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ABSTRACT

Este trabalho é dedicado ao problema de Pesquisa de Arquitetura Neural (NAS) no
contexto de redes neurais profundas. Em termos gerais, tal problema envolve algo-
ritmos com longos períodos de execução que buscam a melhor arquitetura de rede
neural possível para resolver um problema prático específico. Algumas abordagens
sem treinamento foram propostas recentemente com o objetivo de resolver o problema
do NAS em menores períodos de tempo de execução. Essas abordagens são basea-
das em métricas que ajudam a prever o desempenho de arquiteturas de redes neurais
sem treiná-las. Neste trabalho de dissertação, é apresentada uma nova métrica de
desempenho para NAS sem treinamento. A métrica proposta é derivada da chamada
métrica NAS without Training (NAS-WOT), visando simplicidade e maior velocidade de
busca na rede. Outra contribuição deste trabalho é um esquema de penalização envol-
vendo a métrica proposta, que auxilia na busca por redes efetivas que também sejam
pequenas em termos de complexidade computacional necessária para implementação
de inferências. Resultados experimentais mostram a eficácia da métrica proposta e de
sua versão penalizada.

Palavras-chave: Aprendizagem de Máquina. Pesquisa de Arquitetura Neural. Sem
Treinamento.



RESUMO ESTENDIDO

INTRODUÇÃO

O uso de redes neurais profundas vem crescendo em muitos campos de pesquisas e
para inúmeras aplicações. Com este crescimento o design de redes neurais se tornou
um grande desafio para criar-se uma arquitetura neural que apresente melhorias em
desempenho, acurácia, complexidade, etc. O design manual de redes neurais apre-
senta limitações claras, provenientes de metodologias envolvendo tentativa e erro ao
testar e validar as redes propostas. Graças a essas limitações, um novo campo de
pesquisa surgiu, sendo ele a automação de propostas de arquiteturas assim como sua
validação e testes, campo este posteriormente chamado de Pesquisa de Arquitetura
Neural, do inglês Neural Architecture Search (NAS). A Pesquisa de Arquitetura Neural
é definida como a composição de três componentes: o espaço de busca, responsável
pela definição do conjunto de operações e conexões da rede; a estratégia ou algoritmo
de busca, responsável em definir como explorar o espaço pré-definido e como amos-
trar as arquiteturas candidatas dentre uma população; a estratégia de estimativa de
desempenho, consistindo em como estimar, medir e predizer o desempenho de uma
arquitetura sendo avaliada.

Este trabalho aborda o terceiro componente de um sistema de pesquisa de arquitetura
neural, a estratégia de estimativa de desempenho, sendo no que lhe concerne o pro-
cesso mais prolongado de um sistema de busca, pois a forma clássica de medida é
treinar a rede proposta do zero, levando a horas de execução apenas para avaliar uma
única rede dentre um grande conjunto.

OBJETIVOS

O objetivo deste trabalho é desenvolver uma métrica sem treinamento para auxiliar
a etapa de estimativa de desempenho de um sistema de pesquisa de arquitetura
neural, com foco na redução do tempo de busca para as já rápidas abordagens sem
treinamento.

METODOLOGIA

Inicialmente é apresentada uma revisão sobre Neural Architecture Search, que inclui
sua definição, princípios, desafios e possibilidades. Para cada módulo de NAS é apre-
sentada sucintamente diferentes abordagens e metodologias. A revisão é finalizada
com as abordagens sem treinamento para um dos estágios que compõem um sistema
NAS.

Posteriormente, são apresentadas as contribuições deste trabalho. Inicialmente é apre-
sentada a examinação de uma métrica existente na literatura, descrevendo-a por com-
pleto, desde a sua formulação em forma matricial, sua definição se é ou não uma
matriz positiva semi-definida, o papel de seus autovalores e por fim seus aspectos
práticos.



Em seguida é apresentada a métrica proposta neste trabalho, com o intuito de reduzir
a complexidade computacional e reduzir o tempo de cálculo em contraste a métrica já
existente na literatura. É demonstrada a forma com o qual calcula-se a métrica proposta
e discute-se o motivo pelo qual a mesma pode comportar-se como um preditor de
complexidade computacional.

RESULTADOS E DISCUSSÕES

O método proposto é avaliado em quatro experimentos diferentes, dois destes com-
parando o modelo proposto com outra metodologia sem treinamento. O primeiro ex-
perimento trata-se de amostrar 1000 arquiteturas de redes dentre um dos possíveis
benchmarks e conjuntos de dados selecionados, cada uma destas arquiteturas é avali-
ada pela métrica proposta e pela métrica encontrada na literatura. Posteriormente as
métricas são avaliadas utilizando o coeficiente de correlação de Kendall em relação à
acurácia final de cada arquitetura.

O segundo experimento tem como intenção avaliar o tempo de execução para três
cenários, 10, 100 ou 1000 redes aleatoriamente amostradas, gerando como resultado
uma tabela com os tempos de execução, a melhor acurácia encontrada utilizando a
métrica proposta e a disponível na literatura.

Os dois últimos experimentos são a reprodução dos dois primeiros, porém utilizando o
tamanho em kilobytes da rede como fator de penalização. Considerando isto, algumas
funções foram definidas para aplicar esta penalização. A métrica proposta demonstra
grande correlação com o tamanho da rede, o que torna-a melhor para avaliar a com-
plexidade computacional de uma arquitetura neural. O quarto experimento demonstra
quanto tempo a mais seria necessário para aplicar a penalização e o resultado, sendo
possível encontrar redes com poucos kilobytes, porém com acurácias elevadas.

CONCLUSÕES

Esta dissertação propõe uma nova métrica livre de treinamento para a etapa de es-
timativa de desempenho de um sistema NAS, que pontua a rede não treinada na
inicialização, com uma correlação positiva em relação a sua acurácia final após treina-
mento, além de possuir uma correlação positiva com o tamanho da rede também. Os
resultados demonstram que o método proposto está alinhado com o objetivo principal
do trabalho, que é de filtrar arquiteturas com baixo desempenho.

Keywords: Machine Learning. Neural Architecture Search. Training-less.



ABSTRACT

This work is dedicated to the problem of network architecture search (NAS) in the
context of deep neural networks. In general terms, such a problem involves algorithms
with long running times that look for the best possible neural network architecture for
solving a specific practical problem. Some trainingless (or training-free) approaches
have been proposed recently aiming to tackle the NAS problem in shorter times. These
approaches are based in performance metrics that help predicting the performance of
neural network architectures without training them. In this dissertation work, a novel
performance metric for trainingless NAS is presented. The proposed metric is derived
from the so-called NAS without training (NAS-WOT) metric, aiming at simplicity and
further network-search speed ups. Another contribution of this work is a penalization
scheme involving the proposed metric, which helps searching for effective networks
that are also small in terms of computational complexity required for inference imple-
mentation. Experimental results show the effectiveness of the proposed metric and of
its penalized version.

Keywords: Machine Learning. Neural Architecture Search. Training-less Neural Archi-
tecture Search.
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1 INTRODUCTION

The use of deep neural networks has been growing in many fields and appli-
cations, both for industry and academic purposes. The design of high-performance
effective neural networks is a challenging task, particularly due to the vast and complex
range of possibilities involving the different parts of a neural network. Manually-designed
neural networks often present limitations, which is due to the trial-an-error methodology
normally adopted in their design. Such a methodology together with the need to provide
solutions in a fixed time span, tend to result in networks that meet minimal requirements,
but that do not go further on an extensive search for a better solution. Motivated by
such a problem, a great research effort has been dedicated to develop systems that can
automatically search and design neural networks architectures. This effort has given
rise to the so-called neural architecture search (NAS) methods.

