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RESUMO

Segmentação semântica é essencial para o entendimento de cenário de estradas
e, consequentemente, para a realização de navegação autônoma. Entretanto, novos
desafios surgem quando essas tarefas são postas em países emergentes dado a
falta de uma infra-estrutura de qualidade ou a restrição a recursos computacionais.
Recentemente, a Confederação Nacional de Transportes (CNT) reportou que 85% das
estradas brasileiras apresentam algum dano como rachaduras, buracos, e remendos;
normalmente, esses danos não são levados em conta pelos modelos de aprendizado
profundo do estado da arte, os quais são treinados para atender a infra-estrutura
de países desenvolvidos em conjunto de dados de alta-resolução como Cityscapes
(2048x1024) e CamVid (920x720). Em 2019, o dataset Road Transverse Knowledge
(RTK) foi projetado especialmente para atender a realidade de países emergentes;
ele consiste de 701 imagens densamente anotadas de baixa-resolução (352x288)
e 12 classes com diferentes categorias de estradas e danos como buracos, poças
d’águas, e rachaduras. Baseado no dataset RTK, esse trabalho indica os principais
desafios para estradas de países emergentes: 1) detecção de objetos pequenos dado
a baixa-resolução da imagem, 2) objetos de múltiplas escalas dado a irregularidade
da forma dos objetos, e 3) classes altamente desbalanceadas dado que as classes de
danos são de tamanho pequeno. Em seguida, esse trabalho propõe a estratégia de
incremento de performance para melhorar os resultados em conjuntos de dados de
países emergentes; a estratégia consiste em uma série de 15 experimentos a fim de
escolher a melhor opção para cada configuração de treinamento, como ampliação de
dados, função perda e otimizador. Além desses, a estratégia sugere modificações na
arquitetura como a remoção da camada max-pooling da ResNet e taxas de dilatação
híbrida e digressiva. Ao final do trabalho, a estratégia alavancou o benchmark do RTK
de 0.547 para 0.798 mIoU no conjunto de validação, e atingiu 0.688 mIoU no conjunto
de teste do TAS500; os melhores resultados publicados até o momento.

Palavras-chave: navegação autônoma; segmentação semântica; estradas em países
emergentes; estradas danificadas; imagens de baixa-resolução.





RESUMO EXPANDIDO

Introdução
Visão computacional é um campo de estudo com soluções que permeiam o nosso dia-
a-dia cada vez mais; desde aplicações em aparelhos celulares como reconhecimento
facial para desbloqueio do próprio aparelho ou para validação de transações bancárias
até em setores mais primários da economia como inspeção de placas em indústrias
ou monitoramento de animais e colheitas no setor agropecuário.
Atualmente, muitas dessas soluções são chamadas basicamente de Inteligência Arti-
ficial (IA). Isso é devido suas soluções serem dominantemente baseadas em apren-
dizado profundo, um subcampo de IA. Aprendizado profundo é um paradigma que
ganhou muita força a partir de 2010 dado o grande poder computacional e a farta
disponibilidade de dados digitais dos nossos tempos. Hoje em dia, a grande difusão
de soluções de IA na sociedade é vista analogamente ao que foi a eletricidade 100
anos atrás; isso é, essa tecnologia permeará todos os meios de produção, economias,
e espaços da sociedade; portanto, uma indústria que não poderia ficar de fora dessa
onda, obviamente, é a indústria automotiva.
A aplicação de IA aos veículos busca em um primeiro momento desonerar o motorista
de estar totalmente empenhado nas faculdades motoras e mentais que exigem o ato
de dirigir, o que traria mais conforto e segurança a ele. Posteriormente, como objetivo
último, a indústria automotiva usaria IA para a completa substituição do motorista hu-
mano - isto é, navegação autônoma ao veículo -, reduzindo custos ao transporte de
cargas e pessoas. A navegação autônoma requer que o veículo mapeie o que está
acontecendo ao seu redor; o que é usualmente feito por vários sensores emissores de
sinais como LIDAR. Entretanto, hoje o senso comum é que apenas a visão passiva, isto
é, sensores que apenas recebem sinais do exterior (no nosso caso, câmeras) atendem
melhor essa função.
Câmeras projetam em suas saídas uma imagem 2D, o que torna segmentação semân-
tica chave para o entendimento da cena ao redor do veículo. Segmentação semântica
é a tarefa que assinala uma classe a cada pixel da imagem. As classes usuais são
a própria definição da coisa pela perspectiva de direção, como pedestres, carros,
calçadas, faixas, e etc.
A possibilidade de navegação autônoma é muito excitante, porém, essas tecnologias
são normalmente desenvolvidas em países desenvolvidos e primeiramente atenderão
a sua realidade, que pode diferir bastante da realidade de países emergentes. Por ex-
emplo, um relatório de 2021 da Confederação Nacional de Transportes (CNT) reportou
que 85% das estradas brasileiras apresentam algum dano como rachaduras, remendos
ou buracos. Além disso, outra restrição bastante comum aos países emergentes é a
restrição ao poder computacional, o que impossibilita o uso do algoritmo mais potente;
por exemplo, capacidade de processar a imagem em alta resolução.
Algum dos datasets mais comum para o desenvolvimento de algoritmos do estado da
arte para segmentação semântica são datasets de alta resolução como Cityscapes
(2048x1024) e CamVid (920x720) que representam estradas urbanas europeias em
excelentes estados de manutenção e não possuem nenhum classe assinalada a danos
nas estradas. A fim de representar a realidade brasileira pra esse problema, em 2019,
o dataset Road Transverse Knowledge (RTK) foi lançado, contando com 701 imagens
densamente rotuladas e 12 classes que representam variações da superfície da pista,
sinalizações e danos.



Pelo fato do RTK apresentar um cenário particular, logo ele também apresenta desafios
particulares, como 1) a presença de objetos minúsculos em números de pixels, por
exemplo, faixas que tem bordas de 1 pixel de comprimento; 2) classes em multi-escalas
de formas geométricas, por exemplo, olhos de gatos retangulares e pequenos no meio
de faixas finas e compridas; ou classes de formas totalmente irregulares como poças
d’águas e rachaduras; e 3) alto desbalanceamento de classes dado que danos são
classes de tamanho pequeno, sendo 98.5% representando plano-de-fundo e superfí-
cies da pista. Ademais, esse trabalho também usou o modelo de aprendizado profundo
desenvolvido originalmente pelos autores do dataset RTK como ponto de partida; o
qual não adotou práticas recorrentes encontradas no estado-da-arte que foram trazidos
por esse trabalho a fim de melhorar a performance de um modelo no dataset RTK.
A proposta desse trabalho é a estratégia de incremento de performance que con-
siste de uma série de 15 experimentos. Cada experimento busca escolher a melhor
opção para cada configuração de treinamento do algoritmo de aprendizado profundo;
um experimento é composto de várias hipóteses, que são as possíveis opções para
essa configuração; a melhor hipótese é escolhida a partir de um estudo de ablação.
Os experimentos são aditivos, isso é, o experimento seguinte roda a partir da melhor
hipótese consagrada no experimento anterior.
Por mais, os 15 experimentos foram organizados em 4 categorias: base, predição,
técnica, e arquitetura. Base conta com apenas um experimento que testa o número de
iterações. Predição também conta com um único experimento que usa a média de um
elenco de predições de várias versões da mesma imagem. Técnica conta com os ex-
perimentos das configurações marginais aos treinamento como otimizador, ampliação
de dados, ou número de estágios de treinamento. Por último, arquitetura conta com
experimentos de alterações diretamente na arquitetura como tipos de textitencoder,
tipos de arquitetura, hiper-parâmetros da arquitetura como output stide, e modificações
de arquitetura como a remoção da camada de textitmax-pooling.

Objetivos
Os objetivos deste trabalho estão listado abaixo:

• Analisar quantitativamente e qualitativamente as características do dataset RTK.
• Desenvolver uma estratégia para melhorar a performance de segmentação semân-

tica em estradas de países emergentes; isso é, a estratégia de incremento de
performance.

• Aplicar a estratégia de incremento de performance no dataset RTK.
• Analisar quantitativamente e qualitativamente os resultados da estratégia.
• Aplicar a estratégia de incremento de performance no dataset TAS500.
• Resumir os principais achados após a execução da estratégia em dois datasets.

Metodologia
Todos os experimentos rodaram na plataforma do Google Colab usando a biblioteca
PyTorch 1.12. Primeiramente, rodou-se todos os experimentos no dataset RTK. Depois,
a fim de validar a estratégia, usou-se um segundo dataset, o TAS500.
A métrica usada para mensurar a performance dos experimentos foi o mean inter-
section over union (mIoU); e dado a volatilidade da métrica após a convergência do



treinamento no conjunto de validação (em torno de 1%), optou-se por usar a média das
10 últimas medições para estabelecer o mIoU final de cada hipótese. Cada hipótese
rodou 200k iterações, salvo poucas exceções que foram explicitamente ditas.

Resultados e Discussão
A estratégia trouxe ganhos significativos e atingiu resultados top-1 em ambos datasets.
Entretanto, o conjunto de hipóteses que melhor funcionou para um foi totalmente
diferente do que melhor funcionou para o outro. Por exemplo, enquanto resizing como
ampliação de dado, output stride 16 para o encoder do DeepLabV3+, função perda
CE + soft-Dice, e otimizador SGD melhor funcionaram para o TAS500; cutmix, output
stride 4, função perda CE, e otimizador Adam melhor atenderam o RTK.
A lista abaixo sumariza os principais pontos encontrados nos experimentos.

• A segmentação semântica de objetos pequenos em imagens de baixa-resolução
é um problema se as dimensões do mapa de característica for reduzida antes da
extração de características de mais alto-nível ou se essa informação não for re-
adicionada a rede posteriormente, por exemplo, com uma skip-connection. A rede
neural tende a preditar um alto número de falso-positivos de objetos pequenos; o
algoritmo tende a ter uma alta sensibilidade para essas classes mas uma baixa
precisão.

• As classes mais difíceis para segmentação semântica do RTK são: rachaduras,
poças d’águas e olhos de gatos.

• Fora confirmado o viés que existe da métrica mIoU em objetos grandes.
• CE otimiza a métrica mIoU melhor do que a própria função-substituta de mIoU ou

de dice.
• A performance de cada hipótese do experimento depende da condição inicial ao

qual ela é testada.
• Quando uma hipótese foi melhor que a outra, ela funcionou melhor para todos os

grupos de classes; por exemplo: objetos pequenos, objetos grandes, objetos sub-
representados.

• A alta discrepância entre a melhor configuração entre os dois datasets endossa a
necessidade de uma solução ajustada para cada contexto.

• Configurações convencionais são normalmente mais robustas que configurações
mais sofisticadas, e elas devem ser nossas primeiras tentativas.

Considerações Finais
A estratégia foi efetiva, e acreditamos que o trabalho avança na direção de tornar
possível a navegação autônoma em países emergentes. Também pensamos que esse
conjunto de experimentos da estratégia pode ser um guia para outros problemas de
segmentação semântica, já que muitas dessas configurações são comuns a diversos
problemas.





ABSTRACT

Semantic segmentation is vital for understanding a road scene and, consequently,
achieving autonomous driving. However, new challenges arise when attempting these
tasks in emerging countries, given the lack of high-quality infrastructure or limited com-
putational resources. Recently, the Brazilian National Transport Confederation (CNT)
reported that 85% of the Brazilian roads present some damage like cracks, holes, and
patches; these damages are usually not regarded by the state-of-the-art deep learn-
ing models of road semantic segmentation, which are trained to meet the developed
countries infra-structure in high-resolution datasets like Cityscapes (2048x1024) and
CamVid (920x720). In 2019, the Road Transverse Knowledge (RTK) was specially de-
signed to meet the emerging country reality; it consists of 701 fine-annotated images of
low-resolution (352x288) and 12 classes with different road surfaces and damages like
potholes, water puddles, and cracks. Based on the RTK dataset, this work points out
the main challenges for emerging country roads: 1) small objects given low-resolution
images, 2) multiscale objects given irregular-shaped objects, and 3) highly imbalanced
classes given road-damages small size. Finally, this work proposes the performance
increment strategy to enhance results in emerging country datasets; the strategy con-
sists of a series of 15 experiments to choose the best option for each training setup like
data augmentation, loss function, and optimizer. Furthermore, the strategy suggests
architecture modifications such as the max-pooling layer removal from ResNet and
hybrid and digressive dilation rates. In the end, the strategy raised the RTK benchmark
from 0.547 to 0.798 mIoU on the validation set; and reached 0.688 mIoU in the TAS500
test set, the best results published so far.

Keywords: autonomous driving; semantic segmentation; emerging countries roads;
damaged roads; low-resolution images.
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1 INTRODUCTION

Vision is a powerful sense; it is no wonder that since the early days of the digital
computer, attempts were made to give machines a sense of vision (HORN, B.; KLAUS;
HORN, P., 1986). These attempts initiated the field of computer vision in the early
1970s which was viewed, at the time, as the visual perception component of an ambi-
tious agenda to mimic human intelligence and to endow robots with intelligent behavior
(SZELISKI, 2010). A robot vision system would analyze images and produces descrip-
tions of what is imaged; these descriptions would capture useful aspects of the objects
being imaged for carrying out some task (HORN, B.; KLAUS; HORN, P., 1986); as
underlined in (SZELISKI, 2010), these descriptions could be shape, illumination, color
distributions, or scene understanding like the semantic understanding or 3D structural
description.

Nowadays, computer vision applications are in our daily life, for example, facial
recognition for authentication systems, augmented reality for car parking assistance,
and object detection for automatic inspection. And today, these applications are sim-
ply known as artificial intelligence, mainly because their solutions are based on deep
learning, an artificial intelligence branch. Deep learning had an explosive growth of
publications and commercial applications in the last decade, leveraged by the rising of
large datasets and the increase of computational power (LECUN; BENGIO; HINTON,
G., 2015); its applications are spread all over engineering solutions and economies;
and, consequently, they are the most popular and widely approach for computer vision
tasks.

Another long human ambition involving computer vision and artificial intelligence
is autonomous driving, which is continuously pushed by the automotive industry, mo-
tivated by increasing people’s safety, comfort, and transportation costs reduction. Au-
tonomous driving is only possible if we fully understand the vehicle’s surrounding scene,
answering questions such as, What is happening? Why is it happening? What will
happen next? What should I do? For example, the vision system would recognize
nearby people and vehicles, anticipate their motions, infer traffic patterns, and detect
road conditions (HOIEM et al., 2015). Surprisingly, the plain use of passive vision has
accomplished these tasks, i.e., without sending any signal outwards, such that the sys-
tem inputs are only based on 2D images; the plain use of 2D images turns semantic
segmentation a central subject to solve these tasks.

