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RESUMO

O problema da Programação Diária da Operação tem como objetivo estabelecer a gera-
ção de energia das usinas hidrotérmicas ao longo de um horizonte de até uma semana
a serem utilizadas como referência na operação em tempo real para o dia seguinte.
Considerando o sistema elétrico brasileiro, este problema se torna complexo, devido
a diversos fatores, como o grande número de usinas hidrelétricas e termelétricas, as
dimensões do sistema de transmissão e a participação de fontes intermitentes. Para
minimizar as diferenças entre os resultados obtidos na programação diária e a opera-
ção em tempo real, faz-se necessário que o modelo da programação diária seja aderen-
te, considerando um alto nível de detalhamento nos componentes do sistema. Desta
forma, no caso brasileiro, é importante que este modelo leve em consideração uma
formulação detalhada das usinas hidrelétricas, incluindo restrições de unit commitment

hidráulico. Neste contexto, o problema de otimização resultante será de grande porte e
de difícil resolução. Todavia, do ponto de vista do operador do sistema, espera-se que a
resolução deste problema seja efetuada em tempo computacional curto. Para contornar
estas dificuldades, neste trabalho são apresentadas formulações detalhadas para a
função de produção hidrelétrica, levando em consideração características não-lineares
e descontínuas, a partir de modelos lineares-inteiros mistos. Em seguida, é proposta
uma estratégia de decomposição temporal para o problema da programação diária co-
nhecida como programação dinâmica dual determinística inteira. Ainda, para reduzir a
complexidade computacional do problema de otimização resultante, são apresentadas
propostas de agregação temporal e simplificação de modelo que quando aplicadas
ao final do horizonte de planejamento, causam pequenas distorções nas decisões
obtidas para o dia seguinte. A partir dos experimentos computacionais, observou-se: (i)
é possível utilizar uma formulação detalhada da função de produção hidrelétrica com
base em modelo agregado que apesar de aumentar o esforço computacional, entrega
resultados aderentes com a formulação original não-linear; (ii) a programação dinâmica
dual determinística inteira é uma estratégia de decomposição válida para este tipo de
problema, possibilitando a decomposição temporal do problema e consequentemente,
reduzindo o esforço computacional; e (iii) utilizar estratégias de agregação temporal
reduzem significativamente o esforço computacional e entregam soluções próximas ao
do problema original para o dia seguinte.

Palavras-chave: Programação Diária da Operação. Função de Produção Hidrelétrica.
Programação Dinâmica Dual Determinística Inteira. Programação Linear Inteira Mista.



RESUMO EXPANDIDO

Introdução
O problema do Planejamento da Operação Energética (PDE) tem como objetivo esta-
belecer políticas de operação das usinas do sistema em um horizonte de planejamento
plurianual. Normalmente, por se tratar de um problema de otimização de grande porte,
com características estocásticas e não-lineares, este problema é dividido em uma série
de problemas acoplados entre si. Dentre estes, a Programação Diária da Operação
(PDO) é o problema final da cadeia de modelos, que tem como objetivo estabelecer
a programação das unidades geradoras e intercâmbios de energia entre sistemas
para um horizonte de até uma semana, utilizando as políticas operativas estabelecidas
no problema de curto prazo. Neste contexto, na PDE faz-se necessário um nível de
detalhamento elevado dos componentes do sistema, uma vez que as decisões obti-
das neste problema serão utilizadas como referência para a operação em tempo real.
Devido as características do sistema elétrico brasileiro, é importante representar com
fidelidade a função de produção hidreléetrica (FPH), sendo esta a primeira contribuição
deste trabalho. Uma vez que a PDO é resolvida diariamente pelo operador do sistema,
em um esquema de horizonte rolante, é crucial que este problema seja resolvido de
maneira rápida e eficiente. Para atender este requisito, neste trabalho aplicamos a es-
tratégia de decomposição conhecida como Programação Dinâmica Dual Determinística
Inteira (PDDDi). Por fim, neste trabalho aplicamos estratégias de agregação temporal
e simplificação de modelo, que causam pequenas alterações nas decisões obtidas
para o dia seguinte, mas que reduzem significativamente o esforço computacional da
resolução do problema da PDO.

Objetivos
Propor formulações detalhadas para a função de produção hidrelétrica, além de es-
tratégias eficientes para a resolução do problema da PDO em um sistema hidrotérmico
de grande porte.

Metodologia
As metodologias de solução propostas neste trabalho podem ser divididas em técnicas
de decomposição temporal e resolução do problema sem decomposição. Para o caso
sem decomposição, avaliou-se o esforço computacional para diferentes formulações da
FPH que incluem o unit commitment hidráulico e faixas operativas, bem como a quali-
dade da solução obtida em comparação com a formulação não-linear original. Ainda,
foram utilizadas técnicas de agregação temporal baseadas em k -means, espaçamento
uniforme e diffusing horizon, além de simplificações de modelo realizadas ao final do
horizonte de planejamento, visando reduzir o esforço computacional do problema da
PDO com horizonte semanal sem distorcer as soluções obtidas para o dia seguinte.
Em termos de decomposição, foi aplicada a PDDDi em casos em que os subproblemas
podem conter múltiplos períodos de tempo, podendo ou não ter sobreposição entre
estes. Diferentes simulações são apresentadas para os tópicos abordados nesta tese,
em que o esforço computacional e a qualidade da solução obtida são analisados e
utilizados como critério de avaliação.

Resultados e Discussão



Formulações detalhadas dos principais componentes do sistema e resolução rápida
da PDO são objetivos de interesse do operador do sistema. A representação deta-
lhada da FPH, através de um modelo agregado que considera faixas operativas e
não-linearidades, apresentou resultados que divergem menos de 5% quando com-
parados com o modelo não-linear original. Como há um aumento na complexidade
computacional, também propomos uma estratégia para escolher um subconjunto das
usinas hidrelétricas que tem maior impacto no sistema para possuírem uma represen-
tação mais detalhada, em que esta estratégia se mostrou satisfatória nas simulações
realizadas. Em termos de decomposição temporal, a DDiP se mostrou eficiente para
o sistema utilizado para o caso multiperíodo e com sobreposição, obtendo redução
computacional na ordem de até quatro vezes, utilizando gap de otimalidade de 0,5%.
E em relação as simplificações utilizadas na PDO, quando realizamos relaxações das
restrições de integralidade e estratégias de agregação temporal em dois ou mais dias
do horizonte final de planejamento, observa-se uma redução no esforço computacional
de pelo menos 40%, ao preço de ter distorções médias nas soluções obtidas para o
dia seguinte da ordem de 1,5%.

Considerações Finais
O aprimoramento na formulação da FPH traz benefícios na solução obtida, e pode ser
implementado para um certo subconjunto de usinas hidrelétricas que causam mais
impacto na operação, sem comprometer significativamente o esforço computacional
do problema da PDO. Além disso, a decomposição por PDDDi e as estratégias de
agregação temporal reduzem significativamente o esforço computacional do problema,
possibilitando que formulações mais detalhadas dos componentes do sistema possam
ser utilizadas na PDO.

Palavras-chave: Programação Diária da Operação. Função de Produção Hidrelétrica.
Programação Dinâmica Dual Determinística Inteira. Programação Linear Inteira Mista.



ABSTRACT

The short-term power generation scheduling (STGS) aims to establish the power gen-
erations of the hydro-thermal plants in a planning horizon up to one-week, which will
be used as a reference to the day-ahead real-time operation. For the Brazilian power
system, this problem is complex due to many factors, such as the high number of hy-
dropower and thermoelectric plants, the dimensions of the transmission system and the
participation of the renewable sources. To minimize the differences between the results
obtained in the short-term planning and the real-time operation, it is necessary that the
short-term power generation model be adherent, considering a high level of details in
the system's components. Therefore, for the Brazilian case, it is important that model
account a detailed formulation for the hydropower plants, including hydro unit commit-
ment constraints. In this context, the resulting optimization problem will be a large-size
problem, which is hard to solve. However, from the point of view of the system operator,
it is expected that this problem will be solved in a short computational time. To overcome
these difficulties, in this work are presented detailed formulations for the hydropower
production function, accounting the nonlinearities and discontinuities characteristics,
through mixed-integer linear models. Then, is proposed a temporal decomposition strat-
egy for the STGS problem known as dual dynamic integer programming. In addition, to
reduce the computational complexity of the resulting STGS optimization problem, in this
thesis are presented temporal aggregation strategies and model simplifications which
when applied at the end of the planning horizon, cause slight distortions in the decisions
obtained for the day-ahead. From the computational simulations, is possible to observe:
(i) it is possible to use detailed formulation for the hydropower production function based
in a plant-based model which despite the increase in the computational effort, delivers
results more adherent with the original non-linear formulation; (ii) the dual dynamic
integer programming is a valid decomposition strategy for this type of problem, allowing
temporal decomposition and as consequence, reducing the computational effort; and
(iii) the use of temporal aggregation and model simplifications provides significantly
reduce in the computational effort and delivers near solutions for the day-ahead when
compared with the original STGS problem.

Keywords: Short-Term Power Generation Scheduling. Hydropower Production Func-
tion. Dual Dynamic Integer Programming. Mixed-Integer Linear Programming.
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LIST OF SYMBOLS

Indices

b index of buses.
g index of thermal plants.
h index of hydro plants.
i index of non-forbidden zones.
j index of hydro generating units.
l index of transmission lines.
p index of polytopes.
ref index of reference bus.
t index of periods (hours).

Sets

B buses.
Bb buses connected to bus b.
G thermal plants.
H hydro plants.
I operating zones of hydropower production function.
L transmission lines.
P polytopes used in the PWL model of hydropower production function.
S points in the volume × turbine discharge grid.
T periods.
Ub hydro and thermal plants connected to bus b.
Ψ set of reservoirs that are in the FCF.
Ωh hydro plants upstream of hydro h.

Variables

fblht forebay level of hydro h in period t (m).
nhjht net head of unit j , hydro h in period t (m).
phpht power output of hydro h in period t (p.u. of MW).
php∗ value of php in the upper limit (p.u. of MW).
php∗∗ value of php in the lower limit (p.u. of MW).
phujht power output of unit j , hydro h in period t (p.u. of MW).
pllt active power in transmission line l in period t (p.u. of MW).
ptgt power output of thermal plant g in period t (p.u. of MW).
qjht turbine discharge of unit j , hydro h in period t (m3/s).
Qht turbine discharge of hydro h in period t (m3/s).
Sht spillage of hydro h in period t (m3/s).
trlht tailrace level of hydro h in period t (m).
ugt binary variable indicating the on/off status of unit j , hydro h in period t .
Vht reservoir volume of hydro h at period t (hm3).



wgt binary variable indicating the shutdown of thermal plant g in period t .
xgt binary variable indicating the on/off status of thermal plant g in period t .
yht binary variable indicating the on/off status of hydro h in period t .
zgt binary variable indicating the startup of thermal plant g in period t .
α variable related to the future cost function.
βl correction factor of interval k used to estimate the dependence of volume in the

PWL-2 model (p.u. of MW/hm3).
ηjht turbine efficiency of unit j , hydro h in period t .
θbt voltage angle of bus b in period t (radians).

Parameters

amhk approximated upper bound related to hydro production function coefficients for
m = {0,1,2}, hydro h and hyperplane k .

bmhk approximated lower bound related to hydro production function coefficients for
m = {0,1,2}, hydro h and hyperplane k .

C0g unitary variable cost of thermal plant g ($/p.u. of MW).
C1g fixed cost of thermal plant g ($).
C2g startup cost of thermal plant g ($).
C3g shutdown cost of thermal plant g ($).
Djh constant related to the hydraulic loss function of unit j and hydro h (s2/m5).
DTg minimum downtime of thermal plant g (h).
Fmh constant related to the forebay function of hydro h and m = {0,1,2,3,4}.
Gmh constant related to the tailrace function of hydro h and m = {0,1,2,3,4}.
Imjh constant related to the turbine efficiency function of unit j , hydro h and

m = {0,1,2,3,4}.
K constant that converts water flow (m3/s) to volume (hm3).
M0hk angular coefficient of hydro h concerning the k -th equation of future cost func-

tion ($/hm3).
M1k independent term of the k -th linear equation of future cost function ($).
N1 number of hyperplanes used to represent the upper bound of hydro production

function.
N2 number of hyperplanes used to represent the lower bound of hydro production

function.
NC number of linear equations used to represent the future cost function.
NG number of thermal plants.
NH number of hydro plants.
NJh number of units of hydro h.
NT number of hours of the planning horizon.
Pbt demand of active power on bus b in period t (p.u. of MW).
RDg maximum ramp-down of thermal plant g (p.u. of MW/h).
RUg maximum ramp-up of thermal plant g (p.u. of MW/h).
SRt system reserve in period t (p.u. of MW).
UTg minimum uptime of thermal plant g (h).
xab reactance of the transmission line, which connects buses a and b (p.u.).
Yht incremental inflow of hydro h in period t (m3/s).
τh1h2

water traveling time between hydro plants h1 and h2 (h).
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1 INTRODUCTION

Energy production and consumption are important pillars of modern society.

Consumption is not only the basis of all industrial activity, but also serves as an indicator

of economic growth and social welfare and is needed for fundamental activities such as

emergency services and hospitals (BARBIR; ULGIATI, 2008). Thus, energy production

standards must adhere to consumers' economic and reliability regulations. In general,

large-scale energy production is performed by different types of power plants, such

as hydroelectric, thermoelectric, wind, solar, and biomass plants. Depending on the

country, energy production is predominantly based on one of these technologies.

Due to hydrological availability and historical aspects, the Brazilian power system

is based on hydro generation, complemented by thermoelectric and wind resources.

In operational terms, the schedule of energy production is perfoemd by the Brazilian

Independent System Operator (ONS). Due to the Brazilian Electric Power System (SIN)

being a large-size hydro-thermal-wind system with hydropower plants distributed among

several hydrographic basins across the country, often far from the largest loads, the

generation scheduling is a complex task, and it is divided in several steps to manage the

intrinsic challenges. Also, the hydro plants provide an essential role in energy security

(e.g., emergency energy due to an outbreak) and produce renewable and low-cost

energy. Finally, there has been a significant increase in wind power generation in the

last years in Brazil, mainly located in the northeast and south regions.

All plants and consumption centers are interconnected by a transmission system

containing many transmission lines that transport the energy to the main load centers.

This transmission system must be robust to ensure continuity of power supply. In quanti-

tative terms, in the Brazilian case, there is a participation of 60.6% from the hydro plants,

22.6% from thermal plants, 12.3% from wind farms, and 4.5% from other sources (ONS,

2021). The ONS employs the Generation Scheduling (GS) problem (PEREIRA, 1985)

to coordinate the Brazilian system's cenrtalized dispatch. The GS problem is hard to

solve due to several SIN characteristics, as follows:

i. It is a large-scale problem due to the power system dimensions and long planning

horizon.

ii. The temporal and spatial coupling is inherent in the problem.

iii. Has uncertainties due to the characteristics of demand, inflows, wind, and equip-

ment failures.

iv. The generation resources have discontinuities, nonlinearities, and non-convexities

associated with the operating characteristics.
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Due to the features mentioned, the GS problem is divided into coordinated steps.

The aim is to find a dispatch of the plants so that the expected cost is minimal, satisfying

the requirements of demand supply and reliability of the system. In this context, the GS

problem is divided into three subproblems, as described below.

• Long-term Power GS (LTGS): in this subproblem, the study is performed on

a 5-years horizon discretized in monthly steps. The LTGS is formulated as a

stochastic optimization problem that considers the inflows' uncertainty over the

planning horizon. Also, the expansion planning elements and a risk measure

are included. Currently, ONS uses the NEWAVE optimization model (MACEIRA,

M. et al., n.d.) to solve this problem. In the NEWAVE, the hydropower plants

are represented by the energy equivalent reservoirs. The energy interchanges

between the subsystems represent the transmission network, and three load

levels represent the system demand. As one of the most important outputs, the

NEWAVE supplies the future cost function (FCF)1 (PEREIRA, 1989; PEREIRA;

PINTO, L. M. V. G., 1991), which will be used as input data in the medium-term

power GS problem.

• Medium-term Power GS (MTGS): in this subproblem, the study is performed in

a 2-month horizon, discretized in weekly steps in the first month and a monthly

step in the second, taking into account the uncertainties of the inflows. The ONS

uses the DECOMP optimization model (DINIZ et al., n.d.), representing the hy-

dro plants individually with an accurate piecewise linear (PWL) model. The FCF

obtained in the LTGS represents the operating costs incurred at the end of the

second month. In addition, DECOMP considers energy interchanges between

subsystems and internal electrical constraints, and the demand modeling is sim-

ilar to the NEWAVE model. The individual generation of each plant, exchanges

between the subsystems, and an FCF are examples of the output of DECOMP.

• Short-term Power GS (STGS): This subproblem performs the day-ahead gener-

ation scheduling. The planning horizon is up to 1-week with variable time steps.

The ONS uses the DESSEM optimization model (SANTOS et al., 2020) to solve

the STGS. In DESSEM, the first day is discretized in half-hour steps, and the

following days are discretized in hourly-variable steps. A single scenario repre-

sents the inflows, wind generation and demand. A linearized model represents the

network. The hydro plants are represented individually by a PWL model obtained

through a convex hull (CH) method.
1 The FCF is a function that represents a value of the expected operational cost of the system as a

function of the water stored in the reservoirs at the end of the planning horizon. In the Brazilian case,
the FCF is used as a boundary condition to keep the coordination between the different steps of the
GS problem.
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For the thermal plants, the constraints associated with the unit commitment (UC),

as the minimum generation, uptime and downtime, maximum up and down ramp

rates, and maximum generation, are represented by a mixed-integer linear model.

The value of water stored in the reservoirs is measured by the FCF supplied by DE-

COMP. The DESSEM solves an optimization problem called network-constrained

hydrothermal unit commitment (NCHTUC), a large-scale Mixed-Integer Linear

Programming (MILP) model, and provides, as a result, the day-ahead operation

of the Brazilian system.

The STGS for the Brazilian case is challenging since the day-ahead scheduled

decisions are expected to be close to the employed in real-time operation. This model

uses detailed representations of the SIN characteristics from generators and the de-

mand and electrical network. Such features imply a large-scale mixed-integer nonlinear

programming (MINLP) problem, which is hard to solve. Thus, currently, simplifications

are used to make this problem solvable in a reasonable execution time. Examples of

simplifications used in the DESSEM model are the DC formulation for the network,

linear approximations for the nonlinear hydropower production function (HPF)2, and

the representation of hydroelectric plants through plant-based models. Therefore, an

important point is the quality of these approximations concerning the original nonlinear

model.

