


Emmanuel Podestá Junior

A Trace-Driven Methodology to Evaluate Memory Management
Services of Distributed Operating Systems for Lightweight

Manycores

Dissertação submetida ao Programa de Pós-
Graduação em Ciência da Computação para
a obtenção do título de Mestre em Ciência
da Computação.
Orientador: Prof. Márcio Bastos Castro Dr.

Florianópolis

2022



Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Podestá Junior, Emmanuel
   A Trace-Driven Methodology to Evaluate Memory
Management Services of Distributed Operating Systems for
Lightweight Manycores / Emmanuel Podestá Junior ;
orientador, Márcio Bastos Castro, 2022.
   82 p.

   Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Ciência da Computação, Florianópolis, 2022.

   Inclui referências. 

   1. Ciência da Computação. 2. Metodologia baseada em
traces. 3. Sistema Operacional Distribuído. 4. 
Gerenciamento de Memória. 5. Lightweight Manycores. I.
Castro, Márcio Bastos. II. Universidade Federal de Santa
Catarina. Programa de Pós-Graduação em Ciência da Computação.
III. Título.



Emmanuel Podestá Junior

A Trace-Driven Methodology to Evaluate Memory Management Services of

Distributed Operating Systems for Lightweight Manycores

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca

examinadora composta pelos seguintes membros:

Prof. Emilio de Camargo Francesquini, Dr.

Universidade Federal do ABC (UFABC)

Prof. José Luís Almada Güntzel, Dr.

Universidade Federal de Santa Catarina (UFSC)

Prof. Odorico Machado Mendizabal, Dr.

Universidade Federal de Santa Catarina (UFSC)

Certificamos que esta é a versão original e final do trabalho de conclusão que foi

julgado adequado para obtenção do título de Mestre em Ciência da Computação.

Profa Patricia Della Méa Plentz, Dra.

Coordenadora do Programa

Prof. Márcio Bastos Castro Dr.

Orientador

Florianópolis, 2022.



Para Lady



AGRADECIMENTOS

À minha família que esteve do meu lado nos momentos mais difíceis. Aproveito

para agradecer todo o amor, suporte e carinho que me deram durante toda a minha vida.

Ao meu orientador, Prof. Márcio Castro, pelas reuniões construtivas, diversos

ensinamentos e o fantástico apoio durante vários anos. Com toda certeza, tais fatores me

tornaram tanto uma pessoa melhor, quanto um melhor profissional.

Ao meu colega, Pedro Penna, que me auxiliou em vários momentos e, no curto

período que estive pessoalmente com ele, me ensinou diversas coisas para o meu amadu-

recimento pessoal e profissional.

Ao Jean-François Méhaut que, em conjunto com meu orientador e meu colega,

Pedro Penna, possibilitou uma das melhores experiências da minha vida ao realizar parte

do meu mestrado na França.

Aos meus colegas de laboratório que me ajudaram através de diversas indagações

e outros auxílios durante o desenvolvimento desta dissertação.

À minha psicóloga, Manuella Bahls, que esteve comigo durante todo esses anos

e auxiliou imensamente o meu amadurecimento.

Aos meus amigos que me proporcionaram vários momentos de descontração e

deram o apoio necessário para eu continuar enfrentando meus desafios.

A todos que não pude citar aqui que me auxiliaram com dicas, sugestões ou de

qualquer outra forma o meu amadurecimento e o desenvolvimento desta dissertação.

Às minhas cachorras, Liza, Tess e Linda, que, por mais que não falem, me deram

um grande apoio emocional durante tempos difíceis. Em especial para a Lady, que me

ajudou em várias madrugadas.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento

de Pessoal de Nível Superior – Brasil (CAPES) - Código de Financiamento 001.



"All we have to decide is what to do with the time that is given to us."

Gandalf



RESUMO

Os lightweight manycores pertencem a uma nova classe de processadores emergentes de
baixa potência para a era Exascale. Esses processadores apresentam vários desafios para
o desenvolvimento de aplicações, como arquitetura de memória distribuída, quantidade
limitada de memória no chip e nenhuma coerência de cache. Recentemente, Sistemas
Operacionais distribuídos foram propostos para enfrentar esses desafios de forma trans-
parente. Nesses sistemas, diferentes serviços do Sistema Operacional são implantados
nos núcleos do processador, sendo o serviço de gerenciamento de memória um dos mais
importantes. No entanto, os desafios citados anteriormente sobre lightweight manycores

trazem vários obstáculos para o design, implementação e otimizações futuras de serviços
de gerenciamento de memória. Esta dissertação propõe uma metodologia baseada em
traces para avaliar e otimizar recursos do serviço de gerenciamento de memória em Sis-
temas Operacionais distribuídos para lightweight manycores. Usando uma representação
compacta do padrão de acesso às páginas das aplicações, a metodologia consegue imitar
o padrão de acesso à memória das aplicações originais no Sistema Operacional distri-
buído rodando em um lightweight manycore. A metodologia foi integrada em um Sistema
Operacional distribuído (Nanvix) e validada usando cinco aplicações de um benchmark

específico para lightweight manycores (CAP Bench). Em seguida, a metodologia foi apli-
cada para realizar um estudo de caso usando uma implementação de cache gerenciada
por software disponível no Nanvix. A metodologia permitiu avaliar várias configurações e
diferentes políticas de substituição de páginas no processador Kalray MPPA-256, mesmo
sem o suporte necessário da arquitetura para implementá-los.

Palavras-chave: Metodologia baseada em traces. Sistema Operacional Distribuído. Ge-

renciamento de Memória. Cache gerenciada por software. Lightweight Manycores.



RESUMO ESTENDIDO

Introdução

Historicamente, a comunidade de computação de alto desempenho aumentava o de-
sempenho de sistemas escalando a frequência do clock. Infelizmente, o aumento li-
near da frequência do clock aumenta quadraticamente a temperatura do chip. Desta
forma, a incansável necessidade por desempenho conduziu ao problema denominado power

wall (VILLA et al., 2014). Em resposta a esse problema, a indústria migrou para outros
designs de processadores, como os multicores e, posteriormente, os manycores.
Neste contexto surgiu uma nova classe de processadores com foco em alto desempenho
e baixa potência, denominados lightweight manycores. Contudo, apesar de apresentarem
um ambiente interessante e melhor eficiência de potência em comparação à multicores

de propósito geral (FRANCESQUINI et al., 2015), os lightweight manycores apresentam
certas características que prejudicam o desenvolvimento de software para o processa-
dor (VARGHESE et al., 2014; CASTRO et al., 2016; CASTRO et al., 2014). Devido
à isso, Sistemas Operacionais distribuídos foram introduzidos para trazer abstrações e
diversos outros serviços que solucionam este problema.
Dentre todos os serviços dos Sistemas Operacionais distribuídos para lightweight many-

cores, o serviço de gerenciamento de memória é um dos mais importantes. O design e
implementação de um subsistema do serviço de gerenciamento de memória é um problema
em aberto e abre caminho para diversas otimizações. Neste contexto, uma solução clás-
sica para avaliar otimizações é adaptar diversas aplicações de diferentes domínios para a
arquitetura subjacente e realizar experimentos com técnicas de profilling. Contudo, exis-
tem dois problemas com essa abordagem: (i) lightweight manycores podem não suportar
bibliotecas runtime específicas de aplicações; e (ii) aplicações não levam em consideração
a API dos lightweight manycores. Desta forma, adaptar diversas aplicações é uma tarefa
onerosa e susceptível a erros.
Uma possível solução para esse problema é usar simulações baseadas em traces (UHLIG;
MUDGE, 1997) para: (i) imitar características de um grande conjunto de aplicações;
(ii) auxiliar no estudo do desempenho de diferentes otimizações; (iii) ajustar cada oti-
mização e verificar seu desempenho sem a necessidade de adaptar aplicações; e (iv) ter
conhecimento prévio do comportamento da aplicação e realizar decisões mais precisas
sobre ela e a necessidade de sua portabilidade.

Objetivos

Esta dissertação tem como principal objetivo propor uma metodologia baseada em tra-

ces usada para avaliar e otimizar recursos do serviço de gerenciamento de memória em
Sistemas Operacionais distribuídos para lightweight manycores. Desta forma, o conjunto
completo de contribuições é listado abaixo:

(i) uma nova metodologia baseada em traces que ajuda desenvolvedores de Sistemas
Operacionais distribuídos a avaliar e otimizar recursos de serviços de gerenciamento
de memória sem a necessidade de adaptar aplicações;

(ii) uma integração da metodologia proposta em um Sistema Operacional distribuído
de código aberto para lightweight manycores, denominado Nanvix (PENNA et al.,
2019); e

(iii) um estudo de caso de uma avaliação de cache gerenciada por software no Nanvix
utilizando a metodologia proposta.



Metodologia

Os seguintes passos metodológicos foram seguidos para cumprir os objetivos citados:

(i) Estudar e avaliar os mecanismos de tracing utilizados regularmente no contexto de
High Performance Computing (HPC);

(ii) Selecionar o mecanismo de tracing mais apropriado para coletar informações sobre
o padrão de acesso à memória das aplicações;

(iii) Estudar e propor técnicas para filtrar o arquivo de trace para reduzir o seu tamanho;
(iv) Propor e implementar um benchmark genérico baseado em traces para imitar o

padrão de acesso à memória da aplicação original;
(v) Integrar o benchmark baseado em traces com o Nanvix; e
(vi) Implementar uma otimização no serviço de gerenciamento de memória do Nanvix e

avaliá-lo utilizando a metodologia baseada em traces proposta.

Resultados e Discussão

Nesta dissertação, foi escolhido o CAP Bench (SOUZA et al., 2010) para estudar a efe-
tividade da metodologia. O benchmark possui diversas aplicações, onde foram escolhidas
cinco delas. Nossos experimentos foram realizados em duas plataformas: (i) Intel Xeon,
uma plataforma comum de alto desempenho; e (ii) Kalray MPPA-256, um processador
lightweight manycore.
Os resultados foram divididos em dois conjuntos. O primeiro visa a validação da meto-
dologia comparando o padrão de acessos à memória obtidos com o benchmark genérico
baseado em traces e o trace original. Por outro lado, o segundo mostra o estudo de caso
de uma cache gerenciada por software, onde a metodologia proposta pode ser aplicada.
No primeiro conjunto, utilizou-se a métrica Root-mean Square Deviation para obtermos
a quantificação da diferença entre ambos os padrões de acesso à memória. A métrica
determina a diferença entre valores previstos por um modelo e os valores observados, onde
quanto mais perto de zero o valor, menor a diferença entre eles. Os resultados mostraram
valores inferiores a 1.5 para todas as aplicações. Desta forma, podemos concluir que
a metodologia consegue imitar o padrão de acesso à memória das aplicações originais.
Além disso, ela consegue reduzir significativamente o espaço de armazenamento em disco
secundário necessário para armazenar os traces.
Em contraste, o segundo conjunto mostrou ser possível avaliar diversas configurações e
algoritmos de substituição de cache no Kalray MPPA-256 com a metodologia, até mesmo,
sem o suporte da arquitetura para implementá-los. Pode-se concluir que os algoritmos
FIFO e Aging são os melhores algoritmos, aproximando-se de quase 100% de taxa de hits

na cache para a maioria das aplicações utilizadas.