Moreover, autonomous driving is cutting-edge technology and, as usual, these
technologies start in developed countries’ industries meeting their infrastructure reality
which can vary a lot from emerging countries that lack high-quality infrastructure. A
typical example of emerging country roads is found in Brazil. The Brazilian National
Transport Confederation (CNT) 2021 survey (CNT, 2021) published that only 15% of
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the Brazilian roads are in perfect condition; the other 85% of the roads, which sum
92,711 km, present some problems. The main problems are fatigue failure, cracks,
holes, patches, and wavy asphalt surfaces. These difficulties force particular attention
to developing autonomous driving systems for emerging countries.

Another common scenario in emerging countries is the lack of resources to
spend on high-tech devices, which implies vehicles with less computing power, and,
consequently, the processing of high-quality images becomes infeasible. Overall, an
adapted autonomous vehicle in emerging countries would need to tackle a high number
of damages on the road, different types of road surfaces, and low-resolution images.
Nonetheless, most popular datasets used for training deep learning models designed
to solve the semantic segmentation of a scene miss these hurdles.

Among the most popular semantic segmentation datasets for road and street
scenes are Cityscapes (CORDTS et al., 2016), CamVid (BROSTOW; FAUQUEUR;
CIPOLLA, 2009), and KITTI (GEIGER et al., 2013); all recorded in European cities
in urban good-condition streets; all of them did not assign any label for damages.
Alternatives dataset related to emerging countries are OffRoadScene (SHANG et al.,
2013), RoadDamageDetector (MAEDA et al., 2018), and CaRINA (SHINZATO et al.,
2016), however, either they do not have great variation in surfaces conditions and
damages, or they are unavailable. Attempting to solve this need, (RATEKE; JUSTEN;
VON WANGENHEIM, 2019) built the Road Transverse Knowledge (RTK) dataset.

The RTK dataset presents countryside roads of good and precarious qualities
of asphalt, paved and unpaved surfaces. They captured more than 77 thousand low-
resolution images in different light conditions during the daytime. 701 out of the 77k
images are fine-annotated images with 12 classes for the semantic segmentation task.
The assigned classes are the road surfaces (asphalt, paved, and unpaved), the road
signs (markings, cat’s eyes, and speed bumps), the damages and fixes (patches, water-
puddles, potholes, and cracks), and storm-drains. As the RTK dataset represents a
specific reality, it also raises specific issues presented next.

1.0.1 RTK Issues

The dataset has a highly imbalanced class condition in which the background
and the road surface categories count for 98.5% of all pixels, remaining only 1.5% of
the pixels for the other eight classes. The imbalanced scenario raises the risk of the
model overlooking underrepresented classes or overrunning in false positives.

The dataset has an intentional low-resolution aspect of 352x288, in contrast with
other datasets, e.g., Cityscapes use 2048x1024, and CamVid uses 960×720. The res-
olution disparity may require changes to usual architectures based on high-resolution
datasets. Low-resolution images have tiny objects, given the low number of pixels; for
example, RTK includes many objects with tiny edges less than or equal to 5 pixels,
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e.g., cat’s eyes class has 70% of their objects in this situation; even a more extreme
condition of a single-pixel edge occurs in 15% of the objects from the road markings
class. These objects can vanish at the beginning of the neural network forward, given
the stride from convolutional and pooling layers.

Another issue in the dataset is the presence of multiscale elements on the image,
e.g., road surfaces are broad and have a well-defined shape, whereas patches do not
have a regular shape and size. Multiple shapes with variations even within the same
class happen in the same image. This issue becomes more complex when a high
number of classes appear in the image, e.g., 17% of the images present five or more
classes.

Furthermore, we noticed that the first solution (RATEKE; VON WANGENHEIM,
2021) proposed by the dataset’s authors, which we set as the baseline for this work,
missed some practices found in state-of-the-art projects in the field like cropping and
resizing operations for data augmentation, Stochastic Gradient Descent (SGD) opti-
mizer with polynomial learning rate, and a higher number of training iterations. Their
first solution setup used U-Net (RONNEBERGER; FISCHER; BROX, 2015) backboned
by Resnet34 (HE, K. et al., 2016) which was trained on a two-stage regime; in the
first stage, the model was trained with cross-entropy loss by 100 epochs, and in the
second stage, the model trained with weighted cross-entropy loss for another 100
epochs. Besides, their setup included horizontal rotations, perspective warping as data
augmentation, and Adam optimizer with a 1-cycle learning policy.

In addition, their reported benchmark was 97% of accuracy over the validation
set. Although it looks like a high number, accuracy is not the proper metric for a multi-
class problem. The metrics commonly adopted on the semantic segmentation works
are mean Intersection-over-Union (mIoU) (EVERINGHAM et al., 2015; CORDTS et al.,
2016) that averages the IoU individually computed for each class. Thereby, an evalua-
tion of mIoU is needed.

1.0.2 Contributions

This work proposed the performance increment strategy to check how the
missing practices from state-of-the-art works and how other specific techniques from
imbalanced datasets, small objects, and multiscale segmentation works would incre-
ment the RTK results, and, consequently, results in emerging country roads datasets.

This work tested multiple state-of-the-art techniques in many parts of a deep
learning training setup. For example, we tested the usual cropping and resizing along
with cutmix as data augmentation, we tested the importance of depth on the architecture
encoder, we tested ResNet variants as encoder backbone, and we tested region-based
loss functions in comparison to the distribution-based ones; furthermore, we proposed
modifications on the network architecture to meet the RTK issues needs like the removal
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of the max-pooling layer on the ResNet architecture which, to best of our knowledge,
was the first time it was done to preserve small objects segmentation.

In the end, the proposed strategy raised the RTK benchmark from 0.549 to 0.798
mIoU. An additional dataset for unstructured environments, TAS500 (METZGER; MOR-
TIMER; WUENSCHE, 2021), was also used to endorse the performance increment
strategy, which reached the 0.688 mIoU on the test set evaluation, the best published
result so far.

This work also presented an in-depth analysis of the RTK dataset, sharing statis-
tics and visual analysis of small and multiscale objects. Besides, performance analysis
of the trained models was presented by classes or groups of classes like small objects,
small edges, and underrepresented.

1.1 PROPOSAL

The performance increment strategy consists of an additive series of ablation
experiments. Each experiment checks the best performance between a set of hypothe-
ses; for example, which augmentation operation works better for the RTK dataset?
Geometry operation? Color operations? Both together? Each of these options is a hy-
pothesis. The ablation experiments answer the questions of the best hypothesis for a
part of the training setup. The next ablation experiment on the series is built over the
best hypotheses acquired until that stage.

Figure 1 – The performance increment strategy experiments.

The performance increment strategy consists of 15 ablation experiments orga-
nized into four categories: baseline, technique, architecture, and prediction; see Figure
1. Baseline and prediction categories include a single ablation experiment, each. The
baseline category has the iteration experiment that keeps the exact baseline setup and
tests only the number of iterations. Meanwhile, the prediction category has a voting
ensemble experiment that tests an ensemble of predictions from the same image may
help.
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The technique category contains setups that surround the training like pre-
processing and optimizer choices; the category includes five experiments: single-stage
training, data augmentations, cutmix, loss functions, and optimizers. Finally, the ar-
chitecture category, the largest one, says about any modification on the network and
includes eight ablation experiments: encoder depths, ResNet variants, networks, output
strides, max-pooling removal, rich stem, transposed convolutions, and local feature
extractor.

The list below shows the series of ablation experiments in their application order;
each item follows the category name, the experiment name, and its central question; the
subitems outline the experiment’s hypotheses. One note, the hypotheses options may
be reduced or simplified to avoid overextending the list, mainly the "yes/no" answers;
for complete visualization of the hypotheses, check out the experiments section 4.3.

1. Baseline: Iterations - Do more training iterations help?

a) 14k iterations

b) 100k iterations

c) 200k iterations

2. Technique: Single-stage Training - Does single-stage work better?

a) Single-stage with cross-entropy

b) Single-stage with weighted cross-entropy

c) Two-stages

3. Technique: Data Augmentations - Which augmentation operation works bet-
ter?

a) Crop

b) Cropping & Color

c) Cropping & Resizing

d) Geometry

e) Cutmix

f) None

4. Architecture: Encoder Depths - Which backbone depth works better?

a) Resnet-34

b) Resnet-50

c) Resnet-101

5. Architecture: ResNet Variants - Which variant works better?

a) Resnet

b) ResNeXt
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c) ResNeSt

d) Res2Net

6. Architecture: Networks - Which network works better?

a) U-Net

b) DeepLabV3+

7. Architecture: Output strides - Which output stride works better?

a) 4

b) 8

c) 16

8. Architecture: Max-Pooling Removal - Does removing the max-pooling layer
help?

a) Yes

b) No

9. Architecture: Rich Stem - Does a richer ResNet stem help?

a) Yes

b) No

10. Architecture: Transposed Convolution - Does upsampling with learnable pa-
rameters help?

a) Yes

b) No

11. Architecture: Hybrid Local Feature Extractor - Do fancy approaches like de-
gressive and hybrid dilation rates help?

a) Yes

b) No

12. Technique: Cutmix - Does cutmix along with another augmentation help?

a) Yes

b) No

13. Technique: Loss Functions - Which loss function works better?

a) CE

b) WCE

c) Dice

d) mIoU

e) CE + Dice
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f) CE + mIoU

14. Technique: Optimizers - Which optimizer works better?

a) SGD

b) Adam

15. Prediction: Voting Ensemble - Does voting ensemble help?

a) Default

b) Default + Flipped versions

c) Default + Flipped + Multiscale versions

1.2 OBJECTIVES

The main objectives are:
• Analyze quantitatively and qualitatively the characteristics of the RTK dataset.

• Develop a strategy to improve semantic segmentation in emerging country
realities, i.e., the performance increment strategy.

• Carry out the performance increment strategy on the RTK dataset.

• Analyze quantitatively and qualitatively the strategy results.

• Carry out the performance increment strategy on the TAS500 dataset.

• Summarize the main findings from the strategy execution in two different
datasets.

1.3 THESIS ORGANIZATION

Chapter 2 explains the major deep learning topics used during this work. Chap-
ter 3 points out the critics of the RTK’s baseline and suggests areas for improvement;
moreover, the chapter presents related works that handled the segmentation of small
and multiscale objects. Chapter 4 shows the application of the performance increment
strategy on the RTK dataset; each experiment has a subsection that shows the results
of each hypothesis; the chapter ends with quantitative and qualitative analyses between
the hypotheses and groups of classes. Chapter 5 shows the application of a shortened
performance increment strategy on the TAS500 dataset. Finally, the last chapter dis-
cusses the principal findings and observations of the strategy results, summarize the
conclusions, and suggests possible future works.
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2 DEEP LEARNING BACKGROUND

AlexNet’s performance on the ImageNet Large Scale Visual Recognition Chal-
lenge in 2012 (KRIZHEVSKY; SUTSKEVER; HINTON, G. E., 2012) was a disruptive
moment in deep learning and artificial intelligence communities. The authors’ methods
achieved a top-5 error of 15.3%, a considerable advantage of 10.8% from the second
place, which got 26.1%. From then on, deep learning was a game-changer in computer
vision tasks and other engineering fields, becoming the first choice when looking for a
solution to most artificial intelligence problems in academia and industries.

2.1 DEEP LEARNING

Deep learning is a subset of machine learning algorithms based on artificial
neural networks (NN) that are deep enough to learn features from raw input data, i.e.,
without a pre-processing step of feature extraction. In addition, it commonly solves an
optimization problem that minimizes a loss function by a gradient-based algorithm like
SGD and the back-propagation algorithm to estimate such gradients.

As cited in (LECUN; BENGIO; HINTON, G., 2015), deep learning allows com-
puters to learn from experience and understand the world in terms of a hierarchy of
concepts, such complex concepts are built on top of the simpler ones. And if we draw
a graph showing how these concepts are built on top of each other, the graph would be
deep, with many layers.

The ability to learn useful features from the raw input data, e.g., pixel values,
audio frames, and text sentences, is called representation learning. Learned repre-
sentations often result in much better performance than hand-designed representations
(LECUN; BENGIO; HINTON, G., 2015). Representation learning is a fundamental abil-
ity of deep learning, and that is what makes it so remarkable. Meanwhile, most of the
traditional machine learning algorithms use hand-designed features.

Although the massive popularization of deep learning happened after AlexNet’s
event, many of its core concepts can be traced to decades ago. The mathematical model
of the neuron was first published in 1943 (MCCULLOCH; PITTS, 1943); and in 1959
appeared the Perceptron (ROSENBLATT, 1958), the first neural network learned by
error correction (See Figure 2). The decade of the 1960s started with a lot of excitement
(KURENKOV, 2020); however, it was soon declared that the neural networks could not
learn more complicated logical functions like XOR (MINSKY; PAPERT, 1969). As there
was no algorithm at the time that allowed them to update parameters for multilayered
networks, they only trained a single-layer network, which explains the limitation found.

After a lengthy period, (RUMELHART; HINTON, G. E.; WILLIAMS, 1985) over-
came this limitation by adapting the back-propagation algorithm, previously derived in
the control theory in the 1960s, and the differentiable activation function, such as the
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sigmoid function in opposition to the perceptrons’ threshold function (See Figure 3).
These new ideas make it possible to train a multilayer network. Moreover, the same
work presented the concept of distributed representation which a pattern is repre-
sented by multiple neurons instead of a single neuron, e.g., a red cat image should
activate the "red" and the "cat" patterns instead of a single "red cat" pattern. This con-
cept extends to the idea that many features should represent an input, and each feature
should represent many inputs as possible.

(a) A biological neuron. (b) A perceptron model.

Figure 2 – A biological and an artificial neuron. From (KARPATHY et al., 2016).

(a) The non-differentiable threshold function
used on (ROSENBLATT, 1958). (b) A differentiable activation function.

Figure 3 – From (HAYKIN, 2009).

Training neural networks with two or more hidden layers were computationally
expensive until the 2010s because of the hardware available then; it did not allow much
experimentation, causing the wane of DL many times. Nevertheless, since 2006, the
third and last deep learning wave, the popularity and the achievements of deep learning
only have grown (LECUN; BENGIO; HINTON, G., 2015). Much of this success is due
to the access of powerful computers and larger datasets, which allowed much experi-
mentation, exhausting training, and eased the burden of converging neural networks.
In addition to the new resources, latter techniques also enabled more powerful model;
for example, dropout (SRIVASTAVA, N. et al., 2014) and batch normalization (IOFFE;
SZEGEDY, 2015) encourage better generalization, batch normalization also acceler-
ates convergence time, and residual learning (HE, K. et al., 2016) enables deeper
architectures.
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The quintessential example of a deep learning model is a Deep Feedforward
Networks (DFN) or MultiLayer Perceptrons (MLP).

2.1.1 Deep Feedforward Networks

DFNs are name feedforward because they only flow the input information through
the hidden layers until the output layer. The network is called a recurrent neural network
if there are also feedback connections. The name network refers to the composition
of many different functions, typically in a chain fashion, e.g., f (x) = f (3)(f (2)(f (1)(x))),
where each f (n) is a layer. The chain length defines the network’s depth, to which the
terminology deep is related.

