
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CAMPUS FLORIANÓPOLIS

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE AUTOMAÇÃO E SISTEMAS

Rafhael Rodrigues Cunha

Using Purpose to Specify the Environmental Consequences of Artificial Institutions

Florianópolis
2023

Rafhael Rodrigues Cunha

Using Purpose to Specify the Environmental Consequences of Artificial Institutions

Tese submetida ao Programa de Pós-Graduação em En-
genharia de Automação e Sistemas da Universidade Fed-
eral de Santa Catarina para a obtenção do título de doutor
em Engenharia de Automação e Sistemas.
Supervisor:: Prof. Jomi Fred Hübner, Dr.
Co-supervisor:: Prof. Maiquel de Brito, Dr.

Florianópolis
2023

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Cunha, Rafhael Rodrigues
 Using Purpose to Specify the Environmental Consequences
of Artificial Institutions / Rafhael Rodrigues Cunha ;
orientador, Jomi Fred Hübner, coorientador, Maiquel de
Brito, 2023.
 137 p.

 Tese (doutorado) ­ Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós­Graduação em
Engenharia de Automação e Sistemas, Florianópolis, 2023.

 Inclui referências.

 1. Engenharia de Automação e Sistemas. 2. Sistemas Multi
agentes. 3. Instituições Artificiais. 4. Ações
Institucionais . 5. Propósitos. I. Hübner, Jomi Fred . II.
de Brito, Maiquel. III. Universidade Federal de Santa
Catarina. Programa de Pós­Graduação em Engenharia de
Automação e Sistemas. IV. Título.

Rafhael Rodrigues Cunha

Using Purpose to Specify the Environmental Consequences of Artificial Institutions

O presente trabalho em nível de doutorado foi avaliado e aprovado por banca examinadora
composta pelos seguintes membros:

Prof.(a) Gustavo Alberto Giménez Lugo, Dr.
Instituição DAINF/UFTPR

Prof.(a) Viviane Torres da Silva, Dra.
Instituição IBM Research Brazil

Prof.(a) Eder Mateus Nunes Gonçalves , Dr.
Instituição C3/FURG

Certificamos que esta é a versão original e final do trabalho de conclusão que foi julgado
adequado para obtenção do título de doutor em Engenharia de Automação e Sistemas.

Coordenação do Programa de Pós-Graduação

Prof. Jomi Fred Hübner, Dr.
Supervisor:

Prof. Maiquel de Brito, Dr.
Co-supervisor:

Florianópolis, 2023.

À Milena, Maria, Andressa e Isadora,
maiores amores que tenho na vida.

ACKNOWLEDGEMENTS

Agradeço primeiramente à Deus, por sua infinita bondade, em me proporcionar, com
saúde e condições físicas, emocionais e financeiras, todos os dias necessários para à realização
deste trabalho.

A minha noiva e parceira de vida, Milena, que esteve comigo durante todo esse tempo,
chorando junto comigo nos momentos de dificuldade e vibrando e sorrindo em tantos outros de
alegria. Agradeço por sempre se fazer presente, seja através de carinhos, mensagens de afeto
ou até mesmo de incentivo. O teu apoio foi fundamental para que este trabalho pudesse ser
realizado e concluído. Obrigado por compreender os tantos períodos de ausência que se fizeram
necessários para a realização deste trabalho e por me dar o melhor presente da vida. Estendo
esse agradecimento aos seus pais, meus sogros, Ari e Juraci Silveira, pelo afeto e confiança.

Ao nosso cachorro, Lipinho, amigo peludo que foi meu parceiro nas incontáveis ho-
ras de estudos, escrita de artigos, apresentações de trabalhos em eventos e escrita da tese.
Lipinho me mostra todos os dias que não precisa de palavras para expressar amor, carinho e
companheirismo.

A minha família, em especial a minha mãe, Maria, por sempre me incentivar a trilhar
o caminho do bem, seja através do seu próprio exemplo, seja por meio de seus esforços em
nos proporcionar acesso ao estudo e a educação. Sou e serei eternamente grato por todo teu
estímulo durante todos esses anos. As minhas irmãs, Andressa e Isadora, por estarem comigo
em todos os momentos necessários. Por fim, estendo meu agradecimento aos demais membros
da minha família, devidamente representados através das tias Marla e Lucia, que endereçaram
à mim diversas mensagens de estímulo e carinho no decorrer desta jornada.

Aos professores e orientadores Jomi e Maiquel, por aceitarem me conduzir nessa camin-
hada e terem realizado suas funções com maestria, alertando-me quando as minhas ideias eram
equivocadas ou apoiando-me sempre que elas eram relevantes. Grato também pela disponibili-
dade e parceria em inúmeras reuniões, revisões de escrita de artigos, apresentação de trabalhos
e escrita da tese. Por fim, mas não menos importante, sou grato por me mostrarem através de
exemplos e incentivos que sempre podemos entregar mais do imaginamos. Vocês me ensinaram
muitas coisas nesses anos que eu jamais encontrarei em livros. Obrigado por fazerem essa
jornada valer a pena!

Ao professor e amigo, Roger Heinrich, que em pouco mais de dois anos, elevou meu
nível de inglês de semianalfabeto para entusiasta na apresentação de trabalhos em eventos
científicos estrangeiros.

Aos irmãos da vida, Marcos, Clau, Dudu e Edinho, pela parceria nos diferentes momentos
da minha vida, em especial à aqueles em que a tensão da realização deste trabalho foi trocado
pela leveza de conversas descontraídas.

Ao Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS), em
especial ao campus Vacaria, pela concessão do afastamento integral, essencial para a realização

deste trabalho e, ao governo federal que, através de suas políticas públicas, oportunizou a
realização de tantos sonhos.

“Faça o seu melhor, na condição que você tem,
enquanto não tem condições melhores,

para poder fazer melhor ainda.”
(Cortella, Mario Sérgio, 2016)

RESUMO EXPANDIDO

USANDO PROPÓSITOS PARA ESPECIFICAR AS CONSEQUÊNCIAS AMBIEN-
TAIS EM INSTITUIÇÕES ARTIFICIAIS

Introdução. Sistemas multi-agentes abertos têm incorporado mecanismos sociais para tratar
de algumas questões tais como a conciliação da autonomia dos agentes com os interesses do
sistema, a orientação dos agentes em agir em sistemas para os quais agentes não foram inicial-
mente projetados, etc. Um mecanismo social frequentemente usado é a realidade institucional
que, quando adaptada para um sistema multi-agentes, traz a noção de instituição artificial (ou
simplesmente instituição). Instituições consideram que alguns fatos que ocorrem no ambiente
constituem (ou contam como) fatos institucionais. Por exemplo, individuos agindo em um
sistema de comércio eletrônico constituem (ou contam como) compradores na instituição,
enquanto algumas de suas ações podem contar como pagamentos. Essas ações são conhecidas
na literatura como ações institucionais porque elas produzem efeitos no ambiente devido ao
significado atribuido a elas pela instituição. Além disso, essas mudanças podem combinar com
o interesse dos agentes. Por exemplo, um agente pode realizar alguma ação que conta como
pagamento (por exemplo, entregar uma nota de papel) se a consequência de constituir paga-
mento satisfaz seu interesse (por exemplo, adquirir um livro). Enquanto modelos de instituição
artificial tratam do processo de constituição através da atribuição de funções de status a fatos
que ocorrem no ambiente, o mesmo não acontece com relação aos efeitos que o processo de
constituição produz no ambiente.

Objetivos. O objetivo dessa tese é propor um modelo que torne explícitas as consequências
no ambiente da execução de ações institucionais. Para atingir esse objetivo, toma-se, como
inspiração, a teoria do filósofo John Searle, que observa que os status atribuídos às ações
concretas permitem que essas ações executem funções que não podem ser explicadas por suas
virtudes físicas. Searle afirma que essas funções são atribuidas para satisfazer os interesses
práticos dos agentes que são nomeados por ele como propósitos. Para atingir o objetivo dessa
tese, é necessário definir uma abstração apropriada para representar os propósitos, meios para
acoplar tal representação às representações de realidade institucionais existentes e formas de
os agentes se beneficiarem dessa representação, utilizando-a no seu processo de raciocínio e
deliberação para atingir seus interesses.

Contribuições. Esta tese propõe um modelo de propósitos para expressar as consequências de
ações institucionais no ambiente em que os agentes atuam. A partir desse modelo, define-se
que seu acoplamento com os modelos de realidade institucional existentes ocorre por meio das
funções de status, pois são os status que possibilitam a execução das funções que modificam
o mundo para atender aos propósitos dos agentes. Além disso, os propósitos são relacionados
aos objetivos dos agentes e, a partir disso, eles podem ser considerados no seus processos de
raciocinio e deliberação para satisfazer seus interesses. Com o modelo proposto, os agentes
podem acessar e raciocinar sobre as consequências das ações institucionais e adaptar-se a
diferentes cenários. Eles podem perceber que (a) alguns propósitos apontam para estados do
ambiente que correspondem aos seus interesses e, portanto, úteis para alcançar seus objetivos ou
(b) evitam esses propósitos porque apontam para estados semelhantes aos seus anti-objetivos.
Em ambos os casos, o agente têm mais informações para decidir se uma determinada ação o

ajudará ou não a satisfazer seus interesses. O modelo proposto permite aprimorar os agentes
nos aspectos de adaptabilidade, racionalidade e flexibilidade, além de tornar explícito esse
conceito e suas relações.

Conclusões. O modelo de propósito proposto concebe abstrações apropriadas para capturar
as consequências no ambiente da execução de ações institucionais. A partir desse modelo,
é possível conceber instituições artificiais que permitam expressar tanto as consequências
institucionais das ações executadas no ambiente quanto as consequências ambientais que tais
execuções acarretam. Tem-se, assim, instituições que podem auxiliar agentes a executar ações
que podem satisfazer seus interesses.

Palavras-chave: Propósitos. Ações Institucionais. Instituições Artificiais.

ABSTRACT

Open multi-agent systems have incorporated social mechanisms to address issues such as
reconciling agents’ autonomy with the system interests, the orientation of agents to act in
systems for which they were not designed, and so on. A social mechanism frequently used
is the institutional reality that, when adapted to the MAS, brings the notion of artificial
institution (or simply institution). Institutions consider that some concrete facts occurring in
the environment constitute (or count as) institutional facts. For example, individuals acting
in an e-commerce scenario may constitute (or count as) buyers in the institution, while some
of their actions may count as payments. These actions are known as institutional actions
because they are actions performed in the environment that produce consequences in the
institution. Furthermore, they can produce consequences in the environment resulting from
the consequences that occur in the institution. These environmental consequences may match
the interests of the agents. For example, an agent can perform some action that counts as
payment (e.g., delivering a paper note) if the consequence of constituting payment satisfies its
interest (e.g., holding a book in hand). While current institutional models provide information
about constitutions, the same does not happen about the consequences of the constitution
in the environment. Having an explicit representation of the environmental consequences of
institutional actions is an open question in the design of multi-agent systems. In response to this
issue, this thesis proposes a purpose model that represents the environmental consequences of
institutional actions. Furthermore, it presents some algorithms that agents can use to consider
this information in their reasoning and deliberation process. The proposed model is positioned
between existing frameworks that use social abstractions to support incoming agents and
evaluated through application examples highlighting the disadvantages and advantages of the
model in designing a multi-agent system.

Keywords: Purposes. Institutional Actions. Artificial Institutions.

LIST OF FIGURES

Figure 1 – Relations between environment and institution. 27
Figure 2 – Possible commitment lifecycle state transitions (DASTANI; VAN DER TORRE;

YORKE-SMITH, 2012) . 38
Figure 3 – Constitutive rules for commitments (DASTANI; VAN DER TORRE; YORKE-

SMITH, 2012) . 38
Figure 4 – Constitutive rule by (PIUNTI et al., 2010) 39
Figure 5 – Constitutive rule by (BRITO, M. d.; HÜBNER, Jomi F; BORDINI, 2012) . 39
Figure 6 – Overview of the model. 46
Figure 7 – Model implementation in an ontology. 55
Figure 8 – Example of using the ontology that implements the purpose model. 55
Figure 9 – Component diagram with the systems used to develop the examples. 56
Figure 10 – Categories of systems based on the used social abstractions. 81

LIST OF TABLES

Table 1 – Formalization of the example . 53
Table 2 – Execution of Algorithm 1 to help Bob achieve its goal of published information. 53
Table 3 – Execution of Algorithm 2 to help Bob discover what are the effects of an

institutional action. 54
Table 4 – Summary of social abstractions used in each case and the need to change

the agent to adapt to them. 67

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence
ASP Answer Set Programming language
BDI Belief, Desire and Intention
ICT Information and Communication Technologies
MAS Multi-Agent Systems
SAI Situated Artificial Institution
SWRL Semantic Web Rules Language

LIST OF SYMBOLS

𝒯 set of all properties that the system can present
𝒮 set of all possible states of the MAS
ℰ The set of all events that may happen in the environment
𝒜 The set of all agents that can act in the MAS
𝒢 The set of all agents and their goals
G The set of all agents and their anti-goals
ℱ The set of all the event-status-functions
𝒞 The set of all constitutive rules
𝒫 The set of all purposes
ℱP The set of all relations between status-functions and purposes
𝒢P The set of all relations between purpose and goals and anti-goals

CONTENTS

1 INTRODUCTION . 25
1.1 PROBLEMS . 26
1.2 HYPOTHESIS . 29
1.3 OBJECTIVES . 29
1.4 MOTIVATIONS . 29
1.5 DOCUMENT STRUCTURE . 30
2 BACKGROUND AND STATE OF THE ART 33
2.1 INSTITUTIONS ACCORDING TO JOHN SEARLE 33
2.2 INSTITUTIONS IN MAS . 37
2.2.1 Institutional Reality as a functional Issue 37
2.2.2 Institutional Reality as an ontological issue 40
2.2.3 Discussion . 42
2.3 REASONING ABOUT INSTITUTIONAL REALITY 43
2.3.1 Discussion . 43
3 PURPOSE PROPOSAL FOR MAS 45
3.1 PURPOSE MODEL - OVERVIEW . 45
3.2 PURPOSE MODEL - INSTRUMENTING INSTITUTIONS 47
3.3 PURPOSE MODEL - HELPING AGENTS TO ACT IN SYSTEMS COM-

POSED OF INSTITUTIONS . 49
3.3.1 Functions to retrieve information for the agents 50
3.3.2 Algorithms to help the agent reason about purpose 51
3.4 EXAMPLE OF USING PURPOSES . 52
3.5 PURPOSE IMPLEMENTATION . 54
3.6 COUPLING THE PURPOSE MODEL IN AN MAS DEVELOPMENT FRAME-

WORK . 56
3.7 IMPLEMENTATIONS OF THE ALGORITHMS IN JASON PROGRAMS . 57
4 EVALUATING THE PURPOSE MODEL 59
4.1 USING THE PURPOSE MODEL FROM THE PERSPECTIVE OF AGENTS 59
4.1.1 Application Example 1: Book trade 60
4.1.1.1 Case 1 - Simple MAS . 60
4.1.1.2 Case 2 - MAS with status functions . 61
4.1.1.3 Case 3 - MAS with status functions and norms 64
4.1.1.4 Case 4 - MAS with status function, norms and purpose 64
4.1.1.5 Discussion . 66
4.1.2 Application Example 2: Conquer territory 69
4.1.2.1 Case 1 - MAS with implicit status functions and purposes 69
4.1.2.2 Case 2 - MAS with explicit status functions and purposes 71

4.1.2.3 Discussion . 74
4.1.3 Application Example 3: Posting information on social networks . . 74
4.1.3.1 Case 1 - Social networks without status functions and purposes 75
4.1.3.2 Case 2 - Social networks with status functions and purposes 77
4.1.3.3 Discussion . 79
4.1.4 Practical conclusions . 80
4.2 POSITIONING OF THE PURPOSE MODEL IN THE ARTIFICIAL INSTI-

TUTION LITERATURE . 81
5 CONCLUSIONS . 85
5.1 FUTURE WORK . 87
5.2 RELATED PUBLICATIONS . 87

REFERENCES . 91
APPENDIX A – IMPLEMENTATION OF THE ALGORITHMS

IN JASON . 101
APPENDIX B – APPLICATION EXAMPLE 1: BOOK TRADE . 103

B.1 CASE 0 - DEFAULT SETUP . 103
B.2 CASE 1 - SIMPLE MAS . 104
B.3 CASE 2 - MAS WITH STATUS FUNCTIONS 106
B.4 CASE 3 - MAS WITH STATUS FUNCTIONS AND NORMS 108
B.5 CASE 4 - MAS WITH INSTITUTION, NORMS AND PURPOSES 110

APPENDIX C – APPLICATION EXAMPLE 2: CONQUER TER-
RITORY . 117

C.1 CASE 1 - MAS WITH IMPLICIT STATUS FUNCTIONS AND PURPOSES 117
C.2 CASE 2 - MAS WITH EXPLICIT STATUS FUNCTIONS AND PURPOSES 118

APPENDIX D – APPLICATION EXAMPLE 3: POSTING INFOR-
MATION ON SOCIAL NETWORKS 127

D.1 CASE 1 - SOCIAL NETWORKS WITHOUT STATUS FUNCTIONS AND
PURPOSES . 127

D.2 CASE 2 - SOCIAL NETWORKS WITH STATUS FUNCTIONS AND PUR-
POSES . 129

25

1 INTRODUCTION

Recent advances in computer technology have enabled computing to move from a single
computer (where computing is a process driven by the CPU) to computer networks (where
computing is driven by the interaction of distributed computing units) (WHITWORTH, 2011).
This new paradigm, dubbed “Computing as Interaction" (LUCK; MCBURNEY; PREIST, 2003),
promotes a certain degree of autonomy and openness among diverse software entities (DE-
MOLOMBE, 2010). These systems are classified in the literature as open systems because they
are decentralized (i.e., without a centralized decision), concurrent (i.e., multiple components
run concurrently with others) and loosely coupled (i.e., neither component has access to the
internal state or structure of the other). Examples of open systems include Wikipedia and
their bots (GEIGER, 2009, 2018), financial markets and their algorithm traders (FARJAM;
KIRCHKAMP, 2018), smart-grids (MERABET et al., 2014), collaborative platforms for cri-
sis management (THÉVIN et al., 2015), e-commerce systems (ARANDA-CORRAL; DÍAZ;
MARTÍN, 2015), auction organizer or contract negotiations (ESTEVA et al., 2008; GOVER-
NATORI et al., 2001; SARDIS; VOUROS, 2007), and social network systems (BERGENTI;
FRANCHI; POGGI, 2012; CALVARESI et al., 2019; ABREU, 2021; PÉREZ-MARCOS et al.,
2020; AMARAL; HÜBNER, Jomi Fred, 2019).

Artificial Intelligence (AI) in general, and Multi-Agent Systems (MAS) in particular, have
developed approaches to implement this type of open, decentralized system (OSSOWSKI et al.,
2007). According to Felicissimo et al. (FELICÍSSIMO et al., 2006), an Open MAS can be con-
sidered an open system when it is made up of agents that may act autonomously (GONZÁLEZ-
BRIONES et al., 2018), are created and implemented by different parties (FORNARA; VIGANÒ;
COLOMBETTI, Macro, 2004) and can interact with one other (WOOLDRIDGE, 2009). Open
MAS are thus decentralized, loosely coupled, and concurrent. Besides agents, open MAS may
include other components, such as environment and institutions.

In Open MAS, the concept of environment is fundamental. It is usually conceived as
the set of non-autonomous elements (e.g., sensors and actuators, printers, networks, databases,
web services, etc.) that are perceived and acted upon by the agents (RUSSELL, 2010; WEYNS;
OMICINI; ODELL, 2007; RICCI; PIUNTI; VIROLI, 2011). In other words, the environment
is the computational or physical place where agents are situated. Some fundamental features
of the agent abstraction are directly or indirectly related to the environment: reactivity is
an obvious example, but also pro-activeness, referring to the interests of agents that can be
reached by resources available in the environment (ARGENTE et al., 2013).

Open MAS may incorporate social mechanisms to address issues such as the conciliation
of agents’ autonomy and system goals, the orientation of agents to act in systems for which
they were not designed, etc. (WHITWORTH, 2011). In this regard, the institutional reality is
an important resource present in human societies that has been implemented in open MAS.
There are several theories and scholars (TESTA, 2017; HINDRIKS, F., 2015; SMIT; BUEKENS;

26 Chapter 1. Introduction

DU PLESSIS, 2014; SEARLE, J. R., 1995; SEARLE, J., 2010) that attempt to explain this
portion of reality that arises from the interpretation, by individuals, of the concrete world
composed of people, actions, etc. They usually consider that some concrete facts occurring in
the environment constitute (or count as) institutional facts (CLIFFE; VOS; PADGET, 2006;
CARDOSO, HENRIQUE LOPES; OLIVEIRA, EUGÉNIO, 2007; BRITO, M. d. et al., 2016;
FORNARA, 2011). In Open MAS, these facts usually give special meaning to concrete facts
related to the application domain. For example, individuals acting in an e-commerce scenario
may constitute (or count as) buyers in the institutional reality, while some of their actions
may count as payments. When adapted to MAS, the existence of an institutional reality brings
the notion of the artificial institution (or simply institution). Several works (CLIFFE; VOS;
PADGET, 2006; CARDOSO, HENRIQUE LOPES; OLIVEIRA, EUGÉNIO, 2007; DE BRITO;
HÜBNER, Jomi Fred; BOISSIER, 2018; FORNARA, 2011) use the notion of the institution
as a first-class abstraction1 to represent the relation between institutional facts and concrete
facts present in the environment. That is to say, from a system composed of entities such
as agents, web services, messages, databases, etc. (ultimately conceived to be deployed as
software pieces), the institution brings into the system elements such as buyers, payments, etc.

Independent of the open MAS design, heterogeneous agents can enter the system at
any time, use its infrastructure to satisfy their interests, and eventually exit (PITT; MAM-
DANI; CHARLTON, 2001; WOOLDRIDGE, 2009). We assume that agents’ interests involve
achieving desired situations (henceforth referred to as goals) and avoiding undesired situations
(henceforth referred to as anti-goals). Some of these interests are satisfied by actions performed
within institutions. Consider the following scenario: an agent is designed to achieve its goal of
publishing information on the social network Twitter. In this system, some concrete action (e.g.,
sending a string to a server, uploading a photo, etc.) that counts as tweet results in publishing
information. This result (i.e., the agents’ interest) is a consequence of the constitution of tweet.
Therefore, if the agent performs some concrete action that counts as tweet, it satisfies its goal.
The physical virtues of the action can not explain such a result. Instead, it is the consequence
of the action to be performed within an institutional context.

1.1 PROBLEMS

Some actions in the institution have particular consequences due to their constitu-
tions and not the action itself. These actions are known in the literature as institutional
actions (SEARLE, J. R., 1995; SEARLE, J., 2010). The consequences of carrying out insti-
tutional actions may imply concrete changes in the environment. Figure 1 depicts these two
connections between the environment and the institution. The first connects the environment
to the institution (through count-as rules), and the second connects the institution to the
environment (through the effects) in the opposite direction.
1 According to Netto (ABREU NETTO, 2010), the first-class abstraction is a block that encapsulates its

responsibilities independently of the agents.

1.1. Problems 27

Environment

Constitute Affect

Institution

Figure 1 – Relations between environment and institution.

For agents to act appropriately in institutions, they should know both connections. For
example, an agent can perform any action that counts as tweet (e.g., sending a string) if the
consequence of constituting tweet satisfies the agent’s interest (e.g., publishing information).
While current institutional models support the first connection, the same does not happen
concerning the second. Having an explicit representation of the environmental consequences
of institutional actions is a key issue for designing agents capable of satisfying their interests
in systems composed of institutions. The problem addressed in this thesis is the design of
artificial institutions that not only specify count as relations, but that also have the means of
specifying the consequences in the environment of the execution of institutional actions to be
exploited by the agents.

From the outlined, we can see it as a threefold problem. It requires a definition of
(i) what are the appropriate abstractions to represent the consequences in the environment
of institutional actions, (ii) how the abstractions that represent institutional reality and the
environment can be coupled with the representation of the environmental consequences of
institutional actions and (iii) how agents can exploit them to act according to their interests.

Regarding the first point (i), the consequences in the environment of institutional
actions are not sufficiently represented by the elements that are within the institution (i.e.,
constitutive rules, status functions, etc.). They are also not sufficiently represented by the
elements that are in the environment because, even though these consequences reflect on
the environment, they are associated with elements of the institution (which are outside the
environment). The representation we are looking for, in a way, connects elements of these
two dimensions of the MAS (institution and environment). The current state of the art does
not have an appropriate abstraction to represent the consequences in the environment of
institutional actions. For this reason, these consequences are implicit. For example, consider
the case of agents acting on Twitter with the instruction to perform some action that counts
as tweet. A priori, these agents can know the effects of tweet if the relation between tweet
and its consequences in the environment are encoded within them.

Regarding the second point (ii), assuming that an external abstraction is needed to

28 Chapter 1. Introduction

connect the institution with the environment (first point), the problem is in defining (a)
which types of institutional abstractions, among all possible ones, can have this associated
external abstraction; (b) which, among all the brute facts, can represent the consequences
associated with institutional actions; and (c) how the proposed representation connects with
those institutional abstractions and with the brute facts. The lack of this connection raises
some problems. First, agents can only act in institutions whose status functions are known to
them. For example, consider again the case of agents acting on the social network Twitter. If,
for some reason, the status function tweet is replaced by the status function post, agents may
have difficulty acting in this system. Second, institutions need to specify all status functions
used by all agents that potentially will act on them. Consider that the status function post
brings the same consequence as the status function tweet when constituted. As this connection
does not exist, the institution needs to add the tweet status function again so that agents can
act in the system.

Regarding the third point (iii), assuming that the agents should reason about the
external abstraction to act according to their interests, the lack of this abstraction and its
connection with institutional abstractions and brute facts may cause some problems for the
agents. They may have difficulty reasoning about institutional actions that result in (a) desired
situations and (b) undesired situations. Consider two scenarios involving the example where
agents are designed to achieve their goal of publishing information on the social network
Twitter. In the first scenario, agents do not know what action they should perform to satisfy
their goals. In the second scenario, the agents know that they should perform an action that
counts as tweet to satisfy their goals, but they do not know that this action also produces
the undesired outcome of spreading fake news. In the first scenario, these agents achieve their
goals only if they are previously coded with the institutional action they should perform. In the
second scenario, agents avoid the undesired situation only if the consequences of institutional
actions are encoded within them.

In short, the existing works on artificial institutions are mainly concerned with specifying
and managing the institutional interpretation of facts occurring in the environment (shown on
the left arrow of Figure 1). However, institutional actions may enable new facts in the system
that potentially lead to environmental changes. These environmental consequences of the
constitutions remain unexplored (shown on the right arrow of Figure 1). Some related problems
are the difficulty of predicting the environmental consequences arising from the execution of
institutional actions and the limitation in the agents’ reasoning about satisfying their interests
that involve the performance of institutional actions. Having an artificial institution that is
independent but connected to the consequences that it can bring to the environment is an
open question for the open MAS.

1.2. Hypothesis 29

1.2 HYPOTHESIS

An inspiration to answer these questions is the social reality theory by John Searle (SEARLE,
J. R., 1995; SEARLE, J., 2010). He considers that the abstract statuses attributed to con-
crete elements carry a set of functions that their physical virtues cannot explain. Searle calls
them status functions. Searle claims that the functions associated with statuses are agentive
functions because they are assigned to satisfy the practical interests of agents. Searle names
the practical interests of agents as purposes. Searle’s theory has indeed inspired some works
on MAS. However, these works usually take inspiration only from a rough notion of “count
as”, i.e., facts from the environment have some status functions (or count as other facts) in
institutional reality.

However, Searle’s proposal is wider than assigning status functions to environmental
elements. In addition, it proposes to represent an institutional structure that reflects in the
environment the interests of the members who live in the society. Thus, Searle’s theory seems
to point a direction to answer the previous questions, as it has a conceptual apparatus to
capture the notion of purpose arising from social arrangements that reflects the interest of
society members in the environment.

1.3 OBJECTIVES

The main objective of this thesis is to develop a purpose model to express the environ-
mental consequences of the execution of institutional actions. To achieve this general objective,
some sub-objectives are considered:

1. To define suitable abstractions to represent purposes;

2. To define how models of artificial institutions and representation of the environment,
proposed in the literature, integrate the proposed representation of purposes;

3. To define how the interests of agents, expressed through goals or anti-goals, are
related to the proposed representation of purposes.

1.4 MOTIVATIONS

As already discussed, open MAS can have an institutional reality that allows a com-
mon interpretation of concrete facts attributing institutional facts to these elements. Having
institutions where it is also possible to express the consequences of institutional facts in the
environment brings some advantages to the design of Open MAS.

The concept of purpose is important to establish a common representation of how
institutional actions affect the environment, establishing a connection between elements of
these two dimensions of the MAS (institution and environment). For example, consider again
the example of agents acting on Twitter with the instruction to perform some action that
counts as tweet. In such a scenario, with the relationship between tweet and the consequence

30 Chapter 1. Introduction

of publishing information properly represented with the concept of purpose, agents do not need
to have these consequences encoded within themselves and can consult them in the system at
any time.

The concept of purpose can be associated with status functions on the institutional side
and system states on the environmental side. We consider that agents act concretely within
the institution through the institutional actions they perform. For this reason, the concept of
purpose is associated with status functions. On the other hand, we consider that the states of
the system are the types of facts relevant for the agents’ interests. For this reason, the concept
of purpose can be associated with (or point to) the states of the system that satisfy the
interests of the agents. Finally, the connection between purpose, status functions and system
states is established through institutional actions. Institutional actions, when performed, may
have consequences in the environment that reflect the states of the system pointed out by
the purposes. This connection brings some advantages to the system. First, agents can decide
how act in the system even if they have no prior knowledge of the status functions. For
example, consider again the case of agents acting on the social network Twitter. If agents are
designed to act according to the consequences of institutional actions, it does not matter to
agents whether they should constitute tweets, posts, etc. Second, institutions can be designed
with status functions that may be unknown to agents at design time. Since the purpose
makes the consequences of institutional actions explicit, the designer can specify institutions
without worrying about compatibility with the agent’s code. The compatibility is moved to an
appropriate concept, making the institutional specification more stable.

