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RESUMO

O criptossistema de McEliece foi o primeiro criptossistema de chave pública baseado em có-
digo de correção de erros. O esquema se mantém resistente a ataques feitos nos últimos 40 anos
e, por isso, é utilizado como base para criptossistemas propostos em processos de padroniza-
ção em criptografia pós-quântica. Mas, apesar do criptossistema de McEliece ser considerado
seguro contra ataques de adversários com computadores quânticos, ele ainda pode sofrer ou-
tros tipos de ataques. Um exemplo são ataques de efeito colateral de temporização, como um
ataque que explora a variação no tempo de execução do processo de encontrar as raízes de
um polinômio durante a decodificação. Portanto, é importante que os algoritmos de encontrar
raízes utilizados em criptossistemas não apresentem diferenças no tempo de execução que pos-
sam ser exploradas, como diferenças influenciadas por valores que façam parte do segredo do
criptossistema. Algoritmos probabilísticos de encontrar raízes de polinômios ainda não foram
aplicados em criptossistemas baseados em códigos. Um obstáculo se deve ao seu tempo de
execução não constante, já que variações no tempo de execução podem ser exploradas por téc-
nicas de ataques de efeito colateral. Este trabalho tem o objetivo de criar uma abordagem de
tempo constante para algoritmos probabilísticos para que criptossistemas possam se beneficiar
de sua eficiência, principalmente no caso de parâmetros maiores do que os utilizados hoje. A
contramedida proposta neste trabalho previne que o tempo de execução de um algoritmo proba-
bilístico de encontrar raízes de polinômios seja dependente do grau do polinômio, tornando-o
dependente apenas no valor dos parâmetros do criptossistema. O desempenho da nossa pro-
posta é comparada com a de outros algoritmos de encontrar raízes de polinômios utilizados em
criptossistemas baseados em códigos e em trabalhos correlatos. Além disso, também é avali-
ado que a contramedida proposta pode ser aplicada de forma eficaz em outros algoritmos de
encontrar raízes. Em geral, nosso método é mais rápido que o algoritmo exaustivo utilizado
no Classic McEliece, uma variante do Berlekamp Trace Algorithm, e o algoritmo additive Fast
Fourier Transform para parâmetros plausíveis em corpos finitos grandes.
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RESUMO ESTENDIDO

Introdução

Os sistemas de criptografia de chave pública mais populares atualmente são Rivest-Shamir-
Adleman (RSA) e criptografia de curvas elípticas, os quais se baseiam em problemas que al-
goritmos quânticos conseguem resolver em tempo polinomial. Por este motivo, diferentes pro-
postas de criptossistemas vêm sendo estudadas na área criptografia pós-quântica, para que as
informações continuem seguras mesmo contra um adversário com um computador quântico. O
esquema de McEliece é um esquema de criptografia de chave pública baseado em código de
correção de erros proposto em 1978. A sua segurança se baseia no fato de que a chave pública
é indistinguível de uma matriz aleatória e no problema de decodificação geral, o que leva o
esquema a resistir a ataques de computadores quânticos e que o categoriza como um criptossis-
tema pós-quântico. O esquema se mantém resistente a ataques feitos nos últimos 40 anos e, por
isso, é utilizado como base para criptossistemas propostos em processos de padronização em
criptografia pós-quântica. Mas, apesar do criptossistema de McEliece ser considerado seguro
contra ataques de adversários com computadores quânticos, ele ainda pode sofrer outros tipos
de ataques. Um exemplo são ataques de efeito colateral de temporização, como um ataque que
explora a variação no tempo de execução do processo de encontrar as raízes de um polinômio
durante a decodificação. Portanto, é importante que os algoritmos de encontrar raízes utilizados
em criptossistemas não apresentem diferenças no tempo de execução que possam ser explora-
das, como diferenças influenciadas por valores que façam parte do segredo do criptossistema.
Algoritmos probabilísticos de encontrar raízes de polinômios ainda não foram aplicados em
criptossistemas baseados em códigos. Um obstáculo se deve ao seu tempo de execução não
constante, já que variações no tempo de execução podem ser exploradas por técnicas de ataques
de efeito colateral. Com uma abordagem de tempo constante para algoritmos probabilísticos,
criptossistemas baseados em códigos poderão se beneficiar de sua eficiência, principalmente
no caso de parâmetros maiores do que os utilizados hoje. Este cenário de parâmetros maio-
res é plausível de acordo o desenvolvimento de computadores mais poderosos e o consequente
aumento no poder computacional, sobretudo se considerarmos segurança a longo prazo.

Objetivos

O principal objetivo deste trabalho é propor uma alternativa com um algoritmo probabilístico
de encontrar raízes de polinômios no processo de decodificação em criptossistemas baseados
em códigos de correção de erros. Para que esta alternativa seja adequada para uso em um
criptossistema, a proposta não deve apresentar diferenças no tempo de execução que sejam
influenciadas pelo valor de elementos que fazem parte do segredo do criptossistema, como o
grau do polinômio.

Metodologia

Para alcançar os objetivos deste trabalho, foi feita uma revisão sistemática da literatura, iniciada
com uma pergunta de pesquisa que busca identificar quais algoritmos de encontrar raízes de
polinômios são utilizados em criptossistemas baseados em códigos de correção de erros na
literatura. Para tanto, uma revisão bibliográfica foi realizada, identificando quais trabalhos
eram relevantes através dos critérios de aprovação e de reprovação previamente definidos. Após
o levantamento dos principais trabalhos, foram comparados quais os principais algoritmos de
encontrar raízes utilizados no contexto de criptossistemas.



Resultados e Discussão

A revisão bibliográfica realizada mostra que contramedidas para o uso de algoritmos probabi-
lísticos de encontrar raízes de polinômios em criptossistemas baseados em códigos ainda não
haviam sido propostas. A contramedida proposta neste trabalho previne que o tempo de execu-
ção de um algoritmo probabilístico de encontrar raízes de polinômios seja dependente do grau
do polinômio, tornando-o dependente apenas do valor dos parâmetros públicos do criptossis-
tema. Isto evita o ataque de temporização sobre criptossistemas baseados em códigos presente
na literatura. A performance da nossa proposta é comparada com a de outros algoritmos de en-
contrar raízes de polinômios utilizados em criptossistemas baseados em códigos e em trabalhos
correlatos. Além disso, também é avaliado que a contramedida proposta pode ser aplicada de
forma eficaz em outros algoritmos de encontrar raízes. Em geral, nosso método é mais rápido
que o algoritmo exaustivo utilizado no Classic McEliece, uma variante do Berlekamp Trace
Algorithm, e o algoritmo additive Fast Fourier Transform para parâmetros plausíveis em corpos
finitos grandes.

Considerações Finais

A contramedida proposta para um algoritmo probabilístico de encontrar raízes de polinômios
como forma de prevenir ataques devido à variação do seu tempo de execução se mostrou re-
alizável e eficiente. Além disso, foi possível aplicar a contramedida a outros algoritmos de
encontrar raízes, como o BTA-it (MARTINS; BANEGAS; CUSTÓDIO, 2019). A nossa pro-
posta de tempo constante para um algoritmo probabilístico, CTProb, exibiu um comportamento
constante nos experimentos, com as suas variações ocorrendo apenas com a mudança de parâ-
metros do criptossistema, e não de valores que devem ser secretos, como o grau do polinômio
de entrada. A implementação desta proposta pode ser realizada sem o uso de operações que po-
dem causar vazamento de informação em ataques de temporização, resultando em um método
constant-time. Com os resultados obtidos, observamos que o CTProb é mais eficiente que ou-
tros métodos de encontrar raízes atualmente utilizados em criptossistemas quando polinômios
em corpos finitos grandes são considerados. Portanto, CTProb pode ser uma alternativa como
método de encontrar raízes de polinômios quando segurança de longo prazo é considerada, por
ser um método mais eficiente para parâmetros maiores que os utilizados atualmente.
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ABSTRACT

The McEliece cryptosystem was the first asymmetric cryptosystem based on error-correcting
codes. It has resisted attacks for more than 40 years, which lead to it being the basis of some
cryptosystem proposals in post-quantum cryptography standardization processes. Although the
McEliece cryptosystem is believed to be secure against quantum attacks, it can still be subject to
other types of attacks, such as side-channel attacks. One example is a timing side-channel attack
that exploits the variations in execution time of the root-finding step during decoding. Thus, it is
important that the root-finding algorithms used in a cryptosystem should not present differences
in running time that could be exploited, that is, differences that can be tied to secret elements
of the cryptosystem. Probabilistic algorithms for finding roots of polynomials have not been
applied to code-based cryptography before. One obstacle is their non-constant execution time,
since runtime variations can be exploited by side channel attack techniques. We aim to create
a constant-time approach to probabilistic algorithms so cryptosystems can benefit from these
algorithms’ efficiency, especially when considering larger parameters. Our countermeasure
prevents that the execution time of a probabilistic root-finding algorithm be dependent on the
degree of the input polynomial and makes it dependent only on the cryptosystem parameters.
We compare the performance of our proposal to other root-finding algorithms already used in
code-based cryptography and related works. We also show that our countermeasure can be
applied to other root-finding algorithms successfully. In general, our method is faster than a
variant of the Berlekamp Trace Algorithm, the exhaustive algorithm in Classic McEliece and
the additive Fast Fourier Transform algorithm for plausible parameters with larger finite fields.

Keywords: Post-quantum cryptography. Code-based cryptography. Root-finding algorithms.

Probabilistic root finding. Timing side-channel attack.
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1 INTRODUCTION

One of the main focuses of computer security is to provide data confidentiality, ensur-

ing that secret and private data cannot be retrieved by unauthorized accesses. Cryptosystems

are suites of cryptographic algorithms used to implement security services, such as confidential-

ity, ensuring that an attacker cannot retrieve the original message of any ciphertext intercepted

without the key necessary for decryption.

Cryptosystems are usually divided in two categories: symmetric and asymmetric.

Symmetric cryptosystems denote cryptosystems which both parties use the same key for en-

crypting and decrypting messages. Therefore, the key is a shared secret only between the par-

ties that are communicating. Symmetric cryptosystems provide secure communication over an

insecure channel, however, a secure channel is necessary to perform the key agreement process.

Asymmetric cryptosystems, also known as public-key cryptosystems, denote cryp-

tosystems that use a pair of keys, a public key and a private key. The pair of keys is used

to perform complementary operations, such as encrypting and decrypting messages, or signing

documents and verifying these signatures. The private key must be known only by its owner, but

the public key can be shared, which removes the need of a secure channel for key agreement.

Therefore, public-key cryptography provides secret and authenticated communication between

two parties over an insecure channel.

Examples of public-key algorithms include RSA (RIVEST; SHAMIR; ADLEMAN,

1978) and ECDSA (VANSTONE, 1992). These algorithms are commonly used and their se-

curity relies on the difficulty of calculating the factorization of integers and computing discrete

logarithms in polynomial time, respectively. However, with Shor’s algorithm (SHOR, 1994) it

is possible to factor integers and compute discrete logarithms in polynomial time in quantum

computers. Consequently, current public-key encrypted information may not be safe with the

evolution of quantum computers.