The final layer of the neural network is the output layer, and the previous ones
are the hidden layers. The dimensionality of the hidden layers, i.e., the quantity of units
(neurons), determines the width of the layer.

Figure 4 – A 3-layer feedforward neural network. From (KARPATHY et al., 2016).

2.2 CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Network (CNN) are perhaps the greatest success story of
artificial intelligence biologically inspired. Though convolutional networks have been
guided by many other fields, some of the key design principles of neural networks were
drawn from neuroscience (LECUN; BENGIO; HINTON, G., 2015).
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Figure 5 – A typical CNN architecture with two feature stages. From (LECUN;
KAVUKCUOGLU; FARABET, 2010)

2.2.1 A Brief History

The core idea behind CNN came from the 1962 work on the cat’s primary visual
cortex (HUBEL; WIESEL, 1962) that identified the presence of simple and complex
cells. Simple cells have a role similar to the first convolutional layers, where they detect
simple features such as edges or lines in a particular orientation. Complex cells present
a role similar to the pooling layer, which its activation is independent of small shifts
around a neighborhood. The authors were awarded a Nobel prize for this and other
mammalian vision system work. A brief disclaimer, despite some similarities, there are
much more differences between CNNs and the mammalian vision system as listed on
page 367 of the Deep Learning book (LECUN; BENGIO; HINTON, G., 2015).

The first computer model inspired by this cell’s arrangement was the Neocog-
nitron (FUKUSHIMA; MIYAKE, 1982), which presented a self-organized structure that
alternated between simple cells (S-cells) and complex cells (C-cells). Neocognitron
was trained in an unsupervised fashion; the S-cells made plastic connections with
the previous layer, the connections were modifiable during the learning, some were
strengthened, and others were inhibited; C-cells had fixed connections.

Neocognitron could recognize stimulus patterns based on the geometrical simi-
larity of their shapes without being affected by their position or slight distortions. That
was the first deep network conceived (SCHMIDHUBER, 2015), it counted five hidden
layers. Before that, Fukushima was also one of the first researchers to develop a multi-
layer network (FUKUSHIMA, 1975).
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(a) The Neocognitron architecture: an input layer
followed by an alternate connection between S-
cells US and C-cells UC

(b) Examples of distorted input patterns
correctly recognized in the last layer
UC3 showed on the last columns,
where it renders the activated cell of
that layer.

Figure 6 – From (FUKUSHIMA; MIYAKE, 1982).

The subsequent Yann Lecun works (LECUN et al., 1989a, 1989c, 1989b) simpli-
fied and better organized Fukushima’s architecture; besides, he adopted back-propagation
to train the entire network in a supervised fashion, consequently, creating the modern
version of CNN known these days. In the early 1990s, CNNs were already present
in commercial applications as an operational bank check reading system running on
ATMs in Europe and US; by the late 1990s, it had read over 10% of all the checks in
the US (LECUN et al., 1998; LECUN; KAVUKCUOGLU; FARABET, 2010).

(LECUN et al., 1989b) expressed that a good generalization performance can
be obtained if some prior knowledge about the task is built into the network. Therefore,
as many image tasks used kernels to extract features from local patches and later
combine them for object shape recognition, they designed the network to accomplish
the same by constraining the connections to be local, i.e., the neurons would have a
local receptive field from the previous layer, so each neuron was connected only to a
small region like a 3x3 or a 5x5 patch.

In addition, Lecun’s work adopted weight sharing, a technique first described in
(RUMELHART; HINTON, G. E.; WILLIAMS, 1985) that constrains units from a feature
map (a channel of a convolutional layer) to perform the same operation so that a plane
of the feature map is the same feature detected at different input locations. Suppose
that if a feature detector is useful in one part of an image, it is likely to be useful in other
parts.
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Figure 7 – (left) Input image; (center) the channel’s weight parameters (kernel); its size
determines the receptive field of a single neuron, which is 5x5 in this case;
(right) the computed feature map. From (LECUN et al., 1989b)

Weight sharing can be interpreted as imposing an equal constraint on the
strengths of the connections for all neurons of a layer. Weight sharing changed the
learning paradigm from the space of connection strengths to the space of parameters;
thus, the transformation parameters determine the connection’s strength (LECUN et al.,
1989a).

Figure 8 – A convolutional layer arranges its neurons in three dimensions (width, height,
and depth). The convolutional layer transforms the 3D input volume into a
3D output volume of neurons’ activations. In this example, the red input layer
holds the image, and its volume is transformed along the network. From
(KARPATHY et al., 2016).

After LeCun’s work on check readings, CNNs leveraged other commercial ap-
plications. Microsoft deployed several OCR and handwriting recognition systems, in-
cluding Arabic and Chinese characters. In the 2000s, Google deployed CNNs to de-
tect face and license plates in Street View images for privacy concerns (LECUN;
KAVUKCUOGLU; FARABET, 2010); and CNNs also won some competitions (SCHMID-
HUBER, 2015). Nevertheless, the worldwide interest just boomed when AlexNet (KRIZHEVSKY;
SUTSKEVER; HINTON, G. E., 2012) won the ImageNet object recognition challenge
(LECUN; BENGIO; HINTON, G., 2015).
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2.2.2 Properties

Three essential ideas support convolutional neural networks: sparse interactions,
parameter sharing, and equivariant representations (LECUN; BENGIO; HINTON, G.,
2015).

Sparse interactions happen when only a few of all possible interactions between
the neuron’s layers and their inputs are present, e.g., local connectivity. On CNNs,
sparse interactions occur by making the kernel (the neuron’s weights) size smaller than
the inputs, so we have far fewer parameters than connections. For example, when
processing an image, the input image might have thousands or millions of pixels, but
we can detect small, meaningful features such as edges with kernels that occupy only
tens or hundreds of pixels. It means that we need to store fewer parameters, which
reduces the memory requirements of the model, speeds up the runtime, and improves
the statistical efficiency (the model’s parameters are closer to the true parameters of
the data distribution).

Parameters sharing or weight sharing means that rather than learning a separate
set of parameters for every location, we learn only one set. This property leads to equiv-
ariance to translation. A function is equivariant if the input changes so that the output
changes in the same way; despite, convolutions are not equivariant transformations in
scale or image rotation (LECUN; BENGIO; HINTON, G., 2015).

As said about sparse interactions, a convolutional layer uses local connectivity.
The spatial area of connectivity is called the neuron’s receptive field, which is deter-
mined by the kernel size attached. The standard size of 2D kernels is 3x3; however,
sizes 1x1, 5x5, and 7x7 are also frequent. In addition to the 2D plane, a kernel usually
connects throughout the input’s depth; e.g., if an input has eight planes of the feature
map, the kernel should have a dimension of 3x3x8.

The receptive fields affect the network’s performance. Larger receptive fields get
more context and represent more abstract meanings (LIN; SHI; ZOU, 2017), whereas
small receptive fields may not be able to recognize large objects. As the information
flows through the neural network, the receptive fields of deeper neurons increase, as
shown in Figure 9. Pooling layers also increase the receptive field, but at the cost of
lowering the resolution.
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Figure 9 – The receptive field of each convolutional layer neuron is based on a 3×3
kernel. The green and yellow areas mark the receptive field of a single pixel
in layers 2 and 3, respectively. From (LIN; SHI; ZOU, 2017).

2.2.3 Typical Components

Three stages compose a typical convolutional operation: a convolutional layer
that produces a set of linear activations, a nonlinear activation function, e.g., the rectified
linear, and a pooling operation. See Figure 10.

Figure 10 – A typical convolutional neural network layer. From (LECUN; BENGIO; HIN-
TON, G., 2015).

2.2.3.1 Convolution Operation

The discrete convolution operation on a two-dimensional image is defined as:

S(i , j) = (I ∗ K )(i , j) =
∑
m

∑
n

I(i + m, j + n)K (m, n) (1)

I is the input, i.e., the image pixels, K is the kernel, m and n are the dimensions
of the kernel, i.e., the kernel size, and S is the feature map. Despite the convention in
the machine learning community to call it convolution, the correct name of the operation
is cross-correlation (LECUN; BENGIO; HINTON, G., 2015). See Figures 11 and 12.
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Figure 11 – Example of a convolution operation of kernel 3x3 sliding across every 4x4
input position (stride 1) and no padding, resulting in a 2x2 output. From
(DUMOULIN; VISIN, 2016).

Figure 12 – Example of a convolution operation of kernel 3x3 sliding across every 5x5
input position (stride 1) and padding 1, resulting in an output of the same
size as the input. From (DUMOULIN; VISIN, 2016).

2.2.3.2 Activation Function

The neuron’s final value comes from a nonlinear function that enables mapping
complex functions. The default choice on modern networks is ReLU (REctified Linear
Unit). This function is almost linear because it joins two linear pieces, see Figure 13.
Its adoption occurred after the 2010s to avoid the gradient vanishing problem, which
typically happens on sigmoid and tahn activation functions.

Figure 13 – The ReLU activation function. From (LECUN; BENGIO; HINTON, G., 2015)
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2.2.3.3 Pooling

Like convolution operations, pooling operations are handled by a kernel that
slides across the entire image. The most common pooling operation of CNNs is the
maximum operation which yields the maximum value inside a neuron’s neighborhood.
Other pooling operations are average and L2-norm. The most important property of
pooling is to make the layers’ representations translation invariant, e.g., we do not want
to know where a cat is in the image, such that we detect its presence. See Figure 14.

(a) Pooling operation of stride 1 and kernel size of 3.

(b) The same operation as (a) after the input is
shifted to the right by one pixel. Every value in
the lower neurons changed, but only half of the
neurons changed in the upper part. The minor
changes in the results happened because the
max-pooling units are only sensitive to the max-
imum value in the neighborhood, not its exact
location.

Figure 14 – Illustration of max pooling translation invariance. From (LECUN; BENGIO;
HINTON, G., 2015).

2.2.3.4 Stride

Stride determines the kernel’s pace over the input. Suppose stride 1; then, one
convolution occurs centered at every pixel of an image. Meanwhile, in the case of stride
2, as in Figure 15, the input space is downsampled (also known as subsampling) by a
factor of the same number, in this case, a factor of 2. Stride greater than 1 reduces the
computational cost and increases the receptive field of the next layer.
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Figure 15 – Strided convolution of 2. From (LECUN; BENGIO; HINTON, G., 2015).

One of the essential hyperparameters for segmentation convolutional network is
the Output Stride (OS). It defines the ratio between the sizes of the input image and
the final feature map. The input size is typically downsampled through the network to
produce higher-level features at the expense of resolution reduction.

2.2.3.5 Dilated Convolution

This technique was first developed in (HOLSCHNEIDER et al., 1990) and named
atrous convolution; however, the latter work in deep learning (YU, F.; KOLTUN, 2015)
named it dilated convolution. They are like regular convolutions with an expansion
mechanism that enlarge the kernel’s receptive field filling its length with zeros ("holes").
The expansion degree is controlled by a dilation rate.

Suppose a 3x3 kernel size; if the dilation rate is 1, it behaves just like the standard
convolution with a receptive field of 3x3. However, if the dilation rate is 2, it enlarges the
receptive field to 5x5. If the rate is 3, the receptive field goes to 7x7. See Figure 16.

Figure 16 – Dilated convolution of kernel 3x3 (gray square) over a 7x7 input (blue
square) resulted in a 3x3 output (green square). A factor of rate – 1 controls
the space between the kernel’s weights. From (DUMOULIN; VISIN, 2016).

2.2.3.6 Transposed Convolution

This operation is a parametrized way to upsample the feature map. Sometimes,
it is miscalled deconvolution. Transposed convolutions on feedforward mode apply the
backward pass of a traditional convolutional layer. It upsamples a feature map with
learnable parameters in opposition to interpolation methods. An important difference
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between conventional and transposed convolutional layers is that the stride reduces
the input dimension for the first, whereas, for the second, it increases the dimension;
inserting holes between the input neurons, see Figure 17.

Figure 17 – Transposed convolution of kernel 3x3 (gray square) over a 3x3 input (blue
squares) padded with a 1x1 border and stride 2x2 resulted in a 5x5 output
(green square). The stride’s backward operation creates holes (filled with
zero) between the input neurons. From (DUMOULIN; VISIN, 2016).

2.2.4 ResNet

ResNet (HE, K. et al., 2016) is a classical CNN and usually the default choice
for an encoder backbone of a semantic segmentation network. ResNet, inspired by the
highway networks (SRIVASTAVA, R. K.; GREFF; SCHMIDHUBER, 2015), brought the
residual learning concept, which enabled the training of very deep networks. Before
this, training very deep networks had the problem of increasing training error after a
period.

Their solution consisted of a residual mapping operation. Suppose deeper layers
fail to fit at least an identity mapping from earlier layers, then it would be easier to learn
the weights to zero. Therefore, it would avoid deteriorating information from shallow to
deep layers. See Figure 18.

Figure 18 – A building block of residual learning. From (HE, K. et al., 2016).

The ResNet architecture consists of five parts: a stem composed of a single
convolutional layer of kernel 7x7 and stride 2, followed by four convolutional blocks. The
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start of each convolutional block contains a convolutional layer of stride 2 followed by
a repeated series of convolutional layers of stride 1. Deeper architectures keep the
same four blocks arrangement but with more repetition of layers in blocks 2 and 3. The
main branches of ResNet have depths of 34, 50, and 101; they are respectively called
ResNet34, ResNet50, and ResNet101. See Figure 19.

20.

Figure 19 – ResNet architectures. From (HE, K. et al., 2016).

Figure 20 – ResNet50 with the stem of kernel size 7x7 followed by four blocks. From
(KHAN et al., 2020).

2.2.4.1 Dimensionalities

The number of layers on the network defines the depth of the models. The
number of units on a layer defines the layer’s width. The widest width defines the
network’s width. Other ResNets variants proposed new dimensionalities; for example,
cardinality (XIE et al., 2017) which splits a single convolutional layer path into parallel
paths of distinct convolutional layers; another example is scale (GAO et al., 2019) that
groups multiscale features inside of a single convolutional path.
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2.3 SEMANTIC SEGMENTATION

Semantic segmentation stands for understanding the image at the pixel level,
where each pixel has a class assigned. Semantic segmentation is a dense prediction
task, i.e., its outcome has the same size as the input. Its applications are found in
autonomous driving, medical imaging, image search engines, augmented reality, object
detection, and video surveillance.

In the past, tradition computer vision algorithms used were Watershed (BEUCHER,
1979), Image thresholding (OTSU, 1979), and K-means clustering (LLOYD, 1982).
Nowadays, after AlexNet’s breakthrough, the dominant solution for semantic segmenta-
tion is deep learning.

This section will show the main parts of deep learning training for semantic
segmentation: the neural network architectures, data augmentation techniques, loss
functions, and evaluation metrics.

