Federal University of Santa Catarina (UFSC)

Graduate Program in Automation and Systems Engineering (PosAutomacao)

Cleber Jorge Amaral

GoOrg: A model to automatically design organisations for

Multi-Agent Systems

Florianépolis - SC - Brasil

January 2023

Cleber Jorge Amaral

GoOrg: A model to automatically design organisations for

Multi-Agent Systems

Doctoral Thesis submitted to the Graduate Program

in Automation and Systems Engineering (PosAutomagao)
of Federal University of Santa Catarina (UFSC) in
partial fulfillment of the requirements for obtaining

the doctoral degree (Doctor in Automation and Sys-
tems Engineering).

Supervisor: Jomi Fred Hiibner

Co-supervisor: Stephen Cranefield

Florianépolis - SC - Brasil

January 2023

Ficha de identificagcdo da obra elaborada pelo autor,
através do Programa de Geracao Automética da Biblioteca Universitaria da UFSC.

Amaral, Cleber Jorge

GoOrg: A model to automatically design organisations
for Multi-Agent Systems / Cleber Jorge Amaral ;
orientador, Jomi Fred Hibner, coorientador, Stephen
Cranefield, 2023.

140 p.

Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnoldgico, Programa de Pdés-Graduagdo em
Engenharia de Automagdo e Sistemas, Floriandpolis, 2023.

Inclui referéncias.

1. Engenharia de Automacdo e Sistemas. 2. Design
Organizacional. 3. Estrutura Organizacional. 4. Sistemas
MultiAgentes Abertos. 5. Design Automdtico. I. Hiilbner, Jomi
Fred. II. Cranefield, Stephen . III. Universidade Federal
de Santa Catarina. Programa de Pés-Graduagdo em Engenharia
de Automacdo e Sistemas. IV. Titulo.

Cleber Jorge Amaral

GoOrg: A model to automatically design organisations for
Multi-Agent Systems

This work in the doctoral degree was evaluated and approved by a thesis defence
committee composed of the following members:

Prof. Ricardo Azambuja Silveira, Dr.
INE/CTC/UFSC

Prof. Jaime Simao Sichman, Dr.
PCS/USP

Prof. Rafael Caué Cardoso, Dr.
DCS/University of Aberdeen

We hereby affirm that this is the original and final version of the thesis which was
evaluated and approved for obtaining the title of doctor in Automation and Systems
Engineering.

Documento assinado digitalmente

JULIO ELIAS NORMEY RICO
Data: 29/01/2023 21:09:36-0300

CPF: ***.840.859-"*
Verifique as assinaturas em https://v.ufsc.br

Coordinator of the Graduate Program
in Automation and Systems
Engineering (PosAutomagio)

Documento assinado digitalmente

Jomi Fred Hubner
Data: 28/01/2023 06:29:47-0300
CPF: ***.334.769-*"

Prof. Jomi Fred Hiibner, Dr.
Supervidor

Florianépolis - SC - Brasil
January 2023

This work is dedicated to my mother and father, Laci and Jorge who gave me the very
first and most important lessons of my life. This work is also dedicated to my wife
Sharlene, my daughter Sarah and my son Nathan who unconditionally supported me

throughout a long journey in this research.

Acknowledgements

A special feeling of gratitude to Jomi, who from the very beginning of this research
said the exact thing that I needed to hear. There can be no greater example of a kind

and humane conduct that transcends the topics covered in this PhD thesis.

[also want to express my gratitude to Stephen for his once again excellent advice. |
also want to acknowledge the help, inspiration, and motivation I received from my friends
Timotheus Kampik, Cristina Helena, Michael Silva, Thomas Teixeira, Mozart Gongalves,

and Olivier Boissier.

Thank you to the professors, staffs and students of the PosAutomagao program
of UFSC and of the Information Science Department of the University of Otago for all
the good lessons, talks and support. Also, many thanks to the publications’ reviewers for
their valuable contributions, and to Ricardo Silveira, Jaime Sichman and Rafael Cardoso

for their insightful criticism in reviewing this thesis.

In closing, I would like to thank IFSC for approving and supporting this research,
and the program CAPES-UFSC “Automacao 4.0”, the project AG-BR of Petrobras and
the post-graduate program PosAutomacao of UFSC for partially funding this research.

“I would rather have questions that cannot be answered
than answers that cannot be questioned.”
(Richard Feynman)

Resumo

O design de organizagoes é uma tarefa complexa e trabalhosa. Isto é tema de
estudos recentes que definem modelos para executar esta tarefa automaticamente.
No entanto, os modelos existentes restringem o espaco de possiveis solugoes requisi-
tando defini¢coes prévias dos papéis organizacionais e geralmente nao sao adequados
para o planejamento de recursos. Esta tese de doutorado apresenta o GoOrg, um
modelo que utiliza como entrada um conjunto de objetivos e um conjunto de agentes
disponiveis para gerar diferentes arranjos de estruturas organizacionais construidas
a partir de posigoes organizacionais sintetizadas. As caracteristicas mais distintas do
GoOrg é o uso de posigdes organizacionais ao invés de papéis e que as posigdes sao
sintetizadas automaticamente no lugar de requisitar que o usudrio as defina. Estas
caracteristicas facilitam a parametrizagao, a utilizacdo no planejamento de recursos
e as chances do modelo de encontrar solugoes vidveis. Para avaliar o GoOrg, esta
tese introduz duas especializagoes que estendem o modelo. Estas extensoes definem
processos e restrigoes, ilustrando como o GoOrg pode ser adequado para diferentes
dominios. Entre os aspectos associados ao design de organizagcoes, este trabalho ap-
resenta uma comparacao entre modelos de design organizacional e discute entradas,
abstracoes de agentes e procedimentos para adaptagao de organizagoes durante seu
ciclo de vida.

Palavras-chave: Design Organizacional. Estrutura Organizacional. Estrutura So-
cial. Sistemas MultiAgentes Abertos. Design Automatico.

Resumo Expandido

Introducgao

Agentes sdo entidades auténomas de software que normalmente cooperam com out-
ros, formando Sistemas Multi-Agentes (SMAs). Para que seus objetivos comuns
sejam alcancados, os agentes fazem parte de organizacées que restringem ou in-
centivam certos comportamentos de agentes. Organizagoes sao entidades indepen-
dentes dos agentes, portanto, projetadas utilizando modelos, técnicas e ferramentas
proprias. Uma organizacao é fundamentalmente definida por sua estrutura, ou seja,
por posigoes organizacionais, suas relacoes e responsabilidades. Apesar da importan-
cia da estrutura e o quao trabalhoso é projeta-la, ha poucos e limitados modelos
de projeto automatico de estruturas organizacionais. De fato, é desafiador elabo-
rar um modelo de projeto automatico de organizagoes que seja efetivo, adaptavel
e simples de parametrizar. O modelo GoOrg apresentado nesta tese busca vencer
estas limitacoes. As entradas do modelo sdo os objetivos e os agentes disponiveis.
As saidas sdo estruturas organizacionais cuja viabilidade é calculada além de out-
ros atributos que ajudam a selecionar a organizacdo mais adequada para um dado
cenario. O GoOrg nao utiliza o conceito de papéis organizacionais, como em outros
modelos, ao invés disso utiliza posi¢oes que possuem relagées uma-para-um com
agentes. Esta caracteristica facilita a verificagdo de viabilidade de uma organiza-
¢ao, ou seja, se uma dada organizacao gerada poderd ser preenchida pelos agentes
disponiveis. Além disso, a demanda por agentes pode ser verificada em tempo de
projeto e a distribuicdo de objetivos pode ser estabelecida com maiores critérios pela
ferramenta de projeto organizacional. Para demonstrar a aplicabilidade do modelo,
esta tese apresenta também duas extensdes do GoOrg, uma desenvolvida para um
cenario industrial de producao de uma fabrica e outra para um cenario de sensores
distribuidos para rastreamento de objetos.

Objetivos

O objetivo geral deste trabalho é desenvolver um modelo para geracdo automatica
de estruturas organizacionais para SMAs que seja independente de dominio. Os ob-
jetivos especificos sao: (i) que o modelo seja extensivel para diferentes dominios;
(ii) que considere os agentes disponiveis verificando a viabilidade das estruturas
organizacionais geradas e (iii) que permita que as estruturas geradas sejam orde-
nadas utilizando diferentes critérios para que a “melhor” estrutura, conforme as
preferéncias do usudrio, possa ser automaticamente selecionada.

Metodologia

Esta pesquisa utiliza a seguinte metodologia: (i) realizagdo de revisao bibliografica
sobre geradores de organizagoes, destes as classicas do campo de pesquisa da ad-
ministracdo até as pesquisas de geradores automaticos de organizagoes de SMAs;
(ii) definigdo do problema de pesquisa; (iii) proposi¢ao de uma solugao; (iv) imple-
mentagao da solucdo; e (v) avaliagdo da solugao.

Resultados e Discussao

O GoOrg utiliza representagoes impessoais de agentes, desacoplando a organiza-
cao dos agentes, facilitando a geracdo de mais candidatos e tornando o projeto
de organizacbes mais flexivel, uma vez que ndo se restringe as especificidades de
agentes nomeados. A utilizacdo de posi¢oes organizacionais ao invés de papéis or-
ganizacionais faz com que os recursos possam ser estimados em tempo de projeto

e eleva o controle do projeto sobre a distribuicdo de atividades a determinados
agentes, elevando a relevancia desta etapa. Apesar das vantagens que o modelo de
posicoes com relagbes um-para-um traz, héa a desvantagem de reduzir a flexibilidade
de combinagoes em tempo de execucdo, o que pode elevar a necessidade de refazer
o projeto organizacional quando o cenario é alterado. O GoOrg se destaca por sin-
tetizar posigdes ao invés de requerer que os papéis organizacionais sejam definidos
pelo usuario, reduzindo a complexidade da parametrizacdo do modelo e reduzindo
a influéncia dos vieses do usuario. No entanto, isso traz maior complexidade com-
putacional. No que se refere as entradas do modelo, destaca-se que o GoOrg utiliza
principalmente objetivos organizacionais e caracteristicas que podem ser associadas
a estes, sendo relativamente mais simples de se conceber comparado com outros
modelos que requerem a definicdo dos comportamentos dos agentes. Como saida,
o GoOrg gera um conjunto de estruturas quantificadas por atributos, facilitando a
selecdo automatica da estrutura mais adequada para o cenario. Por fim, conforme
demonstrado pelas extensoes apresentadas, o GoOrg pode facilitar adaptagoes orga-
nizacionais durante a execucao do SMA, suportando realocacoes simples de agentes,
trocas de estrutura por outras previamente criadas ou, se necesséario, reprojetando
completamente as estruturas organizacionais. Para cada procedimento de adaptacao
foram discutidos custos associados como o curso de aquisicdo de novos agentes e o
custo de sobrequalificagao de agentes.

Consideracgoes finais

O projeto organizacional tem sido refinado ao longo do tempo, desde os estudos
no campo da administragdo aos modelos de projeto automéatico de organizacdes
para SMAs. Os modelos de geragdo automéatica para SMAs utilizam papéis orga-
nizacionais que, apesar da flexibilidade em tempo de execugao, dificultam a esti-
magao de recursos e reduzem a relevancia do projeto organizacional. Este estudo
adotou posigdes organizacionais que compartilham as principais vantagens dos pa-
péis, como o desacoplamento da organizacao de agentes nomeados, porém refletindo
numericamente demandas, o que permite estima-las e verificar antecipadamente a
viabilidade de organizagoes. Este modelo foi avaliado do ponto de vista de duas
extensbes desenvolvidas para diferentes dominios. As extensées puderam gerar con-
juntos de estruturas com atributos quantificados, realizando a selecdo automatica
do “melhor” candidato conforme as preferéncias do usuario definidas no momento
do projeto. Os processos de geracao e selecdo de organizacoes foram implementados
como moédulos distintos, o que permite dividir a complexidade, além de acelerar os
resultados quando apenas um dos processos é requisitado. Porém, na realizagao do
projeto organizacional o tempo de processamento nao é o tnico aspecto a se con-
siderar. Quando se planeja optar por procedimentos de adaptagdo mais leves como
realocacOes e trocas de estruturas por outras previamente geradas, ha também de
se verificar outros custos como de aquisi¢do e sobrequalificacdo de agentes. Como
trabalhos futuros, planeja-se testar os procedimentos de adaptacdo em diferentes
cenarios, substituir o processo de busca de solu¢des por um algoritmo mais rapido,
substituir o processo de vinculagao de agentes com posi¢oes organizacionais por um
algoritmo 6timo, implementar mais extensoes para diferentes dominios e formas de
estruturas e concluir a integragdo do modelo com uma ferramenta de desenvolvi-
mento de SMAs.

Palavras-chave: Design Organizacional. Estrutura Organizacional. Estrutura So-
cial. Sistemas MultiAgentes Abertos. Design Automatico.

Abstract

The design of organisations is a complex and laborious task. It is the subject
of recent studies, which define models to automatically perform this task. However,
existing models constrain the space of possible solutions by requiring a priori defini-
tions of organisational roles and usually are not suitable for planning resource use.
This doctoral thesis presents GoOrg, a model that uses as input a set of goals and a
set of available agents to generate different arrangements of organisational structures
made up of synthesised organisational positions. The most distinguishing charac-
teristics of GoOrg are the use of organisational positions instead of roles and that
positions are automatically synthesised rather than required as a user-defined input.
These characteristics facilitate the parametrisation, the use for resource planning
and the chance of finding feasible solutions. To evaluate GoOrg, this thesis intro-
duces two specialisations that extend the model. These extensions define processes
and constraints, illustrating how GoOrg suits different domains. Among aspects that
surround an organisation’s design, this work presents a comparison of design models
and discusses models input, agents’ abstractions and procedures for adapting the
organisation during its life cycle.

Keywords: Organisational Design. Organisational Structure. Social Structure. Open
Multi-Agent Systems. Automated Design.

Figure 1
Figure 2

Figure 3

Figure 4
Figure 5

Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

Figure 27

Figure 28
Figure 29
Figure 30
Figure 31

List of Figures

— Automated design of a PCB Production scenario. 27
— Some other candidate solutions for the PCB Production scenario. . . . 28
— Design model categories.o 32
— The generic design process of GoOrg-based models. 43
— GoOrg model. 44
— GoOrgd4Prod model. 47
— A given set of goals with associated workloads and dataloads. 48
— GoOrg4Prod organisational structure attributes in three dimensions. . . 50
— The four processes of GoOrg4Prod. 53
—The set G' of split goals for ¢, = 4 and 6, = 1000. 53
—Supported transformations.o 55
—Step by step of state search with all possible solutions for the given G. 58
—The available agents. 62
—The generated candidates quantified according to the user’s preferences. 62
—The two best structures, which are not 100% feasible. 63
—Two feasible structures for the given example. 63
—Candidate #1646 64
—A MAOP approach for the DSN domain. 68
~GoOrgdDSN model. 70
—The three processes of GoOrg4Prod. 72
— A motivating scenario with four sectors, each one with 5 sensors. 75
—The set of goals in which no target is being detected. 76
—Candidate #1 (unique) when there is no target being detected. 76
—The set of goals in which one target is being detected. 76
—Candidate #1 for the scenario with 1 target being detected. 7
—Candidate #1 for the scenario in which three targets are being detected. 78
—GoOrg simplified class diagram. 81
—Feed Production Scenario. L. 88
—Some of the candidates for the Feed Production Scenario. 88
—A reallocation by replacing an agent by another. 90
—Matching kinds of agents and kinds of positions 91

Figure 32
Figure 33
Figure 34

Figure 35
Figure 36
Figure 37
Figure 38
Figure 39

Figure 40
Figure 41

Figure 42
Figure 43

Figure 44

Figure 45

scenario.
—A complete redesign after a change to the set of goals.
—Different forms of assigning goals to organisational members
—Comparing a structure of roles and a structure of positions.

—A structure of instances of roles

structures

—Comparing generators with roles and goals as input

—Comparing the height of structures for the given scenario.

—Comparing the efficiency of structures for the given scenario

output.

—The identification of the roles associated with positions

—Comparing the generality of candidates of the motivating scenario.

—Acquisition cost when switching between structures of the motivating

—Comparing examples of user-defined roles and synthesised positions

—Comparing structures for the given scenario regarding all attributes. . .

—Synthesing roles, relationships, missions and norms from a GoOrg’s

— A required structure-switching due to a change in the user’s preferences. 93

94

List of Tables

Table 1 Comparison among Automated Organisational Structure Generators. . 39
Table 2 All the candidates for the given G containing just two goals.. 59
Table 3 Organisational structures generated for Feed Production with three goals. 85
Table 4 Candidates #2, #3 and #4 for Feed Production scenario with three goals.103

List of Abbreviations and Acronyms

CPU

DF

DSN

FIPA

IDE

JVM

MAOP

MAPC

MAS

MaSE

OSD

PCB

SADDE

OMACS

DOMAP

ODML

KB-ORG

Central Processing Unit

Directory Facilitator

Distributed Sensor Networks

Foundation for Intelligent Physical Agents
Integrated Development Environment

Java Virtual Machine

Multi-Agent Oriented Programming
Multi-Agent Programming Contest
Multi-Agent System

Multiagent Systems Engineering
Organisation Self-Design

Printed Circuit Board

Social Agents Design Driven by Equations
Organization Model for Adaptive Computational Systems
Decentralised On-line Multi-Agent Planning
Organizational Design Modeling Language

Knowledge-Based Organization Designer

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
2.3.1
2.3.2
2.3.3

3.1
3.2
3.3

4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.4

5.1
5.2
5.3
5.3.1
5.3.2

Contents

INTRODUCTION e e e e e e e e e 25
MOTIVATION e e e 25
PROBLEM AND RESEARCH QUESTIONS 27
OBJECTIVES 29
CONTRIBUTION AND RELEVANCE 29
DOCUMENT STRUCTURE 30
ORGANISATION DESIGN MODELS 31
AUTOMATED ORGANISATIONAL DESIGN BY TASK PLANNING . . . 33
SELF-ORGANISATION APPROACHES 33
AUTOMATED ORGANISATIONAL STRUCTURE GENERATORS 35
Structure Generators’ Background L. 35
State of the Art 37
Comparing Structure Generators 38
GOORG MODEL. e e e e e e e e 43
GOORG ELEMENTS 44
ATTRIBUTES OF AN ORGANISATIONAL STRUCTURE 46
GOORG HIGHLIGHTED CHARACTERISTICS 46
GOORG4PROD: A SPECIALISATION FOR A FACTORY PRODUC-

TION LINE DOMAIN e e e e e e 47
GOORG4PROD ELEMENTS 48
GOORG4PROD ADDED ATTRIBUTES 50
GOORG4PROD PROCESSES 52
Preparing goals for assignmentso 53
Generating organisations Lo 54
Binding agents and positionso 59
Choosing organisations Lo 60
Computational complexity L 61
GOORG4PROD RESULTS o 61
GOORG4DSN: A SPECIALISATION FOR THE DISTRIBUTED SEN-

SORS NETWORK DOMAIN it e e 67
GOORG4DSN ELEMENTS 69
GOORG4DSN ADDED ATTRIBUTES 71
GOORG4DSN PROCESSES 71
Generating organisationso 72

Binding agents and positionso oo 74

5.3.3 Choosing organisations 74
5.3.4 Computational complexity L L 74
5.4 GOORG4DSN RESULTS e, 75
6 GOORG: IMPLEMENTATION i 79
6.1 TOOLS AND PROGRAMMING LANGUAGES 79
6.2 GOORG IMPLEMENTATION ARCHITECTURE 80
6.2.1 Executing GoOrg Implementation, 82
6.2.2 GoOrg Implementation Inputs 83
6.2.3 GoOrg Implementation Outputs, 83
6.3 EXTENDING GOORG 84
7 DISCUSSION e e e e e e e e e e e e e 87
7.1 ORGANISATIONAL ADAPTATION 87
7.1.1 Reallocation 90
7.1.2 Structure-switching 92
7.1.3 Redesign 96
7.2 ASSIGNING GOALS TO NAMED AGENTS, ROLES OR POSITIONS . . 96
7.3 PLANNING RESOURCES OF ORGANISATIONS 98
7.4 SYNTHESISING POSITIONS INSTEAD OF REQUIRING USER-DEFINED
ROLES 100
7.5 USING GOALS AS INPUT INSTEAD OF ROLES AND BEHAVIOURS . 104
7.6 SUMMARY OF THIS DISCUSSION 105
8 CONCLUSION e e e e e e e e e e e e e e e e 107
BIBLIOGRAPHY e e e e e e e e 109
APPENDIX A Comparing organisational attributes among candidates . . 119
APPENDIX B XML specification of Feed Production with four goals . . 121
APPENDIX C XML specification of DSN with 4x5 sensors and 3 targets 123
APPENDIX D XML specification and outputs for Feed Production with
threegoals 127
APPENDIX E Improving GoOrg, 131
APPENDIX F Synthesizing organisational roles 137

APPENDIX G Works developed during the PhD 139

25

1 Introduction

In this chapter it is presented the motivation for this work, the problem and re-
search questions that guided the investigations done, and the objectives and contributions
of this thesis.

1.1 Motivation

A software entity known as an agent is one that has certain beliefs, goals, and
capabilities and demonstrates some autonomy by choosing how it will carry out its goals
(Bordini et al., 2007; Rahwan et al., 2015). A typical agent is a member of a Multi-
Agent System (MAS) and is not operating in isolation in the environment in which it is
located. To achieve the system’s goals, it is necessary some mechanism to organise and
coordinate such autonomous entities in a MAS (Hiibner et al., 2002). Organisations are
used to overcome this problem by promoting a coherent mechanism, which constrains and
upholds acceptable behaviour of agents (Boissier et al., 2016; Hiibner et al., 2002; Sierra
et al., 2004). The organisation is an entity in which members adhere to a set of rules,
have similar beliefs, and cooperate in achieving common goals. Because organisations are
independent of agents, they are typically designed using distinct models, techniques and
tools (Gasser, 2001). Additionally, the design of organisations is arguably as important as
the design of the agents (Boissier et al., 2013; Cardoso and Ferrando, 2021).

Among the organisation’s aspects to define, the organisational structure is crucial.
It represents positions, displaying the hierarchy, relationships and responsibilities (Daft,
2009). An explicit structure allows members to know their position related to others, their
authority relationships, and their commitment to organisational goals (Hatch, 1997). It
supports agents’ entrances and exits. It also promotes a method of task assignment (De-
Loach, 2002).

Despite its significance and how time-consuming organisational design is, only a
small number of research have focused on automatic generators of explicit organisational
structures (DeLoach and Matson, 2004; Horling and Lesser, 2008; Sierra et al., 2004; Sims
et al., 2008; So and Durfee, 1998). Although seminal, these works still have limitations
to overcome. Indeed, determining a design model that is effective, adaptable, and simple
to parametrise is challenging. Due to the specificity of each domain and the high num-
ber of variables that surround the design process, no existing model can be considered a

decisive solution. This thesis presents GoOrg, a MAS organisational design model for au-

26 Chapter 1. Introduction

tomatically generating organisations, which addresses these issues. GoOrg considers that
organisational structures are composed of organisational positions, which can be arranged
into many shapes. It also considers that agents can occupy organisational positions and
commit to their assigned goals. As input, GoOrg expects a set of goals and a set of avail-
able agents. Goals are used to synthesise organisational positions. Structures are created
from the synthesised positions. The feasibility of each structure is evaluated using a given
set of available agents. GoOrg outputs a list of organisational structures sorted according

to the user’s preferences.

The concept of roles is used in existing models for generating organisational struc-
tures for MAS (DeLoach and Matson, 2004; Horling and Lesser, 2008; Sierra et al., 2004;
Sims et al., 2008; So and Durfee, 1998). Agents and roles have many-to-many relation-
ships. Although intuitive, the concept of roles does not ease planning resource use and
checking the organisation’s feasibility. GoOrg uses organisational positions instead, which
have one-to-one relationships with agents (Slade, 2018). Therefore, a position-based or-

ganisational structure reflects resource demands.

Existing models expect roles as input, which means that roles should be defined
a priori by the user. This restricts the set of solutions, possibly making it infeasible
to find a structure to be filled by the available agents. Indeed, many situations may
require roles that the user cannot foresee, which for those models means that they cannot
produce feasible organisations for the given inputs. In contrast to related works, in GoOrg,
organisational positions are synthesised, relieving the user from the task of defining roles.
Synthesized positions increase the likelihood of finding structures that can be filled by
the available agents by generating a wider range of potential solutions. Besides, existing
models require agent behaviour definitions. Behaviours are complex and time-consuming

to define. Instead, GoOrg employs goals as inputs, which are typically simpler to define.

From the contributions of the administration research field to the contributions of
the computing science research field, this work covers the state-of-the-art in organisational
design. It depicts the computational models, presenting them into different classes, and

compares GoOrg with other automated organisational structure generators.

This work also introduces GoOrg4Prod and GoOrg4DSN, specialisations of GoOrg
which define particular processes. They illustrate how the model can be customised for
different purposes by selecting particular constraints. These specialisations divide the
design into subprocesses. A distinction between processes facilitates the encapsulation of
parts of the design into modules. For example, the separation of the binding subprocess
from the generating subprocess is relevant for making quicker adaptations for running
organisations. The implementation of GoOrg is also depicted, and a discussion regarding

organisational design aspects is presented.

1.2. Problem and Research Questions 27

1.2 Problem and Research Questions

The first challenge this research addresses is the automated design of organisational
structures. An organisations’ generator must consider that a problem domain has a set
of goals to be achieved, and possibly these goals cannot be achieved by a single agent. In
this sense, it is necessary to organise agents into some structure in which the goals can
be distributed across organisational positions. The agents thereby assume organisational
positions and are in charge of completing their assigned goals. There must be a way
to constrain the generator on finding solutions, which depends on each goal and on the
problem domain. For instance, in some domains, it makes sense to associate the goals
and the agents with some skills. Therefore, a goal can indicate the required skills that an

agent should have to achieve it.

To illustrate the problem, it is considered the set of goals for the Printed Circuit
Board (PCB) Production scenario presented in Figure la. In the mentioned figure, each
circle represents a goal, each shaded box refers to the needed skills to achieve the goal, and
the bodies on the bottom represent available agents that can be part of the organisation.
It is intended to generate organisational structures like the one shown in Figure 1b. In
this figure, each unfilled box represents an organisational position of a structure, each
shaded box refers to the needed skills to achieve the goal and the bodies closer to each

organisational position represent the agent that is occupying each organisational position.

Production
2
paul
i Purchaser
Buy Other Apply Paste

[Purchase]
Supplies

PCB
Assembly

Place Soldering
Components Components

J J)] e
AREAXA 2

Assembling
Coordinator

Buy
Components

mary

Purchase Purchase Print

[Purchase] [Print] [Pick and [Heat] fred
Place] [Heat]
(a) Inputs: A set of goals with required skills. (b) Output: An organisational structure.

Figure 1 — Automated design of a PCB Production scenario.

However, from the given set of goals, the structure illustrated in Figure 1b may not
be the only possible solution. Indeed, there are numerous locations in the hierarchy where
the positions shown in Figure 1b can be organised. They may also be a part of various
hierarchies or other kinds of structures, and they can be in charge of a variety of goals.
The goals can also be split, and their parts can be assigned to different positions. Besides,
the structure must be feasible according to the available resources (agents) for this domain

problem. Figure 2 illustrates some of the many candidates that can be generated. In this

28 Chapter 1. Introduction

sense, the second challenge this research addresses is how to choose an organisational

structure candidate among others.

PmdUC“O" Productlon
Ma”ager Manager
allce
| paul
Purchaser Paster Componems Components]
as Appllcator Placer Welder
Purchase PICk and Heat
Place

£ % R
[Purchase]

Full
Assembler

Factotum

Purch
urchaser Agent

bob tom
mary fred
[Purchase] [Print] [P;T:CZ?(! [Heat]
(a) A flat structure for specialised agents. (b) A structure with a factotum agent.

Figure 2 — Some other candidate solutions for the PCB Production scenario.

For choosing a candidate, according to relevant characteristics for the problem
domain, it is necessary to somehow quantify the potential solutions (candidates). Indeed,
for the PCB Production scenario illustrated, there are some characteristics of the organi-
sational structures that can be inferred. For instance, the solution illustrated by Figure 1b
has many specialist positions, i.e., each agent achieves just one goal, leaving other goals
to other agents of the organisation and that structure is also very hierarchical (tall).
The solution illustrated by Figure 2a has also many specialist positions, but it is flatter.
Still, the solution shown in Figure 2b is more compact than the others as it takes the
presence of a factotum agent into account. As demonstrated, two attributes that may be
inferred from hierarchies are the generality (contrasting with speciality) of positions and
the height of structures. Such attributes can be quantified and then utilised to sort and

choose organisational structures in accordance with the user’s preferences.

Furthermore, generating and choosing organisational structures is usually a com-
putationally expensive task and it might be required to repeat it several times. Indeed,
it might be necessary to make adaptations as the system’s conditions change over the
organisation’s lifecycle. Fortunately, not every change requires a complete design proce-
dure. For instance, the available agents that were informed in the design time may change
while the system is running. Some changes in the availability of agents may be solved
with simple reallocations of agents, i.e., the structure is still the same, just the bindings
between agents and positions change. However, there are situations when maintaining the
same structure is impractical, such as when agent availability has altered so that no agent
meets the requirements to fill an existing position. In these circumstances, a structure-
switching is appropriate because one of the generated solutions might be better suited for
the new condition. Still, there are cases in which there is no solution to any extent, for
instance, when the set of goals has changed. In such cases, it is necessary a redesign. It is
important to provide different ways to adapt the organisation, and to provide information

to calculate the impact of a change.

1.8. Objectives 29

In summary, this research intends to answer the following questions:

o How to automatically generate domain-independent organisational structures for
MAS?

« How to choose an organisational structure candidate among others?

o How to make the organisation generator facilitate organisational adaptations in a

running (online) MAS?