The concept of purpose brings some advantages to agents, such as reasoning about
institutional actions that result in (a) desired situations and (b) undesired situations. Knowing
the actions available in the institution and their consequences, agents can identify which
actions can satisfy their goals and anti-goals. In other words, making the consequences of
institutional action explicit helps the agents better understand the actions they can perform,
allowing them to make the best decision for their interests. The agent’s capability to reason
about the consequences of the institutional actions and adapt to different scenarios is an
important advance, especially in open systems (ALDEWERELD, Huib; DIGNUM, Virginia,
2010; ZAMBONELLI; JENNINGS; WOOLDRIDGE, 2000).

1.5 DOCUMENT STRUCTURE

In the following, Chapter 2 presents the theoretical elements required to achieve the
goals of this work, including the state of the art. These elements underlie the purpose model
proposed in this work. Chapter 3 presents the model of purposes and algorithms that agents can
use to satisfy their interests. This chapter also presents a proposal to implement the model in a
data structure and integrate the model with the MAS development framework called JaCaMo.
Chapter 4 presents application examples that help us to evaluate the proposal of this work.
This chapter also presents a position between the proposed model and existing frameworks

1.5. Document Structure 31

that use social abstractions to support incoming agents. Finally, Chapter 5 summarizes the
contribution of this work, pointing some perspectives of future work.

33

2 BACKGROUND AND STATE OF THE ART

From a social point of view, Information and Communication Technologies (ICT)
have gone from being a tool to foster productivity in a company to a mediator in social
relationships (WHITWORTH, 2011). Research in MAS has adopted (and adapted), in different
ways, concepts such as norms, institutions, etc. to enable such mediation. Among all the social
aspects involved in agent societies, this chapter focuses on those relevant to this thesis. More
precisely, it looks at works that conceive artificial institutions based on the theory of John
Searle. Considering the problems posed in Section 1.1, relevant aspects of Searle’s theory on
institutions are described in Section 2.1. Moving to the MAS field, Section 2.2 describes how
institutional reality has been used in works in the area. Section 2.3 describes how agents have
used institutional reality to reason about their interests. Sections 2.2.3 and 2.3.1 discuss some
open questions in the area that have inspired the development of this thesis.

2.1 INSTITUTIONS ACCORDING TO JOHN SEARLE

One of the main questions motivating Searle’s theory is: How can we, if at all, reconcile
a certain conception of the world described by physics, chemistry or other basic sciences with
what we know or think we know about ourselves as human beings? (SEARLE, J., 2010, p.3). In
other words, how from a world formed by elements that can be described by the basic sciences,
one arrives at a world composed by more concrete elements (presidents, money, universities,
etc.)? The explanation for these questions lies in the existence of two types of facts: brute and
social.

Searle argues that there are facts that are explained by basic science, such as water
being composed of hydrogen and oxygen, that do not depend on any mental attitude of
agents to exist. These facts are considered brute facts, as their existence is independent of any
perception or mental state. Examples of these elements are a piece of paper, a mountain, ice,
etc. However, according to Searle, there are facts in the world that are also objective but that
exist only because we believe in their existence (e.g., money and president). The basic sciences
cannot explain that a piece of paper is money and that some citizen is the president. For a
piece of paper to be recognized as money or a human being as president, it is necessary for
members belonging to a community to collectively accept or recognize that the object, person,
etc. is regarded as money, president, etc. For this reason, the facts of a piece of paper being
considered money and a person being considered a president are considered social facts.

Social facts make up social reality and need collective intentionality to exist (SEARLE,
J., 2010). Intentionally is the term used for the mind’s ability to direct its will about something
(e.g., objects, states of the world, etc.). For example, an intentional attitude is to prefer
cabernet sauvignon over pinot noir. In this case, i am in an intentional state. Intentional states
are always about, or refer to, something. When intentional states are shared by members
of a community, there is collective intentionality. For example, for a piece of paper to be

34 Chapter 2. Background and state of the art

considered money it is necessary for people to share intentional states, such as beliefs, desires
and intentions (SEARLE, J. R., 1995, p.24).

A subclass of social facts are institutional facts. These are facts that exist only within
human institutions. For example, two people moving pieces on a board randomly is a social
fact. Two people respecting rules and moving pieces according to their meanings on a board
can be considered a game, and in this case, it is an institutional fact, because they are in the
context of an institution (i.e., the game of chess). The institution — the game of chess —
assigns meaning and purpose to the pieces and moves performed in the game. Without the
institution, there would be no moves like checkmate, Zug or pieces like queen, king, etc. The
Institutional Reality is part of the Social Reality. According to Searle, human institutions are
based on the following elements:

• Status Function: Human beings have the ability to impose functions on objects or
people that enable them to perform activities that go beyond their physical virtues.In
order to perform these functions, the element must have a collectively recognized
status in the society. For example, an individual may have the status (and hence the
role) of professor at a university. Those statuses that assign functions to elements
of the concrete world, such as professor, are called Status Functions.

• Collective Intentionally: For a Status Function to be effective within the institu-
tion, there must be collective acceptance or recognition that the object, person or
other type of entity has the Status Function assigned. Therefore, Status Functions
depend on collective intentionality. Only by virtue of this, a piece of paper can be
regarded as a bill of money or a person as the president of a country (SEARLE, J.,
2010, p.9). Although the phenomenon is collective, intentionality exists only within
individual human brains. Therefore, it is necessary that the agents coexisting in the
society assume that the other members also share the same beliefs about the Status
Function.

• Deontic Powers: An important element for the functioning of societies is what
Searle calls deontic powers (SEARLE, J. R., 1995; SEARLE, J., 2010). Without
exception, Status Functions carry deontic powers. These are rights, duties, obliga-
tions, etc. It defines what are the expected behaviors and the ones that should be
avoided of the members in a society. For example, an individual may constitute the
status (and consequently have the function) of professor at a university. However,
along with the status of teacher, some deontic powers linked to the status are
defined such as teach, correct exams, write assignments, etc. that individuals with
the status of teacher should follow or avoid.

• Actions independent of desires and physical constraints: The combination of
Status Functions and deontic powers constitutes an effective system that supports
human societies (BRITO, M. d. et al., 2016). According to Searle, Status Functions

2.1. Institutions According to John Searle 35

and deontic powers are the “glue that holds society together" (SEARLE, J., 2010,
p.9). The claim is justified by the fact that Status Functions always carry deontic
powers and these always provide reasons to act independently of desires and physical
constraints implemented in the brute reality. For example, a high wall can be a
physical restriction to prevent unwanted people from entering private property. But
if the wall is replaced by a line of stones signifying the boundary demarcations of
property and the legislation institutes a deontic power that prohibits individuals
from entering private property without the owner’s permission, these citizens have
reason not to cross the stone line, although they are physically capable of doing so.

• Constitutive Rules: The constitutive rules define the constitution of Status Func-
tions. They have the form: X count-as Y in context C. For example, in the game of
chess, a player making a final move, i.e., covering his opponent’s king (X) count-as
checkmate (Y) in the board context (C). This behavior not only regulates the
movement of the piece around the board, but acting in accordance with this rule is
also a logically necessary condition for playing chess, since the game does not exist
beyond the rules. For example, driving on the right is a rule that regulates behavior,
but driving exists independently of the rule. Other rules, constitutive rules, not only
regulate but also create the possibility of much of the behavior they are regulating
(SEARLE, J., 2010, p.9).

Through these elements it is possible to define institution. According to Searle, in-
stitutions are systems of constitutive rules that enable the existence of Institutional Real-
ity (SEARLE, J., 2010). The institutional reality is an interpretation, on the part of the
institution, of the facts occurring in the environment. By systems of constitutive rules, Searle
means that institutions define, through constitutive rules, a particular interpretation of brute
reality, expressed in terms of assigned Status Functions, to base the deontic powers. These
exist within institutions and only when the Status Function is assigned. For example, the
rule “the president should enact a new law during his term of office” is effective only when the
institution constitutes president and law. Therefore, in addition to institutions being systems
of constitutive rules that enable institutional reality, they also define the expected behavior of
individuals. Institutions perform these tasks through the following operations:

• Creation of Status Function: The Status Functions are not elements that ex-
ist by themselves in the world. They need to be created. In (SEARLE, J., 2010,
p.59), Searle argues that functions are always relative to intentionality (hence mind-
dependent) and are also a cause serving a purpose. In (SEARLE, J. R., 1995, p.20),
Searle argues that some functions are called agentive functions because they are
assigned from practical interests of the agents.

• Definition of Purpose: Looking at the definitions of status functions, it seems
clear that these functions are assigned to satisfy the practical interests of the agents
involved in that institution. Searle calls these interests of purpose. According to him,

36 Chapter 2. Background and state of the art

these functions and their purposes must be created based on the intentional states
(i.e., it requires collective intentionality) present in the minds of the individuals
interested in their creation. Searle also argues that individuals must be able to
understand what the thing is for, or the function could never be assigned (SEARLE,
J. R., 1995, p.22). Understanding a function requires understanding what it is for
(i.e., its purpose). For example, in the game of chess, when the player moves some
piece with assigned status by performing the “checkmate" function, the purpose of
this function is to win the game. The purpose is in line with the interests of the
agents who are playing the game (that is, it is understood by the people involved
in the institution).

• Constitution of Status Function: The constitutive rules define the constitution
of Status Function. This constitution can occur in two ways:

Assigning a Status Function Y to a concrete element X: In traditional
cases, a Status Function Y is assigned to an element of the concrete world X.
Element X can be explained by the basic sciences and is therefore a brute fact. It
constitutes an institutional fact only after the assignment of the Y status, which
can occur in a generic or specific way:

1. Generic: When a Status Function Y is assigned to a generic element X,
that is, any element X that satisfies a set of conditions, enabling it to
receive the status Y. For example, in any electoral scenario element that
wins the elections and meets the specific requirements of the position can
count as president (Y) in the context of their country (C).

2. Specific: When a Status Function Y is assigned to a specific element X,
that is, an element X that has been chosen to have the status Y without
considering a set of conditionals equal to those present in the generic form.
Exemplifying this condition, element Bob (X) can count as president (Y)
in the context of his country (C).

Independent assignment: The independent assignment is called Freestanding
Y by Searle. It encompasses cases where a Status Function exists but is not assigned
to any element of the concrete world. In (SEARLE, J., 2010, p.98) an example of the
creation of a company by decree is presented. In the California constitution, there
are some rules that enable any entity that satisfies certain conditions can create
a company by performing only a declarative speech act, and then that company
will exist in perpetuity unless some other condition occurs. It simply begins to exist
within the institution, being created by decree. But the fact is that there are not
only people or groups of people that can be considerations as a company. In general,
companies have buildings and equipment that also constitute it. However, even if

2.2. Institutions in MAS 37

there is a change of personnel within the company, it remains in existence, therefore
not being physically real.

• Power Creation: As described above, all Status Functions carry deontic powers.
These powers are deontologies that correspond to rights, duties, obligations, etc.
So, power creation relates this set of rights and duties to Status Functions. For
example, the teacher has some obligations that other members of society do not
have, such as teaching classes, correcting tests, preparing papers, etc.

2.2 INSTITUTIONS IN MAS

Works on MAS have proposed computational counterparts of human institutions, re-
ferred to in this work as artificial institutions. In different ways, these works use abstractions
proposed by Searle to represent institutional reality in computer systems. This section reviews
the state of the art in this topic. The question to be answered is: How do artificial institutions
deal with the consequences of institutional facts in the environment?

The research source used in this work is Periódicos Capes.1 This search engine indexes
many world-renowned databases, such as IEEEExplore, ACM, ScienceDirect, Scielo, among
others.

Inclusion and exclusion criteria were used to properly select works that relate concepts
on MAS to social reality theories. The inclusion criteria are: i) articles in the area of MAS that
present a computational model of some theory of Social reality; ii) articles with more than
six pages, containing introduction, development and conclusions. The exclusion criteria are
the following: i) articles that are not complete, that is, without introduction, development or
conclusion; ii) articles that do not develop theories of Social Reality and iii) articles that do not
belong to the MAS area. Inspired by the classification proposed in (BRITO, M. d.; HÜBNER,
Jomi F., 2014) and the work carried out in (CUNHA; HÜBNER, Jomi F; BRITO, M. de, 2019),
the results are divided into two groups presented in Sections 2.2.1 and 2.2.2. The first group,
includes models that relate brute facts to changes in the state of some social mechanism (e.g.,
norms, organization, etc.). The second group includes models that relate brute facts to social
abstractions related to the application domain, analogous to the status functions proposed by
Searle.

2.2.1 Institutional Reality as a functional Issue

Some works use concepts of institutional reality from a functional perspective. These
works use institutional abstractions to solve the interoperability gap between the environment
and the social representations. The count-as relation is used to specify changes in the state
of some social mechanism (e.g., norms, organization, etc.). For example, some brute fact
occurring in the environment count-as the violation of a norm.
1 https://www.periodicos.capes.gov.br/

38 Chapter 2. Background and state of the art

The approach of Campos et al. (CAMPOS et al., 2009) proposes an adaptation mech-
anism for electronic institutions that employ staff agents named governors. They monitor the
facts occurring in the environment defining whether these facts count as something from the
regulative perspective. In short, this work represents the count-as rules within the staff agent
itself. This agent inspects the environment and interprets these rules, connecting environment
with norms.

The approach of Dastani et al. (DASTANI et al., 2009) proposes a programming
language to represent norms and relate them to facts in the environment. Count-as rules
are used to represent norms. For example, an agent on the train without a ticket count-as a
violation of the norm. In short, this work considers that count-as rules link actions that agents
perform to normative consequences (e.g., violation, prohibition, etc.).

Figure 2 – Possible commitment lifecycle state transitions (DASTANI; VAN DER TORRE;
YORKE-SMITH, 2012)

Figure 3 – Constitutive rules for commitments (DASTANI; VAN DER TORRE; YORKE-
SMITH, 2012)

In a similar direction, the approach of Dastani et al. (DASTANI; VAN DER TORRE;
YORKE-SMITH, 2012) proposes an operational semantics for agent interactions within orga-
nizational settings (e.g., online marketplace). Count-as rules relate brute facts to commitment
states. Figure 2 illustrates the states of a life cycle of a commitment in this work. Figure 3
illustrates some examples of constitutive rules following this approach. The line 1 defines that
the offering of an agent x to an agent y to perform q before the instant d2, conditioned to
the performance of p by y before d1, counts as a commitment from x to y with respect to
q being in the state conditional (Cc). The line 2 specifies that the agent x informing to y

2.2. Institutions in MAS 39

that he has been done q before d1 counts as the satisfaction of the commitment, that moves
from the state conditional to satisfied (C s). In short, this work considers that count-as rules
relate brute facts occurring in the environment to the states conditional, expired, detached,
terminated, satisfied, or violated of commitments.

The approach of Piunti et al. (PIUNTI et al., 2010) proposes embodied organizations,
which are organizations whose dynamics are animated by facts that occur in the environment.
Count-as rules relate brute facts to operations on ORA4MAS artifacts, which are the techno-
logical support for the Moise organizational model (HÜBNER, Jomi F et al., 2010). Figure 4
shows an example of this approach. In the application where this snippet was extracted, the
rule specifies that an object Terminal producing the event sendFee count-as the operation
setGoalAchieved being executed in the artifact monitorSchBoard. This operation will cause
the change in the state of an organizational objective. In short, this work uses count-as rules
as triggers for operations on ORA4MAS artifacts.

Figure 4 – Constitutive rule by (PIUNTI et al., 2010)

In a similar direction, the approach of Brito et al. (BRITO, M. d.; HÜBNER, Jomi
F; BORDINI, 2012) proposes a model and a language to specify and program the institu-
tional dynamics as consequence of events and state changes occurring in any of the two
component dimensions of the system (environment and institution). Count-as rules define
properties that the organization should have depending on the facts that occur and the
states that prevail in the environment. The mechanisms that implement the organization
are responsible for making it really have such properties. Figure 5 shows a constitutive rule
specifying that the event prepareSite occurring in the environment count-as the property goal-
State(bhsch,site_prepared,Ag,Ag,satisfied) holding in the organizational platform. That is, the
occurrence of the event prepareSite means achieving the organizational goal site_prepared. In
short, this work considers that count-as rules relate brute facts occurring in the environment
to properties holding in the organization.

Figure 5 – Constitutive rule by (BRITO, M. d.; HÜBNER, Jomi F; BORDINI, 2012)

40 Chapter 2. Background and state of the art

2.2.2 Institutional Reality as an ontological issue

Some works treat institutional reality as an ontological issue. The constitutive rules
are used to assign status to elements in the environment. For example, in a system that
contains the norm every PhD student is obliged to submit their qualification proposal within a
period of up to 24 months, the ontological approach defines what a PhD student is, what it
means to submit a qualification proposal, etc. These works consider that brute facts count-as
status functions while keeping an institutional specification, which is mostly applied in the
specification of norms.

The approach of Fornara et al. (FORNARA; COLOMBETTI, Marco, 2009, 2010;
FORNARA, 2011; FORNARA; TAMPITSIKAS, 2012) proposes to represent artificial institu-
tions using ontologies, Semantic Web rules language (SWRL) and a Java program. Institutional
events are the main concept of this approach. They are a particular type of event whose effect
can change properties and elements of the institution itself. For example, the agent Robert
can execute an action called act01 at instant2 that creates a new institutional space called
auction if the action is successful. In this work, the authors consider that agents may try to
execute institutional actions in specific spaces of the environment (which they call institutional
spaces). The program is used to interpret the events and update the system if the pre-conditions
established for the execution of the event are respected. In short, this work considers that
the institutional reality is composed of institutional events that are a counterpart of events
occurring in the environment.

The approach of Boella and van der Torre (BOELLA, Guido; VAN DER TORRE, 2004;
BOELLA, Guido; TORRE, L. van der, 2004; BOELLA, Guido; TORRE, Leendert van der, 2006)
proposes to represent the institutional reality using modal logic. The institutional specification
describes states of the world, institutional facts, constitutive rules, etc. A brute fact (a fact that
describes a state of the world) count-as an institutional fact if the normative agent considers
that it is true in a specific context. For example, consider a society where the fact that field has
been protected by an agent count-as the fact that the agent owns the field. In this example,
the field protected by an agent is a brute fact, while the fact that someone owns it is an
institutional fact attributed to the beliefs of the normative agent. In short, in this work, the
representation of institutional reality depends on the normative agent’s beliefs.

The approach of Vazquez-Salceda et al. (VÁZQUEZ-SALCEDA et al., 2008) proposes to
represent the institutional reality using ontologies to define the concepts used in the specification
of norms. For example, consider the norm “every citizen should be at least 18 years of age to
be transplanted”. The institutional reality defines concepts such as citizen, age, transplant, etc.
The constitutive rules are also represented in the ontology. In these rules, the considered brute
facts are events occurring in the environment.

The approach of Grossi et al. (GROSSI et al., 2006) also proposes to represent the
institutional reality using ontologies. The authors developed the idea of contextual ontologies,
formalizing some more general concepts into generic ontologies that can later be refined into

2.2. Institutions in MAS 41

domain-specific ontologies. Subsequently, the specified concepts used in the specification of
norms are related to concrete actions. In short, in this work, the objective of ontologies is to
represent constitutive rules, specifying abstract concepts — in domain-specific ontologies —
and later relating them to concrete actions — in more generic ontologies.

The approach of Cliffe et al. (CLIFFE; VOS; PADGET, 2006) proposes to represent the
institutional reality using the answer set programming language (ASP). The model is based on
concepts such as observable events — capture events from the physical world (e.g., shooting
someone) — and institutional events — generated by society, with meaning only within it (e.g.,
murder). Count-as rules define events that occur in the environment count-as institutional
events. In short, in this work, the institutional reality classifies the events that occurred in
institutional events. The nomenclature of institutional events (e.g., shooting someone) is used
in the normative specification. These represent violations and a set of institutional actions that
must be performed as punishment.

The approach of Aldewereld et al. (ALDEWERELD, Huib et al., 2010) proposes to
represent the institutional reality using Drools Tool2 — an engine for declarative reasoning
in Java. The representation proposed by them uses count-as rules to relate brute facts (i.e.,
events occurring in the system) to institutional facts and also institutional facts to normative
consequences. For example, exchange a message with content ok count-as inform and inform
count-as norm reached. In short, this work also only dynamizes the normative specification,
classifying the events that occurred in institutional events and after then relating them to
normative issues (norms reached, violated, etc).

The approach of Cardoso and Oliveira (CARDOSO, HENRIQUE LOPES; OLIVEIRA,
EUGÉNIO, 2007) proposes to represent the institutional reality using ontologies. The represen-
tation proposed by them is directly related to the definition of contracts that make the agents’
commitments explicit. For example, constitutive rules define which messages exchanged by
agents count as contract formalization. In short, this work considers that the institutional
reality is formed by some messages exchanged by agents that are categorized as institutional
facts and are used to specify commitments.

The approach of Vigano and Colombetti (VIGANÒ, 2007; VIGANÒ; COLOMBETTI,
Marco, 2008) proposes a framework to describe institutions using institutional concepts (status
functions, institutional events, etc.) defined through a model. The representation proposed
by the authors considers that the institution only imposes status functions to agents. These
status functions are described in terms of deontic relationships, representing which actions are
activated, required, etc., for an agent. In short, this work represents the institutional reality for
assigning status functions to agents (and with it a series of actions) that are conditioned to
normative issues.

The approach of Brito et al. (BRITO, M. d. et al., 2016; DE BRITO; HÜBNER, Jomi
Fred; BOISSIER, 2018) proposes to represent the institutional reality through a model called

2 https://www.drools.org/

42 Chapter 2. Background and state of the art

Situated Artificial Institution (SAI). The representation proposed by them uses constitutive
rules to assign status functions to elements present in the environment (i.e., agents, events and
states). In short, this work represents the institutional reality totally uncoupled from normative
issues.

2.2.3 Discussion

To discuss the presented works, it is important to remember the problem addressed in
this thesis, which is the design of artificial institutions that not only specify count as relations,
but that also have the means of specifying the consequences in the environment of the execution
of institutional actions to be exploited by the agents. Artificial institution is a well-addressed
topic in MAS. There are many approaches to representing the institutional reality that arises
from interpreting elements present in the environment. However, these approaches do not
support the representation of the consequences in the environment of carrying out institutional
actions. There are some issues, discussed in Section 1.1, that illustrate this disadvantage, such
as problems for agents to reason about the consequences in the environment of carrying out
institutional actions, inconsistencies between the actions provided for in the agents’ code and
those available in the institutional specifications and conflicting institutional actions (which
achieve goals and anti-goals at the same time).

The functional approach proposes that count-as rules are used to specify changes in
the state of some social mechanism (e.g., norms, organization, etc.). However, as far as we
know, no work in this category has proposed ways of relating brute facts to their environmental
consequences. In fact, in our view, these works do not consider the constitution of status
functions, which conditions the environmental consequences of institutional actions.

The ontological approach proposes ways of relating brute facts to abstract concepts
related to the application domain, analogous to the status functions proposed by Searle.
However, as far as we know, the status functions in these works are used exclusively in the
specification of norms. This relationship allows norms to be specified with abstract concepts,
making them stable. However, such a relationship does not allow solving the problems that
we are pointing out in this thesis. The constitution of status functions can bring normative
(covered by these works) and environmental consequences. We are interested in the latter.

In short, current models of artificial institutions allow expressing the institutional conse-
quences of concrete facts but do not allow expressing the consequences of institutional facts in
the environment. It limits the use of models only to support regulative norms. However, these
works ignore some of the motivations for creating status functions. Searle’s theory, presented
in Section 2.1, makes it clear that the functions associated with statuses are created to satisfy
the practical interests of the agents. Aguilar et al. (RODRIGUEZ-AGUILAR, Juan A. et al.,
2015) back up this conclusion by arguing that institutions have not yet addressed how to help
agents make decisions to achieve their interests. These limitations and conclusions inspire the
purpose model introduced in the next chapter.

2.3. Reasoning about institutional reality 43

2.3 REASONING ABOUT INSTITUTIONAL REALITY

This section describes works that address agents reasoning about the institutional reality
to satisfy their interests (i.e., its goals or anti-goals). For this reason, the works that propose
ways for agents to reason about normative consequences (activation, violation, etc. of norms)
are not considered. There are two reasons to explain it. First, most of the works presented in
Section 2.2 consider the agents’ side in relation to institutional reasoning for the satisfaction
of norms. Second, the behaviour prescribed by the norms may be not related, or even may
conflict, with the goals or anti-goals of the agent. Furthermore, the norms do not include
explicit means to connect the prescribed behaviour to the goals or anti-goals of the agents and
the consequences that the regulated actions can provoke in the environment.

The approach of Criado et al. (CRIADO et al., 2014) proposes ways for the agent to
reason about institutional facts to satisfy its interests. This approach adds the reasoning about
constitutive rules to the Belief Desire Intention (BDI) reasoning cycle (BRATMAN; ISRAEL;
POLLACK, 1988). The reasoning about constitutive rules consists of finding the brute fact
that constitutes status functions whose identifier is the same as the identifier of the goal of
the agent. For example, if the agent has the goal of marriage and there is a constitutive rule
stating that signing a contract counts as marriage the agent concludes that by signing the
contract it achieves its goal. From this information, agents then follows the course of actions
required to sign the contract, the status function is constituted, and the goal of the agent is
satisfied.

2.3.1 Discussion

To discuss the work presented, it is important to remember the problem involved in
this thesis, which is the lack of representation of the consequences of institutional actions.
The approach by Criado et al. (CRIADO et al., 2014) proposes ways for the agent to reason
about constitutive rules only if the agent’s goal has the same identifier as the status function
in the constitutive rule. For example, if the agent’s goal is marriage and there is a constitutive
rule stating that signing a contract counts as marriage, the agent can reason about the rule.
However, if the agent’s goal is to form a family, it cannot reason about the same constitutive
rule even if the practical effect of the constitution is the same. In short, this work does not allow
agents to reason about the consequences of constitutions considering the states of the world
that can be reached (which may or may not be in the interests of agents). Agents’ declarative
goals (see more in Section 3.1) describe states of the world that the agents want to achieve.
Status functions (see more in Section 2.1) describe abstract concepts that are assigned to
concrete elements through the constitution process. These statuses are just identifiers that do
not seem to express the same idea as the agent’s goal. Therefore, relating them does not seem
to be appropriate.

In short, current works still do not consider ways for the agent to reason about the

44 Chapter 2. Background and state of the art

consequences that constitutions produce in the environment. The result of this limitation is
that agents may find it difficult to reason about constitutive rules in terms of satisfying their
goals or avoiding anti-goals. Allowing the agent to reason about the institution in such a way
is an open question that also inspires the model of purpose presented in the next chapter.

45

3 PURPOSE PROPOSAL FOR MAS

The previous chapter explained how Searle’s theory deals with the environmental con-
sequences of institutional actions. These consequences are called Purpose by Searle (SEARLE,
J. R., 1995; SEARLE, J., 2010). Resuming the definition, purposes are “consequences that
happen in the environment from the constitution of status functions that are directly related to
the interests of agents". For example, an agent performs some action that constitutes payment
because the consequence of that action on the environment matches its goal of holding a
book.

The concept of purpose inspires the model proposed in this thesis, which considers that
status functions are associated with purposes that point to the states that can be achieved
from the constitution of these status functions. We assume that these states are always of
the interests of the agents (i.e., states they want to achieve or prefer to avoid). The main
novelty of this model in relation to the literature in the area of artificial institutions is the fact
that it makes explicit the consequences that occur in the environment from the constitution
of status functions. These consequences are ignored in current work on artificial institutions,
being implicit in the mind of the system designer, limiting the actions of agents in the aspects
addressed in Section 1.1. Considering the objectives of this thesis, stated in Section 1.3, this
chapter (i) defines suitable abstractions to represent the purposes, (ii) defines how the models
of artificial institutions, proposed in the literature, integrate the proposed representation of
purposes and (iii) defines how the interests of agents, expressed through goals or anti-goals,
are related to the proposed representation of purposes.

In the following, Section 3.1 presents an overview of the model. Section 3.2 presents
the formalization of the institutional concepts presented in Section 3.1. The elements presented
in Sections 3.1 and 3.2 are used to instrument the institutions with information regarding the
consequences of institutional actions. Section 3.3 presents some functions and algorithms that
agents can use to act in systems composed of institutions. Section 3.4 presents the use of
algorithms in a case study. Sections 3.3 and 3.4 illustrate how agents can use the information
from Sections 3.1 and 3.2 in their reasoning and deliberation processes. Section 3.5 presents
the implementation of the model in an ontology. Section 3.6 presents the integration of the
ontology, which implements the purpose model, in a MAS development framework. Finally,
Section 3.7 presents the Jason implementation of some algorithms described in Section 3.3.

3.1 PURPOSE MODEL - OVERVIEW

The essential concepts composing the proposed model are agents, (anti) goals, insti-
tutions, and purposes, depicted in the Figure 6. Agents are autonomous entities that can
interact within a dynamic environment composed of non-autonomous elements to achieve
their goals (WOOLDRIDGE, 2009). The literature presents several definitions of goal that are
different but complementary to each other (see more in (WINIKOFF et al., 2002), (HINDRIKS,

46 Chapter 3. Purpose proposal for MAS

K. V. et al., 2000), (RIEMSDIJK; HOEK; MEYER, 2003), and (NIGAM; LEITE, 2006)). In this
thesis, goals are states of the environment that agents aim to achieve. According to Aydemir
et.al (AYDEMIR; GIORGINI; MYLOPOULOS, 2016), anti-goal is an undesired situation of
the system. In this thesis, anti-goal are states that agents aim to avoid for ethical reasons,
particular values, prohibitions, etc. States are formed by one or more properties that describe
the characteristics of the system at some point of its execution (CASSANDRAS; LAFORTUNE,
2008). Moreover, agents can perform actions that trigger events in the MAS. We assume that
the process of converting actions to events happens automatically in the system.