Many of these challenges present in DESSEM still do not have satisfactory

solutions, both from a mathematical and operational aspects. In this context, this work

aims to specifically analyze the impact of the nonlinearities (and, as will be seen, the

impact of discontinuities) of the HPF on the STGS problem. From this analysis, we

intend to answer what are the consequences of using a less adherent model to the

original formulation based on operating costs, violation of operational constraints, and

computational effort.

The nonlinearities existing in nonlinear programming (NLP) problems can be

dealt with in several ways. This thesis shows that a valid strategy to approximate the non-

linear HPF is the approximation through convex constraints, producing lower and upper

envelopes. This approach is common in MINLP solvers based on spatial branch-and-

bound and branch-and-reduce (BESTUZHEVA et al., 2021; TAWARMALANI; SAHINI-

DIS, 2005). Another valid approach that has recently been used is the interval piecewise

linear (IPWL) approximation (VIELMA, 2015; GEISSLER; MARTIN; MORSI, 2012). In

the non-convex case, binary variables are normally used to obtain a high-quality approx-

imation. Both approaches mentioned have advantages and disadvantages, being the

IPWL method more interesting when the functions under analysis depend on one or two
2 The HPF is a key modeling point in the representation of the hydroelectricity, as it relates the amount

of water available and the energy produced by the generating units.
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variables. The recent improvements in MILP solvers also contribute to the possibility of

applying more complex models and strategies.

The computational effort involved in solving the STGS problem, specifically the

NCHTUC, is a relevant aspect from the operational point of view. Since ONS needs to

run this model daily, the execution time of this model needs to be limited. A two-hour

run timeout is currently used in DESSEM (SANTOS et al., 2020). Considering that

the NCHTUC contains thousands of continuous and binary variables and thousands

of constraints in the Brazilian case, this problem will hardly be solvable by modern

optimization solvers within the established runtime without auxiliary solving techniques.

In DESSEM, pre-processing strategies based on local branching and feasibility pump

are employed. An iterative scheme of addition of violated constraints is used, aiming

to find a high-quality feasible solution, near-optimal if possible. Although the results

delivered by DESSEM meet the requirement of computational effort and solution quality,

some aspects could still be improved, e.g., using binary variables to represent the hydro

UC and the consequent computational impacts. Since most SIN generation comes from

hydroelectric plants, it makes sense to have more accurate representations of this type

of generation.

When solving large-scale MILP problems, the GS typically employs decomposi-

tion techniques that help solve the problem (CONEJO et al., 2006). These strategies

are normally classified in primal and dual decomposition techniques. While the primal

decomposition strategy focuses on complicating variables, the dual decomposition acts

on complicating constraints. Dual decomposition techniques aim to break the original

problem into a set of subproblems (SP) that are typically easy to solve, finding a set

of dual variables that maximizes a dual function. A difficulty associated with this type

of strategy is that a primal feasible solution is not obtained at the end of execution of

the dual decomposition, being necessary a phase to obtain a primal feasible solution,

called primal recovery strategy (BELLONI et al., 2003).

The recovery phase is unnecessary in the primal decomposition strategy; how-

ever, the SP obtained is typically harder to solve than those obtained in the dual de-

composition. In particular, the Benders Decomposition (BD) (GEOFFRION, 1972) is a

classic method used to solve MILP problems that present a subset of continuous and

binary complicating variables. When this strategy is applied to a MILP problem, a mas-

ter problem (MP) contains the complicating variables and a linear programming (LP) SP

contains the remaining terms of the original optimization problem not included in the MP.

The coordination between the MP and SP is done through Benders cuts obtained in the

SP from the dual variables, considering the decisions from the MP for the complicating

variables. As a result, the BD is a cutting-plane method and can present convergence

issues (BONNANS et al., 2006). Acceleration strategies can be employed to enhance

the convergence of BD, aiming to improve the Benders cuts obtained. However, even
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with the acceleration strategy, the computational burden in BD is strongly affected by

the MP, which usually contains mixed-integer variables.

In GS problems, a variant of BD known as stochastic dual dynamic programming

(SDDP) (PEREIRA; PINTO, M. V. G., 1985) is a well-established method applied in

multistage stochastic optimization problems, where a nested BD strategy is employed.

From specific considerations of the problem (particularly regarding the realization of

stochastic variables), the SDDP presents convergence guarantees and obtains the

optimal solution (PHILPOTT; GUAN, Z., 2008). In the Brazilian case, SDDP is cur-

rently used to obtain a feasible solution of LTGS problem3, providing the FCF used

in subsequent steps. Recently, a strategy known as stochastic dual dynamic integer

programming (SDDiP) (ZOU; AHMED; SUN, 2019b) was used to solve STGS prob-

lem modeled as a multistage stochastic optimization problem containing mixed-integer

variables in the SP, obtaining a satisfactory performance in solving these problems.

The variant of SDDiP to deterministic problems, known as dual dynamic inte-

ger programming (DDiP), was recently applied in an LTGS modeled by a multistage

optimization problem (LARA et al., 2018). In particular, the DDiP employs a temporal

decomposition, aiming to obtain SPs that are easier to solve. The coordination between

these SPs is done iteratively through forward and backward steps. As in GS problems,

the temporal coupling is significant, and DDiP appears to be a promising method for

solving this problem. In addition, when applied to STGS, the temporal decomposition

allows more detailed formulations (e.g., detailed HPF) once the SPs obtained have less

computational complexity. It is important to note that only a few works in the literature

employed the DDiP in GS problems, and usually, the vanilla version of the DDiP is

applied. In this sense, this work will implement the vanilla DDiP to obtain high-quality

feasible solutions in the STGS problem. Also, different temporal decompositions and

overlapping strategies will be used. With this framework, it is expected that high-quality

feasible solutions of more complex STGS problems can be obtained in a reasonable

computational time due to reduce the computational complexity of the SPs involved.

1.1 LITERATURE REVIEW IN STGS PROBLEMS AND HPF FORMULATIONS

Given that DESSEM uses an hour (or half-hour) time discretization, it is ex-

pected that the STGS problem solved needs more detailed information about the

hydro-thermal-wind operation. This model has been officially discussed since 1998,

and several works related to this model have already been produced over the years. Ad-

ditionally, considering other countries in the world also solve the STGS problem, there is

a vast work contribution in this research area. Regarding the dual decomposition strat-

egy, works (FRANGIONI; GENTILE; LACALANDRA, 2008; MURILLO-SANCHEZ, C.;
3 in fact, we don' t solve the stochastic optimization problem, instead we used strategies, such as SDDP,

to obtain solutions that are considered satisfactory
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THOMAS, n.d.; BELLONI et al., 2003; BORGHETTI; FRANGIONI; NUCCI, 2003) uses

the Lagrangian decomposition to solve the deterministic version of the STGS problem,

whereas in (FINARDI et al., 2020; RAZAVI et al., 2018; COLONETTI; FINARDI, 2021;

ANSARI; AMJADY; VATANI, 2014; SCUZZIATO; FINARDI; FRANGIONI, 2018) different

strategies are employed to solve the stochastic version of the STGS problem.

The hydrothermal nature of the STGS problem in the Brazilian case brings an

additional challenge to this problem. In (FINARDI; SILVA, E. L., 2006), a hydro UC prob-

lem considering the nonlinearities of the forebay and tailrace levels, hydraulic losses,

and yields of individual generating units is analyzed. The problem is modeled by an

MINLP and decomposed via Lagrangian relaxation (LR), obtaining nonlinear subprob-

lems for each hydro generating unit (GU), solved by sequential quadratic programming.

The experiments are performed in a test system composed of 21 hydro plants from SIN,

and the results show that the LR could be interesting in solving the Brazilian STGS

problem.

An approach based on semidefinite programming (SDP) for the STGS problem

with individual representation of hydro GUs, nonlinear HPF, and AC network constraints

are presented (PAREDES; SOARES, 2015). The authors propose a reformulation of

the original problem, replacing the integrality constraints with quadratic constraints and

approximating the HPF by a quadratic model. As a result, this leads to a non-convex

quadratic programming problem reformulated as an SDP with relaxed rank-1 constraints.

Although the results presented in the paper are near-optimal, the SDP reformulation

increases the dimension of the problem and significantly increases the computational

complexity involved.

Creating a realistic HPF model is a significant challenge to the STGS problem for

systems with hydropower predominance. Some difficulties are related to the trilinearity

(efficiency × head × turbined outflow) and the forbidden operating zones of the GUs

(these zones have more impact on plants with few GUs). Furthermore, systems under

centralized cost-based dispatch possess hundreds of hydro GUs, and due to execution

time limits, the HPF demands some simplification level. In this sense, according to

(KONG; SKJELBRED; FOSSO, 2020), the plant-based HPF, where the units in a hydro

plant are aggregated as an equivalent one, is the most employed modeling strategy for

handling the computational effort even in cases that do not follow a centralized dispatch.

The main advantage of using the plant-based concept is that it reduces the optimization

problem significantly.

Several studies have used the HPF plant-based approach in UC or STGS prob-

lems (HAMANN; HUG; ROSINSKI, 2017; GUEDES et al., 2017; SEGUIN; COTE; AU-

DET, 2016; MARCHAND et al., 2018). The paper (DINIZ; MACEIRA, M. E. P., 2008)

presents a four-dimensional PWL model of HPF as a function of volume (V ), plant

turbined outflow (Q) and spillage (S), and (DINIZ; SOUZA, 2014) use this same model
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and includes the effects of river-level and routing constraints on the STGS problem. The

PWL continuous formulation is obtained through a methodology based on CH. From the

discretization of V ×Q domain, a grid is built with the tuples (volume, plant turbined out-

flow, hydropower generated), and then the CH of these points is calculated. After that,

the upper limits hyperplanes are selected, i.e., hyperplanes with the generation value

consistently above the generation points from the grid. In sequence, a post-processing

technique is performed to reduce the average error and to include the spillage.

Although this model considers some nonlinear HPF characteristics, the forbidden

zones are not included. Therefore, an infeasible operation might be delivered by this

approach. Also, because CH is a concave envelope for the HPF, the model can present

a null generation even when Q is not zero. Furthermore, approximating a non-convex

function by the convex approximation employed in the CH leads to linearization errors

no matter how many segments are added. Despite that, this formulation is currently

used in the DESSEM model (SANTOS et al., 2020).

In (CATALAO et al., 2009), a plant-based nonlinear approach is employed to the

STGS problem in a deregulated market, where the head-dependency of the HPF is the

main subject of study; in (CATALAO; POUSINHO; MENDES, 2010), an extension of this

study to include on-off effects of the hydro plants, avoiding generation at forbidden areas

is presented, resulting in an MINLP problem. In turn, (CATALAO; POUSINHO; MENDES,

2011) uses this same approach to include the start/stop of the units, discharge ramping

constraints, and discontinuous operating regions. These works assume that the HPF

has only one discontinuous region to account for the forbidden zones.

A special issue is that MINLP problems are usually hard to solve, even for small

instances. Specifically, (CATALAO et al., 2009; CATALAO; POUSINHO; MENDES,

2010) proposes a MILP approach to find a starting point for the MINLP or even an

optimal solution. The experiments are performed in a reduced configuration of the Por-

tuguese power system. Although these works do not explicitly comment on why the

authors did not use a large-size power system in their simulations, the computational

complexity of solving an MINLP may be one of the main reasons.

Continuing the plant-based approach, the work (HAMANN; HUG; ROSINSKI,

2017) proposes a real-time optimization scheme for the Mid-Columbia hydropower

system, consisting of seven hydro plants. The CH technique is used to linearize the

nonlinear HPF, and auxiliary variables are used to model the generation and discharge

of hydro plants. Then, a space-state model with continuous variables is built, and a

model predictive control (MPC) problem is formulated. At this point, it is also essential

to mention works (GUEDES et al., 2017; SEGUIN; COTE; AUDET, 2016; MARCHAND

et al., 2018) that develop a plant-based HPF model considering the different groups of

GUs.

With the recent advances in MILP solvers, the strategy to deal with nonlinear
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functions as a MILP problem is becoming more popular. This strategy is generally em-

ployed (but not restricted) to univariate and bivariate functions due to the number of

variables and constraints used in each approximation. Although not all nonlinear func-

tions can be rewritten as PWL functions, this reformulation is valid in many problems. In

particular, (KOCH et al., 2015) present this methodology in complex processes arising

from the gas-network industry. Another reference where authors apply MILP techniques

in PWL functions is (BALAKRISHNAN; GRAVES, 1989). Finally, an overview of differ-

ent types of formulations for non-convex PWL functions as MILP problems, including

non-separable functions, is presented in (VIELMA; AHMED; NEMHAUSER, 2010).

Recently, many works have applied the PWL formulation for the HPF. For exam-

ple, the work (BRITO; FINARDI; TAKIGAWA, 2020) explores different MILP formulations

applied for the HPF in a hydro UC problem with six GUs in a 24-hours horizon. The GUs

are represented individually, and the HPF for each GU is linearized in the gross head ×

unit turbined outflow plane. Considering that a four-dimensional polynomial represents

the Brazilian case’s forebay and tailrace levels, the authors approximate the gross head

by a linear function depending on volume, individual turbined outflow, and spillage.

Although the results show that the PWL reformulation for HPF can present high-

quality solutions, the computational effort is significantly high for the dimension of the

problem, and said the approach needs to be applied carefully in a large-size STGS

problem with an elevated number of hydro plants or containing several time-periods.

The MILP reformulation for the nonlinear HPF in hydro generation problems is

also applied in works (BORGHETTI et al., 2008; TONG; ZHAI; GUAN, X., 2013; LI, X. et

al., 2014; JIA; GUAN, X., n.d.). One main concern in these works is the solution quality

and the computational time required. Considering that the number of binary variables

required to approximate an HPF can be high due to inherent nonlinear characteristics,

especially in the bi-dimensional case, this approach can lead to computationally in-

tractable problems. Despite this, the PWL formulation can be interesting to model HPF

using the plant-based approach. Also, recently, MILP solvers are including such an

approach, which allows for handling certain types of nonlinear optimization problems,

including GUROBI (GUROBI, 2022).

1.2 LITERATURE REVIEW IN SOLVING STGS PROBLEMS VIA PRIMAL DECOM-

POSITION

The STGS solution is used for several purposes in system operation, particularly

as a reference point for real-time operation and determining the day-ahead spot prices.

Despite being well-studied and utilized worldwide, the STGS still poses a considerable

challenge because it needs to be solved quickly. This time-limit requirement contrasts

with the inherent characteristics: the STGS is a large-scale, nonlinear and nonconvex

optimization problem. Thus, the STGS needs to be simplified and formulated as a MILP
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problem that modern optimization solvers can efficiently tackle when combined with

decomposition strategies. This section reviews works that apply primal decomposition

(specifically BD) in the STGS problem. Table 1 summarizes some characteristics of

different STGS problems that apply BD found in works within the literature.

Table 1 ± Summary of different STGS problems that applied BD

(continues)
Optimization
Problem

Characteristics

Non-convex
MINLP
(BAI et al.,
2015)

- Thermal UC with a 24-hour planning horizon discretized in 1-
hour periods
- MP: Mixed-integer second-order cone programming (MISOCP)
with UC and relaxed AC Optimal Power Flow (OPF) constraints
- SP: hourly AC OPF formulated as NLP problems
- Benchmarks: IEEE 6-bus, modified 30-bus and 118-bus systems

Non-convex
MINLP
(AMJADY;
ANSARI, 2013)

- Hydrothermal UC with a 24-hour planning horizon discretized in
1-hour periods
- MP: MILP with UC constraints
- SP: a bilevel problem where the first level is an hourly AC OPF
formulated as a relaxed NLP problem and the second is a feasi-
bility problem
- Benchmarks: IEEE 9-bus and 118-bus systems
- Use strong Benders cuts to improve the convergence of BD

MILP
(ALEMANY;
MAGNANO,
2015)

- Thermal UC with a 24-hour planning horizon discretized in 1-
hour periods
- MP: MILP with UC constraints
- SP: hourly DC OPF problems
- Benchmarks: IEEE 118-bus and RTS 96-bus systems
- Use pre-processing strategy to generate initial cuts to improve
the convergence of BD

MILP
(SUNDAR et al.,
n.d.)

- Thermal UC with a 24-hour planning horizon discretized in 1-
hour periods
- MP: MISOCP with UC constraints
- SP: scenario-based containing the DC OPF and the contin-
gency probability, formulated as second-order cone programming
(SOCP)
- Benchmarks: IEEE RTS 96-bus system
- Include N-1 security and wind uncertainty

Non-convex
MINLP
(NICK et al.,
2016)

- Thermal UC with a 24-hour planning horizon discretized in 1-
hour periods
- MP: MILP with UC constraints
- SP: hourly linearized AC OPF problems
- Benchmarks: 5-bus and IEEE 118-bus systems
- Include dynamic thermal line rating (approximated by convex
constraints)
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Table 1 - Summary of different STGS problems that applied BD

(conclusion)
Optimization
Problem

Characteristics

Non-convex
MINLP
(LIU et al.,
2019)

- Thermal UC with a 24-hour planning horizon discretized in 1-
hour periods
- MP: MISOCP with UC and relaxed AC OPF constraints
- SP: multiperiod AC OPF problem
- Benchmarks: 6-bus, two 24-bus, RTS-79, RTS-96 and a modi-
fied IEEE 118-bus systems
- Use multi-tree global optimization, optimization-based bound
tightening, SOCP relaxations and piecewise outer approximations
to guarantee a globally optimal solution

MILP
(XU, Y. et al.,
2015)

- Thermal UC with a 24-hour planning horizon discretized in 1-
hour periods
- MP: MILP with UC constraints
- SP: hourly DC OPF and transient stability problems
- Benchmarks: New England 10-machine and IEEE 50-machine
systems
- Include transient stability constraints

Non-convex
MINLP
(NASRI et al.,
2016)

- Thermal UC with a 24-hour planning horizon discretized in 1-
hour periods
- MP: MILP with UC constraints
- SP: hourly/wind scenario AC OPF problems
- Benchmarks: IEEE RTS-24 bus system
- Include uncertainty due to wind

MILP
(HEDMAN et al.,
2010)

- Thermal UC with a 24-hour planning horizon discretized in 1-
hour periods
- MP: MILP with UC constraints
- SP: hourly DC OPF problems with contingency constraints
- Benchmarks: IEEE 7-bus and RTS-96 bus systems
- Include transmission switching with N-1 reliability

MILP
(FU; LI, Z.; WU,
2013)

- Thermal UC with one up to 7-day planning horizon discretized
in 1-hour periods
- MP: MILP with UC constraints
- SP: a bilevel problem with hourly DC OPF problems with contin-
gency constraints
- Benchmarks: 1168-bus system
- Solve a real instance large-scale STGS problem

MILP
(WU;
SHAHIDEH-
POUR, 2010)

- Thermal UC with a 24-hour planning horizon discretized in 1-
hour periods
- MP: MILP with UC constraints
- SP: hourly DC OPF problems
- Benchmarks: 3-bus and 5663-bus systems
- Apply strong Benders cuts based on the DC network to improve
the convergence of BD

Source: Author.
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As shown in Table 1, most works that apply BD in deterministic STGS problems

focus on obtaining SPs containing only the power flow constraints. The reason is due

to the inherent temporal decoupling existing in this type of SP, allowing the use of paral-

lelism. In stochastic STGS problems, the BD allows for breaking the original problem

into an MP and decoupled SPs for each scenario/realization of the random variable.