1.3 Objectives

The general and specific objectives of this research are:

General Objective

Develop a model to automatically design domain-independent organisational struc-

tures for Multi-Agent Systems.

Specific Objectives

o Develop a model to automatically generate and choose organisational structures;
o Make the model extendable to be specialised for different domains;

« Consider a set of available agents to allow resources planning and to check the

organisational structure feasibility; and

o Allow the generated structures to be sorted according to different criteria.

1.4 Contribution and Relevance

The main contributions of this research are:

o The development of a new model to automatically design and choose organisational

structures;

o The development of a novel approach for synthesising organisational positions, which

besides facilitating the model parametrisations also helps to generate more solutions;

« A discussion and proposal of new perspectives on some organisational design aspects
such as the importance of using impersonal representations of agents like organisa-
tional positions or roles, the importance of the use of positions instead of roles for

planning resources and different adaptation procedures for organisations; and

30 Chapter 1. Introduction

» To make available a free and open organisational structure generator tool that can

be used, extended and improved by the community.

1.5 Document Structure

The rest of this document is structured as follows: Section 2 presents the state
of the art of organisational design research area, ranging from contributions of the Ad-
ministration Research Field to organisational design models proposed by the MAS com-
munity, in which GoOrg is compared to other approaches; Section 3 presents GoOryg, a
novel extensible model for generating and choosing organisational structures; Section 4
presents GoOrg4Prod, a specialisation of GoOrg for a factory domain; Section 5 presents
GoOrg4DSN, a specialisation of GoOrg for the Distributed Sensor Networks (DSN) do-
main; Section 6 presents details of the implementation of GoOrg; Section 7 presents a
discussion on aspects of organisational design, including procedures for adapting organi-
sations, model inputs, and planning resources; Finally, Section 8 presents conclusions and

recommendations for future research.

31

2 Organisation Design Models

This work proposes an automated design model for generating organisations. It
often uses the terms organisational design model and organisation generator interchange-
ably. In fact, a model is an abstraction of a system under study (Kithne, 2006). This work
considers that a generator is a model, since each class of generators abstracts organisations
in a distinctive approach by undergoing some kind of transformation process. Although
this work is focused on automated design models, it is worth contextualising the broad

research area of organisational design models.

Different design models can be placed into categories and classes.! The first cat-
egorisation is set from the research area and the kind of organisational members. There
are studies in the Administration Research Field for designing organisations for humans
and in the computing area, which is mainly concerned with designing organisations of
software. Focusing on the design of organisations of software, there are the subcategories
of automated and non-automated models, and organisations of autonomous and non-
autonomous entities. Finally, in the matter of this work, it is considered that automated
design models are in different classes. Figure 3 provides an overview of the works that lie

under the referred categories and classes. Following this, the categories and classes are
detailed.

The design of organisations is a long-standing research topic in the administra-
tion research field. This field is concerned with organisations formed by humans, such as
companies. Most works propose frameworks that state an organisation model and issues
to be solved (often iteratively). According to the kinds of tasks, the job can be split into
functions and, for instance, if the organisation is geographically distributed, it may require
departments for different regions. Among the spawned models are the iterative method
proposed by Stoner and Freeman (1992), the Star Model proposed by Galbraith (1995),
the step-by-step framework proposed by Burton et al. (2011) and the design process in-
troduced by De Pinho Rebougas De Oliveira (2006).

In the design of organisations of software, there are many studies of Service Com-
position, which can orchestrate applications by defining sequences and managing com-
munication among Web services (Wu et al., 2015). Service Composition has no concern
about the degree of autonomy of the software artefacts it is orchestrating. Besides, there

are many studies of organisations formed by computational agents, i.e., autonomous en-

L The term “class” is being used to refer to something more specific than a category.

32 Chapter 2. Organisation Design Models

Galbraith's Burton's De Service
Star Model Step-by- Pinho's Composition
step process approaches

Tambe's Ferber's Hubner's Decker's Sleight's Cardoso's
STEAM AALADIN Moise TAEMS approach DOMAP

Stoner and Ishida's

Freeman's "N\ 0TV T N/ A A approach
method ! P

: L task So and

: 1 1 S\ planners Durfee's

iy approach

kind of !

Organisation autonomous automated Krausburg's
Design Models/ members members? /: model? coalliations
: Labella's

coml\rfwﬁiit ' Horling's Sims's Deloach's Sierra's

stu diesy ODML KB-ORG OMACS SADDE

Figure 3 — Design model categories.

tities, which is a research subject of the MAS community.? The models for designing
organisations for Service Composition and for MAS also can be placed into the subcate-
gories of non-automated and automated models. The former models require the definition
of the organisation from the user (engineer), and the latter uses artificial intelligence to

automatically generate organisations (Amaral and Hiibner, 2019, 2020a; Wu et al., 2015).

Considering just models for designing organisations for MAS, some examples of
non-automated organisation generators are STEAM (Tambe, 1997), AALADIN (Ferber
and Gutknecht, 1998) and Moise™ (Hitbner and Sichman, 2003). These models allow
explicit organisational design in a wide variety of structures and other aspects such as
norms, roles, relationships, organisational goals, and ontologies. They are problem-driven
approaches, and the organisation’s design is specified by a human (the user/engineer).
However, this study is focused on automated computational organisation generators, i.e.,

those that automatically generate organisations through computational processes.

To dive into the particular subcategory of automated models, this chapter presents
the current state of the art of automated computational organisation generators. It is
structured as follows: the next sections present three classes of automated organisation
generators: Section 2.1 presents automated organisational design by task planning; Section
2.2 introduces self-organisation approaches; and Section 2.3 presents automated organi-
sational structure generators. This work is situated in the third class of organisational
structure generators, which is the only one that focuses on generating explicitly modelled
organisations (Hatch, 1997; Sims et al., 2004).

2 Since both humans and agents have some degree of autonomy, there is an intersection between studies

of organisations of MAS and studies of organisations of humans.

2.1. Automated Organisational Design by Task Planning 33

2.1 Automated Organisational Design by Task Planning

The automated organisational design by task planning is the first class to be intro-
duced. These generators usually create problem-driven organisations, for specific and often
short-term purposes. The organisational structure, when it exists, is not explicit, and it is
frequently a non-intended result of a task allocation process. Such generators are focused
on solving a given problem by decomposing tasks, allocating them and sending plans to
available agents. Usually, there are no roles in this context; the agents are already named
and have received their responsibilities somehow. They typically cooperate by fulfilling
their tasks. In this sense, a common goal is achieved when a number of tasks are achieved
by the organisational members (agents). For instance, a marketplace organisation that
has the goal do business achieves it when a member achieves the goal sell product and
another member achieves the goal buy product. In this particular class, the automated

planning community has produced many contributions to MAS design.

An earlier study on planners able to generate organisations is TAEMS (Decker,
1995). This domain-independent framework provides a way to quantitatively describe in-
dividual tasks that are performed in shared environments. It does not use the concept of
roles. Tasks, which are slightly similar to goals, are allocated directly to agents. This ap-
proach proposes mixing perspectives from traditional task planners, i.e., problem-driven,
and self-organisation, which are experience-driven approaches. Sleight (2014) presents an
agent-driven planner from a similar perspective, but using the Decentralised Markov De-
cision Process model. It considers the organisation as a first-class object with a dynamic
response to environmental changes. There are no goals in this domain-independent ap-
proach; it uses rewards in stochastic environments instead. The concepts of roles and

explicit structures are also absent.

Cardoso and Bordini (2019) has proposed a domain-independent model called
Decentralised On-line Multi-Agent Planning (DOMAP). This task planner first creates
factored representations for each agent, based on their limited vision. The second step
is to assign goals to agents according to estimations. Following that, agents effectively
plan individual actions without sharing private details. Redesign processes may occur if
any individual plan fails. Finally, the allocated agents execute their plans. Although the
algorithm does not use explicit organisation in the allocation process itself, it can use an

organisational structure as input to fill the roles with available agents.

2.2 Self-organisation Approaches

The second class uses self-organisation approaches, which is often referred to as
Organisation Self-Design (OSD). In this class, the organisations emerge from the dynamics

of the scenario, usually defined by the agents’ common interests and interactions (Fink

34 Chapter 2. Organisation Design Models

et al., 1983). The resulting organisations are flexible, may operate continuously, have
overlapping tasks, formed by named agents, have no external or central control, no hi-
erarchy, and information flows among agents in many directions (Ye et al., 2016). The
organisational structure is usually a non-intended ephemeral outcome of this bottom-
up process, i.e., it is a result of arbitrary and temporary situations. For instance, the
agent that first achieves a goal leads a team to achieve the next goal. The target of this
method is to solve some problem and not precisely design an organisation (Sims et al.,
2008). Self-organisation approaches are more concerned about coordination policies and

less concerned about the generated organisational structure itself (Sleight et al., 2015).

In one of the earlier studies, Ishida et al. (1992) has presented an adaptative self-
design approach which creates and destroys agents to allocate tasks according to resources
and environmental changes and needs. Decker et al. (1997) proposed an approach for
adaptation of MAS on organisational, planning, scheduling and execution levels. It uses
the cloning technique in the execution phase, which is the action of creating a clone
agent to partially or totally transfer tasks.> A study presented by So and Durfee (1998)
encompasses the characterisation of different organisational designs and includes self-
organisations and the reconfiguration process for stable organisations. This study also
proposes a way to evaluate the organisation’s design. In another work, Kamboj and Decker
(2007) extended the study performed by Decker et al. (1997), adding a task representation
framework, enabling this new method to become domain-independent and to reason about
quantitative aspects of tasks. There are several studies on self-organised swarms based
on computationally limited agents, which often do not even know about the presence of
other agents and that are coordinated by simple mechanisms (Labella et al., 2007; Ye
et al., 2016).

More recently, Kota et al. (2012) study presents a decentralised approach in which
agents can reason about adaptations to modify their structural relationships when there
are opportunities for improving the system performance. Ye et al. (2014) joined cloning
and spawning functions on their self-design method. In this sense, besides cloning, when
overhead is detected, an agent is also able to delegate a task when it is detected that the

agent cannot perform the task at a certain time.

Ohta et al. (2006), Rahwan et al. (2015), Krausburg et al. (2021) and other studies
on coalitions are also included in this class of organisation generators. These approaches
differ in some characteristics compared to other self-organisation approaches as they usu-
ally have centralised information and algorithmic process that could not be considered
a bottom-up sequence. However, they do share other characteristics of self-organisation

approaches as they usually generate organisations of named agents, the organisations have

3 The cloning mechanism is used by agents when predicting or perceiving overload (Shehory et al.,

1998).

2.8. Automated Organisational Structure Generators 35

little relationship definitions fostering to handle overlapping tasks and having information
flowing in many directions. Besides, the concerns with the algorithmic performance show

that these approaches are mainly sensitive to the dynamics of the scenario.

2.3 Automated Organisational Structure Generators

Finally, the third class is the automated organisational structure generators. It is
focused “on a specification of desired outcomes and the course of actions for achieving
them, analysis of the organisational environment and available resources, allocation of
those resources and development of organisational structures and control system” (Hatch,
1997). It considers inputs such as organisational goals, available agents, resources and
performance targets, producing explicit organisation definitions, which may include roles,
constraints, assignments of responsibilities, hierarchy levels, and other relationships. In
recent years, this class received little attention. In fact, studies on task planning have
attracted interest for a while, and in recent years, studies on self-organisations have gained
even more attention. Nevertherless, the automated organisational structure generators are
the only ones that carefully designs organisations as first-class abstractions (Sims et al.,
2008). This paradigm of conceiving about organisations treats them as separate from
the environment and the agents. This has a number of benefits, one of which is that it
supports the separation of concerns of a MAS which is a strategy to deal with complex

systems.

This work is in this particular class. The adopted definitions for organisation and
organisational design, as follows, are adherent to this particular class of organisation

generators.

2.3.1 Structure Generators’ Background

According to Pattison et al. (1987, p. 88), “organisation design is the problem
of choosing the best organisation class — from a set of class descriptions — given
knowledge about the organisation’s purpose (goal, task, and constraints on the goal)
and the environment in which the organisation is to operate”. This definition assumes
that the design is rational and built as a top-down process. This approach is commonly
used to create explicit organisations. When organisations are explicit entities, agents and
designers can reason about the organisation itself, facilitating its improvement. In the

following, this work shed light on the emphasized words.

As stated by McAuley et al. (2007, p. 12) organisations are “collectivities of peo-
ple whose activities are consciously designed, coordinated and directed by their members
to pursue explicit purposes and attain particular common objectives or goals”. Pattison

et al. (1987, p. 64) define an organisation as “a group of one or more individuals whose

36 Chapter 2. Organisation Design Models

purpose is to perform some set of tasks in an attempt to achieve a set of goals while
observing a set of constraints”. For Katz and Kahn (1987), an organisation is “a system
of roles” and “the psychological basis of organisational function are seen in terms of mo-
tivation to fulfil the roles”. For this class, an organisation is represented by a structure
of organisational roles or positions and their relationships, and agents occupy these posi-
tions cooperating to achieve the organisational goals. In this sense, the organisation and
the agents are separate entities. Consequently, agents can reason about the organisation,
they can enter or leave it, they can change or adapt it, and they can obey or disobey its
rules (Hiibner et al., 2010).

Notably, the definition given by Katz and Kahn (1987) mentions organisational
roles, which are impersonal representations used as interfaces between the organisation
and agents. A role is defined as “an abstract representation of an agent function, service,
or identification within a group” (Ferber and Gutknecht, 1998, p. 130), and roles “can be
seen as place-holders for agents and represent the behaviour expected from agents by the
society design” (Dastani et al., 2003, p. 2). A role refers to a set of responsibilities, often

materialised as one or more organisational positions, to be occupied by agents.

Many studies of what is known as contingency theory point out that there is no
one best way to design organisations and no general principles for all situations (So and
Durfee, 1998). One may even say that organisations, as instances of design models, cannot
be considered absolutely right or wrong because it depends on the attribute in focus. An
organisation may exist for many purposes and can be inserted into different environments
and contexts. For instance, companies positioned in competitive markets have to achieve
some set of goals using fewer resources as much as possible, delivering some specified
quality as soon as possible. Other organisations exist for other purposes such as common
safety, knowledge sharing, technological improvements, social assistance and health care,
and so on. Indeed, the concept of “best” is subjective, so it is supposed to be defined by

the user (engineer).

In this class, the organisational structure (social structure or simply “structure”)
is the most essential element of an organisation. As stated by Mintzberg (1983, p. 2),
a structure can be defined as “the sum total of the ways in which its labour is divided
into distinct tasks and then its coordination is achieved among these tasks”. It repre-
sents the existing positions of an organisation, showing the hierarchy, relationships, and
responsibilities (Daft, 2009). It refers to an administrative instrument resultant of identifi-
cation, analysis, ordering and grouping of activities and resources of companies, including
span degrees and decision process to achieve the expected goals (Fink et al., 1983). As
seen, the structure is intrinsically linked to many other organisational aspects. Besides,
as pointed out by Durfee et al. (1987, p.1280), “an organisational structure specifies a set

of long-term responsibilities and interaction patterns”, and it “provides guidance without

2.8. Automated Organisational Structure Generators 37

dictating local decisions”. Notably, the structure is a staple of organisational design (Kil-
mann et al., 2010). In fact, “all organisations develop some deliberate structure” (Robbins
and Coulter, 2012, p. 6), even when it is not explicit. The inseparability of organisation
and structure concepts is observed in different studies in which correlated categorisations
are presented (Burns and Stalker, 1994; Hatch, 1997; Pettigrew and Fenton, 2000; Stoner
and Freeman, 1992). Some researchers do not even put boundaries between these con-
cepts, often treating organisation and structure as the same thing (Pettigrew and Fenton,
2000). In this class, organisations are described by their structures. From organisational
structure descriptions, organisations can be instantiated to be occupied by agents in a

running system.

Approaches based on organisational roles or positions tend to create formal organi-
sations in a top-down manner on the basis of organisational purposes, which are typically
stated as a set of goals. For many authors (Newman, 1973; Robbins and Coulter, 2012),
goals provide the first pillar of an organisational design, representing the organisation’s
strategy. A goal is a desired state of the world (Boissier et al., 2016), and thus can be
used to define the system’s overall behaviour (Uez and Hiibner, 2014).

An organisation can be seen as a subsystem embedded in a supersystem: the en-
vironment. The environment provides inputs to its subsystems and consumes their out-
puts (Hatch, 1997). Organisations are diverse in kind and form according to their purposes
and environments. Arguably, it is practically impossible to address specificities of all sorts
of organisational purposes and environments. For this reason, domain-independent models

in this class allow the user adapting the model for specific domains.

2.3.2 State of the Art

An earlier study in this class is Social Agents Design Driven by Equations (SADDE)
(Sierra et al., 2004). It uses as input mathematical models to predict efforts and create an
organisational structure. It is a comprehensive method for designing a MAS that starts
from a manual process for creating domain-specific equations. Then, it establishes the or-
ganisation, which is a semi-automatic process. The last two procedures are the definition
of agent models and the creation of a MAS. All these phases are connected by defined

transitions, including feedback from the MAS to each earlier phase.

DeLoach and Matson (2004) proposed another approach called Organization Model
for Adaptive Computational Systems (OMACS) (see also Deloach et al. (2008); Matson
and Deloach (2005)). It is an extension of the work Multiagent Systems Engineering
(MaSE), a methodology that among its functions defines a way to identify roles from a
given set of goals, in this case, aided by an a priori definition of use cases. However, MaSE
is not an automated model like its extension. OMACS proposes a mathematical process

in which agents are allocated into roles based on the capabilities that an agent possesses,

38 Chapter 2. Organisation Design Models

and what a role requires. To design an organisation, it needs goals, roles, capabilities, and
agent types as input. The model requires a priori defined roles. It does not set hierarchy
relationships directly but defines a function for setting relationships in a generic way.

Agents can also have a special kind of relationship to define a coordination level.

Sims et al. (2008) have proposed the model Knowledge-Based Organization De-
signer (KB-ORG) to generate organisations for MAS. Their approach does a combinatorial
search over the space of candidate organisations describing both hierarchical and peer-
to-peer elements. The major contribution regards efficiency by the use of segmentation of
application-level and coordination-level functions in the planning process, reducing com-
putational efforts considerably. When an application-level role is split among agents, the
algorithm synthesises a coordination role. The whole process allocates agents to roles, and
resources to specific tasks, and creates organisational coordination roles. As inputs, the al-
gorithm has environmental conditions, goals, performance requirements, role characterisa-
tions and agents’ capabilities. The outputs are the allocation of agents to application-level

and coordination-level roles. KB-ORG uses quantitative models to define roles.

In another study, Horling and Lesser (2008) introduced Organizational Design
Modeling Language (ODML). Their approach allows quantifying organisation models,
which can be used to predict performance and as a heuristic method to choose designs.
They argue that with this, it is possible to deduce how and why a design can be chosen over
others for a given context. An algorithm template produces a range of possible organisation
instances to be searched by the automated process. The organisation search space is
defined by decision points specified by variables and has-a relationships. The template is
similar to a structure of roles, showing their hierarchy and relationships. The algorithm
creates instances for all possible structures foreseen by the templates and, after that,
searches for the best one. ODML is considered both as a language and as a search-space
algorithm that creates and chooses organisation instances. The input includes organisation
characteristics and node definitions. For instance, a role can be defined as a node in which
the desired behaviour of an agent that enacts such a role should follow. Other parameters
that should be defined are scenario constants, the cardinality of each node, relationships
among nodes, and constraints. The authors acknowledged that the approach’s drawbacks
are the level of effort necessary to build the models and the complexity of the algorithm

response.

2.3.3 Comparing Structure Generators

Table 1 gives an overview of Automated Organisational Structure Generators, the
class of generators that GoOrg belongs to. The models are being compared by their inputs,

by characteristics of their organisational generation process, and their outputs.

In this particular class of generators, it is expected to start the organisational

2.8. Automated Organisational Structure Generators 39

design by the organisation strategy, i.e., the goals. In the first column, it is assessed
whether Goals are inputs. It can be considered that all the generators in this class have
organisational goals as their primary concern. Even the models SADDE and ODML, which
require agents’ behaviours instead of goals, can be considered as having goals as inputs
since the agents’ behaviours are usually defined to accomplish goals. The No need roles
as inputs column indicates if the generator needs a priori defined roles. The definition of
roles can be a complex task since it requires knowledge about the domain and available
agents to define which sets of responsibilities should be joined together. Even in a known
domain, such as a school, in which one may expect the roles of teacher, secretary and
director, it is possible to have roles less obvious, such as tutor and discipline coordinator.
Indeed, it is hard to know which roles a MAS should present. GoOrg is the only model
that does not require role definitions, easing the user’s parametrising job (this statement

is further discussed in Section 7.2 and Section 7.5).

Table 1 — Comparison among Automated Organisational Structure Generators.

n

=

S

” p=

0
2 | 5 S|z o | 2 %
212|222 |2 E&|l8| 7w i<
= o 8) 3 = o | | & <
S =T S T I~ T = R B = B = = =
. El= g8l F|El7]|E Sl g g
Organisation| w | w | o | = | 8| & | 5 |2 l=] 8] &
Sl =z | < 12| 8| | & S8 g

2 S

Generator Bl |5lg|2|l=|0|S|=|a|l8| 85
S | = | = o | .= = = Q| 5
—~ Sl E |2 || 8|88 |32 |2]|2]%9
ol "l | B E|l2l2 |2 |2| %2 1F|2
=)] W < 7]) 7] 7 P) 3| B
<] =}) E (5] (]] <5} o o 7]

w | © | T| =8 SS9 |9 2
T@ =] < o = = = = e »n ©n »n
Slo| &2 | 8|88 |8|2|8] 38|38

RN
|1z |Zm | O & | ;| ln| n Mm@ A AlA
GoOrg Y Y| Y| Y| Y|Y | YYF|[Y*Y|Y]|Y* Y*
SADDE Y* - Y| Y |Y|-|-|-1]-1Y]-]Y* -
OMACS Y| - | Y| Y|Y|-|-|-1]-1Y]-]Y*Y*
KB-ORG Y| -|Y|Y|Y|-]|Y]|- Y | - | Y* -
ODML Y* - Y| Y|Y|-|-]|-1]-]1Y]-|Y*Y*

Legend: (Y)es, (-)No, on the (F)uture work and (*) see comments.

The column Has quantitative analysis describes the capability of generators to
create structures that take into account quantitative parameters. For instance, a model
may be parametrised with the expected effort to accomplish a goal, which helps the model
generate more accurate organisations considering the production scenario. Organisations
are explicit refers to models that use explicit organisation representations. Top-down
design approaches usually generate explicit organisations as entities, which agents and
humans can reason about. An explicit organisation is also a way for entrants to know
their responsibilities in the system, easing their cooperation in achieving organisational

goals. Is domain-independent relates to models that are not restricted to any particular

40 Chapter 2. Organisation Design Models

problem domain. All the assessed models have these three mentioned features.

The next columns are related to the outputs of the generators. Synthesises Roles/-
Positions refers to the ability to automatically synthesise roles/positions. GoOrg is the
only model that is able to synthesise positions, which enlarges the search space, making
it possible to find more solutions to a given problem. For example, in the school domain
among the solutions generated by GoOrg, some positions have a set of responsibilities
that are usually delegated to what is known as a teacher, others to a secretary, tutor and
so on. In this sense, GoOrg synthesises positions that can be recognised as usual roles,
and it may also synthesise positions that could not be foreseen by the user (engineer). The
Synthesises coordination levels column represents the ability of the model to synthesise
coordination roles. KB-ORG specifically synthesises coordination roles/positions using
quantitative data to infer the need for coordination agents. GoOrg synthesises positions,
placing them into many combinations regarding their levels in hierarchies, producing both
superordinate and subordinate positions. In this sense, GoOrg can synthesise coordina-
tion levels because some of the generated structures have coordination goals associated
with superordinate positions. Synthesise organisational norms indicates whether genera-
tors automatically create organisational norms, such as permissions and obligations, for
each role of a MAS. None of the works generate organisational norms. Synthesises depart-
ments refers to the specific ability of the generator to create organisational departments
automatically. GoOrg can synthesise multiple hierarchies, which can form multiple organ-

isations or departments of an organisation.

Binds agents and roles column tells whether the model is doing agent alloca-
tions into roles/positions. This feature shows that the model can suggest an allocation
of the available agents throughout the generated organisational structure. Whether all
the roles/positions are filled, an organisation can be considered feasible. Besides, all the
works have quantitative analysis, which allows one to set up the generator to create fill-
able and meaningful organisations. Although all the assessed models are able to check the
organisation’s feasibility, they use roles. Roles do not ease the planning of resources, since
the dynamism of a role-based system (with many-to-many relationships between agents
and roles) makes the allocation of resources a very complex and hard-to-determine task.
These models can create instances of roles to register that a role is being used a number
of times. It is close to the concept of the organisational position, but these models have
no functionality to register the number of agents that is necessary to fill the structure (see
Section 7.3, for more details). In other words, other models estimate (plan) the number
of roles, not the number of agents that are necessary to a system. GoOrg, Does resource

planning because it uses positions instead of roles, positions reflect the need for agents.

The following columns are related to the capability of the generators to deal with

reorganisations. Does reallocation refers to the ability to move agents from some posi-

2.8. Automated Organisational Structure Generators 41

tion/role to another without needing to redesign the organisation. It is considered that all
the assessed models can respond to a change in the parametrisation and produce different
agents’ allocations. Besides, the models are for the design phase of a system, i.e., it is
assumed that other coordination mechanisms handle the allocation process during the
organisation’s lifecycle. Does structure-switchings refers to a switch from one structure
to another existing one. GoOrg, ODML and OMACS present mechanisms to quantify
organisations by attributes, so they can be chosen. Additionally, GoOrg can generate all
candidates for a given problem at once, and as the system conditions or user’s preferences
change, GoOrg can pick a different structure to be used (see Section 7.1, for more de-
tails). Since GoOrg synthesises positions and generates structures with no concern about
the available agents, the chance of finding an already generated structure that suits a new
system’s conditions is higher than in other models (see Section 7.4, for more details). How-
ever, this feature also has its drawbacks, which are the increased algorithm complexity,

memory usage, and time consumed on generating all the candidates.

In summary, the data presented in Table 1 indicates that the assessed models have
in common: (i) the (direct or indirect) use of goals as input; (ii) they generate explicit or-
ganisations; (iii) they are domain-independent; (iv) they bind agents and roles/positions;
(v), they generate feasible organisations; and (vi) they do (or allow) reallocations. How-
ever, most of the models are missing other features in which GoOrg stands out: (a) GoOrg
does not require roles as inputs; (b) it automatically synthesises positions, which can be
placed in different hierarchy levels; (¢) GoOrg is the only model that uses the concept
of positions, which facilitates resources planning; (d) GoOrg produces multiple hierar-
chies such as organisations or departments of an organisation; and (e) GoOrg facilitates

structure-switching, generating and quantifying organisations by attributes.

Finally, it is essential to point out that there is no single type of organisation
suitable for all situations (Horling and Lesser, 2004). It is also true that there is no
individual approach ideal for creating all organisations (Daft, 2009). Each technique offers
some advantages that the others may lack, especially regarding different organisation

generator classes.

43

3 GoOrg Model

This section presents GoOrg, a model for automatically designing organisations,
expressed as structures composed of organisational positions. As stated by Seidewitz
(2003, p. 2), “a model is a set of statements about some system under study”. GoOrg is a
generic model. Its applicability to specific domains lies with the addition of elements and
constraints as required by the domain. Thus, GoOrg needs to be extended (specialised)

to the domain it is being applied.

In fact, there is a diversity of domains in which organisations are used. For instance,
one may want to design organisations of agents for the production of a factory, or for
tracking objects of interest, or for rescuing victims of a calamity. Each domain may have
particular requirements and indicators of interest. For instance, a factory is concerned
with moving, assembling and efficiency; tracking is concerned with identification and
vision coverage; and rescue work is concerned with finding, supporting and minimising

the impact of a calamity.

For any domain, GoOrg-based models use goals and agents to generate organi-
sations. According to the user’s most preferred attributes, the generated structures are
sorted, and the best candidate is chosen. GoOrg does not specify any particular technol-
ogy to be used or how the generation and choosing processes are carried out. Instead, it

only defines the expected inputs and outputs for the design, as shown in Figure 4.

e kT

Goals Agents User's preferences
#1 ® #2 |
v o —
#3 EJ C#N g ®

Generating organisations Chosen organisation

Figure 4 — The generic design process of GoOrg-based models.

Figure 5 illustrates the elements and attributes of the general model, GoOrg.

In the following, the model is presented in detail. Section 3.1 describes GoOrg from the

44 Chapter 3. GoOrg Model

perspective of the model’s elements; and Section 3.2 describes GoOrg from the perspective

of organisational structure attributes.

oal in charge of .| organisational composed of [organisational
g 1.* 1 position 1.* 1| structure
* 01 1
has .) has
feature
has * | attribute |
/\ .

0/1 is bound to Isa

agent feasibility

Figure 5 — GoOrg model.

3.1 GoOrg Elements

The GoOrg model considers only essential elements for an organisation’s design:
goals, agents, organisational positions, features and the organisational structure. Formally,

each element is described as follows.

A goal is a desired state of the world to be achieved by the organisation. Goals
are to be fulfilled by agents when they occupy organisational positions, so they become
performers in these positions. It is assumed that the agent occupying a position is in

charge of achieving the position’s assigned goals.

Definition 1 (goal). A goal g is represented as a symbol, and the set of all goals is denoted
by G.
g : symbol, g€ G

An agent occupies an organisational position to achieve its associated goals. An
example of an agent is a computer that has a microprocessor able to execute a number of
instructions per second, or an application that solves factorials. Formally, GoOrg defines

an agent as follows.

