenting quantum states. Here, line vectors are represented by a bra
〈ψ|, while column vectors are represented by a ket |ψ〉 (NIELSEN;
CHUANG, 2010, p. 13).

This precise notation was used in the previous section to
write the kets |0〉 and |1〉. Their expansions in the usual column
vector form are presented next:

|0〉 =
[
1
0

]
, |1〉 =

[
0
1

]
.

In the same way, we can write any state |ψ〉 of a single qubit
in its usual column form, as can be seen below:

|ψ〉 = α

[
1
0

]
+ β

[
0
1

]
=
[
α

β

]
.

Moreover, we sometimes need to convert a line vector (bra)
into a column vector (ket) or vice-versa. This is achieved via the
following relation:

〈ψ| = |ψ〉† ,

where the symbol † stands for the complex conjugation and trans-
position of the vector.
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A.1.2 Bloch Sphere

Since the state of a qubit can always be represented by a
unit vector in the C2 space, it is possible to visualize these states as
points on a unit sphere, called the Bloch sphere. The computational
basis states, |0〉 and |1〉, are located at opposite poles of the sphere,
as shown in Figure A.1.

Figure A.1 – Bloch Sphere.

Bloch sphere showing an arbitrary vector state. Source: adapted from Qiskit1.

This graphical representation is interesting, because it al-
lows for operations on a qubit to be represented as rotations around
the axes of the sphere.

A.1.3 Measurement and Collapse

An intrinsic property of quantum systems is the uncertainty
regarding the actual state of the system – here, quantum system
means a collection of one or more qubits. It is not possible to know
the exact state of a qubit before measuring it.

The measurement of a qubit is always associated with a col-
lection of measurement operators. For instance, we can define the
measurement operators M0 = |0〉 〈0| and M1 = |1〉 〈1|, such that
they relate to the computational basis. In this sense, it is also pos-
sible to say that the action of measuring a qubit is associated with
1 Available at: https://qiskit.org/documentation/_images/qiskit.vi

sualization.plot_bloch_vector_0_0.png. Accessed on: January 2022.

https://qiskit.org/documentation/_images/qiskit.visualization.plot_bloch_vector_0_0.png
https://qiskit.org/documentation/_images/qiskit.visualization.plot_bloch_vector_0_0.png
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a certain basis – usually the computational basis –, of the vector
space, as long as the measurement operators are chosen accordingly
(NIELSEN; CHUANG, 2010, p. 84-85).

It is important to note that, after a measurement, the state
of the qubit will collapse to another state, related to the operators
that were used for measuring it. This means the actual state of a
qubit is lost after being measured.

For instance, let |ψ〉 = α |0〉 + β |1〉 be the current state of
a single qubit. In practice, if this qubit were to be measured using
the computational basis, its state |ψ〉 would collapse to either |0〉 or
|1〉. Therefore, the measurement can be interpreted as an operation
which yields a classical bit (0 or 1), depending on which state |ψ〉
collapses to (NIELSEN; CHUANG, 2010, p. 85).

Moreover, the probability of the measurement resulting in
0 would be |α|2, while the probability of it yielding 1 would be
|β|2. Note that this relates to the restriction that |α|2 + |β|2 = 1.
Either way, after said qubit was measured – and assuming no other
operations were applied to it –, all subsequent measurements would
yield the same result as the first measurement, since by then the
state |ψ〉 would have already collapsed to either |0〉 or |1〉.

A.1.4 Tensor Product

From a computational perspective, a quantum system with
a single qubit is not very useful. Consequently, there needs to be a
way to represent systems involving many qubits.

The state of a quantum system with many qubits is com-
monly represented algebraically through the use of the tensor prod-
uct of individual qubit states. This operation is shown below:

|ψ1〉 ⊗ |ψ2〉 =
[
a0
a1

]
⊗
[
b0
b1

]
=


a0

[
b0
b1

]

a1

[
b0
b1

]
 =


a0b0
a0b1
a1b0
a1b1

 .
Additionally, the tensor product between two or more kets

can be abbreviated to the juxtaposition of the states, as shown below
– not to be confused with the internal product operation, usually
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denoted by a dot:

|ψ1〉 ⊗ |ψ2〉 = |ψ1〉 |ψ2〉 = |ψ1ψ2〉 .

Example A.1.1. Consider the tensor products between the states of
the computational basis.

|0〉 ⊗ |0〉 = |00〉 =
[
1
0

]
⊗
[
1
0

]
=


1
[

1
0

]

0
[

1
0

]
 =


1
0
0
0

 ,

|0〉 ⊗ |1〉 = |01〉 =
[
1
0

]
⊗
[
0
1

]
=


1
[

0
1

]

0
[

0
1

]
 =


0
1
0
0

 ,

|1〉 ⊗ |0〉 = |10〉 =
[
0
1

]
⊗
[
1
0

]
=


0
[

1
0

]

1
[

1
0

]
 =


0
0
1
0

 ,

|1〉 ⊗ |1〉 = |11〉 =
[
0
1

]
⊗
[
0
1

]
=


0
[

0
1

]

1
[

0
1

]
 =


0
0
0
1

 .
Notice each state {|00〉 , |01〉 , |10〉 , |11〉} is a unit vector in

the (C2 ⊗ C2) vector space. In addition to that, notice these states
also form a basis – namely, the computational basis for systems of
two qubits.

A.2 QUANTUM CIRCUITS

Analogous to logical circuits from classical computing, the
standard model for quantum computing is based around quantum
circuits, which are built from quantum gates representing operations
over one or more qubits. In general, these circuits are described
graphically, much like in Figure A.2 and are read left to right.
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Each qubit is represented by a single horizontal line, while
classical bits are drawn as double horizontal lines. On the other hand,
quantum gates are usually drawn as small boxes with symbols, indi-
cating what operation is being performed – although there are some
exceptions. Lastly, boxes with a semicircle and an arrow indicate the
operation of measuring a qubit, which is then treated as a classical
bit – a double horizontal line – that represents the output of the
measurement.

Figure A.2 – Example of a quantum circuit.

Example of a quantum circuit with three qubits (labeled q0, q1 and q2) and a few
quantum gates, as well as some measurement operations. Source: Imgur2.

Mathematically, a quantum gate can be described by a
unitary matrix, usually called a unitary operator.

Definition A.2.1 (Unitary Operator). A matrix U is called unitary
if and only if UU † = U †U = I, where U † stands for the complex
conjugate of the transpose of U , and I is simply the identity matrix.

It is very important to note that many classical logic gates
do not have directly corresponding quantum gates. This is due to
the fact that the most usual logic gates, such as AND and OR,
perform irreversible operations over their inputs – meaning their
input can’t always be derived entirely from their output. This is a
big difference when compared to quantum gates, which are always
necessarily reversible by their nature.

In practice, all operations involved in a quantum computa-
tion are reversible, except for the measuring of a qubit, which causes
the state to collapse. This reversibility restriction implies that all
2 Available at: https://i.stack.imgur.com/AYfEA.png. Accessed on: Jan-

uary 2022.

https://i.stack.imgur.com/AYfEA.png


A.2. Quantum Circuits 101

quantum gates must have the same number of inputs and outputs,
or else they simply could not be reversible.

