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“Há uma piada entre até quem não é do mercado que diz que, em algum 

momento, as máquinas vão tomar o controle da sociedade. Pode até ser — ainda 

que o nível do aprendizado de máquina hoje esteja longe disso. Mas, agora, a gente 

precisa prestar atenção e notar os passos não das máquinas,  

mas de quem as controla.” 

(Felitti, 2022) 



 

 

 

RESUMO 

 

A termografia aérea (aIRT) é uma técnica de inspeção de sistemas fotovoltaicos (FV) 
que vem ganhando atenção nos últimos anos por ser um método de inspeção rápido, 
não-destrutivo e sem contato necessário com o módulo solar FV, além de poder ser 
aplicado em condições operacionais em tempo real. No entanto, a avaliação visual 
das imagens capturadas pela aIRT e a análise de um grande número de imagens é 
um processo demorado e trabalhoso. Este trabalho propõe um método para 
automatizar o procedimento de detecção de falhas combinando a aIRT com orto-
georreferenciamento e um algoritmo de aprendizado profundo (Deep Learning – DL). 
O trabalho inicia com uma revisão da literatura sobre métodos para a automatização 
das diversas etapas do processo de aIRT. Com isso, são escolhidos os métodos de 
DL para a detecção de falhas em imagens (Mask-RCNN) e o método de produção de 
ortomosaico para a visualização de falhas nas usinas FV. Para o treinamento do 
método de detecção de falhas, foi necessária a criação de um banco de dados de 
imagens de aIRT. Para isso, uma campanha de voos sobre usinas FV brasileiras foi 
realizada. Com os dados obtidos, foi formado o banco de dados de imagens aIRT que 
foi utilizado para treinar um algoritmo de DL para detecção de falhas. As imagens com 
suas falhas detectadas foram então utilizadas para formar um orthomosaico com as 
falhas da usina FV. O método foi testado com dois casos testes de duas pequenas 
usinas FV e os resultados obtidos demonstraram a viabilidade de utilizar o método 
para facilitar a localização de falhas de sistemas FV. Especialmente no caso de 
detecção de pontos quentes e subséries FV (substrings) desconectadas, a técnica 
provou ter alta acurácia (em torno de 10% de falsos positivos), em um curto espaço 
de tempo, com poucos recursos computacionais necessários. Mesmo com conjuntos 
de dados pequenos, foi possível detectar visualmente as diferentes falhas nos 
ortomosaicos térmicos produzidos. O desenvolvimento do método tem uma 
importância grande para o desenvolvimento da energia solar, especialmente no Brasil, 
onde as usinas de grande porte (que ocupam centenas de hectares) começam a 
dominar o espaço, e pode ser desenvolvido com um maior conjunto de dados para 
melhorar a inspeção utilizando aIRT em qualquer lugar deste grande país e do mundo. 
 
Palavras-chave: Detecção de falhas; Energia Solar Fotovoltaica; Termografia 
Infravermelha Aérea; Inteligência Artificial. 
 
  



 

 

 

RESUMO EXPANDIDO 

 

Introdução 
Atualmente, a energia fotovoltaica (FV) é o segmento de energia renovável que mais 
cresce no mundo. No Brasil, o final do ano de 2022 marca o momento em que a 
geração solar FV passa à frente da geração eólica em capacidade instalada, ficando 
atrás apenas da geração hidrelétrica de grande porte. À medida que a competitividade 
da tecnologia aumenta, a sua confiabilidade é uma grande preocupação no setor e 
métodos confiáveis e econômicos de operação e manutenção (O&M) para usinas FV 
são de extrema importância para garantir a segurança, disponibilidade e produtividade 
dos sistemas. A termografia infravermelha (IRT) é um dos métodos mais populares e 
confiáveis de diagnóstico de falhas de sistemas FV, pois é um método não destrutivo, 
requer instrumentação mínima e pode ser realizada sem interromper a operação de 
usinas FV. O método se baseia nas mudanças de temperatura nos módulos FV 
quando eles estão operando sob condições anormais, sendo os defeitos nos mesmos 
passíveis de detecção através de seus padrões térmicos. Para acelerar o 
procedimento de detecção de falhas para usinas FVs em escala de megawatts ou 
sistemas FV com acesso físico limitado, como em telhados ou fachadas, a IRT pode 
ser combinada com veículos aéreos não tripulados (VAnTs, ou drones). A termografia 
aérea (aIRT) tem a vantagem de ser um método de inspeção rápido e eficiente para 
a detecção de séries de módulos FV abertos/desconectados, módulos quebrados, 
subséries desconectadas, curto-circuitos, entre outros. No entanto, a avaliação visual 
das imagens capturadas pela aIRT e a análise de muitos quadros de imagem é um 
processo lento e repetitivo, sujeito a erro. Este trabalho propõe um método original e 
inovador para automatizar o procedimento de detecção de falhas combinando a aIRT 
com o uso de ortomosaicos e um algoritmo de aprendizado profundo (Deep Learning 
– DL). O trabalho vem de encontro à necessidade do desenvolvimento de ferramentas 
rápidas e de baixo-custo e que estejam disponíveis no mercado para a inspeção de 
grandes usinas FV, aumentando a confiabilidade da energia solar e contribuindo para 
a disseminação de uma fonte limpa de energia elétrica.  
 
Objetivos 

O objetivo desta tese é propor um método original e inovador para a detecção 
e classificação de falhas em módulos solares FV através de imagens aéreas IRT, 
combinando algoritmos de ortomosaicos e de DL. Especificamente, objetiva-se: 

 Revisar a literatura acadêmica/científica para entender os 

métodos atuais utilizados para a automatização de 

inspeções de aIRT em usinas solares FV; 

 Efetuar inspeções de aIRT de diferentes usinas FV para 

detectar falhas e adquirir imagens aIRT de módulos com 

diferentes tipos de falhas; 



 

 

 

 Analisar e processar as imagens aIRT capturadas para 

criar um conjunto de dados de amostras classificadas em 

categorias de possíveis falhas em módulos FV; 

 Treinar e refinar um algoritmo de DL para detectar falhas 

em módulos FV em imagens aIRT; 

 Desenvolver um método para obter automaticamente um 

mapa de uma usina FV com suas falhas destacadas. 

 

 
Método 
Esta tese é composta de três artigos científicos (dois já publicados em revistas 
científicas internacionais Qualis A1 e um recentemente submetido também a revista 
científica internacional Qualis A1) que investigam os procedimentos da técnica de 
aIRT e a possibilidade de automatização do método de análise das falhas detectadas. 
O trabalho inicia com uma revisão da literatura sobre métodos para a automatização 
das diversas etapas do processo de aIRT (Artigo 1). Com a revisão, foram escolhidos 
os métodos de DL para a detecção de falhas em imagens (Mask-RCNN) e o de 
produção de ortomosaico para a visualização de falhas nas usinas FV.  
Para o treinamento do método de detecção de falhas, foi necessária a criação de um 
banco de dados de imagens de aIRT. Para isso, uma campanha de voos sobre quatro 
usinas FV brasileiras em escala comercial foi realizada (Artigo 2), analisando falhas 
de módulos FV de duas tecnologias diferentes: c-Si e CdTe. Diferentes métodos de 
voos e diferentes equipamentos foram testados para ajudar a aprimorar os 
procedimentos de aIRT.  
Com os dados obtidos, foram escolhidas 83 imagens para compor o banco de dados 
para o algoritmo de detecção automática de falhas. Estas imagens foram marcadas 
para destacar as falhas existentes nas mesmas e assim treinar o algoritmo para 
detectá-las (Artigo 3). As imagens resultantes com as falhas destacadas foram então 
utilizadas para formar um ortomosaico da planta FV. O método foi testado com dois 
casos testes de duas pequenas usinas FV (1 MW e 400 kW). O ortomosaico das 
usinas com as falhas anotadas foi gerado utilizando o software ContextCapture®.  
 
Resultados e Discussão 
Os resultados da revisão da literatura mostraram que a maioria dos estudos focados 
na automatização do processo de aIRT estudam a detecção e classificação de falhas 
em usinas FV. Dentre esses estudos, o uso de algoritmos DL tem proporcionado bons 
resultados com precisão de até 90% na detecção e classificação de falhas em 10 tipos 
diferentes de anomalias detectadas em segmentos de módulos extraídos de imagens 
aIRT. Por outro lado, poucos estudos exploraram a automação de outras partes do 
procedimento de aIRT, como a otimização do planejamento de trajetória (nove 
trabalhos) para o voo de inspeção, a criação de ortomosaicos da planta FV (14 
estudos) que é realizado para facilitar a localização das falhas no campo e a detecção 
de sujeira, e sua diferenciação das falhas reais nos módulos FV (oito estudos). Para 
a automação desses procedimentos, diferentes algoritmos foram investigados, 



 

 

 

incluindo filtros de processamento digital de imagens (DIP) e métodos como detecção 
de bordas e limiarização; algoritmos DL como Fast RCNN, ImageNET e VGG16; e 
outros algoritmos baseados em aprendizado de máquina usados para tarefas de 
classificação, como SVMs, KNNs e RFs. No entanto, a precisão, robustez e 
generalização dos algoritmos desenvolvidos ainda são os principais desafios desses 
estudos, principalmente quando se trata de um número grande de classes de falhas e 
da inspeção de plantas FV de grande porte. Portanto, o procedimento autônomo e a 
tarefa de classificação ainda devem ser explorados para aumentar a precisão e 
aplicabilidade do método aIRT. 
Durante a campanha de voos em usinas FV no Brasil, os resultados mostraram que 
os problemas mais comuns detectados com a aIRT foram os pontos quentes devido 
à sujidade e à vegetação, que causavam o sombreamento das células FV. Entre as 
falhas reais, as mais comuns, em número de ocorrências, foram subséries de células 
desconectadas, seguidas de séries desconectadas, defeitos de pontos quentes e 
módulos com vidros quebrados. No entanto, ao comparar a quantidade de energia 
perdida causada por cada falha, os maiores prejuízos são causados por séries 
desconectadas, seguidas por subséries desconectadas e pontos quentes, com vidro 
frontal quebrado por último.  
Após a etapa de aquisição de dados e formação do banco de dados para treinamento 
do algoritmo de detecção de falhas, foram realizados vários testes ajustando os 
hiperparâmetros da rede Mask-RCNN e ajustando o formato da anotação do conjunto 
de dados. Os melhores resultados obtidos utilizando o algoritmo com o conjunto de 
dados de validação (10% do número total de amostras) atingiram uma precisão média 
de 90,5% e um F1-score de 69,0%. Considerando o pequeno conjunto de dados 
utilizado para treinamento, esses valores são razoáveis e podem ser melhorados 
adicionando mais amostras. Após a aplicação do algoritmo de DL nas imagens dos 
dois casos testes, as imagens resultantes, com suas falhas detectadas, foram 
processadas para a produção de um ortomosaico de cada usina. Os resultados 
obtidos demonstraram a viabilidade de utilizar o método para facilitar a localização de 
falhas dentro das usinas FV. Especialmente no caso de detecção de pontos quentes 
e subséries desconectadas, a técnica provou ter alta precisão (em torno de 10% de 
falsos positivos), em um curto espaço de tempo, com poucos recursos computacionais 
necessários. Mesmo com conjuntos de dados pequenos, foi possível detectar 
visualmente as diferentes falhas nos ortomosaicos térmicos produzidos. A proposta 
do método tem uma importância grande para o desenvolvimento da energia solar e o 
método pode ser aprimorado com um maior conjunto de dados para melhorar a 
inspeção utilizando aIRT. 
 
Considerações Finais 
Os resultados deste trabalho contribuem com o desenvolvimento da técnica de 
inspeção aIRT, principalmente no contexto das usinas FV brasileiras, que estão 
caminhando para portes da ordem de 1GWp, ocupando áreas de várias centenas de 
hectares. Primeiramente, a revisão da literatura proporciona uma visão geral dos 
diferentes algoritmos usados para automatizar as muitas partes do processo de 
inspeção e fornece uma compreensão clara dos métodos mais comuns e eficazes a 
serem usados e desenvolvidos. 
Os resultados das inspeções realizadas no país também são extremamente 
importantes porque mostram as falhas mais comuns que podem acontecer no início 



 

 

 

da operação de usinas FV e, a partir disso, os operadores podem decidir como 
resolvê-los e evitá-los,  reduzindo o downtime e maximizando o tempo de operação e 
geração de energia das usinas FV. Além disso, são apresentados os impactos 
técnicos e econômicos destes problemas para o operador dos sistemas FV. 
Por fim, esta tese fornece uma abordagem inovadora que combina um algoritmo de 
DL com técnicas de produção de mosaicos para oferecer uma maneira simples e 
eficaz de detectar e localizar falhas em usinas FV usando IRT de forma automática. 
Este método é inovador tanto pela nova combinação de técnicas de DL e 
fotogrametria, como também pelo treinamento de uma rede de segmentação de 
instâncias usando dados coletados no Brasil. Isso é relevante porque o país está 
sujeito a condições ambientais específicas, como alta irradiância e temperatura, e 
condições de layout particulares que não são difundidas nos países que 
desenvolveram conjuntos de dados de aIRT anteriormente, ou seja, Europa e Ásia. 
Portanto, o desenvolvimento de algoritmos de automatização com conjuntos de dados 
locais é extremamente valioso e pode ser aperfeiçoado com um maior conjunto de 
dados para melhorar a inspeção de aIRT em todo o país.  
 
Palavras-Chave: Detecção de falhas; Energia Solar Fotovoltaica; Termografia 
Infravermelha Aérea; Inteligência Artificial. 
 

  



 

 

 

ABSTRACT 

 

Aerial thermography (aIRT) is an inspection technique for photovoltaic (PV) systems 
that has been gaining attention in recent years as it is a fast, non-destructive inspection 
method with no contact required with the module. In addition, it can be applied in real-
time operational conditions. However, visually evaluating the images captured by aIRT 
and analyzing many image frames is a time-consuming and labor-intensive process. 
This work proposes a method to automate the fault detection procedure combining 
aIRT with orthomosaicking and a deep learning (DL) algorithm. The work begins with 
a review of the literature on methods for automating the various stages of the aIRT 
process. Thus, the DL methods are chosen for the detection of faults in images (Mask-
RCNN) and the orthomosaic production for the visualization of faults in PV plants. To 
train the failure detection method, it was necessary to create an aIRT image database. 
For this, a campaign of flights over Brazilian PV plants was carried out. With the 
obtained data, the aIRT image database was produced, which was used to train a DL 
algorithm for fault detection. The images with their detected faults are then used to 
form an orthomosaic with the faults of the PV plant. The method was tested with two 
test cases of two small PV plants and the results obtained demonstrated the feasibility 
of using the method to facilitate the location of faults in PV systems. Especially in the 
case of detection of hot spots and disconnected substrings, the technique proved to 
have high accuracy (around 10% false positives), in a short time, with few 
computational resources needed. Even with small datasets, it was possible to visually 
detect the different faults in the thermal orthomosaics produced. The development of 
the method is of great importance for the development of solar energy and can be 
developed with a larger dataset to improve inspection using aIRT in Brazil. 
 
Keywords: Fault detection; Photovoltaic Solar Energy; Aerial Infrared Thermography; 
Artificial Intelligence. 
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1. INTRODUCTION 

 

Solar photovoltaic (PV) energy is currently the fastest-growing renewable 

energy technology worldwide, with more than 150 GWp installed in 2021 alone 

(Renewable Capacity Statistics 2022IRENA, 2022), and over 1 TWp of cummulative 

capacity worldwide. Such technology adoption is mainly due to significant cost 

reductions, primarily driven by technological advancements, high learning rates, policy 

support and innovative financing models. For these reasons, solar PV will play a crucial 

role in the fight against climate change and is expected to exceed an installed capacity 

of 5,200 GWp before the end of the current decade (World Energy Transitions Outlook 

2022: 1.5°C PathwayIRENA, 2022). 

Solar PV is especially important in Brazil, where the high irradiances and policy 

incentives contributed to the close to 25 GWp of installed capacity by the end of 2022, 

which translates into more than 10% of the electricity generation installed capacity of 

the country (ABSOLAR, 2022). This growth has been driven by a combination of small-

scale distributed generation as well as utility-scale systems that can occupy an area 

as large as 1200 hectares (AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (ANEEL), 

2021; BADRA, 2021).  

The wide-scale adoption of this technology is highly dependent on its economic 

viability, which relies on its reliability, predictability and life span (IRENA, 2017). In 

addition, failures in installations can impose hazard risks, produce extra costs and 

increase scepticism about the technology. Quantifying electrical or mechanical 

stresses from installation and operation is both a matter of safety and financial return. 

Therefore, quality assurance is of utmost relevance in PV power plants, and developing 

fast and efficient methods for inspecting PV modules is critical in order for this 

technology to scale. With the advances in data analytics, sensors and artificial 

intelligence, a system supervisory platform is one applied solution for monitoring a 

power plant. These platforms acquire and control data from remote measurement 

devices (such as inverter current sensors) and enable the visualization of the 

performance status of the plant (Advanced asset management tools in photovoltaic 

plant monitoring: UAV-based digital mappingNICCOLAI et al., 2019). However, these 

systems typically measure each string's power, current and voltage, making it hard to 
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detect and locate faults that affect a particular module or component (ABUBAKAR et 

al., 2021). They also cannot detect non-energy, latent risk factors, such as hot spots 

or sub-string failures, that do not reduce power production in the short term but can 

cause damage to the system in the long run (HØIAAS et al., 2022). Therefore, onsite 

inspections are still a necessary component of proper operation and maintenance. 

Manual inspection of PV plants is becoming practically impossible as their sizes 

expand due to long assessment time, low efficiency, demand for skilled workers and a 

relatively high error rate. For this reason, alternative methods are employed nowadays 

for inspection and monitoring. I-V curve measurements have been broadly used to 

assess the performance and efficiency of PV modules. However, this method requires 

the disconnection of the PV system, interrupting its operation (KÖNTGES et al., 2014). 

Photoluminescence and Electroluminescence, imagining techniques that capture 

photons emitted by the radiative recombination of excited charge carriers, are other 

methods commonly used to evaluate PV modules (OLIVEIRA, A. K. V. De et al., 2019). 

However, they require expensive cameras and can only be done at night, imposing 

challenges to a rapid and low-cost inspection (DOLL et al., 2018; ULRIKE JAHN et al., 

2018).  

On the other hand, infrared thermography (IRT) is a reliable and precise fault 

diagnosis method that requires minimal instrumentation and can be carried out during 

regular operation. The technique measures the radiation emitted by the modules in a 

range between 7 µm and 13 µm using commercially-available cameras (BUERHOP et 

al., 2022; TSANAKAS et al., 2016). Because all modules, in principle, receive the same 

amount of irradiance, faults that somehow prevent the conversion of photons into 

electricity will irradiate heat, which IRT can then detect. It, therefore, has the potential 

to identify the exact physical location of PV module defects such as disconnected 

strings, broken modules and substring interruptions (BUERHOP, Cl et al., 2012).  

IRT has proved to be an effective and reliable method for PV plant inspection. 

However, as PV power plants become more extensive, performing it with a handheld 

camera is neither time-efficient nor scalable. For this reason, combining IRT cameras 

with Unmanned Aerial Vehicles (UAVs), known more colloquially as drones, can 

improve cost-effectiveness in large systems, reduce the inspection time, and facilitate 

inspections for systems that are difficult to access, such as roof-mounted systems 
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(QUATER et al., 2014). This technique has been called Aerial Infrared Thermography 

(aIRT) and has the potential to revolution PV plant operation and maintenance (O&M). 

This thesis addresses aIRT, the advantages and challenges associated with the 

technology, and proposes a novel method to increase its time efficiency and accuracy. 

 

1.1. PROBLEM AND RELEVANCE OF THIS WORK 

 

As previously stated, with the development of PV, PV plants are becoming 

larger and are being installed in remote territories. Subsequently, research regarding 

aIRT has significantly increased in previous years. The process for an aIRT inspection 

consists of three primary stages: acquisition, analysis of the data, and remediation 

actions. For the acquisition step, the UAV flies a designated rote over the site, taking 

successive pictures or recording videos to create an imagery database that covers all 

modules in the PV plant.  

The acquired data is then analyzed, and an actionable report is produced. 

However, the visual assessment of the images captured by aIRT and the analysis of 

several image frames is time- and computer-intensive. Not only is it a long and tedious 

process, but it is also prone to human error. One potential solution to address this issue 

is to use artificial intelligence to perform fault detection in aIRT images. That is possible 

by combining aIRT with classic computer vision algorithms, as proposed by many 

authors using different strategies, like Hough Line Transform (SHA et al., 2019), k-

means (SALAZAR; MACABEBE, 2016), and HOG Features (MONTOYA et al., 2019). 

Another approach to the problem is to use deep learning (DL) algorithms to train a 

dataset and correctly detect PV module faults, mimicking the human brain. Some 

studies assess this strategy using classic DL algorithms such as ImageNet (Computer 

vision tool for detection, mapping, and fault classification of photovoltaics modules in 

aerial IR videosBOMMES et al., 2021), Yolo (GERD IMENES et al., 2021) and Faster 

RCNN (WEI et al., 2019).  

However, these algorithms' computational time and intensity are still relatively 

high, thus limiting potential adoption (DUNDERDALE et al., 2020). Furthermore, 

developing accurate classification algorithms that are robust enough to detect and 

classify faults in the most varied types of images (e.g., a domain shift between training 
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and test data) remains an unsolved problem (BUERHOP et al., 2022). Most of the 

developed algorithms in the literature used data collected in Asia and Europe, 

presenting installation and environmental conditions that are much different than in the 

Sun Belt countries, meaning that these solutions are often inadequate for such areas. 

This is the case in Brazil, where the absence of aIRT datasets collected has prevented 

the development of algorithms to detect such faults in Brazilian solar PV systems 

properly. This thesis aims to address this challenge by performing a flight campaign in 

typical PV plants in Brazil and developing a fault detection algorithm specifically 

adapted to the country’s power plant layout and environmental conditions.  

An additional challenge related to the analysis of faults in PV power plants is 

the correct localization of the defects in conformity with the operator’s nomenclature of 

strings and modules. This list is crucial so that repairs can be planned with complete 

knowledge of the site's condition. Since most of the technicians replacing broken 

modules and repairing connections on-site will not have an IRT camera on hand, an 

error in the fault list can cause a healthy module to be replaced while failing to address 

the root issue. Registering the physical location of the faults identified via aIRT is highly 

challenging, namely because aIRT videos are repetitive and display only a small 

section of the plant with only a few PV modules at any given time (BUERHOP et al., 

2022).  

To perform this process automatically, a highly accurate Global Positioning 

System (GPS) position data is necessary (ADDABBO et al., 2018; ISMAIL et al., 2020), 

as well as it is high computational time. Applying aerial photogrammetry using aIRT 

images is one potential solution to this problem. Photogrammetry is a scalable process 

that corrects the perspective distortions of the images. This makes it possible to create 

an orthorectified mosaic, the so-called orthomosaic, that completely covers the 

inspection site (ZEFRI et al., 2021). It improves sight perspective by giving a more 

comprehensive view of the modules, boosting resolution, and making defect 

localization easier (Survey on PV Modules’ Common Faults After an O&amp;M Flight 

Extensive Campaign Over Different Plants in ItalyGRIMACCIA et al., 2017). This 

allows users to accurately locate the system faults with detailed site mapping.  

Recent research has demonstrated that orthomapping combined with automatic 

fault detection algorithms enables efficient inspections of PV power plants. These 
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studies mostly use simple DIP techniques to detect faults and combine them with 

orthomosaicking techniques (LÓPEZ-FERNÁNDEZ et al., 2017; PARK; LEE, 2019; 

TSANAKAS et al., 2017). Considering this, this thesis proposes a method combining 

a DL algorithm for fault detection with orthomosaicking techniques to reconstruct a PV 

power plant orthophoto that highlights the detected faults by the automatic algorithm. 

 

1.2. OBJECTIVES 

 

1.2.1. General objective 

 

This doctoral thesis proposes a method for detecting and classifying faults on 

PV modules through aerial IRT images, combining orthomosaicking and deep learning 

algorithms.  

 

1.2.2. Specific objectives 

 

The general objective was divided into four specific goals: 

a) Review academic literature to understand the current methods used 

for the automatization of aIRT inspections of PV plants; 

b) Perform aIRT inspections of different PV power plants in order to 

detect faults and acquire aIRT images of modules and modules with 

different types of faults;  

c) Analyze and process the captured aIRT images in order to create a 

dataset of samples classified in categories of possible PV module 

faults;  

d) Train and refine a deep learning algorithm to detect PV modules faults 

in aIRT images;  

e) Develop a method to automatically obtain a map of a PV power plant 

with its detected faults. 

 

1.3. STRUCTURE OF THE THESIS 
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This thesis consists of three contextual chapters regarding the Introduction, 

Discussions and Conclusions, and three journal papers that together describe the 

activities performed during this doctorate work. Each article is presented in a chapter, 

and Table 1-1 gives an overview of them. The co-author of one of the papers (the only 

co-author besides the supervisor and co-supervisor of the thesis) provided a shared 

authorship agreement, as shown in Appendix A. The journal papers were transcribed 

to this document, but adjustments in their format were made to comply with the ABNT 

(Brazilian Association of Technical Standards) requirements. Also, all the references 

were presented at the end of this document for conciseness. An overview of all the 

chapters is presented in this section.  

 

Table 1-1 – Papers written in the context of this thesis. 
Title Journal Year Status 

Automatic Inspection of Photovoltaic Power Plants 
Using Aerial Infrared Thermography: A Review 

Energies 2022 Published 

Aerial infrared thermography for low-cost and fast fault 
detection in utility-scale PV power plants 

Solar Energy 2020 Published 

Automatic Fault Detection of Utility-Scale Photovoltaic 
Solar Generators Applying Aerial Infrared 

Thermography and Orthomosaicking 
Solar Energy 2022 Under review 

 

The first chapter provides an introduction to the importance of the research 

topic. It explains the value of monitoring PV systems and the problems associated with 

inspecting large PV plants. It shows the relevance of aIRT for fast and efficient PV 

plant inspections and presents the challenges of analyzing a large amount of the 

produced data. It highlights the significance of this thesis, which focuses on the 

automation of detecting faults on aIRT images. The chapter also synthesis the general 

and specific goals of this work, announcing the following chapters. 

Given the importance of aIRT and the need for automating the process of 

processing aIRT images, this thesis reviews the state-of-art techniques and 

automation methods. The second chapter then presents a literature review on 

strategies for automating various tasks of the aIRT framework for PV system 

inspections. The study was published as a paper in the journal Energies in 2022. In 

addition to presenting different methods reported in the literature, the chapter assesses 

the subject's main challenges and research opportunities. Algorithms for digital image 
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processing (DIP), classification, and deep learning techniques are among the related 

studies, with the majority based on a large dataset of acquired aIRT images. 

For this reason, acquiring images to create an image dataset is crucial in 

developing an automatic fault detection algorithm. Therefore, the third chapter of this 

thesis presents the results of an aIRT flight campaign in the northeast of Brazil over 

four utility-scale PV plants. This analysis was published in 2020 in the Solar Energy 

Journal and also presents the differences in the acquired images when using different 

flight strategies and equipment. The findings also show the most common faults that 

can occur right after the beginning of the operation of PV power plants and how 

operators can prevent such defects from occurring and remediate problems when 

necessary.  

Finally, the fourth chapter of this thesis describes a novel method to 

automatically detect faults in PV systems using aIRT and to obtain a map of the faults 

of the power plant. The procedure consists of training a deep learning algorithm for 

instance segmentation, a technique chosen based on the literature review presented 

in Chapter 2. The algorithm was trained using images obtained during the flight 

campaign described in Chapter 3. The review paper also supported the construction 

of a map with the faults of the PV plant, using the technique of orthomosaicking, listed 

in the review as a knowledge gap that needed further investigation. The method was 

tested on a 3 MW power plant case study, demonstrating promising results. It was 

described in the format of a paper submitted to the Solar Energy journal and is now 

under review. 

The last chapter presents the final discussions and conclusions obtained with 

this doctorate thesis. It discusses the primary outcomes reached throughout the 

development of this work and offers potential research opportunities about the 

automation of aIRT inspection that can be explored in future work. Figure 1-1 presents 

a flowchart that summarizes this thesis's previously described structure, focusing on 

each paper's role in developing the method proposed in this work.  
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Figure 1-1 – Flowchart of the structure of the thesis. 
 

1.4. CONTRIBUTION AND INNOVATION 

 

Research regarding aIRT in PV power plants has increased in the last few 

years. Such a trend is directly linked to the expansion of this clean energy source, 

which is occupying increasingly larger territories. This thesis aims to contribute to 

developing the inspection technique by improving and automating the processes to 

increase time and cost-efficiency, specifically in the context of the Brazilian power 

plants.  

The first contribution of this work is a comprehensive examination of the 

literature for different strategies for automating the inspection framework. It was 

published as a literature review, which outlines the area´s main developments, as well 

as its main challenges. This overview of the different algorithms used to automatize 

the many parts of the inspection process provides a clear understanding of the most 

common and effective methods to be used and further developed. It also presents 

research prospects for further scientific progress and can even help the industry 

understand the gaps and opportunities for investments in the area. 