As a sub-field of automated machine learning (AutoML) [1], NAS aims at automat-
ing the architecture design of a neural network. To meet this aim, different techniques
has been used, such as reinforcement learning [2] and evolutionary algorithms [3]. Re-
gardless of the core technique used, the majority of works in the field describes NAS as
a composition of three major components: the search space, the search strategy, and
the performance estimation strategy [4]. The search space defines a set of operations
(e.g., convolution, full connection, pooling, among others) and how these operations
can be connected to form a valid network architecture. In other words, the search space
defines which architectures can be represented. The search strategy (or algorithm) is
the name given to the module that defines how to explore the search space or how to ef-
fectively sample a population of network architecture candidates. This module receives
the child model performance metrics, involving an exploration-exploitation trade-off, and
optimizes to generate high-performance candidates. The last part of NAS, and the focus
of this work, is the performance estimation strategy. This part consists of estimating,
measuring, and/or predicting the performance of a candidate architecture provided by
the search strategy.

NAS systems are broadly based on the works in [2] and [5], which achieved state-
of-the-art architectures for image recognition and language modeling, respectively. In
these works, a controller is used to generate architecture proposals derived from the
basic set of operations in a pre-defined search space. The networks are then trained to
provide a “reward” for updating the controller, which can then propose a new supposedly
better architecture and repeat the process. One of the main problems with such an
approach is that training a candidate architecture for every controller update results in
a high computational cost. For instance, 800 GPUs (Graphics Processing Units) were
used for 28 days to achieve the results in [2]. This large amounts of time spent running
a standard NAS system motivated the improvements introduced in subsequent works
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([6], [7]) but, despite such improvements, standard NAS still tends to be slow for many
real-world applications. This motivated the development of trainingless (or training-free)
NAS methods [8] [9] [10], in which the performance of a candidate is estimated using
some particular performance metric, avoiding the cost of training the candidate network.

1.1 OBJECTIVE

The present work has the main objective of developing an efficient training-free
metric for performance estimation in NAS systems. The focus is on reducing the search
time for the already fast trainingless NAS approaches.

1.2 DOCUMENT STRUCTURE

The remainder of this document is structured as described in the following. Chap-
ter 2 gives an overview on neural architecture search (NAS), describing the evolution
and the different components of a NAS system in detail. Chapter 3 describes the contri-
butions of this work, namely a detailed analysis of the well-known NAS without training
(NAS-WOT) metric, the proposed metric, and a discussion regarding a modification of
the proposed metric aiming to facilitate the search for effective networks with low com-
putational complexity. In Chapter 4, experimental results are described aiming to assess
the effectiveness of the proposed metric as well as of its aforementioned modification.
Finally, in Chapter 5, the conclusions of this work are presented.
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2 BACKGROUND ON NEURAL ARCHITECTURE SEARCH

The work by Zoph and Le [2] was plausibly the kickoff proposal that made NAS
methods more broadly known. There, the authors use an approach based on recurrent
neural networks (RNN) to generate sample network architectures, train such architec-
tures, and record the obtained accuracy. A gradient-based method is then used for
updating the controller aiming to improve its search for the best architecture. Such a
NAS solution exemplifies the rationale behind the earlier NAS solutions [2], [3], [5],
which basically work in a loop process comprising the following steps:

1. The controller generates an architecture;

2. The generated architecture is trained and evaluated;

3. The obtained result is used as a reward to the controller to update its param-
eters accordingly;

4. Previous steps are repeated N times.
In this context, the controller is basically implementing a search strategy that tries to
effectively sample an architecture A from a search space of multiple possible architec-
tures A according to some performance metric. In the following sections, these three
important aspects of NAS are discussed, namely the search space, search strategy
and performance metric. This process is illustrated in Fig. 1.

Figure 1 – General neural architecture search flow.

(a) General Neural Architecture Search prototype in the form of a loop.

(b) Abstract illustration with the three main components of Neural Architecture Search method. A search
strategy selects an architecture A from a predefined search space A. An evaluation of the architecture
is executed by the performance estimation strategy, which return the estimated performance of A to
the search strategy.

Source: Adapted from [2].
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2.1 SEARCH SPACE

The search space is basically defined by the parameters that characterize a
network architecture, such as the number of layers, the type of each layer, how they are
connected, among others [2], [3], [5]. This section explores some of the methodologies
used to define search spaces in the context of NAS.

2.1.1 Global Search Spaces

A relatively simple way to design a search space for neural network architectures
is by considering architectures with sequential layer-wise operations. The resulting
chain-structured neural networks consists of a sequence of N layers, with the i–th layer
Li receiving its input from layer Li–1. The network architecture is then parameterized
by the number of layers N; the type of each layer (e.g., convolutional, pooling, fully
connected, among others); and hyperparameters associated with each layer. In Fig.
2(a), an example of a direct chain structure such as the one described is shown. On the
other hand, Fig. 2(b) illustrates a more complex chain structure having layers operating
in parallel as well as skip connections between the layers.

The global search space is defined as the space of chain-structured network
architectures obtained considering all variations of the parameters described above.
Such a search space, which is part of the early NAS proposals [5] [2], has a lot of
potential regarding representation capability. However, this capability comes at the cost
of a requirement of huge computational resources to cover all possibilities. To illustrate
this point, In Zoph’s and Le’s experiments [2], 800 graphics processing units (GPUs)
running in parallel for 28 days were necessary to cover all the search space considered.

2.1.2 Cell-based Search Spaces

In [6], Zoph at al. introduced a new type of search space called NASNet (Neu-
ral Architecture Search Network), which was inspired by successful architectures like
ResNets (Residual Neural Networks). This new search space makes use of repeated
modules (or cells) containing a group of operations, which implies changing the gran-
ularity of the search space. The cells in the NASNet search space can be classified
as: normal cell, which preserves the dimensionality of the input, and reduction cell, in
which the output feature map has a reduced dimension. The final network architecture
is obtained by stacking normal and reduction cells in a predefined way, resulting in a
combination that is illustrated in Fig. 3.

The cell-based search space has three major advantages compared by the pre-
vious works with sequential layer-wise operations. The first one is that the size of the
search space is reduced drastically. In [6], the authors computed a 7x speed-up com-
pared to their previous work [2], while achieving better performance and becoming the
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Figure 2 – Chain-structured neural network without and with skip connections.

(a) Simplest example of a chain-structured neu-
ral networks.

(b) Complex multi-branch networks.

Source: Adapted from [4].

Figure 3 – Complex chain-structured neural network with skip connections.

Source: Adapted from [4].

state-of-the-art for image recognition by the time. The second advantage is transferabil-
ity of architectures built around cells, making the architecture more easily adaptable
between different datasets. In [6], cells optimized to CIFAR-10 were transferred to the
ImageNet case, achieving state-of-the-art performance. The third advantage is that
creating architectures by repeating building blocks is a strong proof of a useful design
pattern. However, even with all the aforementioned advantages, the algorithm required
a total of 4 days running 500 GPUs in parallel, which corresponds to 2000 GPU days,
to cover all the search space considered in [6].
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2.1.3 Hierarchical Search Space

The hierarchical search space, introduced in [11], involves different levels of ab-
straction that allows overcoming some disadvantages of cell-based approaches. This
representation has a balanced efficiency for an expressive search space, being the
strongest advantage of eliminating the need to implement Bayesian, Evolutionary, Re-
inforcement Learning, and others complex search algorithms. The Hierarchical Neural
Architecture Search (HNAS) approach, which uses such a search space, is the basis
for the NAS strategy [6], which aims at finding architectures that can fit to a resource
constrained environment, in this case the MCUs (Microcontroller Units).