Purpose
points to

State

System

associated

with

Constitutive Rule

Status-Function Agent

goal
1..* 1..*

1..*

1..*

1..*

1..*

Event
action

EnvironmentInstitution

1..*

1..*

anti-goal1..*

1..*

Figure 6 – Overview of the model.

Institutions provide the social interpretation of the environmental elements of the
MAS as usually proposed in the literature (CLIFFE; DE VOS; PADGET, 2006; FORNARA,
2011; BRITO, M. d. et al., 2016; CARDOSO, HENRIQUE LOPES; OLIVEIRA, EUGÉNIO,
2007; VIGANÒ; COLOMBETTI, Marco, 2008; ALDEWERELD, Huib et al., 2010). This social
interpretation occurs through the interpretation of constitutive rules that assign status to
environmental elements, as described in Section 2.1. It is beyond the scope of this thesis
to propose a model of artificial institutions. Instead, it considers this general notion of the
institution as the entity that constitutes status functions, which is adopted by several models
in the field of MAS.

The functions associated with status functions can satisfy the practical interests of
agents (SEARLE, J. R., 1995, p.20). From the institution’s perspective, these interests are
called purposes. From the agents’ perspective, these interests are their goals or anti-goals.
Then, we claim that (i) goals and anti-goals match with the purposes of status functions and
(ii) goals, anti-goals, and purposes point to environmental states related to the status functions.
Actions performed by agents trigger intermediate actions that reach the states pointed out by
the purposes, satisfying the agents’ goals or anti-goals. For example, when an agent performs
an action that constitutes tweet, this makes possible the execution of other intermediate actions
(e.g., server receives the message, filters the message if necessary, etc.) that bring the system
to states such as published information (i.e., the agent goal) or fake news spread (i.e., the
agent anti-goal). In our proposal, the states pointed to by the purposes are expected to occur

3.2. Purpose model - Instrumenting institutions 47

in the system as long as the intermediate actions are successfully executed. However, these
actions are outside the institution’s control and depend on other elements that make up the
system. For this reason, this work only points to the expected states without caring about their
achievement. We consider that the agent’s interest refers to the expected state independent
of intermediate steps.

Shortly, this model provides two relationships: (i) between purposes and status functions
and (ii) between purposes and states of the world that match the goals and anti-goals of
agents. The consequences of institutional actions, which are the result of the constitution of
status functions, become explicit, and from this, agents can satisfy their interests in systems
composed of institutions. Thus, if there is (i) a constitutive rule specifying how a status
function is constituted, (ii) a purpose associated with that status function, and (iii) an agent
has a goal or anti-goal that matches with the states pointed to by the purpose, then (iv)
it is explicit how the agent should act to achieve its goal or avoid its anti-goal. From these
relationships, the agent can perform three queries to find out what action it can take to achieve
its goal: (i) a query to find the purposes that point to states of the world that match with the
goals of the agent, (ii) a query to find out which status function is associated with the found
purposes, and (iii) a query to find which concrete actions can constitute that status functions.
For example, the agent can find that the purpose of transmitting information points to the
published information state, which matches the goal of the agent; the purpose of transmitting
information is associated with the tweet status function and the action broadcast a message
can constitute tweet in this system. Therefore, if the agent performs the action broadcast a
message, it achieves its goal in this system.

3.2 PURPOSE MODEL - INSTRUMENTING INSTITUTIONS

This section formally1 describes the model by specifying the connection of purposes (i)
with the status functions, and (ii) with the consequences in the environment of constituted
status functions. Although the concept of purpose is independent, it is used in conjunction
with the states, agents, and institutions that make up the MAS. To illustrate the use of the
model, we use as an example the scenario in which an agent (henceforth referred to as Bob)
aims to publish information on different social networks.

Definitions 1 to 5 represent the environmental elements and their relationships. Defi-
nitions 6 and 7 are based on (BRITO, M. d. et al., 2016; DE BRITO; HÜBNER, Jomi Fred;
BOISSIER, 2018) and represent the essential elements that make up institutions (expressed in
the Institution rectangle in the Figure 6). The definitions 8 to 11 represent the purposes and
its relations with status functions and states of the environment that are of interest of agents
(expressed in the Purpose rectangle and its relations in the Figure 6).

1 We formalize the model to make it more accurate and facilitate the development of algorithms that can be
used to improve the agents’ decision process.

48 Chapter 3. Purpose proposal for MAS

Definition 1 (States) A state is a set of properties. Properties are characteristics of the
environment at some point of its execution. The set of all properties that the system can present
is represented by 𝒯 .The state of the environment at some moment is the set of all the standing
properties. 𝒮= 2𝒯 is the set of all possible states of the environment. For example, if 𝒯 =
{published_information, fake_news_spread}, then 𝒮 = {{},{published_information}, {fake_
news_spread}, {published_information, fake_news_spread}}.

Definition 2 (Events) Event is an instantaneous occurrence within the system (CASSAN-
DRAS; LAFORTUNE, 2008). Events may be both triggered by actions of the agents (e.g.,
sending of a message) and spontaneously produced by some non autonomous element (e.g.,
a clock tick). The set of all events that may happen in the environment is represented by
ℰ . Each event is represented by an identifier. For example, in a MAS where the events
that may occur in the environment are broadcast_a_message and send_private_message,
ℰ = {broadcast_a_message, send_private_message}.

Definition 3 (Agents) The set of all agents that can act in the MAS is represented by 𝒜.
Each agent is represented by an identifier. For example, if the agents acting in the system are
Bob and Tom, then 𝒜 = {Bob, Tom}.

Definition 4 (Relationship between Agents and their goals) In this work, goals are states
of the world that agents desire to reach.2 𝒢 relates agents and their goals (𝒢 ⊆ 𝒜× 𝒮). For
example, the pair ⟨Bob, {published_information}⟩ ∈ 𝒢 means that the agent Bob has the goal
published_information.

Definition 5 (Relationship between Agents and their anti-goals) Anti-goals are states
in the MAS that an agent does not desire. G relates agents and their anti-goals (G ⊆ 𝒜×𝒮).
For example, the pair ⟨Bob, {fake_news_spread}⟩ ∈ G means that Bob has the anti-goal
fake_news_spread. From a general point of view, there is no difference between an anti-goal
and the denial of a goal. However, to avoid the addition of negated goals in the model, we
opted to have explicit anti-goals. The intersection between agent goal and anti-goal should be
empty (𝒢 ∩ G = ∅).

Definition 6 (Status Functions) A status is an identifier that assigns to the environmental
elements an accepted position, especially in a social group. It allows the environmental elements
to perform functions (associated with the status) that cannot be explained through its physical
structure (SEARLE, J., 2010, p.07). The set of all the status functions of an institution is
represented by ℱ . For simplicity, in this formalization we only consider statuses assigned to
events. For example, if the existing status functions in a system are tweet and story, then
ℱ = {tweet, story}.
2 We focus on declarative goals (i.e., goals that describe desirable situations) because declarative goals are

state-related goals.

3.3. Purpose model - Helping agents to act in systems composed of institutions 49

Definition 7 (Constitutive rules) Constitutive rules specify the constitution of status func-
tions from environmental elements. Searle proposes to express these rules as X count-as Y in C,
as explained in Section 2.1. Since the process of constitution is beyond the scope of this thesis,
the element C can be ignored. For simplicity, a constitutive rule is hereinafter expressed as X
count-as Y. The set of all constitutive rules of an institution is represented by 𝒞. A constitutive
rule c ∈ 𝒞 is a tuple ⟨x ,y⟩, where x ∈ ℰ and y ∈ ℱ , meaning that x count-as y . For example,
𝒞 = {⟨broadcast_a_message, tweet⟩} defines a MAS with a single constitutive rule. This rule
states that broadcast_a_message count-as tweet.

Definition 8 (Purposes) The purposes are related to the agents’ practical interests. The set
of all purposes is represented by 𝒫 . Each purpose is represented by an identifier. For example,
𝒫 = {transmit_information} defines the unique purpose for the MAS.

Definition 9 (Relationship between status functions and purposes) We define that pur-
poses are associated with the constitution of status functions. Thus, there must be a relation-
ship between these two concepts. This relation is represented by ℱP ⊆ ℱ × 𝒫 . For example,
{⟨tweet, transmit_information⟩} ∈ ℱP means that the constitution of the status function
tweet is associated with the purpose transmit_information.

Definition 10 (Relationship between purposes and agent’s goals and anti-goals) The
relationship between purpose and agent goal and anti-goal considers that a purpose point to
one or more states in the MAS that matches the agents goals and anti-goals. 𝒢P is the relation
between purpose and goals and anti-goals (𝒢P ⊆ 𝒫×𝒮). For example, {⟨transmit_information,
{published_information, fake_news_spread}⟩} ∈ 𝒢P means that purpose transmit_information
points to a state with properties published_information and fake_news_spread, which may
also be goal or anti-goal of some agent.

Definition 11 (Model) The overall model of a MAS with purpose is thus a tuple ⟨𝒮, ℰ ,𝒜,
𝒢, G ,ℱ , 𝒞,𝒫 ,ℱP ,𝒢P⟩, which elements as defined previously.

3.3 PURPOSE MODEL - HELPING AGENTS TO ACT IN SYSTEMS COMPOSED OF
INSTITUTIONS

Considering the problems of this thesis, discussed in Section 1.1, this section defines
functions and algorithms that help the agents to explore the connections defined by the Purpose
model to satisfy their interests. In the following, Section 3.3.1 introduces some functions that
define relationships among the sets formalized in Section 3.2. These functions are important for
extracting information useful for agents’ reasoning. Section 3.3.2 introduces some algorithms
that instrument agents to use this information in their reasoning and deliberation processes.
The use of these algorithms and practical implementation are presented in the rest of this
thesis.

50 Chapter 3. Purpose proposal for MAS

3.3.1 Functions to retrieve information for the agents

In this section, we formalize some functions that an agent can use to discover (i)
which institutional action can be taken to achieve its goal or avoid its anti-goal and (ii) the
environmental effects of performing an institutional action. For (i), we need purposes that
point to the goals and anti-goals of agents (Definition 12), the status functions that enable the
purposes (Definition 13), and the events that can constitute status functions (Definition 14).
For (ii), we need the status functions related to the events produced by an action (Definition 15),
the purposes of these status functions (Definition 16), and the states pointed by these purposes
(Definition 17).

Definition 12 (Mapping agents interests to purposes) The set of purposes related to
some state (and thus related to the agents’ interests) is given by the function fsp : 𝒮 → 2𝒫

s.t. fsp(g) = {p | ⟨p, s⟩ ∈ 𝒢P ∧ g ⊆ s}. For example, if 𝒢P = {⟨transmit_information,
{published_information, fake_news_spread}⟩}, then fsp({published_information}) =
{transmit_information}.

Definition 13 (Mapping purposes to status functions) The set of status functions asso-
ciated with a purpose is given by the function fpsf : 𝒫 → 2ℱ s.t. fpsf (p) = {f | ⟨f,p⟩ ∈ ℱP}.
For example, if ℱP = {⟨tweet, transmit_information⟩}, then fpsf (transmit_information) =
{tweet}.

Definition 14 (Mapping status functions to events) The events that constitute a status
function are given by the function fca : ℱ → 2ℰ s.t. fca(f) = {e | ⟨e,f⟩ ∈ 𝒞}. For example,
if 𝒞 = {⟨broadcast_a_message, tweet⟩}, then fca(tweet) = {broadcast_a_message}.

Definition 15 (Mapping events to status functions) The status functions that are con-
stituted by an event are given by the function fc : ℰ → 2ℱ s.t. fc(e) = {f | ⟨e,f⟩ ∈ 𝒞}. For ex-
ample, if 𝒞 = {⟨broadcast_a_message, tweet⟩}, then fc(broadcast_a_message) = {tweet}.

Definition 16 (Mapping status functions to purposes) The set of purposes that are as-
sociated with a status function is given by the function fp : ℱ → 2𝒫 s.t. fp(f) = {p |
⟨f,p⟩ ∈ ℱP}. For example, if ℱP = {⟨tweet, transmit_information⟩}, then fp(tweet) =
{transmit_information}.

Definition 17 (Mapping purposes to states) The set of states pointed by a purpose is
given by the function fsw : 𝒫 → 𝒮 s.t. fsw(p) = {s | ⟨p, s⟩ ∈ 𝒢P}. For example, if 𝒢P =
{⟨transmit_information, {published_information, fake_news_spread}⟩}, then fsw(transmit_in-
formation) = {{published_information, fake_news_spread}}.

3.3. Purpose model - Helping agents to act in systems composed of institutions 51

3.3.2 Algorithms to help the agent reason about purpose

This section presents algorithms that use the functions presented in Section 3.3.1.
These algorithms can be used by the agents to reason and deliberate about actions that can
be used to achieve their goals or avoid anti-goals in institutional contexts.

Algorithm 1 can be used by the agent to find which institutional action can achieve its
goal. The algorithm can be summarized in the following steps: (1) verify if the agent’s goal
(i.e., the state) is pointed by some purpose (line 4); if true, go to the next step, otherwise
return an empty set (line 14); (2) consider all purposes that are pointed to by the agent’s goal
(line 5); (3) for each status function that may be associated with such purposes (line 6), find
the events that may constitute such status function (line 7), the actions that can produce such
event (line 8), and add the actions in a set (line 9); and finally, (4), return the set of actions
(line 14).

Algorithm 1 Find institutional actions to achieve a goal g
1: Input: agent goal g
2: Output: The set of actions ac
3: ac← {}
4: if fsp(g) ̸= {} then ◁ If the goal g is a state appointed by the purposes
5: for p ∈ fsp(g) do ◁ p is the set of purposes that point to the agent goal g
6: for f ∈ fpsf (p) do ◁ f is the set of status functions associated with the purpose

set p
7: for e ∈ fca(f) do ◁ e is one event that constitute f
8: acpe← action that can produce the event e
9: ac← ac ∪ {acpe} ◁ add action that can produce the event e

10: end for
11: end for
12: end for
13: end if
14: return ac

The Algorithm 2 can be used by the agent to find out which are the environmental
effects of executing an action in an institutional context. The algorithm can be summarized in
the following steps: (1) verify whether the action is an institutional action, i.e., if it produces
events that constitute status functions in the institution (lines 4 and 5); if true, go to the next
step, otherwise return an empty set (line 12); (2) consider all status functions related to the
action (line 6); (3) consider all purposes of such status functions (line 7); and (4) for each
purpose, add the states it points to the algorithm return set (line 8).

The Algorithm 3 can be used by the agent to verify whether some action in an institu-
tional context can produce states considered agents’ goals. The algorithm can be summarized
in the following steps: (1) use algorithm 2 to find the states that are reached if action ac is
performed; (2) check whether these states match some goal in 𝒢.

52 Chapter 3. Purpose proposal for MAS

Algorithm 2 Find the effects of an action ac in the environment
1: Input: an action ac
2: Output: the set of possible states after ac
3: s← {}
4: e← event produced by action ac
5: if fc(e) ̸= {} then ◁ if the event e may constitute a status functions
6: for f ∈ fc(e) do ◁ f is the set of status functions that e count-as
7: for p ∈ fp(f) do ◁ p is the set of purposes that are associated with f
8: s← s ∪ fsw(p) ◁ add states pointed to by p
9: end for

10: end for
11: end if
12: return s

Algorithm 3 Verify whether some action ac can produce states considered as goals for agent
ag.

1: Input: ac, ag
2: Output: returns true if ac implies an agent goal and false otherwise
3: se← algorithm 2(ac) ◁ se is the set of states pointed to by ac
4: return ∃g∈𝒮 ⟨ag,g⟩ ∈ 𝒢 ∧ g ⊆ se ◁ checks whether goals are included in se

The Algorithm 4 can be used by the agent to verify whether some action in an in-
stitutional context can produce states considered agents’ anti-goals. The algorithm can be
summarized in the following steps: (1) use algorithm 2 to find the states that are reached if
action ac is performed; (2) check whether the achieved states match some anti-goal in G .

Algorithm 4 Verify whether some action ac can produce states considered as anti-goals for
agent ag.

1: Input: ac, ag
2: Output: returns true if ac implies an agent anti-goal and false otherwise
3: se← algorithm 2(ac) ◁ se is the set of states pointed to by ac
4: return ∃g∈𝒮 ⟨ag,g⟩ ∈ G ∧ g ⊆ se ◁ checks whether anti goals are included in se

3.4 EXAMPLE OF USING PURPOSES

Returning to the example of the agent Bob, which has the goal published information on
some social networks, this section illustrates the use of the algorithms formalized in Section 3.3
to achieve the goal on the social network Instagram. Furthermore, Bob prefers to avoid (i.e.,
it has the anti-goal) of fake news spread. Table 1 contains the sets that define this system.

From the formal representation of the elements that compose the system (Table 1),
Algorithm 1 is used by Bob to find out an institutional action that can help it to achieve
its goal. Table 2 shows the values of the variables when running Algorithm 1. In short, the

3.4. Example of using purposes 53

Table 1 – Formalization of the example
Element Set
Agents in the MAS 𝒜 = {Bob}
Possible environmental states 𝒮 = {{}, {published_information},

{fake_news_spread},
{published_information, fake_news_spread}}

Events ℰ = {broadcast_a_message}
Goals 𝒢 = {⟨Bob, {published_information}⟩}
Anti-goals G = {⟨Bob, {fake_news_spread}⟩}
Status functions ℱ = {story}
Constitutive rules 𝒞 = {⟨broadcast_a_message, story⟩}
Purposes 𝒫 = {transmit_information}
Relation status function ×
purpose

ℱP = {⟨story , transmit_information⟩}

Relation purpose × state 𝒢P = {⟨transmit_information, {published_infor -
mation, fake_news_spread}⟩}

algorithm takes as input Bob’s goal (i.e., published_information) and returns the action that
Bob can perform to achieve its goal (i.e., broadcast_a_message).

Table 2 – Execution of Algorithm 1 to help Bob achieve its goal of published information.
Line Situation
1 Input: g = {published_information}
3 ac = {}
4 fsp({published_information}) = {transmit_information}
5 p = {transmit_information}
6 fpsf (transmit_information) = {story} then first f = story
7 fca(story) = {broadcast_a_message} then first e = broadcast_a_message
8 acpe = broadcast_a_message
9 ac = {broadcast_a_message}
12 Output: ac = {broadcast_a_message}

To illustrate the use of the other algorithms, consider that Bob knows that it needs to
perform the action broadcast_a_message and wants to know what effects the action has on
the environment. For this, Bob can run Algorithm 2. Table 3 shows the values of the variables
when running this algorithm. In short, the algorithm takes as input the action that Bob intends
to perform (i.e., broadcast_a_message) and returns the states that are produced by this action
(i.e., published_information and fake_news_spread).

The agent Bob uses Algorithm 3 to find out whether the effects of an institutional
action are compatible with its goal. For that, the parameters for the algorithm are the ac-
tion broadcast_a_message and the agent Bob. In this case, the Algorithm 3 returns true,
since Algorithm 2 returns {published_information, fake_news_spread} for the action broad-
cast_a_message and it contains Bob’s goal {published_information}.

54 Chapter 3. Purpose proposal for MAS

Finally, Bob uses Algorithm 4 to find out if some effect of an institutional action are com-
patible with its anti-goal. Again, the parameters are the action broadcast_a_message and the
agent Bob. The Algorithm 4 returns true, since Algorithm 2 returns {published_information,
fake_news_spread} for the action broadcast_a_message and it contains Bob’s anti-goal
{fake_news_spread}.

Based on the information returned by these algorithms, Bob can make a better decision
about whether or not to act on the system. In the example, no action can be used to achieve
its goal, which does not imply an anti-goal. Similar steps can be applied to achieve goals and
avoid anti-goals in other social networks.

3.5 PURPOSE IMPLEMENTATION

This section illustrates how the purpose model can be implemented. We propose that
the model can be implemented through a data structure that allows (i) specifying the status
functions, purposes, and states of the world, (ii) associating the status functions with the
corresponding purposes, and (iii) associating the purposes with the states of the world to
which they point to. Any data structure that records this information and connections can be
used.

We use ontology (FIKES; FARQUHAR, 1999; MAEDCHE; STAAB, 2001; GUARINO,
1998) to implement the purpose model. Figure 7 illustrates the model concepts, their connec-
tions, and how they are translated into the ontology. The rectangles represent concepts that
the model uses. These concepts are converted into classes (circles) within the ontology. The
status function concept is converted to the status function class, the purpose concept to the
purpose class, etc. The exception is the state concept. It is converted to a corresponding class,
but in order to comply with the definition of states (cf. Section 3.2) and with the representation
of this concept in the framework used to develop the examples of this work (cf. Section 4.1), it
was necessary to add two more classes called Predicate and Parameter. These classes make it
possible to describe predicates that can have one or more parameters (i.e., terms in predicate

Table 3 – Execution of Algorithm 2 to help Bob discover what are the effects of an institutional
action.

Line Situation
1 Input: ac = broadcast_a_message
3 s = {}
4 e = broadcast_a_message
5 fc(broadcast_a_message) = {story}
6 f = story
7 fp(story) = {transmit_information} then first p = transmit_information
8 fsw(transmit_information) = {published_information, fake_news_spread} then

s = {published_information, fake_news_spread}
12 Output: s = {published_information, fake_news_spread}

3.5. Purpose implementation 55

Purpose
points to

State

associated

with

Status-Function 1..* 1..*
1..*1..*

Status-Function Purpose State Predicate Parameter
hasPurpose hasConsequence hasPredicate hasParameter

isPurposeOf isConsequenceOf isPredicateOf

Model

Ontology

isParameterOf

Agent

goal

anti-goal

1..* 1..*

1..* 1..*

Figure 7 – Model implementation in an ontology.

logic) and relate them to one or more states. The order in which the parameters are associated
with the predicate is defined through an annotation called owl:position.

Status-Function Purpose State Predicate Parameter
hasPurpose hasConsequence hasPredicate hasParameter

isPurposeOf isConsequenceOf isPredicateOf

Ontology

isParameterOf

story transmit_

information stateS1 published_

information

newYear

Bob

owl:position
1

owl:position
2

hasPurpose hasConsequence hasPredicate

hasParameter

hasParameter

Figure 8 – Example of using the ontology that implements the purpose model.

Figure 8 illustrates some individuals exemplifying the use of the ontology to implement
the purpose model. Consider the following statement: The story status function is associated
with the transmit_information purpose. This one points to the stateS1 state. Such a state is
formed by the published_information predicate, which is composed of the parameters newYear
and Bob. Converting this information to individuals in the ontology in question, story is an
individual of the status function class, transmit_information is an individual of the purpose
class, stateS1 is an individual of the State class, published_information is an individual of
the Predicate class, and newYear and Bob are individuals of the Parameter class. When adding
newYear and Bob, we can add the values 1 and 2, respectively, to the owl:position property of
each individual. Obviously, it is necessary to make the associations between the individuals of
the ontology so that the information matches the statement. In this case, story is related to
transmit_information through the hasPurpose object property, transmit_information
is related to stateS1 through the hasConsequence object property, stateS1 is related to
the published_information predicate through the hasPredicate object property, and finally,

56 Chapter 3. Purpose proposal for MAS

newYear and Bob are related to published_information through of the hasParameter object
property.

3.6 COUPLING THE PURPOSE MODEL IN AN MAS DEVELOPMENT FRAMEWORK

This section illustrates how the purpose model can be introduced into a MAS develop-
ment framework. For it, we use a series of components depicted in Figure 9. The model can
be used in other frameworks as long as it (i) contains means of specifying information about
purposes and their connections (with states of the world and status functions) and (ii) allows
agents to access this information.

Figure 9 – Component diagram with the systems used to develop the examples.

The agents are programmed in Jason (BORDINI; HÜBNER, Jomi Fred; WOOLDRIDGE,
2007). Jason enables the implementation of BDI agents using high-level constructs, such as
beliefs, desires, and intentions, from which the agent makes decisions about the course of
action to follow.

The environment is programmed in CArtAgO (RICCI; PIUNTI; VIROLI, 2011), which
provides a set of programming abstractions to represent the shared environment. These pro-
gramming constructs concern first the notion of artifact, the basic entity of the environment
that encapsulates computation or other forms of resources (BOISSIER et al., 2019). Agents
can act upon the artifacts through their available operations and can inspect states through
their observable properties. In this thesis, CArtAgO artifacts provide an interface for agents to
interact with the purpose model implementation and SAI.

To introduce artificial institutions, we use an implementation of the SAI model (DE
BRITO; HÜBNER, Jomi Fred; BOISSIER, 2018). It provides a model of institutional reality that
is represented through status functions, constitutive rules, etc. Constitutive rules assign status
functions to elements present in the environment through a process called constitution. SAI
allows specifying the elements present in the institutional reality and managing the constitution
process.

We use an ontology to implement the model in the examples used in this thesis
(cf. Section 3.5). The query and persistence of data in the ontology are enabled by extending
the CArtAgO artifact with MasOntology.3 It is a set of functions developed in CArtAgO that
3 https://github.com/smart-pucrs/MasOntology

3.7. Implementations of the Algorithms in Jason programs 57

allows agents to interact with ontologies.

3.7 IMPLEMENTATIONS OF THE ALGORITHMS IN JASON PROGRAMS

Listing 3.1 illustrates the program in Jason to implement Algorithm 1. This program
is essentially a plan that agents can execute to discover which institutional actions (Actions
argument) can be performed to achieve a goal (Goal argument). We assume each institution
has a CArtAgO artifact that allows the agent to access information related to an institutional
specification. The plan has the following steps: (i) Create an empty queue to store the actions
that may be executed in the environment (line 2); (ii) search for the purposes that point to
the goal that the agent wants to achieve (line 3); (iii) discover the status functions that are
associated with these purposes (line 5); (iv) find out which actions can constitute the status
functions (line 8) and; (v) add these actions to the queue (line 9). The getPurposeOfState
and getStatusFunctionsFromPurpose are operations provided by the artifact that gives
access to the purposes, and constitutive_rule is a belief acquired through observing the
observable properties of the artifact that implements the institution.

1 +! alg1(Goal , Actions) <-

2 .queue. create (Actions);

3 getPurposesOfState (Goal , Purposes);

4 for (. member (Purpose , Purposes)) {

5 getStatusFunctionsFromPurpose (Purpose , NameSF);

6 for (. member (StatusFunction , NameSF)){

7 ? constitutive_rule (Action , StatusFunction ,_,_);

8 .queue.add(Actions , Action);

9 }

10 }.

Listing 3.1 – Program to find the institutional action that can help the agent to achieve its
goal.

Listing 3.2 illustrates the program in Jason to implement Algorithm 2. The alg2 discovers
what are the consequences in the environment (States argument) from the execution of
institutional actions (Action argument). The plan has the following steps: (i) Find the status
functions that are constituted by the action informed as argument (line 1); (ii) create a queue
to store the states that can be reached when the institutional action is performed (line 2);
(iii) fetch the purposes that are associated with these status functions (line 3); (iv) fetch
the predicates that represent the states pointed to by the purposes (line 5) and (v) add
these predicates in the queue of states (line 7). The getPurposesOfStatusFunctions and
getPredicatesOfStatesRelatedToPurpose are operations provided by the artifact that
gives access to the purposes.

1 +! alg2(Action , States) : constitutive_rule (Action ,SF ,_,_) <-

58 Chapter 3. Purpose proposal for MAS

2 .queue. create (States);

3 getPurposesOfStatusFunctions (SF , Purposes);

4 for (. member (Purpose , Purposes)){

5 getPredicatesOfStatesRelatedToPurpose (Purpose , Predicates);

6 for (. member (Predicate , Predicates)){

7 .queue.add(States , Predicate);

8 }

9 }.

10

11 +! alg2(Action , []). // If there is no status functions that can

be assigned to the action

Listing 3.2 – Program to find the consequences in the system of performing an action.

59

4 EVALUATING THE PURPOSE MODEL

Considering the problems that motivate this work, we deal with the hypothesis that
Searle’s theory is an inspiration to make explicit the consequences in the environment of the
execution of institutional actions. This Chapter presents some examples of applications that
help us to evaluate if and how the purpose model - which is inspired by Searle’s theory to
approach the considered problems - confirms the proposed hypothesis. More precisely, we aim
to illustrate that the proposed approach allows (i) to improve agents in aspects of adaptability,
rationality, and flexibility and (ii) contribute to the literature in the area of artificial institutions
by making these concepts and relationships explicit. This Chapter presents solutions for the
following problem explained in Section 1.1: how agents can exploit them to act according to
their interests. The other problems, explained in Section 1.1, are resolved and discussed in
Chapter 3.

The rest of this Chapter is organized as follows: Section 4.1 presents some practical
examples and criteria that are used to evaluate the advantages and disadvantages that agents
gain from using the proposed model. Section 4.2 positions the purpose model in the literature,
discussing the already existing proposals, the advances that the model provides, and some
limitations that still need to be addressed.

4.1 USING THE PURPOSE MODEL FROM THE PERSPECTIVE OF AGENTS

This section illustrates some practical advantages and disadvantages that agents gain
from using the purpose model in Open MAS. For that, we define some criteria and use examples
to conduct the evaluation. The criteria are:

• Adaptability: refers to the capability of the agents to adapt to different social
abstractions present in the systems in which they are entering.

• Rationality: considers situations where the agents have more information to reason
and deliberate about their interests.

• Flexibility: refers to the situation where the agents can satisfy their interests in
scenarios that are unknown to them at design time without the need to be modified.

