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RESUMO

Os lightweight manycores pertencem a uma nova classe de processadores emergentes de
baixa poténcia para a era Fzascale. Esses processadores apresentam varios desafios para
o desenvolvimento de aplicagoes, como arquitetura de memoria distribuida, quantidade
limitada de memoria no chip e nenhuma coeréncia de cache. Recentemente, Sistemas
Operacionais distribuidos foram propostos para enfrentar esses desafios de forma trans-
parente. Nesses sistemas, diferentes servicos do Sistema Operacional sdo implantados
nos nucleos do processador, sendo o servico de gerenciamento de memoria um dos mais
importantes. No entanto, os desafios citados anteriormente sobre lightweight manycores
trazem varios obstaculos para o design, implementacao e otimizacgoes futuras de servicos
de gerenciamento de memoria. Esta dissertagao propoe uma metodologia baseada em
traces para avaliar e otimizar recursos do servigo de gerenciamento de memoria em Sis-
temas Operacionais distribuidos para lightweight manycores. Usando uma representacao
compacta do padrao de acesso as paginas das aplica¢oes, a metodologia consegue imitar
o padrao de acesso a memoria das aplicagoes originais no Sistema Operacional distri-
buido rodando em um lightweight manycore. A metodologia foi integrada em um Sistema
Operacional distribuido (Nanvix) e validada usando cinco aplicagoes de um benchmark
especifico para lightweight manycores (CAP Bench). Em seguida, a metodologia foi apli-
cada para realizar um estudo de caso usando uma implementacao de cache gerenciada
por software disponivel no Nanvix. A metodologia permitiu avaliar varias configuracoes e
diferentes politicas de substitui¢do de paginas no processador Kalray MPPA-256, mesmo
sem o suporte necessario da arquitetura para implementéa-los.

Palavras-chave: Metodologia baseada em traces. Sistema Operacional Distribuido. Ge-

renciamento de Memoria. Cache gerenciada por software. Lightweight Manycores.



RESUMO ESTENDIDO

Introducao

Historicamente, a comunidade de computacao de alto desempenho aumentava o de-
sempenho de sistemas escalando a frequéncia do clock. Infelizmente, o aumento li-
near da frequéncia do clock aumenta quadraticamente a temperatura do chip. Desta
forma, a incansavel necessidade por desempenho conduziu ao problema denominado power
wall (VILLA et al., 2014). Em resposta a esse problema, a indtstria migrou para outros
designs de processadores, como os multicores e, posteriormente, os manycores.

Neste contexto surgiu uma nova classe de processadores com foco em alto desempenho
e baixa poténcia, denominados lightweight manycores. Contudo, apesar de apresentarem
um ambiente interessante e melhor eficiéncia de poténcia em comparagao a multicores
de propédsito geral (FRANCESQUINT et al., 2015), os lightweight manycores apresentam
certas caracteristicas que prejudicam o desenvolvimento de software para o processa-
dor (VARGHESE et al., 2014; CASTRO et al., 2016; CASTRO et al., 2014). Devido
a isso, Sistemas Operacionais distribuidos foram introduzidos para trazer abstracoes e
diversos outros servigos que solucionam este problema.

Dentre todos os servicos dos Sistemas Operacionais distribuidos para lightweight many-
cores, o servico de gerenciamento de memoria ¢ um dos mais importantes. O design e
implementacgao de um subsistema do servigo de gerenciamento de memoria é um problema
em aberto e abre caminho para diversas otimizagoes. Neste contexto, uma solugao clas-
sica para avaliar otimizacgoes é adaptar diversas aplicacoes de diferentes dominios para a
arquitetura subjacente e realizar experimentos com técnicas de profilling. Contudo, exis-
tem dois problemas com essa abordagem: (i) lightweight manycores podem nao suportar
bibliotecas runtime especificas de aplicacoes; e (ii) aplicagbes nao levam em consideragao
a API dos lightweight manycores. Desta forma, adaptar diversas aplica¢oes é uma tarefa
onerosa e susceptivel a erros.

Uma possivel solugao para esse problema é usar simulagoes baseadas em traces (UHLIG;
MUDGE, 1997) para: (i) imitar caracteristicas de um grande conjunto de aplicagoes;
(ii) auxiliar no estudo do desempenho de diferentes otimizagoes; (iii) ajustar cada oti-
mizagao e verificar seu desempenho sem a necessidade de adaptar aplicagoes; e (iv) ter
conhecimento prévio do comportamento da aplicacao e realizar decisoes mais precisas
sobre ela e a necessidade de sua portabilidade.

Objetivos

Esta dissertagao tem como principal objetivo propor uma metodologia baseada em tra-
ces usada para avaliar e otimizar recursos do servico de gerenciamento de memoéria em
Sistemas Operacionais distribuidos para lightweight manycores. Desta forma, o conjunto
completo de contribuigoes ¢é listado abaixo:

(i) uma nova metodologia baseada em traces que ajuda desenvolvedores de Sistemas
Operacionais distribuidos a avaliar e otimizar recursos de servicos de gerenciamento
de memoéria sem a necessidade de adaptar aplicagoes;

(ii) uma integracao da metodologia proposta em um Sistema Operacional distribuido
de codigo aberto para lightweight manycores, denominado Nanvix (PENNA et al.,
2019); e

(iii) um estudo de caso de uma avaliagdo de cache gerenciada por software no Nanvix
utilizando a metodologia proposta.



Metodologia
Os seguintes passos metodoldgicos foram seguidos para cumprir os objetivos citados:

(i) Estudar e avaliar os mecanismos de tracing utilizados regularmente no contexto de

High Performance Computing (HPC);

(ii) Selecionar o mecanismo de tracing mais apropriado para coletar informacoes sobre
o padrao de acesso a memoria das aplicacoes;

(iii) Estudar e propor técnicas para filtrar o arquivo de trace para reduzir o seu tamanhos;

(iv) Propor e implementar um benchmark genérico baseado em traces para imitar o
padrao de acesso a memoria da aplicagao original,

(v) Integrar o benchmark baseado em traces com o Nanvix; e

(vi) Implementar uma otimizagao no servigo de gerenciamento de meméria do Nanvix e
avalid-lo utilizando a metodologia baseada em traces proposta.

Resultados e Discussao

Nesta dissertagao, foi escolhido o CAP Bench (SOUZA et al., 2010) para estudar a efe-
tividade da metodologia. O benchmark possui diversas aplica¢des, onde foram escolhidas
cinco delas. Nossos experimentos foram realizados em duas plataformas: (i) Intel Xeon,
uma plataforma comum de alto desempenho; e (ii) Kalray MPPA-256, um processador
lightweight manycore.

Os resultados foram divididos em dois conjuntos. O primeiro visa a validacdo da meto-
dologia comparando o padrao de acessos a memoria obtidos com o benchmark genérico
baseado em traces e o trace original. Por outro lado, o segundo mostra o estudo de caso
de uma cache gerenciada por software, onde a metodologia proposta pode ser aplicada.
No primeiro conjunto, utilizou-se a métrica Root-mean Square Deviation para obtermos
a quantificacdo da diferenca entre ambos os padroes de acesso a memoria. A métrica
determina a diferenca entre valores previstos por um modelo e os valores observados, onde
quanto mais perto de zero o valor, menor a diferenca entre eles. Os resultados mostraram
valores inferiores a 1.5 para todas as aplicagoes. Desta forma, podemos concluir que
a metodologia consegue imitar o padrao de acesso a memoria das aplicagoes originais.
Além disso, ela consegue reduzir significativamente o espaco de armazenamento em disco
secundario necessario para armazenar os traces.

Em contraste, o segundo conjunto mostrou ser possivel avaliar diversas configuragoes e
algoritmos de substitui¢do de cache no Kalray MPPA-256 com a metodologia, até mesmo,
sem o suporte da arquitetura para implementa-los. Pode-se concluir que os algoritmos
FIFO e Aging sao os melhores algoritmos, aproximando-se de quase 100% de taxa de hits
na cache para a maioria das aplicagoes utilizadas.

Consideracgoes Finais

Esta dissertacao apresentou uma metodologia baseada em traces que pode ser usada para
avaliar e otimizar recursos de servigos de gerenciamento de memoria em Sistemas Opera-
cionais distribuidos para lightweight manycores. A metodologia consegue imitar o padrao
de acesso a memoria das aplicagoes originais em um Sistema Operacional distribuido para
lightweight manycores com baixa quantidade de armazenamento em disco secundario. Nos
integramos a metodologia no Nanvix e a validamos utilizando cinco aplicagoes do CAP
Bench. Nossos resultados mostram que a diferenca entre o trace original e o gerado pelo
benchmark genérico baseado em traces é baixa com um Root-mean Square Deviation in-
ferior a 1.5 para todas as aplicacoes. Além disso, realizamos um estudo de caso de uma
implementacao de cache gerenciada por software no Nanvix. A metodologia conseguiu



avaliar diversas configuragoes e algoritmos de substituicao de cache no Kalray MPPA-256,
mesmo sem o suporte da arquitetura para implementa-los.

Como trabalhos futuros, nds pretendemos aplicar a metodologia para auxiliar no design e
avaliacao de novas otimizagoes no Nanvix, como software prefetching e um algoritmo de
compartilhamento de paginas mais sofisticado. Ademais, pretendemos considerar outras
aplicagoes do CAP Bench e outros benchmarks. Por fim, queremos aplicar a metodologia
em outros Sistemas Operacionais distribuidos e/ou lightweight manycores.

Palavras-chave: Metodologia baseada em traces. Sistema Operacional Distribuido. Ge-

renciamento de Memoria. Cache gerenciada por software. Lightweight Manycores.



ABSTRACT

Lightweight manycores belong to a new class of emerging low-power processors for the
Exascale era. These processors present several challenges for the development of applica-
tions, such as distributed memory architecture, limited amount of on-chip memory and
no cache coherence. Recently, distributed Operating Systems have been proposed to ad-
dress these challenges in a transparent way. In these systems, different Operating Systems
services are deployed across the processor cores, being the memory management service
one of the most important. However, the aforementioned challenges of lightweight many-
cores bring several demands to the design, implementation and future optimizations of
memory management services. This dissertation proposes a trace-driven methodology to
evaluate and optimize features of a memory management service of distributed Operating
Systems for lightweight manycores. By using a compact representation of the page ac-
cess pattern of applications, our methodology is capable of mimicking the memory access
pattern of the original applications on the target distributed Operating System running
on a lightweight manycore. The methodology was integrated in a distributed Operat-
ing System (Nanvix) and validated using five applications from a specific benchmark for
lightweight manycores (CAP Bench). Then, the methodology was applied to carry out
a case study using a software-managed cache implementation available in Nanvix. The
methodology enables evaluation of several configurations and different page replacement
policies on Kalray MPPA-256 processor, even without the support from the architecture
to implement them.

Keywords: Trace-Driven Methodology. Distributed Operating System. Memory Man-

agement. Software-managed Cache. Lightweight Manycores.
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1 INTRODUCTION

Historically, the industry was able to design faster and more advanced unipro-
cessor systems by increasing the number of transistors per chip and by scaling up the
clock frequency. In addition, features such as speculative execution, instruction-level par-
allelism, out-of-order execution and larger caches have contributed to improve the overall
performance of these processors. Unfortunately, a linear increase in clock frequency re-
sults in a exponential growth of power consumption (BROOKS et al., 2000; BOSE, 2011)
and affects considerably the chip temperature, thus contributing to the arise of the well-
known power wall problem (VILLA et al., 2014). As a response to this challenge, the
industry transitioned towards multicore designs, which feature more than one proces-
sor core operating at lower clock frequency to increase the aggregate performance. In
contrast to the previous approach, this design is better suited to deal with power effi-
ciency, because a linear increase in the number of cores leads to a linear increase in power
consumption (BORKAR, 2007; GSCHWANDTNER et al., 2015).

As the number of cores increases to achieve more performance, the multicore de-
sign begins to consume more power and, thus, more energy. To solve this challenge, many-
cores processors emerged, integrating several less complex cores instead of complex ones.
These processors are more energy efficient since the power consumption reduces linearly
as performance reduces by the square-root of core complexity (BORKAR, 2007). There-
fore, with a small reduction on performance, the processor can reduce power consumption
significantly. As new ways to tackle power consumption and performance were unveiled, a
new subclass of manycores processors emerged, named lightweight manycores (BORKAR,
2007).