2.2 SEARCH STRATEGIES

In Section 2.1, some methodologies used to define search spaces were de-
scribed, showing how these spaces are designed but not how they are explored. The
search strategy (or algorithm), which is another key component in NAS systems, is
responsible to determine how to explore a search space, helping to identify the best
performing architectures while avoiding the bad ones. The present section discusses
some of the search strategies used for NAS.

2.2.1 Grid and Random Search

The grid and random search strategies are likely the simplest types of search
strategies. The grid search is the name given when the search space is screened
by sampling one candidate after other in a sequential way. The random search, in its
turn, involves picking candidates randomly at each iteration (without replacement). Both
strategies are viable for small search spaces, with the random search proving to be
quite useful in the domain of hyperparameter search [12] (outperforming grid search
when the number of parameters are not small). The disadvantage of grid and random
searches is that both fail (i.e., become very slow) as the search space is increased.

2.2.2 Search Based on Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine learning (ML) where, in-
stead of mapping inputs to a target, the algorithm attempt to map inputs to optimal
actions. An agent interacts with its environment by selecting actions, in an effort to
maximize its reward. The agent may be rewarded after each action, or only at specific
points. By repeatedly interacting with the environment and observing its rewards, the
agent improves its ability to select highly rewarding actions or series of actions [13].

The initial NAS design proposed by Zoph and Le [2] make use of an RL-based
controller to guide the search process. Basically, the controller is implemented as a
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RNN that sequentially generates architectures. Controller training is carried out using
the REINFORCE algorithm [13]. The follow-up work from Zoph et al. [6] also uses
and RL-based controller, but now using proximal policy optimization [14] to train the
controller. In both works, the controller’s action space is dictated by the search space.
In that way the controller task have his action space as a list of tokens for defining a
child network predicted by the controller. The reward is the accuracy achieved after a
child network training process.

2.2.3 Search Based on Evolutionary Algorithms

Generally speaking, evolutionary algorithms utilize a population of individuals
(mimicking real organisms, with the definition of genes and genomes) to create new
individuals (an offspring) of increasingly better performance [15]. Each gene contains a
piece of information about the problem being optimized. Genes can mutate to change
their information and individuals can reproduce by crossover. In the context of the
application of evolutionary algorithsm to NAS, individuals are network architectures
and the mutations are carried out changing local operations (e.g, adding and removing
layers, changing hyperparameters, skipping connections, among others). After training
the offspring, their performance are evaluated, and they are added to the population.
This procedure is illustrated in Fig. 4.

Evolutionary methods applied to neural networks differs in how they sample
parents, update populations, and generate offspring. For example, some approaches
[3], [11] use tournament selection [16] to sample parents. This method picks the best
candidate out of a random set of samples, at each iteration, and places its mutated
offspring into the population. When the tournament size is equal to one, tournament
selection is the equivalent to a random selection. Another selection method, called aging
evolution (AE), is used by the AmoebaNet algorithm [11]. In this method, tournament
selection is modified aiming to prioritize younger genotypes and, thus, older individuals
are discarded at each cycle. This allows AmoebaNet to cover and explore a larger part
of the search space, avoiding to narrow down on good performance individuals too
early in the process.

2.2.4 Bayesian Optimization

Bayesian optimization (BO) [18] is the leading technique for standard hyperpa-
rameter optimization processes. In such processes, an extensive search is carried out
aiming to find hyperparameters that lead to the best validation accuracy. Thus, one can
notice that there is a significant similarity between hyperparameter optimization and
NAS.

One of the first apporches that use BO in the context of NAS can be found
in [19]. There, the authors derived kernel functions for NAS using classic gaussian
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Figure 4 – An example of the procedure at each evolutionary algorithm.

Source: Adapted from [17].

process-based Bayesian optimization (GPBO) methods, and then employ evolutionary
algorithms to optimize the acquisition function to evaluate the neural architectures on
the original objective function. Another work uses sequential model-based optimization
(SMBO) as search strategy, resulting is a system called Progressive NAS (PNAS) [11].
In this work, the authors searched for architectures of increasing complexity (increasing
the number of layer blocks in a cell) while utilizing a model to predict the accuracy of
the obtained network.

2.3 PERFORMANCE EVALUATION STRATEGY

Another important aspect of NAS is performance evaluation or, more specifically,
the strategy used for evaluating the performance of a new candidate architecture sam-
pled from the search space. This aspect is crucial for a faster exploration of the search
space and for obtaining an effective architecture in a reasonable amount of time. This
section describes some of the different performance evaluation strategies used in the
context of NAS.

2.3.1 Training from Scratch

Training from scratch is the most naive approach for performance evaluation.
The idea is literally to train every new candidate or child network from scratch. This
strategy, used originally in [2], results in extremely high computational costs, normally
leading to thousands of GPU hours to finish a NAS task.

2.3.2 Proxy Task Performance Evaluation

Proxy task performance evaluation consists of using a smaller dataset, called
proxy dataset, to evaluate the performance of the candidate/child network. In doing
so and training the network for fewer epochs, the training time is reduced significantly,



Chapter 2. Background on Neural Architecture Search 24

as shown in [6]. In spite of such a reduction, this approach tends to produce a biased
performance estimate.

2.3.3 Prediction-Based Performance Evaluation

Another approach to speed-up performance assessment for candidate/child net-
work architectures is introduced in [20]. Such an approach is based on using a HyperNet
[21] to generate weights for a child network based on its architecture. The model with
HyperNet-generated weights is validated directly, dispensing extra training for every
child model, with the HyperNet training as a trade-off. A system called SMASH [20]
demonstrate the potential of such an approach. However, as illustrated in Fig. 5, if the
HyperNet model is relatively small as compared to the child model, the performance
estimate obtained using the predicted weights is no longer useful for performance
comparison, since the correlation between performance estimate and true validation
errors is broken. Furthermore, recent works pointed out another problem of the SMASH
system [7], which is the fact that the usage of HyperNet restricts the weights of the
proposed child models to a low-rank space.

Figure 5 – SMASH algorithm results compared with true validation errors.

Source: [20].

2.4 μNAS: A NAS SUCCESS CASE

The μNAS system [22] is a NAS application case that illustrates the potential
as well as the different aspects (search space, search strategy and performance
evaluation) of NAS strategies. The goal of the μNAS is to find small-yet-powerful
microcontroller-level network architectures. To this end, the three scarce microcontroller
resources are targeted, namely random access memory (RAM), persistent storage
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(flash), and processing speed. To handle these limitations, the authors use a highly-
granular search space; a set of constraints that accurately capture resource scarcity of
MCU platforms; a search algorithm capable of optimizing for multiple objectives in the
search space; and network pruning, to obtain a small and accurate architecture. The
authors also considered that an MCU search space would involve small architectures
with restrictions on layer connectivity. The degrees of freedom considered for defining
the search space are described in Table 1, which lead to a search space that comprises
1.15 × 10152 different models. The proposed search algorithm, based on aging evolu-
tion (AE) and Bayesian optimization (BO), navigates the search space by generating
random architectures and applying morphisms to produce derived child networks [22].

