
UNIVERSIDADE FEDERAL DE SANTA CATARINA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Tarlis Tortelli Portela

Towards Optimization Methods for Movelets Extraction in Multiple Aspect Trajectory
Classification

Florianópolis – Pisa
2023

Tarlis Tortelli Portela

Towards Optimization Methods for Movelets Extraction in Multiple
Aspect Trajectory Classification

Tese submetida ao Programa de Pós-Graduação
em Ciência da Computação da Universidade
Federal de Santa Catarina e pela Universidade
de Pisa em regime de cotutela para a obtenção
do tı́tulo de Doutor em Ciência da Computação.
Orientadoras: Vania Bogorny (UFSC), Anna
Bernasconi (UniPI)
Coorientadora: Chiara Renso

Florianópolis – Pisa
2023

Tarlis Tortelli Portela

Towards Optimization Methods for Movelets Extraction in Multiple
Aspect Trajectory Classification

Thesis submitted to the Post-Graduate Program
in Computer Science of the Federal University
of Santa Catarina and University of Pisa under
cotutela regime for the degree of Doctor of Phi-
losophy.
Advisors: Vania Bogorny (UFSC), Anna
Bernasconi (UniPI)
Co-advisor: Chiara Renso

Florianópolis – Pisa
2023

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Portela, Tarlis Tortelli
 Towards Optimization Methods for Movelets Extraction in
Multiple Aspect Trajectory Classification / Tarlis
Tortelli Portela ; orientadora, Vania Bogorny,
orientadora, Anna Bernasconi, coorientadora, Chiara Renso,
2023.
 115 p.

 Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Ciência da Computação, Florianópolis, 2023.
 Inclui referências.
 Trabalho elaborado em regime de co-tutela.
 1. Ciência da Computação. 2. Mineração de dados. 3.
Trajetórias Multi-Aspecto. 4. Classificação de Trajetórias.
5. Subtrajetórias relevantes. I. Bogorny, Vania. II.
Bernasconi, Anna. III. Renso, Chiara. IV. Universidade
Federal de Santa Catarina. Programa de Pós-Graduação em
Ciência da Computação. V. Título.

Tarlis Tortelli Portela
Towards Optimization Methods for Movelets Extraction in Multiple Aspect Trajectory

Classification

O presente trabalho em nı́vel de doutorado foi avaliado e aprovado por banca examinadora
composta pelos seguintes membros:

Prof. Mateus Grellert, Dr.
Universidade Federal de Santa Catarina, Florianópolis, Brasil

Prof.a Anna Bernasconi, Dra.
Universidade de Pisa (UniPI), Pisa, Itália

Prof.a Karine Zeitouni, Dra.
Universidade de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versalhes, França

Chiara Renso, Dra.
Conselho Nacional de Pesquisa, Pisa, Itália

Certificamos que esta é a versão original e final do trabalho de conclusão que foi julgado
adequado para obtenção do tı́tulo de Doutor em Ciência da Computação.

Prof.a Patricia Della Méa Plentz, Dra.
Coordenador do Programa

Prof.a Vania Bogorny, Dra.
Orientadora

Florianópolis – Pisa, 2023.

Aos meus pais, Valério e Antonieta. À minha irmã, minha amiga
toda a vida.

ACKNOWLEDGEMENTS

I am incredibly grateful to my supervisors, Anna Bernasconi, Chiara Renso, and Vania
Bogorny, without whom many of the results presented here would not have been possible. I am
profoundly thankful to these women for their expertise, brilliant insights, personal advice, and
continuous and inspiring guidance throughout this Ph.D. Thanks to Anna and Chiara for the
fantastic reception in Pisa, patience, and kindness in the most difficult moments. I am grateful
to the people I met in Pisa, the professors, the colleagues at CNR, and the friends I made. I
am profoundly grateful to my supervisor, Vania, who found me in the hallway four years ago.
Thanks for teaching me, trusting me, pushing my limits, and believing in me.

Special thanks to the internal committee members, Anna Monreale and Giovanni Manzini,
for the suggestions presented in the yearly evaluations. I am also grateful to the external refer-
ees, Karine Zeitouni and Panagiotis Tampakis, for their expert feedback and helpful comments.
I am grateful to Mateus Grellert for all the support given.

Thanks to my lab friends in Brasil and Italy, Vanessa, Yuri, Camila, Lucas, Guido, and
Chiara, for the knowledge and funny moments we spent together. Vanessa, looking back on the
countless hours we spent drinking coffee, discussing ideas, and our friendship, I can say how
much it helped during these years.

Thanks to the University of Pisa, the National Research Council (CNR), The Federal
University of Santa Catarina (UFSC), FAPESC, and CAPES for making this cotutela possible.
I also thank my work institution, IFPR, for the license granted to develop this research and for
the support of my coworkers, especially to Lilian who has been with me from the beginning.

My most special thanks to my family, they are the reason I got here. To my sister,
Saura, that is the person I love most in the world. To my father and mother, that always gave
everything to make us into the best people. I know they are somewhere beyond and proud.
Thanks to my grandfather for the gesture that inspired me to study constantly.

Thanks to Gi, to whom I owe much of what I have become, the support, the crying
shoulder, the ten years of friendship, and my person, Bródi. To my friends Vis, Matheus e
Cristiane, that always asked how the thesis was, and Dani for the home medical care. To Can,
Fran, and Gra, that pushed me to start a Ph.D. To a lot of friends, lots of thanks.

Un ringraziamento speciale ad Anna e Chiara, per la fantastica accoglienza a Pisa,

per la loro pazienza e gentilezza nei momenti più difficili. Sono grato alle persone che ho incon-

trato a Pisa, ai professori, ai colleghi del CNR e alle nuove amicizie che ho stretto, specialmente

a Daniele. Grazie per avermi insegnato la cultura italiana, per i pasticcini e le serate in città.

Meu maior agradecimento à minha famı́lia, eles são a razão de eu ter chegado até

aqui. À minha irmã Saura, que é a pessoa que mais amo no mundo. Ao meu pai e à minha

mãe que sempre deram tudo para nos tornar melhores pessoas. Eu sei que eles estão em algum

lugar além, orgulhosos. Agradeço ao meu avô pelo gesto que me inspirou a estudar sempre.

Agradeço a Gi, a quem devo muito do que me tornei, o apoio, o ombro amigo, aos dez

anos de amizade, minha pessoa, Bródi. Aos meus amigos Vis, Matheus e Cristiane, que sempre

perguntavam como estava a tese, e a Dani pelos cuidados médicos domiciliares. A Can, Fran e

Gra, que me incentivaram a iniciar um doutorado. A muitos amigos, muito obrigado.

“We consider the greatest end of science is the classification of past data. It is
important, but is there no further work to be done?”

— Isaac Asimov (Foundation)

ABSTRACT

In the last few years there has been a significant increase in the collection of mobility data.
By mobility data we refer to the collection of positioning data, called trajectories, of tracked
moving objects. These objects could be humans, animals, vehicles or other devices like Internet
of Things (IoT). The analysis of such data has been proved to be useful in several application
domains from a urban scenario for traffic prediction or transportation means optimization, to
maritime domain analysing vessels paths or environmental domain with the study of hurricanes
evolution or animal behavior. One of the most typical and used analysis task on mobility data is
classification, where trajectory data is automatically assigned a label or class. The explosion of
social media data, sensors, IoT, and Internet-enabled sources allowed the semantic enrichment
of such mobility data, which evolved from raw spatio-temporal data to high dimensional data.
Mobility analysis, and specifically classification task, on such high dimensional data becomes
therefore more challenging. In fact, existing trajectory classification methods have mainly con-
sidered space, time, and numerical data, ignoring the large number of semantic dimensions.
Only recently research community proposed classification methods based on the concept of
movelets that are the parts of a trajectory that better discriminate a class and that can therefore
improve classification accuracy. State of the art methods in movelets extraction are computa-
tionally inefficient, which makes them unfeasible to be used for real large high dimensional
datasets. The objective of this thesis is therefore to develop new algorithms for discovering
movelets that are faster than state of the art while maintaining or improving classification ac-
curacy. Our main contribution is a new high performance method for extracting movelets and
classifying trajectories, called HiPerMovelets (High-performance Movelets). Experimental re-
sults show that HiPerMovelets is 10 times faster than the best state of the art method, reduces
the high dimensionality problem, is more scalable, and presents a high classification accu-
racy in all evaluated datasets. A secondary contribution are the algorithms RandomMovelets
and UltraMovelets. RandomMovelets reduces the search space by randomly extracting subtra-
jectories and evaluating their relevance for classification without exploring the entire dataset.
UltraMovelets reduces the combinatorial explosion when exploring subtrajectories. Prelimi-
nary results suggest that these methods can reduce the search space, use less computational
resources, and are at least 6 times faster than baselines.

Keywords: Data Mining. Multiple Aspect Trajectories. Trajectory Classification. Relevant
Subtrajectories. Movelets

RESUMO

Nos últimos anos, houve um aumento significativo na coleta de dados de mobilidade. Dados
de mobilidade referem-se ao conjunto de dados de posicionamento geográfico, chamados de
trajetórias de objetos móveis. Esses objetos podem ser pessoas, animais, veı́culos ou outros
dispositivos como a Internet das Coisas (IoT). A análise deste tipo de dados se revela útil em
vários domı́nios de aplicação, desde um cenário urbano para previsão de tráfego ou otimização
de meios de transporte, no domı́nio marı́timo analisando trajetos de embarcações, no domı́nio
ambiental com o estudo da evolução de furacões ou comportamento animal. Uma das tarefas
de análise mais comuns e usadas em dados de mobilidade é a classificação, onde os dados de
trajetória recebem automaticamente um rótulo ou classe. A explosão de dados de mı́dia social,
sensores, IoT e outras fontes da Internet permitiram o enriquecimento semântico desses dados
de mobilidade, que evoluı́ram de dados espaço-temporais brutos para dados de alta dimensio-
nalidade. A análise de mobilidade, e especificamente a tarefa de classificação, em tais dados de
alta dimensionalidade tem se tornado mais desafiadora. De fato, os métodos de classificação de
trajetória existentes consideram principalmente espaço, tempo e dados numéricos, ignorando
o grande número de dimensões semânticas. Apenas recentemente a comunidade de pesquisa
propôs métodos de classificação baseados no conceito de movelets que são as partes de uma
trajetória que melhor discriminam uma classe e que podem, portanto, melhorar a precisão da
classificação. Métodos de última geração na extração de movelets são computacionalmente
ineficientes, o que os torna inviáveis para serem usados em grandes conjuntos de dados de alta
dimensão. O objetivo desta tese é, portanto, desenvolver novos algoritmos para descobrir mo-
velets que sejam mais rápidos do que o estado da arte, mantendo ou melhorando a precisão
da classificação. Nossa principal contribuição é um novo método de alto desempenho para
extração de movelets e classificação de trajetórias, denominado HiPerMovelets (Movelets de
alto desempenho). Os resultados experimentais mostram que o HiPerMovelets é 10 vezes mais
rápido que o melhor método do estado da arte, reduz o problema de alta dimensionalidade, é
mais escalável e apresenta uma alta precisão de classificação em todos os conjuntos de dados
avaliados. Uma contribuição secundária são os algoritmos RandomMovelets e UltraMovelets.
RandomMovelets reduz o espaço de busca extraindo subtrajetórias aleatoriamente e avaliando
sua relevância para classificação sem explorar todo o conjunto de dados. UltraMovelets reduz a
explosão combinatória ao explorar subtrajetórias. Os resultados preliminares sugerem que es-
ses métodos podem reduzir o espaço de busca, usar menos recursos computacionais e são pelo
menos 6 vezes mais rápidos que a linha de base.