Considerações Finais

Esta dissertação apresentou uma metodologia baseada em traces que pode ser usada para
avaliar e otimizar recursos de serviços de gerenciamento de memória em Sistemas Opera-
cionais distribuídos para lightweight manycores. A metodologia consegue imitar o padrão
de acesso à memória das aplicações originais em um Sistema Operacional distribuído para
lightweight manycores com baixa quantidade de armazenamento em disco secundário. Nós
integramos a metodologia no Nanvix e a validamos utilizando cinco aplicações do CAP
Bench. Nossos resultados mostram que a diferença entre o trace original e o gerado pelo
benchmark genérico baseado em traces é baixa com um Root-mean Square Deviation in-
ferior a 1.5 para todas as aplicações. Além disso, realizamos um estudo de caso de uma
implementação de cache gerenciada por software no Nanvix. A metodologia conseguiu



avaliar diversas configurações e algoritmos de substituição de cache no Kalray MPPA-256,
mesmo sem o suporte da arquitetura para implementá-los.
Como trabalhos futuros, nós pretendemos aplicar a metodologia para auxiliar no design e
avaliação de novas otimizações no Nanvix, como software prefetching e um algoritmo de
compartilhamento de páginas mais sofisticado. Ademais, pretendemos considerar outras
aplicações do CAP Bench e outros benchmarks. Por fim, queremos aplicar a metodologia
em outros Sistemas Operacionais distribuídos e/ou lightweight manycores.

Palavras-chave: Metodologia baseada em traces. Sistema Operacional Distribuído. Ge-

renciamento de Memória. Cache gerenciada por software. Lightweight Manycores.



ABSTRACT

Lightweight manycores belong to a new class of emerging low-power processors for the
Exascale era. These processors present several challenges for the development of applica-
tions, such as distributed memory architecture, limited amount of on-chip memory and
no cache coherence. Recently, distributed Operating Systems have been proposed to ad-
dress these challenges in a transparent way. In these systems, different Operating Systems
services are deployed across the processor cores, being the memory management service
one of the most important. However, the aforementioned challenges of lightweight many-
cores bring several demands to the design, implementation and future optimizations of
memory management services. This dissertation proposes a trace-driven methodology to
evaluate and optimize features of a memory management service of distributed Operating
Systems for lightweight manycores. By using a compact representation of the page ac-
cess pattern of applications, our methodology is capable of mimicking the memory access
pattern of the original applications on the target distributed Operating System running
on a lightweight manycore. The methodology was integrated in a distributed Operat-
ing System (Nanvix) and validated using five applications from a specific benchmark for
lightweight manycores (CAP Bench). Then, the methodology was applied to carry out
a case study using a software-managed cache implementation available in Nanvix. The
methodology enables evaluation of several configurations and different page replacement
policies on Kalray MPPA-256 processor, even without the support from the architecture
to implement them.

Keywords: Trace-Driven Methodology. Distributed Operating System. Memory Man-

agement. Software-managed Cache. Lightweight Manycores.



LIST OF FIGURES

Figure 1 – Simplified Uniform Memory Access (UMA) multiprocessor. . . . . . . . 26

Figure 2 – Simplified Non-Uniform Memory Access (NUMA) multiprocessor. . . . 26

Figure 3 – Simplified multicore processor. . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 4 – A simplified overview of a conceptual lightweight manycore. . . . . . . 28

Figure 5 – A simplified overview of a conceptual lightweight manycore running a

multikernel Operating System (OS). . . . . . . . . . . . . . . . . . . . 30

Figure 6 – Monitored system overview. . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 7 – Cache placement techniques. . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 8 – Overview of the trace-driven methodology. . . . . . . . . . . . . . . . . 37

Figure 9 – Pintool flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 10 – Memory segments overview file and dynamic data segment trace file

obtained from the application presented in Listing 1. . . . . . . . . . . 41

Figure 11 – Heatmap of the dynamic data segment of the program shown in Listing 1. 43

Figure 12 – Heatmap of the dynamic data segment obtained from the proxy appli-

cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 13 – Scripts of the trace-driven methodology and their interactions. . . . . . 46

Figure 14 – MPPA-256 lightweight manycore processor. . . . . . . . . . . . . . . . 50

Figure 15 – High access class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 16 – Medium access class: Gaussian Filter (GF) application. . . . . . . . . . 53

Figure 17 – Low access class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 18 – Conceptual software-managed cache pages heatmap. . . . . . . . . . . . 56

Figure 19 – Friendly Numbers (FN), GF and Integer Sort (IS) trial factor evaluation. 57

Figure 20 – FN cache heatmap with 32 pages and First-in First-out (FIFO) algorithm. 58

Figure 21 – GF cache heatmap with 64 pages and Not Frequently Used (NFU)

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 22 – FN, K-Means (KM) and GF update time interval evaluation with 64

pages and Aging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 23 – IS and LU Factorization (LU) update time interval evaluation with 64

pages and Aging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 24 – FN, KM and GF update time interval evaluation with 64 pages and

NFU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 25 – IS and LU update time interval evaluation with 64 pages and NFU. . . 64

Figure 26 – KM cache heatmap with 64 pages and NFU algorithm. . . . . . . . . . 64

Figure 27 – IS cache heatmap with 64 pages and NFU algorithm. . . . . . . . . . . 65

Figure 28 – FN, KM, GF and IS performance evaluation with 32 pages. . . . . . . 67

Figure 29 – IS application performance evaluation and software-managed cache heatmap

with 32 pages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 30 – FN performance evaluation with 48 and 64 pages. . . . . . . . . . . . . 69



Figure 31 – KM performance evaluation with 48 and 64 pages. . . . . . . . . . . . . 69

Figure 32 – KM application software-managed cache heatmap with 48 pages and

NFU algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 33 – GF performance evaluation with 48 and 64 pages. . . . . . . . . . . . . 70

Figure 34 – GF software-managed cache heatmap with 48 pages and NFU algorithm. 71

Figure 35 – IS performance evaluation with 48 and 64 pages. . . . . . . . . . . . . . 72

Figure 36 – LU performance evaluation with 48 and 64 pages. . . . . . . . . . . . . 72

Figure 37 – LU application software-managed cache heatmap at the beginning of

execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 38 – LU application software-managed cache heatmap at the end of execution. 73



LIST OF TABLES

Table 1 – Root-mean Square Deviation (RMSD) of the results obtained from the

proxy application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 2 – Sizes of trace files and heatmaps. . . . . . . . . . . . . . . . . . . . . . . 55

Table 3 – Summary of related work. . . . . . . . . . . . . . . . . . . . . . . . . . . 76



LIST OF LISTINGS

Listing 1 – An example of a simple C program that allocates three arrays in three

different memory segments (each of which occupying 20 memory pages)

and performs a variable number of store operations in each page. . . . 38



LIST OF ALGORITHMS

Algorithm 1 – Overview of the proxy application. . . . . . . . . . . . . . . . . . . 44



LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface. . . . . . . . . . . . . . . . . . 23, 48

C-NoC Control NoC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

CC-NUMA Cache-Coherent Non-Uniform Memory Access. . . . . . . . . . . . . . . 26

CPU Central Process Unit. . . . . . . . . . . . . . . . . . . . . . . 25, 26, 28, 33

D-NoC Data NoC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

DDR Double Data Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

DMA Direct Memory Access. . . . . . . . . . . . . . . . . . . . . . . . . . 28, 50

DPS Distributed Paging System. . . . . . . . . . . . . . . . . . . . . . . . . 30

DRAM Dynamic Random Access Memory. . . . . . . . . . . . . . . . . . . . . 27

FAST Features from Accelerated Segment Test. . . . . . . . . . . . . . . . . . 48

FIFO First-in First-out. . 12, 34, 50, 57, 58, 62, 63, 66, 67, 68, 69, 71, 72, 73, 74

FN Friendly Numbers. . . . . . . 12, 48, 52, 53, 57, 58, 61, 62, 63, 66, 67, 69

FOS Factored Operating System. . . . . . . . . . . . . . . . . . . . . . . . . 29

FPGA Field Programmable Gate Array. . . . . . . . . . . . . . . . . . 22, 30, 76

GF Gaussian Filter. . . 12, 13, 48, 52, 53, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71

GPU Graphics Processing Unit. . . . . . . . . . . . . . . . . . . . . . 28, 75, 76

HAL Hardware Abstraction Layer. . . . . . . . . . . . . . . . . . . . . . . . 29

HPC High Performance Computing. . . . . . . . . . . . . . . . . . . . . . 9, 24

I/O Input/Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27, 28, 55

IPC Inter-Process Communication. . . . . . . . . . . . . . . . . . . . . . . . 30

IS Integer Sort. 12, 13, 48, 49, 52, 54, 57, 59, 60, 62, 64, 65, 66, 67, 68, 71, 72

JIT just-in-time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

JVM Java Virtual Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

KM K-Means. . . . . . 12, 13, 48, 52, 53, 54, 61, 62, 63, 64, 66, 67, 68, 69, 70

LRU Least Recently Used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

LU LU Factorization. . . . . . 12, 13, 48, 49, 52, 54, 60, 62, 64, 67, 71, 72, 73

MIMD Multiple Instruction Multiple Data. . . . . . . . . . . . . . . . . . . . . 28



NC-NUMA Non Cache-Coherent Non-Uniform Memory Access. . . . . . . . . . . . 26

NFU Not Frequently Used. . 12, 13, 34, 35, 51, 56, 57, 58, 59, 60, 61, 62, 63, 64,

65, 66, 67, 68, 69, 70, 71, 73

NoC Network-on-Chip. . . . . . . . . . . . 21, 22, 23, 27, 28, 37, 49, 50, 75, 76

NUMA Non-Uniform Memory Access. . . . . . . . . . . . . . . . . . 12, 25, 26, 28

OS Operating System. 12, 22, 23, 24, 25, 29, 30, 31, 36, 37, 38, 42, 44, 45, 46,

51, 75, 76, 77

PCI Peripheral Component Interconnect. . . . . . . . . . . . . . . . . . . . 49

PE Processing Element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

POSIX Portable Operating System Interface. . . . . . . . . . . . . . . . . . . . 22

RAM Random Access Memory. . . . . . . . . . . . . . . . . . . . . . . . . 25, 26

RM Resource Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

RMem Remote Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

RMSD Root-mean Square Deviation. . . . . . . . . . . . . . . . . . 14, 54, 55, 77