In addition to that, another restriction imposed by quantum
mechanics is that an unknown qubit state can never be copied over to
another qubit – i.e., duplicated. This is supported by the No-cloning
Theorem (NIELSEN; CHUANG, 2010, p. 134).

A.2.1 Single Qubit Quantum Gates

Single qubit quantum gates are represented by 2×2 unitary
matrices. This section aims to present a few of the most usual gates
from this category.

A.2.1.1 Pauli Matrices

Among the most common quantum gates are the so-called
Pauli matrices. They are represented by the letters X, Y and Z, as
shown below:

X = σx =
[
0 1
1 0

]
,

Y = σy =
[
0 −i
i 0

]
,

Z = σz =
[
1 0
0 −1

]
.

Regarding the Bloch sphere, discussed before, the effect a
Pauli matrix has over a qubit state can be view as an 180-degree
rotation around a particular axis. For instance, the matrix X, when
applied to a given state |ψ〉, rotates the state vector 180 degrees
around the x-axis of the Bloch sphere. The same applies for the Y
and Z matrices, in regard to their respective axes.

Furthermore, it is easy to show algebraically the effect of an
X gate over the states |0〉 and |1〉. This gate is sometimes called a
quantum NOT gate, because its effect on the computational basis
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states is equivalent to a classical logic NOT gate.

X |0〉 =
[
0 1
1 0

] [
1
0

]
=
[
0
1

]
= |1〉 ,

X |1〉 =
[
0 1
1 0

] [
0
1

]
=
[
1
0

]
= |0〉 .

In the same way, we can define the behavior of the Y and
Z operators over the computational basis states.

Y |0〉 = i |1〉 ,
Y |1〉 = −i |0〉 ,

Z |0〉 = |0〉 ,
Z |1〉 = − |1〉 .

A.2.1.2 Hadamard Gate

Another very important gate is the Hadamard gate, repre-
sented by the letter H:

H = 1√
2

[
1 1
1 −1

]
.

This gate is equivalent to a change of basis from the compu-
tational basis {|0〉 , |1〉} to the {|+〉 , |−〉} basis, and vice-versa.

H |0〉 = |+〉 , H |+〉 = |0〉 ,
H |1〉 = |−〉 , H |−〉 = |1〉 .

Additionally, the states |+〉 and |−〉 are also presented be-
low:

|+〉 = |0〉+ |1〉√
2

= 1√
2

[
1
1

]
,

|−〉 = |0〉 − |1〉√
2

= 1√
2

[
1
−1

]
.
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A.2.2 Two Qubit Quantum Gates

Double qubit quantum gates are represented by 4×4 unitary
matrices. This section describes some common gates in this group.

A.2.2.1 CNOT Gate

The controlled NOT gate, or simply CNOT gate, acts on two
qubits. Conventionally, the first qubit is said to be the control, whilst
the second qubit is the target. The behavior of this gate depends on
the value of the control qubit. If it is |0〉, nothing happens. But, if
it is |1〉, the X Pauli matrix is applied to the target qubit.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
Where we have:

CNOT |0〉 |0〉 = CNOT |00〉 = |00〉 ,
CNOT |0〉 |1〉 = CNOT |01〉 = |01〉 ,
CNOT |1〉 |0〉 = CNOT |10〉 = |11〉 ,
CNOT |1〉 |1〉 = CNOT |11〉 = |10〉 .

The concept of a gate being controlled by one or more qubits
is well-known, and widely used across quantum circuits, because it
can be applied to virtually any quantum gate.

A.2.2.2 SWAP Gate

Another two qubit gate that is commonly used is the SWAP
gate, which swaps around two qubits. This gate is used implicitly
in classical logic circuits, just by rearranging the electric wires that
carry each classical bit:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
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Where we have:

SWAP |0〉 |0〉 = SWAP |00〉 = |00〉 ,
SWAP |0〉 |1〉 = SWAP |01〉 = |10〉 ,
SWAP |1〉 |0〉 = SWAP |10〉 = |01〉 ,
SWAP |1〉 |1〉 = SWAP |11〉 = |11〉 .

A.3 ENTANGLEMENT

So far, we have only talked about multiple qubit states that
are written as linear combinations of states from a certain basis –
usually the computational basis. For instance, imagine a quantum
system with two qubits |ψ〉 and |φ〉, such that:

|ψ〉 = 1√
2
|0〉+ 1√

2
|1〉 =


1√
2

1√
2

 ,

|φ〉 = 1√
3
|0〉+ 2√

3
|1〉 =


1√
3

2√
3

 ,
then, the state of the whole system can be described as the tensor
product between |ψ〉 and |φ〉, like this:

|ψ〉 ⊗ |φ〉 =


1√
2

1√
2

⊗


1√
3

2√
3

 =



1√
2


1√
3

2√
3


1√
2


1√
3

2√
3




=



1√
6

2√
6

1√
6

2√
6


.

In this case, the state of the system is said to be separable,
for it can be decomposed into the tensor product between the indi-
vidual states of each qubit in the system – namely |ψ〉 and |φ〉 in
the above example.
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However, there are certain situations in which the state of
the whole system simply cannot be separated nicely into individual
single qubit states. For example, let |ψ〉 be the state of a system
with two qubits, such that:

|ψ〉 = |00〉+ |11〉√
2

=



1√
2

0
0
1√
2

 .

Well, if |ψ〉 were to be separable, then it could be written
as follows:

|ψ〉 = (a |0〉+ b |1〉)⊗ (c |0〉+ d |1〉)
= ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉 ,

which would imply the following system of equations has a solution.

ac =
1√
2
, (A.1)

ad = 0 , (A.2)

bc = 0 , (A.3)

bd =
1√
2
. (A.4)

Yet, it is easy to show that such solution does not exist.
Note that, in Equation A.2, at least one of the coefficients a and d
must equal zero. Either way, this would contradict one (or both) of
the Equations A.1 and A.4.

In that sense, in the example above, |ψ〉 is called an entan-
gled state. Entanglement is a property that is exclusive to quantum
mechanics, and does not have a corresponding feature in classical
computing.

Practically speaking, when two (or more) qubits are entan-
gled, their states depend on one another. This means that if one
entangled qubit is measured and collapses, the other (others) will



106 APPENDIX A. Quantum Information

simultaneously collapse as well. This instantaneous update is be-
lieved to always take place, no matter how far apart the qubits are
from each other – recent experiments demonstrated entanglement be-
tween pairs of qubits over 1200 kilometers apart, which was achieved
with the help of a satellite in orbit (YIN et al., 2017).