Palavras-chave: Mineração de dados. Trajetórias Multi-Aspecto. Classificação de Trajetórias.
Subtrajetórias relevantes. Movelets

RESUMO EXPANDIDO

Introdução
Há um amplo reconhecimento do valor dos dados e produtos obtidos através da análise de gran-
des volumes de dados (Big Data). No entanto, o desafio não se restringe a localizar, identificar,
entender esses dados. A capacidade de analisar grandes conjuntos de dados tem valor limitado
se os usuários não puderem entender a análise. O resultado precisa ser interpretável, o que
envolve examinar as suposições feitas e verificar os resultados produzidos pelo computador.
Com a alta disponibilidade de informações, a popularização de dispositivos móveis, redes so-
ciais e IoT, grandes volumes de dados de mobilidade estão sendo coletados sobre a rotina das
pessoas. Com essa explosão de dados, são necessárias novas tecnologias e métodos para via-
bilizar sua mineração, categorização e processamento. Esses dados são foco de pesquisas em
algoritmos e sistemas de uso intenso de dados que tratem de tais problemas computacionais.
Os dados de mobilidade são chamados trajetórias de objetos móveis que podem representar
o movimento de pessoas, veı́culos, navios, furacões, etc. Essas trajetórias são sequências de
pontos localizados no espaço e no tempo e elas evoluı́ram ao longo dos anos. A Figura 2 exem-
plifica como esses dados evoluı́ram ao longo dos anos, tornando-se mais significativos e reve-
lando mais padrões sobre o objeto móvel. A medida que os dados se tornam mais complexos,
as tarefas de mineração de dados também são mais desafiadoras.

Raw Trajectories Semantic Trajectories Multiple Aspect Trajectories

pn
p1pn

p1

8:00
Hotel

12:00
Bar

pn
p1

$$ $$$

< 2008 >= 2008 > 2017

8:00
Hotel

12:00
Bar

Figura 1 – Representação de trajetórias ao longo dos anos.

Antes de 2007, como pode ser visto na Figura 2, as trajetórias eram chamadas trajetórias brutas
(raw trajectories) e representadas pelas dimensões espaço (e.g. latitude e longitude) e tempo.
O conceito de trajetórias semânticas (semantic trajectories) surgiu em 2007, modelando stops
e moves, onde os stops são as partes importantes e semanticamente ricas das trajetórias (SPAC-
CAPIETRA et al., 2008).
Modelos e tentativas anteriores de enriquecer trajetórias com mais informações semânticas le-
varam a uma trajetória muito mais detalhada. Desde 2016, surgiu o conceito de trajetórias
multi-aspecto (Multiple Aspect Trajectories, MAT) (FERRERO et al., 2018; MELLO et al.,
2019). MATs representam um conceito mais amplo do que stops e moves, onde pontos espaço-
temporais podem ser enriquecidos com qualquer tipo de informação semântica. Informações
semânticas significam qualquer tipo de dado que não seja espacial nem temporal que repre-
senta qualquer aspecto dos dados como: nome do local visitado ou ponto de interesse (POI),
avaliação ou preço do local, meio de transporte, condição climática, o humor de uma pessoa,
etc. Antes de 2016, os dados de trajetória eram analisados, geralmente, sob um único ponto
de vista e enriquecidos com uma única dimensão semântica. Depois disso, o uso das mı́dias
sociais disseminou disponibilizando grandes quantidades de dados na Web de modo que os da-
dos de trajetória começaram a ser enriquecidos e analisados em várias perspectivas. Essa nova

representação de trajetória é um desafio para a mineração de dados de trajetórias, particular-
mente na classificação que é o problema abordado neste trabalho.
A classificação de trajetórias pode ser definida como a técnica de descobrir o rótulo da classe de
um objeto móvel com base em suas trajetórias (LEE et al., 2008). Classificação de trajetórias é
importante para vários domı́nios de aplicação como, por exemplo, identificar o meio de trans-
porte de um objeto móvel (ETEMAD; Soares Júnior; MATWIN, 2018), o nı́vel de força de um
furacão (LEE et al., 2008), o tipo de uma embarcação (carga, pesca, turismo, etc.) (LEE et
al., 2008), o usuário proprietário de uma trajetória (FERRERO et al., 2020), etc. O principal
desafio na classificação de trajetórias multi-aspecto é o grande número e a heterogeneidade das
dimensões associadas a cada ponto da trajetória. Por exemplo, um POI é uma representação
semântica da dimensão espacial e está relacionado ao seu preço e avaliação. Além disso, a
dimensão espacial é composta por dois valores (latitude e longitude) que precisam ser conside-
rados juntos para representar uma posição real no espaço. As trajetórias podem ser segmentadas
para se encontrar padrões, pois considerar uma trajetória inteira pode não caracterizar o com-
portamento que discrimina as classes (LEE et al., 2008). Por exemplo, uma trajetória de <
Casa, Escola, Parque > pode não caracterizar o movimento geral dos alunos, mas talvez uma
subtrajetória < Casa, Escola > sim. O principal desafio é encontrar os melhores atributos (fea-
tures) de trajetórias ou subtrajetorias para usar como entrada de um classificador. Subtrajetórias
relevantes são importantes features para representar padrões em trajetórias. Espera-se que elas
apareçam com frequência em uma determinada classe e menos frequentemente nas trajetórias
de outras classes. Novos métodos de classificação de trajetórias se baseiam na extração dessas
subtrajetórias relevantes, em vez de novos modelos ou algoritmos de classificação.
A análise de mobilidade, e especificamente a tarefa de classificação, em dados de alta dimen-
sionalidade tem se tornado mais desafiadora. De fato, os métodos de classificação de trajetória
existentes consideram principalmente espaço, tempo e dados numéricos, ignorando o grande
número de dimensões semânticas. Apenas recentemente a comunidade de pesquisa propôs
métodos de classificação baseados no conceito de movelets que são as partes de uma trajetória
(subtrajetórias) que melhor discriminam uma classe e que podem, portanto, melhorar a pre-
cisão da classificação. Os métodos propostos por Ferrero em (FERRERO et al., 2018) e (FER-
RERO et al., 2020) superaram a maioria dos métodos existentes para classificação de trajetória
em termos de acurácia, mostrando que as melhores features de trajetórias para problemas de
classificação são subtrajetórias de tamanhos diferentes (por exemplo, um ponto, dois pontos,
etc) e algumas de suas dimensões ou combinações de dimensões. MASTERMovelets (FER-
RERO et al., 2020) explora automaticamente todas as possı́veis subtrajetórias de qualquer ta-
manho (por exemplo, um ponto, dois pontos, três pontos, etc.) e explora todas as combinações
de dimensão (por exemplo, apenas espaço; espaço e tempo; espaço, tempo e categoria POI,
etc), enquanto procura as melhores movelets para cada classe. No entanto, MASTERMove-
lets é computacionalmente caro porque gera um grande número de subtrajetórias e todas as
combinações de dimensões. Portanto, sofre da curso da dimensionalidade devido ao grande
número de candidatos a movelets. Este problema leva à nossa questão de pesquisa: Podemos
desenvolver novos algoritmos para descobrir subtrajetórias relevantes que se tornam mo-
velets mais rapidamente que MASTERMovelets, mantendo ou melhorando a acurácia da
classificação? Nossa hipótese é que podemos reduzir a explosão de combinações de dimensões
e acelerar o processo de segmentação para extração de movelets.

Objetivos
O principal objetivo desta tese é propor novos métodos para classificação de trajetórias de multi-
aspecto que possam lidar com o alto custo computacional e o grande número de movelets do
método do estado da arte MASTERMovelets, mantendo a precisão e reduzindo o custo compu-

tacional. Nosso objetivo é identificar quais são as subtrajetórias mais relevantes que provavel-
mente se tornarão movelets sem explorar todo o conjunto de dados, reduzindo assim o espaço
de busca para descoberta de movelets. Como objetivos especı́ficos iremos:

• Propor e implementar técnicas para extração eficiente de features de trajetórias de multi-
aspecto para classificação reduzindo o espaço de busca e dimensionalidade;

• Avaliar as técnicas propostas em diversos conjuntos de dados e compará-las com os
métodos do estado da arte;

• Propor uma ferramenta para apoiar a tarefa de classificação de trajetórias de multi-aspecto,
especificamente fornecendo formas de visualização das movelets e dados de trajetória.

Metodologia
Para cumprir os objetivos propostos nesta tese adotamos a seguinte metodologia:

1. Realizar revisão de literatura em classificação de trajetórias, com foco em trabalhos que
realizam classificação em dados de trajetórias multi-aspecto;

2. Propor e implementar algoritmos para redução do espaço de busca e tempo de execução
em relação ao MASTERMovelets;

3. Avaliar o comportamento dos métodos propostos usando conjuntos de dados de trajetórias
reais e sintéticas incluindo a acurácia de classificação, escalabilidade, tempo computaci-
onal, tempo de classificação e o número total de candidatos a movelet geradas e movelets
avaliadas;

4. Definir e preparar os conjuntos de dados para avaliar os métodos e compará-los com o
estado da arte;

5. Implementar ou adaptar os métodos do estado-da-arte que devam ser comparados à nossa
proposta;

6. Propor ferramentas de visualização de trajetórias e subtrajetórias com suporte à classificação
e análise de trajetórias multi-aspecto;

7. Escrever artigos descrevendo novos métodos para reduzir o espaço de busca para extrair
as subtrajetórias relevantes e experimentos de benchmark;

8. Redação da tese descrevendo os principais conceitos necessários de dados de trajetória, o
problema de classificação de trajetória, o estado da arte, a descrição das soluções propos-
tas, avaliações experimentais e as conclusões obtidas.