Definition 2 (agent). An agent a is represented as a symbol, and the set of all agents is
denoted by A.

a: symbol, a € A

Positions are place-holders for agents in an organisation. They reflect the necessity
of agents for an organisation to function. If every organisational position has an agent to
occupy it, the organisation is considered feasible. The agent that occupies a position is in
charge of achieve the goals assigned with that position. Each position can only have one
agent in it at a time, and each agent can only occupy one position at a time. Formally,

an organisational position is defined as follows.

3.1. GoOrg Elements 45

Definition 3 (position). A position p is represented as a symbol, and the set of all posi-
tions is denoted by P. The goals assigned to p are specified by the function gp, considering
that p must have at least one goal associated. The function ap specifies the agent occupying
the position p, considering that p is a “free position” when ap(p) = €, and that an agent

cannot be bound to more than one position.
p: symbol, pe P
gp: P —2¢
Vpe P, gp(p) # {}
ap: P — A v {e}
Vp,p' € P, p#p' Aap(p) # € A ap(p') # € = ap(p) # ap(p)

GoOrg considers that a feasible organisation has all positions fillable by the avail-
able agents. To check if an agent can occupy a position, it compares the features that
an agent has to the features that the goals assigned to a position have. For instance, the
goal solve combinatorics can be associated with the feature solve factorials, representing a
required skill to fulfil the goal. Similarly, the agent calculator may have the feature solve
factorials representing a skill it has. In this case, the agent calculator is able to fulfil the

goal solve combinatorics since it has the required skill. In this regard, a feature is defined

as follows.

Definition 4 (feature). A feature f is an n-tuple, in which the first element is a symbol.
Besides the first element, optionally, a feature may have other elements (es, ..., e,). The
set of all features is denoted by F'. The function fg specifies the features required by a

goal. The function fa specifies the features an agent has.
[{symbol, ey, ..., en), fEF
fg:G—2F

fa: A—2F

GoOrg considers that each organisational structure is a particular description of

an organisation. GoOrg defines an organisational structure as follows.

Definition 5 (structure). An organisational structure o is represented as a tuple. It is

composed of the already presented sets and functions G, A, P, F', gp, fg, fa and ap.

(02 <G,A, P,F,QP, fga fa7ap>

46 Chapter 8. GoOrg Model

3.2 Attributes of an Organisational Structure

Each generated organisation has attributes that quantify it. The model only defines
the attribute feasibility. The feasibility of an organisational structure is the ratio between
positions bound to agents and the total number of positions. It represents how viable it

is to fill the structure using the available agents.

Definition 6 (feasibility). The feasibility of the organisational structure o is represented
as k(0), a real number in the range [0,1]. It is the ratio of the number of bound positions
and the number of all organisational positions of the organisation o (Eq. 3.1). The set B
contains the agents that are bound to positions in P (Eq. 3.2). The organisation is entirely

feasible (k(0) = 1) when every position is bound to an agent.

_ 18l

k(o) = 7| (3.1)

B = {ap(p)|ap(p) # €, p € P} (3.2)

3.3 GoOrg Highlighted Characteristics

The proposed model for automatically generating organisations considers that an
organisation is represented by its structure of positions. The organisational goals are
assigned to positions. Each position should by occupied by an agent. An agent can occupy

a position when it has the features required by that position

As a generic model, GoOrg does not specify any kind of relationship between posi-
tions. The kinds of relationships (such as “is superior of”), features and other specificities

of a particular domain should be defined in an extension of GoOrg.

An organisational structure might have any form (shape). For instance, it can be
single positions with no relationships with each other, a group of positions with clear
relationships between them, or groupings of positions with relationships within their own

groups but none between them.

Besides, it is worth mentioning that the model does not specify that the generation
of structures depends on the set of available agents. However, the set of available agents
is used to check the structure’s feasibility. If there is no available agent, no generated
structure is feasible. If the set of available agents changes over time, a new assessment of

the organisation’s feasibility is made.

47

4 GoOrg4Prod: A Specialisation for a Fac-

tory Production Line Domain

GoOrg/Prod illustrates how GoOrg can be used in a particular domain.! It intends
to generate structures of agents responsible for production activities in a factory. It is
assumed that an external mechanism will pick the chosen organisational structure that
is indicated by GoOrg4Prod. In this work, the term GoOrg4Prod refers to both a model
extension and an implementation that can generate organisation descriptions for a specific

domain.

The generation of hierarchical structures is considered in this domain. It is assumed
that the hierarchical levels of each organisational member are relevant and used somehow
in the MAS. Organizational charts, despite their limitations, can be used to represent

hierarchies because they are focused on representing superior-subordinate relationships.?

is superior of

T 1

oal in charge of | organisational composed of oraanisational
9 1. 1 position 1.* 1| structure
) * 01 19
has T— has
feature 4

are attribute

| skill | |data|oad ||workload | o
:

is bound to |genera|ity ||efficiency |

has

0/1

agent

Figure 6 — GoOrg4Prod model.

GoOrg4Prod synthesises positions generating organisations in which goals should
be achieved routinely by executing some workloads. Notice that this particular approach is
using a baseline of 24 hours. It is considered that effort repeats at every baseline, as cycles,
such as a day in a factory. To be able to execute workloads, agents should have some skills.
GoOrg4Prod matches agents and positions using skills. As it is generating hierarchies,
the structures present the attributes height and generality, as later explained. Besides,
GoOrg/Prod uses workloads to calculate the organisation’s efficiency, which among other

attributes can be used to choose organisations based on the user’s preferences.

L' An implementation of GoOrg/Prod is available at https://github.com/cleberjamaral/
GoOrgéProd.

There are criticisms arguing that organisational charts miss crucial aspects of organisational struc-
tures (Mintzberg and Van der Heyden, 1999).

48 Chapter 4. GoOrg}Prod: A Specialisation for a Factory Production Line Domain

Sometimes, it is also required that the agent that performs a goal communicates
something to the performer of another goal, by sending dataloads. A maximum capacity of
handling dataloads and workloads can be set on GoOrg4Prod to avoid exceeding agents’
capacities. Figure 6 highlights in bold font the organisational attributes and features
added by GoOrg4Prod on extending GoOrg model.

As an illustrating application, it is considered a production line scenario in which
the head of a conveyor belt must be fed with items that are inside boxes, which need to
be moved from shelves. An external database must be accessed to get orders for items.
The system has to get boxes from shelves, move them to near the conveyor belt, and
finally pick items from boxes to place on the head of the conveyor belt. In this motivating
scenario, it is required to move a certain quantity of boxes a day. It is predicted to spend
a certain time on each activity. Some skills are required to achieve these goals, they are:
db access, lift, move and pnp (pick and place). While achieving some goals, it is necessary
to send data to the agent(s) in charge of other goals. Hence, the bandwidth is measured
in Kbps to represent communication usage. In this example, it is necessary to consult a
database for getting orders which can trigger a series of communications regarding the
stage of the movement of the item. The types of dataload messages are: requested box, box

ready and items ready. Figure 7 illustrates how this scenario is modelled.

requested box: 8 Kbps_ [FeedProduction]

db access: 0.1 hour

Figure 7 — A given set of goals with associated workloads and dataloads.

4.1 GoOrg4Prod Elements

GoOrg4Prod extends GoOrg elements by specifying three features: workloads and
dataloads, which are associated with goals, and skills, which are associated with agents.
These features constrain the organisational design while synthesising positions, arranging

hierarchies and binding agents to positions.

From the agent’s perspective, it is considered that agents have skills. This partic-
ular model assumes that every agent has the same time per baseline to work on organisa-
tional goals. It also assumes there is no difference in agents’ performance, i.e., any agent
will spend the same time to achieve a given goal. A skill s is defined as a singleton tuple

which belongs to the set S of all skills, as follows.

4.1. GoOrg4Prod Elements 49

s : {symbol), s € S

According to the aims, workloads may be required for achieving goals. A workload
w represents a demanded effort e € RT which requires a skill s € S to be performed. In
the example of Figure 7, there are four workloads: (i) the skill dbaccess with a predicted
effort of 0.1 hours; (ii) the skill lift with a predicted effort of 4 hours; (iii) the skill move
with effort equals to 8 hours; and (iv) the skill pnp with a predicted effort of 1 hour. The

function wg maps goals to their workloads, as follows.

w:{s,ey,seS, eeR , weW

wg : G — 2%

Still according to the aims, it is considered that to achieve a goal it may be
necessary to establish communications, which is named dataloads. A dataload i represents
a message, which has an estimated usage of bandwidth d € R* while it is sent to the
performer of the recipient goal r € GG. The function ¢g maps goals to their dataloads, as

follows.

i:{symbol,r,dy,re G,de R" iel

ig: G — 2!

The set I of features, is composed of workloads, dataloads and skills, as follows.
To match positions and agents only skills are used (the skills that agents have and skills

that workloads require).

F=WulusS (4.1)

Additionally, GoOrg4Prod considers that organisational positions may have “is su-
perior of” relationships which stands for superordinate-subordinate relationships. Indeed,
a tree representing a hierarchy may have positions belonging to different levels. The func-
tion sp(p) records the position p/, which is the immediate superordinate of the position

p. If p has “no superordinate”, sp(p) = €. This function is defined as follows.

sp: P — Pu{e}

Since the relationship “is superior of” and the function wg are used by the gener-
ator, they are being added as elements of the organisational structure. In this sense, the

stated definition of the structure (Definition 5) is replaced by the following formula.

50 Chapter 4. GoOrg}Prod: A Specialisation for a Factory Production Line Domain

0:{G,A, P F,qgp, g, fa,ap, sp,wg)

An organisational structure is formed by one tree (hierarchy) or more, as a forest
of hierarchies. A tree may be composed of only one position (having no superordinate
and no subordinates). A forest with all trees composed of only one position has all these
positions in the same hierarchy level, which is the flattest structure. Among the generated
structures, there may exist trees that are composed of similar positions but in different
places in the hierarchies. For instance, in a factory hierarchy, the position assembler is
superordinate of the packer; in another hierarchy, packer is superordinate of assembler;

and in another, both are on the same level.

Finally, GoOrg4Prod has a few more parameters. In practice, agents have limited
capacity for performing workloads and sending/receiving dataloads. In response to this
practical issue, in GoOrg4Prod, ¢, € R* is defined to represent the maximum workload
allowed on each position. Following the same idea, d, € R" is defined to represent the
maximum data load allowed to each position, which regards the dataloads that address a
goal g. To allow splitting goals into smaller ones when necessary, ¢, € R* and §, € R*

are defined to refer to the maximum grain size for workloads and data loads.

4.2 GoOrg4Prod Added Attributes

GoOrg4Prod defines new attributes of an organisational structure. The height of
the structure is calculated using superordinate-subordinate relationships. Based on how
the goals are distributed across positions, the generality of the structure is calculated.
From the added feature workload, the efficiency of an organisation can be quantified. These
attributes are represented in a three-dimensional space. Every generated organisation has

a coordinate in this space. Figure 8 illustrates the organisation attributes space.

tallest

—
<
R
)
<

the most with the highest proportion of
efficient generalist positions

Figure 8 — GoOrg4Prod organisational structure attributes in three dimensions.

4.2. GoOrg4Prod Added Attributes 51

Height refers to how centralised and bureaucratic a hierarchical organisation is,
since a long chain in a tree may imply that the organisation is very centralised, impacting
its decision-making model. Generality indirectly changes the shape of the structure, in
both the vertical and the horizontal directions, since it may impact the organisation’s
workflow. Besides, one may argue that generalist positions may improve robustness since
other agents would be able to take on responsibilities in case of an agent fails. Efficiency
indicates how close the combined capacity of the agents, which will occupy the generated

positions, is to the expected efforts considering the given goals.

The height of an organisational structure is defined as a ratio between the actual
height and the tallest hierarchy that GoOrg4Prod can generate from the input. The top
level is formed by all top superordinate positions (the positions that have no superordinate,
i.e., sp(p) = €). The next level contains all subordinates of the top superordinate positions.

The other levels follow the same idea.

Formally, the height of an organisational structure o is represented as 7(0), a real
number in the range [0,1]. It is the ratio between the actual height and the maximum
height that the model generates (Eq. 4.3). The function I(p) maps a position p to an
integer representing the hierarchical level that the position p is situated at (Eq. 4.2). The
function [(p) counts from the position p to its top superordinate position, one level for
each relative superior in the organisational structure. The longest chain of hierarchies
(trees of the structure) is defined by maz(l(p)), for all p € P. The cardinality of the set
of goals (|G|) represents the maximum chain of positions that the model produces. The
cardinality |G| should be equal to or greater than 2 to generate different and comparable

candidates.

I(p) = | Sp(p)z.e (4.2)
1+ I(sp(p)) otherwise

AL (1(p)) -1

7(0) = IGl-1
0 otherwise

Gl =2 (4.3)

The generality of an organisational structure measures the similarity of positions
considering their assigned goals. The most generalist organisation has all goals assigned
to every position, i.e., all the agents would be able to play any position and perform any
goal. GoOrg4Prod can split a goal into smaller ones to assign it to multiple positions, as
explained in Section 4.3.1. This specialisation assumes that achieving all parts implies the

achievement of the original goal.

Formally, the generality of an organisational structure o is represented as 6(0), a
real number in the range [0,1]. It is the ratio between the actual and the maximum possible

number of goals assigned to positions (Eq. 4.4). The set GP contains the recorded goals

52 Chapter 4. GoOrg}Prod: A Specialisation for a Factory Production Line Domain

for all positions (Eq. 4.5), and its cardinality is represented as |G P|. The minimal possible
number of goals spread across positions is given by the minimal of the cardinality of G
and the cardinality of P. The maximum possible number of goals assigned to positions
is given by the cardinality of the set G (|G|) times the cardinality of the set P (|P|). In
this sense, the maximum generality (6(o) = 1) occurs when every position is assigned to
every goal. In contrast, the minimum generality (6(o) = 0), which represents the most

specialist organisation, has each goal assigned to only one position.

6P| = min((G,|P)
90) =GP = min(cl. [P])

GP =) gp(p) (4.5)

peP

In GoOrg/Prod the efficiency of a structure o is represented as 7(0) a real number
in the range [0,1]. It is the capacity utilisation of the organisation, which is given by the
ratio between the wtilisation and the capacity (Eq. 4.6). In the equation, m;(a) refers to
the i-th element of the tuple a. The wutilisation is given by the sum of workloads’ efforts
associated with all given goals. The organisation’s capacity is the number of positions of

the organisational structure times ¢, (the maximum workload allowed per position).

> m(wg(g))

n(o) = &2

Pl (46)

With these new attributes, GoOrg4Prod can quantify an organisation by height,
generality, feasibility and efficiency.

4.3 GoOrg4Prod Processes

GoOrg/Prod generates and chooses organisations in a chain of four processes: (i)
the given goals in G are split down into smaller goals according to the granularities (¢,
and d,) set by the user; (ii) organisational positions are synthesised and structures are
generated in a process that searches the space with all possible organisations according to
the supported transformations; (iii) the positions of generated structures are bound to the
given agents and the feasibility of the organisation is calculated; and (iv) an organisation
with positions and bound agents is chosen. It is important to mention that although this
work is suggesting a method for organisation generation, it is not claiming it is the only

possible one. Figure 9 illustrates the mentioned processes.

4.8. GoOrg4Prod Processes 53

/p///m [Z]

Goals De5|gn parameters User's preferences Agents

w2 L1 [# @ 2
PFFJJ E E : = ® #2=-
-l- = &nﬁﬁ

Preparing goals Generating organisations Binding agents and positions Choosing organisations

Figure 9 — The four processes of GoOrg4Prod.

4.3.1 Preparing goals for assignments

GoOrg4Prod splits the given goals into smaller ones according to a given workload
grain ¢, and the bandwidth grain ¢, parameters. In this sense, the goals of G' that are set
with more effort or more bandwidth than the respective grains should split into smaller
ones, creating the set G’. Splitting goals allows assigning the same goal (with less effort
and bandwidth usage) to multiple positions. This process may increase the generality of

the final organisation since it potentially creates interchangeable positions.

To exemplify, it is considered the set G illustrated in Figure 7. This set has four
goals (FeedProduction, GetBox, MoveBox and PlaceBox) which are associated with
workloads and dataloads. Considering that the grain ¢, is set as 4 hours and the grain ¢,
is set as 1000 Kbps, the workload effort e = 8 of the goal MoveBox is greater than ¢,,
requiring to split this goal into smaller ones. To fit them to ¢,, MoveBox is split into
two similar goals with half of the original effort. Since the dataloads are not surpassing d,,
it is not necessary to split the goal due to exceeding bandwidth. However, as MoveBox
is split into two parts (MoveBox$0 and MoveBox$1), the dataloads that addresses it,
and are originated from it, are also split. The resulting set of goals that suit the given

granularities are illustrated in Figure 10.

MoveBox$0
box ready 4 Kbps . .: 4h ... items ready: 4 Kbps
GetBox |----- 777 MOVe: TS) T e PlaceBox
b dy: 4 Kb items ready: 4 Kbps
lift: 4 hours |~ OX rea y ps . y - p pnp: 1 hour
---------- MoveBox$1 |------
move: 4 hours

Figure 10 — The set G’ of split goals for ¢, = 4 and §, = 1000.

The process of splitting down goals by workloads is illustrated in Alg. 1. The

process of splitting goals by dataloads is performed using as input the set G’. This another

54 Chapter 4. GoOrg}Prod: A Specialisation for a Factory Production Line Domain

process focus on dataloads instead of workloads using the bandwidth grain size d,, creating
the set G”.

Algorithm 1: splitGoalsByWorkload
Data: G the set of goals, ¢, the max workload grain size
Result: G’ the resulting set of split goals
begin
G —{}
foreach Goal ¢ in G do
e<—0
foreach Workload w in wg(g) do
| e« e+ m(w) // sum of efforts of workloads in g
end
slices — max(ceil(e/dy), 1) // number of slices
if slices = 1 then
| GG u{g}
else
foreach n from 1 to slices do
g < new goal
g’ < concatenate(g,“$”,n)
foreach Workload w in wg(g) do
| wy(g') —wg(g') v {g — (mi(w), ma(w)/slices)}
end
foreach Dataload i in ig(g) do

| iglg') < igg") v {g’ = (mi(i), ma(i), m3(i) /slices)}

end
G — G u{g}
end
end
end

end

4.3.2 Generating organisations

GoOrg4Prod generation process is based on a state-space search algorithm. Each
state represents a partial or finished structure of organisational positions. The initial state
is a structure with no positions and all g € G to be assigned to positions. To simplify, it

is being considered that G = G, i.e., GG is the set of goals after some of them were split.

Every goal assigned to a position is a step towards building an organisational
structure. The solution is an organisational structure o with all g € GG assigned. The search
algorithm uses a cost function based on the user’s preferences. It first explores search states
representing the most preferred organisations. After building the most preferred solutions,

the algorithm keeps building other structures until there are no unexplored search states.

4.8. GoOrg4Prod Processes 55

To generate a variety of structures, GoOrgjProd apply three structure transforma-
tions considering every g € GG in two stages. The structure transformations are illustrated
in Figure 11, in which the previous states are represented on the top of the figure (iden-
tified by a1, b1 and c1, respectivelly to each kind of transformation). The states on the
bottom of the figure (identified by a2, b2 and ¢2), represent the result of each transforma-
tion. On each represented transformation, on the lefthand side, the goals are illustrated,
being the unfilled ones not assigned goals and shaded ones the goals that were already

assigned to some position. On the righthand side, the structure of positions is illustrated.

In the first stage of the search, a transformation assigns every g € G to a new top
superordinate position, i.e., |G| structures o are created with only the first position of
the hierarchies (Figure 11a). In the second stage, every remaining g € G is: (i) assigned
to a new top superordinate position, i.e., it applies the same transformation used in the
first stage which creates a new tree in the forest, repeating to each remaining goal the
transformation illustrated in Figure 11a; (ii) assigned to new positions that are created
to be subordinate of every p € P, repeating to each remaining goal and every existing
position the transformation illustrated in Figure 11b; and (iii) assigned to every existing
p € P (no position is created), repeating to each remaining goal and every existing position

the transformation illustrated in Figure 11c.

no
iti | p0 | | p0 |
poster

hierachy

b oo

o1 J ||

a2 b2

Figure 11 — Supported transformations.

The mentioned transformations are detailed as follows. In the first transformation,
called addSuperior Position(g), a goal is assigned to a new superordinate position. The
new position is added to the set of existing positions P. The assigned goal ¢ is recorded
by the function gp, the skills of the workloads of g given by the function wp are recorded
by the function fg (set S’) and the function sp records that p has no superior. This
transformation from the structure o to the structure o’ is formalised as follows in which
barred arrow notation for elements is used to represent the mappings of a function, i.e.,

a — b means b is the image of a, such that a and b are elements of finite sets.

56 Chapter 4. GoOrg}Prod: A Specialisation for a Factory Production Line Domain

0o=(G,A,PF gp, fg, fa,ap, sp,wg)
p = new Position

addSuperior Position(g)

S ={m(w)|w e wg(g)}
o =(G, A, Pu{p}, F,gpv{p— {g}},
(fo\lg — fa(g)}) v ig— (fa(g) v S}, fa,ap,sp U {p — €}, wg)

In the second transformation, called add ASubordinate(g,p’), the goal g is assigned
to a new position p that is a subordinate of p’. Thus, the new position is added to the set
of existing positions P. The goal ¢ is assigned to the new position p, which is recorded by
the function gp. The skills of the workloads of g given by the function wp are recorded by
the function fg (set S’). The function sp records p’ as superior of p. This transformation

is formalised as follows.

o={G,A, P F,gp, fg, fa,ap, sp,wg)

p = new Position

addASubordinate(g, p')
S = {m(w)|we wg(g)}

ol =(G, A, P u{p}, Figpu {p— {g}},

(fa\lg — fa(9)}) v ig — (fg(g) v S}, fa,ap, sp v {p — P}, wg)

In the third transformation, called joinAPosition(g,p), the goal g is assigned to
an existing position p. Thus, no new position is created, just g is assigned to the existing
p being recorded by gp(p). After assigning g to p, the skills of the workloads of g given by
the function wp are recorded by fg (set S’). Besides, the function fg records the dataloads
of g recorded by ig (set I'), which excludes dataloads of other goals assigned to p that
address g, since they are loopbacks to p. In other words, it is assumed that an agent
occupying the position p would not need to send a message to itself. This transformation

is formalised as follows.

0= <Pa G7 Fa A> ap, fga fa'7 ap, sp, wg>
joinAPosition(g, p)

S" = {m(w)|w e wg(g)}

I"=ig(g)\{ili € ig(g) A m3(i) € gp(p)}

o' =(P,G,F, A, (gp\{p — gp(p)}) v {p — (9p(p) v {g})},
((fg\lg = fg(9)}) v{g— (falg) v S" U I}, fa,ap, sp,wg)

4.8. GoOrg4Prod Processes 57

These structure transformations are applied by the search algorithm on every state

exploration. Algorithm 2 specifies the successor states of the search.

Algorithm 2: Successors - creates new states to explore
Data: G, a list of not assigned goals, P the current set of positions
Result: U a list of successor states

begin
List U // The successors list
if P ={} then
foreach Goal g of G, // For each not assigned goal
do
| U.add(addSuperior Position(g)) // Add as a superordinate
end
else
foreach Goal g of G,, // For each not assigned goal
do
U.add(addSuperior Position(g)) // Add as a superordinate
foreach Position p of P // For each existing position
do
U.add(addASubordinate(g,p)) // Add as a subordinate of p
U.add(joinAPosition(g,p)) // Assign g to existing p
end
end
end
end

The set G, has all non-assigned goals and the set P has all positions of this
state (according to the partial organisational structure o). Each transformation creates
a new state to be explored. For instance, addSuperior Position(g) creates a state based
on the current state (current partial o) assigning g to a new superordinate position in P
and updating G,,. Each created state will be later explored, and new successors may be
created. To generate successors of the created search states, the algorithm use), such
that G7,, = Gra\{g}.

GoOrg4Prod does not stop searching after finding a solution. Instead, it keeps
exploring all the search space. Thus, the final output is not only one solution, but a list

of all possible solutions.

To illustrate how the algorithm performs the search, a set G with two goals (g0
and ¢1) is taken into consideration. To simplify, no features are being presented, but it
is being considered that each goal has some effort associated, needing to be assigned to
some organisational position. Figure 12 shows the generation process while searching in
the space of solutions for this particular set of goals. In the initial state, represented at the
top of Figure 12, there is no hierarchy yet, the only transformation that can be applied is

addSuperior Position(g). In one successor state, addSuperior Position(g) is applied to g0,

58 Chapter 4. GoOrg}Prod: A Specialisation for a Factory Production Line Domain

and in another state, it is applied to g1, both generating hierarchies of a single position.
Neither of these states is a target state, since there is still a goal in G to be assigned. At

the bottom of the figure, the four target states for this G are presented.

Since each of the intermediary states has one existing position in the hierarchy,
the remaining goal of these states is the subject of the three transformations. According
to the structure transformation, a different state is created. Some of the states are similar
to a previously created state, thus pruned. To save space in this illustration, it is pointed

to the similar outcome that was considered to prune the other.

no

position
in the

hierachy

addSuperiorPosition(g0) addSuperiorPosition(g1)
K ~

Candidate #1 (1911 J || candidate #2 Candidate #3 Candidate #4 9%

Figure 12 — Step by step of state search with all possible solutions for the given G.

In this example, two states were pruned since they were similar to Candidate
#2 and Candidate #3. It has occurred because these candidates are created from more
than one intermediary state. For instance, a similar state to Candidate #2 was pruned
because from the righthand side intermediary state another state was created with a
position assigned to g1 and with another position assigned to gO on the same hierarchy
level. Indeed, the search may produce states with the same distribution of goals and the
same relationships between positions which are considered similar states. It should be
noted that for pruning, the identification of each position (p0 and p1 in this example) is

not relevant.

Table 2 shows the generated solutions (the candidates). The order they appear is
arbitrary (using the user’s preference UNITARY).

4.8. GoOrg4Prod Processes 59

Table 2 — All the candidates for the given G containing just two goals.

Candidate Chart Description
#1 0 | A structure with a superordinate-subordinate relation-
[90] ship. The performer of the goal g0 is superior of the
v performer of the goal gi. This is a specialised and hier-
archical solution for the given set of goals.
#2 A structure with only top superior positions, having no

.[;I;]. WM | | superordinate-subordinate relationships. This is a spe-

ol cialised and flat solution for the given set of goals.

#3 A structure with only top superior positions, having no
D0 superordinate-subordinate relationships. This is a gen-
e eralist and flat solution for the given set of goals.

#4 () A structure with a superordinate-subordinate relation-
(o7) ship. The performer of the goal gl is superior of the
v performer of the goal g0. This is also a specialised and
hierarchical solution for the given set of goals.

Considering the organisational attributes, Candidate #1 and Candidate #/ have
a superordinate-subordinate relationship, presenting hierarchy levels. The other candi-
dates are the flatter structures. As the goals are spread across positions, the structures
can also present more specialist organisational positions or more generalist positions. In
this example, Candidate #1, Candidate #2 and Candidate #4, are equally specialists.
Candidate #3 is more generalist. Candidate #3 is also the more efficient structure, since

it expects only one agent to achieve the goals in G.

4.3.3 Binding agents and positions

GoOrg4Prod binds agents and positions matching their features. It allows the
verification of the organisation’s feasibility considering the available agents. As presented
in Eq. 4.1, the set of features F' is formed by the sets of workloads, dataloads and skills
(both workloads and agents’ skills).

To bind agents to positions, GoOrg4Prod uses the First Fit algorithm (Algo-
rithm 3). This algorithm is not optimal; it is only being used to demonstrate a possible
binding strategy. The available agents in A are settled one-by-one into positions of the
set P, using the skills in F' to determine if the agent a can occupy the position p. As
mentioned, in this work, agents and positions are one-to-one relationships. An agent a
can be bound to a position p only if a is not bound to another position and if a has all
the necessary skills that p requires, i.e., fa(a) 2 {fg(g)|g € gp(p) A fg(g) € S}. When the
position p is bound with an agent a, then ap(p) = a (Definition 5).

60 Chapter 4. GoOrg}Prod: A Specialisation for a Factory Production Line Domain

Algorithm 3: FirstFit - binds agents and positions
Data: P the set of positions, A the set of available agents
Result: M the set of bound positions and agents

begin
List M // The matching list
foreach Position p of P // Foreach position of the structure
do
foreach Agent a of A // Foreach available agent
do
if fg(g) < fa(a) // ‘a’ has features of p
then
M.add({p, a)) // ‘a’ matches with p
A — A\{a} // ‘a’ cannot be used again
break // stop inner loop
end
end
end
end

4.3.4 Choosing organisations

GoOrg4Prod sorts the generated organisations according to their efficiency (1(0)),
height (7(0)), generality (6(o)) and the complementary attributes (the inverse of each
attribute). The feasibility attribute (k(0)) is not being used to order but to exclude non-

feasible organisations.

The complementary attribute is obtained as the complementary percentage. For
instance, choosing 7 as a criterion means there is a preference for structures with great 7
(structures as tall as possible). In this sense, choosing 1—7 means there is a preference

for structures with 7 near zero (structures as flat as possible).

The user may define multiple criteria which follow a priority order. The organisa-
tion in the highest ordering level of the priority criterion is considered the best candidate.
If two or more organisations are in the same ordering level, for a priority criterion, then

the next priority criterion is used. This process is detailed as follows.

Let ¢ be an ordering criterion (¢ € {n, 7,0, 1—n, 1—7,1—0}) based on the or-
ganisational attributes. Let 7 € " be a natural number (I' € N), representing a priority
order for a criterion according to the user’s preferences, in which ¢; is the most important
criterion for the user. Let ¢, (o) be a criterion value for the organisation o according to
the priority 7. A partial order relation representing the user’s preferences is defined as 7,
in which 07 o’ means that o is preferred to o'. If two criteria were set (I' = {1,2}), 07 ¢’
is defined as: 070" < [c1(0) > c1(0') v (c1(0) = ¢1(0) A c2(0) > ¢3(0"))] which can

be generalised as stated by the following formula. When two or more organisations share

4.4. GoOrg4Prod Results 61

the same values in all criteria, the first generated candidate is chosen, which would be an

arbitrary decision.

