
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CENTRO TECNOLÓGICO

DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA
CIÊNCIA DA COMPUTAÇÃO

Eduardo Henke

Implementing a programming language with a dependent type system

Florianópolis
23 de dezembro de 2022

Eduardo Henke

Implementing a programming language with a dependent type
system

Trabalho de Conclusão de Curso subme-
tido ao Curso de Graduação em Ciência da
Computação do Centro Tecnológico da Uni-
versidade Federal de Santa Catarina como re-
quisito para obtenção do título de Bacharel
em Ciência da Computação.
Supervisor: Prof. Alvaro Junio Pereira
Franco, Dr.
Co-supervisor: Li-Yao Xia, Dr.

Florianópolis
23 de dezembro de 2022

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Henke, Eduardo
 Implementing a programming language with a dependent
type system / Eduardo Henke ; orientador, Alvaro Junio
Pereira Franco, coorientador, Li-Yao Xia, 2022.
 77 p.

 Trabalho de Conclusão de Curso (graduação) -
Universidade Federal de Santa Catarina, Centro Tecnológico,
Graduação em Ciências da Computação, Florianópolis, 2022.

 Inclui referências.

 1. Ciências da Computação. 2. Programming Languages. 3.
Type Systems. 4. Dependent Types. 5. Lambda Calculus. I.
Junio Pereira Franco, Alvaro. II. Xia, Li-Yao. III.
Universidade Federal de Santa Catarina. Graduação em
Ciências da Computação. IV. Título.

Eduardo Henke
Implementing a programming language with a dependent type system

Este Trabalho de Conclusão de Curso foi julgado adequado para obtenção do Título de
Bacharel em Ciência da Computação e aprovado em sua forma final pelo curso de

Graduação em Ciência da Computação.

Florianópolis, 23 de dezembro de 2022.

Prof. Jean Everson Martina, Dr
Coordenador do Curso

Banca Examinadora:

Prof. Alvaro Junio Pereira Franco, Dr.
Orientador

Universidade Federal de Santa Catarina

Li-Yao Xia, Dr.
Coorientador

University of Edinburgh

Profa. Jerusa Marchi, Dr.
Avaliadora

Universidade Federal de Santa Catarina

Prof. Maicon Rafael Zatelli, Dr.
Avaliador

Universidade Federal de Santa Catarina

RESUMO

O objetivo principal desse projeto é discutir sobre as vantagens de sistema de tipos avan-
çados, na área de desenvolvimento de software, através da implementação de uma lingua-
gem de programação com um sistema de tipos dependentes. Isso pode ajudar a melhorar a
confiabilidade e segurança do software, permitindo a verificação estática de propriedades
arbitrárias sobre o código. O cálculo lambda é expandido com tipos dependentes, o que
possibilita a escrita de programas que realizam computações e também permitem a prova
da corretude de seu comportamento.

Palavras-chave: Tipos dependentes, sistema de tipos, cálculo lambda, linguagem de
programação, teoria de tipos, verificação formal, métodos formais.

ABSTRACT

The main goal of this project is to explore the potential benefits of advanced type systems,
in software development, through an implementation of a dependently typed programming
language. This could help improve the reliability and safety of software by enabling static
verification of arbitrary properties about the code. This work consists in an extension
of the lambda calculus with dependent types, which allows us to write programs that not
only have the ability to perform computations, but whose correctness can also be proven.

Keywords: Dependent types, type system, lambda calculus, programming language,
type theory, formal verification, formal methods.

LIST OF FIGURES

Figure 1 – Step-by-step calculation of the factorial 2 term 17
Figure 2 – Lambda calculus grammar . 18
Figure 3 – Extended lambda calculus grammar . 20
Figure 4 – Extended lambda calculus evaluation rules 21
Figure 5 – Extended lambda calculus typing rules 22
Figure 6 – Core lambda calculus typing rules . 23
Figure 7 – Well-typed program . 23
Figure 8 – Well-typed program typing proof tree 23
Figure 9 – Not well-typed program . 24
Figure 10 – Dependently-typed lambda calculus grammar 24
Figure 11 – Dependently-typed lambda calculus typing rules 24
Figure 12 – Dependently-typed lambda calculus syntax sugar 25
Figure 13 – Inference rules for the definitional type equality judgement 28
Figure 14 – Bidirectional type-inference rules . 29
Figure 15 – Bidirectional type-checking rules . 30
Figure 16 – Module grammar . 30
Figure 17 – Data type grammar . 31
Figure 18 – Data type with pattern matching grammar 33

CONTENTS

1 INTRODUCTION . 13
1.1 EXISTING WORK . 14
1.1.1 Data types . 15
1.2 OBJECTIVES . 16

2 THEORETICAL BASIS . 17
2.1 LAMBDA CALCULUS . 17
2.1.1 Evaluation rules . 18
2.2 SIMPLY-TYPED LAMBDA CALCULUS 20
2.2.1 Extension of the calculus . 20
2.2.2 Typing rules . 21
2.3 DEPENDENTLY-TYPED LAMBDA CALCULUS 24
2.3.1 Definitional Type Equality . 26
2.3.1.1 Motivation . 26
2.3.1.2 Inference rules . 27

3 IMPLEMENTATION . 29
3.1 BIDIRECTIONAL TYPE SYSTEM . 29
3.2 MODULES . 30
3.2.1 Type-checking . 30
3.3 DATA TYPES . 30
3.3.0.1 Type-checking . 32
3.3.1 Pattern-matching . 33
3.3.1.1 Type-checking . 33
3.4 PROJECT’S CODE . 34
3.4.1 Terms . 35
3.4.2 Type-checking . 36
3.4.2.1 Type-checking monad . 36
3.4.2.2 Equality and weak-head normal form . 37
3.4.2.3 Type-checking rules . 39
3.5 EXAMPLES . 42
3.6 EVALUATION . 43
3.6.1 Results . 44

4 CONCLUSION . 45

References . 47

APPENDIX A – PROJECT REPOSITORY 49

APPENDIX B – PAPER . 51

13

1 INTRODUCTION

Software development is a big area, which it is being progressively valued over
time. However, due to the complexity of maintaining and developing large software sys-
tems, bugs are frequent, where there is a discrepancy in what the developer expected to
happen, with what was written in the software. Because of this, we can see the impor-
tance of being able to guarantee that the software works as we expect, and it is also for
this reason that the semantic analysis part of a language is used, where we can verify if
the behavior expected by the developer reflects what was in fact written.

In the semantic analysis phase, the compiler checks if the code written by the
developer is in accordance with the problem modeling. One of the most basic mechanisms
for this is types, which we use to define which variables are of a given set of possible values.
With a simple type system (PIERCE, 2002), we can verify that a variable of type string
cannot receive a value of type int.

With a more advanced type system, i.e. with dependent types (PIERCE, 2004)
we can:

• specify invariants (rules that must hold) that will be statically checked in the code,
for example:

– in a banking system, during a withdrawal operation, the amount withdrawn
cannot be greater than the balance from a bank account1:

-- given the account balance, an amount and a proof

-- that the withdrawn amount is less than the balance

-- perform the operation

withdraw_from :

(account : Account) →
(amount : Nat) →
(amount <= account.balance) →
Nat

– in most programs, we can have a list of elements, and we can have a function
that returns the first element of the list, but what happens if the list is empty?
We can use dependent types to specify that the list cannot be empty2:

head :

-- given any type A

1 We use a Haskell-style pseudo-code notation to describe this code, explained in more details in Sec-
tion 3.2 and in Section 2.3

2 In this case, the first two parameters are being passed explicitly, which can be cumbersome to the de-
veloper’s experience, that is why most dependently-typed languages have some inference mechanisms,
which allows the compiler to infer some parameters being passed, like the element type and length of
the vector

14

(A : Type) →
-- given any number

(n : Nat) →
-- given a vector of type A, with length n+1

-- (note that this means that even if n is 0,

--- succ n, will be 1, and the vector will have

-- at least one element, our language

-- STATICALLY INVALIDATES all uses of head on an empty list)

Vec A (succ n) →
-- return the first element of the vector

A

-- returns the length of the resulting vector as a type

append : (A : Type) → (n : Nat) → (m : Nat) → Vec A m → Vec A n →
Vec A (plus m n)

append = ... -- implementation is ommitted

• prove properties (and theorems) about the code, because we can encode logical
propositions as types (NLAB AUTHORS, 2022e), and their respective proofs as code
(evidence of that type) (NLAB AUTHORS, 2022d), e.g. prove that an operation
inserting an element into an ordered list does not change the order of the list, or
prove that a mathematical relation is associative:

-- proof that addition on Naturals is associative

-- given any three numbers (m, n, p), we can prove that:

-- (m + n) + p = m + (n + p)

plus_assoc : (m n p: Nat) → ((plus (plus m n) p) = (plus m (plus n p)))

plus_assoc = -- ... proof is ommitted

1.1 EXISTING WORK

Some of the most well-known dependently-typed languages are Agda (MÖRT-
BERG; NORELL, 2022), Idris (TEAM, T. I. D., 2022), Coq (TEAM, T. C. D., 2022)
and Lean (TEAM, T. L. D., 2022), all of which allow for static verification and the ability
to prove arbitrary properties about the code. These languages are based on different un-
derlying type theories, which shape the foundations of their type systems and the capacity
to specify and prove theorems. Additionally, the focus of these languages can vary; for
instance, Agda is more geared towards programming, while Coq has a stronger emphasis
on theorem proving. In the following section, we demonstrate the use of data types in the
Agda programming language.

15

1.1.1 Data types

One example of a Agda program is shown below:

data Nat : Set where

zero : Nat

suc : Nat → Nat

+ : Nat → Nat → Nat

zero + m = m

suc n + m = suc (n + m)

We have defined a data type Nat that has two constructors, zero and suc of a
Nat, which are used to represent the natural numbers. Addition is defined as a function
that takes two Nat and returns a Nat, by recursively removing the suc from the first
parameter until it reaches zero.

We will show how a vector and a function to get its first element can be defined
in Agda:

data Vec (A : Set) : Nat → Set where

[] : Vec A zero

:: : {n : Nat} → A → Vec A n → Vec A (suc n)

head : {A : Set}{n : Nat} → Vec A (suc n) → A

head (x :: xs) = x

We have defined Vec, which is a type constructor, not a type by itself. We need
to apply two arguments for it to be a type, the first one is a type representing the vector
element type and the second one is a natural number, representing the vector length. We
now have that Vec Nat 3 is a type, and that Vec Nat 2 is also a type, but they are both
different from each other.

We have also defined two ways to build instances of the Vec A n type, the first
one is the empty vector, which is represented by the [] constructor, it returns an instance
of the type Vec A zero for any type A. And the second one is the _::_ constructor, which
takes an implicit parameter n representing the length of the vector, an element of type A,
a vector of type Vec A n, and returns a vector of type Vec A (suc n). An example of a
vector is 5 :: [], which has type Vec Nat (suc zero).

The head function takes an implicit parameter A representing the inner type of
the vector, another implicit parameter n representing the length of the vector, a vector
of type Vec A (suc n) and returns an element of type A. Because the vector is statically
guaranteed to not be empty, Agda can check that the only constructor that can generate
an element of type Vec A (suc n), is the _::_ constructor, with that we can use it to get
the first element of the vector.

16

1.2 OBJECTIVES

The general objective of this thesis is to examine the potential advantages of uti-
lizing advanced type systems, such as dependent types, in software development, through
the implementation of a dependently-typed programming language. We will provide a
deeper understanding of how such languages work behind the scenes, and how they can
be used to statically verify properties about a program.

To support this general objective, we will pursue the following specific objectives:

• Investigate existing work on dependently-typed programming languages and ad-
vanced type systems

• Develop a dependently-typed programming language as a proof-of-concept imple-
mentation. As the focus is on the type system, we will present only the type-checker
of such language.

• Use the language to encode business invariants and demonstrate the ability to prove
properties about the code, including through the use of static type checking and
automated theorem proving.

We believe that achieving these objectives will provide valuable insights into the
potential of using advanced type systems in software development.

17

2 THEORETICAL BASIS

In this chapter, we are going to provide some background in lambda calculus,
inference rules and some type theories.