O escopo desta tese está limitado à definição de novas técnicas de otimização para exploração
de subtrajetórias relevantes, a fim de melhorar o desempenho da extração de caracterı́sticas para
classificação de trajetórias em relação aos métodos do estado da arte.

Resultados e Discussão
Nossa principal contribuição é um novo método de alto desempenho para extração de movelets
e classificação de trajetórias, denominado HiPerMovelets (High Performance Movelets). Os
resultados obtidos neste trabalho mostram que o HiPerMovelets é 10 vezes mais rápido que o
melhor método do estado da arte, reduz o problema de alta dimensionalidade, é mais escalável
e apresenta uma alta precisão de classificação em todos os conjuntos de dados avaliados. Uma
contribuição secundária são os algoritmos RandomMovelets e UltraMovelets. RandomMove-
lets reduz o espaço de busca extraindo subtrajetórias aleatoriamente e avaliando sua relevância
para classificação sem explorar todo o conjunto de dados. UltraMovelets reduz a explosão
combinatória ao explorar subtrajetórias. Os resultados preliminares sugerem que esses métodos
podem reduzir o espaço de busca, usar menos recursos computacionais e são pelo menos 6
vezes mais rápidos que a linha de base.
A fim de superar algumas limitações dos métodos apresentados, são propostos os seguintes
trabalhos futuros: (i) nova estratégia para encontrar o split point e o melhor alinhamento que
evita calcular distâncias para cada posição em todas as trajetórias; (ii) investigar uma nova
medida de qualidade para avaliação das movelets; (iii) propor um método para processamento
distribuı́do; (iv) investigar um novo classificador para melhores resultados; (v) experimentação
em outras áreas; (vi) extensa experimentação de escalabilidade; e, (vii) investigação do uso de
movelets em outros domı́nios de aplicação.

LIST OF FIGURES

Figura 1 – Representação de trajetórias ao longo dos anos. 11
Figure 2 – Trajectory Representation along the years. 23
Figure 3 – An example of Multiple Aspect Trajectory (MELLO et al., 2019). 24
Figure 4 – Trajectory and subtrajectories example. 24
Figure 5 – Examples of trajectories and subtrajectories of different users. 27
Figure 6 – Example of subtrajectory best alignment in trajectory. 32
Figure 7 – Finding the best alignment from the distance vectors. 33
Figure 8 – Example of finding split points in a multidimensional orderline. 33
Figure 9 – Overview of the HiPerMovelets method. 43
Figure 10 – (a) Trajectory T1, (b) The pivots of size one, (c) The pivots neighborhood,

and (d) one pivot of size two neighborhood. 47
Figure 11 – Number of movelet candidates (top), and number of movelets (bottom) bar

plots for all methods in multiple aspect trajectory datasets. 52
Figure 12 – Running time bar plots for all methods in multiple aspect trajectory datasets. 53
Figure 13 – Total compared trajectories (top), and pruned trajectories (bottom) in multi-

ple aspect trajectory datasets. 54
Figure 14 – Running time bar plots for all methods in raw trajectory datasets. 55
Figure 15 – Total compared trajectories (top), and pruned trajectories (bottom) in raw

trajectory datasets. 55
Figure 16 – Number of movelet candidates (top), and number of movelets (bottom) bar

plots for all methods in raw trajectory datasets. 56
Figure 17 – Scalability analysis of running time varying (a) the number of trajectory

points (b) the number of trajectories and (c) the number of dimensions. . . . 57
Figure 18 – Overview of the RandomMovelets method. 59
Figure 19 – Overview of the UltraMovelets method. 62
Figure 20 – Test configuration of NPOI, HiPerMovelets, and HiPerPivots for accuracy

with the classifier NN (top) and running time (bottom) in multiple aspect
trajectory datasets. 67

Figure 21 – Accuracy bar plots for all methods, with the classifiers NN (top) and RF
(bottom) in multiple aspect trajectory datasets. 69

Figure 22 – Accuracy top 5 bar plots for all methods, with NN classifiers in multiple
aspect trajectory datasets. 70

Figure 23 – Macro F-Measure bar plots for all methods, with NN classifier in multiple
aspect trajectory datasets. 70

Figure 24 – Total running time (in hours) bar plots for all methods, sum of running time
and classification time with NN classifier in multiple aspect trajectory datasets. 71

Figure 25 – Bar plots of number of movelet candidates (top), and movelets (bottom), in
thousands, for movelet-based methods in multiple aspect trajectory datasets. 72

Figure 26 – Accuracy bar plots for all methods, with the classifiers NN (top) and RF
(bottom) in raw trajectory datasets. 73

Figure 27 – Macro F-Measure bar plots for all methods, with NN classifiers in raw tra-
jectory datasets. 73

Figure 28 – Total running time (in hours) bar plots for all methods, sum of running time
and classification time with NN classifier in raw trajectory datasets. 74

Figure 29 – Bar plots of number of movelet candidates (top), and movelets (bottom), in
thousands, for movelet-based methods in raw trajectory datasets. 74

Figure 30 – Accuracy bar plots for all methods, with the classifiers NN (top) and RF
(bottom) in genetic sequence datasets. 75

Figure 31 – Macro F-Measure bar plots for all methods, with NN classifier in genetic
sequence datasets. 76

Figure 32 – Total running time (in hours) bar plots for all methods, sum of running time
and classification time with NN classifier in genetic sequence datasets. . . . 76

Figure 33 – Bar plots of number of movelet candidates (top), and movelets (bottom), in
thousands, for movelet-based methods in genetic sequence datasets. 77

Figure 34 – Accuracy bar plots for all methods, with the classifiers NN (top) and RF
(bottom) in time series datasets. 78

Figure 35 – Macro F-Measure bar plots for all methods, with NN and RF classifiers in
time series datasets. 78

Figure 36 – Total running time (in hours) bar plots for all methods, sum of running time
and classification time with NN classifier in time series datasets. 79

Figure 37 – Bar plots of number of movelet candidates in thousands for our methods in
time series datasets. 80

Figure 38 – Scalability analysis of running time (left) and maximum memory use (right). 82
Figure 39 – The architecture of AUTOMATIZE platform. 85
Figure 40 – Movelets visualization screen for selected trajectory. 87
Figure 41 – Distribution box plots of the number of movelets by method. 89
Figure 42 – Distribution box plots of average movelet number of attributes by method. . 90
Figure 43 – Distribution box plots for average movelet number of points by method. . . 90
Figure 44 – Distribution box plots of average movelet quality by method. 90
Figure 45 – Heat map for movelet attribute use by method in Foursquare NYC specific. . 91
Figure 46 – Heat map for movelet attribute use by method in Foursquare NYC generic. . 91
Figure 47 – Heat map for movelet attribute use by class in Foursquare NYC generic. . . 92
Figure 48 – Heat map for movelet attribute use by class on Animals dataset. 113
Figure 49 – Heat map for movelet attribute use by class on GoTrack dataset. 113
Figure 50 – Heat map for movelet attribute use by class on Vehicles dataset. 113
Figure 51 – Heat map for movelet attribute use by class on Brightkite dataset. 114
Figure 52 – Heat map for movelet attribute use by class on Gowalla dataset. 114
Figure 53 – Heat map for movelet attribute use by class on Foursquare NYC specific. . . 114

Figure 54 – Heat map for movelet attribute use by class on Foursquare NYC generic. . . 115
Figure 55 – Heat map for movelet attribute use by class on Hurricanes dataset. 115

LIST OF TABLES

Table 1 – Attribute-value representation of movelet transformation matrix (FERRERO
et al., 2020). 34

Table 2 – Datasets and classifiers used by each state of the art method 38
Table 3 – Movelet-based methods characteristics. 39
Table 4 – Summary of the used trajectories datasets. 49
Table 5 – Results for 5-fold cross-validation (MAT datasets). 52
Table 6 – Results for 5-fold cross-validation (spatio-temporal datasets). 53
Table 7 – Complementary summary of the used trajectories datasets for Table 4. 65
Table 8 – Summary of the experimental setup. 68
Table 9 – Result differences of average total time, accuracy, number of movelet candi-

dates, and number of movelets, in percent. 80
Table 10 – Results of Accuracy with neural network classifier for all dataset. 105
Table 11 – Results of Accuracy with random forest classifier for all dataset. 106
Table 12 – Results of total running time (with neural network classifier) for all datasets. . 107
Table 13 – Results of movelet candidates for all datasets. 108
Table 14 – Results of number of movelets for all datasets. 109
Table 15 – Movelets statistics on all datasets. 110
Table 16 – Movelets statistics on all datasets (continued). 111
Table 17 – Movelets statistics on all datasets (continued). 112

LIST OF SYMBOLS

T Trajectory dataset of pairs, {(T1,classT1), ...,(Tn,classTn)}

T’ Subset of trajectories from one class

Ti The ith trajectory in T

classTi The class label of Ti

A Set of an element aspects, A = {a1,a2, ...,al}, interchangeably called dimensions

A’ A subset of aspects A

n, |T| number of trajectories

m, |T| Length of a trajectory

w Length of a subtrajectory

l, |A| Number of aspects

s,u Subtrajectory, also sa,b

M Set of movelets from T

MTi Set of movelets from trajectory Ti

Mi Movelet candidate

C Movelet candidate aspects, C ⊆ A

V Distance vector between two subtrajectories

W Set of pairs (W s
Ti
,classTi)

W s
Ti

Distance vector of the subtrajectory s to trajectory Ti

Sw
Ti

Distance set of all subtrajectories of length w from Ti

sp A set of split point distances for each dimension

TM Subset of a class covered trajectories by a movelet candidateM, TM ⊆ T’

λ Learned limit to dimension combinations

τ Parameter for minimum proportion of selected candidates

α Parameter for percentual selection of movelet candidates

CONTENTS

1 INTRODUCTION . 22
1.1 PROBLEM STATEMENT . 26
1.2 OBJECTIVES AND CONTRIBUTIONS 27
1.3 METHODOLOGY AND THESIS STRUCTURE 28

2 BASIC CONCEPTS AND RELATED WORKS 30
2.1 BASIC CONCEPTS . 30
2.2 TRAJECTORY CLASSIFICATION . 34
2.2.0.1 Classification Metrics . 36