APPENDIX B

Proof for the equality of

Hamiltonian formulas

This appendix provides a complete proof for the equality
of the Hamiltonians from Equations 2.16 and 2.22. Let us refer to
the former as the original Hamiltonian, or simply HO

N , and to the
latter as the alternate Hamiltonian formula, or HA

N . Thus, we want
to show that, for every N greater or equal to some constant K, the
following equation holds:

HO
N = HA

N , where N ≥ K for some K, (B.1)

in which, of course, we have:

HO
N =

∑
1≤i<j≤nx

1≤k<l≤ny

2i+j+k+l+2xixjykyl

+
∑

1≤i<j≤nx

1≤k≤ny

(2i+j+2k+1 + 2i+j+k+2)xixjyk

+
∑

1≤i≤nx

1≤k<l≤ny

(22i+k+l+1 + 2i+k+l+2)xiykyl

+ (original terms of degree less than 3 ),

(B.2)
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and:

HA
N = f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9

+ (original terms of degree less than 3 ),
(B.3)

where each fi is defined as described in Table 2.1.
This equality will be proven by construction. First, let us

define three expressions for the variables A, B and C as follows:

Ai,j,k,l = 2i+j+k+l+2xixjykyl

Bi,j,k = (2i+j+2k+1 + 2i+j+k+2)xixjyk
Ci,k,l = (22i+k+l+1 + 2i+k+l+2)xiykyl,

such that we can rewrite HO
N from Equation B.2 as simply:

HO
N =

∑
1≤i<j≤nx

1≤k<l≤ny

Ai,j,k,l +
∑

1≤i<j≤nx

1≤k≤ny

Bi,j,k +
∑

1≤i≤nx

1≤k<l≤ny

Ci,k,l

+ (original terms of degree less than 3 ).

(B.4)

Now, let us also rewrite each function fi from Equation B.3
in terms of A, B and C, following the same groupings that were
established in Table 2.1:

f1 = A1,2,1,2 +B1,2,1 +B1,2,2 + C1,1,2 + C2,1,2

f2 =
∑

3≤l≤ny

A1,2,1,l +B1,2,l + C1,1,l + C2,1,l

f3 =
∑

3≤j≤nx

A1,j,1,2 +B1,j,1 +B1,j,2 + Cj,1,2

f4 =
∑

3≤j≤nx

3≤l≤ny

A1,j,1,l +B1,j,l + Cj,1,l

f5 =
∑

2≤k<l≤ny

A1,2,k,l + C1,k,l + C2,k,l

f6 =
∑

2≤i<j≤nx

Ai,j,1,2 +Bi,j,1 +Bi,j,2
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f7 =
∑

3≤j≤nx

2≤k<l≤ny

A1,j,k,l + Cj,k,l

f8 =
∑

2≤i<j≤nx

3≤l≤ny

Ai,j,1,l +Bi,j,l

f9 =
∑

2≤i<j≤nx

2≤k<l≤ny

Ai,j,k,l.

From this, it is possible to prove Equation B.1 by simply
rearranging the terms from the right side of the equation, in order
for them to match the left side. To achieve this, let us first sum all
the functions fi explicitly:

HA
N = f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9

+ (original terms of degree less than 3 )
HA
N = A1,2,1,2 +B1,2,1 +B1,2,2 + C1,1,2 + C2,1,2

+
∑

3≤l≤ny

A1,2,1,l +B1,2,l + C1,1,l + C2,1,l

+
∑

3≤j≤nx

A1,j,1,2 +B1,j,1 +B1,j,2 + Cj,1,2

+
∑

3≤j≤nx

3≤l≤ny

A1,j,1,l +B1,j,l + Cj,1,l

+
∑

2≤k<l≤ny

A1,2,k,l + C1,k,l + C2,k,l

+
∑

2≤i<j≤nx

Ai,j,1,2 +Bi,j,1 +Bi,j,2

+
∑

3≤j≤nx

2≤k<l≤ny

A1,j,k,l + Cj,k,l

+
∑

2≤i<j≤nx

3≤l≤ny

Ai,j,1,l +Bi,j,l

+
∑

2≤i<j≤nx

2≤k<l≤ny

Ai,j,k,l

+ (original terms of degree less than 3 ).

(B.5)
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Moreover, let us also rearrange its terms in order to separate
the As, Bs and Cs from each other, while respecting the summations
and their intervals:

HA
N = A1,2,1,2 +

∑
3≤l≤ny

A1,2,1,l +
∑

3≤j≤nx

A1,j,1,2

+
∑

3≤j≤nx

3≤l≤ny

A1,j,1,l +
∑

2≤k<l≤ny

A1,2,k,l +
∑

2≤i<j≤nx

Ai,j,1,2

+
∑

3≤j≤nx

2≤k<l≤ny

A1,j,k,l +
∑

2≤i<j≤nx

3≤l≤ny

Ai,j,1,l +
∑

2≤i<j≤nx

2≤k<l≤ny

Ai,j,k,l

+B1,2,1 +B1,2,2 +
∑

3≤l≤ny

B1,2,l +
∑

3≤j≤nx

(B1,j,1 +B1,j,2)

+
∑

3≤j≤nx

3≤l≤ny

B1,j,l +
∑

2≤i<j≤nx

(Bi,j,1 +Bi,j,2) +
∑

2≤i<j≤nx

3≤l≤ny

Bi,j,l

+ C1,1,2 + C2,1,2 +
∑

3≤l≤ny

(C1,1,l + C2,1,l) +
∑

3≤j≤nx

Cj,1,2

+
∑

3≤j≤nx

3≤l≤ny

Cj,1,l +
∑

2≤k<l≤ny

(C1,k,l + C2,k,l) +
∑

3≤j≤nx

2≤k<l≤ny

Cj,k,l

+ (original terms of degree less than 3 ).
(B.6)

Further on, we can now deal with each collection of As, Bs
and Cs separately, whilst trying to write them in a more compact
expression – similar to what can be seen in Equation B.4. To do so,
let us once again rewrite Equation B.6, such that:

HA
N = ΛA + ΛB + ΛC

+ (original terms of degree less than 3 ),
(B.7)
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where:

ΛA = A1,2,1,2 +
∑

3≤l≤ny

A1,2,1,l +
∑

3≤j≤nx

A1,j,1,2

+
∑

3≤j≤nx

3≤l≤ny

A1,j,1,l +
∑

2≤k<l≤ny

A1,2,k,l +
∑

2≤i<j≤nx

Ai,j,1,2

+
∑

3≤j≤nx

2≤k<l≤ny

A1,j,k,l +
∑

2≤i<j≤nx

3≤l≤ny

Ai,j,1,l +
∑

2≤i<j≤nx

2≤k<l≤ny

Ai,j,k,l

ΛB = B1,2,1 +B1,2,2 +
∑

3≤l≤ny

B1,2,l +
∑

3≤j≤nx

(B1,j,1 +B1,j,2)

+
∑

3≤j≤nx

3≤l≤ny

B1,j,l +
∑

2≤i<j≤nx

(Bi,j,1 +Bi,j,2) +
∑

2≤i<j≤nx

3≤l≤ny

Bi,j,l

ΛC = C1,1,2 + C2,1,2 +
∑

3≤l≤ny

(C1,1,l + C2,1,l) +
∑

3≤j≤nx

Cj,1,2

+
∑

3≤j≤nx

3≤l≤ny

Cj,1,l +
∑

2≤k<l≤ny

(C1,k,l + C2,k,l) +
∑

3≤j≤nx

2≤k<l≤ny

Cj,k,l.