2.1 LAMBDA CALCULUS

When we do not have the tool of abstraction, calculations such as the following
seem complex to follow:

(2*1) + (7*6*5*4*3*2*1) + (5*4*3*2*1)

That is why we can abstract the underlying common concepts and define a function to
capture that common abstraction, as defined here:

factorial = λn . if n == 0 then 1 else n * (factorial (n - 1))

Now we can use the previously defined function1 to more concisely define the previously
cumbersome calculation, as shown here:

(factorial 2) + (factorial 7) + (factorial 5)

Let’s calculate the term factorial 2 step-by-step (Figure 1):

• In the first line, we are applying the function factorial to the argument 2 (This
will be subsequently defined as application of lambda terms).

• In the second line, we have substituted the parameter n for 2 in the body of the
function (This will be subsequently defined as substitution or beta-reduction).

• In the third line, we have evaluated the if expression, resulting in the false path.

• Afterwards, we continue doing similar steps until we reach the base case of recursion,
the true path of the if expression.

(λn . if n == 0 then 1 else n * (factorial (n - 1))) 2

if 2 == 0 then 1 else 2 * (factorial (2 - 1))

2 * (factorial (2 - 1))

2 * (factorial 1)

2 * (1 * (factorial 0))

2 * (1 * 1)

Figure 1 – Step-by-step calculation of the factorial 2 term

1 This concept will be later formalized as ”abstraction”

18

We have captured an essential understanding of the calculation, and abstracted
it into a concept that we can later reuse.

Lambda calculus captures the essential mechanisms of a programming language
based on a few simple rules (abstraction, application). It was invented by Alonzo Church
in the 1920s (PIERCE, 2002) and it is a logical calculus or formal system.

Definition 2.1.1 (Term). A term is an expression in a given formal language that rep-
resents a value or a computation.

The terms of the lambda calculus are generated by the following grammar:

t ::= x variable
| λx.t abstraction
| t t application

Figure 2 – Lambda calculus grammar

A few example terms of the above grammar:

• x, a simple (unbounded) variable

• λx.x, the identity function

• λx.λy.x, a function receiving argument x, that returns another function receiving
argument y, that returns x

• (λx.x) y, applying y to the identity function

2.1.1 Evaluation rules

This calculus primary benefit is in its evaluation, or computation. For example,
let’s take the above mentioned term and evaluate it: (λx.x) y in one step evaluates to y,
because we are applying the identity function to the variable y. But how does that work
for all terms? How can we formalize it?

Definition 2.1.2 (Evaluation). a→ b, a term a can evaluate to term b

For that we need inference rules. Inference rules are syntactic transformation
rules, i.e. they only need to check the form of the term and with that form they transform
the original term to something else. We denote the inference rules by having the premises2

above the bar and the conclusions/consequent below it, like the following inference rule
symbolizing the property that adding zero to a number does not change the number:
2 When we do not need any pre-conditions we simply write nothing above the bar

19

a ∈ N
(Add-Zero)

a + 0→ a

Definition 2.1.3 (Value). For a term to be a value, it must have the form of a function,
i.e. only terms that are an abstraction (λx.t) are considered to be values. For ease of
notation, we will use t to denote any term, and v (and its derivatives) to denote values
e.g. v1.

Definition 2.1.4 (Substitution). The process of substituting a variable x with another
term y in a given term t is denoted by [x 7→ y]t

We will be denoting the evaluation of a lambda calculus terms using a system of
inference rules written below:

t1 → t′
1 (E-App1)

t1 t2 → t′
1 t2

Given a term t1 t2 (applying the argument t2 to the function t1), if the term t1

can evaluate to another term t′
1, we can rewrite the original term to t′

1 t2.

t2 → t′
2 (E-App2)

v1 t2 → v1 t′
2

Given a term v1 t2(applying the argument t2 to a term which is a value v1), if
the term t2 can evaluate to another term t′

2, we can rewrite the original term to v1 t′
2.

(E-AppAbs)
λx.t12 v2 → [x 7→ v2]t12

Whenever we have an application and the argument is a value, we can rewrite
the original term to the body of the function, while replacing the parameter (x) to the
argument (v2).3,4

Definition 2.1.5 (Normal form). When we have no more evaluation steps to perform,
i.e. none of the above rules can be applied, and the resulting term is a value we say that
the term is in normal form. For example the term λx.x is in normal form.

At first it does not seem that this simple system can compute the same terms
that an ordinary programming language can, but it turns out we can encode numbers,
data structures (lists, sets, etc.), if expressions (PIERCE, 2002). It was proved that this
model is equivalent to a Turing Machine (CHURCH, 1941).
3 This rule is also called a beta reduction (PIERCE, 2002).
4 Note that we do not have any preconditions for this rule, whenever we syntactically have an application

whose argument is a value, we can reduce it.

20

2.2 SIMPLY-TYPED LAMBDA CALCULUS

Up to now, we have only had the notion of evaluation of terms, we are able to
define computation steps and an engine can run those for us. But without much insight
into what ”types” of terms we are writing we can easily make the underlying evaluation
engine try to compute a program that never halts (PIERCE, 2002), or if we add to the
lambda calculus’ rules operations that can only be applied to numbers and feed them
with booleans that can also make the engine stuck, i.e. passing a program that cannot
be computed.

Those problems can be solved if we somehow inspect the original program before
evaluating it, and if desired properties can be derived from only the program specifica-
tion, checking those properties against the code. One way to do it is by the concept of
types (PIERCE, 2002).

Types allow us to define a set of possible values a term may have during runtime.
When we talk about a variable having a type of Nat (Natural numbers set), it is telling
that during runtime that variable can only possess the values 0, 1, 2, When we
define a variable of type Bool, the only possible values in runtime are True, False.

We can also annotate various parts of our program that allows this checker (which
we will call typechecker from now), to verify the correctness of our program.

2.2.1 Extension of the calculus

Consider this extended version of lambda calculus representing the typed exten-
sion of the lambda calculus, we will have a grammar for type construction (being repre-
sented by T, with some examples like Nat and Nat →Bool), we will annotate function
parameters with their types (λx:T. t where x is the function parameter, T is a type and
t is a term), and we will have a typing context Γ to record previous typing associations,
as well as some terms of type Nat (0, succ 0) and Bool (true, false):

t ::= x
| λx : T . t
| t t
| true
| false
| if t then t else t
| 0
| succ t

T ::= Nat
| Bool
| T→ T

Γ ::= ∅
| Γ, x : T

v ::= λx : T . t

Figure 3 – Extended lambda calculus grammar

With its evaluation rules as stated in Figure 4:

21

• Rules E− App1, E− App2, E− AppAbs, were already defined in Subsection 2.1.1.

• Rule E−IfTrue, whenever we syntactically find an if expression, whose condition is
true, we can evaluate that expression to the first branch (then) of the if expression,
i.e. t2.

• Rule E− IfFalse, whenever we syntactically find an if expression, whose condition
is false, we can evaluate that expression to the second branch (else) of the if
expression, i.e. t3.

• Rule E − Succ, whenever we syntactically find a succ expression on a term t, we
have to check the condition that t evaluates to another term t′, if that is the case
we can evaluate the succ t expression to succ t′.

t1 → t′
1 (E-App1)

t1 t2 → t′
1 t2

t2 → t′
2 (E-App2)

v1 t2 → v1 t′
2

(E-AppAbs)
λx.t12 v2 → [x 7→ v2]t12

(E-IfTrue)
if true then t2 else t3 → t2

(E-IfFalse)
if false then t2 else t3 → t3

t→ t′
(E-Succ)

succ t→ succ t′

Figure 4 – Extended lambda calculus evaluation rules

2.2.2 Typing rules

The typing relation for the extended part of the extended lambda calculus, written
t : T is defined by inference rules assigning types to terms as stated in Figure 5:

• Rule T − True, whenever we syntactically find a true term, we can assign it the
type Bool.

• Rule T− False, whenever we syntactically find a false term, we can assign it the
type Bool.

• Rule T − If, whenever we syntactically find an if expression, we need to check the
premises that the condition is a Bool term, and the two branches are of the same
type. If that is the case, we can assign the if expression the type of the two branches.

22

• Rule T − Zero, whenever we syntactically find a 0 term, we can assign it the type
Nat.

• Rule T − Succ, whenever we syntactically find a succ expression on a term t1, we
have to check the condition that t1 has type Nat, if that is the case we can assign
the succ t1 expression the type Nat.

(T-True)
true : Bool

(T-False)
false : Bool

t1 : Bool t2 : T t3 : T
(T-If)

if t1 then t2 else t3 : T

(T-Zero)
0 : Nat
t1 : Nat

(T-Succ)
succ t1 : Nat

Figure 5 – Extended lambda calculus typing rules

Definition 2.2.1 (Well-typed term). A term that we can assign a type to is called a well-
typed term. For example, the term if true then 0 else succ 0 is well-typed, because it
has type Nat, by the following proof tree:

true : Bool 0 : Nat

0 : Nat
(T-Succ)

succ 0 : Nat
(T-If)

if true then 0 else succ 0 : Nat

Terms that are not well-typed, i.e. cannot be assigned a type given the rules
above, for example the term succ true will not evaluate to a value5.

We have shown above how to check the types of the extended part of the extended
lambda calculus (e.g. for true, 0, succ, etc.), but we have not shown for the core part of
the lambda calculus (e.g. for λx.t, t1 t2, etc.). For that we need the concept of a typing
context, which will change the typing rules to include a context to aid in this process.

Definition 2.2.2 (Context). A typing context, denoted by Γ, is a sequence of variables
and their associated types. The empty context is written as ∅. We can extend an existing
context Γ by adding a new variable with its associated type to it: Γ, x : T.6

5 We call those terms stuck, in a more formal definition, they are terms in normal form (no more
evaluation rules apply) who are not values

6 We will assume that each of the variables in this list are distinct from each other, so that there will
always be at most one assumption about any variable’s type.

23

The existing typing rule will change from a two-place relation x : T to a three-
place relation Γ ` x : T, meaning that x has type T under the context Γ, which will provide
assumptions to the types of the free variables7 in x.

The typing rules for the core part of the lambda calculus, now written as Γ ` t : T
are defined in Figure 6:

• Rule T− Var, to check if a variable x has type T in the context Γ, we check if x : T
is in Γ.

• Rule T−Abs, a lambda expression λx : T1.t2 has type T1 → T2 in context Γ, if when
we extend the context Γ to include the variable x with type T1, we can check if t2

has type T2 in the extended context.

• Rule T− App, a function application t1 t2 has type T12 in context Γ, if we can check
that t1 has type T11 → T12 in the context Γ, and if we can check that t2 has type
T11 in the context Γ.

x : T ∈ Γ
(T-Var)

Γ ` x : T
Γ, x : T1 ` t2 : T2 (T-Abs)

Γ ` λx : T1. t2 : T1 → T2

Γ ` t1 : T11 → T12 Γ ` t2 : T11 (T-App)
Γ ` t1 t2 : T12

Figure 6 – Core lambda calculus typing rules

With that we can now typecheck that the following program is valid:

(λx : Nat.succ x) (succ 0)

Figure 7 – Well-typed program

Γ, x : Nat `

x : Nat ∈ Γ
(T-Var)

x : Nat
(T-Succ)

succ x : Nat
(T-Abs)

Γ ` (λx : Nat.succ x) : Nat→ Nat
0 : Nat

(T-Succ)
(succ 0) : Nat

(T-App)
(λx : Nat.succ x) (succ 0) : Nat

Figure 8 – Well-typed program typing proof tree

7 Variables that are not bound to any lambda binder

24

And we cannot build a similar proof tree for the following program, because it is
invalid:

(λx : Nat.succ x) true

Figure 9 – Not well-typed program

2.3 DEPENDENTLY-TYPED LAMBDA CALCULUS

The simply-typed system provides us some basic tools to define types, but we
need to be able to define types for more complex terms.

Dependent types allow types to depend on the terms themselves, i.e. we do not
have this stark distinction of types and terms. That allows us greater freedom in specifying
types, which are a foundation on which our typechecker can verify the correctness of our
code (PIERCE, 2004).