RV Runtime Verification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

SC Second Chance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

SHM Shared Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

SRAM Static Random Access Memory. . . . . . . . . . . . . . . . . . . . . 27, 49

TSP Traveling-Salesman Problem. . . . . . . . . . . . . . . . . . . . . . . . 48

UMA Uniform Memory Access. . . . . . . . . . . . . . . . . . . . . . . 12, 25, 26

VFS Virtual File System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 GOALS AND CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . 24

1.3 WORK ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . 24

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 MULTIPROCESSORS . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 LIGHTWEIGHT MANYCORES . . . . . . . . . . . . . . . . . . . . . 27

2.3 DISTRIBUTED OPERATING SYSTEMS FOR MANYCORES . . . 29

2.3.1 Nanvix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 RUNTIME VERIFICATION . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2.1 Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2.2 Valgrind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 CACHES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 TRACE-DRIVEN METHODOLOGY . . . . . . . . . . . . . . 37

3.1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 TRACE COLLECTION . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Step 1: Pintool Profiling . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 PAGE ACCESS PATTERN STAGE . . . . . . . . . . . . . . . . . . . 42

3.3.1 Step 2: Heatmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Step 3: Proxy Application . . . . . . . . . . . . . . . . . . . . . . 43

3.4 IMPLEMENTATION DETAILS . . . . . . . . . . . . . . . . . . . . . 45

4 EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . 49

4.1.2 Experimental Design and Methods . . . . . . . . . . . . . . . . . 50

4.2 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Methodology Validation . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Case Study: Software-managed Cache . . . . . . . . . . . . . . . 55

4.2.2.1 Trial Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2.2 Update Time Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2.3 Replacement Policies Performance . . . . . . . . . . . . . . . . . . . . 66

5 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . 75



6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . 78



21

1 INTRODUCTION

Historically, the industry was able to design faster and more advanced unipro-

cessor systems by increasing the number of transistors per chip and by scaling up the

clock frequency. In addition, features such as speculative execution, instruction-level par-

allelism, out-of-order execution and larger caches have contributed to improve the overall

performance of these processors. Unfortunately, a linear increase in clock frequency re-

sults in a exponential growth of power consumption (BROOKS et al., 2000; BOSE, 2011)

and affects considerably the chip temperature, thus contributing to the arise of the well-

known power wall problem (VILLA et al., 2014). As a response to this challenge, the

industry transitioned towards multicore designs, which feature more than one proces-

sor core operating at lower clock frequency to increase the aggregate performance. In

contrast to the previous approach, this design is better suited to deal with power effi-

ciency, because a linear increase in the number of cores leads to a linear increase in power

consumption (BORKAR, 2007; GSCHWANDTNER et al., 2015).

As the number of cores increases to achieve more performance, the multicore de-

sign begins to consume more power and, thus, more energy. To solve this challenge, many-

cores processors emerged, integrating several less complex cores instead of complex ones.

These processors are more energy efficient since the power consumption reduces linearly

as performance reduces by the square-root of core complexity (BORKAR, 2007). There-

fore, with a small reduction on performance, the processor can reduce power consumption

significantly. As new ways to tackle power consumption and performance were unveiled, a

new subclass of manycores processors emerged, named lightweight manycores (BORKAR,

2007).

Lightweight manycores belong to a new class of highly parallel low-power many-

core chips suitable for environments with power constraints. Processors in this class

have hundreds of low-power processing cores that deal with data and task parallelism.

These processing cores are grouped in clusters, each one having its own limited local

memory and Network-on-Chip (NoC) interfaces to allow communications with other clus-

ters. This design may lead to a distributed memory configuration, with limited amount

of on-chip memory and no cache coherence protocols among different clusters. Indeed,

lightweight manycores achieve better energy efficiency than general-purpose multicore

processors (FRANCESQUINI et al., 2015). Examples of such processors are Sunway

SW26010 (FU et al., 2016), Adapteva Epiphany (OLOFSSON; NORDSTROM; UL-

ABDIN, 2014) and Kalray MPPA-256 (DINECHIN et al., 2013), which feature hundreds

of low-power cores in a single chip. Specially, Sunway SW26010 is used in the Sunway

TaihuLight, one of the fastest supercomputers to date, featuring 10.6 million low-power

cores (FU et al., 2016).

Although lightweight manycores may present better energy efficiency than general-

purpose multicore processors (FRANCESQUINI et al., 2015), they present architec-



22

tural characteristics that hinder the development of applications (VARGHESE et al.,

2014; CASTRO et al., 2016; CASTRO et al., 2014). For instance, software engineers

have to explicitly deal with data tiling, data prefetching and low-level communication

abstractions to extract reasonable performance out of a lightweight manycore proces-

sor (FRANCESQUINI et al., 2015). Moreover, communications must take into account

the NoC topology whenever possible to improve bandwidth and reduce latency.

Therefore, lightweight manycores call out for a distributed Operating System

(OS) design to address these challenges in a transparent fashion (BOYD-WICKIZER

et al., 2008; WENTZLAFF; AGARWAL, 2009; HOLLIS; MA; MARCULESCU, 2016;

PENNA et al., 2019). The multikernel design (BAUMANN et al., 2009) was introduced

to heed the call. This design deploys independent OS kernel instances on the processor.

Each kernel provides a bare-minimum abstraction and fully featured system services are

implemented in a distributed fashion. Moreover, the distributed architecture brings: (i)

better scalability; (ii) hardware-neutral characteristic enabling portability between several

architectures; and (iii) explicit inter-core communication which provides more room for

optimizations and efficient use of the processor network (BAUMANN et al., 2009). Each

kernel functionality in this design can be further extended to achieve a higher level of

abstraction (PENNA et al., 2019). For instance, a distributed OS may provide caching,

paging and communication services to achieve a suitable environment for users. Finally,

since the multikernel OS design is very flexible, it can feature specific OS services to fulfill

users’ needs.

1.1 MOTIVATION

Among the services offered by distributed OSs for lightweight manycores, the

memory management is one of the most important. This service overcomes most pro-

gramming intricacies of a distributed memory architecture, and it must exploit the NoC

in order to achieve decent performance. Unfortunately, current open-source distributed

OSs for manycore processors such as MOSSCA (KLUGE; GERDES; UNGERER, 2014)

and M3 (ASMUSSEN et al., 2016) do not feature a software stack with a transparent mem-

ory management service compliant with Portable Operating System Interface (POSIX).

Additionally, these OSs run on an in-house simulator and a processor prototype imple-

mented in a Field Programmable Gate Array (FPGA), respectively. The only exception

found in the literature that features a POSIX-compliant kernel with the first efforts on

providing a memory management service is Nanvix1 (PENNA et al., 2019). Nanvix is a

research OS for lightweight manycores based on a multikernel structure (BAUMANN et

al., 2009), which is currently developed by Brazilian (PUC Minas and UFSC) and French

(Université de Grenoble Alpes) institutions. Its system is based on asymmetric microker-
1 https://github.com/nanvix



23

nel instances, where each kernel communicates with each other through a message-passing

approach. Nanvix supports multiple baremetal2 architectures, such as Kalray MPPA-256.

Furthermore, it features a built-in lightweight manycore simulator to enable OS develop-

ment and debugging on top of Linux. To the best of our knowledge, Nanvix is the only

open-source distributed OS that runs on commercially available baremetal lightweight

manycores.

The design and implementation of a memory management subsystem that takes

into account the intrinsic characteristics and memory limitations of lightweight manycores

is still an open problem, paving the way for different performance optimizations. For in-

stance, part of the local memory of clusters can be used as a software-managed cache to

store recently used pages. Moreover, a software prefetching mechanism can be adopted to

bring pages from the main memory to the local memory of clusters in advance to hide NoC

communication costs. In this context, a classical solution to evaluate different optimiza-

tions is to port several applications of different domains to the underlying architecture.

Then, experiments with a profiling technique should be applied to understand their behav-

ior (SOUZA et al., 2010). There are two main problems with this approach: (i) lightweight

manycores may not support specific application runtime libraries; and (ii) applications do

not take into consideration underlying lightweight manycore Application Programming

Interface (API). Hence, it hinders the evaluation in a more general-purpose scenario.

To solve this problem, the chosen approach has to remove the need to manually

port applications. One possibility is to use trace-driven simulations (UHLIG; MUDGE,

1997) to: (i) mimic the characteristics of a broad range of applications; (ii) help to study

the performance of different optimizations; (iii) adapt each optimization and verify its

performance without the need of porting several applications; and (iv) know beforehand

about application behavior and the need for portability.

Following this idea, Dumas et al. (2017) proposed a trace-driven simulation for

cache evaluation. However, their solution did not consider the limited amount of on-

chip memory in lightweight manycores. Due to the size of a trace file, a new method

should be proposed to decrease the trace file size without consuming several resources

from the distributed OS or losing the overall representation of the application behavior.

In contrast, M. M. Rahman K. Nasartschuk & Dueck (2016) proposed a trace-driven

approach to evaluate and test Automated Memory Management (MM) runtime systems.

To deal with large trace files, they used a trace synthesizer that produces configurable

synthetic trace files. However, they did not consider distributed OS-level optimizations for

lightweight manycores. We argue that a trace-driven approach concerned with memory

limitations and designed to mimic the behavior of applications may provide a means

to analyze and study different scenarios for several applications in distributed OS for

lightweight manycores.
2 Architectures without a base OS.



24

1.2 GOALS AND CONTRIBUTIONS

To help with applications analyzes and relieve developers from the burden of

porting several applications to the target distributed OS, in this work we propose a trace-

driven methodology that can be used to evaluate and optimize features of a memory

management service of distributed OSs for lightweight manycores. The complete set of

goals are listed bellow:

(i) Study and evaluate broadly used tracing mechanisms in High Performance Com-

puting (HPC);

(ii) Select the most appropriate tracing mechanism to collect information about the

memory access pattern of applications;

(iii) Study and propose techniques to filter the trace file in order to reduce the file size;

(iv) Propose and implement a generic trace-driven benchmark to mimic the memory

access pattern of the original application;

(v) Integrate the trace-driven benchmark into Nanvix; and

(vi) Implement an optimization in Nanvix memory management service and evaluate it

using the proposed trace-driven methodology.

Overall, this work delivers the following new contributions to the state of the

art on the evaluation of memory management services of distributed OSs for lightweight

manycores:

(i) a new trace-driven methodology that helps distributed OS developers to evaluate

and optimize features of memory management services without the need of porting

applications to the target distributed OS;

(ii) an integration of the proposed methodology in Nanvix, an open-source distributed

OS that targets lightweight manycores (PENNA et al., 2019); and

(iii) a case study of a software-managed cache evaluation in Nanvix using the proposed

methodology.

1.3 WORK ORGANIZATION

The remainder of this work is organized as follows. Chapter 2 shows core concepts

of our work. Chapter 3 demonstrates our proposal and its main stages. Chapter 4

presents our experiments and results. Chapter 5 discusses related work. Finally, Chapter 6

concludes this work.