Notice how ΛA only contains A terms and so on. Let us now
focus on each Λ individually, in order to concatenate their summa-
tions intervals, thus rewriting each of them with a single summation.
Let us begin with ΛA:

ΛA = A1,2,1,2 +
∑

3≤l≤ny

A1,2,1,l +
∑

3≤j≤nx

A1,j,1,2

+
∑

3≤j≤nx

3≤l≤ny

A1,j,1,l +
∑

2≤k<l≤ny

A1,2,k,l +
∑

2≤i<j≤nx

Ai,j,1,2

+
∑

3≤j≤nx

2≤k<l≤ny

A1,j,k,l +
∑

2≤i<j≤nx

3≤l≤ny

Ai,j,1,l +
∑

2≤i<j≤nx

2≤k<l≤ny

Ai,j,k,l
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ΛA =
∑

2≤l≤ny

A1,2,1,l +
∑

3≤j≤nx

A1,j,1,2 +
∑

3≤j≤nx

3≤l≤ny

A1,j,1,l

+
∑

2≤k<l≤ny

A1,2,k,l +
∑

2≤i<j≤nx

Ai,j,1,2 +
∑

3≤j≤nx

2≤k<l≤ny

A1,j,k,l

+
∑

2≤i<j≤nx

3≤l≤ny

Ai,j,1,l +
∑

2≤i<j≤nx

2≤k<l≤ny

Ai,j,k,l

ΛA =
∑

2≤l≤ny

A1,2,1,l +
∑

3≤j≤nx

2≤l≤ny

A1,j,1,l +
∑

2≤k<l≤ny

A1,2,k,l

+
∑

2≤i<j≤nx

Ai,j,1,2 +
∑

3≤j≤nx

2≤k<l≤ny

A1,j,k,l +
∑

2≤i<j≤nx

3≤l≤ny

Ai,j,1,l

+
∑

2≤i<j≤nx

2≤k<l≤ny

Ai,j,k,l

ΛA =
∑

2≤j≤nx

2≤l≤ny

A1,j,1,l +
∑

2≤k<l≤ny

A1,2,k,l +
∑

2≤i<j≤nx

Ai,j,1,2

+
∑

3≤j≤nx

2≤k<l≤ny

A1,j,k,l +
∑

2≤i<j≤nx

3≤l≤ny

Ai,j,1,l +
∑

2≤i<j≤nx

2≤k<l≤ny

Ai,j,k,l

ΛA =
∑

2≤j≤nx

2≤l≤ny

A1,j,1,l +
∑

2≤i<j≤nx

Ai,j,1,2 +
∑

2≤j≤nx

2≤k<l≤ny

A1,j,k,l

+
∑

2≤i<j≤nx

3≤l≤ny

Ai,j,1,l +
∑

2≤i<j≤nx

2≤k<l≤ny

Ai,j,k,l
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ΛA =
∑

2≤j≤nx

2≤l≤ny

A1,j,1,l +
∑

2≤j≤nx

2≤k<l≤ny

A1,j,k,l +
∑

2≤i<j≤nx

2≤l≤ny

Ai,j,1,l

+
∑

2≤i<j≤nx

2≤k<l≤ny

Ai,j,k,l

ΛA =
∑
i=1

2≤j≤nx

k=1
2≤l≤ny

Ai,j,k,l +
∑
i=1

2≤j≤nx

2≤k<l≤ny

Ai,j,k,l +
∑

2≤i<j≤nx

k=1
2≤l≤ny

Ai,j,k,l

+
∑

2≤i<j≤nx

2≤k<l≤ny

Ai,j,k,l

ΛA =
∑

1≤i<j≤nx

1≤k<l≤ny

Ai,j,k,l.

This way we have condensed the long form of ΛA into a
more concise expression. The same can be achieved for ΛB, in the
following manner:

ΛB = B1,2,1 +B1,2,2 +
∑

3≤l≤ny

B1,2,l +
∑

3≤j≤nx

(B1,j,1 +B1,j,2)

+
∑

3≤j≤nx

3≤l≤ny

B1,j,l +
∑

2≤i<j≤nx

(Bi,j,1 +Bi,j,2) +
∑

2≤i<j≤nx

3≤l≤ny

Bi,j,l

ΛB =
∑

1≤l≤2
B1,2,l +

∑
3≤l≤ny

B1,2,l +
∑

3≤j≤nx

(B1,j,1 +B1,j,2)

+
∑

3≤j≤nx

3≤l≤ny

B1,j,l +
∑

2≤i<j≤nx

(Bi,j,1 +Bi,j,2) +
∑

2≤i<j≤nx

3≤l≤ny

Bi,j,l
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ΛB =
∑

1≤l≤ny

B1,2,l +
∑

3≤j≤nx

(B1,j,1 +B1,j,2) +
∑

3≤j≤nx

3≤l≤ny

B1,j,l

+
∑

2≤i<j≤nx

(Bi,j,1 +Bi,j,2) +
∑

2≤i<j≤nx

3≤l≤ny

Bi,j,l

ΛB =
∑

1≤l≤ny

B1,2,l +
∑

3≤j≤nx

1≤l≤2

B1,j,l +
∑

3≤j≤nx

3≤l≤ny

B1,j,l

+
∑

2≤i<j≤nx

(Bi,j,1 +Bi,j,2) +
∑

2≤i<j≤nx

3≤l≤ny

Bi,j,l

ΛB =
∑

1≤l≤ny

B1,2,l +
∑

3≤j≤nx

1≤l≤ny

B1,j,l +
∑

2≤i<j≤nx

(Bi,j,1 +Bi,j,2)

+
∑

2≤i<j≤nx

3≤l≤ny

Bi,j,l

ΛB =
∑

2≤j≤nx

1≤l≤ny

B1,j,l +
∑

2≤i<j≤nx

(Bi,j,1 +Bi,j,2) +
∑

2≤i<j≤nx

3≤l≤ny

Bi,j,l

ΛB =
∑

2≤j≤nx

1≤l≤ny

B1,j,l +
∑

2≤i<j≤nx

1≤l≤2

Bi,j,l +
∑

2≤i<j≤nx

3≤l≤ny

Bi,j,l

ΛB =
∑

2≤j≤nx

1≤l≤ny

B1,j,l +
∑

2≤i<j≤nx

1≤l≤ny

Bi,j,l

ΛB =
∑
i=1

2≤j≤nx

1≤l≤ny

Bi,j,l +
∑

2≤i<j≤nx

1≤l≤ny

Bi,j,l

ΛB =
∑

1≤i<j≤nx

1≤l≤ny

Bi,j,l.