Other contributions of this research are aligned with the importance of 

gathering aIRT data in power plants in Brazil. This data collection is essential to 

increase knowledge about the inspection procedures and better understand the main 

faults found in power plants in the country. These contributions are based on the results 

of the flight campaign carried out over four PV power plants in northeast Brazil, where 
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most of the large power plants in the country are installed. The flight campaign was 

published as a research paper that presented the outcomes of different flight strategies 

and equipment for the aIRT inspection, providing important conclusions for improving 

the technique. An unprecedented survey of Brazil's most common faults in power 

plants was presented, showing significant results for PV plant operators that can better 

understand Brazil's failure rates and mechanisms and plan repairs and preventive 

measures. Module manufacturers also can benefit from these results and fabricate 

more resilient equipment for Brazilian’s climate and conditions. 

The publication also demonstrated aIRT effectiveness, estimating the power 

loss of the detected faults and their economic and technical impact. This is a significant 

contribution not only on the scientific side but also to draw the attention of power plant 

operators to the importance of regular inspections. It contributes to increasing the 

adoption of the aIRT technique and the better performance of PV modules. Therefore, 

it impacts the reliability and safety of this clean energy source, with an expected 

consequence of higher acceptance and adoption of the technology.  

Finally, this research provides an innovative approach that combines DL 

algorithms with mosaicking techniques to offer a simple and effective way to detect 

and locate faults in PV plants using aIRT automatically. This method is innovative via 

the new combination of DL and orthomosaicking techniques and the training of an 

instance segmentation network. It was described and submitted in a journal paper that 

evaluates the proposed framework highlighting its main challenges, shortcomings, and 

workarounds. The study also presents the impact of different flight configurations and 

datasets on the processing time and results of the proposed workflow. The results were 

obtained by testing the proposal with test commercial PV plants, evaluating the 

challenges imposed by real datasets. Therefore, it contributes to scientific and 

industrial advancement by describing a method that can effectively detect and visually 

present faults and showing the gaps and advantages of the process for further 

development. 

The work is also innovative because it trains a machine learning (ML) algorithm 

using data collected in Brazil. This is relevant because Sunbelt countries are subject 

to specific environmental conditions, such as high irradiances and temperatures, 

including extreme over-irradiance events (NASCIMENTO et al., 2019) and specific 
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spectral distribution of irradiance (BRAGA et al., 2019). Also, Brazilian power plants 

have particular layout conditions that are not widespread in the countries that have 

previously developed aIRT datasets, namely Europe and Asia. Particularities of 

Brazilian large-scale PV power plants include the type of soil of the terrain and the low 

latitudes of most of the power plants and, therefore, the low tilt angles of the solar 

panels. The application of automation algorithms developed with these datasets in 

power plants in Brazil is challenging because of the differences in contrast and layout 

between the data used for training and application, which is called domain shift in the 

literature. These algorithms are not usually generalized and robust enough to 

overcome the different faults and layouts that are common in Brazil. Therefore, 

developing a local framework is extremely valuable and can be further developed with 

a larger dataset to improve aIRT inspection throughout the country. 
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2. LITERATURE REVIEW ON AUTOMATIC INSPECTIONS USING AIRT 

 

This chapter is the transcription of the following paper: 

 

Automatic Inspection of Photovoltaic Power Plants Using Aerial Infrared 

Thermography: A Review 

Authored by: Aline Kirsten Vidal de Oliveira, Mohammadreza Aghaei and 

Ricardo Rüther. 

Published in Energies (ISSN: 1996-1073), volume 15 (6), in 2022, and 

catalogued through the DOI: https://doi.org/10.3390/en15062055.  

 

Abstract 

In recent years, aerial infrared thermography (aIRT), as a cost-efficient inspection 

method, has been demonstrated to be a reliable technique for failure detection in 

photovoltaic (PV) systems. This method aims to quickly perform a comprehensive 

monitoring of PV power plants, from the commissioning phase through its entire 

operational lifetime. This paper provides a review of reported methods in the literature 

for automating different tasks of the aIRT framework for PV system inspection. The 

related studies were reviewed for digital image processing (DIP), classification and 

deep learning techniques. Most of these studies were focused on autonomous fault 

detection and classification of PV plants using visual, IRT and aIRT images with 

accuracies up to 90%. On the other hand, only a few studies explored the automation 

of other parts of the procedure of aIRT, such as the optimal path planning, the 

orthomosaicking of the acquired images and the detection of soiling over the modules. 

Algorithms for the detection and segmentation of PV modules achieved a maximum 

F1 score (harmonic mean of precision and recall) of 98.4%. The accuracy, robustness 

and generalization of the developed algorithms are still the main issues of these 

studies, especially when dealing with more classes of faults and the inspection of large-

scale PV plants. Therefore, the autonomous procedure and classification task must 

still be explored to enhance the performance and applicability of the aIRT method. 
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2.1. INTRODUCTION 

 

As the world experiences a continuously growing share of photovoltaics (PVs) 

in the energy mix, increasing the performance and reliability of PV installations is of 

utmost importance. In this context, infrared thermography (IRT) has become a well-

established and competitive fault detection method for the condition monitoring and 

maintenance of PV systems (TSANAKAS et al., 2016). It provides reliability and 

accuracy in the detection of typical PV module faults such as bypassed or 

disconnected substrings, microcracks, soldering problems, shunted cells and 

disconnected modules. Another feature of this technique is the possible large-scale 

applicability, through the combination of IRT cameras with an unmanned aerial vehicle 

(UAV), configured for aerial infrared thermography (aIRT) (BUERHOP, Cl et al., 2012; 

TSANAKAS et al., 2016). 

The first description of the potential of using aIRT in the literature was given in 

2012 by Denio (2012). This was followed by the publication of the results of an 

experimental setup that inspected 60 different PV plants of up to 1 MWp, based on a 

remote-controlled drone (BUERHOP, Claudia et al., 2012). Since then, several 

publications have demonstrated the technique’s capability to detect failures in 

photovoltaic systems quickly and efficiently from the commissioning phase of the 

power plant through its expected 25 years of operation (BUERHOP-LUTZ et al., 2016; 

CIOACA et al., 2015; Overview on Photovoltaic Inspections Procedure by means of 

Unmanned Aerial VehiclesNICCOLAI et al., 2019; OLIVEIRA et al., 2020; ULRIKE 

JAHN et al., 2018). 

To further improve the time and cost efficiency of the method, the automation 

of the entire procedure of the aIRT technique has been assessed in recent years by 

several research groups worldwide. However, this is a complex task, since it includes 

not only the automation of the inspection itself (flight path planning and autonomous 

flight), but also the analysis of a large amount of data for the detection of PV modules, 

detection of faults, classification and localization of these faults in the field. A significant 

amount of progress has been made recently in this area, using either simple digital 

image processing (DIP) techniques or more complex algorithms such as deep learning 

(DL). 
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This paper aims at reviewing the reported studies in the literature on the 

automation of the inspection procedure of PV plants using aIRT. 

 
2.2. METHOD OF REVIEW 

 

The literature search for conference and journal papers was carried out in the 

scientific databases IEEE Xplore and ScienceDirect, and on the web scientific indexing 

services Web of Science and Google Scholar. The keywords used included PV 

systems, inspections and thermography synonyms. Keywords related to aerial and 

UAVs were not included to not limit results and exclude the automatic assessment of 

ground-based thermographic images, besides reducing false positives related to the 

development of UAVs powered by PV modules. The string used for the search was 

“(photovoltaic OR PV OR (PV AND modules)) AND (faults OR detection OR 

classification) AND (automatic OR (artificial AND intelligence) OR processing) AND 

(thermography OR thermal OR infrared)” and initially returned 183 papers. The papers 

were filtered to fit the theme and classified according to application and automation 

algorithm. Papers that focused on the automatic assessment of visual images were 

not excluded since, normally, aIRT-aimed UAVs also have a visual camera coupled to 

them, which is also used in the inspection to better classify faults. 

The list of papers was expanded using references of the original papers and 

the references already known by the authors. When overlapping work was found in 

multiple publications (e.g., preprint in a conference and full paper in a journal), only the 

publication deemed most important was included. 

 

2.3. INFRARED THERMOGRAPHY (IRT) 

 

Infrared thermography (IRT) is a technique that assesses the radiation emitted 

by the surface of any body in the infrared wavelength spectrum between 1.4 and 15 

μm. IRT cameras used in PV inspections normally have the capability of measuring 

wavelengths in the mid-infrared wavelength range of 7–14 μm. This is a good 

compromise between costs and product availability, according to measuring conditions 

in the field (TSANAKAS et al., 2013). 
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In a PV plant, PV modules that are close to each other receive almost the same 

amount of irradiance. Some 20% of this irradiance will be converted to electricity; 

however, most of the photons which are not converted into electricity will produce heat 

in the cell. This will increase the temperature of these damaged cells and modules, 

and the faults will appear in the acquired IRT images as temperature differences 

(KUMAR et al., 2020), like a “temperature signature”. 

IRT has been shown to be a reliable and non-destructive tool for detection of 

different types of faults in PV cells, modules and strings, as they have an effect on the 

PV module thermal behavior. Table 2-1 presents some thermal signatures which have 

been identified and classified in previous studies (BUERHOP, Cl et al., 2012; 

KÖNTGES et al., 2014) and are standardized according to the international standard 

IEC TS 62446-3 Edition 1.0 2017-06 (INTERNATIONAL ELECTROTECHNICAL 

COMMISSION (IEC), 2017). 

 
Table 2-1 - Examples of IRT images of typical faults in PV systems. 

IRT image Description IRT image Description 

 

Suspicious conductor 
strip  (INTERNATIONAL 
ELECTROTECHNICAL 
COMMISSION (IEC), 
2017; VATH, 2016) 

Disconnected substring 
(INTERNATIONAL 

ELECTROTECHNICAL 
COMMISSION (IEC), 2017; 
WEINREICH et al., 2011) 

 

Overheated cell (VATH, 
2016) 

 

Disconnected string 
(INTERNATIONAL 

ELECTROTECHNICAL 
COMMISSION (IEC), 

2017) 

 

Module with broken front 
glass (INTERNATIONAL 
ELECTROTECHNICAL 
COMMISSION (IEC), 

2017)  

String in short circuit 
(patchwork) 

(INTERNATIONAL 
ELECTROTECHNICAL 

COMMISSION (IEC), 2017; 
VATH, 2016) 

 

Heated module junction 
box (INTERNATIONAL 
ELECTROTECHNICAL 
COMMISSION (IEC), 

2017; WEINREICH et al., 
2011; VATH, 2016)) 

Partly shaded cells (not a 
defect) (INTERNATIONAL 

ELECTROTECHNICAL 
COMMISSION (IEC), 2017; 

VATH, 2016) 

 

Substring in short circuit  
(INTERNATIONAL 

ELECTROTECHNICAL 
COMMISSION (IEC), 

2017; WEINREICH et al., 
2011) 
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2.4. UNMANNED AERIAL VEHICLES (UAVS) 

 

Unmanned aerial vehicles (UAVs) are aircrafts that are capable of remote or 

autonomous operation. They were initially developed for military applications, but due 

to recent developments, they are now available for civil activities and commonly used 

in applications such as rescuing and disaster relief, energy power line monitoring and 

environmental and forest control (AGHAEI et al., 2015). UAVs are becoming more 

popular especially in the energy and agriculture sectors, due to their fast large-area 

coverage, precise imagery, high flexibility, light weight, low cost and ability to operate 

in hostile environments (GRIMACCIA et al., 2015; TSANAKAS; BOTSARIS, 2012). 

Several countries have established legal guidelines for the use of UAVs. The rules can 

include limitations of flight areas, license requirements and insurance (GALLARDO-

SAAVEDRA et al., 2018). 

UAVs can carry various cameras and sensors to collect data and can be 

classified by size, range or endurance (AGHAEI et al., 2014). The most appropriate 

UAV equipment type for thermographic inspections is multicopters, which use rotary 

blades to generate lift, because of their stability and easy usability. They can be 

classified by the number of motors (tricopters, quadcopters, hexacopters and 

octocopters), with quadcopters being the most popular on the market (GALLARDO-

SAAVEDRA et al., 2018). They can also be classified by autonomy levels, being 

manually operated, semi-autonomous (i.e., need of a human operator for mission 

planning and for taking some of the movement decisions) or fully autonomous (i.e., all 

decisions for a delegated mission are made by the UAV based on sensor observations) 

(ELMOKADEM; SAVKIN, 2021). 

  

2.5. AERIAL INFRARED THERMOGRAPHY 

 

In the past, IRT inspections of PV systems were performed on the ground or on 

lifting platforms with handheld IRT cameras. This procedure cannot provide fast and 

accurate coverage of the power plant and is dependent on human labor and 

competence, besides being very time-consuming and labor-intensive. As a result, the 

inspection accuracy is susceptible to human error. A possible solution to the problem 
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is to combine the IRT sensor with aerial technologies such as UAVs. This procedure 

is known as aIRT and increases the cost effectiveness of IRT inspection, allowing the 

technique to be employed for large-scale PV plants or roof-mounted PV systems with 

limited access (AGHAEI, 2016; AGHAEI et al., 2019; BIZZARRI et al., 2019; CIOACA 

et al., 2015). 

This method has shown its potential in recent years, but its use can still be 

expanded to increase and simplify routine inspections of PV power plants and 

revolutionize the future of PV plant monitoring procedures (AGHAEI et al., 2015). For 

this method to achieve its full potential, however, it should be combined with 

automation algorithms and technologies, such as automated route planning and defect 

identification. 

Aerial IRT uses visual and IRT cameras that are mounted on the UAV. The 

equipment provides real-time and precise imagery, allowing a time-efficient inspection. 

The procedure can detect faults of different types, such as cell cracks, corrosion spots, 

broken cells, hot spots, snail trails, discoloration, soiling, disconnected modules or 

strings and potential-induced degradation (PID) (QUATER et al., 2014; TSANAKAS; 

BOTSARIS, 2012). According to the inspection goal and the PV plant layout, aIRT can 

be performed from different altitudes and directions to identify specific defects or faults, 

also depending on the time available for the inspection (LEVA et al., 2015). 

The aIRT process is carried out in three stages: acquisition of imagery, 

assessment of data and remediation actions. For the acquisition step, the UAV must 

fly a designated route acquiring successive photos or videos over the site to build an 

imagery database covering all modules in the system. As the equipment has a limited 

battery capacity, each flight has a duration of around 20 min (OLIVEIRA et al., 2020) 

During the flight, the weather conditions, wind speed and sunlight reflection 

must be monitored, as they can affect the measurements and consequently the quality 

of the aIRT images. Additionally, the velocity of the UAV and the orientation and angle 

of the IRT sensor must be controlled to avoid self-shading, blurred images and other 

reflections. aIRT should be performed on cloudless, sunny and clear days, with 

minimum irradiance of 600 W/m2 on the plane of the PV array under inspection. The 

flight path and velocity should be planned beforehand in order to optimize the coverage 



39 

 

 

and to avoid any drift during the flight (AGHAEI et al., 2017; LEVA et al., 2015; 

QUATER et al., 2014; VERGURA, 2021). 

The acquired data are then analyzed, and an action report is produced. With a 

detailed site mapping, it is possible to obtain an accurate location of the system faults, 

and the remediation can be planned based on full knowledge of the site state. The re-

port is passed to the stakeholders for remediation actions such as assessment of 

connections or replacement of modules or fuses. 

 

2.6. AERIAL INSPECTION ALGORITHMS 

 

2.6.1. Digital Image Processing 

 

The field of digital image processing (DIP) has been an object of increasing 

interest because it allows many applications such as: remote sensing, component 

defect detection, biomedical engineering, geoprocessing, metallography and industrial 

automation applications. DIP aims to transform and analyze images by extracting 

relevant information, highlighting and identifying patterns and objects (GONZALEZ; 

WOODS, 2002; PLATINI REGES et al., 2015). 

A digital image consists of a set of a finite number of elements (i.e., pixel), each 

one with a specific location and intensity. DIP techniques apply several operations to 

these pixels to transform the images, allowing the automatic interpretation of them by 

systems or machines. These operations include image rotation, thresholding, binary 

image analysis, brightness and contrast adjustment, filtering, resizing and interpolation 

(AGHAEI et al., 2017; GONZALEZ; WOODS, 2002). 

The methods of DIP are normally simple but can often solve problems in a more 

time- and computing-efficient way than DL techniques. Pixel thresholding or algorithms 

such as the scale-invariant feature transform (SIFT) are normally very general, do not 

require a large dataset to be trained and can be replicated in other images. DIP can 

even be combined with DL to take the best from both methods to automate image 

processing and recognition (O’MAHONY et al., 2020; OLIVEIRA, A. K. V. et al., 2019). 
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2.6.2. Deep Learning (DL) 

 

Artificial neural networks (ANNs) are the most popular technique in machine 

learning (ML) and were first developed based on the structure and operation of the 

human brain. They are commonly used because they can deal with highly nonlinear 

systems and allow constant updates in the model (MAYO; LEUNG, 2018). They are 

composed of a set of simple, connected processors called neurons that produce a 

sequence of activation calculations. The fundamental property of an ANN is its ability 

to learn from the environment (read a set of examples), through an iterative process of 

adjustments applied to synaptic weights and bias levels. Learning a task consists in 

finding weights that make the ANN exhibit a desired output when processing an input. 

Depending on the problem and how the neurons are connected, this process may 

require chains of consecutive computational stages, where each one modifies the 

aggregate activation of the network. DL is about accurately assigning credit across 

many of these stages, using convolutional neural networks (CNNs) (JUNIOR, 2011; 

SCHMIDHUBER, 2014). 

CNNs were inspired by the human visual system’s structure and are the state-

of-the-art method for image classification (KAMILARIS; PRENAFETA-BOLDÚ, 2018; 

MALOF et al., 2016; MEHTA et al., 2017; VOULODIMOS et al., 2018). They are easy 

to train if there is a substantial number of labeled images that represent distinct 

categories.  

They are layered sequences, and each has a specific function in the 

propagation of the input signal. There are three main types of neural layers: (i) 

convolutional layers, (ii) pooling layers and (iii) fully connected layers. Figure 2-1 

illustrates the CNN architecture and its three main layers for a task of object detection 

in an image: 

 Convolutional layers: responsible for extracting attributes 

from the input volumes. 

 Pooling layers: responsible for reducing the spatial 

dimensions of the input volume after the convolutional 

layers, reducing the computational work of the network. 
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 Fully connected layers: perform the final classification of 

the images, in the same way as a conventional neural 

network. 

In the end, the CNN output is the probability that the input image belongs to one 

of the classes for which the network was trained (CARNEIRO; SILVA, 2017). 

  

Figure 2-1-Example architecture of a CNN for an object detection task 
(VOULODIMOS et al., 2018). 

 

2.6.3. Other Machine Learning Techniques 

 

Other ML techniques are also used in the automation of aIRT inspection, 

especially for classification in combination with other techniques. Among them, support 

vector machines (SVMs) are supervised ML algorithms that are usually used for 

classification and regression analysis of data, as they are based on a decision function 

that divides the classes by decision planes. SVMs work relatively well when there is a 

clear separation between classes, and they are more effective in high-dimensional 

spaces (KARIMI et al., 2018; SERFA JUAN; KIM, 2020). 

Another commonly used classifier is the random forest (RF), which is an 

algorithm that builds several decision trees on multiple random portions of the data for 

training. In these trees, different binary classifications concatenated in a tree structure 

are performed, for different input features, and a combination of the nodes is used to 

calculate the result. The most common result among the trees is “elected” as the output 

of the classifier (DA COSTA et al., 2019; HANAFY et al., 2019). 

On the other hand, k-nearest neighbors (KNN) is a classification supervised 

algorithm that does not require training, as the samples are classified by a metric of 

distance, where the k-nearest points to the test sample are defined as a class 

(HANAFY et al., 2019). 
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For clustering, the most popular method is k-means clustering, which is an 

unsupervised ML algorithm. This method consists of dividing data in k clusters that will 

be grouped by the mean distance between points (ET-TALEBY et al., 2020; WAQAR 

AKRAM et al., 2019). 

 

2.6.4. Algorithm Evaluation Metrics 

 

Performance indices quantify the capacity of an algorithm to identify the events 

of interest. The accuracy (Ac) of an algorithm is the percentage of correct predictions 

over the test dataset. The precision index (Pr) provides the proportion of all segments 

that were identified in one class that in fact belong to this class (results of true positives 

over all the positives). The recall (Re) measures how well the algorithm can identify 

each class among the dataset (results of true positives over all images in a dataset 

that were originally labeled as positives). The F1 score is calculated by the harmonic 

mean of Pr and Re. A good algorithm should have all of these metrics close to 100% 

for all the classes (ZECH; RANALLI, 2020).  

Other less common metrics are also used in the papers covered by this work. 

The Matthews correlation coefficient (MCC) is a coefficient related to accuracy, which 

does not penalize classes of different sizes (DOTENCO et al., 2016). The Dice 

coefficient and the Jaccard index are often used for evaluating segmentation tasks. 

The first represents the overlapping between the predicted result with the ground truth, 

and the second measures the similarity of the predicted result to the ground truth 

(MEHTA et al., 2017; ZHANG et al., 2019). The Jaccard index is also known as 

Intersection over Union (IOU). The area under the receiver operating characteristic 

(AUROC) is an index obtained by integrating the curve of the true positives of a task 

over the false positives at various decision thresholds (Anomaly Detection in IR Images 

of PV Modules using Supervised Contrastive LearningBOMMES et al., 2021). 

In this paper, when available, the preferred metrics are F1 score and precision 

indices, in order to provide a comparison between different works, whenever possible. 
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2.7. APPLICATIONS OF AUTOMATIZATION ALGORITHMS 

 

2.7.1. Automatic Path Planning 

 

In an automatic aIRT mission, the UAV flies over a set of waypoints that cover 

all modules of the PV plant. Therefore, an optimized path-planning algorithm aiming at 

an optimal path for time and battery efficiency is essential (SIZKOUHI et al., 2022). 

Figure 2-2 depicts the coverage area by a UAV based on the field of view (FoV) and 

resolution of the camera on board as well as the essential parameters used for path 

planning (SIZKOUHI et al., 2022). 

Available market software packages already provide an automatic flight based 

on a so-called “lawn mower” flight pattern. However, they do not always provide the 

most efficient flight and do not guarantee a centralized view to the PV arrays, especially 

in power plants installed over complex topography. 

Studies aiming at optimizing path planning include different approaches to the 

problem. In the study developed by Salahat et al. (2019), the traveling salesman 

shortest path algorithm was used to generate a path that includes a randomly selected 

set of modules that represent the entire PV plant, allowing an optimization of the battery 

use. Ding et al. (2020) based their method on density clustering, Boustrophedon path 

planning and Bezier Curves. Luo et al. (2017) also based their algorithm for path 

planning optimization on Bezier curves in a joint approach with particle swarm 

optimization (PSO), taking into consideration the flight attitude, gimbal limitation and 

path length. 

Image stitching and DIP techniques were used by Henry et al. (2020) to find 

contours of the power plant and generate a “lawn mower” path over it. A similar 

approach, using DL, was adopted by Moradi Sizkouhi et al. (2019; 2022), which is also 

complemented with a dynamic path planning, that deviates the previous flight plan to 

take closer photos when faults are detected. Pérez-González et al. (2021) also used 

DL to detect the area of the PV plant and then used different algorithms to determine 

the best flight path, wherein exact cellular decomposition boustrophedon and grid-

based wavefront coverage algorithms produced the best results. 
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Other real-time algorithms have been proposed that calculate the optimized 

path of the UAV during the flight. In Roggi et al. (2020), the UAV corrected the pre-

planned “lawn mower” path according to the images that it acquired and the image 

processing techniques that are applied. A vision-based flight control was also proposed 

by Xi et al. (2018), which performs a real-time direction and velocity correction. 

  

Figure 2-2 - Path planning procedure of a PV power plant (SIZKOUHI et al., 2022). 
 

2.7.2. Detection of PV Systems 

 

Although not always related to aerial inspections, the detection of PV systems 

in aerial imagery (UAV or satellite imagery) has been proposed by many authors and 

even used for path planning before the aIRT flight (MORADI SIZKOUHI et al., 2019; 

PÉREZ-GONZÁLEZ et al., 2021). Table 2-2 presents a summary of methods used in 

the literature for detecting PV systems in aerial imagery. The table presents the best 

metrics obtained in each study, the type of image data used as input and the type of 

detection output obtained with each method. The detection output was classified into 

three categories: 

a) Boxes: the output is given by the coordinates of a box or polygon 

placed around the PV system; 

b) Mask: the output is a binary image where the pixels corresponding 

to the segment of the PV system are represented by the value 1 

and the rest of the image is represented by 0; 

c) Binary: for each image, the presence or absence of a PV system 

is the result of the algorithm (1 or 0). 

Figure 2-3 shows two examples of two types of detections, by the coordinates 

of boxes around the detected PV panels (left) and masks of the segment of the PV 
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system (right). Besides developing an algorithm for the detection of PV arrays, Wu et 

al. (2017), also matched them to their string identifiers.  

 

Table 2-2 - Summary of methods for detecting PV systems using aerial imagery. 

(Ref) Algorithm Best results Output Type Images 
(MALOF et al., 2016) RF and DL Pr: 90% Mask Aerial imagery 

(ZHANG, D. et al., 2017) 
Adaptive clustering 
method based on k- 

means 

Loss rate is 
lower than 5% 

Mask Aerial imagery 

(SHEN et al., 2017) GLCM algorithm 
Pr: 93.16% 
F1: 77.8% 

Mask aIRT  

(WU et al., 2017) 
Feature description 

vector according to PV 
modules’ different colors 

- Boxes UAV  

(WANG et al., 2018) 
DIP and k-means 

classifier 
Pr>99% Boxes Aerial imagery 

(CAMILO et al., 2018)  DL (Segnet) Pr: 90% Mask Aerial imagery 
(GIRARD; TARABALKA, 

2018)  
DL (PolyCNN) IoU: 79.5% Mask Google earth 

(GOLOVKO et al., 2019) 
DL (Faster-RCNN, based 
on the classifier ResNet-

50) 
Pr: 92.9% Boxes Google earth 

(ZHANG et al., 2019)  DL (Res-UNet) Ac: 97.11% Mask 
System IRT 

images 

(SIZKOUHI et al., 2020)  
DL (Mark-RCNN and 

VGG16) 
Ac: 96.99% Mask UAV 

(ZECH; RANALLI, 2020) DL(U-net) F1: 82% Mask Google earth 
(MORAGUEZ et al., 

2020)  
DL F1: 92.2% Binary Satellite imagery 

(MAYER et al., 2020)  DL 
Pr:  92.66%  
Re: 97.43% 

Mask Google earth 

(RICO ESPINOSA et al., 
2020)  

DL (CNN for semantic 
segmentation) 

Average error 
of 5.75% 

Mask UAV 

(LI, Q. et al., 2020)  K-means, SVM and CNN MCC: 0.17 Mask 
Identify solar in 

rooftops 
(HUERTA HERRAIZ et 

al., 2020)  
DIP (edge detection) and 

DL (RCNN) 
Pr: 92.25% 

Mask Panels in aIRT 
images 

(COSTA et al., 2021) DL algorithms F1: 95.38% Mask Aerial imagery 

(WANG, Q. et al., 2021)  

DIP (Transform Invariant 
Low-rank Textures (TILT) 

algorithm for 
orthographic view and 

Otsu’s method for 
segmentation) 

- Mask 
Panels in aIRT 

images 

(SOUFFER et al., 2021) 

Unsupervised 
Segmentation 

Parameters Optimization 
(USPO) and RF classifier 

F1: 98.7% Mask UAV 

(PÉREZ-GONZÁLEZ et 
al., 2021) 

DL server - Mask UAV 

(SIZKOUHI et al., 2022)  Mask-RCNN structure Ac: 96.99% Mask UAV 
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    (a)                      (b) 

Figure 2-3 - Examples of detection types for the detection of PV systems using aerial 
imagery: (a) boxes (HUERTA HERRAIZ et al., 2020); (b) mask (PÉREZ-GONZÁLEZ 

et al., 2021). 
 

2.7.3. Detection of PV Modules 

 

The detection of the area of the modules is an important step in the image 

processing task, which is required for both detecting modules with defects and locating 

them in the power plant. 

The first attempts to automatize the segmentation of the PV modules in IRT 

images appear to have been made in 2015, with images obtained with a moving cart, 

using simple DIP methods (GAO et al., 2015). Other attempts were described in 

Menéndez et al. (2018), Montanez et al. (2020), and Wu et al. (2018). Uma et al. (2019) 

did the same using a k-means clustering algorithm. In 2021, Xie et al. (2021) used a 

Segnet, a CNN used for segmentation. 

For aerial images, Tribak and Zaz (Remote solar panels identification based on 

patterns localization2018), Salamanca et al. (2017) and Perez et al. (2019) published 

results on detecting PV modules in aerial visual images, and many studies used 

different techniques to detect and segment PV module boundaries in aIRT data. Table 

2-3 shows the studies related to DIP and DL algorithms. In this case, the detection 

result of the algorithm can be given by a box or polygon around the PV module, a mask 

of the segment of the module or lines that mark the borders of the modules in a PV 

panel. 

The best metric among the studies was obtained with a combination of many 

algorithms (DIP, SVM and DL) (DÍAZ et al., 2020). On the other hand, the worst metrics 

were obtained with simple DIP filters (ALFARO-MEJÍA et al., 2020). 

It is important to note that not all studies are comparable, because not all have 

presented metrics for their performance, and they have different dataset sizes, which 
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make the comparison difficult. The studies described by Carletti et al. (2020) and 

Bommes et al. (Computer vision tool for detection, mapping, and fault classification of 

photovoltaics modules in aerial IR videos2021), besides detecting the PV module, also 

developed ways to track the modules in subsequent frames of a video. A tracking 

system was also developed by Xie et al. (Abnormal target tracking and localization 

algorithm for UAV PV inspection scenarios2020) using a AlexNet CNN.  