25

2 BACKGROUND

In this chapter, we present the background on important subjects related to this

dissertation. Sections 2.1 and 2.2 present an overview of multiprocessors and lightweight

manycores. Section 2.3 discusses distributed OSs for lightweight manycores. Section 2.4

provides a background on system analysis and monitoring. Finally, Section 2.5 presents

basic information about cache memories and their placement techniques, which will be

used as a case study to apply the trace-driven methodology proposed in this work.

2.1 MULTIPROCESSORS

Multiprocessors consist of one or more Central Process Units (CPUs) that share

a Random Access Memory (RAM). Hence, CPUs may communicate through read/write

memory operations in the same physical address space. The interconnection between

CPUs and RAM can be more or less complex depending on the architecture design. On

Uniform Memory Access (UMA) architectures, CPUs can address the RAM in a near-

constant time, being the bus one of the most common solutions. Figure 1 shows a simpli-

fied UMA multiprocessor architecture, where CPUs use shared memory to communicate

with each other through a bus. When a CPU performs a communication, the bus is

checked to see if it is available. If the bus is busy, the CPU waits until it is available.

Then, the CPU puts the required word address in the bus, uses control signals and waits

until the memory sends the word through the bus. This method is suitable for multipro-

cessors composed of few CPUs. Thus, this design is not scalable as the bus becomes the

system bottleneck with a high number of CPUs.

Caches can alleviate this problem, enabling read requisitions to be fulfilled by

the cache, thus decreasing the number of communications. To achieve consistency inside

the system, coherence protocols are used to keep all caches synchronized. For instance, a

cache-coherence protocol can be defined as follows: when a CPU wants to write a word,

other caches that have the same word are notified. If a cache has a modified copy, the

word will be written in memory. Otherwise, other caches can discard the word and let the

writer fetch the cache block from memory before modifying it. Furthermore, more cache

levels can be added to reduce access to main memory and cache size may be increased to

improve performance. However, due to architectural limits, a high quantity of cache levels

is undesirable, and a huge cache size slows access time and harms overall system perfor-

mance. In addition, new interconnections, such as crossbar switches, can be introduced to

connect more CPUs and alleviate further the bottleneck problem (TANENBAUM; BOS,

2015).

On Non-Uniform Memory Access (NUMA) architectures, the RAM is divided into

NUMA nodes and each node is placed close to a CPU. Because of that, the time taken to

address the memory will vary, depending on the distance between the node and the CPU.









29

cessors, such as Tilera TILE-Gx100, Intel Xeon Phi and Intel Single-Cloud Computer,

do not consist of clusters with a constrained memory. Some examples of lightweight

manycores are Sunway SW26010 (FU et al., 2016), Adapteva Epiphany (OLOFSSON;

NORDSTROM; UL-ABDIN, 2014) and Kalray MPPA-256 (DINECHIN et al., 2013).

Although, the aforementioned characteristics improve performance and power

efficiency for lightweight manycores, they also introduce some challenges:

(i) they usually feature heterogeneous cores with different computing and communica-

tion capabilities, making software development more complex;

(ii) the memory is distributed across Compute Clusters and data tiling, data prefetching

and remote data accesses have to be performed explicitly by the developer;

(iii) the constrained on-chip memory requires several software optimizations to reduce

the memory footprint of applications; and

(iv) the absence of hardware cache coherence forces developers to explicitly deal with

data coherency.

2.3 DISTRIBUTED OPERATING SYSTEMS FOR MANYCORES

Distributed OSs have recently gained attention of the research community to ad-

dress the challenges in software development in lightweight manycore processors (KLUGE;

GERDES; UNGERER, 2014; ASMUSSEN et al., 2016; PENNA et al., 2019). Exam-

ples of these OSs are Barrelfish (BAUMANN et al., 2009), Factored Operating Sys-

tem (FOS) (WENTZLAFF; AGARWAL, 2009), Helios (NIGHTINGALE et al., 2009),

MOSSCA (KLUGE; GERDES; UNGERER, 2014), M3 (ASMUSSEN et al., 2016) and

Nanvix (PENNA et al., 2019). They detach complex OS services from the OS kernel,

which commonly provides bare-minimum OS abstractions and primitives. Thus, OS ser-

vices and application instances are spread out on processor cores to increase scalability

and performance.

These OSs are commonly structured in three main layers. In the bottom layer, a

Hardware Abstraction Layer (HAL) abstracts the underlying hardware, to provide porta-

bility across different architectures. In the middle layer, an OS kernel provides basic OS

abstractions, such as resource multiplexing, processes and threads. Finally, the top layer

features many OS libraries to provide a transparent programming environment for users.

In this dissertation, we are specially interested in distributed OSs designed specifi-

cally for lightweight manycores such as MOSSCA (KLUGE; GERDES; UNGERER, 2014),

M3 (ASMUSSEN et al., 2016) and Nanvix (PENNA et al., 2019). Due to scarce resources

inside lightweight manycores, a microkernel design is employed in the middle layer to cope

with the low amount of on-chip memory. Then, system services are implemented at the top

layer and are distributed across the cores of the processor. This approach provides more

availability for user applications. Among the aforementioned OSs for lightweight many-







32

2.4.1 Monitors

The monitor component executes in parallel with the target system and evalu-

ates its execution. Overall, this component checks if a property was satisfied or not by

the target system. After enough behaviors are verified, the monitor arrives at a verdict

(acceptance or rejection) about the target system. Furthermore, an automated synthesis

procedure is used to generate monitors that can verify a set of properties. The proce-

dure takes the properties as input and returns the executable code of the monitor as a

result (BARTOCCI et al., 2018).

Monitor setups come in several flavors that can be explored by the developer.

Online and offline monitoring dictate where the evaluation will be made during or after

system execution, respectively. An online approach can determine during execution if

a property is satisfied, which enables the monitor to deal with property violations at

runtime. In contrast, an offline approach stores, after the target system execution, its

trace inside a permanent file, which is passed to the monitor for evaluation.

Furthermore, online monitoring has to dictate how the monitor and the target

system may execute simultaneously. In a synchronized manner, the monitor waits for

the target system to generate events. With each event, the target system continues

executing after monitor evaluation. In contrast, an asynchronous approach provides the

target system an uninterrupted execution as the monitor evaluates events. Due to the

unpredictable behavior of offline and online asynchronous monitoring, the monitor may

miss opportunities to deal with unsatisfied properties as they occur.

These aforementioned monitor flavors can be synthesized by two main approaches.

A monolithic approach is the most common one. The monitor is synthesized as one mono-

lithic block to represent a specification of properties. In contrast, monitors may follow

a parallel approach to provide a better performance, where each monitor is responsible

for a set of properties. In this context, a concurrent and distributed layout may be used.

A distributed layout can be coordinated in two different ways. An orchestrated strategy

promotes an entity to coordinate all events, whereas a choreographed approach promotes

more than one entity to it.

2.4.2 Instrumentation

As the target system executes, the instrumentation component will record rele-

vant system information, such as program variable write/read, memory operations, com-

munication operations, function calls and returns. Each system information is stored as

events inside an execution trace. Thus, an execution trace is composed by an ordered

stream of events that are provided to the system monitor. Moreover, this component

dictates how monitor and target system relate with each other. For instance, to better

evaluate the system, the execution needs to terminate before the monitor system begins



33

to evaluate the execution trace. In a more comprehensive manner, instrumentation may

be used individually for software developers to evaluate manually applications or a whole

system. To achieve this goal, there are widely known instrumentation software such as

Pin (LUK et al., 2005) and Valgrind (NETHERCOTE; SEWARD, 2003).

2.4.2.1 Pin

Pin is an instrumentation platform that enables the build of several analysis

tools (pintools), which are used to evaluate applications and the system. The platform is

an engine that has a just-in-time (JIT) compiler and instruments applications, whereas

the pintool communicates with Pin, and has the instrumentation and analyzes routines.

Moreover, the pintool evaluation gives important information about memory, function

calls and other resources. For instance, a developer may need to evaluate the memory

system. Hence, function calls can be added before and after a memory operation. With

these calls, the tool captures memory addresses, allocation size and other important in-

formation. In addition, the tool may manipulate each collected information to a more

readable one and add them inside a file for further manually evaluation.

This instrumentation platform uses a JIT compiler to insert and optimize code

without the need for the developer to intervene. In this context, the pintool initializes

and requests Pin to execute the application. Pin intercepts the code execution on the first

instruction and compiles new code to take its place. This code compilation is performed

one straight line of code at a time, which is defined by a sequence of instructions until a

branch exits it. The compiled code is similar to the original but has given instrumentations

by the pintool and is stored inside a software-managed code cache. Also, only code inside

the code cache is executed instead of the original. After a compiled code is executed,

Pin regains control, proceeds to generate and execute more code until the end of the

application execution.

2.4.2.2 Valgrind

Pin was designed to have low impact on overall performance. In contrast, Val-

grind (NETHERCOTE; SEWARD, 2003) was designed to provide support to rich analysis

tools with performance as a secondary concern. Mainly, Valgrind is an instrumentation

platform that is capable of building several analysis tools and has two main components:

(i) core; and (ii) skin. The core component provides four base features for Valgrind. First,

an JIT compiler which enables Valgrind to run a simulated code inside a synthetic CPU

and maintain program control. It does not run the original code directly. Second, a C

library, because the platform does not support GNU standard C library (glibc). This

decision was made to avoid possible bugs and obscure dependencies from the standard

library (NETHERCOTE; SEWARD, 2003). Third, a signal interception feature that acts



34

as an intermediary handler to keep the program under Valgrind control. Finally, a Pthread

implementation which provides all standard pthread abstractions and a user-space thread

package. All threads run on a single kernel thread while keeping the program under

the platform control. Furthermore, Valgrind works directly with executables removing

the need to recompile the program. In contrast, the skin component is written by the

user and defines how the program will be instrumented. Moreover, this component must

provide specific functions for initialization, instrumentation and finalization, which are

not provided by the core. There are eight widely used standard skins: (i) Memcheck;

(ii) Cachegrind; (iii) Callgrind; (iv) Helgrind; (v) DRD; (vi) Massif; (vii) DHAT; and

(viii) BBV.

2.5 CACHES

Caching is a technique that improves performance on data access by maintaining

frequently used data in a memory module that features lower latency than other memory

modules in the architecture. This technique may be implemented either in hardware or

software and is employed in a wide range of scenarios, varying from processor design to web

applications. Notwithstanding, the structure and policies concerning this technique hold

in all these contexts, thus in the paragraphs that follow we cover its common background.