At last, this process can also be done to ΛC , in a very similar
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way, such that we can rewrite it like so:

ΛC = C1,1,2 + C2,1,2 +
∑

3≤l≤ny

(C1,1,l + C2,1,l) +
∑

3≤j≤nx

Cj,1,2

+
∑

3≤j≤nx

3≤l≤ny

Cj,1,l +
∑

2≤k<l≤ny

(C1,k,l + C2,k,l) +
∑

3≤j≤nx

2≤k<l≤ny

Cj,k,l

ΛC =
∑

1≤j≤2
Cj,1,2 +

∑
3≤l≤ny

(C1,1,l + C2,1,l) +
∑

3≤j≤nx

Cj,1,2

+
∑

3≤j≤nx

3≤l≤ny

Cj,1,l +
∑

2≤k<l≤ny

(C1,k,l + C2,k,l) +
∑

3≤j≤nx

2≤k<l≤ny

Cj,k,l

ΛC =
∑

1≤j≤nx

Cj,1,2 +
∑

3≤l≤ny

(C1,1,l + C2,1,l) +
∑

3≤j≤nx

3≤l≤ny

Cj,1,l

+
∑

2≤k<l≤ny

(C1,k,l + C2,k,l) +
∑

3≤j≤nx

2≤k<l≤ny

Cj,k,l

ΛC =
∑

1≤j≤nx

Cj,1,2 +
∑

1≤j≤2
3≤l≤ny

Cj,1,l +
∑

3≤j≤nx

3≤l≤ny

Cj,1,l

+
∑

2≤k<l≤ny

(C1,k,l + C2,k,l) +
∑

3≤j≤nx

2≤k<l≤ny

Cj,k,l

ΛC =
∑

1≤j≤nx

Cj,1,2 +
∑

1≤j≤nx

3≤l≤ny

Cj,1,l +
∑

2≤k<l≤ny

(C1,k,l + C2,k,l)

+
∑

3≤j≤nx

2≤k<l≤ny

Cj,k,l

ΛC =
∑

1≤j≤nx

2≤l≤ny

Cj,1,l +
∑

2≤k<l≤ny

(C1,k,l + C2,k,l) +
∑

3≤j≤nx

2≤k<l≤ny

Cj,k,l
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ΛC =
∑

1≤j≤nx

2≤l≤ny

Cj,1,l +
∑

1≤j≤2
2≤k<l≤ny

Cj,k,l +
∑

3≤j≤nx

2≤k<l≤ny

Cj,k,l

ΛC =
∑

1≤j≤nx

2≤l≤ny

Cj,1,l +
∑

1≤j≤nx

2≤k<l≤ny

Cj,k,l

ΛC =
∑

1≤j≤nx

k=1
2≤l≤ny

Cj,k,l +
∑

1≤j≤nx

2≤k<l≤ny

Cj,k,l

ΛC =
∑

1≤j≤nx

1≤k<l≤ny

Cj,k,l.

Finally, we have shown how to condense each Λ into a single
summation of terms A, B and C. Now, we can rewrite Equation B.7
using what we have established:

HA
N = ΛA + ΛB + ΛC

+ (original terms of degree less than 3 )

HA
N =

∑
1≤i<j≤nx

1≤k<l≤ny

Ai,j,k,l +
∑

1≤i<j≤nx

1≤l≤ny

Bi,j,l +
∑

1≤j≤nx

1≤k<l≤ny

Cj,k,l

+ (original terms of degree less than 3 ).

(B.8)

But notice that Equation B.8 contains exactly the same ex-
pression as Equation B.4 – except for the name of some indexes,
which could easily be renamed. This means that HA

N does in fact
equal HO

N , which proves our conjecture from Equation B.1.
By now we should address the requisite that N be greater

or equal to some constant K. We know from Equation 2.22 that the
formula for HA

N only makes sense when the Hamiltonian involves at
least the variables x1, x2, y1 and y2. In other words, we should only
use this formula if nx ≥ 2 and ny ≥ 2. From our previous definition
of nx and ny in Equations 2.4, we recall that both of these values
depend on N . Moreover, it is not hard to check that N = 25 is the
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first integer for which both nx and ny are at least equal to two:

Let N = 25:

nx = dlog2b
√
Ncodde − 1

= dlog2b
√

25codde − 1
= dlog2b5codde − 1
= dlog2(5)e − 1
= d2.32e − 1
= 3− 1
= 2,

ny = dlog2b
N

3 ce − 1

= dlog2b
25
3 ce − 1

= dlog2b8.33ce − 1
= dlog2(8)e − 1
= d3e − 1
= 3− 1
= 2.

Therefore, we fix our constant K = 25 and thus we expect
our conjecture from Equation B.1 to be true as long as N ≥ 25.

This completes our proof.
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Abstract. Adiabatic quantum computing (AQC) has been studied as an alter-
native for the circuit-based quantum computing model, specially regarding op-
timization problems. Recent studies have shown the applicability of AQC in
the context of integer factorization. We have provided a general formula for a
Hamiltonian operator, which encodes the solution to the integer factorization
problem. This formula includes Boolean simplifications, followed by a Hamil-
tonian quadratization via two different methods. We also present a compari-
son between these two quadratization methods, considering metrics such as the
number of auxiliary variables required and the range of coefficients in the re-
sulting Hamiltonians.

Keywords: Integer factorization. Adiabatic quantum computing. Hamiltonian
quadratization. Pseudo-Boolean functions.

1. Introduction

The integer factorization problem poses the question: given a positive integer N , what
are its prime factors? At first, this might seem like an easy question to answer. Naively,
one may simply attempt to check every number between 1 and N , and discover which of
them divides N perfectly. In fact, this is fine for small numbers, since we don’t have to
check many values before finding a prime factor for N .

The problem arises when N is a very large number, with hundreds, if not thou-
sands of bits. It is easy to see that, as the number of bits n increases1, the search space
grows at a rate of about 2n. Thus, the naive approach of checking every number becomes
rapidly intractable. On the other hand, if we take a less naive path, one might consider us-
ing the General Number Field Sieve (GNFS) algorithm, proposed by [Lenstra et al. 1993],
which is the best known classical algorithm for factoring integers. Still, this algorithm
only provides a sub-exponential runtime.

Surprisingly, though, and despite its importance, the exact complexity of the in-
teger factorization problem remains unknown [Knuth 1997]. It is therefore possible –
although unlikely – that an efficient classical algorithm, capable of factoring integers in
polynomial time, is still waiting to be discovered.

1Throughout this study, we will always refer to N as the number being factored, and n as the number of
bits of N . Notice that n ≈ log2 N .



For now, though, since no one has ever found an efficient classical algorithm for
factorization, it is believed that finding the factors of a number is a hard problem for
classical computers to solve, in general. It also turns out that this assumed difficulty on
trying to factor large numbers can be taken advantage of by cryptography schemes, such
as the RSA (Rivest-Shamir-Adleman) cryptosystem. The RSA cryptosystem is a public-
key cryptography scheme widely used around the world, for secure data transmission and
digital signatures [Nielsen and Chuang 2010, p. 11].

The RSA scheme involves a pair of public and private keys. These keys are gen-
erated from a large number N , which is the product of two large primes p and q, of about
the same size. The security provided by RSA comes from the fact that it is computation-
ally very difficult to derive a private key from someone’s public key, unless one knows
the factorization of N = pq. Thus, the advent of a new, more powerful factoring algo-
rithm is of great interest, because it poses a threat to such cryptosystems [Stallings 2013,
p. 272-275].

Usually, minor advances in factorization can be overcome by RSA, by simply
choosing larger key-sizes (i.e., choosing a larger N ). Since 2015, the National Institute of
Standards and Technology (NIST) recommends key-sizes of at least 2048 bits for RSA,
which are considered secure nowadays [Barker and Dang 2015]. Currently, the world
record for largest RSA number ever factored is known as RSA-250, which has 250 deci-
mal digits (or 829 bits). It was factored in February 2020 using the GNFS algorithm, and
it took researchers almost 2700 CPU core-years2 of processing in a classical computer
[Boudot et al. 2020].