Also, the BD allows increasing the STGS formulation, including real-time operation con-

straints, such as contingency or frequency constraints. A point to note is that BD can

deal with several optimization problems, including MINLPs where the resulting SP is an

LP or a convex NLP. This SP requirement can impose some limits on the applications of

BD in STGS problems, particularly the temporal decomposition since STGS problems

are normally formulated as non-convex MINLPs.

The concept of temporal decomposition applied to STGS problems is not new

but has only recently raised interest among researchers. In (SANTOS; DINIZ, 2009), a

multistage BD4 is proposed to decompose the STGS problem formulated as LP, where

each stage comprises several time periods, aiming to find the best trade-off between

the number of subproblems to be solved and the computational burden involved. The

authors applied this scheme in the Brazilian system in a 168-hour planning horizon dis-

cretized in 1-hour periods. In simulations, they observed an optimal aggregation factor

between 12 and 14 time periods in computational runtime. Although this work presents

some important aspects concerning temporal decomposition and time aggregation, us-

ing an LP formulation for this problem is a drawback because it is necessary to use

binary variables to represent more realistic characteristics of the hydro and thermal

power plants operation.

As expected, the natural extension of the multistage BD is to include subprob-

lems with mixed-integer variables, known as DDiP. It is important to note that only a few

works in the literature have applied DDiP to optimization problems. An application of the

DDiP to solve a multi-scale mixed-integer MPC is presented in (KUMAR et al., 2021). In

this work, the authors decompose the problem into several mixed-integer subproblems

that will be solved in the iterative scheme of the DDiP. The simulations are performed to

schedule central heating, ventilation, and air-conditioning plant problems considering a

1, 2, 4, 5, 8, 10, and 20-week planning horizon discretized in 1-hour periods. The prob-

lem obtained when the planning horizon is 20-weeks contains 188,164 variables, being

67,200 binaries and 184,803 constraints. Although the DDiP lacks the finite conver-

gence property due to mixed-integer variables, the solutions obtained through DDiP are

high-quality, with an optimality gap of 0.1%. Thus, in this case, the DDiP outperforms

the state-of-the-art solutions MILP solver in terms of the computational burden.

In the context of GS, the work (LARA et al., 2018) apply the DDiP in the long-

term planning of electric power infrastructures considering high renewable penetration.
4 also known as dual dynamic programming
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Considering that the problem is a large-scale MILP, due to the multi-year planning

horizon discretized in hourly steps, the authors used DDiP for performing aggregations

and approximations in the original problem to overcome the computational intractability.

For example, a year is modeled using a small number of representative days with

hourly resolution. To accelerate the DDiP, they perform a pre-processing step where

an aggregated version of the full-space MILP is solved. The solution obtained is used

to generate initial cuts before starting the DDiP (warm-starting). Also, they evaluate

different types of Benders cuts proposed in (ZOU; AHMED; SUN, 2019b) and observed

that despite the classical Benders cuts being the weakest possible cuts, the advantage

of being easily and quickly computed overcomes the benefits of other types of cuts in

the DDiP scheme.

To overcome the computational complexity due to the temporal resolution of

optimization problems, some strategies involving decomposition, aggregation, and ap-

proximation can be performed. For example, work (FLAMM et al., 2021) handles the

GS problem with the nonlinear hydro model through a two-stage dual dynamic program-

ming approach. Considering that this is a large-scale nonlinear problem, the authors

split the problem into two sequential temporal stages. The first is an STGS with an

entire nonlinear problem, and the second is an approximated LTGS formulated as an

LP problem.

1.3 OBJECTIVES

This work proposes an STGS model with detailed HPF, including nonlinearities

and non-convexities. Considering the increase of the computational effort due to the

detailed HPF, the decomposition strategy based on DDiP is performed. In this sense, the

inherent temporal coupling of the STGS problem brings new possibilities to improve the

DDiP, e.g., different block-time aggregations and a particular type of overlap between

adjacent SPs. Approximations and aggregations can be performed in the final stages

of the planning horizon to overcome the difficulties imposed by the temporal resolution

of the STGS problem. Specifically, this thesis aims to:

1) Present different plant-based formulations for the HPF, such as improvements in

the CH formulation and other models that includes nonlinearities and discontinu-

ities related to the forbidden operating zones through mixed-integer formulations.

The aim is to propose a formulation with reasonable HPF accuracy and a mini-

mal increase in computational effort. In other words, we present an intermediate

approach (between the individual unit and the plant-based approaches), which

includes details present in the individual representation and the reduced compu-

tational effort characteristic of the plant-based approach.
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The first formulation proposed is a two-variate mixed-integer model based on the

CH for each non-forbidden zone (NFZ). Then, from a detailed analysis of HPF,

correlating the state variables dependencies and the planning horizon, two types

of PWL models are proposed. The first one is related to the plant's turbined

outflow and the second one includes the dependency of the volume.

2) Solve the 1-week STGS problem using DDiP with different block-time aggrega-

tions and analyze their effect on DDiP convergence. The critical observation is that

DDiP is flexible and enables each SP to have its particular characteristics, such as

different time horizons, as long as the information from the original problem is not

removed. Compared to a DDiP that operates over single time steps, this approach

(i) reduces the number of cost-to-go functions that need to be approximated, and

(ii) the block partitioning leads to tight approximations for the cost-to-go functions

with a reduced number of iterations. The block representations can also better

capture the multiple timescales present in STGS problems (e.g., ramp, minimum

uptime, downtime, water balance with coupled reservoir equations).

The proposed framework employs an overlapping partitioning scheme (known as

overlapping Schwarz), which has been recently used in the context of optimal

control (NA et al., 2021) and nonlinear dynamic programming problems (NA;

ANITESCU; KOLAR, 2021). In this approach, block time partitions incorporate

a selected set of constraints of the neighbor partitions. As a result, SPs for the

block partitions contain more information on the problem structure, which helps to

accelerate the convergence.

3) Analyze the impact of the detailed formulation in all periods in the STGS problem.

Considering that in the STGS problem, we are interested in finding the day-ahead

scheduled decisions, in which for each day the system operator will execute the

STGS problem with new input data, we aim to measure how much the simplifica-

tions performed in the last days of the planning horizon impact the decisions for

the first day.

Motivated by the recent studies in MPC problems, our objective is to propose a

modified version of the STGS problem that has fewer variables and constraints

due to time aggregation, where the decisions of the first day are near to the

optimal choices for the original problem. In particular, we evaluate the effects of

the diffusing-horizon (DH) strategy on the STGS problem.

In this work, to evaluate the proposals, the experiments are performed in a

modified version of the IEEE-118 bus system (IEEE, 2022), where 15 hydros from the

Brazilian system replace 14 thermal plants. All the data used in this work is presented

in Appendix A.
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From the results obtained, we show the following conclusions:

(i) The inclusion of a detailed HPF, with the discontinuities due to the forbidden

zones, results in significant changes in the decisions of the STGS problem, with

the caveat of an increase in the computational runtime that needs to be taken into

consideration;

(ii) The DDiP is a valid strategy to obtain near-optimal solutions for the STGS prob-

lem in a reasonable time, and the improvements on the overlapping partitioning

accelerate the convergence of the DDiP;

(iii) A detailed formulation on the last days of the planning horizon does not signif-

icantly impact the decisions of the first day, allowing for the use of simplified

formulations for the last days of the planning horizon.

These contributions are divided into the following papers:

1. Piecewise Linear Approximations for Hydropower Production Function Ap-

plied on the Hydrothermal Unit Commitment Problem. Authors: Kenny V.

Santos and Erlon C. Finardi. Published in International Journal of Electrical

Power and Energy Systems journal, vol. 135, february 2022, pp. 107464. Link:

https://doi.org/10.1016/j.ijepes.2021.107464.

2. Accelerated Multi-period Dual Dynamic Integer Programming Applied to

Short-Term Power Generation Scheduling. Authors: Kenny V. Santos, Bruno

R. Colonetti, Erlon C. Finardi, and Victor M. Zavala. Published in International

Journal of Electrical Power and Energy Systems journal, vol. 145, february 2023,

pp. 108689. Link: https://doi.org/10.1016/j.ijepes.2022.108689.

3. Assessing Temporal Aggregations and Model Simplifications in the Short-

Term Power Generation Scheduling Problem. To be submitted.

And as secondary contribution, during this Ph.D., the following paper was pub-

lished.

1. Analysis of infeasible unit-commitment solutions arising in energy optimiza-

tion. Authors: Leonardo D. Secchin, Guilherme M. Ramalho, Claudia A. Sagas-

tizábal, Paulo J. S. Silva, and Kenny V. Santos. Published in Mathematics in

Industry Reports, 2022. Link: http://dx.doi.org/10.33774/miir-2022-ztpbq.

1.4 STRUCTURE OF THE WORK

This work is organized as follows: Chapter 2 presents the mathematical for-

mulation of the STGS problem used in this work; the different proposed formulations
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for detailed HPF are presented in Chapter 3; Chapter 4 presents the DDiP and the

overlapping strategy proposed in this work; the study of simplified formulations and

temporal aggregations in the STGS problem is presented in Chapter 5; and finally, the

conclusions and future directions of research are in Chapter 6.
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2 MATHEMATICAL FORMULATION OF STGS PROBLEM

The STGS problem studied in this thesis aims to minimize the cost of opera-

tion given a planning horizon (e.g., 24 or 168 hours), taking into account operational

constraints for each generator and network constraints. While the horizon of STGS is

significantly lower than LTGS and MTGS problems, the plants and the electrical network

are modeled with more detail. In this thesis, the STGS problem is considered determin-

istic, which means that the generation provided by renewable sources is represented

by power injections modeled as negative demand on the bus that the renewable source

is connected. Furthermore, the inflows and demands for each time-step are known.

The notation used in this thesis is given as follows. Variables are represented by

italic letters, except those with lower greek letters. Constant terms are represented by

bold letters. Sets are represented by calligraphic letters, except those represented by

upper greek letters. The notation x and x are the upper and lower limits of variable x ,

respectively.

2.1 HYDROELECTRIC PLANT MODEL

Hydroelectric plants generate electricity by converting potential energy into ki-

netic energy, which is then transformed into electric energy. The difference between

upstream and downstream levels allows water to flow through a GU (turbine-generator),

producing electrical energy. This section presents the detailed formulation of HPF for a

GU.

The active power output of a GU follows the model presented in (FINARDI; SILVA,

E. L., 2006). Consider that the plant h has NJh GUs. In this model, the power generation

from unit j at instant t , phujt (in p.u. of MW) is a nonlinear function that depends on the

GU turbined outflow qjt [m3/s], net head nhjt [m], and the turbine-generator efficiency1

ηjt as follows:

phujht = 9.81× 10±5 · ηjht · nhjht · qjht . (1)

The net head is a function of the forebay level fblht [m], tailrace level trlht [m],

and hydraulic losses2 [m], given by:

nhjht = fblht ± trlht ± Djh · q
2
jht . (2)

In Equation (2), the constant Djh depends on the physical and geometrical

characteristics of the penstock [s2/m5]. The following gives the forebay level fourth-

degree polynomial on the volume of the reservoir [hm3]:

fblht = F0h + F1hVht + F2hV 2
ht + F3hV 3

ht + F4hV 4
ht . (3)

1 The GU efficiency is evaluated as the product of the hydraulic, mechanical, and generator efficiencies;
the last two are considered unitary in this work because they are approximately 100%.

2 In this work, for each GU, the penstock losses are predominantly caused by hydraulic losses and thus
can be considered equal.
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The tailrace level is also modeled as a fourth-degree polynomial depending on

the plant turbined outflow Qht [m3/s] and spillage [m3/s]:

trlht = G0h + G1h (Qht + Sht ) + G2h (Qht + Sht )
2 + G3h (Qht + Sht )

3 + G4h (Qht + Sht )
4 ,

(4)

It is also important to note that for some plants, the spillage has no effect in the

tailrace; therefore, Sht is zero in Equation (4). The GU efficiency is a nonlinear function

expressed in the Hill diagram (FINARDI; SILVA, E. L., 2006). In this work, we use the

following polynomial approximation model:

ηjht = I0jh + I1jhqjht + I2jhnhjht + I3jhqjhtnhjht + I4jhq2
jht + I5jhnh2

jht . (5)

The power generation phpht of the hydro plant h at time t is the sum of the power

output of all GUs:

phpht =
NJh∑

j=1

phujht . (6)

Similarly, the turbined outflow of the hydro plant h is the sum of the individual

turbined outflow of all GUs:

Qht =
NJh∑

j=1

qjht . (7)

According to the Hill curve, each Gu has power limits that depend on the net

head. The operational limits of the variables involved in the hydro model are given by:

Vh ≤ Vht ≤ Vh; 0 ≤ Sht ≤ Sh; q
jh

ujht ≤ qjht ≤ qjhujht , (8)

where ujht is a binary variable that represents the status of GU j at time t (1: on,

0: off). Moreover, each generator has a minimum and maximum amount of power that

can be produced, restricted by the capability curve3. If the capability curve is ignored,

the limits for power generation will be given by:

phu
jh
≤ phujht ≤ phujh. (9)

For hydropower operation, the water balance equation relates to how the water

is stored in the reservoir in a given time instant. Because hydro plants can be located in

the same river basin, the reservoirs are spatially coupled. Therefore, the water balance

equation has to consider this coupling with the respective water travel time between

coupled reservoirs. In this work, this equation is given by:

Vht + K ·


Qht + Sht ±

∑

∀i∈Ωh

Qi ,t±τih
+ Si ,t±τih


 = Vh,t±1 + K ·Yht . (10)

3 The capability curve of a generator defines boundaries for active and reactive power generation,
considering restrictions related to overheating of the generators
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zgt ± wgt = xgt ± xg,t±1, (12)

t∑

max(i=t±UTg+1,1)

zgi ≤ xgt , (13)

t∑

max(i=t±DTg+1,1)

wgi ≤ 1 ± xgt , (14)

ptgt ± ptg,t±1 ≤ RUgxg,t±1 + pt
g
zgt , (15)

ptg,t±1 ± ptgt ≤ RDgxgt + pt
g
wgt , (16)

pt
g
xgt ≤ ptgt ≤ ptgxgt , xgt ,zgt ,wgt ∈ {0,1}, (17)

In Equations (12)-(18), the subscript g concerns the thermoelectric generator

g, the subscript t is the time period, UTg is the minimum uptime of g, DTg is the

minimum downtime of g, RUg is the maximum ramp-up allowed for g and RDg is the

maximum ramp down allowed for g. The variable xgt represents the on/off status of

unit g at period t (xgt = 1 if the thermoelectric plant is on, 0 if it is off), zgt is a start-up

variable denoting if unit g has been started at period t (i.e., xgt = 1 and xg,t±1 = 0),

and wgt is a shut-down variable denoting if unit g has been shut down at period t (i.e.,

xgt = 0 and xg,t±1 = 1). The active power produced by unit g at instant t is represented

by ptgt [p.u. of MW]. Again, if the capability curve of the thermoelectric generator is

ignored, then the active power limits is given by the following constraint:

pt
g
≤ ptgt ≤ ptg . (18)

2.3 NETWORK MODEL

In this thesis, the STGS problem will consider the DC formulation for the net-

work. Due to the linear structure of constraints, this model is a common formulation

used in STGS problems (the same formulation employed in the DESSEM model). A

detailed network formulation involving nonlinear (AC) constraints and relaxations of

AC OPF can be founded in (ZIMMERMAN; MURILLO-SANCHEZ, C. E.; THOMAS,

2011; MOLZAHN; HISKENS, 2019; KORUK; DEY; SUN, 2016). The DC formulation

considers the following hypothesis:

H.1. The angular difference between two connected buses is small, such that sen(θa ±

θb) ≈ θa ± θb and cos(θa ± θb) ≈ 1, ∀(a,b) ∈ L;
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H.2. The conductance of all transmission lines is approximated 0, i.e., gab ≈ 0, ∀(a,b) ∈

L;

H.3. All the reactive power is ignored;

H.4. All voltage magnitudes of buses are equal to 1 p.u.

Considering hypotheses H.1. to H.4., the DC network formulation (DC OPF) is

given by: ∑

∀g∈Ub

ptgt +
∑

∀h∈Ub

phpht ±
∑

l∈Bb

pllt = Pbt (19)

pllt = (θat ± θbt )/xab (20)

pl
l
≤ pllt ≤ pll (21)

θb ≤ θbt ≤ θb (22)

θref,t = 0. (23)

In Equations (19)-(23), the following notation was used: the network is composed

of b buses belonging to set B and l transmission lines belonging to set L. Bb is the set

of all buses that are connected with bus b. Pbt represents the active power demand

at bus b in time t . A transmission line that connects buses a and b has reactance xab

[p.u.]. The active power through line l at time t is represented by pllt [p.u. of MW], and

if l connects buses a and b, we use the notation l : (a,b), and the power flow is from a

to b. The set Ub contains all generators connected to bus b, where g ∈ Ub, and h ∈ Ub

are thermoelectric and hydro plants belonging to this set, respectively. The variable

θbt is the voltage angle of the bus b at instant t , and the subscript ref represents the

reference bus.