2.3 RELATED WORKS . 37
2.4 SUMMARY . 40

3 STRATEGIES FOR REDUCING THE SEARCH SPACE IN MOVELET
DISCOVERY . 42

3.1 HIPERMOVELETS: IN CLASS PRUNING AND FREQUENCY-BASED
STRATEGY FOR MOVELET DISCOVERY 42

3.1.1 HiPerMovelet Candidate Generation . 46
3.1.2 Class-based Pruning . 48
3.1.3 Experimental Evaluation . 48
3.1.3.1 Datasets . 49

3.1.3.2 Experimental Setup . 50

3.1.3.3 Accuracy, Number of Movelets, and Processing Time 51

3.1.3.3.1 Results for Multiple Aspect Trajectory Datasets 51
3.1.3.3.2 Results for Raw Trajectory Datasets . 54
3.1.3.4 Scalability Analysis . 56

3.2 REDUCING THE SEARCH SPACE AND ATTRIBUTE COMPARISON
IN MOVELET DISCOVERY . 58

3.2.1 RandomMovelets: A Random-based Movelet Candidate Pruning Strat-
egy for Movelet Discovery . 59

3.2.2 UltraMovelets: A Recursive Strategy for Efficient Movelet Candidates
Generation . 61

3.2.3 Experimental Evaluation . 64
3.2.3.1 Datasets . 65

3.2.3.2 Experimental Setup . 66

3.2.3.3 Preliminary Results of Accuracy, Processing Time, and Number of Movelet

Candidates . 68

3.2.3.3.1 Results with Multiple Aspect Trajectory Data 69
3.2.3.3.2 Results with Raw Trajectory Data . 72

21

3.2.3.3.3 Results with Genetic Sequence Data . 75
3.2.3.3.4 Results with Multivariate and Univariate Time Series Data 77
3.2.3.3.5 Analysis with All Datasets including data from other Domains 79
3.2.3.4 Discussion of Preliminary Scalability Results 81

3.3 SUMMARY . 82

4 AUTOMATIZE: A PLATFORM FOR MOVELETS ANALYSIS 84
4.1 MULTIPLE ASPECT TRAJECTORY DATA MINING TOOL LIBRARY . 84
4.1.1 System Architecture . 85
4.1.2 Visualization Tools . 86
4.2 MOVELETS ANALYSIS AND STATISTICS 88
4.2.1 Number of Movelets, Features, Size, and Quality 88
4.2.2 Attribute Confidence Analysis . 90
4.3 SUMMARY . 92

5 CONCLUSION AND FUTURE WORKS 94

BIBLIOGRAPHY . 99

6 EXPERIMENTAL RESULTS FOR SEVERAL DATASETS 104
6.1 ACCURACY RESULTS FOR ALL DATASETS WITH NEURAL NET-

WORK CLASSIFIER . 105
6.2 ACCURACY RESULTS FOR ALL DATASETS WITH RANDOM FOR-

REST CLASSIFIER . 106
6.3 TOTAL RUNNING TIME RESULTS FOR ALL DATASETS WITH NEU-

RAL NETWORK CLASSIFIER . 107
6.4 NUMBER OF MOVELET CANDIDATES FOR ALL DATASETS 108
6.5 NUMBER OF MOVELETS FOR ALL DATASETS 109

7 MOVELETS ANALYSIS . 110
7.1 MOVELETS STATISTICS BY DATASET 110
7.2 MOVELET ATTRIBUTE CONFIDENCE BY METHOD IN MULTIPLE

ASPECT TRAJECTORIES . 113

22

1 INTRODUCTION

There is broad recognition of the value of data and products obtained through the anal-
ysis of large volumes of data (Big Data). The ability to analyze large data sets is limited in
value if users cannot understand the analysis. The result must be interpretable, which involves
examining the assumptions made and verifying the results produced by the computer. Methods
capable of revealing patterns in the data can help in the most diverse applications such as urban
planning, smart cities, understanding natural phenomena, vaccine development, public safety,
urban transport, etc. For instance, vehicle traces collected from traffic on city streets can be
used to predict and avoid traffic jams. Taxi traces can be used to predict new bus lines. In
public transport, analysis of bus traces can be used to early detect (as mobile sensors) events in
regions that affect traffic to propose new routes for public transport. In ecology, tracking ani-
mals can help to understand the human impact on animal behavior, as well as their movement
and migration patterns. In understanding natural phenomena, analysis techniques can be used
to classify the intensity of hurricanes. In vaccine development, data from proteins with the po-
tential to generate an immune response can be used to choose test targets for new vaccines. In
digital security, trajectory similarity analysis techniques are used to classify scanned signatures
as legitimate or fraudulent (VLACHOS; KOLLIOS; GUNOPULOS, 2002). In maritime mon-
itoring, boat trajectories can, in real-time, be used to detect normal and anomalous behavior,
for instance, to prevent boat accidents with refugees and illegal immigration, thus helping with
humanitarian issues.

With the popularization of mobile devices, social networks, and IoT, large volumes of
mobility data are being collected about our daily routines. Some companies, such as Google,
Amazon, and Apple use their products to collect details about our movement, including the
places we visit and the time we stay there. Facebook, for instance, captures our location, and
stores our friendship relationships, as well as our thoughts and opinions about things and people.
Pokémon GO emerged to capture our movement and photos of places we visit when capturing
Pokémons, which certifies with a high accuracy where we are. These are just a few examples
that show the importance of the physical location and movement of people.

Mobility data can be referred to as moving object trajectories, and can represent the
movement of people, animals, vehicles, ships, hurricanes, etc. Trajectories are sequences of
points located in space and time, representing the evolution of the location of the object. This
data evolved over the years, becoming more meaningful and revealing more patterns about mov-
ing objects. As the data become more detailed, they become more complex, and the data mining
tasks are more challenging. Figure 2 exemplifies how mobility data become more meaningful,
more complex, and revealing more patterns about moving objects.

Before 2007, as can be seen in Figure 2, mobility data were called raw trajectories, and
represented by sequences of points with the dimensions space and time. The space dimension
is represented by a position (e.g. latitude and longitude) sequentially ordered by time.

When the concept of semantic trajectories emerged in 2008, the points started to be

23

Raw Trajectories Semantic Trajectories Multiple Aspect Trajectories

pn
p1pn

p1

8:00
Hotel

12:00
Bar

pn
p1

$$ $$$

< 2008 >= 2008 > 2017

8:00
Hotel

12:00
Bar

Figure 2 – Trajectory Representation along the years.

annotated as stops and moves, which are the important and semantically rich parts of trajectories
(SPACCAPIETRA et al., 2008). Stops are the parts of a trajectory where the object stays for
a minimal amount of time, while the moves are the remaining parts. The spatial dimension of
the stops was basically annotated with the attribute POI, the Point Of Interest that corresponds
to the name of a place the user visited. The moves, for instance, could be annotated with an
activity or transportation mean. It is important to notice that trajectories are multidimensional
by definition, having at least the spatial and temporal dimensions. Semantic trajectories have
an additional dimension, the semantics.

Previous models and attempts to enrich trajectories with more semantic information
and different aspects, have led to a very detailed trajectory. In 2018, emerged the concept of
Multiple Aspect Trajectories (MAT) (FERRERO et al., 2018; MELLO et al., 2019), represent-
ing a broader concept than stops and moves, where the spatio-temporal points started to be
associated with any type of semantic information. By semantic information we mean any type
of data that is neither spatial nor temporal, representing any aspect as the name of a visited place
or Point of Interest (POI), the rate or price of the place, the transportation mode, the weather
condition, the mood of a person, etc. MAT became more complex because each point has at
least three types of dimensions (space, time, and semantics). The MAT allows the represen-
tation of the trajectory shown in Figure 3. As can be observed from the figure, a trajectory
has very detailed information about the moving object, which is a challenge to trajectory data
mining since the object to be analyzed becomes complex. In this example, the trajectory is
associated with different semantic aspects that can be related to the object. For instance, at
home, the heart and sleeping rate of the user is collected. When he/she moves on foot to work,
a Tweet that expresses his mood is captured. He/She works at a smart office where sensors col-
lect environmental information about noise, temperature, and pollution. At night when he/she
goes from work to a restaurant, the characteristics of the restaurant as price and reviews can
also be collected, creating a new complex type of movement and semantic dimensions that are
interconnected.

A fundamental concept for this thesis is the subtrajectory. In general, we define a
subtrajectory as a continuous part of a trajectory that might include both spatio-temporal in-
formation and semantics. A stop or a move are examples of subtrajectories. However, it is

24

Figure 3 – An example of Multiple Aspect Trajectory (MELLO et al., 2019).

important to highlight that a subtrajectory might contain also a subset of dimensions. Figure
4 shows an example of MAT and clarifies the concept of subtrajectories with different dimen-
sions. Trajectory T1 has 6 points with three dimensions (weather condition, POI, and time),
and two subtrajectories, where s1,2 is a subtrajectory of size 2 because it has two points and 3
dimensions (weather, POI name and time), and s5 is a subtrajectory of size 1 with 1 point and 2
dimensions (POI and time).

A subtrajectory can represent a relevant behavior of a moving object. For instance, the
subtrajectories s1,2 and s5 of Figure 4 are very common patterns in the trajectories of tourists.
The POI sequence Hotel to Museum A and the Cafe at 18h are patterns that appear frequently
when analyzing tourist trajectories. When analyzing an unknown trajectory with these same or
similar subtrajectories, it is possible to infer that it belongs to a tourist.

. .
p
3

. p4

.
p5

.
p6

.
Hotel
8:00

Museum A

10:00 Restaurant

12:00

Museum B

15:00

Cafe

18:00 Bar

20:00

p
1

. p
2

.
Hotel
8:00

Museum A

10:00

p
1 p5

.
Cafe

18:00

T1

s1,2 5s

p
2

Figure 4 – Trajectory and subtrajectories example.

The analysis of mobility data is useful in several application domains, like transporta-
tion, ecology, and maritime studies to name a few. Some well-known analysis tasks include:

25

clustering, classification, prediction, anomaly detection, and frequent pattern mining (ZHENG,
2015; LEITE; PETRY; BOGORNY, 2019). In this thesis, we focus on trajectory classification
which is the task of assigning a trajectory to a class (LEE et al., 2008). Examples are the in-
ference of the transportation mode of a moving object (e.g. car, bus, bike) (ETEMAD; Soares
Júnior; MATWIN, 2018), the strength level of a hurricane (LEE et al., 2008), a vessel type (e.g.
cargo, fish, tourism, etc) (LEE et al., 2008), the user identity of a given trajectory (FERRERO
et al., 2020), etc. Very recently, the importance of trajectory classification has been revealed in
health applications. From the driving movement patterns, it is possible to predict early signs
of Alzheimer disease (BAYAT et al., 2021a), and from outdoor mobility patterns, to predict
dementia in older adults (BAYAT et al., 2021b).