Unfortunately, as the current size of transistors approaches a physical limit, and
quantum effects start interfering with the behavior of conventional electronic circuits,
the growth rate of classical computing power predicted by Moore’s Law3 has decreased.
Therefore, it seems unlikely for the near future that RSA schemes should be threatened
solely by classical computers.

In that sense, quantum computing is being studied as a model of computation al-
ternative to classical computing. It is believed to be impossible for a classical computer
to efficiently simulate a quantum computer. Thus, the quantum paradigm seems to offer
a welcome advantage when compared to classical computing. In fact, there are certain
quantum algorithms whose efficiency overcomes that of any known classical algorithm.
Perhaps the most famous example of this is the algorithm proposed by [Shor 1994], which
is capable of factoring a number N in a polynomial number of steps4, using a (circuit-
based) quantum computer. Unfortunately, the current technology of quantum circuits
does not allow for any meaningful, practical implementation of Shor’s algorithm, because
today’s noisy intermediate-scale quantum (NISQ) computers simply do not offer a signif-
icant amount of error-corrected qubits.

The current record for largest number ever factored using Shor’s algorithm, in an
actual quantum computer, was achieved in 2012. The number factored in that occasion

2Using the 2.1GHz Intel Xeon Gold 6130 CPU as a reference.
3Moore’s Law, formulated in 1965 by Gordon Moore, stated that the computational power of classical

computers would double regularly every two years. According to [Nielsen and Chuang 2010], this predic-
tion remained approximately correct from the 1960s until the early 2000s.

4Regarding the number of bits n of the input number.



wasN = 21, which is obviously very small [Martı́n-López et al. 2012]. Nonetheless, this
result goes to show that efficient factorization through quantum computing may one day
be a reality. This is a relevant topic, because, as mentioned before, being able to efficiently
factor large integers makes it possible to efficiently break certain types of encryption.
Hence, it is speculated that the dawn of a powerful quantum computer could lead to
Internet security issues in the future [Stallings 2013].

Meanwhile, as the notion of circuit-based quantum computers grows in popular-
ity – so much as to have become the standard model of quantum computation –, other
approaches to quantum computing are also being developed. An example of that is the
idea of using adiabatic evolution as the means for achieving quantum computation. This
paradigm is commonly referred to as adiabatic quantum computing, or AQC for short.

Initially proposed by [Farhi et al. 2000], in the context of quantum computing via
adiabatic evolution, a given problem is encoded in the construction of a quantum operator,
called the Hamiltonian operator. The quantum system is then evolved adiabatically –
that is, slowly – to match the ground state of said Hamiltonian, which in turn yields the
solution to the problem.

Several examples of integer factorization achieved using AQC – and also using
quantum annealing, which is a similar technique – can be found in recent literature. For
instance, [Peng et al. 2008] showed the factorization of the number 21 via adiabatic quan-
tum computing. Some time later, [Xu et al. 2012] successfully factored the number 143 in
a quantum device. In 2014, however, [Dattani and Bryans 2014] explained that the same
Hamiltonian employed by the previous paper is sufficient to factor larger numbers, such
as 3599, 11663, and 56153. They also demonstrate the factorization of the number 175,
which is the product of three primes (i.e., the product of 5× 5× 7).

Although targeted with some criticism5 for only considering hand-picked, easy
instances of the integer factorization problem, these studies present promising results for
factorization through adiabatic evolution. Additionally, most of the proposed Hamiltoni-
ans seem to require some type of quadratization method, that transforms 3- and 4-body
interactions into 2-body interactions, due to physical limitations in current quantum de-
vices.

Consequently, different quadratization methods for pseudo-Boolean functions
have been proposed in recent years6. Following some new developments7, it is clear
that different quadratization methods can affect the adiabatic computation in different
ways – these include the number of qubits needed and the range of coupling strengths
between those qubits. For these reasons, the present study aims at exploring the ef-
fects that different quadratization methods have on the Hamiltonian for integer factor-
ization. We will specifically address the methods proposed by [Ishikawa 2011] and
[Dattani and Chau 2019].

The present work aims at studying the complexity of integer factorization, using
the adiabatic quantum computing model as a background. The main goal is to study
how different quadratization methods affect the Hamiltonian for the integer factorization

5See [Mosca and Verschoor 2019].
6See [Freedman and Drineas 2005]; [Ishikawa 2011]; [Dattani and Chau 2019].
7See [Dattani 2019].



problem. This study hopes to attain the following objectives: (1) study different ways to
encode the integer factorization problem into a Hamiltonian operator, (2) present a gen-
eral formula for the Hamiltonian of integer factorization, (3) implement the quadratization
methods proposed by [Ishikawa 2011] and [Dattani and Chau 2019], on top of the integer
factorization Hamiltonian, and explore their effects on the final Hamiltonian, and (4) pro-
vide a comparison between the quadratization methods proposed by [Ishikawa 2011] and
[Dattani and Chau 2019].

2. Adiabatic quantum computing
In physics, an observable is any physical quantity that can be measured, such as the
position or momentum of a body, for example. In classical physics, these observables
are described by real-valued functions. In quantum systems, however, they are de-
scribed by Hermitian operators, as per [Nielsen and Chuang 2010, Postulate 3, p. 85] and
[Griffiths 2004, p. 97].

A Hermitian operator is a matrix H that obeys the relation H = H†, meaning it
is self-adjoint. In particular, the result of measuring a quantum observable is always an
eigenvalue of the associated Hermitian operator.

The Hermitian operator associated with the total energy of a quantum system re-
ceives a special name: it is called the Hamiltonian operator, or just Hamiltonian. Also,
the ground state of a quantum system is the state with the lowest energy level out of all
the possible states described by the system’s Hamiltonian operator.

The idea behind the paradigm of adiabatic quantum computing (AQC) is to encode
the solution to a problem into the ground state of a Hamiltonian Hf , and then evolve a
quantum system from the ground state a known generic Hamiltonian Hi into the ground
state of this specific Hamiltonian Hf . If no transition of state occurs during the evolution,
then in principle the quantum system is guaranteed to arrive at the ground state of Hf ,
which by design encodes the solution to the initial problem. This model of computation
serves as an alternative to standard circuit-based quantum computing, and yet both are
provably computationally equivalent (meaning one can simulate the other). Thus, AQC is
proven to be universal for quantum computing [Albash and Lidar 2018].

The difficult part in AQC is, in fact, ensuring no transition of state takes place.
This is handled by a theorem from quantum mechanics called the adiabatic theorem. The
word adiabatic, in this case, refers to the notion of adiabatic processes, which according to
[Griffiths 2004, p. 368] are defined by a gradual change of external conditions. Below, we
give a definition for this theorem inspired by the one given in [Albash and Lidar 2018]:

Theorem 2.1 (The Adiabatic Theorem) A system prepared in the ground state |ψ0(0)⟩
of a time-dependent Hamiltonian H(t) will remain in the instantaneous ground state
|ψ0(t)⟩ of H(t), provided that:

1. H(t) varies slowly and gradually enough.
2. The energy gap between the ground state energy levelE0 and the first excited state

energy level E1 is sufficiently large.