IT|

Vi e {\/ 0) > (6) » (Y (o) =)

For instance, if the most specialist structure (1—6) is the highest priority criterion
(¢1), then three candidates tie in the first criterion when comparing the candidates listed
in Table 2. Indeed, candidates #1, #2 and #4 each hold two positions. The first generated
candidate (#1) will be arbitrarily chosen if that is the only criterion specified. If there is
a second criterion (c¢g) and it is the flatter structure (1—7), then candidate #2 is chosen
because it is among the most specialists candidates and it has only one hierarchical level
(the flattest).

4.3.5 Computational complexity

GoOrg4 Prod uses a blind search technique to generate structures, the breadth-first
search algorithm. On the one hand, it is complete and optimal; on the other hand, it is
computationally heavy. Considering n = |G|, Eq. 4.7 gives the worst estimation of the
number of states visited by GoOrg4Prod search algorithm. As a worst estimation, the
equation does not take into account states that are pruned for being similar to existing

ones (with the same goals assigned to similar structures).

1+n+ 20 Dnln = O(2"n!) (4.7)

As presented in Algorithm 2, all the possible structures have no positions before the
first iteration, so the algorithm does the only suitable transformation for each existing goal:
addSuperior Position. On the next iterations, the algorithm picks the next goal to assign.
The algorithm creates one state for each of the three transformations and for each existing
position. In this sense, each goal creates a new superordinate (addSuperior Position), cre-
ates a subordinate (add ASubordinate) of each existing position and joins in each existing

position (joinAPosition).

As an example, it is considered the case illustrated in Figure 10, in which |G| = 5.
According to Eq. 4.7, the algorithm may explore 9,606 states as the worst estimation for

searching for all possible solutions in this case.

4.4 GoOrg4Prod Results

To illustrate how the best candidate is chosen, the set of goals represented in

Figure 10 is considered. It is assumed that the user prefers the most generalist, efficient

62 Chapter 4. GoOrg}Prod: A Specialisation for a Factory Production Line Domain

and flatter structure, in this priority order. Figure 13 illustrates the three kinds of agents
available: (i) the DB Linkable Elevator, an agent with the skills lift and database access
for lifting boxes on shelves and to be programmed to access an external database; (ii) the
Box Transporter, an agent with the skill move for moving boxes around the floor; and
(iii) the Pick € Place, an agent with the skill pick and place for picking items from the

box and placing them on the conveyor belt (see Appendix B for more details).

n
lift i P
db access move

DB Linkable Box Transporter Pick & Place
Elevator (LE) (BT) (PP) Agent

Figure 13 — The available agents.

For the given example, the generation process has produced 1,646 organisational
structure candidates.® Every organisational structure candidate has all the given goals
assigned to positions. These candidates are represented in Figure 14. Each circle represents

one or more candidates, since they can be overlapped.

100 | @ 1
80
60
40
20

O -

(] (]

generality (%)

ewd O

0 20 40 60 80 100
height (%)

Figure 14 — The generated candidates quantified according to the user’s preferences.

In Figure 14, the height axis represents the 7 attribute (Eq. 4.3) as a percentage
given by 1007, and the generality axis represents the 6 attribute (Eq. 4.4) as a percentage
given by 1006. The sizes of the circles represent the efficiency 1 (Eq. 4.6) as a percentage
given by 1007. The biggest circle represents 54.6% of efficiency and the smallest ones
represent 10.9% of efficiency.* The circle on the top of the generality axis and with mini-
mal height represents the best candidate according to the user’s preferences. Notice that
candidates are ordered by the user’s preferences and feasibility does not affect this order.
Feasibility is considered only when choosing a candidate, with those that are not feasible

being disregarded.

As depicted in Figure 15a, Candidate #1 presents only one organisational position,
which would be occupied by one agent that is responsible for achieving all goals. This

3 This took 1.3 seconds of user time in an Intel® Core™ i7-8550U CPU @ 1.80GHz with 16 GB RAM
computer.
The colors also varies according to the size of the circles.

4

4.4. GoOrg4Prod Results 63

solution has 100% of generality since all positions (only one in this case) are assigned to
all goals. It also has the minimum height, i.e., one level. Its efficiency is the highest for
this problem, 54.6%, which is the total effort (13.1 hours) over the baseline (24 hours).
Since all dataloads associated to the assigned goals are loopbacks, Candidate #1 has no
need for exchanging data among agents. Although it is the best candidate according to
the user’s preferences, this solution is not feasible since there is no available agent that

has all the four skills (db access, lift, move and pnp) required by the position pO.

Organisation Organisation
€t 8cCesS |FgedProduction db access
lift lit |FeedProduction| _box ready p1
move
MoveBox$0 move GetBox | oooooo_..__
MoveB
pnp MoveBox$1 pnp MoveBox$1 items ready oveBox$0
PlaceBox PlaceBox move
Agents Agents
i db acess i move ipnp i db acess i move i pnp
lift lift
(a) Candidate #1. (b) Candidate #2.

Figure 15 — The two best structures, which are not 100% feasible.

Figure 15b depicts Candidate #2, the second best solution according to the user’s
preferences. The two dashed arrows represent dataloads that the performer of one goal
must send to the performer of another goal. Like Candidate #1, Candidate #2 has the
lowest height, since the two generated positions are in the same hierarchy level. However,
comparing to Candidate #1 its generality was reduced since each position has some degree
of specialisation. Additionally, its efficiency is reduced since it has two positions instead
of only one, which increases its idleness. This candidate is 50% feasible because only
position p1 has an agent able to perform it. Although candidates #1 and #2 are preferred

according to the user’s preferences, neither of them is 100% feasible.

Organisation Agents
db access < i LE
— ift
Organisation |FeedProduction ;Iift; acess
’," GetBox
UM | o AR |iioms p2 box |
FeedProduction [ready”| MoveBox$0 ([ready PlaceBox ready
GetBox MoveBox$1 > i BT
db access move pnp move <€
lift Y. ¥ _| MoveBox$0 move
2 s MoveBox$1
Agents items 1
i db acess % move ﬁ pnp ready
lift Wl 2 V|- |- PP
\) pnp(.......... pnp
(a) Candidate #134. _ PlaceBox'

(b) Candidate #446.

Figure 16 — Two feasible structures for the given example.

Figure 16 depicts two feasible candidates for the given example. Candidate #134

is one of the flattest structures, since it presents just one hierarchy level. However, its

64 Chapter 4. GoOrg}Prod: A Specialisation for a Factory Production Line Domain

generality is even more reduced compared to the candidates #1 and #2. Besides, compared
to the best candidates, it has more positions to be occupied, which drives to an undesirable
lower efficiency. Although it is far from the ideal solution (Candidate #1), taking the given
available agents and the user’s preferences, this candidate is GoOrg4 Prod first choice since
it is the first one that is 100% feasible.

Figure 16 gives another example of a feasible solution: Candidate #446. The gen-
erality, efficiency and feasibility attributes are the same as for Candidate #134. However,
according to the user’s preferences, this solution is not as good as Candidate #134 be-
cause there are hierarchical relationships (represented as solid line arrows), which makes
this solution less flat. This candidate could be the first choice if the user’s preferences

were set for the tallest and most general and most efficient solution.

The candidate #1646 (Figure 17) is at the bottom of the list to be chosen, it is
the worst candidate for the user’s preferences. Its generality is very low, since only the
positions p0 and p2 are interchangeable. Its efficiency is also low due to the high number
of positions (|P| = 5 for this candidate). Its height is also far from what the user prefers
(it has 5 levels). This candidate is 100% feasible assuming that there are 2 units of the
agents Box Transporter and DB Linkable Elevator. In the case of having only one unit of

each kind of agent, this candidate is just 60% feasible.

Organisation ,ﬁ Agents
.-
',’ ’ move (""'4-.4’ |- BT
,~~ 1 MoveBox$0 move
. items
ready'.‘
2 P i PP
: - pnp
: ~»__PlaceBox
I items:
.: ready | BT2
' box m move < move
: ready ;’) MoveBox$1
box db access </ i ({b acess
\ ready! |FeedProductionf . L
¥ L \requested
\ i box
\ < LE2
“A Iift < i db acess
ift < 3
1 GetBox lif

Figure 17 — Candidate #1646

As demonstrated, the three transformations of GoOrg4Prod can produce structures
with superordinate-subordinate relationships as found in classic organisational charts.® A
superior (superordinate) is often responsible for some kind of coordination of its sub-

ordinates. A superordinate-subordinate relationship may imply, for instance, power and

® Hierarchies are one of the existing MAS organisational structure paradigms (Horling and Lesser,

2004).

4.4. GoOrg4Prod Results 65

accountability of a position to another (Kilmann et al., 2010). The addSuperior Position
transformation can create the first position of an organisation, as well as other indepen-
dent pairs of the first position, potentially producing a forest of hierarchies. A forest may
represent multiple departments or even a collection of organisations. Additionally, the
transformations joinAPosition and addASubordinate assign a goal to existing positions
and to new organisational positions. Combining these transformations, it is possible to
have very hierarchical trees in which there are long chains of superordinate-subordinate
relationships (e.g., candidates #446 and #1646). In contrast, it is also possible to have
very flat structures with no superordinate-subordinate relationship in an organisational
chart (e.g., candidates #1, #2 and #134).

67

5 GoOrgdDSN: A Specialisation for the Dis-

tributed Sensors Network Domain

GoOrg4DSN is another specialisation of GoOrg. In this work, the term GoOrg/DSN
refers to both a model extension and an implementation that can generate organisation
descriptions for the DSN domain. It addresses the problem of Distributed Sensor Net-
works (DSN), introduced by Lesser et al. (2003). GoOrg4DSN is concerned with the
generation of organisational structures for tracking one or more moving targets in an
area.! The objective is to detect targets and follow the target by selecting sensors to get
the most accurate coordinates of the target as it moves. A network of sensors that are
fixed in geographical positions provides the coordinates of targets as the sensors’ signals
are triangulated. The resolution track depends on how the sensors used in the trian-
gulations are distributed along the area and their distance from the target. Although
restricted, the processing capacity of the sensors can be used to host agents’ processes.
Other aspects such as the low-speed and unreliable communication, and the need to select

communication channels to avoid collisions bring additional challenges.

GoOrg/DSN is based on the approach proposed by Horling and Lesser (2008). In
their work, the area covered by the sensors is divided into sectors as groups of sensors. The
approach defines three roles: Sensor Agent, Sector Manager and Track Manager. The Sen-
sor Agent performs scans for targets and reports detections. The Sector Manager performs
many tasks: it sends to Sensor Agents of the sector a scanning schedule, defines communi-
cation channels, combines data from sensors to identify a target and communicates with
other Sector Managers. It also elects a sensor to play the role Track Manager when a new
target is identified. The Track Manager picks sensors to keep updated about target coor-
dinates, reporting this information to the Sector Manager. All the sensors (agents) enact
the Sensor Agent role. In Horling and Lesser (2008)’s implementation, the geographical
area of each sector is arbitrarily defined according to the number of sensors by sector,
which varies from 5 to 10 units, and also according to the density of sensors. Each sector
has a Sector Manager which is user-defined a priori. When a new target is identified, as
the Sector Manager is usually busy with its duties, it prefers to elect other agents rather
than itself to be Track Manager.

For this problem, GoOrg4DSN uses the Multi-Agent Oriented Programming (MAOP)

approach (Boissier et al., 2013). In MAOP, autonomous entities are modelled as agents,

L An implementation of GoOrg/DSN is available at https://github.com/cleberjamaral/Go0rg4DSN

68 Chapter 5. GoOrg4DSN: A Specialisation for the Distributed Sensors Network Domain

non-autonomous entities such as environmental tools and resources exploited by the agents
are modelled as artefacts, and coordination mechanisms are modelled as organisations.
Considering the solution proposed by Horling and Lesser (2008), GoOrg4DSN has two
main conceptual changes which are the absence of explicit roles and the procedural task
of scanning the area placed on another level of abstraction. In GoOrg/DSN, the scanning
task that Horling and Lesser (2008) assigned to Sensor Agents are instead executed by

non-autonomous entities (artefacts).? This MAOP approach is represented in Fig 18.

...

Manage ‘F Positions\ @, ganisation
Track

Autonomous
entities

Non-
autonomous
entities

interfaces

Emmmmmm e mm——m— - T o o -2 ----~- F---—-4----- - = - - - - --------=-=-=

e A v rpuupputuyui sl

° ¥ @(................. Physical
Moving @ A Sensors

Figure 18 — A MAOP approach for the DSN domain.

In the top dashed rectangle, the MAS is shown in three dimensions: organisation,
agents and artefacts. The agents interact among themselves and also act on and perceive
the artefacts, which are interfaces to the external environment. In this domain, the ex-
ternal environment is formed by physical sensors situated in a delimited sector which can

be visited by moving targets.

The tasks performed by the agents change according to the environment dynamism
caused by entry, exit and movement of targets within the monitored area and across
sectors. Indeed, such dynamism changes the goals of the organisation. For instance, an
agent that manages a sector with no detected targets has to wait for an event to be
communicated by the sector artefacts or by agents that manage other sectors. When a
target is detected, a goal for tracking that particular target is created. In this sense, a

change to the set of organisational goals brings the need to redesign the organisation.

The dashed rectangle at the bottom of Figure 18 represents a sector that con-

tains five geographically distributed sensors. The central sensor with a shaded inner circle

2 In Horling and Lesser (2008)’s approach, Sensor Agents have some autonomy when they negotiate

their schedule with the Sector Manager. However, they mainly execute scans for targets, which are
procedural tasks.

5.1. GoOrg/DSN elements 69

represents the device that was a priori defined to host the agent to manage the sector.
Figure 18 is illustrating a situation in which a target was detected. The sensor with a
shaded outer circle was elected to be the manager of this tracking. The rest of the sensors
are devices that are hosting agents that are not yet part of the organisation. Indeed, the
network has distributed processing along with sensors. In GoOrg4DSN, each sensor hosts
an artefact process and also an agent process, which is often a stand-by agent. In this
sense, most of the sensors host an available agent which can be bound to an organisational

position, becoming an organisation’s member.

Figure 19 illustrates how this specialisation extends GoOrg. To represent that
agents become busy while managing a sector and managing a tracking, the goals have
a feature of kind workload, which have an identification (referring to an intent) and an
expected effort to execute the workload. The attribute efficiency is calculated using work-
loads expected efforts. This implementation specifies two types of efforts: manage sector
and manage_track. The agents that manage sectors are defined a priori by the user ac-
cording to signal ranges. Sector managers are usually the agents that can better reach
sector sensors, and also reach other sector managers. To represent which sensor is previ-
ously defined as a manager, the specified agents have a feature of kind intents recording
they were set to manage a sector. All agents also have a feature of kind sector to record
which sector they belong to. This includes the agents that occasionally are not members
of the organisation, but are available and may become a tracking manager if necessary.
A goal to track a target also has a feature of kind sector, allowing the identification of
the sector that is handling the tracking. In the running system, the agent in charge of
manage__sector, in the sector that is handling a tracking, must choose an agent to be
assigned to manage this tracking. In this sense, the chosen agent occupies the position
that GoOrg4DSN has synthesised for tracking the corresponding target.® By the attribute
nearness, it is possible to check whether an agent and a target are in the same sector or

not.

5.1 GoOrgdDSN elements

GoOrg4DSN specifies three features to constrain the organisational design while
synthesising positions, arranging hierarchies and binding agents to positions. The added
features are: (i) intents, which are associated with agents; (ii) workloads, which are asso-

ciated with goals; and (iii) sectors which are associated with both goals and agents.

The agents have associated intents. These are used to inform GoOrg4/DSN about

the a priori defined usage of the agents, regarding the ones that are chosen to manage a

3 Tt is assumed that if the target is simultaneously detected by sensors from different sectors, the

managers of the corresponding sectors will negotiate which sector should be associated with the
respective manage__track workload.

70 Chapter 5. GoOrg4DSN: A Specialisation for the Distributed Sensors Network Domain

is superior of

1

oal in charge of | organisational composed of "groanisational
9 1.% 1 position 1.% 1 structure
T* \ 0/ 1
has has
feature 3
* are attribute
h |sector ” intent ” workload | are
as |«
o |feasibi|ity | |nearness|
agent -
is bound to efficiency

Figure 19 — GoOrgdDSN model.

sector. An intent is formally defined as a singleton tuple containing a symbol, as follows.

t: (symboly, t € T

A goal may have a workload required to achieve it. A workload w represents a
demanded effort e € R associated with an intent t € T. A workload is formally defined
as a tuple of a symbol and a real positive number. The function wg maps goals to their

workloads, as follows.

w:{tey,teT,eec R weW

wg: G — 2%

Both agents and goals are associated with sectors. A sector refers to a group an
agent or a target belongs to. The sector feature is a priori associated with all available
agents (the ones that are defined to host a manager of a sector and the ones that are
defined to host available agents). In case of goals, the sector feature is associated with
the goals manage__sector according to the sector that is handling the tracking. A sector

is formally defined as a singleton tuple of a symbol, as follows.

¢ : {symboly, ce C
The sets of workloads (W), intents (T') and sectors (C') are subsets of the set of
features, as follows.
F=WuTuC (5.1)

Like GoOrg4Prod, GoOrg4DSN considers that organisational positions may have
superordinate-subordinate relationships. This only occurs in the case of a superordinate

being assigned to the manage_sector workload and the subordinate being assigned to

5.2. GoOrg/DSN Added Attributes 71

the manage_ track workload. The function sp(p) that records the superordinate of the

position p and the organisational structure o are defined as for GoOrg4Prod (Section 4.1).

GoOrg4DSN also adds a design parameter to prevent positions from being assigned
to a sum of workloads efforts that surpass 100%. It is defined as ¢, € R*, representing

the maximum workload allowed on each position.

5.2 GoOrgdDSN Added Attributes

GoOrg4DSN defines new attributes of an organisational structure. From the added
feature workload, the efficiency of a structure is calculated, which was already defined in

Eq. 4.6. From the feature sector, the nearness of a structure is calculated.

Considering that a structure is a forest of hierarchies, nearness refers to how much
similar the positions of every tree in the forest are in terms of their sectors. This gives
an idea of how geographically near the positions are. For simplicity, this work does not
specify distances between sensors. Instead, GoOrg4DSN considers that sensors of the
same sector are close to each other and sensors of different sectors are far away from each
other. Formally, the nearness of an organisational structure o is represented as p(0), a real
number in the range [0,1] (Eq. 5.2). The nearness reduces when a position has a different
sector compared to its superordinate. The maximum nearness (p(o) = 1) occurs when

every hierarchy (tree) is formed by positions assigned to goals of the same sector.

0 3gegp(p)Ig € gp(spp)), fo(g) N C # fg(g') n C

1 otherwise

n(p) =

5.3 GoOrg4DSN Processes

GoOrg4DSN generates and chooses organisations in a chain of three processes: (i)
organisational positions are synthesised and structures are generated in a process that
searches the space with all possible organisations according to the supported transforma-
tions; (ii) the positions of generated structures are bound to the given agents and the
feasibility of the organisation is calculated; and (iii) an organisation with positions and
bound agents is chosen. Compared to GoOrg4Prod, the process for preparing goals is not
necessary for the DSN domain, since for this domain the goals are not divisible. Figure 20

illustrates the referred processes.

72 Chapter 5. GoOrg4DSN: A Specialisation for the Distributed Sensors Network Domain

S [TTNEd

Goals Design parameters User's preferences Agents
#1 #2] #1 ® #2 |
/ #2 = [
iR el = 4 J@ >

Generating organisations Binding agents and positions Choosing organisations

Figure 20 — The three processes of GoOrg/Prod.

5.3.1 Generating organisations

GoOrg4DSN uses the same state-space search algorithm that GoOrgjProd uses.
It assigns goals to positions step by step, follows a cost function based on the user’s
preferences, and generates all possible solutions according to its constraints. The algorithm
for generating successors states is similar to Algorithm 2, the difference is in the constraints

of the transformations.

GoOrg4DSN applies three structure transformations for every g € G into two
stages. In the first stage, a transformation assigns the goals g € G that are associated with
the workload manage__sector to new top superordinate positions. In the second stage, each
remaining g € G is the subject of the following structure transformations: (i) if ¢ is associ-
ated with a workload manage__sector, it is assigned to a new top superordinate position
creating a new tree in the forest; (ii) if g is associated with a workload manage__track, it is
assigned to new subordinate positions (for each position associated with a manage_ sector
workload); and (iii) if ¢ is associated with a workload manage_track, it is assigned to ev-
ery existing position (the ones associated with a manage_ track or with manage__sector

workloads). These transformations are presented as follows.

In the addSuperior Position(g) transformation, a goal associated with the work-
load manage sector is assigned to a new superordinate position. Indeed, in the running
system, an agent that manages a sector performs some actions that imply authority, a
workload 1 (fg(g)) = manage__sector is only assigned to superordinate positions. The
new position is added to the set of existing positions P. The assigned goal ¢ is recorded
by the function gp, the first element () of a workload tuple is recorded by the function
fg and the function sp records that p has no superior. The element 7, of a workload refers
to an intent, which can be either manage_sector or manage_track. The only feature
that is recorded by fg is the intent inside of the workload, since it is the only relevant
data for further processes. This transformation from the structure o to the structure o’ is

formalised as follows.

5.8. GoOrg/DSN Processes 73

o={G,A, P F,gp, fg, fa,ap, sp,wg)
T" = {m(w)|w e wg(g)}
manage__sector € T"

p = new Position

addSuperior Position(g)
o ={(G,A,Pu{p},F,gpu{p— {g}},
(fo\{g = fa(9)}) v g — (fg(g) v T}, fa,ap, sp U {p — €}, wg)

In the addASubordinate(g,p’) transformation, a goal associated with the workload
manage__track is assigned to a new subordinate position. The superior position p’ must
be associated with a manage_sector workload. The new position is added to the set of
existing positions P. The assigned goal g is recorded by the function gp, the first element
of the workload tuple is recorded by the function fg, and the function sp records p’ as
superior of p. This transformation from the structure o to the structure o' is formalised

as follows.

o={G,A,P,F,qgp, fg, fa,ap, sp,wg)

T" = {m(w)|w € wg(g)}

manage_track € T’

A9’ € gp(p') , manage__sector € {m (w')|w' € wg(g')}

p = new Position

addASubordinate(g, p')
o ={(G,A,Pu{p},F,gpu{p— {g}},
(fo\lg — fa(9)}) v ig — (fa(g) 0 T}, fa,ap, sp U {p — p'}, wg)

In the joinAPosition(g,p) transformation, a goal associated with the workload
manage__track is assigned to one of the existing positions. This transformation is applied
if g is not associated with a manage_ sector workload which prevents to have a position
responsible to manage more than one sector. The assigned goal g is recorded by the
function gp, and the first element of the workload tuple (1) is recorded by the function

fg. This transformation from the structure o to the structure o’ is formalised as follows.

74 Chapter 5. GoOrg4DSN: A Specialisation for the Distributed Sensors Network Domain

o={G,A, P F,qgp, fg, fa,ap, sp,wg)
T" = {m(w)|w e wy(g)}

manage_sector ¢ T’

joinAPosition(g, p)

o' ={G, A, PF, (gp\{p — gp(p)}) v {p— (gp(p) v {g})},
(fo\lg — fa(9)}) v g — (falg) v T')}, fa,ap, sp,wg)

5.3.2 Binding agents and positions

GoOrg4DSN also uses the First Fit algorithm (Algorithm 3). The set of features
F' is formed by the sets of workloads, sectors, intents and the first element of workload
tuples. The agents and positions are matched by intents and the first element of workload
tuples. It worths to mention that, GoOrg extensions implement a binding process just to
check the organisation’s feasibility. At running conditions, the binding between agents and
positions in charge of manage_track are defined by positions in charge of manage_sector

(which are superordinates of their sectors).

5.3.3 Choosing organisations

GoOrg4DSN sorts the generated organisations according to their efficiency (n(0)),
nearness (p(0)) and their complementary attributes (the inverse of each attribute). If the
feasibility (k(0)) is not 100%, the organisational structure is not considered. The for-
mula used for choosing structures by the user-defined criteria is the same as GoOrg4Prod
(Section 4.3.4).

5.3.4 Computational complexity

The worst estimation of the number of search states visited is defined in Eq. 4.7,
the same as GoOrg4Prod. Yet, GoOrg4DSN prunes more states, for instance, constrain-
ing hierarchies in which a goal associated with manage_sector workload is assigned to a
subordinate position and when a goal associated with manage_ track workload is trigger-
ing the creation of superordinate positions. For comparison, for a scenario with |G| = 5,
GoOrg4 Prod visits 9,606 states and generates 1,646 candidates. For the same number of
goals, GoOrg4DSN visits only 80 states and generates just 8 candidates.* However, the
number of states to visit grows exponentially. For more complex scenarios, the number of

states and candidates may become too large and not viable for the search approach used

4 This took 1 second of user time on an Intel® Core™ i7-8550U CPU @ 1.80GHz with a 16 GB RAM
computer.

5.4. GoOrg/DSN Results 75

by GoOrg4DSN. To exemplify, for |G| =7 GoOrg4DSN generates 612 candidates and for
|G| = 8 it generates 5812 candidates.’

5.4 GoOrgdDSN Results

To illustrate how GoOrg4DSN generates organisational structures, it is considered
an area divided into four sectors identified by the four geographical quadrants (Figure 21).

Each sector contains five sensors.

@ ©O 5 @
@@ @@ @@ @@
& &)

@) @) cme@ @

Figure 21 — A motivating scenario with four sectors, each one with 5 sensors.

The user’s preferences are based on Horling and Lesser (2008)’s approach. Due
to computational and communication restrictions of the sensors that host agents, it is
preferred idle structures (less efficient). With respect to the computational limits of the
sensors, in the DSN domain it is important to avoid assigning multiple goals to the
same position. Both efficiency and generality attributes defined for GoOrg4Prod domain
helps to measure the distribution of goals in a structure, but for GoOrg4DSN efficiency
is better. In the case of generality, the preference for more specialist structures could
result in structures that avoid assigning the manage track goal to positions that are
assigned to manage_sector, however, it would not avoid having multiple manage_ track
goals to the same position. On the other hand, the preference for more idle structures
using the attribute efficiency avoids both of the mentioned situations. In other words, it is
preferred to avoid assigning manage_ track to a position in charge of manage_sector or
to a position that is already in charge of another manage_track. Besides, to optimise the
communication among sensors, it is preferred a structure with a high nearness. As both
manage__sector and manage_ track goals are associated with a sector feature, a structure
with the higher nearness has all superordinate-subordinate relationships between positions
assigned to goals associated with the same sector. For instance, if there is a target in the
sector se, according to this criterion, the position assigned to manage_ track should be a
subordinate of the position assigned to manage the sector se, as they are physically close

to each other.

To show how GoOrg4DSN is used in such a dynamic scenario, in this section

different situations in terms of targets that should be tracked are presented. First, it is

> This respectively took 1.1 seconds and 1.7 seconds on the same mentioned computer.

76 Chapter 5. GoOrg4DSN: A Specialisation for the Distributed Sensors Network Domain

considered a situation in which no sensor is detecting any target. It is only necessary to

manage each sector, as illustrated by Figure 22.

DSN
manage_sector NW manage_sector NE manage_sector_SW manage_sector_SE
Wlmanage sector:0.6] Wlmanage sector:0.6] Wlmanage sector:0.6] Wlmanage sector:0.6]
S[nw] S[ne] S[sw] S[se]

Figure 22 — The set of goals in which no target is being detected.

For this situation, GoOrg4DSN generates only one organisational structure, as it
is the only solution. Indeed, the goals to be assigned are just the ones associated with
manage_sector workloads. As stated, each goal associated with manage sector work-
load should be assigned to a top superior position. It is specified that a manage sector
workload makes an agent 60% (0.6) busy with this duty. As a result, for every goal, a tree
with only one position is created in the forest (organisational structure), as illustrated by
Figure 23. This is a standby situation for most of the sensors, i.e., most of them are just

scanning the area as there is no tracking underway.

[manage sector NW] [manage sector NE] [manage sector SW] [manage sector SE]
W[manage sector:0.6] W[manage sector:0.6] W[manage sector:0.6] W[manage_sector:0.6]
S[nw] S[ne] S[sw] S[se]

Figure 23 — Candidate #1 (unique) when there is no target being detected.

In another situation, it is considered that the sensors have detected a target in
the southeast (se) sector. For this situation, there are five goals to be achieved by the
organisation: manage each of the four sectors and manage the tracking, which is identified
by manage track 1. Figure 24 illustrates the set of goals for this situation. It is specified
that an agent that is managing a tracking is 20% busy with this goal. In this sense, it
is possible to have the same agent managing a sector and managing a target tracking.
However, it would create a less idle structure, which is not desired according to the user’s

preferences.

manage_sector NW manage_sector NE manage_sector SW manage_sector_SE manage_track_1
W[manage sector:0.6] W[manage_sector:0.6] W[manage_sector:0.6] W[manage_sector:0.6] W[manage track:0.4]

S[nw] Sine] S[sw] Slse] S[se]

Figure 24 — The set of goals in which one target is being detected.

For the scenario with one target being detected on the sector se, GoOrg4DSN
has generated 8 candidates. The best candidate is illustrated by Figure 25. It considers

5.4. GoOrg4DSN Results 7

the user’s preference for delegating the manage track 1 goal to a sensor in the same
sector, and that it is better to not assign this goal to an agent that is managing a sector.
This candidate has a new position, a subordinate of the position in charge of managing
the sector se. The second best solution generated has the sector manager also assigned
to manage_track 1, which is not so good considering the user’s preference because the
agent would be busier. The rest of the candidates are even worse because they suggest
delegating the manage track 1 goal to agents of other sectors and also assigning this

goal to the managers of other sectors.