Post-quantum cryptography is the field where researchers aim to develop and improve

cryptographic schemes whose security is based on problems that are not compromised by quan-

tum computation. The proposals in post-quantum cryptography include cryptosystems based

on hash functions, lattices, error-correcting codes, and multivariate equations (BERNSTEIN;

BUCHMANN; DAHMEN, 2009). In this work we focus on a cryptosystem based on error-

correcting codes, also known as code-based. Errors can occur during data transmission, which

can modify the original message resulting in the receiver reading a different message than the

one that was sent. Error-correcting codes can be used to detect errors in the message and cor-

rect them. This is possible due to redundant information added to the message, which aids its

correction after it is sent over a noisy communication channel. In code-based cryptosystems,

the errors are intentionally added to the message in order to prevent the access to the data by

unwanted parties.

McEliece’s scheme (MCELIECE, 1978) was the first asymmetric cryptosystem based

on error-correcting codes and has resisted attacks for more than 40 years. Originally, the error-
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correcting code used in McEliece’s proposal was Goppa codes (GOPPA, 1970). The security

of McEliece’s cryptosystem is based on the hardness of generic decoding, an NP-hard problem

also believed to be hard on average, which so far has resisted attacks by quantum algorithms.

This fact lead to McEliece’s scheme being the basis of some cryptosystem proposals in post-

quantum cryptography standardization processes, like the one lead by the National Institute

of Standards and Technology (NIST) Post-Quantum Cryptography Standardization (National

Institute of Standards and Technology, 2022), with the Classic McEliece (ALBRECHT et al.,

2020) proposal being a Round 4 candidate.

Although the McEliece cryptosystem is believed to be secure against quantum attacks,

it can still be subjected to other types of attacks, such as side-channel attacks. Side-channel

attacks use additional information besides the original message and the ciphertext during en-

cryption or decryption, and must be avoided. Examples of extra information include power

consumption statistics, electromagnetic radiation, sound information and the execution time of

the operations. Side-channel attacks that use time information are called timing side-channel

attacks. In code-based cryptography, some timing side-channel attacks on the decryption pro-

cess focus on retrieving information from the error locator polynomial, especially in the process

of finding its roots, which indicate the errors added to the message. An attack based on this idea

is presented by Strenzke et al. and Shoufan et al. (STRENZKE et al., 2008; SHOUFAN et al.,

2010) and detailed in Section 2.3.3. The attack exploits the variations in execution time of the

root-finding step. Thus, it is important that the root-finding algorithms used in a cryptosystem

should not present differences in running time that can be tied to secret elements. To avoid tim-

ing side-channel attacks, this paper focuses on a constant-time implementation, defined to be

an implementation where time variations are not correlated to secret information (ALMEIDA

et al., 2016).

Post-quantum cryptosystems may remove the threat over long-term security that Shor’s

algorithm established, but in the future, the parameters proposed now may not be enough con-

sidering the growth in research and development of more powerful computers. Consequently,

wanting to keep information secure long-term usually involves larger parameters. This may be

the case for post-quantum cryptosystems proposed now. Considering larger parameters, the cost

of the current algorithms must be evaluated in this scenario. The most costly step during the

decryption process of McEliece’s cryptosystem is the root-finding step (BISWAS; HERBERT,

2009). For bigger field sizes and polynomial degrees, probabilistic root-finding algorithms

would be a more reasonable choice, instead of the deterministic algorithms used currently.

Deterministic algorithms are the most common algorithms used in the root-finding

process in code-based cryptography; they include the exhaustive search and the additive Fast

Fourier Transform (GAO; MATEER, 2010). Both have constant-time behavior for any input

polynomial for a fixed field, which indicates that any variance in the execution time of these

algorithms is related only to the cryptosystem parameters, regardless of the input degree. How-

ever, when considering the evolution of quantum computers and long-term security in code-

based cryptosystems, we must consider an increase in field size and number of errors. Proba-
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bilistic algorithms are more efficient than deterministic algorithms for large fields. The main

drawback in this context is that the execution time of probabilistic algorithms is heavily influ-

enced by the degree of the input polynomial, which could be easily exploited by a side-channel

attack.

To the best of our knowledge, there are no proposals that focus on countermeasures for

probabilistic root-finding algorithms to be applied in the context of code-based cryptography

considering timing side-channel attacks with the exception of our work (MARCHIORI et al.,

2021). It is the first to propose and experiment with a constant-time approach to a probabilistic

algorithm for code-based cryptosystems resistant to the aforementioned side-channel attacks.

In Martins et al. (MARTINS; BANEGAS; CUSTÓDIO, 2019), some countermea-

sures are proposed to avoid timing side-channel attacks over the root-finding algorithm in the

decoding step in code-based cryptosystems. It includes proposals for four root-finding meth-

ods: exhaustive search, linearized polynomials, the Successive Resultant Algorithm, and the

Berlekamp Trace Algorithm (BTA). However, countermeasures for probabilistic algorithms are

not analyzed.

The proposal for BTA by Martins et al. (MARTINS; BANEGAS; CUSTÓDIO, 2019),

BTA-it, results in a less variable performance when comparing the number of CPU cycles of

multiple executions of the algorithm to find the roots of polynomials of a certain degree t. It

does not address the variation in the number of CPU cycles when receiving an input of degree

t versus receiving an input of degree d < t, as we do in this work. Our proposal focuses on a

constant-time behavior when comparing the number of CPU cycles it takes to find the roots of

polynomials of different degrees d ≤ t when expecting t errors in the McEliece cryptosystem.

We observe that in code-based cryptosystems, probabilistic algorithms have been con-

sidered in two studies (SCHIPANI, 2012; SUMI; MOROZOV; TAKAGI, 2011). However, both

studies do not mention timing side-channel attacks and, therefore, do not discuss how the algo-

rithm can leak information in a code-based cryptosystem context.

The main contribution of this work is an efficient constant-time approach to a prob-

abilistic algorithm (CTProb) for finding the roots of a polynomial. Another contribution is a

general method for artificially increasing the degree of the input polynomial to a target degree

expected by the cryptosystem as a countermeasure to avoid timing side-channel attacks that

exploit information on the polynomial degree. The method increases the degree of the input

polynomial by adding fake roots to it and then removing the fake roots of the output of the

root-finding method, and also making the individual steps of the algorithm constant time.

1.1 OBJECTIVES

The main goal of this work is to propose a probabilistic alternative to root-finding in

the decoding process of code-based cryptosystems. To be considered suitable for a code-based

cryptosystem, the proposal must not present differences in running time that can be tied to secret

elements, such as the error locator polynomial degree.
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1.1.1 Specific objectives

To achieve our goal, we must complete the following specific objectives:

(i) Identify the root-finding algorithms currently used in code-based cryptography;

(ii) Select a probabilistic root-finding algorithm;

(iii) Propose a strategy to obtain a constant-time execution of a probabilistic root-finding al-

gorithm;

(iv) Evaluate if the strategy results in a constant-time execution;

(v) Evaluate if the strategy is useful for bigger parameters in code-based cryptography, espe-

cially compared to other root-finding algorithms currently used.

1.2 METHODOLOGICAL APPROACH

In this section, we describe the steps of our literature review. The objects of study

are the algorithms used in the root-finding step during the decoding process of linear codes in

cryptosystems in order to identify what algorithms have been used and analyzed. We define the

research questions, construct the search query, identify the criteria used to evaluate the studies

and then analyze the selected papers. We encourage readers that are not familiar with linear

codes and finite fields to read Chapter 2 and then return to this section.

1.2.1 Literature review

The purpose of this literature review is to identify the algorithms applied to finding

roots in the error locator polynomial during the decoding process of a code-based cryptography

scheme. In order to determine the algorithms and understand in which conditions they are used,

the research questions are the following:

RQ1: Which root-finding algorithm is used in the decoding process?

RQ2: What are the field size and polynomial degree considered in the experiments?

RQ3: Does the study mention time side-channel attacks prevention?

1.2.1.1 Search query and databases

To define the search query, the major terms were derived from the population, inter-

vention and outcome (KITCHENHAM; CHARTERS, 2007). Table 1 shows the queries for four

different databases and the number of results obtained from each query.
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Search query Characteristics Database Results

("code-based" OR "mcelice") AND
("root-finding" OR

"error locator polynomial")

Searches in abstracts, titles
and indexing terms.

Year range: 1884 - 2022
IEEE 1

("code-based" OR "mcelice") AND
("root-finding" OR

"error locator polynomial")

Searches all content.
Year range: 1986 - 2022

Springer 166

("code-based" OR "mcelice") AND
("root-finding" OR

"error locator polynomial")

Searches all content.
Year range: 1985 - 2022

ACM 12

("code-based" OR "mcelice") AND
("root-finding" OR

"error locator polynomial")

Searches all content.
Excludes patents and citations.

Year range: - 2022
Scholar 603

Table 1 – Search queries and its characteristics for different databases and the number of results for each search.

1.2.1.2 Inclusion and exclusion criteria

In order to decide whether to include a paper in the study, the following inclusion

criteria were adopted:

(i) The study focuses in a McEliece/Niederreiter variant;

(ii) The study discusses the root-finding step during decoding;

(iii) The study includes parameters for the context being discussed.

The exclusion criteria were the following:

(i) The study does not present a decoding algorithm that contains a root-finding step;

(ii) The study is related to hardware implementation;

(iii) The study is a presentation.

1.2.1.3 Selection process

The search queries were executed in May 2022. The search in the IEEE database

returned 1 paper, ACM returned 12 papers, Springer returned 166 papers and Scholar returned

603 studies, that resulted in 782 studies in total. After that, duplicates were removed and the

criteria were applied to the title and abstract of each study.

The next step was reading the full text and, again, including or excluding studies con-

sidering the criteria defined previously. This resulted in 12 studies being selected. Three NIST

Post-Quantum Cryptography Standardization code-based proposals were not returned by the
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and can correct t = 149 errors. In (WAFO-TAPA et al., 2019), the authors identify a tim-

ing attack against HQC and define countermeasures. The countermeasures include modifica-

tions towards constant time roots computation. The authors of McBits (BERNSTEIN; CHOU;

SCHWABE, 2013) propose a McEliece variant and its parameters include field size q = 213

and polynomials of degree t = 119. In (CHOU, 2017), a constant-time implementation for the

scheme is given. NTS-KEM (ALBRECHT et al., 2019) is another NIST post-quantum pro-

posal, now merged with Classic McEliece. Before being merged, its parameters sets included

field size q = 213 and number of errors t = 136 and had constant-time execution.

Other deterministic algorithms appear in the selected works. In (BISWAS, 2010), a

variant of the Berlekamp Trace Algorithm (BERLEKAMP, 1970) with the Zinoviev proce-

dures (ZINOVIEV, 1996) is described. Its goal is to speed-up the Berlekamp Trace Algo-

rithm, but does not take a constant-time execution into consideration. The parameters tested

are field size q = 211 and polynomials of degree t = 32. In (STRENZKE, 2012) and (MAR-

TINS; BANEGAS; CUSTÓDIO, 2019), exhaustive search, the Berlekamp Trace Algorithm

and linearized polynomials (FEDORENKO; TRIFONOV, 2002) are analyzed and compared.