 

Table 2-3 - Summary of methods for detecting PV modules in aIRT using DIP and DL 
algorithms. 

(Ref) Algorithm Best results  Output type 
(DOTENCO et al., 

2016)  
DIP (Normalization and Thresholding) F1: 92.76% Boxes 

(ARENELLA et al., 
2017)  

DIP (Edge extraction by Hough transform) - Boxes 

(KIM et al., 2017)  DIP (Thresholding) Pr: 96.9% Mask 
(LÓPEZ-FERNÁNDEZ 

et al., 2017)  
RANSAC (Random Sample Consensus) 

algorithm 
- Boxes 

(MUHAMMAD et al., 
2017) 

DIP (not detailed) Pr: 82% Boxes 

(PV plant digital 
mapping for modules’ 
defects detection by 

unmanned aerial 
vehiclesGRIMACCIA et 

al., 2017)  

DIP (Thresholding in HSV color space) - Mask 

(ADDABBO et al., 
2018)  

DIP (Template matching algorithm) F1: 83.0%  Boxes 

(CARLETTI et al., 
2020)  

DIP (Canny Edge and morphological 
filters) 

F1: 87% Boxes 

(ALFARO-MEJÍA et al., 
2020)  

DIP (ACM LS and filtering by area, Hough 
Transform) 

Re: 70% Boxes 

(JEONG et al., 2020)  DIP (Thresholding in HSV color space and 
MSER algorithm) 

Ac: 98% Boxes 

(GRECO et al., 2020)  DL (YOLOv3) F1: 95% Boxes 

(DÍAZ et al., 2020) 
DIP + Support Vector Machine (SVM) and 

DL (Mask RCNN) 
F1: 98.9% Boxes 

(NIE et al., 2020) DIP (Hough line detection, Sobel operator) - Lines 
(Photovoltaic panel 
anomaly detection 
system based on 
Unmanned Aerial 

Vehicle platformXIE et 
al., 2020)  

DIP (Sobel and canny operator, 
HoughPLine,) 

Pr: 90.91% Lines 

(WANG, N. et al., 2021) 
DIP (LSD algorithm and k-means 

clustering) 
Pr: 77.3% 
F1: 86.3% 

Mask 

(FERNÁNDEZ et al., 
2020)  

DIP (k-means clustering and thresholding) Ac: 98.46% Mask 

(Computer vision tool 
for detection, mapping, 
and fault classification 

of photovoltaics 

DL (Mask RCNN) 
Pr: 90.01% 
F1: 90.51% 

Mask 



48 

 

 

modules in aerial IR 
videosBOMMES et al., 

2021)  

(ZEFRI et al., 2022)  
DIP (Geometry coercion, clustering and 

angularity-based segment filtering) 
- Mask 

 

2.7.4. Orthomosaicking 

 

The localization of faults within a power plant is a challenging issue that can be 

addressed by creating an orthomosaic of the PV power plant (OLIVEIRA et al., 2021). 

Image mosaicking, also known as image stitching, is a computational technique that 

detects overlapping key points in spatially subsequent photos and uses them to create 

a so-called panorama picture (PV plant digital mapping for modules’ defects detection 

by unmanned aerial vehiclesGRIMACCIA et al., 2017). 

To improve the sight perspective and enable an expanded view of the 

localization of faults in both visual and thermal images of PV power plants, some 

researchers used commercially available software packages to create orthomaps with 

aerial imagery. Lee and Park (2019) and Zefri et al. (Thermal Infrared and Visual 

Inspection of Photovoltaic Installations by UAV Photogrammetry—Application Case: 

Morocco2018) used the software Pix4D capture to process thermal and visual images 

and create orthographic images with temperature information. Oliveira et al. (2021) 

compared the use of two software (DroneDeploy and ContextCapture) to create an 

orthomosaic of a 1 MW PV power plant. Higuchi and Babasaki (2018) used the 

software OpenDroneMap to generate the orthographic image of a 2 MW PV power 

plant. 

Grimaccia et al. (PV plant digital mapping for modules’ defects detection by 

unmanned aerial vehicles2017), Aghaei et al. (2017) and Ismail et al. (2020) have 

proposed methods for the orthomosaicking of visual images of PV power plants using 

DIP techniques. Tsanakas et al. (2017) used the method of aerial triangulation, and 

Lafkih and Zaz (2017) and Zefri (2021, 2022) used the SIFT technique to perform the 

task. To optimize the mosaicking of visual PV images, Qi et al. (2020) used a Faster 

RCNN to detect key points in aerial sequence images in the world coordinate system, 

so it avoids redundant information generated by traditional methods. López-Fernández 

et al. (2017) developed a tool that creates a 5D point cloud of the power plant, where 
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each coordinate point has a temperature and an intensity value associated with it. After 

segmenting the modules in a dataset, Costa et al. (2021) used a sliding window 

algorithm with over-lapping pixels, combining frames side by side to reconstruct 

orthomosaics of power plants. 

 

2.7.5. Soiling 

 

A common cause of hot spots in PV power plants is soiling and shadow over 

the modules, which hinders the evaluation of results since they are not considered real 

defects of the PV modules (OLIVEIRA et al., 2020). Cipriani et al. (2020) approached 

this issue by using a CNN to differentiate hot spots caused by faults from soiling, 

obtaining an accuracy of up to 98%. 

Another solution to the problem is the analysis of the visual images that are 

normally taken together with the IRT images in the UAV, which enables the operator 

to discard hot spots caused by soiling. Automation of the task of detecting soiling in 

individual modules was proposed by Yang et al. (2020), Pivem et al. (2019) and Qasem 

et al. (2016) using DIP techniques. Similar techniques were employed by Wen et al. 

(2021), and by Karaköse and Firildak (2015) to detect shadows over PV systems. 

Hanafy et al. (2019) compared different ML algorithms (KNN, NN, RF and SVM) to 

classify modules in different categories of cleanliness and obtained an accuracy of over 

90% using an SVM algorithm. Mehta et al. (2017) proposed a method that uses a 

weakly supervised CNN-based classification network to predict power loss, detect 

soiling and categorize it given a PV module image. This method obtained an accuracy 

of about 87% on a test dataset of about 50 images. 

 

2.7.6. Detection and Classification of Faults 

 

The manual assessment of aIRT imagery is a time- and computing-consuming 

task; therefore, its automation is the most explored part of the aIRT framework in the 

literature. This detection can either be processed on board, during the UAV flight, as 

shown in the example in Figure 2-4, or in a computer software, after the acquisition of 

images has been carried out by the UAV (Figure 2-5). Both Figure 2-4 and Figure 2-5 
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show the procedure of the inspections for the two different approaches, including all 

tasks being automatized in each case. 

In 2002, Pilla et al. (2002) used the Sobel and canny edge operators to detect 

cracks in IRT PV cell images. In 2003, Wang et al. (2003) used thresholding and a 

fuzzy classifier to detect faults in IRT images. After that, in 2011, Vergura and Falcone 

(2011) used DIP techniques to analyze IRT images for faults. Since then, many other 

studies have used mostly DIP techniques to segment faults in IRT images. Table 2-4 

presents a summary of the main algorithms for the detection and classification of faults 

in IRT images. In this case, the results can be in the form of a segmentation of the 

faults (mask), the detection of modules with faults and the classification of these faults 

in categories. Some methods presented high metrics when used in association with a 

classification algorithm, such as an SVM (NATARAJAN et al., 2020). Many papers do 

not present a metric for the performance evaluation of the algorithms proposed, 

especially for the case of fault segmentation (masks). It is important to note that a 

comparison between metrics is not always possible, because the dataset size and 

number of classes differ among studies. 

 

 

Figure 2-4 - Overview of a tool for semi-automatic inspection of large-scale PV plants 
using IRT videos acquired by a UAV (Computer vision tool for detection, mapping, 
and fault classification of photovoltaics modules in aerial IR videosBOMMES et al., 

2021). 
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Figure 2-5 - Overview of the on-board software package RoboPV, developed to 
perform the autonomous aerial monitoring of large-scale PV plants using UAVs 

(SIZKOUHI et al., 2022). 
 

 

Table 2-4 - Summary of methods for detecting and classifying faults in IRT images of 
PV modules. 

(Ref) Algorithm Best results Output type 
(GAO et al., 2015)  DIP filters Pr: 97.40% Detection of modules with faults 

(TSANAKAS et al., 2015) 
Histogram analysis, 

Thresholding and Canny 
edge 

- 
 

Faults mask 

(J. VANEK et al., 2016)  DIP and ANN Ac: 80% Faults mask 
(GUERRIERO et al., 

2016)  
Filter by temperature values - 

Detection of hot spot, cracks 
and soldering issue 

(NGO; MACABEBE, 
2016)  

K-Means color quantization 
and Density-Based Spatial 
Clustering of Application 
with Noise (DBSCAN) 

- Faults mask 

(VERGURA; MARINO, 
2017)  

DIP (thresholding and 
clustering) 

- Detection of modules with faults 

(JAFFERY et al., 2017)  
DIP and Fuzzy Rule on 

temperature data 
- 

Classification in 6 anomaly 
types  

(MENÉNDEZ et al., 
2018)  

Filtering by temperature 
values 

Pr: 96.52% 
Detection of modules with hot 

spots  

(ALAJMI et al., 2019)  
Thresholding in HSV color 

space 
Ac: 100%  

(only 3 images) 
Detection of modules with faults 

(NIAZI et al., 2018, 2019) nBayes classifier Ac: 94.1% 
Classification in healthy, 

shaded, and defective modules 

(UMA et al., 2019)  DIP filters - 
Detection of delamination, snail 

trails and bubbled faults 

(HAQUE et al., 2019)  
ANN and Discrete wavelet 

transform 
Ac: 100% 

Combination of IRT with 
electrical data - Classification in 

5 anomaly types  
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(DHIMISH; BADRAN, 
2019)  

Fuzzy inference system 
(FIS) using Mamdani-type 

fuzzy controller 
Ac: 96.7% 

Combination of IRT with 
electrical data – detection and 

classification of hot spots 

(DU et al., 2020)  
GoogleNet VS LeNet-5 and 

VGG-16 
Ac: 97.9% 

Classification in 6 cell anomaly 
types  

(AKRAM et al., 2020)  DL and Transfer Learning Ac: 99.23% Detection of modules with faults 
(NATARAJAN et al., 

2020)  
DIP and SVM Ac: 97%  Detection of modules with faults 

(MONTANEZ et al., 
2020)  

Histogram analysis of 
segmented module 

- Detection of modules with faults 

(BALASUBRAMANI et 
al., 2020)  

Fuzzy classifier based on 
temperatures of the module 

Ac: 94% 
Detection of EVA discoloration 

and delamination faults 
(NAJIAH NURUL 

AFIFAH et al., 2021)  
Multilevel Otsu thresholding Ac: 91.81% Faults mask 

(LE et al., 2021)  DL and SVM Ac: 86% 
Classification in 12 anomaly 

types  

(KIM et al., 2021)  
DIP (adaptative histogram 
equalization), DL and SVM 

Ac: 92.96% Detection of modules with faults 

(KURUKURU et al., 
2021)  

DIP filters and SVM 
classifier 

Ac: 94.4% 
Classification in 10 anomaly 

types  

 

Table 2-5 shows the summary of studies of the detection and classification of 

faults in visual images. The faults detected in this case are mostly related to visible 

problems, such as delamination, burn marks and glass breakages. An important issue 

that makes the comparison between studies difficult is the difference between the data 

resolution used as input for each one of them, as images vary from PV cells (BAIG et 

al., 2018) to aerial images (VENKATESH; SUGUMARAN, 2022). 

 

Table 2-5 - Summary of methods for detecting and classifying faults in visual images 
of PV modules. 

(Ref) Algorithm Best results Detection type 

(REGALADO et al., 
2014)  

Color base segmentation 
based on k-means 

clustering 
- 

Detection of cracks, 
interconnects problems and 

discolored areas. 
(BAIG et al., 2018)  Luminance filters - Cell faults detection 
(SHIHAO DING ; 
QIANG YANG ; 

XIAOXIA LI ; 
WENJUN YAN ; 

WEI RUAN, 2018)  

DL Ac: 98.9625% 
Classification in 8 anomaly types 

of faults in aerial images 

(ZYOUT; 
OATAWNEH, 2020) 

Different CNNs Ac: 93.3% Detection of faults 

(RICO ESPINOSA 
et al., 2020)  

CNN for semantic 
segmentation 

Ac: 75% 
Detection of glass breakage, 

shadows, and dust. 
(LI et al., 2019; 

Edge Computing 
Enabled Unmanned 

Module Defect 
Detection and 

Diagnosis System 

DL and SVM Ac: 99.8% 
Classification in 6 anomaly types 

of faults. 
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for Large-scale 
Photovoltaic 

PlantsLI, X. et al., 
2020; An Unmanned 
Inspection System 
for Multiple Defects 

Detection in 
Photovoltaic 
Plants2020)  

(PATEL et al., 2020) Kirsch edge detection - Detection of glass breakage 

(REN et al., 2020)  
Yolo, MobileNet-SSD 

network 
Pr: 89.2% 

Classification in 3 anomaly types 
of size of hot spot (not made in 

real PV system) 
(SRIDHARAN; 
SUGUMARAN, 

2021)  
DL Ac: 95.07% 

Detection of burn marks, 
delamination, discoloration, glass 

breakage and snail trail 

(LI et al., 2021)  K-means, SVM and CNN MCC: 1.0 
Detection of damaged modules 

in rooftops 

(VENKATESH; 
SUGUMARAN, 

2022)  

Naïve Bayes, SVM, k-
nearest neighbor, decision 

tree, RF and pre trained 
DL models 

Ac: 100% 
Detection of burn marks, 

delamination, discoloration, glass 
breakage and snail trails 

(MORADI 
SIZKOUHI et al., 

2021)  
DL Ac: 93% Masks of bird droppings 

 

Table 2-6 and Table 2-7 present a summary of the methods for detecting and 

classifying faults in aIRT images of PV systems, using DIP and DL algorithms, 

respectively. In general, the algorithms with the highest results are the ones dedicated 

to the detection of faults or the classification of a few types of faults, with the 

classification of many classes of faults being a much more complex task. It is 

noticeable that the DIP algorithms have comparable results to DL techniques, even 

though most of them use smaller datasets, and therefore their generalization 

capabilities can be jeopardized. 

Some of the challenges for the development of a robust automatic classification 

of faults include the reflections and shadows from surroundings and the lack of a 

standardized image database (with standard flight directions and weather conditions). 

When using DL, the computation requirements, the need for a large dataset with an-

notated data and the processing time must also be overcome. 
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Table 2-6 - Summary of methods for detecting PV modules in aIRT using DIP and 
classification algorithms (continues). 

(Ref) Algorithm 
Best 

results 
Detection type 

(AGHAEI et al., 2015)  
Thresholding, temperature 

filtering 
- Detection of faults 

(ARAICA; RUÍZ, 2015)  DIP filters F1: 99.4% Detection of faults 
(R. RASCH, G. 

BEHRENS, F.U. 
HAMELMANN, S. 
HANTELMANN, R. 
DREIMANN, 2015)  

Canny edge, thresholding  Faults mask 

(DOTENCO et al., 2016) 
Statistical classification of 

faults 
F1: 93.88% 

Classification in 3 classes of 
faults 

(SALAZAR; MACABEBE, 
2016)  

DIP and k-means clustering - Detection of faults 

(LIN et al., 2016)  Histogram filtering - Detection of hot spots 

(ZHANG, P. et al., 2017) 
Thresholding module 

segment 
- Detection of faults 

(PV plant digital mapping 
for modules’ defects 

detection by unmanned 
aerial 

vehiclesGRIMACCIA et 
al., 2017)  

Thresholding by module 
luminance distribution 

- 
Classification in 3 classes of 

faults 

(KIM et al., 2016, 2017)  
Mean and std of luminance 

of area of module 
Ac: 97% Detection of faults 

(ARENELLA et al., 2017) DIP filters - Faults mask 
(LÓPEZ-FERNÁNDEZ et 

al., 2017)  
Temperature segmentation Ac: 100% Faults mask 

(AROSH et al., 2017)  
Non-uniform illumination 
(NUI) boundary detection 

- 

Hot spots detection and 
analysis of visual images for 

soiling or shadowing in 
laboratory setup 

(ALSAFASFEH et al., 
2018)  

Thresholding, pixel seed 
and canny edge 

- Faults mask 

(ADDABBO et al., 2018) 

Normalized Cross 
Correlation as a similarity 

measure for template 
matching 

F1: 75% Detection of faults 

(WU et al., 2018)  DIP filters - Faults mask 

Table 2–6 - Summary of methods for detecting PV modules in aIRT using DIP and 
classification algorithms (conclusion). 

(Ref) Algorithm 
Best 

results 
Detection type 

(ERGÜZEN; SAIT, 2019) Thresholding - Faults mask 
(SHA et al., 2019)  Gaussian filter, Hough Line - Detection of hot spots 

(MONTOYA et al., 2019) 
Hog Features and Cascade 

Object Detector 
- Detection of hot spots 

(LIAO; LU, 2020)  Thresholding - Faults Masks 
(Photovoltaic panel 
anomaly detection 
system based on 

Unmanned Aerial Vehicle 
platformXIE et al., 2020) 

Statistics of the luminance Pr: 92.71% 
Classification in 3 classes of 

faults 
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(Ref) Algorithm 
Best 

results 
Detection type 

(UMAIR et al., 2020)  

DIP for feature extraction 
+different algorithms for 
classification (SVM, n-

Bayes, KNN…) 

Ac: 92% Detection of faults 

(ET-TALEBY et al., 2020) K-means clustering - Faults mask 

(JEONG et al., 2020)  Temperature based 
thresholding  

Ac: 97% Detection of faults 

(FERNÁNDEZ et al., 
2020)  

Temperature based 
thresholding  

Pr: 97.6% 
Classification of size and 

severity of faults 

(CARLETTI et al., 2020)  
Water filling and temporal 

tracking algorithms 
F1: 72% Detection of hot spots 

(SEGOVIA RAMÍREZ et 
al., 2021)  

Statistical analysis of 
temperature of modules 

Ac: 96% 
Classification in 6 classes of 

faults 

(WANG, Q. et al., 2021)  
Robust PCA decomposition 

and thresholding 
F1: 78.23% Faults mask 

(LIAO; LU, 2021)  
Filtering and probability 

density functions 
- 

Fault detection using both 
visual and aIRT images 

 

Table 2-7 - Summary of methods for detecting PV modules in aIRT using DL and 
classification algorithms (continues). 

(Ref) Algorithm 
Best 

results 
Detection type 

(PIERDICCA et al., 
2018)  

U-Net, LinkNet, FPN, Mask 
RCNN 

Dice: 0.841 
IOU: 0.741 

Faults mask 

(WEI et al., 2019)  
Hough line transformation and 

canny operator and Faster-
RCNN 

F1: 95.15% 
Detection of reflections and hot 

spots 

(HIGUCHI; 
BABASAKI, 2018)  

VGG Pr: 49.11% 
Detection of substring, module, 

and string failures 
(OLIVEIRA, A. K. V. 

et al., 2019)  
DIP and DL - Faults mask 

(NIE et al., 2020)  DL Pr: 95% Detection of hot spots 

(DUNDERDALE et 
al., 2020)  RF, SVM, VGG-16, MobileNet Ac: 91.2% 

Classification in disconnected 
substring, patchwork, hot spots, 

soiling, and string problem 
(HUERTA HERRAIZ 

et al., 2020)  
RCNN Pr : 91% Detection of hot spots 

Table 2–7 - Summary of methods for detecting PV modules in aIRT using DL and 
classification algorithms (conclusion). 

(Ref) Algorithm 
Best 

results 
Detection type 

(MANNO et al., 
2021)  

Thresholding, CNN, and Multi-
Layer Perceptron 

Ac: 100% Detection of hot spots 

(Anomaly Detection 
in IR Images of PV 

Modules using 
Supervised 
Contrastive 

LearningBOMMES 
et al., 2021)  

DL (ResNet-34) and k-nearest 
neighbour classifier 

AUROC 
from 73.3% 

to 96.6% 
Faults Masks 

(FONSECA ALVES 
et al., 2021)  

DL using a Nadam optimizer Ac: 66.43% 
Classification in 11 anomaly 

types 
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(Computer vision 
tool for detection, 

mapping, and fault 
classification of 
photovoltaics 

modules in aerial IR 
videosBOMMES et 

al., 2021)  

ResNet-50 with ImageNet Ac: 90%. 
Classification in 10 anomaly 

types  

(AHMED et al., 
2021)  

ICNM and transfer learning Ac: 97.62% 
Detection of bird drops, hot 

spots, patchwork, disconnected 
string, disconnected substring. 

(HWANG et al., 
2021)  

DIP and XGBoosz (algorithm for 
statistical characteristics of the 

temperatures) as input 
preparation for a CNN 

Ac: 93.8% 
Classification in hot spots, PID 

and disconnected 
modules 

(GERD IMENES et 
al., 2021)  

YOLOv3 Ac: 75% 
Classification in 5 faults classes 

using composites (aIRT and 
visual images) 

(ZEFRI et al., 2022) DL F1: 94.52% 
Classification in 5 faults classes 

using composites  

 

2.7.7. Other Applications 

 

Imaging techniques have been employed in some other applications to facilitate 

the analysis of PV modules. An example is the detection of blurred images that was 

addressed by Tribak and Zaz (Solar Panels Frames Quality Assessment2018) with 

image processing techniques in order to filter frames of videos before employing 

mosaicking techniques. Similar techniques were used by Shen et al. (2020) to correct 

the angle distortion of IRT images. 

  

2.8. DISCUSSION 

 

This review has shown that different automatization algorithms, including DIP, 

DL and classification techniques, have been employed for automating different tasks 

of the aIRT procedure for inspecting PV power plants. Among the conclusions, this re-

view showed that only a few among the selected studies have assessed two important 

aspects of the autonomous inspection procedure, namely, the optimization of the flight 

path (nine papers), and the detection of soiling (eight papers). These two topics are of 

great importance to increase time efficiency in aIRT and therefore should be further 

investigated. The latter goal of detecting soiling over PV modules and differentiating it 

from actual faults of the modules was investigated by some authors, e.g., Dunderdale 
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et al. (2020) and Arosh et al. (2017), together with the detection and classification of 

other faults.  

For the task of performing the orthomosaicking of aIRT images to facilitate the 

localization of the faults in the field, four papers employed existing software to per-form 

the task, while ten studies approached the development of algorithms to create the 

orthomosaic of the PV plant. However, most of the proposed methods are based on 

DIP techniques; therefore, the resulting mosaic consists of a simple image, without 

additional GPS information. The correlation of orthomosaic images with GPS 

coordinates and the identification of modules and strings according to the site 

nomenclature are areas that require further investigation. 

Another approach to the challenge was developed by Wu et al. (2017) with the 

development of an algorithm that detects PV arrays in power plants and performs the 

automatic correlation with their string identifiers. This is a promising strategy that could 

also be used to facilitate the localization of detected faults in the field through aIRT. 

Besides the study carried out by Wu et al. (2017), another 20 studies among the 

selected literature focused on the development of algorithms to detect PV systems and 

panels in aerial imagery. However, only three of these studies focused on aerial IRT 

images of the PV plants, obtaining up to 93.16% precision in the results (SHEN et al., 

2017). On the one hand, 18 papers presented the results of developed algorithms for 

the detection of individual PV modules in aIRT images, of which three of them applied 

DL techniques. Although the methods are hardly comparable given their different 

structures for results (i.e., mask, box or line), their different dataset sizes and the 

different evaluation metrics used, a method that combined many algorithms (DIP, SVM 

and DL) for detecting PV modules in aIRT images and obtained an F1 score of 98.4% 

can be highlighted (DÍAZ et al., 2020). On the other hand, the worst metrics were 

obtained with simple DIP filters (ALFARO-MEJÍA et al., 2020), which although 

providing fast results with small datasets required for training, are characterized by a 

lack in generalization. This is important for the replication of the algorithm in images 

acquired in different conditions and with a different quality. The algorithms proposed 

by Carletti et al. (2020), Xie et al. (Abnormal target tracking and localization algorithm 

for UAV PV inspection scenarios2020) and Bommes et al. (Computer vision tool for 

detection, mapping, and fault classification of photovoltaics modules in aerial IR 
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videos2021) also performed the tracking of the modules in subsequent frames of an 

aIRT video. This task is of utter importance for the cross-correlation of detected 

modules and faults, as well as their location in PV plants. 

Most of the selected studies have assessed autonomous fault detection and 

classification in PV plants through visual (12 papers), IRT (22 papers) and aIRT images 

(43 papers). Among these studies, 35% used DL techniques for the detection or 

classification of PV faults, with an increase in developed algorithms using CNNs in 

recent years. Still, DIP-based algorithms also presented high accuracy results, even 

though most of them use smaller datasets, and therefore their replication in other sets 

of data is possibly not feasible. The combination of DL or DIP techniques with classifier 

algorithms was a promising approach in recent studies. In the field, fault detection can 

either be processed on board, during the UAV flight, or subsequently through a post-

processing procedure after the flight. For the first case, the high computational 

requirements and the processing time of DL are still a challenge, as even in high-

performing computers, the processing of a set of images of a large-scale PV power 

plant (that consists of some gigabytes of data) can take hours when using a DL 

algorithm. In the same way as in the detection of PV systems and modules, many types 

of outputs for the algorithms are possible, namely the segmentation of the faults, the 

detection of damaged modules or even the classification of faults in separate classes. 

The classes also differ among authors, and these differences represent a great 

challenge not only for the comparison between studies, but also for the exchange of 

data, experiences and algorithms among researchers in PV community, which hinders 

the advancements in this area. The exchange of data to enable the development of 

larger and more generalized datasets that consider different environmental conditions 

is also deaccelerated by data protection clauses. 

Besides the different result types, the different evaluation metrics (or the lack of 

them), dataset sizes and image resolutions of the inputs also make the comparison 

between studies difficult. However, in general, the algorithms with the highest metrics 

are the ones dedicated to detecting  and classifying a few types of faults compared to 

those that carry out the classification of many classes of faults. This proves that 

detection and classification of multiple faults is a complex task and further investigation 

is required. On this subject, the algorithm developed by Bommes et al. (Computer 
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vision tool for detection, mapping, and fault classification of photovoltaics modules in 

aerial IR videosBOMMES et al., 2021) can be highlighted for its encouraging results, 

with an accuracy of 90% in the detection and classification of faults in ten different 

anomaly types. In summary, to achieve the goal of an entirely autonomous aIRT 

procedure, advances in some of the tasks related to the technique must be achieved. 

Even tasks that were already the focus of many research studies, such as the detection 

and classification of faults, should be further explored to contemplate different types of 

datasets and conditions. The exchange of data and academic collaborations are 

fundamental to allow for a fully automatic procedure that not only detects modules and 

faults on PV modules but also provides information about the type and location of the 

faults, in a simple and accessible manner, to enable quick remediation measures. 

 

2.9. CONCLUSIONS 

 

This paper has conducted a comprehensive review of the literature for methods 

of automating different tasks of the aIRT framework of PV power plants, since it is a 

subject that has been intensely investigated by researchers in recent years. Most of 

these studies (77 studies) focused on the autonomous fault detection and classification 

of PV plants in visual, IRT and aIRT images. Among these studies, the use of DL 

algorithms has provided good results with an accuracy of up to 90% in the detection 

and classification of faults in 10 different anomaly types detected in module segments 

extracted from aIRT images. On the other hand, only a few studies have explored the 

automation of other parts of the procedure of aIRT, such as the optimization of the path 

planning (nine papers) for the inspection flight, the orthomosaicking of the PV plant (14 

studies) that is performed to facilitate the localization of the faults in the field and the 

detection of soiling, and its differentiation from actual faults on PV modules (eight 

studies). Algorithms for the detection and segmentation of PV modules were presented 

in 38 papers and achieved a maximum F1 score of 98.4%. 

For the automation of these procedures, different algorithms have been 

investigated, including DIP filters and methods such as canny edge detection and 

thresholding; DL algorithms such as Fast RCNN, ImageNET and VGG16; and other 

ML-based algorithms used for classification tasks such as SVMs, KNNs and RFs. 
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However, the accuracy, robustness and generalization of the developed algorithms are 

still the main challenges of these studies, especially when dealing with more classes 

of faults and the inspection of large-scale PV plants. With the ever-increasing capacity 

and size of utility-scale PV power plants, reaching the scales of gigawatts and 

hundreds of hectares, automation is increasingly becoming a matter not only of 

scientific interest, but also of economic importance. Therefore, the autonomous 

procedure and classification task must still be explored to enhance the accuracy and 

applicability of the aIRT method. 
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3. AIRT FLIGHT CAMPAIGN ON PV POWER PLANTS IN BRAZIL 

 

This chapter is the transcription of the following paper: 

 

Aerial infrared thermography for low-cost and fast fault detection in utility-

scale PV power plants  

Authored by: Aline Kirsten Vidal de Oliveira, Mohammadreza Aghaei 

Ricardo Rüther. 