Classification of trajectory data is particularly complex due to the fact that movement
data has at least two dimensions: space and time. With semantic or multiple aspect trajectories
the task becomes even more complex due to the several dimensions involved.

The first challenge in trajectory classification methods is to define a set of relevant
features that better discriminate the class. Depending on the type of class, different types of
trajectory features should be extracted for accurate classification. For instance, for transporta-
tion mode classification, features such as speed and acceleration may be discriminant, while in
user type classification (e.g. tourist, commuter, resident), features as type of visited places, time
of the visit, or duration of the visit may be the most discriminant. The features can be local
when related to a subtrajectory or a single point (trajectory parts), or global, when related to
the entire trajectory (e.g. trajectory average speed) (FERRERO et al., 2018). Most features are
local, but global features as the average speed of the entire trajectory may be discriminant for
some problems.

The classification task of discovering the user identity of a given trajectory is often
referred to as Trajectory User Linking (TUL) in the literature (GAO et al., 2017; ZHOU et al.,
2018). The user identity (name or identifier) is the label for the classification task, in which the
goal is - from a subset of trajectory data - to identify the user that generated the trajectories. For
TUL, the number of classes can be around dozens or hundreds, which makes the classification
task very challenging and hard to achieve high accuracy.

A big issue in MAT classification is the large number and the heterogeneity of the types
of dimensions that can be associated with each trajectory point. The classification problem com-
plexity is increased by the fact that, for proper classification, trajectories must be segmented into
subtrajectories, because an entire trajectory may not characterize a real movement behavior to
discriminate classes (LEE et al., 2008). For instance, consider a classification task that analyses
the trajectory of individuals to classify trajectories into students or not. A trajectory following
the sequence of POIs ⟨ Home, School, Park ⟩ might be too specific and not characterize the
general movement of students, while its subtrajectory ⟨ Home, School ⟩ can better represent the
students mobility behavior. Therefore, this subtrajectory can be the discriminant to classify a
student trajectory.

26

1.1 PROBLEM STATEMENT

For accurate trajectory classification in high dimensional trajectory datasets, the main
challenge is to discover, in a feasible way, the most relevant subtrajectories and a subset of their
dimensions that better characterize a class. The methods proposed by Ferrero in (FERRERO et
al., 2018) and (FERRERO et al., 2020) have outperformed most existing methods for trajectory
classification in terms of accuracy, showing that the best trajectory features for classification
problems are subtrajectories of different sizes (e.g. one point, two points, etc) and some of their
dimensions or dimension combinations.

Figure 5 exemplifies the trajectory classification problem, presenting one trajectory of
a tourist (a) and another of a business commuter (b). The highlighted POI and Time attributes
discriminate each different user. For example, to better discriminate between the tourist and
the commuter, both visiting Hotel, the tourist discriminant subtrajectory is the sequence ⟨ Hotel

at 9 am, Museum at 10:30 ⟩ while the commuter is ⟨ Hotel, Company, Cafe ⟩, one with a
subtrajectory of two POIs and the other with three POIs. Both users execute the sequence of
POIs ⟨ Hotel, Museum ⟩, but this sequence is less common to the commuter, i.e. a less relevant
subtrajectory. The relevant subtrajectory of the tourist user (Figure 5 c) is also discriminant in
the time dimension, as this sequential pattern happens in similar moments in time throughout
the user trajectories. However, for the commuter, the relevant subtrajectory ⟨ Hotel, Company,

Cafe ⟩ highlighted on Figure 5 (d) is not time discriminant. Moreover, the tourist relevant
subtrajectory in Figure 5 (c), has the same subtrajectory points visited in the user third trajectory,
although the exact sequence does not occur. In the example, we notice that for different classes
(the users), the relevant subtrajectories are of different sizes (different numbers of POIs) and a
different number of dimensions (for one user the time is discriminant in the subtrajectory and
for the other it is not). In this simple example, we notice that discovering relevant subtrajectories
for each class is a challenging problem due to the vast number of subtrajectory and dimension
combinations. Indeed, as we have seen in the example, the most discriminant subtrajectory
size and its dimensions can be unrelated between different classes, presenting distinct ways of
understanding their behaviors.

Figure 5 (d) presents the subtrajectories: ⟨ Hotel, Company, Cafe ⟩ and ⟨ Restaurant at

11am ⟩ that are most discriminant to identify the commuter user. To the best of our knowledge,
the only method in the literature that automatically discovers the relevant subtrajectories and
their dimensions is MASTERMovelets (FERRERO et al., 2020). MASTERMovelets is inspired
by shapelets from time series literature, which are discriminant subsequences (ZHANG et al.,
2018).

MASTERMovelets is currently the only method in the literature that presents a sys-
tematic strategy that automatically explores all possible subtrajectories (or subsequences) of
any size (e.g. one point, two points, three points, etc.) and explores all dimension combinations
(e.g. only space; space and time; space, time and POI category, etc), while seeking for the best
feature to each class. Although it has a strategy for properly defining the most relevant features

27

p4

p4 p5 p6
p
1

Hotel

14:00

Belvedere

15:30 18:00 9:00 10:30 12:00

Bar Hotel RestaurantMuseum

p3p
2

POI

Time

p3 p4 p5
p
1

POI

Time

Hotel

9:00

Museum

10:30 11:00 13:00 20:00

Restaurant BarCompany

p
2

p5 p6
p
1

Hotel

9:00 10:00 18:0010:30

BarCafe Museum

p3p
2

POI

Time
 13:00

Cafe

15:50

Hotel

(a) Tourist.

p4 p5 p6
p
1

Hotel

7:00

Company

8:00 18:00 7:00 9:00 12:00

Cafe Hotel RestaurantMuseum

p3p
2

POI

Time

p4 p5p
1

p3p
2

POI

Time
 7:00 12:00

Pharmacy RestaurantHotel

10:00

Company

13:00 20:30

Cafe

(b) Commuter for work.

p
1

POI

Time

Hotel Museum

p
2

9:00 10:30

(c) Relevant subtrajectories of (a).

p6

11:00

Restaurant

p
1

POI

Time

Hotel Company

p
2

Cafe

p
3

(d) Relevant subtrajectories of (b).

Figure 5 – Examples of trajectories and subtrajectories of different users.

for MAT classification, its brute force makes it unfeasible for real datasets.
MASTERMovelets outperformed previous works for MAT classification with respect

to accuracy (FERRERO et al., 2020; LEITE; PETRY; BOGORNY, 2019). However, MASTER-
Movelets is computationally expensive because it generates a large number of subtrajectories
and all dimension combinations. Therefore, it suffers from the course of dimensionality due
to the large number of movelet candidates. This problem leads to our research question: Can
we develop new algorithms for discovering relevant subtrajectories that become movelets
that are faster than MASTERMovelets while maintaining or improving classification ac-
curacy? Our hypothesis is that we can reduce the explosion of dimension combinations and
accelerate the segmentation process for movelet extraction.

1.2 OBJECTIVES AND CONTRIBUTIONS

The main objective of this thesis is to propose new methods for multiple aspect tra-
jectory classification that may cope with the high computational cost and the large number of
movelets of the state-of-the-art method MASTERMovelets while maintaining accuracy and re-
ducing the computational cost. We aim to identify which are the most relevant subtrajectories

that are likely to become movelets without exploring the entire dataset, thus reducing the search
space for movelet discovery. As specific objectives we will:

• Propose and implement techniques for efficient multiple aspect trajectory feature extrac-
tion for classification reducing the search space and dimensionality;

28

• Evaluate the proposed techniques in several datasets and compare them to the state-of-
the-art methods;

• Propose a tool to support the classification task of multiple aspect trajectories, specifically
providing forms of visualizing movelets and trajectory data.

The main contribution of this thesis is a method for fast discovery of movelets and a
significant reduction of the curse of dimensionality in terms of movelets that will be submitted to
a classifier, called HiPerMovelets. A secondary contribution is the RandomMovelets and Ultra-
Movelets for reducing the search space. The last is the prototype for multiple aspect trajectory
data and movelet visualization.

1.3 METHODOLOGY AND THESIS STRUCTURE

To accomplish the objectives proposed in this thesis we adopted the following method-
ology:

1. Perform a literature review in trajectory classification, focusing on works that perform
classification in multiple aspect trajectory data;

2. Propose and implement algorithms for reducing the MASTERMovelets search space and
running time;

3. Evaluate the behavior of the proposed methods using real and synthetic trajectory datasets
by including the classification accuracy, scalability, computational time, classification
time, and the total number of generated movelet candidates and evaluated movelets;

4. Define and prepare the datasets to evaluate the methods and compare them to the state of
the art;

5. Implement or adapt the state-of-the-art methods that have to be compared to our proposal;

6. Propose trajectory and subtrajectory visualization tools with support to classification and
analysis of multiple aspect trajectories;

7. Write articles describing new methods for reducing the search space for extracting the
relevant subtrajectories, and benchmark experiments;

8. Write the thesis by describing the main necessary concepts of trajectory data, the trajec-
tory classification problem, the state-of-the-art, the description of the proposed solutions,
experimental evaluations, and the conclusions obtained.

We limit the scope of this thesis to the definition of new optimization techniques for
exploring relevant subtrajectories, in order to improve the performance of feature extraction for

29

trajectory classification over state-of-the-art methods. The rest of this thesis is structured as
follows.

Chapter 2: BASIC CONCEPTS AND RELATED WORKS

We introduce and discuss the main concepts for understanding our methods, and presents the
concepts of trajectories and subtrajectories, movelet candidates, best alignment, rankings, and
movelets. We present the main works related to multiple aspect trajectory classification and the
metrics commonly used for trajectory classification evaluation.

Chapter 3: STRATEGIES FOR REDUCING THE SEARCH SPACE IN MOVELET
DISCOVERY

Presents a new high performance method for extracting movelets and classifying trajectories ap-
proach, called HiPerMovelets (High-performance Movelets). We present experimental results
showing that HiPerMovelets is 10 times faster than MASTERMovelets, reduces the high dimen-
sionality problem, is more scalable, and presents a high classification accuracy in all evaluated
datasets with both raw and multiple aspect trajectories. We also present two new movelet ex-
traction approaches UltraMovelets and RandomMovelets for multidimensional sequential data.
UltraMovelets is an ‘a priori’ algorithm (AGRAWAL; SRIKANT, 1994) to movelet extraction
which is parameter-free and able to reduce memory use. RandomMovelets evaluates movelet
candidates randomly achieving good results in different types of datasets. We present experi-
mental evaluation in several trajectory datasets (raw, semantic, and multiple aspect trajectories).
In addition, we tested these methods in other domains like time series. Preliminary experiments
demonstrate that RandomMovelets is promising to achieve good results in different dataset
types. The strategy of UltraMovelets demonstrates limiting the combinatorial explosion with-
out any need for parametrization.

