
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CAMPUS REITOR JOÃO DAVID FERREIRA LIMA

PROGRAMA DE GRADUAÇÃO EM ENGENHARIA ELETRÔNICA

Leonardo José Held

AN ARCHITECTURE FOR CONTEXT-AWARE DEPLOYMENT AND
MONITORING OF IOT APPLICATIONS USING KUBERNETES

Florianópolis, Santa Catarina – Brasil
2023

Leonardo José Held

AN ARCHITECTURE FOR CONTEXT-AWARE DEPLOYMENT AND
MONITORING OF IOT APPLICATIONS USING KUBERNETES

Trabalho de Conclusão de Curso submetido ao Progra-
ma de Graduação em Engenharia Eletrônica da Univer-
sidade Federal de Santa Catarina para a obtenção do
Grau de Bacharel em Engenharia Eletrônica.
Orientador(a): Praveen Mohanram,

Florianópolis, Santa Catarina – Brasil
2023

Catalogação na fonte pela Biblioteca Universitária da Universidade Federal de Santa Catarina.
Arquivo compilado às 11:20h do dia 23 de fevereiro de 2023.

Leonardo José Held
An Architecture for Context-Aware Deployment and Monitoring of IoT Applications Using

Kubernetes / Leonardo José Held; Orientador(a), Praveen Mohanram, – Florianópolis, Santa
Catarina – Brasil, 01 de março de 2023.

70 p.

Trabalho de Conclusão de Curso – Universidade Federal de Santa Catarina, EEL – Departa-
mento de Engenharia Elétrica e Eletrônica, CTC – Centro Tecnológico, Programa de Graduação
em Engenharia Eletrônica.

Inclui referências

1. Virtualização, 2. Internet das Coisas, 3. Sistemas Embarcados, I. Praveen Mohanram,
II. Programa de Graduação em Engenharia Eletrônica III. An Architecture for Context-Aware
Deployment and Monitoring of IoT Applications Using Kubernetes

CDU 02:141:005.7

Leonardo José Held

AN ARCHITECTURE FOR CONTEXT-AWARE DEPLOYMENT AND
MONITORING OF IOT APPLICATIONS USING KUBERNETES

Este(a) Trabalho de Conclusão de Curso foi julgado adequado(a) para obtenção do Título
de Bacharel em Engenharia Eletrônica, e foi aprovado em sua forma final pelo Programa
de Graduação em Engenharia Eletrônica do EEL – Departamento de Engenharia Elétrica e
Eletrônica, CTC – Centro Tecnológico da Universidade Federal de Santa Catarina.

Florianópolis, Santa Catarina – Brasil, 01 de março de 2023.

Prof. Fernando Rangel de Sousa, Dr.
Coordenador(a) do Programa de Graduação

em Engenharia Eletrônica

Banca Examinadora:

Praveen Mohanram, Me.
Orientador(a)

Fraunhofer-Institut für
Produktionstechnologie – IPT

Prof. Richard Demo Souza, Dr.
Universidade Federal de Santa Catarina

Prof. Raimes Moraes, Dr.
Universidade Federal de Santa Catarina

Dedicated to my cat, Sid.

“Where the fear has gone there will be nothing. Only I will remain.”
Frank Herbert

RESUMO

Uma característica marcante dos projetos de sistemas embarcados nos últimos anos é a adoção
de tecnologias de nuvem como containerização e conexão com serviços computacionais de
escala a fim de gerenciar frotas de dispositivos de Internet das Coisas. Este trabalho propõe a
continuação da tendência de uso de tecnologias originárias na nuvem em sistemas embarcados,
com o estudo e implementação de uma arquitetura de gerenciamento de frota utilizando
Kubernetes. O trabalho proporciona uma recapitulação histórica do uso e desenvolvimento de
virtualização leve em sistemas rodando Linux, além de propor e implementar uma arquitetura
de software utilizando orquestrador, apoiada por casos de uso com o objetivo de ser um primeiro
passo para projetos distribuídos de Internet das Coisas.

Palavras-chaves: Virtualização. Internet das Coisas. Sistemas Embarcados.

RESUMO EXPANDIDO

INTRODUÇÃO

O mercado de dispostivos embarcados no seguimento de Internet das Coisas terá mais de 29
bilhões de dispositivos conectados até 2023 (ATZORI; IERA; MORABITO, 2010). Diversas
aplicações desses sistemas embarcados possuem requisitos de computação distribuída, ou de
serem interconectados com sistemas de maior processamento e baixa latência, os chamados
sistemas de computação de borda.

Apesar da necessidade desse tipo de sistema, problemas naturais adventos da arquitetura com-
plexa de sistemas distribuídos podem surgir durante o projeto, como por exemplo a complexida-
de em monitoramento, atualização e reversão remotas. Visando suprimir esses problemas, uma
característica marcante dos últimos anos em projetos de sistemas embarcados, principalmente
aqueles baseados em Linux ou *BSDs, é o avanço do uso de tecnologias que se originaram
em ambientes de nuvem (CHIMA OGBUACHI et al., 2020). Exemplos incluem tecnologias de
virtualização leve e o próprio uso de serviços de nuvem que servem de controle ou integração
para frotas de dispositivos de Internet das Coisas.

OBJETIVOS

A comodização de serviços de nuvem com ofertas de computação massiva e sob demanda é
impulsionada por tecnologias como orquestração de containers, que oferecem escalabilidade
e alta disponibilidade (ou seja, sem tempo de inatividade) na implementação de serviços de
software, possibilitado arquitetura mais distribuídas, como a de microsserviços. Nesse sentido,
existe um argumento forte para o uso de não só tecnologias de virtualização leve como também
o uso de orquestradores em sistemas de Internet das Coisas.

O maior desafio na aplicação de orquestradores em sistemas de Internet das Coisas é a limitação
do número de variáveis que o sistema orquestrador leva em consideração, já que a tecnologia é
nativa de ambientes de nuvem, onde poucas métricas importam no escalonamento de cargas de
software (CHIMA OGBUACHI et al., 2020).

Visando continuar a tendência de utilizar tecnologias de nuvem para gerir sistemas embarcados
distribuídos, o presente trabalho pretende fornecer um ponto de partida para projetos de siste-
mas embarcados de Internet das Coisas que desejem utilizar um orquestrador como sistema de
gerencia de frota, criando as aplicações necessárias para amendar a limitação supracitada dos
orquestradores atuais.

Como objetivos específicos também temos:

• Fornecer uma visão geral sobre os desenvolvimentos históricos sobre tecnologias de vir-
tualização e orquestração.

• Desenvolver uma arquitetura de referência para projetos de sistemas embarcados que
estejam avaliando a utilização de tecnologias de virtualização e orquestração.

• Descrever o desenvolvimento de uma implementação da arquitetura de referência.

• Desenvolver um sistema de monitoramento a ser agregado ao orquestrador, a fim de suprir
a falta de parâmetros particulares de sistemas embarcados nos orquestradores atuais.

• Realizar testes de performance e apresentar usos de caso possíveis com a arquitetura
desenvolvida.

METODOLOGIA

Na construção de uma arquitetura de software, inicialmente foram identificados os componen-
tes básicos de um sistema de Internet das Coisas distribuído, e postos em ordem de capacidade
computacional em formato de camadas. São esses: Camada de Nuvem Pública (computação
por demanda de servidores como Amazon Web Services e Google Cloud Platform) e Cama-
da de Nuvem de Borda (computadores locais de alta performance), que compõem a parte de
Tecnologia de Informação do sistema e Camada de Borda (dispositivos embarcados rodando
Linux, como Raspberry Pis) e Camada de Sensores Inteligentes (microcontroladores equipados
com sensores e atuadores), que compõem a parte de Tecnologia Operacional do sistema. Cada
camada é composta por um número variável de dispositivos denominados de nó.

Também foi posto que o orquestrador deve ser o componente central e oferecer uma camada
coesa de abstração sobre todas as outras camadas. Dessa forma, dois tipos de comunicação
foram estabelecidos: Dados de Monitoramento e Comandos de Implantação ou Reconfiguração
dos dispositivos que compõe cada camada.

Como anteriormente citado, foram identificadas falhas na capacidade do orquestrador de tomar
em consideração e obter dados customizados necessários para o monitoramento de frotas de
Internet das Coisas. Visando suprir essa deficiência, os Dados de Monitoramento são de res-
ponsabilidade de um serviço de monitoramento de frota a ser desenvolvido nesse trabalho. Os
Comandos de Implantação ou Reconfiguração são responsabilidade do orquestrador.

O serviço de monitoramento é composto em duas partes: Agente de Monitoramento e Servidor
de Monitoramento. Os Agentes são executados em cada nó, e enviam diversas informações
sobre o contexto do dispositivo até o servidor, que insere as informações numa base da dados
que funciona como única fonte de verdade do sistema. Ambas aplicações foram implementadas
em Python e foi criada uma banca de testes compostas de três Raspberry Pis representando as
diferentes camadas. Como orquestrador, foi utilizado o k3s, uma distribuição do orquestrador
Kubernetes. A comunicação entre Agentes e Servidor é realizada utilizando chamadas remotas
de função implementadas com o framework gRPC e as informações enviadas são de consumo
de energia, vindos de um sistema de gerenciamento de bateria (BMS) acoplado aos Raspberry

Pis.

RESULTADOS E DISCUSSÃO

O sistema passou por uma avaliação de performance sobre o consumo de memória volátil e con-
sumo de CPU. O consumo de memória volátil foi significamente maior do que simplesmente
rodar a aplicação sem nenhuma sobrecarga local nos nós devido as aplicações dos orquestra-
dores, ainda que o consumo seja negligível comparável com a capacidade total de memória do
sistema.

Dois casos de uso da arquitetura e da implementação foram desenvolvidos. O primeiro caso de
uso explora a troca de uma aplicação de um nó de baixa capacidade computacional alimentado
por bateria para (nó em Camada de Borda) para um nó de alta capacidade computacional (na
Camada Cloud Pública ou de Borda). O segundo caso de uso explora a implementação de um
algoritmo de classificação de melhor nó que leva em consideração o contexto e parâmetros do
sistema distribuído.

CONSIDERAÇÕES FINAIS

Trabalhos futuros podem explorar algumas áreas como uso de remoteproc ou RPGms para re-
programação e interação direta entre dispositivos da Camadade Borda e da Camada de Sensores
Inteligentes, adicionar período variável de amostragem das métricas de sistema, utilizar softwa-
res já estabelecidos de comunicação como fluentbit ao invés do framework de monitoramento
desenvolvido no trabalho, integrar ferramentas de integração contínua/entrega contínua para up-
dates automáticos em dispositivos IoT e realizar estudos sobre a modelagem de consumo de
diferentes orquestradores.

Palavras-chaves: Virtualização. Internet das Coisas. Sistemas Embarcados.

ABSTRACT

A striking feature of embedded system projects in recent years is the adoption of cloud
technologies such as containerization and use of scalable cloud computing services in order
to manage fleets of Internet of Things devices. This work proposes to continue the trend of
using cloud-originated technologies in embedded systems with the study and implementation
of a fleet management architecture using Kubernetes. The work provides a historical recap of
the use and development of lightweight virtualization on systems running Linux, and proposes
and implements a software architecture using an orchestrator, supported by use cases with the
goal of being a first step for distributed Internet of Things projects.

Keywords: Virtualization. Internet of Things. Embedded Systems.

LIST OF FIGURES

Figure 1 – Simplified schematic of the MMU . 19
Figure 2 – Architectural view of virtual machines running on infrastructure virtualized

by the hypervisor. 20
Figure 3 – Architectural view of containers running on top of an operating system

using a container engine as interface. 21
Figure 4 – General architecture highlighting the decoupling generated by the use of

the OCI runtime. 24
Figure 5 – Container life cycle. 25
Figure 6 – Simplified Kubernetes Architecture. 26
Figure 7 – Container runtime architecture using Kubernetes. 28
Figure 8 – High-level diagram illustrating the concept architecture. 31
Figure 9 – Expanded view of the proposed architecture highlighting its technological

components. 33
Figure 10 – Database table used to store the information coming from the layers. . . 34
Figure 11 – Mixed UML diagram representing the structure and basic business logic

of the monitoring applications. 36
Figure 12 – Flowchart illustrating how the information is gathered between the server

and client. 38
Figure 13 – Topology of the physical system. 40
Figure 14 – Single-server Setup with an Embedded Database. 42
Figure 15 – Volatile Memory consumption over time. 42
Figure 16 – Volatile Memory consumption over time. 43
Figure 17 – Edge Node has a running Pod and has 100% battery capacity. 44
Figure 18 – Node falls to 20% battery, orchestrator automatically detects this through

the monitoring framework and creates a Pod on the Public Cloud Layer. 45
Figure 19 – A service watching the database, with battery information fed by the

monitoring framework, switches the Pod to run in the Cloud, letting the
Node recharge its battery or be serviced. 45

LIST OF TABLES

Table 1 – Namespaces on the Linux Kernel and what each isolates. 23

LISTINGS

Listing 1 – Example of a Kubernetes data description, in this case, a deployment of
the nginx web server. 28

Listing 2 – Memory and CPU usage of a nginx service running inside a Docker
container, not considering the orchestrator overhead. 34

Listing 3 – Opening a communication channel on port 50051 of a monitoring-agent. 37
Listing 4 – Creating a stub from the channel to call remote procedures on. 37
Listing 5 – Attributing the value of the remote call on the stub to battery_cur-

rent_response. 37
Listing 6 – Result of the remote procedure call from on the stub from Listing 5. . . 37
Listing 7 – Insertion SQL command and custom execute to enter data into the