Published in Solar Energy (ISSN: 0038-092X), volume 211, in 2020, and 

catalogued through the DOI: https://doi.org/10.1016/j.solener.2020.09.066 

 

Abstract 

The uptime of utility-scale solar photovoltaic (PV) power plants is of utmost importance 

for meeting contractual energy yields and expected capacity factors. Aerial Infrared 

Thermography (aIRT) is a non-destructive, no-downtime, fast and cost-effective 

method for monitoring large-scale PV power plants and assisting in fault detection. The 

use of aIRT techniques aims at increasing the quality and service life of PV plants 

especially in sunny and developing countries such as Brazil, where there is a shortfall 

of specialised workforce and the costs for a detailed supervisory system of utility-scale 

PV power plants are high. This paper presents an analysis of an aIRT flight campaign 

over four utility-scale PV plants in the northeast of Brazil. Two types of measurement 

equipment have been tested and compared, resulting in more stability and efficiency 

using a commercially available solution. This solution was also equipped with a RGB 

camera that accelerated the inspections, since it helped to differentiate defects from 

hot spots caused by soiling and vegetation over the modules, which were common. 

Different methods for fault detection were also tested and it was concluded that post-

flight image analysis provides faster results. The most common faults that can happen 

in the early operation of PV power plants and how operators should address and 

prevent them were also discussed. The most common defect detected during the 

campaign were disconnected cell substrings. However, disconnected strings had the 

most impact on the power plants energy performance. 
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3.1. INTRODUCTION 

 

Globally, renewable energy has contributed to a paradigm change in the electricity 

market. Mainly European and some North American countries and, in more recent 

years, China has sped up this growth through energy policy. Utility-scale photovoltaics 

(PV) is now one of the key players in this development, and Brazil has also seen a 

major expansion in installed PV capacity over the last couple of years, with the first 

gigawatts of power plants coming online (AGÊNCIA NACIONAL DE ENERGIA 

ELÉTRICA (ANEEL), 2021). As installations increase in number and scale, the need 

for novel methods to ensure the reliability and performance of PV systems grows. 

Approximately 8 GWp of PV plants will become operational in the forthcoming years in 

Brazil (AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (ANEEL), 2021). Most of them 

use single-axis tracking technology with bifacial PV modules, and are located in the 

northeastern region of the country (see Figure 3-1). This region is characterised by 

high levels of solar radiation (i.e. above 2000 kWh/m2 annual irradiation) and semi-arid 

climate in remote sites with difficult access, including hundreds of kilometres of 

unpaved roads (BRAZILIAN MINISTRY OF MINES AND ENERGY, 2018). In addition, 

the impact of high-operating temperatures, extreme over-irradiance events caused by 

cloud-edge and cloud-enhancement effects (NASCIMENTO et al., 2019), and soiling 

on the output of PV power plants is far more extreme in warm and sunny countries 

than in more temperate climates where most of the 600 GW PV plants operate 

worldwide (JÄGER-WALDAU, 2020; RÜTHER et al., 2017). 
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Figure 3-1 - Brazilian map presenting in red the location of PV power plants that were 
contracted through regulated and PV-dedicated energy auctions. Based on ANEEL 
(2020). Darker shades of red indicate a multiple PV power plants in the same place.  

 

In addition, the lifespan and the durability of PV modules depend on the 

degradation and failure modes, which may be created during PV module production, 

transportation and installation. Usually, PV modules are transported by trucks in ship 

containers, forcing harsh conditions on a glass product such as a PV module. Not only 

will the transport of the modules but also their storage and poor handling during 

installation implicate in potential faults and reduction of performance sooner or later 

after the beginning of operation. Another critical concern is the quality of these PV 

modules. Studies have shown that the quality control methods and qualification tests 

adopted in current standards are not sufficiently strict to cover the lifetime stress and 

the evolution of micro-cracks that PV modules experience in working conditions 

(FERRARA; PHILIPP, 2012).  

For all these reasons, after PV modules have been installed on their mounting 

structure and during plant commissioning, an effective inspection method covering a 
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larger area in a short time is crucial. Early fault identification ensures high uptimes and 

might prevent outages or expensive repair steps. In recent years, advanced inspection 

methods and techniques have been developed for performance assessment, such as 

real-time tracking, I-V curve tracing, infrared thermography (IRT), and 

electroluminescence (EL). In particular, IRT, as a non-destructive method, is one of 

the key techniques for fault inspections and has proven to be effective on detecting 

faults in PV modules. It requires only a minimum of instrumentation and is carried out 

under operating conditions, without interrupting the energy production of the PV plant 

(BUERHOP, Cl et al., 2012). Nevertheless, this method is time consuming, not cost-

effective and not practical for large-scale PV power plants because it requires expert 

manpower, and takes a long time to be performed. For this purpose, Unmanned Aerial 

Vehicles (UAVs) have been fitted with IRT cameras to inspect wide areas quickly, and 

this technique is known as aerial infrared thermography (aIRT) (BUERHOP et al., 

2016; CIOACA et al., 2015). 

The aIRT technique has already been proven to be a simple and efficient tool 

for detecting and classifying faults. It has been effectively applied for the control and 

commissioning processes of utility-scale PV power plants (AMSTAD et al., 2019; 

MORADI SIZKOUHI et al., 2019). It also offers an easy recognition of problems caused 

by environmental events such as hailstorms, windstorms, and lightning, as 

exemplified in Oliveira et al, (OLIVEIRA et al., 2018). The aIRT technique can assess 

a greater number of modules in a short time with no system shutdown (trackers only 

have to be in stow mode). The method is even more efficient when it combines RGB 

and IRT cameras in the same UAV, allowing a simultaneous analysis. 

aIRT is an opportunity for increasing the quality of PV plants and it is especially 

advantageous  in countries such as Brazil, where the lack of specialised workforce and 

the high costs for a detailed supervisory system of the power plants make a fast and 

cost-effective method for monitoring a power plant are even more welcome.  

Many studies showed the potential for the automation of the inspection process, 

since the speed in which the inspections are held generate a great amount of images 

to be treated and analysed (An Unmanned Inspection System for Multiple Defects 

Detection in Photovoltaic PlantsLI, X. et al., 2020; NIAZI et al., 2019; OLIVEIRA, A. K. 

V. et al., 2019; ROGGI et al., 2020; SIZKOUHI et al., 2020). With the data produced 
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from all the performed inspections, it becomes now possible to analyse specific failures 

occurring at various stages of installed PV systems and on the economic effect of these 

defects on commercial installations, where uptime is paramount. Additional analysis of 

these inspections could lead to findings about the quality of the equipment employed 

and of the installation process, and the financial return of routine inspections. A similar 

measurement campaign was previously carried out in Italy (Survey on PV Modules’ 

Common Faults After an O&amp;M Flight Extensive Campaign Over Different Plants 

in ItalyGRIMACCIA et al., 2017), and carried out aIRT inspections for smaller PV power 

plants that have been operating for at least four years in more temperate climate 

conditions.  

In this context, the purpose of this paper is to summarise the main conclusions of 

a very comprehensive flight campaign carried out in Brazil over a variety of utility-scale, 

single-axis tracking PV power plants of both c-Si and thin film CdTe technologies 

during their commissioning phase. It describes common defects found in the different 

plants displaying UAV-captured image data and the association between visible and 

IRT sensors. It also offers some evidence of typical faults identified and relative failure 

rates, and correlates results with related research observations in recent literature. The 

flight campaign applied different techniques and tested different sensor technologies 

in each one of the inspected PV power plants, in order to compare different methods 

for aIRT inspections with the aim of increasing the uptime of these plants. 

The paper is structured as follows. Section 2 summarises the method of aIRT as 

well as the faults it can detect and the procedures adopted for this study Then, Section 

3 describes the test sites where the inspections were carried out. In Section 4, the 

results are presented and discussed and in Section 5 the main findings of the study 

are summarised. 

 

3.2. AERIAL INFRARED THERMOGRAPHY (AIRT) 

 

As in theory, all PV modules receive the same amount of irradiance in a PV plant, 

the modules or cells that do not turn photons into electricity convert them into heat. IRT 

measures the radiation emitted from the surface of any object within the spectrum of 

infrared wavelengths between 1.4 and 15 μm (TSANAKAS et al., 2013). Energy losses 
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will therefore be revealed as temperature variations in the IRT images. These thermal 

differences have been defined and listed in previous research (BUERHOP et al., 2007; 

BUERHOP, Cl et al., 2012; KÖNTGES et al., 2014) and are now standardised in the 

international standard IEC TS 62446-3 Version 1.0 (INTERNATIONAL 

ELECTROTECHNICAL COMMISSION (IEC), 2017). 

Traditionally, IRT assessments are carried out with handheld IRT cameras in the 

field or on lift platforms to maximise coverage. This method relies on human effort and 

expertise and is very time-consuming and labour-intensive. As a result, the precision 

of the testing is vulnerable to human error, and it increases the complexity of the 

inspection method. IRT cameras can be combined with aerial equipment such as UAVs 

(drones) to increase cost-effectiveness and allow inspections on roof-mounted PV 

systems with limited access or large-scale PV power plants, in the so-called aIRT. This 

method increases the speed of the inspections, but they provide lower images 

resolutions than the traditional IRT method. (QUATER et al., 2014; TSANAKAS; 

BOTSARIS, 2012; TSANAKAS et al., 2016). The next subsections describe the aIRT 

techniques, and the equipment and procedures adopted in this paper.  

 

3.2.1. aIRT Measurement Equipment 

 

For the right choice of measurement equipment for aIRT inspections, many 

aspects must be considered. For the camera, the resolution is a key factor because it 

determines the maximum flight height, which strongly influences the time requirements 

for inspection. This is critical, especially for large-scale PV power plants, because 

normally the minimum irradiance conditions are met only for around six hours per day 

in the locations of this study. Other important characteristics are thermal sensitivity, 

accuracy, temperature range, camera weight and lens type. In addition, the camera 

type and the camera software that are offered are relevant. For the UAV system, the 

battery flight time, stability of the system, maximum altitude, flight duration, maximum 

payload and full compatibility between instruments are issues that have to be 

considered, and which impact on the quality of the flight as well as the costs of the 

equipment (GALLARDO-SAAVEDRA et al., 2018). 
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In this experiment, two different measurement systems were used for the aerial 

inspections, each of them were employed in different test sites, in order to compare 

two different types of equipment. Both are described in Table 3-1 and were previously 

tested in order to demonstrate the efficiency in detecting all desired faults. System 1 

was developed by coupling an IRT surveillance camera to a light consumer UAV. The 

camera is non-radiometric, which means that it differentiates temperatures with 

different shades of grey, but it does not provide information about the temperature at 

each point. For this retrofit, it was necessary to remove the RGB camera of the UAV 

and to develop a new data transmission system, as described in Oliveira et al. (2018). 

For this reason, there is no integration between UAV and IRT camera, which creates 

challenges for inspection, such as not being able to see the camera image in the same 

device that controls the UAV.  

System 2 is a high-end, commercially-available professional UAV solution that 

integrates a high quality radiometric IRT camera with an RGB camera in a robust UAV, 

which offers better image quality, flight autonomy, stability, and insulation against 

electromagnetic interferences. The equipment also includes image-processing 

software that facilitates the detection of faults. However, this equipment is much more 

expensive (almost three times the price) than System 1, what raises the question of 

the necessity of such sophisticated equipment. While the equipment cost for these 

valuable analyses is a negligible fraction of the typical costs associated with large-

scale PV power plants, these services are typically offered and carried out by third 

parties to whom they represent a considerable cost. Both systems are presented in 

Figure 3-2. 

 

Table 3-1 - AIRT measurement systems features. 
System Features System 1 System 2 
UAV equipment DJI Phantom 3 Professional DJI Matrice 200 

IRT camera MicroCAM 2 FLIR Zenmuse XT2 
UAV Weight 1,280 g 3,800 g 

System flight autonomy 13 min. 20 min. 
IRT camera sensitivity < 60 mK < 50 mK 

Spectral range 7 – 17 µm 7.5 – 13.5 µm 
Pixel pitch 17 µm (640x480) 17 µm (640×512) 
Frame rate 30 FPS 30 FPS 

IRT camera weight 80 g 588 g 
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Transmitter BosCam FPV Transmitter Built-in 
Antenna Cloverleaf 5.8 GHz Built-in 

RGB camera None (removed) 12 MP, 1/1.7” CMOS 
Price  US$ 6,000.00 US$ 15,000.00 

 

 

Figure 3-2 - aIRT measurement systems applied with extra lightweight IRT camera 
adapted to commercial drone (System 1 (left) in Table 3-1, and high-end, fully 

commercial IRT+RGB drone System 2 (right) in Table 3-1).  
 

3.2.2. Inspection Procedure 

 

In order to optimise flight time, video images are acquired instead of still images, 

also because it facilitates fault detection. It also helps on the differentiation between 

faults and measurement artefacts, as the reflection of the sun or other rows of modules 

move following the UAV movement.  

During the flight, different environmental stress factors, such as weather, air 

turbulence, and sunlight reflection, can influence the inspection and, consequently, the 

quality of the aIRT images. The ideal conditions for aerial IRT monitoring can be 

summarised as follows (AGHAEI et al., 2017; LEVA et al., 2015; QUATER et al., 2014). 

a) The orientation of the UAV-mounted IRT sensor should be perpendicular to the 

PV modules and should be kept constant;  

b) The flight altitude should be at least five meters to prevent any UAV self-shading 

during the inspection; 

c) The IRT inspection should be carried out on cloudless, bright, and dry days. The 

wind speed should not exceed 4 m/s since higher wind speeds will create air 

turbulence and disturb the UAV during the inspection procedure; 

d) The optimal period for UAV IRT inspection is about midday, when the direction 

of the sun is more perpendicular to the PV modules in stow mode in single-axis 
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tracking large-scale PV power plants. The irradiance should be over 600 W/m2 

on the plane of the PV array under inspection; 

e) The flight path should be planned before each inspection task and the route 

should be well documented. 

For all the inspections, the UAV route is a route orthogonal to the single-axis 

tracking PV system tracking tables planned in advance, in order to optimise and to 

obtain a shorter flight time and a better view of all PV modules.  

In one of the power plants (Plant 1), the flights were carried out manually and the 

fault analysis was held in real-time. This means that every time a fault was detected, 

the UAV was manoeuvred closer to the damaged module, for a better visualisation, 

and a specialist was sent to the fault in order to check it, making notes and capturing 

images with handheld RGB and IRT cameras. This process is illustrated in Figure 3-3. 

 

 

Figure 3-3 - Flowchart illustrating the process of real-time fault analysis of the power 
plant (i.e. the detection and analysis of the faults are carried out during the flight). 

 

For the other three inspections, the route of the UAV was initially programmed and 

automatically carried out by the drone software. Furthermore, the fault analysis was 

evaluated after the flights, by analysing the images captured. Figure 3-4 presents the 

flowchart that illustrates this process. In the image, the grey boxes indicate steps that 

can be held outside of the power plant, reducing on-site time.  
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Figure 3-4 - Flowchart illustrating the process of post-flight fault analysis of a PV 
power plant (i.e. the detection and analysis of faults are carried out after the flight). 

 

In order to compare both measurement systems employed and also the two 

different methods of inspection tested, the duration of the inspections were also 

registered. The duration of the inspection includes not only flight time but also image 

analyses and images captured with handheld cameras, for verifying faults. With these 

records, it is possible to calculate an estimation of the amount of MW inspected per 

person per day, in order to have a metric for comparison between methods according 

to the amount of manpower required. This does not mean, however, that a person 

alone can perform any inspection, since regulation on work in power plants requires 

that any inspection be done at least in pairs. For the comparison between inspection 

times, it is important to notice that the workforce that performed the inspections were 

highly skilled and had experience with aIRT in power plants. The real-time approach 

was only tested using the measurement system 1, limiting the comparison of 

productivity of this method with the post-flight analysis approach.  
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3.2.3. Image analysis and faults classification 

 

The fault diagnosis occurs by evaluating the PV module's thermal pattern, 

which is uniform for healthy modules, and which is very clearly impacted by failures 

evidenced by the IRT image. Examples of detectable failures include: cracks, 

corrosion, disconnected strings, shading, dirt, broken glass, among others. The 

classification of detected faults is performed based on IEC TS 62446-3: 2017 

(International Electrotechnical Commission and International Electrotechnical 

Commission (IEC), 2017). 

The effect that such faults have on the power plant varies in amount of power 

loss that they cause and in the risks of greater damage, as fire hazard for example, 

which might lead to considerable downtimes. A hot spot; example, can cause 

indetectable power loss at first (less than 3 %), but this loss of power can increase over 

time, as the high temperatures damage the cell or other elements of the model, such 

as solder joints (Köntges et al., 2014; Ndiaye et al., 2013; Ogbomo et al., 2018) 

The data collected are then processed and an actionable report is generated. 

Through precise site planning, it is possible to provide an exact position of the system 

faults and remediation may be scheduled based on a complete awareness of the site 

condition. The report is then sent to stakeholders for correction activities such as 

connection review or element replacement. 

 

3.3. EXPERIMENTAL SITES 

 

The inspections were carried out in four different PV power plants, totalling 

around 130 MW and over 600 thousand individual PV modules. All inspected PV plants 

follow the trend of most of Brazilian utility-scale PV systems, consisting of N-S single-

axis trackers, each one moving some hundreds of PV modules simultaneously. The 

inspections were carried out as part of the commissioning phase of the corresponding 

PV plants. Table 3-2 presents some characteristics of the inspected sites. According 

to the PV module technology (i.e. crystalline Si or thin-film CdTe), measurement 

system, and approach, the height of the flight was defined for each site, after initial 

tests. 
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Table 3-2 - Details of the utility-scale PV power plants inspected in this paper, all 
located in the sunny and warm Brazilian northeast region. Annual irradiation data is 

based on Pereira et al. (2017). 

PV 
Plant 

Location 

PV 
Installe

d 
Capacit

y 

PV 
Technolo

gy 

Drone used 
(from Table 

3-1) 

Height 
above 

sea level 
(m) 

Annual 
irradiation 
(kWh/m2)  

Plant 
1 

Rio Grande 
do Norte 

(RN) 

36.7 
MW 

CdTe System 1 50 2,150.9 

Plant 
2 

Paraíba 
(PB) 

31.2 
MW 

c-Si System 1 250 2,211.9 

Plant 
3 

Paraíba 
(PB) 

31.5 
MW 

c-Si System 2 257 2,194.7 

Plant 
4 

Paraíba 
(PB) 

31.5 
MW 

c-Si System 2 257 2,194.7 

 
All sites are located in the countryside of the states of Paraíba (PB) and Rio 

Grande do Norte (RN), in the Northeast of Brazil, known for its hot climate and high 

irradiances. Figure 3-5 presents a map of Brazil with annual averages of the daily 

average of latitude-tilted irradiation, highlighting the two states in discussion. The 

annual irradiation averages in the region exceed 6 kWh/m2 per day (> 2100 

kWh/m2.year) and the mean annual temperature is about 26oC. 

 

 
Figure 3-5 - Brazilian map with annual averages of the daily total irradiation at latitude 
tilt, highlighting the two states where the utility-scale PV power plants are located (RN 
and PB). The circled areas represent the location of the power plants, coinciding with 

the highest annual irradiation levels in the country. Based on Pereira et al. (2017). 
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3.4. RESULTS AND DISCUSSION 

 

3.4.1. aIRT Measurement System 

 

The inspections carried out with System 2 were faster and easier, because of 

the integrated solution provided by that equipment. The drone presents a better GPS 

system, which made the inspections quicker and safer. Besides, because System 1 

consists of an adapted solution, its transmission and image quality were inferior. 

System 2 also offered the convenience of taking aIRT and RGB images 

simultaneously, unlike the first equipment that required additional flights with 

conventional UAVs. Table 3-3 compares the outcomes of the two systems for the 

detection of the most common faults. The poorer image quality and resolution of 

System 1 is clear on the images, on top of the “fisheye” effect of the camera, which 

also made the visualization of faults more difficult. The disconnected substrings faults 

are highlighted in red in order to facilitate visualization. 

 

Table 3-3 - Comparison of both aIRT measurement systems results. 

Fault System 1 System 2 

Disconnected 
Substring 

  

Disconnected 
String 
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3.4.2. Real-time vs post-flight fault analysis 

 

Table 3-4 presents the duration of each inspection. The table also presents an 

estimation of the amount of MW inspected per person per day, showing the high 

productivity obtained in the inspections of plants 3 and 4. 

In terms of comparing the different approaches on the PV power plant fault 

analysis, the analyses carried out after the flight proved to be more efficient. The 

measurement time in the power plant was longer for the real-time approach and 

demanded double the workforce (four people instead of two) to enable checking and 

locating the faults during the flight. The real-time approach also complicated the 

detection of faults because of the difficulties of analysing videos in the field, as the 

screen is severely affected by glare, reflections of the sun and dirt from the soil. 

Another reason for the longer time needed for the real-time analysis was the manual 

flight. The programmed automatic route provides more stable and quicker flights, but 

unfortunately do not yet allow real-time analysis, since it is not viable to stop at each 

fault detected to take notes and take a closer look during automatic route flights. Given 

these outcomes, it is suggested that inspections are held with automatic path planning, 

prior to the measurements and that the analysis of the footage is carried out 

immediately afterwards. There is also the possibility to repeat the flight over some 

areas, in order to check ambiguous results after the first analysis. Plant 1 was also the 

only power plant to employ thin film CdTe modules, which have a slightly lower 

efficiency and therefore a larger area for the same amount of power. 

The duration of the inspection also differs between power plants due to the 

different heights used for the UAV flights. As mentioned before, the altitudes were 

defined according to initial tests, aiming to provide the best results given the employed 

measurement system and PV module technology. The higher image quality of the 

measurement System 2, allowed an inspection from a higher altitude, which sped up 

the inspection process. One further factor that impacted the duration of the inspection 

is the presence of an RGB camera in measurement System 2, which minimises field 

time due to the effects of soiling and vegetation over the PV modules. For the case of 

Plant 2, an additional flight with an RGB UAV was performed, to check for such 

problems, which also takes extra time not only for the flight but also for the analysis of 
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the RGB images. This additional inspection step can be reduced by performing aIRT 

right after the cleaning and the vegetation pruning at the power plant. Considering that 

in a day is possible to work for 4 to 6 hours due to environmental conditions, the results 

of plants 3 and 4 are very similar to other studies as Ulrike Jahn et al (2018). The study 

affirms that a PV plant of 4 MWp requires 5 to 10 hours for an aIRT inspection, when 

all required conditions are met.  

 

Table 3-4 - Results of the aIRT flight inspections in each utility-scale PV power plant 
in northeast Brazil. 

PV 
Plant 

Drone 
used  

PV 
Technolo

gy 

Fault 
Analysi

s 

Inspectio
n 

Duration 

Flight 
Altitud

e 

Team 
Size 

MW 
inspecte

d per 
person 
per day 

Plant 
1 

System 
1 

CdTe 
Real-
time 

9 days 15 m 
4 

people 
1.02 

Plant 
2 

System 
1 

c-Si 
Post-
flight 

7 days 20 m 
2 

people 
2.23 

Plant 
3 

System 
2 

c-Si 
Post-
flight 

4 days 30 m 
2 

people 
3.94 

Plant 
4 

System 
2 

c-Si 
Post-
flight 

4 days 30 m 
2 

people 
3.94 

 

The results shows that the economy of acquisition costs of System 1 does not 

worth the extra inspection time required using this solution, as the difference is 

dissolved in the many inspections that the robustness of System 2 can perform. The 

cost disparities are much smaller than workmanship costs that are fixed for every 

inspection.  

 

3.4.3. Hot-spots caused by soiling and vegetation 

 

The most common problems found in the inspections were hot spots caused 

by soiling and vegetation resulting in shading of PV cells, affecting some hundreds of 

modules during the inspections. The faults are not always distinguishable from actual 

hot spots defects through the visual aerial images, so all hot spots that are not visible 

caused by soiling or vegetation have to be verified with a ground inspection to complete 

the diagnosis. When a hot spot is found in a soiled PV module, the procedure is to 
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clean the module in order to re-evaluate the thermal pattern to know whether the hot 

spot was caused by soiling or actual damage. These situations are not accounted for 

as faults in this analysis because they are not considered damages or defects of the 

power plant and can be easily fixed. However, they cause power losses and create fire 

hazard risks, which can severely affect uptime.  

Figure 3-6 presents different examples of soiling and vegetation detected 

during a flight campaign. On the images, it is possible to compare the effect of such 

problems detected with the two different measurements systems and over different PV 

module technologies. Figure 3-6 (a) shows a soiling pattern caused by wind over many 

PV modules, but which only causes hot spots over some of them due to the amount of 

soiling. The soiling pattern consists of white lines on the lower corner of the modules, 

as can be better seen in the detail of the image. Figure 3-6 (b) presents a hot spot 

caused by a bird dropping over a module in an image taken with measurement System 

1. Because this UAV had its RGB camera removed, the visual picture (on the right 

side) was taken with a second UAV. Therefore, the images are taken from slightly 

different positions. This problem slows the association of the two images to compare 

IRT and RGB images to correctly classify faults. Figure 3-6 (c) and Figure 3-6 (d) 

present images of modules covered with vegetation. However, due to the difference of 

measurement system used and PV module technologies employed, it is clear that the 

detection is quite different for the two cases. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-6 - Examples of vegetation and soiling over PV modules: (a) Soiling pattern 
image over many c-Si modules, taken with System 2. (b) Bird droppings image over 

one c-Si module, taken with System 1. (c) Vegetation image over many c-Si modules 
taken with System 2. (d) Vegetation image over one CdTe PV module, taken with 

System 1.  
 

 



78 

 

 

3.4.4. Most common defects detected on the sites 

 

The most common defects found in the inspections were: 

 disconnected substrings: disconnection of the cell strings of the module 

inside the junction box, causing one third of the module to be in open circuit; 

 disconnected strings: interruption of the connection one full string with the 

system, due to failures of connection, fuses, or string boxes problems, 

causing many modules to be in open circuit;  

 modules with broken glass: modules with the front glass broken due to shock 

with rocks or other objects during construction or thermal stress due to other 

failures that generate hot spots; 

 modules with hot spots defects: points of higher temperature over the 

modules caused by failures such as delamination points, cracks due to 

mechanical stress, corrosion, soldier joint defects and others. 

Table 3-5 presents the number of occurrences of each of these faults in each 

inspected site as well as the number of modules affected by each fault (a disconnected 

string affects 15 to 21 modules, for example). These four problems are considered 

defects in the PV power plant and are discussed in order of most common occurrence 

in the next subsections.  

The table also estimates the power loss caused by each fault. For the 

calculation of power loss of each fault, the nominal datasheet peak power of each 

module was used, considering that disconnected substrings cause a loss of one third 

of the PV module, and disconnected strings cause the loss of power proportional to 

the number of modules in each string. For the case of hot spots and broken glass PV 

modules, a loss rate of 2% of the power of the PV module was applied, assuming that 

in the commissioning phase of the power plant the impact of the failure is minimal. This 

impact can grow linearly or exponentially over time. These power losses estimations 

do not account for the possible power mismatch that the faults brings to the whole 

system. Disconnected substrings, for example, reduce the string voltage and affect all 

string parallel to it, due to voltage mismatch.  
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From the table we see that despite not being the most common fault, 

disconnected strings cause the major loss of power in a power plant, since it affects 

many modules at once.  

 

Table 3-5 - Most common PV module defects detected in the four utility-scale PV 
power plants in Brazil. 

PV Plant 

Number of detected faults 
Number of affected 

modules 
Estimated Power Loss (kW) 
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Plant 1 0 26 5 1 0 390 5 1 0 44.85 0.01 0.01 
Plant 2 86 8 0 2 86 168 0 2 9.46 55.44 0 0.01 
Plant 3 39 2 5 0 39 30 5 0 4.29 9.90 0.03 0 
Plant 4 34 1 5 0 34 21 5 0 3.74 6.93 0.03 0 
Total 159 37 15 3 159 609 15 3 17.49 117.12 0.08 0.02 

 

3.4.4.1. Disconnected substrings 

 

The most common defects detected are disconnected cell substrings, which 

are usually a manufacturing defect. PV modules are healthy and have an open-circuit 

voltage according to the product’s datasheet as they leave for transport to the PV 

power plant site, what is confirmed by the measurements and the flash report that is 

carried out before the modules leave the manufacturer’s plant. After transport and 

installation, through thermal or mechanical stress, these cells strings became 

disconnected in the junction box, causing the bypass diode to take on the full current 

of the string. Besides the loss of one-third of the PV module peak power, the fault 

causes unnecessary stress to the bypass-diode. These results can be compared to a 

flight campaign in Italy (Survey on PV Modules’ Common Faults After an O&amp;M 

Flight Extensive Campaign Over Different Plants in ItalyGRIMACCIA et al., 2017), in 

which a similar approach to this work was adopted, only that the experiments were 

carried out in much smaller PV plants using PV modules that already had operated for 
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some years, and which were produced with manufacturing technologies no longer in 

use. In that study, disconnected substrings were not as common as in the study carried 

out in Brazil, which raises the question of the quality of PV modules produced under 

the very demanding price reduction pressure the PV industry has suffered in recent 

years.  

Figure 3-7 presents two examples of detection of disconnected cell substrings, 

one detected with each measurement system. System 2 allows a clear detection of 

this defect, and the worse image quality of System 1 results in a more difficult detection. 

Commonly, as shown in the picture taken with System 1, many modules with this defect 

are found side-by-side. There are cases with more than four modules in a string with 

the same defect. This happens because this defect is a manufacturing problem: since 

the modules installed close to each other are usually taken from the same pallet, they 

are more likely to have come from the same PV module production batch, and to be 

installed and transported together. Figure 3-7 (c) shows a hand-held IRT image of a 

PV module with a disconnected substring. The image shows that the temperature 

difference between the affected and the non-affected substrings is around 3 K, value 

that fits with what is stated in the IEC 62446-3 (differences of 2 to 7 K for disconnected 

substrings) (INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC), 2017). 