In STGS problems, it is common to impose a system reserve constraint, which

is formulated by:

NG∑

g=1

(
ptgxgt ± ptgt

)
+
NH∑

h=1

NJh∑

j=1

(
phujhujht ± phujht

)
≥ SRt , (24)

where NG is the number of thermoelectric plants, NH is the number of hydro

plants and SR is the system reserve [p.u. of MW].
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2.4 FULL FORMULATION OF STGS PROBLEM

Combining equations presented in Sections 2.1, 2.2 and 2.3, we formulate the

STGS problem studied in this thesis, modeled as an MINLP problem and mathematically

described in Equation (25) as follows:

min
NT∑

t=1

NG∑

g=1

(
C0gptgt + C1gxgt + C2gzgt + C3gwgt

)
+ α (25)a

s.t. zgt ± wgt = xgt ± xg,t±1, ∀g ∈ G, ∀t ∈ T (25)b
t∑

i=max(t±UTg+1,1)

zgi ≤ xgt , ∀g ∈ G, ∀t ∈ T (25)c

t∑

i=max(t±DTg+1,1)

wgi ≤ 1 ± xgt , ∀g ∈ G, ∀t ∈ T (25)d

ptgt ± ptg,t±1 ≤ RUgxg,t±1 + ptgzgt , ∀g ∈ G, ∀t ∈ T (25)e

ptg,t±1 ± ptgt ≤ RDgxgt + ptgwgt , ∀g ∈ G, ∀t ∈ T (25)f

phujht = 9.81× 10±5 · ηjht · nhjht · qjht , ∀j ∈ Jh, ∀h ∈ H, ∀t ∈ T (25)g

nhjht = fblht ± trlht ± Dj · q
2
jht , ∀j ∈ Jh, ∀h ∈ H, ∀t ∈ T (25)h

fblht = F0h + F1hVht + F2hV 2
ht + F3hV 3

ht + F4hV 4
ht , ∀h ∈ H, ∀t ∈ T (25)i

trlht = G0h + G1h (Qht + Sht ) + G2h (Qht + Sht )
2 +

G3h (Qht + Sht )
3 + G4h · (Qht + Sht )

4 , ∀h ∈ H, ∀t ∈ T (25)j

ηjht = I0jh + I1jhqjht + I2jhnhjht + I3jhqjhtnhjht + I4jhq2
jht+

I5jhnh2
jht , ∀j ∈ Jh, ∀h ∈ H, ∀t ∈ T (25)k

phpht =
NJh∑

j=1

phujht , ∀h ∈ H, ∀t ∈ T (25)l

Qht =
NJh∑

j=1

qjht , ∀h ∈ H, ∀t ∈ T (25)m

Vht = Vh,t±1 + K ·Yht

± K ·


Qht + Sht ±

∑

∀i∈Ωh

(
Qi ,t±τih

+ Si ,t±τih

)

 , ∀h ∈ H, ∀t ∈ T (25)n

α ≥M1i ±
∑

h∈Ψ

M0hiVh,NT, i = 1, . . . ,NC (25)o

∑

∀g∈Ub

ptgt +
∑

∀h∈Ub

phpht ±
∑

∀l∈Bb

pllt = Pbt , ∀b ∈ B, ∀t ∈ T (25)p
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pllt = (θat ± θbt )/xab, ∀l : (a,b) ∈ L, ∀t ∈ T (25)q

NG∑

g=1

(
ptgxgt ± ptgt

)
+
NH∑

h=1

NJh∑

j=1

(
phujhujht ± phujht

)
≥ SRt , ∀t ∈ T (25)r

q
jh

ujht ≤ qjht ≤ qjhujht , ∀j ∈ Jh, ∀h ∈ H, ∀t ∈ T (25)s

0 ≤ phujht ≤ phujht , ∀j ∈ Jh, ∀h ∈ H, ∀t ∈ T (25)t

pt
g
xgt ≤ ptgt ≤ ptgxgt , ∀g ∈ G, ∀t ∈ T (25)u

Vh ≤ Vht ≤ Vh; 0 ≤ Sht ≤ Sh; 0 ≤ phpht ≤ phph, ∀h ∈ H, ∀t ∈ T (25)v

pll ≤ pllt ≤ pll , ∀∀l : (a,b) ∈ L, ∀t ∈ T (25)w

θb ≤ θbt ≤ θb, ∀b ∈ B, ∀t ∈ T (25)x

ujht ,xgt ,zgt ,wgt ∈ {0,1}, ∀j ∈ Jh, ∀h ∈ H, ∀g ∈ G, ∀t ∈ T (25)y

θref ,t = 0, ∀t ∈ T . (25)z

For this model, in the objective function, the term C0g is the unit variable cost of

thermoelectric g, i.e., the cost to produce 1 unit of power in a given instant time [$/p.u.

of MWh]; C1g is the fixed cost of g, i.e., the cost to keep the plant online independent

of the amount of power that it produces [$]; C2g is the cost to start g [$], and C3g is the

cost to shut down g [$]. T ,G,H,Jh are the set with the time periods, the set of thermal

generators, the set of hydro plants, and the set of GUs of hydro plant h, respectively. NC

is the number of cuts used to represent the FCF. To understand the characteristics of

this optimization problem, the relation between the number of variables and constraints

as a function of the size of the system are presented below, considering the following

input data.

• G thermoelectric plants;

• H hydro plants, where each plant h contains Jh GUs;

• B buses and L transmission lines;

• C cuts for the FCF;

• NT time steps.

In this analysis, the constraints associated with limits on variables (including

operational limits for thermoelectric plants) and the power limits of generators are

ignored. Also, we ignore constraints php =
∑Jh

j=1 phui , Q =
∑Jh

j=1 qi . In this case, the

relation of variables and constraints is expressed in Table 2, where H, T, R, and N

are, respectively, the hydro, thermoelectric, reservoirs (water balance and FCF), and

network constraints. As can be seen, the number of time steps, combined with the

number of hydros and thermoelectric plants, increases the STGS problem's complexity

due to the increase in the the number of nonlinear constraints and binary variables.
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Table 2 ± Number of variables and constraints in STGS problem

# continuous
variables

# binary
variables

# linear
constraints

# nonlinear
constraints

H (
∑

H

i=1 5Ji + 4H) ·NT
∑

H

i=1 Ji ·NT 0 (
∑

H

i=1 3Ji + 2) ·NT

T 2 ·G ·NT 3 ·G ·NT 5 ·G ·NT 0
R 1 0 H ·NT + C 0
N (B + L) ·NT 0 (B + L) ·NT 0

Source: Author.

2.5 FINAL CONSIDERATIONS

In this chapter, the formulation of the STGS problem approached in this thesis

was presented. Initially, the individual representation of the GUs of a hydroelectric plant

was modeled as a nonlinear model. Then, the thermoelectric UC was presented using

the 3-binary model, considering the minimum up and down times, ramp constraints, and

power limits. In sequence, the DC formulation for the network was shown. Finally, the

formulation of the STGS problem and the relation between the temporal discretization,

number of generators, and the dimension of the STGS problem was presented, in which

the number of nonlinear terms and binary variables stand out.

As seen, the STGS is formulated as a non-convex MINLP problem, and for large-

scale systems, solving or finding a feasible solution is a hard task since the available

optimization solvers do not perform well in problems with many variables and nonlinear

non-convex constraints. Therefore, this model is approximated by a MILP problem in

the Brazilian case. An approximation is to aggregate all the units of each hydroelectric

plant and approximate the equivalent HPF by a PWL model based on CH techniques.

Thus, two important features deteriorate, the non-linearities and discontinuities present

in HPF. Another important aspect is the use of the DC formulation for the network, a

simplified linear model that only holds under certain hypotheses.

The search for feasible and high-quality solutions for the STGS problem has

motivated researchers in engineering, mathematics, and economics, in addition to

being a special interest for power system operators, given the huge financial impacts

caused by non-optimal decisions. For example, there is the case of the PJM system

operator, which in 2005, changed its STGS model solved by LR for a MILP solved by a

commercial solver, reporting an annual saving of between 60 and 100 million of dollars

(O’NEILL, n.d.).

Another important factor in searching for a high-quality STGS problem solution is

the computational time involved. Depending on the structure of the associated energy

market, the system operator needs to deal with other issues not always described

in the STGS problem, such as reactive power generation and transient and steady-

state stability issues. In this way, the system operator, after executing the STGS model,
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performs a post-processing step on the solution obtained, aiming to guarantee a viable

real-time operation. If this post-processing is slow, fast execution of the STGS problem

is necessary to guarantee the execution of the system operator framework in a timely

way. In addition, the system operator can run the STGS model several times per day

to include aspects that were not previously known (e.g., an offline generator due to

a failure or an update in the renewable generation due to a massive solar or wind

forecast).

Based on these issues, the next chapter details aspects related to the mathe-

matical formulation of the STGS problem, aiming to analyze the approximations used

in the DESSEM model. Notably, this thesis does not propose solving the STGS model

formulated in this chapter, but rather a MILP-based approach that is more accurate in

modeling than those used currently in DESSEM.
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3 DETAILED FORMULATIONS FOR PLANT-BASED HPF

In this chapter, different formulations for the plant-based HPF are presented,

aiming to be included in the STGS problem. As seen in Chapter 2, the STGS is for-

mulated as an MINLP. For large instances, it becomes computationally intractable to

produce an optimal or even a feasible solution. On the other hand, non-detailed formula-

tions, particularly for HPF in a hydro-predominant power system, can lead to low-quality

solutions. Therefore, this chapter presents formulations that compromise important as-

pects of HPF, including nonlinearities, discontinuities, and the computational complexity

involved.

3.1 THE PLANT-BASED HPF MODEL

As commented in previous chapters, a common approach to overcome the com-

putational complexity involved in representing the HPF of a plant considering all GUs is

to represent the HPF by a plant-based model, which models the plant via a single equiv-

alent GU. In this case, the equivalent unit possesses maximum power and turbined

outflow given by the sum of individual GU capacity. However, even where only identical

GUs exist, it is impossible to obtain a precise analytic expression for the HPF in the

plant-based approach since the resulting nonlinear phpht depends on the generation

policy (i.e., 0-1 status and the respective power dispatch) for each unit. Therefore, the

power generation in the operating point k (Vk
ht ,Q

k
ht ,S

k
ht ) can only be obtained by solving

an auxiliary problem, typically an optimization model. For instance, considering null

spillage, the output power of the plant, phpht with NJh GUs, operating with fixed values

of Qk
ht and Vk

ht is found by solving the following MINLP problem:

phpht (V
k
ht ,Q

k
ht ) = max

NJh∑

j=1

phujht (26)a

s.t.
NJh∑

j=1

qjht = Qk
ht (26)b

nhjht =
4∑

i=0

Fih · (V
k
ht )

i ±
4∑

i=0

Gih · (Qht )
i ± Djhq2

jht (26)c

ηjht = I0jh + I1jhqjht + I2jhnhjht + I3jhqjhtnhjht+

I4jhq2
jht + I5jhnh2

jht (26)d

phujht = 9.81× 10±3
ηjhtnhjhtqjht (26)e

ujht · qh
≤ qjht ≤ ujht · qh (26)f

ujht ∈ {0,1} (26)g
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are similar numerically, and the user does not control the number of hyperplanes ob-

tained. Thus, in this thesis, we propose to find the hyperplanes through an optimization

problem described as follows. First, consider a set S of points in the V ×Q grid, where

an element k ∈ S is the pair (Vk ,Qk ) and a subset S1 containing points of interest from

the V ×Q grid, such that the value of the approximated HPF model for each element

of this subset is the same as the nonlinear HPF. With this, the following optimization

problem is solved for each element i ∈ S1:

min
∑

∀k∈S

[
php(Vk ,Qk ) ± (a0V

k + a1Q
k + a2)

]2
(30)a

s.t. (a0V
k + a1Q

k + a2) ± php(Vk ,Qk ) ≥ 0, ∀k ∈ S (30)b

(a0V
i + a1Q

i + a2) ± php(Vi ,Qi ) = 0. (30)c

The resulting hyperplanes obtained (coefficients ai , i = 0,1,2) for the CH model

are shown in Figure 4. Since php is modeled by a set of inequalities that are upper

limits, the value of php decided by the optimization model can be any value between 0

and the maximum value of php limited by the CH model. Also, php can be 0, even for a

nonzero Q. To fix the null generation when Q > 0, a binary variable u that represents

the on/off status of the hydro plant is included, and the resulting model, called Binary

Convex Hull (BCH), is formulated by Equations (28), (31)-(32):

php ≤ php · u (31)

q · u ≤ Q ≤ q ·NJ · u. (32)

The hyperplanes of a 3-unit plant using the BCH model are presented in Figure 5.

To improve the HPF model, hyperplanes that bound from below the HPF can be inserted

in CH and BCH formulations. The following optimization problem, which obtains these

hyperplanes, is solved for each element i ∈ S1, considering S,S1 as the same used

(although it is not required) in the optimization problem from Equations (30)a-(30)c.

min
∑

∀k∈S

[
php(Vk ,Qk ) ± (b0V

k + b1Q
k + b2)

]2
(33)a

s.t. php(Vk ,Qk ) ± (b0V
k + b1Q

k + b2) ≥ 0, ∀k ∈ S (33)b

php(Vi ,Qi ) ± (b0V
i + b1Q

i + b2) = 0. (33)c

Thus, the resulting HPF model using the CH formulation with N2CH hyperplanes

that are lower bounds of HPF, called CH-2, is modeled by Equations (28)-(29), together

with Equation (34):

php ≥ b0iV + b1iQ + b2iS + b3i , i = 1, . . . ,N2CH, (34)
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niques, and binary variable addresses each NFZ. This resulting model, called Piecewise

Convex-Hull (PCH) model, is formulated by Equations (36)-(41):

php ≤ a0kiV · ui + a1kiQ̂i + a2kiyi , k = 1, . . . ,N1PCHi
, ∀i ∈ I (36)

php ≥ b0kiV · ui + b1kiQ̂i + b2kiyi , k = 1, . . . ,N2PCHi
, ∀i ∈ I (37)

Q =
∑

∀i∈I

Q̂i (38)

Qi1 · ui ≤ Q̂i ≤ Qi2 · ui , ∀i ∈ I (39)
∑

∀i∈I

ui ≤ 1 (40)

ui ∈ {0,1}, ∀i ∈ I, (41)

where I is the set of NFZs, and i ∈ I has the form i = [Qi1, Qi2], Qi1 < Qi2 and

represents an NFZ on Q, N1PCHi
,N2PCHi

are the number of hyperplanes used to limit

php from above and below for each NFZ i , respectively, Qi1 and Qi2 are the extreme

points in Q for the NFZ i , and ui is a binary variable that represents the NFZ i . The

hyperplanes that are lower and upper limits of HPF used in Equations (36)-(37) are

evaluated in the same way presented in Section 3.2, but for each NFZ i , i.e., the grid of

points used to generate sets S, S1 in the Q-axis are restricted to [Qi1,Qi2] interval.

In the PCH model, constraints (36)-(37) are upper and lower envelopes for php,

and Equations (38)-(41) enforce that Q has to be 0 or a value between one of the

NFZs. In terms of computational complexity, the number of binary variables used in this

formulation is equal to the number of NFZs (at least ≥ 1), i.e., in the best case, this

model will insert the same number of binary variables as the BCH model. The same

approach is valid for the number of constraints, considering that in the PCH model,

there are lower and upper limits for each NFZ. Finally, as an example, the hyperplanes

of a 3-unit plant using the PCH model are shown in Figure 7.

3.3 PWL MODELS

This section presents mixed-integer formulations that approximate the nonlinear

HPF by PWL models on each NFZ. The focus is on two types: a one-dimensional model

as a function of Q and a two-dimensional model as a function of Q and V . The one-

dimensional model is appropriate if the volume variations are negligible in the planning

horizon (plants with large reservoirs). For example, consider the 3-unit plant where the

maximum plant turbined outflow is 516 m3/s, and the limits on volume are V = 2,711.49

[hm3] and V = 4,904.45 [hm3]. Also, let Vmed = 0.5(V + V ) = 3,807.97 [hm3]. The HPF

for the 3-unit plants as a function of Q with fixed volumes is presented in Figure 8.

However, considering the STGS problem, given a fixed initial volume V0, the

variations in volume for this plant in a one-day or 1-week are relatively small. For
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represent the HPF from Figure 9 as a piecewise bidimensional model using formulations

(VIELMA; AHMED; NEMHAUSER, 2010). However, the high number of binary variables

needed to represent the functions and the approximation precision does not make

the approach attractive for a large-scale. So instead, we are proposing an alternative

formulation.

Analyzing Figure 10, the three HPFs have similar graphics, differentiating by a

factor βp(Q) ·V . Considering βp(Q) as constant, we can derive a two-dimensional PWL

formulation for HPF (PWL-2). In this work, the equation used to define βp(Q) is:

βp = βp(Q) =
php(V2,Qp1) ± php(Vref,Qp1)

V2 ± Vref
, (48)

and the PWL-2 model is formulated by Equations (42)-(47), where Equation (45)

is replaced by:

p̂hpp = php(Vref,Qp1) · up +
php(Vref,Qp2) ± php(Vref,Qp1)

Qp2 ± Qp1
(Q̂p ± Qp1 · up)

+ βp(V ± Vref) · up, ∀p ∈ P. (49)

3.4 ASSESSING HPF MODELS

Given the formulations presented in this chapter, an important aspect to be

considered when choosing a specific model type for HPF is to assess the approximation

in terms of errors and computational complexity. In this section, these aspects will be

analyzed for a better understanding of how to compare the HPF models proposed.

To assess the approximation errors for HPF models presented in this thesis,

consider the 3-unit plant presented, where the following data are used: V1 = 3,982.8

m3/s, V2 = 4,113.7 m3/s, Vref = 0.6(V2 ± V1) + V1. The validation points are obtained

through the cartesian product between 200 equally spaced points in Q, where each

point belongs to an NFZ i ∈ I, with I = [(138.5,172), (277,344), (415.5, 516)], and

ten equally spaced points in V on the range [V1,V2]. The approximation errors are

calculated based on the following definitions.

Definition 3.4.1 (Relative Error) The relative error (Rerr ) between a function f (x) and

an approximation f̃ (x) at point x0 is the absolute error divided by the absolute value of

the function f (x) at x0:

Rerr (x0) =

∣∣∣∣∣
f (x0) ± f̃ (x0)

f (x0)

∣∣∣∣∣ , f (x0) ̸= 0. (50)

Definition 3.4.2 (Normalized Accumulated Error) Given an interval [x0,x1], the nor-

malized accumulated error (NAerr ) is the sum of errors at all valid points of function f (x)

in this range divided by the number of interval elements.
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Each type of model used on HPF must be considered to evaluate the NAerr . For

example, in the envelope models, we use two types of error: the first, which measures

the difference between the value of the approximation on the upper bound and the

value of the nonlinear HPF, called uberr , and the second error, related to the difference

between the nonlinear HPF and the approximation on the lower limit, called lberr .