Like many dependently-typed languages, we will show the typing rules (Figure 11)
and a grammar (Figure 10) with the same syntax for the terms and types, however for
clarity we will be using lowercase letters for terms and uppercase letters for their types.

t, T ::= x variable
| λx.t abstraction
| t t application
| (t : T)→ T dependent function type
| Type the ”type” of types

Figure 10 – Dependently-typed lambda calculus grammar

x : T ∈ Γ
(T-Var)

Γ ` x : T
Γ, x : T1 ` y : T2 Γ ` T1 : Type

(T-Lambda)
Γ ` λx.y : (x : T1)→ T2

Γ ` t1 : (x : T11)→ T12 Γ ` t2 : T11 (T-App)
Γ ` t1 t2 : [x 7→ t2]T12

Γ ` T1 : Type Γ, x : T1 ` T2 : Type
(T-Pi)

Γ ` (x : T1)→ T2 : Type

(T-Type)
Γ ` Type : Type

Figure 11 – Dependently-typed lambda calculus typing rules

25

The typing rules T−Var, T−Lambda and T−App are very similar to those in the
simply-typed lambda calculus, but the main difference is that the function type, has now
a binder variable for the argument. Where before we only had that the type of a function
is T1 → T2, now we have that the type of a function8 is (x : T1) → T2. That means
that the function’s return type expression T2 can depend on the function’s argument x,
e.g. the type of a function that inserts a Bool in a length-indexed vector of Bools can be
(n : Nat)→ Bool→ Vec Bool (n + 1). The other rules are explained as follows:

• Rule T− Pi, a Pi type (x : T1)→ T2 has type Type in context Γ, only if T1 also has
type Type in context Γ, and if T2 has type Type in the extended context Γ, x : T1.

• Rule T− Type, the term Type also has type Type.

We will add two extensions to our grammar to aid in creating programs:

t, T ::= ...

| t : T type annotation
| name = t assigning a name to a term

Figure 12 – Dependently-typed lambda calculus syntax sugar

Which respectively mean:

• An expression can be annotated with a type, e.g. x : Nat, and that will trigger the
typechecker to check that Γ ` x : Nat given the underlying context.

• A name can be assigned to a term, e.g. id = λx.x.

With that we can write this polymorphic identity function program annotated
with its type and its associated typing proof tree:

id : (x : Type)→ (y : x)→ x

id = λx.λy.y

We can derive a proof tree proving that the type of id is in fact what was
annotated:

Γ, x : Type `

Γ, y : x ` y : x

x : Type ∈ Γ
(T-Var)

x : Type
(T-Lambda)

λy.y : (y : x)→ x
(T-Type)

Γ ` Type : Type
(T-Lambda)

Γ ` λx.λy.y : (x : Type)→ (y : x)→ x

The goal of this project is to derive the typing proof tree automatically.
8 Formally called a Pi type

26

2.3.1 Definitional Type Equality

2.3.1.1 Motivation

In languages with dependent types, it is often necessary to equate types that are
not merely alpha-equivalent9. This is because more expressions need to type check in
these languages. For example, a type of length-indexed vector might be Vec A n, where
A is the type of the vector’s elements, and n is the length of the vector. We could have a
safe head operation that would allow us to access the first element of the vector, as long
as it is not empty and a append operation that would allow us to append elements to the
vector.

head : (A : Type) → (n : Nat) → Vec A (succ n) → A

head = ... -- implementation is ommitted

-- returns the length of the resulting vector as a type

append : (A : Type) → (n : Nat) → (m : Nat) → Vec A m → Vec A n → Vec A (plus

m n)

append = ... -- implementation is ommitted

Observe that the following program would compile with the existing theory:

v' : Vec Bool (succ 0)

v' = Cons True VNil

h : Bool

h = head Bool 0 v'

Because the type of v’ is Vec Bool (succ 0) matches exactly what the head
function expected:

head : (A : Type) → (n : Nat) → Vec A (succ n) → A

head Bool : (n : Nat) → Vec Bool (succ n) → Bool

head Bool 0 : Vec Bool (succ 0) → Bool

head Bool 0 v' : Bool

However the application of head Bool 1 (append Bool 1 1 v' v'), would not
typecheck, observe why:

v' : Vec Bool (succ 0)

append : (A : Type) → (n : Nat) → (m : Nat) → Vec A m → Vec A n → Vec A (plus

m n)

9 alpha-equivalence is the property of two terms being equal are equivalent for all purposes if their only
difference is the renaming of bound variables, e.g. λx.x is alpha-equivalent to λy.y (NLAB AUTHORS,
2022a)

27

append Bool 1 1 : Vec Bool 1 → Vec Bool 1 → Vec Bool (plus 1 1)

append Bool 1 1 v' v' : Vec Bool (plus 1 1)

head : (A : Type) → (n : Nat) → Vec A (succ n) → A

head Bool : (n : Nat) → Vec Bool (succ n) → Bool

head Bool 1 : Vec Bool (succ 1) → Bool

-- the term:

-- head Bool 1 (append Bool 1 1 v' v')

-- would not type check because "head Bool 1" is a function that expects:

-- (Vec Bool (succ 1))

-- but we have:

-- (Vec Bool (plus 1 1))

It seems alpha-equivalence is not enough to type check this program, we need
to be able to equate Vec Bool (succ 1) and Vec Bool (plus 1 1). And that seems to
require some number of steps of computation to be able to do so. Definitional type
equality is the tool we need to also equate those types of terms.

Definition 2.3.1 (Judgement). A judgement is a proposition that is made on a given
term. The previously defined typing rule is a form of judgement.(NLAB AUTHORS,
2022c)

Definition 2.3.2 (Definitional equality). Definitional equality is a judgement of the form:
Γ ` A = B. Classically, definitional equality is called intensional equality10. However in
this thesis we will define it to mean both intensional and computational equality11 (NLAB
AUTHORS, 2022b).

2.3.1.2 Inference rules

This judgement is defined by the properties stated in Figure 13. Rule E − Beta
ensures that beta-equivalence is contained in this judgement, because terms that evaluate
to each other should be equal. Rules E−Refl, E−Sym, and E−Trans allows this judgement
to be considered an equivalence relation (WEIRICH, 2022).

10 Intensional equality is the relation generated by abbreviatory definitions, changes of bound variables
and the principle of substituting equals for equals (NLAB AUTHORS, 2022b)

11 Computational equality is the relation generated by various reduction rules, e.g. beta reduction (NLAB
AUTHORS, 2022b)

28

(E-Beta)
Γ ` (λx.a) b = [x 7→ b]a

(E-Refl)
Γ ` A = A
Γ ` A = B

(E-Sym)
Γ ` B = A

Γ ` A1 = A2 Γ ` A2 = A3 (E-Trans)
Γ ` A1 = A3

Γ ` A1 = A2 Γ, x : A1 ` B1 = B2 (E-Pi)
Γ ` (x : A1)→ B1 : (x : A2)→ B2

Γ, x : A1 ` b1 = b2 (E-Lam)
Γ ` λx.b1 : λx.b2

Γ ` a1 = a2 Γ ` b1 = b2 (E-App)
Γ ` a1 b1 = a2 b2

Γ, x : A ` b : B Γ ` a1 = a2 (E-Lift)
Γ ` [x 7→ a1]b = [x 7→ a2]b

Γ ` a1 = a2 (E-Annot)
Γ ` (a1 : A) = a2

Figure 13 – Inference rules for the definitional type equality judgement

With those rules we can now successfully type-check the program, because plus 1 1
will evaluate to succ 1.

29

3 IMPLEMENTATION

The rules presented on section 2.3 were developed to allow typing proof trees to
be built, however they were not developed having in mind how these proof trees can be
built, i.e. these rules are not syntax-directed, we can not devise a decidable algorithm
based on these rules alone. The reason for that is because rule T− Lambda is not syntax-
directed, it is not clear what is the type of the argument of the function (we extend the
context with it, because it is necessary to typecheck the body of the function). Because
of that we need to revise the existing rules and transform them into syntax-directed rules.

3.1 BIDIRECTIONAL TYPE SYSTEM

One way to automatically derive proof trees for a given program is to define a
bidirectional type system, which is based on two types of judgements:

• Type inference, denoted as Γ ` x ⇒ T which given a term x and a context Γ, will
infer(return) the type of that term.

inferType :: Context → Term → Maybe Type

• Type checking, denoted as Γ ` x⇐ T which given a term x, a context Γ and a type
T, will check that the term is of the given type.

checkType :: Context → Term → Type → Bool

We now can develop inference rules that represent the algorithmically-feasible
version of the Section 2.3 rules. Both types of judgements will be used, the type inference
rules can use the type checking rules, and vice versa.

x : A ∈ Γ
(I-Var)

Γ ` x⇒ A
Γ ` a⇒ (x : A)→ B Γ ` b⇐ A

(I-App-Simple)
Γ ` a b⇒ [x 7→ b]B

Γ ` A⇐ Type Γ, x : A ` B⇐ Type
(I-Pi)

Γ ` (x : A)→ B⇒ Type

(I-Type)
Γ ` Type⇒ Type

Γ ` a⇐ A
(I-Annot)

Γ ` (a : A)⇒ A

Figure 14 – Bidirectional type-inference rules

30

Γ, x : A ` a⇐ B Γ ` A⇐ Type
(C-Lambda)

Γ ` λx.a⇐ (x : A)→ B
Γ ` a⇒ A

(C-Infer-Simple)
Γ ` a⇐ A

Figure 15 – Bidirectional type-checking rules

3.2 MODULES

We will also introduce the concept of modules and top-level declarations to aid
in the development of programs. Where a module consists of a list of declarations that
are defined once and used throughout the module:

Decl ::= t : T type-signature
| t = t definition

Figure 16 – Module grammar

Here are some examples:

-- a type signature, linking "id" with that type

id : (a : Type) → a → a

-- a definition, linking "id" with that term/value

id = λa. λx. x

3.2.1 Type-checking

To type-check a module we use the checkType function when we have an asso-
ciated type-signature for a given name, and we use the inferType function when we do
not have a type-signature for a given name. Also we put the existing declarations in the
scope of all subsequent type-checks.

3.3 DATA TYPES

We will also introduce the concept of data types, to aid the programmer in having
structured data in their program:

31

Decl ::= ...

| data TConName Telescope : Type where ConstructorDef+ data definition

ConstructorDef ::= DConName Telescope
TConName ::= identifier type constructor name
DConName ::= identifier data constructor name

Telescope ::= Decl∗

t, T ::= ...

| TConName t∗ constructing a data type by applying a list of arguments
| DConName t∗ instance of a data type

Figure 17 – Data type grammar

Definition 3.3.1 (Telescope). A telescope is a list of declarations, it is called like that
because of the scoping behavior of this structure (WEIRICH, 2022). The scope of each
variable merges with all of the subsequent ones, e.g.:

-- notice the scoping behavior of this structure

(A : Type) (n : Nat) (v : Vec A n)

-- here we are showing that the telescope can use both

-- a type annotation, and a definition, which symbolizes

-- a constraint being put upon any variable, in this

-- case, it requires n to be of value Zero

(n : Nat) [n = Zero]

Here we are showing an example, by first defining some data types, then using it
as terms:

data Bool : Type where {

False, -- False is a case from Bool, it is a data type constructor

True -- as well as True

} -- Bool is a data definition with an empty telescope

data Nat : Type where {

Zero,

-- Succ is a data type constructor with

-- a Telescope of one argument (another Nat number)

Succ of (Nat)

}

data List (A : Type) : Type where {

Nil,

-- Cons is a data type constructor with

32

-- a Telescope of two arguments (element of A and a List of A)

Cons of (A) (List A)

}

-- t is annotated with a type, constructed by applying a

-- list of arguments (Bool) to the type constructor (List)

t : List Bool

-- t is defined using a data type constructor (Cons) by applying

-- a list of arguments (True, Nil) to it

t = Cons True Nil

Next, we are showing that the telescope can have a constraint on the previous
values, with a Vector data type:

data Vec (A : Type) (n : Nat) : Type where {

-- Nil is a data type constructor with

-- a constraint that n (provided by the type) must be zero

Nil of [n = Zero],

-- Cons is a data type constructor with a Telescope of

-- three arguments (Nat m, element of A, and a Vec of A with length m)

-- and one constraint that the Vector built by Cons,

-- must have length m+1, m being the underlying vector

-- which this Cons was built upon

Cons of (m : Nat) (A) (Vec A m) [n = Succ m]

}

-- t is annotated with a type, constructed by applying a

-- list of arguments (Bool) to the type constructor (List)

t : Vec Bool 2

-- t is defined using a data type constructor (Cons) by applying

-- a list of arguments (True, Nil) to it

t = Cons 1 True (Cons 0 False Nil)

3.3.0.1 Type-checking

We type-check type and data-type constructor applications according to the tele-
scope and the arguments provided, e.g.:

-- compares the telescope (A : Type) (n : Nat)

-- with the arguments provided: Bool, 1

-- Bool is of type Type, and 1 is of type Nat

v : Vec Bool 1

-- compares the telescope (m : Nat) (A : Type) (v : Vec A m)

-- with the arguments provided: 0, True, Nil

33

-- 0 is of type Nat, True is of type A (Bool), and Nil is of type Vec Bool 0

v = Cons 0 True Nil

3.3.1 Pattern-matching

t, T ::= ...

| case t of Case∗ pattern matching of a term

Case ::= Pattern → t
Pattern ::= DConName PatVar∗

| PatVar
PatVar ::= identifier

Figure 18 – Data type with pattern matching grammar

Here are some examples of pattern matching:

not : Bool → Bool

not = λb. case b of {

False → True,

True → False

}

plus : Nat → Nat → Nat

plus = λa. λb. case a of {

Zero → b,

Succ a' → Succ (plus a' b)

}

3.3.1.1 Type-checking

To type-check pattern matching cases, we have to:

• extend the typing context with the pattern variables, e.g. when we see Succ n' -> body,
we should extend the typing context with n' : Nat when we type-check the body:

n : Nat

case n of {

-- we should know that n' has type Nat,

-- according to Nat's data definition

Succ n' → plus n' n',

...