This defect does not occur in CdTe modules, because thin film PV modules do not 

usually have bypass diodes separating the module in substrings. 

 

 

(a)                                             (b)                                  (c) 

Figure 3-7 - Examples of disconnected cell substrings in individual PV modules 
detected during the flight campaign: (a) four defective modules, in the image taken 
with measurement System 1, and (b) one defective module, which was taken with 

measurement System 2. Image (c) shows a disconnected substring IRT image taken 
with a hand-held camera.  
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3.4.4.2. Disconnected strings 

 

String disconnection is a failure that causes the highest fraction of energy 

losses in a PV power plant energy production, since it affects many modules at once 

and it is also quite common. Some examples of disconnected strings are shown in 

Figure 3-8. The three images were taken in different PV power plants, which have 

different string and table configurations. In Figure 3-8 (a) and Figure 3-8 (c) the 

detection is easier because strings are all wired in the same table, and this provides 

contrast to the disconnected ones. On the other hand, for the power plant shown in 

Figure 3-8 (b), the inspection should be carried out above a certain height that allows 

a good comparison with other tables, to enable the detection. For Figure 3-8 (a) and 

Figure 3-8 (b), the images were taken with measurement System 1, in two PV power 

plants using different PV module technologies. For Figure 3-8 (c), the image is taken 

with System 2. It is visible that this type of fault is easily recognised with both systems, 

even with the lower camera resolution of System 1. The disconnection can also easily 

be seen even under bad environmental conditions, such as clouds and low irradiance. 

Figure 3-8 (a) presents also the open string IRT image taken with a hand-held camera. 

The image shows that the difference of temperature between disconnected and 

connected strings is around 4 K, what matches the IEC 62446-3, which affirms normal 

temperature difference for disconnected strings is between 2 to 7 K (INTERNATIONAL 

ELECTROTECHNICAL COMMISSION (IEC), 2017)p.  

Disconnected strings also slow down the inspection process, since this type of 

defect disguises other faults, as the only problems that can be detected in a 

disconnected string are short-circuited PV modules or substrings. Therefore, the string 

needs to be reconnected and the thermal pattern of the PV modules re-evaluated. The 

causes for string disconnections vary from different equipment defects: trackers, 

inverters, and fuses and diodes due to extreme-overirradiance events (NASCIMENTO 

et al., 2019), besides scheduled disconnections for maintenances, or power 

restrictions. Disconnected strings can be detected more easily through the supervisory 

system when current monitoring is carried out at a string or stringbox level (depending 

on topology and PV module technology). However, with the ever-growing cost 

pressure on new PV power plants, and also because normally the supervisory system 



82 

 

 

is not fully functional by commissioning phase, the aIRT is still a fast method to perform 

this inspection. For medium-size PV power plants, one can raise the question of the 

viability of having a supervisory system on the string level. Depending on the 

maintenance and equipment costs, a continuous aerial inspection can provide a better 

economic balance.  

 

 
(a) 

        
(b)                                                                 (c) 

Figure 3-8 - Examples of disconnected PV strings: (a) thin film CdTe PV module 
disconnected string, taken with System 1 and accompanied by an IRT image taken 
with a hand-held camera. (b) c-Si disconnected string, taken with System 1. (c) c-Si 

disconnected string, taken with System 2. 
 

3.4.4.3. Broken PV modules and other types of hot-spots in c-Si PV modules 

 

Broken modules were not so commonly found and were mainly caused by 

installation events. Other types of hot spots defects were even rarer since the power 

plants were connected only for a short-time period. This is an interesting result in 

comparison with Grimaccia et al. (Survey on PV Modules’ Common Faults After an 

O&amp;M Flight Extensive Campaign Over Different Plants in Italy2017), where 

problems detected as hot spots defects were the main findings of the flight campaign 

in Italy. Faults that result in hot spots are most frequently found in PV power plants that 
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have been operating for at least a few years or have undergone severe weather events. 

They do not typically induce a substantial loss in PV output at an early level; therefore, 

they are not generally identified by the supervisory systems. They are, however, a 

possible cause of fire hazards in the power plant or electrical shocks. The breakages 

also usually increase moisture infiltration and are normally followed by corrosion, 

discolouration or delamination issues (NDIAYE et al., 2013).  

Figure 3-9 presents examples of modules with hot spots. Both cases shown in 

the images are c-Si modules with broken front glass. Figure 3-9 (a) shows an example 

of the aIRT image and its correspondent RGB image. The detail of the image shows 

that, in this case, the broken module is not visible through the visual inspection, even 

though the problem is clear through the IRT image. In these cases, the identification of 

the broken module is performed through ground inspection. There are cases when the 

fault can be identified in the RGB images my using different camera angles. 

Nevertheless, the RGB image enables the operator to discard the hypothesis of 

vegetation or soiling over the module, assuring that the hot spot represents a module 

fault. This combination of RGB and aIRT image reduces on-site time and extra work. 

Figure 3-9 (b) presents another example of broken front glass that creates a hot spot 

with high temperature differences, which must be replaced immediately.  

 

 
(a)  

 
(b) 
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 Figure 3-9 - Examples of hot pots detected in c-Si PV modules: (a) aIRT image of 
PV module with broken glass detected with System 2 and its RGB equivalent. (b) 

aIRT image of PV module with broken glass detected with System 1. 
 

3.4.4.4. Broken PV modules and other types of hot-spots in CdTe PV modules 

 

Figure 3-10 presents three images with different types of hot spots defects 

detected in Plant 1 (CdTe modules). Figure 3-10 (a) shows an example of a module 

with broken glass that resulted in temperature differences of more than 30 K above the 

module temperature, despite IEC 62446-3 affirming these defects normally causes 

differences of 0 to 7 K.  

 

  
(a) 

  
(b) 

  
(c) 

Figure 3-10 - Examples of hot spots detected in CdTe modules: (a) PV module with 
broken front glass. (b) PV module with broken front glass where a whole cell was 
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damaged (left corner of the module) (c) PV module with a delamination spot. Each 
image is accompanied by its correspondent hand-held IRT image. 

 

This type of failure is easily spotted because it generates a “brighter” hot spot, 

due to the higher temperatures involved. This allows the defect to be detected from 

altitudes higher than 50 m. Figure 3-10 (b) also presents a module with broken glass, 

but in this case, only some cells in the PV module are hotter than the others and the 

temperature difference is much smaller (around 4 K), which makes detection more 

difficult. Figure 3-10 (c) shows a hot spot that revealed a delamination point in the PV 

module. This fault is much harder to be detected because of the small size and small 

temperature difference (less than 7 K). 

 

3.5. CONCLUSIONS 

 

In order to maximise uptime and increase capacity factors, this paper offers an 

analysis of the most common defects found during the commissioning phase of four 

different utility-scale PV power plants in Brazil, analysing PV module faults of two 

different technologies: c-Si and CdTe. Two different measurement equipment have 

been tested and compared, and as expected, the results show that System 2 provided 

a faster and easier experience. This is due to the integrated solution provided by the 

equipment, the better quality of its camera and GPS and the existence of a RGB 

camera on the UAV, what allows a quicker differentiation between faults and soiling 

and vegetation. Because of its advantages, System 2 is more expensive than System 

1. However, results showed that this cost is compensated by reducing the inspection 

time, and therefore, reducing workmanship costs. 

In terms of comparing real-time with post-flight fault analyses, the analyses 

carried out after or in between flights proved more efficient and required less time on-

site. The duration of the inspection was also influenced by PV module technology and 

quality of the camera of the measurement system employed.  

The most common problems found during the aerial inspections were hot spots 

due to soiling and vegetation, which caused shading of PV cells. They are not 

considered faults but can affect the outcomes of the aIRT and the total PV plant 
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downtime. They can be distinguished from actual damage of the PV cells through RGB 

images.  

Among the actual faults of the PV systems detected during the flight campaign, 

the most common, in number of occurrences, were disconnected cell substrings, 

followed by disconnected strings, hot spots defects and modules with broken glass. 

However, when comparing the amount of lost power caused by each fault, the highest 

downtimes are caused by disconnected strings, followed by disconnected substrings 

and hot spots, with broken front glass in last.  

The results of these flight campaigns are extremely important because they 

show the most common faults that can happen in the early operation of PV power 

plants and from that, operators can decide how to address and prevent them, 

maximising the uptime of utility-scale PV power plants. 
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4. DEVELOPMENT OF AUTOMATIC FAULT DETECTION ALGORITHM 

 

This chapter is the transcription of the following paper: 

 

Automatic Fault Detection of Utility-Scale Photovoltaic Solar Generators 

Applying Aerial Infrared Thermography and Orthomosaicking 

Authored by: Aline Kirsten Vidal de Oliveira, Matheus Körbes Bracht, 

Mohammadreza Aghaei and Ricardo Rüther. 

Submitted to Solar Energy (ISSN: 0038-092X), in November 2022. Under 

review. 

 

Abstract 

As large-scale Photovoltaic (PV) power plants are being expanded in installation 

number and capacity, aerial infrared thermography (aIRT) has proven to be effective 

in detecting at different phases of their development, construction and commissioning 

to operation and maintenance. However, evaluating the aerial imagery over hundreds 

of hectares fields of PV arrays is very time-consuming and subject to human error. This 

paper proposes a complete framework for automatically detecting faults in large-scale 

PV power plants and their physical location inside the plant site. To this end, a Mask-

RCNN algorithm is developed and fine-tuned for instance segmentation using a 

dataset of 93 samples collected in an aIRT flight campaign in Brazil. The results are 

combined with orthomosaic techniques to create an orthomap of the PV system with 

the highlighted faults. The proposed method has been tested to detect automatically 

the faults in two power plants. Several tests were performed to improve the algorithm’s 

accuracy, including different pre-processing techniques and filters for the data. The 

final algorithm generated high-accuracy results for detecting and localizing hot spots 

in PV plants and disconnected substrings. The resulted maps could successfully show 

the location of this faults with a high accuracy (10% of false positives).  
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4.1. INTRODUCTION 

 

At the beginning of 2022, the photovoltaics (PV) installation exceeded 1 TW 

which was an impressive milestone in the solar energy sector (ESKANDARI et al., 

2023). As solar PV energy conversion becomes one of the most promising energy 

sources for a sustainable and renewable energy future, reducing downtimes and 

assuring the technology’s reliability and performance are of utmost importance. 

Especially in regions with a lack of specialized workforce and difficult access, 

developing reliable and cost-effective techniques for rapidly detecting faults in PV 

plants is urgent (OLIVEIRA et al., 2020; TRIKI-LAHIANI et al., 2018).  

Among the recent advances in this area, the assessment of power plants by 

aerial inspections using Unmanned Aerial Vehicles (UAVs) is becoming widespread 

(AGHAEI et al., 2014). The combination of drones with cameras that capture either 

RGB or infrared thermographic (IRT) images has proven to be effective in detecting 

faults in PV power plants in different stages of their operation (OLIVEIRA et al., 2018, 

2020). The technique has been called Aerial Infrared Thermography (aIRT). 

However, evaluating the images captured through aerial inspections is very 

time-consuming and subject to human error. Therefore, automation techniques have 

been studied to assist the procedure (HENRY et al., 2020; NIE et al., 2020; OLIVEIRA, 

A. K. V. et al., 2019). A solution to the problem is to use Digital Image Processing (DIP) 

to detect faults, as proposed by many authors (AGHAEI et al., 2015; KIM et al., 2017; 

ROGOTIS et al., 2014; TSANAKAS et al., 2015). A better way to approach the 

problem is to apply Artificial Neural Networks (ANNs) to categorize the different types 

of faults on PV modules, as they tend to be more assertive in more diverse image 

conditions. ANNs intend to mimic how the human brain performs a task of interest 

(MAYO; LEUNG, 2018). Among the many different architectures of ANNs, 

Convolutional Neural Networks (CNNs) have demonstrated clear superiority in visual 

recognition tasks such as image classification and object detection (GENG et al., 

2018). 

One of the major concerns in the automatic evaluation of PV plants is the 

correct localization of faults and the cross-referencing with the terminology of areas 

and strings used in the field (OLIVEIRA et al., 2022). This is extremely important to 
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allow the operation & maintenance personnel to perform corrective measures and 

precisely detect faulty PV strings in a timely manner, as many faults detected with aIRT 

do not produce any visible effect. This becomes even more relevant as the PV plant 

installations become larger and larger; a 1 GWp PV power plant can have a footprint 

larger than two thousand hectares. 

A way to approach the problem is to generate orthomosaics of the PV plants, 

applying mosaicking techniques using RGB and thermographic images. This can help 

to improve sight perspective, providing a more expansive vision of the modules, 

enhancing resolution and facilitating the localization of faults (AGHAEI et al., 2017).  

Some recent studies (LÓPEZ-FERNÁNDEZ et al., 2017; PARK; LEE, 2019; 

TSANAKAS et al., 2017; Inspection of Photovoltaic Installations by Thermo-visual UAV 

Imagery Application Case: MoroccoZEFRI et al., 2018) have shown that the 

combination of orthomapping with automatic detection of faults algorithms allows 

effective monitoring of PV power plants from the commissioning phase until the end of 

its operation. . This enables a follow-up of the evolution of the power plant faults and a 

better understanding of their roots and possible mitigation strategies which lead to an 

increase in the reliability and service lifetime of PV power plants. Given that, this paper 

aims to develop a methodology that combines aIRT inspections, automatic fault 

detection and classification using artificial intelligence algorithms and the 

reconstruction of orthomosaics reflecting the detection of faults. The main contributions 

of this study are summarized as follows: 

a) Development of a fault detection algorithm on 

aIRT images highlighting its main challenges, 

shortcomings, and workarounds; 

b) Utilization of an orthomosaic reconstruction 

software package describing the challenges 

that the workflow imposes for the automatic 

fault detection algorithms; 

c) Evaluation of the impact of different flight 

configurations and datasets on the 

processing time and results; 
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d) Application of the proposed framework in real 

cases, evaluating the challenges imposed by 

real datasets. 

The paper is arranged as follows: Section 2 presents the proposed methods 

and dataset. In section 3, we provided the results, followed by the discussion in section 

4. Finally, section 5 wraps up the paper with a summary of the main outcomes. 

 

4.2. METHOD 

 

In this study, we propose a deep learning-based method to process aerial 

imagery automatically and produce a map of the faults of the PV power plant. A 

summary of the method described in this work is presented in Figure 4-1. In the 

flowchart, the steps shown in grey translate the processes followed to obtain the 

algorithm used in the framework’s fault detection step.  

 

 

Figure 4-1 - Flowchart of the aIRT thermography imaging method developed to 
automatically detect faults in PV power plants. 

 

The framework to create a map of faults in a specific power plant is highlighted 

in the figure in pink. It starts with the acquisition of aIRT images of the PV power plant. 

Then, the fault detection algorithm processes the images (still images taken from a 
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video stream), adding masks highlighting the faults over the original images. The 

masked images are combined through an orthomosaicking technique, resulting in the 

power plant map with the detected defects and failures highlighted. The following 

subsections describe these steps in more detail. The framework and the resulting 

algorithm are afterward tested in two test cases.  

 

4.2.1. Development of the automatic fault detection algorithm 

 

4.2.1.1. Creation of the dataset 

 

A light commercial drone (UAV Matrice 200) with a lightweight infrared camera 

(Zenmuse XT2) was used for the dataset’s creation. The Zenmuse XT2 takes both 

RGB and thermal images, with the specifications presented in Table 4-1.  

 

Table 4-1 – Zenmuse XT2 properties. 
Property Camera 

Type RGB Thermal 

Sensor size (mm) 7.44 10.88 

Image resolution (px) 4000x3000 640x512 

Focal length (mm) 8 13 

 

The dataset consists of images stored in grayscale, and the intensity 

differences represent the temperature differences. The images were taken during a 

flight campaign in several commercial PV plants in Brazil. Some of the results obtained 

during the campaign are presented in (OLIVEIRA et al., 2020). The faults encountered 

include disconnected substrings, disconnected strings, short-circuited strings and 

substrings, and hot spots caused by soiling, delamination and broken modules. 

During the flights campaign, procedures and environmental conditions were 

followed according to the international standard IEC TS 62446-3 (INTERNATIONAL 

ELECTROTECHNICAL COMMISSION (IEC), 2017). The conditions include minimum 

environmental requirements such as clear sky conditions and a camera angle 

perpendicular to the modules to avoid reflections (KRENZINGER; DE ANDRADE, 

2007). The flight altitude was set between 20 m and 40 m, depending on the site, which 
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allowed the detection of defects on the individual PV module level, and for an increased 

Field of View (FoV). Most flight routes were pre-set through GPS coordinates, so the 

flight was steady and the velocity constant.  

The dataset consists of 93 IRT images with their corresponding ground-truth 

segmentation, which highlights the faulty modules in each image. The samples are 

either frames of aIRT videos or still images, and both are converted from the 

proprietary radiometric format of the camera to JPEG format. Images are annotated 

using the Annotation Tools developed by Bommes et al. (BOMMES, 2021; Computer 

vision tool for detection, mapping, and fault classification of photovoltaics modules in 

aerial IR videosBOMMES et al., 2021). Based on the standards of (INTERNATIONAL 

ELECTROTECHNICAL COMMISSION (IEC), 2017; VATH, 2016), the detected faults 

include hot spots, disconnected substrings and strings, and short-circuited strings. 

Figure 4-2 shows some samples of the dataset with their annotations. Figure 4-2(a) is 

a frame of an aIRT video with two open strings highlighted. The other two samples are 

aIRT radiometric photos, where Figure 4-2(b) shows a disconnected substring and 

Figure 4-2(c) depicts a module with hot spots caused by a broken front glass. Tests 

were carried out holding a pre-processing step of the images, with a histogram 

equalization to improve the contrast in all of them.  

 

 
(a)                                                                   (b) 

 
(c) 

Figure 4-2 - Examples of the aIRT-image dataset samples, obtained from utility-scale 
PV power plants with faulty PV modules in Brazil. 

 

Augmentation techniques are implemented to increase the dataset’s number 

of samples. This process artificially enlarges the number of segments, helping to 
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improve the overall learning procedure and performance, feeding the model with varied 

data (KAMILARIS; PRENAFETA-BOLDÚ, 2018). Transformations included rotations, 

dataset segments cropping, scaling, and mirroring. Typically, 90% of the samples are 

used for training and 10% for validation. 

 

4.2.1.2. Automatic Fault Detection 

 

For the automatic classification, the fine-tuning of a Mask RCNN (Regional 

Convolutional Neural Network) is applied for instance segmentation using Keras and 

Tensor Flow (ABDULLA, 2017). The technique has been described in the literature to 

detect PV modules and systems (Computer vision tool for detection, mapping, and 

fault classification of photovoltaics modules in aerial IR videosBOMMES et al., 2021; 

DÍAZ et al., 2020; SIZKOUHI et al., 2020, 2022) and faults in aIRT images (HUERTA 

HERRAIZ et al., 2020; PIERDICCA et al., 2018). The weights are initialized with pre-

trained COCO weights (LIN et al., 2014) and trained for 375 epochs (100 epochs for 

heads with a learning rate of 0.001 and 175 others for fine-tuning with a learning rate 

of 0.0001). The training output is the weights of the detection algorithm, whose inputs 

are the aIRT images and the outcome, binary images with the segmentation of the 

faults, which are afterwards highlighted over the original images. The flowchart 

presented in Figure 4-3 shows the schematic of the steps for this development. 

Some figures of merit as the mean Average Precision (mAP) and F1-score are 

used to evaluate the algorithm’s results.  

 

 

Figure 4-3 - Flowchart of the aIRT image evaluation method developed to 
automatically detect faults in large-scale PV power plants. 

 

4.2.2. Orthomosaics reconstruction 
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Even with the automatic classification of the faults, the localization of modules 

or strings with problems within a power plant is challenging, as we have previously 

shown (OLIVEIRA et al., 2021, 2022). We propose a method using an orthomosaic 

reconstruction of the PV power plant to facilitate the location of the faults which were 

previously automatically detected. 

For this proposed workflow, the Bentley ContextCapture v10.20.0.4169 was 

employed (BENTLEY SYSTEMS, 2019). This software solution is a commercial 

package widely used in the field of photogrammetry. The software tool allows different 

reconstruction outputs for analysis and evaluation from the images taken over the area. 

The Bentley ContextCapture workflow is very clear and requires the user to perform 

several steps and setups actively. Initially, the acquired data must be verified regarding 

the position and rotation metadata, besides being subdivided into photo groups. 

Different photo groups are created to embrace different photo properties (like sensor 

size, focal length, principal point, and lens distortion/pose). These data are used to 

support the aerotriangulation process that follows. This step detects tie points in the 

photos and determines the correct image positioning and orientation. The process can 

either use the current camera position (e.g., GPS metadata) or control points for 

georeferencing. The next step is the reconstruction phase. The reconstruction 

framework is defined by these properties: spatial reference system, region-of-interest, 

tiling, retouching, and processing settings. Based on this process, several runs can be 

launched to generate a final deliverable. There are three ways to represent the 

reconstructed model using the ContextCapture software: 3D mesh model (e.g., 3MX 

Autodesk F8X, Google Earth KML), point cloud (LAS, POD) and orthomosaic and 

digital terrain model (TIFF, JPEG) (BENTLEY SYSTEMS, 2019). 

 The computer used in the reconstructions has the following 

configurations: 

 CPU: Intel Core i7-7700 CPU @ 3.60GHz 

 GPU: Intel HD Graphics 630  

 RAM: 8,00 GB  

 Storage: SSD 256GB (LITEON CV3-8D256-11 SATA 256GB - 500MB/s 

reading and 360MB/s writing) 
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4.2.3. Case study 

 

Two commercial-scale PV power plants are inspected to validate the proposed 

method. Figure 4-4 shows a flowchart with the framework overview used to evaluate 

the faults in the case study and to create an orthophoto with the plant defects. The 

acquired aIRT images of the power plants are pre-processed to pass through the 

Mask-RCNN model with the pre-trained weights. This process will generate masks of 

the faults of each sample in the data. The masks are then transferred back to the 

original aIRT images. Here, we imprint them as green segments with 10% of 

transparency. 

If necessary, these images must be once more correlated to their GPS data 

since the masking of faults process removes this information from the images. After 

that, they can be processed with an orthomosaicking algorithm, which in this paper is 

carried out through the ContextCapture software. In this case, it does not require GPS 

data for processing the samples. Other software such as DroneDeploy require the GPS 

data on the images and therefore this previous step is important. The resulting 

orthophoto contains the overview of the power plant and the highlighted faults. 

 

 

Figure 4-4 - Flowchart of the proposed method to automatically detect faults in PV 
power plants. 

 

4.2.3.1. Sites description 

 

Images acquired at a 3 MW PV power plant for research and development 

(R&D) in the South of Brazil (Test Case #1, at coordinates 28° South, 49° West) which 

were used to test the developed method. Fig. 5 shows a photograph of the fully 

monitored PV power plant, which consists of three different PV technologies divided 
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into blocks of 1 MW each. At the back of the photograph, next to the wind turbine, the 

plant’s multi-crystalline silicon (mc-Si) portion is the focus of this work, with 4,199 Yingli 

Solar 245Wp mc-Si PV modules. The PV modules are fixed on ground-mounted racks 

tilted at 30 degrees, facing true North. The plant, test case #1 has a ground-mounted 

fixed structure facing northeast, tilted at 30°. It was installed in 2014 and damaged in 

2016 because of the effects of an extreme meteorological condition (OLIVEIRA et al., 

2018). The damaged modules were replaced right after the incident. 

 

 

Figure 4-5 - The 3 MW R&D utility-scale PV power plant in the South of Brazil which 
was used as Test Case #1 to validate the method proposed here. 

 

Test Case #2 is a 400 kW PV power plant located in Northeast Brazil. The PV 

plant has been operating since 2014 and has 1,644 mc-Si modules installed in a 

ground-mounted fixed structure facing northeast, tilted at 15°.  

 

4.2.3.2. Images Acquisition 

 

The images acquired for the test case are frames of videos and photos 

captured using the same UAV (Matrice 200) equipped with the IRT camera (Zenmuse 

XT2). Flight procedures and environmental conditions were determined according to 

the standard IEC TS 62446-3 (INTERNATIONAL ELECTROTECHNICAL 
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COMMISSION (IEC), 2017), and the altitudes of the flights varied from 30 to 40 m. The 

flight settings were established using the DJI Pilot software. The route was set for an 

overlapping of 80%, according to the thermal camera’s optical characteristics.  

 

4.3. RESULTS 

 

4.3.1. Automatic fault detection algorithm, 

 

Several tests were carried out adjusting the hyperparameters of the Mask-

RCNN network and adjusting the format of the annotation of the dataset. The best 

results obtained using the algorithm with the validation dataset (10% of the total 

number of samples) reached an AP of 90.5% and F1-score of 69.0%. Considering the 

small dataset used for training, these values are reasonable and can be improved by 

adding more samples.  

Some false positives resulting from the algorithm included objects around the 

power plant, like cars and electrical components. Figure 4-6 presents an example of 

false detection in a vehicle and electrical box cover. This problem can be solved by 

adding images containing this type of object in the training set to show the algorithm 

that these are not PV modules.  

 

 

Figure 4-6 -Examples of false positives detected in aerial imagery of a car and an 
electrical box cover. 
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For testing purposes, one flight was carried out with the camera at a 0-degree 

angle, not facing the modules perpendicularly. As expected (KRENZINGER; DE 

ANDRADE, 2007), the consequence was the reflection of the sunlight interfering with 

the images. Those images were also processed in the algorithm to evaluate the 

robustness of the fault detection method. Unfortunately, it detected the sunlight as a 

fault (Figure 4-7(a)) or even overshadowed other defects because of its high-

temperature intensity (Figure 4-7(b)). These problems could be avoided using 

techniques for reflection removal, such as the one described in (Computer vision tool 

for detection, mapping, and fault classification of photovoltaics modules in aerial IR 

videosBOMMES et al., 2021). As already demonstrated in (OLIVEIRA et al., 2021), the 

Sun’s reflection is also a challenge for orthomosaic reconstruction, as it changes 

position between photos or frames, making it difficult for the software to find key points 

between images. Figure 4-8 shows an example of thermal orthophoto reconstruction 

that presents many errors because the Sun’s reflection keeps repeating itself along the 

pictures. In the software ContextCapture, these reflections can be eliminated by adding 

“Masks” that highlight the parts of the image that should not be considered for the 

orthomosaic. Other software, e.g., DroneDeploy, has pre-processing algorithms that 

eliminate these problems (OLIVEIRA et al., 2021).  

 

  

(a)                                                                                         (b) 
Figure 4-7 -Examples of erroneous results caused by Sun reflection over PV 

modules. 
 

 

 

Figure 4-8 -Example of thermal orthophoto showing problems caused by Sun 
reflections. 
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In general, the major challenge of converting images into an orthomosaic is 

the software’s ability to find key points among the photos. Because of that, it is 

fundamental that the faults are detected consistently in all images used for the 

reconstruction. However, with the small changes in the camera’s focus and the image’s 

brightness during the flight, variations in the algorithms’ results are expected.  

To tackle this problem, a tentative pre-processing of the dataset was carried 

out using the histogram equalization technique. The method aims to normalize the 

intensities of pixels among all the images to obtain a standard contrast along the 

samples. Some examples of results showing the effect of this pre-process are 

demonstrated in Figure 4-9. The equalization helped the algorithm to detect some of 

the open strings in the images, as indicated in Figure 4-9(a), where the histogram 

equalization enables the code to see the open string in the upper left corner. However, 

the process increases the number of false positives of the algorithm, especially in the 

case of modules with hot spots (as shown in Figure 4-9(b)). This is explained by the 

increase in the contrast inside the module, which turns any small tone change into a 

hot spot. The resulting F1-score using the pre-processing technique reached half the 

value of the results without it. Given these results, the histogram equalization step is 

not recommended.  

 

 
                                                                                   (a) 

 



100 

 

 

                                                                          (b) 
Figure 4-9 -Examples of the effect of histogram equalization of the samples in the 

results. 
 

The proposed method could detect the faults in several data collection 

situations, including different directions of rows of modules. It had increased accuracy 

for hot spots, detecting them in different situations. Figure 4-10 presents one of these 

examples, where the algorithm could see the same hot spots in images of different 

days (5 months apart) under distinct environmental conditions. The angle of both 

images is also different and the photo on the right is taken at an altitude 5 m higher 

than the one on the left. Even then, the hot spot could be detected in both situations. 

The same does not happen for the disconnected string. 

 

 

Figure 4-10 -The same hot spot detected in different aIRT flights acquired in different 
weather conditions and at different heights. 

 
However, accuracy improved for faults that would appear fully on the image. 

Figure 4-11 presents 3 frames of an aIRT video containing detected and undetected 

hot spots. In the pictures, the defects are indicated with arrows, and the same color of 

arrow is used to indicate the same fault in a subsequent frame. As the defects move 

in the screen, the algorithm continues to detect them, as long as the whole module 

appears on the viewport of the image.  

This type of failure is easily spotted because it generates a “brighter” hot spot, 

due to the higher temperatures involved. This allows the defect to be detected from 

altitudes higher than 50 m. Figure 3-10 (b) also presents a module with broken glass, 

but in this case, only some cells in the PV module are hotter than the others and the 
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temperature difference is much smaller (around 4 K), which makes detection more 

difficult. Figure 3-10 (c) shows a hot spot that revealed a delamination point in the PV 

module. This fault is much harder to be detected because of the small size and small 

temperature difference (less than 7 K). 

 

 

Figure 4-11 -Three frames of an aIRT video presenting detected and undetected hot 
spots in crystalline Si PV modules. 