Considering a set Q with N points in the interval [Q1,Q2], the uberr is obtained

as:
1
N

∑

∀k∈Q

max
{∣∣∣∣

php(V,k ) ± php∗(V,k )
php(V,k )

∣∣∣∣ ,0
}

, (51)

where k is an element of set Q, V is a fixed volume, and php∗ is the value of

php in the upper limit of Equation (28) for CH and BCH models, Equation (34) for CH-2

model, Equation (35) for BCH-2 model and Equation (36) for PCH model. The lberr ,

which is associated with the CH-2, BCH-2 and PCH models, is given by:

1
N

∑

∀k∈Q

max
{∣∣∣∣

php(V,k ) ± php∗∗(V,k )
php(V,k )

∣∣∣∣ ,0
}

, (52)

where php∗∗ is the value of php in the lower limit of Equation (34) for the CH-2

model, Equation (35) for BCH-2 model, and Equation (37) for the PCH model. Note

there is no measure of lberr for CH and BCH models once these models do not have

a lower limit (the lower bound is equal to 0). Finally, for PWL models, considering

the interval [Q1,Q2] divided into M segments, where Qm is the subinterval related to

segment m and each element k belonging to one of the segments, an expression for

the NAerr is given by:

1
N

M±1∑

m=0

∑

∀k∈Qm

∣∣∣∣
php(V,k ) ± php(V,k )

php(V,k )

∣∣∣∣ . (53)

Now, it is possible to assess each HPF approximation presented in this chapter,

using the following parameters for each model3:

• CH-based models: elements of set S1 obtained as the result of the cartesian

product between [0, 172, 344, 516] on Q and [V1, 0.5(V1 + V2), V2] on V . Type of

Error: uberr for CH;

• PCH: I = [(138.5, 172), (277, 344), (415.5, 516)]. Each subset S1i contains ele-

ments obtained through the cartesian product between i ∈ I and [V1, 0.5(V1 +

V2), V2]. Type of Error: uberr and lberr ;

• PWL: P = [(138.5, 172), (277, 344), (415.5, 466), (466, 516)]. Type of Error: NAerr

from Equation (53).
3 since we are considering only the NFZs, the BCH model will result in the same errors as CH model.

For CH-2, and BCH-2 model, the uberr is the same as CH model, and lberr is the same as PCH model,
therefore, they are excluded from this analysis
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(42)-(44), (46)-(49) for PWL-2 model. The choice between PWL-1 and PWL-2

formulations for each plant will be presented in this section.

All the experiments are performed considering three initial volumes on the reser-

voirs (30, 60, and 90% of volume) and two inflows (Y0 and Y1), totalizing 24 different

experiments4. Regarding the use of binary variables in HPF, Case 1 does not use

binary variables; Case 2 includes one binary variable for each hydro plant; Case 3

includes one binary variable for each NFZ; and Case 4 is a model in which it is possible

to set the precision of the HPF, at the price of using a large number (possibly more

than used in Case 3) of binary variables. To choose the number of polytopes in Case 4,

we developed a methodology that evaluates each hydro capacity concerning the hydro

system; a minimal error is imposed depending on this participation. Also, a variation

of the Douglas-Peucker algorithm (DOUGLAS; PEUCKER, 1973) is used to determine

the partitions of the polytopes for each hydro. These details are described in the next

subsection.

3.5.1 Generation of the Set of Polytopes

As mentioned before, the precision of HPF on PWL formulations depends on the

set of polytopes P. Therefore, a pre-processing step to generate this set is performed

considering the specific characteristics of the hydro plants. Specifically, the dependency

of volume and the total participation on the installed hydro generation capacity are

analyzed, and after, the polytopes are generated. For the system used in this paper,

Table 4 shows this information for the hydro plants, where the hydro generation capacity

is 64% of the total system capacity.

In Table 4, PHH is the participation of the hydro plant concerning the capacity of

all hydro plants, and ∆php(Q) is a factor that measures the influence of volume on the

HPF, given by the following equation:

∆php(Q) =
php(Q,V2) ± php(Q,V1)

php(Q,V0)
, (54)

where V0 is the initial volume used in the experiment, V1 = max(V , V0±K·NT·Q)

is the minimum volume available in the reservoir, and V2 = min(V , V0+K·NT(Y+Qups))

is the maximum volume available of the reservoir, Qups is the maximum outflow of the

reservoirs on the upstream and γ is a parameter used to set the initial volume, i.e.,

V0 = γ× (V ± V ) + V . To evaluate ∆php(Q), we use Q = Q, because it is expected that

the maximum difference occurs in Q due to the HPF being directly proportional to Q.

We use the parameter PHH as a reference to generate the partitions on Q for

each hydro. N. Avanhandava, Jupiá, and Foz do Chapecó plants account for approxi-

mately 50% of the hydro installed capacity. The number of partitions chosen for these
4 Cases CH and BCH are not included since cases CH-2 and BCH-2 has the same formulations, with

an addition of lower bounds
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Table 4 ± Characteristics of hydro plants

Plant PHH (%)
∆php(Q) (%)

γ = 30 γ = 60 γ = 90
PROMISSÃO 7.37 2.57 2.34 2.28

BARRA BONITA 3.91 5.26 3.49 3.12
N. AVANHANDAVA 9.70 0 0 0

JUPIÁ 15.47 0 0 0
BARIRI 4.02 0 0 0

MONJOLINHO 2.06 3.41 3.38 3.34
QUEBRA QUEIXO 3.35 3.44 3.30 1.95

SÃO JOSÉ 1.42 0 0 0
PASSO SÃO JOÃO 2.15 4.43 4.37 4.32

PASSO FUNDO 6.31 0.10 0.08 0.66
PEDRA DO CAVALO 4.47 0.17 0.15 0.14

BALBINA 6.98 0.61 0.49 0.42
GARIBALDI 5.19 6.10 5.99 4.57

FOZ DO CHAPECÓ 23.88 2.02 2.01 2.00
IBITINGA 3.67 0 0 0

Source: Author.

plants results in an average approximation error of less than 3%; for the other plants,

we use P = I. The partitions are defined for each NFZ, and the points on Q are defined

based on a modification of the Douglas-Peucker algorithm (JILIN et al., n.d.) stated as

follows:
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Algorithm 1: modified Douglas-Peucker
Input: number of points (NP), minimum average error (MAE), set of NFZs

(I) and P = Ø

Output: set P

1 for i ∈ I do

2 set p = i , i.e., p = [Qi1, Qi2]

3 discretize [Qi1, Qi2] into NP = M + 1 points obtaining the set

[Qi1, . . . , Qk , . . . , Qi2]

4 compute the NAerr from Equation (53)

5 if NAerr ≤MAE then

6 go to Step 10

7 else

8 find k ∈ [Qi1, . . . , Qk , . . . , Qi2] that generates the highest

approximation error; insert k in p; Go to Step 4

9 end

10 let the resulting set p = [Q1, Q2, . . . , QK ], in which Q1 = Qi1, QK = Qi2

and Q1 < Q2 < · · · < QK . For k = 1, . . . , K ± 1, take the interval

[Qk , Qk+1] and insert into P

11 end

Algorithm 1 can be executed a priori and has no impact on the computational

time of the STGS problem. To decide which PWL type must be used for each hydro,

PHH and ∆php(Q) are analyzed. If PHH > 5% and ∆php(Q) > 2%, the model chosen

for the HPF is the PWL-2; otherwise, the option is PWL-1. With all these considerations,

Table 5 contains the number of partitions (NoP) used in each NFZ and highlights the

PWL model chosen.

Finally, the system reserve is equal to 5% of the demand. To evaluate the effects

of the HPF models and to avoid numerical issues due to the FCF, the simulations

presented in this chapter will be performed without the FCF. Still, instead, we impose

volume targets at the end of the planning horizon, i.e., Equation (55) is imposed in the

STGS problem.

Vh,NT ≥ V∗h, (55)

where V∗h = 98%Vh,0, i.e., the volume target admitted is equal to 2% of variation

on the initial volume of hydro h. It is important to note that this equation is only imposed

for hydros with large reservoirs.

3.5.2 Results

The main results obtained from all experiments are presented in this section. Ta-

ble 6 shows information about the size of optimization problems, the relaxed objective
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Table 5 ± Number of partitions for each NFZ and PWL model chosen

Plant
NoP for NFZ #

PWL-1 PWL-2
1 2 3

PROMISSÃO 1 1 1 X
BARRA BONITA 1 1 X

N. AVANHANDAVA 1 1 1 X
JUPIÁ 2 X
BARIRI 1 1 1 X

MONJOLINHO 1 1 1 X
QUEBRA QUEIXO 1 1 1 X

SÃO JOSÉ 1 1 X
PASSO SÃO JOÃO 1 1 X

PASSO FUNDO 1 1 1 X
PEDRA DO CAVALO 1 1 X

BALBINA 1 1 X
GARIBALDI 1 1 1 X

FOZ DO CHAPECÓ 1 1 2 X
IBITINGA 1 1 1 X

Source: Author.

function, and runtime for different optimality gaps, where Ncons is the number of con-

straints of the optimization model, Ncvar is the number of continuous variables of the

problem, (R)Fobj is the (relaxed) objective function value obtained with 1% gap (for the

MILP). Since variations on the initial volume impact the runtime, we present information

with 60% initial volume and inflow equal to Y1. We observe that problem with PCH

formulations is three times slower than with the PWL model. Also, the computational

effort for problems with the BCH-2 model is relatively small compared to those with

the CH-2 model. On the other hand, simulation with the PWL model has significant

computational effort compared with the BCH-2 model. Moreover, the gap between the

RFobj and Fobj with a 1% gap is around 6% for all simulations.

Table 6 ± Information about the optimization problems

Simulation
Type

Ncons Nbvar Ncvar RFobj Fobj 1%
Runtime (s)

Gap 1% Gap 0.1 %
CH-2 35,936 2,880 12,529 454,583 482,986 6.10 27.79

BCH-2 37,376 3,240 12,529 454,583 483,160 8.70 31.34
PCH 35,096 3,744 14,257 454,986 482,253 103.37 233.88
PWL 35,864 3,792 14,593 455,729 484,516 33.00 71.15

Source: Author.

For the rest of this section, all results are obtained considering an optimality gap

of 1%. Regarding the formulation and the impact on the computational burden, the
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HPF model closer to the nonlinear function. For comparison, we include the overall

HPF error (OHPFe) measure, which is the relative error over the planning horizon for

all hydro plants related to the total hydro generation, and the results obtained for the

reference (Ref) simulation. In contrast, for the PWL model, we use the mixed strategy

presented in Table 5. All simulations are performed considering a 1% optimality gap,

γ = 60, Y1, and a time limit of 600 seconds (achieved only in simulation 6).

Table 9 ± Results for different parameters of PWL formulation.

Simulation #
PWL-#

NoP for each NFZ Fobj ($) Runtime (s) OHPFe (%)
1 2

1 X 3 483,138 47.70 5.41
2 X 3 484,024 126.92 5.19
3 X 5 484,515 43.28 5.24
4 X 5 482,368 325.70 4.79
5 X 8 483,122 75.31 4.74
6 X 8 483,744 600 4.62

Ref - - - 484,516 33.00 5.64

Source: Author.

Notice that the PWL formulation can achieve reasonable OHPFe values, al-

though the increase of NoP is the price to pay for better precision. Also, the inclusion

of the volume effects on HPF significantly impacts the computational effort. As can be

seen, the different formulations on the HPF can directly impact the STGS problem. For

these experiments, a relative number of hydro plants showed violations on the CH and

BCH model scheduling. Of course, if the total amount of violations is relatively high, the

PCH and PWL models can fix this problem.

On the other hand, the BCH formulation can be interesting in cases where

the violations are minor. The PWL formulation is attractive if a high level of accuracy

is required for the HPF. Still, many binary variables are required depending on the

precision, and a higher computational effort is required. Also, it is possible to impose

a particular formulation for each hydro plant of the system, but this is out of this work

scope.

3.6 FINAL CONSIDERATIONS

This chapter presented different formulations to approximate the nonlinear HPF

using the plant-based approach. Initially, the nonlinear formulation was detailed, and

the differences when considering the NFZs were shown. Then, envelope models were

proposed, where the CH model from (DINIZ; MACEIRA, M. E. P., 2008) was improved

with the addition of a binary variable to represent the on/off status of the plant, and the

addition of lower limits for plants where the spillage does not have influence on php.
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Also, the PCH model was formulated, being an extension of the CH model for each NFZ.

In sequence, PWL models were proposed to improve the HPF as the price to add fewer

binary variables and constraints. In this sense, two formulations were formulated, where

one only considers the effects of Q, and the second imposes a correction factor to take

into account the effects of V , in a linear way. In the end, a discussion about assessing

the HPF formulations, considering the different models proposed, was presented.

From the simulations performed, it was possible to observe that the PCH and

PWL models are attractive alternatives to represent the HPF since both models can

handle precisely the operation in forbidden zones. The increase in computational time

is an issue that needs more investigation in large-size systems, although decomposition

techniques and parallel processing are natural options in this context. Also, depending

on the accuracy required, a particular HPF model can be chosen, enabling an STGS

problem where each hydro has a specific type of formulation presented in this work.

This analysis can be performed a priori, using a pre-processing algorithm, and has no

impact on the computational time required to solve the STGS problem.

Despite such aspects, it is possible to find formulations in which the approxima-

tion error of HPF is relatively small. Still, the computational effort can turn the problem

impossible to be solved, even in high-performance computers. It is important to measure

the computational effort involved to evaluate the impacts of all formulations proposed

in this chapter in the STGS problem. Considering the importance of solving the STGS

problem quickly and using detailed formulations in particular for the HPF, considering

systems with a dominance of hydro generation (as in Brazil), the next chapter is fo-

cused on a decomposition strategy that can be applied to the STGS problem with a

large horizon (168 hours), aiming to turn viable the improvements on HPF presented in

this chapter.
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4 DUAL DYNAMIC INTEGER PROGRAMMING APPLIED TO STGS PROBLEM

In this chapter, a temporal decomposition scheme for the STGS problem is pro-

posed. Considering the STGS problem is modeled as a MILP, the BD is a natural

scheme to decompose the problem. However, the vanilla BD can only have a convex

subproblem, i.e., binary variables are not allowed. Due to the complexity of the STGS

problem, a major challenge is how to break the problem in a way allowing to obtain

subproblems that contain only information about a specific part of the temporal resolu-

tion of the original problem. In this sense, Dual Dynamic Integer Programming (DDiP)

can be applied to STGS to solve this problem efficiently. Therefore, in this chapter, the

DDiP and improvements to accelerate the algorithm's convergence are presented and

applied to the STGS problem.

For the remaining of this chapter, the following definitions will be used. A multi-

period MILP problem with t = {1, . . . ,T } periods is called full-space MILP. This problem

can be viewed as a multistage problem, where each stage is related to one or more

periods. A multi-period stage p contains more than one period; for example, p = 1

contains periods t = {1,2,3,4} represented by all single-periods of this stage without

any simplification. An aggregated stage q = 1 containing periods t = {1,2,3,4} is an

aggregation of this four time-periods into an one equivalent stage q. These definitions

can be visualized in Figure 17.

4.1 DECOMPOSITION METHODS AND BENDERS DECOMPOSITION

A decomposition method applied to an optimization problem is one of the funda-

mental techniques that can be used to attempt to solve the problem. For large-scale

problems, fully solving the problem without any technique can be impossible, even

for modern computers and the recent advances in optimization solvers. Recognizing

some structure and using a decomposition technique to break the original problem into

several subproblems that are easier to solve is a valid approach and has been used

over the years by the mathematical optimization community. As mentioned in Chapter

1, decomposition strategies can be classified according to their structure, resulting in

the primal and dual methods.

A particular decomposition scheme can be applied according to the problem

structure. For example, if the problem has complicating variables1, the Benders De-

composition (BD) can be applied if the subproblem obtained has a particular structure.

On the other hand, a Lagrangian Relaxation (LR) can be applied if the problem has

complicating constraints. A decomposition called Nested BD (NBD) can be applied for

a particular structure of optimization problems, where each subproblem is coupled only
1 complicating variables are variables where if we remove them, the resulting optimization problem

becomes more easy to be solved
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Algorithm 2: Benders Decomposition
Input: A MILP problem of type (56)

Output: Solution of MILP, y∗, x∗ and the value of f ∗ = dT y∗ + cT x∗

1 initialize O,F = Ø, and a tolerance ε. Solve MP (60). If it is obtained an

infeasible solution, stop (the original problem is infeasible). Else,

ŷ1 ← y , zLB ← min dT y1 + α1 (if MP is unbounded, set an arbitrary ŷ and

zLB ← ±∞) ;

2 for k = 1,2, . . . do

3 solve SP (58) for ŷk ;

4 if SP (58) is infeasible then

5 the original problem is either infeasible or unbounded. Stop.

6 end

7 if SP (58) for ŷk is unbounded then

8 generate a feasibility cut of type rT
f

(h ± Fŷk ), update

F ← F ∪ {rT
f

(h ± Fŷk )} and go to Step 16

9 end

10 SP is feasible. Set λ̂
k
o ← λ, zUB = dT ŷk + λT (h ± Fŷk );

11 if zUP ± zLB < ε then

12 Get x∗ as the dual variables of SP (58). Set y∗ ← ŷk and

f ∗ ← dT y∗ + cT x∗. Stop ;

13 else

14 generate an optimality cut α ≥ λk
o(h ± ŷk ), update

O ← O ∪ {λk
o(h ± ŷk )} and go to Step 16 ;

15 end

16 solve MP (60) and ŷk+1 ← y , zLB ← min dT yk+1 + αk+1 ;

17 end

18 return y∗, x∗, f ∗ if converged.