Postgresql database. 38
Listing 8 – Dockerfile for the monitoring applications based on the Alpine Linux

Distribution. 39
Listing 9 – Cap. 39
Listing 10 – Memory and CPU usage of a nginx service running inside a Docker

container, not considering the orchestrator overhead. 42
Listing 11 – Example of a Kubernetes data description, in this case, a deployment of

the nginx web server. 45
Listing 12 – Online methods to calculate the mean and variance of a given set. . . . 47
Listing 13 – Method to establish the best node giving a wide range of parameters. . 47
Listing 14 – Code for the monitoring-server portion of the framework seen in Figure 9. 53
Listing 15 – Code for the monitoring-agent portion of the framework seen in Figure 9. 55
Listing 16 – Database class used to create a database, connect, execute commands,

queries and table creation and destruction on a PostgreSQL database
instance. 58

Listing 17 – requirements.txt file, which contains the dependencies for the moni-
toring python applications. 61

Listing 18 – Example of context-reactive Pod switch using the database and Kuber-
netes APIs. 61

Listing 19 – RunningStatistics class. 62
Listing 20 – Complete example using a custom node ranking algorithm using informa-

tion from the database of the monitoring application and the Kubernetes
API. 64

Listing 21 – YAML file Kubernetes deployment description of the monitoring-agent
application using Daemonset to deploy an agent on every node in the
cluster. 66

Listing 22 – YAML file Kubernetes deployment description of the monitoring-server
application. 67

Listing 23 – YAML file describing a virtual cluster using kind with two worker nodes
and one control plane node. 68

Listing 24 – Script to start the kind virtual cluster. 69
Listing 25 – Bash script used to get data used to generate Figure 15. 70
Listing 26 – Perl script used to get data used to generate Figure 16. 70
Listing 27 – Pulling a ubuntu image from the default DockerHub registry using the

Docker CLI. 71
Listing 28 – Files that compose a container image. 71
Listing 29 – Excerpt from the metadata file highlighting the Cmd section. 72
Listing 30 – A primer on using Docker and Docker Compose. 72
Listing 31 – Namespaces created when running bash inside a Debian container . . . 72
Listing 32 – Changing the default command on the upstream Ubuntu container image

by using a Dockerfile. 73
Listing 33 – Using the Docker CLI build command to build a container image from

a Dockerfile description. 73
Listing 34 – Running the newly built container with the modified command. 73
Listing 35 – An YAML file to be used with the Docker Compose tool. 74
Listing 36 – Result of running docker compose up with the YAML file listed at

Listing 35 as input. 74

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

BMS Battery Management System

BSD Berkeley Software Distribution

CI Continuous Integration

CPU Central Processing Unit

CRI Container Runtime Interface

DHCP Dynamic Host Configuration Protocol

IoT Internet of Things

ISC Internet Systems Consortium

IT Information Technology

JSON JavaScript Object Notation

LXC Linux Containers

MAC Media Access Control Address

MMU Memory Management Unit

MQTT MQ Telemetry Transport

OCI Open Container Initiative

OTA Over The Air

OT Operational Technology

PaaS Platform as a Service

REST Representational State Transfer

SBC Single Board Computer

TCP Transmission Control Protocol

UDP User Datagram Protocol

VM Virtual Machine

YAML YAML Ain’t Markup Language

CONTENTS

1 INTRODUCTION . 18
1.1 OBJECTIVES . 18

2 BACKGROUND ON VIRTUALIZATION AND CONTAINERS . 19
2.1 VIRTUALIZATION . 19
2.2 LIGHTWEIGHT VIRTUALIZATION AND CONTAINERS 20
2.3 HISTORICAL DEVELOPMENT OF SUPPORT FOR CONTAINERS IN

THE LINUX KERNEL . 22
2.4 ORCHESTRATORS . 25
2.4.1 Kubernetes Architecture . 26
2.5 STATE OF THE ART OF CONTAINERS AND ORCHESTRATORS IN

EMBEDDED SYSTEMS . 28

3 DEVELOPMENT OF A MONITORING FRAMEWORK:
BRIDGING IOT AND KUBERNETES 30

3.1 ARCHITECTURE DESCRIPTION . 30
3.2 IMPLEMENTING THE MONITORING 32
3.3 DATABASE SCHEMA . 33
3.4 DEFINITION OF COMMUNICATION BETWEEN AGENTS AND SERVER 34
3.5 STRUCTURE OF AGENT AND SERVER APPLICATIONS 36
3.6 COMPLETE INFORMATION FLOW EXAMPLE 37
3.7 PACKAGING OF APPLICATIONS INTO CONTAINERS 39
3.8 PHYSICAL CLUSTER . 40
3.8.1 Hardware and Networking . 40
3.9 SOFTWARE SETUP . 41
3.9.1 Performance considerations and benchmarking 41
3.10 CHANGING THE CLUSTER STATE BASED ON CONTEXT INFOR-

MATION . 43
3.11 USE-CASES FOR THE MONITORING FRAMEWORK 44
3.11.1 Use-case number 1 for the Monitoring framework: Context-

Reactive Pod Switch . 44
3.11.2 Use-case number 2 for the Monitoring framework: Context-Aware

Scheduling . 46

4 CONCLUSION . 48
4.1 DISCUSSION . 48
4.2 FUTURE WORKS . 48

CONTENTS 17

REFERENCES . 49

APPENDIX A – MONITORING FRAMEWORK CODE AND
DEPLOYMENT FILES 53

A.1 FRAMEWORK CODE . 53
A.2 DEPLOYMENT OF THE MONITORING FRAMEWORK ON KUBER-

NETES . 66
A.3 SIMULATING THE CLUSTER WITH KIND 68

APPENDIX B – SCRIPTS USED TO GATHER RUNTIME PA-
RAMETERS 70

APPENDIX C – A PRIMER ON USING DOCKER AND
DOCKER COMPOSE. 71

C.1 DOCKER . 71
C.2 DOCKER COMPOSE . 74

1 INTRODUCTION

The Internet of Things (IoT) is an abstraction for wirelessly connected devices that also
integrates with a cloud component (ATZORI; IERA; MORABITO, 2010). Although on its
infancy there are more than 13 billion IoT devices deployed in 2022, which is to almost triple
from 9.7 billion in 2020 to more than 29 billion in 2030 (STATISTA, 2022).

Some Industrial IoT (IIoT) applications are designed to run in a distributed manner, with
needs of highly responsive (ie, low-latency) and/or physically close systems, giving name to
the edge-native paradigm (CHIMA OGBUACHI et al., 2020). Several technologies from the
so-called cloud-native sphere such as containerization and orchestration are being actively used
to deploy distributed IoT applications, manage fleets and integrate these devices with powerful
cloud networks, quite literally entering consumer’s homes everyday with smart home devices,
for example.

The commoditization of cloud services with massive, on-demand computing offerings
is driven by technologies such as container orchestration, which offer scalability and high
availability (i.e., no downtime) when deploying software services, enabling more distributed
architectures, such as microservices. In this sense, there is a strong argument for the use of
not only lightweight virtualization technologies but also the use of orchestrators in Internet of
Things systems.

One of the issues is that the value of variables of interest within a distributed IoT system
necessary to properly monitor and schedule loads in the system are not currently taken into
account within modern orchestrator frameworks (CHIMA OGBUACHI et al., 2020). Thus,
in order to continue the trend of using cloud technologies to manage distributed embedded
systems.

1.1 OBJECTIVES

This dissertation aims to provide an initial starting point for Internet of Things projects
that wish to use an orchestrator as a fleet management and monitoring system, creating the
necessary applications to amend the aforementioned limitation of current orchestrators.

As specific objectives we have:

• Provide a general overview of the historical developments within virtualization and
orchestrators;

• Describe the proposed reference architecture for distributed IIoT applications using
virtualization techniques;

• Describe the development of a monitoring framework for distributed IIoT applications
based on the proposed architecture;

• Benchmark and present use-cases cases for the monitoring framework.

2 BACKGROUND ON VIRTUALIZATION AND CONTAINERS

2.1 VIRTUALIZATION

According to (BUGNION; NIEH; TSAFRIR, 2017), "Virtualization is the application of
the layering principle through enforced modularity, whereby the exposed virtual resource is
identical to the underlying physical resource being virtualized".

The canonical example of Virtualization is the Memory Management Unit (MMU), which
translates virtual addresses to physical ones (BUGNION; NIEH; TSAFRIR, 2017), enabling
mechanisms such as memory protection between processes. Figure 1 represents how the MMU
acts as a system module exposing the physical memory resource to the Central Processing
Unit (CPU).

Figure 1 – Simplified schematic of the MMU.

CPU Memory

MMU
virtual

address
physical
address

data

Source: by the Author.

An example on the software side there is the Virtual Machine, which according to
(BUGNION; NIEH; TSAFRIR, 2017) is "[...] a complete compute environment with its own
isolated processing capabilities, memory, and communication channels."

The defining feature of the Virtual Machine is to execute on top of a software layer while
providing the features and functionalities as if it was executing on of real hardware. One of the
mechanisms used to achieve this feat is a software layer named hypervisor, also called a Virtual
Machine Monitor (POPEK; GOLDBERG, 1974). The function of the hypervisor is to virtualize
the hardware for virtual machines running each their own operating system and applications.

A complete treaty of Virtual Machines is out of scope for the present study, but it

Chapter 2. Background on Virtualization and Containers 20

is necessary to understand that virtual machines1 will apply the virtualization principle to
all components of the system, each having a virtualized copy of the underlying hardware
(BUGNION; NIEH; TSAFRIR, 2017), meaning a completely new and separate kernel used for
each virtual machine. This is highly desirable due to the higher level of isolation between the
virtualized and physical system, while also having common drawbacks of traditional bare-metal
systems (longer boot times, harder-to-use version control systems with it, and difficulty in
scaling).

Figure 2 – Architectural view of virtual machines running on infrastructure virtualized by the hypervisor.

Infrastructure

Hypervisor

Kernel

Binaries + Libs

Processes

Kernel

Binaries + Libs

Processes

Kernel

Binaries + Libs

Processes

Virtual Machines

Source: by the Author.

2.2 LIGHTWEIGHT VIRTUALIZATION AND CONTAINERS

The aforementioned drawbacks of the virtual machines is lessened with another type of
virtualization technique, namely lightweight virtualization (or its less academic denomination,
containers), which according to (BUGNION; NIEH; TSAFRIR, 2017) "[...] rely on a combina-
tion of hardware and software isolation mechanisms to ensure that applications running directly
on the processor ... are securely isolated from other sandboxes and the underlying operating
system."

Instead of using a Hypervisor and running a new operating system, containers rely on
their host operating system to create a virtualization layer, commonly referred to as container

1 Here the word "virtual machine" is used in the academic sense of a system-level virtual machine. Information
regarding semantics can be found in (BUGNION; NIEH; TSAFRIR, 2017), albeit the industry largely ignores
the other definitions for virtual machines.

Chapter 2. Background on Virtualization and Containers 21

runtime, by enforced modularity (BUGNION; NIEH; TSAFRIR, 2017)2. This architectural
difference is highlighted between Figure 2 and Figure 3. Not using a hypervisor with a guest
operating system makes the raw performance and boot times of containers faster than VMs
with Linux-based Hypervisors, although at the cost of applying and managing security, users
and network policies (RAD; BHATTI; AHMADI, 2017).

Figure 3 – Architectural view of containers running on top of an operating system using a container engine as
interface.

Infrastructure

Operating System

Binaries + Libs

Process

Binaries + Libs

Process

Binaries + Libs

Process

Container

Container Runtime

Source: by the Author.

Containers became rapidly popular and supported by the main cloud computing platforms
since the technology addresses some of the issues (CASALICCHIO, 2019) faced by deploying
applications on the cloud such as:

• Dependency hell, where different applications may depend on different versions of libraries
and need to coexist inside the same server: containers solve this by having separate
binaries and libraries, and as we shall see are much easier to maintain than virtual
machines.

• Application portability, where a container can be executed independent of anything other
than a compatible container runtime (see figure Figure 3 and section 2.3, which provides
a background on the historical aspects of standardization, which provides much of the
application portability).

• Performance overhead problem, with no need of a hypervisor and having its own kernel
per instance (as opposed to VMs), containers show a negligible overhead (MORABITO;

2 Some Hypervisors (namely, Type-2 Hypervisors like VirtualBox™and VMWare Workstation™) also rely on
some layer running inside along an operating system

Chapter 2. Background on Virtualization and Containers 22

KJÄLLMAN; KOMU, 2015) and are an order of magnitude faster to stop, start and
restart an instance (CASALICCHIO, 2019). Although much of the literature shows
performance comparisons between the VM and Container approaches, this is in practice
shadowed by the architectural needs of a given project.

2.3 HISTORICAL DEVELOPMENT OF SUPPORT FOR CONTAINERS IN THE LINUX
KERNEL

In 1979, with the release of the Unix V7, the chroot (short for change root) system
call was introduced (LABORATORIES, 1979), which sets the root of the Unix file system to
a given directory. This means different processes can have completely segregated file systems.
The system call is present to this day on every major *nix-like system(such as BSD and Linux).