Chapter 4: AUTOMATIZE: A PLATFORM FOR MOVELETS ANALYSIS

The chapter presents a tool, called AUTOMATIZE, to support the user in the classification task
of multiple aspect trajectories, specifically for extracting and visualizing the movelets, the parts
of the trajectory that better discriminate a class. The AUTOMATIZE integrates into a unique
platform the fragmented approaches available in the literature for multiple aspects trajecto-
ries and, in general, for multidimensional sequence classification into a unique web-based and
python library system. We present an analysis of movelets from the experimental evaluation of
Subsection 3.2.2. We discuss the number of movelets, the average number of attributes, size,
and quality of the movelets in several datasets. We also employ AUTOMATIZE visualization
tools to discuss the attribute use of each movelet-based method and the attribute use by class
labels on the Foursquare NYC dataset.

Chapter 5: CONCLUSION AND FUTURE WORKS

In the last chapter, we summarize the findings of this thesis and discuss future research oppor-
tunities in trajectory classification.

30

2 BASIC CONCEPTS AND RELATED WORKS

In this chapter, we first present the basic concepts to understand the movelet discov-
ery for trajectory classification methods and discuss the related works summarizing their main
characteristics. We then introduce and discuss the main concepts that will be used throughout
the thesis, most of which are based on (FERRERO et al., 2020). The symbols used in this thesis
are summarized in List of Symbols.

2.1 BASIC CONCEPTS

The first concept to understand this work is the trajectory data. A trajectory represents
the movement of an object, called the moving object, during a certain period of time. The
simplest form of representation is a Raw Trajectory, and it is defined by three attributes: x and
y, denoting spatial dimension, and attribute t of time dimension, as presented in Definition 1.
By dimensions we mean the different types or categories of the trajectory attributes space, time,
and semantics.

Definition 1. Raw Trajectory. A raw trajectory Ti consists of a sequence of n points Ti =

⟨p1, p2, ..., pn⟩, in which p = {(x,y), t}, where (x,y) is the position of the moving object in
space and t is the timestamp that the point was collected.

Recently, with the definition of Multiple Aspect Trajectory (MAT) (FERRERO; AL-
VARES; BOGORNY, 2016; MELLO et al., 2019), besides space and time information, several
heterogeneous attributes can be associated to each individual trajectory point, the aspects. This
enrichment of trajectory data is especially important for social media as check-in data from
Foursquare or Facebook. We discussed in Chapter 1 the increasing complexity of the trajectory
data, resulting in very rich trajectories. For instance, the spatial dimension type is composed
of the latitude and the longitude attributes, which must be considered together to represent a
real position in space, and when associated with time, can generate numerical features such as
speed, acceleration, traveled distance, etc. The spatial position of a point can be associated with
a Point of Interest (POI) name or category (e.g. Hotel, School, Restaurant), and each POI can
be associated with price and rating. Besides, the trajectory points are ordered in time, and the
sequence is another crucial aspect that must be considered. A more formal definition of MAT
is given in Definition 2.

Definition 2. Multiple Aspect Trajectory. A multiple aspect trajectory Ti is a sequence of m

points Ti = ⟨p1, p2, ..., pm⟩, with pi = (x,y, t,A) being the i-th point of the trajectory at location
(x,y) at timestamp t, described by the set of l attributes A = {a1,a2, ...,al}, also called aspects.

In trajectory classification problems, the entire trajectory or its attributes are not suffi-
cient to discriminate a class (FERRERO et al., 2018). It is necessary to discover the trajectory
parts that are the most relevant and that represent the best features that characterize each class.

31

Therefore, trajectories need to be segmented into smaller parts, called subtrajectories. Trajec-
tories can be segmented in many ways as period of time, change of direction, visiting area, etc.
Subtrajectories are subsequences of a trajectory with a specific set of attributes, as shown in
Definition 3.

Definition 3. Subtrajectory. Given a trajectory Ti of size m, a subtrajectory sa,b = ⟨ea,ea+1...,eb⟩
is a contiguous subsequence of Ti starting at element ea and ending at element eb, where
1 ≤ a ≤ b ≤ m. The subtrajectory sa,b can be represented by all attributes A or a subset of
attributes A′ ⊆ A. The length of the subtrajectory is defined as w = |sa,b|. In addition, the set of
all subtrajectories of length w in Ti is represented by Sw

Ti
, and the set of all subtrajectories of all

lengths in Ti is S∗Ti
.

It is important to point out that a subtrajectory is a part of the trajectory both in a subset
of points and number of attributes. Behavior patterns are frequently represented as trajectory
parts, i.e., subtrajectories and some of their attributes. Intuitively, if a subtrajectory is typical
of a moving object, it can characterize its behavior. For instance, the movement from Hotel to
Touristic Place is a subtrajectory characterizing a tourist behavior, while a subtrajectory from
Home to University at 7 am can characterize the behaviour of a student. Notice that these
subtrajectories have different attributes, the first one has POI attribute while the other has POI
and time.

Relevant subtrajectories or discriminant subtrajectories are examples of features that
describe the movement behavior of an object of a certain class, and these relevant subtrajectories
are called movelet candidates (Definition 4). Movelet candidate is one of the most important
concepts in trajectory classification.

Definition 4. Movelet Candidate. A movelet candidate M from a subtrajectory sstart,end is a
tupleM = (Ti,start,w,C,W,quality,sp), where Ti is a trajectory of the dataset T; start is the
position in Ti where the subtrajectory begins, and w is the subtrajectory length (w = |sstart,end|);
C is a subset of attributes such that C ⊆ A; W is a set of pairs (W s

Tj
,classTj), where W s

Tj
is

a distance vector of the subtrajectory s(start,end) to each trajectory Tj in T. The set W s
Tj

is the
distance vector of the best alignment from the movelet candidate subtrajectory to each trajectory
Tj, in each attribute of C. The best alignment reflects the position in a trajectory where the
distance to a candidateM is minimized. The distances are calculated using the best alignment
between s(start,end) and each trajectory Tj; quality is a relevance score given to the candidate
M; sp is a vector of distance values from W set, called split points, with one value for each
attribute that better divides the classes (used to measure the candidate relevance).

The relevance of a movelet candidate is computed based on its distance to all subtra-
jectories of the same size, i.e., the same number of points, in the entire dataset.

In Ferrero et al. (2018) and Ferrero et al. (2020), movelet candidates are generated from
all subtrajectory sizes (e.g. one point, two points, three points, etc) and attribute combinations.
Most movelet-based methods generate candidates until the natural logarithm of the trajectory

32

size for efficiency. The candidate generation creates an explosion of attribute combinations.
This means that in a trajectory with ten points and three attributes, 55 subtrajectories will be
generated, with 7 possible attribute combinations (2l− 1, where l is the number of attributes),
resulting in 385 movelet candidates. The high number of data dimensions leads to the expo-
nential increase in computational efforts for its processing, which is a concept in data mining
called the Curse of Dimensionality.

An important step in discovering the movelets is to find a subtrajectory that is more
similar to another subtrajectory of the same size - with the same number of points - either in
a subset or in all attributes. This is done by computing the distances between trajectories and
subtrajectories Ferrero et al. (2020). When computing distances of trajectory and subtrajecto-
ries with several semantic attributes we have to take into account the nature of the attributes
(i.e. numerical, textual, spatial, etc.). Therefore we need to use different distance metrics for
each attribute. With the calculated distances we can compare subtrajectories in the multidimen-
sional space. Thus, to compare trajectories it is essential to find two similar subtrajectories.
The similarity of a subtrajectory to a trajectory is defined by the lowest distance values to the
trajectory. This step is called best alignment, and is detailed in Figure 6. To illustrate the best
alignment, consider the subtrajectory s1,2 from trajectory T1 (Figure 6 a and b), and the tra-
jectory T2 (Figure 6 c); s1,2 best alignment in T2 is represented by the sequence in which the
subtrajectory attributes are most similar, highlighted in Figure 6 (c). The subtrajectories with
the lowest distance values to the corresponding best alignments in other trajectories are similar
subtrajectories because present the most similarities. Similar subtrajectories in the same class
characterize a behavior pattern of the moving object.

p4 p5 p6
p
1T1

POI

Time

Weather

Hotel

08:00

Clear

Museum A

10:00

Clear

12:00

Clear

15:00

Clear

18:00

Clear

20:00

Clouds

Restaurant Museum B BarCafe

p3p
2

(a) Trajectory T1.

s1,2
p
2

p
1

Venue

Time

Weather

Hotel

8:00

Clear

Museum A

10:00

Clear

(b) Subtrajectory s1,2.
p4 p5 p6

p
1T2

Venue

Time

Weather

Hotel

14:00

Rain

Museum B

15:30

Clouds

18:00

Clear

9:00

Clear

10:30

Clouds

12:00

Clouds

Bar Hotel RestaurantMuseum A

p3p
2

(c) Subtrajectory best alignment highlighted in the trajectory.

Figure 6 – Example of subtrajectory best alignment in trajectory.

As illustrated by the example in 7 the best alignment consists in ranking the distances
for all possible alignments and getting the average rank position with the lowest distance value.
Figure 7 (a) exemplifies the distance of subtrajectory s1,2 alignment in each starting position of

33

T2 (represented as vectors). At position p4 (Figure 7 a) the distance of the attribute Venue is 0,
the distance in Time is 90 minutes (8:00-9:00 + 10:00-10:30) and the distance in Weather is 1.
Figure 7 (b) shows the ranking where p4 is the first for Venue, p1 is the second, and p2, p3 and
p5 are the third. The best alignment corresponds to position 4, which has the lowest average
rank.

Distance Starting Position
p1 p2 p3 p4 p5

Venue 1 2 2 0 2
Time 690 930 660 90 270
Weather 2 1 0 1 2
Vector V1 V2 V3 V4 V5

(a) Distance values.

ranked
by the
lowest
value⇒

Rankings Starting Position
p1 p2 p3 p4 p5

Venue 2 3 3 1 3
Time 4 5 3 1 2
Weather 4 2 1 2 4
Avg. Rank 3.3 3.3 2.3 1.3 3.0

(b) Distance rankings.

Figure 7 – Finding the best alignment from the distance vectors.