 

For the case of disconnected strings, as the faults are larger, images that 

comprise the whole defect are rare. Also, this defect highly depends on the contrast 

with other modules and panels to be detected, even by a human annotator. For these 

reasons, the detection accuracy of disconnected strings was much lower than that for 

seeing hot spots. Figure 4-12 shows examples of false detections, misdetections, and 

detections with erroneous shapes of disconnected strings. Because of the problems 

with this type of fault, the training dataset was re-annotated to remove disconnected 

strings. In this way, hot spots can be detected with higher accuracy. For clarity 

purposes, the initial dataset was labeled Dataset A and the one without disconnected 

strings was labeled Dataset B. The results of this test are presented in the following 

subsection. The accuracy of detecting short-circuited strings was also low due to the 

small number of samples of this type of fault in the training dataset. Because the 

patchwork pattern that identifies this image is similar to several hotspots in the 

modules, short circuits were kept in Dataset B.  
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                   (a)                                                      (b)                                                    (c) 

Figure 4-12 -Disconnected strings in aIRT images with erroneous detection results 
(painted light green): (a) shows a large number of  disconnected strings (light gray in 
the image), but only one was detected by the algorithm (light green), (b) presents two 

connect panels that are detected as disconnected because of the lack of contrast 
with other panels and (c) presents some detected open strings, but the detection 

masks have irregular shapes. 
 
 

4.3.2. Producing a PV plant orthomap with module faults 

 

In order to transform the masked aIRT images into orthomaps with the 

software ContextCapture, different datasets were tested for both Test Cases #1 and 

#2. The best results were obtained using frames of aIRT videos recorded during the 

flights. The Zenmuse XT2 camera mounted on the UAV records videos at a frame rate 

of 8 Hz. Because the velocity of the flights was low (under 3 m/s), not all frames were 

necessary for the reconstruction. One of the tests performed consisted of comparing 

the effect of using two different dataset sizes for the method. Figure 4-13 and Table 

4-2 show the results of this comparison. The figure shows two of the orthomosaics 

obtained for Test Case #1, using different sizes of datasets. The original video had 

around 4 minutes and, therefore, 1953 frames. The images show two tests carried out: 

one with 1/3 of the initial amount of frames (651 frames) and one with a sixth of the 

number of frames of the original video (325 frames). Tests with less than 300 frames 

could not produce a full orthomap.  

The results show that both images are similar, differing in tone and some of 

the detected faults. Table 4-2 shows the difference in processing time between both 

tests and the detected faults, presenting true positives (TP) and false negatives (FN) 

of each type of fault. 
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Figure 4-13 -Example of PV plant orthophoto of Test Case #1 with two sizes of 

datasets: 651 images (left) and 325 images (right). 
 

Table 4-2 - Comparison of results with different sizes of datasets in Test Case #1. 

No. of 
Images 

Size of 
Orthomap 

(MP) 

Processing time 
Disconnecte

d Strings 
Hot 

Spots 
Short-

circuits 
 

Inference Triangulation 
Reconstructio

n 
Total time Time/image TP PTP FN TP FN TP FN FP 

651 213.3 1 h 34 min 43 s 11 min 34 s 29 min 40 s 2 h 15 min 57 s 12.5 s 8 8 8 21 7 0 1 7 

325 106.5 48 min 51 s 4 min 51 s 17 min 16 s 1h 10 min 58 s 13.10 s 9 6 9 24 4 0 1 12 

 

For the detection of disconnected strings, results of partial true positives (PTP), 

to describe open strings that are only partially highlighted. False positives are also 

presented in the table, including some erroneously highlighted modules and objects 

around the power plant that were marked as faults. The table shows that, in general, 

the results of the processing of a smaller dataset generated better results. One 

possible explanation is that with fewer pictures of the same fault, the distortions due to 

the lack of consistency of the algorithm are smaller. This result shows that more data 

will not necessarily improve the orthomap, but uniformity among the images. The 

results also corroborate the previously explained challenges of detecting open strings 

and short circuits.  

Regarding the processing time, for the inference step, the tests were carried 

out using the platform Google Colab, whose processing capabilities vary along with 

the availability of the resources. In general, each image takes up to 9 seconds to be 

processed. This processing time does not change significally when using local 

computer resources. For the aerotriangulation and orthomap reconstruction steps, the 

computer caracteristics used for the processing are described in the method section, 

which is not a high-end equipment. Results shows that the required time is not 

proportional to the number of images processed. With that, reducing the dataset size 

in half does not necessarily mean reducing the processing time in half as well. 

However, the reduction of computer resources and the improvement in the results are 

significant. 
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The challenge of detecting disconnected strings also appeared in Test Case 

#2. Because of the effect shown in Figure 4-12(b), many false positives of open strings 

appear at the end of the panels, as shown in the left side of Figure 4-14. To avoid this 

effect, a mask filter was implemented, removing segments of faults larger than 25% of 

the picture. The results for this test case are shown on the right side of Figure 4-14. 

The highlighted part shows a zoomed image of one of the most affected parts of the 

left image. Table 4-3 also shows the quantitative results. The FP was reduced; 

however, the number of non-detected disconnected strings and hot spots increased 

minimally. Another way to mitigate this effect would be to increase the margin of the 

flight around the power plant. In this way, fewer images would be taken at the panels’ 

borders, and fewer distortions would occur. 

 

 

Figure 4-14 -Example of PV plant orthophoto of Test Case #2 without any filter for 
large faults (left) and with a filter to retain large masks (right). 

 
Table 4-3 - Comparison of results of Test Case #2 with and without mask filter. 

Mask 
Filter 

Disconnecte
d Strings 

Disconnected 
Substrings 

Hot 
Spots 

Short-
circuits 

 

TP PTP FN TP FN TP FN TP FN FP 

No 14 6 1 2 1 27 2 0 0 11 

Yes 12 8 1 2 1 26 8 0 0 8 
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As explained previously, an alternative way of improving the results was to 

train the DL algorithm with Dataset B (without disconnected strings). The results are 

shown in Figure 4-15 for test cases #1 (left) and #2 (right). Table 4-4 presents the 

quantitative results of these tests. It is visible that the FP highly decreased, and the 

precision of the detected hot spots increased. For Test Case #2, when detecting hot 

spots, the algorithm did not see less than 8.8% of the faults, proving to be adequately 

accurate for detecting this kind of fault. In Test Case #1, false negatives amounted to 

14.3%. In this power plant, the algorithm could also partially detect the short-circuited 

string, which was detected as many PV modules with hot spots. Still, the number of 

false positives is significant, including a vehicle in Test Case #1, leading to the 

unnecessary task of extra checking work in the field. 

 

Figure 4-15 -Example of PV plant orthophoto of Test Case #1 (left) and #2 (right) 
trained with Dataset B. 

 
Table 4-4 - Comparison of results of Test Cases #1 and #2 trained with Dataset B. 

Test 
Case # 

Disconnected 
Substrings 

Hot 
Spots 

Short-
circuits 

 

TP FN TP FN TP PTP FN FP 

1 2 1 24 4 0 1 0 1 

2 2 1 31 3 0 0 0 6 

 

4.4. DISCUSSION AND LIMITATIONS 

 

The results were very promising in obtaining a satisfactory overview of the 

faults in the PV power plants with relatively low computational cost and time. Carrying 

out inspections in the field, under the sunlight in clear sky days in warm climates is 

exhausting. Therefore, quick methods to facilitate the work in the field are essential. 
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Another challenge in remote areas, where PV power plants are usually installed, is the 

access to high-performance computers and internet connection. The method proposed 

in this paper offers a feasible way to overcome these challenges. 

The test sites where the method was tested are small-scale commercial power 

plants, and the amount of data and flight duration to cover the whole PV system were 

considerably small. However, the proposed method is scalable and replicable, so it can 

be expanded and applied in larger PV plants. It is recommended to discretize the 

acquired data into smaller blocks to reduce computational requirements.  

This work is indicative of the feasibility of the proposed method, but there are 

several ways to improve the accuracy of the results. Using other software for the 

orthomosaic reconstruction part is one of these ways. There are many alternatives for 

the orthomosaicking process, including some open-source algorithms, such as 

OpenDroneMap (HIGUCHI; BABASAKI, 2018). This step can be improved by using 

the images’ GPS data and a UAV with a high-precision RTK (Real Time Kinematic) 

positioning module.  

The fault detection algorithm could also be improved by expanding the training 

dataset, including different layouts of power plants. Algorithms can also be 

implemented to remove the Sun’s reflection and to remove false positives of objects 

around the power plant. The greatest challenge to be overcome is the detection of 

disconnected strings. This type of fault is extremely common and represents a 

significant loss of energy production (OLIVEIRA et al., 2020). However, as it is usually 

easily detected by the monitoring system of the power plant, the algorithm could focus 

only on seeing hot spots and other types of faults. 

 

4.5. CONCLUSIONS 

 

This paper presented a framework to combine DL algorithms with orthomosaic 

techniques to create an orthomap of a PV power plant that automatically highlights the 

faults detected with aIRT. The results demonstrated that the proposed method 

effectively facilitates the localization of failures and defects in aerial inspections of PV 

power plants. Especially in the case of detecting hot spots and disconnected 

substrings, the processing tool proved to have high accuracy, in a quicker way, with 
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low computational resources required. Even with small datasets, it was possible to 

visually detect the different faults in the thermal orthomosaics produced.  

Detecting disconnected strings and short circuits remains a challenge, given 

the size of the faults, which are typically more extensive than the viewport of the aIRT 

images and depend on the contrast with other photos to be detected.  
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5. CONCLUSIONS 

 

The results of this work contribute to the development of the aIRT inspection 

technique, mainly in the context of Brazilian PV plants. First, the literature review 

presented in the first published paper provided an overview of the different algorithms 

used to automate the many parts of the inspection process and provided a clear 

understanding of the most common and effective methods to be employed and further 

developed. 

The results of the inspections carried out in Brazil, and presented in the second 

published paper, are also significant because they show the most common failures that 

can happen at the beginning of the operation of PV plants. From these results, 

operators can decide how to solve and avoid these problems, maximizing the time of 

PV operation of utility-scale plants. Furthermore, these problems' technical and 

economic impacts on the PV system operator were presented. The produced images 

created an dataset that can be used to train ML algorithms focusing on Brazilian PV 

power plants. 

Finally, in the third paper, currently under review, this thesis provided an 

innovative approach combining a DL algorithm with mosaicking techniques to offer a 

simple and effective way to detect and locate faults in PV plants using aIRT 

automatically. This method is innovative for the novel combination of DL and 

photogrammetry techniques and for training an instance segmentation network using 

data collected in Brazil. This is relevant because the country is subject to specific 

environmental conditions such as high irradiance and temperature and particular 

layout conditions that are not widespread in countries that have previously developed 

aIRT datasets, namely Europe and Asia. Therefore, developing automation algorithms 

with local datasets is extremely valuable and can be enhanced with a larger dataset to 

improve aIRT inspection across the country. 

 

5.1. LIMITATIONS 

 

This work has a few limitations specifically reported below to enable better 

replications and validations of the outcomes: 
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 The literature review focused on papers published until the time of 

submission of the review article (December of 2021) and on works 

that use algorithms to automatize aerial aIRT inspections, not 

including advancements in other inspection techniques such as 

electroluminescence and ultraviolet fluorescence. 

 The results of the flight campaign published in the second paper 

are based on inspections held in Brazil during the commissioning 

phase of the PV plants under study. Therefore, the conclusions 

may not be replicable in older power plants and inspections held 

in other countries and conditions. 

 The method proposed provides excellent accuracy for detecting 

hot spots in PV modules. However, detecting disconnected strings 

and short circuits is still a challenge and needs further 

improvement. This type of fault is widespread and represents a 

significant loss of energy production, although it is easily detected 

through supervisory systems. 

 The dataset used for the algorithm's training was produced using 

data acquired in power plants in Brazil, including the layouts, type 

of soiling and environmental conditions of the local PV plants. 

Because of domain shift, it is important to expand the training 

dataset to implement this algorithm in other places. 

 The validation of the proposed method was carried out for two 

small-scale PV plants. To expand the practice and apply it in larger 

PV plants, it is recommended to discretize the acquired data into 

smaller blocks to reduce computational requirements.  

 

5.2. RECOMMENDATIONS FOR FUTURE DEVELOPMENTS 

 

Given the limitations and opportunities highlighted by this work, some 

recommendations for future work are provided: 

 This work indicates the feasibility of the proposed method, but 

there are several ways to improve the accuracy of the results. 
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Using other software or developing specific algorithms for the 

orthomosaic reconstruction part are some of these ways. There 

are many alternatives for the orthomosaicking process, including 

some open-source algorithms, such as OpenDroneMap 

(HIGUCHI; BABASAKI, 2018). This step can be improved by using 

the images’ GPS data and a UAV with a high-precision RTK (Real 

Time Kinematic) positioning module.  

 The fault detection algorithm could also be improved by expanding 

the training dataset, including different layouts of power plants. 

Algorithms can also be implemented to remove the Sun’s 

reflection and false positives of objects around the power plant.  

 The greatest challenge to be overcome by the method is the 

detection of disconnected strings. This type of fault is widespread 

and represents a significant energy production loss; therefore, its 

detection should be further investigated. 

 In future work, to facilitate the visualization of the faults, it is 

suggested that the same orthomap is produced using visual 

images by correlating the location of the defects in the aIRT 

images with the visual images already taken at the same time.  

 Future work should also explore the potential of combining 

Building Information Modelling tools (e.g. Revit) with aerial 

inspections data in order to obtain a virtual map of the site that 

allows the following up of the power plant along its operation time.  

 The dataset used for training the algorithm should be further 

explored to contemplate datasets from diferent geographical 

regions and conditions. The exchange of data and academic 

collaborations are necessary to allow a fully automatic procedure 

to detect modules and faults on PV modules in different weather 

and layout conditions.  

In conclusion, the technique of aIRT inspections is a promissing subject for 

increasing the uptime of PV power plants and is under the attention of academia and 
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the industry. The automatization of the technique is a fundamental issue and offers 

plenty of research and improvement opportunities.  

 

  



112 

 

 

REFERENCES 

 

ABDULLA, W. Mask R-CNN for object detection and instance segmentation on 
Keras and TensorFlow. [S. l.]: Github, 2017.  

ABSOLAR. Panorama da solar fotovoltaica no Brasil e no mundo - Infográfico 
no. 48. [S. l.: s. n.], 2022. Disponível em: 
https://www.absolar.org.br/mercado/infografico/. Acesso em: 2 nov. 2022.  

ABUBAKAR, A.; MESCHINI ALMEIDA, C. F.; GEMIGNANI, M. A review of solar 
photovoltaic system maintenance strategies. In: 2021 14TH IEEE INTERNATIONAL 
CONFERENCE ON INDUSTRY APPLICATIONS, INDUSCON 2021 - 
PROCEEDINGS, 2021, [s. l.], . Anais [...]. [S. l.]: Institute of Electrical and Electronics 
Engineers Inc., 2021. p. 1400–1407. 

ADDABBO, P.; ANGRISANO, A.; BERNARDI, M. L.; GAGLIARDE, G.; MENNELLA, 
A.; NISI, M.; ULLO, S. L. UAV system for photovoltaic plant inspection. IEEE 
Aerospace and Electronic Systems Magazine, [s. l.], v. 33, n. 8, p. 58–67, 2018. 
Disponível em: https://ieeexplore.ieee.org/document/8425583/.  

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (ANEEL). Results of Generation 
Auction in the Regulated Environment. [S. l.: s. n.], 2020. Disponível em: 
https://app.powerbi.com/view?r=eyJrIjoiZTZiNDhjNjctZTQ2NC00YzFmLTgxYTUtZm
Y5YjEzNmI3MjdkIiwidCI6IjQwZDZmOWI4LWVjYTctNDZhMi05MmQ0LWVhNGU5Yz
AxNzBlMSIsImMiOjR9. Acesso em: 2 jun. 2020.  

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA (ANEEL). Sistema de Informações 
de Geração (SIGA). [S. l.: s. n.], 2021. Disponível em: https://www.aneel.gov.br/siga. 
Acesso em: 11 jul. 2021.  

AGHAEI, M. Novel methods in control and monitoring of photovoltaic systems. 
2016. - Politecnico di Milano, [s. l.], 2016.  

AGHAEI, M.; GRIMACCIA, F.; GONANO, C. A.; LEVA, S. Innovative Automated 
Control System for PV Fields Inspection and Remote Control. IEEE Transactions on 
Industrial Electronics, [s. l.], v. 62, n. 11, p. 7287–7296, 2015. Disponível em: 
http://ieeexplore.ieee.org/document/7230283/.  

AGHAEI, M.; LEVA, S.; GRIMACCIA, F. PV power plant inspection by image 
mosaicing techniques for IR real-time images. 2017 IEEE 44th Photovoltaic 
Specialist Conference, PVSC 2017, Portland, OR, USAp. 3462–3467, 2017. 
Disponível em: http://ieeexplore.ieee.org/document/7750236/.  

AGHAEI, M.; OLIVEIRA, A. K. V.; RÜTHER, R. Fault Inspection by Aerial Infrared 
Thermography in a PV Plant after a Meteorological Tsunami. Revista Brasileira de 
Energia Solar, [s. l.], v. 10, n. 1, p. 17–25, 2019.  

AGHAEI, M.; QUATER, P. B.; GRIMACCIA, F.; LEVA, S.; MUSSETTA, M. Unmanned 



113 

 

 

Aerial Vehicles in Photovoltaic Systems Monitoring Applications. 29th European 
Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC 2014), [s. l.], n. 
22-26 September, p. 2734–2739, 2014.  

AHMED, W.; HANIF, A.; KALLU, K. D.; KOUZANI, A. Z.; ALI, M. U.; ZAFAR, A. 
Photovoltaic panels classification using isolated and transfer learned deep neural 
models using infrared thermographic images. Sensors, [s. l.], v. 21, n. 16, p. 1–14, 
2021.  

AKRAM, M. W. W.; LI, G.; JIN, Y. Y.; CHEN, X.; ZHU, C.; AHMAD, A. Automatic 
detection of photovoltaic module defects in infrared images with isolated and develop-
model transfer deep learning. Solar Energy, [s. l.], v. 198, n. January, p. 175–186, 
2020. Disponível em: https://doi.org/10.1016/j.solener.2020.01.055.  

ALAJMI, M.; AWEDAT, K.; ALDEEN, M. S.; ALWAGDANI, S. IR thermal image 
analysis: An efficient algorithm for accurate hot-spot fault detection and localization in 
solar photovoltaic systems. In: IEEE INTERNATIONAL CONFERENCE ON ELECTRO 
INFORMATION TECHNOLOGY, 2019, [s. l.], . Anais [...]. [S. l.]: IEEE, 2019. p. 162–
168. Disponível em: https://ieeexplore.ieee.org/document/8833855/.  

ALFARO-MEJÍA, E.; LOAIZA-CORREA, H.; FRANCO-MEJÍA, E.; HERNÁNDEZ-
CALLEJO, L. Segmentation of Thermography Image of Solar Cells and Panels. 
Communications in Computer and Information Science, [s. l.], v. 1152 CCIS, p. 1–
8, 2020.  

ALSAFASFEH, M.; ABDEL-QADER, I.; BAZUIN, B.; ALSAFASFEH, Q.; SU, W. 
Unsupervised fault detection and analysis for large photovoltaic systems using drones 
and machine vision. Energies, [s. l.], v. 11, n. 9, p. 1–18, 2018.  

AMSTAD, D.; OLIVEIRA, A. K. V. de; HÄBERLE, A.; RÜTHER, R. Fault Inspection of 
CIGS PV Plant using Aerial Infrared Thermography. In: 36TH EUROPEAN 
PHOTOVOLTAIC SOLAR ENERGY CONFERENCE AND EXHIBITION (EU PVSEC), 
2019, Marseille, France. Anais [...]. Marseille, France: [s. n.], 2019. p. 1569–1574. 
Disponível em: www.fotovoltaica.ufsc.br.  

ARAICA, A.; RUÍZ, B. Performance of a Module and Defect Detection Algorithm for 
Aerial Infrared Images as a Function of the Flying Altitude. In: 32ND EUROPEAN 
PHOTOVOLTAIC SOLAR ENERGY CONFERENCE AND EXHIBITION, 2015, [s. l.], . 
Anais [...]. [S. l.: s. n.], 2015. p. 54–67. Disponível em: 
http://repositorio.unan.edu.ni/2986/1/5624.pdf.  

ARENELLA, A.; GRECO, A.; SAGGESE, A.; VENTO, M. Real time fault detection in 
photovoltaic cells by cameras on drones. [S. l.: s. n.], 2017. 2017.v. 10317 LNCS. 
Disponível em: http://link.springer.com/10.1007/978-3-319-59876-5_68.  

AROSH, S.; GHOSH, K.; PRAKASH, S.; DUTTAGUPTA, S. P. Development of Robust 
Algorithm for Autonomous System Health Monitoring of Ultra Large Scale Based Solar 
Farm. In: 33RD EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE 
AND EXHIBITION, 2017, [s. l.], . Anais [...]. [S. l.: s. n.], 2017. p. 2413–2417. 





115 

 

 

BUERHOP, C.; BOMMES, L.; SCHLIPF, J.; PICKEL, T.; FLADUNG, A.; PETERS, I. 
M. Infrared imaging of photovoltaic modules: a review of the state of the art and future 
challenges facing gigawatt photovoltaic power stations. Progress in Energy, [s. l.], v. 
4, n. 4, p. 042010, 2022.  

BUERHOP, C.; JAHN, U.; HOYER, U.; LERCHER, B.; WITTMANN, S. 
Abschlussbericht Machbarkeitsstudie Überprüfung der Qualität von 
Photovoltaik- Modulen mittels Infrarot-Aufnahmen. [S. l.: s. n.], 2007.  

BUERHOP, C.; PICKEL, T.; DALSASS, M.; SCHEUERPFLUG, H.; CAMUS, C.; 
BRABEC, C. J. AIR-PV-check: A quality inspection of PV-power plants without 
operation interruption. In: 2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS 
CONFERENCE (PVSC), 2016, Portland, OR, USA. Anais [...]. Portland, OR, USA: [s. 
n.], 2016. p. 1677–1681. 

BUERHOP, Cl; SCHLEGEL, D.; NIESS, M.; VODERMAYER, C.; WEISSMANN, R.; 
BRABEC, C. J. Reliability of IR-imaging of PV-plants under operating conditions. Solar 
Energy Materials and Solar Cells, [s. l.], v. 107, p. 154–164, 2012. Disponível em: 
http://dx.doi.org/10.1016/j.solmat.2012.07.011.  

BUERHOP, Claudia; WEISSMANN, R.; SCHEUERPFLUG, H.; AUER, R.; BRABEC, 
C. Quality Control of PV-Modules in the Field Using a Remote-Controlled Drone with 
an Infrared Camera. In: 27TH EUROPEAN PHOTOVOLTAIC SOLAR ENERGY 
CONFERENCE AND EXHIBITION, 2012, [s. l.], . Anais [...]. [S. l.: s. n.], 2012. p. 3370–
3373. 

CAMILO, J.; WANG, R.; COLLINS, L. M.; BRADBURY, K.; MALOF, J. M. Application 
of a semantic segmentation convolutional neural network for accurate automatic 
detection and mapping of solar photovoltaic arrays in aerial imagery. In: 2017 IEEE 
APPLIED IMAGERY PATTERN RECOGNITION (AIPR) WORKSHOP, 2018, [s. l.], . 
Anais [...]. [S. l.: s. n.], 2018. Disponível em: http://arxiv.org/abs/1801.04018.  

CARLETTI, V.; GRECO, A.; SAGGESE, A.; VENTO, M. An intelligent flying system for 
automatic detection of faults in photovoltaic plants. Journal of Ambient Intelligence 
and Humanized Computing, [s. l.], v. 11, n. 5, p. 2027–2040, 2020. Disponível em: 
http://dx.doi.org/10.1007/s12652-019-01212-6.  

CARNEIRO, A. C.; SILVA, R. R. V. Redes Neurais Convolucionais com Tensorflow: 
Teoria e Prática. In: III ESCOLA REGIONAL DE INFORMÁTICA DO PIAUÍ, 2017, [s. 
l.], . Anais [...]. [S. l.: s. n.], 2017. p. 382–406. 

CIOACA, C.; POP, S.; BOSCOIANU, E. C.; BOSCOIANU, M. Aerial Infrared 
Thermography: A Scalable Procedure for Photovoltaics Inspections Based on 
Efficiency and Flexibility. Applied Mechanics and Materials, [s. l.], v. 772, n. July, p. 
546–551, 2015.  

CIPRIANI, G.; D’AMICO, A.; GUARINO, S.; MANNO, D.; TRAVERSO, M.; DI DIO, V. 
Convolutional neural network for dust and hotspot classification in PV modules. 
Energies, [s. l.], v. 13, n. 23, 2020.  



116 

 

 

COSTA, M. V. C. V. M. V. C. V. da; CARVALHO, O. L. F. de O. L. F.; ORLANDI, A. G. 
A. G.; HIRATA, I.; ALBUQUERQUE, A. O. A. O. de; SILVA, F. V. e. F. V.; 
GUIMARÃES, R. F. R. F.; GOMES, R. A. T. R. A. T.; JÚNIOR, O. A. C. O. A. de C. 
Remote sensing for monitoring photovoltaic solar plants in brazil using deep semantic 
segmentation. Energies, [s. l.], v. 14, n. 10, p. 1–15, 2021.  

DA COSTA, C. H.; MORITZ, G. L.; LAZZARETTI, A. E.; MULINARI, B. M.; ANCELMO, 
H. C.; RODRIGUES, M. P.; OROSKI, E.; DE GOES, R. E. A Comparison of Machine 
Learning-Based Methods for Fault Classification in Photovoltaic Systems. In: 2019 
IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE - LATIN 
AMERICA (ISGT LATIN AMERICA), 2019, [s. l.], . Anais [...]. [S. l.]: IEEE, 2019. p. 1–
6. Disponível em: https://ieeexplore.ieee.org/document/8895279/.  

DENIO, H. Aerial solar Thermography and condition monitoring of photovoltaic 
systems. In: 2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2012, 
[s. l.], . Anais [...]. [S. l.]: IEEE, 2012. p. 000613–000618. Disponível em: 
http://ieeexplore.ieee.org/document/6317686/.  

DHIMISH, M.; BADRAN, G. Photovoltaic Hot-Spots Fault Detection Algorithm Using 
Fuzzy Systems. IEEE Transactions on Device and Materials Reliability, [s. l.], v. 
19, n. 4, p. 671–679, 2019.  

DÍAZ, J. J. V.; VLAMINCK, M.; LEFKADITIS, D.; VARGAS, S. A. O.; LUONG, H. Solar 
panel detection within complex backgrounds using thermal images acquired by uavs. 
Sensors (Switzerland), [s. l.], v. 20, n. 21, p. 1–16, 2020.  

DING, Y.; CAO, R.; LIANG, S.; QI, F.; YANG, Q.; YAN, W. Density-Based Optimal 
UAV Path Planning for Photovoltaic Farm Inspection in Complex Topography. In: 2020 
CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2020, [s. l.], . Anais 
[...]. [S. l.]: IEEE, 2020. p. 3931–3936. Disponível em: 
https://ieeexplore.ieee.org/document/9164257/.  

DOLL, B.; PICKEL, T.; SCHREER, O.; ZETZMANN, C.; TEUBNER, J.; BUERHOP, C.; 
HAUCH, J.; CAMUS, C.; BRABEC, C. J. High through-put, outdoor characterization of 
silicon photovoltaic modules by moving electroluminescence measurements. In: 
INFRARED SENSORS, DEVICES, AND APPLICATIONS VIII, 2018, [s. l.], . Anais [...]. 
[S. l.: s. n.], 2018.  

DOTENCO, S.; DALSASS, M.; WINKLER, L.; WURZNER, T.; BRABEC, C.; MAIER, 
A.; GALLWITZ, F.; WÜRZNER, T.; BRABEC, C.; MAIER, A.; GALLWITZ, F.; BAYERN, 
Z. A. E. Automatic detection and analysis of photovoltaic modules in aerial infrared 
imagery. In: 2016 IEEE WINTER CONFERENCE ON APPLICATIONS OF 
COMPUTER VISION, WACV 2016, 2016, [s. l.], . Anais [...]. [S. l.]: IEEE, 2016. p. 1–
9. Disponível em: http://ieeexplore.ieee.org/document/7477658/.  

DU, B.; HE, Y. Y.; HE, Y. Y.; DUAN, J.; ZHANG, Y. Intelligent Classification of Silicon 
Photovoltaic Cell Defects Based on Eddy Current Thermography and Convolution 
Neural Network. IEEE Transactions on Industrial Informatics, [s. l.], v. 16, n. 10, p. 
6242–6251, 2020.  



117 

 

 

DUNDERDALE, C.; BRETTENNY, W.; CLOHESSY, C.; VAN DYK, E. E.; DYK, E. E. 
Photovoltaic defect classification through thermal infrared imaging using a machine 
learning approach. Progress in Photovoltaics: Research and Applications, [s. l.], 
v. 28, n. 3, p. 177–188, 2020. Disponível em: 
https://onlinelibrary.wiley.com/doi/abs/10.1002/pip.3191.  

ELMOKADEM, T.; SAVKIN, A. V. Towards fully autonomous UAVs: A survey. 
Sensors, [s. l.], v. 21, n. 18, 2021.  