The cache memory is typically smaller than the underlying memory, thus a policy

is required to state how data from a lower-level memory is mapped to the cache. This

decision concerns the placement policy of the data blocks onto the cache and some possible

designs are pictured in Figure 7. In a direct-mapped cache, blocks of memory are directly

mapped to a given slot in the cache. Since each block may be placed in only one slot in the

cache, searching takes a constant time, but different blocks may be mapped to the same

slot, thus causing conflicts. In a set-associative cache, the amount of conflicts is mitigated

by enabling a block to be mapped on a set of slots in the cache. As a consequence, a search

procedure is needed in all slots within the set to access data. Finally, in a fully associative

cache, a memory block can be mapped to any slot in the cache, thus eliminating placement

conflicts at a cost of increasing hardware complexity.

Whenever a memory block should be brought to the cache and no placement

slot is available, some block in the cache should be evicted. Such decision concerns the

replacement policy of the cache and multiple algorithms for this task exist, each one with

its own strengths and weaknesses.

In First-in First-out (FIFO) replacement policy, the first block brought to the

cache is chosen to be evicted. While this policy is relatively simple to implement it may

present some performance anomalies if the very first blocks brought to the cache end

up being the more frequently used ones. The Second Chance (SC) policy attempts to

overcome this problem by evicting FIFO blocks that were not accessed after the last

replacement walk. The Not Frequently Used (NFU) policy maintains a reference counter





36

cache behavior. The former enables cache evaluation without the need to prototype

every single choice, whereas the latter provides a way to verify memory accesses and, for

example, use them as input in a software-managed cache to evaluate several choices. The

software-managed cache inherits these core concepts of a cache and may be used inside a

distributed OS to provide a means for optimizations.





38

Listing 1 – An example of a simple C program that allocates three arrays in three different memory
segments (each of which occupying 20 memory pages) and performs a variable number of
store operations in each page.

1 #define N_ITEMS 20

2 struct item {

3 uint32_t _[1023]; // padding

4 uint32_t value;

5 };

6

7 /* Static Data allocation of N_ITEMS pages */

8 static struct item static_v[N_ITEMS];

9

10 int main(void) {

11 /* Heap allocation of N_ITEMS pages */

12 struct item *heap_v = (struct item *) malloc (sizeof(struct item)*N_ITEMS);

13

14 /* Stack allocation of N_ITEMS pages */

15 struct item stack_v[N_ITEMS];

16

17 for (int i = 0; i < N_ITEMS; i++)

18 for (int j = 0; j < (i+1)*100; j++) {

19 static_v[i].value = i;

20 heap_v[i].value = i;

21 stack_v[i].value = i;

22 }

23

24 free(heap_v);

25

26 return 0;

27 }

Source: the author.

each memory page (or a set of pages) was accessed during some discrete time frames

(Step �). Then, a probabilistic approach is applied by the proxy application, which uses

the heatmap structure to mimic the page access pattern of the original application in the

target distributed OS running on the lightweight manycore processor (Step �). Finally,

the proxy application outputs statistics about the execution.

To better understand the proposed methodology, let us consider the simple C

program shown in Listing 1. We assume in this example a Linux x86_64 system, where an

integer variable and a memory page occupy 4 bytes and 4 kB in memory, respectively. This

program allocates three arrays (static_v, heap_v and stack_v) containing 20 elements

of type struct item (lines 8, 12 and 15). Since the size of struct item is 4 kB, each

item is stored in a different memory page. Therefore, 60 memory pages will be allocated

to store these arrays. Then, the program performs a variable number of store operations

on the value field of static_v[i], heap_v[i] and stack_v[i] (lines 17–22). This is

done by two for loops: the outermost loop (line 17) iterates over the items of the arrays

whereas the innermost loop (line 18) performs repeated store operations on the value



39

field of struct item. Since the number of store operations on each array index i is equal

to (i+1)*100, the higher the value of i, the higher will be the number of store operations

at index i. As a result, the number of store operations at indexes i = {0, 1, 2, . . . , 19} of

each array will be {100, 200, 300, . . . , 2000}.

In the next sections, we describe in more details the trace collection and page

access pattern stages using this program as an example.

3.2 TRACE COLLECTION

The trace collection stage is composed of one main step, which is described bellow.

3.2.1 Step 1: Pintool Profiling

The first step of our trace-driven methodology consists in running the application

of interest on Linux and collecting information about its memory accesses (Step �). A

classical approach to obtain such information without any application source code changes

is to use a binary instrumentation tool such as Valgrind (NETHERCOTE; SEWARD,

2007) or Pin (LUK et al., 2005). Valgrind features a tool named Lackey, which outputs

the address of every memory access made by the program. The drawback of Lackey is

that it only distinguishes instruction loads from memory accesses, thus needing further

manipulations on the trace file to get the memory accesses in each memory segment

(static data, dynamic data and stack). Pin, on the other hand, is much more flexible, but

it requires specific knowledge from the developer to build a pintool1. In this dissertation,

we decided to use Pin due to its flexibility and disregard the instruction memory segment.

Figure 9 shows an overview of the pintool designed to collect the memory accesses

of an application and to produce the corresponding trace files. First, the pintool discovers

the initial memory address and size of two memory segments: stack and static data (Ac-

tivities 1.1 and 1.2 , respectively). The initial address and the maximum size of the stack

can be easily obtained with the PIN_GetContextReg() function available in Pin and the

getrlimit() Linux system call, respectively. In contrast, there is not a straightforward

way of obtaining the initial address and size of the static data segment. The solution

adopted in our pintool is to use a standard Linux utility program named objdump to

disassemble all the object file sections and get information about the bss and data seg-

ments. As opposed to the aforementioned segments, information about the dynamic data

segment (heap) is obtained in runtime. To do so, the pintool instruments dynamic alloca-

tion routines (e.g., malloc, calloc, realloc and align_alloc) and places an insertion

point on each routine occurrence (Activity 1.3 ). Furthermore, the pintool instruments

instructions that read or write memory (Activity 1.4 ), thus adding an insertion point
1 A pintool can be thought of as a plugin that can modify the code generation process inside Pin.







42

other two trace files (static data and stack). We can also observe that two pages holding

meta-data of the standard dynamic memory allocator (normalized page numbers 1 and

2) are accessed at the beginning and at the end of the trace file. As expected, a repeated

number of the accesses are done in pages that hold the heap_v array. These accesses are

based on the outer and innermost loops of the program shown in Listing 1.

Considering the program given in Listing 1, our pintool produced trace files of

approximately 202 kB (static data), 194 kB (dynamic data) and 2.3 MB (stack). However,

these trace files can easily occupy gigabytes of data if more complex programs are profiled,

since they include every memory access done by the program. In the next section, we

show how we can represent the overall page access pattern of an application in a much

more compact way by using heatmaps.

3.3 PAGE ACCESS PATTERN STAGE

The page access pattern stage is composed of two main steps, which are described

below.

3.3.1 Step 2: Heatmap

The trace files obtained from the previous step are used in the page access pattern

stage to produce a heatmap structure (Step �). The heatmap is a two-dimensional graphi-

cal representation of measured values of numerical data using a chosen color scheme, with

one end of the color scheme representing the high values and the other end representing

the low values (SUEMATSU et al., 2014). The variation in color may be by hue or inten-

sity, giving visual insights to the reader about how a phenomenon is clustered or varies

over space (or time).

We use heatmaps to represent the page access pattern of the application, which

show how many times each page (or a group of pages) is accessed during specific discrete

time periods (the darker the color of the cell of the heatmap, the higher the number of

page accesses). The x-axis represents a temporal behavior (timestamps of events), whereas

the y-axis represents a space behavior (pages or group of pages). The resolution of the

heatmap can be fine-tuned by grouping several events into bins in x and/or y axes. Thus,

a maximum resolution is achieved if the heatmap uses individual events. The higher is the

number of events grouped into bins, the lower will be the heatmap resolution, resulting

in a less accurate page access pattern of the application. By adjusting the resolution

of the heatmap we can significantly reduce the time spent on mimicking the memory

access pattern of the application on the target distributed OS running on the lightweight

manycore processor as well as the amount of memory footprint required to store the page

access pattern – recall that this is an important constraint for lightweight manycores.





44

Algorithm 1 – Overview of the proxy application.

Input: A heatmap hm containing the page access pattern of the profiled application and
a trial factor tf to be considered in each time bin.

Output: A trace file containing all page accesses generated by the proxy application as
well as other statistics.

1: procedure MimicPageAccessPattern(hm, tf)
2: for bin← 1 to hm.nybins do
3: pages[bin]← PageAlloc() ▷ Request a new page and keep its reference

4: for bin← 1 to hm.nxbins do ▷ For all time bins
5: ntrials← hm.nevents[bin]

tf
▷ Compute the number of trials

6: for trial← 1 to ntrials do ▷ For all page access trials
7: rand← GetRandomPage(hm.histogram[bin]) ▷ Select a random page
8: stat← PageRequest(pages[rand]) ▷ Request selected page
9: Output(bin, trial, rand, stat) ▷ Write event and statistics

10: for bin← 1 to hm.nybins do ▷ Free all allocated pages
11: PageFree(pages[bin])

Source: the author.

of the memory access pattern being reproduced: the more random values are generated,

the closer will be the behavior produced by the proxy application compared to the original

(real) application. However, as we will show later on in Chapter 4, it is possible to reduce

considerably the number of trials without losing the overall behavior of the original page

access pattern. This allows us to reduce considerably the execution time of the proxy

application as well as to deal with very large heatmaps more efficiently.

Algorithm 1 shows the pseudocode of our proxy application. First, the number of

pages is obtained from the heatmap and the necessary pages are allocated (lines 2–3) by

invoking the OS system call to allocate a memory page (PageAlloc). Each allocation

will return a page number from the OS. Then, ntrials page access requests are performed

(PageRequest) for each time bin in the heatmap (lines 4–9). For each page access

request, a page number is randomly chosen based on the histogram of the time bin. All

page accesses generated by the proxy application are then stored in an output file (line

9). At this point, a heatmap can be generated from the output of the proxy application

and it can be compared with the original heatmap for validation purposes. Finally, all

pages allocated by the proxy application are freed (lines 10–11) by calling the OS system

call to free a memory page (PageFree).

Figure 12 shows the heatmap produced by the proxy application. In this example,

we kept the same 200 discrete time bins in the x-axis but we reduced the number of total

page accesses by a factor of 10 in each time bin. As shown in Figure 12, the overall access

pattern is kept, proving that the probabilistic approach used in the proxy application is

valid, even with a reduced number of trials per time bin. An experimental validation of

the proposed approach with more complex applications will be presented in Chapter 4.







47

heatmaps are similar or not (i.e., if the proxy application produced a page access pattern

similar to the original application). In addition, the proxy application may output other

statistics that are specific to a memory management service under study. In Chapter 4,

we discuss one possible case study where our trace-driven methodology can be applied as

well as other statistics and metrics considered for this case.



48

4 EXPERIMENTS

In this chapter, we present the experiments performed with our methodology.

First, Section 4.1 presents the experimental methodology used in this work. Then, Sec-

tion 4.2 shows the obtained results.