2.3.1 Neural Network Architectures

Most state-of-the-art semantic segmentation architectures are based on Fully
Convolutional network (FCN) (LONG; SHELHAMER; DARRELL, 2015), which was the
first network trained end-to-end for semantic segmentation. Currently, the term FCN is
ambiguous; it may also refer to any CNN containing only convolutional, pooling, and
activation layers. FCN consists of an encoder session in charge of extracting high-level
features and increasing the receptive fields of the neurons; and a decoder session in
charge of upsampling the feature map to the input dimensions.

During the encoder feedforward pass, max-pooling and stride convolutions down-
sample the feature map inevitably. The most common approaches to resize the feature
map back are bilinear interpolation as in (CHEN et al., 2017), which is fast and requires
fewer resources than transposed convolution (Sec. 2.2.3.6) as in (LONG; SHELHAMER;
DARRELL, 2015; NOH; HONG; HAN, 2015)), which has learnable parameters.

Other architectures developed later based on FCN were U-Net (RONNEBERGER;
FISCHER; BROX, 2015) and DeepLabV3+ (CHEN et al., 2018).

2.3.1.1 Fully Convolutional Networks

The FCN’s core idea was to make the neural networks take an input of any size
and produce a correspondingly-sized output. The typical constraint of a neural network
accepting only fixed-sized inputs comes from the densely connected layers, which have
fixed dimensions, and, thereby, discard spatial information. FCN overcame this hurdle
by adopting only convolutional and pooling layers.



Chapter 2. Deep Learning Background 53

Figure 21 – FCN architecture. From (LONG; SHELHAMER; DARRELL, 2015).

In the original paper, it was proposed some FCN variants. There are the straight
network FCN-32s with output stride 32 (see Figure 21), e.g., suppose if an input size
is 256x256, then the most coarse feature map would be 8x8; later, the FCN-32s would
recover with transposed convolutions the coarse map to a dense output, which has a
prediction at each input pixel. The other variants are FCN-8s and FCN-16s that combine
information from coarse feature maps at multiple output stride; for example, FCN-16s
sums the feature map of OS 16 to the twice upsampled feature map of OS32.

2.3.1.2 U-Net

U-Net is a classical architecture for semantic segmentation. It was first proposed
for medical image segmentation in 2015, and it turned out to be applicable in many
other areas. The architecture consists of a contracting path, which captures the context,
and a symmetric expanding path, which enables precise localization. The network is
symmetrical, reminding a U-like shape. See Figure 22.



Chapter 2. Deep Learning Background 54

Figure 22 – U-Net architecture. From (RONNEBERGER; FISCHER; BROX, 2015).

2.3.1.3 DeepLabV3+

DeepLabV3+ results from a series of enhancements since the first DeepLab
was introduced in (CHEN et al., 2017). The main concepts present in this architecture
are the decoder module, the depthwise separable convolution, and the Atrous Spatial
Pyramid Pooling (ASPP).

Figure 23 – DeepLabV3+ architecture. From (CHEN et al., 2018).

Depthwise separable convolutions are grouped convolutions followed by a point-
wise convolution. On grouped convolutions, the kernels of one layer do not connect
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to all channels of the previous layer like a standard convolutional layer; each kernel
connects only to a group of channels from the previous layer. Point-wise convolutions
are convolutional layers of kernel 1x1 which combine the feature maps between the
channels and control the final number of channels.

ASPP was inspired by Spatial Pyramid Pooling (LAZEBNIK; SCHMID; PONCE,
2006; HE, K. et al., 2015). ASPP helps to handle multiple scales objects (CHEN et al.,
2017). ASPP simultaneously applies multiple dilated convolutions; each dilated convo-
lution has a distinct rate that yields multiple receptive fields. ASPP helps to balance the
trade-off between accurate localization (small receptive field) and context assimilation
(large receptive field) (CHEN et al., 2017).

Figure 24 – Atrous Spatial Pyramid Pooling (ASPP). ASPP employs parallel dilated
convolutions with different rates to classify the center pixel (orange). From
(CHEN et al., 2017).

2.3.2 Data Augmentation

Collecting labeled data is expensive, especially fine-annotated labels like seman-
tic segmentation. For example, an annotation using proper label tools in the Cityscapes
dataset took around 1.5 hours for a single image (CORDTS et al., 2016). The high cost
of collecting labeled data causes a shortage of data; one workaround to handle it is
data augmentation.

Data augmentation expands training data by reusing training samples. Common
modifications in images are brightness, rotation, and scale. The modified images be-
come new samples on the training set. These new modified samples add variance
to the training distribution that helps the model generalization for predicting unseen
examples.

We roughly divided the augmentation transformations into four categories: geo-
metric, resampling, color, and synthetic.
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2.3.2.1 Geometry

Geometry transformations map images’ pixels to new spatial positions. The
labels must receive the same transformation. Examples of geometry transformations
are horizontal flipping, random rotation, and random perspective.

Horizontal flipping just mirrors the image on the x-axis. Random rotation revolves
the image around its center, typically inside a range of -30 to +30 degrees; these values
are heuristically used in the community (TAYLOR; NITSCHKE, 2018). Random per-
spective, also known as homography, alters the plane of the image; a single parameter
controls the distortion level.

2.3.2.2 Resampling

Resizing or cropping images are resampling examples. Resize allows working
with objects from the same image at different scales. If we downscale the image, its
objects can be detected with a lower receptive field; if we upscale the image, a larger
receptive field is needed. Upscaling helps to deal with small objects.

Cropping cuts a patch of fixed size from an image, usually the default training
size. Cropping is a way to sample many distinct images from a single image, breaking it
into multiple patches as in (WANG, P. et al., 2018) or just randomly cropping the image
on the fly. In addition, cropping can alleviate the burden of processing high-resolution
images, as seen in (CORDTS et al., 2016; METZGER; MORTIMER; WUENSCHE,
2021). Another cropping function is correcting classes imbalance and mitigating the
spatial correlation of dense patches (LONG; SHELHAMER; DARRELL, 2015).

Many state-of-the-art works join both techniques, as known as random resized
cropping. A usual procedure is to cut from an image a random area between 8 and
100% with an aspect ratio between (3/4, 4/3), then resize the patch to comply with the
training input size. The values mentioned are the default ones from the PyTorch library,
which are based on ImageNet experiments (SZEGEDY et al., 2015).

2.3.2.3 Color

Lighting biases are a challenge on many image problems (SHORTEN; KHOSH-
GOFTAAR, 2019). Performing equally well on bright or dark images is critical. Usually,
it is expected that the neural network to work with a certain degree of color-invariance
on the objects we want to recognize and segment in the scene. Color transformation
comes to this rescue.

Examples of transformations are color jitter and grayscale. Color jitter manipu-
lates brightness, contrast, saturation, and hue. At the same time, grayscale transforma-
tion forces the network to pay attention only to structural and contrast information.
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2.3.2.4 Synthetic

Synthetic transformation creates unnatural images that would not come from
real-world data distributions. Two examples are filling images with blanks and pasting a
part of one image on another. The second example is known as Cutmix, see Figure 25.

Cutmix is a very strong augmentation, i.e., it highly disturbs the original data.
Cutmix randomly crops a patch from one image and to pastes it on another in a random
position. The labels must follow the same procedure. The authors stand that cutmix
improves the models against input corruptions and out-of-distribution samples (YUN
et al., 2019).

Figure 25 – Cutmix augmentation on the RTK dataset.

2.3.3 Metrics And Losses Functions

Choosing the proper loss function is fundamental for a good experiment result.
The loss functions used for semantic segmentation tasks belong to four categories:
Distribution-based, Region-based, Boundary-based, and Compounded (JADON, 2020)

2.3.3.1 Cross Entropy

Cross-entropy (CE) is a distribution-based loss and is widely used in the machine
learning community for general tasks like detection, classification, and segmentation
(MURPHY, 2012; LECUN; BENGIO; HINTON, G., 2015).

Cross-entropy, first proposed in the information theory field, measures the av-
erage amount of information that one distribution probability needs to transmit the
information from another distribution; it is one way to calculate how close two distribu-
tions are; the lower the CE value is, the closer the distributions are. In the machine
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learning context, it is commonly used in supervised learning to measure the similarity
between the ground truth distribution y ∼ P (y follow the probability distribution P) and
the prediction distribution ŷ ∼ Q. CE is given by H(y , ŷ ).

For example, cross-entropy is defined below for the random variables labels
y ∼ Py and predictions ŷ ∼ Qŷ . These random variables map pixels from the sample
space Ω to a real number R that represents one of K possible pixel classes, such that,
y : Ω → {1, ..., K }.

H(y , ŷ ) = –Ek∼Py
log Qŷ (k ) (2)

= –
K∑

k=1

Py (k ) log Qŷ (k ) (3)

When CE is used as a loss function, the loss is a summation over all m training
samples, see eq. (4).

LossCE (y , ŷ ) = –
m∑

i=1

K∑
k=1

P(i)(k ) log Q(i)(k ) (4)

For binary segmentation that separates the foreground from the background, we
use Binary Cross Entropy (BCE), so the eq. (3) can be simplified to:

BCE(y , ŷ ) = –y log ŷ – (1 – y ) log (1 – ŷ ) (5)

Besides, we can set weight to classes on CE; this is known as Weighted Cross
Entropy (WCE) (RONNEBERGER; FISCHER; BROX, 2015). Each class sample i is
balanced by the weight αi , which is usually inversely proportional to the class frequency.

WCE(y , ŷ ) = –
K∑

k=1

αkPy (k ) log Qŷ (k ) (6)

2.3.3.2 Dice

Dice is a region overlap-based metric introduced in (DICE, 1945), and it is known
by many names like dice’s coefficient, sørensen–dice index, and F1-score. It is a simi-
larity measurement between two sets, e.g., X and Y, as shown below:

Dice =
2|X ∩ Y |
|X | + |Y |

(7)

Where |X | and |Y | are the cardinalities of the two sets, i.e., the number of ele-
ments. When dice is used for evaluation, the metric is first computed per class and then
averaged. This metric is typically known as mF1.
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Dice loss helps to handle imbalanced datasets. (SUDRE et al., 2017) noticed
that when the level of imbalance increases, loss functions based on region-overlap are
more robust than WCE.

However, as dice works on the discrete space, it is necessary to adopt surrogate
functions that are differentiable regarding the neurons’ activations as they are contin-
uous values. (MILLETARI; NAVAB; AHMADI, 2016) proposed the surrogate function
bellow:

LossDICE = 1 –
2
∑N

i yi ŷi∑N
i (y2

i + ŷ2
i )

(8)

In eq. (8), the summations i to N regards all pixels of an image or a mini-batch
of images.

(MILLETARI; NAVAB; AHMADI, 2016) affirms that the dice loss also called soft
dice, avoids the need to assign class weights to balance the number of class samples
as they would be more robust to class-imbalance than WCE. Nevertheless, region
overlap-based losses often do not converge as well as cross-entropy (BERMAN; TRIKI;
BLASCHKO, 2018).

2.3.3.3 Intersection over Union

Intersection-over-Union (IoU) is a region overlap-based metric, also known as
the Jaccard index. It is defined as:

IoU =
|X ∩ Y |
|X | ∪ |Y |

(9)

Suppose a naive algorithm predicts every pixel of an image as background;
IoU would penalize it because the intersection area between the predictions and the
ground truth would be zero, whereas cross-entropy and accuracy could still present
good values.

IoU is commonly averaged across the classes for multiclass datasets, yielding
the mean Intersection-over-Union (mIoU) (BERMAN; TRIKI; BLASCHKO, 2018).

As the dice loss (Sec. 2.3.3.2), IoU offers an alternative to handle class imbal-
ance (NAGENDAR et al., 2018; EVERINGHAM et al., 2015). By the way, both metrics
are highly correlated, but, IoU tends to penalize more bad mistakes than dice (HANG
KWOK, n.d.). In addition, mIoU is also inherently non-differentiable. The works (NAGEN-
DAR et al., 2018; BERMAN; TRIKI; BLASCHKO, 2018; RAHMAN; WANG, Y., 2016)
propose surrogate losses functions. The equation (10) presents the (RAHMAN; WANG,
Y., 2016) solution:

LossIoU = 1 –
∑N

i yi ŷi∑N
i (y2

i + ŷ2
i – yi ∗ ŷi )

(10)
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3 RELATED WORKS

This section concerns what challenges would be found in emerging country
road datasets, especially the ones observed in the RTK dataset (RATEKE; JUSTEN;
VON WANGENHEIM, 2019). We started with a short description of the RKT dataset,
followed by a description of flaws and pitfalls found in the baseline training, i.e., the
original dataset authors’ training described in (RATEKE; VON WANGENHEIM, 2021;
RATEKE, 2020)

3.1 ROAD TRAVERSING KNOWLEDGE DATASET

Road Transverse Knowledge (RTK) is an image dataset collected in Águas
Mornas and Santo Amaro cities, a countryside region in the Santa Catarina state in
Brazil. All images were captured during daytime in good weather conditions; the images
present variations in the scene illuminations, and there is a presence of shadows. RTK
is a dataset rich in characteristics representing many conditions on emerging countries’
roads. As cited on the authors’ review of 2021 (RATEKE; VON WANGENHEIM, 2021)
and to the best of our knowledge, that is the unique road dataset to handle many road
variations at once, e.g., damages, fixes, artifacts, three road surfaces, and surfaces
transitions.

In total, the dataset consists of 77547 frames with a resolution of 352x288; only
701 out of them are pixel-wise labeled, i.e., available labels for semantic segmentation.
The authors assign a validation set for the semantic segmentation task with 140 images;
the training set has the 561 remaining ones. See samples in Figure 26.

The dataset consists of 12 classes. It covers three road surfaces: asphalt, paved,
and unpaved; four road signs: markings, cat’s eyes, and speed’s bumps; four damages
or fixes on the streets: patches, water puddles, potholes, cracks; and one road artifact,
storm-drains. The classes are highly unbalanced. The background’s pixels correspond
to 65.9% of the total number of pixels. Each road surface corresponds to between 9
and 13% of the total. The other classes are way sparse, each corresponding to a value
less than 0.78%, e.g., cats-eye and storm-drain classes have only 0.02% of all pixels.

3.1.1 Baseline

The dataset authors work (RATEKE; VON WANGENHEIM, 2021) presents a
solution that we set as the baseline for our work. The solution consists of a U-Net
architecture with an encoder ResNet34 pre-trained on ImageNet; they also adopted the
Adam optimizer with a learning rate of 1e-4, a 1-cycle learning policy, and a batch size
of 8. For data augmentation, they applied random perspective distortion and horizontal
flipping, both with an occurrence probability of 50%. The neural network was trained
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Figure 26 – Examples from the RTK dataset. From (RATEKE; VON WANGENHEIM,
2021).

on a two-stage regime. First, the authors trained the model with Cross-entropy (CE) for
100 epochs; afterward, they trained another 100 epochs with Weighted Cross Entropy
(WCE). The setup details were annotated from the authors’ medium post (RATEKE,
2020) and the fastai1 library documentation.