In other words, if a quantum system, prepared in its ground state |ψ0(t)⟩, suffers
small interferences from the outside world, causing its Hamiltonian H(t) to change very



gradually, the system should still remain in its ground state. Although the ground state
per se at a time t = t0 may be different from the ground state at the initial time t = 0
(because it is time-dependent and thus varies with time), the system itself will be in a state
which is the ground state at said time t = t0.

This notion of the current ground state of an evolving system is usually called the
instantaneous ground state, meaning the ground state of H(t) at a fixed time t = t0, or
rather the ground state of H(t = t0).

Additionally, we can also describe the time-dependent Hamiltonian H(t) through
an equation, which marks the interpolation between Hi and Hf . To do so, let T be the
total time for a computation. Let t ∈ [0, T ] mark the evolution of time inside the system.
It can be convenient to work with a normalized interval, so let us define s = t/T such that
s ∈ [0, 1]. Thus, we say the computation starts at time s = 0 and ends at time s = 1.

Instead of working with H(t), let us consider H(s) without any loss of generality.
It is possible to write the time-dependent Hamiltonian as follows:

H(s) = f0(s)Hi + f1(s)Hf ,

where f0, f1 : [0, 1] −→ R are interpolation functions.

The simplest example of such an interpolation is to choose f0(s) = (1 − s) and
f1(s) = s, yielding the Hamiltonian:

H(s) = (1− s)Hi + (s)Hf .

3. Hamiltonian for integer factorization
In order to simplify the process of factoring an integer N , we impose certain conditions
over said number, which can help to better study the problem. Namely, we expect N to
be a positive, odd, composite integer with exactly two non-trivial factors, such that it can
be written as N = pq.

In order to solve factorization via AQC, we must first find a way to construct a
Hamiltonian H from an instance of factorization, such that the ground state of H encodes
the solution to the problem. To do so, we define a cost function fN : Z2 −→ Z that
attributes more energy to configurations of factors that do not multiply to give N , and less
energy to the ones that do.

fN(x, y) = (N − xy)2. (1)

Notice that fN is always non-negative, and that fN = 0 if and only if N = xy.
For any other values of x, y that do not multiply to give N , fN(x, y) will be evaluated to a
value larger than zero. Thus, intuitively, minimizing fN for some value of x, y is enough
to solve the problem of factoring N .

Now suppose we write x and y – which we have established must be odd since N
is also odd – in their binary expansions, such that each Boolean variable xi with coefficient
2i represents the i-th bit of x, and the same with yk for y. If we replace them in Equation
1, we get the following pseudo-Boolean function FN :

FN(x1, ..., xnx , y1, ..., yny) =

[
N −

(
nx∑

i=1

2ixi + 1

)(
ny∑

k=1

2kyk + 1

)]2
, (2)



where nx and ny are the lengths (in bits) for x and y, respectively. Note that these lengths
can be estimated via a result from [Peng et al. 2008], cited by [Hegade et al. 2021], where
we impose, without loss of generality, the following conditions:

1. x ≤ y,

2. and 3 ≤ x ≤
√
N ,

3. and
√
N ≤ y ≤ N/3.

Then, provided these assumptions are met, the authors define the length bounds as
follows8:

nx = ⌈log2⌊
√
N⌋odd⌉ − 1, and ny = ⌈log2⌊

N

3
⌋⌉ − 1. (3)

Further on, from Equation 2 it is easy to construct a Hamiltonian simply by re-
placing each Boolean variable xi, yk with the appropriate quantum operator x̂i, ŷk. A very
natural choice for these operators is given below:

x̂i =
I − σz

i

2
, and ŷk =

I − σz
k

2
,

where σz is the Z Pauli matrix and I is simply the identity matrix. For now, however, we
will continue treating our Hamiltonian simply as a pseudo-Boolean function, so that the
next steps are less convoluted than if we were dealing with matrices.

Thus, finally, we arrive at Equation 4, which describes the Hamiltonian for the
problem, such as the one presented by [Hegade et al. 2021].

HN =

[
N −

(
nx∑

i=1

2ixi + 1

)(
ny∑

k=1

2kyk + 1

)]2
. (4)

Furthermore, if we expand the xy product in Equation 4, we can simplify the
Hamiltonian a bit further by noticing that any Boolean variable squared equals itself. We

8Here, ⌊·⌋odd means the largest odd integer not larger than (·).



then arrive at Equation 5, which is our general simplified Hamiltonian for factorization:

HN =
∑

1≤i<j≤nx
1≤k<l≤ny

2i+j+k+l+2xixjykyl

+
∑

1≤i<j≤nx
1≤k≤ny

(2i+j+2k+1 + 2i+j+k+2)xixjyk

+
∑

1≤i≤nx
1≤k<l≤ny

(22i+k+l+1 + 2i+k+l+2)xiykyl

+
∑

1≤i≤nx
1≤k≤ny

[22i+2k + 22i+k+1 + 2i+2k+1 − 2i+k+1(N − 2)]xiyk

+
∑

1≤i<j≤nx

2i+j+1xixj +
∑

1≤k<l≤ny

2k+l+1ykyl

+
∑

1≤i≤nx

[22i − 2i+1(N − 1)]xi +
∑

1≤k≤ny

[22k − 2k+1(N − 1)]yk

+ (N − 1)2.

(5)

4. Hamiltonian quadratization
The process of quadratizing a Hamiltonian – or any pseudo-Boolean function, for that
matter – consists of transforming all its terms of degree d > 2 into quadratic terms (i.e.,
d = 2). Usually, this is done at the expense of adding auxiliary binary variables to the
initial expression.

In the polynomial expression for the Hamiltonian in Equation 5 we have some 3rd-
and 4th-degree monomials, which represent 3- and 4-body interactions between qubits,
respectively. It is well known that two-body physical interactions occur more naturally
than interactions involving many (more than 2) bodies [Dattani 2019]. Thus, it is gen-
erally easier to implement Hamiltonians with at most two-body interactions, than it is to
implement those with cubic and quartic terms, for example.

For this reason, we have explored two general methods for quadratization. The
first one was proposed by [Ishikawa 2011] and the second, by [Dattani and Chau 2019].
We have looked at them both in the context of the Hamiltonian for factorization defined
in the previous section, in Equation 5.

4.1. Ishikawa’s quadratization method
The author of [Ishikawa 2011] presents a general method for quadratizing a mono-
mial of degree d, which is an extension of another quadratization method proposed by
[Freedman and Drineas 2005]. For our case, we only need to apply these two substitu-
tions, which include an extra Boolean variable b:

αx1x2x3 = αmin
b∈B

b(1− x1 − x2 − x3) + α(x1x2 + x1x3 + x2x3), and

αx1x2x3x4 = αmin
b∈B

b(3− 2x1 − 2x2 − 2x3 − 2x4)

+ α(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4).



And since we are already trying to minimize the energy level via our cost function
encoded into the Hamiltonian operator, we can ignore the restriction to minimize the extra
b variable, simply by minimizing the overall value of our expression over all x, y and b
variables.