We evaluate these criteria through three connections: (a) between actions and their
institutional consequences, (b) between the institutional consequences and their environmental
consequences, and (c) between the environmental consequences and the agents’ goals. In
addition, we also use the implicit and explicit notions. Here, we limit the institutional conse-
quences to those related to the constitutions of status functions assigned to actions. Regarding
implicit and explicit notions, they are inspired in (DIGNUM; ALDEWERELD; DIGNUM, F.,
2011; LEMAÎTRE; EXCELENTE, 1998). We consider something to be explicit when it is rep-
resented as a first-class abstraction. The notion of implicit is defined as the inverse of explicit.

60 Chapter 4. Evaluating the Purpose model

Furthermore, in these examples, for readability, the purposes are described using predicates,
although they are implemented in ontologies described in OWL.

In the following, Section 4.1.1 presents an example of two agents in a book trading
scenario. The objective of this example is to demonstrate the improvement in the adaptability
of agents in applications that use social abstractions (in particular, the purpose model);
Section 4.1.2 presents an example of an agent acting in a war scenario. The objective of this
example is to show how agents’ rationality improves in applications that use the purpose model;
and Section 4.1.3 presents an example of an agent that wants to satisfy its goal in different
social networks. The objective of this example is to show how the agent’s flexibility improves
when the purpose model is implemented in the application.

4.1.1 Application Example 1: Book trade

Adaptability is an important feature for agents when they plan to enter and participate in
different Open MAS. This section evaluates the adaptability provided by the purpose combined
with other social abstractions. This evaluation is based on an example considering a scenario
where the agent Bob has the goal of holding a book. To satisfy its goal, Bob can buy a book
owned by the agent Tom. To make the purchase, Bob needs to execute an action that count-as
payment and waits for the agent Tom to acknowledge the action as a payment before handing
to Bob the book. The environment in which agents act has some actions available that, when
executed, cause perceptions for them.

4.1.1.1 Case 1 - Simple MAS

This section considers an application without status functions, norms, and purposes.
Algorithm 5 describes the steps that an agent needs to perform to satisfy its holdBook goal.
The Algorithm receives as input the book owner identifier and, from this input, executes the
deliver paper note action and waits for the book to be delivered. Listing 4.1 describes the
Jason program that implements Algorithm 5. In this program, the agent is implemented with
the belief bookOwner(tom) where tom is the name of the book owner. When executing this
program, three steps are executed. First, Bob identifies tom as the book owner by consulting
its belief base. Second, Bob performs the action deliver_paper_note informing tom as
parameter. Third, Bob waits until it has the deliverBook belief, which is acquired when it
realizes the book has been delivered.

Algorithm 5 Algorithm for agents to achieve holdBook goal
1: Input: bookOwner
2: do (deliver_paper_note, bookOwner)
3: wait (deliverBook)

1 bookOwner (tom). // agent belief

4.1. Using the purpose model from the perspective of agents 61

2

3 ! holdBook . // agent goal

4

5 +! holdBook : bookOwner (Seller)

6 <- deliver_paper_note (Seller);

7 .wait(deliverBook).

Listing 4.1 – Program for agents to achieve holdBook goal

The book owner is a reactive agent. In this case, its actions are triggered by reactions
to facts perceived in the environment. Algorithm 6 describes the steps the agent needs to take
to deliver the book. The algorithm starts when the agent reacts to deliver_paper_note action
performed by the buying agent and, from this input, executes the action of delivering the book.
Listing 4.2 describes the Jason program that implements Algorithm 6. The program starts when
Tom perceives deliver_paper_note(bob). When executing this program, the following step
is executed: Tom performs the action deliver_book informing bob as parameter.

Algorithm 6 Algorithm for book owner agents to deliver the book to buyer agents
1: when (deliver_paper_note, buyer)
2: do (deliver_book, buyer)

1 + deliver_paper_note (Buyer) <- deliver_book (Buyer).

Listing 4.2 – Program for book owner agents to deliver the book to buyer agents

In this application, Bob is programmed to perform a specific action (i.e., deliver_paper
_note action) that modifies the environment. Tom is programmed to react to this action by
delivering the book. In this application, both agents do not depend on (or even consider) any
social abstraction to achieve their goals and perform their actions. For this reason, in this
example, there is no adaptability and the connections used to evaluate it are not considered.
The problem with this approach is that (a) if the actions or the perceptions change, or (b) if
environmental consequences change, or (c) if agents’ goals change, in all cases, the agents
need to be reprogrammed to adapt to changes.

4.1.1.2 Case 2 - MAS with status functions

This section considers an application with status functions and without norms and
purposes. We assume that the system has an institutional specification with a constitutive rule
stating that deliver_paper_note count-as payment. The constitution of the status function
payment produces the effects in the environment that satisfy Bob’s goal.

Algorithm 7 describes the steps that an agent needs to do to satisfy its holdBook goal.
The Algorithm receives as input the identifier of the book owner and the status function that
should be constituted. From that input, executes any action that constitutes the status function

62 Chapter 4. Evaluating the Purpose model

and waits for the book to be delivered. Listing 4.3 describes the Jason program that implements
Algorithm 7. In this Listing, the agent is implemented with beliefs bookOwner(tom) where tom
is the name of the book owner and statusFunction(payment(tom)) where payment(tom)
is the status function that should be constituted. When executing this program, four steps are
executed. First, Bob identifies tom as the book owner and payment as the status function that
should be constituted by consulting its belief base. Second, Bob queries the constitutive rules
of the system to verify which action constitutes payment. deliver_paper_note is the action.
Third, Bob performs deliver_paper_note. Fourth, Bob waits until it has the deliverBook
belief, which is acquired when it realizes the book has been delivered.

Algorithm 7 Algorithm for agents to achieve holdBook goal with status function
1: Input: bookOwner and statusFunction
2: action ← look for which action constitutes statusFunction
3: do (action, bookOwner)
4: wait (deliverBook)

1 bookOwner (tom). // agent belief

2 statusFunction (payment (tom)). // agent belief

3

4 ! holdBook . // agent goal

5

6 +! holdBook : statusFunction (SF) & bookOwner (Seller)

7 <- ? constitutive_rule (Action ,SF ,_,_);

8 Action ;

9 .wait(deliverBook).

Listing 4.3 – Program for agents to achieve holdBook goal with status functions

Algorithm 8 describes the steps that the reactive agent needs to take to deliver the
book. The algorithm starts when the agent perceives the constitution of a payment. From this
input, it reacts by executing the action of delivering the book. Listing 4.4 describes the Jason
program that implements Algorithm 8. The program starts when Tom perceives payment(bob)
belief. Tom then performs the action deliverBook informing bob as parameter.

Algorithm 8 Algorithm for book owner to deliver the book to buyer with status functions
1: when (payment is constituted, buyer)
2: do (delivery_book, buyer)

1 + payment (Buyer) <- deliver_book (Buyer).

Listing 4.4 – Program for book owner to deliver the book to buyer with status functions

In this application, Bob is programmed to perform some action that counts as payment.
Such a constitution has the environmental consequence of holdBook that matches Bob’s goal.

4.1. Using the purpose model from the perspective of agents 63

On the other hand, Tom is programmed to react to the payment constitution and deliver the
book to Bob. There are some improvements and problems with this approach discussed below.

The institutional consequence of actions is explicitly captured by the status function
concept and is represented through the institutional specification. The connection between
deliver_paper_note and payment is implemented by a constitutive rule. In this example, Bob
has been coded to exploit this connection and perform any action that counts as payment. Bob
can adapt in this system even if the set of actions that count as payment changes. Likewise,
the reactive agent is programmed to react to the constitution of the status function. In this
example, Tom is specified to react to any action that count as payment. In the same way, if
the actions change but still constitute payment, Tom can also adapt to changes.

However, this system lacks an appropriate concept to capture the environmental con-
sequences that result from the institutional consequences. Therefore, the connection between
payment and holdBook is implicit. In this example, Bob has been coded to perform any action
that counts as payment because is assumed that payment has the environmental consequence
of holdBook. However, if the environmental consequence of this status function changes, the
agent may not adapt to this change. For example, Bob would not be able to adapt to insti-
tutions where status functions other than payment produce the same effect holdBook. Even
if there is a connection between actions and their institutional consequences, there is not a
connection between institutional consequences and the environmental consequences that result
from them.

The lack of a proper abstraction to represent the connection between the institutional
consequences and their environmental consequences naturally leads to the impossibility of
relating these environmental consequences to the interests of the agents. The connection
between the environmental consequence holdBook and the agent’s goal holdBook is implicit.
In this example, Bob has been coded to perform any action that counts as payment because
it is assumed, in design time, that this constitution has consequences in the environment that
match Bob’s goal. However, if the environmental consequence or agent’s goal change, the
agent may not adapt. For example, if Bob’s goal changes, it would not be able to adapt to
institutions even if they provided the means to achieve its new goal.

In short, in this case, the connection between the action and its institutional con-
sequences became explicit. Agents can adapt to changes that occur in the set of actions
available as long as these actions remain having the same institutional consequences. How-
ever, the agents’ code is tightly coupled to the status functions. For example, if payment is
replaced by another status function, agents may not be able to adapt. Furthermore, the other
two connections are implicit because neither the environmental consequences nor the agents’
goals that these environmental consequences serve have abstractions to represent them in the
system. Therefore, (a) if the institutional consequences change, or (b) if the environmental
consequences change or (c) if agents’ goals change, in all cases, the agents may not be able
to adapt and therefore need to be reprogrammed.

64 Chapter 4. Evaluating the Purpose model

4.1.1.3 Case 3 - MAS with status functions and norms

This section considers an application with status functions and norms. We assume that
the system has (i) an institutional specification that contains a constitutive rule stating that
deliver_paper_note count-as payment and (ii) a norm stating that Tom is obliged to deliver
the book to the agent that constitutes payment. This constitutive rule, when constituted,
produces the effects in the environment that satisfy Bob’s goal. This norm, when activated,
obliges Tom to deliver the book to whoever constitutes payment.

Bob uses the same Algorithm and performs the same steps as described in Sec-
tion 4.1.1.2. Algorithm 9 describes the steps that the reactive agent needs to take to deliver
the book. The algorithm starts when the agent perceives the obligation established by the
norm. From this input, it reacts to the norm by performing the action of delivering the book.
Listing 4.5 describes the Jason program that implements Algorithm 9. The program starts
when Tom perceives that a norm with its name is activated. Tom then performs the action
deliver_book informing bob as parameter.

Algorithm 9 Algorithm for book owner to deliver the book to buyer with a norm
1: when obligation norm is activated by buyer
2: do (delivery_book, buyer)

1 + obligation (Ag ,R,Goal , Deadline) : . my_name (Ag) <- Goal.

Listing 4.5 – Program for book owner to deliver the book to buyer with a norm

The benefits and drawbacks of the connections seen in this application example are the
same as those discussed in Section 4.1.1.2. The difference, however, is in the reactive agent.
Norms are a usual way of expressing the expected behavior of agents in society (BOELLA,
Guido; VAN DER TORRE; VERHAGEN, 2008). The reactive agent is decoupled from the
status functions when the norms are specified explicitly in the system. In this example, Tom is
programmed to respond to a norm. This norm is activated whenever a payment is constituted.
Even if other constitutions activate the norm, Tom can act accordingly in this system. Therefore,
the reactive agent adapts to changes that occur in the system as long as they continue to
activate the norm that involves it. In other words, the reactive agent remains institutionalized
while decoupling from the status functions.

4.1.1.4 Case 4 - MAS with status function, norms and purpose

This section considers an application with status functions, norms, and purposes. We
assume that the system has (i) a constitutive rule stating that deliver_paper_note count-
as payment, (ii) a norm stating that Tom is obliged to deliver the book to the agent that
constitutes payment, and (iii) a purpose that points to the state of the world HoldBook that
is related to payment status function. In this scenario, Bob can constitute any status function

4.1. Using the purpose model from the perspective of agents 65

whose constitution produces effects in the environment that match its holdBook goal and
activate the norm that obliges Tom to deliver the book to Bob.

Algorithm 10 describes the steps that an agent may do to satisfy its holdBook goal.
The Algorithm takes the agent’s goal as input and uses alg1 to find a list of actions that might
achieve the goal, executing the first element of the list. Listing 4.6 describes the Jason program
that implements Algorithm 10. In this Listing, the agent is implemented with holdBook goal.
When executing this program, three steps are executed. First, Bob calls alg1 informing its goal
as parameter. alg1 (cf. Listing 3.1) returns to Bob a list with actions. Second, Bob gets the first
action on this list. deliver_a_paper_note is the action found. Third, Bob executes this action.
Tom uses the same Algorithm and performs the same steps as described in Section 4.1.1.3.

Algorithm 10 Algorithm for agents to achieve their goals with status functions and purposes
1: Input: agentGoal
2: actionList ← call alg1 (agentGoal)
3: action ← first(actionList)
4: do (action)

1 ! holdBook . // agent goal

2

3 +! holdBook <-

4 !alg1(holdBook , Actions);

5 .queue.head(Actions , Action);

6 Action .

Listing 4.6 – Program for agents to achieve their goals with institution and purposes

In this application, Bob is programmed to look for (i) a purpose that points to its
holdBook goal, (ii) a status function related to that purpose, in the case of this example,
payment, and (iii) a concrete action that can constitute this status function, in the case of this
example, deliver_paper_note action. This approach has some advantages, which are further
discussed below.

The institutional consequences are captured and represented as described in Sec-
tions 4.1.1.2 and 4.1.1.3. The environmental consequence of the constitution of status function
is now explicitly captured by the purpose concept and is represented through the institutional
specification. The connection between payment and holdBook is implemented by an ontology.
In this example, Bob has been coded to use alg1, which exploits this connection by looking
for the environmental consequences that result from the institutional consequence of payment.
Bob can adapt to this system even as the environmental consequences change as long as they
remain matching its interest.

The explicitness of the connection between institutional consequences and environmen-
tal consequences enables the connection between environmental consequences and the agents’
goals. The connection between holdBook that represents the environmental consequence of

66 Chapter 4. Evaluating the Purpose model

payment and holdBook that represents bob’s goal is explicit in the system. In this example,
Bob is implemented to achieve holdBook goal. It use the steps already described to find
the environmental consequences of institutional actions and then can relate them to its goal.
Even if the environmental consequences or the agents’ goals change, Bob can consult the
new consequences and if these consequences match its goals before it constitutes any status
function.

In short, all three connections are explicitly captured by appropriate concepts and prop-
erly represented. Agents can query at runtime which purposes point to states of interest, which
status functions are related to these purposes, and finally, which concrete actions can constitute
these status functions. Therefore, (a) if the actions or their institutional consequences change,
(b) if their environmental consequences change, or (c) if the agents’ goals change, agents
can adapt to the scenario as long as there are institutional actions that have environmental
consequences that match the agents’ goals.

4.1.1.5 Discussion

This section discusses the adaptability that agents acquire in open MAS when some
social abstractions become explicit. Table 4 summarizes the agents’ awareness of social ab-
stractions and the need to adapt agents to connections that use such abstractions in each
case. We consider an agent aware of a social abstraction when it is explicitly represented in
the system and the agent can adapt to it. The columns that make up the table are described
below:

• Column SF means awareness of status functions.

• Column N means awareness of norms.

• Column P means awareness of purposes.

• Columns SF, N and P have the symbol ✓ when the agent is aware of the social
abstraction to which the column refers to and uses such abstraction in its reasoning
and deliberation process. The absence of this symbol in the column means the
opposite.

• Column CX1 means the connection between the action and its institutional conse-
quence is captured by a social abstraction in the system and appropriately repre-
sented.

• Column CX2 means the connection between the institutional consequences and its
environmental consequences is captured by a social abstraction in the system and
appropriately represented.

• Column CX3 means the connection between the environmental consequences and
the agents’ goals is captured by a social abstraction in the system and appropriately
represented.

4.1. Using the purpose model from the perspective of agents 67

• Columns CX1, CX2 and CX3 have no symbol if the agent needs to be reprogrammed
because it does not adapt to the changes that may occur in the connection to which
the column refers. Columns have the symbol ∘ if the agent can partially adapt to
the changes that may occur in the connection to which the column refers. For
example, consider that the agent is programmed to constitute payment, as in case
2. It can adapt to this scenario if the system changes the set of actions that count
as payment. However, if for some reason payment is replaced by another status
function, the agent cannot adapt. Finally, the columns receive the symbol ∙ if the
agent adapts itself to any changes that may occur in the connection to which the
column refers. Consider again the example of the agent that needs to constitute
payment. If payment is replaced by deposit, means that the agent is also able to
adapt and perform some action that counts as deposit.

• The symbol — means that social abstraction and connection is not considered in
that case for that agent.

Table 4 – Summary of social abstractions used in each case and the need to change the agent
to adapt to them.

Criterias

Case Agent SF N P CX1 CX2 CX3

C1 Bob
C1 Tom — — —
C2 Bob ✓ ∘
C2 Tom ✓ — ∘ — —
C3 Bob ✓ ∘
C3 Tom ✓ — ∙ — —
C4 Bob ✓ ✓ ∙ ∙ ∙
C4 Tom ✓ — ∙ — —

C1: Case 1 - Simple MAS
C2: Case 2 - MAS with status functions
C3: Case 3 - MAS with status functions and norms

C4: Case 4 - MAS with status functions, norms and
purposes

What can be observed through Table 4 and of the cases presented in this section is
that agents become more adaptive to changes that may occur in the connections as social
abstractions are added. For example, in case C1, because agents are unaware of social ab-
stractions, any change in the CX1, CX2, or CX3 connections requires reprogramming the
agents to adapt to such changes. When social abstractions are incorporated into systems
and agents become aware of them, they are able to adapt to changes that may occur in the
connections. In case C2, for example, Bob and Tom are programmed to constitute and react
to the constitution of a status function, respectively. In this case, if the actions change but the

68 Chapter 4. Evaluating the Purpose model

institutional consequences remain the same, Bob and Tom can adapt to the changes without
being reprogrammed. If the status function changes (symbol ∘), the same is not true. Both
agents are unable to adapt in this situation and need to be reprogrammed. The same holds
true if the CX2 and CX3 connections are changed. The inclusion of norms (N) to the system
makes the reactive agents adaptive. For example, in case C3, Tom is programmed to react to
a norm that is activated whenever a status function is constituted. Therefore, Tom does not
need to be aware of the status function to act accordingly, but at the same time, it remains
institutionalized. The main advantage of this approach is that status functions can be modified
as long as they remain activating the norm involving Tom. On the other hand, Bob remains
with the same adaptation difficulties as in case C2. Finally, the addition of Purpose (P) makes
cognitive agents adaptive (e.g., Bob). Purpose allows connecting to status functions and their
environmental consequences (CX2 connection) and associating these consequences with the
agents’ goals (CX3 connection). The main advantage of this approach is that agents can be
programmed to constitute status functions with environmental consequences that match their
interests. Therefore, agents do not need to be reprogrammed and can adapt if connections
CX1, CX2, and CX3 are modified. Of course, these connections still need to be connected to
the agent’s goals.

Agents may ignore (or be unaware of) social abstractions and still achieve their goals.
For example, the agents in case 4.1.1.1 are not programmed to consider any social abstractions.
The scenario of case 4.1.1.4 has all social abstractions explicit and properly represented.
Even without knowing the used social abstractions, agents in case 4.1.1.1, can act in the
scenario of case 4.1.1.4 to satisfy their goals. However, for agents to act appropriately in
this situation, they should be fully programmed for those conditions. Bob needs to perform
deliver_paper_note action and this action needs to be institutionally considered as payment.
If some social abstraction changes (e.g., deliver_paper_note no longer counts as payment),
Bob no longer acts appropriately. In short, agents that do not know about social abstractions
at design time can even act in scenarios where social abstractions are explicitly specified and
represented. However, they need to be reprogrammed to adapt whenever a change occurs
because they cannot benefit from such specifications.

It is important to be clear that the solution presented in this section solves the problem
involved in the example but has some limitations. In this approach, only the agent that needs to
act to achieve its goal can reason about purposes. If the other agent involved in the interaction
also reasons about purposes, the solution may not work correctly. For example, consider that
Tom has the goal of delivering the book and that the purpose associated with the status
function payment points to a state of interest to Tom. In this case, if Tom reasons about
purposes, it may infer that constituting payment might lead to satisfying its goal. However, it
makes no sense for Tom to constitute a payment. On the contrary, Tom needs this constitution
to be carried out by another agent to deliver the book and achieve its goal. The purpose model
does not consider that agents that perform intermediate actions triggered by the institutional

4.1. Using the purpose model from the perspective of agents 69

action can also satisfy their goals. Currently, the model does not even consider the execution
of intermediate actions so that the agent that performed the institutional action can achieve
its goal. The model assumes that these actions are performed at some point, pointing to the
states that might be reached if these actions are performed.

4.1.2 Application Example 2: Conquer territory

Rationality is an important feature for agents to consider as much information are avail-
able for their reasoning and deliberation process. This section evaluates the agents’ rationality
when social abstractions are used in open MAS. We are especially interested in the rationality
that involves reasoning and deliberation about anti-goals. In this section, we use the scenario
where the agent called Bob has the goal of conquering a new territory and the anti-goal of
not killing a soldier from the allied base. There are two ways for the agent to achieve the goal
in this system: (i) constituting any action that count as forcing an attack and (ii) constituting
any action that count as authorizing an attack. The agent knows through some available
guidelines that in this system the actions broadcast a message and post on a web service
count as forcing an attack and authorizing an attack respectively. The difference between
these constitutions are the effects they produce on the environment. While the first produces
the effects conquering new territory and killing a soldier from the allied base, the second
produces only the effect of conquering new territory. The distinction between the consequences
is due to the status of the action. While the first implies forcing an action without regard for
the consequences, the second is more frivolous. It has the status of authorizing only at the
appropriate time. Section 4.1.2.1 describes an application whose connections are implicit in
the agent code. Section 4.1.2.2 describes an application whose connections are explicit and
agents can query them at any time. More details on this example and its implementation can
be found in (CUNHA; HÜBNER, Jomi F; BRITO, M. de, 2022).

4.1.2.1 Case 1 - MAS with implicit status functions and purposes

This section considers an application where Bob is programmed to perform any action
that counts as forcing_an_attack. The connections used to evaluate the example (cf. Sec-
tion 4.1) are implicit in Bob’s code. Therefore, the rationality of Bob is limited to the information
available on previously specified connections.

Algorithm 11 describes the steps that an agent needs to do to satisfy its territo-
ry_conquered goal and avoid its soldier_killed_from_allied_base anti-goal. The algo-
rithm receives as input a status function, its environmental consequences, and agent’s anti-goal.
From that input, it constitutes the status function if it does not have consequences that conflict
with its anti-goal.

70 Chapter 4. Evaluating the Purpose model

Algorithm 11 Algorithm for agents to achieve territory_conquered goal and avoid sol-
dier_killed_from_allied_base anti-goal with status function

1: Input: action and its statusFunction and statusFunctionConsequences and agentAntiGoal
2: if statusFunctionConsequences ⊇ agentAntiGoal then
3: fail
4: else
5: action ← look for which action constitutes statusFunction
6: do action
7: end if

Listing 4.7 describes the Jason program that implements Algorithm 11. In this program,
the agent is implemented with beliefs anti_goal(soldier_killed_from_allied_base)
where soldier_killed_from_allied_base is the agent’s anti-goal, cause(forcing_an_at-
tack,territory_conquered), cause(forcing_an_attack,soldier_killed_from_alli-
ed_base) where territory_conquered and soldier_killed_from_allied_base are the
environmental consequences of constituting forcing_an_attack and constitutive_rule(
broadcast_a_message,forcing_an_attack,_,_) where broadcast_a_message is the ac-
tion available to constitute the status function forcing_an_attack. In this example, the agent
is able to connect its goal of territory_conquered with the status function forcing_an_at-
tack through the belief cause(forcing_an_attack,territory_conquered). For that rea-
son, it knows it should constitute forcing_an_attack. When executing this program, four
steps are executed. First, Bob looks for which status function when constituted produces the
desired effect. forcing_an_attack is the status function found. Second, Bob checks if the con-
stitution of forcing_an_attack causes some effect that is anti-goal. Based on its belief base,
it identifies that forcing_an_attack causes soldier_killed_from_allied_base. Then,
the program fails. Supposing that the constitution could achieve the goal without without
inflicting the anti-goal, the program would advance to the second step. Third, Bob queries what
concrete actions can constitute forcing_an_attack status function. broadcast_a_message
is the action found. Fourth, Bob performs broadcast_a_message action. Remember that
in this example the program fails in the first step because forcing_an_attack causes
soldier_killed_from_allied_base, which is also an anti-goal of Bob.

1 anti_goal (soldier_killed_from_allied_base).

2 cause(forcing_an_attack , territory_conquered).

3 cause(forcing_an_attack , soldier_killed_from_allied_base).

4 constitutive_rule (broadcast_a_message , forcing_an_attack ,_,_).

5

6 ! territory_conquered . // agent goal

7

8 +! territory_conquered : cause (SF , territory_conquered)

9 <- if (anti_goal (AG) & cause(SF ,AG)){

10 .fail;

4.1. Using the purpose model from the perspective of agents 71

11 } else {

12 ? constitutive_rule (Action ,SF ,_,_);

13 Action ;

14 }.

Listing 4.7 – Bob’s program with implicit status functions and purposes.

In this application, the agent’s rationality is limited to the information that the program-
mer previously encoded within it using beliefs. Bob is coded to not perform any action that
constitutes a status function whose consequences match its anti-goal. From its belief base, Bob
has enough information to infer that the constitution of forcing_an_attack, while satisfying
its goal, also inflicts its anti-goal. This solution works because this information is hard-coded
into Bob. However, this information may not be predictable in open systems and can change
anytime. Furthermore, the agent is limited to considering only the constitution programmed
within it. In this example, the system provides another constitution (i.e., authorizing an attack)
that can satisfy Bob’s goal without inflicting its anti-goal. However, Bob is not coded to exploit
this constitution. In this solution, the agent cannot capture information from the scenario where
it is acting at runtime to use it in its reasoning and deliberation process.

In short, all connections are implicit, generating a tight coupling between the agent and
the solution. The problem with this approach is that the agent’s reasoning and deliberation
process is limited to the information previously programmed in its belief base. For this reason,
(a) if the actions or their institutional consequences change, or (b) if the environmental
consequences change, (c) if agents’ interests change, or (d) even if there are other options of
institutional actions to satisfy the agent’s goal without inflicting the anti-goal, in all cases, the
agents may not be able to reason about this information and eventually perform actions that
inflict anti-goals or not perform any action (even if there is a possibility).

4.1.2.2 Case 2 - MAS with explicit status functions and purposes

This section considers an application where Bob is programmed to constitute any
action as long as the status function produces the environmental consequences that match
its goal and do not inflict its anti-goal. Furthermore, the connections used to evaluate the
example (cf. Section 4.1) are explicitly captured by proper abstractions and represented in the
institutional specification, shown in Listing 4.8. The rationality of Bob improves because it can
query this institutional specification and discover information at runtime.

Listing 4.8 – Battle Institutional Specification
s t a t u s _ f u n c t i o n s : f o r c i ng_an_at tack , au th o r i z i ng _a n_a t t a c k

C o n s t i t u t i v e _ r u l e s :
1 : broadcast_a_message count−as f o r c i ng_an_at t a ck ;
2 : pos t ing_on_a_webse rv i ce count−as a u t ho r i z i n g_ an_ a t t a ck .

Purpose D e f i n i t i o n :

72 Chapter 4. Evaluating the Purpose model

hasPurpose (fo r c ing_an_at tack , f o r c e _ a t t a c k) ;
hasPurpose (au tho r i z i ng_an_at tack , a u t h o r i z e _ a t t a c k) ;
hasConsequence (f o r c e_a t t a ck , [t e r r i t o r y _ c o n q u e r e d , s o l d i e r _ k i l l e d _ f r o m _ a l l i e d _ b a s e]) ;
hasConsequence (a u t h o r i z e _ a t t a c k , [t e r r i t o r y _ c o n q u e r e d]) .

Algorithm 12 describes the steps that an agent needs to do to satisfy its territo-
ry_conquered goal and avoid its soldier_killed_from_allied_base anti-goal. The algo-
rithm receives as input an agent’s goal and anti-goal. From that input, it tries to perform an
action to satisfy the agent’s goal by excluding actions that also satisfy the agent’s anti-goal.

Algorithm 12 Algorithm for agents to achieve their goals and avoid their anti-goals with
status functions and purposes

1: Input: agentGoal and agentAntiGoal
2: actionList ← call alg1 (agentGoal)
3: while actionList ̸= {} do
4: action ← first(actionList)
5: statesList ← call alg2 (action)
6: if antiGoal ⊆ statesList then
7: actionList = actionList \ {action}
8: else
9: do action

10: end if
11: end while

Listing 4.9 describes the Jason program that implements Algorithm 12. In this program,
the agent is implemented with the belief anti_goal(soldier_killed_from_allied_base)
where soldier_killed_from_allied_base is the agent’s anti-goal. When executing this
program, four steps are executed. First, Bob identifies soldier_killed_from_allied_base
as it anti-goal by consulting its belief base. Second, Bob uses alg1 to find the actions that
can satisfy territory_conquered goal (i.e., its goal) and gets a queue of actions as a result.
Third, Bob informs the queue of actions to the plan try_actions. If the queue is empty, the
program fails. If there are elements, the plan looks for the states that can be reached in the
system if the first action in the queue is performed and proceeds to the next step. Fourth, the
plan checks whether the action reaches a state that also corresponds to Bob’s anti-goal. If true,
the plan takes the next element in the queue and repeats the check again. If false, it executes
the action and the program ends. In this example, the program receives in step two a queue
with the actions broadcast_a_message and posting_on_a_webservice that are found in
Listing 4.8. In the following steps, the program tries to perform action broadcast_a_message
and gives up because it satisfies the anti-goal of soldier_killed_from_allied_base and
then successfully performs action posting_on_a_webservice.