4.1 METHODOLOGY

In this dissertation, we chose the CAP Bench (SOUZA et al., 2010) to study

the effectiveness of our methodology. The benchmark suite is an effort on providing a

benchmark suite for both multicores and lightweight manycores. CAP Bench has seven

applications from different domains: Features from Accelerated Segment Test (FAST),

Friendly Numbers (FN), Gaussian Filter (GF), Integer Sort (IS), K-Means (KM), LU

Factorization (LU) and Traveling-Salesman Problem (TSP). Also, these applications are

implemented with different parallel patterns (Map, MapReduce, Divide and Conquer,

Stencil and Workpool). All the applications are developed in C language and rely upon two

runtime libraries: OpenMP (for general-purpose multicores) and the Kalray proprietary

API (for Kalray MPPA-256).

We selected five applications from CAP Bench (SOUZA et al., 2010) that feature

different memory access patterns. These applications allow us to validate our trace-

driven methodology as well as to show its potential to evaluate and optimize the memory

management service of Nanvix. In the following paragraphs we give a brief overview of

these applications. In-depth descriptions of these applications can be found in (SOUZA

et al., 2010).

FN This application computes the amount of friendly numbers in a range [m, n]. In

number theory, two natural numbers are friendly if they share the same abundancy.

In turn, the abundancy A of a given number n is defined as A(n) = σ(n)
n

, where

Ã(n) denotes the sum of divisors of n.

GF This program implements a Gaussian blur, which is an image smoothing filter. GF

consists in applying a specially computed two-dimensional Gaussian mask (m) to

an image (i) using a matrix convolution operation.

KM This application implements the K-Means data clustering algorithm, which parti-

tions n points into k partitions in a 2D space. Data points and centroids are evenly

and randomly distributed in space. Then, data points are re-clustered into k par-

titions taking into account the minimum Euclidean distance between them and the

centroids. Next, the centroid of each partition is recalculated taking the mean of

all points within the partition. The whole procedure is repeated until all centroids

remain unchanged.



49

LU This program factors a matrix A as the product of two triangular other matrices L

and U . The factorization is performed using Gaussian elimination.

IS This application sorts a collection of integer numbers. The chosen algorithm imple-

mentation performs sorting based on buckets. Integer numbers are distributed across

buckets, which are sorted individually. Then, all buckets are merged to achieve the

final result.

4.1.1 Experimental Environment

We carried out our experiments on two platforms:

Intel Xeon A 10-core Intel Xeon E5-2640v4 running at 2.40 GHz and 128 GB of RAM,

running Ubuntu 16.04.6 LTS with kernel v4.4.0.

Kalray MPPA-256 A NoC-based lightweight manycore processor that features a dis-

tributed memory architecture and integrates 288 cores in a single chip, running

Nanvix v1.0.

We used the former platform to collect the traces from the CAP Bench applica-

tions. Then, we employed the latter platform to validate and evaluate our trace-driven

methodology in Nanvix.

Figure 14 pictures an architectural overview of Kalray MPPA-256 (Bostan archi-

tecture), which was the processor adopted in this dissertation. It features 272 general-

purpose cores and 16 firmware-cores, called Processing Elements (PEs) and Resource

Managers (RMs), respectively, all running at 400 MHz. Cores within the same cluster

share some local hardware resources, such as SRAM and NoC interfaces, and they have

a uniform access latency to these local components. The processor presents two types of

clusters:

Compute Clusters They feature 16 PEs, 2 MB of SRAM, 2 NoC interfaces and an

RM. Overall, the processor has 16 Compute Clusters in total.

I/O Clusters They feature 4 RMs cores, 4 NoC interfaces, 4 instruction caches and a

shared data cache. The processor has 4 I/O Clusters in total, where two of them are

connected to a different Double Data Rate (DDR) controller and the other two are

attached to Peripheral Component Interconnect (PCI) and Ethernet controllers.

PEs and RMs are designed to target different goals. RMs are dedicated to manage

communications, whereas PEs are general-purpose cores, so they can run user programs.

It is important to note that hardware cache coherence is not supported in Compute

Clusters. Clusters have distinct address spaces, and they communicate with one another

by explicitly exchanging messages through one of the available NoCs: a Data NoC (D-

NoC), which should be used for system- and user-level large data transfers, and a Control





51

that prevent OS developers to implement more sophisticated policies. However,

since our proxy application mimics the memory access pattern of the original ap-

plications by making explicitly calls to the software-managed cache, we were able

to implement other policies such as NFU and Aging inside Nanvix. Based on the

obtained results, hardware architects can decide whether is beneficial to include the

necessary hardware support to allow the implementation of smarter page replace-

ment policies at the OS-level.

In NFU and Aging policies, there is a reference counter associated to every page,

which is initially set to zero. The main difference between these policies is on how the

reference counters of pages that have been accessed are updated at fixed time intervals

(see Section 2.5). In both policies, the page with the lowest reference counter is chosen

to be evicted from the software-managed cache.

The reference counter update occurs when a page is brought to or accessed from

the software-managed cache. On this basis, the fixed time interval dictates how many of

these operations are performed without changes on the reference counters. Only pages

that were accessed during this interval have their reference counter updated. Therefore,

the interval is extremely important, because it impacts directly the reference counter and,

consecutively, the behavior of replacement policies.

We ran CAP Bench applications on Intel Xeon to collect their traces and to build

their heatmaps (Steps 1 and 2 ). We implemented our proxy application (Step 3 ) as

user-level application in Nanvix and ran it on the target lightweight manycore processor

(Kalray MPPA-256). The software-managed cache is fully associative and its size in all

experiments was 128 kB, which allows us to store 32 pages of 4 kB each. We selected

only the heap segments of CAP Bench applications during the profiling step (Step 1 ),

since data processed by these applications are allocated dynamically. Finally, our proxy

application has a deterministic behavior because pages are selected randomly using a

standard random generator and a constant seed.2 Thus, a single execution is enough to

obtain the desired results.

4.2 RESULTS

First, Section 4.2.1 presents the validation of our trace-driven methodology. Then,

Section 4.2.2 discusses the results obtained in our case study with a software-managed

cache implementation.
2 If the same seed is used throughout executions, the same page numbers will be selected.



52

4.2.1 Methodology Validation

Figures 15, 16 and 17 presents the heatmaps built from the traces collected from

the execution of CAP Bench applications (original) as well as from our proxy application.

We divided our heatmaps into three classes for presentation purposes: high, medium and

low based on the total memory access count of the applications. The total memory access

count is directly related to the application and the given number of pages.

We used a different trial factor in each class to cope with the total memory access

count of applications:

• High: tf = 1000 and tf = 10000;

• Medium: tf = 100 and tf = 1000; and

• Low: tf = 10 and tf = 100.

In each class, the first trial factor was chosen so as to have a scenario with a

moderate yet significant reduction factor. The second one, on the other hand, represents

the near maximum possible value for the application. The near maximum value charac-

terizes a trial factor that produces dozens to a couple of accesses in each time bin. Thus,

a higher reduction factor may introduce time bins with no memory accesses, which is a

paramount information in the heatmaps. The x-axis in Figures 15, 16, 17 represents the

temporal behavior (timestamps of memory page accesses), whereas the y-axis represents

the space behavior (memory pages). Finally, for a better visualization, the resolutions of

heatmaps were fine-tuned to have 24 bins in the y-axis and 50 bins in the x-axis. For

some applications, we used dotted regions to represent a region where page accesses were

performed to guide our discussion further and provide more visibility.

Figures 15(a), 15(b) and 17(a) show FN, KM and LU applications, respectively.

As it can be noticed, the proposed methodology was able to mimic properly the behavior

of the original applications but some differences appear as the trial factor increases.

Although, some of LU application page accesses are not visible, they exist inside the

dotted region. Conversely, Figures 16 and 17(b) show a quite consistent page access

behavior throughout trial factors in comparison with other applications. Overall, the

proxy application was able to mimic the page access pattern of the original applications,

even with a high trial factor.

However, there are some causes that may reduce our methodology precision.

GF application has highly accessed pages at the top range and there are pages inside

the dotted regions that are not frequently accessed. As the trial factor increases, some

of these page accesses are lost or the number of accesses are significantly reduced. A

similar behavior happens with IS. Inside the dotted region, pages of this application have

a low number of accesses and a more disperse behavior. A high trial factor removes

some information and pages that were normally accessed may be removed from our proxy

application heatmap. This happens due to the probabilistic approach of our methodology,







55

Table 1 – RMSD of the results obtained from the proxy application.

Application RMSD (tf = max/10) RMSD (tf = max)

FN 0.364 1.251
KM 0.250 0.778
GF 0.359 1.272
LU 0.339 1.085
IS 0.495 1.533

amount of on-chip memory available in lightweight manycore processors. Moreover, it

improves the execution of the proxy application, since heatmaps are allocated in memory

and no I/O operation is needed.

Table 2 – Sizes of trace files and heatmaps.

Application Trace Heatmap

FN 1.5 GB 6.9 kB
KM 3.6 GB 5.8 kB
GF 98 MB 3.8 kB
LU 15 MB 4.2 kB
IS 5.3 MB 3.8 kB

4.2.2 Case Study: Software-managed Cache

Our case study is divided into three main results. First, Section 4.2.2.1 dis-

cusses the impact of the trial factors on the software-managed cache behavior. Second,

Section 4.2.2.2 presents a comparison between software-managed cache update time in-

tervals. Finally, based on these results, Section 4.2.2.3 shows the impact of replacement

policies on the software-managed cache performance.

The hit ratio was computed periodically with each period defined by a fixed

quantity of memory access events. The number of accesses for each period is described

as follows:

p =
total number of accesses

number of periods
(4.1)

The number of periods can be defined arbitrarily to achieve better visualization.

Thus, each point in our results represents the software-managed cache hit ratio computed

as follows:

hit_ratio =
number of cache hits in p

p
(4.2)

We varied the working size of each application to fit, approximately, 32, 48 and

64 pages. Also, we fine-tuned the input heatmaps used by the proxy application as follows:











60

impact on page replacement. Section 4.2.2.2 provides a more in-depth discussion about

update time intervals.

Our experiments showed that, even with an overall similar hit ratio between

several applications, there are two cases that should be paid attention to when we have a

high trial factor : (i) applications with NFU algorithm and highly accessed pages in the

same time bins as low accessed ones may change drastically the hit ratio; and (ii) a high

update time interval may be undesirable for high trial factors. However, these unexpected

behaviors can be solved by simple tweaks, such as a lower trial factor and update time

interval.

4.2.2.2 Update Time Interval

In this section, we aim to discuss more about the reference counter update time

interval. To this end, we: (i) used all five applications; (ii) varied the working set to

approximately 32, 48 and 64 pages for each application; (iii) varied the update time

interval to 10, 50 and 100 operations; and (iv) fixed the moderate trial factor based on

Section 4.2.1. To provide a more clean discussion, we demonstrate specific behaviors that

are repeated throughout our obtained results.