4.2. Dattani-Chau’s quadratization method

On the other hand, the method proposed by [Dattani and Chau 2019] involves the substi-
tution of a 4-variable pseudo-Boolean in Equation 6 function by the expression given in
Equation 7. Both are shown below:

f(x1, x2, x3, x4) = α1234x1x2x3x4 + α123x1x2x3 + α124x1x2x4

+ α134x1x3x4 + α234x2x3x4.
(6)

f(x1, x2, x3, x4) = min
b∈B

(
3α1234 +

∑

ijk

αijk

)
b+

∑

ij


α1234 +

∑

k/∈ij
αijk


xixj

−
∑

i


2α1234 +

∑

jk;i/∈jk
αijk


 bxi,

(7)

In order to format our Hamiltonian from Equation 5 into the form of Equation 6,
we have proposed the following set of monomial groupings, which we have shown covers
the whole Hamiltonian expression and has no overlaps:

# Quartic monomial Cubic monomials Intervals

1 x1x2y1y2

x1x2y1
x1x2y2
x1y1y2
x2y1y2

-

2 x1x2y1yl

x1x2yl
x1y1yl
x2y1yl

l ≥ 3

3 x1xjy1y2

x1xjy1
x1xjy2
xjy1y2

j ≥ 3

4 x1xjy1yl
x1xjyl
xjy1yl

j ≥ 3, l ≥ 3

5 x1x2ykyl
x1ykyl
x2ykyl

k ≥ 2, l > k

6 xixjy1y2
xixjy1
xixjy2

i ≥ 2, j > i

7 x1xjykyl xjykyl j ≥ 3, k ≥ 2, l > k

8 xixjy1yl xixjyl i ≥ 2, j > i, l ≥ 3

9 xixjykyl - i ≥ 2, j > i, k ≥ 2, l > k

Table 1. Nine non-overlapping monomial groupings.



5. Results
After applying the quadratization methods presented, we have calculated metrics in order
to compare how each method affects the factorization Hamiltonian. First, we estimate
how many auxiliary b variables each method introduces. This result if shown in Table 2.

Method Number of extra variables

Ishikawa’s count
nxny(nxny + nx + ny − 3)

4

Dattani-Chau’s count
nxny(nxny − nx − ny + 1)

4

Table 2. Number of extra variables introduced by each method.

Second, we estimated the number of result quadratic monomials for each method.
This result is presented in Table 3.

Monomial format Ishikawa’s count Dattani-Chau’s count

xx
nx(nx − 1)

2

nx(nx − 1)

2

xy nxny nxny

yy
ny(ny − 1)

2

ny(ny − 1)

2

bx
nxny(nxny + nx − 2)

2

nxny(nxny − nx − ny + 1)

2

by
nxny(nxny + ny − 2)

2

nxny(nxny − nx − ny + 1)

2

Table 3. Number of resulting quadratic terms for each method.

Moreover, if we interpret each variable (qubit) as a node and each quadratic mono-
mial as an edge, we can interpret the whole Hamiltonian as an undirected weighted graph.
From this, we can estimate how connected the Hamiltonian, which can be expressed as
the number of connections (edges) divided by the number of qubits, or nodes. This value
is sometimes called the graph’s beta index, or simply β. The higher the graph’s beta index,
the more connected it is:

β =
E

V
=

”Number of edges”
”Number of nodes”

.

The behavior of beta indexes as N grows to be a very large number is shown in
Figure 1. We have also proven that, in the limit as N tends to infinity, both βIshi and βDatt

tend to the value 4.

And finally, we have also estimated another important metric, which is the range
of coefficients of the quadratic monomials that appear in the Hamiltonian expression.
Particularly, we are interested in how this range grows as N becomes very large. We have
calculated these ranges up to N = 2048 and the results are presented in Figure 2.







Feature Ishikawa Dattani-Chau

(1) Lower number of extra variables × ✓
(2) Lower number of quadratic terms × ✓
(3) Lower connectivity (beta index) ✓ ×
(4) Smaller range of coefficients × ×

Table 5. Comparison of quadratization methods.

quadratizing the original Hamiltonian using the least amount of extra variables (item 1).
As a consequence of this, the resulting Hamiltonian also contains less quadratic monomi-
als (item 2) than the one from Ishikawa’s method.

Further on, we have also looked at the connectivity regarding each method’s
Hamiltonian. Previously, we have shown that Ishikawa’s Hamiltonian always presents
a smaller beta index (item 3) than Dattani-Chau’s. In this context, the former method
seems to have an advantage over the latter. However, we have also explained that this
feature holds little importance, because Ishikawa’s Hamiltonian, when interpreted as a
graph, still utilizes more nodes and edges than the other method, and can only be con-
sidered the lesser-connected Hamiltonian (meaning the one with the smaller beta index)
precisely because it uses more nodes (or qubits) to do so.

Moreover, we have also estimated how the range of coefficients (item 4) in the
Hamiltonian grows for each method. We have shown that, at least for reasonably small
values ofN , the Hamiltonian coefficients tend to stay inside the interval [−N3,+N3], and
thus seem to be polynomially bounded in relation to the value of N . Other than that, we
were not able to identify any significant difference between the two methods’ expected
range of coefficients, and therefore we have considered this feature a draw.

Finally, with all that was presented, we conclude that Dattani-Chau’s quadratiza-
tion method is overall better than Ishikawa’s, considering the Hamiltonian that was the
object of analysis and the scope of this study.

6. Conclusion

The main goal of this work was to study how different quadratization methods – specif-
ically the ones proposed by [Ishikawa 2011] and [Dattani and Chau 2019] –, can affect
the Hamiltonian for the integer factorization problem. As of yet, we have provided a gen-
eral formula for this Hamiltonian, which includes simplifications regarding monomials
with repeated binary variables. We have also provided a second general formula for the
factorization Hamiltonian, quadratized via the method proposed by [Ishikawa 2011], and
a third general formula for the same Hamiltonian, but instead quadratized through the
method proposed by [Dattani and Chau 2019].

Moreover, we have evaluated different metrics for both quadratization methods,
which were then used to compare each methods’ cost and effectiveness in simplifying
the original Hamiltonian operator. For each case, we have explored how the number of
auxiliary variables grows, what is the connectivity between qubits of the Hamiltonian, and
what is the range of coefficients (i.e. coupling strengths) required for the computation.



We have shown that the approach proposed by [Dattani and Chau 2019] is better
suited for quadratizing our Hamiltonian, since it outperforms Ishikawa’s method in almost
every aspect we have analysed.

On top of that, we have also made estimates for what our Hamiltonian operator
would look like if it were employed to factor large RSA numbers, with 1024 and 2048
bits. We have concluded that our approach would not be physically possible to implement,
but that it still serves as a framework for comparing the aforementioned quadratization
methods.

In future works, this study wishes to explore alternative ways of encoding the
factorization problem into the Hamiltonian operator, aiming at approaches with better
scalability that are based in different cost functions, or different multiplication algorithms.
We also intend to explore other quadratization techniques, when applicable, in order to
better understand the impacts that any quadratization process has on the Hamiltonian
operators that are related to the factorization problem.

Finally, we also wish to perform actual examples of factorization via adiabatic
quantum computing, so we can compare how each quadratization method affects the over-
all performance of the computation. Preferably, this should be done in an actual quantum
computer, such as the ones provided by D-Wave Systems9. Depending on availability,
however, this may also be performed using a quantum simulator.
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