ERGÜZEN, A.; SAIT, M. Using Image Processing Techniques for Automated Detection 
and Annotation of Faulty Regions in Thermal Infrared Images of PV Modules. 
International Journal of Trend in Scientific Research and Development, [s. l.], v. 
4, n. 1, p. 892–895, 2019. Disponível em: 
https://www.ijtsrd.com/papers/ijtsrd29749.pdf%0Ahttps://www.ijtsrd.com/papers/ijtsrd
29749.pdf.  

ESKANDARI, A.; AGHAEI, M.; MILIMONFARED, J.; NEDAEI, A. A weighted ensemble 
learning-based autonomous fault diagnosis method for photovoltaic systems using 
genetic algorithm. International Journal of Electrical Power & Energy Systems, [s. 
l.], v. 144, p. 108591, 2023. Disponível em: 
https://linkinghub.elsevier.com/retrieve/pii/S0142061522005877.  

ET-TALEBY, A.; BOUSSETTA, M.; BENSLIMANE, M. Faults detection for photovoltaic 
field based on k-means, elbow, and average silhouette techniques through the 
segmentation of a thermal image. International Journal of Photoenergy, [s. l.], v. 
2020, 2020.  

FERNÁNDEZ, A.; USAMENTIAGA, R.; DE ARQUER, P.; FERNÁNDEZ, M. Á.; 
FERNÁNDEZ, D.; CARÚS, J. L. J. L.; FERNÁNDEZ, M. Robust detection, 
classification and localization of defects in large photovoltaic plants based on 
unmanned aerial vehicles and infrared thermography. Applied Sciences 
(Switzerland), [s. l.], v. 10, n. 17, 2020.  

FERRARA, C.; PHILIPP, D. Why do PV modules fail?. Energy Procedia, [s. l.], v. 15, 
n. 2011, p. 379–387, 2012. Disponível em: 
http://dx.doi.org/10.1016/j.egypro.2012.02.046.  

FONSECA ALVES, R. H. R. H.; DEUS JÚNIOR, G. A. D. G. A. de; MARRA, E. G. E. 
G.; LEMOS, R. P. R. P. Automatic fault classification in photovoltaic modules using 
Convolutional Neural Networks. Renewable Energy, [s. l.], v. 179, p. 502–516, 2021. 
Disponível em: https://doi.org/10.1016/j.renene.2021.07.070.  

GALLARDO-SAAVEDRA, S.; HERNÁNDEZ-CALLEJO, L.; DUQUE-PEREZ, O. 
Technological review of the instrumentation used in aerial thermographic inspection of 
photovoltaic plants. Renewable and Sustainable Energy Reviews, [s. l.], v. 93, n. 
May, p. 566–579, 2018. Disponível em: https://doi.org/10.1016/j.rser.2018.05.027.  

GAO, X.; MUNSON, E.; ABOUSLEMAN, G. P.; SI, J. Automatic solar panel recognition 
and defect detection using infrared imaging. Automatic Target Recognition XXV, [s. 



118 

 

 

l.], v. 9476, n. May 2015, p. 94760O, 2015.  

GENG, Q.; ZHOU, Z.; CAO, X. Survey of recent progress in semantic image 
segmentation with CNNs. Science China Information Sciences, [s. l.], v. 61, n. 5, p. 
1–18, 2018.  

GERD IMENES, A.; SAAD NOORI, N.; ANDREAS NESVAG UTHAUG, O.; KRONI, 
R.; BIANCHI, F.; BELBACHIR, N.; IMENES, A. G.; NOORI, N. S.; ANDREAS, O.; 
UTHAUG, N.; KRÖNI, R.; BIANCHI, F. A Deep Learning Approach for Automated Fault 
Detection on Solar Modules Using Image Composites. In: IEEE 48TH 
PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, [s. l.], . Anais [...]. [S. 
l.: s. n.], 2021. p. 1925–1930. 

GIRARD, N.; TARABALKA, Y. End-to-end learning of polygons for remote sensing 
image classification. International Geoscience and Remote Sensing Symposium 
(IGARSS), [s. l.], v. 2018-July, n. July, p. 2083–2086, 2018.  

GOLOVKO, V.; KROSHCHANKA, A.; BEZOBRAZOV, S.; SACHENKO, A.; KOMAR, 
M.; NOVOSAD, O. Development of Solar Panels Detector. In: 2018 INTERNATIONAL 
SCIENTIFIC-PRACTICAL CONFERENCE ON PROBLEMS OF 
INFOCOMMUNICATIONS SCIENCE AND TECHNOLOGY, PIC S AND T 2018 - 
PROCEEDINGS, 2019, [s. l.], . Anais [...]. [S. l.: s. n.], 2019. p. 761–764. 

GONZALEZ, R.; WOODS, R. Digital image processing. [S. l.: s. n.] 2002. Disponível 
em: http://mirror.klaus-uwe.me/ctan/biblio/bibtex/contrib/persian-bib/Persian-bib-
userguide.pdf%5Cnhttp://ftp.neu6.edu.cn/mirrors/CTAN/biblio/bibtex/contrib/persian-
bib/Persian-bib-userguide.pdf.  

GRECO, A.; PIRONTI, C.; SAGGESE, A.; VENTO, M.; VIGILANTE, V. A deep learning 
based approach for detecting panels in photovoltaic plants. In: PROCEEDINGS OF 
THE 3RD INTERNATIONAL CONFERENCE ON APPLICATIONS OF INTELLIGENT 
SYSTEMS, 2020, New York, NY, USA. Anais [...]. New York, NY, USA: ACM, 2020. 
p. 1–7. Disponível em: https://dl.acm.org/doi/10.1145/3378184.3378185.  

GRIMACCIA, F.; AGHAEI, M.; MUSSETTA, M.; LEVA, S.; QUATER, P. B. Planning 
for PV plant performance monitoring by means of unmanned aerial systems (UAS). 
International Journal of Energy and Environmental Engineering, [s. l.], v. 6, n. 1, 
p. 47–54, 2015. Disponível em: http://link.springer.com/10.1007/s40095-014-0149-6.  

GRIMACCIA, F.; LEVA, S.; DOLARA, A.; AGHAEI, M. Survey on PV Modules’ 
Common Faults After an O&amp;M Flight Extensive Campaign Over Different Plants 
in Italy. IEEE Journal of Photovoltaics, [s. l.], v. 7, n. 3, p. 810–816, 2017. Disponível 
em: http://ieeexplore.ieee.org/document/7879865/.  

GRIMACCIA, F.; LEVA, S.; NICCOLAI, A. PV plant digital mapping for modules’ 
defects detection by unmanned aerial vehicles. IET Renewable Power Generation, 
[s. l.], v. 11, n. 10, p. 1221–1228, 2017. Disponível em: http://digital-
library.theiet.org/content/journals/10.1049/iet-rpg.2016.1041.  



119 

 

 

GUERRIERO, P.; CUOZZO, G.; DALIENTO, S. Health diagnostics of PV panels by 
means of single cell analysis of thermographic images. In: 2016 IEEE 16TH 
INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL 
ENGINEERING (EEEIC), 2016, [s. l.], . Anais [...]. [S. l.]: IEEE, 2016. p. 1–6. 
Disponível em: http://ieeexplore.ieee.org/document/7555516/.  

HANAFY, W. A.; PINA, A.; SALEM, S. A. Machine learning approach for photovoltaic 
panels cleanliness detection. In: ICENCO 2019 - 2019 15TH INTERNATIONAL 
COMPUTER ENGINEERING CONFERENCE: UTILIZING MACHINE INTELLIGENCE 
FOR A BETTER WORLD, 2019, [s. l.], . Anais [...]. [S. l.: s. n.], 2019. p. 72–77. 

HAQUE, A.; BHARATH, K. V. S. K. V. S.; KHAN, M. A. M. A.; KHAN, I.; JAFFERY, Z. 
A. Z. A. Z. A. Fault diagnosis of Photovoltaic Modules. Energy Science and 
Engineering, [s. l.], v. 7, n. 3, p. 622–644, 2019.  

HENRY, C.; POUDEL, S.; LEE, S.-W. S.-W. S.-W. S.-W.; JEONG, H. Automatic 
Detection System of Deteriorated PV Modules Using Drone with Thermal Camera. 
Applied Sciences, [s. l.], v. 10, n. 11, p. 3802, 2020. Disponível em: 
https://www.mdpi.com/2076-3417/10/11/3802.  

HIGUCHI, Y.; BABASAKI, T. Failure detection of solar panels using thermographic 
images captured by drone. 7th International IEEE Conference on Renewable 
Energy Research and Applications, ICRERA 2018, [s. l.], v. 5, p. 391–396, 2018.  

HØIAAS, I.; GRUJIC, K.; IMENES, A. G.; BURUD, I.; OLSEN, E.; BELBACHIR, N. 
Inspection and condition monitoring of large-scale photovoltaic power plants: A review 
of imaging technologies. Renewable and Sustainable Energy Reviews, [s. l.], v. 161, 
n. February, p. 112353, 2022. Disponível em: 
https://doi.org/10.1016/j.rser.2022.112353.  

HUERTA HERRAIZ, Á.; PLIEGO MARUGÁN, A.; GARCÍA MÁRQUEZ, F. P. F. P. 
Photovoltaic plant condition monitoring using thermal images analysis by convolutional 
neural network-based structure. Renewable Energy, [s. l.], v. 153, p. 334–348, 2020.  

HWANG, H. P.-C.; KU, C. C.-Y.; CHAN, J. C.-C. Detection of malfunctioning 
photovoltaic modules based on machine learning algorithms. IEEE Access, [s. l.], v. 
9, p. 37210–37219, 2021.  

INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC). IEC TS 62446-3 - 
Photovoltaic (PV) systems - Requirements for testing, documentation and 
maintenance - Part 3: Photovoltaic modules and plants - Outdoor infrared 
thermography. Geneva: [s. n.], 2017.  

IRENA. Boosting Solar PV Markets : The Role of Quality Infrastructure. Abu 
Dhabi: [s. n.], 2017.  

IRENA. Renewable Capacity Statistics 2022. Abu Dhabi: The International 
Renewable Energy Agency, 2022. 2022. Disponível em: www.irena.org.  



120 

 

 

IRENA. World Energy Transitions Outlook 2022: 1.5°C Pathway. Abu Dhabi: 
International Renewable Energy Agency, 2022. 2022. 

ISMAIL, H.; RAHMANI, A.; ALJASMI, N.; QUADIR, J. Stitching approach for PV panel 
detection. In: 2020 ADVANCES IN SCIENCE AND ENGINEERING TECHNOLOGY 
INTERNATIONAL CONFERENCES, ASET 2020, 2020, [s. l.], . Anais [...]. [S. l.: s. n.], 
2020. p. 29–32. 

J. VANEK; REPKO, I.; KLIMA, J.; PEROUTKA, T. Automatic Detection of Defective 
Solar Modules by Thermovision. 32nd European Photovoltaic Solar Energy 
Conference and Exhibition, [s. l.], p. 1689–1699, 2016.  

JAFFERY, Z. A. Z. A. Z. A.; DUBEY, A. K. A. K.; IRSHAD; HAQUE, A. Scheme for 
predictive fault diagnosis in photo-voltaic modules using thermal imaging. Infrared 
Physics and Technology, [s. l.], v. 83, n. April, p. 182–187, 2017. Disponível em: 
http://dx.doi.org/10.1016/j.infrared.2017.04.015.  

JÄGER-WALDAU, A. Snapshot of photovoltaics-February 2020. Energies, [s. l.], v. 
13, n. 4, 2020.  

JEONG, H.; KWON, G.-R.; LEE, S.-W. Deterioration Diagnosis of Solar Module Using 
Thermal and Visible Image Processing. [s. l.], p. 1–14, 2020.  

JUNIOR, C. F. C. Uso de descritores morfológicos e cinemáticos na identificação 
automática de comportamentos de animais de laboratório. 2011. 137 f.  - 
Universidade Federal de Santa Catarina, [s. l.], 2011.  

KAMILARIS, A.; PRENAFETA-BOLDÚ, F. X. Deep Learning in Agriculture: A Survey. 
Computers and Electronics in Agriculture, [s. l.], v. 147, n. 1, p. 70–90, 2018.  

KARAKÖSE, M.; FIRILDAK, K. A shadow detection approach based on fuzzy logic 
using images obtained from PV array. In: 6TH INTERNATIONAL CONFERENCE ON 
MODELING, SIMULATION, AND APPLIED OPTIMIZATION, ICMSAO 2015 - 
DEDICATED TO THE MEMORY OF LATE IBRAHIM EL-SADEK, 2015, [s. l.], . Anais 
[...]. [S. l.: s. n.], 2015.  

KARIMI, A. M.; FADA, J. S.; LIU, J.; BRAID, J. L. J. L.; KOYUTURK, M.; FRENCH, R. 
H. R. H. R. H.; KOYUTÜRK, M.; FRENCH, R. H. R. H. R. H.; KOYUTURK, M.; 
FRENCH, R. H. R. H. R. H. Feature Extraction, Supervised and Unsupervised Machine 
Learning Classification of PV Cell Electroluminescence Images. 2018 IEEE 7th World 
Conference on Photovoltaic Energy Conversion, WCPEC 2018 - A Joint 
Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC, p. 418–424, 
2018.  

KIM, B.; SERFA JUAN, R. O.; LEE, D.-E.; CHEN, Z. Importance of image 
enhancement and CDF for fault assessment of photovoltaic module using IR thermal 
image. Applied Sciences (Switzerland), [s. l.], v. 11, n. 18, 2021.  

KIM, D.; YOUN, J.; KIM, C. Automatic Fault Recognition of Photovoltaic Modules 



121 

 

 

Based on Statistical Analysis of UAV Thermography. The International Archives of 
the Photogrammetry, Remote Sensing and Spatial Information Sciences, [s. l.], v. 
XLII-2/W6, n. 2W6, p. 179–182, 2017. Disponível em: https://www.int-arch-
photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W6/179/2017/.  

KIM, D.; YOUN, J.; KIM, C. Automatic Photovoltaic Panel Area Extraction from UAV 
Thermal Infrared Images. Journal of the Korean Society of Surveying, Geodesy, 
Photogrammetry and Cartography, [s. l.], v. 34, n. 6, p. 559–568, 2016. Disponível 
em: 
http://koreascience.or.kr/journal/view.jsp?kj=GCRHBD&py=2016&vnc=v34n6&sp=55
9.  

KÖNTGES, M.; KURTZ, S.; PACKARD, C. E. C.; JAHN, U.; BERGER, K. A.; KATO, 
K.; FRIESEN, T.; LUI, H.; ISEGHEM, Mike Van; LIU, H.; VAN ISEGHEM, M. IEA PVPS 
Subtask 3.2: Review of Failures of Photovoltaic ModulesInternation Energy 
Agency (IEA) Photovoltaic Power Systems Programme. [S. l.: s. n.], 2014.  

KRENZINGER, A.; DE ANDRADE, A. C. Accurate outdoor glass thermographic 
thermometry applied to solar energy devices. Solar Energy, [s. l.], v. 81, n. 8, p. 1025–
1034, 2007.  

KUMAR, N. M.; CHOPRA, S. S.; DE OLIVEIRA, A. K. V.; AHMED, H.; VAEZI, S.; 
MADUKANYA, U. E.; CASTAÑÓN, J. M. Solar PV module technologies. In: 
PHOTOVOLTAIC SOLAR ENERGY CONVERSION. [S. l.]: Elsevier, 2020. p. 51–78. 
Disponível em: https://linkinghub.elsevier.com/retrieve/pii/B978012819610600003X.  

KURUKURU, V. S. B.; HAQUE, A.; TRIPATHY, A. K.; KHAN, M. A. Machine learning 
framework for photovoltaic module defect detection with infrared images. International 
Journal of System Assurance Engineering and Management, [s. l.], 2021. 
Disponível em: https://doi.org/10.1007/s13198-021-01544-7.  

LAFKIH, S.; ZAZ, Y. Solar panel monitoring using a video frames mosaicing. 
Proceedings of 2016 International Renewable and Sustainable Energy 
Conference, IRSEC 2016, [s. l.], p. 247–250, 2017.  

LE, M.; LUONG, V. S.; NGUYEN, D. K.; DAO, V.-D.; VU, N. H.; VU, H. H. T. Remote 
anomaly detection and classification of solar photovoltaic modules based on deep 
neural network. Sustainable Energy Technologies and Assessments, [s. l.], v. 48, 
p. 101545, 2021. Disponível em: 
https://linkinghub.elsevier.com/retrieve/pii/S2213138821005579.  

LEE, D. H.; PARK, J. H. Developing inspection methodology of solar energy plants by 
thermal infrared sensor on board unmanned aerial vehicles. Energies, [s. l.], v. 12, n. 
15, 2019.  

LEVA, S.; AGHAEI, M.; GRIMACCIA, F. PV power plant inspection by UAS : 
Correlation between altitude and detection of defects on PV modules. In: 
ENVIRONMENT AND ELECTRICAL ENGINEERING (EEEIC), 2015 IEEE 15TH 
INTERNATIONAL CONFERENCE ON, 2015, Rome, Italy. Anais [...]. Rome, Italy: 



122 

 

 

IEEE, 2015.  

LI, Q.; FENG, Y.; LENG, Y.; CHEN, D. SolarFinder: automatic detection of solar 
photovoltaic arrays. In: PROCEEDINGS - 2020 19TH ACM/IEEE INTERNATIONAL 
CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS, IPSN 
2020, 2020, [s. l.], . Anais [...]. [S. l.: s. n.], 2020. p. 193–204. 

LI, X.; LI, W.; YANG, Q.; YAN, W.; ZOMAYA, A. Y. A. Y. Edge Computing Enabled 
Unmanned Module Defect Detection and Diagnosis System for Large-scale 
Photovoltaic Plants. IEEE Internet of Things Journal, [s. l.], v. 4662, n. c, p. 1–1, 
2020.  

LI, X.; LI, W.; YANG, Q.; YAN, W.; ZOMAYA, A. Y.; MEMBER, S.; YANG, Q.; 
MEMBER, S.; YAN, W.; ZOMAYA, A. Y. An Unmanned Inspection System for Multiple 
Defects Detection in Photovoltaic Plants. IEEE Journal of Photovoltaics, [s. l.], v. 10, 
n. 2, p. 568–576, 2020. Disponível em: 
https://ieeexplore.ieee.org/document/8945396/.  

LI, X.; YANG, Q.; LOU, Z.; YAN, W. Deep Learning Based Module Defect Analysis for 
Large-Scale Photovoltaic Farms. IEEE Transactions on Energy Conversion, [s. l.], 
v. 34, n. 1, p. 520–529, 2019. Disponível em: 
https://ieeexplore.ieee.org/document/8478340/.  

LI, Q.; YU, K.; CHEN, D. SolarDiagnostics: Automatic damage detection on rooftop 
solar photovoltaic arrays. Sustainable Computing: Informatics and Systems, [s. l.], 
v. 32, p. 100595, 2021. Disponível em: 
https://linkinghub.elsevier.com/retrieve/pii/S2210537921000834.  

LIAO, K. C.; LU, J. H. Using Matlab real-time image analysis for solar panel fault 
detection with UAV. Journal of Physics: Conference Series, [s. l.], v. 1509, n. 1, p. 
012010, 2020. Disponível em: https://iopscience.iop.org/article/10.1088/1742-
6596/1509/1/012010.  

LIAO, K. C.; LU, J. H. Using UAV to detect solar module fault conditions of a solar 
power farm with ir and visual image analysis. Applied Sciences (Switzerland), [s. l.], 
v. 11, n. 4, p. 1–21, 2021.  

LIN, J.; JIANHUI, S.; XIN, L. Hot spots detection of operating PV arrays through IR 
thermal image using method based on curve fitting of gray histogram. In: MATEC WEB 
OF CONFERENCES, 2016, [s. l.], . Anais [...]. [S. l.: s. n.], 2016.  

LIN, T. Y.; MAIRE, M.; BELONGIE, S.; HAYS, J.; PERONA, P.; RAMANAN, D.; 
DOLLÁR, P.; ZITNICK, C. L. Microsoft COCO: Common objects in context. Lecture 
Notes in Computer Science (including subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics), [s. l.], v. 8693 LNCS, n. PART 5, 
p. 740–755, 2014.  

LÓPEZ-FERNÁNDEZ, L.; LAGÜELA, S.; FERNÁNDEZ, J.; GONZÁLEZ-AGUILERA, 
D. Automatic evaluation of photovoltaic power stations from high-density RGB-T 3D 



123 

 

 

point clouds. Remote Sensing, [s. l.], v. 9, n. 6, p. 1–19, 2017.  

LUO, X.; LI, X.; YANG, Q.; WU, F.; ZHANG, D.; YAN, W.; XI, Z. Optimal path planning 
for UAV based inspection system of large-scale photovoltaic farm. Proceedings - 
2017 Chinese Automation Congress, CAC 2017, [s. l.], v. 2017-Janua, p. 4495–
4500, 2017.  

MALOF, J. M.; BRADBURY, K.; COLLINS, L. M.; NEWELL, R. G. A Deep 
Convolutional Neural Network and a Random Forest Classifier for Solar Photovoltaic 
Array Detection in Aerial Imagery. International Conference on Renewable Energy 
Research and Applications (ICRERA), [s. l.], v. 5, p. 650–654, 2016.  

MANNO, D.; CIPRIANI, G.; CIULLA, G.; DI DIO, V.; GUARINO, S.; LO BRANO, V. 
Deep learning strategies for automatic fault diagnosis in photovoltaic systems by 
thermographic images. Energy Conversion and Management, [s. l.], v. 241, n. May, 
p. 114315, 2021. Disponível em: https://doi.org/10.1016/j.enconman.2021.114315.  

MAYER, K.; WANG, Z.; ARLT, M. L.; NEUMANN, D.; RAJAGOPAL, R. DeepSolar for 
Germany: A deep learning framework for PV system mapping from aerial imagery. 
SEST 2020 - 3rd International Conference on Smart Energy Systems and 
Technologies, [s. l.], 2020.  

MAYO, R. C.; LEUNG, J. Artificial intelligence and deep learning – Radiology’s next 
frontier? Clinical Imaging, [s. l.], v. 49, n. July 2017, p. 87–88, 2018. Disponível em: 
https://doi.org/10.1016/j.clinimag.2017.11.007.  

MEHTA, S.; AZAD, A. P.; CHEMMENGATH, S. A.; RAYKAR, V.; KALYANRAMAN, S. 
DeepSolarEye: Power Loss Prediction and Weakly Supervised Soiling Localization via 
Fully Convolutional Networks for Solar Panels. In: WACV 2018, 2017, [s. l.], . Anais 
[...]. [S. l.: s. n.], 2017. Disponível em: http://arxiv.org/abs/1710.03811.  

MENÉNDEZ, O.; GUAMÁN, R.; PÉREZ, M.; CHEEIN, F. A. F. A. Photovoltaic modules 
diagnosis using artificial vision techniques for artifact minimization. Energies, [s. l.], v. 
11, n. 7, 2018.  

MONTANEZ, L. E.; VALENTIN-CORONADO, L. M.; MOCTEZUMA, D.; FLORES, G. 
Photovoltaic module segmentation and thermal analysis tool from thermal images. 
arXiv, [s. l.], n. Ropec, 2020.  

MONTOYA, J. C. J. C.; MUÑOZ, C. Q. G. C. Q. G.; MÁRQUEZ, F. P. G. F. P. G. 
Remote condition monitoring for photovoltaic systems. [S. l.]: Elsevier Ltd., 2019. 
2019. Disponível em: https://doi.org/10.1016/B978-0-08-101094-5.00009-5.  

MORADI SIZKOUHI, A.; AGHAEI, M.; ESMAILIFAR, S. M. A deep convolutional 
encoder-decoder architecture for autonomous fault detection of PV plants using multi-
copters. Solar Energy, [s. l.], v. 223, n. September 2020, p. 217–228, 2021. Disponível 
em: https://doi.org/10.1016/j.solener.2021.05.029.  

MORADI SIZKOUHI, A. M.; MAJID ESMAILIFAR, S.; AGHAEI, M.; DE OLIVEIRA, A. 



124 

 

 

K. V.; RÜTHER, R. Autonomous Path Planning by Unmanned Aerial Vehicle (UAV) for 
Precise Monitoring of Large-Scale PV plants. In: 2019 IEEE 46TH PHOTOVOLTAIC 
SPECIALISTS CONFERENCE (PVSC), 2019, Chicago, IL, USA. Anais [...]. Chicago, 
IL, USA: IEEE, 2019. p. 1398–1402. Disponível em: 
https://ieeexplore.ieee.org/document/8980862/.  

MORAGUEZ, M.; TRUJILLO, A.; DE WECK, O.; SIDDIQI, A. Convolutional Neural 
Network for Detection of Residential Photovoltalc Systems in Satellite Imagery. 
International Geoscience and Remote Sensing Symposium (IGARSS), [s. l.], p. 
1600–1603, 2020.  

MUHAMMAD, B.; PRASAD, R.; NISI, M.; MENNELLA, A.; GAGLIARDE, G.; CIANCA, 
E.; MARENCHINO, D.; ANGRISANO, A.; BERNARDI, M.; ADDABBO, P.; ULLO, S. 
Automating the maintenance of photovoltaic power plants. In: 2017 GLOBAL 
WIRELESS SUMMIT (GWS), 2017, [s. l.], . Anais [...]. [S. l.]: IEEE, 2017. p. 6–11. 
Disponível em: http://ieeexplore.ieee.org/document/8300492/.  

NAJIAH NURUL AFIFAH, A.; INDRABAYU; SUYUTI, A.; SYAFARUDDIN. A New 
Approach for Hot Spot Solar Cell Detection based on Multi-level Otsu Algorithm. 
Proceedings - 2021 International Seminar on Intelligent Technology and Its 
Application: Intelligent Systems for the New Normal Era, ISITIA 2021, [s. l.], p. 
278–282, 2021.  

NASCIMENTO, L. R. do; DE SOUZA VIANA, T.; CAMPOS, R. A.; RÜTHER, R. 
Extreme solar overirradiance events: Occurrence and impacts on utility-scale 
photovoltaic power plants in Brazil. Solar Energy, [s. l.], v. 186, n. January, p. 370–
381, 2019. Disponível em: https://doi.org/10.1016/j.solener.2019.05.008.  

NATARAJAN, K.; KUMAR, B. P.; KUMAR, V. S. Fault detection of solar PV system 
using SVM and thermal image processing. International Journal of Renewable 
Energy Research, [s. l.], v. 10, n. 2, p. 967–977, 2020.  

NDIAYE, A.; CHARKI, A.; KOBI, A.; KÉBÉ, C. M. F.; NDIAYE, P. A.; SAMBOU, V. 
Degradations of silicon photovoltaic modules: A literature review. Solar Energy, [s. l.], 
v. 96, p. 140–151, 2013.  

NGO, G. C. G. C.; MACABEBE, E. Q. B. E. Q. B. Image segmentation using K-means 
color quantization and density-based spatial clustering of applications with noise 
(DBSCAN) for hotspot detection in photovoltaic modules. In: 2016 IEEE REGION 10 
CONFERENCE (TENCON), 2016, [s. l.], . Anais [...]. [S. l.]: IEEE, 2016. p. 1614–1618. 
Disponível em: http://ieeexplore.ieee.org/document/7848290/.  

NIAZI, K.; AKHTAR, W.; KHAN, H. A. A.; SOHAIB, S.; NASIR, A. K. K. Binary 
Classification of Defective Solar PV Modules Using Thermography. In: 2018 IEEE 7TH 
WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) 
(A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC), 
2018, [s. l.], . Anais [...]. [S. l.]: IEEE, 2018. p. 0753–0757. Disponível em: 
https://ieeexplore.ieee.org/document/8548138/.  



125 

 

 

NIAZI, K. A. K.; AKHTAR, W.; KHAN, H. A.; YANG, Y.; ATHAR, S. Hotspot diagnosis 
for solar photovoltaic modules using a Naive Bayes classifier. Solar Energy, [s. l.], v. 
190, n. February, p. 34–43, 2019. Disponível em: 
https://doi.org/10.1016/j.solener.2019.07.063.  

NICCOLAI, A.; GANDELLI, A.; GRIMACCIA, F.; ZICH, R.; LEVA, S. Overview on 
Photovoltaic Inspections Procedure by means of Unmanned Aerial Vehicles. In: 2019 
IEEE MILAN POWERTECH, 2019, [s. l.], . Anais [...]. [S. l.]: IEEE, 2019. p. 1–6. 
Disponível em: https://ieeexplore.ieee.org/document/8810987/.  

NICCOLAI, A.; GRIMACCIA, F.; LEVA, S. Advanced asset management tools in 
photovoltaic plant monitoring: UAV-based digital mapping. Energies, [s. l.], v. 12, n. 
24, 2019.  

NIE, J.; LUO, T.; LI, H. Automatic hotspots detection based on UAV infrared images 
for large-scale PV plant. Electronics Letters, [s. l.], v. 56, n. 19, p. 993–995, 2020.  

O’MAHONY, N.; CAMPBELL, S.; CARVALHO, A.; HARAPANAHALLI, S.; 
HERNANDEZ, G. V.; KRPALKOVA, L.; RIORDAN, D.; WALSH, J. Deep Learning vs. 
Traditional Computer Vision. Advances in Intelligent Systems and Computing, [s. 
l.], v. 943, n. Cv, p. 128–144, 2020.  

OLIVEIRA, A. K. V.; AGHAEI, M.; MADUKANYA, U. E.; NASCIMENTO, L.; RÜTHER, 
R. Aerial Infrared Thermography of a Utility-Scale PV Plant After a Meteorological 
Tsunami in Brazil. In: 2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC 
ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 
28TH PVSEC & 34TH EU PVSEC), 2018, Waikoloa Village, HI, USA. Anais [...]. 
Waikoloa Village, HI, USA: IEEE, 2018. p. 0684–0689. Disponível em: 
https://ieeexplore.ieee.org/document/8548019/.  