34

}

• all cases must conform to the same type, e.g.:

nat_to_bool : Nat → Bool

nat_to_bool = λn. case n of {

-- the type of the body of this case is Bool,

-- so the type of the whole case is Bool

Zero → False,

-- the same thing with this case

Succ n' → True

}

-- invalid code would have been:

-- case n of { Zero → False, Succ n' → n' }

• check for exhaustiveness, i.e. we should check that there is no other possible case,
otherwise, we should throw an error

n : Nat

-- this case is exhaustive, because it covers all possible cases

case n of {

Zero → False,

Succ n' → True

}

-- this case is not exhaustive, because it does not cover Zero

-- case n of {

-- Succ n' → True

-- }

• unify the scrutinee’s type (term being matched) with the type of the pattern, e.g.
if we are applying a case expression to a n which is a Nat, and in the Zero -> body

case, we should replace the type of a from Nat to Zero, in this branch.

3.4 PROJECT’S CODE

The project was developed in Haskell using the Unbound library for variable
substitution (beta reduction), and was heavily inspired by the pi-forall (WEIRICH, 2022)
language.

35

3.4.1 Terms

The syntax of the terms, module and declarations are represented as a data type
in Haskell. Here we have the data type for the terms, which is a recursive data type, as
well as the data type for the types, which is simply an alias to the term data type:

1 module Syntax where

2
3 type TName = Unbound.Name Term -- Term names for our AST

4 type TCName = String -- type constructor names

5 type DCName = String -- data constructor names

6
7 -- because types and terms are the same in dependent typing,

8 -- we will alias them

9 type Type = Term

10
11 data Term

12 = Type -- type of types

13 | Var TName -- variables: x

14 | Lam (Unbound.Bind TName Term) -- abstractions: λx.a

15 | App Term Term -- application: f x

16 | Pi Type (Unbound.Bind TName Type) -- function types: (x : A) → B

17 | Ann Term Type -- "ascription" or "annotated terms": (a: A)

18 -- Data-type related terms

19 | DCon DCName [Term] -- Just True

20 | TCon TCName [Term] -- Maybe Bool

21 | Case Term [Match] -- case analysis `case a of matches`

22 -- Proof related terms

23 | TyEq Type Type -- equality type: (plus 0 n) = n

24 | Refl -- equality evidence: refl is of type x = x

25 | Subst Term Term

Next, we have the data type for the modules and top-level declarations:

1 newtype Module = Module {declarations :: [Decl]}

2
3 -- a "top-level definition" of a module

4 data Decl

5 = TypeSig TName Type -- a : A

6 | Def TName Term -- a = b

7 | DataDef TCName Telescope [ConstructorDef] -- data Bool ...

36

And finally, we have the data type for data types and pattern-matching constructs:

1 -- a data constructor has a name and a telescope of arguments

2 data ConstructorDef = ConstructorDef DCName Telescope

3 deriving (Unbound.Alpha, Unbound.Subst Term)

4
5 newtype Telescope = Telescope [Decl]

6 deriving (Unbound.Alpha, Unbound.Subst Term)

7
8 -- represents a case alternative

9 newtype Match = Match (Unbound.Bind Pattern Term)

10 deriving anyclass (Unbound.Alpha, Unbound.Subst Term)

11
12 data Pattern

13 = PatCon DCName [Pattern]

14 | PatVar TName

15 deriving (Eq, Generic, Unbound.Alpha, Unbound.Subst Term)

3.4.2 Type-checking

3.4.2.1 Type-checking monad

Instead of using a Maybe or Either type to represent the result of type checking,
we will use a monad to encapsulate the behaviour of:

• failing to type-check and returning an error message

• getting and setting the state of the typing context

• generating fresh variable names

1 module Environment where

2
3 import Control.Monad

4 import Control.Monad.Except (ExceptT)

5 import Control.Monad.Reader (ReaderT)

6 import qualified Unbound.Generics.LocallyNameless as Unbound

7
8 type TcMonad = Unbound.FreshMT (ReaderT Env (ExceptT Err IO))

9
10 data Env = Env {ctx :: [Decl]}

11

37

12 emptyEnv :: Env

13 emptyEnv = Env {ctx = []}

14
15 extendCtx :: Decl → TcMonad a → TcMonad a

16 extendCtxs :: [Decl] → TcMonad a → TcMonad a

17 lookupTyMaybe :: TName → TcMonad (Maybe Type)

18 lookupTy :: TName → TcMonad Type

19 -- implementation ...

We now have some helper functions that can be used to implement the type-
checking rules, e.g. given a name of a variable we can use lookupTy to get its type, if it
fails to find that variable in the context, it will stop the type-checking process and issue
an error.

Also the two judgements’ signatures will change to:

1 -- given a term return its type (or an error message)

2 inferType :: Term → TcMonad Type

3 -- given a term and a type, check if the term is of the given type

4 -- if it is, return (), otherwise an error message

5 checkType :: Term → Type → TcMonad ()

3.4.2.2 Equality and weak-head normal form

The rules for propositional and definitional equality of terms are defined in the
equate function, which given two terms will check if they are equal or not, if they are
not it will throw an error.

1 equate :: Term → Term → TcMonad ()

2 -- two terms are equal, if they are alpha-equivalent

3 -- i.e., by just properly renaming the variables

4 -- they are the same term

5 equate t1 t2 | aeq t1 t2 = return ()

6 equate t1 t2 = do

7 nf1 ← whnf t1

8 nf2 ← whnf t2

9 case (nf1, nf2) of

10 (Lam bnd1, Lam bnd2) → do

11 -- get the body of each lambda

12 (_, t1, _, t2) ← unbind2Plus bnd1 bnd2

13 -- lambdas are equal, if their bodies are equal

14 equate t1 t2

38

15 (App f1 x1, App f2 x2) → do

16 equate f1 f2

17 equate x1 x2

18 -- ... rest of the terms ommited for brevity ...

19 (_, _) → err ["Expected", show nf2, "but found", show nf1]

• From line 10 to 14, we are checking that a lambda is equal to another lambda if
their bodies are equal, according to rule E-Lam in Figure 13

• From line 15 to 17, we are checking that an application is equal to another applica-
tion if their function and argument are equal, according to rule E-App in Figure 13

Definition 3.4.1 (Weak-head normal form). A term is said to be in weak-head normal
form, when we apply weak-head normalization, which is when the leftmost, outermost
reducible expression is always selected for beta-reduction, and the process is halted as
soon as the term begins with something other than a lambda abstraction. (PIERCE,
2004)

An unformal idea of weak-head normalization, is that it is a subset of the nor-
mal beta-reduction (computation) rules, so that we compute just enough to observe the
structure of the term, e.g. when I do not care about the result of factorial 100, but I
do care about its structure, if it is a Nat or not.

As shown in the above code section, we also need a function to calculate the
weak-head normal form of a given term, which is defined as follows in the whnf function:

1 whnf :: Term → TcMonad Term

2 -- if we are whnf-inf a variable,

3 whnf (Var x) = do

4 -- look up its definition in the context

5 maybeTm ← lookupDefMaybe x

6 case maybeTm of

7 -- and whnf the definition

8 (Just tm) → whnf tm

9 -- or if there is no definition in the context

10 -- return the variable

11 _ → pure (Var x)

12 -- if we are whnf-ing an application,

13 whnf (App a b) = do

14 v ← whnf a

15 -- check the type of the whnf'd function

16 case v of

39

17 -- if it is indeed a lambda abstraction

18 (Lam bnd) → do

19 (x, a') ← unbind bnd

20 -- substitute the argument for the bound variable

21 whnf (subst x b a')

22 -- otherwise, return the application

23 _ → return (App v b)

24 -- ... rest of the terms ommited for brevity ...

25 whnf tm = return tm

3.4.2.3 Type-checking rules

In this section we will implement the type-checking rules for the terms and types
of our language, which are defined in Figure 14.

We will use a tcTerm function that will be used to centralize the two judgements
(inferType and checkType). If the second parameter is Nothing, it will enter into
inference mode, otherwise it will enter into type-checking mode.

Here we will just define the inferType and the checkType function:

1 module Typechecker where

2
3 inferType :: Term → TcMonad Type

4 inferType t = tcTerm t Nothing

5
6 checkType :: Term → Type → TcMonad ()

7 checkType tm ty = do

8 -- Whenever we call checkType we should call it

9 -- with a term that has already been reduced to

10 -- normal form. This will allow rule c-lam to

11 -- match against a literal function type.

12 nf ← whnf ty

13 ty' ← tcTerm tm (Just nf)

14
15 -- Make sure that the term is a type (i.e. has type 'Type')

16 tcType :: Term → TcMonad ()

17 tcType tm = void (checkType tm Type)

Next, we will define the tcTerm function, which will be used to implement the
type-checking rules:

40

1 tcTerm :: Term → Maybe Type → TcMonad Type

2 -- Infer-mode

3 tcTerm (Var x) Nothing = lookupTy x

4 tcTerm (Ann tm ty) Nothing = do

5 checkType tm ty

6 return ty

7 tcTerm (Pi tyA bnd) Nothing = do

8 (x, tyB) ← unbind bnd

9 tcType tyA

10 extendCtx (TypeSig x tyA) (tcType tyB)

11 return Type

12 tcTerm (App t1 t2) Nothing = do

13 ty1 ← inferType t1

14 let ensurePi :: Type → TcMonad (TName, Type, Type)

15 ensurePi (Ann a _) = ensurePi a

16 ensurePi (Pi tyA bnd) = do

17 (x, tyB) ← unbind bnd

18 return (x, tyA, tyB)

19 ensurePi ty = err ["Expected a function type, but found ", show ty]

20 nf1 ← whnf ty1

21 (x, tyA, tyB) ← ensurePi nf1

22 checkType t2 tyA

23 return (subst x t2 tyB)

24 -- ... rest of the cases ommited for brevity ...

25 tcTerm tm Nothing = err ["Must have a type annotation to check ", show tm]

26
27 -- Check-mode

28 tcTerm (Lam bnd) (Just ty·(Pi tyA bnd')) = do

29 tcType tyA

30 (x, body, _, tyB) ← Unbound.unbind2Plus bnd bnd'

31 extendCtx (TypeSig x tyA) (checkType body tyB)

32 return ty

33 tcTerm (Lam _) (Just nf) = err ["Lambda expression should be a function"]

34 -- ... rest of the cases ommited for brevity ...

35 -- if there is no specific case for *checking* the type of the term

36 tcTerm tm (Just ty) = do

37 ty' ← inferType tm

38 ty `equate` ty'

39 return ty'

41

We can describe the type-checking rules as follows:

• In inference mode:

– At line 3, we are inferring the type of a variable, by consulting it from the
type-checking monad’s context, according to the I− Var rule in Figure 14.

– In the function case at line 7, we are inferring the type of a dependent function
type (pi type), according to the I − Pi rule in Figure 14. We check that the
argument type is indeed a type, and then we extend the context with the
argument type and check that the body’s return type is indeed a type. If both
checks are successful, we return the type Type.

– In the function case at line 12, we are inferring the type of an application,
according to the I− App− Simple rule as stated in Figure 14. We check that
the function term is indeed a function type (pi type), and then we check that
the provided argument has the same type as the function’s argument type.
Finally, we return the function’s body type, with the argument substituted.