In 2007, engineer Paul Menage from Google introduced a series of patches into the Linux
Kernel that created what is now called cgroups, or control groups, which are "[...] a Linux
kernel feature which allow processes to be organized into hierarchical groups whose usage of
various types of resources can then be limited and monitored". (CGROUPS(7). . . , 0021).3

The capabilities of cgroups are (CGROUPS(7). . . , 0021):

• Limiting Resources such as memory, file system cache, I/O bandwidth, and CPU limits.

• Prioritization of groups for CPU utilization and disk I/O.

• Metrics for group resource usage.

• Freezing and restarting groups of processes.

Another major component that makes it possible for Lightweight Virtualization is names-
paces. A namespace "[...] wraps a global system resource in an abstraction that makes it
appear to the processes within the namespace that they have their own isolated instance of the
global resource" (NAMESPACES(7). . . , 0021). Table 1 lists the existing namespaces currently
supported in the Linux Kernel.

In 2008, a tool called LXC, short for Linux Containers, was released to the public called
LXC. LXC makes use of the cgroups and namespaces features of the Linux Kernel making it
easy to set up containers. LXC is thought of as "...something in the middle between a chroot
and a full-fledged virtual machine. The goal of LXC is to create an environment as close as
possible to a standard Linux installation but without the need for a separate kernel." (LXC,
n.d.) LXC is focused on virtualizing stateful Linux Operating Systems inside Linux.

3 Curiously, the name "containers" was already too overloaded by then, and in the patch e-mail itself Paul
asks for the opinion of Linus " - decide whether "Containers" is an acceptable name for the system given
its usage by some other development groups, or whether something else (ProcessSets? ResourceGroups?
TaskGroups?) would be better. I’m inclined to leave this political decision to Andrew/Linus once they’re
happy with the technical aspects of the patches."

Chapter 2. Background on Virtualization and Containers 23

Table 1 – Namespaces on the Linux Kernel and what each isolate.

Namespaces Flag Isolates
Cgroup CLONE_NEWCGROUP Cgroup root directory

IPC CLONE_NEWIPC System V IPC, Posix message queues
Network CLONE_NEWNET Network devices, stacks, ports etc
Mount CLONE_NEWNS Mount points
PID CLONE_NEWPID Process IDs
Time CLONE_NEWTIME Boot and monotonic clocks
User CLONE_NEWUSER User and group IDs
UTS CLONE_NEWUTS Hostname and NIS domain

Source: (NAMESPACES(7). . . , 0021).

In 2013, Google released the source code for its container tool lmctfy, an acronym for
"Let Me Contain That For You" (GOOGLE, 2013). Although LXC and lmctfy are very similar
and work on the same level, they had some fundamental differences that would shape the
future of the Linux Containers scene.

According to Tim Hockin, one of the contributors to lmctfy and who would later be a
co-founder of the Kubernetes Projects, "We took a different approach and made it just a bit
more abstract, so users don’t have to understand cgroups so much" (HOCKIN, 2013). The
choice of higher levels of abstraction with a focus on ergonomics and ease of use steered much
of the containerization technology in Linux for the next years.

Also in 2013, a tool called Docker was released as open-source by dotCloud, a company
that focused on Platform as a Service (PaaS). The main difference between Docker and
the other tools was the level of abstraction, functionality, and ergonomics given to the user.
Docker built upon established technologies such as LXC, using it as its Linux Container
runtime tool before Docker version 0.9 and became the de facto container management tool
for containerization, and the first commercially successful solution(RAD; BHATTI; AHMADI,
2017). Readers not familiar with using Docker should refer to Appendix C.

As companies started using Docker as part of their core tooling, the necessity grew
for standardization of the myriad of different software modules. Thus, the Linux Foundation
created the Open Container Initiative, which aims to establish open standards for interoperability
between different tools in the container ecosystem.

In 2015, the lmctfy project would stop and the efforts were geared towards developing
libcontainer, which was proposed as a replacement for lmctfy (JNAGAL, 2015), but ended up
replacing LXC as the container runtime for Docker, renamed to runc and donated to the Open
Container Initiative (OCI) as its first project.

The two main standards provided by the OCI are the Runtime Specification and the
Image Specification.

The Runtime Specification defines the interface between the container runtime and the
operating system kernel. It specifies a set of common operations that should be supported by

Chapter 2. Background on Virtualization and Containers 24

the container runtime such as create, query, start, kill, and delete, as well as the lifecycle of a
container (OCI, 2015).

The Image Specification defines the format, environment variables, and storage and
retrieval mechanisms of a container image, which are files containing everything needed to run
a container, such as application code, libraries, and metadata (OCI, 2015).

Figure 4 – General architecture highlighting the decoupling generated by the use of the OCI runtime.

container management engine

client

Infrastructure

Operating System

Binaries + Libs

Process

Binaries + Libs

Process

Binaries + Libs

Process

Container

OCI-compliant container runtime

OCI commands
high-level commands

OCI-compliant image
created from

Source: by the Author.

Figure 4 exemplifies how the modules are integrated within an OCI runtime, including
the OCI-compliant runtime, and how containers are created from the OCI-compliant image
format. Note that instead of "Linux Kernel" the figure simply mentions "Operating System",
which can in effect be any operating system that has container capabilities, so although much
of the discussion was centered around Linux, the scope for interoperability between operating
systems, container management engines, clients and infrastructure is much bigger than that.
The essential takeaway is that containers, via the decoupled architecture provided by the OCI
standardization efforts, can be manipulated by a myriad of tools, such as orchestrators, as we
shall see (subsection 2.4.1).

Chapter 2. Background on Virtualization and Containers 25

2.4 ORCHESTRATORS

Containers4 are designed to run one application at a time and are generally built using a
series of OCI-image layers (see Appendix C for a practical example using Docker), ending up
with a multi-layer OCI image, which is stateless, eg, the contents written on this last layer are
lost after the container stops (CASALICCHIO, 2019).

Containers are thus subject to a life cycle, as shown in Figure 5, which is managed by
the container runtime engine, and can be broken down into select states: acquire, starting
from a trusted base image; build, layering your application and libraries on top of the base
image; deliver, bringing the now complete image to an artifacts storage system; deploy, the
actual step of updating the application into production; run, determining how to schedule your
application to execute, as well as setting up network connections, fallbacks and scaling policies;
maintain, constant supervision of application status, automatic recover and fallback

Figure 5 – Container life cycle.

Acquire

BuildMaintain

Deploy

DeliverRun

Container
Management

Engine

Orchestration

Source: adapted from (CASALICCHIO, 2019).

Issues arise when the deployment, running, and maintaining cycles are considered in the
context of scale: deploying hundreds or thousands of containers is out of scope for the container
management engine, which cannot effectively handle issues such as resource limit control,
scheduling, load balancing, health checks, fault tolerance and autoscaling (CASALICCHIO,
2019). A higher abstraction layer controlling one or many container management engines is
needed, which is where the container orchestrator comes in.

According to (CASALICCHIO, 2019), "[...] Container orchestration allows cloud and
application providers to define how to select, to deploy, to monitor, and to dynamically control

4 The word "container", unless specifically mentioned, shall be used exclusively for application containers
from now onwards. For more information on the taxonomy of container technologies, please refer to
(CASALICCHIO, 2019)

Chapter 2. Background on Virtualization and Containers 26

the configuration of multi-container packaged applications in the cloud". Several container
orchestration solutions have been developed in the last decade, examples including Docker
Swarm, Kubernetes, Apache Mesos, and Nomad.

Kubernetes is particularly interesting given the fact it is the result of decades of experience
deploying thousands of containers at Google, released as open source with the intent of
"[...] making it easy to deploy and manage complex distributed systems" (BURNS et al.,
2016). Kubernetes was also the seed project for the Cloud Native Computing Foundation,
in partnership with the Linux Foundation. 96% of respondents of the 2021 Cloud Native
Computing Foundation have answered to be either evaluating or already using Kubernetes
(CNCF, 2021). If Docker is the de facto container management engine, so is Kubernetes for
orchestrators.

2.4.1 Kubernetes Architecture

The main components of Kubernetes are the nodes and the control plane, which is a
special node. Nodes can be physical or virtual machines that have a container runtime. Each
node runs an atomic entity denominated Pod, which is a collection of containers.

Within each node, there are three main components: the kubelet, the kube-proxy, and
the container runtime. The control plane is composed of the API server, a key-value store
(etcd, but in some cases this can be swapped by other data storage systems, such as SQLite,
in the case of the k3s distribution), the controller manager and the scheduler. Figure 6 shows
the internal components, with a short description of each following.

Figure 6 – Simplified Kubernetes Architecture.

etc Controller
Manager

Scheduler

API server

kubelet

kube-proxy

Container Runtime

Control Plane Node

Kubernetes Cluster

User

kubectl

Developer

Source: adapted from Ashish Patel.

The API server is a RESTful API for interacting with the Kubernetes cluster, designed
to provide a frontend to the cluster’s shared state. It allows updates, deletions, and updates

Chapter 2. Background on Virtualization and Containers 27

to Kubernetes objects, either via a programming language client library that implements the
necessary HTTP requests or using the kubectl command line tool.

The etcd is a key-value storage solution that works as the single source of truth for the
cluster. It’s a stateful component for all cluster configurations and the current state.

The scheduler is responsible for scheduling Pods with no assigned nodes to be deployed
on available nodes. Some factors taken into account for node selection: include resource
requirements and several constraints such as node affinity and anti-affinity, selections based on
labels, taints, and tolerations.

Controllers in Kubernetes continuously monitor the state of the cluster through the API
server and make the necessary adjustments to move the cluster to the desired state, akin to
control loops from control theory. As there are many controllers inside Kubernetes (node, jobs,
endpoints, and service controllers to name a few), they are co-located inside the functional
unit of the controller manager.

The kubelet runs in every node composing the Kubernetes cluster. Initially, the kubelet
communicates with the API server to register to the Control Plane the properties and identifi-
cation of the node that is executing that particular kubelet instance, subsequently requesting
the desired state for that particular node and taking the necessary steps to achieve that state.
The kubelet works in terms of a PodSpec, which is a YAML or JSON object that describes a
Pod, ensuring that the Pods described by the PodSpec are running healthily.

The kube-proxy is one of the core entities in the Kubernetes networking model, allowing
communication between inside and outside the cluster, ensuring each Pods gets a unique IP
and that containers running inside the same Pod get the same IP, massively reducing the
network complexity.

The Container runtime, as seen in section 2.2, is the component that will effectively
run the containers, and Kubernetes supports a variety. In effect, any container runtime that
implements the Kubernetes Container Runtime Interface (CRI) can be used. The Container
Runtime Interface was specifically created to enable a decoupled architecture between the
kubelet and the container runtime. The CRI was born out of necessity to stop using software
"shims" between the container management engine and the container runtime: container
runtimes themselves can instead implement the CRI. Figure 7 represents a Kubernetes specific
stack of Figure 3, highlighting how the kubelet, kube-proxy, and CRI are connected to the API
server and the rest of the infrastructure.

A sometimes confusing aspect of Kubernetes is that the components that manage
Kubernetes (for example, the kubelet, etcd or the API server) are themselves deployed as
Kubernetes pods.

Kubernetes is deliberately declarative, with a strong separation between computation and
data (BURNS et al., 2016). The data representing the desired state of the cluster is applied
to the configuration using a high-level language such as YAML. The code excerpt in Listing 1
shows the description of an nginx web server deployment. This file is applied by the developer
using the kubectl tool as in Figure 6.

Chapter 2. Background on Virtualization and Containers 28

Figure 7 – Container runtime architecture using Kubernetes.

API server

kubectl

Infrastructure

Operating System

Binaries + Libs

Process

Container

OCI/CRI-compliant container runtime

HTTP requests high-level commands

OCI-compliant image
created from

kubelet
CRI

kube-proxy

Source: by the Author.

Listing 1 – Example of a Kubernetes data description, in this case, a deployment of the nginx web server.

1

2 apiVersion: v1

3 kind: Pod

4 metadata:

5 name: nginx

6 spec:

7 containers:

8 - name: nginx

9 image: nginx :1.14.2

10 ports:

11 - containerPort: 80

2.5 STATE OF THE ART OF CONTAINERS AND ORCHESTRATORS IN EMBEDDED
SYSTEMS

The use of container technologies in Embedded systems is new but mature. Previous
works such as (LAMMI, 2018) and (NORONHA et al., 2018) have shown a possibility of
using in containers with Embedded systems. Commercial offerings such as Foundries.io™,
balenaOS™ and Torizon™ make use of containers in embedded devices to accelerate customer’s
time-to-market.

The review done for this chapter revealed no commercial interest in supporting container
orchestration for IoT devices on the edge, and this may be due to the tooling limitations
as described in (LEE et al., 2021) and (CHIMA OGBUACHI et al., 2020), the latter which

Chapter 2. Background on Virtualization and Containers 29

specially highlights the lack of context information, ie, the various parameters influencing an
IoT deployment. The subject of chapter 3 is thus the development of a reference, generic
software architecture and a possible implementation of a framework to enable context-aware
monitoring of container orchestrators in embedded systems.

3 DEVELOPMENT OF A MONITORING FRAMEWORK:
BRIDGING IOT AND KUBERNETES

In this chapter, we present an attempt of bridging IoT and orchestrator frameworks such
as Kubernetes. One of the main challenges is adjusting the orchestrator software to take in
consideration the many parameters that have effect in an IoT product application, and for that
we develop our own monitoring solution from a reference architecture, jump starting possible
product developments that may benefit from such a distributed system.