In (MARTINS; BANEGAS; CUSTÓDIO, 2019) some countermeasures are proposed to avoid

timing side-channel attacks over the root-finding algorithm in the decoding step. The counter-

measures result in a more constant performance when comparing the number of CPU cycles

of multiple executions of the algorithm to find the roots of polynomials of a certain degree t.

It does not address the variation in the number of CPU cycles when expecting an input of de-

gree t and receiving an input of degree d < t, as we do in our work. The parameters tested in

(STRENZKE, 2012) are field size q = 29 and polynomials of degree t = 33 and the parameters

analyzed in (MARTINS; BANEGAS; CUSTÓDIO, 2019) are field size q = 216 and polynomi-

als of degree t = 100.

Finding the roots of the error locator polynomial with a probabilistic algorithm is dis-

cussed in (MARCHIORI et al., 2021), (SCHIPANI, 2012) and (SUMI; MOROZOV; TAK-

AGI, 2011). In our work, (MARCHIORI et al., 2021), the first constant-time probabilistic

root-finding algorithm is proposed. The other studies use the Cantor–Zassenhaus (CANTOR;

ZASSENHAUS, 1981) algorithm, but do not mention timing side-channel attacks in their texts

and, therefore, do not discuss the highly nonconstant execution time of the algorithm in a code-

bases cryptosystem context. In (SCHIPANI, 2012), the modification in the algorithm made by

the author has the goal of obtaining deterministic estimates on the maximum number of attempts

needed to split a polynomial of a certain degree. The parameters analyzed in these works are

field size q = 212 and number of errors t = 100 at maximum.

Hypothesis. From the analysis above, no works in the literature attempt to design

a constant-time approach to a probabilistic algorithm, other than our own work. Therefore,

our hypothesis is answered positively if a constant-time probabilistic root-finding algorithm is

designed, which could be used in a code-based cryptosystem.
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1.3 SCOPE OF THIS WORK

This work focuses on designing a countermeasure for probabilistic root-finding algo-

rithms in order to avoid variations in the execution time related to any secret information of the

McEliece cryptosystem. Although our work focuses on timing side-channel attacks, we avoided

simple solutions that could result in a proposal susceptible to different attacks, such as power

consumption attacks. However, only the timing aspect of our solution is analyzed in this work.

1.4 CONTRIBUTIONS AND OUTLINE OF THIS WORK

In Chapter 2, we start by introducing linear codes, focusing on Goppa codes, and the

McEliece cryptosystem. Then, we proceed to present the timing side-channel attack that our

proposal aims to prevent. The root-finding algorithm which our work is based upon and other

root-finding algorithms used in code-based cryptography are described in Chapter 3. We pro-

pose a constant-time approach to a probabilistic root-finding algorithm in Chapter 4. The con-

tents of this chapter were published as a peer-reviewed paper in a conference proceeding (MAR-

CHIORI et al., 2021). We experimentally determine field sizes and target degrees for which our

proposed constant-time approach to a probabilistic root-finding algorithm becomes more ef-

ficient for finding roots than other deterministic algorithms, such as an exhaustive algorithm

and the additive Fast Fourier Transform algorithm, in Chapter 5. Finally, in Chapter 6, we

summarize and finish our discussion with pointers to open research topics.
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2 THEORETICAL BACKGROUND

In this chapter, we introduce the main concepts about error correcting codes and public-

key cryptography in order to achieve a better understanding of this work. We describe algebraic

structures, followed by an overview of error correcting codes, focusing on Goppa codes. In

addition, we present the McEliece cryptosystem and describe a timing side-channel attack over

the McEliece scheme.

2.1 ALGEBRAIC STRUCTURES

Some algebraic concepts are important to better understand the theoretical background

of this work. Since our work is about root-finding algorithms in the context of error correcting

codes, the main concepts are finite fields and polynomials. The elements of the linear codes

described in the following sections are elements in finite fields, called the alphabet of the code.

Definition 2.1. A finite field, denoted Fq, is a structure formed by q elements and two op-

erations, usually called addition and multiplication, which satisfy the axioms of associativity,

closure, identity element, additive inverse element, multiplicative inverse for non-zero elements,

commutativity, and distributive multiplication.

A field is a set in which we can do addition, subtraction, multiplication, and division

without leaving the set (STALLINGS, 2014). Examples of fields are the rational numbers, and

the real numbers.

The number of elements q = pm in a finite field Fq must be a power of a prime number

p, with m a positive integer (NIEDERREITER; XING, 2009). The prime number p is the

characteristic of the field. Binary finite fields are fields with characteristic 2.

As mentioned above, linear codes are defined over finite fields, more precisely the

vector space F
n
q.

Definition 2.2. A vector space Fn
q is an n-dimensional vector space over the finite field Fq. That

is, all n-tuples over Fq.

In the context of this work, polynomials are also defined over finite fields.

Definition 2.3. A polynomial f (x) = ∑
t
i=0 gix

i is a polynomial of degree t. For polynomials

over finite fields, gi ∈ Fq, 0≤ i≤ t.

Definition 2.4. The roots of a polynomial f are elements xi such that f (xi) = 0.

Some polynomials can be defined as the product of other polynomials, called factors.

The error locator polynomial described in Section 2.2.2.4 is the product of polynomials of

degree 1 called linear factors. Polynomials that are not formed by smaller factors are called

irreducible polynomials.
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Definition 2.5. An irreducible polynomial f is a polynomial that cannot be factored into the

product of two or more polynomials of positive degree strictly smaller that the degree of f .

Definition 2.6. A linear factor is a irreducible polynomial in the form f (x) = ax+b.

2.2 ERROR CORRECTING CODES

In this section, we present an overview about error correcting codes. First, we de-

scribe the characteristics of linear codes which are an important class of error correcting codes.

Then, we detail Goppa codes, an error correcting code used in code-based cryptography, more

specifically in the McEliece cryptosystem (detailed in Section 2.3.2) that is the focus of our

work.

2.2.1 Linear codes

Error correcting codes detect and correct errors in messages. A linear code C over Fn
q

is defined by its dimension k and length n, also denoted as an [n,k] code C. Thus, a code has qk

elements, called codewords.

Definition 2.7. A linear code [n,k] is a subspace of dimension k of the vector space F
n
q.

Linear codes can be represented by a generator matrix or a parity check matrix (HUFF-

MAN; PLESS, 2003).

Definition 2.8. A generator matrix G of an [n,k] code C is a k× n matrix whose rows form a

basis for C.

Definition 2.9. An (n− k)× n parity check matrix H is the generator matrix of the dual code

C⊥. The dual code C⊥ is a set of vectors v such that {v ∈ F
n
q | 〈v,u〉 = 0,∀u ∈C}. That is, all

vectors v ∈ F
n
q that the result of the inner product with every u ∈C equals 0.

The definition of a parity check matrix implies that a word c is a codeword of a code

C if HcT =
−→
0 . Also, the vector Sc resulting from HcT = Sc is called the syndrome of the word

c. In general, a code can have many different generator and parity check matrices.

In coding theory, there are two important metrics that help define the maximum number

of errors that an error correcting code can correct. These are the Hamming distance and weight.

Definition 2.10. The Hamming distance dist(x,y) between two vectors x,y ∈ F
n
q is the number

of elements where they differ.

Definition 2.11. The Hamming weight w(x) of a vector x ∈ F
n
q is the number of nonzero ele-

ments in x, that is, w(x) = dist(x,
−→
0 ).
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These metrics are used to define the minimum distance d of a code C, or the distance

of a code, that indicates the minimum distance between every two distinct codeword of C.

Therefore, any two codewords differ in at least d places. A linear code of length n, dimension

k, and minimum distance d is called an [n,k,d] code. The minimum distance impacts on the

maximum number of errors a code can correct. A code C with a minimum distance d can

correct up to t =
⌊

(d−1)
2

⌋

errors (MACWILLIAMS; SLOANE, 1981, pp. 10).

2.2.2 Goppa Codes

Goppa codes (GOPPA, 1970) are linear codes with parameters consisting of length n,

dimension k and minimum distance d. A Goppa code is defined by a Goppa polynomial g and

a support set L. The polynomial g is of degree t and coefficients in Fpm , for m a positive integer,

that is, g(x) = ∑
t
j=0 g jx

j, where g j ∈ Fpm . The set L consists of n elements αi ∈ Fpm such that

g(αi) 6= 0, 1≤ i≤ n.

A Goppa code Γ(L,g) is formed by all vectors c = (c1, . . . ,cn) ∈ F
n
q that satisfy the

condition

Sc(x) =
n

∑
i=1

ci

x−αi
≡ 0 (mod g(x)), (2.1)

where x−αi is invertible modulo g(x).

The length n of the code Γ(L,g) is the length of the codewords that is defined by

the cardinality of L. The dimension k satisfies k ≥ n−mt and the minimum distance d satisfies

d≥ t+1 (GOPPA, 1970). When condition (2.1) is not satisfied, the received message c′ contains

errors, that is, c′ = c+e, c ∈ F
n
q being a codeword and e ∈ F

n
q being an error vector with weight

w(e)≤ t.

2.2.2.1 Parity check matrix

The parity check matrix H of a Goppa code Γ(L,g) is used in the decoding step. A

word c = (c1, . . . ,cn) is a codeword of the code if HcT =
−→
0 . Let

pi(x)≡
1

x−αi
≡−

g(x)−g(αi)

x−αi
·g(αi)

−1(mod g(x)). (2.2)

From the definition of Goppa codes we have that

n

∑
i=1

ci

x−αi
≡ 0 (mod g(x)). (2.3)

Thus, we can rewrite Equation 2.3 as

n

∑
i=1

ci pi(x)≡ 0 (mod g(x)). (2.4)
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Considering pi(x) = pi1 + pi2x+ · · ·+ pitx
t−1, we have

n

∑
i=1

ci pi j = 0,1≤ j ≤ t. (2.5)

Since g(x) = g0 +g1x+ · · ·+gtx
t and considering hi = g(αi)

−1, we have

pi(x) =−
g1 · (x−αi)+ · · ·+gt · (x

t−α t
i )

x−αi
·hi

=−(
g1 · (x−αi)

x−αi
+ · · ·+

gt · (x
t−α t

i )

x−αi
) ·hi

=−(g1 +g2 · (x+αi)+ . . .

+gt · (x
t−1 + xt−2αi + · · ·+α t−1

i )) ·hi.

(2.6)

Substituting pi(x) = pi1+ pi2x+ pi3x2+ · · ·+ pitx
t−1, we have the following equations

for pi j (JOCHEMSZ, 2002)







































pi1 =−(gtα
t−1
i +gt−1α t−2

i + · · ·+g2αi +g1) ·hi;

pi2 =−(gtα
t−2
i +gt−1α t−3

i + · · ·+g2) ·hi;
...

pi(t−1) =−(gtαi +gt−1) ·hi;

pit =−gt ·hi.

(2.7)

With the equations in (2.7), the parity check matrix H of a Goppa code can be con-

structed such as

H =













−gt ·h1 −gt ·h2 . . . −gt ·hn

−(gtα1 +gt−1) ·h1 −(gtα2 +gt−1) ·h2 . . . −(gtαn +gt−1) ·hn

...
...