Table 1 – Template for candidate models with free variables, their morphisms and
bounds, defining the μNAS highly-granular search space.

Source: [22].

The results presented by the authors, reproduced in Table 2, are quite impres-
sive, showing that through a good design of the search space and explicit targeting of
the primary resource bottlenecks, a NAS system can discover resource-efficient archi-
tectures. Nevertheless, to achieve these results for larger datasets, such as Speech
Commands [23], μNAS requires a run time of 39 GPU-days for 1960 steps. The long
run time is mostly caused by the training of each architecture proposed by the search
algorithm, which consists of the biggest disadvantage of the μNAS system.

2.5 TRAININGLESS APPROACHES

As described in the previous sections, NAS methods can be quite effective in
finding very good neural-network architectures conditioned to a good choice of search
space and search algorithm. However, obtaining such architectures is a costly process
that takes several hours or even days to finish. Examples of such costs are abundant:
the approach in [2] required 800 GPUs running for 28 days to reach their results;
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Table 2 – Comparison between μNAS results and known baselines.

Source: [22].

MetaQNN [5] spent 96 GPU-days; and the aforementioned μNAS [22] required up
to 39 GPU-days. All these costs motivated the development of the trainingless NAS
approaches, in which performance evaluation is carried out without network training.
These approaches are discussed in this section.

2.5.1 NAS-WOT

To the best of our knowledge, the first trainingless NAS approach is the so-
called NAS without training (NAS-WOT) [9]. Such an approach is based on a particular
performance metric that is simple to calculate and, in spite of not being a perfect
performance metric for network architectures, it produces a rough estimate that at least
allows discarding bad architectures.

The NAS-WOT performance metric is based on observing the activation patterns
of the ReLU activation functions in a neural network. The idea is to expose the network
to a randomly-selected mini-batch of input data X = {xk }Kk=1 at initialization and, for each
input sample xk , obtain a binary activation vector ck . The elements of ck corresponding
to non-activated ReLU units are equal to 0, whereas the elements corresponding to
activated ReLU units are equal to 1. As described in [9], the intuition to the NAS-WOT
metric is that the more similar the binary activation codes associated with two inputs are,
the more challenging it is for the network to learn how to separate the corresponding
samples. In other words, similar ReLU activation patterns for different input samples
indicate that the network will have more difficulty separating these samples.

Aiming to quantify the difference between activation vectors and considering that
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ck ∀k are binary vectors, the Hamming distance is used. The Hamming distance can
be defined as:

dH (u,v) = |{i ; uivi , i ≤ i ≤ n}|, (1)

resulting in the information of the number of places in which u and v differ. Thus, one
has dH (ci , cj ) to represent the Hamming distance between ci and cj . Then, the following
kernel matrix is constructed:

KH =


NA – dH (c1, c1) . . . NA – dH (c1, cK )

... . . . ...
NA – dH (cK , c1) . . . NA – dH (cK ,cK )

 (2)

where NA is the number of ReLU activations in the network. The elements at the main
diagonal of KH will always be equal to NA, since dH (ci , ci ) = 0, ∀i . Moreover, elements
outside the main diagonal (e.g., at a position i ,j) will be closer to NA if the corresponding
codes ci and cj are similar, or will become small as the difference between ci and cj
grows.

Finally, the NAS-WOT performance metric s is calculated according to

s = log |KH| (3)

where |KH| represents the determinant of KH, the logarithm operator was used to avoid
overflows during the computational process. As described in [9], if KH is closer to an
identity matrix (i.e., all binary activation vectors ci ∀i are very different), s will result in
higher values. On the other hand, if all binary activation vectors are similar, |KH| = 0,
then s will tend to –∞. This metric encodes the previously described intuition behind
the NAS-WOT approach.

The experiments conducted by the authors were performed using the NATS-
Bench TSS [24], NATS-Bench SSS [25], NASBench101 [26], and NDS Facebook [27]
benchmarks. Considering the experiments results, a positive correlation between the
validation accuracy and the NAS-WOT performance metric for all the benchmarks, in
addition it was required only a minute to evaluate more or less than 100 networks.

The major benefit of NAS-WOT performance metric is its rapid execution time.
The metric can be explore and used to speedup performing architecture search stage,
specially as a fast filtering step, eliminating the low accuracy networks without being
necessary the training step to evaluate the bad networks.

2.5.2 EPE-NAS

Another trainingless NAS approach, termed EPE-NAS (Efficient Performance
Estimation without Training for Neural Architecture Search), was introduced in [9]. The
starting point for EPE-NAS is the fact that, for a given data point (i.e., a given input
vector), a ReLU-based network behaves as a linear map between input and output. The
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Table 3 – Comparison between NAS without Training [9] and EPE-NAS [8] evaluated
using NAS-Bench-201 benchmark [24]. Performance shown in accuracy with
mean±std, on CIFAR-10, CIFAR-100 and ImageNet-16-120.

Method Search (s) CIFAR-10 CIFAR-100 ImageNet16-120
validation test validation test validation test

Training-free
NAS-WOT (N=10) 3.1 89.56 ± 0.33 92.47 ± 0.04 69.34 ± 1.05 57.65 ± 30.61 42.08 ± 1.61 42.20 ± 1.37
EPE-NAS(N=10) 2.3 89.90 ± 0.21 92.63 ± 0.32 69.78 ± 2.44 70.10 ± 1.71 41.73 ± 3.60 41.92 ± 4.25
NAS-WOT (N=100) 25.7 89.91 ± 0.80 91.41 ± 2.24 67.13 ± 4.03 67.18 ± 4.14 41.39 ± 1.13 41.42 ± 1.53
EPE-NAS (N=100) 20.5 88.74 ± 3.16 91.59 ± 0.87 67.28 ± 3.68 67.19 ± 3.82 38.66 ± 4.75 38.80 ± 5.41
NAS-WOT (N=1000) 252.6 89.60 ± 0.90 91.20 ± 2.04 68.57 ± 0.41 68.95 ± 0.72 38.01 ± 1.66 38.08 ± 1.58
EPE-NAS(N=1000) 206.2 87.87 ± 0.85 91.31 ± 1.69 69.44 ± 0.83 69.58 ± 0.83 41.86 ± 2.33 41.84 ± 2.06

Source: [8].

parameters of such a map can thus be obtained by taking the gradient of the output with
respect to the input vector. The mappings for different data points of the same class
can then be grouped and their similarity can be evaluated via the construction of a
correlation matrix. The rationale, at this point, is that similar mappings are desirable for
similar data points (i.e., data points belonging to the same class). Finally, the different
correlation matrices for the different classes are considered for obtaining the EPE-NAS
score. Normalization is also used to account for differences in the number of data points
for each class.

From the results presented in [9], which are partially reproduced in Table 3,
one can notice that the EPE-NAS outperforms the NAS-WOT approach in terms of
both attained performance and speed. More specifically regarding the speed aspect,
EPE-NAS reduced the search time by 16.5% to 25.8%.