Figures 22 and 23 presents the update time interval evaluation for all applica-

tions with 64 pages and Aging algorithm. Overall, for the Aging algorithm, there is no

significant impact on our software-managed cache hit ratio. Figure 22 shows the behavior

for high and medium class applications, which has a very similar hit ratio between update

time intervals. The reasoning for this is two-fold: (i) there is a high quantity of trials for

each time bin, which provides a more precise reference counter updates for our algorithm

to work with even with a high update time interval; and (ii) the application page access

behavior is consistent, and each update time interval still enables the Aging algorithm

to consider pages time span in a similar manner. In addition, a high quantity of trials

provides even more accesses for the same page if its accessed contiguously between time

bins. Thus, the impact of a high update time interval is further mitigated.

Conversely, Figure 23 demonstrates the hit ratio for low class applications. At

the beginning and end of each application, there is a drop in hit ratio due to sudden

appearance of new or long time not accessed pages. In this context, IS and LU applications

have this difference in hit ratio, because a high update time interval makes Aging disregard

page access time span. Moreover, LU has a greater impact on hit ratio, because these

pages in the beginning and end of the execution are shortly accessed pages. A shortly

accessed page does not have a long contiguous access, which decreases significantly the

total number of accesses for that page and increases the impact of a high update time

interval.

Therefore, the worst update time interval for the Aging algorithm is the higher

one. This is because a higher interval hinders the algorithm performance on applications













66

It is a challenge to select an update time interval for NFU, because the same

update time interval, in comparison with other ones, increases hit ratio in some cases and

decreases in others. It is necessary to test update time intervals to select which suits best

each application. Thus, we argue that, in NFU algorithm, there is no overall best update

time interval.

4.2.2.3 Replacement Policies Performance

In this section, we aim to discuss the performance of each algorithm in our

software-managed cache. To this end, we: (i) used all five applications; (ii) varied the

working set to approximately 32, 48 and 64 pages for each application; (iii) used FIFO,

NFU and Aging algorithms; (iv) fixed the update time interval to 10 operations for Aging

and NFU algorithms,4 (v) fixed the moderate trial factor based on Section 4.2.1. Our re-

sults show the variation of the software-managed cache hit ratio obtained from our proxy

application.

As a proof of concept, Figure 28 presents four applications with a working set of

32 pages. All these pages almost fits the software-managed cache, which provides a near

maximum hit ratio. All applications show a small decline on hit ratio at the beginning,

because of the software-managed cache warmup. However, a different behavior is observed

near the end of the execution of IS, where the hit ratio is slightly reduced. Figures 29(b)

and 29(c) illustrate further this case. The former shows the new page at the middle

range being brought inside the software-managed cache, whereas the latter presents pages

appearing at the end of execution.

Figure 30 illustrates the hit ratio for FN application with 48 and 64 pages. As

shown in Figure 15(a), this application performs memory accesses to every page in the

beginning of the execution, but its working set reduces as the execution proceeds. This is

mainly due to the data access pattern of a nested loop that computes the abundancy of

the numbers. This behavior is reflected in the hit ratio, which increases as the execution

approaches its end because the working set starts fitting in the software-managed cache.

The best results were achieved with FIFO and Aging. FIFO algorithm deals extremely

well with the FN memory access behavior, because it follows the same pattern. Conversely,

Aging removes efficiently pages that were not accessed anymore and follows a similar FIFO

behavior.

Furthermore, NFU algorithm does not perform well with FN application. This

is due to all working set pages being accessed at the first time bins. The pages stored

inside the software-managed cache increases drastically their reference counter, and they

are not removed anymore. Thus, pages with a lower reference counter suffer drastically.

Figure 31 shows that Aging is more beneficial for KM. This application has two

well-defined page access behaviors: pages on top and bottom ranges in Figure 15(b) are

4 We selected the same update time interval for both algorithms to provide a more fair comparison.

















74

increases significantly their reference counter. In contrast, other pages that also belong

to the FIFO access pattern are low frequently accessed. Hence, pages from the FIFO

access pattern dispute between themselves a slot inside the software-managed cache. This

dispute significantly decreases the hit ratio.



75

5 RELATED WORK

Tracing is a well-known technique to collect information from the execution of

applications. This information is used by researchers and developers to achieve different

goals such as debugging, performance optimizations in hardware/software. Traces can also

be used to allow more realistic simulations of architectures and applications, providing

means to evaluate several possible scenarios and configurations in a feasible time. In this

chapter, we discuss related researches that focus on the use of trace-driven approaches to

help evaluate and/or optimize software and hardware solutions.

To the best of knowledge, the closest work to ours was proposed by M. M. Rah-

man K. Nasartschuk & Dueck (2016), whose goal was to evaluate and test Automated

Memory Management (MM) runtime systems, such as the Java Virtual Machine (JVM).

The proposed approach is based on collecting MM operations in traces from benchmark

suites at run-time. Since these traces are very large, the authors proposed a trace synthe-

sizer that produces synthetic trace files with basic MM operations for given configuration

parameters. These parameters can be adjusted based on the profiling results of real trace

files. The quantity of operations is defined by a given number, and its type1 is defined

based on ratios. Thus, the synthesizer randomly selects a type for an operation based

on these ratios and write them into a synthetic trace file. Their results show that the

trace synthesizer can generate more test scenarios, helping developers to evaluate the MM

system of the JVM. In contrast to this work, we were interested in distributed OS-level

optimizations for lightweight manycores, which brings other challenges due to the intrin-

sic characteristics and limitations of these processors. Furthermore, our approach is able

to mimic the page access pattern of the original applications using heatmaps along with

a probabilistic approach. Because of that, we neither need to deal with large trace files

when reproducing the behavior of the applications nor create new synthetic trace files.

Diener et al. (2015) proposed CDSM, a mechanism that uses page faults to detect

communications between threads and uses this information to map threads to cores. They

used heatmaps to store information about the number of communication events between

two processes or threads. Heatmaps are used to map processes and threads to close

processing units according to their communication behavior at run-time. As it can be

noticed, Diener et al. (2015) used heatmaps to achieve a different goal, although sharing

some aspects that are similar to our page access pattern representation.

Traces have also been used to build more realistic cache and NoC simulators.

Moeng, Cho & Melhem (2011) proposed the use of GPUs to accelerate a trace-based

cache simulator conceived to study the cache coherence in multithreaded workloads and

multilevel cache implementations. The information is collected once using a functional

simulator and a trace of events is generated. Then, the simulator replays the events reg-

1 The type can be classified into allocation, read and store



76

Table 3 – Summary of related work.

Related Work
Input Data Data Reduction

Context Platform
Type Scheme

M. M. Rahman K. Nasartschuk & Dueck (2016) Trace Synthesizer Memory Management Simulator
Diener et al. (2015) Heatmaps None Shared Memory Multicore
Moeng, Cho & Melhem (2011) Trace None Cache Simulator
Keramidas, Strikos & Kaxiras (2011) Trace None Cache Simulator
Dumas et al. (2017) Trace None Cache Simulator
Chu & Kise (2018) Trace None NoC Simulator
Niwa et al. (2018) Trace None NoC Simulator

Our proposal Trace Heatmap Memory Management Lightweight manycore

Source: the author.

istered in the traces. Similarly, Keramidas, Strikos & Kaxiras (2011) used both CPU and

GPU processors to speedup cache simulation. Dumas et al. (2017) proposed a trace-driven

simulation method to accurately compare cache coherence protocols in NoC-based many-

cores. Their solution helps manycore architects to select and dimension the best cache

coherence protocol for their application considering performance and hardware related

costs. NoC is another interesting feature for manycores and can be configured in several

ways on a design stage to achieve the best performance. However, simulation for this

feature can be very challenging due to a high synchronization cost. Chu & Kise (2018)

proposed a trace-driven NoC simulation for FPGA focused on reducing synchronization

costs. In the same context, Niwa et al. (2018) focused on predicting the performance of

the system based on NoC configurations. More precisely, the work aimed to estimate the

number of clock cycles without the need to perform a full system simulation. In contrast

to these works, we were interested in evaluating memory management optimizations in a

distributed OS running on a lightweight manycore. To do so, we focused on carrying out

experiments for a software-managed cache case-study on a baremetal hardware without

any cache-level simulation.

Table 3 outlines the aforementioned related work into 4 categories: (i) how they

collect information to be used for several evaluations; (ii) which reduction scheme is

used to deal with large traces; (iii) the target context where each work is applied; and

(iv) what is the target platform. As it can be noticed, these researches provide interesting

approaches to: aid the design and optimizations of interesting features for processors,

such as caches and NoC; and use heatmaps to store and reproduce information. However,

they do not focus on distributed OS or baremetal lightweight manycores, and only one

of them focus on the memory management service. Therefore, with this dissertation, we

focus on a trace-driven approach based on heatmaps that helps developers to evaluate

and optimize features of a memory management service of distributed OSs for lightweight

manycore processors.



77

6 CONCLUSION

The development of applications for lightweight manycores is very challenging.

Software engineers have to explicitly deal with the limited amount of on-chip memory, no

cache coherence and multiple address spaces. To tackle these challenges, distributed OSs

have been proposed to ease development and improve portability.

In this context, the memory management is one of the most important services

offered by distributed OSs. However, the intrinsic characteristics and memory limitations

of lightweight manycores bring several challenges to their design and implementation,

opening new opportunities for optimizations. A possible approach to study the impacts

and trade-offs of different optimizations is to port several applications of different do-

mains to the target distributed OS and carry out experiments with these applications.

Notwithstanding, porting software to distributed OSs for lightweight manycores is a time-

consuming and error-prone task.

Aiming at this problem, in this dissertation, we proposed a trace-driven method-

ology that can be used to evaluate and optimize features of a memory management service

of distributed OSs for lightweight manycores. We integrated our methodology in Nanvix

and validated it using five applications from CAP Bench. Thanks to a compact represen-

tation of memory access patterns, our methodology is capable of mimicking the memory

access pattern of the original applications on the target distributed OS running on a

lightweight manycore with low footprints. Our results show a very low difference between

our proxy application and original heatmaps with a RMSD below 0.5 and 1.5 for a mod-

erate and maximum trial factor, respectively. Furthermore, we carried out a case study

using a software-managed cache implementation available in Nanvix. Our methodology

enabled us to evaluate several configurations and different page replacement policies on

Kalray MPPA-256, even without the required support from the architecture to implement

them.

As future work, we intend to apply our methodology to help the design and

evaluation of new optimizations in Nanvix, such as the software prefetching module and a

more sophisticated page sharing algorithm. We also intend to consider other applications

from CAP Bench and other benchmarks. Finally, we intend to apply our methodology to

other distributed OSs and/or lightweight manycore processors.