1 anti_goal (soldier_killed_from_allied_base).

2 ! territory_conquered . // agent goal

3

4 +! territory_conquered <-

4.1. Using the purpose model from the perspective of agents 73

5 !alg1(territory_conquered , Actions);

6 ! try_actions (Actions).

7

8 +! try_actions (Actions) <-

9 if (. length (Actions) < 1){

10 .fail;

11 }

12 .queue.head(Actions , Action);

13 !alg2(Action , States);

14 if (anti_goal (AG) & . member (AG , States)) {

15 .queue. remove (Actions , Action);

16 ! try_actions (R); // try another action

17 } else {

18 Action ; // executes an action

19 }.

Listing 4.9 – Bob’s program with explicit status functions and purposes.

In this application, the agent’s rationality is improved since it is not limited to reason-
ing about the information previously encoded within it. This solution presents all evaluated
connections explicitly captured by appropriate abstractions (i.e., status function and purpose),
which are represented in the institutional specification. Bob is programmed to explore these
connections by looking for (i) a purpose that points to its territory_conquered goal, (ii) sta-
tus functions related to that purpose, in the case of this example, forcing_an_attack and
authorizing_an_attack, and (iii) concrete actions that can constitute that status functions, in
the case of this example, broadcast_a_message and posting_on_a_webservice actions.
While these advantages are the same discussed in Section 4.1.1.4, this example also highlights
that, with the introduction of purposes, the agent can evaluate the institutional actions from
the consequence of the constitution that they produce and not just from the action itself. As a
consequence, the agent can discard actions that produce anti-goals. In summary, this solution
highlights two improvements in the agent’s reasoning and deliberation process. First, it can
reason about constitutions that also inflict anti-goal. Second, it can reason based on the status
functions and the consequence of its constitution. This allows the agent to explore some status
function available in the system, not just the ones it knows about in advance. This is possible
because the agent can capture information from the scenario where it is entering and use them
in its reasoning and deliberation process. In open systems, this solution seems to be more
appropriate because this information may change and the agent needs to consult it to make
the best decision according to its interests.

In short, all connections are explicit, captured by first-class abstractions, and represented
in the institutional specification. For this reason, the agent becomes decoupled from the scenario
in which it is entering. Therefore, (a) if the actions or their institutional consequences change,
or (b) if the environmental consequences change, (c) if agents’ interests change, or (d) even

74 Chapter 4. Evaluating the Purpose model

if there are other options of institutional actions to satisfy the agent’s goal without inflicting
the anti-goal, in all cases, agents have the means to consult this information at runtime and
use it in their reasoning and deliberation process according to their interests.

4.1.2.3 Discussion

This section discusses the rationality that agents acquire in open MAS when the
evaluated connections become explicit. Furthermore, this section also explores the problem
of possible consequences of status function constitutions that cause conflicts between goals
and anti-goals. The first example illustrates the limitation of agents in considering previously
encoded information in their reasoning and deliberation process. The solution is tightly coupled
to the scenario and may no longer work if any connections are modified. In addition, the agent
cannot explore other available constitutions in the system where it is acting because it cannot
reason about the system at runtime. In other words, the agent is limited to considering only the
previously codified constitution and its environmental consequences. If the system has better
options that can satisfy its goal without inflicting an anti-goal, it cannot exploit them.

The second example overcomes the limitation of the agents’ rationality considering the
connections evaluated. This is because connections are captured by first-class abstractions and
made explicit in the system. The agents can query this information at runtime and use it in
their reasoning and deliberation process. The solution decouples agents from the scenario in
which they are acting. Furthermore, agents can explore other constitutions available in the
system that satisfy their goals without infringing on their anti-goals. In short, we have improved
agent decision-making since it has more information available to help it to decide whether to
achieve its goals or avoid its anti-goals. With the proposed model, agents can access and reason
about the consequences of institutional actions and adapt themselves to different scenarios.
They can reason that (a) some purposes point to states that are similar to their interests
and therefore useful to reach their goals or (b) avoid these purposes because they point to
states that are similar to their anti-goals. In both cases, the agent has more information while
deciding whether a particular action will help it or not. This kind of reasoning is important for
advances in agents’ autonomy (RODRIGUEZ-AGUILAR, Juan A. et al., 2015).

4.1.3 Application Example 3: Posting information on social networks

Flexibility is an important feature for agents considering the possibility in open systems
whose available actions and their consequences cannot be predicted in agents’ design time. This
section evaluates the agents’ flexibility to act in this kind of system when they are endowed with
status functions and purpose. The remainder of this section, consider a scenario where the agent
Bob has the goal of published_information on different social networks. Furthermore, Bob
should avoid its anti-goal of fake_news_spread. Section 4.1.3.1 describes a first implementation
that does not use the proposed model. Section 4.1.3.2 describes a second implementation that
uses the proposed model.

4.1. Using the purpose model from the perspective of agents 75

4.1.3.1 Case 1 - Social networks without status functions and purposes

This section considers an application without status functions and purposes. Algo-
rithm 13 describes the steps that an agent needs to perform to satisfy its published_informa-
tion goal and avoid its fake_news_spread anti-goal. The algorithm receives as input the
actions’ consequences, the name of the social network where it is entering and the agent’s
anti-goal. From that input, it selects the plan that corresponds to the social network that it is
entering, identifies the action that should be performed and executes it if it does not infringe
its anti-goal.

Algorithm 13 Algorithm for agents to achieve published_information goal and avoid
fake_news_spread anti-goal without status functions and purposes

1: Input: plans and actionsConsequences and socialNetwork and agentAntiGoal
2: do select the plan that corresponds to (socialNetwork)
3: action ← look for which action need to be performed
4: if actionsConsequences ⊇ agentAntiGoal then
5: fail
6: end if
7: do action

Listing 4.10 describes the Jason program that implements Algorithm 13. In this pro-
gram, we assume that when the agent enters different systems, it acquires the belief knet(S)
where S ∈ {twitter ,telegram,instagram,facebook} is the variable for the name of the so-
cial network the agent is currently acting. Furthermore, in this program, the agent is imple-
mented with the beliefs anti_goal(fake_news_spread) meaning that fake_news_spread
is the agent’s anti-goal, cause(sendMessageByTwitter,fake_news_spread), cause(talk-
WithBot,fake_news_spread), cause(uploadAPIcture,fake_news_spread) and cause(
uploadAMessage,fake_news_spread), where fake_news_spread is the consequence of
performing the actions sendMessageByTwitter, talkWithBot, uploadAPIcture or uploadA-
Message. Consider that Bob starts believing knet(facebook) when it enters the Face-
book system. When executing this program, three steps are executed. First, Bob identifies
fake_news_spread as its anti-goal and also as a consequence of actions sendMessageByTwit-
ter, talkWithBot, uploadAPIcture and uploadAMessage by consulting its belief base. Sec-
ond, Bob selects the plan that has the context that corresponds to knet(facebook) belief.
Third, Bob checks if the action to be performed (uploadAMessage in this case) conflicts with
its anti-goal. If it is the case, the program fails. If it is not case, proceed to the next step.
Fourth, Bob performs the action stated in the plan. In this example, the program fails in the
third step because uploadAMessage causes fake_news_spread, which is the anti-goal of
Bob.

1 anti_goal (fake_news_spread).

2 cause(sendMessageByTwitter , fake_news_spread).

3 cause(talkWithBot , fake_news_spread).

76 Chapter 4. Evaluating the Purpose model

4 cause(uploadAPIcture , fake_news_spread).

5 cause(uploadAMessage , fake_news_spread).

6

7 ! published_info . // agent goal

8

9 +! published_info : knet(twitter)

10 <- if (anti_goal (AG) & cause(sendMessageByTwitter , AG)){

11 .fail;

12 } else {

13 sendMessageByTwitter ;

14 }.

15

16 +! published_info : knet(telegram)

17 <- if (anti_goal (AG) & cause(talkWithBot , AG)){

18 .fail;

19 } else {

20 talkWithBot ;

21 }.

22

23 +! published_info : knet(instagram)

24 <- if (anti_goal (AG) & cause(uploadAPIcture , AG)){

25 .fail;

26 } else {

27 uploadAPIcture ;

28 }.

29

30 +! published_info : knet(facebook)

31 <- if (anti_goal (AG) & cause(uploadAMessage , AG)){

32 .fail;

33 } else {

34 uploadAMessage ;

35 }.

Listing 4.10 – Bob’s program without status functions and purposes.

In this application, the agent’s flexibility is limited because the agent can only act on
social networks that it was previously programmed for. In this example, Bob has been coded
to act on the social networks Twitter, Telegram, Instagram and Facebook. This solution only
works on the aforementioned social networks and because the connections between actions,
their consequences and agent’s interests are encoded within it. We assume that no system has
the necessary first-class abstractions to capture these connections explicitly. For this reason,
Bob is not flexible enough to work on other systems that it does not know about at design
time without having to be reprogrammed.

4.1. Using the purpose model from the perspective of agents 77

In short, all connections are implicit because it lacks social abstractions to represent
them. They are encoded internally in the agent, and therefore, it is limited to act in the social
networks that it is previously programmed, perform previously defined actions and needs to be
reprogrammed to act in new systems. These limitations make the agent inflexible. For example,
consider that for some reason, Bob needs to act on the social network TikTok. Even if the
social network provides the means that allow Bob to achieve its goal, Bob is not prepared to
exploit these means since it does not have any plan to interact with the social network TikTok.
That is, Bob is only able to interact and perform actions on social networks that it previously
knows. Therefore, (a) if the actions or their institutional consequences change, or (b) if the
environmental consequences change, or (c) if the agent moves to a new system, or even (d) if
the agent’s interests changes, in all cases, the agent needs to be reprogrammed because it is
not flexible.

4.1.3.2 Case 2 - Social networks with status functions and purposes

This section considers an application where Bob is programmed to constitute any status
function whose constitution produces the environmental consequences that match its goal and
do not inflict its anti-goal. Furthermore, each social network has an institution, whose the
institutional specifications are shown in Listings 4.11, 4.12, 4.13 and 4.14. The institutional
specifications explicitly and externally represent the connections considered in the evaluation
of the work (cf. Section 4.1). Because of these connections, the agent’s flexibility is increased.

Listing 4.11 – Twitter Institutional Specification

s t a t u s _ f u n c t i o n s : tweet

C o n s t i t u t i v e _ r u l e s :
1 : sendMessageByTwitte r count−as tweet .

Purpose D e f i n i t i o n :
hasPurpose (tweet , t r a n s m i t _ i n f o r m a t i o n) ;
hasConsequence (t r a n s m i t _ i n f o r m a t i o n , [p u b l i s h e d _ i n f o , fake_news_spread]) .

Listing 4.12 – Telegram Institutional Specification

s t a t u s _ f u n c t i o n s : messageByTelegram

C o n s t i t u t i v e _ r u l e s :
1 : ta lkWithBot count−as messageByTelegram .

Purpose D e f i n i t i o n :
hasPurpose (messageByTelegram , t r a n s m i t _ i n f o r m a t i o n) ;
hasConsequence (t r a n s m i t _ i n f o r m a t i o n , [p u b l i s h e d _ i n f o , fake_news_spread]) .

Listing 4.13 – Instagram Institutional Specification

78 Chapter 4. Evaluating the Purpose model

s t a t u s _ f u n c t i o n s : pos tBy Ins tag ram

C o n s t i t u t i v e _ r u l e s :
1 : up l oadAP i c tu r e count−as pos tBy Ins tag ram .

Purpose D e f i n i t i o n :
hasPurpose (postByInstagram , t r a n s m i t _ i n f o r m a t i o n) ;
hasConsequence (t r a n s m i t _ i n f o r m a t i o n , [p u b l i s h e d _ i n f o , fake_news_spread]) .

Listing 4.14 – Facebook Institutional Specification

s t a t u s _ f u n c t i o n s : postByFacebook

C o n s t i t u t i v e _ r u l e s :
1 : uploadAMessage count−as postByFacebook .

Purpose D e f i n i t i o n :
hasPurpose (postByFacebook , t r a n s m i t _ i n f o r m a t i o n) ;
hasConsequence (t r a n s m i t _ i n f o r m a t i o n , [p u b l i s h e d _ i n f o , fake_news_spread]) .

Algorithm 12, explained in Section 4.1.2.2, can also be used to describe the steps
an agent needs to take to satisfy its goal published_information and avoid its anti-goal
fake_news_spread. Listing 4.15 describes the Jason program that implements Algorithm 12.
In this program, the agent is implemented with the belief anti_goal(fake_news_spread)
where fake_news_spread is the agent’s anti-goal. When executing this program, four steps
are executed. First, Bob identifies fake_news_spread as it anti-goal by consulting its belief
base. Second, Bob uses alg1 to find the actions that can satisfy published_information
goal (i.e., its goal) and gets a queue of actions as a result. Third, Bob informs the queue of
actions to a plan. If the queue is empty, the program fails. If there are elements, the plan looks
for the states that can be reached in the system if the first action in the queue is performed
and proceeds to the next step. Fourth, the plan checks whether the action reaches a state
that also corresponds to Bob’s anti-goal. If true, the plan takes the next element in the queue
and repeats the check again. If false, it executes the action and the program ends. The queue
of actions that the program receives in step 2 depends on which social network Bob is acting
on. For example, consider that Bob is acting on Facebook social network. In this case, the
queue has the action uploadAMessage that is found in Listing 4.14. In the following steps,
the program tries to perform uploadAMessage action and gives up because it satisfies the
anti-goal of fake_news_spread.

1 anti_goal (fake_news_spread).

2 ! published_info . // agent goal

3

4 +! published_info <-

5 !alg1(published_info , Actions);

6 ! try_action (Actions).

7

4.1. Using the purpose model from the perspective of agents 79

8 +! try_actions ([Action |R]) <-

9 if (. length (Actions) < 1){

10 .fail;

11 }

12 .queue.head(Actions , Action);

13 !alg2(Action , States);

14 if (anti_goal (AG) & . member (AG , States)) {

15 .queue. remove (Actions , Action);

16 ! try_action (R); // try another action

17 } else {

18 Action ; // executes an action

19 }.

Listing 4.15 – Bob’s program with status function and purposes.

In this application, the agents’ flexibility is improved because they are not limited to act
in social networks that they previously know. This solution presents all evaluated connections
explicitly captured by appropriate abstractions (i.e., status function and purpose) and they are
represented in the institutional specification. Bob is programmed to explore these connections
by looking for (i) a purpose that points to its published_information goal, (ii) status functions
related to that purpose, and (iii) concrete actions that can constitute that status functions.
In the case of this example, this information depends on which social network Bob is acting.
Furthermore, Bob is also programmed to check the environmental consequences of constitutions
and ignore those that also reach its anti-goal. Therefore, the explicitness of these connections
allows Bob to act in different social networks that may even be unknown at design time and
explore in these networks any actions that may satisfy its interests.

In short, all connections are explicit, captured by first-class abstractions, and represented
in the institutional specification. For this reason, the agent becomes flexible since it is not
limited to acting on social networks that it has previously programmed and can perform actions
that it discovers at runtime. For example, consider again that agent Bob needs to act on the
social network TikTok. Upon entering this system, Bob can query which action can satisfy
its goal and if that action does not imply an anti-goal. That is, Bob can enter in social
networks unknown at project time as long as the purposes related to status functions are
explicit. Therefore, (a) if the actions or their institutional consequences change, or (b) if the
environmental consequences change, or (c) if the agent moves to a new system, or even (d)
if the agent’s interests changes, in all cases, the agent does not need to be reprogrammed
because it is flexible to scenarios that have the means to satisfy its interests.

4.1.3.3 Discussion

This section discusses the flexibility that agents acquire in open MAS when the evaluated
connections become explicit. The first example illustrates the limitation of agents in acting

80 Chapter 4. Evaluating the Purpose model

in previously known social networks and performing previously coded actions. The solution
is tightly coupled to social networks that are considered at design time. Also, if any of the
connections change at runtime, the agent may stop functioning properly. In other words, the
agent is limited to act in specific social networks and cannot act in other social networks even
if these networks provide the means to satisfy its interests.

The second example overcomes the limitation of agent flexibility considering the con-
nections evaluated. This is because these connections are captured by first-class abstractions
and made explicit in the institution. In other words, the connections between the agents’
goals and anti-goals and the institutional actions are externalized: they are moved from the
agent program to the institution, in the form of purposes. Given the external specification of
purposes, the agent can find out: (i) which action can satisfy its goal, (ii) what are the system
consequences of performing an institutional action, and (iii) how it can achieve a goal in the
system without inflicting an anti-goal in whatever system they are acting on. In both cases,
the agent has more flexibility to act in other systems without having to be reprogrammed, as
long as these systems provide the means that allow it to satisfy its interests.

4.1.4 Practical conclusions

The objective of this section is to evaluate the characteristics of adaptability, rationality
and flexibility from the agents’ perspective. Some practical examples are developed to evaluate
each of these characteristics in Sections 4.1.1, 4.1.2 and 4.1.3 respectively. We observe that
as social abstractions are added and captured by status functions, norms, purposes, etc.,
agents become aware of them and approach the evaluated characteristics. In Section 4.1.1, as
social abstractions are added, and agents become aware of them, they adapt to the system.
In Section 4.1.2, agents gain the ability to reason about information that may be unknown
at design time. In Section 4.1.3, they gain the flexibility to act in scenarios that are not
initially designed for. Furthermore, social abstractions, especially purpose, explicitly add some
connections that were hitherto implicitly specified. The explicitness of these connections allows
them to be changed without requiring that agents are reprogrammed. That is, purpose makes
it easier for agents to act in open systems, which is essential due to the characteristics of these
systems.

Solutions that consider purposes are more generic and can be applied in any scenario
that has the purpose specified and represented explicitly. For example, the agent codes in
Sections 4.1.2.2 and 4.1.3.2 are essentially the same. The changes are in the agent’s goals,
which is natural since they are designed for different scenarios. Furthermore, the difference
between the cases cited and the agent code in Section 4.1.1.4 is the absence of alg2, which is
used to find the environmental consequences resulting from institutional actions. In this case,
it is not used because the solution does not have the objective of filtering the actions that
can also inflict the anti-goals of the agents. In other words, as long as the above information
is modified, these agents’ codes can be exchanged between these sections without affecting

82 Chapter 4. Evaluating the Purpose model

are usually implemented and reduced to concepts available in agent programming languages
(e.g., the social concept of role is implemented by a set of beliefs). The approaches on the far
right have social abstractions fully represented, as first-class abstractions. The internal-external
axis represents the level of the externality of the representation of social abstractions (i.e.,
where they are stored). Bottom approaches have (parts) of social abstractions implemented
within agents, while top approaches have a shared (common) representation of these social
abstractions available outside the agents. As the social abstractions becomes more explicit and
external, the system remains in execution regardless of which agents act in it. This is because
social abstractions provide guidelines for any agents to act in these systems (ROCHA COSTA,
2014).

Dignum et al. (DIGNUM; ALDEWERELD; DIGNUM, F., 2011) use these notions to
position existing frameworks concerning the use of organizational concepts. Inspired by this
work, we use these notions to analyze each system category illustrated in Figure 10 from an
institutional perspective. We focus on the social abstractions present in the system and on the
support given to incoming agents.

MAS. In simple MAS, the social abstractions are mainly in the designer’s mind. It is,
in this sense, the absolute cornerstone of our diagram, as social abstractions are completely
internal (represented in the agents’ code) and implicit (all social abstractions are translated
into concepts of agents). Only the designer knows whether institutional actions affect the
environment and allow agents to achieve their goals or avoid their anti-goals. Therefore,
changes in institutional actions or their consequences require that agents are reprogrammed.
Examples of this case can be seen in Section 4.1.1.1.

MAS with institution in a functional perspective. Some works use the notion of
institution and introduce constitutive rules (i.e., count-as rules) combined with some regulative
representation, such as norms and organizations. These works are called functional because they
connect count-as rules with the state of regulative representation (BRITO, M. d.; HÜBNER,
Jomi F., 2014; CUNHA; HÜBNER, Jomi F; BRITO, M. de, 2019). In this way, they solve an
interoperability gap between the different dimensions that make up the system. For example,
Dastani et al. (DASTANI et al., 2009; DASTANI; VAN DER TORRE; YORKE-SMITH, 2012)
propose count-as rules to define the environmental conditions that trigger changes in the
state of the norm instances (i.e., brute facts count-as violations, fulfillments, etc. of the
norms). In this case, one could specify that “broadcast a message” counts as the fulfillment
of the norm “internauts are obliged to tweet". In a similar direction, Piunti et al. (PIUNTI
et al., 2010) consider that environmental events count-as changes in the state of Moise
organizations (HÜBNER, Jomi F; BOISSIER; BORDINI, 2011; HÜBNER, Jomi F et al., 2010).
Some works (CAMPOS et al., 2009; MUNTANER-PERICH; DE LA ROSA ESTEVA, 2007)
make explicit and external only the regulative consequence of the brute facts. However, the
meaning of these consequences with respect to the application domain remain implicit and
internal. The relationship of these consequences with the goals and anti-goals it is also implicit

4.2. Positioning of the purpose model in the artificial institution literature 83

and internal. The practical examples illustrated in Section 4.1 do not use institutions in this
way.

MAS with institution in a ontological perspective. Some works use count-as rules
to specify the constitution of institutional elements that belong to the application domain,
that we refer in this work as status functions (ALDEWERELD, Huib et al., 2010; FORNARA
et al., 2008; BOELLA, Guido; VAN DER TORRE, 2004; BOELLA, Guido; TORRE, L. v. d.,
2006; BOELLA; REGULATIVE, n.d.; CARDOSO, Henrique Lopes; OLIVEIRA, EugENio, 2007;
CLIFFE; VOS; PADGET, 2006; BRITO, M. d. et al., 2016; DE BRITO; HÜBNER, Jomi Fred;
BOISSIER, 2018). These institutional elements are mainly used in the specification of norms
(but not exclusively). The norms become stable since their specification do not change even in
the case of changes in the constitution of the elements they refer to (DE BRITO; HÜBNER,
Jomi Fred; BOISSIER, 2018). Compared with the previous category, this category of MAS
adds external and explicit representation of the constituted elements. The agents can reason
about the constitution of these elements even in institutions they do not know in advance.
They can also reason about the normative consequences of constitution of status functions.
However, the effect of the institutional action that allows an agent to satisfy its goal or prevent
its anti-goal remains translated (implicitly) within the abstractions used to code the agent
and is programmed (internally) into it. Examples of this case can be seen in Sections 4.1.1.2,
4.1.1.3, 4.1.2.1, and 4.1.3.1.

MAS with institution in a purpose perspective. As in the preceding categories,
this category uses the notion of the institution and count-as to introduce a social meaning
to the elements present in the system (agents, events, etc.). Furthermore, it introduces the
concept of purpose, which describes the functions of the status functions in terms of the
consequences that their constitution produces in the environment. The addition of this concept
makes explicit the connections between the institutional actions available in the system and
their effects in the environment. Making this information explicit and external helps agents
to act in systems composed of an institution they did not know previously. They can consult
information described in the institutional specification to reason about the consequences of
their actions and deliberate on whether or not to act in their interests. The proposal presented
in this thesis can be classified in this category: it extends previous works adding the purposes
of status functions. In the proposal, purposes are explicit and external: they have an explicit
specification (written in OWL) external to the agents (in environmental artifacts). Examples
of this case can be seen in Sections 4.1.2.2, and 4.1.3.2.

Social-aware agents. The social-aware agents shown in the upper right corner of
Figure 10 correspond to an ideal category where agents themselves combine the status functions
that make up the institutions with the consequences of carrying out institutional actions in
the environment they are interacting. The institution and the purposes related to institutional
actions emerge from the interactions of agents (or are derived from their needs). These systems
do not have institutional specifications provided by the system designers because they emerge

84 Chapter 4. Evaluating the Purpose model

at runtime. The agent is part of the interaction that defines these social abstractions (knowing
them since then). No current implementation of such systems is known at the moment.
Examples of this approach do not yet exist because there is a lack of appropriate abstractions
to capture the social combinations that must be carried out so that this solution can actually
be implemented.

85

5 CONCLUSIONS

The main contribution of this work is a model of purpose that allows specifying the
environmental consequences of the constitution of status functions in artificial institutions.
This general contribution results from the work developed to solve the questions introduced
in Section 1.1. These questions, described in the sequence, provide additional details on the
contributions of this work.

1. What are the appropriate abstractions to represent the consequences in the envi-
ronment of institutional actions? Answers to this question are given in Chapter 2.
According to Searle’s theory, the institutional reality exists because people assign
functions to elements of brute reality that are not inherent in their natural virtues
(i.e., status functions). These functions can modify the world according to the
interests of the people who assign the functions. Searle calls these interests of
purpose. Therefore, inspired by this conception, we consider that the consequences
in the environment of the execution of institutional actions are purposes and are
associated with the practical interests of agents present in artificial institutions.

2. How the abstractions that represent institutional reality and the environment can be
coupled with the representation of the environmental consequences of institutional
actions? Answers to this question are given in Chapter 3. We define that the
conceptual coupling occurs through the status functions because they are the
statuses that enable the execution of the functions that modify the world to satisfy
the purposes of the agents. That is, purposes are associated with status functions
on the institutional side and environmental states on the environmental side. The
practical coupling between these concepts is slightly different. We define the purpose
as an independent abstraction to be connected with the representations of status
functions in the artificial institution implementations. Sections 3.5 and 3.6 describe
a possibility of implementing the purpose in a MAS. This implementation specifies
the purpose model using an ontology. The connection of purpose with the model
that represents the institutional reality is performed in an ad-hoc way. That is, the
designer of the system needs to equally specify the status functions in the artificial
institution model and in the purpose model. The connection of purpose with the
system states occurs through the ontology that describes the states that are pointed
to by the purpose. There are disadvantages and advantages to the proposed practical
coupling proposal. The disadvantages of this solution are (i) rework to doubly specify
the status function and (ii) the possibility of inconsistency between status functions
of both specifications. The advantages are (i) the flexibility of the model since it
can be coupled to any model of institutional reality with an institutional counterpart
for events that occur in the system and (ii) the non-influence of the purpose model
on the institution’s dynamics. In other words, the institution’s dynamics, especially

86 Chapter 5. Conclusions

the conditions for constituting the status functions and the constitution process, is
totally independent of the purpose model.

3. How agents can exploit them to act according to their interests? Answers to this
question are given in Section 4.1. One of the advantages of purposes in MAS
regards the agents. We have an improvement in the decision-making process of
the agents since they have more information available to decide how to achieve
their goals and avoid their anti-goals. With the purpose model, agents can access
and reason about the consequences of institutional actions and adapt themselves
to different scenarios. They can notice that (a) some purposes point to states of
the environment that are match to their interests and therefore useful to reach
their goals or (b) avoid these purposes because they point to states that are
similar to their anti-goals. In both cases, the agent has more information while
deciding whether a particular action will help it or not. This kind of reasoning
improves the agents’ autonomy (RODRIGUEZ-AGUILAR, Juan A. et al., 2015).
Furthermore, the agents become more adaptive. When purposes are external and
explicit, agents can enter different institutions without the need to be reprogrammed.
The proposed model allows an explicit connection between the purposes and the
states of the world that are likely reached from the constitution of status functions.
If an agent is programmed to achieve its goal or avoid its anti-goal considering
purposes, it can act in different institutions that supports purposes without changes
in its code. The agent’s capability to adapt to different institutions is an important
advance, especially in open systems (ALDEWERELD, Huib; DIGNUM, Virginia,
2010; ZAMBONELLI; JENNINGS; WOOLDRIDGE, 2000). In this case, the code of
both agents and institution remains stable, as the link between them is externalized
to the concept of purpose.

The previous answers are consequences of the main objective motivating this work,
that is: the design of artificial institutions that not only specify count-as relations, but that
also have the means of specifying the consequences in the environment of the execution of
institutional actions. From all the developed work, we conclude that the consequences in the
environment of the execution of institutional actions can be appropriately represented through
the purposes and associated with the status functions on the institutional side and the states in
the environment on the environmental side. This conclusion is directly related to the inspiration
taken from the work by John Searle (SEARLE, J. R., 1995; SEARLE, J., 2010). It is important
to remark that our computational representation is one among other possible adaptations of
that work to the MAS field.

This work also contributes to advancing the notion of the institution in MAS. While
current works limit themselves to employing institutional reality to represent a common inter-
pretation of elements present in the environment, this work associates institutional reality with
states in the environment that are of interest to agents.

5.1. Future Work 87

5.1 FUTURE WORK

By developing this thesis, some points have been observed that could be investigated
in future work. Some of them are described below:

1. Explore the relationship between the purposes and values of agents. Cur-
rently, the association between the purposes and interests of agents is developed
in an ad-hoc manner. However, as discussed in Section 4.2, one possibility for fu-
ture work is to make agents socially aware. The agents could combine the status
functions that make up the institutions with the consequences of carrying out in-
stitutional actions in the environment in which they interact. The institution and
the purposes related to institutional actions must emerge from the interactions of
agents (or derive from their needs).

2. Evaluate whether the purpose model must be further detailed. Currently,
the specification of purposes is used to point out the states that can be reached
if the constitutions of actions are carried out. However, we have assumed that
some intermediate actions must be performed for these states to be reached. In
this thesis, these actions are ignored. A possibility for future work is the addition
of these intermediate actions and the pre and post-conditions for their execution.
Such an addition will allow the pointed states to be guaranteed.

3. Evaluate the integration of the model with other models that implement
artificial institutions. Currently, the purpose model is used together with SAI
(cf. Section 4.1). However, the integration is developed in an ad-hoc manner and
requires the designer to know both models. A possibility for future work is to develop
an API that integrates the model with other models of institutional reality without
the need for the designer to know the details of the purpose model.