4.2 NESTED BENDERS DECOMPOSITION AND DUAL DYNAMIC INTEGER PRO-

GRAMMING

Certain optimization problems have a particular structure, such as Figure 18(c),

which allows applying the BD in different nested schemes. This particular approach is

the Nested BD (NBD) and was first proposed to solve a multistage stochastic linear

problem in (BIRGE, 1985). Each pair of adjacent stages is considered a particular

SP. As an example, Figure 20 presents a case of the NBD applied to the problem

represented in Figure 18(c). The original problem is decomposed into an MP and an

SP, where the decisions variables of the MP are sent to the SP (represented by the

variable with an over hat symbol).
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s.t. Atyt = bt (62)b

Dtyt + Btxt = gt (62)c

Ftyt + Etzt = ht (62)d

zt = yt±1 (62)e

yt ∈ Z
n1 × R

n2 (62)f

xt ∈ Z
m1 × R

m2 (62)g

zt ∈ R
n, (62)h

with QT+1 = 0. The DDiP scheme can now be applied to the problem (62). The

proposed scheme approximates the cost-to-function Qt by a function ϕt modeled by

PWL equations obtained in each iteration. Thus, to obtain these equations, the cost-

to-go functions must be convex; therefore, an LP relaxation of stage SPs is imposed.

Using an iterative scheme based on the forward and backward passes, the DDiP aims

to improve ϕt iteratively. At iteration k , the forward pass solves a sequence of SPs

formulated by Equations (63)a-(63)i for each stage t , following the order t = 1,2, . . . ,T ,

as presented in Figure 21 (highlighted by the black arrow).

Φtk (xt ,yt ,ŷt±1,k ) = min dT
t yt + cT

t xt + ϕt+1 (63)a

s.t. Atyt = bt (63)b

Dtyt + Btxt = gt (63)c

Ftyt + Etzt = ht (63)d

zt = ŷt±1,k : (µtk ) (63)e

ϕt+1 ≥ Φt+1,l + (µt+1,l )
T (yt ± ŷtl ),

l = 0, . . . ,k ± 1 (63)f

yt ∈ Z
n1 × R

n2 (63)g

xt ∈ Z
m1 × R

m2 (63)h

zt ∈ R
n, (63)i

where ϕt+1 is a PWL approximation of Φt+1, µ is a dual variable (only valid for

the continuous relaxation of the problem) associated with constraint (63)e, ŷt±1,k is

the decision obtained for y in the previous stage t ± 1 at iteration k , and Equation

(63)f contains the collection of Benders cuts obtained from previous iterations, used

to approximate Φt+1. The forward pass yields an upper bound and a feasible solution

to the original problem. After finishing the forward, the backward pass is performed. In

the backward, a sequence of relaxed versions of the problem (63) for each t is solved,

aiming to update the cost-to-go function Φt , and obtain the dual variables µt . The order

in which the SPs are solved is the reverse of the forward pass, i.e., t = {T , . . . ,2,1},

as shown in Figure 21 (red arrows). The backward pass yields a lower bound to the

optimal value of the original problem.
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Algorithm 3: The standard DDiP scheme
Input: A MILP problem of type (61)

Output: Solution of MILP, y∗, x∗ and f ∗ = dT y∗ + cT x∗

1 Initial Setup: start with ΦT +1,0 = µT +1,0 = 0. Set the iteration counter k = 0,

a tolerance ε and an initial upper bound UB

2 for k = 0,1, . . . do

3 The Forward Pass: for t = 1, . . . ,T , solve the MILP problem (63),

obtaining yt , xt . Compute the current upper bound (ubk ), using:

ubk =
T∑

t=1

dT yt ,k + cT xt ,k (64)

4 if UB < ubk then

5 UB = ubk

6 end

7 The Backward Pass: for t = T , . . . ,1, solve a relaxation of problem (63),

obtaining Φt ,k , µt ,k . For each stage t , a Benders cut is constructed from

the dual variables µt ,k and inserted in the subsequent backward

problem referring to t ± 1 period in the form of Equation (63)f. At the t = 1

period, we evaluate the current lower bound (lbk ), using Equation (65):

lbk = Φ1k (65)

8 if gap = (UB ± lbk )/UB ≤ ε then

9 Stop (converged)

10 end

11 end

12 return y∗, x∗, f ∗ if converged.

A key advantage of DDiP is that it decomposes the original problem into more

easier SPs. A disadvantage is that DDiP does not have guaranteed finite convergence

(due to the presence of integer state variables). However, experimental results show

that the optimality gap can be relatively small, and the solution is mostly near-optimal.

Also, the BD requires that all decisions obtained in the MP must be valid in the SP;

otherwise, the SP will be infeasible. Thus, to avoid that, usually, feasibility cuts are

created. However, since the use of feasibility cuts can increase the computational effort

drastically, in this thesis, slack variables are added in constraints (63)b-(63)d with a high

penalty value in the objective function. Adding slack variables makes every solution in

the MP feasible, as the price to obtain a positive value for some of these variables.
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4.3 IMPROVEMENTS ON DDIP

Different approaches have been developed to improve the performance of BD

algorithms when applied to MILP problems. However, in the context of DDiP, only a

few works have been reported. Seminal works that explore BD algorithms with integer

state variables are (ZOU; AHMED; SUN, 2019a; LARA; SIIROLA; GROSSMAN, 2020;

SHAHIDEHPOUR et al., 2021). In (ZOU; AHMED; SUN, 2019b), different classes of

cuts, e.g., Benders, Lagrangian, strengthened Benders, and integer optimality cuts,

are explored. In (LARA et al., 2018), a comparison of the first three types of cuts in a

power system planning problem is explored. The authors show that, in general, although

Benders cuts are less tight than others, the convergence of the DDiP with Benders cuts

has superior performance due to the less computational effort required.

To improve the DDiP, we use an acceleration scheme to initialize the DDiP

with a warm-start cost-to-go function since this has been proven to work efficiently in

large-scale problems (LARA et al., 2018). In addition, a multi-period stage scheme is

proposed, with aggregation of multiple sequential single-periods in one SP. This strategy

allows for solving fewer SPs and obtaining high-quality cuts in each stage; however, the

computational effort to solve each SP increases. Finally, a particular overlap strategy

is performed to find better solutions in each stage of the forward step. Details of these

improvements are presented in the remainder of this section.

4.3.1 Pre-solve Strategy for DDIP

The proposed DDiP algorithm has interesting properties, particularly temporal

decomposition, suitable for STGS problems. However, since it is an NBD strategy, the

DDiP has the same issues as the BD, such as oscillating in the upper bound and poor-

quality cuts, especially in early iterations (RAHMANIANI et al., 2016). To improve the

DDiP, (LARA et al., 2018) proposed an acceleration strategy that aims to initiate the

algorithm with a warm-start, using an initial cost-to-go function obtained by solving an

auxiliary problem. This work will perform a similar acceleration technique denominated

pre-solve step, as presented below.

The first step is to solve an auxiliary problem related to the original MILP problem

(called full-space MILP, using the same notation as (LARA et al., 2018)) and use its

solution to generate cuts, as long as the cuts are valid before applying the DDiP scheme.

This auxiliary problem can be an aggregated version (LARA et al., 2018), a version of

the original MILP problem where sequential periods are aggregated into one equivalent

period, or a relaxed version of the full-space MILP. The aggregation level must be

chosen carefully to generate valid cuts in the first option. Likewise, a lower level of

aggregation can lead to a problem that can take almost the same time to solve as the

original problem. On the other hand, a high level of aggregation can lead to a problem
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4.4 COMPUTATIONAL EXPERIMENTS

This section presents computational experiments performed on the STGS prob-

lem using the DDiP scheme framework proposed in this thesis.

4.4.1 Data and Initial Setup

The STGS problem is performed in the modified IEEE-118 system. All experi-

ments are performed on a machine with a Ryzen 9 3900X 12-core processor, 16 GB

RAM, and Windows 10. The DDiP is implemented in Julia with the algebraic language

JuMP (DUNNING; HUCHETTE; LUBIN, 2017). Gurobi (GUROBI, 2022) is used to solve

the MILP problems. The DDiP is performed considering a planning horizon of 168 hours

(periods). For comparison, the STGS without any decomposition strategy is also solved

and compared the performance in terms of computational effort and solution with sev-

eral schemes of the DDiP approach. All SPs in DDiP have a limit runtime of 900s and

a 0.1% optimality gap. The DDiP presents a limit of 25 iterations and ε = 0.5%. For

illustrative purposes, Table 10 gives an overview of the size of the STGS problem when

represented as a single MILP.

Table 10 ± Number of variables and constraints in STGS problem

Variables Binary Variables Constraints

196,297 23,010 366,985
Source: Author.

In the results, the DDiP implementation is called s-DDiP. In turn, DDiP with the

pre-solve step is termed as a-DDIP, where the pre-solve strategy is performed by solving

the LP relaxation of the original problem. The original MILP without any decomposition

strategy is labeled f-MILP. Concerning the multi-period strategy, different values for

parameter K were tested (we consider only strategies with uniform sizes), aiming to

find the value that gives the best overall performance. Additionally, to implement the

overlapping strategy (o-DDiP), it is necessary to analyze the STGS problem to find

which constraints are more interesting to insert.

Some subsets of constraints are interesting to include in the overlap because

they contain key information about the problem. In experiments, the water balance

(25)n, network (25)p-(25)q, HPF (25)l, and TUC constraints (25)b-(25)u are included

in the overlapping strategy, while the FCF is not included. To support this assumption,

consider the water balance equation, which gives stored water value on the reservoirs

at the end of the planning horizon for a specific hydro h, and supposes that the s-DDiP

is used to solve the STGS problem. In the first stage (and in the subsequent others until

the final stage T ), the current decision on the volume of hydro h does not contain precise

information about the value of water stored. Therefore, any feasible decision is valid,
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usually forcing the reservoir to a low-level volume. Since this is not an optimal decision

due to water use in the next stages, it is important to include this information in some

way in the current stage. Thus, the water balance equation concerning the p subsequent

stages, denominated pWB, is included in the current stage in the overlapping strategy.

Similarly, the inclusion of network constraints of the subsequent SPs can in-

crease the quality of the solution in the current stage. For example, consider the case

without overlapping. Since the current problem does not have information about the

demand profile for the next stages, the solutions obtained in this stage could be to turn

off some thermal plant units that must be online in the next stages due to an increase

in demand. The inclusion of the network constraints is expected to minimize this issue.

Considering that the network constraints can increase the computational effort dramati-

cally, and taking into account that we are using the DC network model, we represent a

hydrothermal economic dispatch (ED) model of the p subsequent stages (denominated

pDC) for the overlapping constraints:

∑

∀g∈G

ptgt +
∑

∀h∈H

phht = Pbt . (66)

Considering the network constraints are included for pDC subsequent stages,

it is also interesting to insert the HPF and TUC constraints for the same subsequent

stages. First, consider pTUC (pHPF ) the p subsequent stages related to the TUC (HPF)

constraints. It is important to note that each subset of constraints does not need to

include the same subsequent stages, e.g., pWB ̸= pDC . However, for simplification,

in all simulations the overlapping constraints will be applied to the same subsequent

stages, i.e., pWB = pDC = pTUC = pHPF = P. Also, the HPF constraints included in the

overlap are inserted in the full version, i.e., without simplification or relaxation. The set

of TUC constraints is included in the overlapping strategy via linear relaxation of (25)y,

which means that we are removing the integrality constraint of each binary variable.

The choice of insert the full version of HPF constraints and the linearized version of

TUC is due to computational aspects observed in simulations.

4.4.2 Influence of the size of stages

A comparison of different values for the K parameter used in the DDiP applied

to the STGS problem is presented in this section. The values of K (number of periods

for stage) chosen are 1, 4, 8, 12, 14, 21, 24 and 168 (K = 168 is the original MILP

problem solved without decomposition, so-called f-MILP), and experiments for s-DDiP

and a-DDiP (with linear relaxation in the pre-solve step) are performed. The results for

the s-DDiP are presented in Figure 26 and summarized in Table 11.
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Table 12 ± Summary of results obtained for a-DDiP.

K
Optimality gap (%) Final result

2 minutes 10 minutes
CPU time

(sec.)
Optimality
gap (%)

Iterations

1 7.85 ± 256.45 6.18 25
4 1.41 ± 299.91 1.14 25
8 6.85 0.75 601.72 0.75 25
12 100 0.76 703.45 0.40 19
14 100 0.62 863.50 0.51 25
21 100 0.95 739.66 0.46 9
24 100 0.93 913.05 0.28 9

168 ± ± 4110.00 0.29 ±

The case K = 12 presents the best trade-off between the optimality gap and CPU

time. Also, except for K = 8, in the final result, all simulations presented improvements

in the CPU time or optimality gap compared with s-DDiP cases. Since case a-DDiP

executes a pre-solve step, it is expected to increase the computational time at the

beginning of the DDiP iterations. As seen for K = 12, the DDiP did not complete the first

iteration in two minutes. On the other hand, the improvements are significant compared

to Tables 11 and 12. The performance of the DDiP can be visualized in Figure 28, where

we observe that the DDiP can achieve solutions with a 1% optimality gap faster than the

problem solved without a decomposition strategy. Analyzing these experiments, case

K = 12 reaches good performances in general, being this case used for the rest of the

computational experiments of this chapter.
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Table 14 ± Summary of results obtained for a-DDiP with K = 1.

P
Optimality gap (%) Final result

2 minutes 10 minutes
CPU time

(sec.)
Optimality
gap (%)

Iterations

0 7.85 ± 256.45 6.18 25
1 11.91 ± 332.58 1.52 25
2 9.58 ± 483.60 6.97 25
3 11.27 ± 533.66 3.51 25
4 11.44 5.16 682.82 4.26 25
6 23.35 11.97 997.70 4.58 25

In Tables 13-tab:PaDDiPK1, the results are presented as follows. For case P = 4,

the optimality gap in minute 2 is 19.95%, and in minute 10 is 8.08%. For case 3, the

optimality gap of minute 10 is not presented since the DDiP converged in less than

10 minutes. As can be seen, the inclusion of overlapping constraints improves the

optimality gap at the price of increasing the computational effort, which is expected

since there is an increase in each SP involved in the DDiP. For the case s-DDiP, P =

2 achieved the lowest optimality gap, and for case a-DDiP, P = 1 returns the best

optimality gap, due to the limit of iterations. For the remaining experiments concerning

the overlap, the results are presented only in the computational effort once the tolerance

of the optimality gap is always achieved. The results for s-DDiP and a-DDiP considering

cases K = 12 and 24 are presented in figures 31-33 and summarized in Table 15.
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Finally, to consolidate the results presented, we performed other experiments

by changing the original inflows Y. Specifically, we created two other computational

instances, where the first is referred as Y+, and the inflows used are 1.6 × Y. The

second one is referred to as Y± = 0.4×Y. For these new cases, we performed the s-

DDiP and a-DDiP with K = {12, 24}, and P = {0,1,2}. The results obtained are presented

in tables 16-17.

Table 16 ± Summary of results obtained of DDiP for case with Y+.

Case K P
Optimality

gap (%)
Time (s) K P

Optimality
gap (%)

Time (s)

s-DDiP 12
0 0.55 819.02

24
0 0.47 1586.49

1 0.47 353.37 1 0.45 885.38
2 0.51 751.97 2 0.41 983.44

a-DDiP 12
0 0.53 616.63

24
0 0.49 464.70

1 0.47 332.72 1 0.43 378.14
2 0.38 518.71 2 0.45 375.11

f-MILP ±
1.07 1800
0.92 3600
0.36 5079

Table 17 ± Summary of results obtained of DDiP for case with Y±.

Case K P
Optimality

gap (%)
Time (s) K P

Optimality
gap (%)

CPU
time (s)

s-DDiP 12
0 0.52 698.45

24
0 0.40 1341.42

1 0.50 498.89 1 0.43 1012.26
2 0.49 765.99 2 0.36 1026.43

a-DDiP 12
0 0.38 694.72

24
0 0.31 485.39

1 0.49 341.71 1 0.38 299.16
2 0.46 417.88 2 0.44 424.82

f-MILP ±
0.92 1800
0.65 3600
0.26 5849

Although the DDiP did not reach the 0.5% tolerance in some cases, the CPU

time is significantly lower when compared with the f-MILP. Therefore, these results show

the potential of the strategies presented in this thesis when applied to STGS problems.

4.4.4 Assessment of primal solutions

This section compares the primal solutions obtained for the different experiments

involving the DDiP strategy for simulations with inflows equal to Y. Only the first 24

hours are used for this analysis since a rolling horizon strategy in the Brazilian STGS
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Table 18 ± Summation of all slack variables for simulations with different sizes of stages.

Case K SV

s-DDiP

1 1.50
4 0.91
8 1.07
12 0.92
14 0.90
21 1.96
24 1.83

a-DDiP

1 1.82
4 1.19
8 1.77
12 2.00
14 0.69
21 2.24
24 0.92

f-MILP - 0.78

Table 19 ± Summation of all slack variables for simulations with different overlap sizes.

Case K P SV Case K P SV Case K P SV

s-DDiP 1

0 1.50

s-DDiP 12

0 0.92

s-DDiP 24

0 1.83
1 0.78 1 0.83 1 0.82
2 0.82 2 0.82 2 0.43
3 1.58 3 1.39 3 0.40
4 0.38 4 0.22 4 0.22
6 0.36 6 0.25 6 0.21

a-DDiP 1

0 1.82

a-DDiP 12

0 2.00

a-DDiP 24

0 0.92
1 0.77 1 1.58 1 1.43
2 1.61 2 1.56 2 1.48
3 1.28 3 1.01 3 1.40
4 0.61 4 0.88 4 0.32
6 0.56 6 0.71 6 0.17

Although the values of the slack variables are not zero for all simulations (in-

cluding the original problem solved without a decomposition strategy), the values of

the slack variables are low enough and have a negligible impact on the solution quality.

Therefore, we conclude that DDiP is a promising strategy that can be used to solve

STGS problems.

4.5 FINAL CONSIDERATIONS

This chapter presented a stage decomposition strategy denominated Dual Dy-

namic Integer Programming (DDiP). Initially, the BD was presented, and the concepts

of MP and SP, feasibility, and optimality cuts were introduced. Then, the NBD was intro-

duced, aiming to propose the standard DDiP algorithm. In sequence, improvements on
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DDiP were proposed to accelerate the overall convergence of the method. In particular,

the pre-solve strategy was presented based in (LARA et al., 2018). Next is the multi-

period strategy, where stages with more than one period were introduced. In advance,

the overlapping strategy based on the overlap Schwarz decomposition is proposed to

DDiP.

The experiments were performed on a modified version of the IEEE-118 bus

system to validate the different types of DDiP strategies. The results show that the

DDiP can obtain solutions with an optimality gap of less than 0.5% way faster than

solving the STGS without decomposition, showing the potential of the DDiP, especially

on large-size problems.