The chapter is organized as follows:

1. Architecture Description: propose a software architecture for a orchestration system that
defines the communication and data flow from a number of heterogeneous layers to a
single orchestration system.

2. Implementing the Monitoring Framework: implement the architecture described on the
previous chapter using the Python language and a database as a single source-of-truth
for the system.

3. Physical Cluster: configure a physical hardware test-bench using Raspberry Pis as a
demonstrator for the Monitoring Framework and architecture.

4. Software Setup: describes how a Kubernetes distribution was used to setup the "orches-
trator" portion of the architecture. Also contains some performance and benchmarking
tests.

5. Changing the Cluster State Based on Context Information: describes how, based on the
data gathered in the database using the monitoring framework, it is possible to change
cluster properties using the Kubernetes API.

6. Use-cases for the Monitoring Framework: describes two use cases using the control-loop
derived from the previous chapters using the monitoring framework and the Kubernetes
API.

3.1 ARCHITECTURE DESCRIPTION

The Architecture is such that the Operational Technology (OT) layer can interact with
the Information Technology (IT) layer via the Orchestrator (Figure 8). The OT and IT levels
are stacked such that the computational power (and hence the energy consumption) increase
going from top to bottom.

The OT Level will contain Edge and Smart Sensor devices. Edge devices in this context
are devices running embedded Linux, with low to medium computational capacity and the
ability to run Linux Containers. Smart Sensor Layers will generally be Microcontrollers or
Programmable Logic Controllers connected to the system via the MQTT protocol.

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 31

The IT Level contains the Edge Cloud and the Public Cloud. The main difference between
both is latency: the Edge Cloud acts as a low-latency, local infrastructure, while the Public
Cloud is an on-demand computational instance from a Cloud Service Provider such as Amazon
Web Services and Google Cloud Platform. The Edge Cloud can be seem as the edge of the
public internet infrastructure (the Public Cloud).

Each computational entity inside of each layer is hereafter named "node". On the Edge
Layer we may have several Nodes composed each of Raspberry Pis and other Linux-capable
devices, on the Edge Cloud we may have several instances of Virtual Machines, each instance
being a Node, and on the Smart Sensor Layer we may have several Microcontrollers, also
individually abstracted as Nodes.

Figure 8 – High-level diagram illustrating the concept architecture.

Public Cloud Layer

Edge Cloud Layer

Edge Layer

Smart Sensor Layer

Orchestrator

Monitoring Data

Deployment or Reconfiguration
Command

Source: by the Author.

The Orchestrator software acts as the central point of communication and configuration
for the Nodes existing inside the Layers. Two types of data exist in this Architecture:

• Monitoring Data, which contains information about the Nodes inside the Layers, such
as battery status, energy consumption, temperature and many other metrics.

• Reconfiguration/Deployment Commands, which change the software currently run-
ning on each of the Nodes to complete certain functions.

Some implementation concerns arise with this architecture:

1. The Orchestrator is a communication bottleneck between the Layers, as every command
has to go through what it looks like a single software service. This can lead to scalability
problems if thousands of devices are expected to communicate through the same channels.

2. An interesting feature not addressed by the architecture is swapping computational loads
between the layers to make it more efficient, e.g., instead of running a complex operation
on an Edge Layer Node, run on the more powerful Public Cloud Layer.

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 32

3. The Monitoring Data coming from the Nodes may be too specialized to be handled by
a general Orchestrator.

These can be addressed by the proper choice of the Orchestrator software, which should
handle both types of communications between the layers. Kubernetes provides the first neces-
sary communication, control and scalability facilities, as described in subsection 2.4.1. For the
Monitoring Data, shortcomings were identified regarding the small set of Node information ac-
quired by Kubernetes, lacking the necessary context of each of the Nodes (CHIMA OGBUACHI
et al., 2020), composed of Node metrics (temperature, power status etc).

3.2 IMPLEMENTING THE MONITORING

An expanded view of the architecture is presented in Figure 9. In this view, each Layer
contains a single Node, and the Public Cloud Layer is omitted. A description of each component
of the deployment follows:

• base-system: a Linux-based system, with capabilities to run Linux Containers.

• system-metrics: here the system metrics are exposed to user-space as Unix files.

• monitoring-agent: the monitoring agent is the client-side implementation of the Moni-
toring framework, which reads the system metrics and send it over the network to the
monitoring-server, when requested.

• monitoring-server: asks the information to the many monitoring agents.

• in-cluster db: a database to hold the Node metrics acquired via the monitoring-server,
which holds historical data and decouples the queries from the main services.

• base-firmware: the firmware of the microcontroller. This may be bare-metal or an Real
Time Operating System.

• CI-driven OTA server: a TCP or UDP server that runs every time a certain conditions
is met at the Continuous Integration phase. The Continuous Integration agent may be
managed or a cloud one (such as GitHub or GitLab).

• OTA client: the client for the OTA server described above. It receives the firmware
from the OTA server and updates all or part of the base-firmware, altering the functions
of the microcontroller.

• MQTT broker: an MQTT broker to enable communication between the microcontrollers
and the overall system.

• MQTT/gRPC Proxy: to provide an opaque API for the Monitoring framework, a Proxy
or a Translator is inserted into the architecture. Every call from the monitoring-server

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 33

is translated to an MQTT Pub/Sub routine to gather information from the Smart Sensor
Layer devices.

Figure 9 – Expanded view of the proposed architecture highlighting its technological components.

monitoring-agent

system metrics

base-system

other deployments...

Edge Layer Node

sql insert

monitoring-server

base-system

orchestrator

Edge Cloud Layer

MQTT/gRPC Proxy

MQTT Server

Smart Sensor Layer

CI-driven OTA server
OTA server

base-firmware

sql query

in-cluster db

Source: by the Author.

In this work, we will only be concerned with the development of the layers above the Smart
Sensor Layer and will not consider the implementation of the CI-driven OTA server, which is
the work of the Master’s student Mohammed Noufal Ahmaed Kabir on this thesis "Realization
of cloud based automated firmware OTA update of MSP over 5G", to be published.

3.3 DATABASE SCHEMA

For the database, PostgreSQL was chosen for its simplicity, ease of use and stellar
documentation. A custom Python connector was written for the database, which can be
examined in Listing 16 of Appendix A.

Inside the database a table node_parameters was created, represented in figure 10. As
a part of a larger research project, this work is focused on energy consumption. The following
Node metrics were chosen accordingly:

• node_uuid : an Universallly Unique Identifier that every node has, used to filter for
individual devices.

• battery_percentage: the battery percentage of a node at a given time.

• battery_voltage: the battery voltage of a node at a given time.

• battery_current: the battery current at a given time.

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 34

• gpio_voltage: the voltage provided or received by the General Purpose Input/Output
pins at a given time.

• gpio_current: the current provided or received by the General Purpose Input/Output
pins at a given time.

• inserted_at: the time at which the data was inserted into the data table.

The choice of this schema already dictates some of the system’s implementation, as data
is captured as a packet and them inserted. The main limitation of this approach is that the
period of measurements has to be the same for all node metrics.

Figure 10 – Database table used to store the information coming from the layers.

node_parameters

node_uuid

battery_percentage

battery_voltage

battery_current

gpio_voltage

gpio_current

inserted_at

Source: by the Author.

3.4 DEFINITION OF COMMUNICATION BETWEEN AGENTS AND SERVER

For the exchange of monitoring data (Figure 9) between the agents and the server, the
gRPC Remote Procedure Call framework was chosen for its small message size (defined using
the Protobuf data format and serialized as binaries), ideal for embedded networked applications.

The .proto Protobuf file (Listing 2) defines the message structure, the remote procedure
calls and their respective answers. To ease implementation costs regarding sessions and node
identification within the monitoring framework, we have switch the server-client model generally
used with gRPC: the Nodes act as gRPC servers and the client is implemented with the
monitoring-server service. This way, the client (monitoring-server) remotely triggers the
methods with empty parameters (google.protobuf.Empty) and the server (monitoring-agent)
returns the asked value.

Listing 2 – Memory and CPU usage of a nginx service running inside a Docker container, not considering the
orchestrator overhead.

1 syntax = "proto3";

2

3 import "google/protobuf/empty.proto";

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 35

4

5 package deviceproperties;

6

7 service GetDeviceInformation {

8 rpc BatteryPercentage (google.protobuf.Empty) returns

(BatteryPercentageReply) {}

9 rpc BatteryVoltage (google.protobuf.Empty) returns

(BatteryVoltageReply) {}

10 rpc BatteryCurrent (google.protobuf.Empty) returns

(BatteryCurrentReply) {}

11 rpc GpioVoltage (google.protobuf.Empty) returns

(GpioVoltageReply) {}

12 rpc GpioCurrent (google.protobuf.Empty) returns

(GpioCurrentReply) {}

13 rpc Uuid (google.protobuf.Empty) returns (UuidReply) {}

14 }

15

16 message BatteryPercentageReply {

17 int32 percentage = 1;

18 }

19

20 message BatteryVoltageReply {

21 int32 voltage = 1;

22 }

23

24 message BatteryCurrentReply {

25 int32 current = 1;

26 }

27

28 message GpioVoltageReply {

29 int32 voltage = 1;

30 }

31

32 message GpioCurrentReply {

33 int32 current = 1;

34 }

35

36 message UuidReply {

37 string uuid = 1;

38 }

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 36

3.5 STRUCTURE OF AGENT AND SERVER APPLICATIONS

The implementations of the monitoring-agent and monitoring-server applications
were done in the Python programming language. The structure and business logic of both
applications is shown in Figure 11. The monitoring server simply runs a super loop pattern,
constantly feeding the database with the replies from the remote procedure calls generated by
the gRPC network (section 3.4).

A necessary class is the database, which has all the necessary methods to connect,
modify, query and update a Postgresql instance. This class is shared by all applications that
need to connect to the database (section 3.11).

Figure 11 – Mixed UML diagram representing the structure and basic business logic of the monitoring applica-
tions.

GetDeviceInformation

+ GetDeviceInformationServicer

<< global >> PiJuice pijuice

+ Serve

+ Uuid

+ GpioCurrent

+ GpioVoltage

+ BatteryCurrent

+ BatteryVoltage

Database

<<constructor>> __init__
 (host, user, dbname)

+ connect(dbname)

+ destroy_connection(Database)

+ create_tables (commands)

+ execute_query (queries, data)

+ create_database(dbname)

monitoring_agent.py

database_setup.py

1) GetDeviceInformation replies
2) INSERT SQL operation into

database instance
3) Loop

monitoring_server.py

Source: by the Author.

The implementation details for the agent and the server can be found in the Appendix A.

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 37

3.6 COMPLETE INFORMATION FLOW EXAMPLE

As an example of the information flow, Figure 12 shows sequential diagram, assuming
that the monitoring-server has required the BatteryCurrent metric. A walk-through the code
used to make this complete circuit follows:

1. The monitoring-server opens a communication channel within one of the monitoring-
agent using the function call in Listing 3.

Listing 3 – Opening a communication channel on port 50051 of a monitoring-agent.

1 async with grpc.aio.insecure_channel("monitoring -agent :50051")

as channel:

In Listing 3 monitoring-agent is automatically resolved to its corresponding IP (given
by the DHCP server) using a simple DNS server also running on the network, to ease
development. The corresponding port for all the Nodes is 50051.

2. The channel is used to open a stub (Listing 4) object that creates a remote interface to
trigger remote procedure calls.

Listing 4 – Creating a stub from the channel to call remote procedures on.

1 stub =

deviceproperties_pb2_grpc.GetDeviceInformationStub(channel)

3. The corresponding remote procedure call for the BatteryCurrent metric is called and its
result is stored on the battery_current_response variable with the code in Listing 5.

Listing 5 – Attributing the value of the remote call on the stub to battery_current_response.

1 battery_current_response = await stub.BatteryCurrent(

2 deviceproperties_pb2

3 .google_dot_protobuf_dot_empty__pb2

4 .Empty())

4. On the monitoring-agent side, the remote procedure call results in the GetBatteryCur-

rent method to be called (Listing 6), which sets BatteryCurrentReply to the value of
the battery current as read from the I2C bus connecting the PiJuice to the RaspberryPi
3.

Listing 6 – Result of the remote procedure call from on the stub from Listing 5.

1 async def BatteryCurrent(

2 self ,

3 request:

4 deviceproperties_pb2.

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 38

5 google_dot_protobuf_dot_empty__pb2.

6 Empty(),

7 context:

8 grpc.aio.ServicerContext ,

9) -> deviceproperties_pb2.BatteryCurrentReply:

10

11 battery_current_json = pijuice.status.GetBatteryCurrent ()

12

13 return deviceproperties_pb2.BatteryCurrentReply(

14 current = int(battery_current)

15)

5. Back on the monitoring-server side, the battery_current_response variable, now
updated with the most current metric, has its value put into the PostgreSQL database
(Listing 7).

Listing 7 – Insertion SQL command and custom execute to enter data into the Postgresql database.

1 sql = [

2 "INSERT INTO node_parameters(node_uuid , battery_current) VALUES

(%s, %s);"]

3 data = (

4 uuid.UUID(uuid_response.uuid),

5 battery_current_response.current

6)

7 db.execute_query(sql , data)

Figure 12 – Flowchart illustrating how the information is gathered between the server and client.

monitoring-agent gRPC server gRPC client monitoring-server

database

insecure_channel()

start

insecure_channel()

start

HTTP/2

(1)

(2) (3)

(1)

(2)(3)

stubstub

BatteryPercentage
RPC

(4)

(5)
BatteryPercentageReply
(6)

(7)

(8)

BatteryPercentageReply

insert

(9)

Source: by the Author.