2.5.3 TE-NAS

Another trainingless NAS approach, called TE-NAS (training-free neural archi-
tecture search), is presented in [28]. Such an approach is based on a new training-less
metric composed of two indicators, which are based on recent advances in deep learn-
ing theory. Along with these two indicators, the authors introduced a pruning-based
mechanism, to boost search efficiency and to obtain better performance. Fig. 6 repro-
duces the comparison between TE-NAS and NAS without Training [9] reported in [28].
From these results, one observes that the TE-NAS results in improvements in terms of
accuracy of the obtained architecture, but at the cost of a search time that is 300 times
higher than that of the NAS-WOT.
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Figure 6 – Comparison between NAS without Training [9] and TE-NAS [28] search
methods, both evaluated using the NAS-Bench-201 benchmark [24].

Source: [28].
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3 CONTRIBUTIONS

In this chapter, a novel trainingless NAS strategy is introduced, which is based
on a new metric that aims at reducing the search time for effective network architectures
without training. The proposed metric is based on the aforementioned NAS-WOT metric
[9], due to its simplicity. Thus, in this chapter, the NAS-WOT metric is first analyzed in
detail and, afterwards, the proposed metric is introduced.

3.1 EXAMINING THE NAS-WOT METRIC

As described in Section 2.5.1, the NAS-WOT metric [9] is based on ReLU acti-
vation patterns observed at the initialization of a candidate network. More specifically,
the candidate network is exposed to a mini-batch of input data X = {xi }Ki=1 and then, for
each input sample xi , a binary activation vector ci is obtained. From the Hamming dis-
tances between the obtained activation vectors, the KH matrix described in (2) is built.
Finally, the NAS-WOT metric is obtained by evaluating the logarithm of the determinant
of such a matrix (see (3)).

Aiming to obtain more insights regarding the NAS-WOT metric, we start by
noticing that KH is a K × K matrix with the element at the i-th row and j-th column
given by

kH(i ,j) = NA – dH(ci ,cj ) (4)

with K representing the size (number of samples) of the mini-batch, NA the number
of ReLU activations of the candidate network, and dH(ci ,cj ) the Hamming distance
between the i-th and the j-th binary activation vectors. Since the Hamming distance
corresponds to the number of places where two binary arrays differ, one can easily
conclude that (4) results in the number of places that have equal values when ci and cj
are compared in a element-wise fashion. Part of this information can be obtained from
the inner product cT

i cj , which results in the number of places that have ones and are
equal in ci and cj . Moreover, by defining the complementary vector

c̄i = 1 – ci , (5)

one can obtain, from the inner product c̄i
Tc̄j , the number of places that have zeros and

are equal in ci and cj . Thus, (4) can be rewritten as

kH(i ,j) = cT
i cj + c̄T

i c̄j . (6)

Now, by arranging the binary activation vectors c1 to cK as columns of a NA ×K
matrix, one obtains

C =
[
c1 c2 · · · cK

]
. (7)
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By arranging the complementary binary activation vectors c̄1 to c̄K in a similar way, one
has

C̄ =
[
c̄1 c̄2 · · · c̄K

]
. (8)

Finally, considering (4) to (8), matrix KH can be rewritten as

KH = CTC + C̄TC̄. (9)

3.1.1 Positive Semidefiniteness of KH

According to [29] (Fact 3.7.25), the matrix product ATA results in a m × m
positive semidefinite matrix for any real matrix A with dimensions n × m. From this fact,
one can conclude that both CTC and C̄TC̄ result in positive semidefinite matrices with
dimensions K × K . Moreover, from the definition of a positive semidefinite matrix [29],
we have vTCTCv ≥ 0 and also vTC̄TC̄v ≥ 0 for any nonzero vector v with dimensions
K × 1. Thus, considering (9), we can write

vTCTCv + vTC̄TC̄v = vT(CTC + C̄TC̄)v = vTKHv ≥ 0, (10)

which proves that KH is also a positive semidefinite matrix.

3.1.2 Role of the Eigenvalues of KH

Considering that KH is symmetric and positive semidefinite, a straightforward
conclusion is that its eigenvalues are all real and greater than or equal to zero. This con-
clusion is important for understanding the NAS-WOT metric, since this metric depends
on the determinant of KH, which corresponds to the product of its eigenvalues, i.e.,

|KH| = det(KH) =
K∏

k=i

λk (11)

with λk representing the k-th eigenvalue of KH. If all eigenvalues are positive or zero,
we know that |KH| will be always greater than or equal to zero. Moreover, if only one
eigenvalue is equal to zero (i.e., KH is rank-deficient), (11) will result in zero and the
NAS-WOT metric from (3) will tend to –∞. In fact, this situation can happen if the
ReLU activation patterns are the same for two different samples of the mini-batch. As
a result, both C and C̄ will have two columns that are equal, ultimately resulting in
two similar columns/rows at the symmetric matrix KH. This could be a problem for the
NAS-WOT metric, since a promising architecture may end up being discarded due to a
poor choice of two of the samples of the mini-batch. However, practical characteristics
of the NAS-WOT process tend to eliminate such a problem, as discussed in the next
section.
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3.1.3 Practical Aspects of the NAS-WOT Metric

An important characteristic of practical NAS-WOT applications is that NA ≫ K ,
i.e., the number of ReLU activations in the candidate networks is much larger than
the number of elements at the mini-batch. Fig. 7 presents histograms of number of
ReLU activations for the architectures present in the four benchmarks considered for
studying trainingless NAS (NATS-Bench TSS, NATS-Bench SSS, NASBench101, and
NDS Facebook). From this figure, one can notice that the architectures under evaluation
are generally very complex deep neural networks. As a consequence, KH will normally
be a relatively small matrix (since it is a K × K matrix, and K ≪ NA) with very large
values at its main diagonal (since the main-diagonal elements of KH are all equal to
NA).

The first important conclusion we can draw out of the aforementioned character-
istics of KH is that it will generally have relatively large eigenvalues. This conclusion
is confirmed by the fact that the trace of KH (sum of its eigenvalues) is equal to the
product KNA, with K in the range of hundreds and NA in the range of tens of thousands
to millions. This results in an average eigenvalue value equal to NA (i.e., tens of thou-
sands to millions). In fact, typical values for the NAS-WOT metric (which correspond
to the natural logarithm of the product of the eigenvalues of KH) are larger than 1000,
meaning that the actual product of the eigenvalues is typically larger than 1.97 × 10434.

Another important practical conclusion regarding KH is that it will normally be
a positive definite matrix. This is due to the fact that, for KH to be rank-deficient, two
samples at the mini-batch must result in exactly the same ReLU activation patterns.
However, the number of mini-batch samples is in the hundreds (typically equal to 128
in the papers from the literature), whereas each mini-batch sample will result in a ReLU
activation pattern composed of tens of thousands or even millions of elements. In this
context, the chance of two of these patterns to be equal tends to zero. In fact, it was also
observed in practice that the eigenvalues are normally larger than 1, which is indeed
expected considering all characteristics of KH discussed here.

3.2 PROPOSED NAS METRIC

By using the properties of the logarithm operator, the NAS-WOT metric given in
(3) can be rewritten as

s = log(|KH|) = log(det(KH))

= log(
K∏

k=i

λk )

=
K∑

k=i

log(λk ). (12)
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an estimation, (12) becomes

sp =
K∑

k=i

λk

= trace(KH)

= NA × K . (13)

Note from (13) that, by adopting the aforementioned estimation, the proposed metric
becomes the trace of KH, which in turn is known to be equal to NA × K . This makes
the proposed metric mathematically simple to be evaluated, since it basically corre-
sponds to the number of ReLU activations in the candidate network (NA) multiplied
by a constant. It is worth mentioning, however, that obtaining NA is not as simple as
it seems, due to the complexity of the candidate networks that are usually present in
NAS search spaces. Despite this, after obtaining NA, a lot of calculations are avoided,
saving important search time.