The authors reported the system accuracy performance of 97%; when they broke
the accuracy information by classes, the worst performance was 72% from cracks.

3.1.2 Criticism

This section raises flaws and pitfalls found in the baseline work during our re-
search; these issues became areas for improvements for the RTK benchmark during
our experiments.

3.1.2.1 Accuracy

Accuracy is not a proper metric for an imbalanced multiclass task, as seen in
section 2.3.3; besides, accuracy is only a valid metric when used for overall system
evaluation, not by class. In addition, the standard metric for semantic evaluation is the
mean Intersection-over-Union (mIoU) (Sec. 2.3.3.3); it is the common choice on the
1 https://docs.fast.ai/
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deep learning community. There are multiple examples of dataset benchmarks using
mIoU, for example, road datasets (CORDTS et al., 2016; ALHAIJA et al., 2018), scene
datasets (EVERINGHAM et al., 2015; ZHOU, B. et al., 2017), and medical datasets
(JHA et al., 2020; BERNAL; SÁNCHEZ; VILARINO, 2012).

Furthermore, the score presented in the medium post from a fastai builtin function
- which is not explicit what it is -does not compute accuracy or mIoU; it does compute the
intersection of pixels given a true label as seen in the fastai source code 2. The fastai
metric is known by many names as recall, sensitivity, or true positive rate. Although
recall is a relevant statistic metric, it only measures the presence of true positives
predicted by the model, not regarding false positives. A metric regarding both presences
is essential because false positives tend to increase as true positives increase.

3.1.2.2 Classes Weights

The class weights should leverage the underrepresented classes such that all
classes count equally on the loss computation. Class weights are typically set as the
ratio between the number of pixels of the majority class and the respective classes, as
shown in eq. (11). Besides, this ratio should count only the pixels that belonged to the
training set.

wci = max
c∈C

n(c)
n(ci )

(11)

where C is the set of the classes, and n(ci ) means number of pixels under a
given class ci .

WCE is used in the baseline in the second-stage training with the class weights
of 1, 5, 6, 7, 75, 1000, 3100, 3300, 270, 2200, 1000, 180, respectively, to the class id.
The weights computed in this work show that the correct values should be 1, 5, 6, 7, 87,
1736, 3590, 3793, 292, 2410, 1084, 219.

3.1.2.3 Number of Epochs

One epoch means to pass forward and backward once the entire training set
through the network. In the case of the RTK dataset, it means to realize the passes
throughout all the 561 training samples, which needs 71 iterations when using batch
size 8. Hence, they trained two stages of 100 epochs that added up to 14200 iterations;
this was not enough, as we have shown later in the section 4.3.1. Moreover, when a
stronger data augmentation is applied during training, it requires a higher number of
iterations for the training to converge.
2 https://github.com/fastai/fastai1/blob/master/fastai/vision/interpret.py#L61
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3.1.3 Challenges

Some characteristics of the RTK dataset that makes it specifically challenging
are low-resolution images, small objects, multiscale objects, and imbalanced classes.

3.1.3.1 Small objects

The dataset images have a resolution of 352x288, which was intentionally done
to represent the contexts of autonomous vehicles with low computational power that
cannot handle high-quality images. These images are much lower than the ones found
in other datasets from the field, e.g., Cityscapes, CamVid, and TAS500 have a resolution
of 2048x1024, 960×720, and 2026x620, respectively. The difference between RTK
resolution in the other datasets used for developing state-of-the-art models raises the
need to adapt the model architecture for a low-resolution context.

One consequence of low-resolution images is small or even tiny objects, given
the low number of pixels in an image. For example, road markings (id = 4) have 20% of
its objects with the shortest edge less than or equal to 3 pixels. Cat’s eyes (id = 6) have
more than 70% of the shortest edge object less than or equal to 5 pixels, this same
condition also appears in 30% of storm-drain (id = 7) and patches (id = 12) objects.
Furthermore, there are extreme cases when the shortest edge has 1 pixel, happening
on 15% of the road markings (id = 4) objects, and 2 pixels happening on 10% and 4% of
cat’s eyes and cracks objects (id 6 and 12, respectively). Figure 27 extracts exclusively
a single class from the RTK images, showing only their shape in a binary image, i.e., a
mask.

Very short edges can be bypassed by the first convolutional layer stride of a
ResNet or in the following max-pooling layer. This situation can be concerning when
trying to extract features for these objects either because the neural network simply
did not compute a feature for that pixel location or it did not could build a high level of
abstraction from that low-level features; besides, it can be significantly hard to recover
these objects shape from a coarse feature map (a feature map of reduced dimensions).

3.1.3.2 Multiscale objects

Another challenge on the RTK dataset is the scale and geometry disparities
between their many classes, e.g., objects from patches, potholes, water puddles do not
have a clear shape pattern and size, whereas road surfaces have a broad well-defined
shape and road markings are usually long and thin; see Figure 28.

In addition, it is also observed a high variance of scales inside the same class;
for example, cat’s eyes on a spaced series had bigger objects when they were close to
the camera and smaller objects when they were far from the camera; it was measured
that in a same spaced series the cat-eyes varied around 3 to 6 in the size of their object.
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(a) Lane markings

(b) Cat’s eyes

(c) Storm drain

Figure 27 – Examples of object masks with a short edge.

3.1.3.3 Imbalanced dataset

RTK is a highly imbalanced dataset that reaches a number of pixels ratio be-
tween the underrepresented and the overrepresented classes of 1 to 1000 up to 1 to
3000. The underrepresented classes can be overlooked during training; besides, many
underrepresented classes are only present in a small subset of the images.

With respect to the entire dataset, including the background as a class, most
of the ground truth (35.8%) has a single class, the road surface. Two classes happen
29.5% of the time, and three classes 17.1%. Images with 4 and 5 classes represent
8.7 and 8.3%, respectively. The maximum number of classes in a single image is 6 and
occurs in 0.6% of the cases. See Figure 29.

3.2 SMALL OBJECTS SEGMENTATION

As one of the low-resolution datasets challenges is the segmentation of small
objects, we point out some solutions found in the literature in this section. The works
(HU; RAMANAN, 2017; HAMAGUCHI et al., 2018) have emphasized that context mat-
ters for detecting small objects. They have underlined the fact that even humans cannot
recognize a small building in a satellite imagery patch without the context of roads, cars,
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(a) (b) (c)

Figure 28 – Multiscale examples on the RTK dataset. The white circles highlight in a)
lane markings with less than or equal to 2 pixels per edge at the end of the
field of view and two nested classes (water puddles and cracks) of irregular
shapes; in b) three different geometries and scales between classes: a
wide and long road, an irregular and small storm drain at the border, and
a road marking that changes its width along the road; and in c) a tiny cat’s
eye object between the road markings.

or other buildings. So they highlight the importance of images with a large field of view.
(SHEN et al., 2017) noted that the double sequence of stride 2 on ResNet loses

feature information that impacts more small object predictions as their initial dimension
is reduced by stride 4 at the beginning of the forward pass. It is especially concerning
for us as many small objects in the RTK dataset have edges inferior to 5 pixels that
could rapidly vanish at the first ResNet block. Their solution was to replace the first 7x7
convolutional layer of stride 2 with a series of three 3x3 convolutional layers, and stride
2 happens only at the first layer. Moreover, they replaced the 3x3 max-pooling with a
2x2 max pooling. The works (ZHOU, Peng et al., 2018; LI, Y. et al., 2019) also improved
their performance by adopting this modification.

The (ZHOU, Peng et al., 2018) worked on object detection and pointed out that
shallow feature maps are helpful to detect small objects as they have small receptive
fields and that, on the other hand, deep feature maps are helpful for large objects
because of the large receptive fields. Nevertheless, shallow features have the draw-
back of containing less semantic information, impairing the prediction quality of small
objects against large objects. Thus, they proposed a scale-transfer module consisting
of pooling and scale-transfer layers that integrate low and high-level features within
a CNN. The pooling layer condenses feature map information, and the scale-transfer



Chapter 3. Related Works 66

(a) (b) (c)

Figure 29 – Examples of RTK images regarding the number of classes. a) Single class
label, only the unpaved road class; b) Label with four classes, the three
road surfaces, asphalt (red), unpaved (yellow), paved (orange); and the
lane markings (yellow-greenish); c) Label with six classes, it contains a
transition of road surfaces (asphalt to paved), lane markings, cat’s eyes
(between the road markings), water-puddles (purple) and potholes (pink).

layer expands the feature map dimensions by decompressing the number of channels;
e.g., it transforms a 1x1x16 tensor (width x height x channels) to a 4x4x1.

One work that significantly improved small object results in the Cityscapes (poles,
traffic lights, and signs) was (WANG, P. et al., 2018). They projected the Dense Upsam-
pling Convolution (DUC), which also decompresses the feature maps channels into a
higher spatial resolution, just like the work cited above; see Figure 30. The authors said
that DUC is able to recover detailed information missed by bilinear interpolations. More-
over, they also proposed a Hybrid Dilated Convolution (HDC) framework that would
alleviate the gridding effect, which happens when convolution layers are applied in
series with the same dilated rate. The HDC uses a variation of dilation rates to break
the constant series; for example, the third ResNet50 block uses a series of kernel size
3 of length 6, if the dilation rate applied on this block is 2, it yields a series of kernel
sizes of [6, 6, 6, 6, 6, 6] filled with holes (see. Sec. 2.2.3.5); now, if HDC applies a mix
of dilation rates in a sequence [1, 2, 3, 3, 2, 1], it would yield kernel sizes of [3, 6, 9, 9,
6, 3], alleviating the gridding effect. The variation of dilation rates was tried later in the
performance increment strategy (Sec. 4.3.11).

Regarding small object predictions, remote sensing faces even more complex
difficulties given the crowd of objects. (HAMAGUCHI et al., 2018) found that when using
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Figure 30 – Dense Upsampling Convolution (DUC). From (WANG, P. et al., 2018).

a progressive increase of dilation rates, the neighboring neurons stop interacting given
the kernel sparsity (the holes between the weights), which causes two problems: spatial
consistency between adjacent neurons becomes weak, and local structure cannot
be extracted by deep layers; the latter specifically affects small objects as their local
structure may not be recognized by the neighbor neurons; nevertheless, it does not
affect large objects. Hence, they proposed a Local Feature Extraction (LFE) module
that consists of dilated convolutional layers with a decreasing dilation rates, i.e., the
dilation rate is reduced as the feature map dimension is reduced. For example, we
would use degressive rates of [8, 4, 2] in opposition to the usual progressive rates of
[2, 4, 8] from DeepLabV3+. The decreasing rates would recover consistency between
neighbor neurons. This tactic was tried later in the performance increment strategy
(Sec. 4.3.11).

3.2.1 Removing max-pooling layer

Removing the max-pooling layer is a substantial strategy to preserve small object
information, as found out later in this work (Sec. 4.3.8), as this work. To the best of our
knowledge, this is the first work to remove the first max-pooling layer of the ResNet
architecture aiming to better segment small objects.

In the literature, very few times, the removal of the max-pooling layer was pro-
posed in order to save small object details. When removing the pooling layer, most
works look to reduce the network complexity, such that the pooling layer stride is re-
placed by a neighbor convolutional layer stride as seen in the works (DEVARAJ et al.,
2021; XIA; ZHUGE; LI, H., 2018). Another purpose found was to alleviate the gridding
effect (YU, F.; KOLTUN; FUNKHOUSER, 2017).

The few works found concerning max-pooling layer removal to preserve fine
details are (CHRISTIANSEN et al., 2016; KENDRICK et al., 2018; AL-ANTARI et al.,
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2018). The anomaly detector (CHRISTIANSEN et al., 2016) increased the feature
map resolution as they found out that a very low reduced map impaired anomalies
detection in the agriculture plantations; they applied this modification over a Caffe
reference model. The mobile neural network for facial landmarks (KENDRICK et al.,
2018) emphasized that the data resolution should be preserved as much as possible
because of the ease of losing key facial features, such as the eye corners and nose
tip, when employing max-pooling layers; they measure the impact of the max-pooling
layer over their custom architecture. The X-ray mammograms system tested in (AL-
ANTARI et al., 2018) noticed that removing the max-pooling layer and keeping the
high-resolution feature maps were especially important for the objects’ edges.

3.3 MULTISCALE SEGMENTATION

This section raises the solutions found in the literature on another challenge of
the RTK dataset, multiscale segmentation. (GAO et al., 2019) built an adapted version
of the residual block from the ResNet architecture, the Res2Net module. Unlike most
methods, Res2Net works at layer levels and extracts multiscale features at different
resolutions inside a single bottleneck block, see Figure 31. A bottleneck block is a series
of convolutional layers that intercalate one layer of kernel size 3 between two layers of
kernel size 1.

(a) Bottleneck block. (b) Res2Net module.

Figure 31 – Comparison between a bottleneck block and a Res2Net module. From
(GAO et al., 2019).

Another approach was the addition of attention mechanism to the different scales
of feature maps. It combines the best predictions smartly from each scale and avoids
scale pitfalls (TAO; SAPRA; CATANZARO, 2020; CHEN et al., 2016). As noted in (TAO;
SAPRA; CATANZARO, 2020), fine details, such as edges of objects or thin structures,
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are often predicted better with large scales; on the other hand, large structure predic-
tions require global context and are often predicted better with small scales.

One way to combine multiple scales was proposed in DeepLab, which attempted
the multiscale problem using the ASAP module (Sec. 2.3.1.3), concatenating the feature
map from multiple dilated convolutional layers. U-Net3+ architecture (HUANG et al.,
2020) also combined multiscale information adapting U-Net to use skip connections
from all scales; each decoder block received information of all feature maps of higher
resolutions from the encoder blocks, and all features maps of lower resolution from the
decoder blocks. See (c) in Figure 32.

Figure 32 – The usage of skip-connections in U-Net to combine multiscale information.
a) U-Net, b) U-Net++, and c) U-Net3+. From (HUANG et al., 2020).

3.4 TRAINING AND INFERENCE PIPELINE

This section points out the practices from state-of-the-art works missed by the
RTK baseline and the alternatives to improve the RTK benchmark; many were tried on
the performance increment strategy.

Some state-of-the-art works (CHEN et al., 2018; ZHAO et al., 2017; YUAN
et al., 2019; KIRILLOV et al., 2020; YU, C. et al., 2021) used cropping, resizing, and
horizontal flipping as data augmentation; the optimizer chosen was usually SGD instead
of Adam; besides, SGD optimization follows a polynomial learning rate "poly" strategy
with momentum of 0.9 and weight decay of 5e-4. The preference for SGD is explained
by recent works showing that SGD reaches better generalization results (KESKAR;
SOCHER, 2017; ZHOU, Pan et al., 2020). For the number of iterations, the neural
networks usually train for more than 100k iterations in a single-stage regime. Many of
these guidelines are also exposed in (HE, T. et al., 2019).