Lightweight manycores belong to a new class of highly parallel low-power many-
core chips suitable for environments with power constraints. Processors in this class
have hundreds of low-power processing cores that deal with data and task parallelism.
These processing cores are grouped in clusters, each one having its own limited local
memory and Network-on-Chip (NoC) interfaces to allow communications with other clus-
ters. This design may lead to a distributed memory configuration, with limited amount
of on-chip memory and no cache coherence protocols among different clusters. Indeed,
lightweight manycores achieve better energy efficiency than general-purpose multicore
processors (FRANCESQUINT et al., 2015). Examples of such processors are Sunway
SW26010 (FU et al., 2016), Adapteva Epiphany (OLOFSSON; NORDSTROM; UL-
ABDIN, 2014) and Kalray MPPA-256 (DINECHIN et al., 2013), which feature hundreds
of low-power cores in a single chip. Specially, Sunway SW26010 is used in the Sunway
TaihuLight, one of the fastest supercomputers to date, featuring 10.6 million low-power
cores (FU et al., 2016).

Although lightweight manycores may present better energy efficiency than general-
purpose multicore processors (FRANCESQUINI et al., 2015), they present architec-



22

tural characteristics that hinder the development of applications (VARGHESE et al.,
2014; CASTRO et al., 2016; CASTRO et al., 2014). For instance, software engineers
have to explicitly deal with data tiling, data prefetching and low-level communication
abstractions to extract reasonable performance out of a lightweight manycore proces-
sor (FRANCESQUINI et al., 2015). Moreover, communications must take into account
the NoC topology whenever possible to improve bandwidth and reduce latency.
Therefore, lightweight manycores call out for a distributed Operating System
(OS) design to address these challenges in a transparent fashion (BOYD-WICKIZER
et al., 2008; WENTZLAFF; AGARWAL, 2009; HOLLIS; MA; MARCULESCU, 2016;
PENNA et al., 2019). The multikernel design (BAUMANN et al., 2009) was introduced
to heed the call. This design deploys independent OS kernel instances on the processor.
Each kernel provides a bare-minimum abstraction and fully featured system services are
implemented in a distributed fashion. Moreover, the distributed architecture brings: (i)
better scalability; (ii) hardware-neutral characteristic enabling portability between several
architectures; and (iii) explicit inter-core communication which provides more room for
optimizations and efficient use of the processor network (BAUMANN et al., 2009). Each
kernel functionality in this design can be further extended to achieve a higher level of
abstraction (PENNA et al., 2019). For instance, a distributed OS may provide caching,
paging and communication services to achieve a suitable environment for users. Finally,
since the multikernel OS design is very flexible, it can feature specific OS services to fulfill

users’ needs.
1.1 MOTIVATION

Among the services offered by distributed OSs for lightweight manycores, the
memory management is one of the most important. This service overcomes most pro-
gramming intricacies of a distributed memory architecture, and it must exploit the NoC
in order to achieve decent performance. Unfortunately, current open-source distributed
OSs for manycore processors such as MOSSCA (KLUGE; GERDES; UNGERER, 2014)
and M? (ASMUSSEN et al., 2016) do not feature a software stack with a transparent mem-
ory management service compliant with Portable Operating System Interface (POSIX).
Additionally, these OSs run on an in-house simulator and a processor prototype imple-
mented in a Field Programmable Gate Array (FPGA), respectively. The only exception
found in the literature that features a POSIX-compliant kernel with the first efforts on
providing a memory management service is Nanvix! (PENNA et al., 2019). Nanvix is a
research OS for lightweight manycores based on a multikernel structure (BAUMANN et
al., 2009), which is currently developed by Brazilian (PUC Minas and UFSC) and French

(Université de Grenoble Alpes) institutions. Its system is based on asymmetric microker-

1 https://github.com/nanvix
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nel instances, where each kernel communicates with each other through a message-passing
approach. Nanvix supports multiple baremetal? architectures, such as Kalray MPPA-256.
Furthermore, it features a built-in lightweight manycore simulator to enable OS develop-
ment and debugging on top of Linux. To the best of our knowledge, Nanvix is the only
open-source distributed OS that runs on commercially available baremetal lightweight
manycores.

The design and implementation of a memory management subsystem that takes
into account the intrinsic characteristics and memory limitations of lightweight manycores
is still an open problem, paving the way for different performance optimizations. For in-
stance, part of the local memory of clusters can be used as a software-managed cache to
store recently used pages. Moreover, a software prefetching mechanism can be adopted to
bring pages from the main memory to the local memory of clusters in advance to hide NoC
communication costs. In this context, a classical solution to evaluate different optimiza-
tions is to port several applications of different domains to the underlying architecture.
Then, experiments with a profiling technique should be applied to understand their behav-
ior (SOUZA et al., 2010). There are two main problems with this approach: (i) lightweight
manycores may not support specific application runtime libraries; and (ii) applications do
not take into consideration underlying lightweight manycore Application Programming
Interface (API). Hence, it hinders the evaluation in a more general-purpose scenario.

To solve this problem, the chosen approach has to remove the need to manually
port applications. One possibility is to use trace-driven simulations (UHLIG; MUDGE,
1997) to: (i) mimic the characteristics of a broad range of applications; (ii) help to study
the performance of different optimizations; (iii) adapt each optimization and verify its
performance without the need of porting several applications; and (iv) know beforehand
about application behavior and the need for portability.

Following this idea, Dumas et al. (2017) proposed a trace-driven simulation for
cache evaluation. However, their solution did not consider the limited amount of on-
chip memory in lightweight manycores. Due to the size of a trace file, a new method
should be proposed to decrease the trace file size without consuming several resources
from the distributed OS or losing the overall representation of the application behavior.
In contrast, M. M. Rahman K. Nasartschuk & Dueck (2016) proposed a trace-driven
approach to evaluate and test Automated Memory Management (MM) runtime systems.
To deal with large trace files, they used a trace synthesizer that produces configurable
synthetic trace files. However, they did not consider distributed OS-level optimizations for
lightweight manycores. We argue that a trace-driven approach concerned with memory
limitations and designed to mimic the behavior of applications may provide a means
to analyze and study different scenarios for several applications in distributed OS for

lightweight manycores.

2 Architectures without a base OS.
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1.2 GOALS AND CONTRIBUTIONS

To help with applications analyzes and relieve developers from the burden of
porting several applications to the target distributed OS, in this work we propose a trace-
driven methodology that can be used to evaluate and optimize features of a memory
management service of distributed OSs for lightweight manycores. The complete set of

goals are listed bellow:

(i) Study and evaluate broadly used tracing mechanisms in High Performance Com-
puting (HPC);

(ii) Select the most appropriate tracing mechanism to collect information about the
memory access pattern of applications;

(iii) Study and propose techniques to filter the trace file in order to reduce the file size;

(iv) Propose and implement a generic trace-driven benchmark to mimic the memory
access pattern of the original application;

(v) Integrate the trace-driven benchmark into Nanvix; and

(vi) Implement an optimization in Nanvix memory management service and evaluate it

using the proposed trace-driven methodology.

Overall, this work delivers the following new contributions to the state of the
art on the evaluation of memory management services of distributed OSs for lightweight

manycores:

(i) a new trace-driven methodology that helps distributed OS developers to evaluate
and optimize features of memory management services without the need of porting
applications to the target distributed OS;

(ii) an integration of the proposed methodology in Nanvix, an open-source distributed
OS that targets lightweight manycores (PENNA et al., 2019); and

(ili) a case study of a software-managed cache evaluation in Nanvix using the proposed

methodology.
1.3  WORK ORGANIZATION

The remainder of this work is organized as follows. Chapter 2 shows core concepts
of our work. Chapter 3 demonstrates our proposal and its main stages. Chapter 4
presents our experiments and results. Chapter 5 discusses related work. Finally, Chapter 6

concludes this work.



25

2 BACKGROUND

In this chapter, we present the background on important subjects related to this
dissertation. Sections 2.1 and 2.2 present an overview of multiprocessors and lightweight
manycores. Section 2.3 discusses distributed OSs for lightweight manycores. Section 2.4
provides a background on system analysis and monitoring. Finally, Section 2.5 presents
basic information about cache memories and their placement techniques, which will be

used as a case study to apply the trace-driven methodology proposed in this work.
2.1 MULTIPROCESSORS

Multiprocessors consist of one or more Central Process Units (CPUs) that share
a Random Access Memory (RAM). Hence, CPUs may communicate through read/write
memory operations in the same physical address space. The interconnection between
CPUs and RAM can be more or less complex depending on the architecture design. On
Uniform Memory Access (UMA) architectures, CPUs can address the RAM in a near-
constant time, being the bus one of the most common solutions. Figure 1 shows a simpli-
fied UMA multiprocessor architecture, where CPUs use shared memory to communicate
with each other through a bus. When a CPU performs a communication, the bus is
checked to see if it is available. If the bus is busy, the CPU waits until it is available.
Then, the CPU puts the required word address in the bus, uses control signals and waits
until the memory sends the word through the bus. This method is suitable for multipro-
cessors composed of few CPUs. Thus, this design is not scalable as the bus becomes the
system bottleneck with a high number of CPUs.

Caches can alleviate this problem, enabling read requisitions to be fulfilled by
the cache, thus decreasing the number of communications. To achieve consistency inside
the system, coherence protocols are used to keep all caches synchronized. For instance, a
cache-coherence protocol can be defined as follows: when a CPU wants to write a word,
other caches that have the same word are notified. If a cache has a modified copy, the
word will be written in memory. Otherwise, other caches can discard the word and let the
writer fetch the cache block from memory before modifying it. Furthermore, more cache
levels can be added to reduce access to main memory and cache size may be increased to
improve performance. However, due to architectural limits, a high quantity of cache levels
is undesirable, and a huge cache size slows access time and harms overall system perfor-
mance. In addition, new interconnections, such as crossbar switches, can be introduced to
connect more CPUs and alleviate further the bottleneck problem (TANENBAUM; BOS,
2015).

On Non-Uniform Memory Access (NUMA) architectures, the RAM is divided into
NUMA nodes and each node is placed close to a CPU. Because of that, the time taken to

address the memory will vary, depending on the distance between the node and the CPU.
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Figure 1 — Simplified UMA multiprocessor.
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Figure 2 — Simplified NUMA multiprocessor.
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Figure 2 illustrates the NUMA architecture, where NUMA nodes are connected through
an interconnection network. In the same context as UMA, Cache-Coherent Non-Uniform
Memory Access (CC-NUMA) is a NUMA multiprocessor with a cache in each node to
reduce the access time in a remote memory data. In contrast, a Non Cache-Coherent
Non-Uniform Memory Access (NC-NUMA) multiprocessor does not have a cache.

With the development of new technologies, the size of transistors reduced signif-
icantly, which enabled a greater quantity of them inside a single chip. As this quantity
increased, chips began to consist of several CPU cores defining a new class of chips, named
multicores. Figure 3 illustrates this design. In contrast with multiprocessors, a multicore
has two or more cores inside a single CPU, which communicate with each other using a
shared RAM or the cache directly. Each core consists of a processing unit and a cache.

A multicore processor enables instructions to run on separate cores at the same
time, which increases performance. In this context, power consumption became a paramount
problem in new systems design, because of excessive sub-threshold leakage current, and

supply voltage scaling slowing down (BORKAR, 2007). To solve this challenge, a new



Figure 3 — Simplified multicore processor.
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design for processors emerged, named manycore processors. It provides hundreds to
thousands of cores in a single chip and bundle several less complex cores, instead of high
complex ones. As the search for more power efficiency increased, other solutions became
necessary to approach the trade-off between power and performance, such as lightweight

manycores.
2.2 LIGHTWEIGHT MANYCORES

Lightweight manycores is a new emerging class of manycores concerned with
energy efficiency and performance. Figure 4 illustrates a simplified concept of a lightweight
manycore processor. The concept processor features 67 cores bundled in 17 clusters, where
cores inside each cluster share resources, such as Static Random Access Memory (SRAM)
and NoC interface. In this example, clusters are divided into two groups: (i) Compute
Cluster; and (ii) I/O Cluster. Each group has characteristics that are defined by its main
goal. Thus, these groups may differ in structure, Input/Output (I/O) connectivity and
computing capabilities. In the given example, Compute Clusters present more cores and
focus on user workloads. These workloads are stored inside the SRAM that is a few
orders of magnitude smaller compared to the external Dynamic Random Access Memory
(DRAM). In contrast, I/O Clusters focus on I/O operations with the external DRAM and
devices. Finally, inter-cluster communication is performed through a NoC and managed
in each cluster by NoC interfaces.

Clusters perform communication with one another sending hardware-level mes-
sages through the NoC. For instance, due to Compute Clusters small memory size, I/O
Clusters are responsible for providing tiled user workloads to Compute Clusters. Each
workload is sent through the NoC and computed by its respective Compute Cluster. Af-
ter computation, I/O Clusters may merge or perform other operation on the output data

from all Compute Clusters. Conversely, communication between Compute Clusters is
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Figure 4 — A simplified overview of a conceptual lightweight manycore.