4. Method to specify institutions. The design of the purpose of the practical
examples in Section 4.1 was done in an ad-hoc manner. A possibility for future work
is the development of methods to properly carry out the design of these systems. It
is interesting, for example, to analyze, from a use case, what is the best order to
design the system, defining whether to start with status functions, constitutive rules,
purposes, etc. Additional aspects that can be addressed are extracting purposes
from use cases, connecting those purposes with status functions, etc.

5.2 RELATED PUBLICATIONS

Publications related to this thesis are enumerated in the sequence:

1. Cunha, Rafhael R., Jomi F. Hübner, and Maiquel de Brito. Instituições em sistemas
multiagentes à luz da teoria da construção da realidade social. XIII Workshop-

88 Chapter 5. Conclusions

Escola de Sistemas de Agentes, seus Ambientes e Aplicações. WESAAC,
2019. p. 71-82.

This article analyzes the state of the art on artificial institutions in MAS considering
the theory of social reality proposed by John Searle.

2. Cunha, Rafhael R., Jomi F. Hübner, and Maiquel de Brito. Modelo Ontológico de
Status-Functions em Instituições Artificiais. XIV Workshop-Escola de Sistemas
de Agentes, seus Ambientes e Aplicações. WESAAC, 2020. p. 37-48.

This article presents the first version of the purpose model through the conception
of an ontology and discusses some properties of that model.

3. Cunha, Rafhael R., Jomi Fred Hübner, and Maiquel de Brito. A Conceptual Model
for Situating Purposes in Artificial Institutions. Revista de Informática Teórica
e Aplicada. Vol.29 No.1, 2022. p. 68-80.

This article presents the conceptual model of the purpose model.

4. Cunha, Rafhael R., Jomi F. Hübner, and Maiquel de Brito. Implementing a purpose
model of status-functions through ontologies to support the social reasoning of
agents. XV Workshop-Escola de Sistemas de Agentes, seus Ambientes e
Aplicações. WESAAC, 2021. p. 71-82.

This article presents the first practical implementation of the purpose model using
an ontology and the JaCaMo framework.

5. Cunha, Rafhael R., Jomi F. Hübner, and Maiquel de Brito. Environmental Conse-
quences of Institutional Facts in Artificial Institutions. International Workshop
on Coordination, Organizations, Institutions, Norms, and Ethics for Gov-
ernance of Multi-Agent Systems XIV. COINE 2021. Springer, 2022. p.
44-61

This article illustrates the disadvantages and advantages of using the purpose model
for the development of a MAS by implementing a practical example using an
ontology and the JaCaMo framework.

6. Cunha, Rafhael R., Jomi F. Hübner, and Maiquel de Brito. Supporting the Rea-
soning about Environmental Consequences of Institutional Actions. International
Workshop on Coordination, Organizations, Institutions, Norms, and Ethics
for Governance of Multi-Agent Systems XV. COINE 2022. Springer, 2022.
p. 134-147

This article presents a mathematical formalization for the model of purposes and
algorithms that agents can use to reason about their anti-goals.

7. Cunha, Rafhael R., Jomi F. Hübner, and Maiquel de Brito. Using Institutional
Purposes to Enhance Openness of Multi-Agent Systems. International Conference

5.2. Related Publications 89

on Practical Applications of Agents and Multi-Agent Systems. PAAMS
2022. Springer, 2022. p. 88-99

This article discusses the disadvantages and advantages that the purpose model
provides for the development of a MAS from the point of view of the programmer
of the system.

Submissions still awaiting response:
1. Cunha, Rafhael R., Jomi F. Hübner, and Maiquel de Brito. Helping agents to

enter and exploit artificial institutions. Autonomous Agents and Multi-Agent
Systems - JAAMAS.

This article discusses the disadvantages and advantages of using the purpose model
for the development of a MAS from the point of view of the agent.

91

REFERENCES

ABREU, Jefferson Viana Fonseca. AgentBotSpotter: a multi-agent system for online Twitter
bot detection, 2021.

ABREU NETTO, Manoel Teixeira de. Um Framework Baseado em Padrões para a
Construção de Sistemas Multi-Agentes Auto-Organizáveis. 2010. PhD thesis –
PUC-Rio.

ALDEWERELD, Huib; ÁLVAREZ-NAPAGAO, Sergio; DIGNUM, Frank;
VÁZQUEZ-SALCEDA, Javier. Making norms concrete. In: CITESEER. PROCEEDINGS of the
9th International Conference on Autonomous Agents and Multiagent Systems: volume
1-Volume 1. [S.l.: s.n.], 2010. P. 807–814.

ALDEWERELD, Huib; DIGNUM, Virginia. OperettA: Organization-oriented development
environment. In: SPRINGER. INTERNATIONAL Workshop on Languages, Methodologies and
Development Tools for Multi-Agent Systems. [S.l.: s.n.], 2010. P. 1–18.

AMARAL, Cleber Jorge; HÜBNER, Jomi Fred. Jacamo-web is on the fly: an interactive
Multi-Agent System IDE. In: SPRINGER. INTERNATIONAL Workshop on Engineering
Multi-Agent Systems. [S.l.: s.n.], 2019. P. 246–255.

ARANDA-CORRAL, Gonzalo A; DÍAZ, Joaquín Borrego; MARTÍN, David Solís. Iabastos: an
intelligent marketplace for agricultural products. In: SPRINGER. INTERNATIONAL
Conference on Practical Applications of Agents and Multi-Agent Systems. [S.l.: s.n.], 2015.
P. 255–258.

ARGENTE, Estefanía et al. The role of the environment in agreement technologies. Artificial
Intelligence Review, Springer, v. 39, n. 1, p. 21–38, 2013.

AYDEMIR, Fatma Başak; GIORGINI, Paolo; MYLOPOULOS, John. Multi-objective risk
analysis with goal models. In: IEEE. 2016 IEEE Tenth International Conference on Research
Challenges in Information Science (RCIS). [S.l.: s.n.], 2016. P. 1–10.

BERGENTI, Federico; FRANCHI, Enrico; POGGI, Agostino. Enhancing social networks with
agent and semantic web technologies. In: COLLABORATION and the semantic web: social
networks, knowledge networks, and knowledge resources. [S.l.]: IGI Global, 2012. P. 83–100.

92 REFERENCES

BOELLA, G; REGULATIVE, Torre van der L. Constitutive Norms in Normative Multiagent
Systems. In: KR’04 Proceedings of the Ninth International Conference on Principles of
Knowledge Representation and Reasoning. [S.l.: s.n.]. P. 255–265.

BOELLA, Guido; TORRE, L. van der. Regulative and constitutive norms in normative
multiagent systems. KR, v. 4, p. 255–265, 2004.

BOELLA, Guido; TORRE, Leendert van der. Constitutive norms in the design of normative
multiagent systems. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3900 LNAI,
p. 303–319, 2006. ISSN 03029743.

BOELLA, Guido; TORRE, Leendert van der. A logical architecture of a normative system. In:
SPRINGER. INTERNATIONAL Workshop on Deontic Logic and Artificial Normative Systems.
[S.l.: s.n.], 2006. P. 24–35.

BOELLA, Guido; VAN DER TORRE, Leendert. An agent oriented ontology of social reality.
Procs. of FOIS, v. 4, p. 199–209, 2004.

BOELLA, Guido; VAN DER TORRE, Leendert; VERHAGEN, Harko. Introduction to the
special issue on normative multiagent systems. Autonomous Agents and Multi-Agent
Systems, Springer, v. 17, n. 1, p. 1–10, 2008.

BOISSIER, Olivier; BORDINI, Rafael H; HÜBNER, Jomi F; RICCI, Alessandro. Dimensions in
programming multi-agent systems. The Knowledge Engineering Review, Cambridge
University Press, v. 34, 2019.

BORDINI, Rafael H; HÜBNER, Jomi Fred; WOOLDRIDGE, Michael. Programming
multi-agent systems in AgentSpeak using Jason. [S.l.]: John Wiley & Sons, 2007. v. 8.

BRATMAN, Michael E; ISRAEL, David J; POLLACK, Martha E. Plans and resource-bounded
practical reasoning. Computational intelligence, Wiley Online Library, v. 4, n. 3,
p. 349–355, 1988.

BRITO, Maiquel de et al. A model of institucional reality supporting the regulation in
artificial institutions. 2016. PhD thesis – Universidade Federal de Santa Catarina.

REFERENCES 93

BRITO, Maiquel de; HÜBNER, Jomi F; BORDINI, Rafael H. Programming institutional facts
in multi-agent systems. In: SPRINGER. INTERNATIONAL Workshop on Coordination,
Organizations, Institutions, and Norms in Agent Systems. [S.l.: s.n.], 2012. P. 158–173.

BRITO, Maiquel de; HÜBNER, Jomi F. Institutional Situatedness in Multi-Agent Systems.
wesaac, p. 12, 2014.

CALVARESI, Davide; CALBIMONTE, Jean-Paul; DUBOSSON, Fabien; NAJJAR, Amro;
SCHUMACHER, Michael. Social network chatbots for smoking cessation: agent and
multi-agent frameworks. In: IEEE. 2019 IEEE/WIC/ACM International Conference on Web
Intelligence (WI). [S.l.: s.n.], 2019. P. 286–292.

CAMPOS, Jordi; SANCHEZ, Maite; AGUILAR, J.a; ESTEVA, Marc. Formalising Situatedness
and Adaptation in, p. 126–139, 2009.

CARDOSO, HENRIQUE LOPES; OLIVEIRA, EUGÉNIO. Institutional Reality and Norms:
Specifying and Monitoring Agent Organizations. International Journal of Cooperative
Information Systems, v. 16, n. 01, p. 67–95, 2007. ISSN 0218-8430.

CARDOSO, Henrique Lopes; OLIVEIRA, EugENio. Institutional reality and norms: Specifying
and monitoring agent organizations. International Journal of Cooperative Information
Systems, World Scientific, v. 16, n. 01, p. 67–95, 2007.

CASSANDRAS, Christos G; LAFORTUNE, Stéphane. Introduction to discrete event
systems. [S.l.]: Springer, 2008.

CLIFFE, Owen; DE VOS, Marina; PADGET, Julian. Specifying and reasoning about multiple
institutions. In: SPRINGER. INTERNATIONAL Workshop on Coordination, Organizations,
Institutions, and Norms in Agent Systems. [S.l.: s.n.], 2006. P. 67–85.

CLIFFE, Owen; VOS, Marina De; PADGET, Julian. Answer set programming for representing
and reasoning about virtual institutions. In: SPRINGER. INTERNATIONAL Workshop on
Computational Logic in Multi-Agent Systems. [S.l.: s.n.], 2006. P. 60–79.

CRIADO, Natalia; ARGENTE, Estefania; NORIEGA, Pablo; BOTTI, Vicent. Reasoning about
constitutive norms in BDI agents. Logic Journal of the IGPL, OUP, v. 22, n. 1, p. 66–93,
2014.

94 REFERENCES

CUNHA, Rafhael R; HÜBNER, Jomi F; BRITO, Maiquel de. Instituições em Sistemas
Multiagentes a luz da Teoria da Construção da Realidade Social. Workshop Escola de
Sistemas de Agentes, seus Ambientes e Aplicações, v. XIII, p. 71–81, 2019.

CUNHA, Rafhael R; HÜBNER, Jomi F; BRITO, Maiquel de. Supporting the Reasoning About
Environmental Consequences of Institutional Actions. In: SPRINGER. INTERNATIONAL
Workshop on Coordination, Organizations, Institutions, Norms, and Ethics for Governance of
Multi-Agent Systems. [S.l.: s.n.], 2022. P. 134–147.

DASTANI, Mehdi; GROSSI, Davide; MEYER, John Jules Ch; TINNEMEIER, Nick. Normative
multi-agent programs and their logics. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 5605 LNAI, p. 16–31, 2009. ISSN 03029743.

DASTANI, Mehdi; VAN DER TORRE, Leendert; YORKE-SMITH, Neil. Monitoring
interaction in organisations. In: SPRINGER. INTERNATIONAL Workshop on Coordination,
Organizations, Institutions, and Norms in Agent Systems. [S.l.: s.n.], 2012. P. 17–34.

DE BRITO, Maiquel; HÜBNER, Jomi Fred; BOISSIER, Olivier. Situated artificial institutions:
stability, consistency, and flexibility in the regulation of agent societies. Autonomous
Agents and Multi-Agent Systems, Springer, v. 32, n. 2, p. 219–251, 2018.

DEMOLOMBE, Robert. Relationships between actions performed by institutional agents,
human agents or software agents. In: SPRINGER. INTERNATIONAL Conference on Deontic
Logic in Computer Science. [S.l.: s.n.], 2010. P. 259–273.

DIGNUM, V; ALDEWERELD, H; DIGNUM, F. On the engineering of multi agent
organizations. In: PROCEEDINGS of the 12th International Workshop on Agent-Oriented
Software Engineering. [S.l.: s.n.], 2011. P. 53–65.

ESTEVA, Marc; RODRIGUEZ-AGUILAR, Juan A; ARCOS, J LL; SIERRA, Carles;
NORIEGA, Pablo; ROSELL, Bruno; CRUZ, David de la. Electronic institutions development
environment. In: PROCEEDINGS of the 7th international joint conference on Autonomous
agents and multiagent systems: demo papers. [S.l.: s.n.], 2008. P. 1657–1658.

FARJAM, Mike; KIRCHKAMP, Oliver. Bubbles in hybrid markets: How expectations about
algorithmic trading affect human trading. Journal of Economic Behavior & Organization,
Elsevier, v. 146, p. 248–269, 2018.

REFERENCES 95

FELICÍSSIMO, Carolina; LUCENA, Carlos; BRIOT, Jean-Pierre; CHOREN, Ricardo. An
approach for contextual regulations in open MAS. In: CITESEER. PROCEEDINGS of the 8th
International Bi-Conference Workshop on Agent-oriented Information Systems (AOIS) at
AAMAS. [S.l.: s.n.], 2006. v. 6, p. 25–32.

FIKES, Richard; FARQUHAR, Adam. Distributed repositories of highly expressive reusable
ontologies. IEEE Intelligent Systems and their Applications, IEEE, v. 14, n. 2, p. 73–79,
1999.

FORNARA, Nicoletta. Specifying and monitoring obligations in open multiagent systems using
semantic web technology. In: SEMANTIC agent systems. [S.l.]: Springer, 2011. P. 25–45.

FORNARA, Nicoletta; COLOMBETTI, Marco. Ontology and time evolution of obligations
and prohibitions using semantic web technology. In: SPRINGER. INTERNATIONAL
Workshop on Declarative Agent Languages and Technologies. [S.l.: s.n.], 2009. P. 101–118.

FORNARA, Nicoletta; COLOMBETTI, Marco. Representation and monitoring of
commitments and norms using OWL. AI communications, IOS Press, v. 23, n. 4,
p. 341–356, 2010.

FORNARA, Nicoletta; TAMPITSIKAS, Charalampos. Using OWL Artificial Institutions for
dynamically creating Open Spaces of Interaction. In: AT. [S.l.: s.n.], 2012. P. 281–295.

FORNARA, Nicoletta; VIGANO, Francesco; VERDICCHIO, Mario; COLOMBETTI, Marco.
Artificial institutions: a model of institutional reality for open multiagent systems. Artificial
intelligence and Law, Springer, v. 16, n. 1, p. 89–105, 2008.

FORNARA, Nicoletta; VIGANÒ, Francesco; COLOMBETTI, Macro. Agent communication
and institutional reality. In: SPRINGER. INTERNATIONAL Workshop on Agent
Communication. [S.l.: s.n.], 2004. P. 1–17.

GEIGER, R Stuart. The lives of bots. arXiv preprint arXiv:1810.09590, 2018.

GEIGER, R Stuart. The social roles of bots and assisted editing programs. In:
PROCEEDINGS of the 5th International Symposium on Wikis and Open Collaboration.
[S.l.: s.n.], 2009. P. 1–2.

96 REFERENCES

GONZÁLEZ-BRIONES, Alfonso; DE LA PRIETA, Fernando; MOHAMAD, Mohd Saberi;
OMATU, Sigeru; CORCHADO, Juan M. Multi-agent systems applications in energy
optimization problems: A state-of-the-art review. Energies, MDPI, v. 11, n. 8, p. 1928, 2018.

GOVERNATORI, Guido; DUMAS, Marlon; TER HOFSTEDE, Arthur HM; OAKS, Phillipa. A
formal approach to protocols and strategies for (legal) negotiation. In: PROCEEDINGS of the
8th international conference on Artificial intelligence and law. [S.l.: s.n.], 2001. P. 168–177.

GROSSI, Davide; ALDEWERELD, Huib; VÁZQUEZ-SALCEDA, Javier; DIGNUM, Frank.
Ontological aspects of the implementation of norms in agent-based electronic institutions.
Computational and Mathematical Organization Theory, v. 12, 2-3 SPEC. ISS.,
p. 251–275, 2006. ISSN 1381298X.

GUARINO, Nicola. Formal ontology in information systems: Proceedings of the first
international conference (FOIS’98), June 6-8, Trento, Italy. [S.l.]: IOS press, 1998.
v. 46.

HINDRIKS, Frank. Deconstructing Searle’s Making the Social World. Philosophy of the
Social Sciences, SAGE Publications Sage CA: Los Angeles, CA, v. 45, n. 3, p. 363–369,
2015.

HINDRIKS, Koen V; DE BOER, Frank S; VAN DER HOEK, Wiebe; MEYER, John-Jules Ch.
Agent programming with declarative goals. In: SPRINGER. INTERNATIONAL Workshop on
Agent Theories, Architectures, and Languages. [S.l.: s.n.], 2000. P. 228–243.

HÜBNER, Jomi F; BOISSIER, Olivier; BORDINI, Rafael H. A normative programming
language for multi-agent organisations. Annals of Mathematics and Artificial
Intelligence, Springer, v. 62, n. 1, p. 27–53, 2011.

HÜBNER, Jomi F; BOISSIER, Olivier; KITIO, Rosine; RICCI, Alessandro. Instrumenting
multi-agent organisations with organisational artifacts and agents. Autonomous agents and
multi-agent systems, Springer, v. 20, n. 3, p. 369–400, 2010.

LEMAÎTRE, Christian; EXCELENTE, Cora B. Multi-agent organization approach. In:
TOLEDO. PROCEEDINGS of II Iberoamerican Workshop on DAI and MAS. [S.l.: s.n.], 1998.
P. 7–16.

LUCK, M; MCBURNEY, P; PREIST, C. A Roadmap for Agent Based Computing.
AgentLink, network of excellence, 2003.

REFERENCES 97

LUCK, Michael; NORIEGA, Pablo; RODRIGUEZ-AGUILAR, Juan A; SIERRA, Carles, et al.
Communicating open systems. Artificial Intelligence, Elsevier, v. 186, p. 38–94, 2012.

MAEDCHE, Alexander; STAAB, Steffen. Ontology learning for the semantic web. IEEE
Intelligent systems, IEEE, v. 16, n. 2, p. 72–79, 2001.

MERABET, Ghezlane Halhoul; ESSAAIDI, Mohammed; TALEI, Hanaa;
ABID, Mohamed Riduan; KHALIL, Nacer; MADKOUR, Mohcine; BENHADDOU, Driss.
Applications of multi-agent systems in smart grids: A survey. In: IEEE. 2014 International
conference on multimedia computing and systems (ICMCS). [S.l.: s.n.], 2014. P. 1088–1094.

MUNTANER-PERICH, Eduard; DE LA ROSA ESTEVA, Josep Lluís. Towards a formalisation
of dynamic electronic institutions. In: SPRINGER. INTERNATIONAL Workshop on
Coordination, Organizations, Institutions, and Norms in Agent Systems. [S.l.: s.n.], 2007.
P. 97–109.

NIGAM, Vivek; LEITE, Joao. A dynamic logic programming based system for agents with
declarative goals. In: SPRINGER. INTERNATIONAL Workshop on Declarative Agent
Languages and Technologies. [S.l.: s.n.], 2006. P. 174–190.

OSSOWSKI, Sascha; JULIÁN INGLADA, Vicente; BAJO PÉREZ, Javier;
BILLHARDT, Holger; BOTTI, Vicente; CORCHADO RODRÍGUEZ, Juan Manuel, et al.
Open Issues in Open MAS: An abstract architecture proposal. Daniel Borrajo, Luis Castillo y
Corchado Rodríguez, Juan M.(Eds . . ., 2007.

PÉREZ-MARCOS, Javier; JIMÉNEZ-BRAVO, Diego M; DE PAZ, Juan F;
VILLARRUBIA GONZÁLEZ, Gabriel; LÓPEZ, Vivian F; GIL, Ana B. Multi-agent system
application for music features extraction, meta-classification and context analysis.
Knowledge and Information Systems, Springer, v. 62, n. 1, p. 401–422, 2020.

PITT, Jeremy; MAMDANI, Abe; CHARLTON, Patricia. The open agent society and its
enemies: a position statement and research programme. Telematics and Informatics,
Elsevier, v. 18, n. 1, p. 67–87, 2001.

PIUNTI, Michele; BOISSIER, Olivier; HÜBNER, Jomi F; RICCI, Alessandro. Embodied
organizations: a unifying perspective in programming agents, organizations and environments.
COIN10@ MALLOW, Citeseer, p. 98–114, 2010.

98 REFERENCES

RICCI, Alessandro; PIUNTI, Michele; VIROLI, Mirko. Environment programming in
multi-agent systems: an artifact-based perspective. Autonomous Agents and Multi-Agent
Systems, Springer, v. 23, n. 2, p. 158–192, 2011.

RIEMSDIJK, Birna van; HOEK, Wiebe van der; MEYER, John-Jules Ch. Agent programming
in Dribble: from beliefs to goals using plans. In: PROCEEDINGS of the second international
joint conference on Autonomous agents and multiagent systems. [S.l.: s.n.], 2003. P. 393–400.

ROCHA COSTA, Antônio Carlos da. Proposal for a notion of modularity in multiagent
systems. In: PRE-PROCEEDINGS of Engineering Multi-Agent Systems Workshop at AAMAS,
Paris. [S.l.: s.n.], 2014. P. 21–40.

RODRIGUEZ-AGUILAR, Juan A.; SIERRA, Carles; ARCOS, Josep Ll;
LOPEZ-SANCHEZ, Maite; RODRIGUEZ, Inmaculada. Towards next generation coordination
infrastructures. Knowledge Engineering Review, v. 30, n. 4, p. 435–453, 2015. ISSN
14698005.

RUSSELL, Peter Norvig. Artificial Intelligence: A Modern Approach by Stuart. Russell and
Peter Norvig contributing writers, Ernest Davis...[et al.], 2010.

SARDIS, Manolis; VOUROS, George. Electronic institutions infrastructure for e-chartering. In:
SPRINGER. INTERNATIONAL Workshop on Engineering Societies in the Agents World.
[S.l.: s.n.], 2007. P. 90–107.

SEARLE, John. Making the social world: The structure of human civilization. [S.l.]:
Oxford University Press, 2010.

SEARLE, John R. The construction of social reality. [S.l.]: Simon and Schuster, 1995.

SMIT, JP; BUEKENS, Filip; DU PLESSIS, Stan. Developing the incentivized action view of
institutional reality. Synthese, Springer, v. 191, n. 8, p. 1813–1830, 2014.

TESTA, Italo. Dewey’s social ontology: A pragmatist alternative to Searle’s approach to
social reality. International Journal of Philosophical Studies, Taylor & Francis, v. 25,
n. 1, p. 40–62, 2017.

THÉVIN, Lauren; BADEIG, Fabien; DUGDALE, Julie; BOISSIER, Olivier;
GARBAY, Catherine. Un Système Multi-Agent normatif hybride pour l’interaction mixte:
application à la gestion de crises. Revue des Sciences et Technologies de

REFERENCES 99

l’Information-Série RIA: Revue d’Intelligence Artificielle, v. 29, n. 3-4, p. 453–482,
2015.

VÁZQUEZ-SALCEDA, Javier; ALDEWERELD, Huib; GROSSI, Davide; DIGNUM, Frank.
From human regulations to regulated software agents’ behavior. Artificial Intelligence and
Law, Springer, v. 16, n. 1, p. 73–87, 2008.

VIGANÒ, Francesco. A Framework for Model Checking Institutions. Model Checking and
Artificial Intelligence, p. 129–145, 2007.

VIGANÒ, Francesco; COLOMBETTI, Marco. Model Checking Norms and Sanctions in
Institutions. n. 2, p. 316–329, 2008.

WEYNS, Danny; OMICINI, Andrea; ODELL, James. Environment as a first class abstraction
in multiagent systems. Autonomous agents and multi-agent systems, Springer, v. 14,
n. 1, p. 5–30, 2007.

WHITWORTH, Brian. The social requirements of technical systems. In: VIRTUAL
Communities: Concepts, Methodologies, Tools and Applications. [S.l.]: IGI Global, 2011.
P. 1461–1481.

WINIKOFF, Michael; PADGHAM, Lin; HARLAND, James; THANGARAJAH, John.
Declarative and procedural goals in intelligent agent systems. In: MORGAN KAUFMAN.
INTERNATIONAL Conference on Principles of Knowledge Representation and Reasoning.
[S.l.: s.n.], 2002.

WOOLDRIDGE, Michael. An introduction to multiagent systems. [S.l.]: John Wiley &
Sons, 2009.

ZAMBONELLI, Franco; JENNINGS, Nicholas R; WOOLDRIDGE, Michael. Organisational
abstractions for the analysis and design of multi-agent systems. In: SPRINGER.
INTERNATIONAL Workshop on Agent-Oriented Software Engineering. [S.l.: s.n.], 2000.
P. 235–251.

101

APPENDIX A – IMPLEMENTATION OF THE ALGORITHMS IN JASON

Algorithm A.1 is essentially a plan that agents can execute to discover which institutional
actions (Actions argument) can be performed to achieve a goal (Goal argument). The
algorithm searches in the institutional specification (i) which states pointed out by the purposes
match the agent’s goal, (ii) which status functions are associated with these purposes and (iii)
which concrete actions can constitute these status functions, returning a list of actions.

1 +! alg1(Goal , Actions)

2 <- .queue. create (Actions);

3 getPurposesOfState (Goal , Purposes);

4 for (. member (Purpose , Purposes)){

5 getStatusFunctionsFromPurpose (Purpose , NameSF);

6 for (. member (StatusFunction , NameSF)){

7 ? constitutive_rule (Action , StatusFunction ,_,_);

8 .queue.add(Actions , Action);

9 }

10 }.

11

12 +! alg1(Goal , []).

Listing A.1 – Implementation of Algorithm 1

Algorithm A.2 is essentially a plan that agents can execute to discover which states
(States argument) can be reached from the execution of an action (Action argument). The
algorithm searches in the institutional specification (i) which status functions can be assigned
to the action, (ii) which purposes are associated with these status functions and (iii) which
states are pointed by these purposes, returning a list of states.

1 +! alg2(Action , States) : constitutive_rule (Action ,SF ,_,_)

2 <- .queue. create (States);

3 getPurposesOfStatusFunctions (SF , Purposes);

4 for (. member (Purpose , Purposes)){

5 getPredicatesOfStatesRelatedToPurpose (Purpose , Predicates);

6 for (. member (Predicate , Predicates)){

7 .queue.add(States , Predicate);

8 }

9 }.

10

11 +! alg2(Action , []).

Listing A.2 – Implementation of Algorithm 2

Algorithm A.3 is essentially a plan that agents can execute to discover whether the
institutional action to be taken (Action argument) produces changes in the environment that

102 APPENDIX A. Implementation of the Algorithms in Jason

match the agent’s goal (Goal argument). The algorithm uses alg2 to search for the states
that can be reached if Action is executed and checks if Goal is in that list of states, returning
true or false.

1 +! alg3(Goal , Action , R)

2 <- !alg2(Action , States);

3 R = . member (Goal , States).

Listing A.3 – Implementation of Algorithm 3

Algorithm A.4 is essentially a plan that agents can execute to discover whether the
institutional action to be taken (Action argument) produces changes in the environment that
match the agent’s anti-goal (AntiGoal argument). The algorithm uses alg2 to search for
the states that can be reached if Action is executed and checks if AntiGoal is in that list of
states, returning true or false.

1 +! alg4(AntiGoal , Action , R)

2 <- !alg2(Action , States);

3 R = . member (AntiGoal , States).

Listing A.4 – Implementation of Algorithm 4

103

APPENDIX B – APPLICATION EXAMPLE 1: BOOK TRADE

B.1 CASE 0 - DEFAULT SETUP

The default Gradle code for all cases in example 1 is shown in Listing B.1. The
implementation lines within the dependencies code snippet add dependencies for the JaCaMO
framework and the Purpose Model, respectively. These lines direct Gradle to fetch files from
these projects independently and add them to the project being coded.

1 defaultTasks ’jar ’

2

3 apply plugin : ’java ’

4 apply plugin : ’eclipse ’

5

6 java {

7 toolchain {

8 languageVersion = JavaLanguageVersion .of (15)

9 }

10 }

11

12 repositories {

13 mavenCentral ()

14 maven { url "https :// raw. githubusercontent .com/jacamo -lang/

mvn -repo/ master " }

15 maven { url "https :// repo. gradle .org/ gradle /libs -releases -

local" }

16 maven { url ’https :// jitpack .io’ }

17 }

18

19 dependencies {

20 implementation (’org. jacamo : jacamo :1.1.1 - SNAPSHOT ’)

21 implementation (’com. github . rafhaelrc : PurposeModel :1.8 ’)

22 }

23

24 sourceSets {

25 main {

26 java {

27 srcDir ’src ’

28 }

29 resources {

30 srcDir ’src/ resources ’

31 }

32 }

104 APPENDIX B. Application example 1: book trade

33 }

34

35 jar {

36 baseName ’bookTrade ’

37 manifest {

38 attributes ’Main -Class ’: ’Main ’,

39 ’Specification -Title ’: ’Book Trade ’,

40 ’Specification - Version ’: project .version ,

41 ’Implementation - Version ’: new Date (). toString

()

42 }

43 }

44

45 clean {

46 delete ’bin ’

47 delete ’build ’

48 delete ’log ’

49 }

Listing B.1 – Default Gradle file for all book Trade example cases

B.2 CASE 1 - SIMPLE MAS

The artifact code shown in Listing B.2 has implemented the functions deliver_paper_note
and deliver_book which are used by Bob to deliver the paper note to Tom and by Tom to
deliver the book to Bob, respectively. These functions add beliefs about actions performed
within the system, resulting in Tom’s reaction and Bob’s goal achievement.