The movelet candidates are evaluated by quality, and the better the quality is, the more
discriminant they are for each class. The measure used to evaluate the movelet candidate quality
is F-score. F-score is the harmonic average of Precision and Recall, where the Precision is the
proportion of the trajectories of the class covered by the given split point values (a given point
that divides the classes). The Recall is the proportion of trajectories of the class, covered by
that split point, considering all the trajectories of the class in the dataset. A formal definition of
F-score is given in the Subsubsection 2.2.0.1.

For finding the split point, Ferrero et al. (2020) considers all attributes of the movelet
candidate being evaluated. Figure 8 (a) shows an example for two attributes (POI and Time).
Paper (FERRERO et al., 2020) evaluates the distances from the movelet candidate (target class)
to trajectories of other classes (non-target classes), which is a similar concept used in Support
Vector Machines (SVM).

0 20 40 60 80 100 120 140

T10

0.5

1 Venue

TimeT4

T2 T3

T5

(a) Two-dimensional order-
line.

0 20 40 60 80 100 120 140

T10

0.5

1 Venue

TimeT4

T5

T3T2

Covers {T1}

Covers

{T1, T2, T3}

(b) Evaluation of split points.

Split
point

for
Time

0 20 40 60 80 100 120 140

T10

0.5

1 Venue

TimeT4

T2 T3

T5Split point for
POI F-score

= 1.0

(c) Best split point.

Figure 8 – Example of finding split points in a multidimensional orderline.

Figure 8 (b) shows the distances of T5 in both attributes (1 and 100) covering the
trajectories from the target class (represented as x in the example) better than distances of T4,
that covers only T1 while T5 covers T1, T2 and T3. So the split point values are defined by

34

the trajectory distances that give the best F-score (Figure 8 c). The split point, that is T5 in
the example, is the point that better separates the classes considering the attributes POI and
Time. The F-score value represents the capability that a movelet candidate has to discriminate
trajectories of its class from every other class. A movelet candidate that better discriminates a
class is called movelet, as presented in Definition 5. Movelets are the subtrajectories with the
highest quality without overlapping points in the trajectory they originated from.

Definition 5. Movelet. Given a trajectory Ti, and a movelet candidateMx containing a subtra-
jectory sa,b (sa,b ⊆ Ti),Mx is a movelet if for each movelet candidateMy containing a subtra-
jectory u f ,g with u f ,g ⊆ Ti that overlaps sa,b in at least one point,Mx.quality >My.quality.

Once the movelets are extracted from the trajectory dataset it is necessary to organize
them to apply the classifier. The input for classifiers is a matrix |T|×|M|, where each row of the
matrix is a trajectory from the set T, and each column is a movelet from the set of movelets M.
The matrix values are 1 and 0, to represent the presence or absence of a movelet in a trajectory.
A movelet is present in a trajectory when its best alignment distances to that trajectory are lower
than the split point values. This means that the movelet covers the trajectory considering the
movelet attributes (C) and split point (sp) values.

Table 1 shows the visual representation of the attribute-value matrix of movelets to
use as input into a classifier, proposed by (FERRERO et al., 2020). The vi, j is the distance
from trajectory Ti to movelet M j, and the attribute class represents the class label classTi of the
trajectory Ti. It is also possible to combine the movelet transformation matrix with other global
and local features.

Table 1 – Attribute-value representation of movelet transformation matrix (FERRERO et al., 2020).

Trajectory M1 M2 . . . M|M| Class Label

T1 v1,1 v1,2 . . . v1,|M| classT1

T2 v2,1 v2,2 . . . v2,|M| classT2
...

...
...

...

Tn vn,1 vn,2 . . . vn,|M| classTn

2.2 TRAJECTORY CLASSIFICATION

As we have discussed before, movelets are important parts of trajectories, also called
relevant features, used as input to classifiers in order to achieve the best accuracy possible. In
this section, we briefly introduce the classification task and the main algorithms to be used in
this work.

Classification is a well known task in data mining aiming to distinguish classes in a
dataset. The objective of classification algorithms is to train a model able to assign a correct

35

label to an unlabeled set of dataset elements with minimal classification error, to identify the
correct label of the moving object of a given trajectory (LEE et al., 2008; LEITE; PETRY; BO-
GORNY, 2019). The model is trained with labeled dataset elements, which requires the dataset
to be partitioned in training and testing subsets. The class labels are known by the classification
algorithm in the training subset, and are used to induce learning of the classification model.
Instead, the testing subset class labels are unknown, and this subset is used to validate the clas-
sification model ability to correctly label elements. This dataset partition is commonly made in
two ways: (a) a hold-out division of 70% elements to training and 30% elements to testing sets,
or (ii) in a k-fold cross validation that splits the dataset into k parts: the training set is composed
of k−1 parts and one part is left for testing. This method repeatedly changes the sets to build
classification models aiming to test the classification algorithm in all data. The important aspect
in partitioning the dataset is to respect the class balance in each subset so there will be enough
examples in both training and testing subsets.

Several surveys pointed to trajectory classification as one of the most important tasks in
data mining due to the complexity of learning the movement patterns of objects (ZHENG, 2015;
BIAN et al., 2019; LEITE; PETRY; BOGORNY, 2019). Most works in the literature propose
to build classification models from a feature representation of trajectories, which is a set of
global and local features extracted from trajectories. Importantly, most trajectory classification
methods do not propose new classifiers, but new ways of extracting features from trajectories.

There are several methods that build classifiers starting from the feature representation
of trajectories, including Random Forests, Decision Trees, Neural Networks, and Support Vec-
tor Machines, to name a few. Below we briefly introduce the ones we used in this thesis and
report on related works.

Random Forests (RF) are an ensemble of Decision Trees (DT) (BREIMAN, 2001).
DTs are algorithms for classification or regression that build a tree of simple decision rules from
the parent attribute value. The rules are learned from the data features to build the tree with a
set of if-then-else decision rules. The deeper the tree, the more complex the model. The leaf
elements of the tree represent the classes, and a path from the root element to a leaf represents
the set of rules applied in the classification process.

Neural Networks (NN) are biologically inspired models from synaptic activities of
the neural system (KLEENE, 2016). A NN simulates the learning process of the brain with the
proposal of neuron models. Several approaches to neural networks and optimization techniques
have been developed in recent years, examples are Multi-layer Perceptron, Recurrent Neural
Networks, and Word Embeddings. Besides less interpretability, in general, NN performs better
in high dimensional spaces than symbolic models. The NN models capture the relation between
the movelets and the classes better than RF models according to (FERRERO, 2020).

k-Nearest Neighbors (KNN) is one of the first methods of trajectory classification
(SHARMA et al., 2010). It is an algorithm that labels the trajectories from the testing set based
on the trajectories proximity in the training set according to a specific distance or similarity
measure. The KNN calculates the distance of non-labeled trajectories to all elements of the

36

training set, and the label is assigned by the majority labels of k trajectories with the lower dis-
tance to it. The support of efficient techniques for measuring the distance between trajectories
is essential to the KNN classification.

Support Vector Machines (SVM) are classifiers based on finding the boundaries that
better divide the classes (DRUCKER; WU; VAPNIK, 1999). It works by sorting elements in a
space they are inserted and identifying the regions shared by elements of the same class. SVMs
can be computationally expensive in datasets with large number of features.

Other traditional methods employ some Statistical Analysis to do classification, such
as Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Logistic Re-
gression (LR), and Bayes probabilistic models (JúNIOR; RENSO; MATWIN, 2017; ETEMAD;
Soares Júnior; MATWIN, 2018; BIAN et al., 2019). In general, statistical analysis has to satisfy
some assumptions of the data distribution to work properly.

2.2.0.1 Classification Metrics

Regarding the evaluation of the classification model, the most commonly used metrics
are Accuracy (ACC) and F-Score. Accuracy measures the model ability to correctly label ele-
ments in the testing set. It is the total correctly labeled elements by the number of elements, as
shown in Equation 2.1.

ACC =
|correctly labeled examples|
|examples in the test set|

(2.1)

The accuracy is a ratio between the number of correctly labeled examples of the test
set by the total number of examples being tested. The F–Score measures the capability of the
classifier to label the elements inside each class. It is an harmonic mean of the precision and
recall of all the classes, previously presented in Equation 2.2. The Precision (Equation 2.3) aims
to measure how precise the model is, and Recall (Equation 2.4) metric is how much elements
were correctly classified. The precision consists of the number of correctly classified samples in
a class divided by the total number of samples classified as that class, while recall is the number
of correctly classified samples in a class divided by the total number of samples of that class in
the dataset.

F-score = 2 · Precision×Recall
Precision+Recall

(2.2)

Precision =
|true positive|

|true positive|+ | f alse positive|
(2.3)

Recall =
|true positive|

|true positive|+ | f alse negative|
(2.4)

37

2.3 RELATED WORKS

Despite much research work has been done regarding trajectory classification, the fo-
cus has been on raw trajectories (BIAN et al., 2019). Multiple aspect trajectories present par-
ticular and specific challenges that require special treatment (FERRERO et al., 2018). A recent
survey of the state of the art for both raw and multiple aspect trajectory classification can be
found in Leite, Petry e Bogorny (2019).

Table 2 summarises trajectory classification works, and compares: the datasets used
in each work, the evaluated classifiers, the classification purpose, and the compared methods
of the state of the art. The table gives an overall view of the many trajectory classification
approaches available in the literature, the kind of datasets, and classifiers they use. This offers
intuition to choose the classifiers and datasets to use. We will describe the most related methods
developed for raw trajectory data, and methods able to use some semantic information. We will
discuss some techniques used in time series classification, a similar problem to multiple aspect
trajectories. We will present some traditional similarity measures, and other statistical analyses,
that have been used to perform trajectory classification. Then, we present the methods based on
movelet discovery that are the most related to our approach.

Some works for trajectory classification were developed for solving a single prob-
lem, as transportation mode inference (ETEMAD; Soares Júnior; MATWIN, 2018; DABIRI;
HEASLIP, 2018; XIAO et al., 2017), while the works of Santos, Jr e Alvares (2011), Patel et
al. (2012), Ferrero et al. (2018), May Petry et al. (2020), Ferrero et al. (2020) were developed
for general purposes, such as level of hurricane, animal types, transportation modes, trajectory
users, etc.