78

BIBLIOGRAPHY

ASMUSSEN, N. et al. M3: A Hardware/Operating-System Co-Design to Tame
Heterogeneous Manycores. ACM SIGARCH Computer Architecture News, ACM,
New York, USA, n. 2, p. 189–203, 2016.

BARTOCCI, E. et al. Introduction to Runtime Verification. In: Lectures on Runtime
Verification. Lecture Notes in Computer Science, vol 10457. Cham: Springer,
2018. p. 1–33. ISBN 978-3-319-75631-8.

BAUMANN, A. et al. The multikernel: a New OS Architecture for Scalable Multicore
Systems. In: ACM SIGOPS Symp. on Operating Systems Principles (SOSP).
New York, USA: ACM, 2009. p. 29. ISBN 9781605587523.

BORKAR, S. Thousand core chips. In: Design Automation Conf. (DAC). New
York, New York, USA: ACM Press, 2007. p. 746. ISBN 9781595936271.

BOSE, P. Power Wall. Boston, MA: Springer US, 2011. 1593–1608 p. ISBN
978-0-387-09766-4. Disponível em: https://doi.org/10.1007/978-0-387-09766-4_499.

BOYD-WICKIZER, S. et al. Corey: An Operating System for Many Cores. In:
USENIX Conf. on Operating Systems Design and Implementation (OSDI).
San Diego, USA: USENIX Association, 2008. p. 43–57.

BROOKS, D. et al. Power-Aware Microarchitecture: Design and Modeling Challenges
for Next-Generation Microprocessors. IEEE Micro, v. 20, n. 6, p. 26–44, 2000. ISSN
0272-1732.

CASTRO, M. et al. Energy Efficient Seismic Wave Propagation Simulation on a
Low-power Manycore Processor. In: International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD). Paris, France:
IEEE Computer Society, 2014. p. 57–64.

CASTRO, M. et al. Seismic wave propagation simulations on low-power and performance-
centric manycores. Parallel Computing, v. 54, p. 108–120, 2016. ISSN 01678191.
Disponível em: http://www.sciencedirect.com/science/article/pii/S0167819116000417.

CHU, T. V.; KISE, K. An effective architecture for trace-driven emulation of
networks-on-chip on FPGAs. Proceedings - 2018 International Conference on
Field-Programmable Logic and Applications, FPL 2018, p. 419–426, 2018.

DIENER, M. et al. Communication-aware process and thread mapping using online
communication detection. Parallel Computing, v. 43, p. 43–63, 2015. ISSN 0167-8191.

DINECHIN, B. D. de et al. A Distributed Run-Time Environment for the Kalray
MPPA-256 Integrated Manycore Processor. In: International Conference on
Computational Science (ICCS). Barcelona, Spain: Elsevier, 2013. v. 18, p.
1654–1663.

DUMAS, J. et al. Trace-driven exploration of sharing set managementstrategies for cache
coherence in manycores. In: International New Circuits and Systems Conference
(NEWCAS). Strasbourg, France: IEEE Computer Society, 2017. ISBN 9781509049912.



79

FRANCESQUINI, E. et al. On the Energy Efficiency and Performance of Irregular
Application Executions on Multicore, NUMA and Manycore Platforms. Journal of
Parallel and Distributed Computing (JPDC), Academic Press, Orlando, USA,
v. 76, n. C, p. 32–48, 2015. ISSN 0743-7315.

FU, H. et al. The Sunway TaihuLight supercomputer: system and applications.
SCIENCE CHINA Information Sciences, v. 59, n. 7, p. 072001:1—-072001:16,
2016.

GSCHWANDTNER, P. et al. On the potential of significance-driven execution for
energy-aware HPC. Computer Science - Research and Development, v. 30, n. 2,
p. 197–206, 2015. ISSN 18652042.

HOLLIS, S. J.; MA, E.; MARCULESCU, R. nOS: A Nano-Sized Distributed Operating
System for Many-Core Embedded Systems. In: International Conf. on Computer
Design (ICCD). Scottsdale, USA: IEEE, 2016. p. 177–184. ISBN 978-1-5090-5142-7.

JAHIC, J. et al. A Framework for Non-intrusive Trace-driven Simulation of Manycore
Architectures with Dynamic Tracing Configuration. In: Colombo C., Leucker M.
(eds) Runtime Verification. RV 2018. Lecture Notes in Computer Science,
vol 11237. Cham: Springer, Cham, 2018. p. 458–468.

KERAMIDAS, G.; STRIKOS, N.; KAXIRAS, S. Multicore cache simulations using
heterogeneous computing on general purpose and graphics processors. Proceedings -
2011 14th Euromicro Conference on Digital System Design: Architectures,
Methods and Tools, DSD 2011, p. 270–273, 2011.

KLUGE, F.; GERDES, M.; UNGERER, T. An Operating System for Safety-
Critical Applications on Manycore Processors. In: International Symp. on
Object/Component/Service-Oriented Real-Time Distributed Computing.
Reno, USA: IEEE, 2014. p. 238–245. ISBN 978-1-4799-4430-9.

LUK, C. K. et al. Pin: Building customized program analysis tools with dynamic
instrumentation. ACM SIGPLAN Notices, v. 40, n. 6, p. 190–200, 2005. ISSN
03621340.

M. M. Rahman K. Nasartschuk, K. B. K.; DUECK, G. W. Trace Files for Automatic
Memory Management Systems. In: International Conference on Software
Analysis, Evolution, and Reengineering (SANER). Suita, Japan: IEEE, 2016. p.
9–12.

MOENG, M.; CHO, S.; MELHEM, R. Scalable multi-cache simulation using GPUs.
IEEE International Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems - Proceedings, p. 159–167, 2011.

NETHERCOTE, N.; SEWARD, J. Valgrind: A Program Supervi-
sion Framework. Electronic Notes in Theoretical Computer Sci-
ence, v. 89, n. 2, p. 44–66, 2003. ISSN 1571-0661. Disponível em:
https://www.sciencedirect.com/science/article/pii/S1571066104810429.

NETHERCOTE, N.; SEWARD, J. Valgrind: A framework for heavyweight dynamic
binary instrumentation. In: ACM SIGPLAN Notices. New York, NY, USA:
Association for Computing Machinery, 2007. v. 42, n. 6, p. 89–100. ISBN 9781595936332.
ISSN 15232867.



80

NIGHTINGALE, E. B. et al. Helios: Heterogeneous multiprocessing with satellite
kernels. SOSP’09 - Proceedings of the 22nd ACM SIGOPS Symposium on
Operating Systems Principles, p. 221–234, 2009.

NIWA, N. et al. An trace-driven performance prediction method for exploring noc design
optimization. Proceedings - 2018 6th International Symposium on Computing
and Networking Workshops, CANDARW 2018, IEEE, p. 182–185, 2018.

OLOFSSON, A.; NORDSTROM, T.; UL-ABDIN, Z. Kickstarting high-performance
energy-efficient manycore architectures with Epiphany. Conference Record -
Asilomar Conference on Signals, Systems and Computers, IEEE, v. 2015, p.
1719–1726, 12 2014.

PENNA, P. H.; FRANCIS, D.; SOUTO, J. The Hardware Abstraction Layer of
Nanvix for the Kalray MPPA-256 Lightweight Manycore Processor. Conférence
d’Informatique en Parallélisme, Architecture et Système, p. 1–11, 2019.
Disponível em: https://hal.archives-ouvertes.fr/hal-02151274.

PENNA, P. H. et al. On the Performance and Isolation of Asymmetric Microkernel
Design for Lightweight Manycores. Brazilian Symposium on Computing System
Engineering, SBESC, v. 2019-Novem, 2019. ISSN 23247894.

PENNA, P. H. et al. Inter-Kernel Communication Facility of a Distributed Operating
System for NoC-Based Lightweight Manycores. Journal of Parallel and Distributed
Computing, Elsevier, v. 154, p. 1–15, 2021. Disponível em: https://hal.archives-
ouvertes.fr/hal-03207388.

PENNA, P. H. et al. RMem: An OS Service for Transparent Remote Memory Access in
Lightweight Manycores. In: 25th International Workshop on Programmability
and Architectures for Heterogeneous Multicores15th International Workshop
on Programmability and Architectures for Heterogeneous Multicores.
Valencia, Spain: [s.n.], 2019. (High-Performance and Embedded Architectures and
Compilers Workshops (HiPEAC Workshops)), p. 1–16.

SOUZA, M. A. et al. CAP Bench: A Benchmark Suite for Performance and Energy
Evaluation of Low-Power Many-Core Processors. Concurrency Computation
Practice and Experience, v. 22, n. 6, p. 685–701, 2010. ISSN 15320626.

SUEMATSU, H. et al. A Heatmap-Based Time-Varying Multi-variate Data Visualization
Unifying Numeric and Categorical Variables. In: International Conference on
Information Visualisation (IV). Paris, France: IEEE, 2014. p. 84–87.

TANENBAUM, A. S.; BOS, H. Modern Operating Systems. Fourth. Boston, MA:
Pearson, 2015. 1137 p. ISBN 978-0-13-359162-0.

UHLIG, R. A.; MUDGE, T. N. Trace-Driven Memory Simulation: A Survey. New
York, NY, USA, 1997. v. 29, n. 2, 128–170 p.

VARGHESE, A. et al. Programming the Adapteva Epiphany 64-Core Network-on-Chip
Coprocessor. In: International Parallel Distributed Processing Symposium
Workshops (IPDPSW). Phoenix, USA: IEEE Computer Society, 2014. p. 984–992.



81

VILLA, O. et al. Scaling the Power Wall: A Path to Exascale. In: Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). New Orleans, USA: ACM, 2014. p. 830–841.

WENTZLAFF, D.; AGARWAL, A. Factored operating systems (fos): the case for
a scalable operating system for multicores. ACM SIGOPS Operating Systems
Review, ACM, v. 43, n. 2, p. 76, 2009. ISSN 01635980.


	Title page
	Dedication
	Agradecimentos
	Epigraph
	Resumo
	Resumo Estendido
	Abstract
	Introduction
	Motivation
	Goals and Contributions
	Work Organization

	Background
	Multiprocessors
	Lightweight manycores
	Distributed Operating Systems for manycores
	Nanvix

	Runtime Verification
	Monitors
	Instrumentation
	Pin
	Valgrind


	Caches

	Trace-driven Methodology
	Overview
	Trace Collection
	Step 1: Pintool Profiling

	Page Access Pattern Stage
	Step 2: Heatmap
	Step 3: Proxy Application

	Implementation Details

	Experiments
	Methodology
	Experimental Environment
	Experimental Design and Methods

	Results
	Methodology Validation
	Case Study: Software-managed Cache
	Trial Factor
	Update Time Interval
	Replacement Policies Performance



	Related work
	Conclusion
	Bibliography

		2022-12-20T10:37:09-0300


		2022-12-20T14:30:42-0300