On the inference side, the ensemble of multiple predictions from the same image
augmented in multiple scales and flipping direction is a common practice in competitions
for an extra boost of the results. The ensemble of predictions is combined by averaging
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or max-pooling as seen in (TAO; SAPRA; CATANZARO, 2020; ZHAO et al., 2017;
CHEN et al., 2016).
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4 PERFORMANCE INCREMENT STRATEGY ON RTK

In this section, we go through the application of the performance boost strategy
on the RTK dataset. It contains 15 ablation experiments; each experiment section has
a table showing the hypotheses’ mIoU results and a brief statement of the experiment
cues or findings; furthermore, the sections may have further visual analysis if it was
deemed necessary for patterns or pitfalls illustrations.

4.1 DEVELOPMENT ENVIRONMENT

All experiments ran on the Google Colab platform alternating between the Pro
and Pro+ subscriptions that usually provide one of the GPUs: T4, P100, or V100;
with 16 GB RAM. Besides, the code was developed with Python 3.7, and the deep
learning library adopted was PyTorch of version 1.12.1. PyTorch was chosen given its
high adoption in academia; consequently, this is the usual choice of state-of-the-art
algorithms.

4.2 METHODOLOGY

Throughout the performance strategy, we kept tracking the training and validation
sets evaluations of the hypotheses after each 1k iterations, which is regarded as a step.
It was noticed that, after the convergence, there were small performance oscillations, as
seen in Figure 33. In the figure 33 the performance alternates between 0.733 and 0.743,
which represents 1% of the mIoU scale [0, 1]; this variation was enough to lead to an
incorrect impression when comparing the hypotheses. Our workaround was averaging
the validation evaluation from the last ten steps.

(a) Complete training (b) Last steps

Figure 33 – Oscillation on the validation evaluation.

The default number of iterations was set to 200k for most of the hypotheses; it
was far enough to reach the best performances on the validation set. However, when
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the hypotheses used a weak or no augmentation, or a shallow network, 100k iterations
proved to be sufficient; it specifically occurred only in the hypotheses None, Cutmix50,
Cutmix80 from the Data Augmentation experiment (Sec. 4.3.3).

It is well known that a very long training may overfit the training data and, conse-
quently, degrades generalization. Nevertheless, overfitting was not perceived in these
experiments, see Figure 34. Likely because of the fewer quantity of parameters of the
convolutional neural networks in comparison to densely connected networks, which
occurs given the weight-sharing and sparse interaction properties.

(a) Cropping augmentation
(b) Cropping & Color augmen-

tation on 500 steps (c) GeomRTK augmentation

Figure 34 – The red and green lines show the training and the validation set evaluations,
respectively. Overfitting badly affect the results on the validation set.

4.3 ABLATION EXPERIMENTS

During the experiments, all model configurations and training hyperparameters
are kept from the best hypothesis of the previous ablation experiment; otherwise, the
configuration is explicitly expressed. The ablation experiments only test one factor at a
time.

4.3.1 Baseline: Iterations

- Do more training iterations help?

First off, the baseline work, i.e., the author’s RTK benchmark, missed the mIoU
evaluation (Sec. 3.1.2.1), so we needed to reproduce the code presented in (RATEKE,
2020) to establish a comparison value, which yielded 0.547 mIoU on the validation
set. Moreover, we had noticed that 100 epochs, which add up to 14k iterations, were
insufficient (Sec. 3.1.2.3); thus, we extended the training to 50k and 100k iterations
each stage.

One disclaimer, these experiments implemented all the setup details from the
baseline medium post (RATEKE, 2020) but the 1-cycle learning policy. Then, the results
may slightly diverge from the original baseline; however, after later investigations, we
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checked the results with and without the 1-cycle learning policy are pretty close or even
worse, as shown in Table 1.

No. Iterations 1-cycle policy mIoU

200k 0.739

200k ✓ 0.709

100k 0.693

14k 0.547

Table 1 – Baseline number of iterations.

Table 1 showed that the 200k iterations hypothesis substantially improved up
to 0.739, a huge leap of 0.192 from the original baseline. Adjusting the number of
iterations was crucial to compare the baseline setup fairly against the other setups.
From now on, we call the longer trained baseline as baseline200k.

4.3.2 Technique: Single Stage Training

- Does single-stage work better?

For the sake of simplicity, we tried the single-stage regime for training, which
is a usual setup (Sec. 3.4). The WCE loss used the corrected classes weights (Sec.
3.1.2.2).

Loss mIoU

CE 0.739

baseline200k 0.739

WCE 0.732

Table 2 – Single stage training.

Single-stage training got equivalent results to two-stages, see Table 2; showing
no need to add the complexity of dealing with two training steps. From now on, the
hypotheses will follow with single-stage CE loss.

4.3.3 Technique: Data Augmentation

- Which augmentation operation works better?

This ablation tested different approaches for augmentations. The original work
used horizontal flipping and geometry warping, which we named geomRTK, which we
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compared to cropping, resizing, color jitter, and cutmix. Moreover, we tried no augmen-
tation just to measure the augmentation impact on the performance.

The cropping augmentation adopted a patch size of (224, 224), and resizing
augmentation scaled the image edge randomly to a factor between (0.78, 2). Color
augmentation used the ColorJitter function from PyTorch with jitter values of 0.27 to
brightness, contrast, and saturation; and 0.07 to hue; furthermore, color augmentation
involved a grayscale function that removes the color information. Each color function
had a probability occurrence of 0.2.

Augmentation mIoU

Cropping 0.754

Cropping & Color 0.751

GeomRTK 0.739

Resizing & Cropping 0.735

Cutmix501 0.710

Cutmix801 0.710

None 0.668

Table 3 – Augmentation operations.

Table 3 shows that Crop is the best result. The addition of resizing or color jitter
worsened the results, especially resizing. Cutmix alone made surprisingly little impact,
as it is regarded as a strong augmentation. No augmentation hypothesis had a huge
decline in performance, showing us how augmentation was vital on this benchmark.

4.3.4 Architecture: Encoder Depths

- Which backbone depth works better?

The baseline backbone is ResNet34, so we tried deeper versions of ResNet.
The experiment hypotheses from the table below were built on top of the best results
so far: single-stage CE loss and cropping as augmentation.

Depth mIoU

ResNet-101 0.765

ResNet-50 0.759

ResNet34 0.754

Table 4 – Encoder depth.

1 The superscript number next to cutmix is the occurrence probability.
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Table 4 clearly points a trend; deeper the backbone, better the performance. So
we follow some next experiments with the depth of 101 layers.

4.3.5 Architecture: Resnet Variants

- Which variant works better?

We checked Resnet variants. Res2Net works at different scales within the
ResNet module, ResNeSt adds an attention mechanism, and ResNeXt works with
cardinalities, i.e., grouped convolutions. We evaluated them on the depth of 101 layers.

Variants mIoU

ResNet-101 0.765

ResNeXt-101-32x8d 0.759

ResNeSt-101 0.754

Res2Net-101-26w4s 0.746

Table 5 – Resnet Variants.

On Table 5, any ResNet-101 variant did not lift the performance.

4.3.6 Architecture: Networks

- Which network works better?

The U-Net architecture was used on the baseline work. In this experiment, we
tried DeepLabV3+ too.

Architecture Encoder mIoU

U-Net ResNet-101 0.765

U-Net ResNet-50 0.759

DeepLabV3+ ResNet-50 0.756

DeepLabV3+ ResNet-101 0.756

Table 6 – Architectures types.

U-Net outperformed DeepLabV3+ in two backbones, ResNet50 and ResNet101.
However, we insisted on DeepLabV3+ but with further modifications. As we will see in
the subsequent experiments, these modifications play an essential role in the DeepLabV3+
architecture that will outperform the U-Net’s results. We kept ResNet-50 as DeepLabV3+
backbone as the depths 50 and 101 got the same results; we chose the simpler option
which is the shallower one.
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4.3.7 Architecture: Output Stride

- Which output stride works better

Although the last experiment had U-Net as the best hypothesis, on this and
the next four ablations (until Hybrid Local Feature Extractor), we proposed a series
of modifications to the DeepLabV3+ network. The first modification was the Output
Stride (OS) (Sec. 2.2.3.4), which defines the ratio between the input dimension and the
high-level feature map at the end of the encoder stage.

OS mIoU

4 0.763

8 0.757

16 0.756

Table 7 – Output stride.

Table 7 presents a clear trend that diminishing the output stride increases the
performance.

In these hypotheses, we captured a problem when using a higher output stride,
especially 16, in which the model randomly predicts small background blobs over the
road and small road blobs over the background. When OS is 8, there are random blobs
of other road kinds over the main road. Although, The problem seems to gradually van-
ish until the output stride decreases to 4, see Figure 35. While this problem significantly
impacts visually, it is barely noticed quantitatively, given the slight differences between
the hypotheses’ performance.
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Figure 35 – Predictions with models trained at different output strides.

The random blob prediction was not perceived in the U-Net models.

4.3.8 Architecture: Max-Pooling Removal

- Does removing the max-pooling layer help?

The Figure 36 illustrates the blocks of DeepLabV3+ with and without (wo/) the
max-pooling (MP) layer, showing how each block stride controls the feature map’s
dimension and, as a result, the final output stride. Removing the max-pooling layer at
the beginning of the first block avoids early spatial information loss, which can be crucial
for extracting small object features.
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(a) OS=16; w/ MP (b) OS=8; w/ MP (c) OS=16; wo/ MP (d) OS=8; wo/ MP

Figure 36 – ResNet backbone. "s" within the block is the block’s stride; just below it
prints the feature map spatial resolution.

An important note, the DeepLabV3+ decoder concatenates high-level and low-
level features, see Figure 23. The output stride referred in section 4.3.7 relates to the
high-level features. Meanwhile, the resolution of the low-level features refers to the
feature map just after the max-pooling layer; if the MP layer is absent, the low-level
features are the ones just after the stem. The low-level output stride is 4 by default,
whereas it is 2 when removing max-pooling.

Table 8 confirms a new best benchmark. Avoiding the MP layer positively im-
pacted OS 8 and 16, though it did not matter for OS 4. It seems that a smaller low-level
output stride is more crucial than the high-level output stride for DeepLabV3+; so when
we concatenate a lower low-level output stride with a higher high-level output stride, it
joins the best of both contexts, which would explain the Table 8 results.
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Architecture Encoder OS wo/ MP mIoU

DeepLabV3+ ResNet-50 16 ✓ 0.769

DeepLabV3+ ResNet-50 8 ✓ 0.768

U-Net ResNet-101 - 0.765

DeepLabV3+ ResNet-50 4 0.763

DeepLabV3+ ResNet-50 4 ✓ 0.762

DeepLabV3+ ResNet-50 8 0.757

DeepLabV3+ ResNet-50 16 0.756

U-Net ResNet-101 - ✓ 0.754

Table 8 – Max-pooling removal.

The max-pooling removal also solved the problem of random blobs predictions
for OS 8 and 16 mentioned on the Output Stride experiment (Sec. 4.3.7), see Figures 37
and 38. By the way, the hypothesis OS:16 - wo/ MP presents the sharpest predictions.

Figure 37 – Without max-pooling layer at multiple output stride.
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Figure 38 – Without max-pooling layer at multiple output stride.

4.3.9 Architecture: Rich Stem

- Does a richer ResNet stem help?

As ResNet stem has a single convolutional 7x7 layer of stride 2, we think the
big kernel size and stride 2 would be terrible for extracting tiny features from the small
objects. Therefore, we proposed a rich stem with a higher number of layers with small
kernel sizes and stride 1; hence, it would enrich the feature maps from the stem block
that receives the original input resolution.

We created a rich stem version that consists of a parallel path inspired by the
inception module (SZEGEDY et al., 2015), involving multiple parallel convolutional
layers with distinct kernel sizes. Moreover, we created a dummy rich version with a
single parallel path with only one convolutional layer 3x3 followed by a point-wise
convolution. The dummy rich version would be easier to train and to validate the idea
of small kernel size and stride would help; see Figure 39,
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(a) Rich stem (b) Simpler version

Figure 39 – The default conv 7x7 layer with pre-trained weights are at the left path and
the new proposed modules at the right path in a) rich stem and b) dummy
rich stem.

Parallel paths allow keeping the pre-trained weights of the original ResNet
stem. The performance downgraded considerably when the experiment ran only with
the rich module. The pre-trained weights seem crucial. The experiments setup were:
DeepLabV3+, ResNet-50, output stride 16, without max-pooling, and cropping as aug-
mentation.

Stem mIoU

Default 0.769

Dummy rich 0.768

Rich 0.763

Table 9 – Rich Stem.

As shown in Table 9, the stem modifications did not present any enhancement.
Maybe because of the lack of pre-trained weights.

4.3.10 Architecture: Transposed convolutions

- Does upsampling with learnable parameters help?

Transposed convolutions (convT) replace the upsampling operation. The DeepLabV3+
decoder has two upsampling blocks, see Figure 23. This change turned the upsam-
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pling operation parametrized, i.e., it has learnable weights now. We kept the without
max-pooling setup.

ConvT mIoU

0.769

✓ 0.760

Table 10 – Upsampling by Transposed Convolution.

This modification did not show any enhancements, see Table 10.

4.3.11 Architecture: Hybrid Local Feature Extractor

- Do fancy approaches like degressive and hybrid dilation rates help?

Local Feature Extraction (LFE) (HAMAGUCHI et al., 2018) ensures local struc-
ture extraction that is usual lost when dilation rates are progressively enlarged. Inspired
by LFE and Hybrid Dilated Convolutions (WANG, P. et al., 2018) (See Sec. 3.2), we
adapted it to the ResNet architecture and called it Hybrid Local Feature Extraction
(HLFE). While (HAMAGUCHI et al., 2018) created a custom architecture to implement
LFE, we implemented it straight in blocks 3 and 4 of the ResNet using "hybrid" values.

The hybrid values chosen were a sequence of [1, 3, 5, 5, 3, 1] for block 3 and [1,
3, 1] for block 4, instead of the constant sequences [3, 3, 3, 3, 3, 3] for block 3 and [3,
3, 3] for block 4; see Figure 40.



Chapter 4. Performance Increment Strategy on RTK 83

(a) ResNet Block3. (b) Block 3 with a series of hybrid dilation rates.

Figure 40 – Series of hybrid dilation rates.

One caveat is that HLFE only applies to output stride of 8 or 4 when max-pooling
is not used because dilated convolutional layers are not used for output stride 16.

OS HLFE mIoU

16 0.769

8 0.768

8 ✓ 0.767

4 ✓ 0.766

4 0.762

Table 11 – Hybrid Local Feature Extractor.

As seen in Table 11, HLFE did not bring any enhancement to the final results.

4.3.12 Technique: Cutmix

- Does cutmix along with another augmentation help?