DRAM
Devices

L' ------------------------------------- -;’/_\ 1/0 Cluster
o H B & NEEE
1 1
------ o f T
DN [EE (e I | |EFmE
O8) (B0 B8 (B8
| | | [
8| |[E8| B8 |[EE
OO0 B8] B8] [EE8
| | | |
08| B8] B8] (EE
- - - - - - - - Compute Cluster
[ | 1, | | [ e
1
DD DR EE [ mm): B
EEEEEEHEE R
------ |

Source: Penna et al. (2021)

made without I/O Cluster intervention. This message passing process can be onerous
and impact performance due to its synchronicity. Therefore, to provide a higher band-
width and improve overall performance, Direct Memory Access (DMA) engines may be
provided inside the NoC, which enables asynchronous communication.

Overall, lightweight manycores have several characteristics that provide means to
achieve high performance and power efficiency. The comprehensive set of characteristics
from lightweight manycores is as follows (PENNA et al., 2021):

(i) they integrate hundreds to thousands of low-power cores in a single chip, which are

tightly-coupled in groups called clusters;

(ii) they feature a constrained memory system with small local memories inside clusters
and no cache coherency;

(iii) they rely on high-bandwidth NoCs to carry out communication;

(iv) they present a distributed memory architecture (i.e., multiple address spaces);

(v) they are designed to target Multiple Instruction Multiple Data (MIMD) workloads;
and

(vi) they may have a heterogeneous configuration (e.g., I/O and computation clusters

present distinct programmability).

Lightweight manycores differ from other architectures that feature high core
counts. In contrast to Graphics Processing Units (GPUs), lightweight manycores present
support to MIMD workloads. Unlike NUMA architectures that rely upon dedicated inter-
connections outside the processor chip to perform communication between multiple CPUs
(e.g., NumaConnect or NUMAlink), lightweight manycores rely on a high-bandwidth NoC

to carry out communication between thousands of cores. Furthermore, manycore pro-
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cessors, such as Tilera TILE-Gx100, Intel Xeon Phi and Intel Single-Cloud Computer,
do not consist of clusters with a constrained memory. Some examples of lightweight
manycores are Sunway SW26010 (FU et al., 2016), Adapteva Epiphany (OLOFSSON;
NORDSTROM; UL-ABDIN, 2014) and Kalray MPPA-256 (DINECHIN et al., 2013).
Although, the aforementioned characteristics improve performance and power

efficiency for lightweight manycores, they also introduce some challenges:

(i) they usually feature heterogeneous cores with different computing and communica-
tion capabilities, making software development more complex;
(ii) the memory is distributed across Compute Clusters and data tiling, data prefetching
and remote data accesses have to be performed explicitly by the developer:;
(iii) the constrained on-chip memory requires several software optimizations to reduce
the memory footprint of applications; and
(iv) the absence of hardware cache coherence forces developers to explicitly deal with

data coherency.
2.3 DISTRIBUTED OPERATING SYSTEMS FOR MANYCORES

Distributed OSs have recently gained attention of the research community to ad-
dress the challenges in software development in lightweight manycore processors (KLUGE;
GERDES; UNGERER, 2014; ASMUSSEN et al., 2016; PENNA et al., 2019). Exam-
ples of these OSs are Barrelfish (BAUMANN et al., 2009), Factored Operating Sys-
tem (FOS) (WENTZLAFF; AGARWAL, 2009), Helios (NIGHTINGALE et al., 2009),
MOSSCA (KLUGE; GERDES; UNGERER, 2014), M3 (ASMUSSEN et al., 2016) and
Nanvix (PENNA et al., 2019). They detach complex OS services from the OS kernel,
which commonly provides bare-minimum OS abstractions and primitives. Thus, OS ser-
vices and application instances are spread out on processor cores to increase scalability
and performance.

These OSs are commonly structured in three main layers. In the bottom layer, a
Hardware Abstraction Layer (HAL) abstracts the underlying hardware, to provide porta-
bility across different architectures. In the middle layer, an OS kernel provides basic OS
abstractions, such as resource multiplexing, processes and threads. Finally, the top layer
features many OS libraries to provide a transparent programming environment for users.

In this dissertation, we are specially interested in distributed OSs designed specifi-
cally for lightweight manycores such as MOSSCA (KLUGE; GERDES; UNGERER, 2014),
M? (ASMUSSEN et al., 2016) and Nanvix (PENNA et al., 2019). Due to scarce resources
inside lightweight manycores, a microkernel design is employed in the middle layer to cope
with the low amount of on-chip memory. Then, system services are implemented at the top
layer and are distributed across the cores of the processor. This approach provides more

availability for user applications. Among the aforementioned OSs for lightweight many-
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cores, MOSSCA and M? can only be executed on an in-house simulator and a processor
prototype implemented in FPGA, respectively. In contrast, Nanvix is currently the only
open-source distributed OS that runs on commercially available bare-metal lightweight

manycores. Because of this feature, we will focus on Nanvix in this dissertation.
2.3.1 Nanvix

Nanvix is an open-source OS for lightweight manycores based on a multikernel
design (PENNA et al., 2019). Figure 5 depicts the main idea behind this design. As it
can be noticed, there is a single Nanvix microkernel instance running in each Compute
Cluster (kernel instance). Each instance is deployed only in one core of the Compute Clus-
ter, configuring an asymmetric microkernel design. Moreover, it provides bare-minimum
OS abstractions and primitives for the Compute Cluster. All other cores of the Com-
pute Cluster, on the other hand, can be used to run system services as servers (service
instance) or user-level applications. Examples of system services implemented in Nan-
vix are: (i) Shared Memory (SHM) Server, which manages page sharing among different
Compute Clusters; (ii) Remote Memory (RMem) Server, which manages physical mem-
ory; (iii) Name Server, which manages process naming; (iv) Spawn Server, which manages
threads; (v) Virtual File System (VFS) Server, which manages secondary storage; and
(vi) Inter-Process Communication (IPC) Server, which manages communications between
processes running on different Compute Clusters.

Distributed OSs for lightweight manycores is an ever-increasing field, which has
several features that can be evaluated and optimized. For instance, Nanvix remote mem-
ory service enables applications to communicate and to share pages effectively. The Dis-
tributed Paging System (DPS) is essential for a distributed OS because it enables memory
virtualization and brings better memory usage and optimizations. However, extensive use
of page sharing among clusters can result in suboptimal memory access performance. In
this context, a software-managed cache would bring important improvements to overcome
this barrier and optimize the overall performance. Unfortunately, it is not trivial to design
and evaluate new features in a distributed OS. In the next section, we discuss possible

approaches to do so.

Figure 5 — A simplified overview of a conceptual lightweight manycore running a multikernel OS.
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2.4 RUNTIME VERIFICATION

Common verification analysis techniques used by developers to evaluate a system
are model checking, theorem proving and Runtime Verification (RV) (JAHIC et al., 2018).
In contrast to the others, RV is widely used to evaluate a system during runtime based on
its execution trace. Figure 6 illustrates how RV analysis is applied in a system. Overall,

the monitored system has three main components:

o Target system that is being analyzed;
« instrumentation method; and

e system monitor.

First, the target system being analyzed by the monitor is one of the main components of
a RV analysis. Next, the instrumentation component provides means to record relevant
information about the target system, which is used by the monitor to analyze the overall
system behavior. Finally, the system monitor analyzes the target system behavior and
may declare if a property or characteristic of the system is being satisfied (BARTOCCI
et al., 2018).

Figure 6 — Monitored system overview.
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In this context, several features from a system may be evaluated. For instance,
in OSs, a software developer may use this technique to evaluate the memory system be-
havior based on memory events inside an execution trace. In a broad manner, these events
can be used as input to a memory system feature, such as a software-managed cache, to
check and evaluate its behavior without running the system repeatedly. Furthermore, this
approach brings a means to evaluate an already designed feature, but does not provide a
way for design choices and possible optimizations of new features. In the remaining of this
section, we will discuss in more detail how the monitor and instrumentation components

are connected with the target system analysis.
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2.4.1 Monitors

The monitor component executes in parallel with the target system and evalu-
ates its execution. Overall, this component checks if a property was satisfied or not by
the target system. After enough behaviors are verified, the monitor arrives at a verdict
(acceptance or rejection) about the target system. Furthermore, an automated synthesis
procedure is used to generate monitors that can verify a set of properties. The proce-
dure takes the properties as input and returns the executable code of the monitor as a
result (BARTOCCI et al., 2018).

Monitor setups come in several flavors that can be explored by the developer.
Online and offline monitoring dictate where the evaluation will be made during or after
system execution, respectively. An online approach can determine during execution if
a property is satisfied, which enables the monitor to deal with property violations at
runtime. In contrast, an offline approach stores, after the target system execution, its
trace inside a permanent file, which is passed to the monitor for evaluation.

Furthermore, online monitoring has to dictate how the monitor and the target
system may execute simultaneously. In a synchronized manner, the monitor waits for
the target system to generate events. With each event, the target system continues
executing after monitor evaluation. In contrast, an asynchronous approach provides the
target system an uninterrupted execution as the monitor evaluates events. Due to the
unpredictable behavior of offline and online asynchronous monitoring, the monitor may
miss opportunities to deal with unsatisfied properties as they occur.

These aforementioned monitor flavors can be synthesized by two main approaches.
A monolithic approach is the most common one. The monitor is synthesized as one mono-
lithic block to represent a specification of properties. In contrast, monitors may follow
a parallel approach to provide a better performance, where each monitor is responsible
for a set of properties. In this context, a concurrent and distributed layout may be used.
A distributed layout can be coordinated in two different ways. An orchestrated strategy
promotes an entity to coordinate all events, whereas a choreographed approach promotes

more than one entity to it.
2.4.2 Instrumentation

As the target system executes, the instrumentation component will record rele-
vant system information, such as program variable write/read, memory operations, com-
munication operations, function calls and returns. Each system information is stored as
events inside an execution trace. Thus, an execution trace is composed by an ordered
stream of events that are provided to the system monitor. Moreover, this component
dictates how monitor and target system relate with each other. For instance, to better

evaluate the system, the execution needs to terminate before the monitor system begins
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to evaluate the execution trace. In a more comprehensive manner, instrumentation may
be used individually for software developers to evaluate manually applications or a whole

system. To achieve this goal, there are widely known instrumentation software such as
Pin (LUK et al., 2005) and Valgrind (NETHERCOTE; SEWARD, 2003).

2.4.2.1 Pin

Pin is an instrumentation platform that enables the build of several analysis
tools (pintools), which are used to evaluate applications and the system. The platform is
an engine that has a just-in-time (JIT) compiler and instruments applications, whereas
the pintool communicates with Pin, and has the instrumentation and analyzes routines.
Moreover, the pintool evaluation gives important information about memory, function
calls and other resources. For instance, a developer may need to evaluate the memory
system. Hence, function calls can be added before and after a memory operation. With
these calls, the tool captures memory addresses, allocation size and other important in-
formation. In addition, the tool may manipulate each collected information to a more
readable one and add them inside a file for further manually evaluation.

This instrumentation platform uses a JIT compiler to insert and optimize code
without the need for the developer to intervene. In this context, the pintool initializes
and requests Pin to execute the application. Pin intercepts the code execution on the first
instruction and compiles new code to take its place. This code compilation is performed
one straight line of code at a time, which is defined by a sequence of instructions until a
branch exits it. The compiled code is similar to the original but has given instrumentations
by the pintool and is stored inside a software-managed code cache. Also, only code inside
the code cache is executed instead of the original. After a compiled code is executed,
Pin regains control, proceeds to generate and execute more code until the end of the

application execution.
2.4.2.2 Valgrind

Pin was designed to have low impact on overall performance. In contrast, Val-
grind (NETHERCOTE; SEWARD, 2003) was designed to provide support to rich analysis
tools with performance as a secondary concern. Mainly, Valgrind is an instrumentation
platform that is capable of building several analysis tools and has two main components:
(i) core; and (ii) skin. The core component provides four base features for Valgrind. First,
an JI'T compiler which enables Valgrind to run a simulated code inside a synthetic CPU
and maintain program control. It does not run the original code directly. Second, a C
library, because the platform does not support GNU standard C library (glibc). This
decision was made to avoid possible bugs and obscure dependencies from the standard
library (NETHERCOTE; SEWARD, 2003). Third, a signal interception feature that acts
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as an intermediary handler to keep the program under Valgrind control. Finally, a Pthread
implementation which provides all standard pthread abstractions and a user-space thread
package. All threads run on a single kernel thread while keeping the program under
the platform control. Furthermore, Valgrind works directly with executables removing
the need to recompile the program. In contrast, the skin component is written by the
user and defines how the program will be instrumented. Moreover, this component must
provide specific functions for initialization, instrumentation and finalization, which are
not provided by the core. There are eight widely used standard skins: (i) Memcheck;
(ii) Cachegrind; (iii) Callgrind; (iv) Helgrind; (v) DRD; (vi) Massif; (vii) DHAT; and
(viii) BBV.