• While in type-checking mode, when we have the information of what type this term
needs to have:

– In the function case at line 28, we are checking the type of a lambda expression
to be a dependent function type, according to the C−Lambda rule in Figure 14.
We check that the function’s argument type is indeed a type, and then check
that the lambda’s body has the same type as the Pi type body return type. If
both checks are successful, we return the checked Pi type.

– In the last case, we are checking the type of a term to be equal to a given type,
according to the C−Infer−Simple rule in Figure 14. We infer the type of the
term, and then check if it is equal to the expected type (using the previously
defined equality among types function). If both checks are successful, we return
the inferred type.

42

3.5 EXAMPLES

The parsing code will be omitted for the sake of brevity (but can be found in the
Parser.hs file, source code in Appendix A). We are now going to show some examples of
the code in this programming language. First of all we are going to define the Bool, Nat
and Vec data types along with Nat’s plus function:

data Bool : Type where {

False,

True

}

data Nat : Type where {

Zero,

Succ of (Nat)

}

plus : (a b : Nat) → Nat

plus = λa b. case a of {

Zero → b,

Succ a' → Succ (plus a' b)

}

data Vec (A : Type) (n : Nat) : Type where {

Nil of [n = 0],

Cons of (m : Nat) (A) (Vec A m) [n = Succ m]

}

empty_bool_vec : Vec Bool 0

empty_bool_vec = Nil

bool_vec : Vec Bool 2

bool_vec = Cons 1 False (Cons 0 True Nil)

Next, we are showing how to build a map function that works on vectors (note the
type of the vectors having the parameterized length, on the map function type, showing
dependent-types being used), we are buiding a vector and making a proof (static check)
of its value:

map : (A B : Type) → (n : Nat) → (f : (A → B)) → Vec A n → Vec B n

map = λA B n f v. case v of {

Nil → Nil,

Cons n' h t → Cons n' (f h) (map A B n' f t)

}

https://github.com/eduhenke/dep-tt/blob/main/src/Parser.hs

43

nat_vec : Vec Nat 2

nat_vec = map Bool Nat 2 λ(b. case b of {False → 10, True → 20}) bool_vec

-- proof that it is a vector like [10, 20]

p_nat_vec : nat_vec = (Cons 1 10 (Cons 0 20 Nil))

p_nat_vec = refl

Another use of dependent-types can be shown with the concat function, showing
the returned vector having the length of the sum of the input vectors:

concat : (A : Type) → (m n: Nat) → Vec A m → Vec A n → Vec A (plus m n)

concat = λA m n a b. case a of {

Nil → b,

Cons m' h t → Cons (plus m' n) h (concat A m' n t b)

}

The aforementioned head function can also be written in our language, along
with a proof showing that the returned element is indeed the first element of the vector,
and a comment stating a impossible term (the head of an empty vector)):

head : (A : Type) → (n : Nat) → Vec A (Succ n) → A

head = λA n v. case v of {

Cons _ h _ → h

}

p_head : (head Nat 1 nat_vec) = 10

p_head = refl

-- the following lines do not type-check

-- because when we pass 0 as argument

-- the length of the expected vec argument is (Succ 0), which

-- does not match with the length of the actual vector (which is 0)

-- p_head_empty : (head Bool 0 empty_bool_vec) = False

-- p_head_empty = refl

3.6 EVALUATION

In this chapter, we presented the implementation of a proof-of-concept program-
ming language with dependent types. We demonstrated the use of dependent types to
specify invariants and prove properties about code, and showed how these capabilities
can improve code reliability and maintainability. We provided several examples of code
written in our language, including functions that manipulate vectors and perform basic
operations like mapping and concatenation.

44

Overall, our implementation illustrates the potential benefits of advanced type
systems like dependent types, and demonstrates their ability to enable static checking of
invariants and the encoding of logical propositions as types and proofs as code. While
our proof-of-concept language is not intended for production use, it serves as a useful
case study for exploring the capabilities and potential of dependent types in software
development.

3.6.1 Results

In comparing our proof-of-concept language to Agda, a well-established dependently-
typed language, it is evident that our language lacks many of the advanced features and
capabilities of Agda. Our language does not support features like universes, which allow
for the organization and hierarchy of types and their associated terms, and implicit pa-
rameters, which allow for the implicit passing of arguments in function definitions. These
features are present in Agda and can be useful for a wide range of applications. It is clear
that our language is limited in its capabilities and may not be suitable for all types of
projects that may benefit from the use of dependent types.

45

4 CONCLUSION

In this thesis, we aimed to examine the potential advantages of utilizing advanced
type systems, such as dependent types, in software development through the implemen-
tation of a dependently-typed programming language. Our specific objectives included
investigating existing work on dependently-typed languages, developing a proof-of-concept
language, using the language to encode business invariants and demonstrate the ability
to prove properties about the code.

To support these objectives, we presented a dependently-typed programming lan-
guage with a type-checker and a parser, written in Haskell. The language is based on
the lambda calculus and has a simple syntax, with a type system that supports de-
pendent types. While the language is not intended for production use, it serves as a
proof-of-concept and a starting point for learning about dependently-typed programming
languages.

Through the implementation and analysis of this language, we were able to gain
a deeper understanding of how advanced type systems such as dependent types work
and their potential benefits for improving the reliability and safety of software. However,
it is important to note that the use of dependent types also comes with trade-offs and
limitations, including the added burden of having to prove properties about the code and
the potential for increased complexity in the codebase and development process. While
the benefits of dependent types may outweigh the costs in certain cases, such as for
critical or safety-sensitive systems, it is important to carefully evaluate the trade-offs and
limitations for each specific application.

Overall, our findings suggest that dependent types have the potential to signifi-
cantly improve the reliability and safety of software, but more research and development
is needed to fully realize this potential in practice. The language and related resources
can be found at https://github.com/eduhenke/dep-tt.

47

REFERENCES

CHURCH, Alonzo. The calculi of lambda-conversion. In.

MÖRTBERG, Anders; NORELL, Ulf. Agda. [S.l.: s.n.], 2022.
https://agda.readthedocs.io/en/v2.6.2.2/. [Online; accessed 25-October-2022].

NLAB AUTHORS. alpha-equivalence. [S.l.: s.n.], Oct. 2022.
https://ncatlab.org/nlab/show/alpha-equivalence. Revision 4.

. equality. [S.l.: s.n.], July 2022. http://ncatlab.org/nlab/show/equality.
Revision 27.

. judgment. [S.l.: s.n.], July 2022. http://ncatlab.org/nlab/show/judgment.
Revision 22.

. proofs as programs. [S.l.: s.n.], Nov. 2022.
https://ncatlab.org/nlab/show/proofs+as+programs. Revision 5.

. propositions as types. [S.l.: s.n.], Nov. 2022.
https://ncatlab.org/nlab/show/propositions+as+types. Revision 41.

PIERCE, Benjamin C. Advanced Topics in Types and Programming Languages.
[S.l.]: The MIT Press, 2004. ISBN 0262162288.

. Types and Programming Languages. 1st. [S.l.]: The MIT Press, 2002.
ISBN 0262162091.

TEAM, The Coq Development. Coq. [S.l.: s.n.], 2022. https://coq.inria.fr/. [Online;
accessed 25-October-2022].

TEAM, The Idris Development. Idris. [S.l.: s.n.], 2022. https://www.idris-lang.org/.
[Online; accessed 25-October-2022].

TEAM, The Lean Development. Lean. [S.l.: s.n.], 2022.
https://leanprover.github.io/. [Online; accessed 25-October-2022].

WEIRICH, Stephanie. Implementing Dependent Types in pi-forall. [S.l.: s.n.],
2022. https://github.com/sweirich/pi-forall/blob/2022/doc/oplss.pdf. [Online;
accessed 25-July-2022].

https://ncatlab.org/nlab/revision/alpha-equivalence/4
http://ncatlab.org/nlab/revision/equality/27
http://ncatlab.org/nlab/revision/judgment/22
https://ncatlab.org/nlab/revision/proofs+as+programs/5
https://ncatlab.org/nlab/revision/propositions+as+types/41

49

APPENDIX A – PROJECT REPOSITORY

The language’s source code and related resources can be found at https://

github.com/eduhenke/dep-tt.

51

APPENDIX B – PAPER

Implementing a programming language with a
dependent type system

Eduardo Henke1

1 Departamento de Informática e Estatística –
Universidade Federal de Santa Catarina (UFSC)

eduardo.henke@grad.ufsc.br

Abstract. The main goal of this project is to explore the potential benefits
of advanced type systems, in software development, through an implemen-
tation of a dependently typed programming language. This could help im-
prove the reliability and safety of software by enabling static verification of
arbitrary properties about the code. This work consists in an extension of
the lambda calculus with dependent types, which allows us to write pro-
grams that not only have the ability to perform computations, but whose
correctness can also be proven.

1. Introduction
Software development is a big area, which it is being progressively valued over time.
However, due to the complexity of maintaining and developing large software sys-
tems, bugs are frequent, where there is a discrepancy in what the developer expected
to happen, with what was written in the software. Because of this, we can see the
importance of being able to guarantee that the software works as we expect, and it
is also for this reason that the semantic analysis part of a language is used, where
we can verify if the behavior expected by the developer reflects what was in fact
written.

In the semantic analysis phase, the compiler checks if the code written by
the developer is in accordance with the problem modeling. One of the most basic
mechanisms for this is types, which we use to define which variables are of a given
set of possible values. With a simple type system [Pierce 2002], we can verify that
a variable of type string cannot receive a value of type int.

With a more advanced type system, i.e. with dependent types [Pierce 2004]
we can:

• specify invariants (rules that must hold) that will be statically checked in the
code, for example:

– in a banking system, during a withdrawal operation, the amount with-
drawn cannot be greater than the balance from a bank account1:
-- given the account balance, an amount and a proof
-- that the withdrawn amount is less than the balance

1We use a Haskell-style pseudo-code notation to describe this code, explained in more details
in subsection 3.2 and in subsection 2.3

-- perform the operation
withdraw_from :

(account : Account) →
(amount : Nat) →
(amount <= account.balance) →
Nat

– in most programs, we can have a list of elements, and we can have a
function that returns the first element of the list, but what happens
if the list is empty? We can use dependent types to specify that the
list cannot be empty2:

head :
-- given any type A
(A : Type) →
-- given any number
(n : Nat) →
-- given a vector of type A, with length n+1
-- (note that this means that even if n is 0,
--- succ n, will be 1, and the vector will have
-- at least one element, our language
-- STATICALLY INVALIDATES all uses of head on an empty

list)
Vec A (succ n) →
-- return the first element of the vector
A

-- returns the length of the resulting vector as a type
append : (A : Type) → (n : Nat) → (m : Nat) → Vec A m

→ Vec A n → Vec A (plus m n)
append = ... -- implementation is ommitted

• prove properties (and theorems) about the code, because we can encode log-
ical propositions as types [nLab authors 2022d], and their respective proofs
as code (evidence of that type) [nLab authors 2022c], e.g. prove that an op-
eration inserting an element into an ordered list does not change the order
of the list, or prove that a mathematical relation is associative:

-- proof that addition on Naturals is associative
-- given any three numbers (m, n, p), we can prove that:
-- (m + n) + p = m + (n + p)
plus_assoc : (m n p: Nat) → ((plus (plus m n) p) = (plus m (plus n

p)))
plus_assoc = -- ... proof is ommitted

2In this case, the first two parameters are being passed explicitly, which can be cumbersome
to the developer’s experience, that is why most dependently-typed languages have some inference
mechanisms, which allows the compiler to infer some parameters being passed, like the element
type and length of the vector

1.1. Existing work

Some of the most well-known dependently-typed languages are
Agda [Mörtberg and Norell 2022], Idris [Team 2022b], Coq [Team 2022a] and
Lean [Team 2022c], all of which allow for static verification and the ability to
prove arbitrary properties about the code. These languages are based on different
underlying type theories, which shape the foundations of their type systems and the
capacity to specify and prove theorems. Additionally, the focus of these languages
can vary; for instance, Agda is more geared towards programming, while Coq has a
stronger emphasis on theorem proving.

1.2. Objectives

The general objective of this thesis is to examine the potential advantages of utilizing
advanced type systems, such as dependent types, in software development, through
the implementation of a dependently-typed programming language. We will provide
a deeper understanding of how such languages work behind the scenes, and how they
can be used to statically verify properties about a program.

To support this general objective, we will pursue the following specific objec-
tives:

• Investigate existing work on dependently-typed programming languages and
advanced type systems

• Develop a dependently-typed programming language as a proof-of-concept
implementation. As the focus is on the type system, we will present only the
type-checker of such language.