[manage _sector NW] [manage sector NE] [manage sector SW] [manage sector SE]
W[manage sector:0.6] W[manage sector:0.6] W[manage sector:0.6] S[se]
S[nw] S[ne] S[sw] W[manage sector:0.6]
y
[track 1]
S[se]

W[manage_track:0.2]

Figure 25 — Candidate #1 for the scenario with 1 target being detected.

To illustrate a situation with multiple targets, it is considered a scenario in which
three targets are detected, two on the sector se and one target on the sector nw. For
this scenario with 7 goals (4 goals to manage sectors and 3 goals to manage tracks),
GoOrg4DSN has generated 612 candidates. According to the user’s preferences, the best
candidate is the one illustrated by Figure 26. In this candidate, two positions are created
as subordinates of the position in charge of managing the sector se, and one position is
created as a subordinate of the position in charge of managing the sector nw. For this
situation of multiple targets, compared to candidate #1, the second best solution found
differs because it has only one subordinate of the position in charge of managing the
sector se. This position is assigned to track two objects which makes it busier, and this
structure is less preferred according to the user’s preferences, compared to Candidate #1.
The rest of the candidates are even worse according to the user’s preferences because
manage_track goals are assigned to positions of other sectors and also because existing

positions accumulate duties.

As seen, this scenario is very dynamic as targets move along the scanned area. In
the case of a target passing from one sector to another, it is assumed that the goal to
track this target will have its feature sector changed to the other sector, which changes
the goals of the organisation and requires a redesign. Besides, as illustrated in different
scenarios, in the case of a target entering or leaving the area, a redesign is also necessary.
In case of an agent failure, other agents (possibly some of the stand-by agents) may
occupy the position, which is done by a simple re-allocation. However, a change in agents’

availability may also drive to a structure-switching, for instance, if there are 4 targets

78 Chapter 5. GoOrg4DSN: A Specialisation for the Distributed Sensors Network Domain

p2 p3

[manage_sector_NW] [manage_sector_NE] [manage_sector_SW] [manage_sector_SE]
W[manage_sector:0.6] W[manage_sector:0.6] W([manage_sector:0.6] S(se]
S[nw] S[ne] S[sw] W([manage_sector:0.6]

[track_3] [track_1] [track_2]
S[nw] S[se] S[se]
W[manage_track:0.2] W(manage_track:0.2] Wi(manage_track:0.2]

Figure 26 — Candidate #1 for the scenario in which three targets are being detected.

being detected in a sector and one of the agents fail. A new binding between agents and
positions would revise the idlest structure as not feasible, making other candidates more
suitable in this condition. Section 7.1 presents a discussion about different organisation

adaptation procedures.

79

6 GoOrg: Implementation

This chapter goes over GoOrg implementation in depth. It shows the tools and
programming languages that were used to implement GoOrg and its software architecture.
It also describes the input and output formats, and explains how to extend GoOrg for

specific domains.

6.1 Tools and Programming Languages

GoOrg is implemented in Java, an object-oriented programming language, that is
interpreted by a Java Virtual Machine (JVM). A JVM is available in many computing
platforms, which allows running Java applications in many computer architectures. GoOrg
is compatible with Java 8 or superior.! For compiling GoOrg, Gradle is used. Gradle
is an automation software development tool, often used to build and manage project
dependencies. The Gradle script is defined in a file called build.gradle which is usually
written in a Java interoperable language (such as Groovy, Kotlin and Scala). For managing
dependencies, the Gradle tool can retrieve packages from Apache Maven repositories.?
Apache Maven repositories are very popular, most of the libraries written for Java are

available in Maven-compatible repositories.

As input, GoOrg implementation uses a Moise™ like organisation specification
(Htbner and Sichman, 2003). Moise* is an organisational model in which organisations
can be defined, including their goals which are specified in form of an organisational
scheme. The organisation specification is defined in an XML file, which is a popular format
for storing and transmitting arbitrary data. Since GoOrg may add some features to the
goals, the Moise™ XML format should be extended according to the extra information
added to the goals. Moise™ also does not expect a set of available agents as GoOrg does.
In this sense, another extension of the XML is the element available-agents and the nested

elements agent to indicate each available agent and its features, according to the domain.

GoOrg outputs organisational structures in form of graphs, which can be rendered
using Graphviz.®> The graphs may represent organisational charts (organigrams) of hier-

archical structures and other kinds of structural shapes. Graphviz is an application that

1
2

The implementation was tested with Java 11, 13 and 17.

The mentioned tools and more information about them are available at https://gradle.
org/,https://kotlinlang.org/, https://groovy-lang.org/ and https://scala-lang.org/ and
https://maven.apache.org/.

Graphviz is available at https://www.graphviz.org/.

© 0 N O Ot s W N

e e e T = T T S
0 N O Ut kR W N = O

80 Chapter 6. GoOrg: Implementation

produces graphical visualisation in many formats using as input a text language descrip-
tion of elements such as shapes and arrows. GoOrg also generates a list containing all the
generated structures and other relevant data such as the bindings between agents and
positions, and a JaCaMo project file (JCM) for launching the agents that are bound with

organisational positions (Boissier et al., 2016).

6.2 GoOrg Implementation Architecture

GoOrg instantiation starts in the class OrganisationApp. The generation process
considers an XML file as input that can be provided by the command line. The applica-
tion uses the class OrganisationXMLParser to get the inputs from a given XML file. In
this case, GoOrg parses the functional-specification element of the XML file defined by
Moise™. This element has other nested elements such as goals and plans. GoOrg basically
gets the goals in the original format defined by Moise™, but with the addition of features.
Listing 6.1 illustrates a Moise™ like scheme for the Feed Production Scenario with Three
Goals. The goal identified as GetBor, and the goals MoveBox and PlaceBox. For instance,
as seen in the XML notation, the goal GetBoz has the workload lift associated, and also
the dataload box ready. The workload and dataload elements are part of the necessary

extension of the Moise™ specification.

Listing 6.1 — A given set of goals as a Moise™ scheme.

<functional-specification>
<scheme id="scheme">
<goal id="GetBox">
<workload id="1ift" value="8.00"/>
<dataload id="box_,ready" value="8.00" recipient="MoveBox"/>
<plan operator="sequence">
<goal id="MoveBox">
<workload id="move" value="8.00"/>
<dataload id="items_ ready" value="8.00"
recipient="PlaceBox"/>
</goal>
<goal id="PlaceBox">
<workload id="pnp" value="8.00"/>
</goal>
</plan>
</goal>
</scheme>

</functional -specification>

The list of available agents is provided by XML elements nested within the available-
agents element. Listing 6.2 illustrates a given set of agents, which was created for GoOrg4Prod

domain. In this domain, the agents have skills which is used to match agents and posi-

© 00 N O Ot s W N

_
=]

6.2. GoOrg Implementation Architecture 81

tions, according to their associated workloads. In this sense, the XML elements must be

defined according to the domain.

Listing 6.2 — A given set of available agents
<available-agents>
<agent id="bt">
<skill id="move"/>
</agent>
<agent id="pp">
<skill id="pnp"/>
</agent>
<agent id="ie">
<skill id="1lift"/>
</agent>

</available-agents>

Figure 27 shows the class diagram of GoOrg. Near the top of the diagram, it is
illustrated the starting point class, OrganisationApp, and its relationships, for instance
with the class OrganisationXMLParser. The parsed goals are instantiated as GoalNode
objects. These objects are associated with the GoalsTree class, which has information
about node relationships. The parsed agents are instantiated as Agent objects, which are

associated to an AgentSet object.

Inputs -----
OrganisationXMLParser
organisation
OrganisationGenerator OrganisationApp
A search organisation organisation
algorithm -
‘: The mairll class A binding algorithm
' '
«abstract» | Organisation --I OrganisationPlot | | OrganisationBinder | | «abstract»
Search organisation.search 9 ‘ organisation Fit
'
S
'—Outputs |
Requirementset rostonstee || Oromstiontatistis i pgeme | [crterecs
2qui ; organisation.requirement 1 | organisation.resource L
organisation.reguirement Organisation]acamoExport} ' organisation.resource
' '
Attributes are
declared here
R:Inl.tl?iar;:;t < PositionNode i Binding Agent <;rétse(;1;arcce:
Req X organisation.requirement{— organisation.binder I organisation.resource I
organisation.requirement organisation.resource
«abstract»
L GoalsTree GoalNode Feature -
organisation.goal] organisation.goal © organisation.annotation_l> Anr_notatlon .
lorganisation.annotation|

Figure 27 — GoOrg simplified class diagram.

GoOrg implements two main processes: (i) the organisation generation process,
which searches for the space visiting states and performs structure transformations; and
(ii) the binding process which binds agents and positions matching their features. The

classes used in the generation process are presented on the lefthand side and the classes

82 Chapter 6. GoOrg: Implementation

for the binding process on the righthand side of the diagram. The centre of the diagram

illustrates the classes that provide facilities to generate the outputs.

The generation process is handled by the class OrganisationGenerator, which picks
a search algorithm (currently only Breadth-First). The search state is defined by the class
Organisation. The initial search state has an empty PositionsTree and all goals of the
GoalsTree to be assigned. As the search is performed, the state that is being visited
is cloned and the PositionsTree (organisational structure) of the clone is subjected to
a transformation. The transformations and the algorithm to generate successor states
(Algorithm 2) are also defined in the class Organisation. The search reaches a target state
when all the goals of the GoalsTree are assigned to positions in the PositionsTree. When a
target state is visited, an organisational structure candidate is plotted in Graphviz format.

Besides, information about the solution is printed in the statistics file.

After finishing the search for generating candidates, i.e., there is no state to be
visited, the binding process is started. The binding process is handled by the class Organ-
isationBinder, which picks a binding algorithm (currently only First-Fit). It tackles the
binding of the organisations in order of preference, from greatest to least. The result of
the binding is printed in the statistic file and a JaCaMo project file is created considering

the agents that were bound with the positions of each candidate.

6.2.1 Executing GoOrg Implementation

GoOrg is compiled, tested and executed using Gradle. By default, the Gradle run
task compiles and launch the project, which includes downloading and linking the project
dependencies. This task can receive one or more arguments. The first argument should
be a Moise™ like XML organisation specification containing a scheme which defines the
organisation’s set of goals and optionally a set of available agents for the binding process.
If no agents are specified, the generation process runs nornally, just the binding process
is not executed. Since no user’s preferences were set, by default each search state has a
UNITARY weight (cost), resulting in an arbitrary search order. The following command
line illustrates how to launch GoOrg4DSN specifying the XML as input.

$./gradlew run --args="examples/dsn.xml"

The next arguments refer to the criteria for ordering the generation process and,
consequently, the final list of candidates. The criteria also impact the generation process
order, because according to the chosen criteria the cost functions change, making prefer-
able structures the first ones to be generated. For instance, if GoOrg is parametrised to
generate more GENERALIST structures, the states to visit that present more GENER-
ALIST structures are less expensive in terms of the search cost function, which makes

the algorithm explore these states first. In the command line, it is possible to specify any

6.2. GoOrg Implementation Architecture 83

number of criteria, in which the last is the higher priority. The following command line
illustrates how to launch GoOrgjProd specifying an XML as input and the user’s prefer-
ences. In this example, it is preferred the more GENFERALIST structures and secondly
the more EFFICIENT, followed by the FLATTER structures.

$./gradlew run --args="examples/Feed_production_line_evaluation.xml \
FLATTER EFFICIENT GENERALIST"

6.2.2 GoOrg Implementation Inputs

GoOrg uses as inputs a set of goals and a set of agents. These sets are generically
provided in a Moise™ like XML file. Other inputs refer to the user’s preferences. To

summarise, the model inputs are:

o An XML containing the goals and agents;

o In the XML file, the set of goals follows the Moise™ scheme with extra elements in

the XML referring to the features according to the domain;

o In the XML file, the set of agents is given using the elements "available-agents',

"agent" and others according to the domain to refer to the agent’s features;

o The sorting criteria in which the last mentioned criterion is the higher priority (if
not specified UNITARY criteria is used, meaning no differentiation among states,

i.e., arbitrary generation order).

6.2.3 GoOrg Implementation Outputs

The main output that GoOrg produces is a set of organisational structures which
are represented by graphs. A graph format is used since the positions of a tree may have
different relationships, which can have different meanings according to the domain. Along
with other examples that are illustrated in this work, Figure 29 shows some of the graphs

generated for the Feed Production scenario with Three Goals.

In GoOrg, graphs are used to represent sets of goals and positions, since both can
be seen as nodes with relationships. Indeed, in GoOrg4Prod and GoOrg4DSN domains, it
is mainly used relationships to refer to superordinate-subordinate relationships, commonly
referring to authority relationships. However, it is also possible to represent other kinds
of relationships as GoOrg4Prod represents a bandwidth usage (dataload) in which agents
that are in charge of some particular goals must be aware. To summarise, the model

outputs are:

o The set of goals in Graphviz format;

84 Chapter 6. GoOrg: Implementation

o Organisational structure candidates in Graphviz format;
« Statistics about candidates including their attributes in CSV format;

« A JaCaMo (JCM) file for launching the bound agents.

Table 3 shows a sample statistic output file which is used to choose organisations.
Some of the organisational structures mentioned in this data are illustrated in Figure 29.
The name of the columns stand for: |P| is the number of synthesised positions, Idle for a
% of idleness, Effi for a % of efficiency (complement of idlenes), Genr for a % of generality,
Spec for a % of specificness (complement of generality), Tall for a % of talness, Flat for
a % of flatness (complement of talness), Feas for a % of feasibility, and Levels for the
number of hierarchy levels. As specified in Listing 6.2, there are three available agents
with the following skills: agent bt can move, agent pp can do pnp and agent ie can [ift.
The column match shows bound positions and agents. The number of pairs of positions
and agents should be the same number of positions to have 100% of feasibility. As seen,
structures #1 to #10 are not 100% feasible.

The statistics generated refer to the attributes each candidate presents and the
matching result of positions and agents. This data helps to easily find the best feasible
candidate. In case of agents’ availability changes, it can be revised and a new candidate
can be quickly picked. Regarding the JaCaMo project file (JCM), GoOrg generates a file

with the bound agents for each candidate.*

6.3 Extending GoOrg

GoOrg is designed to be extended for different domains.? Regarding GoOrg project
implementation, each domain requires a revision on the annotation package. The abstract
class Annotation gives the skeleton of a feature. In the GoOrg project the class Feature
extends Annotation, as an example of extension. It represents a very generic feature which
only has an identification. However, a feature is often a piece of more complex information,
for instance, something associated with an expected effort (such as a workload). As new
features are added, the class Organisation XML Parser should be adapted for parsing the

specific XML elements of the domain.

Each Annotation can be associated with both a position to be occupied and with an
agent. In GoOrg, the PositionNode and the Agent classes implement more generic classes
called Requirement and Resource, respectively. These generic classes support other kinds of
constraints that can be implemented in the future. The OrganisationBinder class defines

bindings between requirements and resources, matching their Annotation objects. In this

Appendix D illustrates a JCM file generated by GoOrg implementation.

5 Considering the use of a search space algorithm, GoOrg can be easily extended.

6.3. Eztending GoOrg

85

Table 3 — Organisational structures generated for Feed Production with three goals.

id | |P| | Idle | Effi | Genr | Spec | Tall | Flat | Feas | Levels Match

1 1 0 | 100 | 100 0 0 100 0 1

2 2 50 | 50 25 75 0 100 | 50 1 pl=ie

3 2 50 | 50 25 75 0 100 | 50 1 pl=pp

4 2 50 | 50 25 75 0 100 | 50 1 pl=bt

5 2 50 | 50 25 75 50 50 50 2 pl=pp

6 2 50 | 50 25 75 50 50 50 2 pl=bt

7 2 50 | 50 25 75 50 50 50 2 pl=ie

8 2 50 | 50 25 75 50 50 50 2 pO=ie

9 2 50 | 50 25 75 50 50 50 2 pO=pp

10 | 2 50 | 50 25 75 50 50 50 2 pO=Dbt

11| 3 67 | 33 0 100 0 100 | 100 1 pO=pp p2=ie pl=Dbt
12 | 3 67 | 33 0 100 | 50 50 100 2 p2=pp pO=ie pl=bt
131 3 67 | 33 0 100 | 50 50 100 2 pO=pp p2=ie pl=bt
14 | 3 67 33 0 100 50 50 100 2 pl=pp pO=ie p2=bt
151 3 67 | 33 0 100 | 50 50 100 2 pl=pp pO=ie p2=bt
16 | 3 67 | 33 0 100 | 50 50 100 2 pO=pp p2=ie pl=bt
17 1 3 67 | 33 0 100 | 50 50 100 2 p2=pp pO=ie pl=Dbt
18 | 3 67 | 33 0 100 | 50 50 100 2 pl=pp p2=ie pO0=bt
19 | 3 67 | 33 0 100 | 50 50 100 2 pl=pp pO=ie p2=bt
20 | 3 67 | 33 0 100 | 50 50 100 2 pO=pp pl=ie p2=bt
21| 3 67 | 33 0 100 | 100 0 100 3 pO=pp pl=ie p2=bt
22| 3 67 | 33 0 100 | 100 0 100 3 pl=pp p2=ie pO0=bt
23 | 3 67 | 33 0 100 | 100 0 100 3 p2=pp pO=ie pl=bt
24 | 3 67 | 33 0 100 | 100 0 100 3 pl=pp pO=ie p2=bt
25 | 3 67 | 33 0 100 | 100 0 100 3 pO=pp p2=ie pl=bt
26 | 3 67 | 33 0 100 | 100 0 100 3 p2=pp pl=ie p0=bt

sense, the classes PositionNode and Agent should override the method getAnnotationlds/0
in order to return the annotations that matters in the domain. The bindings are registered
in the class Binding, which informs the feasibility attribute of the organisational structures

according to the given agent set.

For other domains, the Organisation class must also be revised in terms of struc-
tural transformations and organisational attributes. The transformations are applied to
every state successors generation (Algorithm 2). The output for a domain may also have
particular constraints. For instance, in GoOrg/Prod and GoOrg/DSN hierarchies were
applied for generating a forest of hierarchies. Other domains may require other kinds of
structures such as holarchies and teams (Horling and Lesser, 2004). Different kinds of
structures may call for other kinds of structural transformations. In this sense, according

to the constraints of the outputs, different structure transformations should be defined.

For defining proper attributes for another domain, the PositionsTree class must

86 Chapter 6. GoOrg: Implementation

be revised. This class gather information about the structure. Most of the attributes
can be inferred from the organisational structure shape and relationhips.® By default,
GoOrg define attributes and their counterparts in complementary ranges between 0 and
1. Listing 6.3 illustrates an attribute implementation. Attributes are used by the search

cost function whilst the search is in progress.

Listing 6.3 — Implementation of the attributes efficiency and idleness

public double getEfficiency () {
double capacity = this.tree.size() * Parameters.getMaxWorkload();

double occupancy = this.getSumWorkload();

return occupancy / capacity;

public double getIdleness () {

return 1 - getEfficiencyFactor ();

According to the domain, the given set of goals can also be the subject of processes
that should be executed before the generation process. For instance, in GoOrg4Prod the
goals are subject to a split process that divide large efforts and large data loads into smaller
amounts. It serves as an example of an adaptation of the inputs. Other adjustments that

are not mentioned here may also be necessary.

6 Other studies such as So and Durfee (1998) and Grossi et al. (2007) also propose methods for evalu-

ating an organisation.

87

7 Discussion

This section presents a discussion about aspects related to the organisational de-
sign, comparing GoOrg to other approaches. Five aspects are considered: (i) procedures
for organisational adaptation; (ii) assigning goals to named agents, roles or positions; (iii)
planning resources (agents) of organisations; (iv) the difference between synthesising po-
sitions and having user-defined roles; and (v) the difference between using goals as input
rather than roles and behaviours. At the end of this section, a summary of this discussion

is presented.

7.1 Organisational Adaptation

Due to the dynamism of the system, along with the organisation’s life cycle, dif-
ferent situations may require different organisational adaptations (Hiibner et al., 2006;
Martinez-Berumen et al., 2014; von Bertalanffy, 1968). Some circumstances might only
affect the resources’ availability, in which a replacement of the resource solves the situ-
ation. Other situations cannot be solved using the current organisational structure. For
instance, a change in the set of available agents or in the user’s preferences may re-
quire another structure, possibly an already generated one. Still, there are situations that
cannot be solved using any already generated candidate, such as a change in the goals,
which requires a complete redesign for generating new candidates. In this sense, three
adaptation procedures can be applied according to the situation: (i) reallocation, (ii)

structure-switching, and (iii) redesign.!

The separation between the processes of generating organisations and binding
agents and positions fosters these different adaptations. It splits the complexity of a design
model into modules, which facilitates the implementation and maintenance of proper
methods for both tasks. Besides, a design may be performed faster when its requirements
can be satisfied by running just one of the processes. This separation is a characteristic
of GoOrg4Prod and GoOrg4DSN, two GoOrg specialisations introduced in this work.

To present how the mentioned procedures can be executed, it is considered the
motivating scenario illustrated in Figure 28. It requires an organisation of agents that has
three goals to feed a production line in a factory (see Appendix D for more details). The

agents must lift down boxes from shelves, and move them to place the required items on

1 Comparing to the classification stated by DeLoach and Matson (2004), a reallocation is a state

reorganisation and a redesign is a structure reorganisation.

88 Chapter 7. Discussion

a conveyor belt. For achieving these goals, the agents must have specific skills.

T,

if N pnp
| GetBox | > MoveBox : . PlaceBox | o
Raw material Production
storage area Open area cell area continigs

Figure 28 — Feed Production Scenario.

Figure 29 presents some of the 26 structures that GoOrg{Prod generates for the
given scenario. The criteria used to sort these candidates is the most generalist (higher
priority), then the most efficient and the flatter (lower priority) structure. Some of the
generated structures are flat, and some of them have no superordinate-subordinate rela-
tionships, such as the illustrated structures #1 and #2. Other structures, such as #6,
#15 and #26 may present hierarchies. Some structures may have very generalist positions,
such as structure #1 in which the only position (p0) must achieve all the organisational
goals. Oppositely, it is also possible to build structures in which the positions are very

specialist such as the positions p0, p1 and p2 illustrated in the structures #15 and #26.

#1 #2 #6
lift

move GetBox

[po | . m “ MoveBox
GetBox | Jift GetBox PlaceBox ||

MoveBox | move MoveBox

PlaceBox | pnp lift o PP
move PlaceBox

#11 #15 #26
) (| |
.!i. m m lift | GetBox MoveBox
GetBox || MoveBox || PlaceBox (|- eve pnp ey
lift move pnp
o | IR —~
PlaceBox move [p2 |
MoveBox
—

Figure 29 — Some of the candidates for the Feed Production Scenario.

In this example, each goal requires one skill s € S to be achieved. The set of all
skills for this scenario is S = {move,lift, pnp}. For simplification, it is considered s as
a symbol instead of a monuple as expected by GoOrg4Prod. A given structure is able
to achieve the goals only if there are available agents having the mentioned skills to be
allocated in the synthesised positions of each solution candidate. In this sense, the most

generalist positions are also the ones that require agents with a higher number of skills.

7.1. Organisational Adaptation 89

Indeed, the structure #1 demands a factotum agent that must be able to [ift, move and
pnp altogether. Oppositely, the most specialist positions require agents with fewer skills.
A specialist agent is focused on a few goals, possibly only one. The structures #11, #15

and #26 are examples of structures requiring just specialist positions.

It is considered that the previous structure may present different positions com-
paring to the new structure. Positions are considered similar when they are associated
with the same goals, which implies that they are associated with the same features (in
this example, the skills). To help in the analysis, it is introduced the concept of kinds of
position and kinds of agent. Positions with the same skills are considered to be of the
same kinds. Agents with the same skills are considered to be of the same kinds. For a

given domain, both kinds of agents and kinds of positions are elements of a common set,
denoted by R.2

Indeed, each position is of some kind r € R as it has associated a combination of
skills which is one of the subsets of the finite set S. In other words, r is a subset of the
set of skills. As expressed by Eq. 7.1, R is the set of all kinds of positions that may be
synthesised for all generated structures. The set R can be defined as the power set of S,

so its cardinality is given by 2/ (Rosen, 2012).

R ="P(9) (7.1)

Following the same idea, R also represents kinds of agents (Eq. 7.1). For instance,
r can be the empty set representing a position that requires no skill. When r refers to
an agent, the empty set represents an agent with no skill. Positions and agents can also
present skills as any other subset of S. For this particular motivating scenario, the set R

is as follows.

R = {@{lift}, {move}, {pnp},
{Li ft, move}, {li ft, pnp}, {move, pnp}, {1i ft, move, pnp}}
To check if an agent can be bound to a position it is considered the functions

pr(p) and ar(a). The function pr(p) maps the set of skills that the position p requires.
The function ar(a) maps the set of skills that the agent a has.

pr:P— R
ar: A— R

To allocate an agent a to a position p, the agent must have all the skills required

by the position. Thus, if pr(p) = ar(a) the position and the agent have an exact match,

2 A subset of skills can also be seen as a role, see Appendix F for details.

90 Chapter 7. Discussion

i.e., the agent has exactly the skills that the position requires. However, an agent a that
has more skills that the required skills of the position p is also suitable to be allocated
to p. The function match(a,p) indicates if the agent a is able to perform the position p
(Eq. 7.2). An organisation that has agents to fill all its positions is considered feasible.
The feasibility of the organisation o is represented as k(o) (Eq. 3.1).

match : A x P — {0, 1}

1, if pr(p) < ar(a

match(a,p) = ®) (@) (7.2)
0, otherwise

In the next sections, these definitions are used to explain the organisational adap-

tation procedures and possible costs that are associated with each of them.

7.1.1 Reallocation

A reallocation is a procedure for changing a binding relationship between an agent
and a position. It does not change the structure of the organisation. Many situations
and many purposes may demand a reallocation. For example, for some reason, it may
be required to interchange two agents between their positions. It also may be needed an
agent replacement, for instance, due to an agent failure, as illustrated in Figure 30 in

which the agent D is replacing the failed agent B.

Agents

JL

e f@ N
J\
#2 #2 7
Reallocation situation: Running system
e.g. Agent failure after reallocation

Figure 30 — A reallocation by replacing an agent by another.

Although some kinds of agents match some kinds of positions, some of them have
skills that surpass the required skills. An agent that has more skills than required is said
overqualified (Summerfield, 2016). The overqualification is a drawback since agents with
more skills are usually more expensive and often scarce, thus it represents a cost. The

overqualification cost is denoted by the function oc.

7.1. Organisational Adaptation 91

oc: Ax P—>R"

The function oc(a, p) indicates an overqualification cost of allocating the agent a
into the position p (Eq. 7.3). Notice that it is a simplistic estimation based on unitary
costs. The overqualification cost depends on the context and different skills may represent
different costs. To calculate, it is being considered the subset r of a position p (given by
pr(p)), and of an agent a (given by ar(a)). If pr(p) = ar(a), there is no overqualification
cost. For the other cases, it is considered that each skill that a has and p does not require
represents a cost factor of 1. If a does not match with p the overqualification cost is

considered infinite.

lar(a)| — [pr(p)|
oc(a,p) = match(a, p)

(7.3)

The overqualification cost of allocating each possible kind of agent in each kind of
position can be calculated. For this analysis, it is considered that there is an agent of each
kind r € R, and there is a position of each kind r € R. Thus, it is applied the function
oc (Eq. 7.3) on all kinds of positions and agents given by Eq. 7.1. For this particular
example, the set R has 8 elements, thus there are 8 kinds of agents and 8 kinds of agents.
Figure 31 presents the overqualification cost of matching every kind of agent to every
kind of position. The darker squares represent higher overqualification costs, i.e., the kind
of agent has more skills than needed. The lighter squares represent zero overqualification
cost, i.e., the kind of agent has exactly the required skills. The white squares represent

that the kind of position does not match with the kind of agent (infinite cost).

Kinds of positions
N w H w [e)} ~ [o¢]
1 1 1 1 1 1 1

=
1

T | I I
— o oM < N O M~ o]

Kinds of agents

Figure 31 — Matching kinds of agents and kinds of positions

The kinds of agents #2, #3 and #4 of Figure 31 have just one skill each, thus they

can only match with the kinds of positions that require no skills and with the positions

92 Chapter 7. Discussion

that require exactly the skill they have. The kinds of agents #5, #6 and #7 have two
skills each, thus they match with positions that required any combination of their skills.
The kind of agent #8 is the factotum agent since it has all three skills in this scenario.
The factotum agent can be allocated in any position, including the position that requires

the three skills, in which it is the only kind of agent that matches.

Assuming that there are multiple complete solutions for a given domain, agents
that match multiple positions provide flexibility in terms of the place in the organisational
structure that an agent occupies. A structure made up of positions that match with
multiple agents also provides flexibility in terms of the agent that is chosen to occupy
a particular position. Besides flexibility, such systems can be more robust, considering
that there are agents that can replace others. However, it comes with an overqualification
cost, which is a drawback that must be contrasted with the benefits of flexibility and

robustness.

7.1.2 Structure-switching

A structure-switching is the procedure for changing one structure by another can-
didate. In this case, it is expected that a structure from a set of previously designed
candidates is picked. From this set, structures are chosen according to their attributes. In
the case in which the number and kinds of positions change, the binding relationships be-
tween agents and positions are also affected. Even when the new structure has the same
number and kinds of positions as the previous structure, it depends on the switching

strategy whether the binding relationships will be maintained or not.

Since selecting a new structure merely involves creating new bindings between
agents and positions, the process can be completed quickly. Although it is not exploited
in this work, because of its quick responses, such a procedure may suit the online plan-
ning/design concept, i.e., when the planning/design is executed during runtime (Cardoso
and Bordini, 2019).

The structure-switching procedure may be triggered, for instance, due to a change
in the agents’ availability. Consider that the structure previously chosen calls for an agent
with two skills, but that agent is no longer available and there is no other agent with
those necessary skills. Considering the availability of more specialised agents, switching

to a more specialised structure can solve this issue, keeping the system running.