2.5 CACHES

Caching is a technique that improves performance on data access by maintaining
frequently used data in a memory module that features lower latency than other memory
modules in the architecture. This technique may be implemented either in hardware or
software and is employed in a wide range of scenarios, varying from processor design to web
applications. Notwithstanding, the structure and policies concerning this technique hold
in all these contexts, thus in the paragraphs that follow we cover its common background.

The cache memory is typically smaller than the underlying memory, thus a policy
is required to state how data from a lower-level memory is mapped to the cache. This
decision concerns the placement policy of the data blocks onto the cache and some possible
designs are pictured in Figure 7. In a direct-mapped cache, blocks of memory are directly
mapped to a given slot in the cache. Since each block may be placed in only one slot in the
cache, searching takes a constant time, but different blocks may be mapped to the same
slot, thus causing conflicts. In a set-associative cache, the amount of conflicts is mitigated
by enabling a block to be mapped on a set of slots in the cache. As a consequence, a search
procedure is needed in all slots within the set to access data. Finally, in a fully associative
cache, a memory block can be mapped to any slot in the cache, thus eliminating placement
conflicts at a cost of increasing hardware complexity.

Whenever a memory block should be brought to the cache and no placement
slot is available, some block in the cache should be evicted. Such decision concerns the
replacement policy of the cache and multiple algorithms for this task exist, each one with
its own strengths and weaknesses.

In First-in First-out (FIFO) replacement policy, the first block brought to the
cache is chosen to be evicted. While this policy is relatively simple to implement it may
present some performance anomalies if the very first blocks brought to the cache end
up being the more frequently used ones. The Second Chance (SC) policy attempts to
overcome this problem by evicting FIFO blocks that were not accessed after the last

replacement walk. The Not Frequently Used (NFU) policy maintains a reference counter
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Figure 7 — Cache placement techniques.
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Source: Adapted from Penna, Francis & Souto (2019).

for each memory block in the cache and, at each clock interval, all memory blocks that
have been referenced within that interval will have their counter incremented by 1. Thus,
the memory block with the lowest counter is evicted whenever necessary. The main
problem with NFU is that it keeps track of the frequency of use without regard to the
time span of use, so memory blocks that have been referenced several times in a distant
past will be kept in the cache for a long period of time even though they are not referenced
anymore. The Aging replacement policy is a descendant of NFU, with modifications to
make it aware of the time span of use. In this policy, the reference counter is first shifted
right and then, the reference bit replaces the most significant bit of the reference counter.
This ensures that memory blocks referenced more recently will have higher counters.
Conversely, the Least Recently Used (LRU) policy maintains a wallclock register for each
memory block in the cache. The register of a block is incremented with the current time
whenever a reference to this block occurs. Then, whenever a replacement decision should
be made, the least recently used block is evicted. This policy oftentimes produces optimal
replacement decisions but features a great implementation overhead due to the linear cost
of updating the wallclock registers at each memory reference. Pseudo-LRU algorithms
solve this problem by using approximate measures for each wallclock register instead of
its exact value inside the cache.

Furthermore, whenever data is written into a memory block in the cache, it should
be written back to underlying memory later on. The decision on when this task should
happen concerns the write policy and overall there are two alternatives. In the first one,
called write-though, the underlying memory is updated whenever a write occurs in the
cached memory block. This policy ensures strong data consistency between the memory
cache and the underlying memory in exchange for more costly write operations. The
second policy, named write-back, relaxes this requirement by writing data back from time
to time, either whenever a block replacement happens or at frequent time intervals.

As it can be noticed, a cache has several factors that need to be taken into
consideration before a prototype can be produced. Therefore, simulations and runtime

verification solutions can be introduced to discover the best design choice and analyze
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cache behavior. The former enables cache evaluation without the need to prototype
every single choice, whereas the latter provides a way to verify memory accesses and, for
example, use them as input in a software-managed cache to evaluate several choices. The
software-managed cache inherits these core concepts of a cache and may be used inside a

distributed OS to provide a means for optimizations.
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3 TRACE-DRIVEN METHODOLOGY

Providing optimizations for the memory management service of distributed OSs
that target lightweight manycores is an open problem. In this dissertation, we propose a
trace-driven methodology to aid developers to study, implement and optimize features for
memory management services of distributed OSs. Our trace-driven methodology simplifies
the trial-and-error approach of finding the proper configurations for different features in
the memory management service based on the characteristics of the applications as well
as the memory and NoC restrictions of lightweight manycores, relieving distributed OSs
developers from the burden of porting several applications to the target distributed OS.

In this chapter, we describe the trace-driven methodology proposed in this disser-
tation. First, we present an overview of the methodology, which is composed of two main
stages: trace collection and page access pattern. Then, we discuss the details of each of

these stages. Finally, we argue about specific implementation details of our methodology.
3.1 OVERVIEW

Our trace-driven methodology allows one to mimic the memory access pattern
of applications in distributed OSs for lightweight manycores without the need to port
them to the target distributed OSs. The main goal is to provide a means to study and
implement different optimization features for the memory management service in the
context of distributed OSs for lightweight manycores.

Figure 8 presents an overview of our methodology. Overall, the methodology is
composed of two main stages, each composed of one and two steps, respectively. First,
applications are compiled and executed in a standard Linux environment along with a
memory profiling tool. The profiler collects memory accesses of the target application
and dumps this information on trace files (Step @). Next, one selected output is used to

create a heatmap: a compact two-dimensional structure that describes how many times

Figure 8 — Overview of the trace-driven methodology.
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Listing 1 — An example of a simple C program that allocates three arrays in three different memory
segments (each of which occupying 20 memory pages) and performs a variable number of
store operations in each page.

1 #define N_ITEMS 20

2 |struct item {

3 uint32_t _[1023]; // padding

4 uint32_t value;

5 |}

6

7 |/* Static Data allocation of N_ITEMS pages */
8 |static struct item static_v[N_ITEMS];

9

10 |int main(void) {

11 /* Heap allocation of N_ITEMS pages */
12 struct item *heap_v = (struct item *) malloc (sizeof(struct item)*N_ITEMS);
13

14 /* Stack allocation of N_ITEMS pages */
15 struct item stack_v[N_ITEMS];

16

17 for (int i = 0; i < N_ITEMS; i++)

18 for (int j = 0; j < (i+1)*100; j++) {
19 static_v[i].value = i;

20 heap_v[i] .value = i;

21 stack_v[i].value = i;

22 }

23

24 free(heap_v);

25

26 return O;

27 |}

Source: the author.

each memory page (or a set of pages) was accessed during some discrete time frames
(Step @). Then, a probabilistic approach is applied by the prozy application, which uses
the heatmap structure to mimic the page access pattern of the original application in the
target distributed OS running on the lightweight manycore processor (Step ®). Finally,
the proxy application outputs statistics about the execution.

To better understand the proposed methodology, let us consider the simple C
program shown in Listing 1. We assume in this example a Linux x86_ 64 system, where an
integer variable and a memory page occupy 4 bytes and 4 kB in memory, respectively. This
program allocates three arrays (static_v, heap_v and stack_v) containing 20 elements
of type struct item (lines 8, 12 and 15). Since the size of struct item is 4 kB, each
item is stored in a different memory page. Therefore, 60 memory pages will be allocated
to store these arrays. Then, the program performs a variable number of store operations
on the value field of static_v[i], heap_v[i] and stack_v[i] (lines 17-22). This is
done by two for loops: the outermost loop (line 17) iterates over the items of the arrays

whereas the innermost loop (line 18) performs repeated store operations on the value
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field of struct item. Since the number of store operations on each array index i is equal
to (i+1)*100, the higher the value of i, the higher will be the number of store operations
at index i. As a result, the number of store operations at indexes i = {0,1,2,...,19} of
each array will be {100, 200, 300, . ..,2000}.

In the next sections, we describe in more details the trace collection and page

access pattern stages using this program as an example.
3.2 TRACE COLLECTION
The trace collection stage is composed of one main step, which is described bellow.

3.2.1 Step 1: Pintool Profiling

The first step of our trace-driven methodology consists in running the application
of interest on Linux and collecting information about its memory accesses (Step @). A
classical approach to obtain such information without any application source code changes
is to use a binary instrumentation tool such as Valgrind (NETHERCOTE; SEWARD,
2007) or Pin (LUK et al., 2005). Valgrind features a tool named Lackey, which outputs
the address of every memory access made by the program. The drawback of Lackey is
that it only distinguishes instruction loads from memory accesses, thus needing further
manipulations on the trace file to get the memory accesses in each memory segment
(static data, dynamic data and stack). Pin, on the other hand, is much more flexible, but
it requires specific knowledge from the developer to build a pintool'. In this dissertation,
we decided to use Pin due to its flexibility and disregard the instruction memory segment.

Figure 9 shows an overview of the pintool designed to collect the memory accesses
of an application and to produce the corresponding trace files. First, the pintool discovers
the initial memory address and size of two memory segments: stack and static data (Ac-
tivities and (1.2), respectively). The initial address and the maximum size of the stack
can be easily obtained with the PIN_GetContextReg() function available in Pin and the
getrlimit() Linux system call, respectively. In contrast, there is not a straightforward
way of obtaining the initial address and size of the static data segment. The solution
adopted in our pintool is to use a standard Linux utility program named objdump to
disassemble all the object file sections and get information about the bss and data seg-
ments. As opposed to the aforementioned segments, information about the dynamic data
segment (heap) is obtained in runtime. To do so, the pintool instruments dynamic alloca-
tion routines (e.g., malloc, calloc, realloc and align_alloc) and places an insertion
point on each routine occurrence (Activity (1.3)). Furthermore, the pintool instruments

instructions that read or write memory (Activity (1.4), thus adding an insertion point

L A pintool can be thought of as a plugin that can modify the code generation process inside Pin.
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Figure 9 — Pintool flowchart.
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to each of them. Each insertion point tells Pin where to insert the analysis routine call
defined by our pintool.

When an insertion point is reached in runtime (Activity (1.5), the pintool checks
if it concerns a dynamic allocation routine call instrumented in Activity (1.3) or a simple
instruction that read or write memory. If the insertion point is related to a dynamic
allocation call, our analysis routine collects the initial address of the allocated memory
and its size (Activity (.6)). This information is stored inside a hash table structure,
which will be essential for Activity 1.9. However, if the insertion point is related to
instructions that read or write memory, the analysis routine performs the following tasks:
(i) it converts the memory address to a page number and increments the access counter for
that page number in a hash table structure (Activity .7); (ii) it writes the page number
along with the current value of a memory access event counter® (initially set to 1) into a
temporary trace file (Activity (1.8)); and (iii) it increments the value of the memory access
event counter. Once the aforementioned operations are finished, the pintool continues to
execute the instructions of the application until it reaches another insertion point. When
the application finishes, the pintool outputs a memory segments overview file and three
trace files (Activity .9).

The memory segments overview file contains information about each memory
page allocated by the application. An example is shown in Figure 10(a) for the program
given in Listing 1. In this file, the following information is provided for each page: its

virtual page number, the total number of accesses to that page, the memory segment

2 A memory access event count is actually considered as a discrete timestamp.
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Figure 10 — Memory segments overview file and dynamic data segment trace file obtained from the ap-
plication presented in Listing 1.

(a) Memory segments overview file. (b) Dynamic data segment (heap) trace file.
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where the page resides, its normalized page number and the location in the source code
where the page was accessed for the first time. The normalized page number within its
memory segment is obtained by storing all page numbers inside a hash table structure
and then assign a consecutive integer number (starting at 1) as value to each of them.

Overall, the memory segments overview file (Figure 10(a)) gives a global view of
the memory accesses carried out by the application and helps the user decide which mem-
ory segment should be considered in the following steps of the trace-driven methodology.
As expected, the number of accesses to pages that hold the three arrays allocated by the
program shown in Listing 1 (static_v, heap_v and stack_v) correspond to those write
operations executed by the nested loops of the program (Listing 1, lines 17-18). We can
also observe that there are few other pages in each memory segment that are also accessed
during the execution. The data allocated in these pages correspond to local variables such
as loop iterators (stack segment), global or static variables allocated in shared libraries
(static data segment) and meta-data managed by the built-in allocator provided by the
GNU C Library (dynamic data segment).