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 39

3.7 PACKAGING OF APPLICATIONS INTO CONTAINERS

The last step in the development of the monitoring applications is to containerize the
server, client and database, making them suitable for a Kubernetes deployment; that is, the
monitoring applications will be a deployment on the Kubernetes cluster itself, in the same
manner as manner as the "other deployments" in Figure 9;

To this end, the Dockerfile reproduced in Listing 8 was created, using the Alpine Linux
operating system as a base, chosen for its lean footprint and very good selection of packages
for the arm32v7 architecture, which is the target architecture for most of the Nodes residing
in the Edge Layer. An auxiliary file was also used to create the container, which lists all the
Python dependencies for the monitoring applications to run, defined in Listing 17.

Listing 8 – Dockerfile for the monitoring applications based on the Alpine Linux Distribution.

1 FROM alpine :3.16

2

3 ENV PYTHONUNBUFFERED =1

4 RUN apk add --update --no-cache python3 python3 -dev make gcc

musl -dev linux -headers && ln -sf python3 /usr/bin/python

5 RUN python3 -m ensurepip

6 RUN pip3 install --no-cache --upgrade pip setuptools make

7

8 WORKDIR /app

9 COPY . .

10

11 RUN pip install -r requirements.txt

12

13 CMD ["python3", "monitoring_agent.py"]

For effects of comparison between the Kubernetes and the docker-compose approaches,
a Docker Compose file was written that enables the two services on the same host machine.
The container:postgres is the database container already running on the background. Particular
notice should be taken of the volume mount, which mounts the /etc/node_uuid file from the
host machine (which when deployed will be a Node running Linux on the Edge Layer) to the
same file inside the container. This works as our Node identification mechanism.

Listing 9 – Cap.

1 version: "3"

2 services:

3 client:

4 container_name: client

5 network_mode: "container:postgres"

6 image: monitoring -server

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 40

7 depends_on:

8 - "server"

9 server:

10 volumes:

11 - /etc/node_uuid :/etc/node_uuid

12 container_name: server

13 network_mode: "container:postgres"

14 image: monitoring_server

The Dockerfile for the monitoring-server is the same, but executing the corresponding
Python file instead.

3.8 PHYSICAL CLUSTER

Figure 13 – Topology of the physical system.

Switch
Worker Node 1

10.1.1.1
Raspberry Pi 3

Worker Node 2
10.1.1.2

Raspberry Pi 3

Control Plane
DHCP Server
DNS server
10.1.1.1/24

Raspberry Pi 4

BMS
(PiJuice)

BMS
(PiJuice)

Source: by the Author.

3.8.1 Hardware and Networking

For the hardware setup, a series of Raspberry Pi Single Board Computers (SBC), two
Raspberry Pis Model 3 B+, and one Raspberry Pi Model 3 Model B were chosen. The Raspberry
Pis Model 3 B+ were equipped with the PiJuice HAT™, which is a Raspberry Pi that can
power the SBC using a battery with an integrated Battery Management System (BMS). The
BMS provides information about the Node’s power status (such as battery capacity, current
draw...) using the I2C protocol, which can be read using the Pi1.

To connect the Raspberry Pis, a NETGEAR ProSafe 5 Port Gigabit Switch, model
GS105v5 was used. The topology is quite simple and the Raspberry Pis are connected locally
via this switch using the Ethernet interface and are connected to the internet using the wireless

1 Special thanks to my advisor for kindly letting one of the cabinets in his office be used as a test-bench for
the hardware.

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 41

interface using the internationally available academic Wi-Fi network, Eduroam.
Thus, the Raspberry Pi 4 in this context represents an Edge Cloud Node and the Raspberry

Pis 3 represent battery powered Edge Layer Node from the architecture described in 3.1.
The Raspberry Pi 4 runs the ISC DHCP server configured as in Listing 3.8.1, giving the

Raspberry Pis 3 a fixed address each using a MAC Address filter.

1 default -lease -time 600;

2 max -lease -time 7200;

3 authoritative;

4

5 subnet 10.0.0.0 netmask 255.255.255.0 {

6 range 10.0.0.0 10.0.0.100;

7 }

8 host rpi1 {

9 hardware ethernet c7:35:ce:fd:8e:a1;

10 fixed -address 10.0.0.1;

11 }

12

13 host rpi2 {

14 hardware ethernet c7:35:ce:fd:8e:a1;

15 fixed -address 10.0.0.2;

16 }

3.9 SOFTWARE SETUP

For the software setup, it was decided to use one of the so-called "Kubernetes Dis-
tributions", in particular, K3s, due to its small size, having both ARM64 and ARMv7 as
first-class citizens and simplified binary installation, containing all the necessary components
for a complete Kubernetes-compatible orchestration system within less than 60MB.

With the network configuration done, we ran the necessary commands to setup a single-
server with an embedded database cluster as instructed in the K3s documentation (K3S, 2022).
Figure 14 shows the architecture from the K3s point-of-view, with the "K3s server" and "K3s
Agents" also being run on the physical "Control Plane" and Worker Nodes from figure 13 .

3.9.1 Performance considerations and benchmarking

Experimental data composed of the memory and CPU usage of the system while starting
three replicas of a nginx server was gathered from the system using Perl and bash scripts,
which are described in Appendix B.

The results corroborate with previous profiling studies such as (BÖHM; WIRTZ, 2021).
It is possible to see that the memory (Figure 15) and CPU (Figure 16) usage have three spikes
when spinning the service up but tend to stabilize over the course of a few seconds.

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 42

Figure 14 – Single-server Setup with an Embedded Database.

Source: K3s official documentation (K3S, 2022).

−
20 0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

32.5

33

33.5

34

34.5

35

35.5

36

Time t

U
se

d
R
A
M

%

Plot

Figure 15 – Volatile Memory consumption over time.

Comparing the results with a native deployment of the nginx within a Unix operating
system shows one of the downsides with this approach, as the RAM overhead is much greater
than just the service running inside a Docker container without the orchestrator overhead, as
it can be seen in Listing 10.

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 43

−
50 0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

0

5

10

15

20

25

30

35

40

45

50

Time t

C
P
U

U
sa

ge
(a

ll
co

re
s)

%

Plot

Figure 16 – Volatile Memory consumption over time.

Listing 10 – Memory and CPU usage of a nginx service running inside a Docker container, not considering the
orchestrator overhead.

1

2 CPU % MEM USAGE

3 0.05% 7.504 MiB

3.10 CHANGING THE CLUSTER STATE BASED ON CONTEXT INFORMATION

With the cluster completely up and running on physical hardware, it is a matter of writing
the proper YAML files to deploy the monitoring server and agent applications themselves on the
cluster. A complete description of the code can be found in appendix. Having the monitoring
applications running on the cluster enables a path of information between the Raspberry Pi
Nodes and the database running on the server.

Getting information from the individual Nodes in the cluster is a first step providing a
control loop over the state of cluster, but our implementation is still lacking a way to connect
a software entity that monitors the cluster using the information provided by the Monitoring
framework via the database and also issues commands to the Kubernetes cluster when actions
must be taken.

To achieve such functionality, Kubernetes provides a REST API that can be used to
control and receive information about the current state of the cluster. Instead of writing a
higher-level logic to handle the REST API, the Kubernetes project support several classes in
different programming languages that implement such communication with the API. As the

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 44

Monitoring framework is fully written in Python, the Kubernetes Client API implementation in
Python was chosen.

As the monitoring framework was developed in a highly object-oriented manner, con-
necting the Kubernetes Python Client API to the database using the same connector class
developed for the use within the monitoring server itself. Implementation details can be seen
in the Appendix

And with this we have a complete monitoring solution of the each Node that is being
deployed in the cluster.

3.11 USE-CASES FOR THE MONITORING FRAMEWORK

3.11.1 Use-case number 1 for the Monitoring framework: Context-Reactive Pod
Switch

One interesting application of using Kubernetes in this context is that the combination
Kubernetes and the Monitoring framework may be used to arrange custom switching between
applications on the different layers. The use case scenario is the following:

1. Application runs on battery-powered Edge Layer Node.

2. Application consumes too much battery, in direction of a downtime.

3. Custom loop using reads the Monitoring framework database detects battery anomaly.

4. Custom loop issues a Kubernetes command to switch one or more Pods from the Edge
Layer to the Public Cloud or Edge Cloud Layer.

A graphical explanation of the behaviour follows in figures 17 through 19.

Figure 17 – Edge Node has a running Pod and has 100% battery capacity.

Pod

Edge Node at 100% battery Public Cloud Node

in-cluster db

Source: by the Author.

This is a direct application of a known pattern used in Kubernetes: automatic computa-
tional scaling and offloading (for example, running AI inference routines on Nodes with more

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 45

Figure 18 – Node falls to 20% battery, orchestrator automatically detects this through the monitoring framework
and creates a Pod on the Public Cloud Layer.

Pod

Edge Node at 20% battery Public Cloud Node

in-cluster db

Pod

Source: by the Author.

Figure 19 – A service watching the database, with battery information fed by the monitoring framework,
switches the Pod to run in the Cloud, letting the Node recharge its battery or be serviced

Edge Node recharging Public Cloud Node

in-cluster db

Pod

Source: by the Author.

appropriate hardware), but with the augmented functionality of being context-aware, reacting
to context and physical changes in the parameters of each Node.

The actual code that provides this functionality can be examined in Listing 18 of Ap-
pendix A, with the crucial snippet being a call to a patch_deployment function, which modifies
the PodSpec to switch the application if a certain condition is met. In the original demonstrator,
the case for switching a Pod was if the battery capacity went down by 30%, as it can be seen in
the snippet. The battery capacity was taken directly from the database fed by the Monitoring
framework.

Listing 11 – Example of a Kubernetes data description, in this case, a deployment of the nginx web server.

1 def patch_deployment(a, deployment):

2 api_response = a.patch_namespaced_deployment(

3 name = deployment ,

4 namespace = 'default ',

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 46

5 body = {"spec": {"template": {"spec": {"nodeSelector":

{"power": "low"}}}}},

6 pretty = 'true'

7)

8 print("Deployment updated. status='%s'" %

str(api_response.status))

9

10

11 if(last_battery_charge < 30):

12 patch_deployment ()

3.11.2 Use-case number 2 for the Monitoring framework: Context-Aware Schedul-
ing

This is a direct application from (CHIMA OGBUACHI et al., 2020). Using the approach
on the aforementioned paper, we can defined a Node score function based on the metrics taken
from the Monitoring’s framework database.

The node score function is defined as:

Node Score =
|P |∏
i=1

(pmin

pi

)−wi (1)

Where:

• P is the number of parameters (in our case, system metrics such as temperature, battery
percentage etc).

• pmin is the lowest historical value for that metric.

• pi is the current value of the product loop.

• wi is the current weight for that specific p metric, defined as

wi = σ2
i

ui,n

(2)

with σ being the variance and u being the mean of that value.

As noted in (CHIMA OGBUACHI et al., 2020), because the complexity of calculating
the variance and mean statistics grow linearly with the number of metrics in each parameter,
the Welford Statistics as described in (MACLAREN, 1970) are used to calculate the mean,
variance and standard deviation instead, here reproduced in equations (3), where k is the
iterating variable.

Chapter 3. Development of a Monitoring framework:
bridging IoT and Kubernetes 47

u1 = p1, u‘k = uk−1 + (pk − Mk−1)
k

(3a)

S1 = 0, Sk = Sk−1 + (pk − uk−1) × (pk − Mk) (3b)

These are directly translated to Python code with the RunningStatistics class, which can
be fully examined in Appendix A with relevant excerpt in Listing 12.

Listing 12 – Online methods to calculate the mean and variance of a given set.

1 self.new_mean = self.previous_mean + (x - self.previous_mean) /

self.n

2 self.new_variance = self.old_variance + (x - self.previous_mean) *

(x - self.new_mean)

As the development is fully object-oriented, it is a matter of instantiating the Run-
ningStatistics class and using it together within the Kubernetes API to select the best Node
based on the custom score. The functionality is encapsulated in the best_node method (List-
ing 13).

Listing 13 – Method to establish the best node giving a wide range of parameters.

1

2 def best_node(nodes):

3 if not nodes:

4 return []

5 node_scores = []

6 for node in nodes:

7 node_scores.append(get_node_score(node))

8 best_node = nodes[node_scores.index(min(node_scores)) + 1]

9 return best_node

A full example using the method described in this section, the Kubernetes API and the
Database fed by the monitoring agents to schedule Pods to nodes can be found in Listing 20
within Appendix A.

4 CONCLUSION

4.1 DISCUSSION

The main objective stated in the introduction chapter was met, with the provided
documentation and code this work provides a starting point for whoever wishes to created a
distributed IoT project using Kubernetes and containerization technologies. The architecture
is sufficiently adaptable such that any programming language, database or even orchestrator
can be used and still benefit from the provided structure.

Regarding the specific objects, this work provided a brief historical overview of the con-
tainerization and orchestration ecosystem, technologies ubiquitous in the software engineering
organizations today. We also have successfully implemented a monitoring framework and cre-
ated some level of integration around it, including use-cases only present in academic works.
The benchmarks also provide a safety backdrop for projects willing to use orchestration systems
in production, which seems now reminiscent of the early days of the containerization approach
adoption for embedded devices.