...
...

−∑
t
j=1 g jα

j−1
1 ·h1 −∑

t
j=1 g jα

j−1
2 ·h2 . . . −∑

t
j=1 g jα

j−1
n ·hn













, (2.8)

that can be row reduced to H ′ (HUFFMAN; PLESS, 2003), where

H ′ =













h1 h2 . . . hn

h1 ·α1 h2 ·α2 . . . hn ·αn

...
...

...
...

h1 ·α
t−1
1 h2 ·α

t−1
2 . . . hn ·α

t−1
n













. (2.9)

2.2.2.2 Generator matrix

The generator matrix G is used in the encoding step. A message m is encoded like

c = mG, resulting in a codeword c. Given that HcT =
−→
0 , ∀c ∈ Γ(L,g), the generator matrix G

can be obtained from the parity check matrix H like GHT = 0.
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2.2.2.3 Encoding

To encode a message m = (m0, . . . ,mi), i a positive integer, it must be divided in k-

length blocks and multiplied by G.

(m0, . . . ,mk) ·G = (c1, . . . ,cn). (2.10)

The resulting vector c is a codeword of a Goppa code Γ(L,g). Since Goppa codes are

error correcting codes, even if some error are added to the codeword, the original message m

can be retrieved in the decoding step.

2.2.2.4 Decoding

Let y = (y0, . . . ,yn) be a message received containing r ≤
⌊

(d−1)
2

⌋

errors. Thus, y can

be written as

(y1, . . . ,yn) = (m1, . . . ,mn)+(e1, . . . ,en), (2.11)

with ei 6= 0 in r positions, that is, the weight of the error vector e is w((e1, . . . ,en)) = r. To

retrieve the original message m from y, the error vector e must be constructed. To identify and

correct the errors, an Error Locator Polynomial (ELP) σ(x) is constructed; its roots indicate the

positions of the errors in the received message. Let Te = {i : ei 6= 0}, the ELP is given by

σ(x) = ∏
i∈Te

(x−αi) ∈ Fpm [x]. (2.12)

To construct the ELP and correct the errors to retrieve the codeword in the message,

most commonly, the Patterson decoding algorithm (PATTERSON, 1975) is used.

2.2.2.4.1 Patterson algorithm

The Patterson algorithm (PATTERSON, 1975) is used to decode Goppa codes and it is

capable of correcting up to t errors in a given encoded message y. Let y = c+ e, to retrieve the

error vector e, the syndrome value Sy = HyT is calculated and used to construct the error locator

polynomial σ(x). Algorithm 1 shows all steps to retrieve the codeword c from an encoded

message y given a Goppa code Γ(L,g), where L = {α1, . . . ,αn}.

In Step v. the roots of the ELP can be obtained using different methods. Four different

methods are described in Chapter 3: the exhaustive method, the additive fast Fourier transform,

the Berlekamp Trace Algorithm and a probabilistic root-finding algorithm. This root-finding

step is the focus of our work since it can be the target of side-channel attacks as detailed in

Section 2.3.3. See (PATTERSON, 1975) for details of the other steps of the algorithm.
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Algorithm 1 Patterson Algorithm(y)

Input: an encoded message y of length n.
Output: the decoded codeword c.

i. Compute the syndrome polynomial Sy(x)← ∑
n
i=1

yi

x−αi
(mod g(x)).

ii. Compute τ(x)←
√

Sy(x)−1 + x (mod g(x)).

iii. Find two polynomials a(x) and b(x) so that a(x) ≡ b(x)τ(x) (mod g(x)) with deg(a) ≤
⌊

t
2

⌋

and deg(b)≤
⌊

(t−1)
2

⌋

.

iv. Determine the error locator polynomial σ(x)← a2(x)+ xb2(x), deg(σ)≤ t.

v. Define the error vector e = (e1, . . . ,en) so that ei← 1 if σ(αi) = 0, otherwise ei← 0.

vi. Compute the codeword c← y+ e.

vii. Return c.

2.2.2.4.2 Example of a binary Goppa code

Let m = 3 and t = 2. The polynomial g(x) must be irreducible, then g(x) = Z2 ∗ x2 +

(Z2 + 1) ∗ x+Z2 + 1 and L = {0,1,Z,Z2,Z + 1,Z2 +Z,Z2 +Z + 1,Z2 + 1}. The parity check

matrix of this code is

H =

(

Z Z2 +Z +1 Z2 +1 Z2 +1 Z2 +Z Z Z2 +Z +1 Z2 +Z

0 Z2 +Z +1 1 Z 1 Z2 +Z +1 Z +1 Z +1

)

. (2.13)

The parity check matrix can also be represented in binary, that is

H =



























0 1 1 1 0 0 1 0

1 1 0 0 1 1 1 1

0 1 1 1 1 0 1 1

−− −− −− −− −− −− −− −−

0 1 1 0 1 1 1 1

0 1 0 1 0 1 1 1

0 1 0 0 0 1 0 0



























. (2.14)

Therefore, this Goppa code Γ(L,g(x)) is formed by the codewords C = {00000000,

01011101,10101011,11110110}, which are the words that result in a syndrome Sc = 0. If

some errors are added to the codeword 11110110 in the positions 4 and 7, we have 11110110 +

00010010= 11100100. To obtain the original codeword from the message with errors 11100100,

we can use the Patterson algorithm.

Following the Patterson algorithm with y = 11100100, we have:

1. Compute the syndrome polynomial Sy(x)← ∑
n
i=1

yi

x−αi
(mod g(x)).
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Sy(x)←
n

∑
i=1

yi

x−αi
(mod g(x))

=
1

x−0
+

1
x−1

+
1

x−Z
+

1
x−Z2 +Z

= ((Z +1)∗ x+1)+(x+Z2 +Z +1)+(Z ∗ x+Z +1)+((Z +1)∗ x)

Sy(x) = (Z +1)∗ x+Z2 +1

2. Compute τ(x)←
√

Sy(x)−1 + x (mod g(x)).

Sy(x)
−1 = (Z +1)∗ x+Z2

Sy(x)
−1 + x = Z ∗ x+Z2

τ(x) =
√

Z ∗ x+Z2 (mod g(x))

= (Z ∗ x+Z2)2mt−1
(mod g(x))

τ(x) = Z2 ∗ x+Z2

3. Find two polynomials a(x) and b(x) so that a(x) ≡ b(x)τ(x) (mod g(x)) with deg(a) ≤
⌊

t
2

⌋

and deg(b)≤
⌊

(t−1)
2

⌋

.

a(x)≡ b(x)τ(x) (mod g(x))

a(x)≡ b(x)(Z2 ∗ x+Z2) (mod g(x))

Z2 ∗ x+Z2 ≡ 1(Z2 ∗ x+Z2) (mod g(x))

4. Determine the error locator polynomial σ(x)← a2(x)+ xb2(x), deg(σ)≤ t.

σ(x)← a2(x)+ xb2(x)

= (Z2 ∗ x+Z2)2 + x∗12

σ(x) = (Z2 +Z)∗ x2 + x+Z2 +Z

5. Define the error vector e = (e1, . . . ,en) so that ei← 1 if σ(αi) = 0, otherwise ei← 0.

Evaluating each αi in L = {0,1,Z,Z2,Z + 1,Z2 + Z,Z2 + Z + 1,Z2 + 1}, we have that

σ(Z2) = 0 and σ(Z2+Z+1) = 0. Therefore, the errors are in positions 4 and 7, resulting

in the error vector e = 00010010.

6. Compute the codeword c← y+ e.

c← y+ e

= 11100100+00010010

c = 11110110
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2.3 CODE-BASED CRYPTOGRAPHY

In this section, we describe public-key cryptography and detail the McEliece cryp-

tosystem, a public-key and code-based cryptosystem. Then, we present a timing side-channel

attack over the McEliece scheme, whose countermeasure is the focus of our work.

2.3.1 Public-key cryptography

Public key cryptography, also known as asymmetric key cryptography, is defined by

the use of a pair of keys, a public key and a private one, used to make complementary operations,

such as encryption and decryption, or signing a document and then verifying the signature. Any

entity has access to the public key to encrypt a message but the decryption of said message can

only be done with the corresponding private key.

This concept was introduced by Diffie and Hellman (DIFFIE; HELLMAN, 1976). Be-

fore, cryptosystems were designed with only one key and used mostly operations of substitu-

tion and permutation of elements in the messages whereas public key cryptosystems are based

on mathematical functions. The most important and massively used public key cryptosystem

is RSA (RIVEST; SHAMIR; ADLEMAN, 1978). The McEliece cryptosystem (MCELIECE,

1978) is also an example.

2.3.2 McEliece cryptosystem

The McEliece cryptosystem (MCELIECE, 1978) is a public key cryptosystem. Its keys

are generated using an error-correcting code, originally Goppa codes. Encryption and decryp-

tion are efficient, however public key size is a drawback. The security of the cryptosystem is

based on the hardness of generic decoding, an NP-hard problem also believed to be hard on

average, which so far has resisted attacks by classic and quantum computers. The McEliece

cryptosystem is composed of three algorithms: key generation, encryption, and decryption. In

the key generation step, public and private keys are created, which can be used in the encryption

and decryption of messages.

2.3.2.1 Key generation

The key generation in the original proposal (MCELIECE, 1978) uses binary Goppa

codes. First, a Goppa code Γ(L,g) is defined. A Goppa polynomial g of degree t and coefficients

in F2m , and a support set L are selected. Then, the generator matrix G is defined. After that,

two random matrices are created: an invertible k× k matrix S and an n×n permutation matrix

P. The matrices are then multiplied, creating the matrix G′ = SGP that is part of the public key

PK = (G′, t). The private key is formed by SK = (g,L,S,G,P).
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2.3.2.2 Encryption

To encrypt a message M ∈ F
k
2, errors are intentionally added to the message. An error

vector e of length n with weight w(e) = t is randomly selected. Then, the message M can be

encrypted as c = MG′+ e, resulting in the encrypted message c.

2.3.2.3 Decryption

The decryption consists of correcting the errors added during the encryption of the

message. Let P−1 be the inverse of matrix P. To decrypt a received message c, the receiver can

compute

c′ = cP−1 = MG′P−1 + eP−1 = MSGPP−1 + eP−1 = (MS)G+ e′, (2.15)

where c′ is formed by a codeword of the Goppa code defined in the key generation step with

some errors, since it is a message M multiplied to the generator matrix G with errors added by

the vector e′.

The errors can be detected and corrected by a decoding algorithm, such as the Patterson

decoding algorithm (PATTERSON, 1975), shown in Algorithm 1. The syndrome polynomial

computed in Step i is used to determine the error locator polynomial σ(x) in Step iv. The roots

of the error locator polynomial define the error vector e′ used to recover the original message

M by computing c′+ e′.

Therefore, after decoding c′, the errors are removed and we obtain c′′ = (MS)G. De-

pending on the construction of the matrix G, we can easily obtain c′′′ = MS from (MS)G. Since

S is invertible, we can use S−1 to obtain the original message M = c′′′S−1 = MSS−1.

2.3.2.4 Example of McEliece’s encryption and decryption processes

We consider that the Goppa code used in this example is the one given in Section

2.2.2.4.2.