• Use the language to encode business invariants and demonstrate the ability
to prove properties about the code, including through the use of static type
checking and automated theorem proving.

We believe that achieving these objectives will provide valuable insights into
the potential of using advanced type systems in software development.

2. Theoretical Basis
In this section, we are going to provide some background in lambda calculus, infer-
ence rules and some type theories.

2.1. Lambda Calculus

When we do not have the tool of abstraction, calculations such as the following seem
complex to follow:

(2*1) + (7*6*5*4*3*2*1) + (5*4*3*2*1)

That is why we can abstract the underlying common concepts and define a function
to capture that common abstraction, as defined here:

factorial = λn . if n == 0 then 1 else n * (factorial (n - 1))

Now we can use the previously defined function3 to more concisely define the previ-
ously cumbersome calculation, as shown here:

(factorial 2) + (factorial 7) + (factorial 5)

We have captured an essential understanding of the calculation, and ab-
stracted it into a concept that we can later reuse.

Lambda calculus captures the essential mechanisms of a programming lan-
guage based on a few simple rules (abstraction, application). It was invented by
Alonzo Church in the 1920s [Pierce 2002] and it is a logical calculus or formal sys-
tem.
Definition 2.1 (Term). A term is an expression in a given formal language that
represents a value or a computation.

The terms of the lambda calculus are generated by the following grammar:

t ::= x variable
| λx.t abstraction
| t t application

Figure 1. Lambda calculus grammar

A few example terms of the above grammar:

• x, a simple (unbounded) variable
• λx.x, the identity function
• λx.λy.x, a function receiving argument x, that returns another function re-

ceiving argument y, that returns x
• (λx.x) y, applying y to the identity function

2.1.1. Evaluation rules

This calculus primary benefit is in its evaluation, or computation. For example, let’s
take the above mentioned term and evaluate it: (λx.x) y in one step evaluates to y,
because we are applying the identity function to the variable y. But how does that
work for all terms? How can we formalize it?
Definition 2.2 (Evaluation). a→ b, a term a can evaluate to term b

For that we need inference rules. Inference rules are syntactic transformation
rules, i.e. they only need to check the form of the term and with that form they
transform the original term to something else. We denote the inference rules by
having the premises4 above the bar and the conclusions/consequent below it, like
the following inference rule symbolizing the property that adding zero to a number
does not change the number:

3This concept will be later formalized as "abstraction"
4When we do not need any pre-conditions we simply write nothing above the bar

a ∈ N
(Add-Zero)

a+ 0→ a

Definition 2.3 (Value). For a term to be a value, it must have the form of a
function, i.e. only terms that are an abstraction (λx.t) are considered to be values.
For ease of notation, we will use t to denote any term, and v (and its derivatives)
to denote values e.g. v1.
Definition 2.4 (Substitution). The process of substituting a variable x with another
term y in a given term t is denoted by [x 7→ y]t

We will be denoting the evaluation of a lambda calculus terms using a system
of inference rules written below:

t1 → t′1 (E-App1)
t1 t2 → t′1 t2

Given a term t1 t2 (applying the argument t2 to the function t1), if the term
t1 can evaluate to another term t′1, we can rewrite the original term to t′1 t2.

t2 → t′2 (E-App2)
v1 t2 → v1 t

′
2

Given a term v1 t2(applying the argument t2 to a term which is a value v1),
if the term t2 can evaluate to another term t′2, we can rewrite the original term to
v1 t

′
2.

(E-AppAbs)
λx.t12 v2 → [x 7→ v2]t12

Whenever we have an application and the argument is a value, we can rewrite
the original term to the body of the function, while replacing the parameter (x) to
the argument (v2).56

Definition 2.5 (Normal form). When we have no more evaluation steps to perform,
i.e. none of the above rules can be applied, and the resulting term is a value we say
that the term is in normal form. For example the term λx.x is in normal form.

At first it does not seem that this simple system can compute the same
terms that an ordinary programming language can, but it turns out we can encode
numbers, data structures (lists, sets, etc.), if expressions [Pierce 2002]. It was proved
that this model is equivalent to a Turing Machine [Church 1941].

5This rule is also called a beta reduction [Pierce 2002].
6Note that we do not have any preconditions for this rule, whenever we syntactically have an

application whose argument is a value, we can reduce it.

2.2. Simply-Typed Lambda Calculus

Up to now, we have only had the notion of evaluation of terms, we are able to
define computation steps and an engine can run those for us. But without much
insight into what "types" of terms we are writing we can easily make the underlying
evaluation engine try to compute a program that never halts [Pierce 2002], or if we
add to the lambda calculus’ rules operations that can only be applied to numbers
and feed them with booleans that can also make the engine stuck, i.e. passing a
program that cannot be computed.

Those problems can be solved if we somehow inspect the original program
before evaluating it, and if desired properties can be derived from only the program
specification, checking those properties against the code. One way to do it is by the
concept of types [Pierce 2002].

Types allow us to define a set of possible values a term may have during
runtime. When we talk about a variable having a type of Nat (Natural numbers
set), it is telling that during runtime that variable can only possess the values 0,
1, 2, When we define a variable of type Bool, the only possible values in
runtime are True, False.

We can also annotate various parts of our program that allows this checker
(which we will call typechecker from now), to verify the correctness of our program.

2.3. Dependently-Typed Lambda Calculus

The simply-typed system provides us some basic tools to define types, but we need
to be able to define types for more complex terms.

Dependent types allow types to depend on the terms themselves, i.e. we do
not have this stark distinction of types and terms. That allows us greater freedom
in specifying types, which are a foundation on which our typechecker can verify the
correctness of our code [Pierce 2004].

Like many dependently-typed languages, we will show the typing rules (Fig-
ure 3) and a grammar (Figure 2) with the same syntax for the terms and types,
however for clarity we will be using lowercase letters for terms and uppercase letters
for their types.

t, T ::= x variable
| λx.t abstraction
| t t application
| (t : T)→ T dependent function type
| Type the "type" of types

Figure 2. Dependently-typed lambda calculus grammar

x : T ∈ Γ
(T-Var)

Γ ⊢ x : T

Γ, x : T1 ⊢ y : T2 Γ ⊢ T1 : Type
(T-Lambda)

Γ ⊢ λx.y : (x : T1)→ T2

Γ ⊢ t1 : (x : T11)→ T12 Γ ⊢ t2 : T11 (T-App)
Γ ⊢ t1 t2 : [x 7→ t2]T12

Γ ⊢ T1 : Type Γ, x : T1 ⊢ T2 : Type
(T-Pi)

Γ ⊢ (x : T1)→ T2 : Type

(T-Type)
Γ ⊢ Type : Type

Figure 3. Dependently-typed lambda calculus typing rules

Definition 2.6 (Context). A typing context, denoted by Γ, is a sequence of variables
and their associated types. The empty context is written as ∅. We can extend an
existing context Γ by adding a new variable with its associated type to it: Γ, x : T.7

The existing typing rule will change from a two-place relation x : T to a
three-place relation Γ ⊢ x : T, meaning that x has type T under the context Γ, which
will provide assumptions to the types of the free variables8 in x.

Also, where before we only had that the type of a function is T1 → T2,
now we have that the type of a function9 is (x : T1) → T2. That means that the
function’s return type expression T2 can depend on the function’s argument x, e.g.
the type of a function that inserts a Bool in a length-indexed vector of Bools can
be (n : Nat)→ Bool→ Vec Bool (n+ 1). The rules are explained as follows:

• Rule T − Var, to check if a variable x has type T in the context Γ, we check
if x : T is in Γ.

• Rule T−Lambda, a lambda expression λx.t2 has type (x : T1)→ T2 in context
Γ, if when we extend the context Γ to include the variable x with type T1, we
can check if t2 has type T2 in the extended context, and also if T1 is indeed
a type.

• Rule T − App, a function application t1 t2 has type T12(with the x variable
substituted by the t2 parameter) in context Γ, if we can check that t1 has
type (x : T11) → T12 in the context Γ, and if we can check that t2 has type
T11 in the context Γ.

• Rule T− Pi, a Pi type (x : T1) → T2 has type Type in context Γ, only if T1
also has type Type in context Γ, and if T2 has type Type in the extended
context Γ, x : T1.

• Rule T− Type, the term Type also has type Type.
We will add two extensions to our grammar to aid in creating programs:

7We will assume that each of the variables in this list are distinct from each other, so that there
will always be at most one assumption about any variable’s type.

8Variables that are not bound to any lambda binder
9Formally called a Pi type

t, T ::= ...

| t : T type annotation
| name = t assigning a name to a term

Figure 4. Dependently-typed lambda calculus syntax sugar

Which respectively mean:
• An expression can be annotated with a type, e.g. x : Nat, and that will trigger

the typechecker to check that Γ ⊢ x : Nat given the underlying context.
• A name can be assigned to a term, e.g. id = λx.x.

With that we can write this polymorphic identity function program annotated
with its type and its associated typing proof tree:

id : (x : Type)→ (y : x)→ x

id = λx.λy.y

We can derive a proof tree proving that the type of id is in fact what was
annotated:

Γ, x : Type ⊢
Γ, y : x ⊢ y : x

x : Type ∈ Γ
(T-Var)

x : Type
(T-Lambda)

λy.y : (y : x)→ x
(T-Type)

Γ ⊢ Type : Type
(T-Lambda)

Γ ⊢ λx.λy.y : (x : Type)→ (y : x)→ x

The goal of this project is to derive the typing proof tree automatically.

2.3.1. Definitional Type Equality

Definition 2.7 (Judgement). A judgement is a proposition that is made
on a given term. The previously defined typing rule is a form of
judgement.[nLab authors 2022b]
Definition 2.8 (Definitional equality). Definitional equality is a judgement of the
form: Γ ⊢ A = B. Classically, definitional equality is called intensional equality10.
However in this thesis we will define it to mean both intensional and computational
equality11 [nLab authors 2022a].

This judgement is defined by the properties stated in Figure 5. Rule E−Beta
ensures that beta-equivalence is contained in this judgement, because terms that
evaluate to each other should be equal. Rules E − Refl, E − Sym, and E − Trans

allows this judgement to be considered an equivalence relation [Weirich 2022].
10Intensional equality is the relation generated by abbreviatory definitions, changes of bound

variables and the principle of substituting equals for equals [nLab authors 2022a]
11Computational equality is the relation generated by various reduction rules, e.g. beta reduc-

tion [nLab authors 2022a]

(E-Beta)
Γ ⊢ (λx.a) b = [x 7→ b]a

(E-Refl)
Γ ⊢ A = A

Γ ⊢ A = B
(E-Sym)

Γ ⊢ B = A

Γ ⊢ A1 = A2 Γ ⊢ A2 = A3 (E-Trans)
Γ ⊢ A1 = A3

Γ ⊢ A1 = A2 Γ, x : A1 ⊢ B1 = B2 (E-Pi)
Γ ⊢ (x : A1)→ B1 : (x : A2)→ B2

Γ, x : A1 ⊢ b1 = b2 (E-Lam)
Γ ⊢ λx.b1 : λx.b2

Γ ⊢ a1 = a2 Γ ⊢ b1 = b2 (E-App)
Γ ⊢ a1 b1 = a2 b2

Γ, x : A ⊢ b : B Γ ⊢ a1 = a2 (E-Lift)
Γ ⊢ [x 7→ a1]b = [x 7→ a2]b

Γ ⊢ a1 = a2 (E-Annot)
Γ ⊢ (a1 : A) = a2

Figure 5. Inference rules for the definitional type equality judgement

3. Implementation
The rules presented on subsection 2.3 were developed to allow typing proof trees
to be built, however they were not developed having in mind how these proof trees
can be built, i.e. these rules are not syntax-directed, we can not devise a decidable
algorithm based on these rules alone. The reason for that is because rule T−Lambda

is not syntax-directed, it is not clear what is the type of the argument of the function
(we extend the context with it, because it is necessary to typecheck the body of the
function). Because of that we need to revise the existing rules and transform them
into syntax-directed rules.