OLIVEIRA, A. K. V.; AGHAEI, M.; RÜTHER, R. Aerial infrared thermography for low-
cost and fast fault detection in utility-scale PV power plants. Solar Energy, [s. l.], v. 
211, n. September, p. 712–724, 2020. Disponível em: 
https://doi.org/10.1016/j.solener.2020.09.066.  

OLIVEIRA, A. K. V.; AGHAEI, M.; RÜTHER, R. Automatic Fault Detection of 
Photovoltaic Array by Convolutional Neural Networks During Aerial Infrared 
Thermography. In: 36TH EUROPEAN PHOTOVOLTAIC SOLAR ENERGY 
CONFERENCE AND EXHIBITION (EU PVSEC), 2019, Marseille, France. Anais [...]. 
Marseille, France: [s. n.], 2019. p. 1302–1307. Disponível em: 
https://www.researchgate.net/publication/335950307.  

OLIVEIRA, A. K. V. de; AGHAEI, M.; RÜTHER, R. Automatic Inspection of Photovoltaic 
Power Plants Using Aerial Infrared Thermography: A Review. Energies, [s. l.], v. 15, 
n. 6, p. 2055, 2022. Disponível em: https://www.mdpi.com/1996-1073/15/6/2055. 
Acesso em: 11 mar. 2022. 

OLIVEIRA, A. K. V. de; BEDIN, C.; XAVIER DE ANDRADE PINTO, G.; MENDES 
FERREIRA GOMES, A.; HOSODA SOUZA REIS, G.; NASCIMENTO, L. R. do; 



126 

 

 

RÜTHER, R. Low-Cost Aerial Electroluminescence (aEL) of PV Power Plants. 2019 
IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, p. 
0532–0537, 2019. Disponível em: www.fotovoltaica.ufsc.br.  

OLIVEIRA, A. K. V.; BRACHT, M. K.; MELO, A. P.; LAMBERTS, R.; RÜTHER, R. 
Evaluation of Faults in a Photovoltaic Power Plant using Orthomosaics based on Aerial 
Infrared Thermography. Conference Record of the IEEE Photovoltaic Specialists 
Conference, [s. l.], p. 2604–2610, 2021.  

PARK, J.; LEE, D. Precise Inspection Method of Solar Photovoltaic Panel Using Optical 
and Thermal Infrared Sensor Image Taken by Drones. IOP Conference Series: 
Materials Science and Engineering, [s. l.], v. 611, n. 1, p. 012089, 2019. Disponível 
em: https://iopscience.iop.org/article/10.1088/1757-899X/611/1/012089.  

PATEL, A. V. A. V.; MCLAUCHLAN, L.; MEHRUBEOGLU, M. Defect Detection in PV 
Arrays Using Image Processing. In: 2020 INTERNATIONAL CONFERENCE ON 
COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 
2020, [s. l.], . Anais [...]. [S. l.]: IEEE, 2020. p. 1653–1657. Disponível em: 
https://ieeexplore.ieee.org/document/9457905/.  

PEREIRA, E. B.; MARTINS, F. R.; GONÇALVES, A. R.; COSTA, R. S.; LIMA, F. J. L. 
de; RÜTHER, R.; ABREU, S. L. de; TIEPOLO, G. M.; PEREIRA, S. V.; SOUZA, J. G. 
de. Atlas Brasileiro de Energia Solar. 2a. Ediçãoed. São José dos Campos: INPE, 
2017. 2017. Disponível em: http://urlib.net/rep/8JMKD3MGP3W34P/3PERDJE.  

PÉREZ-GONZÁLEZ, A. É.; BENÍTEZ-MONTOYA, N.; JARAMILLO-DUQUE, Á.; 
CANO-QUINTERO, J. B. Coverage path planning with semantic segmentation for UAV 
in PV plants. Applied Sciences (Switzerland), [s. l.], v. 11, n. 24, 2021.  

PEREZ, R. M.; ARIAS, J. S.; MENDEZ-PORRAS, A. Solar panels recognition based 
on machine learning. Proceedings - 4th Jornadas Costarricenses de Investigacion 
en Computacion e Informatica, JoCICI 2019, [s. l.], p. 1–5, 2019.  

PIERDICCA, R.; MALINVERNI, E. S. S.; PICCININI, F.; PAOLANTI, M.; FELICETTI, 
A.; ZINGARETTI, P. Deep Convolutional Neural Network for Automatic Detection of 
Damaged Photovoltaic Cells. ISPRS - International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences, [s. l.], v. 
XLII–2, n. 2, p. 893–900, 2018. Disponível em: https://www.int-arch-photogramm-
remote-sens-spatial-inf-sci.net/XLII-2/893/2018/.  

PILLA, M.; GALMICHE, F.; MALDAGUE, X. Thermographic inspection of cracked solar 
cells. In: PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL 
ENGINEERING, 2002, [s. l.], . Anais [...]. [S. l.: s. n.], 2002. p. 699–703. 

PIVEM, T.; OLIVEIRA DE ARAUJO, F. de; OLIVEIRA DE ARAUJO, L. de; DE 
OLIVEIRA, G. S. Application of A Computer Vision Method for Soiling Recognition in 
Photovoltaic Modules for Autonomous Cleaning Robots. Signal & Image 
Processing : An International Journal, [s. l.], v. 10, n. 03, p. 43–59, 2019.  



127 

 

 

PLATINI REGES, J.; LIMA MOREIRA, F. D. F. D.; SANTOS BEZERRA, L. D. L. D.; 
RIPARDO DE ALEXANDRIA, A.; REBOUCAS FILHO, P. P. P. P. Thermographic 
Image Processing Application in Solar Followers. IEEE Latin America Transactions, 
[s. l.], v. 13, n. 10, p. 3350–3358, 2015.  

QASEM, H.; MNATSAKANYAN, A.; BANDA, P. Assessing dust on PV modules using 
image processing techniques. In: CONFERENCE RECORD OF THE IEEE 
PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2016, [s. l.], . Anais [...]. [S. l.: s. n.], 
2016. p. 2066–2070. 

QI, F.; LIANG, S.; CAO, R.; DING, Y.; YANG, Q.; YAN, W. Detection and Positioning 
of Keypoints in Small-scale Photovoltaic System Based on Object Detection Network 
and Aerial Sequence Images. In: 2020 CHINESE CONTROL AND DECISION 
CONFERENCE (CCDC), 2020, [s. l.], . Anais [...]. [S. l.]: IEEE, 2020. p. 4795–4800. 
Disponível em: https://ieeexplore.ieee.org/document/9164652/.  

QUATER, P. B.; GRIMACCIA, F.; LEVA, S.; MUSSETTA, M.; AGHAEI, M. Light 
Unmanned Aerial Vehicles (UAVs) for cooperative inspection of PV plants. IEEE 
Journal of Photovoltaics, [s. l.], v. 4, n. 4, p. 1107–1113, 2014.  

R. RASCH, G. BEHRENS, F.U. HAMELMANN, S. HANTELMANN, R. DREIMANN, J. 
A. W. Automated Thermal Imaging for Fault Detection on PV Systems. In: 31ST 
EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE AND EXHIBITION, 
2015, [s. l.], . Anais [...]. [S. l.: s. n.], 2015. p. 2147–2149. 

REGALADO, M. J. P.; RUIZ, E. O.; PINZÓN, P. J. Study of defects in PV generators 
using image analysis techniques with Matlab. Renewable Energy and Power Quality 
Journal, [s. l.], v. 1, n. 12, p. 9–14, 2014. Disponível em: 
http://www.icrepq.com/icrepq’14/206.14-Regalado.pdf.  

REN, Y.; YU, Y.; LI, J.; ZHANG, W. Design of photovoltaic hot spot detection system 
based on deep learning. Journal of Physics: Conference Series, [s. l.], v. 1693, n. 
1, 2020.  

RICO ESPINOSA, A.; BRESSAN, M.; GIRALDO, L. F. Failure signature classification 
in solar photovoltaic plants using RGB images and convolutional neural networks. 
Renewable Energy, [s. l.], v. 162, p. 249–256, 2020. Disponível em: 
https://doi.org/10.1016/j.renene.2020.07.154.  

ROGGI, G.; NICCOLAI, A.; GRIMACCIA, F.; LOVERA, M. A Computer Vision Line-
Tracking Algorithm for Automatic UAV Photovoltaic Plants Monitoring Applications. 
Energies, [s. l.], v. 13, n. 4, p. 838, 2020. Disponível em: https://www.mdpi.com/1996-
1073/13/4/838.  

ROGOTIS, S.; IOANNIDIS, D.; TSOLAKIS,  a; TZOVARAS, D.; LIKOTHANASSIS, S. 
Early defect diagnosis in installed PV modules exploiting spatio-temporal information 
from thermal images. QIRT2014 Conférence, [s. l.], 2014.  

RÜTHER, R.; NASCIMENTO, L. R. do; CAMPOS, R. A. Performance assessment 



128 

 

 

issues in utility-scale photovoltaics in warm and sunny climates. Renewable Energy 
and Environmental Sustainability, [s. l.], v. 2, p. 35, 2017.  

SALAHAT, E.; ASSELINEAU, C.-A.; COVENTRY, J.; MAHONY, R. Waypoint Planning 
for Autonomous Aerial Inspection of Large-Scale Solar Farms. In: IECON 2019 - 45TH 
ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 
2019, [s. l.], . Anais [...]. [S. l.]: IEEE, 2019. p. 763–769. Disponível em: 
https://ieeexplore.ieee.org/document/8927123/.  

SALAMANCA, S.; MERCHAN, P.; GARCIA, I. On the detection of solar panels by 
image processing techniques. In: 2017 25TH MEDITERRANEAN CONFERENCE ON 
CONTROL AND AUTOMATION, MED 2017, 2017, [s. l.], . Anais [...]. [S. l.: s. n.], 
2017. p. 478–483. 

SALAZAR, A. M.; MACABEBE, E. Q. B. Hotspots Detection in Photovoltaic Modules 
Using Infrared Thermography. In: MATEC WEB OF CONFERENCES, 2016, [s. l.], . 
Anais [...]. [S. l.: s. n.], 2016.  

SCHMIDHUBER, J. Deep Learning in Neural Networks : An Overview. [s. l.], p. 1–88, 
2014.  

SEGOVIA RAMÍREZ, I.; DAS, B.; GARCÍA MÁRQUEZ, F. P. Fault detection and 
diagnosis in photovoltaic panels by radiometric sensors embedded in unmanned aerial 
vehicles. Progress in Photovoltaics: Research and Applications, [s. l.], n. May, p. 
1–17, 2021. Disponível em: https://onlinelibrary.wiley.com/doi/10.1002/pip.3479.  

SERFA JUAN, R. O. R. O.; KIM, J. Photovoltaic Cell Defect Detection Model based-
on Extracted Electroluminescence Images using SVM Classifier. 2020 International 
Conference on Artificial Intelligence in Information and Communication, ICAIIC 
2020, [s. l.], p. 578–582, 2020.  

SHA, W.; DAI, C.; JIANG, L. Design of patrol monitoring and control system for hot 
spot of solar photovoltaic module. In: PROCEEDINGS - 2019 INTERNATIONAL 
CONFERENCE ON INTELLIGENT COMPUTING, AUTOMATION AND SYSTEMS, 
ICICAS 2019, 2019, [s. l.], . Anais [...]. [S. l.: s. n.], 2019. p. 668–671. 

SHEN, Y. Y.; CHEN, X.; ZHANG, J.; XIE, L.; ZHANG, K.; WEI, H. A Robust Automatic 
Method for Removing Projective Distortion of Photovoltaic Modules from Close 
Shot Images. [S. l.: s. n.], 2020. 2020.v. 12305 LNCS. Disponível em: 
http://link.springer.com/10.1007/978-3-030-60633-6_59.  

SHEN, H.; ZHU, L.; HONG, X.; CHANG, W. ROI extraction method of infrared 
thermal image based on GLCM characteristic imitate gradient. [S. l.: s. n.], 2017. 
2017.v. 771. 

SHIHAO DING ; QIANG YANG ; XIAOXIA LI ; WENJUN YAN ; WEI RUAN. Transfer 
Learning based Photovoltaic Module Defect Diagnosis using Aerial Images. In: 2018 
INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY 
(POWERCON), 2018, [s. l.], . Anais [...]. [S. l.]: IEEE, 2018. p. 4245–4250. 



129 

 

 

SIZKOUHI, A. M. M.; AGHAEI, M.; ESMAILIFAR, S. M. S. M.; MOHAMMADI, M. R. 
R.; GRIMACCIA, F. Automatic Boundary Extraction of Large-Scale Photovoltaic Plants 
Using a Fully Convolutional Network on Aerial Imagery. IEEE Journal of 
Photovoltaics, [s. l.], v. 10, n. 4, p. 1061–1067, 2020. Disponível em: 
https://ieeexplore.ieee.org/document/9095250/.  

SIZKOUHI, A. M. M.; ESMAILIFAR, S. M.; AGHAEI, M.; KARIMKHANI, M. RoboPV: 
An integrated software package for autonomous aerial monitoring of large scale PV 
plants. Energy Conversion and Management, [s. l.], v. 254, p. 115217, 2022.  

SOUFFER, I.; SGHIOUAR, M.; SEBARI, I.; ZEFRI, Y.; HAJJI, H.; ANIBA, G.; I., S. S.; 
M., S.; I., S. S.; Y., Z.; H., H.; G., A. Automatic Extraction of Photovoltaic Panels from 
UAV Imagery with Object-Based Image Analysis and Machine Learning. In: S., 
Bennani; Y., Lakhrissi; G., Khaissidi; A., Mansouri; Y., Khamlichi (org.). WITS 2020. 
Lecture Notes in Electrical Engineering. vol 745ed. Singapore: Springer, 2021. v. 
745, p. 699–709.  

SRIDHARAN, N. V.; SUGUMARAN, V. Convolutional Neural Network based 
Automatic Detection of Visible Faults in a Photovoltaic Module. Energy Sources, Part 
A: Recovery, Utilization and Environmental Effects, [s. l.], v. 00, n. 00, p. 1–16, 
2021. Disponível em: https://doi.org/10.1080/15567036.2021.1905753.  

TRIBAK, H.; ZAZ, Y. Remote solar panels identification based on patterns localization. 
Proceedings of 2018 6th International Renewable and Sustainable Energy 
Conference, IRSEC 2018, [s. l.], p. 1–5, 2018.  

TRIBAK, H.; ZAZ, Y. Solar Panels Frames Quality Assessment. Proceedings of 2017 
International Renewable and Sustainable Energy Conference, IRSEC 2017, [s. l.], 
2018.  

TRIKI-LAHIANI, A.; BENNANI-BEN ABDELGHANI, A.; SLAMA-BELKHODJA, I. Fault 
detection and monitoring systems for photovoltaic installations: A review. Renewable 
and Sustainable Energy Reviews, [s. l.], v. 82, n. July 2017, p. 2680–2692, 2018. 
Disponível em: https://doi.org/10.1016/j.rser.2017.09.101.  

TSANAKAS, J. A.; BOTSARIS, P. N. An infrared thermographic approach as a hot-
spot detection tool for photovoltaic modules using image histogram and line profile 
analysis. International Journal of Condition Monitoring, [s. l.], v. 2, n. 1, p. 22–30, 
2012. Disponível em: 
http://openurl.ingenta.com/content/xref?genre=article&issn=2047-
6426&volume=2&issue=1&spage=22.  

TSANAKAS, J. A.; BOTSARIS, P. N.; TSANAKAS, I.; BOTSARIS, P. N. On the 
Detection of Hot Spots in Operating Photovoltaic Arrays through Thermal Image 
Analysis and a Simulation Model. Materials Evaluation, [s. l.], v. 71, n. 4, p. 457–465, 
2013.  

TSANAKAS, J. A.; CHRYSOSTOMOU, D.; BOTSARIS, P. N.; GASTERATOS, A. Fault 
diagnosis of photovoltaic modules through image processing and Canny edge 



130 

 

 

detection on field thermographic measurements. International Journal of 
Sustainable Energy, [s. l.], v. 34, n. 6, p. 351–372, 2015. Disponível em: 
http://www.tandfonline.com/doi/abs/10.1080/14786451.2013.826223.  

TSANAKAS, J. A.; HA, L. D.; AL SHAKARCHI, F. Advanced inspection of photovoltaic 
installations by aerial triangulation and terrestrial georeferencing of thermal/visual 
imagery. Renewable Energy, [s. l.], v. 102, p. 224–233, 2017. Disponível em: 
http://dx.doi.org/10.1016/j.renene.2016.10.046.  

TSANAKAS, J. A. J. A.; HA, L.; BUERHOP, C. Faults and infrared thermographic 
diagnosis in operating c-Si photovoltaic modules: A review of research and future 
challenges. Renewable and Sustainable Energy Reviews, [s. l.], v. 62, p. 695–709, 
2016. Disponível em: http://dx.doi.org/10.1016/j.rser.2016.04.079.  

ULRIKE JAHN; HERZ, M.; KÖNTGES, M.; PARLEVLIET, D.; PAGGI, M.; TSANAKAS, 
I.; STEIN, J. S.; BERGER, K. A.; RANTA, S.; FRENCH, R. H.; RICHTER, M.; 
TANAHASHI, T. Review on Infrared and Electroluminescence Imaging for PV 
Field Applications. IEA PVPS: [s. n.], 2018.  

UMA, J.; MUNIRAJ, C.; SATHYA, N. Diagnosis of Photovoltaic (PV) Panel Defects 
Based on Testing and Evaluation of Thermal Image. Journal of Testing and 
Evaluation, [s. l.], v. 47, n. 6, p. 20170653, 2019. Disponível em: 
http://www.astm.org/doiLink.cgi?JTE20170653.  

UMAIR, M.; FARHAJ, H.; MASUD, M.; DAD, K.; ZAFAR, A. A machine learning 
framework to identify the hotspot in photovoltaic module using infrared thermography. 
Solar Energy, [s. l.], v. 208, n. July, p. 643–651, 2020. Disponível em: 
https://doi.org/10.1016/j.solener.2020.08.027.  

VATH. Electrical Infrared Inspections ▪ Low Voltage. [s. l.], n. February, p. 17, 2016.  

VENKATESH, S. N. S. N.; SUGUMARAN, V. A combined approach of convolutional 
neural networks and machine learning for visual fault classification in photovoltaic 
modules. Proceedings of the Institution of Mechanical Engineers, Part O: Journal 
of Risk and Reliability, [s. l.], v. 236, n. 1, p. 148–159, 2022.  

VERGURA, S. Correct Settings of a Joint Unmanned Aerial Vehicle and Infrared 
Camera System for the Detection of Faulty Photovoltaic Modules. IEEE Journal of 
Photovoltaics, [s. l.], v. 11, n. 1, p. 124–130, 2021.  

VERGURA, S.; FALCONE, O. Filtering and processing IR images of PV modules. 
Renewable Energy and Power Quality Journal, [s. l.], v. 1, n. 9, p. 1209–1214, 2011.  

VERGURA, S.; MARINO, F. Quantitative and Computer-Aided Thermography-Based 
Diagnostics for PV Devices: Part I-Framework. IEEE Journal of Photovoltaics, [s. l.], 
v. 7, n. 3, p. 822–827, 2017.  

VOULODIMOS, A.; DOULAMIS, N.; DOULAMIS, A.; PROTOPAPADAKIS, E. Deep 
Learning for Computer Vision: A Brief Review. Computational Intelligence and 



131 

 

 

Neuroscience, [s. l.], v. 2018, p. 1–13, 2018. Disponível em: 
https://www.hindawi.com/journals/cin/2018/7068349/.  

WANG, M.; CUI, Q. Q.; SUN, Y.; WANG, Q. Photovoltaic panel extraction from very 
high-resolution aerial imagery using region–line primitive association analysis and 
template matching. ISPRS Journal of Photogrammetry and Remote Sensing, [s. l.], 
v. 141, p. 100–111, 2018. Disponível em: 
https://doi.org/10.1016/j.isprsjprs.2018.04.010.  

WANG, Q.; PAYNABAR, K.; PACELLA, M. Online automatic anomaly detection for 
photovoltaic systems using thermography imaging and low rank matrix decomposition. 
Journal of Quality Technology, [s. l.], 2021.  

WANG, N.; SUN, Z.-L.; ZENG, Z.; LAM, K.-M. Effective Segmentation Approach for 
Solar Photovoltaic Panels in Uneven Illuminated Color Infrared Images. IEEE Journal 
of Photovoltaics, [s. l.], v. 11, n. 2, p. 478–484, 2021. Disponível em: 
https://ieeexplore.ieee.org/document/9292949/.  

WANG, P.; YANG, W.; SHEN, Y.; ZHOU, L. The Fault Diagnosis for Photovoltaic Array 
with the Technique of Infrared/Visible Image Fusion. In: PROCEEDINGS OF SPIE - 
THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, 2003, [s. l.], . Anais 
[...]. [S. l.: s. n.], 2003. p. 658–661. 

WAQAR AKRAM, M.; LI, G.; JIN, Y. Y.; CHEN, X.; ZHU, C.; ZHAO, X.; ALEEM, M.; 
AHMAD, A. Improved outdoor thermography and processing of infrared images for 
defect detection in PV modules. Solar Energy, [s. l.], v. 190, n. March, p. 549–560, 
2019. Disponível em: https://doi.org/10.1016/j.solener.2019.08.061.  

WEI, S.; LI, X.; DING, S.; YANG, Q.; YAN, W. Hotspots Infrared detection of 
photovoltaic modules based on Hough line transformation and Faster-RCNN 
approach. In: 2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, 
DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2019, [s. l.], . Anais [...]. 
[S. l.]: IEEE, 2019. p. 1266–1271. Disponível em: 
https://ieeexplore.ieee.org/document/8820333/.  

WEINREICH, B.; HAAS, R.; ZEHNER, M.; BECKER, G. Optimierung thermografischer 
Fehleranalyseverfahren auf Multi-MW-PV-Kraftwerke. 26th PV-Symposium Bad 
Staffelstein, [s. l.], n. 1, p. 10, 2011.  

WEN, W.; LI, S.; ZHOU, F.; LI, M.; XIE, Q. Q.; CHEN, S. Stain detection method of 
solar panel based on spot elimination. 2021 IEEE 2nd International Conference on 
Big Data, Artificial Intelligence and Internet of Things Engineering, ICBAIE 2021, 
[s. l.], n. Icbaie, p. 820–824, 2021.  

WU, J.; CHAN, E.; YADAV, R.; GOPALAKRISHNA, H.; TAMIZHMANI, G.; YADAV, R.; 
CHAN, E.; WU, J.; TAMIZHMANI, G. Durability evaluation of PV modules using image 
processing tools. In: PROCEEDINGS OF SPIE - THE INTERNATIONAL SOCIETY 
FOR OPTICAL ENGINEERING, 2018, [s. l.], . Anais [...]. [S. l.: s. n.], 2018. p. 36. 



132 

 

 

WU, F.; ZHANG, D.; LI, X.; LUO, X.; WANG, J.; YAN, W.; CHEN, Z.; YANG, Q. Aerial 
image recognition and matching for inspection of large-scale photovoltaic farms. In: 
2017 INTERNATIONAL SMART CITIES CONFERENCE (ISC2), 2017, [s. l.], . Anais 
[...]. [S. l.]: IEEE, 2017. p. 1–6. Disponível em: 
http://ieeexplore.ieee.org/document/8090792/.  

XI, Z.; LOU, Z.; SUN, Y.; LI, X.; YANG, Q.; YAN, W. A Vision-Based Inspection 
Strategy for Large-Scale Photovoltaic Farms Using an Autonomous UAV. In: 2018 
17TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND 
APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES), 2018, 
[s. l.], . Anais [...]. [S. l.]: IEEE, 2018. p. 200–203. Disponível em: 
https://ieeexplore.ieee.org/document/8572557/.  

XIE, Y.; SHEN, Y. Y.; ZHANG, K.; ZHANG, J. Efficient Region Segmentation of PV 
Module in Infrared Imagery using Segnet. IOP Conference Series: Earth and 
Environmental Science, [s. l.], v. 793, n. 1, 2021.  

XIE, X.; WEI, X.; WANG, X.; GUO, X.; LI, J.; CHENG, Z. Abnormal target tracking and 
localization algorithm for UAV PV inspection scenarios. IOP Conference Series: 
Materials Science and Engineering, [s. l.], v. 768, n. 7, 2020.  

XIE, X.; WEI, X.; WANG, X.; GUO, X.; LI, J.; CHENG, Z. Photovoltaic panel anomaly 
detection system based on Unmanned Aerial Vehicle platform. IOP Conference 
Series: Materials Science and Engineering, [s. l.], v. 768, n. 7, 2020.  

YANG, M.; JI, J.; GUO, B. Soiling Quantification Using an Image-Based Method: 
Effects of Imaging Conditions. IEEE Journal of Photovoltaics, [s. l.], v. 10, n. 6, p. 
1780–1787, 2020. Disponível em: https://ieeexplore.ieee.org/document/9184067/.  

ZECH, M.; RANALLI, J. Predicting PV Areas in Aerial Images with Deep Learning. 
Conference Record of the IEEE Photovoltaic Specialists Conference, [s. l.], v. 
2020-June, p. 0767–0774, 2020.  

ZEFRI, Y.; ELKCTTANI, A.; SEBARI, I.; LAMALLAM, S. A. Inspection of Photovoltaic 
Installations by Thermo-visual UAV Imagery Application Case: Morocco. Proceedings 
of 2017 International Renewable and Sustainable Energy Conference, IRSEC 
2017, [s. l.], p. 1–6, 2018. Disponível em: 
https://ieeexplore.ieee.org/document/8477241/.  

ZEFRI, Y.; ELKETTANI, A.; SEBARI, I.; LAMALLAM, S. A. S. A. Thermal Infrared and 
Visual Inspection of Photovoltaic Installations by UAV Photogrammetry—Application 
Case: Morocco. Drones, [s. l.], v. 2, n. 4, p. 41, 2018.  

ZEFRI, Y.; SEBARI, I.; HAJJI, H.; ANIBA, G. Developing a deep learning-based layer-
3 solution for thermal infrared large-scale photovoltaic module inspection from 
orthorectified big UAV imagery data. International Journal of Applied Earth 
Observation and Geoinformation, [s. l.], v. 106, p. 102652, 2022. Disponível em: 
https://doi.org/10.1016/j.jag.2021.102652.  



133 

 

 

ZEFRI, Y.; SEBARI, I.; HAJJI, H.; ANIBA, G. In-depth investigation of applied digital 
photogrammetry to imagery-based RGB and thermal infrared aerial inspection of large-
scale photovoltaic installations. Remote Sensing Applications: Society and 
Environment, [s. l.], v. 23, n. February, p. 100576, 2021. Disponível em: 
https://doi.org/10.1016/j.rsase.2021.100576.  

ZHANG, H.; HONG, X.; ZHOU, S.; WANG, Q. Infrared Image Segmentation for 
Photovoltaic Panels Based on Res-UNet. In: LECTURE NOTES IN COMPUTER 
SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL 
INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS). [S. l.: s. n.], 2019. v. 
11857 LNCS, p. 611–622. Disponível em: http://link.springer.com/10.1007/978-3-030-
31654-9_52.  

ZHANG, D.; WU, F.; LI, X.; LUO, X.; WANG, J.; YAN, W.; CHEN, Z.; YANG, Q. Aerial 
image analysis based on improved adaptive clustering for photovoltaic module 
inspection. In: 2017 INTERNATIONAL SMART CITIES CONFERENCE (ISC2), 2017, 
[s. l.], . Anais [...]. [S. l.]: IEEE, 2017. p. 1–6. Disponível em: 
http://ieeexplore.ieee.org/document/8090798/.  

ZHANG, P.; ZHANG, L.; WU, T.; ZHANG, H.; SUN, X. Detection and location of fouling 
on photovoltaic panels using a drone-mounted infrared thermography system. Journal 
of Applied Remote Sensing, [s. l.], v. 11, n. 1, p. 016026, 2017.  

ZYOUT, I.; OATAWNEH, A. Detection of PV solar panel surface defects using transfer 
learning of the deep convolutional neural networks. 2020 Advances in Science and 
Engineering Technology International Conferences, ASET 2020, [s. l.], 2020.  

 

  



134 

 

 

APPENDIX A – SHARED AUTHORSHIP AGREEMENT 

 

The co-author of the third paper that is included in this thesis provided written consent 

to include it herein. The consent is presented in this Appendix. 

 



Term of agreement for the use of journal paper

This  document  attests  that  I,  Matheus  Körbes  Bracht,  co-author  of  the  paper 
“Automatic  Fault  Detection  of  Utility-Scale  Photovoltaic  Solar  Generators  Applying 
Aerial  Infrared Thermography and Orthomosaicking”,  submitted to the journal  Solar 
Energy in November 2022, agree with the use of the article specified here for the use 
of the doctoral thesis of the student Aline Kirsten Vidal de Oliveira (first author of the 
paper), supervised by Prof. Ricardo Rüther, of the Programa de Pós Graduação em 
Engenharia Civil (PPGEC) of the Universidade Federal de Santa Catarina (UFSC) and 
co-supervised by Mohammadreza Aghaei, PhD.  

Florianópolis, November 10, 2022.

Matheus Körbes Bracht – co-autor


		2022-12-14T17:54:45-0300


		2022-12-14T21:07:08-0300


		2022-12-15T08:19:55-0300