1. Key generation

From the Goppa code definition we have t = 2, g(x) = Z2 ∗ x2 +(Z2 +1)∗ x+Z2 +1,

L = {0,1,Z,Z2,Z +1,Z2 +Z,Z2 +Z +1,Z2 +1} and

G =























1 0 0 0 0 0 Z Z

0 1 0 0 0 0 Z Z2 +Z

0 0 1 0 0 0 Z2 +Z +1 1

0 0 0 1 0 0 1 Z2 +Z

0 0 0 0 1 0 Z2 Z

0 0 0 0 0 1 Z2 +Z +1 Z +1























.
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Then, two random matrices are created: an invertible k× k matrix S and an n×n permu-

tation matrix P. Let

S =























1 0 1 1 0 1

0 1 0 1 0 1

1 1 1 0 1 1

1 1 1 1 1 1

1 1 0 0 1 1

1 0 0 0 1 1























and

P =

































1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

































.

The matrices are then multiplied, creating the matrix G′ = SGP.

G′ =























1 0 1 Z +1 1 0 1 Z2 +Z

0 0 0 Z2 1 1 1 Z +1

1 1 1 Z2 0 1 1 Z2

1 1 1 Z2 +1 1 1 1 Z

1 1 0 Z +1 0 1 1 Z2 +1

1 1 0 1 0 0 1 Z +1























The public key is formed by PK =(G′, t) and the private key is formed by SK =(g,L,S,G,

P).

2. Encryption

When an entity A wants to send a message M to an entity B, A can use B’s public key

PKB = (G′, t). Let M = 010100. A must select a random error vector e with weight

w(e) = t and compute c = MG′+ e. Since t = 2, let e = 00110000.

c = MG′+ e

= 11110001+00110000

c = 11000001

3. Decryption
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To decrypt the received message c, the entity B must use its private key SKB =(g,L,S,G,P).

First, c′ is computed

c′ = cP−1 = 10001001

After that, to detect and correct the errors in the message c′, Patterson algorithm is used,

resulting in

c′′ = (MS)G = 10101011

Since the generator matrix G is in the form G= (Ik|A), that is, the first k×k elements form

an identity matrix, MS can be easily obtained from c′′ because MS is the first k elements

in c′′. Therefore, MS = 101010. Since S is invertible, we can obtain the original message

M from M = MSS−1

M = MSS−1 = 010100

2.3.3 Timing side-channel attacks

Side-channel attacks are attacks based on extra information, other than the the original

message and the ciphertext. The additional information can be power consumption statistics or

the execution time of the operations. In this work, we focus on the latter.

The timing side-channel attack proposed by Strenzke et al. and Shoufan et al. (STREN-

ZKE et al., 2008; SHOUFAN et al., 2010) exploits the time variance between different execu-

tions of the evaluation of the error locator polynomial, which reveals information resulting in

the recovery of the error vector. The attack described is on the root-finding step in the decoding

algorithm of a Goppa code. This attack is successful when the execution time of the decoding

process varies according to the number of roots of the ELP.

In public-key cryptosystems based on the McEliece cryptosystem the attacker cannot

easily construct the generator matrix from the public key but leaking information about the

error vector can still be dangerous. This is not desirable given that it leaks information about

the secret set L of the Goppa code used to create the keys.

The attack exploits the difference in the time required in the root-finding step for a

message that contains t errors and a message that contains w errors, for w < t. The number of

errors in the message is also the number of roots of the error locator polynomial σ(x). There-

fore, when a message contains less than t errors, the polynomial σ(x) has w < t roots, and if a

message contains more than t errors, σ(x) has w≤ t roots (STRENZKE, 2012).

An attacker can exploit this behavior by flipping a bit in position i in a ciphertext c with

t errors. Observing the execution time, it is possible to infer if the flipped bit added or removed

an error in the ciphertext, given that the time for the evaluation of the polynomial σ(x) will be



44

different if the ciphertext has t−1 or t +1 errors. Performing this strategy to each bit of c, the

attacker can discover all positions of c that contain errors.

A plain implementation of the McEliece cryptosystem is susceptible to an adaptive

chosen-ciphertext attack (CCA2) like the one above. Moreover, it has been established that

this attack is not prevented by a CCA2 conversion (STRENZKE et al., 2008). Therefore, the

implementation of a countermeasure for this attack is important for the security of the scheme.

For this reason, the execution time of the root-finding step during the decryption process must

be independent of the degree of the input polynomial.

Our countermeasure to this attack involves artificially raising the degree of the ELP

when it is lower than t. The algorithm is provided in Section 4.

A constant-time implementation should prevent non-constant time operations corre-

lated to any secret information. The types of operations to be concerned are branching (condi-

tional jumps), memory accesses, or use of variable-time operations (integer divisions, shifts and

rotations) (ALMEIDA et al., 2016). An implementation of our proposal can avoid branching

and memory-access leakage, and only use operations that run in constant time.
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3 ROOT-FINDING ALGORITHMS

In this chapter, we introduce four known root-finding algorithms: the exhaustive one

that repeatedly evaluates the polynomial in search of its roots, the multipoint evaluation called

additive Fast Fourier Transform, the Berlekamp Trace Algorithm and a classical probabilistic

root-finding method. The latter algorithm is probabilistic, a type of algorithm not explored so far

in the context of code-based cryptosystems. The other three methods, the exhaustive method,

the additive Fast Fourier Transform, and the Berlekamp Trace Algorithm, are deterministic

algorithms.

As mentioned, the root-finding algorithm used during the decryption process must not

vary in execution time in order to not leak any information. The previously considered methods

succeed in this aspect, whereas an immediate implementation of the classical probabilistic root-

finding algorithms in the literature (due to Berlekamp (BERLEKAMP, 1970), Rabin (RABIN,

1980), Ben-Or (BEN-OR, 1981), Cantor and Zassenhaus (CANTOR; ZASSENHAUS, 1981),

and von zur Gathen and Shoup (GATHEN; SHOUP, 1992), among others) do not. A key contri-

bution of our work is, by providing a side-channel resistant version, to bring these well-known

asymptotically fast algorithms to their potential use in code-based post-quantum cryptographic

systems such as the McEliece cryptosystem and its variants.

3.1 EXHAUSTIVE METHOD

The simplest method to find the roots of a polynomial is to repeatedly evaluate the

polynomial σ(x) at each element in the field Fpm . In the McEliece cryptosystem, every root of

the error locator polynomial is in the support set L of the code. As a consequence, evaluating

all elements αi ∈ L is enough in this context to identify all the roots. We refer to this method as

the exhaustive method. This approach is used in the implementation of the NIST post-quantum

fourth round candidate Classic McEliece (ALBRECHT et al., 2020).

Evaluating a polynomial at n points, one at a time using Horner’s method, can be

efficiently done for small values of n and small order finite fields, like those in the Classic

McEliece’s parameters. We comment that Horner’s method is proved to be optimal when evalu-

ating a polynomial at a single point. However, the main drawback of its use is that its complexity

deteriorates for larger values of n. For cryptography, the advantage of this method to find roots

is that it evaluates exactly n points, regardless of the polynomial, so its execution time is fixed,

once the degree of the polynomial is given, regardless of the polynomial being evaluated.

Let n be the number of points to be evaluated and t the degree of the polynomial. The

total cost Cexh of this algorithm is

Cexh = n(t(Cadd +Cmult)) (3.1)

where Cadd is the cost of addition and Cmult is the cost of multiplication of elements in Fpm .
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3.2 ADDITIVE FAST FOURIER TRANSFORM

A more efficient way to evaluate a polynomial is to perform a multipoint evaluation.

Typical algorithms for this task are variants of the Fast Fourier Transform (FFT) method. For

multipoint evaluation in characteristic 2 and in the context of code-based cryptography, the most

popular method is the additive Fast Fourier Transform (GAO; MATEER, 2010). Its execution

time is not tied to the polynomial degree, so it suits well the need for constant time root-finding.

The NIST post-quantum second round candidate NTS-KEM (ALBRECHT et al., 2019) (now

merged with Classic McEliece), as well as the alternate candidate of the fourth round HQC

(MELCHOR et al., 2021) use this method in the decryption process.

Assuming that β1, . . . ,βm ∈ F2m are linearly independent over F2, let B be the subspace

spanned by β1, . . . ,βm over F2, that is, B= 〈β1, . . . ,βm〉= {a1β1+ · · ·+amβm : a1, . . . ,am ∈F2}.

For any 0 ≤ i < 2m, the binary representation of i is i = a1 + a2 · 2+ · · ·+ am · 2m−1,

where ai ∈ F2. Then, the i-th element of B is B[i] = a1β1 + a2β2 + · · ·+ amβm. The ad-

ditive Fast Fourier Transform algorithm evaluates a given polynomial f of degree smaller

than n = 2m at each point in B, using a multipoint strategy, returning the sequence of values

f (B[0]), f (B[1]), . . . , f (B[n−1]).

The algorithm works by recursively reducing the degree of the input polynomial f by

half, writing f in the form g0(x
2 + x)+ xg1(x

2 + x), g0,g1 ∈ F2m [x] using a Taylor expansion;

see more details in Gao & Mateer (2010).

The degree of the polynomial g0 is dn/2e and of the polynomial g1 is bn/2c. Rewriting

f as g0(x
2 + x)+ xg1(x

2 + x) shows that evaluating f (a) and f (a+1) overlaps, observing that

a2 +a = (a+1)2 +(a+1). Let f (a) = g0(a
2 +a)+ag1(a

2 +a) and f (a+1) = g0(a
2 +a)+

(a+1)g1(a
2+a). After computing f0 = g0(a

2+a) and f1 = g1(a
2+a), f (a) can be computed

as f0 + a f1 and f (a+ 1) can be computed as f (a)+ f1. This method reduces the number of

multiplications and additions needed to evaluate a polynomial, especially when compared to

other evaluation algorithms like the exhaustive method mentioned above.

Let n = 2m. The cost Cafft of this method is (GAO; MATEER, 2010)

Cafft =

(

n

4
(log2(n))

2 +
3n

4
log2(n)−

n

2

)

Cadd +(2n log2(n)−2n+1)Cmult. (3.2)

3.3 BERLEKAMP’S ALGORITHMS

Our proposed probabilistic method in Section 3.3.2 has its root in the fundamen-

tal works of Berlekamp (BERLEKAMP, 1967; BERLEKAMP, 1970; BERLEKAMP, 1968,

Chapter 6). In particular, the idea of using probabilistic algorithms and traces when finding roots

in characteristic 2 are originated in his works. The idea of using traces also influenced other

strategies for factoring polynomials, such as the Berlekamp Trace Algorithm. For a complete

bibliography (up to the time of publication) about the classical problem of factoring polynomi-

als over finite fields, see the survey (GATHEN; PANARIO, 2001). The following algorithms are
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factoring algorithms. However, we describe how they can be adapted to be used as root-finding

algorithms.