4.2 FUTURE WORKS

Future works may explore areas such as:

• Use of the remoteproc or RPMsg, Linux Kernel frameworks that can reprogram or
communicate directly with microcontrollers, connecting the Edge Layer and Smart Sensor
Layer directly, as an alternative deployment scenario.

• Variable period of sampling for the different system metrics.

• Use of off-the-shelf observability tools such as fluentbit instead of the custom monitoring
framework.

• Continuous Delivery/Continuous Integration within the cluster for automatic IoT updates,
which is arguably one of the most sought-after commercial areas in embedded Linux.

• Conduct studies on the resource consumption modeling of different orchestrators.

REFERENCES

ATZORI, Luigi; IERA, Antonio; MORABITO, Giacomo. The Internet of Things: A survey.
Computer Networks, v. 54, n. 15, p. 2787–2805, 2010. ISSN 1389-1286. DOI:
https://doi.org/10.1016/j.comnet.2010.05.010. Available from:
<https://www.sciencedirect.com/science/article/pii/S1389128610001568>.
Cit. on pp. 7, 18.

BÖHM, Sebastian; WIRTZ, Guido. Profiling Lightweight Container Platforms: MicroK8s and
K3s in Comparison to Kubernetes. In: ZEUS. [S.l.: s.n.], 2021. P. 65–73. Cit. on p. 41.

BUGNION, Edouard; NIEH, Jason; TSAFRIR, Dan. Hardware and Software Support for
Virtualization. [S.l.]: Springer International Publishing, 2017. DOI:
10.1007/978-3-031-01753-7. Available from:
<https://doi.org/10.1007/978-3-031-01753-7>. Cit. on pp. 19–21.

BURNS, Brendan et al. Borg, omega, and kubernetes. Communications of the ACM,
ACM New York, NY, USA, v. 59, n. 5, p. 50–57, 2016. Cit. on pp. 26, 27.

CASALICCHIO, Emiliano. Container Orchestration: A Survey. In: Systems Modeling:
Methodologies and Tools. Ed. by Antonio Puliafito and Kishor S. Trivedi. Cham: Springer
International Publishing, 2019. P. 221–235. ISBN 978-3-319-92378-9. DOI:
10.1007/978-3-319-92378-9_14. Available from:
<https://doi.org/10.1007/978-3-319-92378-9_14>. Cit. on pp. 21, 22, 25.

CHIMA OGBUACHI, Michael et al. Context-aware Kubernetes scheduler for edge-native
applications on 5G. Journal of communications software and systems, Udruga za
komunikacijske i informacijske tehnologije, Fakultet . . ., v. 16, n. 1, p. 85–94, 2020. Cit. on
pp. 7, 18, 28, 32, 46.

CNCF. CNCF Annual Survey 2021. [S.l.: s.n.], Aug. 2021. Cit. on p. 26.

GOOGLE. Release 0.1.0 · Google/Lmctfy. [S.l.]: Google, Oct. 2013. Available from:
<https://github.com/google/lmctfy/releases/tag/0.1.0>. Cit. on p. 23.

HOCKIN, Tim. lmctfy@googlegroups. [S.l.]: Google, Oct. 2013. Available from:
<https://groups.google.com/g/lmctfy/c/e6oGQELK2oA/m/1TEGXtRUdBAJ>. Cit. on
p. 23.

https://doi.org/https://doi.org/10.1016/j.comnet.2010.05.010
https://www.sciencedirect.com/science/article/pii/S1389128610001568
https://doi.org/10.1007/978-3-031-01753-7
https://doi.org/10.1007/978-3-031-01753-7
https://doi.org/10.1007/978-3-319-92378-9_14
https://doi.org/10.1007/978-3-319-92378-9_14
https://github.com/google/lmctfy/releases/tag/0.1.0
https://groups.google.com/g/lmctfy/c/e6oGQELK2oA/m/1TEGXtRUdBAJ

REFERENCES 50

JNAGAL, Rohit. Update project status. [S.l.]: Google, May 2015. Available from: <https:

//github.com/google/lmctfy/commit/0b317d7eb625d1877a8a0aaf2f46f770d9a5a50f>.
Cit. on p. 23.

K3S. K3s - Lightweight Kubernetes. [S.l.: s.n.], 2022. Available from:
<https://docs.k3s.io/>. Visited on: 15 July 2022. Cit. on pp. 41, 42.

LABORATORIES, Bell Telephone. Unix Programmer’s Manual. 7. ed. [S.l.], Jan. 1979.
Cit. on p. 22.

LAMMI, Toni Juhani. Feasibility of application containers in embedded real-time
Linux. 2018. MA thesis. Cit. on p. 28.

LEE, Hyeongju et al. Scalable and High Available Kubernetes Cluster in Edge Environments
for IoT Applications. Helsingin yliopisto, 2021. Cit. on p. 28.

LINUX. cgroups(7) — Linux manual page. [S.l.], Aug. 21. Cit. on p. 22.

LINUX. namespaces(7) — Linux manual page. [S.l.], Aug. 21. Cit. on pp. 22, 23.

LXC. What’s LXC? [S.l.: s.n.]. LXC Website. Available from:
<https://linuxcontainers.org/lxc/introduction/>. Cit. on p. 22.

MACLAREN, M Donald. The art of computer programming. Volume 2: Seminumerical
algorithms (Donald E. Knuth). SIAM Review, SIAM, v. 12, n. 2, p. 306–308, 1970. Cit. on
p. 46.

MORABITO, Roberto; KJÄLLMAN, Jimmy; KOMU, Miika. Hypervisors vs. Lightweight
Virtualization: A Performance Comparison. In: 2015 IEEE International Conference on Cloud
Engineering. [S.l.: s.n.], 2015. P. 386–393. DOI: 10.1109/IC2E.2015.74. Cit. on p. 21.

NORONHA, Vivian et al. Performance evaluation of container based virtualization on
embedded microprocessors. In: IEEE. 2018 30th International Teletraffic Congress (ITC 30).
[S.l.: s.n.], 2018. P. 79–84. Cit. on p. 28.

OCI. Open Containers Overview. [S.l.]: OCI, June 2015. Available from:
<https://opencontainers.org/about/overview/>. Cit. on p. 24.

POPEK, Gerald J.; GOLDBERG, Robert P. Formal Requirements for Virtualizable Third
Generation Architectures. Commun. ACM, Association for Computing Machinery, New

https://github.com/google/lmctfy/commit/0b317d7eb625d1877a8a0aaf2f46f770d9a5a50f
https://github.com/google/lmctfy/commit/0b317d7eb625d1877a8a0aaf2f46f770d9a5a50f
https://docs.k3s.io/
https://linuxcontainers.org/lxc/introduction/
https://doi.org/10.1109/IC2E.2015.74
https://opencontainers.org/about/overview/

REFERENCES 51

York, NY, USA, v. 17, n. 7, p. 412–421, July 1974. ISSN 0001-0782. DOI:
10.1145/361011.361073. Available from: <https://doi.org/10.1145/361011.361073>.
Cit. on p. 19.

RAD, Babak Bashari; BHATTI, Harrison John; AHMADI, Mohammad. An introduction to
docker and analysis of its performance. International Journal of Computer Science and
Network Security (IJCSNS), International Journal of Computer Science and Network
Security, v. 17, n. 3, p. 228, 2017. Cit. on pp. 21, 23.

STATISTA. Number of Internet of Things (IoT) connected devices worldwide from
2019 to 2021, with forecasts from 2022 to 2030. [S.l.: s.n.], 2022. Available from:
<https://www.statista.com/statistics/1183457/iot-connected-devices-

worldwide/>. Visited on: 15 Jan. 2023. Cit. on p. 18.

https://doi.org/10.1145/361011.361073
https://doi.org/10.1145/361011.361073
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

Appendix

APPENDIX A – MONITORING FRAMEWORK CODE AND DEPLOYMENT
FILES

A.1 FRAMEWORK CODE

Listing 14 – Code for the monitoring-server portion of the framework seen in Figure 9.

1 #!/usr/bin/python3

2 import asyncio

3 import logging

4

5 from database_setup import Database

6

7 import grpc

8 import uuid

9 from random import randrange

10

11 # these should be generated by our protobuf definition

12 import deviceproperties_pb2

13 import deviceproperties_pb2_grpc

14

15 async def run() -> None:

16

17 while True:

18 async with grpc.aio.insecure_channel("monitoring -agent :50051")

as channel:

19 stub =

deviceproperties_pb2_grpc.GetDeviceInformationStub(channel)

20

21 try:

22 battery_percentage_response =

23 await stub.BatteryPercentage(

24 deviceproperties_pb2

25 .google_dot_protobuf_dot_empty__pb2.Empty())

26

27 battery_voltage_response =

28 await stub.BatteryVoltage(

29 deviceproperties_pb2

30 .google_dot_protobuf_dot_empty__pb2.Empty())

31

32 battery_current_response =

33 await stub.BatteryCurrent(

APPENDIX A. Monitoring framework code and deployment files 54

34 deviceproperties_pb2

35 .google_dot_protobuf_dot_empty__pb2.Empty())

36

37 gpio_voltage_response =

38 await stub.GpioVoltage(

39 deviceproperties_pb2

40 .google_dot_protobuf_dot_empty__pb2.Empty())

41

42 gpio_current_response =

43 await stub.GpioCurrent(

44 deviceproperties_pb2

45 .google_dot_protobuf_dot_empty__pb2.Empty())

46

47 uuid_response =

48 await stub.Uuid(

49 deviceproperties_pb2.google_dot_protobuf_dot_empty__pb2.Empty())

50

51 logging.info("GetDeviceInformation client received:")

52 logging.info("BatteryPercentage: " +

str(battery_percentage_response.percentage))

53 logging.info("BatteryVoltage: " +

str(battery_voltage_response.voltage))

54 logging.info("BatteryCurrent: " +

str(battery_current_response.current))

55 logging.info("GpioVoltage: " +

str(gpio_voltage_response.voltage))

56 logging.info("GpioCurrent: " +

str(gpio_current_response.current))

57 logging.info("Device UUID: " + uuid_response.uuid)

58

59 except grpc.RpcError as e:

60 logging.info("Agents are probably not up, just retry ...")

61 pass

62

63 logging.info("Inserting actual values from the battery")

64 sql = [

65 "INSERT INTO node_parameters(node_uuid , battery_percentage ,

battery_voltage , battery_current , gpio_voltage ,

gpio_current) VALUES (%s, %s, %s, %s, %s, %s);"]

66 data = (

67 uuid.UUID(uuid_response.uuid),

68 battery_percentage_response.percentage ,

APPENDIX A. Monitoring framework code and deployment files 55

69 battery_voltage_response.voltage ,

70 battery_current_response.current ,

71 gpio_voltage_response.voltage ,

72 gpio_current_response.current)

73 db.execute_query(sql , data)

74

75 await asyncio.sleep (1)

76

77 if __name__ == "__main__":

78 logging.basicConfig(level=logging.INFO)

79

80 db = Database(host="postgres", user="postgres", dbname=None)

81 db.connect ()

82 logging.info("Connected to database")

83 db.create_database(dbname="database")

84

85 logging.info("Creating node_parameters table")

86 db.create_tables(

87 [

88 """

89 CREATE TABLE node_parameters (

90 id SERIAL PRIMARY KEY ,

91 node_uuid UUID NOT NULL ,

92 battery_percentage VARCHAR (255) NOT NULL ,

93 battery_voltage VARCHAR (255) NOT NULL ,

94 battery_current VARCHAR (255) NOT NULL ,

95 gpio_voltage VARCHAR (255) NOT NULL ,

96 gpio_current VARCHAR (255) NOT NULL ,

97 inserted_at TIMESTAMP WITH TIME ZONE DEFAULT

CURRENT_TIMESTAMP

98)

99 """

100]

101)

102

103 logging.basicConfig ()

104 loop = asyncio.get_event_loop ()

105 while True:

106 loop.run_until_complete(run())

Listing 15 – Code for the monitoring-agent portion of the framework seen in Figure 9.