In addition to the aforementioned output file, the pintool splits the temporary
trace file produced in Activity into three trace files, each one containing only the
trace events related to a specific memory segment (static data, dynamic data or stack).
Figure 10(b) shows some events stored in the dynamic data trace file obtained from the
program given in Listing 1. As it can be noticed, all event counts are normalized in this
trace file (the first event count in the dynamic data segment is set to 1 and the following

ones are normalized with respect to it). The same procedure is done to produce the
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other two trace files (static data and stack). We can also observe that two pages holding
meta-data of the standard dynamic memory allocator (normalized page numbers 1 and
2) are accessed at the beginning and at the end of the trace file. As expected, a repeated
number of the accesses are done in pages that hold the heap_v array. These accesses are
based on the outer and innermost loops of the program shown in Listing 1.

Considering the program given in Listing 1, our pintool produced trace files of
approximately 202 kB (static data), 194 kB (dynamic data) and 2.3 MB (stack). However,
these trace files can easily occupy gigabytes of data if more complex programs are profiled,
since they include every memory access done by the program. In the next section, we
show how we can represent the overall page access pattern of an application in a much

more compact way by using heatmaps.
3.3 PAGE ACCESS PATTERN STAGE

The page access pattern stage is composed of two main steps, which are described

below.
3.3.1 Step 2: Heatmap

The trace files obtained from the previous step are used in the page access pattern
stage to produce a heatmap structure (Step @). The heatmap is a two-dimensional graphi-
cal representation of measured values of numerical data using a chosen color scheme, with
one end of the color scheme representing the high values and the other end representing
the low values (SUEMATSU et al., 2014). The variation in color may be by hue or inten-
sity, giving visual insights to the reader about how a phenomenon is clustered or varies
over space (or time).

We use heatmaps to represent the page access pattern of the application, which
show how many times each page (or a group of pages) is accessed during specific discrete
time periods (the darker the color of the cell of the heatmap, the higher the number of
page accesses). The z-axis represents a temporal behavior (timestamps of events), whereas
the y-axis represents a space behavior (pages or group of pages). The resolution of the
heatmap can be fine-tuned by grouping several events into bins in « and/or y axes. Thus,
a maximum resolution is achieved if the heatmap uses individual events. The higher is the
number of events grouped into bins, the lower will be the heatmap resolution, resulting
in a less accurate page access pattern of the application. By adjusting the resolution
of the heatmap we can significantly reduce the time spent on mimicking the memory
access pattern of the application on the target distributed OS running on the lightweight
manycore processor as well as the amount of memory footprint required to store the page

access pattern — recall that this is an important constraint for lightweight manycores.
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Figure 11 — Heatmap of the dynamic data segment of the program shown in Listing 1.
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Figure 11 shows the heatmap containing page accesses to the dynamic data seg-
ment in which the array heap_v of the program shown in Listing 1 resides. The heatmap
shows 22 memory pages® in the y-axis and 200 discrete time bins in the z-axis.* As it
can be noticed, the heatmap shows exactly the behavior we would expect based on the
program shown in Listing 1: memory pages occupied by heap_v are accessed in ascending

order and the number of page accesses increases as the execution progresses.
3.3.2 Step 3: Proxy Application

The last step concerns the use of a proxy application to mimic the page access
pattern of the original application on the target lightweight manycore processor (Step ®).
The proxy application takes as input parameters a heatmap (hm), which was obtained in
Step @, and a trial factor (tf). The heatmap is seen by the proxy application as a set of
histograms (each time bin in the z-axis is actually a histogram of memory page accesses)
and it uses a probabilistic approach that follows a uniform function to generate a variable
number of random memory page accesses (trials) in each time bin based on its frequency
distribution. The number of trials performed by the proxy application in each time bin x

corresponds to

, number of events in the original heatmap in x
trials, = 7 (3.1)

Thus, the higher is the trial factor, the lower will be the number of page accesses

(trials) generated by the prozy application. The value of tf impacts on the overall behavior

The heap_v array is stored in pages 3-22.

4 All z-axis labels were omitted to improve readability.
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Algorithm 1 — Overview of the proxy application.

Input: A heatmap hm containing the page access pattern of the profiled application and
a trial factor tf to be considered in each time bin.

Output: A trace file containing all page accesses generated by the proxy application as
well as other statistics.

1: procedure MIMICPAGEACCESSPATTERN (hm, tf)

2 for bin < 1 to hm.nybins do

3 pages[bin] < PAGEALLOC() > Request a new page and keep its reference
4 for bin < 1 to hm.nxbins do > For all time bins
5: ntrials + bmneventsbin] > Compute the number of trials
6 for trial < 1 to ntrials do > For all page access trials
7 rand <— GETRANDOMPAGE(hm.histogram|[bin]) > Select a random page
8 stat < PAGEREQUEST(pages[rand)) > Request selected page
9 OutpuT(bin, trial, rand, stat) > Write event and statistics
10: for bin < 1 to hm.nybins do > Free all allocated pages

11: PAGEFREE(pages[bin])

Source: the author.

of the memory access pattern being reproduced: the more random values are generated,
the closer will be the behavior produced by the proxy application compared to the original
(real) application. However, as we will show later on in Chapter 4, it is possible to reduce
considerably the number of trials without losing the overall behavior of the original page
access pattern. This allows us to reduce considerably the execution time of the prozy
application as well as to deal with very large heatmaps more efficiently.

Algorithm 1 shows the pseudocode of our proxy application. First, the number of
pages is obtained from the heatmap and the necessary pages are allocated (lines 2-3) by
invoking the OS system call to allocate a memory page (PAGEALLOC). Each allocation
will return a page number from the OS. Then, ntrials page access requests are performed
(PAGEREQUEST) for each time bin in the heatmap (lines 4-9). For each page access
request, a page number is randomly chosen based on the histogram of the time bin. All
page accesses generated by the proxy application are then stored in an output file (line
9). At this point, a heatmap can be generated from the output of the proxy application
and it can be compared with the original heatmap for validation purposes. Finally, all
pages allocated by the proxy application are freed (lines 10-11) by calling the OS system
call to free a memory page (PAGEFREE).

Figure 12 shows the heatmap produced by the proxy application. In this example,
we kept the same 200 discrete time bins in the z-axis but we reduced the number of total
page accesses by a factor of 10 in each time bin. As shown in Figure 12, the overall access
pattern is kept, proving that the probabilistic approach used in the proxy application is
valid, even with a reduced number of trials per time bin. An experimental validation of

the proposed approach with more complex applications will be presented in Chapter 4.
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Figure 12 — Heatmap of the dynamic data segment obtained from the proxy application.
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3.4 IMPLEMENTATION DETAILS

As discussed in the previous sections, our methodology adopts Pin to trace the
target application and to produce trace files (Step @). In contrast, the heatmap and the
integration with the target distributed OS are done with bash scripts. In the following
paragraphs we give more details about the scripts and workflow of the proposed method-
ology.

Figure 13 shows all scripts involved in the production of all the artifacts of our
methodology. The first step is to compile the target application using gcc with the
following flags:

o —g: the debugging option will provide means for our pintool to access the proper
location of each memory access in the source files; and

e —no-pie -fnopic: these flags disable the generation of position-independent exe-
cutable and code, respectively. Hence, address space randomization is disabled and
our code will be loaded at a specific memory location. This characteristic will enable
our pintool to compare static data segment addresses with addresses obtained from

objdump sections.

Once the target application is compiled, the developer shall execute our main
script (run.sh), which takes the target application (app) as input argument as follows:
./run.sh -- ./app. The provided ./run.sh script will compile and run our pintool
along with the target application. Once the execution finishes, the pintool will output
three trace files, one for each memory segment, and the developer shall select one of them
to build the heatmap.
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Figure 13 — Scripts of the trace-driven methodology and their interactions.
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A bash script named run_methodology.sh is provided to build the heatmap from
the selected trace file. This script takes as input arguments the trace file of a memory
segment, the heatmap resolution (number of bins in z and y axes) and heatmap aesthetics
(e.g., image size and font). It calls a Python script that executes the following actions
to build the heatmap. First, it reads the trace file and creates a DataFrame (df) using
pandas library from Python. This df consists of a series entries, each one representing a
page access event and having an event count and a page number associated to it. Then,
a groupby operation is performed in the original df to produce a new df that stores the
number of page accesses for each group of pages (y-axis) at each discrete time interval
(z-axis). This is exactly the information needed to produce the heatmap data structure
as well as its graphical visualization.

The proxy application implements the algorithm described in Section 3.3.2 (Al-
gorithm 1) in C programming language. We integrated this application into Nanvix, and
it is compiled along with the OS kernel. We opted to export the heatmap structures
produced by the run_methodology.sh to simple C header files that can be included by
the proxy application. Each C header file contains all information needed by the proxy
application to reproduce the memory access pattern of the original application.

Finally, the run_multikernel.sh is responsible for executing the proxy appli-
cation in Nanvix on the target lightweight manycore processor (Kalray MPPA-256). It
takes as input parameters the heatmap structure and a trial factor (#f) to be used by
the proxy application to reproduce the memory access pattern of the original application.
Since this script is OS- and platform-dependent, it must be modified in order to carry out
experiments with other distributed OSs and/or lightweight manycore processors.

When the execution finishes, the proxy application outputs a file containing all
page access events generated during the execution. This file has the same format as the
original trace file, so it can be used to produce a heatmap and its graphical visualization.
Thus, it is possible to compare the heatmap produced by the proxy application with the

heatmap produced from the original trace file. This allows the developer to check if these
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heatmaps are similar or not (i.e., if the proxy application produced a page access pattern
similar to the original application). In addition, the proxy application may output other
statistics that are specific to a memory management service under study. In Chapter 4,
we discuss one possible case study where our trace-driven methodology can be applied as

well as other statistics and metrics considered for this case.
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4 EXPERIMENTS

In this chapter, we present the experiments performed with our methodology.
First, Section 4.1 presents the experimental methodology used in this work. Then, Sec-

tion 4.2 shows the obtained results.
4.1 METHODOLOGY

In this dissertation, we chose the CAP Bench (SOUZA et al., 2010) to study
the effectiveness of our methodology. The benchmark suite is an effort on providing a
benchmark suite for both multicores and lightweight manycores. CAP Bench has seven
applications from different domains: Features from Accelerated Segment Test (FAST),
Friendly Numbers (FN), Gaussian Filter (GF), Integer Sort (IS), K-Means (KM), LU
Factorization (LU) and Traveling-Salesman Problem (TSP). Also, these applications are
implemented with different parallel patterns (Map, MapReduce, Divide and Conquer,
Stencil and Workpool). All the applications are developed in C language and rely upon two
runtime libraries: OpenMP (for general-purpose multicores) and the Kalray proprietary
API (for Kalray MPPA-256).

We selected five applications from CAP Bench (SOUZA et al., 2010) that feature
different memory access patterns. These applications allow us to validate our trace-
driven methodology as well as to show its potential to evaluate and optimize the memory
management service of Nanvix. In the following paragraphs we give a brief overview of
these applications. In-depth descriptions of these applications can be found in (SOUZA
et al., 2010).

FN This application computes the amount of friendly numbers in a range [m,n]. In
number theory, two natural numbers are friendly if they share the same abundancy.
In turn, the abundancy A of a given number n is defined as A(n) = @, where
o(n) denotes the sum of divisors of n.

GF This program implements a Gaussian blur, which is an image smoothing filter. GF
consists in applying a specially computed two-dimensional Gaussian mask (m) to
an image (7) using a matrix convolution operation.

KM This application implements the K-Means data clustering algorithm, which parti-
tions n points into k partitions in a 2D space. Data points and centroids are evenly
and randomly distributed in space. Then, data points are re-clustered into k par-
titions taking into account the minimum Euclidean distance between them and the
centroids. Next, the centroid of each partition is recalculated taking the mean of
all points within the partition. The whole procedure is repeated until all centroids

remain unchanged.
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LU This program factors a matrix A as the product of two triangular other matrices L
and U. The factorization is performed using Gaussian elimination.

IS This application sorts a collection of integer numbers. The chosen algorithm imple-
mentation performs sorting based on buckets. Integer numbers are distributed across
buckets, which are sorted individually. Then, all buckets are merged to achieve the

final result.
4.1.1 Experimental Environment

We carried out our experiments on two platforms:

Intel Xeon A 10-core Intel Xeon E5-2640v4 running at 2.40 GHz and 128 GB of RAM,
running Ubuntu 16.04.6 LTS with kernel v4.4.0.

Kalray MPPA-256 A NoC-based lightweight manycore processor that features a dis-
tributed memory architecture and integrates 288 cores in a single chip, running

Nanvix v1.0.

We used the former platform to collect the traces from the CAP Bench applica-
tions. Then, we employed the latter platform to validate and evaluate our trace-driven
methodology in Nanvix.