Cutmix is a strong augmentation (Sec. 2.3.2.4). It corrupts a lot of the original
image and changes its natural distribution. We left this augmentation last because the
strong image corruption could affect the comparison between the hypotheses of the
previous experiments. This experiment ran over DeepLabV3+, ResNet-50, OS 16, and
without MP.
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Aug mIoU

Cropping & Cutmix801 0.782

Cropping & Cutmix501 0.771

Cropping 0.769

Table 12 – Cutmix addition.

Table 12 points a new best benchmark. The addition of cutmix as augmentation
got a significant leap on mIoU, it raised from 0.769 to 0.782.

4.3.13 Technique: Loss Functions

- Which loss function works better?

We tried surrogate losses functions from dice and mIoU metrics, which are
commonly as evaluation metrics (Sec. 2.3.3.2 and 2.3.3.3). This experiment setup ran
over the cutmix addition setup.

Loss mIoU

CE 0.782

CE + Dice 0.774

CE + mIoU 0.770

Dice 0.756

mIoU 0.751

WCE 0.689

Table 13 – Surrogate loss functions.

Table 13 shows the surrogate losses did not boost the performance of an al-
ready very calibrated model. Actually, their standalone usage even degraded the perfor-
mances. We double-checked these loss functions impact running it on the baseline200k
setup; see Table 14.

Loss mIoU

CE + mIoU 0.748

CE + Dice 0.747

CE 0.739

WCE 0.732

Dice 0.720

mIoU 0.698

Table 14 – Surrogate loss functions on initial setup.
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Table 14 shows an improvement when CE works along with mIoU or dice. On the
other hand, the standalone surrogate losses considerably degraded the performance
again! Although the mIoU measures the metrics, the optimizing function that excelled
on intersection-over-union is cross-entropy; CE acts as a proxy for mIoU.

4.3.14 Technique: Optimizers

- Which optimizer works better?

Stochastic Gradient Descent (SGD) optimizer is known to have better general-
ization capability (KESKAR; SOCHER, 2017). We applied SGD with a learning rate
warm-up policy of 5 steps which increases the rate gradually until its initial value of

1e-2; afterward, the learning rate decreases by a polynomial factor of 1 –
(

iter
itermax

)0.9

until the end of the training. A momentum of 0.9 is also applied.

Optimizer mIoU

Adam 0.782

SGD 0.762

Table 15 – Optimizers.

In Table 15, Adam outperformed SGD by a meaningful difference, showing that
SGD is not always the best option for generalization. By the way, there is no free lunch
(WOLPERT, 1996).

4.3.15 Prediction: Voting Ensemble

- Does voting ensemble help?

The last strategy to boost performance was voting an ensemble of multiple
predictions from many versions of the same image. Standard procedures are to flip and
to multiscale (MS) the image, up and downscale.

RTK samples have a resolution of (352, 288); we adopted two more resolutions
of (288, 224) and (352, 448) for multiscale prediction. All scaled images have an extra
horizontally flipped version. Thus, the use of three resolutions sums up six versions
in total. After getting the six predictions with the probabilities maps for all classes, the
maps are resized to the original size (288, 224) using nearest neighbor interpolation.
Then the maps are averaged to yield the final class probability map. Finally, the classes
with the highest probability for each pixel are assigned as the prediction, creating the
final prediction map.

In contrast with the methodology applied so far, this experiment counts with only
the evaluation metrics referred to the saved model from the last training step, i.e., at
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200k iterations. Thus, the default benchmark presented in Table 16 - representing the
best benchmark so far, from the cutmix experiment -, is different from the reported
value above. The same model is used to generate the prediction of all image versions.

Prediction mIoU

Flipped 0.789

MS + Flipped 0.784

Default 0.774

Table 16 – Predictions Voting Ensemble.

Flipped and "multiscale + flipped" voting ensemble increased the performance
as shown in Table 16. In addition to the saved model from the last step, we also got
the results using the hypothesis model saved at the step of the best evaluation on the
validation set, which does not necessarily take place at the last steps of the training.
The results are in the Table 17.

Prediction mIoU

Flipped 0.798

MS + Flipped 0.793

Default 0.793

Table 17 – Predictions Voting Ensemble w/ Best Checkpoint.

Once more, flipped ensemble got the best results, whereas the multiscale case
did not always seem to help the final prediction. In the end, the most excellent perfor-
mance of all hypotheses - following the original methodology -was 0.789 mIoU. Further-
more, regarding the case of the model saved at the best evaluation metric, the mIoU
achieves 0.798.

4.4 INSPECTING PERFORMANCE BY CLASSES AND GROUPS

In this section, we offer a quantitative and qualitative analysis of the best hy-
pothesis from the performance increment strategy not regarding the prediction voting
ensemble, which was the best hypothesis from the cutmix experiment with the setup of
DeepLabV3+, ResNet-50, output stride 16, without max-pooling, Adam optimizer, and
cropping along with cutmix for data augmentation. We used the model saved at step
200.



Chapter 4. Performance Increment Strategy on RTK 87

Class mIoU Edge1 Inv Frequency2

background 0.99 215 1

roadAsphalt 0.94 132 5

roadPaved 0.96 152 6

roadUnpaved 0.95 134 7

roadMarking 0.82 15 87

speedBump 0.82 28 1736

catsEye 0.55 4 3590

stormDrain 0.68 6 3793

patchs 0.83 17 292

waterPuddle 0.48 27 2410

pothole 0.77 12 1084

cracks 0.49 10 219

Table 18 – Intersection-over-union by class.

The Table 18 shows the biggest class, background, had the greatest performance
of 0.99. The other big object classes, the road surfaces, had great results also. The
other classes with small objects, located between road marking and cracks in the table,
had a performance gap compared to big object classes. Cracks, water puddles, and
cat’s eyes have the worst results by far, which are classes that involve tiny objects or
irregular-shaped formats.

(CORDTS et al., 2016) pointed out that the mIoU metric is biased toward big
objects; our results confirms this bias, see Figure 41. In addition, we also have a clear
trend between the mIoU metric and normalized inverse frequency, which is directly
related to the number of pixels, see Figure 42.

Figure 41 – Relation between IoU and median edge size of the class.

1 the median size of the shortest edge of the class object.
2 the normalized inverse frequency is the ratio of the number of pixels on the training set between the

most popular class and the i class.
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Figure 42 – Relation between IoU and normalized inverse frequency of the class.

For the subsequent analysis, we looked to evaluate the model between the differ-
ent challenges present in the dataset, like small-sized objects, multiscale objects, and
imbalanced dataset (Sec. 3.1.3). Hence, we grouped the classes into the categories
of big objects, small objects, small edges, and underrepresented classes. The groups
provide an outlook of how the models handle these challenges. The background is
excluded from the analysis. The big objects are the road surfaces, and the small ob-
jects are all the others. Small edges are road markings, cat’s eyes, and patches. The
underrepresented classes are the ones with the fewest number of pixels for training,
which are cat’s eyes, storm drain, and water puddle.

Table 19 presents the evaluation by group for each hypothesis from the loss func-
tions experiment (Sec. 4.3.13). We observed that the values between the hypotheses
are close in each group, but WCE. By the way, we did not notice a trade-off between
classes’ performances, i.e., being better in one group at the expense of worse perfor-
mance in another; it seemed that the better model is, the better it works for all groups.

Loss function Big Small Small Edges Underrepresented

CE 0.950 0.680 0.570 0.620

Dice 0.937 0.660 0.533 0.620

CE + Dice 0.947 0.688 0.573 0.630

mIoU 0.947 0.655 0.510 0.613

CE + mIoU 0.947 0.676 0.553 0.610

WCE 0.937 0.562 0.433 0.570

Table 19 – mIoU by classes groups.

We repeated the same evaluation checking the modifications applied on DeepLabV3+;
see Table 20. Again there was not a clear advantage of any approach in any group.
These hypotheses’ setups were built over DeepLabV3+, Resnet50, OS 8, CE, and
cropping augmentation.
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Loss functions Big Small Small Edges Underrepresented

w/ MP 0.920 0.651 0.530 0.593

wo/ MP 0.953 0.661 0.530 0.610

wo/ MP + HLFE 0.957 0.666 0.550 0.613

wo/ MP + convT 0.957 0.665 0.543 0.613

Table 20 – mIoU by groups.

4.5 INSPECTING SMALL OBJECTS PREDICTION

This section shows the visual impact of different losses for small object predic-
tions. The hypotheses used here are from the first table of the loss functions experiment
(Sec. 4.3.13).

Figure 43 shows a scene of many small objects. The CE + mIoU hypothesis
had the sharpest blobs, whereas WCE had a higher presence of false positives like
bigger cat’s eyes (green-light) and cracks (pink blobs). All hypotheses predicted an
extra presence of cracks at the middle of the road, underlined at circle 3 in Figure 44.

Figure 43 – Inspection of small object predictions. The titles follow the loss hypothesis
and the mIoU result.

One caveat, the subfigures’ titles assign the loss hypothesis and the image mIoU
computed value. It is essential to warn that mIoU is not a reliable metric when evaluating
a single image because if any class outside of the ground truth ones is predicted, its
IoU results in zero, which pushes down the mean IoU (mIoU) value and explains why
there are good visual predictions with low mIoU in the figures below. The mIoU is a
stable metric when it works at least for a mini-batch of images.
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Figure 44 – Notes from Figure 43. Point 1 underlines the exceeding predictions of un-
derrepresented classes on WCE loss; point 2 shows a repeated error of
predicting an unreal patch from the hypotheses; point 3 indicates the wrong
pothole prediction of CE.

In the Figure 45, CE got the sharpest results, almost in total agreement with
the ground truth. Most of the hypotheses struggled to predict the straight white line in
front of the camera; however, they did well to predict the farther small lanes of small
at the end of the field of view. A peculiar event occurred in the image, underlined by
a red circle 1 in Figure 46, the car hood reflected the pedestrian lane; the Dice even
predicted the pedestrian lane as part of the navigable path.

Figure 45 – Inspection of small objects predictions.
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Figure 46 – Notes from Figure 45. Point 1 underlines the pedestrian lane reflected
on the car hood; point 2 shows WCE over predicting underrepresented
classes; point 3 shows the reflection predicted as a navigable path.

In Figure 47, we have a tiny storm drain at the right side of the scene; all hy-
potheses predicted it right. An interesting observation, the hypotheses had different
resolutions for the farther road marking; see Figure 48.

Figure 47 – Inspection of small objects predictions.

Figure 48 – Notes from Figure 47. Point 1 shows the larger blob prediction made by the
WCE hypothesis; point 2 indicates that the CE + Dice hypothesis tends to
vanish the lane in contrast to CE + mIoU, this pattern repeated in the Dice
and mIoU standalone cases, see the Figure 47.
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4.5.1 False Positive of Small Objects

Further investigations from the random blobs problem assigned on the sections
4.3.7 and 4.3.8 suggest that, in fact, the problem is about a high rate of false positives
of small objects. The hypotheses with the max-pooling layer have a low-level output
stride of 4, which early compress the spatial information; this seems to be the cause
that confuses the neural network to judge correctly if a pixel belongs to a small or a
large object. Consequently, the NN confusion leads to an excess of small objects as
it is easier to yield many small objects than large objects, given their area. In the end,
overrunning false positives of small objects seems a more serious concern than missing
them. The Figures 49, 50, and 51 illustrate the cases.

Figure 49 – False positive of small objects predicted by the hypotheses with max-
pooling layer.
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Figure 50 – False positive of small objects predicted by the hypotheses with max-
pooling layer.

Figure 51 – Point 1 indicates the false positive small objects, and point 2 indicates the
missed gap between the two markings predicted by the hypotheses with
max-pooling layer.

4.6 INSPECTING MULTISCALE PREDICTION

The multiscale inspection presented scenes with many classes of different kinds
of shapes and sizes. In the Figure 52, all hypotheses had fine predictions, however, CE
shrank the water puddle; Figure 53 underlines at point 1 a missing lane not drawn in
the label, but captured in the predictions.
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Figure 52 – Inspection of multiscale objects predictions.

Figure 53 – Notes from Figure 52. Point 1 underlines missed lane in the label; point
2 indicates a missing surfaces transition by the mIoU hypothesis; point 3
underlines a nice transition between the surfaces.

In Figure 54, most of the hypotheses failed to predict all the three cat’s eyes,
missing one of them; except for CE and WCE that predicted all.
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Figure 54 – Evaluation of multiscale object predictions.

Figure 55 presents a complex scene. All hypotheses performed well; however,
most of them lost the paved blob outlined in circle 1 from Figure 56; only WCE overcame
it.

Figure 55 – Inspection of multiscale object predictions.
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Figure 56 – Notes from Figure 55. Point 1 underlines the difficulty of predicting the small
unpaved blob; point 2 shows that WCE does not present sharp boundaries
as the CE hypothesis.
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5 PERFORMANCE INCREMENT STRATEGY ON TAS500

Looking to endorse the performance increment strategy that showed a great
enhancement for the RTK benchmark, we tested the strategy against another dataset,
the TAS500. On this test, we want to validate our impressions first acquired in the RTK
experiments or expand and better balance our conclusions.

5.1 TAS500 DATASET

The TAS500 dataset (METZGER; MORTIMER; WUENSCHE, 2021) is a novel
dataset from 2021, which meets the complications found in autonomous driving in
unstructured environments. TAS500 offers annotations of fine-grained vegetation and
terrain classes to learn about drivable surfaces and natural obstacles in outdoor scenes.
See samples of the dataset in the Figure 57.

Figure 57 – TAS500 samples. From (METZGER; MORTIMER; WUENSCHE, 2021).

The dataset consists of 23 classes. They are categorized into terrain: asphalt,
gravel, soil, and sand; vegetation: low grass, high grass, bush, forest, tree crown, tree
trunk, and miscellaneous vegetation; construction: building, fence, and wall; vehicles:
car and bus; objects: pole, traffic sign, and miscellaneous objects; and others: sky,
human; animal, and void. Figure 58 shows the class distribution of the number of pixels.
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Figure 58 – Class distribution in the TAS500 dataset. The number of fine-grained pixels
(y-axis) per class and their associated category (x-axis). From (METZGER;
MORTIMER; WUENSCHE, 2021).

The dataset has 540 images with a resolution of 2026 x 620 pixels. The images
were recorded in all seasons, but in winter, in sunny and rainy conditions. The division
of images for training and validation sets is 440 and 100, respectively. The dataset has
an official web server1 that benchmarks the results for a hidden test set of 100 images.

In 2021, the German Association for Pattern Recognition (DAGM) host the Out-
door Semantic Segmentation Challenge2, where the top-3 mIoU results on the test
set were: 0.675, 0.663, and 0.659. By the way, the third place was obtained by the
DeepUFSC team.

5.2 ABLATION EXPERIMENTS

As the TAS500 images are much larger than the RTK images, it takes much
longer to complete a single iteration, so we ran only 60k iterations, much less than the
previous 200k in the RTK experiments. However, 60k iterations proved to be enough
to reach convergence on the performance, as seen in Figure 59. One more change
from the previous setup was changing the batch size to 4 because of GPU memory
restrictions, given the high-resolution pictures.