In [9], the authors of the NAS-WOT metric show some concerns regarding the
robustness of their metric regarding practical aspects as the samples at the mini-batch,
the mini-bath size, the network initializations, and the evolution as the network is trained.
In that work, an ablation study is conducted to test the NAS-WOT metric regarding these
aspects. The metric proposed here, in contrast, is naturally robust to all this practical
questions, since it depends on the structure of the network (the mini-batch size is merely
a constant that affects all candidate architectures equally).

Another important aspect that of the proposed metric is that, by dropping the
logarithm operator in the summation of eigenvalues, it ends up giving more weight
to larger eigenvalues as compared to the NAS-WOT metric. In other words, larger
eigenvalues tend to dominate the proposed metric. This, however, does not seem to
be an important issue, as demonstrated in the practical results presented in the next
chapter of this work.

3.3 PROPOSED METRIC AS A COMPUTATIONAL COMPLEXITY PREDICTOR

One important aspect of neural network architectures is the computational com-
plexity required for their implementation for inference (after training). This is particularly
important for embedded implementations of neural networks, as illustrated by the μNAS
case (see section 2.4). The proposed metric is directly related with the total number of
ReLU activations in the network and, thus, it in general tends to be a good indicator of
computational complexity for inference. Considering this fact and also that a trade-off
between complexity and accuracy is often pursued in practice, another proposal in this
dissertation is to use penalized versions of the proposed metric aiming at accounting
for both accuracy and inference complexity together. The idea is to obtain a metric
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that implicitly takes into account complexity restrictions when ranking the candidate
architectures. Some of the experimental results presented in the next chapter address
this approach.
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4 RESULTS AND DISCUSSIONS

In this chapter, experimental results are presented aiming to assess the effec-
tiveness of the proposed metric in the context of NAS. Such results were obtained
considering publicly-available benchmarks that were developed aiming to help stan-
dardizing NAS research works. These benchmarks contain tractable search spaces
and metadata regarding the training of the involved neural network architectures as,
for instance, the accuracy obtained after training each candidate architecture. Thus,
the benchmarks considered in this work are the NATS-Bench TSS [24], NATS-Bench
SSS [25], NASBench101 [26], and NDS Facebook [27]. Considering such benchmarks,
the experiments conducted for this dissertation are based in three classic datasets:
CIFAR-10 [30], CIFAR-100 [31], and ImageNet16-120 [32].

4.1 EVALUATING THE PROPOSED METRIC

4.1.1 Experiment 1

Following the methodology adopted in [9], the first experiment for evaluating the
effectiveness of the proposed metric is carried out by randomly sampling a thousand
neural architectures for each considered dataset in each considered benchmark. Both
the NAS-WOT metric and the proposed metric are evaluated for each architecture and,
then, the ontained values plotted against the corresponding accuracies available in the
benchmark. The obtained plots provide an important idea if whether or not a metric is
a good predictor for the accuracy of the network. Such aspect is also evaluated using
the Kendall’s τ correlation coefficient, which is defined as

τ =
(number of concordant pairs) – (number of discordant pairs)

n(n–1)
2

, (14)

with n denoting the total number of evaluated points.
The obtained results are presented in Fig. 8 for the NAS-Bench101 benchmark,

Fig. 9 for the NATS-Bench SSS, Fig. 10 for the NATS-Bench TSS, and Fig. 11 for the
NDS Facebook. In all cases, one can notice a great similarity between the NAS-WOT
and the proposed metric, with some difference observed only for the NATS-Bench TSS
benchmark. This is due to the particular characteristics of such a benchmark and the
related search space, which involves large groups of networks having similar numbers
of ReLU activations. This characteristic can also be observed from Fig. 7. The Kendall’s
τ results for all cases are also summarized in Fig. 13. In general, these results show
that the proposed metric, in spite of being very simple, is a very good proxy for the
NAS-WOT metric, with the potential for producing similar results in a much smaller time
span.
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Figure 8 – Plots of the proposed metric and the NAS-WOT metric for 1000 randomly
sampled untrained neural networks architecture in NAS-Bench-101 against
the validation accuracy. The scores were calculated for the CIFAR-10
dataset.

Source: The Author.
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Figure 9 – Plots of the proposed metric and the NAS-WOT metric for 1000 randomly
sampled untrained neural networks architecture in NATS-Bench SSS against
the validation accuracy. The scores were calculated for the CIFAR-10, CIFAR-
100 and ImageNet16-120 datasets.

Source: The Author.
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Figure 10 – Plots of the proposed metric and the NAS-WOT metric for 1000 ran-
domly sampled untrained neural networks architecture in NATS-Bench TSS
against the validation accuracy. The scores were calculated for the CIFAR-
10, CIFAR-100 and ImageNet16-120 datasets.

Source: The Author.
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Figure 11 – Plots of the proposed metric and the NAS-WOT metric for 1000 randomly
sampled untrained neural networks architecture in NDS-Amoeba, NDS-
DARTS, NDS-DARTS fixed width/depth, NDS-ENAS, NDS-NASNet and
NDS-ResNet against the validation accuracy. The scores were calculated
for the CIFAR-10 dataset.

Source: The Author.
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Figure 12 – Kendall’s τ correlation for different search spaces and datasets for both
proposed and NAS-WOT metrics.

Source: The Author.
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Algorithm 1 Search Algorithm used to evaluate both Proposed and NAS-WOT score
metric.
generator = RandomGenerator()
best_net, best_score = None, 0
for i = 1 : N do

net = generator.generate()
score = net.score()
if score > best_score then

best_net, best_score = net, score
end if

end for
chosen_net = best_network

Source: [9]

Table 4 – Google Colab Pro [34] hardware used to evaluate all experiments, containing
information about the CPU and GPU.

Computer Specs GPU Spec
Processor Intel(R) Xeon(R) GPU Tesla P100
CPU Freq. 2.20GHz GPU Memory 16GB
No. CPU Cores 2 Single-Precision Performance 10.6 TFLOPS
CPU Family Haswell Double-Precision Performance 5.3 TFLOPS
Available RAM 16GB

Source: The Author.

4.1.2 Experiment 2

In the second experiment, the idea is to build a complete NAS system. To this end,
random search [33] is used for exploring the search spaces defined in the considered
benchmarks. The pseudo algorithm described as Algorithm 1 is then adopted, which
corresponds basically the algorithm used in [9]. In all experiments, such an algorithm
is run for 10 times and the average and standard deviance of the results are obtained.
The specifications of the computer used to run the experiments are described in Table 4.
The computer is from the Google Colab Pro services [34]. To ensure the veracity and to
obtain a fair comparison of the results, both the proposed score metric and NAS-WOT
score metric were evaluated using the considered experimental setup.

The obtained results are presented in Table 5 together with results from the litera-
ture regarding other trainingless and non trainingless methods. For the non trainingless
methods (non weight sharing and weight sharing), the reported results are those re-
ported at were extracted from [9]. In contrast, for the trainingless methods, we have:
i) results obtained using the NATS-Bench TSS and NATS-Bench SSS benchmarks; ii)
search time and accuracy results for the NAS-WOT and proposed metrics obtained in
our experiments; iii) the time results for TE-NAS and EPE-NAS estimated considering
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the relative percentage times with respect to the NAS-WOT from the respective works
from the literature together with the search time obtained for the NAS-WOT in our ex-
periments; and iv) accuracy results for TE-NAS and EPE-NAS obtained from the values
presented in the respective works.