The impact of period aggregation is significant and shows the potential approach

in other optimization problems with a similar mathematical structure. For the problem

under analysis, there is an optimal value of the aggregation parameter that leads to the

minimal computational effort. Regarding the overlap constraints, our results show that

this approach is promising and can be applied to several other problems employing the

BD strategy.

Also, the improvements presented in this thesis can be extended in several ways.

For example, a natural extension of this study is to evaluate different types of presolve

strategies, specifically how to use the decomposition scheme of the DDiP to generate

initial cuts. Another extension is to use this strategy with off-the-shelf solvers, including

free mixed-integer optimization solvers.

Considering the objective of this work is to solve the STGS problem, the next

chapter will introduce an overview of the structure of the STGS problem, and how to

deal with the planning horizon efficiently. In particular, we introduce a recent strategy

called diffusing-horizon (SHIN; ZAVALA, 2021) that has been proved to work efficiently

in a multi-period OCP problem .
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5 ASSESSING TEMPORAL AGGREGATIONS AND MODEL SIMPLIFICATIONS IN

THE STGS PROBLEM

In this chapter, we propose strategies to reduce the computational complexity

of the STGS problem by using model simplifications and temporal aggregations via a

so-called diffusing-horizon (DH) strategy. We consider the recent results of DH strategy

applied in model predictive control (MPC) problems, where the exponential decay of

sensitivity (EDS) property holds and, therefore, impacts of parametric perturbations at

future periods exponentially decay as one moves backward in time. Inherent challenges

of using DH strategy in the STGS concern the lack of dual variables since the concept

of sensibility analysis in MILP problems is not unique, and the condition to EDS holds in

MPC problems takes into account the dual variables of an LP and their properties. Thus,

this chapter will present some analysis of this DH strategy to find a strategic approach

that can be applied to the STGS problem.

5.1 AGGREGATION METHODS

The GS problem is tipically decomposed into several simpler problems with dif-

ferent planning horizons. Each decomposed problem (LTGS, MTGS and STGS) has

particular characteristics to reduce the computational effort in GS problems. For exam-

ple, the LTGS problem normally deals with the stochastic aspects (inflows, demand,

wind generation) and long-year planning horizon, with simplified formulations of phys-

ical components. In contrast, in the STGS problem, the physical components have a

very detailed formulation.

One common strategy to increase the computational tractability of GS prob-

lems is to use simplified formulations to model the physical components. In this case,

linearization-based formulations are a natural alternative, but in practice, this type of

simplification can be far away from the behavior of the system components. On the

other hand, some strategies deal with the temporal resolution of the GS problem. A

temporal decomposition occurs when the GS problem is decomposed in the LTGS,

MTGS and STGS problems. Also, since one of the main targets of the system operator

is to find the GS over the planning horizon, a common approach is to solve the STGS

problem to find the day-ahead decisions on a rolling horizon strategy, i.e., solving this

problem in a daily basis. Specifically for the Brazilian case, an overview of the planning

horizon and the GS problems can be viewed in Figure 37.

As mentioned in Chapter 1, an FCF is used in the STGS problem to keep the

operation coordinated. Even for the LTGS problem, if renewable energy generation

has a considerable impact, it is noteworthy to include information on an hourly level

to evaluate scenarios taking into account the variability of this source (PINA; SILVA,

C. A.; FERRÃO, 2013). For the STGS problem, the hourly or sub-hourly level is nor-
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one feature, the demand or net demand. Using the system states allows incorporating

more information such as non-dispatchable renewable energy. In the simulations, they

execute an STGS problem in a system composed of 13 thermal plants and wind gen-

eration, with a 168-hours planning horizon discretized in hourly steps. For comparison,

they use an aggregated demand assuming six load levels, providing an alternative that

better capture the electricity prices. The methodology to obtain the system states and

transition matrix is the major bottleneck of the approach. Despite using the k-means

clustering (LLOYD, 1982), it is unclear how to reproduce other large-scale systems with

different time scales.

In (LARA et al., 2018), an approach based on k -means clustering to select rep-

resentative days from historical data is performed. The authors deal with electric power

with high renewable penetration, where the horizon is composed of 30 years. Each

year is represented by up to 12 days to simplify the optimization problem. Even with

this reduction, the resulting optimization problem is a large-size MILP, and the DDiP

is applied to solve it. The k-means approach described in Algorithm 4 below aims to

find several clusters in which each observed data belongs to the nearest cluster. Since

the demand plays an important role in the GS problem, the k-means method can be

applied to identify a number k of clusters and their respective centroids based on load

levels in the first step. After that, an approximated load curve quantized by the load

levels obtained in the first step can be generated, and as a consequence, temporal

aggregation can be performed. In Figure 38, a load curve of 24 hours discretized in

hourly steps is approximated using the k -means algorithm with 3 clusters.

Algorithm 4: k -means clustering algorithm
Input: number of clusters k to assign and a collection of points (data)

Output: k clusters with known centroids

1 initialize k centroids chosen randomically

2 while the centroids position do not change do

3 assign each point of data to its closest centroid

4 evaluate the new centroid of each cluster, computing the mean of all

points belonging to the cluster and set the new centroid

5 end

In general, there is no rule in the procedure to choose the number of load levels

and the periods where the approximated load curve should be used. Another possibility

is combining multiple periods into one equivalent aggregated stage, as shown in Figure

17. As illustrated in Figure 38, each sequential period where the load level does not

change can be aggregated. As a result, four aggregated stages are obtained, recuding

the optimization problem dimension six times. Naturally, this approximation will lead to

different solutions once the optimization problem is changed; some consequences of
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were performed concerning the model simplifications:

• Case MS-1: HPF and TUC with linear relaxations, and network without simplifica-

tions.

• Case MS-2: HPF and TUC without simplifications, and network with economic

dispatch model.

• Case MS-3: HPF and TUC with linear relaxations, and network with economic

dispatch model.

The problem indicators for all simulations are shown in Table 21. For the rest of

this chapter, Ncv is the number of linear variables of the resulting optimization problem,

Nbv is the number of binary variables used in the model, Ncons is the number of con-

straints, Rt is the runtime to solve the problem, ∆Rt is the reduction in the computational

runtime compared with OR, Dac is the day-ahead scheduled cost, and ∆Dac is the

relative cost variation using OR' cost as reference. Note that there is a drastic reduction

in the computational complexity as the parameter T gets lower.

Table 21 ± Summary of problem statistics for simulations with model simplifications

Case T Ncv Nbv Ncons Rt (s) ∆Rt (%) Dac (106 $) ∆Dac (%)

MS-1
144 107,478 19,770 369,505 1806 35.27 3.0106 -0.29
120 110,718 16,530 369,505 1618 42.01 3.0241 0.15
96 113.958 13,290 369,505 1545 44.63 3.0201 0.02

MS-2
144 92,478 23,010 330,961 1617 42.05 2.8310 -6.23
120 80,718 23,010 292,417 1254 55.06 2.6839 -11.11
96 68,958 23,010 253,873 761 62.63 2.4982 -17.26

MS-3
144 95,718 19,770 330,961 1748 37.35 2.8260 -6.40
120 87,198 16,530 292,417 1052 62.30 2.6880 -10.97
96 78,678 13,290 253,873 627 77.53 2.5166 -16.65

OR - 104,238 23,010 369,505 2790 - 3.0194 0

Since the optimality gap is not zero, and the resulting STGS problem is a MILP

that normally contains multiple solutions, to assess the quality of the solutions obtained

for the day ahead, it is important to analyze some aspects. In this thesis, we evaluate

the cost of the day-ahead, the thermoelectric cost operation (Dac), and the total hydro

and thermal generation. Looking only for the Dac parameter, note that for case MS-1,

there are small differences between all simulations compared with OR. On the other

hand, cases MS-2 and MS-3, which involves the economic dispatch simplification, lead

to significant differences in terms of the day-ahead scheduled decisions.

A comparison of the thermoelectric generation for T = 144 is presented in Figure

44, and for the first 24 hours is presented in Figure 45. From these figures, note that at

the final of the planning horizon, there are significant differences between cases with

model simplifications and OR. On the other hand, for the first 24 hours, case MS-1 and
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The problem indicators for cases TA-1-LC and TA-1-ME are shown in Tables

22-23. Note that all simulations present a significant reduction in the computational

effort, and small differences between the day-ahead costs obtained are observed when

compared with case OR. Figures 48-49 present the day-ahead scheduled thermoelec-

tric generation for cases TA-1-ME and TA-1-LC with T = 96. Note that the power curves

obtained are approximately the same as the OR case.

Table 22 ± Summary of problem statistics for simulations with temporal aggregations
case TA-1-LC

k T Ncv Nbv Ncons Rt (s) ∆Rt (%) Dac (106 $) ∆Dac (%)

4
144 93,078 20,580 329,959 1194 57.21 3.0121 -0.24
120 80,058 17,745 283,822 617 77.89 3.0139 -0.18
96 68,898 15,315 244,276 507 81.83 3.0139 -0.18

6
144 96,798 21,390 343,141 1318 52.76 2.9878 -1.04
120 86,878 19,230 307,989 904 67.60 3.0289 0.31
96 76,338 16,935 270,640 590 79.86 3.0138 -0.18

8
144 98,038 21,660 347,535 1158 58.50 3.0176 -0.05
120 88,738 19,635 314,580 862 69.11 2.9782 -1.36
96 80,678 17,880 286,019 755 72.94 3.0119 -0.24

OR - 104,238 23,010 369,505 2790 - 3.0194 0

Table 23 ± Summary of problem statistics for simulations with temporal aggregations
case TA-1-ME

k T Ncv Nbv Ncons Rt (s) ∆Rt (%) Dac (106 $) ∆Dac (%)

4
144 93,078 20,580 329,959 1110 60.22 3.0345 0.50
120 80,058 17,745 283,822 759 72.80 3.0079 -0.38
96 68,898 15,315 244,276 633 77.32 2.8808 -4.59

6
144 96,798 21,390 343,141 1496 46.38 2.9369 -2.73
120 86,878 19,230 307,989 948 66.03 2.9357 -2.77
96 76,338 16,935 270,640 656 76.49 3.0192 -0.01

8
144 98,038 21,660 347,535 1502 46.17 3.0123 -0.23
120 88,738 19,635 314,580 918 67.10 3.0089 -0.34
96 80,678 17,880 286,019 787 71.80 3.0110 -0.27

OR - 104,238 23,010 369,505 2790 - 3.0194 0
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cases, and similar to cases with the k -means approach, the day-ahead costs obtained

have small differences compared with OR. For example, the day-ahead thermoelectric

generation for TA-2-ME and TA-2-LC with T = 120 is presented in Figures 50-51. In

particular, case TA-2-ME with p = 6 and T = 144 presented a greater computational

reduction, but this case can be assumed as an outlier.

Table 24 ± Summary of statistics problem for simulations with temporal aggregations
case TA-2-LC

p T Ncv Nbv Ncons Rt (s) ∆Rt (%) Dac (106 $) ∆Dac (%)

2
144 118,188 21,390 343,141 1966 29.54 3.0125 -0.22
120 89,358 19,770 316,777 1464 47.53 3.0262 0.22
96 81,918 18,150 290,413 1102 60.51 3.0285 0.30

4
144 93,078 20,580 329,959 1432 48.68 3.0264 0.23
120 81,918 18,150 290,413 814 70.83 3.0277 0.27
96 70,758 15,720 250,867 613 78.03 3.0151 -0.14

6
144 91,838 20,310 325,565 1140 59.14 2.9851 -1.13
120 79,438 17,610 281,625 878 68.54 3.0242 0.15
96 67,038 14,910 237,685 488 82.51 3.0252 0.19

OR - 104,238 23,010 369,505 2790 - 3.0194 0

Table 25 ± Summary of problem statistics for simulations with temporal aggregations
case TA-2-ME

p T Ncv Nbv Ncons Rt (s) ∆Rt (%) Dac (106 $) ∆Dac (%)

2
144 118,188 21,390 343,141 1959 29.79 3.0194 0
120 89,358 19,770 316,777 1332 52.26 3.0163 -0.10
96 81,918 18,150 290,413 1455 47.85 3.0215 0.06

4
144 93,078 20,580 329,959 1521 45.49 3.0180 -0.04
120 81,918 18,150 290,413 863 69.07 3.0083 -0.36
96 70,758 15,720 250,867 659 76.38 2.8921 -4.21

6
144 91,838 20,310 325,565 257 90.79 3.0126 -0.22
120 79,438 17,610 281,625 957 65.70 2.9225 -3.20
96 67,038 14,910 237,685 605 78.32 2.8861 -4.41

OR - 104,238 23,010 369,505 2790 - 3.0194 0





Chapter 5. Assessing Temporal Aggregations and Model Simplifications in the STGS Problem 115

compared with the OR case. Also, the day-ahead decisions presented small differences,

as in Figures 52-53 for simulations with T = 96, cases ME and LC, respectively.

Table 26 ± Summary of problem statistics for simulations with temporal aggregations
case TA-3-LC

m T Ncv Nbv Ncons Rt (s) ∆Rt (%) Dac (106 $) ∆Dac (%)

2
144 118,188 21,390 343,141 1449 48.07 3.0143 -0.16
120 89,358 19,770 316,777 1360 51.26 3.0172 -0.07
96 81,918 18,150 290,413 887 68.21 3.0195 0.01

4
144 93,078 20,580 329,959 1226 56.06 3.0276 0.27
120 81,918 18,150 290,413 820 70.61 3.0024 -0.56
96 70,758 15,720 250,867 482 82.73 3.0065 -0.42

6
144 91,838 20,310 325,565 1353 51.51 3.0310 0.38
120 79,438 17,610 281,625 726 73.98 3.0132 -0.20
96 67,038 14,910 237,685 514 81.58 3.0174 -0.01

OR - 104,238 23,010 369,505 2790 - 3.0194 0

Table 27 ± Summary of problem statistics for simulations with temporal aggregations
case TA-3-ME

m T Ncv Nbv Ncons Rt (s) ∆Rt (%) Dac (106 $) ∆Dac (%)

2
144 118,188 21,390 343,141 1554 44.31 3.0257 0.20
120 89,358 19,770 316,777 1474 47.17 3.0330 0.45
96 81,918 18,150 290,413 1175 57.89 3.0154 -0.13

4
144 93,078 20,580 329,959 231 91.73 2.9961 -0.77
120 81,918 18,150 290,413 961 65.56 2.9337 -2.83
96 70,758 15,720 250,867 536 80.79 3.0127 -0.22

6
144 91,838 20,310 325,565 1272 54.41 3.0103 -0.30
120 79,438 17,610 281,625 885 69.28 2.9992 -0.66
96 67,038 14,910 237,685 568 79.65 3.0132 -0.20

OR - 104,238 23,010 369,505 2790 - 3.0194 0
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choice of representation of ramp constraints. Concerning the parameter T , note that

for cases T = 96 and T = 120, the computational effort is reduced significantly in most

simulations without compromising the day-ahead decisions. About the Dac, case TA-3-

LC (diffusing-horizon with ramp represented by the less cost case) presented values

closer to the OR case.

5.3.3 Assessing impacts of model simplifications and temporal aggregations

The results from experiments when both strategies are performed simultane-

ously are presented in this subsection, assuming the results obtained for simulations

with model simplifications and temporal aggregations. In this case, concerning the

model simplifications, the linear relaxation in the integrality constraints presented better

results, being the model simplification chosen to be employed. In terms of temporal

aggregations, the three types are performed since all strategies have presented interest-

ing results. Once the ramp representation has no significant differences in simulations,

we choose to use case LC in the experiments of this section. For parameter T , we

decide to use T = {96,120}. The overview of the statistics for all experiments assumed

is presented in Tables 28-30.

Table 28 ± Summary of problem statistics for simulations with model simplifications,
temporal aggregations using the k -means approach

k T Ncv Nbv Ncons Rt (s) ∆Rt (%) Dac (106 $) ∆Dac (%)

4
120 81,273 16,530 283,822 760 72.76 3.0216 0.07
96 70,293 13,290 244,276 422 84.88 3.0201 0.02

6
120 89,578 16,530 307,989 927 66.78 3.0097 -0.32
96 79,983 13,290 270,640 547 80.40 3.0184 -0.03

8
120 91,843 16,530 314,580 853 69.43 3.0107 -0.28
96 85,268 13,290 286,019 598 80.57 3.0235 0.13

OR - 104,238 23,010 369,505 2790 - 3.0194 0

Table 29 ± Summary of problem statistics for simulations with model simplifications,
temporal aggregations using the equal-spacing approach

p T Ncv Nbv Ncons Rt (s) ∆Rt (%) Dac (106 $) ∆Dac (%)

2
120 92,598 16,530 316,777 1260 54.76 3.0252 0.19
96 86,778 13,290 290,413 897 67.85 3.0163 -0.10

4
120 83,538 16,530 290,413 891 68.07 3.0055 -0.46
96 73,188 13,290 250,867 658 76.42 3.0122 -0.23

6
120 80,518 16,530 281,625 615 77.96 3.0323 0.42
96 68,658 13,290 237,685 426 84.74 3.0085 -0.36

OR - 104,238 23,010 369,505 2790 - 3.0194 0
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Since the planning horizon is normally greater than one day, the STGS is a large-scale

MILP optimization problem that is usually hard to be solved. Therefore, strategies to

reduce the computational effort are commonly employed, including temporal aggrega-

tions.

Inspired by the recent exponential decay of sensitivity in LP problems, in this the-

sis we employed different temporal aggregations, including the diffusing-horizon strat-

egy and model simplifications to deal with the computational complexity of the STGS

problem. The results obtained from experiments performed on a modified version of the

IEEE-118 bus system show that when we employ model simplifications and temporal

aggregations after a certain period of the planning horizon, small perturbations in the

day-ahead scheduled decisions are observed. Still, the reduction in the computational

effort is significant, showing the potential use of these strategies in other large-scale

optimization problems or STGS problems with larger power systems instances. Also, an

analysis on how the dual variables are affected by this type of strategy is an interesting

topic that requires attention.
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6 CONCLUSIONS

The STGS problem determines which generating units will be active and how

much power they will produce for a day-ahead operation and over a one-week planning

horizon. The STGS solution is used for several systems operation purposes, especially

as a reference point for real-time operation and determining the day-ahead spot prices.