1 #!/usr/env/python3

APPENDIX A. Monitoring framework code and deployment files 56

2 from pijuice import PiJuice

3 import json

4

5 import asyncio

6 import logging

7

8 import grpc

9

10 import deviceproperties_pb2

11 import deviceproperties_pb2_grpc

12

13 pijuice = PiJuice(1, 0x14)

14

15 class GetDeviceInformation(

16 deviceproperties_pb2_grpc.GetDeviceInformationServicer):

17 async def BatteryPercentage(

18 self ,

19 request:

deviceproperties_pb2.google_dot_protobuf_dot_empty__pb2.Empty(),

20 context: grpc.aio.ServicerContext ,

21) -> deviceproperties_pb2.BatteryPercentageReply:

22 charge_percentage = pijuice.status.GetChargeLevel ()

23

24 return deviceproperties_pb2.BatteryPercentageReply(

25 percentage=int(charge_percentage[data])

26)

27

28 async def BatteryVoltage(

29 self ,

30 request:

deviceproperties_pb2.google_dot_protobuf_dot_empty__pb2.Empty(),

31 context: grpc.aio.ServicerContext ,

32) -> deviceproperties_pb2.BatteryVoltageReply:

33

34 battery_voltage_json = pijuice.status.GetBatteryVoltage ()

35

36 return deviceproperties_pb2.BatteryVoltageReply(

37 voltage=int(battery_voltage_json .[data])

38)

39

40 async def BatteryCurrent(

41 self ,

APPENDIX A. Monitoring framework code and deployment files 57

42 request:

deviceproperties_pb2.google_dot_protobuf_dot_empty__pb2.Empty(),

43 context: grpc.aio.ServicerContext ,

44) -> deviceproperties_pb2.BatteryCurrentReply:

45

46 battery_current_json = pijuice.status.GetBatteryCurrent ()

47

48 return deviceproperties_pb2.BatteryCurrentReply(

49 current=int(battery_current_json .[data])

50)

51

52 async def GpioVoltage(

53 self ,

54 request:

deviceproperties_pb2.google_dot_protobuf_dot_empty__pb2.Empty(),

55 context: grpc.aio.ServicerContext ,

56) -> deviceproperties_pb2.GpioVoltageReply:

57

58 gpio_voltage_json = pijuice.status.GetIoVoltage ()

59

60 return deviceproperties_pb2.GpioVoltageReply(

61 voltage=int(gpio_voltage_json .[data])

62)

63

64 async def GpioCurrent(

65 self ,

66 request:

deviceproperties_pb2.google_dot_protobuf_dot_empty__pb2.Empty(),

67 context: grpc.aio.ServicerContext ,

68) -> deviceproperties_pb2.GpioCurrentReply:

69

70 gpio_current_json = pijuice.status.GetIoCurrent ()

71

72 return deviceproperties_pb2.GpioCurrentReply(

73 current=int(gpio_current_json[data])

74)

75

76 async def Uuid(

77 self ,

78 request:

deviceproperties_pb2.google_dot_protobuf_dot_empty__pb2.Empty(),

79 context: grpc.aio.ServicerContext ,

APPENDIX A. Monitoring framework code and deployment files 58

80) -> deviceproperties_pb2.UuidReply:

81

82 f = open("/etc/node_uuid", "r")

83 node_uuid = str(f.readline ()).rstrip ()

84 return deviceproperties_pb2.UuidReply(

85 uuid=str(node_uuid)

86)

87

88

89 async def serve() -> None:

90 server = grpc.aio.server ()

91 deviceproperties_pb2_grpc.add_GetDeviceInformationServicer_to_server(

92 GetDeviceInformation (), server

93)

94 listen_addr = "[::]:50051"

95 server.add_insecure_port(listen_addr)

96 logging.info("Starting server on %s", listen_addr)

97 await server.start()

98 await server.wait_for_termination ()

99

100

101 if __name__ == "__main__":

102 logging.basicConfig(level=logging.INFO)

103 asyncio.run(serve())

Listing 16 – Database class used to create a database, connect, execute commands, queries and table creation
and destruction on a PostgreSQL database instance.

1 #!/usr/env/python

2

3 import psycopg2

4 import psycopg2.extras

5

6

7 class Database:

8 """

9 This database connector DOES NOT SANITIZES THE INPUTS.

10 PLEASE DON'T DEPLOY THIS ANYWHERE NEAR AN END USER.

11 IT IS FOR PURELY FOR PROOF OF CONCEPTS THAT NEED A DB.

12 DO NOT DEPLOY IN ANY WAY , SHAPE OR FORM.

13 """

14

15 def __init__(self , host="localhost", user="postgres",

APPENDIX A. Monitoring framework code and deployment files 59

dbname="database"):

16 # FIXME(ljh): these values should be initilized by connect ()

17 self.conn = None

18 self.cursor = None

19 self.host = host

20 self.user = user

21 self.dbname = dbname

22

23 def connect(self , dbname=None):

24 psycopg2.extras.register_uuid ()

25 try:

26 self.conn = psycopg2.connect(

27 host=self.host , user=self.user , dbname=dbname ,

password="postgres"

28)

29 if self.conn is None:

30 print(

31 "Connection could not be established , connection handler

is "

32 + self.conn

33)

34 self.conn.set_session(autocommit=True)

35 self.cursor = self.conn.cursor ()

36 print("Version:")

37 version = self.cursor.execute("SELECT version ()")

38 row = self.cursor.fetchone ()

39 if row is None:

40 raise ValueError(

41 "Cursor could not execute the request of SELECT

version ()"

42)

43 print(row)

44

45 except (Exception , psycopg2.DatabaseError) as error:

46 print(error)

47 except ValueError as err:

48 print(err.args)

49

50 def destroy_connection(self):

51 self.conn = None

52

53 def create_tables(self , commands):

APPENDIX A. Monitoring framework code and deployment files 60

54 try:

55 for command in commands:

56 self.cursor.execute(command)

57 self.conn.commit ()

58 except (Exception , psycopg2.DatabaseError) as error:

59 print(error)

60 finally:

61 if self.conn is not None:

62 self.conn.close()

63

64 def execute_query(self , queries , data=None):

65 """

66 I know , double try -catch hell. But this is the only way to make

sure that

67 if a connection gets dropped , it will try back again.

68 queries is a list of queries , like this:

69 ["query1", "query2", "query3", "query4"]

70 Make sure that if you pass a single query , it is an 1-ary list.

71 """

72 for query in queries:

73 try:

74 if (data is None):

75 print("Data is None , please use %s if that's an insert")

76 self.cursor.execute(query)

77 else:

78 self.cursor.execute(query , data)

79 self.conn.commit ()

80 except (Exception , psycopg2.DatabaseError) as error:

81 print(error)

82 try:

83 self.cursor.close()

84 self.cursor = self.conn.cursor ()

85 except BaseException:

86 self.conn.close()

87 psycopg2.extras.register_uuid ()

88 self.conn = psycopg2.connect(

89 host=self.host ,

90 user=self.user ,

91 dbname=self.dbname ,

92 password="postgres")

93 if self.conn is None:

94 print(

APPENDIX A. Monitoring framework code and deployment files 61

95 "Connection could not be established , connection

handler is "

96 + self.conn

97)

98 self.cursor = self.conn.cursor ()

99 if (data is None):

100 self.cursor.execute(query)

101 else:

102 self.cursor.execute(query , data)

103 self.conn.commit ()

104

105 def create_database(self , dbname="database"):

106 # checks if database "database" already exists

107 self.cursor.execute(

108 "SELECT 1 FROM pg_catalog.pg_database WHERE datname =

'database '")

109 exists = self.cursor.fetchone ()

110 if not exists:

111 self.execute_query (['CREATE DATABASE database '])

112 self.conn.commit ()

Listing 17 – requirements.txt file, which contains the dependencies for the monitoring python applications.

1 grpcio ==1.49.0

2 protobuf ==4.21.5

3 psycopg2 -binary ==2.9.3

4 six ==1.16.0

5 smbus ==1.1. post2

Listing 18 – Example of context-reactive Pod switch using the database and Kubernetes APIs.

1 #!/usr/bin/env python

2 from database_setup import Database

3 from kubernetes import client , config

4

5 # Configs can be set in Configuration class directly or using helper

utility

6 config.load_kube_config ()

7

8 kubernetes_api = client.AppsV1Api ()

9

10 db = Database(host="localhost", user="postgres", dbname=None)

11 db.connect ()

APPENDIX A. Monitoring framework code and deployment files 62

12 print("Connected to database")

13

14 # grabs the last row on node_parameters

15 db.cursor.execute(

16 "SELECT * FROM node_parameters WHERE id=(SELECT max(id) FROM

node_parameters);")

17 row = db.cursor.fetchone ()

18 last_battery_charge = row[2]

19 print("Last battery percentage is: " + last_battery_charge)

20

21 def patch_deployment(a, deployment):

22 api_response = a.patch_namespaced_deployment(

23 name = deployment ,

24 namespace = 'default ',

25 body = {"spec": {"template": {"spec": {"nodeSelector":

{"power": "low"}}}}},

26 pretty = 'true'

27)

28 print("Deployment updated. status='%s'" %

str(api_response.status))

29

30

31 if(last_battery_charge < 30):

32 patch_deployment ()

33 else:

34 pass

Listing 19 – RunningStatistics class.

1 from cmath import sqrt

2

3

4 class RunningStatistics:

5 """

6 Usage:

7 ```

8 rv = RunningStatistics ()

9 rv.insert (17.0)

10 rv.insert (19.0)

11 rv.insert (24.0)

12 mean = rv.mean();

13 variance = rv.variance ();

14 stdev = rv.standard_deviation ();

APPENDIX A. Monitoring framework code and deployment files 63

15 ```

16 every time `insert ` is called , the values are automatically

computed with an online method.

17 You can test the accuracy of the online method comparing it with

numpy 's own:

18 ```

19 print("Using Numpy Methods:")

20 arr = [17.0, 19.0, 24.0]

21 import numpy as np

22 print("Mean: ", np.mean(arr))

23 # see https ://www.embeddedrelated.com/showarticle /785. php

24 print("Variance: ", np.var(arr , ddof =1))

25 print("Standard Deviation: ", np.std(arr , ddof =1))

26 ```

27 """

28 n = 0

29 previous_mean = 0.0

30 new_mean = 0.0

31 old_variance = 0.0

32 new_variance = 0.0

33

34 def insert(self , x):

35 self.n += 1

36

37 if (self.n == 1):

38 self.previous_mean = self.new_mean = x

39 self.old_variance = 0.0

40 else:

41 self.new_mean = self.previous_mean + (x - self.previous_mean)

/ self.n

42 self.new_variance = self.old_variance + \

43 (x - self.previous_mean) * (x - self.new_mean)

44

45 self.previous_mean = self.new_mean

46 self.old_variance = self.new_variance

47

48 def mean(self):

49 if self.n > 0:

50 return self.new_mean

51 else:

52 return 0.0

53

APPENDIX A. Monitoring framework code and deployment files 64

54 def variance(self):

55 if self.n > 1:

56 return self.new_variance / (self.n - 1)

57 else:

58 return 0.0

59

60 def standard_deviation(self):

61 return sqrt(self.variance ())

Listing 20 – Complete example using a custom node ranking algorithm using information from the database
of the monitoring application and the Kubernetes API.

1 #!/usr/bin/env python

2 from database_setup import Database

3 from kubernetes import client , config , watch

4 from welford import RunningStatistics

5

6 import json

7

8 config.load_kube_config ()

9

10 kubernetes_api = client.AppsV1Api ()

11

12 db = Database(host="localhost", user="postgres", dbname=None)

13 db.connect ()

14 print("Connected to database")

15

16 def get_parameter_statistics(data):

17 rs = RunningStatistics ()

18

19 #FIXME(ljh): AFTER this is done once , then it should only get the

LAST result from the database , because it's an online method.

Getting everything like this right now is EXTREMELY DUMB.

20 for x in data:

21 rs.insert(x)

22

23 mean = rs.mean()

24 variance = rs.variance ()

25 weight = variance / mean

26 return weight

27

28 def get_node_score(node):

29 # grabs the last row on node_parameters

APPENDIX A. Monitoring framework code and deployment files 65

30 query = "SELECT * FROM node_parameters WHERE hostname =

'{}';".format(node.metadata.name)

31 print("Querying information from node")

32 print("Query:", query)

33 db.cursor.execute(query)

34 rows = db.cursor.fetchall ()

35

36 battery_percentage = []

37 for row in rows:

38 battery_percentage.append(row [2])

39 """

40 current.append(row [...

41 """

42 weight = get_parameter_statistics(battery_percentage)

43

44 # This is not considering the summation , only one parameter

45 node_score = (min(battery_percentage) /

46 battery_percentage [-1]) ** (- weight)

47 return node_score

48

49 def best_node(nodes):

50 if not nodes:

51 return []

52 node_scores = []

53 for node in nodes:

54 node_scores.append(get_node_score(node))

55 best_node = nodes[node_scores.index(min(node_scores)) + 1]

56 return best_node

57

58 def nodes_available ():

59 ready_nodes = []

60 for n in kubernetes_api.list_node ().items:

61 # This loops over the nodes available. n is the node. We are

trying to

62 # schedule the pod on one of those nodes.

63 for status in n.status.conditions:

64 if status.status == "True" and status.type == "Ready":

65 ready_nodes.append(n.metadata.name)

66 return ready_nodes

67

68 def scheduler(name , node , namespace="default"):

69 target = client.V1ObjectReference ()

APPENDIX A. Monitoring framework code and deployment files 66

70 target.kind = "Node"

71 target.apiVersion = "v1"

72 target.name = node

73 meta = client.V1ObjectMeta ()

74 meta.name = name

75 body = client.V1Binding(target=target)

76 body.metadata = meta

77 return kubernetes_api.create_namespaced_binding(

78 namespace , body , _preload_content=False)

79

80 def main():

81 # Watch for events

82 w = watch.Watch()

83 for event in w.stream(kubernetes_api.list_namespaced_deployment ,

"default"):

84 # and event['object '].spec.scheduler_name == scheduler_name:

85 if event['object ']. status.phase == "Pending":

86 try:

87 chosen_node = best_node(nodes_available ())

88 print("Scheduling " + event['object ']. metadata.name)

89 res = scheduler(event['object ']. metadata.name , chosen_node)

90 except client.rest.ApiException as e:

91 print("exception")

92 print(json.loads(e.body)['message '])

93

94 if __name__ == '__main__ ':

95 main()

A.2 DEPLOYMENT OF THE MONITORING FRAMEWORK ON KUBERNETES

As described in section 3.2, Kubernetes has its desired state represented by YAML files.
We can use this to deploy the services that compose the Monitoring framework on the assembled
cluster.

In Listing 21, we use the DaemonSet configuration, which makes sure every node in the
cluster gets a monitoring-agent deployed on it.