One caveat is that because of GPU memory constraints, some ablation experi-
ments or hypotheses could not be accomplished, or they had their batch size reduced
to 2. When it was tried batch size of 2, the performance did not go well, even reducing
the learning rate by a factor of

√
2 as commonly recommended; see Figure 60. So,

the discarded strategies were the max-pooling removal and transposed convolutions
experiments, and many hypotheses from the rich stem and loss functions experiments.

Other constraining was given by the patch size, while we found that the widest
patch was the best in cropping size experiment (Sec. 5.2.2), we could not use it for
output stride, rich stem, cutmix and loss functions experiments given the GPU memory
constraints.
1 https://codalab.lisn.upsaclay.fr/competitions/5637
2 https://unstructured-scene-understanding.com/challenge.html
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(a) Cropping augmentation. (b) Resizing & Cropping augmentation.

Figure 59 – Learning curve. 60k iterations are enough to reach convergence in the vali-
dation performance. Blue and gray lines are the evaluations of the training
and validation sets, respectively.

Figure 60 – Comparison between the same hypothesis running with batch size 2 (longer
lines) and 4 (shorter lines). The blue and gray lines represent the training
and validation sets, respectively. Even running twice iterations for batch
size 2, it can not get close to the batch size of 4 performance.

Furthermore, we cut many hypotheses, the less relevant ones, from the perfor-
mance increment strategy to reduce the application time; for example, we did not run
the networks and resnet variants experiments.

The experiments setup started with DeepLabV3+ architecture, ResNet50 as a
backbone, output stride 16, batch size 4, and Adam optimizer with a learning rate of 5e-
5 (a reduced value from the 1e-4 in the RTK experiments given the reduced batch size).
For validation evaluation, we followed the same methodology as the chapter before and
averaged the performance of the last ten steps.

5.2.1 Technique: Data Augmentation

It is usual to train high-resolution images with cropped patches as it would take
too long to do a single feedforward and backward pass and, consequently, to update
the network’s parameters, besides the GPU memory constraint. Thus, we used a fixed
cropping operation with a patch size of 1024x512. The resizing works inside the scale
of (0.83, 1.5).
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Augmentation mIoU

Resizing & Cropping 0.698

Resizing & Cropping & Color 0.694

Cropping 0.676

Cropping & Color 0.654

Table 21 – Output stride.

Table 21 shows that, in contrast to the RTK ablation, resizing mattered. Curiously,
color augmentation also did not bring an improvement.

5.2.2 Technique: Cropping Size

We added a special experiment for TAS500, the patch size for cropping. The
largest cropping size feasible for training with batch size 4 was 1248x512, given the GPU
memory limit of 16GB. This experiment also used resizing found as best hypothesis in
the data augmentation experiment.

Cropping Size mIoU

1248x512 0.705

1024x512 0.698

900x512 0.693

Table 22 – Cropping size.

Table 22 presented a better performance for the wider patch.

5.2.3 Architecture: Output Stride

During the output stride experiment, we used the cropping size of 1024x512,
given the GPU constraints. Table 23 shows that the best output stride of 16 plays an
important role, having a considerable margin over the others.

OS mIoU

16 0.698

8 0.665

32 0.652

Table 23 – Output stride.
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5.2.4 Architecture: Rich Stem & HLFE

The rich stem experiment used the cropping size of 1024x512; meanwhile, the
HLFE ablation used the cropping size of 1248x512. Both modifications did not improve
the performance; see Table 24.

Cropping Size Rich Stem HLFE mIoU

1024x512 0.698

1024x512 ✓ 0.693

1248x512 0.705

1248x512 ✓ 0.705

Table 24 – Rich Stem & HLFE.

5.2.5 Technique: Cutmix

This experiment used a resolution of 1024x512. Very different from the RTK
results, we did not obtain an improvement using cutmix together with other augmenta-
tions.

Cutmix mIoU

0.698

✓ 0.691

Table 25 – Cutmix.

5.2.6 Technique: Loss functions

We only tested the dice surrogate loss along with CE as that was the best
alternative from the RTK experiment (Sec. 4.3.13). However, different from there, it did
enhance the benchmark. See Table 26.

Loss mIoU

CE + Dice 0.708

CE 0.698

Table 26 – Losses.

5.2.7 Technique: Optimizers

Another contrast to the RTK experiments was the considerable benchmark im-
provement when adopting SGD. It reached the new best benchmark of 0.725 mIoU,
see Table 27.
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Optimizer mIoU

SGD 0.725

Adam 0.708

Table 27 – Optimizers.

5.2.8 Prediction: Voting Ensemble

Unlike the methodology of the previous experiments, the voting ensemble works
with a single checkpoint model. In this case, the checkpoint model used was the one
from the best validation evaluation. The extra scales had resolutions of 1013x310 and
2336x715. Table 28 shows that the voting ensemble, specially multiscale, significantly
improved the TAS500 results. Again, it showed a different behavior than the RTK exper-
iments that multiscale vaguely helped.

Prediction mIoU

MS + Flipped 0.749

Flipped 0.736

Default 0.731

Table 28 – Predictions Voting Ensemble w/ Best Checkpoint.

5.3 STRATEGY ANALYSIS

One of the key points noticed during the performance increment strategy for the
TAS500 benchmark was that a wider patch size made a significant difference, but it con-
flicted directly with hardware constraints. Other key points were resizing augmentation,
CE + Dice loss function, and SGD were fundamental to raising the TAS500 benchmark.
On the prediction side, the voting ensemble of multiple scales raised the performance
substantially.

We started the experiments with a 0.654 mIoU and ended up with 0.747, which
endorses the strategy experiments proposed. In the Figure 61 has some predictions
done by our trained model.

5.4 TEST EVALUATION

Although the 2021 competition has ended, the hosts still make the competition
server available for arbitrary submissions. So we checked how our best hypothesis - the
one from the optimizer experiment - would perform on the Outdoor Semantic Segmen-
tation Challenge. Using the default predictions, i.e., without the voting ensemble, we
reached the benchmark of 0.676 mIoU on the test set. The drop in the mIoU number,
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Figure 61 – Examples of TAS prediction.

Figure 62 – Examples of TAS prediction.

Figure 63 – Examples of TAS prediction.

when compared to the validation number, is due to a change in the classes distribution
done in the test split; this is official information from the challenge hosts.

Afterward, we retrained the model by adding the validation data as training data;
this new model reached 0.683 mIoU. Later, we applied the predictions voting ensemble
that also raised the performance, reaching 0.6883 mIoU. This last benchmark perfor-
mance was the best reported so far on the web server, and all three evaluations made
3 Results on https://codalab.lisn.upsaclay.fr/competitions/5637#results registered under the user slow.
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in this section surpassed the best results of 0.675 mIoU from the 2021 challenge,
endorsing the experiments from our performance increment strategy.
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6 DISCUSSION AND CONCLUSIONS

As computer vision and artificial intelligence are increasingly involved in our daily
routine, there is a need to adapt their solutions to local realities, as seen in emerging
country roads, mainly because most of the cutting-edge technologies are first created in
developed countries regarding their infrastructure. A correct road scene understanding
for emerging countries should regard the issues of road damages and low-resolution
images; for example, an autonomous navigation system that uses only low-resolution
cameras must be aware that road damage may have a tiny size with few pixels.

These issues demand special attention when training a neural network model; for
example, tiny objects are a problem if their locations vanish just after the first or second
stride from the network, as seen in the RTK max-pooling removal experiment, which
the hypotheses that avoided the max-pooling operation outperformed the alternatives
that kept it (see Table 8); indicating the need to avoid compressing the data of the small
object just at the beginning of the network.

Another RTK issue was the multiscale problem. First, we could confirm the mIoU
bias to big objects; Table 18 and Figure 41 show the biggest objects, i.e., road surfaces
and background, have the best metrics way far. In addition, Figure 42 shows a clear
trend between the object edge size and mIoU, but it is not deterministic, e.g., the class
water puddle has the worst performance of 0.48 mIoU with an intermediate edge size,
whereas, storm drain has an intermediate performance of 0.68 mIoU with the second
lowest edge size.

We noted that the hardest classes for predictions in damaged roads, based on
the RTK dataset, are cracks, water puddles, and cat’s eyes, which have very irregular
shapes or present tiny objects.

It is known that deep learning models can require a long training time; hence,
it is essential to keep track of training and validation metrics during the training. The
baseline provided by the RTK authors missed the needed number of iterations, such
that the simple act of increasing the number of iterations raised the mIoU metric from
0.547 to 0.739, a gain of 0.192 (Sec. 4.3.1); by far, it was the most increment of the
series of experiments.

When trying to improve multiple setup parts, it was observed that the perfor-
mance gain from a hypothesis might be overshadowed by a previous performance gain
from another hypothesis. For example, on the RTK loss functions experiments when the
training setup was not previously tuned, the compound losses, CE + Dice or CE + mIoU,
worked better than bare CE, but, after the performance increment strategy started, the
compound loss functions did not bring any improvement (Sec. 4.3.13). Thereby, we can
say an experiment hypothesis performance gain depends on the setup condition that it
is tested.
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Another observation from the RTK loss functions experiment is that CE better
optimizes the mIoU metric than even the surrogate mIoU loss function, the soft-mIoU,
or the other region-based loss function, the soft-dice. It is well-known that some loss
functions have a more proper loss landscape to find optimum solutions than others; it
seemed to be the case with CE when compared to soft-mIoU or soft-Dice.

One problem raised when using the low-level output stride of 4 on the DeepLabV3+
to the RTK dataset, it was the prediction of random blobs from the big classes road sur-
faces (paved, unpaved, asphalt) and background. Later, we observed that this problem
was actually a high rate of false positives of small objects; given the early compres-
sion of the spatial information, the NN was unsure if a pixel belonged to small or large
objects. It visually damaged the predictions; the mIoU metric was not ruined by this
problem, though (see Figure 35). We had two solutions that solved this problem: the
max-pooling layer removal or the output stride diminishing; these solutions reveal the
need for deeper features for features maps of larger spatial size when working with
low-resolution images.

Among the attempts of DeepLabV3+ architecture modifications, we had unortho-
dox procedures, such as degressive rates, hybrid series of rates, and transposed convo-
lutions. None of them emerged any rising on the results. The only effective architecture
change was max-pooling layer removal, the most uncomplicated procedure, which
mainly helped segment small objects.

The performance increment strategy worked for RTK and TAS500 datasets, al-
though a very different subset of the hypotheses was better in each case. When cutmix
augmentation, output stride of 4 if the max-pooling layer was present, CE loss, and
Adam optimizer worked better for the RTK dataset; resizing augmentation, output stride
of 16, CE + soft-Dice loss, and SGD optimizer worked better for the TAS500 dataset.
The dissimilarity between these two hypotheses’ subsets endorses the need for a cus-
tom solution in each context. Taking the freedom to expand the no free lunch statement
(WOLPERT, 1996), that no machine learning algorithm is universally any better than
any other, we could say that no training setup is universally any better than any other.

A curious fact observed in both datasets’ strategies was that color augmentation
did not bring any improvement and slightly degraded the performance. Maybe the
color distributions between the training and the validation sets are the same, and color
augmentation was unnecessary. Differently, cutmix augmentation brought a meaningful
gain of 0.013% for the RTK benchmark, but it did not work for the TAS500. We suppose
that the cutmix operation worked for the RTK dataset, given the tricky scenario of road
surfaces filled with rough transitions between classes and the irregular shapes of many
objects.

Another finding was that cropping augmentation, usually done to handle high-
resolution images, also benefits low-resolution images like the RTK ones. We suppose
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it is because of the resampling power of cropping generating many versions of the
same image.

The output strides showed to be an essential parameter to tune on the DeepLabV3+
architecture; see Tables 7 and 23. In the TAS500 dataset, the output stride 16 was cru-
cial; it got a gain margin of 0.032% from the second best hypothesis of output stride 8.
In the RTK dataset, the difference between the output strides was slight, only 0.006%,
although still necessary to set it to 4 when removing the max-pooling layer.

The usual tactic to gain a few more points in competitions, predictions voting
ensemble, achieved an extra performance in both benchmarks. Nevertheless, it is not
practical for real-world applications that require fast responses, given the burden of
computing multiple passes for the same image.

6.1 SUMMARY OF FINDINGS

• The segmentation of small objects is a problem if the feature map resolution
is reduced before extracting deep features. The network tends specifically to
predict an excess of false positives than miss small objects; it has high recall
but low precision.

• The hardest RTK classes to segment are cracks, water puddles, and cat’s
eyes.

• We could confirm the mIoU towards big objects.

• CE optimizes the mIoU metric better than the surrogate mIoU and dice loss
functions.

• An experiment hypothesis performance gain depends on the setup condition
that it is tested.

• When an experiment hypothesis was better than another, it was better for all
groups of classes.

• The high dissimilarity between the best setup for each dataset endorses the
need for a custom solution in each context.

• Conventional setups usually bring better results than fancy tricks and should
be the first attempt.

6.2 CONCLUSIONS

We conclude that the performance increment strategy worked for both datasets.
It can be a recipe of suggestions to follow when working for emerging country roads
or even expand it for a broad range of semantic segmentation problems. For the RTK
dataset, the strategy raised the benchmark from 0.547 to 0.798 mIoU. For the TAS500
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dataset, we reached a benchmark of 0.688 mIoU on the test set, which is superior to
the 2021 outdoor challenge top-1 of 0.675 mIoU. We believe these enhancements are
a step forward on the arduous goal of autonomous driving for emerging countries.

6.3 FUTURE WORKS

Other state-of-the-art techniques would be worth trying together with this work
experiments are: Conditional Random Fields (CRF) (KRÄHENBÜHL; KOLTUN, 2011),
a post-processing step after the model’s prediction that sharpens the shape of the
predicted object, and was also used in DeepLabV2 (CHEN et al., 2017); Tversky loss
function (SALEHI; ERDOGMUS; GHOLIPOUR, 2017) which better balance the trade-
off between precision and recall. Generalized Dice Loss (GDL) (SUDRE et al., 2017)
which adjusts the contribution of each label by the inverse of its volume, such it reduces
the dice score bias towards big objects.

On the evaluation side, we regard the adoption of the instance-level intersection-
over-union metric (iIoU) presented in the Cityscapes work (CORDTS et al., 2016) which,
in contrast to the traditional IoU, the contribution of each pixel is weighted by the
ratio of the class’ average instance size. Moreover, there is the Boundary Jaccard
(FERNANDEZ-MORAL et al., 2018) metric, similar to the mIoU metric but penalizes
the wrong borders predictions; it was adopted on the Outdoor Semantic Segmentation
Challenge 1.

Furthermore, given the computational constraints on emerging countries, an
additional study of the computational costs like memory footprint and inference time
between the different architectures solutions would complement this work’s results.

1 https://unstructured-scene-understanding.com/challenge.html
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