Despite being well-studied and utilized worldwide, the STGS still poses a considerable

challenge because it needs to be solved rapidly. Specifically, the STGS problem is a

large-scale, nonlinear, and nonconvex mixed-integer optimization problem. The STGS

is typically simplified and formulated as a MILP problem, but even this reformulation

can be intractable to modern, off-the-shelf optimization solvers. Such simplifications as

the linear formulation of power flow and linear approximations for the HPF can impact

the results obtained, possibly creating divergences in the values implemented in the

real-time operation, which is not desirable.

In this context, hydropower offers unique flexibility features, and an adequate

representation is crucial for overcoming operation challenges. For systems with hydro

predominance, models with great details for the HPF are attractive. However, simplifica-

tions of HPF modeling are necessary due to the computational burden. The plant-based

HPF piecewise linear approach is the most common simplification presented for real-life

cases. In this case, the GUs of a plant are aggregated and represented by a single

equivalent generator. Although this approach significantly reduces the size and com-

plexity of the STGS, several operating issues are not considered adequately, especially

the forbidden zones and the nonlinearities of the GUs. In this thesis, we present a new

approach that considers the nonlinearities and forbidden zones of the HPF via aggrega-

tion of the GUs and piecewise mixed-integer linear approximations in an innovative way,

where the PWL formulation makes it possible to control the approximation error. From

the results obtained from simulations performed in the IEEE-118 bus, we observe that

the PCH and PWL models are an interesting alternative to represent the HPF since

both models precisely handle the operation in forbidden zones, achieving an overall

average error of less than 6% for all simulations. The increase in computational time is

an issue that needs more investigation in large-size systems, although decomposition

techniques and parallel processing are natural options in this context. Also, depending

on the accuracy required, a particular HPF model can be chosen, enabling an STGS

problem where each hydro has a specific type of formulation presented in this thesis.

To handle the computational effort to solve the STGS problem, in this thesis, we

used a temporal decomposition strategy provided by DDiP. The classical DDiP is based

on nested Benders decomposition, and a pre-solve step is initially applied. A study of

the size of stages is presented, aiming to find the best trade-off between the compu-

tational effort involved in solving each SP and the convergence of DDiP. Next, a novel
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contribution constituted on overlap constraints is presented, and criteria for choosing

the type of constraints that will belong to the overlap for the STGS problem are dis-

cussed. The simulations are performed considering an STGS problem with a one-week

planning horizon and a modified version of the IEEE-118 bus system, and from the

results obtained, we show that the DDiP can obtain solutions with an optimality gap of

less than 0.5% way faster than solving the STGS without decomposition, showing the

potential of the DDiP, especially for large-size problems. When the overlap constraints

are introduced, despite the computational effort to solve each SP increases, the con-

vergence of the DDiP accelerates, indicating a new possibility that can be applied to

other types of temporal decomposition strategies.

This thesis' third contribution concerns assessing the computational effort in-

volved in solving an STGS problem. The STGS problem is normally solved every day

by the system operator in a rolling horizon scheme, where the target is to obtain the

day-ahead scheduled decisions. Temporal aggregations are usually employed to re-

duce the computational effort involved in solving the STGS problem. Inspired by the

recent results of the exponential decay of sensitivity in LP problems, in this thesis, we

employed different temporal aggregations, including the diffusing-horizon strategy, and

model simplifications to deal with the computational complexity of the STGS problem.

The simulations are performed considering a one-week planning horizon and a modi-

fied version of the IEEE-118 bus system to assess the day-ahead scheduled decisions

for the strategies presented in this thesis. The results show that small perturbations in

the day-ahead scheduled decisions are observed when we apply model simplifications

and temporal aggregations after a certain period of the planning horizon. Still, computa-

tional effort reduction is generally greater than 40%, showing the potential use of these

strategies in other large-scale optimization problems. Concerning model simplifications,

the linear relaxation of the integrality constraints presented the best results, and about

temporal aggregations, both k -means, equal-spacing, and diffusing-horizon strategies

presented satisfactory results.

Finally, future works can be listed as follows:

• In terms of HPF formulations, a natural extension is to insert the several formu-

lations presented in this thesis in a large-scale problem, where each formulation

for HPF is decided using the accuracy criteria. The inclusion of spillage in all

plant-based HPF models is a natural extension. The mixed-integer models can

be inserted using a PWL formulation for the spillage active region using at least

one binary variable. To increase the precision, bidimensional PWL models can be

used, but this case requires more investigation once the computational effort can

be increased drastically. A combination with bidimensional PWL formulations and

SOS-2 or logarithm formulations can provide a good trade-off for this case.
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• In terms of the DDiP applied to the STGS problem, natural extensions use parallel

processing strategies to create a scheme where the different temporal decompo-

sition is employed to provide valid cuts for specific SPs. Also, the convergence of

each SP is directly related to the optimality gap used, and another possibility is

to study the impacts of the optimality gap used. In the pre-solve strategy, despite

we explore only the linear relaxation, there are other possibilities to explore, such

as temporal decomposition. Suppose we employ temporal decomposition in the

pre-solve step. In that case, the cuts are still valid for the DDiP iterative scheme for

the corresponding SP, which enables a new possibility for a large-scale problem.

Suppose, in the pre-solve step, the resulting problem is a relaxed mixed-integer

version of the original problem. In that case, multiple solutions for different optimal-

ity gaps can be used to generate valid cuts. Also, the DDiP strategy employed in

this thesis is from classical BD. For schemes containing a low number of SPs, the

modern BD approach is an interesting strategy that can be employed. Finally, in

this thesis, we didn' t employ a cut selection strategy. Since the DDiP is a recent

topic in the scientific community, this is an open area to explore. As an example,

techniques of machine learning can be used to select which cuts will be inserted

at a specific iteration.

• In terms of temporal aggregations and model simplifications applied to the STGS

problem, a natural extension is to apply the same strategies in a large-scale sys-

tem and analyze the impacts on the day-ahead scheduled decisions. Considering

the STGS problem is a mixed-integer, where there is no definition of shadow

prices, one common approach is to fix the binary variables and consider these as

continuous, and solve the STGS in the linear version to obtain these prices. One

interesting and challenging approach is verifying how the temporal aggregations

impact the shadow prices considering the decisions obtained for the mixed-integer

version of the STGS problem. Also, other types of model simplifications, such as

the network flow model instead of the economic dispatch model for the network

constraints are a possibility.

• All the studies performed in this thesis can be combined. For example, a large-

scale STGS problem where advanced formulations for the HPF are employed in

the first days of the planning horizon, using model simplifications and temporal

aggregations, solved by the DDiP is a possibility to be explored.
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Table 31 ± Hourly load data

t P (MW) t P (MW) t P (MW) t P (MW) t P (MW)
1 4200 37 4770 73 4288 109 4288 145 3711
2 3987 38 4939 74 4049 110 4283 146 3562
3 3850 39 5069 75 3915 111 4276 147 3479
4 3783 40 5079 76 3851 112 4263 148 3433
5 3774 41 5011 77 3837 113 4172 149 3443
6 3770 42 4752 78 3840 114 4224 150 3502
7 3856 43 4844 79 3955 115 4589 151 3658
8 4213 44 4907 80 4295 116 4691 152 3989
9 4574 45 4860 81 4650 117 4539 153 4337

10 4746 46 4887 82 4855 118 4426 154 4510
11 4867 47 4768 83 5005 119 4266 155 4636
12 4857 48 4502 84 5014 120 4079 156 4657
13 4736 49 4199 85 4892 121 3882 157 4491
14 4912 50 3987 86 5085 122 3699 158 4581
15 5015 51 3846 87 5234 123 3574 159 4662
16 5008 52 3787 88 5225 124 3470 160 4666
17 4939 53 3778 89 5076 125 3421 161 4633
18 4677 54 3794 90 4794 126 3282 162 4473
19 4762 55 3920 91 4884 127 3160 163 4608
20 4832 56 4263 92 4911 128 3221 164 4672
21 4775 57 4264 93 4825 129 3322 165 4621
22 4834 58 4813 94 4842 130 3421 166 4626
23 4695 59 4969 95 4726 131 3501 167 4453
24 4412 60 4991 96 4530 132 3560 168 4150
25 4130 61 4866 97 4284 133 3551
26 3927 62 5060 98 4081 134 3540
27 3786 63 5208 99 3938 135 3543
28 3721 64 5205 100 3850 136 3559
29 3725 65 5130 101 3799 137 3619
30 3737 66 4839 102 3696 138 3780
31 3871 67 4918 103 3643 139 4213
32 4226 68 4969 104 3827 140 4301
33 4566 69 4897 105 4056 141 4252
34 4752 70 4938 106 4225 142 4204
35 4900 71 4806 107 4328 143 4093
36 4911 72 4585 108 4346 144 3909

Source: Author.

inflow data is referred to each day, i.e., for any instant of time of that day, the inflow is

the same.
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Table 32 ± Thermoelectric removed from IEEE 118-bus system

g bus g bus
5 12 17 40
7 18 18 42

10 25 21 54
11 26 23 56
14 32 25 61
15 34 28 66
16 36 53 113

Source: Author.

Table 33 ± Hydroelectric data

h name bus
php

(MW)
q

(m3/s)
q

(m3/s)
S

(m3/s)
|J | SINF type

1 Promissão 12 265 431 297.4 8620 3 yes LRV
2 Barra Bonita 18 140 189 118.2 3780 4 yes LRV
3 N. Avanhandava 25 375 477 331.8 8620 3 yes ROR
4 Jupiá 26 605 596 298 50128 5 yes ROR
5 Bariri 32 144 257 182.2 4136 3 yes ROR
6 Monjolinho 34 74 71 50.9 6755 2 yes ROR
7 Quebra Queixo 36 120 38 27.2 5000 3 yes LRV
8 São José 40 56 144 102.3 11700 2 yes ROR
9 Passo São João 42 78 163 115 11570 2 yes ROR

10 Passo Fundo 54 226 51 36.4 2250 2 no LRV
11 Pedra do Cavalo 56 160 90 63.6 12000 2 yes LRV
12 Balbina 59 250 255 168 5800 5 yes LRV
13 Garibaldi 61 186 167 118.7 17360 3 yes LRV
14 Foz do Chapecó 66 855 489 348.3 62190 4 no ROR
15 Ibitinga 113 133 234 165.5 4680 3 yes ROR

Source: Author.
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Table 34 ± Coefficients of hydroelectric forebay level polynomials

h F0 F1 F2 F3 F4
1 369.6938 -5.249989E-4 1.08299E-6 -1.6016E-10 7.927737E-15
2 432.7839 0.0149645 -6.70742E-6 1.75977E-9 -1.69823E-13
3 358 0 0 0 0
4 280 0 0 0 0
5 427.5 0 0 0 0
6 174.9 3.587054 -0.03450381 1.553922E-4 -2.620451E-7
7 503.9448 0.541329 -0.00196869 3.08552E-6 0
8 154.67 0 0 0 0
9 118.5711 0.1861556 -0.001278737 3.841826E-6 0

10 580.3909 0.0221501 -1.41343E-5 6.344678E-9 -1.15472E-12
11 65.90313 0.03003821 -7.557153E-6 1.168574E-9 -7.571734E-14
12 36.95247 0.001339282 -5.455607E-8 1.446067E-12 -1.554142E-17
13 693.2867 0.03963221 0 0 0
14 244.7873 0.01345915 -1.927264E-10 8.457124E-14 -1.387779E-17
15 404 0 0 0 0

Source: Author.

Table 35 ± Coefficients of hydroelectric tailrace level polynomials

h G0 G1 G2 G3 G4
1 358.0039 -2.40967E-4 5.598189E-7 -1.2308E-10 8.030587E-15
2 427.5408 -8.052159E-4 3.08062E-6 -1.3497E-9 1.90171E-13
3 323.085 0.004314847 -2.13336E-6 5.67896E-10 -5.37797E-14
4 253.441 5.786598E-4 1.44023E-8 -1.41555E-12 2.609049E-17
5 403.9468 4.802749E-4 1.55539E-6 -8.13472E-10 1.21667E-13
6 264.9243 0.002269349 3.017191E-7 -1.656882E-10 1.758906E-14
7 426.0178 0.008268859 -2.409649E-5 3.49374E-8 -1.806209E-11
8 130.6639 0.002290688 -2.354779E-7 1.855546E-11 -5.689697E-16
9 97.55073 0.006214246 -5.315673E-6 3.541552E-9 -9.312565E-13

10 335.0999 0.008166667 -5.666669E-6 0 0
11 4.14481 0.005542674 -5.100707E-6 2.870954E-9 -6.078898E-13
12 22.57763 0.007527882 -4.957306E-6 2.01131E-9 -3.0082E-13
13 659.9229 0.001509382 1.604493E-8 -7.742374E-11 1.447932E-14
14 210.7079 0.001545053 -1.58656E-7 1.221691E-11 -3.688747E-16
15 379.348 0.00225722 1.96279E-7 -3.23657E-10 5.8838E-14

Source: Author.
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Table 36 ± Coefficients of GU yield polynomials referring to hydro h

h I0 I1 I2 I3 I4 I5
1 0.358727 0.002413 0.013761 3.18E-5 -5.2E-6 -4.5E-4
2 0.358727 0.005503 0.014696 7.74E-5 -2.7E-5 -5.2E-4
3 0.358727 0.00218 0.010207 2.13E-5 -4.2E-6 -2.5E-4
4 0.358727 0.001745 0.013378 2.23E-5 -2.7E-6 -4.3E-4
5 0.358727 0.004047 0.015045 5.83E-5 -1.5E-5 -5.4E-4
6 0.358727 0.014649 0.005679 7.96E-5 -1.9E-4 -7.7E-5
7 0.358727 0.027371 0.002956 7.75E-5 -6.6E-4 -2.1E-5
8 0.358727 0.007223 0.014999 1.04E-4 -4.6E-5 -5.4E-4
9 0.358727 0.006381 0.011531 7.04E-5 -3.6E-5 -3.2E-4

10 0.358727 0.020394 0.001375 2.68E-5 -3.7E-4 -4.5E-6
11 0.358727 0.011557 0.003249 3.59E-5 -1.2E-4 -2.5E-5
12 0.358727 0.004079 0.01253 4.89E-5 -1.5E-5 -3.8E-4
13 0.358727 0.006228 0.007963 4.75E-5 -3.4E-5 -1.5E-4
14 0.358727 0.002127 0.006681 1.36E-5 -4.0E-6 -1.1E-4
15 0.358727 0.014427 0.014427 6.14E-5 -1.8E-5 -5.0E-4

Source: Author.

Table 37 ± Coefficients of GU penstock losses referring to hydro h

h D

1 2.636290E-6
2 5.571512E-6
3 2.16346E-6
4 8.334928E-7
5 3.0114E-6
6 3.420351E-6
7 2.873912E-3
8 2.797067E-5
9 1.204411E-5

10 2.801422E-3
11 2.716049E-4
12 5.843906E-6
13 3.478073E-5
14 7.106464E-6
15 5.420410E-6

Source: Author.
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Table 38 ± Reservoir data

h
h in

downstream
τ

(hours)
V

(hm3)
V

(hm3)
1 3 1 7408 5280
2 5 2 3135 569
3 4 3 2738.5 2340.5
4 - - 3353.75 2450
5 15 1 544.2 485.29
6 14 1 150.553 139.573
7 - - 136.63 111.12
8 9 0 188.1 165.53
9 - - 102.4 77.5

10 6 1 1588.61 184
11 - - 3134 2187
12 - - 20006.22 9711.9
13 14 1 296 232
14 - - 1501.8 1427.5
15 1 1 983.16 926.91

Source: Author.

Table 39 ± Initial conditions of hydro plants

h V0 (%) Q0 S0
1 36.91 0 0
2 58.81 0 0
3 94.74 0 0
4 87.35 0 0
5 59.97 0 0
6 100 0 0
7 99.57 0 0
8 78 0 0
9 87.88 0 0
10 65.15 0 0
11 90.27 0 0
12 43.01 0 0
13 49.83 0 0
14 74.73 0 0
15 47.50 0 0

Source: Author.
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Table 40 ± Inflow data (m3/s)

h day 1 day 2 day 3 day 4 day 5 day 6 day 7
1 586.96 525.24 464.06 341.52 222 343.87 369.99
2 553.50 373.56 307.08 308.06 311.46 280.86 277
3 344.89 181.85 158.7 162.7 186.85 163.7 246
4 4173.38 4128.5 5497.08 4344.15 4035.38 4302.19 4845
5 392.95 247.42 244.52 256.32 245.62 281.81 334.48
6 32 88.04 90.13 92.64 37.92 102.51 99.6
7 139.53 150.07 140.65 134.69 112.98 110.6 108.75
8 347.52 280.58 229.55 208.9 208.19 227.1 329.71
9 346.09 349.91 258.44 279.53 257.81 255.81 282.99
10 36.34 27.66 29.89 32.77 31.07 47.93 59.04
11 28.98 28.84 24.87 20.14 19.64 17.81 15.4
12 1434.28 1917.5 1683.59 1405.55 1359.91 1209.63 1455.81
13 220.45 212.61 183.6 145.06 142.55 198.97 248.07
14 650.78 1038.69 832.13 545.3 360.52 915.17 1064.74
15 469 429.46 357.15 321.58 227.97 353.85 349.69

Source: Author.

Table 41 ± Coefficients of FCF

h M0 M0

1 671.581944 671.581944
2 515.5 515.5
3 909.284722 909.284722
4 171.833333 100.236111
5 658.694444 658.694444
6 1789.930555 1789.930555
7 1606.820659 1264.943923
8 329.7768055 329.776805
9 431.874444 431.874444

10 7370.934027 7370.934027
11 3044.671875 3044.671875
12 11.713305 11.713305
13 1240.063888 1240.063888
14 1457.719444 1457.719444
15 668.360069 668.360069
M1 2.102811E8 2.100363E8

Source: Author.
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APPENDIX B ± MILP FORMULATION FOR THE PRODUCT BETWEEN A

CONTINUOUS AND A BINARY VARIABLE

This appendix presents a MILP formulation for a product between a continuous

variable x and a binary variable u. If x is bounded below by zero and above by x , then

the product y = x · u can be reformulated as:

y ≤ x · u (69)

y ≤ x (70)

y ≥ x ± (1 ± u)x (71)

y ≥ 0 (72)

If x is limited by [x , x ], and assuming x to be positive, the product y = x · u can

be reformulated as:

min{0, x} ≤ y ≤ x (73)

xu ≤ y ≤ xu (74)

x ± (1 ± u)x ≤ y ≤ x ± (1 ± u)x (75)

y ≤ x + (1 ± u)x (76)
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