This procedure also may occur due to a user’s preference change. It is illustrated
in Figure 32. In this example, the organisations are re-sorted using the new preferences.
Another feasible structure may become the best choice to be used by the running system.
A revision on the bindings between running agents and positions is usually required if a

new organisational structure is adopted.

7.1. Organisational Adaptation 93

User's preferences Agents Agents

e
#—1—5 él_liz— #ﬂﬁ =7 J_|7 ﬁi‘/
s 7 ES Jla <ty

Structure-switching situation: Sorted feasible orgs. Running system
User's preferences change after structure-switching after structure-switching

,_|
Nz

Figure 32 — A required structure-switching due to a change in the user’s preferences.

A structure-switching may also be applied to make a change only on the hierarchy
places (in the positions relationships) and also to make a small change in the assignment
of goals into positions. For instance, the user may change the preference from a taller
structure to a flatter structure. In this case, there are structures with similar positions as

before, but in different places of the hierarchy.

In terms of the user’s preferences, switching a structure may have little impact on
the organisation. Indeed, according to the current structure in use, it is possible to have
many other structures that have similar attributes. Figure 33 shows a correlation matrix of
the generality of the 26 generated structures for the motivating scenario of this analysis.?
In this example, there is no other candidate with the same generality of structure #1.
In this sense, wether the user prefers more general structures and the structure #1 is
in use, a switching to another means the adoption of a structure with less generality.
However, if another structure is in use, for instance, the structure #2, there are other
options that have similar generality, like the structure #3 (in this case, any structure
between #2 and #10). In terms of generality, all the structures between the structure
#11 and the structure #26 are also similar. In this sense, a change between structures
that are 100% similar, considering a particular attribute, has no difference regarding the

user’s preference.

However, according to the current structure, a change may have a cost, for instance,
from the structure #1 to structure #11 which are considered with 0% of relative similarity
in terms of generality.* If the newly adopted structure is less preferred by the user, it has
an unsuitability factor. Such factor depends on the attribute, in this example, it is being
assessed the generality which in GoOrgjProd model is given by Eq. 4.4. Considering o;
the previous structure and o; the new structure, the unsuitability factor can be simply

given by the relation of a given attribute of the previous and of the new structure. Thus,

Appendix A presents correlation matrices for other organisational structure attributes.

4 The relative similarity considers equal attributes as 100% similar and the farthest values as 0% similar.

94 Chapter 7. Discussion

P{El'N 75 75 75 75 75 75 75 75 75

PR /5 75 75 75 75 75 75 75 75 100 100 100 100 100 100

PR 75 75 75 75 75 75 75 75 75 100 100 100 100 100 100 100 10
PEEBOM 75 75 75 75 75 75 75 75 75 100 C 100 100 100 10) 100 100 100
pPEROM 75 75 75 75 75 75 75 75 75 010 100 100 100 100 00 100 100
PAEN 75 75 75 75 75 75 75 75 75 100 0 100 100 100 100

OB 75 75 75 75 75 75 75 75 75 100 100 100 100 10

RNl 75 75 75 75 75 75 75 75 75 100 100 100 100 100 100

RN 75 75 75 75 75 75 75 75 75 0 100 100 100

IVERN 75 75 75 75 75 75 75 75 75 100 100 100 10 0

IR 75 75 75 75 75 75 75 75 75 100 100 100 100 1C

IR 75 75 75 75 75 75 75 75 75 0 0 100 10

JEERN 75 75 75 75 75 75 75 75 75 0 0 100 100 100 100

IR 75 75 75 75 75 75 75 75 75) 00 100 100 100

JPERN 75 75 75 75 75 75 75 75 75 100 100 100 100

ISR 75 75 75 75 75 75 75 75 75 100 100 100 100 100 100
JvRIPLN 100 100 100 100 100 100 100 100 100 75 75 75 75 75 75
EEWPAN 100 100 100 100 100 100 100 100 100,75 75 75 75 75 75
R0 100 100 100 100 100 100 100 10075 75 75 75 75
YEPAN 100 100 100 100 100 0 100 100 100

[RS8 100 100 100 100 100 100 100 100 100

RPN 100 100 100 100 100 100 100 100 100

AN 100 100 100 100 100 100 100 100 100

EEPAN 100 100 100 100 100 100 100 100 100

pEWPAN 100 100 100 100 100 100 100 100 100

1-pid 25 25 25 25 25 25

0
T T T T T T T T T
J N M T n e~ ® 0 g 2 Mg onY KR 0 9 O o m o3 o0

Figure 33 — Comparing the generality of candidates of the motivating scenario.

the unsuitability factor for the attribute generality is given by 6(0;)/0(0;). This factor can
be lower than 1, meaning that the new structure is actually preferred over the previous
structure, and also equals 1 if for the user’s preferences there is no difference in a structure-
switching. A cost may be associated with this factor according to the attribute and the
domain. For instance, a switch from a more generalist to a more specialist structure may

decrease the overall MAS robustness, which should imply a cost (or risk).

Nevertherless, even among similar structures, a structure-switching may result in
differences in the kinds of positions between them. A new position may reflect the need
for acquiring a new agent, an acquisition cost, denoted by the function ac. For this, P; is
the set of positions in the new structure and P; is the set of the positions of the previous

structure.

ac: Rx P, x P; » R*

It is considered that there is an acquisition cost for each position that does not exist
in the previous structure, considering a unitary cost for each (Eq. 7.4).5 This equation
checks the sum of each kind of position in the new structure compared to the previous
structure. In this sense, the acquisition cost is considered in case of having new kinds of
positions and also when the cardinality of an existing position of the new structure is
superior compared to the same kind of position in the previous structure. This equation

is ignoring the possibility of reuse in the case of a previous position that requires more

5 Using bracket notation to define 1 when the statement between brackets is true, and 0 when it is

false.

7.1. Organisational Adaptation 95

skills being replaced by a new position that requires fewer skills. For instance, it does
not take into account that an agent occupying a position that requires {lift, pnp} could
also occupy a new position requiring just {lift}. Besides, this equation assumes that the
agents in use in the previous structure have the exact required skills, i.e., they are not
overqualified, so they cannot be allocated to new positions that require more skills than
the previous position. In this case, it would be necessary to have information about the
agents bound with each previous position. For example, if in the previous structure all
the agents allocated are factotum agents, the equation will not consider any acquisition

cost in a switch.

ac(B, P P) = Y max(0, Y [pr(p) =]~ Y [or() =) (7.4)

’I"GR Pj EPj piGPi
Regarding the acquisition cost of a structure-switching, it is being considered the
acquisition cost of 1 for acquiring each kind of position. It is considered zero cost when
the previous and the new structure have the same kinds of positions and cardinalities of

each kind of position.

&
3
3
5
3
3
5
3
3
5!
3
3
5!
3
3
5
3
3
3
3

w w

w

H N WA OO N 0O

1P P PP PP P PP HOOOOOODODOOOOOOOO O
1240 P mF HF P EF P HHEHOOOOODOOOOOOOOOO O
13dF PP P HE P HEHEHEOOOOOOOOOOOOOOOO
440 P HF PR HFEFEEFEEEEOOOOOOOOOOOOOOO O
15 F P PP RPEPEPEEHHOOOOOODOOOOOOOOO O
1640 P m H HFHFHEHEHFEHHOOOOOOOOOOOOOOO O
17HF P P P P EHEHEOOOOOOOOOOOOOOOO
184 P HFHFHFHHEHHEHEHHEHOOOOOOOOOOOOOOO O
9P P P PP EHEHEHOOOOOOOOOOOOOOOO
20dF P P B P HEFEHEFEHOOOOOOOOOOOOOOOO
21H{F P P P PP PP HEHOOOOOODOODOOOOOOO O
24P PP EFFRPEEPEEEEHOOOOOODODODOOOOOOO O
23{F P PR PR EFHEHOOOOOOOOOOOOOOO O
24P PP PP PP EFEHEHOOOOOODOODOOOOOOO O
5 F P PP PP PEPEEEHOOOOOODODODOOOOOOO O
26dF P PP P EHEBEEHEEHOOOOOODOOOOOOOOO O

Figure 34 — Acquisition cost when switching between structures of the motivating scenario.

Figure 34 illustrates the acquisition cost for the motivating scenario considering a
change from one of the 26 structures to another. For instance, a switch from the structure
#1 which has only one position (Figure 29) to the structure #2 requires the acquisition
of two positions that are not present in #1. The switch in the opposite direction (from
#2 to #1) costs less since the structure #1 requires the acquisition of only one position

that is not present in #2.

96 Chapter 7. Discussion

Instead of switching only similar positions, it is also possible to reuse agents of the
previous positions which exceed the required skills of the new positions. The acquisition
cost could not be considered when a position in the previous structure (in the set P;),
surpasses the requirements of a position in the new structure (in the set P;). However,

the reuse of such an agent represents an overqualification cost.

7.1.3 Redesign

Finally, Figure 35 illustrates a complete redesign procedure. A complete process
of synthesising positions and generating structures should be triggered when either the
set of goals or design parameters change. This situation is illustrated in Section 5.4 while
presenting GoOrgdDSN results in different situations in which the number of targets
changes. In those situations, when a target enters or leaves an area (or even passes over

a sector to another), the set of goals changes, requiring a redesign.

Goals Parameters User's preferences Agents Agents

B 8
JL JU

#1 #2 #1 #2
4 IZIE = DE] ':'= v
N

= G # DEJ;
2 & o 8 B3

Redesign situation: Sorted organisations Sorted feasible orgs. Running system
e.g. Goals change after redesign after redesign after redesign

il

I_I i
Ly

N

Figure 35 — A complete redesign after a change to the set of goals.

A redesign brings a design cost, which occurs on generating organisational struc-
ture candidates that depend on the complexity of the problem and the given G. When
switching the previous structure to a newly designed structure it is also possible to have

overqualification costs and acquisition costs.

7.2 Assigning Goals to Named Agents, Roles or Positions

Task allocating models (Cardoso and Bordini, 2019; Decker, 1995; Sleight, 2014)
can generate organisations. These models assign goals (or tasks) to named agents, as
illustrated in Figure 36a. For instance, let us consider a marketplace organisation that has
the (root) goal do business. This root goal can be decomposed into the subgoals sellproduct
and buy product, which can be decomposed into other subgoals, and so on. One agent

assigned to sellproduct interacting with another agent assigned to buy product are sharing

7.2. Assigning Goals to Named Agents, Roles or Positions 97

the same root goal, and should cooperate to achieve it. In this sense, the distribution of
subgoals to a group of agents generates organisations. The assignment of goals to named
agents can be simpler to implement compared to impersonal representations of agents,
such as roles and positions. However, the assignment of goals to named agents produces
fixed organisations. These organisations are closed as they are formed only by the named

agents. In other words, a change in the set of goals or in agents’ availability implies a

redesign.
Organisational
Structure
Organisational
Structure
. (n 1
Assigned to Assigned to Occupy
n n 1

(a) Goals assigned directly to agents.

Organisational associated with
Structure '

(¢) Goals assigned to positions.

(b) Goals assigned to roles.

Figure 36 — Different forms of assigning goals to organisational members.

Other studies (DeLoach and Matson, 2004; Horling and Lesser, 2008; Sims et al.,
2008) use the concept of roles. Roles are largely used in human organisations and have been
adopted by the MAS community. For instance, a person that enacts the role assembler
in a factory is responsible to assemble parts of products in a production line. Sometimes,
there are many-to-many relationships such as when that person concomitantly enacts
another role like the supervisor role, dividing their working hours between assembling
and supervising activities. Figure 36b represents an organisational structure formed by
roles. In this case, the goals are assigned to roles and the agents enact roles, becoming in
charge of their assigned goals. Using the concept of roles, the organisation is decoupled
from the agents. As it allows many-to-many relationships, this approach can be very
flexible at runtime, allowing agents to enact roles for the short or long term. Using roles,
a generator is not limited to the availability of agents, i.e., it can generate organisations
that best match design criteria, such as the best distribution of goals. In this sense, this
approach allows a generation of more appropriate solutions according to design criteria,
since it has no concerns about the specificities of agents. Besides, a proper parametrisation
of a generator can avoid the design of organisations that are not fillable by the available

agents.

Another characteristic is that the design of the organisation (as an entity) can be

98 Chapter 7. Discussion

separated from the process of binding agents and roles. It simplifies the generating process
since the binding part is delegated to another independent process. When these processes
are separated, the redesign can be a lighter procedure, as discussed in Section 7.1. This
approach also avoids redesigning processes, which are usually computationally heavy. To
exemplify how it avoids redesigns, let us compare the approaches represented in Fig-
ure 36a and Figure 36b. In the former, goals are assigned to agents that are fixed to the
organisational structure. In that case, if an agent is not able to perform its job, a redesign
is needed. In the latter, the approach uses roles, thus agents are associated with roles.
It makes the organisation and the agents decoupled entities. In this case, if an agent is
unable to achieve the goals assigned to its role, no redesign is required; instead, another
agent must be found to fill that role. Thus, an organisation made up of roles can be an

open system, i.e., agents can join, enact roles and leave the organisation at any time.

GoOrg introduces the use of organisational positions. In this approach, goals are
assigned to positions. A position is a place in the organisational structure that has a
one-to-one relationship with an agent. Agents can occupy and leave positions, but an
organisational position can be occupied by only one agent at a time. Like roles, positions
decouple the organisation and agents, supporting the development of open MAS. Besides
having most of the advantages that roles bring, positions foster planning resources, as
discussed in Section 7.3. Indeed, as illustrated in Figure 36¢, a position directly reflects
an agent, i.e., it may have all relevant characteristics an agent has for a design process,

but without naming it.

7.3 Planning Resources of Organisations

In contrast to other models, GoOrg considers that an organisation has a set of
positions rather than a set of roles. Roles and positions within an organisation are roughly
analogous. Both of them are impersonel representations of agents in an organisation. As
discussed in Section 7.2, the use of roles or positions instead of named agents provides
more freedom to the organisation’s design because roles and positions do not need to
carry restrictions as agents do. In other words, the design process may generate more
possibilities, including an ideal distribution of responsibilities. The adoption of a better
solution can be made at various stages of the organisational life cycle. In this sense, having

more design solutions, even if they are unfeasible at some points, increases flexibility.

Roles and positions decouple organisations from agents, making organisations’
specifications independent of agents’ constraints. They are also useful to describe the
responsibilities and rights of each member of an organisation. Besides, they support the
development of open systems since they foster members’ entrances and exits (Deloach
et al., 2008).

7.8. Planning Resources of Organisations 99

Unlike a position, a role can be performed by multiple agents who are each respon-
sible for achieving the role assigned goals. Additionally, an agent can perform multiple
roles (many-to-many relationships). Models that incorporate the concept of roles offer a
high level of flexibility at runtime. For instance, an agent may enact the role assembler
and the role supervisor at the same time. It may also leave one of these roles and keep
the another, and many more combinations over time. When an agent enacts or leaves a
role, it is changing its assigned goals. This flexibility can also avoid the need for changing
the structure. For instance, structure-switching is necessary when a different distribution
of goals along positions is needed. In a structure of roles, if a combination of multiple
roles satisfies the changing needs, no structure-switching is necessary, it is just needed to
change agent enactments. However, such flexibility makes the estimation of resources a

tough task, especially when role enactments are very dynamic.

A structure made up of positions (one-to-one relationships), on the other hand,
directly reflects resource needs. The use of positions is also an intuitive approach for
defining sets of responsibilities and relationships. In the example of an assembler that also
supervises the production, a design model can synthesise a position responsible for both
activities. In this sense, this position is reflecting the actual runtime dynamics but with
the advantage of defining it in the design time, which facilitates resource needs estimation.
Positions can be still very flexible at runtime, for instance, when in the absence of the

agent that usually occupies a position, an available agent may come to occupy it.

Figure 37 illustrates two structures for the same scenario. In this scenario, there
is a production cell for assembling some products which has three agents in the team.
Figure 37a illustrates a structure using the concept of roles. Agent A enacts two roles and
Agent B and Agent C' both enact the same role. Figure 37b illustrates a possible solution
given by a model that extends GoOrg. It is a structure of three positions to be occupied
by the Agent A, Agent B and Agent C. Since only Agent A is able to do both supervising
and assembling activities, it is bound to the supervisor position. Agent B and Agent C' are
occupying the other positions. At design time, the need for three agents is only clear in a
structure of positions. Although both structures represent solutions for the same scenario,
only the structure of positions accounts for resource needs, enabling its usage as a resource

planning tool.

An organisational structure made up of roles as shown in Figure 37a adheres to the
standard for organisational charts (organigrams), which does not detail the cardinalities
of roles (Mintzberg and Van der Heyden, 1999). Nevertheless, a model may synthesise
a quantity of roles of a certain kind, as instances. The studies presented by Horling
and Lesser (2008) and Sierra et al. (2004) synthesise instances of roles based on agents’
behaviours. Figure 38 illustrates a structure made up of instances of roles. Still, as demon-

strated in this scenario, the quantity of instances of roles may not infer the quantity of

100 Chapter 7. Discussion

Structure of o Structure of supervising
roles e supervising positions s m assembling

assemblin :
’ | | | |

assembling A assembling A

Agents supervising - T, Agents supervising - 3
assembling assembling assembling assembling assembling assembling
Agent A Agent B Agent C Agent A Agent B Agent C

(a) A structure of roles. (b) A structure of positions.

Figure 37 — Comparing a structure of roles and a structure of positions.

required agents, as it does not reflect resource demands. In fact, for a model based on

roles, resource planning is not facilitated even when using instances.

Structure of o
role instances .- m supervising

assembler 1 assembler 2 assembler 3

assemq:ﬁng A assembling A assembling A

Agents ""§apervising
assembling assembling | assembling
Agent A Agent B Agent C

Figure 38 — A structure of instances of roles.

7.4 Synthesising Positions Instead of Requiring User-defined Roles

In other organisation generators (DeLoach and Matson, 2004; Horling and Lesser,
2008; Sierra et al., 2004; Sims et al., 2008), the user (engineer) has to specify roles a
priori. For these studies, “it is the task of the engineer to determine which roles will be
present at the level of the society design by means of an electronic institution” (Sierra
et al., 2004, p. 3). Usually, for defining roles, users conceive an arrangement for the
system and assess some characteristics of goals and behaviours and capabilities of known
agents. To exemplify, for the DSN domain, one may specify the roles sector manager,
sensor and track__manager, since it is intended to have groups of agents organised into
physical sectors. Basing role definitions on known elements facilitates the specification
task and may generate coherent structures according to existing elements and to the
user’s conception of the system. Yet, it may come with biases, for instance, a wrong
assumption on specifying a role may make it infeasible for available agents to play such a

role.

The user-defined roles approach presumably produces a smaller number of solu-

tions compared to a model that synthesises positions. A reduced number of candidates

7.4. Synthesising Positions Instead of Requiring User-defined Roles 101

should be faster to generate. However, a generator that produces fewer candidates using
defined roles that might be specified with biases may not generate feasible solutions. In-
deed, the user-defined roles approach may struggle when the system conditions do not

match with the user’s design assumptions.

Alternatively, the user may set roles with few requirements. This strategy may in-
crease occurrences of agents enacting multiple roles, making it easier to generate feasible
organisations. Indeed, using the concept of roles and allowing many-to-many relationships
between roles and agents, a model that defines a role for each given goal, for instance,
can achieve a higher number of combinations at runtime. However, this option makes the
coordination and resource planning of the system more complex because of the increased
possibilities for an orchestrating system to assess. While complicating the runtime or-
chestrating task, such an approach makes the design less relevant since it delegates what
is arguably a design task to the runtime orchestrating mechanism. The approach of us-
ing roles with little job to do also removes the possibility to plan at design time some
important issues. For instance, if the design model distribute goals to different roles, it
is delegating to the orchestrating mechanism to handle situations like avoiding that the
performer of the goal g0 be the performer of the goal g1 (when such goals should not be
performed by the same agent, like assembling and checking quality tasks). When synthe-
sising positions instead, the model that assigns goals to the position is already defining

what is expected from the performer of each position.

One may argue that at runtime, the number of combinations can be enlarged
using many-to-many relationships between agents and roles. However, it must be taken
into account that roles defined a priori still limit the combinations, since an agent should
be able to perform all defined responsibilities of a role. A problem may occur, for instance,
if the user sets a role with too many requirements, in a situation in which there is no agent

that matches all requisites.

For the example illustrated by Figure 13, one can define the following roles: DB
Linkable Elevator, Box Transporter and Picker & Placer. Models based on user-defined
roles generate different structures for these given roles. Figure 39 presents examples that
can be generated by each of these approaches.® In Figure 39a there are two of the possible
structures of user-defined roles. In this example, the given set of available agents does not
match the assumption used to define the roles. The role DB Linkable Elevator requires two
skills that no agent has, i.e., in both examples, there is no way to fill the positions by the
given agents. Other possible solutions beyond these examples are also made up of the same
set of roles. Thus, there is no feasible solution to the exemplified condition. As a result, a

design model based on those user-defined roles cannot find a feasible solution without a

6 The assigned goals of the structure of positions are omitted to simplify this example, showing only

skills as a matching feature for both role-based and position-based approaches.

102 Chapter 7. Discussion

user intervention redefining the roles and running the process again. Figure 39b, illustrates
two solutions that GoOrg4Prod generates from synthesised positions. The example #1
is a solution presenting the same limitation of Figure 39a examples, exemplifying that
GoOrg4Prod also generates non-feasible solutions. However, since GoOrg4Prod synthesises
positions, among the solutions, there are structures in which the features of the set of

positions match with the given agents as illustrated by the example #2 of Figure 39b.

f Agents Agents
Example #1 DB Linkabld) Example #1 » g
Elevator db access db access
% F
lift Ao
move[Transporter [& Placer php move(
A A
e : BT
Example #2 move
Example #2
______ Por
picker W R B - - o
& Placer pnp move ;
i“ db accessy Y v i‘-
ift db [[pnp | | adb
Elevator db access access R — | access
(a) Structures of user-defined roles. (b) Structures of synthesised positions.

Figure 39 — Comparing examples of user-defined roles and synthesised positions structures.

The importance of synthesising positions is also highlighted when comparing struc-
tures by their attributes. Figure 40 shows a correlation matrix considering efficiency,
height and generality of the 26 generated structures of the scenario Feed Production with
three goals. This figure presents averages of differences between every attribute of each
structure comparing them to other structures. It shows that there are structures that are
equal to others even considering all the GoOrg4Prod attributes. For instance, Candidates
#2, #3 and #4 are equal in terms of their attributes.

It is worth going into detail comparing some of the structures that are pointed
as similar by Figure 40. It exemplifies small differences between synthesised positions.
Although small, it is essential to synthesise these differences and generate a range of
candidates combining similar positions into different shapes and also different positions
into some particular shapes. Considering all these possibilities, the chance of finding a
suitable and feasible solution for a domain is increased. Taking candidates #2, #3 and
#4 as an example, all these candidates have two positions and one hierarchy level, differing

only in terms of the assigned goals as illustrated in Table 4.

Indeed, considering GoOrg4Prod transformations, these are the possible assign-
ments of the three given goals into structures with two positions and one level. It encom-
passes a range of possibilities of kinds of agents for this particular structure configuration

(with two positions and one hierarchical level). For instance, if the most skilful agent has

7.4. Synthesising Positions Instead of Requiring User-defined Roles 103

26 83 83 83 83 100 100 100 100 100
25 83 83 83 83 100 100
24 83 83 83 83 100 100
234 83 83 83 83 100 100 100 100
22 83 83 83 83 100 100
21 83 83 83 83 100 100 100 100
20 8 6 86 83 100 100 100 100 100 10 83 83 8 83
194 86 86 83 100 100 100 100 1 83 83 8 83
18- 3 86 86 83 100 100 100 100 1 83 83 83 83
17 8 86 83 100 100 100 100 100 83 83 83 83
16 3 86 86 83 100 100 100 100 1 83 83 83 83
154 8 86 83 100 100 100 100 1 83 83 83 83
14 3 86 86 83 100 100 100 100 1 83 83 83 83
134 8 86 83 100 100 100 100 10C 83 83 83 83
12 8 86 86 00 100 100 100 100 100 100 1(83 83 83 83
11 86 83 83 83 83 8

10 83 100 100 100 100 86 86 86 86 86

9 83 83 100 100 100 100 100 8 86 86 86 86 86

8 83 83 83 100 100 100 100 100 86 86 86 86 86

74 83 83 100 100 100 100 100 8 86 86 86 86 86

6 - 83 83 100 100 100 0 100 86 86 86

5 83 83 100 100 100 100 86 86 86

4 0 100 100 83 83

3 0 100 83 83

2 00 100 100 83

1 28

1248
1348

28 11 11 11 11
~
—

T T T T T
— o~ m < n © ~ © (o)) o ~— < n ©
- L]

Figure 40 — Comparing structures for the given scenario regarding all attributes.

the skills 7 ft and move, the only solution having two positions and one level is Candidate

492,

Table 4 — Candidates #2, #3 and #4 for Feed Production scenario with three goals.

Candidate Chart Description
2
) (O
#2 Vovemn | (F2eBxX)1 Candidate #2 requires an agent with at least the skills
it PP {lift,move} and another with at least {pnp}
move
73
#3 GetBox Candidate #3 requires an agent with at least the skills
' {pnp, move} and another with at least {lift}
73
o0]
#4 cotpon | MoveBoxfi | Candidate #4 requires an agent with at least the skills
prp meve {pnp,lift} and another with at least {move}
lift

Although when comparing the attributes, some structures are similar, in practice
there can be a great difference between them, since in some cases only one of them may be
feasible. Besides, there are some structures that are unique in terms of attributes, which
is the case of Candidate #1 which is the only structure with only one position, and of

Candidate #11 which presents three positions and just one hierarchy level (Figure 29).

104 Chapter 7. Discussion

Besides the presented examples that illustrate that user-defined inputs bring biases
and limit the set of possibilities, it is arguably complex and demanding to provide a
priori definition of roles as input to a model. It is illustrated in this work that although
not requiring a priori definitions, a model that automatically synthesises positions (or
roles) can reach similar (or more) results compared to user definitions. For instance, it
was not defined a priori that a sector manager role/position should exist in the DSN
situation illustrated in Figure 22, but the solution presented in Figure 23 has generated
positions that have this purpose. As GoOrg4DSN may find similar solutions with fewer
input parameters, it can be simpler to parametrise, easing the job of the user that is setting
up the organisation generator. The parametrisation of models and their demanded design

effort are discussed in Section 7.5.

The drawback of synthesising positions is the computational cost. Indeed, the
automated design model have to put in the work instead of the user, who is now freed

from having to specify roles or positions.

7.5 Using Goals as Input Instead of Roles and Behaviours

The definition of the system goals is often a very early step in a design. One may
say that stating the goals of the system is the first step of a design since other definitions
depend on it, including the definition of agents’ behaviour. GoOrg and other works such
as the organisation generators presented by DeLoach and Matson (2004) and Sims et al.

(2008) are based on this assumption.

In contrast, the organisation generators presented by Horling and Lesser (2008) and
Sierra et al. (2004) are based on roles and their expected behaviours. Their models require
roles behaviours expressed by equations in which their models can calculate different
situations to generate a suitable organisational structure. A behaviour is the course of
actions an agent playing a particular role takes to achieve a goal. In their models, the
definition of such actions should be given by the user (engineer) as input to the generator,
and they are used by the generator to constrain the search for possible organisational

structure descriptions.

If the user’s definitions are correct, these models can generate precise and coherent
organisations for a MAS. In such a case, the search is supposed to be more constrained
and faster when compared to generators that tend to create wider search spaces such as
GoOrg. Although it is sometimes not explicit, one can say that generators which require
roles and their expected behaviours are also based on goal definitions. Indeed, roles are
associated with a set of responsibilities (goals) an agent is supposed to be committed to,

and behaviours are actions agents should take to achieve their responsibilities (goals).

Figure 41 illustrates sets of user’s definitions that should be provided as input

7.6. Summary of this discussion 105

to different generators. Figure 41a represents an organisation generator model such as
Horling and Lesser (2008)’s and Sierra et al. (2004)’s models in which goals are previously
defined (even if not explicitly), and then roles and behaviours are defined by the user and
given as inputs. Figure 41b represents an organisation generator model based on GoOrg

such as GoOrg4DSN in which goals and features are user-defined and given as inputs.

>

(a) Roles and behaviours as inputs. (b) Goals and features as inputs.

Figure 41 — Comparing generators with roles and goals as input.

In the approach of Figure 41a, since roles and behaviours definition depends on
goals, it may require a wider revision of inputs if the system goals change. For instance, in
the DSN domain one may suggest replacing the sector approach with a less hierarchical
approach in which the agent that has the stronger signal of the target follows it until
passing over this duty to another agent that becomes to have the stronger signal. In
this case, the goal manage sector would not exist and the goal manage track would
be performed differently.” With such a change to the system goals, for a generator that
requires roles as input, a revision to the roles and expected behaviours is necessary. In a
model based on GoOrg, a change to the system goals requires only a revision to goals and

their features, which is supposed to be a simpler job.

The kinds of inputs in the approaches presented in Figure 41 are also different.
The inputs goals and features are both about what should be done. The input behaviours
is about how things should be done. The specification of how things should be done
must be accurate according to system runtime behaviour, which brings an extra concern

when using models that require such inputs.

7.6 Summary of this discussion

To sum up what has been discussed in this chapter, it is highlighted the following

aspects:

e Decoupling agents from organisations: GoOrg uses impersonal representations for
agents, which decouples the organisation and the agents, allowing generating more
structure candidates. It also makes the design process more flexible since it has no

concern with agents’ specificities and with the agents’ availability.

In the less hierarchical approach suggested, the agent in charge of manage track would also have to
communicate to other agents to compare their signal strength and negotiate a possible delegation of
the goal manage_ track.