1 package tools;

2

3 import cartago . Artifact ;

4 import cartago . OPERATION ;

5 import java.io. IOException ;

6 import java.util. logging . Logger ;

7

8

9 public class ElectronicMachine extends Artifact {

10 private Logger logger = Logger . getLogger (ElectronicMachine .

class . getName ());

11

12 @OPERATION

13 public void init () {

14 defineObsProperty ("task", 0);

B.2. Case 1 - Simple MAS 105

15

16 }

17

18 @OPERATION

19 public void deliver_paper_note (String seller) {

20 defineObsProperty (" deliver_paper_note ", "bob");

21 // implement the action ..

22 }

23

24 @OPERATION

25 public void deliver_book (String buyer) {

26 defineObsProperty (" deliverBook ");

27 // implement the action ..

28 }

29 }

Listing B.2 – Artifact - Example 1 and Case 1

The JCM code shown in Listing B.3 specifies the agents Bob and Tom, their focus on
the artifact machine, the workspace wsp and the artifact machine that is available in that
space.

1 mas book_trade {

2

3 agent bob {

4 focus: machine

5 }

6 agent tom {

7 focus: machine

8 }

9 workspace wsp {

10 artifact machine : tools. ElectronicMachine ()

11 }

12 }

Listing B.3 – JCM - Example 1 and case 1

Bob’s code is shown in Listing B.4. This code contains the plan that Bob should execute
to achieve its holdBook goal.

1 bookOwner (tom). // agent belief

2

3 ! holdBook . // agent goal

4

5 +! holdBook : bookOwner (Seller)

6 <- deliver_paper_note (Seller);

106 APPENDIX B. Application example 1: book trade

7 .wait(deliverBook).

Listing B.4 – Bob’s Program - Example 1 and Case 1

Tom’s code is shown in Listing B.5. This code contains the plan that Tom should
execute to deliver the book to the agent that performed the deliver_paper_note action.

1 + deliver_paper_note (Buyer) <- deliver_book (Buyer).

Listing B.5 – Tom’s Program - Example 1 and Case 1

B.3 CASE 2 - MAS WITH STATUS FUNCTIONS

The artifact code shown in Listing B.6 has implemented the same functions as in
Listing B.2. The difference is in the beliefs that these functions add to the system. While in
Listing B.2 the beliefs are related to the actions that are performed, in Listing B.6 the beliefs
are related to the status functions that have been constituted.

1 package tools;

2

3 import cartago . Artifact ;

4 import cartago . OPERATION ;

5 import java.io. IOException ;

6 import java.util. logging . Logger ;

7

8

9 public class ElectronicMachine extends Artifact {

10 private Logger logger = Logger . getLogger (ElectronicMachine .

class . getName ());

11

12 @OPERATION

13 public void init () {

14 defineObsProperty ("task", 0);

15 }

16

17 @OPERATION

18 public void deliver_paper_note (String seller) {

19 defineObsProperty (" payment ", "bob");

20 // implement the action ..

21 }

22

23 @OPERATION

24 public void deliver_book (String buyer) {

25 defineObsProperty (" deliverBook ");

26 // implement the action ..

B.3. Case 2 - MAS with status functions 107

27 }

28 }

Listing B.6 – Artifact - Example 1 and Case 2

The JCM code shown in Listing B.7 is similar to Listing B.3. The difference is the addi-
tion of the agents’ focus on the inst_test_art artifact and the addition of the institutional
specification associated with the wsp workspace.

1 mas book_trade {

2

3 agent bob {

4 focus: machine , inst_test . inst_test_art

5 }

6 agent tom {

7 focus: machine , inst_test . inst_test_art // focus on the

institutional artifact

8 }

9 workspace wsp {

10 artifact machine : tools. ElectronicMachine ()

11 }

12 institution inst_test : src/ resources / constitutive - specification

.sai {

13 workspaces : wsp

14 }

15 }

Listing B.7 – JCM - Example 1 and Case 2

The institutional specification code is shown in Listing B.8. It contains the status
function and constitutive rule used in this example.

1 institution_id : bhInst .

2

3 status_functions :

4

5 events : payment (X).

6

7 constitutive_rules :

8

9 1: deliver_paper_note (X) count -as payment (X).

Listing B.8 – Institutional specification Example 1 and Case 2

Bob’s code is shown in Listing B.9. The difference between Listing B.4 and this Listing
is the action that Bob should perform. While in the first the action is hard-coded, Bob consults

108 APPENDIX B. Application example 1: book trade

the institutional specification to identify which concrete action can constitute payment status
function in the second.

1 bookOwner (tom). // agent belief

2 statusFunction (payment (tom)).

3

4 ! holdBook . // agent goal

5

6 +! holdBook : statusFunction (SF) & bookOwner (Seller)

7 <- ? constitutive_rule (Action ,SF ,_,_);

8 Action ;

9 .wait(deliverBook).

Listing B.9 – Bob’s Program - Example 1 and Case 2

Tom’s code is shown in Listing B.10. This code contains the plan that Tom should
execute to deliver the book to the agent that performed the deliver_paper_note action.
The difference between Listing B.5 and this Listing is in the trigger that triggers Tom’s reaction.
While in the first the reaction is activated by a specific action, in the second the reaction
occurs because the status function payment has been constituted.

1 + payment (Buyer) <- deliver_book (Buyer).

Listing B.10 – Tom’s Program - Example 1 and Case 2

B.4 CASE 3 - MAS WITH STATUS FUNCTIONS AND NORMS

The normative specification shown in Listing B.11 describes the norm that obliges
Tom to deliver the book to the agent that performed the payment constitution when such
constitution is performed.

1 scope main {

2

3 norm n1: payment (X)

4 -> obligation (tom ,n1 , deliver_book (X), ‘now ‘+ ‘15 seconds ‘)

.

5 }

Listing B.11 – Norm specification - Example 1 and Case 3

The JCM code shown in Listing B.12 is similar to the specification shown in Listing B.7.
The difference is in agent Tom. In this specification it focuses on the artifact nplArt and has
the goal setup_sai that connects it to the normative specification.

1 mas book_trade {

2

3 agent bob {

B.4. Case 3 - MAS with status functions and norms 109

4 focus: machine , inst_test . inst_test_art

5 }

6 agent tom {

7 focus: machine , wsp_npl .nplArt ,

8 inst_test . inst_test_art // focus on the institutional

artifact

9

10 goals: setup_sai // connect norms and institution

11 }

12

13 workspace wsp_npl {

14 artifact nplArt : sai. bridges . jacamo . NormativeBoardSai

15 }

16

17 workspace wsp {

18 artifact machine : tools. ElectronicMachine ()

19 }

20 institution inst_test : src/ resources / constitutive - specification

.sai {

21 workspaces : wsp

22 }

23 }

Listing B.12 – JCM - Example 1 and Case 3

Tom’s code is shown in Listing B.13. This code contains the plan that Tom should
perform when the norm related to it is activated and some plans that connect it to the
normative specification.

1 + obligation (Ag ,R,Goal , Deadline) // the agent perceives the

obligation following the NPL notation

2 : . my_name (Ag)

3 <- println ("I am obliged to see to me that the state ",Goal ,"

holds");

4 Goal.

5

6

7 // connect norms to institution

8 +! setup_sai : focusing (ArtSai , inst_test_art ,_,_,inst_test ,_) &

focusing (NplArt ,nplArt ,_,_,wsp_npl ,_) <-

9 getSaiEngine (SE)[artifact_id (ArtSai)];

10 setInstitution (SE)[artifact_id (NplArt)];

11 load("src/org/norms.npl").

12

110 APPENDIX B. Application example 1: book trade

13 +! setup_sai <-

14 .wait(focusing (A,_,_,B,inst_test ,_)& focusing (ArtSai ,

inst_test_art ,_,_,inst_test ,_) & focusing (NplArt ,nplArt ,_,_

,wsp_npl ,_));

15 ! setup_sai .

16

17

18 { include (" $jacamoJar / templates /common - cartago .asl") }

19 { include (" $jacamoJar / templates /common -moise.asl") }

Listing B.13 – Tom’s Program - Example 1 and Case 3

B.5 CASE 4 - MAS WITH INSTITUTION, NORMS AND PURPOSES

The JCM code shown in Listing B.14 is similar to the specification shown in List-
ing B.12 and B.7. The difference is the addition of the onto artifact that serves to add the
ontology that implements the purpose model.

1 mas book_trade {

2

3 agent bob {

4 focus: machine , inst_test . inst_test_art

5 }

6 agent tom {

7 focus: machine , wsp_npl .nplArt ,

8 inst_test . inst_test_art // focus on the institutional

artifact

9

10 goals: setup_sai // connect norms and institution

11 }

12

13 workspace wsp_npl {

14 artifact nplArt : sai. bridges . jacamo . NormativeBoardSai

15 }

16

17 workspace wsp {

18 artifact onto: mas. OntologyArtifact (" resources /

book_trade_ontology .owl")

19 artifact machine : tools. ElectronicMachine ()

20 }

21 institution inst_test : src/ resources / constitutive - specification

.sai {

22 workspaces : wsp

B.5. Case 4 - MAS with institution, norms and purposes 111

23 }

24 }

Listing B.14 – JCM - Example 1 and Case 4

The ontology’s XML code is shown in Listing B.15. This code contains the classes (e.g.,
status function, purpose, etc.), the connections between the classes (e.g., hasPurpose,
hasConsequence, etc.) and the individuals representing the elements of this scenario (e.g.,
payment(x), book_trade_purpose, etc.).

1 <?xml version ="1.0"?>

2 <Ontology xmlns="http :// www.w3.org /2002/07/ owl#"

3 xml:base="http :// www. semanticweb .org/ rafhaelrc / ontologies

/2020/8/ semantic_sf_5 "

4 xmlns:rdf="http :// www.w3.org /1999/02/22 - rdf -syntax -ns#"

5 xmlns:xml="http :// www.w3.org/XML /1998/ namespace "

6 xmlns:xsd="http :// www.w3.org /2001/ XMLSchema #"

7 xmlns:rdfs="http :// www.w3.org /2000/01/ rdf - schema #"

8 ontologyIRI ="http :// www. semanticweb .org/ rafhaelrc / ontologies

/2020/8/ semantic_sf_5 ">

9 <Prefix name="" IRI="http :// www. semanticweb .org/ rafhaelrc /

ontologies /2020/8/ semantic_sf_5 "/>

10 <Prefix name="owl" IRI="http :// www.w3.org /2002/07/ owl#"/>

11 <Prefix name="rdf" IRI="http :// www.w3.org /1999/02/22 - rdf -

syntax -ns#"/>

12 <Prefix name="sf5" IRI="http :// www. semanticweb .org/ rafhaelrc /

ontologies /2020/8/ semantic_sf_5 "/>

13 <Prefix name="xml" IRI="http :// www.w3.org/XML /1998/ namespace "

/>

14 <Prefix name="xsd" IRI="http :// www.w3.org /2001/ XMLSchema #"/>

15 <Prefix name="rdfs" IRI="http :// www.w3.org /2000/01/ rdf - schema

#"/>

16 <Prefix name="swrl" IRI="http :// www.w3.org /2003/11/ swrl#"/>

17 <Prefix name="swrlb" IRI="http :// www.w3.org /2003/11/ swrlb#"/>

18 <Declaration >

19 <Class IRI="# Parameter "/>

20 </ Declaration >

21 <Declaration >

22 <Class IRI="# Predicate "/>

23 </ Declaration >

24 <Declaration >

25 <Class IRI="# Purpose "/>

26 </ Declaration >

27 <Declaration >

112 APPENDIX B. Application example 1: book trade

28 <Class IRI="#State"/>

29 </ Declaration >

30 <Declaration >

31 <Class IRI="#Status - Function "/>

32 </ Declaration >

33 <Declaration >

34 <ObjectProperty IRI="# hasConsequence "/>

35 </ Declaration >

36 <Declaration >

37 <ObjectProperty IRI="# hasParameter "/>

38 </ Declaration >

39 <Declaration >

40 <ObjectProperty IRI="# hasPredicate "/>

41 </ Declaration >

42 <Declaration >

43 <ObjectProperty IRI="# hasPurpose "/>

44 </ Declaration >

45 <Declaration >

46 <ObjectProperty IRI="# hasStatus "/>

47 </ Declaration >

48 <Declaration >

49 <ObjectProperty IRI="# isConsequenceOf "/>

50 </ Declaration >

51 <Declaration >

52 <ObjectProperty IRI="# isParameterOf "/>

53 </ Declaration >

54 <Declaration >

55 <ObjectProperty IRI="# isPredicateOf "/>

56 </ Declaration >

57 <Declaration >

58 <ObjectProperty IRI="# isPurposeOf "/>

59 </ Declaration >

60 <Declaration >

61 <ObjectProperty IRI="# isStatusOf "/>

62 </ Declaration >

63 <Declaration >

64 <DataProperty IRI="# hasPrice "/>

65 </ Declaration >

66 <Declaration >

67 <DataProperty IRI="# hasTitle "/>

68 </ Declaration >

69 <Declaration >

B.5. Case 4 - MAS with institution, norms and purposes 113

70 <DataProperty IRI="# hasValue "/>

71 </ Declaration >

72 <Declaration >

73 <NamedIndividual IRI="# book_trade_purpose "/>

74 </ Declaration >

75 <Declaration >

76 <NamedIndividual IRI="# holdBook "/>

77 </ Declaration >

78 <Declaration >

79 <NamedIndividual IRI="# state_book "/>

80 </ Declaration >

81 <Declaration >

82 <NamedIndividual IRI="# payment (X)"/>

83 </ Declaration >

84 <Declaration >

85 <AnnotationProperty abbreviatedIRI ="owl: position "/>

86 </ Declaration >

87 <ClassAssertion >

88 <Class IRI="# Purpose "/>

89 <NamedIndividual IRI="# book_trade_purpose "/>

90 </ ClassAssertion >

91 <ClassAssertion >

92 <Class IRI="# Predicate "/>

93 <NamedIndividual IRI="# holdBook "/>

94 </ ClassAssertion >

95 <ClassAssertion >

96 <Class IRI="#State"/>

97 <NamedIndividual IRI="# state_book "/>

98 </ ClassAssertion >

99 <ClassAssertion >

100 <Class IRI="#Status - Function "/>

101 <NamedIndividual IRI="# payment (X)"/>

102 </ ClassAssertion >

103 <ObjectPropertyAssertion >

104 <ObjectProperty IRI="# hasConsequence "/>

105 <NamedIndividual IRI="# book_trade_purpose "/>

106 <NamedIndividual IRI="# state_book "/>

107 </ ObjectPropertyAssertion >

108 <ObjectPropertyAssertion >

109 <ObjectProperty IRI="# hasPredicate "/>

110 <NamedIndividual IRI="# state_book "/>

111 <NamedIndividual IRI="# holdBook "/>

114 APPENDIX B. Application example 1: book trade

112 </ ObjectPropertyAssertion >

113 <ObjectPropertyAssertion >

114 <ObjectProperty IRI="# hasPurpose "/>

115 <NamedIndividual IRI="# payment (X)"/>

116 <NamedIndividual IRI="# book_trade_purpose "/>

117 </ ObjectPropertyAssertion >

118 <InverseObjectProperties >

119 <ObjectProperty IRI="# hasConsequence "/>

120 <ObjectProperty IRI="# isConsequenceOf "/>

121 </ InverseObjectProperties >

122 <InverseObjectProperties >

123 <ObjectProperty IRI="# hasParameter "/>

124 <ObjectProperty IRI="# isParameterOf "/>

125 </ InverseObjectProperties >

126 <InverseObjectProperties >

127 <ObjectProperty IRI="# hasPredicate "/>

128 <ObjectProperty IRI="# isPredicateOf "/>

129 </ InverseObjectProperties >

130 <InverseObjectProperties >

131 <ObjectProperty IRI="# hasPurpose "/>

132 <ObjectProperty IRI="# isPurposeOf "/>

133 </ InverseObjectProperties >

134 <InverseObjectProperties >

135 <ObjectProperty IRI="# hasStatus "/>

136 <ObjectProperty IRI="# isStatusOf "/>

137 </ InverseObjectProperties >

138 <IrreflexiveObjectProperty >

139 <ObjectProperty IRI="# hasStatus "/>

140 </ IrreflexiveObjectProperty >

141 <IrreflexiveObjectProperty >

142 <ObjectProperty IRI="# isStatusOf "/>

143 </ IrreflexiveObjectProperty >

144 <ObjectPropertyDomain >

145 <ObjectProperty IRI="# hasConsequence "/>

146 <Class IRI="# Purpose "/>

147 </ ObjectPropertyDomain >

148 <ObjectPropertyDomain >

149 <ObjectProperty IRI="# hasPredicate "/>

150 <Class IRI="#State"/>

151 </ ObjectPropertyDomain >

152 <ObjectPropertyDomain >

153 <ObjectProperty IRI="# hasPurpose "/>

B.5. Case 4 - MAS with institution, norms and purposes 115

154 <Class IRI="#Status - Function "/>

155 </ ObjectPropertyDomain >

156 <ObjectPropertyDomain >

157 <ObjectProperty IRI="# hasStatus "/>

158 <Class IRI="#Status - Function "/>

159 </ ObjectPropertyDomain >

160 <ObjectPropertyDomain >

161 <ObjectProperty IRI="# isConsequenceOf "/>

162 <Class IRI="#State"/>

163 </ ObjectPropertyDomain >

164 <ObjectPropertyDomain >

165 <ObjectProperty IRI="# isPredicateOf "/>

166 <Class IRI="# Predicate "/>

167 </ ObjectPropertyDomain >

168 <ObjectPropertyRange >

169 <ObjectProperty IRI="# hasConsequence "/>

170 <Class IRI="#State"/>

171 </ ObjectPropertyRange >

172 <ObjectPropertyRange >

173 <ObjectProperty IRI="# hasPredicate "/>

174 <Class IRI="# Predicate "/>

175 </ ObjectPropertyRange >

176 <ObjectPropertyRange >

177 <ObjectProperty IRI="# hasPurpose "/>

178 <Class IRI="# Purpose "/>

179 </ ObjectPropertyRange >

180 <ObjectPropertyRange >

181 <ObjectProperty IRI="# hasStatus "/>

182 <Class IRI="#Status - Function "/>

183 </ ObjectPropertyRange >

184 <ObjectPropertyRange >

185 <ObjectProperty IRI="# isConsequenceOf "/>

186 <Class IRI="# Purpose "/>

187 </ ObjectPropertyRange >

188 <ObjectPropertyRange >

189 <ObjectProperty IRI="# isPredicateOf "/>

190 <Class IRI="#State"/>

191 </ ObjectPropertyRange >

192 <DataPropertyRange >

193 <DataProperty IRI="# hasPrice "/>

194 <Datatype abbreviatedIRI ="xsd: double "/>

195 </ DataPropertyRange >

116 APPENDIX B. Application example 1: book trade

196 <DataPropertyRange >

197 <DataProperty IRI="# hasTitle "/>

198 <Datatype abbreviatedIRI ="xsd: string "/>

199 </ DataPropertyRange >

200 <DataPropertyRange >

201 <DataProperty IRI="# hasValue "/>

202 <Datatype abbreviatedIRI ="xsd: double "/>

203 </ DataPropertyRange >

204 </Ontology >

Listing B.15 – OWL Ontology - Book Trade

Bob’s code is shown in Listing B.16. This code contains the plan that Bob should execute
to achieve its holdBook goal. In this plan, Bob uses alg1 to find available institutional actions
that can help it achieve its goal. The difference between this implementation and the previous
ones is that Bob can query this information at runtime and does not need to previously know
neither the action nor the status function that should be constituted.

1 +! holdBook : <- !alg1(holdBook , Actions);

2 .queue.head(Actions , Action);

3 Action .

Listing B.16 – Bob’s Program - Example 1 and Case 4

It is important to be clear that the Listings used in the previous examples that are not
replaced in the following examples remain valid and therefore are not repeated. The complete
code is available in a git repository at https://github.com/rafhaelrc/PurposeModel/
tree/main/demo/book_trade.

https://github.com/rafhaelrc/PurposeModel/tree/main/demo/book_trade
https://github.com/rafhaelrc/PurposeModel/tree/main/demo/book_trade

117

APPENDIX C – APPLICATION EXAMPLE 2: CONQUER TERRITORY

C.1 CASE 1 - MAS WITH IMPLICIT STATUS FUNCTIONS AND PURPOSES

The artifact code shown in Listing C.1 has implemented the functions broadcast_a_message
and posting_on_a_webservice.

1 package tools;

2

3 import cartago . Artifact ;

4 import cartago . OPERATION ;

5 import java.io. IOException ;

6 import java.util. logging . Logger ;

7

8

9 public class ElectronicMachine extends Artifact {

10 private Logger logger = Logger . getLogger (ElectronicMachine .

class . getName ());

11

12 @OPERATION

13 public void init () {

14 defineObsProperty ("task", 0);

15 }

16

17 @OPERATION

18 public void broadcast_a_message () {

19 // implement the action ..

20 }

21

22 @OPERATION

23 public void posting_on_a_webservice () {

24 // implement the action ..

25 }

26 }

Listing C.1 – Artifact - Example 2 and Case 1

The JCM code shown in Listing C.2 specifies the agent Bob, its focus on the artifact
machine, the workspace wsp and the artifact machine that is available in that space.

1 mas conquer_territory {

2

3 agent bob {

4 focus: machine

5 }

118 APPENDIX C. Application example 2: Conquer territory

6 workspace wsp {

7 artifact machine : tools. ElectronicMachine ()

8 }

9 }

Listing C.2 – JCM - Example 2 and case 1

Bob’s code is shown in Listing B.4. This code contains the plan that Bob should execute
to achieve its territory_conquered goal. Furthermore, this code has specified through beliefs
the institutional and environmental consequences of performing broadcast_a_message. Based
on this information, Bob checks whether the action to be performed has inflicted its anti-goal.
If is the case, Bob avoids the action. If not, Bob executes it.

1 anti_goal (soldier_killed_from_allied_base).

2 cause(forcing_an_attack , territory_conquered).

3 cause(forcing_an_attack , soldier_killed_from_allied_base).

4 constitutive_rule (broadcast_a_message , forcing_an_attack ,_,_).

5

6 ! territory_conquered . // agent goal

7

8 +! territory_conquered : cause (SF , territory_conquered)

9 <- if (anti_goal (AG) & cause(SF ,AG)){

10 .fail;

11 } else {

12 ? constitutive_rule (Action ,SF ,_,_);

13 Action ;

14 }.

15

16 { include (" $jacamoJar / templates /common - cartago .asl") }

17 { include (" $jacamoJar / templates /common -moise.asl") }

Listing C.3 – Bob’s Program - Example 2 and Case 1

C.2 CASE 2 - MAS WITH EXPLICIT STATUS FUNCTIONS AND PURPOSES

The JCM code shown in Listing C.4 is similar to Listing C.2. The difference is the
addition of the agent’s focus on the inst_test_art artifact, the addition of the institutional
specification associated with the wsp workspace, and the inclusion of the onto artifact that
serves to add the ontology that implements the purpose model.

1 mas conquer_territory {

2

3 agent bob {

4 focus: machine , inst_test . inst_test_art

C.2. Case 2 - MAS with explicit status functions and purposes 119

5 }

6

7 workspace wsp {

8 artifact onto: mas. OntologyArtifact ("src/ resources /

conquer_territory_ontology .owl")

9 artifact machine : tools. ElectronicMachine ()

10 }

11

12 institution inst_test : src/ resources / constitutive - specification

.sai {

13 workspaces : wsp

14 }

15 }

Listing C.4 – JCM - Example 2 and case 2

The institutional specification code is shown in Listing C.5. It contains the status
function and constitutive rule used in this example.

1 institution_id : bhInst .

2

3 status_functions :

4

5 events : forcing_an_attack , authorizing_an_attack .

6

7 constitutive_rules :

8

9 1: broadcast_a_message count -as forcing_an_attack .

10 2: posting_on_a_webservice count -as authorizing_an_attack .

Listing C.5 – Institutional specification Example 2 and Case 2

The ontology’s XML code is shown in Listing C.6. This code contains the classes (e.g.,
status function, purpose, etc.), the connections between the classes (e.g., hasPurpose,
hasConsequence, etc.) and the individuals representing the elements of this scenario (e.g.,
authorize_an_attack, force_attack, etc.).

1 <?xml version ="1.0"?>

2 <Ontology xmlns="http :// www.w3.org /2002/07/ owl#"

3 xml:base="http :// www. semanticweb .org/ rafhaelrc / ontologies

/2020/8/ semantic_sf_5 "

4 xmlns:rdf="http :// www.w3.org /1999/02/22 - rdf -syntax -ns#"

5 xmlns:xml="http :// www.w3.org/XML /1998/ namespace "

6 xmlns:xsd="http :// www.w3.org /2001/ XMLSchema #"

7 xmlns:rdfs="http :// www.w3.org /2000/01/ rdf - schema #"

120 APPENDIX C. Application example 2: Conquer territory

8 ontologyIRI ="http :// www. semanticweb .org/ rafhaelrc / ontologies

/2020/8/ semantic_sf_5 ">

9 <Prefix name="" IRI="http :// www. semanticweb .org/ rafhaelrc /

ontologies /2020/8/ semantic_sf_5 "/>

10 <Prefix name="owl" IRI="http :// www.w3.org /2002/07/ owl#"/>

11 <Prefix name="rdf" IRI="http :// www.w3.org /1999/02/22 - rdf -

syntax -ns#"/>

12 <Prefix name="sf5" IRI="http :// www. semanticweb .org/ rafhaelrc /

ontologies /2020/8/ semantic_sf_5 "/>

13 <Prefix name="xml" IRI="http :// www.w3.org/XML /1998/ namespace "