3.1. Bidirectional type system
One way to automatically derive proof trees for a given program is to define a
bidirectional type system, which is based on two types of judgements:

• Type inference, denoted as Γ ⊢ x⇒ T which given a term x and a context Γ,
will infer(return) the type of that term.

inferType :: Context → Term → Maybe Type

• Type checking, denoted as Γ ⊢ x⇐ T which given a term x, a context Γ and
a type T, will check that the term is of the given type.

checkType :: Context → Term → Type → Bool

We now can develop inference rules that represent the algorithmically-feasible
version of the subsection 2.3 rules. Both types of judgements will be used, the type
inference rules can use the type checking rules, and vice versa.

x : A ∈ Γ
(I-Var)

Γ ⊢ x⇒ A

Γ ⊢ a⇒ (x : A)→ B Γ ⊢ b⇐ A
(I-App-Simple)

Γ ⊢ a b⇒ [x 7→ b]B

Γ ⊢ A⇐ Type Γ, x : A ⊢ B⇐ Type
(I-Pi)

Γ ⊢ (x : A)→ B⇒ Type

(I-Type)
Γ ⊢ Type⇒ Type

Γ ⊢ a⇐ A
(I-Annot)

Γ ⊢ (a : A)⇒ A

Figure 6. Bidirectional type-inference rules

Γ, x : A ⊢ a⇐ B Γ ⊢ A⇐ Type
(C-Lambda)

Γ ⊢ λx.a⇐ (x : A)→ B

Γ ⊢ a⇒ A
(C-Infer-Simple)

Γ ⊢ a⇐ A

Figure 7. Bidirectional type-checking rules

3.2. Modules

We will also introduce the concept of modules and top-level declarations to aid in
the development of programs. Where a module consists of a list of declarations that
are defined once and used throughout the module:

Decl ::= t : T type-signature
| t = t definition

Figure 8. Module grammar

Here are some examples:
-- a type signature, linking "id" with that type
id : (a : Type) → a → a

-- a definition, linking "id" with that term/value
id = λa. λx. x

3.2.1. Type-checking

To type-check a module we use the checkType function when we have an associated
type-signature for a given name, and we use the inferType function when we do
not have a type-signature for a given name. Also we put the existing declarations
in the scope of all subsequent type-checks.

3.3. Data Types

We will also introduce the concept of data types, to aid the programmer in having
structured data in their program:

Decl ::= ...

| data TConName Telescope : Type where ConstructorDef+ data definition

ConstructorDef ::= DConName Telescope

TConName ::= identifier type constructor name
DConName ::= identifier data constructor name

Telescope ::= Decl∗

t, T ::= ...

| TConName t∗ constructing a data type by applying a list of arguments
| DConName t∗ instance of a data type

Figure 9. Data type grammar

Definition 3.1 (Telescope). A telescope is a list of declarations, it is called like
that because of the scoping behavior of this structure [Weirich 2022]. The scope of
each variable merges with all of the subsequent ones, e.g.:
-- notice the scoping behavior of this structure
(A : Type) (n : Nat) (v : Vec A n)
-- here we are showing that the telescope can use both
-- a type annotation, and a definition, which symbolizes
-- a constraint being put upon any variable, in this
-- case, it requires n to be of value Zero
(n : Nat) [n = Zero]

Here we are showing an example, by first defining some data types, then
using it as terms:
data Bool : Type where {

False, -- False is a case from Bool, it is a data type constructor
True -- as well as True

} -- Bool is a data definition with an empty telescope

data Nat : Type where {
Zero,

-- Succ is a data type constructor with
-- a Telescope of one argument (another Nat number)
Succ of (Nat)

}

data List (A : Type) : Type where {
Nil,
-- Cons is a data type constructor with
-- a Telescope of two arguments (element of A and a List of A)
Cons of (A) (List A)

}

-- t is annotated with a type, constructed by applying a
-- list of arguments (Bool) to the type constructor (List)
t : List Bool
-- t is defined using a data type constructor (Cons) by applying
-- a list of arguments (True, Nil) to it
t = Cons True Nil

Next, we are showing that the telescope can have a constraint on the previous
values, with a Vector data type:

data Vec (A : Type) (n : Nat) : Type where {
-- Nil is a data type constructor with
-- a constraint that n (provided by the type) must be zero
Nil of [n = Zero],
-- Cons is a data type constructor with a Telescope of
-- three arguments (Nat m, element of A, and a Vec of A with length m)
-- and one constraint that the Vector built by Cons,
-- must have length m+1, m being the underlying vector
-- which this Cons was built upon
Cons of (m : Nat) (A) (Vec A m) [n = Succ m]

}

-- t is annotated with a type, constructed by applying a
-- list of arguments (Bool) to the type constructor (List)
t : Vec Bool 2
-- t is defined using a data type constructor (Cons) by applying
-- a list of arguments (True, Nil) to it
t = Cons 1 True (Cons 0 False Nil)

We type-check type and data-type constructor applications according to the
telescope and the arguments provided, e.g.:

-- compares the telescope (A : Type) (n : Nat)
-- with the arguments provided: Bool, 1
-- Bool is of type Type, and 1 is of type Nat
v : Vec Bool 1
-- compares the telescope (m : Nat) (A : Type) (v : Vec A m)
-- with the arguments provided: 0, True, Nil

-- 0 is of type Nat, True is of type A (Bool), and Nil is of type Vec Bool
0

v = Cons 0 True Nil

3.3.1. Pattern-matching

t, T ::= ...

| case t of Case∗ pattern matching of a term

Case ::= Pattern → t

Pattern ::= DConName PatVar∗
| PatVar

PatVar ::= identifier

Figure 10. Data type with pattern matching grammar

Here are some examples of pattern matching:
not : Bool → Bool
not = λb. case b of {

False → True,
True → False

}

plus : Nat → Nat → Nat
plus = λa. λb. case a of {

Zero → b,
Succ a' → Succ (plus a' b)

}

To type-check pattern matching cases, we have to:

• extend the typing context with the pattern variables, e.g. when we see Succ
n’ -> body, we should extend the typing context with n’ : Nat when we
type-check the body:
n : Nat
case n of {

-- we should know that n' has type Nat,
-- according to Nat's data definition
Succ n' → plus n' n',
...

}

• all cases must conform to the same type, e.g.:
nat_to_bool : Nat → Bool
nat_to_bool = λn. case n of {

-- the type of the body of this case is Bool,
-- so the type of the whole case is Bool
Zero → False,
-- the same thing with this case
Succ n' → True

}

-- invalid code would have been:
-- case n of { Zero → False, Succ n' → n' }

• check for exhaustiveness, i.e. we should check that there is no other possible
case, otherwise, we should throw an error
n : Nat
-- this case is exhaustive, because it covers all possible cases
case n of {

Zero → False,
Succ n' → True

}

-- this case is not exhaustive, because it does not cover Zero
-- case n of {
-- Succ n' → True
-- }

• unify the scrutinee’s type (term being matched) with the type of the pattern,
e.g. if we are applying a case expression to a n which is a Nat, and in the
Zero -> body case, we should replace the type of a from Nat to Zero, in
this branch.

3.4. Project’s Code
The project was developed in Haskell using the Unbound library for variable sub-
stitution (beta reduction), and was heavily inspired by the pi-forall [Weirich 2022]
language.

3.4.1. Terms

The syntax of the terms, module and declarations are represented as a data type in
Haskell. Here we have the data type for the terms, which is a recursive data type, as
well as the data type for the types, which is simply an alias to the term data type:

1 module Syntax where
2
3 type TName = Unbound.Name Term -- Term names for our AST
4 type TCName = String -- type constructor names
5 type DCName = String -- data constructor names
6
7 -- because types and terms are the same in dependent typing,
8 -- we will alias them
9 type Type = Term

10
11 data Term
12 = Type -- type of types
13 | Var TName -- variables: x
14 | Lam (Unbound.Bind TName Term) -- abstractions: λx.a
15 | App Term Term -- application: f x
16 | Pi Type (Unbound.Bind TName Type) -- fn types: (x : A) → B
17 | Ann Term Type -- "ascription" or "annotated terms": (a: A)
18 -- Data-type related terms
19 | DCon DCName [Term] -- Just True
20 | TCon TCName [Term] -- Maybe Bool
21 | Case Term [Match] -- case analysis `case a of matches`
22 -- Proof related terms
23 | TyEq Type Type -- equality type: (plus 0 n) = n
24 | Refl -- equality evidence: refl is of type x = x
25 | Subst Term Term

Next, we have the data type for the modules and top-level declarations:

1 newtype Module = Module {declarations :: [Decl]}
2
3 -- a "top-level definition" of a module
4 data Decl
5 = TypeSig TName Type -- a : A
6 | Def TName Term -- a = b
7 | DataDef TCName Telescope [ConstructorDef] -- data Bool ...

And finally, we have the data type for data types and pattern-matching constructs:

1 -- a data constructor has a name and a telescope of arguments
2 data ConstructorDef = ConstructorDef DCName Telescope
3 deriving (Unbound.Alpha, Unbound.Subst Term)
4
5 newtype Telescope = Telescope [Decl]
6 deriving (Unbound.Alpha, Unbound.Subst Term)
7
8 -- represents a case alternative
9 newtype Match = Match (Unbound.Bind Pattern Term)

10 deriving anyclass (Unbound.Alpha, Unbound.Subst Term)
11
12 data Pattern
13 = PatCon DCName [Pattern]
14 | PatVar TName
15 deriving (Eq, Generic, Unbound.Alpha, Unbound.Subst Term)

3.4.2. Type-checking

Instead of using a Maybe or Either type to represent the result of type checking, we
will use a monad to encapsulate the behaviour of:

• failing to type-check and returning an error message
• getting and setting the state of the typing context
• generating fresh variable names

1 module Environment where
2
3 import Control.Monad
4 import Control.Monad.Except (ExceptT)
5 import Control.Monad.Reader (ReaderT)
6 import qualified Unbound.Generics.LocallyNameless as Unbound
7
8 type TcMonad = Unbound.FreshMT (ReaderT Env (ExceptT Err IO))
9

10 data Env = Env {ctx :: [Decl]}
11
12 emptyEnv :: Env
13 emptyEnv = Env {ctx = []}
14
15 extendCtx :: Decl → TcMonad a → TcMonad a
16 extendCtxs :: [Decl] → TcMonad a → TcMonad a
17 lookupTyMaybe :: TName → TcMonad (Maybe Type)
18 lookupTy :: TName → TcMonad Type
19 -- implementation ...

We now have some helper functions that can be used to implement the type-
checking rules, e.g. given a name of a variable we can use lookupTy to get its type,
if it fails to find that variable in the context, it will stop the type-checking process
and issue an error.

Also the two judgements’ signatures will change to:
1 -- given a term return its type (or an error message)
2 inferType :: Term → TcMonad Type
3 -- given a term and a type, check if the term is of the given type
4 -- if it is, return (), otherwise an error message
5 checkType :: Term → Type → TcMonad ()

The rules for propositional and definitional equality of terms are defined in
the equate function, which given two terms will check if they are equal or not, if
they are not it will throw an error.

1 equate :: Term → Term → TcMonad ()
2 -- two terms are equal, if they are alpha-equivalent
3 -- i.e., by just properly renaming the variables
4 -- they are the same term

5 equate t1 t2 | aeq t1 t2 = return ()
6 equate t1 t2 = do
7 nf1 ← whnf t1
8 nf2 ← whnf t2
9 case (nf1, nf2) of

10 (Lam bnd1, Lam bnd2) → do
11 -- get the body of each lambda
12 (_, t1, _, t2) ← unbind2Plus bnd1 bnd2
13 -- lambdas are equal, if their bodies are equal
14 equate t1 t2
15 (App f1 x1, App f2 x2) → do
16 equate f1 f2
17 equate x1 x2
18 -- ... rest of the terms ommited for brevity ...
19 (_, _) → err ["Expected", show nf2, "but found", show nf1]

• From line 10 to 14, we are checking that a lambda is equal to another lambda
if their bodies are equal, according to rule E-Lam in Figure 5

• From line 15 to 17, we are checking that an application is equal to another
application if their function and argument are equal, according to rule E-App
in Figure 5

Definition 3.2 (Weak-head normal form). A term is said to be in weak-head normal
form, when we apply weak-head normalization, which is when the leftmost, outer-
most reducible expression is always selected for beta-reduction, and the process is
halted as soon as the term begins with something other than a lambda abstrac-
tion. [Pierce 2004]

An unformal idea of weak-head normalization, is that it is a subset of the nor-
mal beta-reduction (computation) rules, so that we compute just enough to observe
the structure of the term, e.g. when I do not care about the result of factorial
100, but I do care about its structure, if it is a Nat or not.