3.3.1 Berlekamp Trace Algorithm

The Berlekamp Trace Algorithm (BTA) is a recursive deterministic factoring algo-

rithm. The algorithm is based on properties of the trace function, defined as TrF2m/F2
(α) =

α +α2 +α22
+ · · ·+α2m−1

. As usual, we denote TrF2m/F2
(α) by Tr(α). Let B = {β1, . . . ,βm}

be a basis of F2m over F2. Every element α ∈ F2m is uniquely represented by the binary m-tuple

(Tr(β1 ·α), . . . ,Tr(βm ·α)) (BISWAS; HERBERT, 2009).

A polynomial f ∈ F2m [x] such that f (x)|(x2m
−x) is split into two polynomials f0(x) =

gcd( f (x),Tr(βi · x)) and f1(x) = gcd( f (x),Tr(βi · x)− 1) = f (x)/ f0(x). Computing iteratively

on βi ∈ B and recursively factoring on f , the input polynomial f can be factored into linear

factors that can be adapted to find the roots of f . Algorithm 2 shows the Berlekamp Trace

Algorithm.

Algorithm 2 Berlekamp Trace Algorithm — BTA(f,i)

Input: a polynomial f ∈ F2m of degree t and an integer i, 1≤ i≤ m.
Output: the list of irreducible factors of degree 1 of f .

Let B = {β1, . . . ,βm} be a basis of F2m over F2.

i. If deg( f ) = 1, then return { f}; if deg( f ) = 0 return {}.

ii. Compute f0← gcd( f ,Tr(βi · x)).

iii. Compute f1← f/ f0.

iv. Return BTA( f0, i+1)∪BTA( f1, i+1).

The cost of this method is O(mt2) operations in F2m (BISWAS; HERBERT, 2009).

Therefore, the execution time of the algorithm is correlated to the degree of the input polyno-

mial. Figure 2 shows the execution time of the BTA-it algorithm, an iterative implementation

of the Berlekamp Trace Algorithm, proposed in (MARTINS; BANEGAS; CUSTÓDIO, 2019,

Section 3.3), for input degrees 2 to 128, with 2500 measures for each point. The boxplots dis-

play the minimum, first quartile, median, third quartile, and maximum values for each point

in the x-axis. The BTA-it algorithm is a countermeasure to the Berlekamp Trace Algorithm

in order to obtain a less variable execution time when the degree of the input polynomials are

equal to the target degree t. Therefore, the countermeasure does not addresses cases when the

input degree may be different than t and the variation in execution time it entails. Consequently,

BTA-it is still vulnerable to the timing side-channel attack described in Section 2.3.3.
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Figure 2 – Execution time in CPU cycles of BTA-it and equal-degree probabilistic algorithm for degrees 2 to 128
with polynomials in F213 [x].

3.3.2 A probabilistic root-finding algorithm

A general factoring strategy uses three stages: the squarefree factorization (that re-

moves repeated factors), the distinct-degree factorization (that partially factors the polynomial

into factors of the same degree), and the equal-degree factorization (that finally obtains the ir-

reducible polynomials for each of the polynomials produced in the second stage). In the case

of finding roots of interest here, we just need to run the equal-degree factorization for factors of

degree d = 1.

The asymptotically fastest algorithms for equal-degree factorization over finite fields

are probabilistic; see (GATHEN; PANARIO, 2001). Indeed, even for middle size polynomial

degrees or finite field orders, these probabilistic methods behave better than deterministic al-

gorithms. Algorithm 3 shows the steps of the equal-degree factorization for a polynomial over

Fq, q = 2m, and the common degree of the irreducible factors equal to d. In this work we are

interested in d = 1.

A method for factoring polynomials can be easily adapted to compute roots. The error

locator polynomial is composed only of linear factors, so d = 1 in this case. In Step i, when

deg( f ) = d, it means that deg( f ) = 1, that is, f (x) = x− γ , for some γ . Hence, the roots of the

original input polynomial f are the list of coefficients γ .

Step iii implements the trace computation of g, while Step iv attempts to improve the

factorization towards the complete factorization in roots. These are ideas from Berlekamp and

our starting point.
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Algorithm 3 Equal-degree factorization algorithm for polynomials in F2m [x] — EDF(d,f)

Input: d ∈ N, a monic polynomial f ∈ F2m of degree n = rd.
Output: the list of r monic irreducible factors of degree d of f .

i. If deg( f ) = d, then return { f}; if deg( f ) = 0 return {}.

ii. Pick g ∈ Fq[x] at random with degree smaller than n.

iii. Compute

h←
m−1

∑
i=0

g2i

.

iv. Compute p1← gcd(h, f ) and p2← f/p1.

v. Return EDF(d, p1)∪EDF(d, p2).

The random polynomial choice adds a probability of failure to the algorithm since the

chosen polynomial may not deliver satisfying results when computing Step iv. This probability

is 1− (1/2t−1), where t is the polynomial degree; see (GATHEN; PANARIO, 2001). This

shows that the chance of having to retry Steps ii, iii, iv of Algorithm 3 in order to obtain a valid

factor is very small unless the input polynomial has a very small degree.

Although the number of extra times that Steps ii, iii, iv are executed can vary with the

random choices, in our experiments for q = 213, t = 10,96,128,200,260, 512, and with 2500

measures, it is on average c = 0.44t for every t. Moreover, we observe that the most common

size for the two factors is about half the original size. Indeed, the probability of a polynomial

splitting into two factors, one of small degree and the other of large degree, is much smaller

than the probability of breaking into two factors of about the same size. These facts have also

been confirmed in our experiments.

The execution time of Algorithm 3 can be derived as a special case of the analysis of

the polynomial factorization process formed by the three stages discussed above. The com-

plete cost analysis is delicate (see (FLAJOLET; GOURDON; PANARIO, 1996, Section 7) and

(FLAJOLET; GOURDON; PANARIO, 2001, Section 5)), but the special case of Algorithm 3

simplifies considerably since we only need the third stage, and only for degree 1; see (FLAJO-

LET; GOURDON; PANARIO, 2001, Table 1). Also, the execution time is extremely tied to the

degree of the input polynomial, as shown in Figure 2 for degrees 2 to 128, with 2500 measures

for each point.

In the case of using Algorithm 3 in a code-based cryptosystem, an attacker can easily

see a difference in the duration of the decryption process when decoding a word with t errors

and one with t ′ = t−δ errors, where δ is a positive integer smaller than t. The countermeasure

we propose in Section 4 assures that the variation in the execution time is not related to any

secret information, like the input polynomial degree, preventing attacks such as those discussed

in Section 2.3.3.
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4 CONSTANT-TIME APPROACH TO A PROBABILISTIC ROOT-FINDING ALGO-

RITHM

In this chapter, we propose a constant-time approach to a probabilistic root-finding al-

gorithm (CTProb). The execution time of the root-finding algorithm detailed in Section 3.3.2 is

tied to the degree of the input polynomial. As commented above, this property can be exploited

in a side-channel attack, such as the one explained in Section 2.3.3. In order to prevent this

attack, a constant-time root-finding algorithm must be used in the decryption process in a code-

based cryptosystem. We remark that the notion of constant-time we are using in this work is

that different inputs may yield variations in time, however, any variation in the execution time

of the root-finding algorithm must not be tied to any secret information. In the context of the

McEliece cryptosystem, the degree of the Error Locator Polynomial is important information

that must be kept a secret in situations which it is different than the expected by cryptosystem

parameters.

Algorithm 4 Constant-time probabilistic root-finding algorithm (f,ζ )
Input: a polynomial f ∈ F2m [x] of degree 1≤ n≤ t, ζ ∈ F2m that is not part of the support set
L of the Goppa code.
Output: a list of roots R of size t, with n roots and t−n elements ζ .

i. Pick a random number 0 < j < (maximum field element/t).

ii. g← AddRoots(f,j);

iii. R← IterativeRootFinding(g);

iv. R← RemoveRoots(R,t,n,j,ζ);

v. Return R.

We propose a countermeasure, shown in Algorithm 4, that aims to prevent the afore-

mentioned time side-channel attack. It results in a constant-time probabilistic root-finding al-

gorithm. The idea is to artificially increase the degree of the input polynomial when its degree

is lower than the target value t. The target degree in this context is the number of errors that the

cryptosystem can correct and that is added to the message. Thus, the root-finding algorithm is

always going to find the same number of roots for any polynomial. First, fake roots are added

to the polynomial so its degree is increased to the target number. Then, after finding the roots

of the modified polynomial, the fake roots are removed from the set.

In the algorithms that we propose, the branches taken and memory addresses accessed

are independent of any secret inputs, and operations that can leak information, like integer divi-

sions, are avoided. The operands of the division in Step i in Algorithm 4 are public cryptosystem

parameters so that no secret can be leaked from this operation. These properties are important

in order to achieve a constant-time probabilistic root-finding algorithm.

First, in order to create different fake roots on each execution, a random number j is

picked. This value is used as the increment between each fake root added to the input polyno-
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mial in Step ii of Algorithm 4. The creation and addition of fake roots are shown in Algorithm

5. The goal is to increase the degree of the input polynomial f to the target value t. Since the

degree of the input polynomial must be n ≥ 1, at most t − 1 fake roots ρ are needed so that,

after adding the fake roots, the degree of the resulting polynomial is equal t. We denote addition

in finite fields with ⊕. To add the fake roots, the polynomial is multiplied with t− 1 factors.

The factors are of the form ax+b. When the degree of the input polynomial is n < t, then t−n

factors are created with a = 1 and b = ρ , ρ ∈ F2m , j⊕1≤ ρ ≤ ((t−n)∗ j)⊕1, and n−1 factors

are created with a = 0 and b = 1, resulting in t−1 factors. Consequently, when n = t, fake roots

are not necessary. Hence, the t− 1 factors are created with a = 0 and b = 1 so that the same

amount of work is done for any n, that is, for any input t−1 factors are always multiplied.

Algorithm 5 Adding fake roots — AddRoots(f,j)

Input: a polynomial f ∈ F2m [x] of degree 1≤ n≤ t, the value j of the increment between each
fake root.
Output: a polynomial of degree t.

i. factors← CreateFactors(t,n,j);

ii. deg(p)← t−1; p← 1;

iii. MultiplyFactors(p,t-1,factors,t-1);

iv. Pad f with t-n zero coefficients to get to t +1 coefficients.

v. g← f ∗ p;

vi. Truncate polynomial g to keep t +1 coefficients.

vii. Return g.

The creation of the t−1 factors is shown in Algorithm 6. For each factor, in Step ii.a

it is defined the value of the leading coefficient, that is either 0 or 1. The leading coefficient

is 1 for t− n factors. In Step ii.c the value of the fake root is calculated. The variable added

indicates how many fake roots were already created. This value is used to create the multiples

of the given value j. Also, because the value of the fake root must be 1 when the leading

coefficient is 0, Step ii.c is formed by 1⊕ (addRoot ∗ (value of the fake root)), that is,

when the leading coefficient is 0, it results in 1⊕ 0. Therefore, when the leading factor is 0,

the value of the fake root is 1, whereas when the leading factor is 1, the fake root is defined as

1⊕ (added∗ j), 1≤ added≤ t−n. Finally, in Step ii.d the factor is created.