Figure 14 pictures an architectural overview of Kalray MPPA-256 (Bostan archi-
tecture), which was the processor adopted in this dissertation. It features 272 general-
purpose cores and 16 firmware-cores, called Processing Elements (PEs) and Resource
Managers (RMs), respectively, all running at 400 MHz. Cores within the same cluster
share some local hardware resources, such as SRAM and NoC interfaces, and they have
a uniform access latency to these local components. The processor presents two types of

clusters:

Compute Clusters They feature 16 PEs, 2 MB of SRAM, 2 NoC interfaces and an
RM. Overall, the processor has 16 Compute Clusters in total.

I/O Clusters They feature 4 RMs cores, 4 NoC interfaces, 4 instruction caches and a
shared data cache. The processor has 4 1/O Clusters in total, where two of them are
connected to a different Double Data Rate (DDR) controller and the other two are

attached to Peripheral Component Interconnect (PCI) and Ethernet controllers.

PEs and RMs are designed to target different goals. RMs are dedicated to manage
communications, whereas PEs are general-purpose cores, so they can run user programs.
It is important to note that hardware cache coherence is not supported in Compute
Clusters. Clusters have distinct address spaces, and they communicate with one another
by explicitly exchanging messages through one of the available NoCs: a Data NoC (D-

NoC), which should be used for system- and user-level large data transfers, and a Control
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Figure 14 — MPPA-256 lightweight manycore processor.
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NoC (C-NoC), which is reserved for small control messages. Kalray MPPA-256 has built-

in DMA controllers in their NoC interfaces to enable asynchronous communications.
4.1.2 Experimental Design and Methods

We divided the experimental evaluation in two sets of experiments, each of which
aiming at a different goal. In the following paragraphs, we describe each set in more
detail.

1. Methodology validation (Section 4.2.1): it aims at validating our trace-driven
methodology by comparing the original heatmaps with the heatmaps generated by
the prozy application. If both heatmaps are similar, we can conclude that our trace-
driven methodology is able to correctly represent and mimic the memory access
pattern of the original applications. Moreover, we analyze the heatmaps produced
by the proxy application with different trial factors, to evaluate if the overall memory
access pattern behavior of the original applications are preserved.

2. Case study (Section 4.2.2): it shows one case study where our trace-driven
methodology can be applied. In this case study, we evaluate the software-managed
cache implementation of the memory management service in Nanvix. This cache
keeps the pages being accessed by the application in the local memory of Com-
pute Clusters, to avoid the high latency of fetching pages from remote memories.
Originally, the software-managed cache implementation used a simple FIFO page

replacement policy, since Kalray MPPA-256 has paramount hardware limitations?

L' The MMU hardware of this processor does not update page metadata when a page is accessed or

modified. Therefore, the only information available for the page replacement policy is the time in
which the page was admitted in the system.
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that prevent OS developers to implement more sophisticated policies. However,
since our proxy application mimics the memory access pattern of the original ap-
plications by making explicitly calls to the software-managed cache, we were able
to implement other policies such as NFU and Aging inside Nanvix. Based on the
obtained results, hardware architects can decide whether is beneficial to include the
necessary hardware support to allow the implementation of smarter page replace-

ment policies at the OS-level.

In NFU and Aging policies, there is a reference counter associated to every page,
which is initially set to zero. The main difference between these policies is on how the
reference counters of pages that have been accessed are updated at fixed time intervals
(see Section 2.5). In both policies, the page with the lowest reference counter is chosen
to be evicted from the software-managed cache.

The reference counter update occurs when a page is brought to or accessed from
the software-managed cache. On this basis, the fixed time interval dictates how many of
these operations are performed without changes on the reference counters. Only pages
that were accessed during this interval have their reference counter updated. Therefore,
the interval is extremely important, because it impacts directly the reference counter and,
consecutively, the behavior of replacement policies.

We ran CAP Bench applications on Intel Xeon to collect their traces and to build
their heatmaps (Steps @ and 2)). We implemented our prozy application (Step @) as
user-level application in Nanvix and ran it on the target lightweight manycore processor
(Kalray MPPA-256). The software-managed cache is fully associative and its size in all
experiments was 128 kB, which allows us to store 32 pages of 4 kB each. We selected
only the heap segments of CAP Bench applications during the profiling step (Step D),
since data processed by these applications are allocated dynamically. Finally, our prozy
application has a deterministic behavior because pages are selected randomly using a
standard random generator and a constant seed.? Thus, a single execution is enough to

obtain the desired results.
4.2 RESULTS

First, Section 4.2.1 presents the validation of our trace-driven methodology. Then,
Section 4.2.2 discusses the results obtained in our case study with a software-managed

cache implementation.

2 If the same seed is used throughout executions, the same page numbers will be selected.
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4.2.1 Methodology Validation

Figures 15, 16 and 17 presents the heatmaps built from the traces collected from
the execution of CAP Bench applications (original) as well as from our prozy application.
We divided our heatmaps into three classes for presentation purposes: high, medium and
low based on the total memory access count of the applications. The total memory access
count is directly related to the application and the given number of pages.

We used a different trial factor in each class to cope with the total memory access

count of applications:

« High: ¢f = 1000 and ¢f = 10000;
e Medium: ¢f = 100 and ¢ f = 1000; and
e Low: tf =10 and tf = 100.

In each class, the first trial factor was chosen so as to have a scenario with a
moderate yet significant reduction factor. The second one, on the other hand, represents
the near maximum possible value for the application. The near maximum value charac-
terizes a trial factor that produces dozens to a couple of accesses in each time bin. Thus,
a higher reduction factor may introduce time bins with no memory accesses, which is a
paramount information in the heatmaps. The z-axis in Figures 15, 16, 17 represents the
temporal behavior (timestamps of memory page accesses), whereas the y-axis represents
the space behavior (memory pages). Finally, for a better visualization, the resolutions of
heatmaps were fine-tuned to have 24 bins in the y-axis and 50 bins in the z-axis. For
some applications, we used dotted regions to represent a region where page accesses were
performed to guide our discussion further and provide more visibility.

Figures 15(a), 15(b) and 17(a) show FN, KM and LU applications, respectively.
As it can be noticed, the proposed methodology was able to mimic properly the behavior
of the original applications but some differences appear as the trial factor increases.
Although, some of LU application page accesses are not visible, they exist inside the
dotted region. Conversely, Figures 16 and 17(b) show a quite consistent page access
behavior throughout trial factors in comparison with other applications. Overall, the
proxy application was able to mimic the page access pattern of the original applications,
even with a high trial factor.

However, there are some causes that may reduce our methodology precision.
GF application has highly accessed pages at the top range and there are pages inside
the dotted regions that are not frequently accessed. As the trial factor increases, some
of these page accesses are lost or the number of accesses are significantly reduced. A
similar behavior happens with IS. Inside the dotted region, pages of this application have
a low number of accesses and a more disperse behavior. A high trial factor removes
some information and pages that were normally accessed may be removed from our prozy

application heatmap. This happens due to the probabilistic approach of our methodology,
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Figure 15 — High access class.
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which tends to keep information about memory pages that were accessed more frequently.
A similar behavior can be seen in a heatmap that has, approximately, the same number
of accesses in each cell. For instance, Figure 15(a) has some loss of information with
tf = 10000, because our probabilistic approach sees each cell with the same probability
of occurrence. Thus, in this context, there are not enough trials to keep all cells with the
same number of accesses. In addition, with different trial factors, there are pages that are
shown with some number of accesses even though the original heatmap does not present

it. This is due to these pages having a very low number of accesses and, when the trial
factor increases, they begin to appear.

Figure 16 — Medium access class: GF application.
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Figure 17 — Low access class.

(a) LU application.
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Table 1 shows the Root-mean Square Deviation (RMSD) of the results obtained
from the proxy application with different trial factors (the lower the RMSD value, the
higher the similarity between the access pattern of the original application and the one
produced by the proxy application). The very low RMSD values indicate that our method-
ology is capable of producing a memory access pattern behavior very close to the original
applications, even with a high trial factor. As it can be noticed, all applications showed
similar RMSD values, where IS and KM showed the highest and lowest difference, re-
spectively. The main reason for these differences is two-fold: (i) KM presents more pages
with different number of accesses and less low accessed pages, which provides a more ade-
quate behavior for our probabilistic approach to work with; and (ii) IS has a set of pages
inside the dotted region that are accessed very few times, thus, due to the probabilistic
approach, the probability of accessing a page in this set is very low (near zero percent)
with a high trial factor.

Another important aspect of our methodology that should be evaluated is the
memory footprint to store the page access pattern of the applications. Table 2 presents the
size of the original trace files and their respective representation with heatmaps. Overall,
the size of the heatmaps is several orders of magnitude lower than the size of the original
trace files. Since our proxy application uses heatmaps instead of trace files to mimic the

memory access pattern of the original applications, it is able to cope with the limited
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Table 1 — RMSD of the results obtained from the proxy application.

Application RMSD (tf = maxz/10) RMSD (tf = max)

FN 0.364 1.251
KM 0.250 0.778
GF 0.359 1.272
LU 0.339 1.085
IS 0.495 1.533

amount of on-chip memory available in lightweight manycore processors. Moreover, it
improves the execution of the proxy application, since heatmaps are allocated in memory

and no I/O operation is needed.

Table 2 — Sizes of trace files and heatmaps.

Application Trace Heatmap

FN 1.5 GB 6.9 kB
KM 3.6 GB 5.8 kB
GF 98 MB 3.8 kB
LU 15 MB 4.2 kB
IS 5.3 MB 3.8 kB

4.2.2 Case Study: Software-managed Cache

Our case study is divided into three main results. First, Section 4.2.2.1 dis-
cusses the impact of the trial factors on the software-managed cache behavior. Second,
Section 4.2.2.2 presents a comparison between software-managed cache update time in-
tervals. Finally, based on these results, Section 4.2.2.3 shows the impact of replacement
policies on the software-managed cache performance.

The hit ratio was computed periodically with each period defined by a fixed
quantity of memory access events. The number of accesses for each period is described

as follows:

total number of accesses (4.1)

b= number of periods

The number of periods can be defined arbitrarily to achieve better visualization.
Thus, each point in our results represents the software-managed cache hit ratio computed

as follows:

hit ratio — number of cache hits in p (4.2)
p

We varied the working size of each application to fit, approximately, 32, 48 and

64 pages. Also, we fine-tuned the input heatmaps used by the proxy application as follows:
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maximum resolution in y-axis (i.e., 1 page per bin) and 500 bins z-axis. Our empirical
tests with our applications showed that this configuration was enough to obtain precise
results.

Finally, we use a software-managed cache heatmap to provide a better explanation
for our claims in this section. Similarly to the heatmap produced by the proxy application,
the z-axis represents a temporal behavior and the y-axis represents a spacial behavior. The
resolution of the heatmap follows the one produced by the proxy application to provide
the same bins in the x and y axes. Each cell represents how much time a page stays inside
the software-managed cache in its respective time bin (the darker the color of the cell of
the heatmap, longer a page stays inside the software-managed cache).

Figure 18 illustrates a conceptual software-managed cache heatmap. The first
time bin presents a page that stays inside the software-managed cache until the end of
the bin, whereas the other page stays only a part of the total time. In contrast, the second
time bin shows both pages inside the software-managed cache almost all the time until
the end of the bin. The heatmap is only a guideline for our discussion, hence there is no
definitive information about more specific software-managed cache details, such as which
page was replaced in a specific time bin. In addition, we will select certain parts of the
software-managed cache heatmap to focus our discussion. Each part may have a different

resolution, still it remains restrained by the full proxy application heatmap resolution.

Figure 18 — Conceptual software-managed cache pages heatmap.
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4.2.2.1 Trial Factor

In this result set, we discuss how the trial factor impacts our software-managed
cache behavior. Thus, we: (i) used all five applications; (ii) varied the working set to
approximately 32, 48 and 64 pages for each application; (iii) varied the trial factor based
on Section 4.2.1; and (iv) fixed an update time interval in 50 operations® for Aging and
NFU replacement policies.

Figure 19 presents the impact of different trial factors on the software-managed

cache behavior. Mainly, there are four main behaviors found on our results. Therefore, we

3 There are 50 operations to bring or access a page before the next reference counter update.
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only present results related to these behaviors to provide a more direct and uncluttered

discussion about trial factor variation.

Figure 19 — FN, GF and IS trial factor evaluation.

(a) FN with 32 pages and FIFO algorithm. (b) FN with 48 pages and Aging algorithm.
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Figure 19(a) shows the software-managed cache behavior for FN application with
32 pages and FIFO algorithm. The behavior has a steep climb on hit ratio and a great
difference between trial factors at the beginning. The reasoning for this is because FN
application has almost the same number of accesses for each page, and our methodology
selects these pages with, approximately, the same probability. Therefore, a high trial
factor decreases the number of pages selected by our methodology in the first bins, which

increases the chance of misses in the near future. To illustrate our discussion, Figure 20
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shows a small part of FN application software-managed cache heatmap, which addresses
only its last pages and first time bins. With a near maximum ¢rial factor, the first time
bins show several pages that could be brought sooner to the software-managed cache and
increase hit ratio.