From the results presented in Table 5, one observes that the proposed method is
the fastest one, while yielding results comparable to those obtained by other methods in
terms of accuracy. Moreover, in the training-free block in the Table 5, a comparison be-
tween the proposed metric and the NAS-WOT is carried out by highlighting in boldface
the best result between the two for each case considered. This comparison shows that
in some cases the NAS-WOT finds better architectures in terms of accuracy. However,
considering that the difference between the accuracies is small and also that the time
spent running the search method is much lower for the proposed metric (see Table 6),
we can claim that the proposed metric is a better choice for implementing a trainingless
NAS system.

Moreover, the training-free block in the Table 5 has the bests results, between
the proposed score and NAS-WOT score, highlighted in bold for the same number of
networks evaluated (N). This shows that the proposed score outperforms NAS-WOT in
the majority of the cases, both in terms of time spent searching and the accuracy of the
top neural network found using a random search. The Table 6 shows how much faster
(in percentage) the proposed score is compared to NAS-WOT.

Furthermore, the Table 5 shows that in some cases the NAS-WOT finds better
architectures in terms of accuracy. But considering that the difference between the
accuracies found is lower, if not equal, to the variance, and the time spent running the
search method is lower for the proposed metric (see Table 6, it is possible to consider
the proposed metric as the best performance estimator, with a little trade-off in terms
of the accuracy found having the difference in the range of the variance.

4.2 SCALING THE PROPOSED METRIC BY NETWORK SIZE

From the results presented in Table 5 and also in Figs. 8, 9, and 10, one can
notice that the proposed metric presents a relatively high correlation with accuracy for
the networks belonging to the NATS-Bench SSS benchmark. Such a benchmark is
in fact the part of the NATS-Bench benchmark involving a size search space (SSS),
involving a major focus on varying the size of the architecture candidates. This leads to
the insight that the proposed metric tends to be also a good predictor for network size,
as mentioned in Section 3.3. To test this idea, The Kendall’s τ correlation coefficient
was calculated, considering different benchmarks, for the following cases: i) proposed
metric versus network size; ii) NAS-WOT metric versus network size; and iii) proposed
metric versus NAS-WOT metric. The obtained results, presented in Fig. 13, show that
the proposed metric is in fact a better size predictor than the NAS-WOT metric for all
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Table 5 – Comparison of several search methods evaluated using the NATS-Bench,
using different numbers (N) of random samples for the trainingless methods.
The performance is visualized in two forms, the time spent searching and
the mean±std. accuracies. The highlights in bold represent the best value in
the comparison between the proposed and NAS-WOT metrics. All scenarios
were run at least 10 times.

Method Search (s) CIFAR-10 CIFAR-100 ImageNet16-120
validation test validation test validation test

Non-weight sharing
REA 12000 91.19 ± 0.31 93.92 ± 0.30 71.81 ± 1.12 71.84 ± 0.99 45.15 ± 0.89 45.54 ± 1.03
RS 12000 90.93 ± 0.36 93.70 ± 0.36 70.93 ± 1.09 71.04 ± 1.07 44.45 ± 1.10 44.57 ± 1.25
REINFORCE 12000 91.09 ± 0.37 93.85 ± 0.37 71.61 ± 1.12 71.71 ± 1.09 45.05 ± 1.02 45.24 ± 1.18
BOHB 12000 90.82 ± 0.53 93.61 ± 0.52 70.74 ± 1.29 70.85 ± 1.28 44.26 ± 1.36 44.42 ± 1.49

Weight sharing
RSPS 7587 84.16 ± 1.69 87.66 ± 1.69 59.00 ± 4.60 58.33 ± 4.34 31.56 ± 3.28 31.14 ± 3.88
DARTS-V1 10890 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00
DARTS-V2 29902 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00
GDAS 28926 90.00 ± 0.21 93.51 ± 0.13 71.14 ± 0.27 70.61 ± 0.26 41.70 ± 1.26 41.84 ± 0.90
SETN 31010 82.25 ± 5.17 86.19 ± 4.63 56.86 ± 7.59 56.87 ± 7.77 32.54 ± 3.63 31.90 ± 4.07
ENAS 13315 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00

Training-free for NATS-Bench TSS
NAS-WOT (N=10) 3.68 89.62 ± 0.33 87.18 ± 1.35 6.94 ± 3.09 57.65 ± 3.61 35.24 ± 19.49 35.43 ± 19.51
EPE-NAS (N=10) 2.73 89.90 ± 0.21 92.63 ± 0.32 69.78 ± 70.10 ± 1.71 41.73 ± 3.60 41.92 ± 4.25
Proposed Metric (N=10) 2.28 90.62 ± 0.93 89.9 ± 1.01 69.69 ± 3.85 69.17 ± 1.16 35.03 ± 2.96 35.27 ± 2.49
NAS-WOT (N=100) 45.93 90.39 ± 0.92 87.48 ± 0.81 71.07 ± 8.57 70.67 ± 3.07 35.54 ± 18.22 35.78 ± 18.64
EPE-NAS (N=100) 35.91 88.74 ± 3.16 91.59 ± 0.87 67.28 ± 3.68 67.19 ± 3.82 38.66 ± 4.75 38.80 ± 5.41
TE-NAS (N=100) 6232 93.9 ± 0.47 - 71.24 ± 0.56 - 42.38 ± 0.46 -
Proposed Metric (N=100) 29.66 91.0 ± 0.82 90.44 ± 0.28 70.91 ± 1.16 70.72 ± 12.76 46.26 ± 5.51 46.03 ± 5.59
NAS-WOT (N=1000) 307.19 90.44 ± 0.73 89.42 ± 0.46 68.81 ± 2.95 61.87 ± 10.27 43.95 ± 2.05 44.44 ± 2.10
EPE-NAS (N=1000) 250.76 87.87 ± 0.85 91.31 ± 1.69 69.44 ± 0.83 69.58 ± 0.83 41.86 ± 2.83 41.84 ± 2.06
Proposed Metric (N=1000) 146.79 90.95 ± 1.01 90.44 ± 0.31 73.51 ± 2.03 71.12 ± 2.66 47.08 ± 9.56 46.33 ± 2.05

Training-free for NATS-Bench SSS
NAS-WOT (N=10) 2.92 89.68 ± 0.51 88.57 ± 0.33 66.50 ± 9.67 62.3 ± 2.98 39.06 ± 0.02 38.83 ± 0.21
Proposed Metric (N=10) 1.80 90.55 ± 1.60 89.62 ± 0.29 68.90 ± 5.25 61.12 ± 4.34 42.69 ± 6.53 42.88 ± 6.04
NAS-WOT (N=100) 30.04 90.14 ± 0.30 89.38 ± 0.54 68.80 ± 6.14 68.06 ± 2.54 40.22 ± 3.73 40.48 ± 3.70
Proposed Metric (N=100) 21.86 92.66 ± 0.23 90.14 ± 0.22 70.72 ± 12.76 68.42 ± 4.47 46.27 ± 5.51 46.03 ± 6.67
NAS-WOT (N=1000) 251.63 92.14 ± 0.79 90.8 ± 0.31 66.53 ± 11.36 67.64 ± 0.0 44.57 ± 1.48 45.08 ± 1.55
Proposed Metric (N=1000) 144.54 93.14 ± 0.09 90.44 ± 0.3 73.51 ± 2.03 71.04 ± 10.34 47.07 ± 5.59 46.27 ± 5.54

Source: The Author and [9].