As shown in the above code section, we also need a function to calculate
the weak-head normal form of a given term, which is defined as follows in the whnf
function:

1 whnf :: Term → TcMonad Term
2 -- if we are whnf-inf a variable,
3 whnf (Var x) = do
4 -- look up its definition in the context
5 maybeTm ← lookupDefMaybe x
6 case maybeTm of
7 -- and whnf the definition
8 (Just tm) → whnf tm
9 -- or if there is no definition in the context

10 -- return the variable
11 _ → pure (Var x)
12 -- if we are whnf-ing an application,

13 whnf (App a b) = do
14 v ← whnf a
15 -- check the type of the whnf'd function
16 case v of
17 -- if it is indeed a lambda abstraction
18 (Lam bnd) → do
19 (x, a') ← unbind bnd
20 -- substitute the argument for the bound variable
21 whnf (subst x b a')
22 -- otherwise, return the application
23 _ → return (App v b)
24 -- ... rest of the terms ommited for brevity ...
25 whnf tm = return tm

Next we will implement the type-checking rules for the terms and types of
our language, which are defined in Figure 6.

We will use a tcTerm function that will be used to centralize the two judge-
ments (inferType and checkType). If the second parameter is Nothing, it will
enter into inference mode, otherwise it will enter into type-checking mode.

Here we will just define the inferType and the checkType function:
1 module Typechecker where
2
3 inferType :: Term → TcMonad Type
4 inferType t = tcTerm t Nothing
5
6 checkType :: Term → Type → TcMonad ()
7 checkType tm ty = do
8 -- Whenever we call checkType we should call it
9 -- with a term that has already been reduced to

10 -- normal form. This will allow rule c-lam to
11 -- match against a literal function type.
12 nf ← whnf ty
13 ty' ← tcTerm tm (Just nf)
14
15 -- Make sure that the term is a type (i.e. has type 'Type')
16 tcType :: Term → TcMonad ()
17 tcType tm = void (checkType tm Type)

Next, we will define the tcTerm function, which will be used to implement
the type-checking rules:

1 tcTerm :: Term → Maybe Type → TcMonad Type
2 -- Infer-mode
3 tcTerm (Var x) Nothing = lookupTy x
4 tcTerm (Ann tm ty) Nothing = do
5 checkType tm ty
6 return ty
7 tcTerm (Pi tyA bnd) Nothing = do
8 (x, tyB) ← unbind bnd
9 tcType tyA

10 extendCtx (TypeSig x tyA) (tcType tyB)
11 return Type
12 tcTerm (App t1 t2) Nothing = do
13 ty1 ← inferType t1
14 let ensurePi :: Type → TcMonad (TName, Type, Type)
15 ensurePi (Ann a _) = ensurePi a
16 ensurePi (Pi tyA bnd) = do
17 (x, tyB) ← unbind bnd
18 return (x, tyA, tyB)
19 ensurePi ty = err ["Expected a function type, but found ", show ty]
20 nf1 ← whnf ty1
21 (x, tyA, tyB) ← ensurePi nf1
22 checkType t2 tyA
23 return (subst x t2 tyB)
24 -- ... rest of the cases ommited for brevity ...
25 tcTerm tm Nothing = err ["Must have a type annotation to check ", show tm]
26
27 -- Check-mode
28 tcTerm (Lam bnd) (Just ty·(Pi tyA bnd')) = do
29 tcType tyA
30 (x, body, _, tyB) ← Unbound.unbind2Plus bnd bnd'
31 extendCtx (TypeSig x tyA) (checkType body tyB)
32 return ty
33 tcTerm (Lam _) (Just nf) = err ["Lambda expression should be a function"]
34 -- ... rest of the cases ommited for brevity ...
35 -- if there is no specific case for *checking* the type of the term
36 tcTerm tm (Just ty) = do
37 ty' ← inferType tm
38 ty `equate` ty'
39 return ty'

We can describe the type-checking rules as follows:
• In inference mode:

– At line 3, we are inferring the type of a variable, by consulting it from
the type-checking monad’s context, according to the I − Var rule in
Figure 6.

– In the function case at line 7, we are inferring the type of a dependent
function type (pi type), according to the I− Pi rule in Figure 6. We
check that the argument type is indeed a type, and then we extend
the context with the argument type and check that the body’s return
type is indeed a type. If both checks are successful, we return the
type Type.

– In the function case at line 12, we are inferring the type of an appli-
cation, according to the I− App− Simple rule as stated in Figure 6.
We check that the function term is indeed a function type (pi type),
and then we check that the provided argument has the same type as
the function’s argument type. Finally, we return the function’s body
type, with the argument substituted.

• While in type-checking mode, when we have the information of what type
this term needs to have:

– In the function case at line 28, we are checking the type of a lambda
expression to be a dependent function type, according to the C −
Lambda rule in Figure 6. We check that the function’s argument type
is indeed a type, and then check that the lambda’s body has the same
type as the Pi type body return type. If both checks are successful,
we return the checked Pi type.

– In the last case, we are checking the type of a term to be equal to a
given type, according to the C− Infer− Simple rule in Figure 6. We
infer the type of the term, and then check if it is equal to the expected
type (using the previously defined equality among types function). If
both checks are successful, we return the inferred type.

3.5. Examples

The parsing code will be omitted for the sake of brevity (but can be found in the
Parser.hs file, in the implementation’s repository). We are now going to show some
examples of the code in this programming language. First of all we are going to
define the Bool, Nat and Vec data types along with Nat’s plus function:
data Bool : Type where {

False,
True

}

data Nat : Type where {
Zero,
Succ of (Nat)

}

plus : (a b : Nat) → Nat
plus = λa b. case a of {

Zero → b,
Succ a' → Succ (plus a' b)

}

data Vec (A : Type) (n : Nat) : Type where {
Nil of [n = 0],
Cons of (m : Nat) (A) (Vec A m) [n = Succ m]

}

empty_bool_vec : Vec Bool 0
empty_bool_vec = Nil

bool_vec : Vec Bool 2
bool_vec = Cons 1 False (Cons 0 True Nil)

Next, we are showing how to build a map function that works on vectors
(note the type of the vectors having the parameterized length, on the map function
type, showing dependent-types being used), we are buiding a vector and making a
proof (static check) of its value:
map : (A B : Type) → (n : Nat) → (f : (A → B)) → Vec A n → Vec B n
map = λA B n f v. case v of {

Nil → Nil,
Cons n' h t → Cons n' (f h) (map A B n' f t)

}

nat_vec : Vec Nat 2
nat_vec = map Bool Nat 2 λ(b. case b of {False → 10, True → 20})

bool_vec

-- proof that it is a vector like [10, 20]
p_nat_vec : nat_vec = (Cons 1 10 (Cons 0 20 Nil))

p_nat_vec = refl

Another use of dependent-types can be shown with the concat function,
showing the returned vector having the length of the sum of the input vectors:
concat : (A : Type) → (m n: Nat) → Vec A m → Vec A n → Vec A (plus m

n)
concat = λA m n a b. case a of {

Nil → b,
Cons m' h t → Cons (plus m' n) h (concat A m' n t b)

}

The aforementioned head function can also be written in our language, along
with a proof showing that the returned element is indeed the first element of the
vector, and a comment stating a impossible term (the head of an empty vector)):
head : (A : Type) → (n : Nat) → Vec A (Succ n) → A
head = λA n v. case v of {

Cons _ h _ → h
}

p_head : (head Nat 1 nat_vec) = 10
p_head = refl

-- the following lines do not type-check
-- because when we pass 0 as argument
-- the length of the expected vec argument is (Succ 0), which
-- does not match with the length of the actual vector (which is 0)
-- p_head_empty : (head Bool 0 empty_bool_vec) = False
-- p_head_empty = refl

3.6. Evaluation
In this section, we presented the implementation of a proof-of-concept programming
language with dependent types. We demonstrated the use of dependent types to
specify invariants and prove properties about code, and showed how these capabili-
ties can improve code reliability and maintainability. We provided several examples
of code written in our language, including functions that manipulate vectors and
perform basic operations like mapping and concatenation.

Overall, our implementation illustrates the potential benefits of advanced
type systems like dependent types, and demonstrates their ability to enable static
checking of invariants and the encoding of logical propositions as types and proofs
as code. While our proof-of-concept language is not intended for production use, it
serves as a useful case study for exploring the capabilities and potential of dependent
types in software development.

3.6.1. Results

In comparing our proof-of-concept language to Agda, a well-established dependently-
typed language, it is evident that our language lacks many of the advanced features

and capabilities of Agda. Our language does not support features like universes,
which allow for the organization and hierarchy of types and their associated terms,
and implicit parameters, which allow for the implicit passing of arguments in function
definitions. These features are present in Agda and can be useful for a wide range
of applications. It is clear that our language is limited in its capabilities and may
not be suitable for all types of projects that may benefit from the use of dependent
types.

4. Conclusion

In this thesis, we aimed to examine the potential advantages of utilizing advanced
type systems, such as dependent types, in software development through the imple-
mentation of a dependently-typed programming language. Our specific objectives
included investigating existing work on dependently-typed languages, developing
a proof-of-concept language, using the language to encode business invariants and
demonstrate the ability to prove properties about the code.

To support these objectives, we presented a dependently-typed programming
language with a type-checker and a parser, written in Haskell. The language is based
on the lambda calculus and has a simple syntax, with a type system that supports
dependent types. While the language is not intended for production use, it serves
as a proof-of-concept and a starting point for learning about dependently-typed
programming languages.

Through the implementation and analysis of this language, we were able to
gain a deeper understanding of how advanced type systems such as dependent types
work and their potential benefits for improving the reliability and safety of software.
However, it is important to note that the use of dependent types also comes with
trade-offs and limitations, including the added burden of having to prove properties
about the code and the potential for increased complexity in the codebase and
development process. While the benefits of dependent types may outweigh the costs
in certain cases, such as for critical or safety-sensitive systems, it is important to
carefully evaluate the trade-offs and limitations for each specific application.

Overall, our findings suggest that dependent types have the potential to
significantly improve the reliability and safety of software, but more research and
development is needed to fully realize this potential in practice. The language and
related resources can be found at https://github.com/eduhenke/dep-tt.

References

[Church 1941] Church, A. (1941). The calculi of lambda-conversion.
[Mörtberg and Norell 2022] Mörtberg, A. and Norell, U. (2022). Agda. https://

agda.readthedocs.io/en/v2.6.2.2/. [Online; accessed 25-October-2022].
[nLab authors 2022a] nLab authors (2022a). equality. http://ncatlab.org/nlab/

show/equality. Revision 27.
[nLab authors 2022b] nLab authors (2022b). judgment. http://ncatlab.org/nlab/

show/judgment. Revision 22.

[nLab authors 2022c] nLab authors (2022c). proofs as programs. https://ncatlab.
org/nlab/show/proofs+as+programs. Revision 5.

[nLab authors 2022d] nLab authors (2022d). propositions as types. https://
ncatlab.org/nlab/show/propositions+as+types. Revision 41.

[Pierce 2002] Pierce, B. C. (2002). Types and Programming Languages. The MIT
Press, 1st edition.

[Pierce 2004] Pierce, B. C. (2004). Advanced Topics in Types and Programming Lan-
guages. The MIT Press.

[Team 2022a] Team, T. C. D. (2022a). Coq. https://coq.inria.fr/. [Online; ac-
cessed 25-October-2022].

[Team 2022b] Team, T. I. D. (2022b). Idris. https://www.idris-lang.org/. [Online;
accessed 25-October-2022].

[Team 2022c] Team, T. L. D. (2022c). Lean. https://leanprover.github.io/. [On-
line; accessed 25-October-2022].

[Weirich 2022] Weirich, S. (2022). Implementing Dependent Types in pi-forall. https:
//github.com/sweirich/pi-forall/blob/2022/doc/oplss.pdf. [Online; ac-
cessed 25-July-2022].

	Title page
	Resumo
	Abstract
	Introduction
	Existing work
	Data types

	Objectives

	Theoretical basis
	Lambda Calculus
	Evaluation rules

	Simply-Typed Lambda Calculus
	Extension of the calculus
	Typing rules

	Dependently-Typed Lambda Calculus
	Definitional Type Equality
	Motivation
	Inference rules

	Implementation
	Bidirectional type system
	Modules
	Type-checking

	Data Types
	Type-checking
	Pattern-matching
	Type-checking

	Project's Code
	Terms
	Type-checking
	Type-checking monad
	Equality and weak-head normal form
	Type-checking rules

	Examples
	Evaluation
	Results

	Conclusion
	References
	Project Repository
	Paper