106

Chapter 7. Discussion

Planning organisational resources: GoOrg uses positions as place-holders for agents,
which have one-to-one relationships with agents. Positions directly reflect resource
needs. On a generated structure, each synthesised position represents a required
resource, i.e., an agent that must occupy that position. While bringing the advantage
of allowing the planning of resources and making the design process more relevant,
when compared to the variety of relationships that roles and agents can present,
the drawback of only providing one-to-one relationships is the loss of flexibility at
runtime. Indeed, this might require organisational adaptations (such as redesigns)

more often.

Design bias: GoOrg synthesises positions instead of requiring user-defined roles.
It reduces the effect of the user’s (engineer) bias over the organisational design.
However, it incurs a computational cost because a larger search space must be

traversed in order to synthesise positions.

Design inputs: GoOrg requires goals as input. Goals are essential parameters for
a design since they represent what the organisation must achieve. GoOrg avoids
inputs that are related to how the organisation’s members must perform something

since it is usually more complex to define and frequently has more bias.

Design outputs: GoOrg generates organisational structures with attributes. The
attributes are used to sort the generated structures and allow the user to pick one

of the generated structures as preferred.

Supporting organisational adaptations: GoOrg supports structure-switchings, real-
locations and redesigns, giving more options for making an appropriate adaptation
when needed. The benefits and costs associated with each procedure must be taken

into account.

— When the available agents are full of skills, they can be (re)allocated into
different positions, and they can take over other agents’ duties if necessary. It
gives the system flexibility and robustness. However, it brings overqualification

costs.

— In the case of structure candidates that require the same resources as oth-
ers, structure-switching can be a quick adaptation procedure. However, it may
represent a less suitable solution according to the user’s preferences (possibly

affecting the system’s overall behaviour).

— A structure that satisfies the user’s preferences presumably has important at-
tributes. However, the best structure according to the user’s preferences fre-
quently requires agents that are not available, resulting in an acquisition cost.
This cost must be balanced against the benefits of having the structure exactly

as desired.

107

8 Conclusion

Organisational design has been refined continuously over the years. Many studies
in the Administration Research Field propose theories and frameworks for this task. In
the 2000s, studies on Automated Organisational Structure Generators have gained traction
spurred on by challenges like the DSN. One may think that automating the design process
could make the task easier for users. However, it is crucial to make such a process simple
to be parametrised by the user. Indeed, the parametrisation complexity of some existing
models may require high logic and programming skills from the user. For addressing
this issue, GoOrg aims for simplicity. It is extendible for dealing with the specificity
and complexity of each domain. Besides, GoOrg has great concern for simplifying its

parametrisations, in which the automated position synthesising approach is highlighted.

Other models such as DeLoach and Matson (2004); Horling and Lesser (2008);
Sierra et al. (2004); Sims et al. (2008) rely on the strategy of delegating to the user the
definition of roles. On the one hand, these generators can prevent the generation of some
incoherent structures, since the provided roles may support only feasible sets of respon-
sibilities. On the other hand, it makes the parametrisation more complex, and constrains
the range of possibilities. Indeed, such an approach would not be able to generate proper
solutions if the assumptions used to define the roles are wrong. Besides, synthesising po-
sitions may generate more candidates in which feasible solutions can be filtered by its
attribute.

This study adopted positions instead of roles for designing organisational struc-
tures. The reason is that positions carry the same advantage of the roles in respect to
being detached from named agents, while numerically reflecting the need for resources.
It means that the feasibility for a specific state of an organisation can be checked during

the design.

To evaluate GoOrg, this thesis presents two specialisations. The specialisations
added elements, attributes and relationships as required to generate structures for different
domains. Some of the added items are similar to both specialisations, showing that existing

specialisations can help to accelerate the development of extensions for other domains.

The specialisations can generate sets of structures which are candidates when
considering a range of possible agents to occupy positions. The generated candidates
have quantified attributes which enables a multi-criteria approach to choosing the “best”

organisation. For both specialisations, distinguishing processes were defined. For instance,

108 Chapter 8. Conclusion

the generating and binding (matching) processes are separated from each other, which
supports lighter adaptation procedures. Indeed, having this distinction is crucial to foster
organisation adaptation in dynamic environments and when the availability of resources
is volatile. A reallocation and a structure-switching may have little or no impact on the
user’s preferences, and they are arguably simpler and computationally cheaper procedures
if compared to a complete redesign. The proposed algorithms can solve simple problems

in a satisfactory time.

However, time is not the only variable that should be taken into account on an
organisation adaptation such as a switch between structures. Indeed, the impact is small
when the new structure has the same number and kind of positions, in which the agents
may remain in similar positions just being placed in another hierarchical arrangement.
However, they still may bring extra costs considering the overqualification cost and the
acquisition cost. As long as the new positions allow the maintenance of previous bindings,
a reallocation is preferred to avoid extra costs. Considering possible refinement of the
definitions of the goal, features and attributes, the benefits of a more suitable solution
according to the user’s preferences may justify the design cost. To help with the decision
of changing or not the organisational structure, it is necessary to calculate other costs
according to the attributes of the domain and to assign a weight to the different kinds of

costs.

As future work, it is planned to: (i) test organisation runtime adaptations in situa-
tions that require simple reallocations to complex redesigns, and the model’s applicability
as an online design tool; (ii) adopt an existing solution or implement an algorithm that
uses heuristics combined with an anytime approach which may produce faster answers for
the search algorithm and make it suitable for more complex problems (Dean and Boddy,
1988);! (iii) implement a better algorithm for binding agents and positions or adopt an
existing one (to determine feasibility and perhaps offer a solution to the runtime orchestra-
tion mechanism); (iv) implement more specialisations of the model to test its applicability
in other domains, in practical situations and designing other kinds of structures; (v) syn-
thesise organisational roles, their relationships, organisational norms and organisational
missions; (vi) test organisational aspects such as power, span of control, accountability,
and trust; (vii) finish the development and make available GoOrg integrated with JaCaMo
platform (Boissier et al., 2016); and (viii) allow the use of a Directory Facilitator (DF) to

retrieve the available agents and their features that can be used in the binding process.

1 This and other planned improvements on GoOrg implementation are detailed in Appendix E.

109

Bibliography

Amaral, C.J., J.F. Hibner, and T. Kampik (2020a), “Towards jacamo-rest: A resource-
oriented abstraction for managing multi-agent systems.” In Proceeding of 14th
Workshop-School on Agents, Environments, and Applications (WESAAC 2020), 140—
151, URL https://arxiv.org/abs/2006.05619. Citado na pagina 139.

Amaral, Cleber J., Vitor Luis Babireski Furio, Robson Zagre Junior, Timotheus Kampik,
Maiquel de Brito, Maicon R. Zatelli, Tiago L. Schmitz, Jomi F. Hiibner, and Mauri Fer-
randin (2021), “Jacamo builders: Team description for the multi-agent programming
contest 2020/21.” In In proceedings of MAPC 2021: The Multi-Agent Programming Con-
test 2021, 134-157, URL https://doi.org/10.1007/978-3-030-88549-6_6. Citado
na pagina 140.

Amaral, Cleber Jorge (2018), “Embedding multi-agent system frameworks : A bench-
marking.” In Anais do Computer on the Beach, 939-941, Univali, Florianépo-
lis, URL https://periodicos.univali.br/index.php/acotb/article/download/
12867/7362. Citado na pagina 139.

Amaral, Cleber Jorge, Sérgio Pereira Bernardes, Mateus Concei¢ao, Jomi Fred Hiib-
ner, Luis Pedro Arenhart Lampert, Otavio Arruda Matoso, and Maicon Rafael Zatelli
(2019a), “Finding new routes for integrating multi-agent systems using apache camel.”
In 13th Workshop-School on Agents, Environments, and Applications (WESAAC 2019),
Florianépolis, URL http://arxiv.org/abs/1905.10490. Citado na pagina 139.

Amaral, Cleber Jorge, Stephen Cranefield, Jomi Fred Hiibner, and Mario Lucio Roloff
(2020b), “Integrating industrial artifacts and agents through apache camel” URL
https://arxiv.org/abs/2006.11694. Citado na pagina 139.

Amaral, Cleber Jorge, Stephen Cranefield, Jomi Fred Hiibner, and Mario Lucio Roloff
(2019b), “Giving camel to artifacts for industry 4.0 integration challenges.” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 11523 LNAI, 232-236, URL http://doi.org/
10.1007/978-3-030-24209-1_20. Citado na pagina 139.

Amaral, Cleber Jorge and Jomi Fred Hiibner (2019), “Goorg: Automated organisational
chart design for open multi-agent systems.” In PAAMS (Fernando De La Prieta, Alfonso

Gonzalez-Briones, Pawel Pawleski, Davide Calvaresi, Elena Del Val, Fernando Lopes,

110 Bibliography

Vicente Julian, Eneko Osaba, and Ramén Sanchez-Iborra, eds.), 318-321, Springer In-
ternational Publishing, Cham, URL http://doi.org/10.1007/978-3-030-24299-2_
28. Citado 2 vezes nas paginas 32 and 1309.

Amaral, Cleber Jorge and Jomi Fred Hiitbner (2020a), “From goals to organisations: Auto-
mated organisation generator for mas.” In Engineering Multi-Agent Systems (Louise A.
Dennis, Rafael H. Bordini, and Yves Lespérance, eds.), 25-42, Springer International
Publishing, Cham, URL https://doi.org/10.1007/978-3-030-51417-4_2. Citado

2 vezes nas paginas 32 and 139.

Amaral, Cleber Jorge and Jomi Fred Hiibner (2020b), “Jacamo-web is on the fly: An inter-
active multi-agent system ide.” In Engineering Multi-Agent Systems (Louise A. Dennis,
Rafael H. Bordini, and Yves Lespérance, eds.), 246-255, Springer International Pub-
lishing, Cham, URL https://dl.acm.org/doi/10.5555/3398761.3399086. Citado
na pagina 140.

Amaral, Cleber Jorge, Jomi Fred Hiibner, and Stephen Cranefield (2022), “Generating and
choosing organisations for multi-agent systems.” URL https://doi.org/10.21203/
rs.3.rs-1825069/v1. Citado na pagina 139.

Amaral, Cleber Jorge, Timotheus Kampik, and Stephen Cranefield (2020c), “A framework
for collaborative and interactive agent-oriented developer operations.” In Proceedings of
the 19th International Conference on Autonomous Agents and MultiAgent Systems, AA-
MAS 20, 2092—-2094, International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC, URL https://dl.acm.org/doi/10.5555/3398761.3399086.
Citado na péagina 140.

Bellifemine, Fabio, Agostino Poggi, and Giovanni Rimassa (2001), “Developing multi-
agent systems with a fipa-compliant agent framework.” Software: Practice and Ezxperi-
ence, 103-128. Citado na pagina 135.

Boissier, Olivier, Rafael H Bordini, Jomi F Hiibner, Alessandro Ricci, and Andrea Santi
(2013), “Multi-agent oriented programming with JaCaMo.” Science of Computer Pro-
gramming, 78, 747-761. Citado 3 vezes nas paginas 25, 67, and 132.

Boissier, Olivier, Jomi F Hiibner, and Alessandro Ricci (2016), “The JaCaMo Framework.”
Governance and Technology Series, 30. Citado 4 vezes nas paginas 25, 37, 80, and 108.

Bordini, Rafael H., Jomi Fred Hiibner, and Michael Wooldridge (2007), Programming
Multi-Agent Systems in AgentSpeak using Jason, 1st edition. Series in Agent Technol-
ogy, Wiley-Interscience. Citado na pagina 25.

Bibliography 111

Burns, Tom and G. M. Stalker (1994), “Mechanistic and Organic Systems of Manage-
ment.” In The Management of Innovation, volume 21, 96-125, Oxford University Press.

Citado na péagina 37.

Burton, Richard M, Borge Obel, and Gerardine Desanctis (2011), Organizational design:
a step-by-step approach. Cambridge University Press. Citado na pagina 31.

Cardoso, Rafael C and Rafael H Bordini (2019), “Decentralised Planning for Multi-Agent
Programming Platforms.” In AAMAS’19: Proceedings of the 18th International Con-

ference on Autonomous Agents and Multiagent Systems, 799-807. Citado 3 vezes nas
paginas 33, 92, and 96.

Cardoso, Rafael C. and Angelo Ferrando (2021), “A review of agent-based programming
for multi-agent systems.” Computers, 10, 1-15. Citado na pagina 25.

Daft, Richard L. (2009), Organization Theory and Design, 10th edition. South-Western
College Pub, Centage Learning. Citado 4 vezes nas paginas 25, 36, 41, and 137.

Dastani, Mehdi, Virginia Dignum, and Frank Dignum (2003), “Role-assignment in open
agent societies.” Proceedings of the second international joint conference on Autonomous
agents and multiagent systems - AAMAS 03, 489. Citado na pagina 36.

De Pinho Rebougas De Oliveira, Djalma (2006), Estrutura Organizacional: Uma Abor-
dagem Para Resultados e Competitividade. ATLAS EDITORA. Citado na pagina
31.

Dean, Thomas and Mark Boddy (1988), “An analysis of time-dependent planning.” In Pro-
ceedings of the Seventh AAAI National Conference on Artificial Intelligence, AAAT'8S,
49-54, AAAT Press. Citado na pagina 108.

Decker, Keith, Katia Sycara, and Mike Williamson (1997), “Cloning for intelligent adap-
tive information agents.” Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1286, 63-75.
Citado na péagina 34.

Decker, Keith S. (1995), Environment Centered Analysis and Design of Coordination
Mechanisms. PhD Thesis, University of Massashusets. Citado 2 vezes nas paginas

33 and 96.

DeLoach, Scott A. (2002), “Modeling organizational rules in the multi-agent systems en-
gineering methodology.” In Advances in Artificial Intelligence (Robin Cohen and Bruce
Spencer, eds.), 1-15, Springer Berlin Heidelberg, Berlin, Heidelberg. Citado na pagina
25.

112 Bibliography

DeLoach, Scott A and E Matson (2004), “An Organizational Model for Designing Adap-
tive Multiagent Systems.” In The AAAI-04 Workshop on Agent Organizations: Theory
and Practice (AOTP 2004), 66-73, AAAI Press. Citado 8 vezes nas paginas 25, 26,
37, 87, 97, 100, 104, and 107.

Deloach, Scott A., Walamitien H. Oyenan, and Eric T. Matson (2008), “A capabilities-
based model for adaptive organizations.” In Autonomous Agents and Multi-Agent Sys-

tems, 13-56. Citado 2 vezes nas paginas 37 and 98.

Durfee, Edmund H., Victor R. Lesser, and Daniel D. Corkill (1987), “Coherent Coop-
eration Among Communicating Problem Solvers.” IEEE Transactions on Computers,
C-36, 1275-1291. Citado na péagina 36.

Ferber, Jacques and Olivier Gutknecht (1998), “A meta-model for the analysis and design
of organizations in multi-agent systems.” Proceedings - International Conference on
Multi Agent Systems, ICMAS 1998, 128-135. Citado 2 vezes nas paginas 32 and 36.

Fink, S.L., R.S. Jenks, and R.D. Willits (1983), Designing and Managing Organizations,
1st edition. Irwin Series in Financial Planning and Insurance, R.D. Irwin. Citado 2

vezes nas paginas 33 and 36.

Furio, Vitor Luis Babireski, Maiquel de Brito, Tiago L. Schmitz, Cleber J. Amaral, Rob-
son Zagre Junior, Maicon R. Zatelli, Mauri Ferrandin, and Timotheus Kampik (2021),
“Descoberta de tamanho de mapas ilimitados através da cooperagao entre agentes.” In
15th Workshop-School on Agents, Environments, and Applications (WESAAC 2021),
178-188, Rio de Janeiro, URL https://doi.org/10.5281/zenodo.5774181. Citado
na pagina 140.

Galbraith, Jay R. (1995), Designing organizations: an executive briefing on strategy, struc-

ture, and process. Jossey-Bass Publishers - San Francisco. Citado na pagina 31.

Gasser, Les (2001), Perspectives on Organizations in Multi-agent Systems, 1-16. Springer,
Berlin, Heidelberg. Citado na péagina 25.

Grossi, Davide, Frank Dignum, Virginia Dignum, Mehdi Dastani, and Lamber Royakkers
(2007), “Structural aspects of the evaluation of agent organizations.” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 4386 LNAI, 3-18. Citado na pagina 86.

Hatch, M.J. (1997), Organization Theory: Modern, Symbolic, and Postmodern Perspec-
tives. Oxford University Press. Citado 4 vezes nas paginas 25, 32, 35, and 37.

Horling, Bryan and Victor Lesser (2004), “A survey of multi-agent organizational
paradigms.” Knowledge Engineering Review, 19, 281-316. Citado 3 vezes nas paginas
41, 64, and 85.

Bibliography 113

Horling, Bryan and Victor Lesser (2008), “Using quantitative models to search for ap-
propriate organizational designs.” Autonomous Agents and Multi-Agent Systems, 16,
95-149. Citado 12 vezes nas paginas 25, 26, 38, 67, 68, 75, 97, 99, 100, 104, 105,
and 107.

Hiibner, Jomi Fred, Olivier Boissier, Rosine Kitio, and Alessandro Ricci (2010), “Instru-
menting multi-agent organisations with organisational artifacts and agents: "Giving the

organisational power back to the agents"” Autonomous Agents and Multi-Agent Sys-
tems, 20, 369-400. Citado na pagina 36.

Hiibner, Jomi Fred and Jaime Simao Sichman (2003), “Organizacdo de sistemas mul-
tiagentes.” III Jornada de MiniCursos de Inteligéncia Artificial JAIAOS, 8, 247-296.
Citado 2 vezes nas paginas 32 and 79.

Hiibner, Jomi Fred, Jaime Simao Sichman, and Olivier Boissier (2002), “A Model for
the Structural, Functional, and Deontic Specification of Organizations in Multiagent
Systems.” In SBIA °02: Proceedings of the 16th Brazilian Symposium on Artificial In-

telligence: Advances in Artificial Intelligence, 118-128, Springer. Citado na pagina
25.

Hiibner, Jomi Fred, Jaime Simao Sichman, and Olivier Boissier (2006), “S-Moise™: A
middleware for developing organised multi-agent systems.” In Coordination, Organiza-
tions, Institutions, and Norms in Multi-Agent Systems (Olivier Boissier, Julian Padget,
Virginia Dignum, Gabriela Lindemann, Eric Matson, Sascha Ossowski, Jaime Simao
Sichman, and Javier Vazquez-Salceda, eds.), 64—77, Springer Berlin Heidelberg, Berlin,
Heidelberg. Citado na pagina 87.

Ishida, Toru, Les Gasser, and Makoto Yokoo (1992), “Organization Self-Design of Dis-
tributed Production Systems.” IEEE Transactions on Knowledge and Data Engineering,
4, 123-134. Citado na pagina 34.

Kamboj, Sachin and Keith S. Decker (2007), “Organizational self-design in semi-dynamic
environments.” AAMAS, 5, 1. Citado na pagina 34.

Kampik, Timotheus, Cleber Jorge Amaral, and Jomi Fred Hiibner (2021), “Developer
operations and engineering multi-agent systems.” In Engineering Multi-Agent Systems:
9th International Workshop, EMAS 2021, Virtual Event, May 3—/4, 2021, Revised Se-
lected Papers, 175-186, Springer-Verlag, Berlin, Heidelberg, URL https://doi.org/
10.1007/978-3-030-97457-2_10. Citado na pagina 140.

Katz, Daniel and Robert Kahn (1987), Psicologia Social da Organizagées, 3rd edition.
Atlas. Citado na péagina 36.

114 Bibliography

Kilmann, Julie, Michael Shanahan, Andrew Toma, and Kuba Zielinski (2010), “Demysti-
fying Organization Design.” Technical report, Boston Consulting Group - BCG White
Paper. Citado 2 vezes nas paginas 37 and 65.

Kota, Ramachandra, Nicholas Gibbins, and Nicholas R. Jennings (2012), “Decentral-
ized approaches for self-adaptation in agent organizations.” ACM Transactions on Au-

tonomous and Adaptive Systems, 7, 1-28. Citado na pagina 34.

Krausburg, Tabajara, Jurgen Dix, and Rafael H. Bordini (2021), “Computing sequences
of coalition structures.” In 2021 IEEE Symposium Series on Computational Intelligence
(SSCI), 01-07. Citado na péagina 34.

Kiihne, Thomas (2006), “Matters of (meta-) modeling.” Journal on Software and Systems
Modeling, 5, 369-385. Citado na pagina 31.

Labella, Thomas H., Marco Dorigo, and Jean-Louis Deneubourg (2007), “Division of
labor in a group of robots inspired by ants’ foraging behavior” ACM Transactions on

Autonomous and Adaptive Systems, 1, 4-25. Citado na pagina 34.

Lesser, Victor, Charles L. Ortiz, and Milind Tambe, eds. (2003), Distributed Sensor Net-
works: A Multiagent Perspective. Springer US. Citado na pagina 67.

Martinez-Berumen, Héctor A., Gabriela C. Lépez-Torres, and Laura Romo-Rojas (2014),
“Developing a method to evaluate entropy in organizational systems.” Procedia Com-
puter Science, 28, 389-397. Citado na pagina 87.

Matoso, O.A., L.P.A. Lampert, J.F. Hiitbner, M. Conceicao, S.P. Bernardes, C.J. Amaral,
M.R. Zatelli, and M.L. de Lima (2020), “Agent programming for industrial applications:

some advantages and drawbacks.” Citado na pagina 139.

Matson, Eric T. and Scott A. Deloach (2005), “Autonomous organization-based adap-
tive information systems.” 2005 International Conference on Integration of Knowledge
Intensive Multi-Agent Systems, KIMAS’05: Modeling, Fxploration, and Engineering,
2005, 227-234. Citado na pagina 37.

McAuley, John, Joanne Duberley, and Phil Johnson (2007), Organizational Theory: Chal-

lenges and Perspectives, 1st edition. Prentice-Hall. Citado na pagina 35.

Mintzberg, H. and L. Van der Heyden (1999), “Organigraphs: drawing how companies

really work.” Harvard Business Review, 77. Citado 2 vezes nas paginas 47 and 99.

Mintzberg, Henry (1983), Structure in fives, 1st edition. Prentice-Hall. ~Citado na péagina
36.

Newman, Derek A. (1973), Organization Design: An analytical approach to the structuring

of organisations, 1st edition. Edward Arnold. Citado na péagina 37.

Bibliography 115

Ohta, Naoki, Atsushi Iwasaki, Makoto Yokoo, Kohki Maruono, Vincent Conitzer, and
Tuomas Sandholm (2006), “A compact representation scheme for coalitional games in
open anonymous environments.” Proceedings of the National Conference on Artificial
Intelligence, 1, 697-702. Citado na péagina 34.

Pattison, H. Edward, Daniel D. Corkill, and Victor R. Lesser (1987), “Chapter 3 - instan-
tiating descriptions of organizational structures.” In Distributed Artificial Intelligence
(Michael N Huhns, ed.), 59 — 96, Morgan Kaufmann. Citado na pégina 35.

Pettigrew, Andrew M. and Evelyn M. Fenton (2000), The Innovating organization, 1st
edition. SAGE Publications. Citado na pagina 37.

Rahwan, Talal, Tomasz P. Michalak, Michael Wooldridge, and Nicholas R. Jennings
(2015), “Coalition structure generation: A survey.” Artificial Intelligence, 229, 139-174.
Citado 2 vezes nas paginas 25 and 34.

Robbins, Stephen and Mary Coulter (2012), Management, 11th edition. Prentice-Hall.
Citado na péagina 37.

Rosen, Kenneth H (2012), Discrete mathematics and its application, Tth edition. McGraw-
Hill. Citado na pagina 89.

Seidewitz, Ed (2003), “What models mean.” IEEE Software, 20, 26-32. Citado na pagina
43.

Shehory, O., K. Sycara, P. Chalasani, and S. Jha (1998), “Agent cloning: an approach
to agent mobility and resource allocation.” IEEE Communications Magazine, 36, 58,
63-67. Citado na pagina 34.

Sierra, Carles, Jordi Sabater, J. Augusti, and Pere Garcia (2004), “The SADDE Methodol-
ogy: Social agents design driven by equations.” Methodologies and software engineering
for agent systems. Springer - Boston. Citado 8 vezes nas paginas 25, 26, 37, 99, 100,
104, 105, and 107.

Sims, Mark, Daniel Corkill, and Victor Lesser (2004), “Separating domain and co-
ordination in multi-agent organizational design and instantiation.” Proceedings -
IEEE/WIC/ACM International Conference on Intelligent Agent Technology. IAT 2004,
155-161. Citado na pagina 32.

Sims, Mark, Daniel Corkill, and Victor Lesser (2008), “Automated organization design
for multi-agent systems.” Autonomous Agents and Multi-Agent Systems, 16. Citado 9
vezes nas paginas 25, 26, 34, 35, 38, 97, 100, 104, and 107.

116 Bibliography

Slade, Samantha (2018), Going Horizontal: Creating a Non-Hierarchical Organization,
One Practice at a Time, 1st edition. Berrett-Koehler Publishers, Inc. Citado na

pagina 26.

Sleight, Jason (2014), “Agent aware organizational design (doctoral consortium).” In Pro-
ceedings of the 2014 International Conference on Autonomous Agents and Multi-agent
Systems, AAMAS ’14, 1739-1740, Paris, France. Citado 2 vezes nas paginas 33 and 96.

Sleight, Jason Lee, Edmund H Durfee, Satinder Singh Baveja, Associate Amy E M Cohn,
and Emeritus Victor R Lesser (2015), Agent-Driven Representations, Algorithms, and
Metrics for Automated Organizational Design. Ph.D. thesis, University of Michigan.
Citado na péagina 34.

So, Young-Pa and Edmund H Durfee (1998), “Designing Organizations for Computa-
tional Agents.” Computational Organization Theory (Simulating Organizations), 2, 47—
64. Citado 5 vezes nas paginas 25, 26, 34, 36, and 86.

Stoner, J.A.F. and R.E. Freeman (1992), Management, 1st edition. Prentice-Hall. Citado

2 vezes nas paginas 31 and 37.

Summerfield, Fraser (2016), “Matching skill and tasks: Cyclical fluctuations in the

overqualification of new hires.” Citado na pagina 90.

Tambe, Milind (1997), “Towards Flexible Teamwork.” Journal of Artificial Intelligence
Research, 7, 83-124. Citado na pagina 32.

Uez, Daniela Maria and Jomi Fred Hubner (2014), “Environments and organizations in
multi-agent systems: From modelling to code.” In Engineering Multi-Agent Systems
(Fabiano Dalpiaz, Jirgen Dix, and M. Birna van Riemsdijk, eds.), 181-203, Springer
International Publishing, Cham. Citado na pagina 37.

von Bertalanffy, Ludwig (1968), General System Theory: Foundations, Development, Ap-

plications. Penguin University Books. Citado na pagina 87.

Wu, Zhaohui, Shuiguang Deng, and Jian Wu (2015), “Chapter 7 - service composition.”
In Service Computing (Zhaohui Wu, Shuiguang Deng, and Jian Wu, eds.), 177-227,
Academic Press, Boston, URL https://www.sciencedirect.com/science/article/
pii/B9780128023303000072. Citado 2 vezes nas paginas 31 and 32.

Ye, Dayong, Minjie Zhang, and Danny Sutanto (2014), “Cloning, resource exchange, and
relation adaptation: An integrative self-organisation mechanism in a distributed agent
network.” IEEE Transactions on Parallel and Distributed Systems, 25, 887-897. Citado

na pagina 34.

Bibliography 117

Ye, Dayong, Minjie Zhang, and Athanasios V Vasilakos (2016), “A Survey of Self-
organisation Mechanisms in Multi-Agent Systems.” [EEE Transactions on Systems,

Man, and Cybernetics: Systems, 47. Citado na pagina 34.

119

APPENDIX A — Comparing organisational

attributes among candidates

Regarding organisational attributes in the context of organisation adaptation pro-
cedures, this section is presenting similarities of organisational attributes for the Feed
Production scenario (Fig 28). Along with the comparison illustrated in Figure 33, Fig-
ure 42 shows a correlation matrix of the height of the 26 generated structures for the
motivating scenario of this analysis. In this example, there are four candidates with the
same height of structure #1, which has only one hierarchy level (Figure 29). In terms
of height, a structure switch, for instance, from structure #1 to structure #2, has no
impact (at least for this user’s preference). However, the comparison shows that, for in-
stance, structure #1 and structure #21 are relatively 0% similars in terms of height since

structure #21 is the tallest structure with three levels.

2140 o o ©
2240 o o ©
2340 o o ©
2410 o o ©
2540 o o ©
2610 o o ©

s N m < 1N O ~ 0 O O
- ~ ~ ~ ~ ~ ~ ~ ~ N

Figure 42 — Comparing the height of structures for the given scenario.

Figure 43 shows a correlation matrix of the efficiency of the 26 generated structures
for the motivating scenario. In this scenario, Candidate #1 is the only structure having
only one position, being 100% efficient (relatively to the others). From Candidate #2 to

Candidate #10, all of them have two positions, i.e., the efficiency is the same, which is

120 APPENDIX A. Comparing organisational attributes among candidates

50% of the efficiency of Candidate #1. The rest of the candidates have three positions,

thus comparing to the most efficient structure they are 33% efficient.