Figure 20 — FN cache heatmap with 32 pages and FIFO algorithm.

) FN with a moderate trial factor. (b) FN with near maximum trial factor.
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However, even with this impact on hit ratio, our methodology can recover after
some number of accesses, because FN has an overall consistent behavior and, even with
fewer accesses for each time bin, not selected pages by our prozy application appear as
execution progresses. Thus, the impact on the hit ratio is dampened. Moreover, the sixth
and fifteenth samples present a different behavior from the others. The former behavior is
due to a new page introduced by our proxy application, whereas the latter is because there
are only a few pages being heavily accessed in the end of application execution, which
increases the hit ratio of the respective sample. Figure 20 demonstrates the reasoning
behind the sixth sample. The last page is brought later with maximum trial factor, thus
there is an impact on hit ratio.

Overall, the near maximum t¢rial factor reduces lightly the maximum hit ratio
in comparison with the moderate trial factor. Most applications present this behavior,
and it is expected, because a lower trial factor brings a higher number of accesses for
each time bin, which brings a more precise representation of the original application.
Figure 19(b) illustrates this behavior further, where FN application with 48 pages and
Aging algorithm has a similar difference. In both aforementioned results, the difference
between trial factors is considerably small.

Furthermore, Figure 19(c) shows GF application with 64 pages and NFU algo-
rithm, where the near maximum trial factor gives a better hit ratio after the seventh

sample. This behavior is specific for the NFU algorithm, where highly accessed pages are
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never removed from the software-managed cache. As can be seen in Figure 16, GF has
several highly accessed pages, but it has little accessed ones as well. A high trial factor
decreases the total number of accesses, reduces pages total reference counter and enables
pages that are highly accessed to be removed sooner by the little accessed ones. Figure 21
illustrates part of the GF application software-managed cache heatmap, which addresses
its last pages and last time bins. The moderate trial factor increases significantly the top
pages reference counter. Hence, bottom pages are removed frequently. In contrast, the
near maximum trial factor decreases the reference counter gap and keeps bottom pages
longer inside the software-managed cache. In addition, the gap begins to increase at the
end of application execution, because pages reference counter are always increasing.

Figure 21 — GF cache heatmap with 64 pages and NFU algorithm.

(a) GF with a moderate trial factor. (b) GF with near maximum ¢rial factor.
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Figure 19(d) presents IS application with 64 pages and Aging algorithm, where
a higher trial factor gives a significant lower hit ratio. The reasoning for this behavior
is that a high trial factor with a high enough update time interval degrades software-
managed cache performance. A higher update time interval makes pages take longer to
change their reference counter. Hence, when a page has to be removed from the software-
managed cache, a page that will be accessed in the near future may be chosen, because
their reference counter was not updated thus far. Moreover, due to the similar number of
accesses between pages, some of them may have similar or even equal reference counters.
Therefore, pages may be removed from the software-managed cache just to be brought
shortly after. A higher trial factor gives more space for this behavior to happen, because
there is less trials for each time bin and the reference counter update may occur some
bins later. Also, an update time interval higher than the quantity of ¢rials in a time bin

implies that the reference counter is updated in another bin, which can cause a significant
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impact on page replacement. Section 4.2.2.2 provides a more in-depth discussion about
update time intervals.

Our experiments showed that, even with an overall similar hit ratio between
several applications, there are two cases that should be paid attention to when we have a
high trial factor: (i) applications with NFU algorithm and highly accessed pages in the
same time bins as low accessed ones may change drastically the hit ratio; and (ii) a high
update time interval may be undesirable for high trial factors. However, these unexpected
behaviors can be solved by simple tweaks, such as a lower trial factor and update time

interval.
4.2.2.2  Update Time Interval

In this section, we aim to discuss more about the reference counter update time
interval. To this end, we: (i) used all five applications; (ii) varied the working set to
approximately 32, 48 and 64 pages for each application; (iii) varied the update time
interval to 10, 50 and 100 operations; and (iv) fixed the moderate trial factor based on
Section 4.2.1. To provide a more clean discussion, we demonstrate specific behaviors that
are repeated throughout our obtained results.

Figures 22 and 23 presents the update time interval evaluation for all applica-
tions with 64 pages and Aging algorithm. Overall, for the Aging algorithm, there is no
significant impact on our software-managed cache hit ratio. Figure 22 shows the behavior
for high and medium class applications, which has a very similar hit ratio between update
time intervals. The reasoning for this is two-fold: (i) there is a high quantity of trials for
each time bin, which provides a more precise reference counter updates for our algorithm
to work with even with a high update time interval; and (ii) the application page access
behavior is consistent, and each update time interval still enables the Aging algorithm
to consider pages time span in a similar manner. In addition, a high quantity of trials
provides even more accesses for the same page if its accessed contiguously between time
bins. Thus, the impact of a high update time interval is further mitigated.

Conversely, Figure 23 demonstrates the hit ratio for low class applications. At
the beginning and end of each application, there is a drop in hit ratio due to sudden
appearance of new or long time not accessed pages. In this context, IS and LU applications
have this difference in hit ratio, because a high update time interval makes Aging disregard
page access time span. Moreover, LU has a greater impact on hit ratio, because these
pages in the beginning and end of the execution are shortly accessed pages. A shortly
accessed page does not have a long contiguous access, which decreases significantly the
total number of accesses for that page and increases the impact of a high update time
interval.

Therefore, the worst update time interval for the Aging algorithm is the higher

one. This is because a higher interval hinders the algorithm performance on applications



Figure 22 — FN, KM and GF update time interval evaluation with 64 pages and Aging.
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with inconsistent page accesses. It makes pages to be removed even before there is a

update on the reference counter or update reference counters in bulks, which may provide

the same counter for several pages. Also, as mentioned on Section 4.2.2.1, a higher interval

may bring undesired behavior if there is not enough trials in a time bin.

On the other hand, Figures 24 and 25 demonstrate the update time interval

evaluation for all applications with 64 pages and NFU algorithm. The update time interval

variation on NFU algorithm shows the most significant impact on hit ratio and overall

behavior. As can be noticed in Figures 24(a) and 24(c), it seems that a lower update

time interval is the best one, but our remaining results show otherwise. NFU does not
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Figure 23 — IS and LU update time interval evaluation with 64 pages and Aging.
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have a consistent enough behavior to select only one update time interval, because a page
with enough accesses may be kept inside the software-managed cache even if it is not
accessed anymore. Thus, the update interval, which modifies when the reference counter
is updated, can also change drastically the overall behavior of the algorithm.

Figure 24(a) shows the FN application hit ratio, where a high update time interval
significantly impacts the hit ratio. This is due to the fact that FN has several accesses in
all working set pages in the beginning of execution. NFU increases the reference counter of
some, fills the software-managed cache and makes other pages dispute between themselves
a slot inside it. In this context, the update time interval may change the pages that are
inside the software-managed cache. For instance, there is a software-managed cache with
four slots and a specific update time interval. After execution, there are four pages inside
the software-managed cache. Due to a different design choice, the update time interval is
modified and another execution is performed. After the second execution, there may be
four different pages inside the software-managed cache. The reasoning for this is because
the update time interval changes how the reference counters are updated and, thus, which
pages persist inside the software-managed cache.

In contrast, Figure 24(b) presents KM application with identical hit ratios for
all update time intervals. The main reasoning for this is the page access behavior of the
All pages above the FIFO pattern region fill the

software-managed cache and achieve a high reference counter. Notwithstanding, pages

application depicted by Figure 15(b).

bellow this region have to dispute a single slot inside the software-managed cache be-
tween them, because when the lowest reference counter is removed, the next page more

likely to be removed is the newest one. Hence, the hit ratio is decreased. To further base
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Figure 24 — FN, KM and GF update time interval evaluation with 64 pages and NFU.
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our discussion, Figure 26 shows a slice the of KM application software-managed cache
heatmap with a working set of 64 pages, NFU algorithm and a fixed 50 update inter-
vals. In this heatmap, only the middle pages and time bins were selected. Due to their
low reference counter, bottom range pages (FIFO pattern region) are removed from the
software-managed cache as soon as they arrive just to be brought again in the near fu-
ture. In this context, different update time intervals do not interfere, because: (i) a great
part of heavily used pages in our application fit the software-managed cache; and (ii) the
reference counter is only used when a page has to be removed from the software-managed
cache. At that time, several pages have a high enough reference counter to make the

algorithm only use one slot inside the software-managed cache.
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Figure 25 — IS and LU update time interval evaluation with 64 pages and NFU.

(a) IS application. (b) LU application.
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Figure 26 — KM cache heatmap with 64 pages and NFU algorithm.
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Therefore, our software-managed cache has a similar page access behavior even
with a considerably high update time interval. In addition, note that if the update time
interval is high enough, the reference counter may be updated after a long time, which
may affect the overall hit ratio of the application. Similarly, Figure 25(b) illustrates

LU application with almost no variation between hit ratios with different update time
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intervals. This application has the same aforementioned behavior with the pages inside
the dotted regions in Figure 17(a).

Figure 24(c) shows GF application hit ratio, where only the lower update time
interval gives some samples with a better hit ratio. GF application has high and low
pages being accessed in the same pattern, where they are highly and low accessed in
the same time bin, respectively. Usually, in the NFU algorithm, the higher the number
of accesses on a page, the higher its reference counter. However, a different update time
interval may impact this behavior. A high update time interval prevents a high number of
updates in the time bin and may degrade software-managed cache performance, because
the algorithm will have little information about pages to work with. On the other hand,
a lower update time interval brings more updates in a time bin and provides a higher
reference counter to all pages inside that bin. Thus, GF has some pages that benefited
from this characteristic and, due to application behavior, there was peaks of hit just to
be lowered again.

Figure 25(a) presents IS application with a quite diverse hit ratio. The reasoning
for this is because NFU algorithm has to deal with a disperse page access behavior and,
thus, predicts poorly next accessed pages. To approach our discussion in more detail,
Figure 27 illustrates a part of the IS application software-managed cache heatmap with
64 pages and NFU algorithm. Only middle pages and first time bins were selected. Top
range pages receive high reference counters, whereas some bottom range ones need to
dispute between them to get a space inside the software-managed cache. In addition, the
bottom range pages are removed from the software-managed cache to just be brought in

the near future. This behavior decreases significantly the hit ratio.

Figure 27 — IS cache heatmap with 64 pages and NFU algorithm.
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It is a challenge to select an update time interval for NFU, because the same
update time interval, in comparison with other ones, increases hit ratio in some cases and
decreases in others. It is necessary to test update time intervals to select which suits best
each application. Thus, we argue that, in NFU algorithm, there is no overall best update

time interval.
4.2.2.3  Replacement Policies Performance

In this section, we aim to discuss the performance of each algorithm in our
software-managed cache. To this end, we: (i) used all five applications; (ii) varied the
working set to approximately 32, 48 and 64 pages for each application; (iii) used FIFO,
NFU and Aging algorithms; (iv) fixed the update time interval to 10 operations for Aging
and NFU algorithms,* (v) fixed the moderate trial factor based on Section 4.2.1. Our re-
sults show the variation of the software-managed cache hit ratio obtained from our prozy
application.

As a proof of concept, Figure 28 presents four applications with a working set of
32 pages. All these pages almost fits the software-managed cache, which provides a near
maximum hit ratio. All applications show a small decline on hit ratio at the beginning,
because of the software-managed cache warmup. However, a different behavior is observed
near the end of the execution of IS, where the hit ratio is slightly reduced. Figures 29(b)
and 29(c) illustrate further this case. The former shows the new page at the middle
range being brought inside the software-managed cache, whereas the latter presents pages
appearing at the end of execution.

Figure 30 illustrates the hit ratio for FN application with 48 and 64 pages. As
shown in Figure 15(a), this application performs memory accesses to every page in the
beginning of the execution, but its working set reduces as the execution proceeds. This is
mainly due to the data access pattern of a nested loop that computes the abundancy of
the numbers. This behavior is reflected in the hit ratio, which increases as the execution
approaches its end because the working set starts fitting in the software-managed cache.
The best results were achieved with FIFO and Aging. FIFO algorithm deals extremely
well with the FN memory access behavior, because it follows the same pattern. Conversely,
Aging removes efficiently pages that were not accessed anymore and follows a similar FIFO
behavior.

Furthermore, NFU algorithm does not perform well with FN application. This
is due to all working set pages being accessed at the first time bins. The pages stored
inside the software-managed cache increases drastically their reference counter, and they
are not removed anymore. Thus, pages with a lower reference counter suffer drastically.