/>

14 <Prefix name="xsd" IRI="http :// www.w3.org /2001/ XMLSchema #"/>

15 <Prefix name="rdfs" IRI="http :// www.w3.org /2000/01/ rdf - schema

#"/>

16 <Prefix name="swrl" IRI="http :// www.w3.org /2003/11/ swrl#"/>

17 <Prefix name="swrlb" IRI="http :// www.w3.org /2003/11/ swrlb#"/>

18 <Declaration >

19 <Class IRI="# Parameter "/>

20 </ Declaration >

21 <Declaration >

22 <Class IRI="# Predicate "/>

23 </ Declaration >

24 <Declaration >

25 <Class IRI="# Purpose "/>

26 </ Declaration >

27 <Declaration >

28 <Class IRI="#State"/>

29 </ Declaration >

30 <Declaration >

31 <Class IRI="#Status - Function "/>

32 </ Declaration >

33 <Declaration >

34 <ObjectProperty IRI="# hasConsequence "/>

35 </ Declaration >

36 <Declaration >

37 <ObjectProperty IRI="# hasParameter "/>

38 </ Declaration >

39 <Declaration >

40 <ObjectProperty IRI="# hasPredicate "/>

41 </ Declaration >

42 <Declaration >

43 <ObjectProperty IRI="# hasPurpose "/>

C.2. Case 2 - MAS with explicit status functions and purposes 121

44 </ Declaration >

45 <Declaration >

46 <ObjectProperty IRI="# hasStatus "/>

47 </ Declaration >

48 <Declaration >

49 <ObjectProperty IRI="# isConsequenceOf "/>

50 </ Declaration >

51 <Declaration >

52 <ObjectProperty IRI="# isParameterOf "/>

53 </ Declaration >

54 <Declaration >

55 <ObjectProperty IRI="# isPredicateOf "/>

56 </ Declaration >

57 <Declaration >

58 <ObjectProperty IRI="# isPurposeOf "/>

59 </ Declaration >

60 <Declaration >

61 <ObjectProperty IRI="# isStatusOf "/>

62 </ Declaration >

63 <Declaration >

64 <DataProperty IRI="# hasPrice "/>

65 </ Declaration >

66 <Declaration >

67 <DataProperty IRI="# hasTitle "/>

68 </ Declaration >

69 <Declaration >

70 <DataProperty IRI="# hasValue "/>

71 </ Declaration >

72 <Declaration >

73 <NamedIndividual IRI="# authorize_attack "/>

74 </ Declaration >

75 <Declaration >

76 <NamedIndividual IRI="# authorizing_an_attack "/>

77 </ Declaration >

78 <Declaration >

79 <NamedIndividual IRI="# force_attack "/>

80 </ Declaration >

81 <Declaration >

82 <NamedIndividual IRI="# forcing_an_attack "/>

83 </ Declaration >

84 <Declaration >

85 <NamedIndividual IRI="# soldier_killed_from_allied_base "/>

122 APPENDIX C. Application example 2: Conquer territory

86 </ Declaration >

87 <Declaration >

88 <NamedIndividual IRI="# state1 "/>

89 </ Declaration >

90 <Declaration >

91 <NamedIndividual IRI="# state2 "/>

92 </ Declaration >

93 <Declaration >

94 <NamedIndividual IRI="# territory_conquered "/>

95 </ Declaration >

96 <Declaration >

97 <AnnotationProperty abbreviatedIRI ="owl: position "/>

98 </ Declaration >

99 <ClassAssertion >

100 <Class IRI="# Purpose "/>

101 <NamedIndividual IRI="# authorize_attack "/>

102 </ ClassAssertion >

103 <ClassAssertion >

104 <Class IRI="#Status - Function "/>

105 <NamedIndividual IRI="# authorizing_an_attack "/>

106 </ ClassAssertion >

107 <ClassAssertion >

108 <Class IRI="# Purpose "/>

109 <NamedIndividual IRI="# force_attack "/>

110 </ ClassAssertion >

111 <ClassAssertion >

112 <Class IRI="#Status - Function "/>

113 <NamedIndividual IRI="# forcing_an_attack "/>

114 </ ClassAssertion >

115 <ClassAssertion >

116 <Class IRI="# Predicate "/>

117 <NamedIndividual IRI="# soldier_killed_from_allied_base "/>

118 </ ClassAssertion >

119 <ClassAssertion >

120 <Class IRI="#State"/>

121 <NamedIndividual IRI="# state1 "/>

122 </ ClassAssertion >

123 <ClassAssertion >

124 <Class IRI="#State"/>

125 <NamedIndividual IRI="# state2 "/>

126 </ ClassAssertion >

127 <ClassAssertion >

C.2. Case 2 - MAS with explicit status functions and purposes 123

128 <Class IRI="# Predicate "/>

129 <NamedIndividual IRI="# territory_conquered "/>

130 </ ClassAssertion >

131 <ObjectPropertyAssertion >

132 <ObjectProperty IRI="# hasConsequence "/>

133 <NamedIndividual IRI="# authorize_attack "/>

134 <NamedIndividual IRI="# state2 "/>

135 </ ObjectPropertyAssertion >

136 <ObjectPropertyAssertion >

137 <ObjectProperty IRI="# hasPurpose "/>

138 <NamedIndividual IRI="# authorizing_an_attack "/>

139 <NamedIndividual IRI="# authorize_attack "/>

140 </ ObjectPropertyAssertion >

141 <ObjectPropertyAssertion >

142 <ObjectProperty IRI="# hasConsequence "/>

143 <NamedIndividual IRI="# force_attack "/>

144 <NamedIndividual IRI="# state1 "/>

145 </ ObjectPropertyAssertion >

146 <ObjectPropertyAssertion >

147 <ObjectProperty IRI="# hasPurpose "/>

148 <NamedIndividual IRI="# forcing_an_attack "/>

149 <NamedIndividual IRI="# force_attack "/>

150 </ ObjectPropertyAssertion >

151 <ObjectPropertyAssertion >

152 <ObjectProperty IRI="# hasPredicate "/>

153 <NamedIndividual IRI="# state1 "/>

154 <NamedIndividual IRI="# soldier_killed_from_allied_base "/>

155 </ ObjectPropertyAssertion >

156 <ObjectPropertyAssertion >

157 <ObjectProperty IRI="# hasPredicate "/>

158 <NamedIndividual IRI="# state1 "/>

159 <NamedIndividual IRI="# territory_conquered "/>

160 </ ObjectPropertyAssertion >

161 <ObjectPropertyAssertion >

162 <ObjectProperty IRI="# hasPredicate "/>

163 <NamedIndividual IRI="# state2 "/>

164 <NamedIndividual IRI="# territory_conquered "/>

165 </ ObjectPropertyAssertion >

166 <InverseObjectProperties >

167 <ObjectProperty IRI="# hasConsequence "/>

168 <ObjectProperty IRI="# isConsequenceOf "/>

169 </ InverseObjectProperties >

124 APPENDIX C. Application example 2: Conquer territory

170 <InverseObjectProperties >

171 <ObjectProperty IRI="# hasParameter "/>

172 <ObjectProperty IRI="# isParameterOf "/>

173 </ InverseObjectProperties >

174 <InverseObjectProperties >

175 <ObjectProperty IRI="# hasPredicate "/>

176 <ObjectProperty IRI="# isPredicateOf "/>

177 </ InverseObjectProperties >

178 <InverseObjectProperties >

179 <ObjectProperty IRI="# hasPurpose "/>

180 <ObjectProperty IRI="# isPurposeOf "/>

181 </ InverseObjectProperties >

182 <InverseObjectProperties >

183 <ObjectProperty IRI="# hasStatus "/>

184 <ObjectProperty IRI="# isStatusOf "/>

185 </ InverseObjectProperties >

186 <IrreflexiveObjectProperty >

187 <ObjectProperty IRI="# hasStatus "/>

188 </ IrreflexiveObjectProperty >

189 <IrreflexiveObjectProperty >

190 <ObjectProperty IRI="# isStatusOf "/>

191 </ IrreflexiveObjectProperty >

192 <ObjectPropertyDomain >

193 <ObjectProperty IRI="# hasConsequence "/>

194 <Class IRI="# Purpose "/>

195 </ ObjectPropertyDomain >

196 <ObjectPropertyDomain >

197 <ObjectProperty IRI="# hasPredicate "/>

198 <Class IRI="#State"/>

199 </ ObjectPropertyDomain >

200 <ObjectPropertyDomain >

201 <ObjectProperty IRI="# hasPurpose "/>

202 <Class IRI="#Status - Function "/>

203 </ ObjectPropertyDomain >

204 <ObjectPropertyDomain >

205 <ObjectProperty IRI="# hasStatus "/>

206 <Class IRI="#Status - Function "/>

207 </ ObjectPropertyDomain >

208 <ObjectPropertyDomain >

209 <ObjectProperty IRI="# isConsequenceOf "/>

210 <Class IRI="#State"/>

211 </ ObjectPropertyDomain >

C.2. Case 2 - MAS with explicit status functions and purposes 125

212 <ObjectPropertyDomain >

213 <ObjectProperty IRI="# isPredicateOf "/>

214 <Class IRI="# Predicate "/>

215 </ ObjectPropertyDomain >

216 <ObjectPropertyRange >

217 <ObjectProperty IRI="# hasConsequence "/>

218 <Class IRI="#State"/>

219 </ ObjectPropertyRange >

220 <ObjectPropertyRange >

221 <ObjectProperty IRI="# hasPredicate "/>

222 <Class IRI="# Predicate "/>

223 </ ObjectPropertyRange >

224 <ObjectPropertyRange >

225 <ObjectProperty IRI="# hasPurpose "/>

226 <Class IRI="# Purpose "/>

227 </ ObjectPropertyRange >

228 <ObjectPropertyRange >

229 <ObjectProperty IRI="# hasStatus "/>

230 <Class IRI="#Status - Function "/>

231 </ ObjectPropertyRange >

232 <ObjectPropertyRange >

233 <ObjectProperty IRI="# isConsequenceOf "/>

234 <Class IRI="# Purpose "/>

235 </ ObjectPropertyRange >

236 <ObjectPropertyRange >

237 <ObjectProperty IRI="# isPredicateOf "/>

238 <Class IRI="#State"/>

239 </ ObjectPropertyRange >

240 <DataPropertyRange >

241 <DataProperty IRI="# hasPrice "/>

242 <Datatype abbreviatedIRI ="xsd: double "/>

243 </ DataPropertyRange >

244 <DataPropertyRange >

245 <DataProperty IRI="# hasTitle "/>

246 <Datatype abbreviatedIRI ="xsd: string "/>

247 </ DataPropertyRange >

248 <DataPropertyRange >

249 <DataProperty IRI="# hasValue "/>

250 <Datatype abbreviatedIRI ="xsd: double "/>

251 </ DataPropertyRange >

252 </Ontology >

Listing C.6 – OWL Ontology - Conquer Territory

126 APPENDIX C. Application example 2: Conquer territory

Bob’s code is shown in Listing C.7. This code contains the plan that Bob should execute
to achieve its territory_conquered goal. In this plan, Bob uses alg1 to find available
institutional actions that can help it achieve its goal. In addition, Bob uses try_actions to
try to perform one of the actions found in alg1 that would satisfy its goal without inflicting
its anti-goal.

1 anti_goal (soldier_killed_from_allied_base).

2

3 ! territory_conquered . // agent goal

4

5 +! territory_conquered

6 <- !alg1(territory_conquered , Actions);

7 ! try_actions (Actions).

8

9 +! try_actions (Actions) <-

10 if (. length (Actions , Size) & Size < 1){

11 .fail;

12 }

13 .queue.head(Actions , Action);

14 !alg2(Action , States);

15 if(anti_goal (AG) & . member (AG , States)){

16 .queue. remove (Actions , Action);

17 ! try_actions (Actions);

18 }

19 else{

20 Action ;

21 }.

22

23 { include (" $jacamoJar / templates /common - cartago .asl") }

24 { include (" $jacamoJar / templates /common -moise.asl") }

Listing C.7 – Bob’s Program - Example 2 and Case 2

It is important to be clear that the Listings used in the previous examples that are not
replaced in the following examples remain valid and therefore are not repeated. The complete
code is available in a git repository at https://github.com/rafhaelrc/PurposeModel/
tree/main/demo/conquer_territory.

https://github.com/rafhaelrc/PurposeModel/tree/main/demo/conquer_territory
https://github.com/rafhaelrc/PurposeModel/tree/main/demo/conquer_territory

127

APPENDIX D – APPLICATION EXAMPLE 3: POSTING INFORMATION ON
SOCIAL NETWORKS

D.1 CASE 1 - SOCIAL NETWORKS WITHOUT STATUS FUNCTIONS AND PURPOSES

The artifact code shown in Listing D.1 has implemented the functions sendMessageByTwitter,
talkWithBot, uploadAPicture, and uploadAMessage that refer to the social networks Twit-
ter, Telegram, Instagram and Facebook respectively. For the sake of simplicity, it was decided
to encode all these functions in the same artifact even if they simulate the use of different
social networks.

1 package tools;

2

3 import cartago . Artifact ;

4 import cartago . OPERATION ;

5 import java.io. IOException ;

6 import java.util. logging . Logger ;

7

8

9 public class ElectronicMachine extends Artifact {

10 private Logger logger = Logger . getLogger (ElectronicMachine .

class . getName ());

11

12 @OPERATION

13 public void init () {

14 defineObsProperty ("task", 0);

15 }

16

17 @OPERATION

18 public void sendMessageByTwitter () {

19 // implement the action ..

20 }

21

22 @OPERATION

23 public void talkWithBot () {

24 // implement the action ..

25 }

26

27 @OPERATION

28 public void uploadAPicture () {

29 // implement the action ..

30 }

128 APPENDIX D. Application example 3: Posting information on social networks

31

32 @OPERATION

33 public void uploadAMessage () {

34 // implement the action ..

35 }

36 }

Listing D.1 – Artifact - Example 3 and Case 1

The JCM code shown in Listing D.2 specifies the agent Bob, its focus on the artifact
machine, the workspace wsp and the artifact machine that is available in that space.

1 mas social_networks {

2

3 agent bob {

4 focus: machine

5 }

6

7 workspace wsp {

8 artifact machine : tools. ElectronicMachine ()

9 }

10 }

Listing D.2 – JCM - Example 3 and case 1

Bob’s code is shown in Listing D.3. This code contains the plan that Bob should
execute to achieve its published_info goal. Furthermore, this code has specified through
beliefs the environmental consequences of performing sendMessageByTwitter, talkWithBot,
uploadAPicture, and uploadAMessage. Based on this information, Bob checks whether the
action to be performed has inflicted its anti-goal. If is the case, Bob avoids the action. If not,
Bob executes it.

1 anti_goal (fake_news_spread).

2 cause(sendMessageByTwitter , fake_news_spread).

3 cause(talkWithBot , fake_news_spread).

4 cause(uploadAPicture , fake_news_spread).

5 cause(uploadAMessage , fake_news_spread).

6

7 ! published_info . // agent goal

8

9 +! published_info : knet(twitter)

10 <- if(anti_goal (AG) & cause(sendMessageByTwitter ,AG)){

11 .fail;

12 } else{

13 sendMessageByTwitter ;

D.2. Case 2 - Social networks with status functions and purposes 129

14 }.

15

16 +! published_info : knet(telegram)

17 <- if(anti_goal (AG) & cause(talkWithBot ,AG)){

18 .fail;

19 } else{

20 talkWithBot ;

21 }.

22

23 +! published_info : knet(instagram)

24 <- if(anti_goal (AG) & cause(uploadAPicture ,AG)){

25 .fail;

26 } else{

27 uploadAPicture ;

28 }.

29

30 +! published_info : knet(facebook)

31 <- if(anti_goal (AG) & cause(uploadAMessage ,AG)){

32 .fail;

33 } else{

34 uploadAMessage ;

35 }.

36

37 { include (" $jacamoJar / templates /common - cartago .asl") }

38 { include (" $jacamoJar / templates /common -moise.asl") }

Listing D.3 – Bob’s Program - Example 3 and Case 1

D.2 CASE 2 - SOCIAL NETWORKS WITH STATUS FUNCTIONS AND PURPOSES

The JCM code shown in Listing D.4 is similar to Listing D.2. The difference is the
addition of the agent’s focus on the inst_test_art artifact, the addition of the institutional
specification associated with the wsp workspace, and the inclusion of the onto artifact that
serves to add the ontology that implements the purpose model. Again, for the sake of simplicity,
it was decided to implement all the functions to interact with social networks in the same
artifact. The example works without any harm if each function for interacting with each social
network is implemented in a separate workspace and artifact.

1 mas social_networks {

2

3 agent bob {

4 focus: machine , inst_test . inst_test_art

5 }

130 APPENDIX D. Application example 3: Posting information on social networks

6

7 workspace wsp {

8 artifact onto: mas. OntologyArtifact ("src/ resources /

conquer_territory_ontology .owl")

9 artifact machine : tools. ElectronicMachine ()

10 }

11

12 institution inst_test : src/ resources / constitutive - specification

.sai {

13 workspaces : wsp

14 }

15 }

Listing D.4 – JCM - Example 2 and case 2

The institutional specification code is shown in Listing D.5. It contains the status
function and constitutive rule used in this example.

1 institution_id : bhInst .

2

3 status_functions :

4

5 events : tweet , messageByTelegram , postByInstagram , postByFacebook

.

6

7

8 constitutive_rules :

9

10 1: sendMessageByTwitter count -as tweet.

11 2: talkWithBot count -as messageByTelegram .

12 3: uploadAPicture count -as postByInstagram .

13 4: uploadAMessage count -as postByFacebook .

Listing D.5 – Institutional specification Example 3 and Case 2

The ontology’s XML code is shown in Listing D.6. This code contains the classes (e.g.,
status function, purpose, etc.), the connections between the classes (e.g., hasPurpose,
hasConsequence, etc.) and the individuals representing the elements of this scenario (e.g.,
messageByTwitter, fake_news_spread, etc.).

1 <?xml version ="1.0"?>

2 <Ontology xmlns="http :// www.w3.org /2002/07/ owl#"

3 xml:base="http :// www. semanticweb .org/ rafhaelrc / ontologies

/2020/8/ semantic_sf_5 "

4 xmlns:rdf="http :// www.w3.org /1999/02/22 - rdf -syntax -ns#"

5 xmlns:xml="http :// www.w3.org/XML /1998/ namespace "

D.2. Case 2 - Social networks with status functions and purposes 131

6 xmlns:xsd="http :// www.w3.org /2001/ XMLSchema #"

7 xmlns:rdfs="http :// www.w3.org /2000/01/ rdf - schema #"

8 ontologyIRI ="http :// www. semanticweb .org/ rafhaelrc / ontologies

/2020/8/ semantic_sf_5 ">

9 <Prefix name="" IRI="http :// www. semanticweb .org/ rafhaelrc /

ontologies /2020/8/ semantic_sf_5 "/>

10 <Prefix name="owl" IRI="http :// www.w3.org /2002/07/ owl#"/>

11 <Prefix name="rdf" IRI="http :// www.w3.org /1999/02/22 - rdf -

syntax -ns#"/>

12 <Prefix name="sf5" IRI="http :// www. semanticweb .org/ rafhaelrc /

ontologies /2020/8/ semantic_sf_5 "/>

13 <Prefix name="xml" IRI="http :// www.w3.org/XML /1998/ namespace "

/>

14 <Prefix name="xsd" IRI="http :// www.w3.org /2001/ XMLSchema #"/>

15 <Prefix name="rdfs" IRI="http :// www.w3.org /2000/01/ rdf - schema

#"/>

16 <Prefix name="swrl" IRI="http :// www.w3.org /2003/11/ swrl#"/>

17 <Prefix name="swrlb" IRI="http :// www.w3.org /2003/11/ swrlb#"/>

18 <Declaration >

19 <Class IRI="# Parameter "/>

20 </ Declaration >

21 <Declaration >

22 <Class IRI="# Predicate "/>

23 </ Declaration >

24 <Declaration >

25 <Class IRI="# Purpose "/>

26 </ Declaration >

27 <Declaration >

28 <Class IRI="#State"/>

29 </ Declaration >

30 <Declaration >

31 <Class IRI="#Status - Function "/>

32 </ Declaration >

33 <Declaration >

34 <ObjectProperty IRI="# hasConsequence "/>

35 </ Declaration >

36 <Declaration >

37 <ObjectProperty IRI="# hasParameter "/>

38 </ Declaration >

39 <Declaration >

40 <ObjectProperty IRI="# hasPredicate "/>

41 </ Declaration >

132 APPENDIX D. Application example 3: Posting information on social networks

42 <Declaration >

43 <ObjectProperty IRI="# hasPurpose "/>

44 </ Declaration >

45 <Declaration >

46 <ObjectProperty IRI="# hasStatus "/>

47 </ Declaration >

48 <Declaration >

49 <ObjectProperty IRI="# isConsequenceOf "/>

50 </ Declaration >

51 <Declaration >

52 <ObjectProperty IRI="# isParameterOf "/>

53 </ Declaration >

54 <Declaration >

55 <ObjectProperty IRI="# isPredicateOf "/>

56 </ Declaration >

57 <Declaration >

58 <ObjectProperty IRI="# isPurposeOf "/>

59 </ Declaration >

60 <Declaration >

61 <ObjectProperty IRI="# isStatusOf "/>

62 </ Declaration >

63 <Declaration >

64 <DataProperty IRI="# hasPrice "/>

65 </ Declaration >

66 <Declaration >

67 <DataProperty IRI="# hasTitle "/>

68 </ Declaration >

69 <Declaration >

70 <DataProperty IRI="# hasValue "/>

71 </ Declaration >

72 <Declaration >

73 <NamedIndividual IRI="# fake_news_spread "/>

74 </ Declaration >

75 <Declaration >

76 <NamedIndividual IRI="# messageByTelegram "/>

77 </ Declaration >

78 <Declaration >

79 <NamedIndividual IRI="# postByFacebook "/>

80 </ Declaration >

81 <Declaration >

82 <NamedIndividual IRI="# postByInstagram "/>

83 </ Declaration >

D.2. Case 2 - Social networks with status functions and purposes 133

84 <Declaration >

85 <NamedIndividual IRI="# published_info "/>

86 </ Declaration >

87 <Declaration >

88 <NamedIndividual IRI="# stateS1 "/>

89 </ Declaration >

90 <Declaration >

91 <NamedIndividual IRI="# transmit_information "/>

92 </ Declaration >

93 <Declaration >

94 <NamedIndividual IRI="#tweet"/>

95 </ Declaration >

96 <Declaration >

97 <AnnotationProperty abbreviatedIRI ="owl: position "/>

98 </ Declaration >

99 <ClassAssertion >

100 <Class IRI="# Predicate "/>

101 <NamedIndividual IRI="# fake_news_spread "/>

102 </ ClassAssertion >

103 <ClassAssertion >

104 <Class IRI="#Status - Function "/>

105 <NamedIndividual IRI="# messageByTelegram "/>

106 </ ClassAssertion >

107 <ClassAssertion >

108 <Class IRI="#Status - Function "/>

109 <NamedIndividual IRI="# postByFacebook "/>

110 </ ClassAssertion >

111 <ClassAssertion >

112 <Class IRI="#Status - Function "/>

113 <NamedIndividual IRI="# postByInstagram "/>

114 </ ClassAssertion >

115 <ClassAssertion >

116 <Class IRI="# Predicate "/>

117 <NamedIndividual IRI="# published_info "/>

118 </ ClassAssertion >

119 <ClassAssertion >

120 <Class IRI="#State"/>

121 <NamedIndividual IRI="# stateS1 "/>

122 </ ClassAssertion >

123 <ClassAssertion >

124 <Class IRI="# Purpose "/>

125 <NamedIndividual IRI="# transmit_information "/>

134 APPENDIX D. Application example 3: Posting information on social networks

126 </ ClassAssertion >

127 <ClassAssertion >

128 <Class IRI="#Status - Function "/>

129 <NamedIndividual IRI="#tweet"/>

130 </ ClassAssertion >

131 <ObjectPropertyAssertion >

132 <ObjectProperty IRI="# hasPurpose "/>

133 <NamedIndividual IRI="# messageByTelegram "/>

134 <NamedIndividual IRI="# transmit_information "/>

135 </ ObjectPropertyAssertion >

136 <ObjectPropertyAssertion >

137 <ObjectProperty IRI="# hasPurpose "/>

138 <NamedIndividual IRI="# postByFacebook "/>

139 <NamedIndividual IRI="# transmit_information "/>

140 </ ObjectPropertyAssertion >

141 <ObjectPropertyAssertion >

142 <ObjectProperty IRI="# hasPurpose "/>

143 <NamedIndividual IRI="# postByInstagram "/>

144 <NamedIndividual IRI="# transmit_information "/>

145 </ ObjectPropertyAssertion >

146 <ObjectPropertyAssertion >

147 <ObjectProperty IRI="# hasPredicate "/>

148 <NamedIndividual IRI="# stateS1 "/>

149 <NamedIndividual IRI="# fake_news_spread "/>

150 </ ObjectPropertyAssertion >

151 <ObjectPropertyAssertion >

152 <ObjectProperty IRI="# hasPredicate "/>

153 <NamedIndividual IRI="# stateS1 "/>

154 <NamedIndividual IRI="# published_info "/>

155 </ ObjectPropertyAssertion >

156 <ObjectPropertyAssertion >

157 <ObjectProperty IRI="# hasConsequence "/>

158 <NamedIndividual IRI="# transmit_information "/>

159 <NamedIndividual IRI="# stateS1 "/>

160 </ ObjectPropertyAssertion >

161 <ObjectPropertyAssertion >

162 <ObjectProperty IRI="# hasPurpose "/>

163 <NamedIndividual IRI="#tweet"/>

164 <NamedIndividual IRI="# transmit_information "/>

165 </ ObjectPropertyAssertion >

166 <InverseObjectProperties >

167 <ObjectProperty IRI="# hasConsequence "/>

D.2. Case 2 - Social networks with status functions and purposes 135

168 <ObjectProperty IRI="# isConsequenceOf "/>

169 </ InverseObjectProperties >

170 <InverseObjectProperties >

171 <ObjectProperty IRI="# hasParameter "/>

172 <ObjectProperty IRI="# isParameterOf "/>

173 </ InverseObjectProperties >

174 <InverseObjectProperties >

175 <ObjectProperty IRI="# hasPredicate "/>

176 <ObjectProperty IRI="# isPredicateOf "/>

177 </ InverseObjectProperties >

178 <InverseObjectProperties >

179 <ObjectProperty IRI="# hasPurpose "/>

180 <ObjectProperty IRI="# isPurposeOf "/>

181 </ InverseObjectProperties >

182 <InverseObjectProperties >

183 <ObjectProperty IRI="# hasStatus "/>

184 <ObjectProperty IRI="# isStatusOf "/>

185 </ InverseObjectProperties >

186 <IrreflexiveObjectProperty >

187 <ObjectProperty IRI="# hasStatus "/>

188 </ IrreflexiveObjectProperty >

189 <IrreflexiveObjectProperty >

190 <ObjectProperty IRI="# isStatusOf "/>

191 </ IrreflexiveObjectProperty >

192 <ObjectPropertyDomain >

193 <ObjectProperty IRI="# hasConsequence "/>

194 <Class IRI="# Purpose "/>

195 </ ObjectPropertyDomain >

196 <ObjectPropertyDomain >

197 <ObjectProperty IRI="# hasPredicate "/>

198 <Class IRI="#State"/>

199 </ ObjectPropertyDomain >

200 <ObjectPropertyDomain >

201 <ObjectProperty IRI="# hasPurpose "/>

202 <Class IRI="#Status - Function "/>

203 </ ObjectPropertyDomain >

204 <ObjectPropertyDomain >

205 <ObjectProperty IRI="# hasStatus "/>

206 <Class IRI="#Status - Function "/>

207 </ ObjectPropertyDomain >

208 <ObjectPropertyDomain >

209 <ObjectProperty IRI="# isConsequenceOf "/>

136 APPENDIX D. Application example 3: Posting information on social networks

210 <Class IRI="#State"/>

211 </ ObjectPropertyDomain >

212 <ObjectPropertyDomain >

213 <ObjectProperty IRI="# isPredicateOf "/>

214 <Class IRI="# Predicate "/>

215 </ ObjectPropertyDomain >

216 <ObjectPropertyRange >

217 <ObjectProperty IRI="# hasConsequence "/>

218 <Class IRI="#State"/>

219 </ ObjectPropertyRange >

220 <ObjectPropertyRange >

221 <ObjectProperty IRI="# hasPredicate "/>

222 <Class IRI="# Predicate "/>

223 </ ObjectPropertyRange >

224 <ObjectPropertyRange >

225 <ObjectProperty IRI="# hasPurpose "/>

226 <Class IRI="# Purpose "/>

227 </ ObjectPropertyRange >

228 <ObjectPropertyRange >

229 <ObjectProperty IRI="# hasStatus "/>

230 <Class IRI="#Status - Function "/>

231 </ ObjectPropertyRange >

232 <ObjectPropertyRange >

233 <ObjectProperty IRI="# isConsequenceOf "/>

234 <Class IRI="# Purpose "/>

235 </ ObjectPropertyRange >

236 <ObjectPropertyRange >

237 <ObjectProperty IRI="# isPredicateOf "/>

238 <Class IRI="#State"/>

239 </ ObjectPropertyRange >

240 <DataPropertyRange >

241 <DataProperty IRI="# hasPrice "/>

242 <Datatype abbreviatedIRI ="xsd: double "/>

243 </ DataPropertyRange >

244 <DataPropertyRange >

245 <DataProperty IRI="# hasTitle "/>

246 <Datatype abbreviatedIRI ="xsd: string "/>

247 </ DataPropertyRange >

248 <DataPropertyRange >

249 <DataProperty IRI="# hasValue "/>

250 <Datatype abbreviatedIRI ="xsd: double "/>

251 </ DataPropertyRange >

D.2. Case 2 - Social networks with status functions and purposes 137

252 </Ontology >

Listing D.6 – OWL Ontology - Social Networks

Bob’s code is shown in Listing D.7. This code contains the plan that Bob should execute
to achieve its published_info goal. In this plan, Bob uses alg1 to find available institutional
actions that can help it achieve its goal. In addition, Bob uses try_actions to try to perform
one of the actions found in alg1 that would satisfy its goal without inflicting its anti-goal.

1 anti_goal (fake_news_spread).

2

3 ! published_info . // agent goal

4

5 +! published_info

6 <- !alg1(published_info , Actions);

7 ! try_actions (Actions).

8

9 +! try_actions (Actions) <-

10 if(. length (Actions , Size) & Size < 1){

11 .fail;

12 }

13 .queue.head(Actions , Action);

14 !alg2(Action , States);

15 if(anti_goal (AG) & . member (AG , States)){

16 .queue. remove (Actions , Action);

17 ! try_actions (Actions);

18 }

19 else{

20 Action ;

21 }.

22

23 { include (" $jacamoJar / templates /common - cartago .asl") }

24 { include (" $jacamoJar / templates /common -moise.asl") }

Listing D.7 – Bob’s Program - Example 3 and Case 2

It is important to be clear that the Listings used in the previous examples that are not
replaced in the following examples remain valid and therefore are not repeated. The complete
code is available in a git repository at https://github.com/rafhaelrc/PurposeModel/
tree/main/demo/social_networks.

https://github.com/rafhaelrc/PurposeModel/tree/main/demo/social_networks
https://github.com/rafhaelrc/PurposeModel/tree/main/demo/social_networks

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	RESUMO EXPANDIDO
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Problems
	Hypothesis
	Objectives
	Motivations
	Document Structure

	Background and state of the art
	Institutions According to John Searle
	Institutions in MAS
	Institutional Reality as a functional Issue
	Institutional Reality as an ontological issue
	Discussion

	Reasoning about institutional reality
	Discussion

	Purpose proposal for MAS
	Purpose model - Overview
	Purpose model - Instrumenting institutions
	Purpose model - Helping agents to act in systems composed of institutions
	Functions to retrieve information for the agents
	Algorithms to help the agent reason about purpose

	Example of using purposes
	Purpose implementation
	Coupling the Purpose model in an MAS development framework
	Implementations of the Algorithms in Jason programs

	Evaluating the Purpose model
	Using the purpose model from the perspective of agents
	Application Example 1: Book trade
	Case 1 - Simple MAS
	Case 2 - MAS with status functions
	Case 3 - MAS with status functions and norms
	Case 4 - MAS with status function, norms and purpose
	Discussion

	Application Example 2: Conquer territory
	Case 1 - MAS with implicit status functions and purposes
	Case 2 - MAS with explicit status functions and purposes
	Discussion

	Application Example 3: Posting information on social networks
	Case 1 - Social networks without status functions and purposes
	Case 2 - Social networks with status functions and purposes
	Discussion

	Practical conclusions

	Positioning of the purpose model in the artificial institution literature

	Conclusions
	Future Work
	Related Publications

	REFERENCES
	Implementation of the Algorithms in Jason
	Application example 1: book trade
	Case 0 - Default setup
	Case 1 - Simple MAS
	Case 2 - MAS with status functions
	Case 3 - MAS with status functions and norms
	Case 4 - MAS with institution, norms and purposes

	Application example 2: Conquer territory
	Case 1 - MAS with implicit status functions and purposes
	Case 2 - MAS with explicit status functions and purposes

	Application example 3: Posting information on social networks
	Case 1 - Social networks without status functions and purposes
	Case 2 - Social networks with status functions and purposes

		2023-03-17T13:29:20-0300

		2023-03-17T17:46:58-0300

		2023-03-17T17:56:34-0300