The factors are then multiplied, creating the polynomial p, with degree t− 1. This is

shown in Algorithm 7. This multiplication is done recursively. The loop divides the input

polynomial of degree d into two other polynomials p1, p2 of degree dd/2e and bd/2c that

recursively feed Algorithm 7. The base step is reached when d < 3. Then, when d = 2 two

factors are multiplied and returned, or when d = 1 one factor is returned. This step is needed

for cases when t − 1 is an odd number. When returning from the recursion, p1 and p2 are

multiplied and returned. This process can be illustrated in a structure similar to a binary tree.
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Algorithm 6 Creating fake roots — CreateFactors(t,n,j)

Input: the target number of errors t, the degree n of the input polynomial, the value j of the
increment between each fake root.
Output: a list F of t−1 factors.

i. Initialize diff← t−n, addRoot← 1, added← 0.

ii. For index in [1, t−1]

a. addRoot← addRoot−not(index− (diff + 1));

b. added← added+addRoot;

c. fakeRoot← 1⊕ (addRoot∗ (added∗ j));

d. F [index−1]← (addRoot)x−fakeRoot;

iii. Return F .

An example for when t = 10 is shown in Figure 3. Each internal node represents a call of

Algorithm 7 and the number in the nodes represent the degree of the polynomial in each call.

The value in the root is t−1 since it is created by multiplying t−1 factors, therefore resulting

in a polynomial p of degree t−1.

Algorithm 7 Multiplying factors — MultiplyFactors(p,d,factors,index)

Input: a polynomial p that will be overwritten, the degree d of the polynomial, a list factors
of t−1 factors, and the current index in the list.
Output: the input polynomial p will be overwritten.

i. If d < 3, then

a. If d = 1, then

i. p← factors[index];
ii. index← index−1;

b. Else

i. p← factors[index]∗factors[index−1];
ii. index← index−2;

c. Return.

ii. MultiplyFactors(p1,dd/2e ,factors,index);

iii. MultiplyFactors(p2,bd/2c ,factors,index);

iv. p← p1 ∗ p2.

Then, the input polynomial f is multiplied by p, resulting in the polynomial g of degree

2t−1, with the higher t−1 coefficients being 0 due to the padding of the input polynomial and

the multiplication with factors of the form 0x− 1. Thus, g can be truncated resulting in a

polynomial of degree t, with n original roots and t−n fake roots. The polynomial g is the input

of the root-finding algorithm in Step iii in Algorithm 4. In order to compute similar operations





55

Algorithm 8 Iterative probabilistic root-finding — IterativeRootFinding(f)

Input: a monic polynomial f ∈ F2m of degree t.
Output: the list of t roots of f .

i. Initialize a stack S and push f .

ii. Initialize a list R of size t.

iii. For index in [1,2t−1]

a. Pop a polynomial f1 from the stack.

b. If deg( f1) = 1, then include the constant coefficient of f1 in R, continue.

c. Do:

1. Pick g ∈ Fq[x]/( f1) at random.
2. Compute

h←
m−1

∑
i=0

g2i

(mod f1).

3. Compute p1← gcd(h, f1).

While deg(p1)≤ 0 or deg(p1) = deg( f1).

d. Compute p2← f1/p1.

e. Push p1 and p2 to the stack.

iv. Return R.

After finding the roots of the polynomial g, the fake roots must be removed from the

list. The removal is shown in Algorithm 9. The goal is to erase the fake roots in the list R

returned by Algorithm 8. The list R is copied onto the list R1 of size t and then the list R1 is

sorted. Hence, the fake roots in the list are in increasing order. Therefore we can remove the

fake roots in R1 by comparing the elements in the list with the values of the fake roots that were

added to the polynomial f . This is done in Step iv. When an element R1[index] is equal to

the current value being searched for and there are still fake roots to be found, it means that the

element R1[index] is a fake root of f . When this condition is satisfied, the value of R1[index]

is set to the maximum possible value for a coefficient. When an element of the list is different

from the current fake root being searched for, it means that the element is an original root, so

its value is maintained.

If a fake root added to the polynomial f is equal to an original root of f , the root

appears twice in the list R1. Algorithm 9 only removes the first one of the duplicates in this

case because when a fake root is found in the list, the next fake root value is calculated. Thus,

the original root is not removed. After all elements of R1 are evaluated and all the fake roots

receive the maximum coefficient value, the list is sorted again. Consequently. the original

roots are ordered in the first n elements of the list and the last t−n elements are the ones with

the maximum coefficient value. These elements are fake roots added to the input polynomial,

therefore, they receive the given value ζ in Step vii.
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Algorithm 9 Removing fake roots — RemoveRoots(R,t,n,step,ζ)

Input: a list R of t roots returned by Algorithm 8, including fake roots; the target degree t; the
degree n of the original polynomial; the value step of the increment between each fake root;
the element ζ that is used to indicate the fake roots in R.
Output: a list R1 of t elements, with the n roots of the original polynomial and t−n elements
ζ .

i. Initialize a list R1 of size t and copy R to R1.

ii. Sort R1.

iii. Initialize diff← t−n, keepCoeff← 1, numberFakeRoots← diff, noFakeRoots←
not(diff), maxCoeff←maximum value of a coefficient, fakeRoot← step⊕1.

iv. For index in [0, t−1]

a. r← R1[index];

b. eq← not(r⊕fakeRoot);

c. keepCoeff← not(not(noFakeRoots) and eq);

d. r← keepCoeff∗ r;

e. R1[index]← r⊕ (not(keepCoeff)∗maxCoeff);

f. fakeRoot← (keepCoeff∗fakeRoot)⊕
((not keepCoeff)∗ (1⊕ ((diff−numberFakeRoots+2)∗step)));

g. numberFakeRoots← numberFakeRoots−not(keepCoeff);

h. noFakeRoots← not(numberFakeRoots);

v. Sort R1.

vi. Set keepCoeff← 1.

vii. For index in [0, t−1]

a. r← R1[index];

b. keepCoeff← keepCoeff−not(index−n);

c. R1[index]← r⊕ (not(keepCoeff)∗ (maxCoeff⊕ζ ));

viii. return R1.

The output is a list of t elements, with n sorted roots in the first n elements followed by

t−n elements ζ . In the context of the McEliece cryptosystem, the value ζ must be an element

that is not in the support set of the Goppa code, so the error vector created from the returned list

of roots R1 is generated correctly.

Algorithm 9 has its cost based on the sorting algorithm and the addition of coefficients.

The number of iterations is t for each “for" step, resulting in

Cremove_roots = 2Csort + t(6Cadd)+Cadd, (4.3)

where Csort is the cost of the used sorting algorithm. The sorting Steps ii. and v. can be done in

constant time using the djbsort constant-time sorting library (BERNSTEIN, 2019).
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5 EXPERIMENTS AND RESULTS

In this section we compare several root-finding algorithms: the exhaustive method de-

tailed in Section 3.1; the additive fast Fourier transform detailed in Section 3.2; the probabilistic

method, showed in Algorithm 8; the iterative Berlekamp Trace Algorithm proposed by Martins

et al. (MARTINS; BANEGAS; CUSTÓDIO, 2019) (BTA-it); the constant-time probabilistic

algorithm (CTProb), showed in Algorithm 4; and the constant-time BTA-it (CTBTA-it), that is

similar to CTProb but substitutes Algorithm 8 with BTA-it. The exhaustive method and the ad-

ditive Fast Fourier Transform algorithm are deterministic algorithms used in the implementation

of NIST post-quantum proposals.

Considering these algorithms, we focus on the following questions:

(i) Which of the root-finding algorithms above behave in practice as a constant-time algo-

rithm? In other words, which algorithms will have approximately the same running time

behavior regardless of the input degree for a fixed target degree?

(ii) Does the method of adding fake roots work well in practice to transform different al-

gorithms that are not constant time into constant time algorithms when the input degree

varies for a fixed target degree?

(iii) Which impact in time do different methods of adding fake roots have? More specifically,

we consider two methods: (M1) adding fake roots one by one, via successive polynomial

multiplication (method used in our extended abstract (MARCHIORI et al., 2021)); and

(M2) adding fake roots using a multiplication tree as in Figure 3 (method used for all

experiments in this thesis, showed in Algorithm 7).

(iv) Which of the constant time algorithms is more efficient for different ranges of parameters

(finite field size q and target degree t)?

In our experiments, we used an Intel® Core™ i5-3317U CPU @ 1.70GHz and the

code was compiled with GCC version 10.2.0 with the compilation flags “-march=native

-mtune=native -O2 -Wall”. These results are from experiments with a constant-time sorting

method and a constant-time implementation of the GCD algorithm.

5.1 ANALYSES OF THE EXECUTION TIME OF CTPROB AND CTBTA-IT

In this section we give answers to questions (i) and (ii). Figure 4 shows the box plot

of the execution time in CPU cycles of CTProb and CTBTA-it when the target degree is 128

and the input are polynomials of degree 2 to 128. For each degree, 2500 random polynomials

in F213 [x] were used as input. In this figure, we observe that the running time of both algorithms

is insensitive to the degree of the input polynomial, contrasting with Figure 2. When the target
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Figure 4 – Execution time in CPU cycles of the constant-time probabilistic method (CTProb) and CTBTA-it for
input degrees 2 to 128 with target degree 128 and polynomials in F213 [x].

degree t is fixed, the degree of the input polynomial does not impact the execution time of the

algorithms.

Table 2 shows the number of CPU cycles for six different polynomial root-finding

methods: the exhaustive method, the additive Fast Fourier Transform, BTA-it (MARTINS;

BANEGAS; CUSTÓDIO, 2019), CTBTA-it, the probabilistic method, and CTProb. Each point

shows the mean and margin of error for an interval of confidence at the 95% level calculated

with a sample of 2500 measures. The field size considered in these executions is F213 and the

set size is n = 6688, which are parameters suggested in a NIST post-quantum proposal (AL-

BRECHT et al., 2020). The values show the CPU cycles for each method with target degree

t = 128 and degree of the input polynomial d = {64,96,128}.

Analyzing the values in Table 2 we can answer question (i). We observe that the

exhaustive method, the additive FFT, CTBTA-it and CTProb show approximately the same

running time behavior regardless of the input degree for a fixed target degree. That is, these

algorithms behave in practice as a constant-time algorithm.

The exhaustive method evaluates n points separately. Thus, for the small field consid-

ered in these tests (q = 213), its execution is slightly more efficient than CTProb. Its advantage

is that it evaluates n points regardless of the polynomial, so its execution time is not tied to the

input polynomial degree. The additive FFT algorithm performs multipoint evaluation, resulting

in a more efficient method than the exhaustive one. In small finite fields such as the one used in

these experiments, it has the best performance of all methods analyzed; this changes for slightly

larger fields, as we show later.
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Target degree 128

Input degree 64 96 128

Algorithm µ ±ε µ ±ε µ ±ε

Exhaustive 32.0427 0.0294 32.1338 0.0304 32.3462 0.0361

Additive FFT 16.5810 0.1584 17.0102 0.1544 17.1382 0.1535

BTA-it 77.0296 0.1978 143.9288 0.2783 230.9652 0.2939

Probabilistic 13.5337 0.0957 23.8441 0.1446 32.6855 0.1976

CTBTA-it 231.7684 0.1993 232.3113 0.2426 233.0854 0.2250

CTProb 35.4109 0.2039 35.3324 0.3029 35.5263 0.3140

Table 2 – Mean (µ) and margin of error (ε) for an interval with 95% of confidence of the execution time in 106

cycles of CTProb and other root-finding methods for polynomials in F213 [x].