Figure 31 shows that Aging is more beneficial for KM. This application has two

well-defined page access behaviors: pages on top and bottom ranges in Figure 15(b) are

4 We selected the same update time interval for both algorithms to provide a more fair comparison.
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Figure 28 — FN, KM, GF and IS performance evaluation with 32 pages.
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always accessed throughout the execution whereas middle range pages are accessed in
a FIFO ordering fashion. The FIFO and Aging page replacement policies are able to
correctly keep middle range pages in software-managed cache. These policies showed a
stable software-managed cache hit ratio above 99% on average.

On the other hand, NFU presented a high hit ratio variation with several spikes.
The main reason is that NFU constantly removes middle range pages because they usually
have lower reference counters. This problem is solved by Aging, since it is aware of the
time span of page use. Figure 32 presents the main reasoning for our claim. This figure

shows a portion of KM application software-managed cache heatmap with 48 pages and
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Figure 29 — IS application performance evaluation and software-managed cache heatmap with 32 pages.
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NFU algorithm. There are several FIFO access patterns in KM, but our heatmap only
shows three of them. As can be noticed, they illustrate pages being removed and brought
immediately back to the software-managed cache. In addition, these patterns repeat
throughout the application and are not far apart from each other, but the algorithm
does not tend to keep pages from them inside the software-managed cache. Thus, KM

performance suffers because of this behavior.
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Figure 30 — FN performance evaluation with 48 and 64 pages.
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Figure 31 — KM performance evaluation with 48 and 64 pages.

(b) KM application with 64 pages.

(a) KM application with 48 pages.

NFU  --m- FIFO

¥

—e— Aging

FIFO

NFU

-

—e— Aging

||||| >
s
...... -
f
H
|
|||||| +
vﬁnnnnnwﬂ..ﬂx.
|::|A.:|.|nununununvv
b
...... ~
. SOTTN-
vxnnnnun””“HA
T e
weagmoe T
s
||||:|:|:nuv
w T
! - = P S n o \n
= o 2 ~ o ~ n o
g = s N b4 & © ©
(%) ones IH
S TSN F———— >
basaE T
T S
pezrTEI
e
H
H
|
\\\
<l
e
ezzIll
i
T
I
I
r e
S ] a & 8
8 > 9 9 9

(%) onel IH

1 2 3 45 6 7 8 9101112131415

1 2 3 45 6 7 8 9101112131415

Sample

Sample

Figure 33 presents GF application performance with 48 and 64 pages. As shown

in Figure 16, this application has one page that is constantly accessed throughout the

execution whereas the access pattern of all other pages follows the FIFO rule. We observed

that FIFO and Aging page replacement policies were able to keep a hit ratio very close to

100%. Both algorithms deal well with a FIFO page access behavior. However, NFU suffers

because it maintains highly accessed pages indefinitely inside the software-managed cache



Figure 32 — KM application software-managed cache heatmap with 48 pages and NFU algorithm.
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be brought to the software-managed cache again. To illustrate this behavior, Figure 34

shows a part of GF application software-managed cache heatmap with 48 pages and NFU
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last time bins. As can be noticed, low range pages (dotted regions) are brought to the
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Figure 33 — GF performance evaluation with 48 and 64 pages.
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Figure 34 — GF software-managed cache heatmap with 48 pages and NFU algorithm.
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Furthermore, Figure 35 illustrates the hit ratio of IS application with 48 and
64 pages. As can be seen in Figure 17(b), This application has a really disperse page
access behavior, where pages are accessed at distant time bins. Even with this behavior,
FIFO and Aging algorithm deal with the application reaching almost 100% hit ratio. The
reasoning for a lower hit ratio in comparison with aforementioned applications for these
two algorithms is two-fold: (i) first accessed pages are highly disperse for our algorithms to
predict well and achieve a higher hit ratio; and (ii) at the end of execution, IS application
access several new pages or pages that were not accessed in a long time.

Conversely, NFU does not deal well with the disperse behavior. The algorithm
keeps a high reference counter for the first accessed pages and has to manage the other
pages. Fortunately, the middle pages fit the software-managed cache and were accessed at
the beginning, which increases performance. However, at the end, not accessed in a long
time and new pages arise. Hence, pages with low reference counter have to dispute between
them to get a slot inside the software-managed cache, which decreases significantly the
hit ratio.

Figure 36 presents the hit ratio of LU application with 48 and 64 pages. As can
be seen in Figure 17(a), the application access behavior is consistent on top pages and
there are accesses on middle and bottom pages (dotted region). At the beginning and end
of execution, all pages follow a FIFO access pattern and, at these moments, middle and
bottom pages overload the software-managed cache, which has no space to settle them.
Thus, this behavior decreases hit ratio.

Overall, FIFO and Aging present a comparable hit ratio above 98%. However, the

former algorithm has the advantage, because of the FIFO pattern. To better demonstrate



Figure 35 — IS performance evaluation with 48 and 64 pages.
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Figure 36 — LU performance evaluation with 48 and 64 pages.
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this discussion, Figures 37 and 38 present the slice of the execution of the LU application

software-managed cache heatmap with these two algorithms and 64 pages.

Figure 37
shows that FIFO keeps the top pages for more time, which is ideal, because they are

them to the software-managed cache again.

accessed throughout the execution, whereas Aging removes them sooner just to bring

In addition, Figure 38 illustrates the end of application execution. With Aging,

several pages from the application FIFO pattern region are removed in favor of the top
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pages. Conversely, FIFO deals with this dispute in a more efficient manner, which makes

the pattern region pages more consistent inside the software-managed cache.

Figure 37 — LU application software-managed cache heatmap at the beginning of execution.

(a) LU application with 64 pages and FIFO algo- (b) LU application with 64 pages and Aging algo-
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Figure 38 — LU application software-managed cache heatmap at the end of execution.
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The NFU algorithm presents the lowest hit ratio by a large margin in comparison

with other algorithms. Due to several accesses on top pages of the first time bins, NFU
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increases significantly their reference counter. In contrast, other pages that also belong
to the FIFO access pattern are low frequently accessed. Hence, pages from the FIFO
access pattern dispute between themselves a slot inside the software-managed cache. This

dispute significantly decreases the hit ratio.
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5 RELATED WORK

Tracing is a well-known technique to collect information from the execution of
applications. This information is used by researchers and developers to achieve different
goals such as debugging, performance optimizations in hardware /software. Traces can also
be used to allow more realistic simulations of architectures and applications, providing
means to evaluate several possible scenarios and configurations in a feasible time. In this
chapter, we discuss related researches that focus on the use of trace-driven approaches to
help evaluate and/or optimize software and hardware solutions.

To the best of knowledge, the closest work to ours was proposed by M. M. Rah-
man K. Nasartschuk & Dueck (2016), whose goal was to evaluate and test Automated
Memory Management (MM) runtime systems, such as the Java Virtual Machine (JVM).
The proposed approach is based on collecting MM operations in traces from benchmark
suites at run-time. Since these traces are very large, the authors proposed a trace synthe-
sizer that produces synthetic trace files with basic MM operations for given configuration
parameters. These parameters can be adjusted based on the profiling results of real trace
files. The quantity of operations is defined by a given number, and its type! is defined
based on ratios. Thus, the synthesizer randomly selects a type for an operation based
on these ratios and write them into a synthetic trace file. Their results show that the
trace synthesizer can generate more test scenarios, helping developers to evaluate the MM
system of the JVM. In contrast to this work, we were interested in distributed OS-level
optimizations for lightweight manycores, which brings other challenges due to the intrin-
sic characteristics and limitations of these processors. Furthermore, our approach is able
to mimic the page access pattern of the original applications using heatmaps along with
a probabilistic approach. Because of that, we neither need to deal with large trace files
when reproducing the behavior of the applications nor create new synthetic trace files.

Diener et al. (2015) proposed CDSM, a mechanism that uses page faults to detect
communications between threads and uses this information to map threads to cores. They
used heatmaps to store information about the number of communication events between
two processes or threads. Heatmaps are used to map processes and threads to close
processing units according to their communication behavior at run-time. As it can be
noticed, Diener et al. (2015) used heatmaps to achieve a different goal, although sharing
some aspects that are similar to our page access pattern representation.

Traces have also been used to build more realistic cache and NoC simulators.
Moeng, Cho & Melhem (2011) proposed the use of GPUs to accelerate a trace-based
cache simulator conceived to study the cache coherence in multithreaded workloads and
multilevel cache implementations. The information is collected once using a functional

simulator and a trace of events is generated. Then, the simulator replays the events reg-

L The type can be classified into allocation, read and store
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Table 3 — Summary of related work.

Related Work Input Data | Data Reduction Context Platform
Type Scheme
M. M. Rahman K. Nasartschuk & Dueck (2016) Trace Synthesizer Memory Management Simulator
Diener et al. (2015) Heatmaps None Shared Memory Multicore
Moeng, Cho & Melhem (2011) Trace None Cache Simulator
Keramidas, Strikos & Kaxiras (2011) Trace None Cache Simulator
Dumas et al. (2017) Trace None Cache Simulator
Chu & Kise (2018) Trace None NoC Simulator
Niwa et al. (2018) Trace None NoC Simulator
‘ Our proposal ‘ Trace ‘ Heatmap ‘ Memory Management ‘ Lightweight manycore

Source: the author.

istered in the traces. Similarly, Keramidas, Strikos & Kaxiras (2011) used both CPU and
GPU processors to speedup cache simulation. Dumas et al. (2017) proposed a trace-driven
simulation method to accurately compare cache coherence protocols in NoC-based many-
cores. Their solution helps manycore architects to select and dimension the best cache
coherence protocol for their application considering performance and hardware related
costs. NoC is another interesting feature for manycores and can be configured in several
ways on a design stage to achieve the best performance. However, simulation for this
feature can be very challenging due to a high synchronization cost. Chu & Kise (2018)
proposed a trace-driven NoC simulation for FPGA focused on reducing synchronization
costs. In the same context, Niwa et al. (2018) focused on predicting the performance of
the system based on NoC configurations. More precisely, the work aimed to estimate the
number of clock cycles without the need to perform a full system simulation. In contrast
to these works, we were interested in evaluating memory management optimizations in a
distributed OS running on a lightweight manycore. To do so, we focused on carrying out
experiments for a software-managed cache case-study on a baremetal hardware without
any cache-level simulation.

Table 3 outlines the aforementioned related work into 4 categories: (i) how they
collect information to be used for several evaluations; (ii) which reduction scheme is
used to deal with large traces; (iii) the target context where each work is applied; and
(iv) what is the target platform. As it can be noticed, these researches provide interesting
approaches to: aid the design and optimizations of interesting features for processors,
such as caches and NoC; and use heatmaps to store and reproduce information. However,
they do not focus on distributed OS or baremetal lightweight manycores, and only one
of them focus on the memory management service. Therefore, with this dissertation, we
focus on a trace-driven approach based on heatmaps that helps developers to evaluate
and optimize features of a memory management service of distributed OSs for lightweight

manycore processors.
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6 CONCLUSION

The development of applications for lightweight manycores is very challenging.
Software engineers have to explicitly deal with the limited amount of on-chip memory, no
cache coherence and multiple address spaces. To tackle these challenges, distributed OSs
have been proposed to ease development and improve portability.

In this context, the memory management is one of the most important services
offered by distributed OSs. However, the intrinsic characteristics and memory limitations
of lightweight manycores bring several challenges to their design and implementation,
opening new opportunities for optimizations. A possible approach to study the impacts
and trade-offs of different optimizations is to port several applications of different do-
mains to the target distributed OS and carry out experiments with these applications.
Notwithstanding, porting software to distributed OSs for lightweight manycores is a time-
consuming and error-prone task.

Aiming at this problem, in this dissertation, we proposed a trace-driven method-
ology that can be used to evaluate and optimize features of a memory management service
of distributed OSs for lightweight manycores. We integrated our methodology in Nanvix
and validated it using five applications from CAP Bench. Thanks to a compact represen-
tation of memory access patterns, our methodology is capable of mimicking the memory
access pattern of the original applications on the target distributed OS running on a
lightweight manycore with low footprints. Our results show a very low difference between
our proxy application and original heatmaps with a RMSD below 0.5 and 1.5 for a mod-
erate and maximum trial factor, respectively. Furthermore, we carried out a case study
using a software-managed cache implementation available in Nanvix. Our methodology
enabled us to evaluate several configurations and different page replacement policies on
Kalray MPPA-256, even without the required support from the architecture to implement
them.

As future work, we intend to apply our methodology to help the design and
evaluation of new optimizations in Nanvix, such as the software prefetching module and a
more sophisticated page sharing algorithm. We also intend to consider other applications
from CAP Bench and other benchmarks. Finally, we intend to apply our methodology to

other distributed OSs and/or lightweight manycore processors.
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