26 33 83 83 83 83 83 83 100 100 100 100 100 100 100
25433 83 83 83 83 83 83 100 100 100 100 100 100
2433 83 83 83 83 83 83 100 100 100 100 100) 100
2333 83 83 83 83 83 83 100 100 100 100 100 100 100
22433 83 83 83 83 83 83 100 100 100 100 100 100 0 100
21433 83 83 83 83 83 83 100 100 100 100 100 100 00 100
20 33 83 83 83 83 83 83 100 100 100 100 100 100 10 00 100
19433 83 83 83 83 83 83 100 100 100 100 100 100 00 100
18- 33 83 83 83 83 83 83 100 100 100 100 100 100 0
17433 83 83 83 83 83 83 100 100 100 100 100 100
16 33 83 83 83 83 83 83 100 100 100 100 100 100

15433 83 83 83 83 83 83 100 100 100 100 100 100

1433 83 83 83 83 83 83 100 100 100 100 100 100

13433 83 83 83 83 83 83 100 100 100 100 100 100 100

1233 83 83 83 83 83 83 100 100 100 100 100 100 100

11433 83 83 83 83 83 83 100 100 100 100 100 100 100 100

1050 100 100 100 100 100 100 83 83 83 83 83 83 83

950 100 100 100 100 100 100 83 83 83 83 83 83 83

8- 50 100 100 100 100 100 100 83 83 83 83 83 83 83

7450 100 100 100 100 100 100 83 83 83 83 83 83 83

6- 50 100 100 100 100 100 100 83 83 83 83 83 83 83

550 100 100 100 100 100 100 83 83 83 83 83 83 83

4450 100 100 100 100 100 100 83 83 83 83 83 83 83
3450 100 100 100 100 100 100 83 83 83 83 83 83 83
2450 100 100 100 100 100 83 83 83 83 83 83 83
1-gJg 50 50 50 50 50

T T T T T T T T T T T T T T T T
— (o} m < n © ~ 0 o o — o~ mMm < n © ~
B I s e T

33
©
—

T T T
o o n
- o~ o~

Figure 43 — Comparing the efficiency of structures for the given scenario.

© 00 N O O ks W N

I
w N = O

121

APPENDIX B - XML specification of Feed

Production with four goals

One of the motivating examples used in this work specifies the Feed Production
scenario with four goals. It generates 1646 candidates, which illustrates how a consider-
able quantity of candidates can be generated, and how they differ from each other. The
workload grain is smaller than the workload associated with the goal MoveBox, so it is
split into two parts. Figure 10 illustrates the set of goals of this scenario in which it is nec-
essary to access a database to get requests (represented by the goal FeedProduction),
then GetBox from shelves, MloveBox to near a conveyor belt in which the goal Place-
Box must be achieved. The dataloads specified do not constrain the search for solutions,
since the grain size is larger than the specification of this particular example. Figure 13
illustrates the available agents of this specification. This organisation specification is used
to generate candidates executing the following command:

$./gradlew run --args="examples/Feed_production_line.xml \
FLATTER EFFICIENT GENERALIST"

Listing B.1 shows the content of the file examples/Feed_production_line.xml
of GoOrg4Prod project. The nested elements in automated-design-parameters specity de-
sign parameters such as the maximum workload and dataload allowed per position and
the grain size of these features. The nested elements in functional-specification specify
the organisational goals (the set G). The nested elements in available-agents specify the

available agents (the set A).
Listing B.1 — Feed Production 4 goals XML Moise™ like specification.

<?xml version="1.0" encoding="UTF-8"7>

<?xml-stylesheet href="http://moise.sourceforge.net/xml/os.xsl"

type="text/xsl" 7>

<organisational -specification id="organisation" os-version="0.8"
xmlns=’http://moise.sourceforge.net/os’
xmlns:xsi="http://wwuw.w3.0rg/2001/XMLSchema-instance’
xsi:schemalocation="http://moise.sourceforge.net/os

http://moise.sourceforge.net/xml/os.xsd’>

<automated-design-parameters>

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

122 APPENDIX B. XML specification of Feed Production with four goals

<parameter id="maxWorkload" value="24.0"/>
<parameter id="maxDatalLoad" value="1000.0"/>
<parameter id="workloadGrain" value="4.0"/>
<parameter id="dataloadGrain" value="1000.0"/>
<parameter id="oneSolution" value="false"/>

</automated-design-parameters>

<functional-specification>
<scheme id="scheme">
<goal id="FeedProduction">
<workload id="db_access" value="0.10"/>
<dataload id="request box" value="8.00" recipient="GetBox"/>
<plan operator="sequence">
<goal id="GetBox">
<workload id="1ift" value="4.00"/>
<dataload id="box ready" value="8.00" recipient="MoveBox"/>
</goal>
<goal id="MoveBox">

<workload id="move" value="8.00"/>

<dataload id="items ready" value="8.00" recipient="PlaceBox"/>

</goal>
<goal id="PlaceBox">
<workload id="pnp" value="1.00"/>
</goal>
</plan>
</goal>
</scheme>

</functional -specification>

<available-agents>

<agent id="bt">
<skill id="move"/>

</agent>

<agent id="pp">
<skill id="pnp"/>

</agent>

<agent id="ie">
<skill id="db_access"/>
<skill id="1lift"/>

</agent>

</available-agents>

</organisational -specification>

© 00 N o Ot ks W N

e e e e T — S S
0w N O U kR W N = O

123

APPENDIX C - XML specification of DSN

with 4x5 sensors and 3 tar-

gets

For the DSN domain, a motivating example used in this work specifies a scenario
with five sensors in each of the four sectors, and three targets being detected. Figure 26
illustrates the first candidate generated for this scenario. The set of goals for this scenario
is an extension of the set G illustrated in Figure 22. In this case, there are seven goals,
the four goals illustrated in the mentioned figure, plus three goals for tracking three
targets. To generate candidates in the order that this work has shown, it is being used the
default preferences criteria which are the nearest agents and most idle structure. Thus, this

organisation specification is used to generate candidates executing the following command:

$./gradlew run --args="examples/dsn.xml IDLE NEAREST"

Listing C.1 shows the content of the file examples/dsn.xml of GoOrg/DSN project.
The nested elements in functional-specification specify the organisational goals (the set

G). The nested elements in available-agents specify the available agents (the set A).

Listing C.1 — DSN 4x5 sensors + 3 targets XML Moise™ like specification.

<?xml version="1.0" encoding="UTF-8"7>

<?7xml-stylesheet href="http://moise.sourceforge.net/xml/os.xsl"

type="text/xsl" 7>
<organisational -specification id="house_contruction" os-version="0.8"

xmlns="http://moise.sourceforge.net/os’
xmlns:xsi=’http://www.w3.0rg/2001/XMLSchema-instance’
xsi:schemalocation=’http://moise.sourceforge.net/os

http://moise.sourceforge.net/xml/os.xsd’>

<functional -specification>
<scheme id="dsn_sch">
<goal id="manage_sector_NW">
<workload id="manage_sector" value="0.6"/>
<sector id="nw"/>

<plan operator="sequence">

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

124 APPENDIX C. XML specification of DSN with 4x5 sensors and 3 targets

<goal id="manage_sector_NE">
<workload id="manage_sector"
<sector id="mne"/>

</goal>

<goal id="manage_sector_SW">
<workload id="manage_sector"
<sector id="sw"/>

</goal>

<goal id="manage_sector_SE">
<workload id="manage_track"
<sector id="se"/>

</goal>

<goal id="track_1">
<workload id="manage_sector"
<sector id="se"/>

</goal>

<goal id="track_2">
<workload id="manage_sector"
<sector id="se"/>

</goal>

<goal id="track_3">
<workload id="manage_sector"
<sector id="nw"/>

</goal>

</plan>
</goal>
</scheme>

</functional -specification>

<available-agents>

<!-- 5 sensor on Sector nw -->

<agent id="sensor_02_12">
<sector id="nw"/>

</agent>

<agent id="sensor_02_18">
<sector id="nw"/>

</agent>

<agent id="sensor_05_15">
<sector id="nw"/>
<intent id="manage_sector"/>

</agent>

<agent id="sensor_08_12">
<sector id="nw"/>

</agent>

<agent id="sensor_08_18">
<sector id="nw"/>

</agent>

value="0.6"/>

value="0.6"/>

value="0.6"/>

value="0.2"/>

value="0.2"/>

value="0.2"/>

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

125

<!-- 5 sensor on Sector ne -->

<agent id="sensor_12_12">
<sector id="ne"/>

</agent>

<agent id="sensor_12_18">
<sector id="ne"/>

</agent>

<agent id="sensor_15_15">
<sector id="ne"/>
<intent id="manage_sector"/>

</agent>

<agent id="sensor_18_12">
<sector id="ne"/>

</agent>

<agent id="sensor_18_18">
<sector id="ne"/>

</agent>

<!-- 5 sensor on Sector sw -->

<agent id="sensor_02_02">
<sector id="sw"/>

</agent>

<agent id="sensor_02_08">
<sector id="sw"/>

</agent>

<agent id="sensor_05_05">
<sector id="sw"/>
<intent id="manage_sector"/>

</agent>

<agent id="sensor_08_02">
<sector id="sw"/>

</agent>

<agent id="sensor_08_08">
<sector id="sw"/>

</agent>

<!-- 5 sensor on Sector se -->

<agent id="sensor_12_02">
<sector id="se"/>

</agent>

<agent id="sensor_12_08">
<sector id="se"/>

</agent>

<agent id="sensor_15_05">
<sector id="se"/>
<intent id="manage_sector"/>

</agent>

<agent id="sensor_18_02">

<sector id="se"/>

113
114
115
116
117
118
119

126 APPENDIX C. XML specification of DSN with 4x5 sensors and 3 targets

</agent>
<agent id="sensor_18_08">
<sector id="se"/>
</agent>
</available-agents>

</organisational -specification>

© 00 N O Ot ks W N

e e
W N = O

127

APPENDIX D - XML specification and out-
puts for Feed Production

with three goals

Listing D.1 shows the content of the file Feed_production_line_evaluation.xml
of GoOrg4Prod project, which specifies the Feed Production scenario with three goals
used as a motivating example in this work. It specifies three goals with some workload
associated. This is a suitable example to depict the way GoOrg4Prod synthesises positions
and searches for 26 candidates it generates. From the parameters the goals are not split,
they remain as original. The parameters also allow assigning all goals to a unique position
since the maxWorkload is 24 and each workload is 8. Figure 28 illustrates this scenario in
which it is necessary to GetBox from shelves, MoveBox to near a conveyor belt in which
the goal PlaceBox must be achieved. The two dataloads specified do not constrain the
search for solutions, since the grain size is larger than the specification of this particular
example. Although the specification of available agents is not being discussed in this
work, from the file description it can be inferred that only feasible structures are the
most specialised ones (with three positions), since each agent has only one skill. This
organisation specification is used to generate candidates executing the following command:

$./gradlew run --args="examples/Feed_production_line_evaluation.xml \
FLATTER EFFICIENT GENERALIST"

Listing D.1 — Feed Production 3 goals XML Moise™ like specification.

<?xml version="1.0" encoding="UTF-8"7>

<?7xml-stylesheet href="http://moise.sourceforge.net/xml/os.xsl"
type="text/xsl" 7>

<organisational -specification id="organisation" os-version="0.8"

xmlns=’http://moise.sourceforge.net/os’
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance’
xsi:schemalocation="http://moise.sourceforge.net/os

http://moise.sourceforge.net/xml/os.xsd’>

<automated -design-parameters>

<parameter id="maxWorkload" value="24.0"/>

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

128 APPENDIX D. XML specification and outputs for Feed Production with three goals

<parameter id="maxDataLoad" value="1000.0"/>
<parameter id="workloadGrain" value="8.0"/>
<parameter id="dataloadGrain" value="1000.0"/>
<parameter id="oneSolution" value="false"/>

</automated -design-parameters>

<functional-specification>
<scheme id="scheme">
<goal id="GetBox">
<workload id="1ift" value="8.00"/>
<dataload id="box ready" value="8.00" recipient="MoveBox"/>
<plan operator="sequence">
<goal id="MoveBox">
<workload id="move" value="8.00"/>
<dataload id="items ready" value="8.00"
recipient="PlaceBox"/>
</goal>
<goal id="PlaceBox">
<workload id="pnp" value="8.00"/>
</goal>
</plan>
</goal>
</scheme>

</functional -specification>

<available-agents>

<agent id="bt">
<skill id="move"/>

</agent>

<agent id="pp">
<skill id="pnp"/>

</agent>

<agent id="ie">
<skill id="1lift"/>

</agent>

</available-agents>

</organisational -specification>

As presented previously in this work, Table 3, shows the statistic output file that
was generated for this particular scenario. In the following, Listing D.2 shows a JCM file
generated for Candidate #11. For this candidate, the agents pp, ie and bt are lined up

for the organisation.!

Listing D.2 — A JCM file generated by GoOrg.
/% JCM created automatically by GoOrg */

1 As discussed in Appendix E, GoOrg current implementation is not fully compatible with JaCaMo.

S Ut AR W N

129

mas Feed_production_line {
agent pp
agent bt

agent ie

131

APPENDIX E - Improving GoOrg

To bind agents and positions, GoOrg specialisations presented in this work have
used the FirstFit algorithm (Algorithm 3). This algorithm registers the first match of a
requirement and a resource. It is not optimal and it is not complete, since the first match
may not be the best match. For instance, if the first match is between an agent with
many capabilities and a position that can be occupied by many other agents, there may
have no agent left to occupy another position that requires more capabilities. For a more
elaborated matching process, other algorithms can be added. It is necessary to extend the

class Fit and to implement the method fitRequirements/3

The search for states approach that GoOrg presented specialisations uses is the
Breadth-First algorithm. This algorithm is optimal and complete, but computationally
expensive in terms of memory and consumed time for finding solutions. GoOrg project
already provides many other algorithms such as Depth-First, Hill Climbing and A* search
algorithms. Other search algorithms can also be added. However, the Organisation class
on the package organisation.search, which defines a search state have to be adapted for

the chosen search technique.

GoOrg does not orchestrate a running MAS, it assumes that this task is performed
by another mechanism. In this sense, it is necessary to improve the integration between
GoOrg and an orchestrating mechanism. A mechanism that can be used for orchestrating
agents is Moise™t, which is part of the JaCaMo project. Moiset has many possible con-
figurations for different organisational compositions, constraints and behaviours. At least
in a limited range of configurations, the following improvements provide better integration

between GoOrg and Moiset (JaCaMo).

» synthesise organisational roles, their relationships and groups of roles;
» synthesise organisational missions;
» synthesise organisational norms;

o export a Moiset XML file with the systhesised elements.

Moise™ uses the concepts of roles and missions. A role is defined as a set of

missions. A mission is a set of constraints that must be respected in achieving a set of

132 APPENDIX E. Improving GoOrg

goals. Roles are bound with missions through norms. As an example, it is considered the
building a house example (Boissier et al., 2013). In this example, the mission paint house
expects a minimum of one agent and a maximum of one agent to achieve the goals
exterior _painted and interior painted. A role painter is defined as belonging to a group
called house__group, and there must have a minimum of one agent and a maximum of one
agent playing the role painter. There is a norm to obligate the role painter to accomplish
the mission paint_house. Therefore, the only agent that plays the role painter should be
committed (actually, it is seen as obligated) to achieving the goals ezterior painted and

interior__painted, accomplishing the mission paint_house.

For synthesising roles a preliminary study is presented in Appendix F. In a Moise™
XML file, the organisational roles are defined in the structutal-specification as simple iden-
tifiers. In a JaCaMo MAS, an agent can be associated with an identified role in the JCM
file or it may also be hardcoded in the agent’s code. In both cases, it is necessary that
the organisation and the agent use the same role identification. For instance, an organi-
sational specification may define the role transporter and on the JCM or on the agent’s
code, the agent is defined to play the role transporter. Following the preliminary study
about synthesising roles, it is also possible to establish authority relationships between
roles based on the authority relationships of synthesised positions. From the number of
times that a role appears in an organisational structure of positions, the cardinality of

each role can be inferred to form a single group.

After synthesising roles from positions, each role is associated with a set of goals
which can be used to synthesise missions. Indeed, a mission has assigned a set of goals.
Then, a norm is synthesised to bound a mission with a role. A simplistic method can infer

the cardinality associated with a mission as the cardinality of the role.

To illustrate all the mentioned possible improvements, it is considered Candidate
#15 of the Feed Production scenario which is shown in Figure 44. In Figure 44a, the
candidate is represented as a structure of positions with assigned goals and the necessary
skills to achieve them, a result produced by GoOrg. Figure 44b illustrated synthesised
roles and relationships of the mentioned candidate using either of the methods described
in Appendix F. The assigned goals and necessary skills are also present. The cardinality
of each role is added as a result of the number of positions that refers to each synthesised
role. In this example, there is no situation with two or more positions of the same role,
which should produce a cardinality of this role greater than one. Besides, the structures

are similar since each position is associated with a unitary and distinct sets of goals.

To export the structural-specification of Moise™ it is considered the synthesised
roles r0, r1 and r2 in Figure 44b. The Moise™ XML nested elements in role-definitions
can be defined just with the mentioned identifiers. Every role in this example has the

cardinality equals one. With roles cardinalities the nested elements in roles of group-

© 00 g O Ot s W N

N NN = = = = = e e e e
H O © 0 N O Ut ke W NM» = O

133

Candidate #15 (positions) Candidate #15 (roles)
e e —
(O (e i« () (WG
GetBox J MoveBox #1 L GetBox MoveBox
(& J
move move
r—+—\ r—¢ﬁ #1
o2 oo R
pnp
PlaceBox #1 | PlaceBox
~— —
(a) Candidate #15 as a structure of positions. (b) Candidate #15 as a structure of roles.

Figure 44 — Synthesing roles, relationships, missions and norms from a GoOrg’s output.

specification can also be defined. The only relationship in this example is an authority of
r0 over r2, which defines the nested elements in links of group-specification The nested
element in formation-constraints of group-specification can be an option to be defined by
the user at design time. Listing E.1 shows how these exported Moise™ XML elements

may looks like.

Listing E.1 — A Moise™ XML structural-specification from synthesised roles and relationships.

<structural-specification>
<role-definitions>
<role id="r0" />
<role id="r1" />
<role id="r2" />

</role-definitions>

<group-specification id="gO">
<roles>
<role id="r0" min="1" max="1"/>
<role id="r1" min="1" max="1"/>
<role id="r2" min="1" max="1"/>
</roles>
<links>
<link from="r0" type="authority" to="r2" scope="intra-group" />
</links>
<formation-constraints>
<compatibility from="org" to="org" scope="intra-group" />
</formation-constraints>
</group-specification>

</structural -specification>

Considering that the functional-specification has already a scheme given as in-
put, the rest of this specification can also be exported from the synthesised elements. An
approach may consider that each mission is formed by the goals associated with a syn-

thesised role, and the cardinality is the same cardinality of the related role, as illustrated

=

Tt W N

134 APPENDIX E. Improving GoOrg

in Listing E.2. The minimal and maximum cardinalities in these cases are equal values

based on the cardinality of the synthesised roles.

Listing E.2 — A Moise™ XML functional-specification from synthesised roles and relationships.

<functional-specification>
<scheme id="scheme">
<! -- This should be given as tnput-->
<goal id="GetBox">
<workload id="1ift" value="8.00"/>
<dataload id="box ready" value="8.00" recipient="MoveBox"/>
<plan operator="sequence">
<goal id="MoveBox">
<workload id="move" value="8.00"/>
<dataload id="items ready" value="8.00" recipient="PlaceBox"/>
</goal>
<goal id="PlaceBox">
<workload id="pnp" value="8.00"/>
</goal>
</plan>
</goal>

<!-- This can be synthesised-—->

<mission id="mO" min="1" max="1">
<goal id="GetBox"/>

</mission>

<mission id="ml" min="1" max="1">
<goal id="MoveBox"/>

</mission>

<mission id="m2" min="1" max="1">
<goal id="PlaceBox"/>

</mission>

</scheme>

</functional -specification>

The normative-specification bound the related role to each mission, as illustrated
in Listing E.3.

Listing E.3 — A Moise™ XML normative-specification from synthesised roles and relationships.

<normative-specification>
<norm id="nl" type="obligation" role="rO0" mission="m0" />
<norm id="n2" type="obligation" role="r1" mission="ml" />
<norm id="n3" type="obligation" role="r2" mission="m2" />

</normative-specification>

With this improvement, GoOrg may provide more outputs without requiring other
inputs. Indeed, the XML file provided to GoOrg having only the scheme (in the functional-

specification), could be filled with the structural-specification with role-definitions, group-

135

specification and links representing relationships. It also can be filled with the missions

in the functional-specification and with the normative-specification.

However, there would have still missing data. A role in Moise™ is usually a simple
identification with no more data associated, which could bring a challenge for designed
agents to be bound with automated synthesised roles. For instance, in Listing 6.1, the
goal MoveCrate can be assigned to the synthesised position identified as p1, which could
be synthesised as a role identified by r1. However, r1 would have no meaning for a
designed agent. In fact, r1 is an arbitrary identifier that has no special meaning and does
not provide information to understand what is behind such a role. In this sense, besides
synthesising roles from positions it is also necessary to provide a way correlate agents and

roles.

To address this issue, it is necessary to bind agents to roles (instead of positions).
This information can be extracted from the bindings between agents and positions. For
instance, the agent al that is bound with the position p1 which is associated with the
roles r1 and r2, should be bound with r1 and r2. Thus, the bindings between agents and
roles can be exported to the JaCaMo project file (JCM). Currently, GoOrg only generates
a file with the name of the agents that are bound with any synthesised position. With
this improvement, GoOrg should also export an organisation instance specification which
may contain an arbitrary organisation identifier, a reference to the synthesised group that
should be responsible to achieve the goals scheme given as input and that contains the

bindings between agents and roles.

Another possible improvement is to make GoOrg retrieve the set of available agents
from a DF. A DF as specified by Foundation for Intelligent Physical Agents (FIPA) has
registers of agents and the services they provide (Bellifemine et al., 2001).! In the DF an
agent should have only one entry, but its entry may have multiple services. Thus, among
possibilities of the use of the DF, in an approach, the services of DF can be used as
capabilities that must match with features associated with organisational positions. For
instance, the agent bob can be registered in the DF with the service send budget and
send__invoice, meaning that bob is able to send_budget and to send_invoice. In GoOrg,
the services send__budget and send__invoice must be added to the set of goals, for instance,
as workloads. Considering that the given set of goals uses the same identifiers regarding
agents’ capabilities, a function can find the DF published service that matches with each of
the synthesised positions by their associated workloads (skills). The use of other optional
fields of the DF can also make possible to find meaningful role identifiers. For instance,
the services send_budget and send__invoice can be both registered with the service type

seller, referring to an associated role. Using a DF, the set of available-agents does not

1 The document FIPA Agent Management Specification is available at http://www.fipa.org/specs/

£ipa00023/SC00023K.html.

136 APPENDIX E. Improving GoOrg

need to be given in the XML Moise* file.

137

APPENDIX F — Synthesizing organisational

roles

The concept of roles is also present in a structure made up of positions. Among
other characteristics, a role is a set of responsibilities (Daft, 2009). In this sense, from the
goals that are assigned to a position, it is possible to synthesise the role(s) an agent bound
to this position plays. This section presents a motivating scenario and possible methods

that can be applied to synthesise roles from sets of goals.

To illustrate how to synthesise roles, it is considered the marketplace organisa-
tional structure of Figure 45 which has four positions and no hierarchy. Positions 1 and
Position_ 2 have the same goals to achieve: Pack and Send Product. Position__3 has to
achieve the goal Buy. Position_ 4 has to achieve the goals Buy and Store Product. Fach
role is a set of goals (responsibilities). This figure also illustrates two possible methods

that can be used to synthesise roles from positions.

(th;]Iej” Role_1 Role_2 Role_3
metho i i i : ; i

Positions

Roles
(method 2)

Figure 45 — The identification of the roles associated with positions.

The first method considers that a role can be synthesised considering the whole set
of goals each position is associated with. In this method, a role is identified on Position_ 1
and Position__2 which share the same associated goals Pack and Send Product. Position__3
has another specific set of goals (containing the goal Buy), which makes this set another
role. The last role is synthesised from the set of goals present in Position_ 4 which has

the elements Buy and Store Product.

Finding sets of goals that along positions are always together can be another

138 APPENDIX F. Synthesizing organisational roles

method to synthesise roles. The first synthesised role using this method is, again, the set
of goals formed by the elements Pack and Send Product that are present in Position 1
and Position_ 2. A second role is associated with a set to a unique element, the goal
Buy, which is found alone in Position_ 3. Position_ 4 is also associated with this second
role. The third role is associated with the remaining goal Store Product associated with
Position_ 4, which apart of the goal Buy forms another set of an unique element. Notice

that the Position 4 is associated with two roles (named Role 2 and Role_3).

In this example, both methods generated the same number of roles (three each).
The second method tends to generate roles with fewer goals associated with each and

tends to foster situations in which agents should enact more roles simultaneously.

139

APPENDIX G - Works developed during the
PhD

The motivation and plan to solve the problem addressed by this thesis were first
presented by Amaral and Hiitbner (2019) as an ongoing work at the 17th International
Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS) - in
Avila (Spain) 2019 - with the title “Goorg: Automated organisational chart design for
open multi-agent systems”. The work was refined and presented by Amaral and Hiibner
(2020a) in the 10th workshop on Engineering Multi-Agent Systems (EMAS) - Montreal
(Canada) 2019 - with the title “From goals to organisations: Automated organisation
generator for MAS”. Amaral, Hubner, and Cranefield (2022) have gathered the most
relevant achievements and conclusions of this thesis in a journal paper that is currently

under review.

Other works were also developed since the beginning of this PhD research, in Oc-
tober 2017. Amaral (2018) has published a benchmarking among Multi-Agent System
platforms that were embedded in a Raspberry Pi2. This research was performed while
attending classes on Multi-Agent Systems at UFSC. Later, motivated by the project AG-
BR of Petrobras, which aimed to check possible applications of agents in the Oil and
Gas industry, a team of researchers worked especially on the integration of agents and
other existing software and hardware artefacts. Based on a previous background, Ama-
ral, Cranefield, Hiibner, and Roloff (2019b) and Amaral, Cranefield, Hiibner, and Roloff
(2020b) have continued studies on integrating a MAS with external non-autonomous enti-
ties, in the context of Industry 4.0, publishing these two research about the development
of an Apache Camel component for CArtAgO software artefacts. Amaral, Bernardes,
Conceigao, Hitbner, Lampert, Matoso, and Zatelli (2019a) have designed a new Apache
Camel component for integrating both non-autonomous and autonomous (agents) exter-
nal software artefacts. Matoso, Lampert, Hiibner, Concei¢do, Bernardes, Amaral, Zatelli,
and de Lima (2020) published the main achievements and conclusions of this project, sum-
marising the advantages and drawbacks of using MAS in the context of the Oil and Gas
industry. The integration challenges and also the lack of some programming facilities for
developing MAS have motivated other studies that followed the project AG-BR of Petro-
bras. Amaral, Hiibner, and Kampik (2020a) worked in Jacamo-REST), a resource-oriented
abstraction for managing MAS, which provided endpoints to access a MAS from external

software artefacts. This tool associated with the previous works on Apache Camel compo-

140 APPENDIX G. Works developed during the PhD

nents provides tooling for the MAS to act as a server to be consumed by external entities,
and as a client for consuming external services. Besides providing endpoints for external
entities consuming a MAS services, Jacamo-REST also provides tools for managing the
MAS, allowing the development of a system interactively while it is running. Following
this concept, Amaral and Hiibner (2020b) presented Jacamo-WEB, an Integrated Devel-
opment Environment (IDE) that facilitates the development of MAS on-the-fly. Amaral,
Kampik, and Cranefield (2020c) have extended Jacamo-WEB providing new tooling for
collaborative and interactive development of MAS. During this time, another team has
joined to participate in the 2020/21 Multi-Agent Programming Contest (MAPC), as regis-
tered by Amaral, Furio, Junior, Kampik, de Brito, Zatelli, Schmitz, Hiibner, and Ferrandin
(2021) and by Furio, de Brito, Schmitz, Amaral, Junior, Zatelli, Ferrandin, and Kampik
(2021). GoOrg has been taken into consideration in the MAPC, and a few strategies have
been proposed to parametrise the model. However, the team spent its effort developing
the system’s fundamental elements, leaving no time to apply an orchestrating mechanism
like Moiset. The new challenges that collaborative development has brought, which were
experienced during the MAPC, such as testing properly autonomous entities (agents) and
integrating parts of a whole system that are developed by different programmers, have
motivated the work published by Kampik, Amaral, and Hiibner (2021).

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Resumo Expandido
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	Introduction
	Motivation
	Problem and Research Questions
	Objectives
	Contribution and Relevance
	Document Structure

	Organisation Design Models
	Automated Organisational Design by Task Planning
	Self-organisation Approaches
	Automated Organisational Structure Generators
	Structure Generators' Background
	State of the Art
	Comparing Structure Generators

	GoOrg Model
	GoOrg Elements
	Attributes of an Organisational Structure
	GoOrg Highlighted Characteristics

	GoOrg4Prod: A Specialisation for a Factory Production Line Domain
	GoOrg4Prod Elements
	GoOrg4Prod Added Attributes
	GoOrg4Prod Processes
	Preparing goals for assignments
	Generating organisations
	Binding agents and positions
	Choosing organisations
	Computational complexity

	GoOrg4Prod Results

	GoOrg4DSN: A Specialisation for the Distributed Sensors Network Domain
	GoOrg4DSN elements
	GoOrg4DSN Added Attributes
	GoOrg4DSN Processes
	Generating organisations
	Binding agents and positions
	Choosing organisations
	Computational complexity

	GoOrg4DSN Results

	GoOrg: Implementation
	Tools and Programming Languages
	GoOrg Implementation Architecture
	Executing GoOrg Implementation
	GoOrg Implementation Inputs
	GoOrg Implementation Outputs

	Extending GoOrg

	Discussion
	Organisational Adaptation
	Reallocation
	Structure-switching
	Redesign

	Assigning Goals to Named Agents, Roles or Positions
	Planning Resources of Organisations
	Synthesising Positions Instead of Requiring User-defined Roles
	Using Goals as Input Instead of Roles and Behaviours
	Summary of this discussion

	Conclusion
	Bibliography
	Comparing organisational attributes among candidates
	XML specification of Feed Production with four goals
	XML specification of DSN with 4x5 sensors and 3 targets
	XML specification and outputs for Feed Production with three goals
	Improving GoOrg
	Synthesizing organisational roles
	Works developed during the PhD

		2023-01-28T06:29:47-0300

		2023-01-29T21:09:36-0300