The iterative Berlekamp Trace Algorithm (BTA-it) and the original probabilistic al-

gorithm show a significant variation with the increase of the input polynomial degree. With

the use of our constant-time countermeasure, CTBTA-it and CTProb show less variable results.

Therefore, answering question (ii), our method of adding fake roots works well in practice to

transform different algorithms that are not constant time into constant time algorithms. How-

ever, the execution times of CTBTA-it and CTProb is increased when compared to the execution

times of BTA-it and the original probabilistic algorithm because of the extra work introduced by

adding and removing roots. Indeed, for the values in Table 2 in column 128, when comparing

the execution time between the probabilistic method and CTProb, and BTA-it and CTBTA-it,

they show approximately the same difference.

CTProb is more efficient than CTBTA-it even though the finite field is small, and its

performance is comparable to the exhaustive method in these parameters. CTBTA-it shows the

worse performance between the analyzed constant-time methods, even for such small parame-

ters the method is costly.

Therefore, we observe that our hypothesis is answered positively since the probabilis-

tic root-finding method we designed in Chapter 4, CTProb, is a constant-time probabilistic

algorithm. Additionally, it performs better in bigger fields than other root-finding algorithms

currently used in code-based cryptography, as detailed in Section 5.3.

5.2 ANALYSES OF DIFFERENT MULTIPLICATION METHODS WHEN ADDING FAKE

ROOTS

In this section we answer question (iii). Table 3 shows the number of CPU cycles

when adding fake roots using methods M1 and M2. We recall that M1 is the method that

adds fake roots via successive polynomial multiplication (method used in our extended abstract

(MARCHIORI et al., 2021)); and M2 is the method that adds fake roots using a multiplication
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tree (Algorithm 7). The mean and margin of error are presented for an interval of confidence

at the 95% level calculated with a sample of 2500 measures. In addition, the percentage of

improvement of the mean obtained by M2 over M1 is shown.

q t Method µ ±ε Difference

213 128
M1 34.5328 0.2056

−2.9%
M2 35.5263 0.3140

216 130
M1 39.8711 0.3029

2.5%
M2 38.8918 0.3162

220 500
M1 563.3925 1.5341

4.9%
M2 535.8684 0.8438

Table 3 – Mean (µ), margin of error (ε) and the difference of the mean between methods M1 and M2 in CTProb
for an interval with 95% of confidence of the execution time in 106 cycles.

We observe in Table 3 that, in smaller fields, such as field size 213, M2 performs worse

than M1, increasing the number of CPU cycles by 2.9%. However, the number of CPU cycles

of M2 is 2.5% lower for field size 216, and 4.9% lower for field size 220. In conclusion, for

smaller fields, adding fake roots using method M1 results in an improvement on the overall

execution time. But using method M2 is recommended in bigger fields, given that it reduces the

overhead caused by the addition of fake roots in CTProb in these situations.

5.3 COMPARISON OF CTPROB WITH OTHER ROOT-FINDING METHODS IN BIGGER

FIELDS

In this section we answer question (iv). Although the degree of the input polynomial

does not increase the execution time of the additive FFT algorithm, the size of the field does.

Therefore additive FFT may not be the fastest algorithm in bigger fields. Also, in bigger fields,

the value of n increases and the performance of the exhaustive method may not be similar to

CTProb for every parameter set. Since probabilistic factorization algorithms tend to perform

well in bigger fields, we measured the execution times of CTProb, the additive FFT algorithm,

and the exhaustive method in fields of size q = 2m,m = 13,16,20 and identified the point in

which the curves cross.

Comparing BTA-it to the probabilistic method in Figure 2, we observe that the higher

the degree, the greater the advantage of the probabilistic method over BTA-it. Even for small

fields, the probabilistic method is much faster than BTA-it, likewise, CTProb is much faster

than CTBTA-it (see Table 2). Figure 2 shows that the gap between the execution time of the

probabilistic method and BTA-it tends to widen as the degree t increases. Therefore, as CTProb

is always more efficient than CTBTA-it, it remains to compare CTProb with the exhaustive and

additive FFT algorithms in bigger fields.
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First, we analyze if there may be practical advantage of using CTProb for real code-

based cryptosystems. Currently, no code-based cryptosystem has parameters for a field of sizes

216 and 220. However, considering the main attacks and the NIST security levels, we can

outline some plausible values for t and n for bigger fields. To achieve NIST security level 5 the

following values can be considered: for a field of size 216, t ∼ 130 and n∼ 9000; and for a field

of size 220, t ∼ 500 and n∼ 50000. Therefore, these values for t and n were considered for the

measurements.

Figures 5, 6, and 7 show the average number of CPU cycles of CTProb, the additive

FFT algorithm, and the exhaustive method for some input and target degrees for field size 213,

216, and 220, respectively. We observe that in field size q = 213, CTProb does not perform better

than the additive FFT and the exhaustive method for the current parameters sets being used in

code-based cryptography. However, for field size q= 216, when considering the aforementioned

parameters set with t = 130, CTProb performs better than both other algorithms. The same

occurs when q = 220 and t = 500.

Figure 5 – Average number of CPU cycles of the constant-time probabilistic method (CTProb), the additive FFT
algorithm, and the exhaustive method for polynomials in F213 [x].

These results show that the constant-time probabilistic algorithm proposed is a viable

alternative to be used as a root-finding algorithm in a code-based cryptosystem in large fields.

CTProb performs better than the additive FFT algorithm and the exhaustive method for values

before the curves intersect, which includes the reasonable parameters aforementioned. For tar-

get degree values higher than the intersection, the additive FFT algorithm is a better alternative.

Close-ups on the intersection points are shown in Figure 8 for field size q= 213, Figures

9, 10 for field size q = 216 comparing with the additive FFT algorithm and the exhaustive
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Figure 6 – Average number of CPU cycles of the constant-time probabilistic method (CTProb), the additive FFT
algorithm, and the exhaustive method for polynomials in F216 [x].

method, respectively, and Figures 11, 12 for q = 220. The points in the x-axis represent the

value of the input and target degree. The number of CPU cycles for CTProb increases when the

target degree t increases.

We observe that the point of intersection of the number of CPU cycles of CTProb and

the other algorithms increases as the field size increases. Considering the median value and

observing the interquartile range, in a field size q = 213, the intersection with the additive FFT

occurs for degree 66, indicating that CTProb is faster in the range [1..65]. In q = 216, CTProb is

faster in the range [1..253], and in q = 220, the range is [1..923]. For the exhaustive algorithm, in

q = 213, CTProb is faster in the range [1..66]. In q = 216, the range is [1..328], and in q = 220, it

is [1..1479]. In conclusion, we observe that for higher field sizes, CTProb is a great alternative

to obtain faster but still secure root finding.
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Figure 7 – Average number of CPU cycles of the constant-time probabilistic method (CTProb), the additive FFT
algorithm, and the exhaustive method for polynomials in F220 [x].

Figure 8 – Comparison between the number of CPU cycles of the constant-time probabilistic method (CTProb),
the additive FFT, and the exhaustive method for finding roots of polynomials in F213 [x].



64

Figure 9 – Comparison between the number of CPU cycles of the constant-time probabilistic method (CTProb)
and the additive FFT for finding roots of polynomials in F216 [x].

Figure 10 – Comparison between the number of CPU cycles of the constant-time probabilistic method (CTProb)
and the exhaustive method for finding roots of polynomials in F216 [x].
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Figure 11 – Comparison between the number of CPU cycles of the constant-time probabilistic method (CTProb)
and the additive FFT for finding roots of polynomials in F220 [x].

Figure 12 – Comparison between the number of CPU cycles of the constant-time probabilistic method (CTProb)
and the exhaustive method for finding roots of polynomials in F220 [x].
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6 CONCLUSION

In this thesis, we propose a countermeasure to a probabilistic root-finding algorithm to

prevent the leakage of information due to the variation of execution time according to different

polynomial degrees. Our approach is a general method for artificially increasing the degree

of the input polynomial to a target degree expected by the cryptosystem as a countermeasure

to avoid timing side-channel attacks that exploit information on the input polynomial degree.

The method increases the degree of the input polynomial by adding fake roots to it and then

removing the fake roots of the output of the root-finding method, and also making the individ-

ual steps of the algorithm constant time. The implementation can be done without branching,

memory-access and non-constant operand leakage, resulting in a constant-time method.

These countermeasure is shown to work with other root-finding algorithms as well,

like BTA-it (MARTINS; BANEGAS; CUSTÓDIO, 2019). We verify the practical effect in the

total running time not only for a probabilistic root-finding algorithm but also for BTA-it. Our

constant-time probabilistic proposal, CTProb, shows a constant behavior in our experiments

when expecting an input polynomial of degree t and receiving a polynomial of degree n≤ t, as

well as our experiment using this technique for making BTA-it constant time (CTBTA-it).

Considering the efficiency of CTProb in large field sizes, we experimentally determine

field sizes and target degrees for which CTProb becomes more efficient for finding roots than

other deterministic algorithms, such as an exhaustive algorithm and the additive Fast Fourier

Transform algorithm. Also, we analyze how the new constant-time algorithms (CTProb and

CTBTA-it) compare with existing algorithms when the field size increases, where we observe

that CTProb is always faster than CTBTA-it. Additionally, we give examples of plausible pa-

rameters that can be considered for code-based cryptography in larger fields, where we observe

that CTProb is much faster than other deterministic root-finding methods.

Moreover, the impact in execution time of different multiplication methods for adding

fake roots is analyzed. We observe that each method improves the efficiency for adding fake

roots for different fields sizes. Therefore, the multiplication method must be chosen wisely

according to the cryptosystem parameters.

Concluding, CTProb is faster than the exhaustive method used in Classic McEliece

(ALBRECHT et al., 2020), the additive Fast Fourier Transform algorithm, and BTA-it (MAR-

TINS; BANEGAS; CUSTÓDIO, 2019) in the specified ranges for field sizes 216 and 220. These

ranges include plausible parameters for larger fields in code-based cryptography, for which CT-

Prob is the most efficient method when compared to other root-finding algorithms currently

used in code-based cryptosystems. Therefore, CTProb can be a useful alternative for root find-

ing when considering long-term security, since it provides some savings for larger parameters.
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6.1 FUTURE WORK

We remark that our work does not include some optimizations for operations in finite

fields, like vectorization and bitslicing, which may improve the execution time of our algo-

rithms. Moreover, all experiments were done in only one computer architecture, and testing on

different architectures could be interesting to verify that our implementation remains constant

in many platforms.

In order to achieve a safer implementation, different attack scenarios must be taken into

consideration. Our focus was on timing side-channel attacks, that are one of the most common

side-channel attacks applied to code-based cryptosystems in the literature. However, it would

be interesting to analyze other types of side-channel attacks, like power analysis attacks.

Additionally, other approaches can be explored in our proposal, such as the use of a

fixed value for the variable j in Algorithm 4 or other different methods for the multiplication of

the fake roots.
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