Table 6 – Comparison of how much faster is the proposed metric against the NAS-WOT
metric, in percentage. Values compared for the NATS-Bench SSS and NATS-
Bench TSS with N = 10, N = 100 and N = 1000 neural networks sampled.

NATS-Bench TSS NATS-Bench SSS
N=10 38.04% 38.35%
N=100 38.42% 27.23%
N=1000 52.21% 42.55%

Source: The Author.

cases considered.

4.2.1 Experiment 3

Considering that the proposed metric tends to be a better predictor of network
size, the focus in Experiment 3 is to test the idea, described in Section 3.3, of penalizing
the proposed metric aiming to obtain a prediction of the trade-off between accuracy
and network size. The functions considered for such a penalization are the Gaussian
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Figure 13 – Kendall’s τ correlation for i) proposed metric versus network size; ii) NAS-
WOT metric versus network size; and iii) proposed metric versus NAS-WOT
metric. Results obtained for different benchmarks/datasets.

Source: The Author.

Distribution Function (GDF), given by
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the Hyperbolic Secant Distribution Function (HSDF), given by
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x , otherwise,
(16)

and also the Rayleigh Distribution Function (RDF):

f (x ; μ,σ) =


x
σ2 e

–x2

2σ2 , x ≥ μ

x , otherwise.
(17)

As illustrated in Fig. 14, all these functions are characterized for being equal to one
at the origin (x = 0) and then vanishing (tending to zero) after a smooth transition
at some point determined by their parameters. Thus, by tuning the transition position
(related with the target network size), one can constrain the NAS process, avoiding very
complex architectures.

Figs. 15 and 16 presents the results of the GDF-penalized metric for the NATS-
Bench SSS and NATS-Bench TSS benchmarks, respectively. In light green, one has the
original values for the proposed metric, whereas in orange one has the GDF-penalized
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metric. The mean value μ and the standard deviation σ2 were chosen respectively as
0.2 and 0.4, targeting networks of up to 200 kB in size. From these results, we can
clearly see the effect of the penalization, resulting in larger score around the 200 kB
region. Figs. 17 and 18 show similar results considering the HSDF-penalized metric,
whereas Figs. 19 and 20 also show similar results for the RDF-penalized metric.

4.2.2 Experiment 4

Now that the idea of penalizing the proposed metric has shown some promising
results from a more theoretical standpoint, the purpose of Experiment 4 is to evaluate
if it can be really effective in the context of practical NAS. To this end, we use the
GDF-penalized version of the proposed metric together with the NATS-Bench TSS and
NATS-Bench SSS benchmarks. The obtained results, shown in Table 7, demonstrate
the effectiveness of the penalized version of the proposed metric for obtaining networks
with a very good trade-off between accuracy and computational complexity.
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Table 7 – Results of application of GDF-penalized version of the proposed metric in the
context of a practical NAS system. The performance is described in terms of
time spent searching, the mean±std. accuracies, and the size in kilobytes,
considering N = 100 randomly-sampled networks.

Proposed Metric (N=100) Gaussian Scaled Proposed Metric (N=100)
Benchmark Search (s) validation test size (kB) Search (s) validation test size (kB)

CIFAR-10 CIFAR-10
NATS-Bench TSS 29.66 91.0 ± 0.82 87.79 ± 1.01 750.65 ± 20.31 40.6 87.33 ± 2.75 87.89 ± 1.07 327.86 ± 0.019
NATS-Bench SSS 21.86 90.55 ± 1.60 89.62 ± 0.29 305.66 ± 0.096 30.14 87.28 ± 0.20 87.31 ± 0.37 273.64 ± 0.006

CIFAR-100 CIFAR-100
NATS-Bench TSS 29.66 70.91 ± 1.16 63.03 ± 13.57 543.21 ± 30.80 40.6 65.81 ± 2.2 64.67 ± 7.97 271.74 ± 0.023
NATS-Bench SSS 21.86 67.57 ± 2.34 61.64 ± 3.15 378.90 ± 0.035 30.14 59.01 ± 13.93 59.01 ± 13.93 283.56 ± 0.011

ImageNet16-120 ImageNet16-120
NATS-Bench TSS 29.66 35.62 ± 16.59 35.86 ± 16.19 343.76± 220.31 40.6 34.69 ± 5.61 32.38 ± 0.72 273.64 ± 0.006
NATS-Bench SSS 21.86 43.02 ± 5.81 42.83 ± 6.38 585.13 ± 89.63 30.14 39.066 ± 1.89 37.13 ± 2.50 248.56 ± 0.009
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5 CONCLUSIONS

Neural Architecture Search is an exciting and innovative field of research. The
systems that take advantage of NAS are used in many areas, such as image recogni-
tion, image classification, hyperparameter optimisation, object detection, etc. In terms
of capacity, NAS certainly has enormous potential when it comes to finding the best
possible architecture to solve a given problem, independent of how complex it is. How-
ever, exploring a lot of solutions with variable complexities is highly expensive in terms
of computational resources, making NAS suffer to explore and evaluate entire search
spaces. The larger the search space, the more there are proposed architectures to
test, train and evaluate. Recent advances in producing NAS benchmarks allowed the
researchers to investigate different approaches to avoid certain search costs, giving the
opportunity for training-free metrics to emerge.

This work proposed a training-free metric to performance estimation strategy
stage, that scores an untrained network at initialization, with a positive correlation to
their validation accuracy after training and with the network size. The metric showed the
capacity to evaluate a set of a thousand random networks in a matter of seconds by just
calculating the maximum number of ReLU activations in the neural network addressed.

Moreover, it is showed that the proposed metric, part of the performance esti-
mation strategy stage, can easily be incorporated into search algorithms, which in this
work was proved using the random search. Random search coupled with the proposed
metric outperform the amount of time required to evaluate a network of many current
training free methods (works like [8], [10] and [9]), for some cases reaching 52.21%
of speedup. Conversely, to achieve this time reduction the random search with the
proposed metric looses around 3% of the final validation accuracy, as a trade-off. The
main idea of the proposed metric would be to fast filtering the worst candidates of a
search space, being not the final decider of what is the best neural network possible,
but in this case decreasing the time to find the best option available. Therefore, as a
filter the proposed metric could be used to list the top N architectures to be trained and
evaluated.

In addition, the proposed metric showed a strong correlation with the network
size, leading to a entire new proposal of penalizing the metric by its own size. This
new approach has great potential to identify good networks with smaller sizes, making
possible to improve the speed of systems like μNAS [22] to find a good neural network
that can fits an environment with extreme limited resource constrains. The scaling
process comes to a 20% time increase, but in advantage is possible to find good
networks with half of the size in kilobytes (as it showed by Table 7. Thus, the proposed
metric is agnostic to the search algorithm stage, allowing it to be used in any NAS
system, making it cheaper to find a powerful and small (in size) architecture.
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Finally, it is shown that the proposed metric achieves and overcomes its main
objective, by reducing the time evaluating randomly sampled neural networks and
providing the penalizing the score by the network’s size. These two facts warranty that
the proposed metric indeed can be used as a fast filter to discard inaccurate and big
networks.
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