Listing 21 – YAML file Kubernetes deployment description of the monitoring-agent application using Daemon-
set to deploy an agent on every node in the cluster.

1

2 apiVersion: apps/v1

3 kind: DaemonSet

4 metadata:

APPENDIX A. Monitoring framework code and deployment files 67

5 name: monitoring -agent

6 labels:

7 app: monitoring -agent

8 spec:

9 selector:

10 matchLabels:

11 name: monitoring -agent

12 template:

13 metadata:

14 labels:

15 name: monitoring -agent

16 spec:

17 imagePullSecrets:

18 - name: energy -aware -orchestrator -registry -key

19 containers:

20 - name: monitoring -agent

21 image: registry.gitlab.cc-asp.fraunhofer.de/leo35013 /\

22 energy -aware -orchestrator/monitoring -agent

In a similar fashion the deploy of the monitoring-server can be done. As is shown in
Listing 22, instead of deploying to every node in the cluster, we use the matchLabels property,
which allows only nodes marked as "monitoring-server" to get this deployment assigned to
them.

Listing 22 – YAML file Kubernetes deployment description of the monitoring-server application.

1

2 apiVersion: apps/v1

3 kind: Deployment

4 metadata:

5 name: monitoring -server

6 spec:

7 replicas: 1

8 selector:

9 matchLabels:

10 app: monitoring -server

11 template:

12 metadata:

13 labels:

14 app: monitoring -server

15 spec:

16 imagePullSecrets:

17 - name: energy -aware -orchestrator -registry -key

APPENDIX A. Monitoring framework code and deployment files 68

18 containers:

19 - image: registry.gitlab.cc-asp.fraunhofer.de/leo35013 /\

20 energy -aware -orchestrator/monitoring -server

21 name: monitoring -server

22 env:

23 - name: POSTGRES_HOST

24 value: postgres

25 - name: POSTGRES_PORT

26 value: "5432"

27 - name: POSTGRES_DB

28 value: database

29 - name: POSTGRES_USER

30 value: postgres

31 - name: POSTGRES_PASSWORD

32 value: postgres

A.3 SIMULATING THE CLUSTER WITH KIND

The implementation of the monitoring described in section 3.2 was done regardless of
any Orchestrator software in place. To test the functionality of the software without any
physical hardware, we have used the tool kind, which runs a local Kubernetes cluster within a
development computer using Docker Containers as "Virtual Nodes".

The configuration file in Listing 23 for the kind software was created. As with the real
Kubernetes setup, the nodes representing the Edge Layer were given the "monitored" label,
which signifies that an agent of the Monitoring framework has to run on that particular node.
This was later done with Kubernetes deployment files, explained in the later sections of this
chapter.

Listing 23 – YAML file describing a virtual cluster using kind with two worker nodes and one control plane
node.

1 kind: Cluster

2 apiVersion: kind.x-k8s.io/v1alpha4

3 name: mock -cluster

4 nodes:

5 - role: control -plane

6 - role: worker

7 labels:

8 monitored: yes

9 - role: worker

As a helper to the cluster configuration in Listing 23, the bash script in Listing 24 was
created. The result is a full virtual cluster that we can use to write our deployment files for

APPENDIX A. Monitoring framework code and deployment files 69

the monitoring solution we have developed. One important step that must be highlighted is
the creation of a Kubernetes Secret (that can be seen being used on the deployment files in
Listing 21 and Listing 22 in the imagePullSecrets spec), which makes Kubernetes able to pull
images from the a private Docker Registry, which in our particular case was a managed registry
hosted on GitLab.

Listing 24 – Script to start the kind virtual cluster.

1 kind create cluster --name mock --config cluster -config.yaml

2 kubectl cluster -info --context kind -mock

3 kubectl label node mock -worker node -role.kubernetes.io/worker=worker

4 kubectl label node mock -worker2

node -role.kubernetes.io/worker=worker1

5

6 # every deployment needs to have the following: `imagePullSecrets:

-name: energy -aware -orchestrator -registry -key` on the `spec:

containers:` field.

7 kubectl create secret docker -registry

energy -aware -orchestrator -registry -key \

8 --docker -server=$DOCKER_REGISTRY_SERVER \

9 --docker -username=$DOCKER_USER \

10 --docker -password=$DOCKER_PASSWORD \

11 --docker -email=$DOCKER_EMAIL

APPENDIX B – SCRIPTS USED TO GATHER RUNTIME PARAMETERS

Listing 25 – Perl script used to get data used to generate Figure 15.

1

2 # usage: bash memory -usage.sh <name of the file to be written >.txt

3 timeout="300"

4 counter="0"

5 cat /proc/meminfo | awk -vORS=, '{ print $1 } ' | sed 's/,$/\n/' >>

$1

6 while [${counter} -ne ${timeout}]

7 do

8 cat /proc/meminfo | awk -vORS=, '{ print $2 } ' | sed 's/,$/\n/' >>

$1

9 ((counter ++))

10 sleep 2

11 done

Listing 26 – Perl script used to get data used to generate figure Figure 16.

1

2 #!/usr/bin/perl

3

4 open VMSTAT , "vmstat 2|";

5 <VMSTAT >; <VMSTAT >; # skip the header

6 my $filename = '/home/pi/cpu -usage.csv';

7 while (<VMSTAT >) {

8 open(my $fh , '>>', $filename);

9 @now = split;

10 ($sec ,$min ,$hour ,$mday ,$mon ,$year ,$wday ,$yday ,$isdst) =

localtime (time);

11 printf $fh "%d\n", $now [12] + $now [13];

12 }

APPENDIX C – A PRIMER ON USING DOCKER AND DOCKER COMPOSE.

C.1 DOCKER

Images can be packaged and uploaded to a common web server called a Registry. As
an example, we can use the Docker CLI (Command Line Interface) to pull an image from the
default DockerHub registry, the result is printed in Listing 27.

Listing 27 – Pulling a ubuntu image from the default DockerHub registry using the Docker CLI.

1 $ docker pull ubuntu

2 Using default tag: latest

3 latest: Pulling from library/ubuntu

4 301 a8b74f71f: Pull complete

5 Digest: sha256 :7 cfe75438fc77c9d7235ae502 \

6 bf229b15ca86647ac01c844b272b56326d56184

7 Status: Downloaded newer image for ubuntu:latest

8 docker.io/library/ubuntu:latest

This image is now locally available on our system. If we analyze this image and list its
entries1 in Listing 28, it is possible to see that it is actually composed of metadata and a root
filesystem.

Listing 28 – Files that compose a container image.

1 |-- 58 db3edaf2be6e80f628796355b1bdeaf\

2 8bea1692b402f48b7e7b8d1ff100b02.json

3 |-- d5e9028c535cebbd5d2243c08c5\

4 1ba634d385964dc6b63987bb37c5b844c4140

5 | |-- bin -> usr/bin

6 | |-- boot

7 | |-- dev

8 | |-- etc

9 | |-- home

10 | |-- json

11 | |-- lib -> usr/lib

12 | |-- lib32 -> usr/lib32

13 | |-- lib64 -> usr/lib64

14 | |-- libx32 -> usr/libx32

15 | |-- media

16 | |-- mnt

17 | |-- opt

18 | |-- proc

1 The image was saved using the docker save command as a tar file and then expanded.

APPENDIX C. A primer on using Docker and Docker Compose. 72

19 | |-- root

20 | |-- run

21 | |-- sbin -> usr/sbin

22 | |-- srv

23 | |-- sys

24 | |-- tmp

25 | |-- usr

26 | |-- var

27 | `-- VERSION

28 |-- manifest.json

29 `-- repositories

The file 58db3edaf2be6e80f628796355b1bdeaf8bea1692b402f48b7e7b8d1ff100b02.json
contains the necessary metadata that will used to create the starting configuration of a
container from this image. For example, if we open the file it is possible to see that when the
container is created from this image, the running process will be bash, due to the "Cmd" field
on the json file (Listing 29).

Listing 29 – Excerpt from the metadata file highlighting the Cmd section.

1 "Cmd": [

2 "/bin/bash"

3],

And actually creating the container with the "–interactive –tty" options to keep
"STDIN" alive and allocate a pseudo-TTY will confirm that the bash shell will actually be
running process.

Listing 30 – A primer on using Docker and Docker Compose.

1 $ docker run --interactive --tty ubuntu

2 root@eb93e932034f:# echo $SHELL

3 /bin/bash

In Listing 31 it is also possible to see which namespaces (see discussion in section 2.3)
were created in order to run the container.

Listing 31 – Namespaces created when running bash inside a Debian container

1 NS TYPE NPROCS PID USER COMMAND

2 4026533024 mnt 1 5195 root bash

3 4026533025 uts 1 5195 root bash

4 4026533026 ipc 1 5195 root bash

5 4026533027 pid 1 5195 root bash

6 4026533029 net 1 5195 root bash

7 4026533105 cgroup 1 5195 root bash

APPENDIX C. A primer on using Docker and Docker Compose. 73

The question is then how the original image we pulled was built. For that purpose, the
Dockerfile was created, which is a text representation of everything one would type to create
a Docker Image. One side effect of how Docker Images are stored in memory is that they are
layered by design, meaning they’re composable.

Layers represent a change on the image, and each change is an instruction on the
Dockerfile. With this in hand, we can build upon the Image we downloaded before by writing
a Dockerfile.

Our Dockerfile contains two layers, one being the "base" layer from the internet (using
the "FROM" directive), and the other replacing the "CMD" command, which before was
running the bash shell and now will run the "echo Hello, Thesis!" command.

Listing 32 – Changing the default command on the upstream Ubuntu container image by using a Dockerfile.

1 FROM ubuntu

2

3 CMD ["echo", "Hello , thesis!"]

From this description we build the image using the docker build command, resulting
as shown in Listing 33. Note that we have tagged the image as "hello-thesis", which is the
same as giving an Image a human-readable name.

Listing 33 – AUsing the Docker CLI build command to build a container image from a Dockerfile description.

1 $ ubuntu docker build -t hello -thesis .

2 Sending build context to Docker daemon 2.048kB

3 Step 1/2 : FROM ubuntu

4 ---> cdb68b455a14

5 Step 2/2 : CMD ["echo", "Hello , thesis!"]

6 ---> Running in 9575 a3194a48

7 Removing intermediate container 9575 a3194a48

8 ---> 8f51e76ed4e3

9 Successfully built 8f51e76ed4e3

10 Successfully tagged hello -thesis:latest

If we run the Image as before, we get the desired result as shown in Listing 34.

Listing 34 – Running the newly built container with the modified command.

1 $ ubuntu docker run hello -thesis

2 Hello , thesis!

We can also easily share and deploy this "hello-thesis" Image everywhere that runs OCI
images. With this negligible setup time and low overhead, it’s clear why Container Images
have become the de-facto standard tool for running software in the cloud and on development
computers.

APPENDIX C. A primer on using Docker and Docker Compose. 74

C.2 DOCKER COMPOSE

A tool that offers rudimentary orchestration capabilities is Docker Compose. It is used to
define and run multiple containers, locally, on the same machine, and it lacks several features
of full-fledged orchestrators being generally used as a wrapper around the Docker CLI.

To illustrate, we can orchestrate five replicas of our "hello-thesis" example from sec-
tion C.1. For that, we define a YAML, seen in Listing 35, file that will be parse by the
docker-compose python tool generate the proper state of containers. The result of the invo-
cation section C.1 with docker compose up can be seen in Listing 36, which as expected
creates 5 services each running our build of a custom container. Note that although Docker
Compose has synchronization mechanisms, without specifying one the order which the services
are brought up is non-deterministic.

Listing 35 – An YAML file to be used with the Docker Compose tool.

1 version: "3"

2 services:

3 hello -thesis -1:

4 image: hello -thesis

5 hello -thesis -2:

6 image: hello -thesis

7 hello -thesis -3:

8 image: hello -thesis

9 hello -thesis -4:

10 image: hello -thesis

11 hello -thesis -5:

12 image: hello -thesis

Listing 36 – Result of running docker compose up with the YAML file listed at Listing 35 as input.

1 Starting ubuntu_hello -thesis -2_1 ... done

2 Starting ubuntu_hello -thesis -5_1 ... done

3 Starting ubuntu_hello -thesis -3_1 ... done

4 Starting ubuntu_hello -thesis -4_1 ... done

5 Starting ubuntu_hello -thesis -1_1 ... done

6 Attaching to ubuntu_hello -thesis -2_1,

7 ubuntu_hello -thesis -4_1,

8 ubuntu_hello -thesis -5_1,

9 ubuntu_hello -thesis -1_1,

10 ubuntu_hello - thesis -3_1

11 hello -thesis -2_1 | Hello , thesis!

12 hello -thesis -1_1 | Hello , thesis!

13 hello -thesis -3_1 | Hello , thesis!

APPENDIX C. A primer on using Docker and Docker Compose. 75

14 hello -thesis -4_1 | Hello , thesis!

15 hello -thesis -5_1 | Hello , thesis!

16 ubuntu_hello -thesis -2_1 exited with code 0

17 ubuntu_hello -thesis -4_1 exited with code 0

18 ubuntu_hello -thesis -5_1 exited with code 0

19 ubuntu_hello -thesis -1_1 exited with code 0

20 ubuntu_hello -thesis -3_1 exited with code 0

		2023-03-07T09:04:13-0300

		2023-03-07T10:20:56-0300

		2023-03-07T10:53:01-0300