Trajectory classification can also be performed with similarity measures, such as KNN
classification. Examples are similarity measures developed for sequential data are Longest
Common Subsequences (LCSS) (VLACHOS; KOLLIOS; GUNOPULOS, 2002), Edit Distance
for Real Sequences (EDR) (CHEN; ÖZSU; ORIA, 2005), Dynamic Time Warping (DTW)
(HOLT et al., 2007; SHOKOOHI-YEKTA et al., 2017). Other similarity measures were devel-
oped specifically for trajectory data as Uncertain Movement Similarity (UMS) (FURTADO et
al., 2018), Multidimensional Similarity Measuring (MSM) (FURTADO et al., 2016), Stops and
Moves Similarity Measure (SMSM) (LEHMANN; ALVARES; BOGORNY, 2019), Multiple
Aspect Trajectory Similarity (MUITAS) (PETRY et al., 2019).

Methods for raw trajectory classification support only the spatial dimension, as TraClas
(LEE et al., 2008), or support only space and time, considering features such as speed, traveled
distance, acceleration, etc. The works that consider only space and time are different in con-
sidering: (i) local features (BOLBOL et al., 2012; DABIRI; HEASLIP, 2018; SOLEYMANI et
al., 2014), (ii) global features (ZHENG et al., 2008; SHARMA et al., 2010; JúNIOR; RENSO;
MATWIN, 2017), and both (iii) local and global features (DODGE; WEIBEL; FOROOTAN,
2009; SANTOS; JR; ALVARES, 2011; PATEL et al., 2012; XIAO et al., 2017; JIANG et al.,
2017; DODGE; WEIBEL; FOROOTAN, 2009; ETEMAD; Soares Júnior; MATWIN, 2018).

38

Table 2 – Datasets and classifiers used by each state of the art method

Technique Datasets Evaluated Classi-
fier

Classification
Purpose

Compares to

TraClass (LEE et al., 2008) Animals, Vessels, Hurricanes,
Synthetic Dataset

SVM General None

(Zheng, 2008) (ZHENG et al.,
2008)

Geolife DT Transportation
Mode

None

(Dodge, 2009) (DODGE;
WEIBEL; FOROOTAN, 2009)

Open Street Map and Eye-
Track

SVM General None

NNTC1 (SHARMA et al.,
2010)

Milan KNN Road Vehicles None

(Lee, 2011) (LEE et al., 2011) Taxis from San Francisco, Syn-
thetic Dataset

SVM Road Vehicles None

TRACTS (SANTOS; JR; AL-
VARES, 2011)

Animals, Vessels, Hurricanes SVM, NN, Bayes General (LEE et al., 2008)

TCPR2 (PATEL et al., 2012) Geolife, Animals, Hurricanes,
School Buses

SVM, DT, Bayes General None

(Bolbol, 2012) (BOLBOL et
al., 2012)

Private Dataset SVM Transportation
Mode

None

(Soleymani, 2014)3 (SOLEY-
MANI et al., 2014)

Private Dataset SVM Medicated Fish None

(Tragopoulou, 2014)
(TRAGOPOULOU; VAR-
LAMIS; EIRINAKI, 2014)

Private Dataset RF, DT Transportation
Mode

None

CSCA4 (VARLAMIS, 2015) Private Dataset RF, DT, KNN,
SVM, NN

Transportation
Mode

None

(Xiao, 2017) (XIAO et al.,
2017)

Geolife KNN, DT, SVM,
RF

Transportation
Mode

(ZHENG et al., 2008; DODGE;
WEIBEL; FOROOTAN, 2009)

TrajectoryNet (JIANG et al.,
2017)

Geolife NN Transportation
Mode

(ZHENG et al., 2008)

ANALYTiC (JúNIOR;
RENSO; MATWIN, 2017)

Animals, Vessels, Geolife DT, Bayes, KNN,
RF, LR

General None

TULER, BiTULER (GAO et
al., 2017)

Brightkite, Gowalla SVM, NN, LDA Users None

(Dabiri, 2018) (DABIRI;
HEASLIP, 2018)

Geolife NN Transportation
Mode

(ZHENG et al., 2008; ENDO et
al., 2016; WANG et al., 2017)

(Etemad, 2018) (ETEMAD;
Soares Júnior; MATWIN,
2018)

Geolife DT, RF, NN,
Bayes, QDA

Transportation
Mode

(ZHENG et al., 2008; ENDO et
al., 2016; XIAO et al., 2017;
JIANG et al., 2017; DABIRI;
HEASLIP, 2018)

TULVAE (ZHOU et al., 2018) Foursquare, Gowalla,
Brightkite

LDA, DT, RF, NN Users (GAO et al., 2017)

MARC (May Petry et al., 2020) Brightkite, Gowalla,
Foursquare

NN General (GAO et al., 2017; ZHOU et al.,
2018; FERRERO et al., 2018)

POI-F (VICENZI et al., 2020) Brightkite, Gowalla,
Foursquare

NN General (GAO et al., 2017; ZHOU et al.,
2018; FERRERO et al., 2018)

DeepeST (A. de Freitas. et al.,
2021)

Bightkite, Gowalla, Private
Dataset

NN General (CHEN; GUESTRIN, 2016;
BREIMAN, 2001; GAO et al.,
2017)

Movelets (FERRERO et al.,
2018)

Animals, Athens Vehicles, Hur-
ricanes and Geolife

Bayes, DT, SVM General (LEE et al., 2008; DODGE;
WEIBEL; FOROOTAN, 2009;
ZHENG et al., 2008; XIAO et
al., 2017)

MASTERMovelets (FER-
RERO et al., 2020)

Brightkite, Gowalla,
Foursquare

NN, RF General (GAO et al., 2017; ZHOU et al.,
2018)

SUPERMovelets (PORTELA
et al., 2021)

Brightkite, Gowalla,
Foursquare

NN General (FERRERO et al., 2020)

HiPerMovelets (ours)
(PORTELA; CARVALHO;
BOGORNY, 2022)

Brightkite, Gowalla, Animals,
GoTrack, Vehicles

NN General (FERRERO et al., 2020)

RandomMovelets (ours) Brightkite, Gowalla, Animals,
GoTrack, Vehicles, and more

NN, RF General (VICENZI et al., 2020; PETRY
et al., 2019; FERRERO et
al., 2020; PORTELA; CAR-
VALHO; BOGORNY, 2022)

UltraMovelets (ours) Brightkite, Gowalla, Animals,
GoTrack, Vehicles, and more

NN, RF General (VICENZI et al., 2020; PETRY
et al., 2019; FERRERO et
al., 2020; PORTELA; CAR-
VALHO; BOGORNY, 2022)

Movelets (FERRERO et al., 2018) has outperformed the previous state of the art methods
for classification RB-TB (LEE et al., 2008), TCPR (PATEL et al., 2012), Dodge (DODGE;
WEIBEL; FOROOTAN, 2009), Zheng (ZHENG et al., 2010), Xiao (XIAO et al., 2017), and
the similarity measures for raw trajectories: LCSS, EDR, and DTW.

The works of Tragopoulou, Varlamis e Eirinaki (2014) and Varlamis (2015) are the first

39

Table 3 – Movelet-based methods characteristics.

Method Main Strategy Subtrajectory
Size

Number of Di-
mensions

Movelet Candi-
dates

Movelets (FERRERO et al.,
2018)

Full dataset comparison
(points)

All All All

MASTERMovelets (FER-
RERO et al., 2020)

Full dataset comparison (points
and dimensions)

All All All

MASTERMovelets-Log (FER-
RERO et al., 2020)

Limit size to the natural log of
trajectory

Log limit All Reduced

MASTERPivots (Leite da
Silva, 2020)

Selected pivot points for
movelet candidate generation

Log limit All Reduced

SUPERMovelets (PORTELA
et al., 2021)

Selected trajectory parts for
movelet candidate generation

Pivots All Reduced

SUPERMovelets-λ
(PORTELA et al., 2021)

Learned dimension combina-
tion limit

Pivots and Log
limit

Learned limit Reduced

HiPerMovelets (PORTELA;
CARVALHO; BOGORNY,
2022) (ours)

In-class frequency ranking for
movelet candidates selection

Log limit All 10% at first

HiPerPivots (PORTELA;
CARVALHO; BOGORNY,
2022) (ours)

In-class frequency selection of
pivot points for movelet candi-
date generation

Pivots and Log
limit

All 10% at first

RandomMovelets (ours) Random pruning of movelet
candidates

Log limit All 10% at first

UltraMovelets (ours) Quality criteria to limit movelet
candidates generation by recur-
sive search

Learned limit Learned limit Learned

to use some semantic information for classification. They use latitude, longitude, altitude, and
time from smartphones, and use derived features like matching bus or metro lines, the speed,
and others to classify the user movement in walking, running, or driving.

The algorithms Movelets (FERRERO et al., 2018) and MASTERMovelets (FERRERO
et al., 2020) discover relevant subtrajectories, called movelets, without the need of extracting
other features. Table 3 summarises the characteristics of movelet-based works for trajectory
classification, including the new methods proposed and discussed in this thesis (see Chapter 3).
The main idea of these methods is to find subtrajectories that characterize the classes, that are
interpretable and discriminant behaviors. The MASTERMovelets achieves much better accu-
racy than Movelets. While Movelets encapsulates the distances of all trajectory dimensions in
a single distance value, MASTERMovelets keeps distances in a vector using all data dimen-
sions with the best combination. Ferrero (FERRERO et al., 2020), also proposed MASTER-
Movelets-Log, which reduces the running time of the MASTERMovelets by limiting the size of
the movelet candidates to the natural logarithm of the trajectory size. However, the processing
time and computational cost are still extremely high. MASTERMovelets (FERRERO et al.,
2020) was developed for multiple aspect trajectory classification and has largely outperformed
state of the art methods in terms of accuracy. Moreover, the movelets are interpretable results,
giving insights about the data.

In Portela et al. (2021) we extended MASTERMovelets, called SUPERMovelets. This
method optimizes the movelet search by selecting relevant subtrajectories that repeat totally
or partially in a trajectory for extracting movelets. Repeated subtrajectories often represent
the behaviors of a class. Thus, SUPERMovelets employs a pivot-based approach to reduce
the search space, that selects only the most promising trajectory points to extract movelets
(PORTELA et al., 2021). Additionally, it provides a method to limit the number of semantic

40

dimensions for movelets further improving the performance.
The work of Vicenzi et al. (2020) can perform much faster than Movelets (FERRERO

et al., 2018), with similar classification accuracy for a single dimension. However, in order
to use several dimensions, the user must manually test and select the best dimensions combi-
nation, while MASTERMovelets automatically selects the best dimension combinations with
heterogeneous and different numbers of dimensions to generate movelets.

A recent work, DeepeST (A. de Freitas. et al., 2021) uses deep learning neural net-
work method for trajectory classification. DeepeST method look for the optimal set of hyper-
parameters for each model. It encodes the spatial points by splitting the space into grid cells.
MARC, proposed by May Petry et al. (2020), is another recent work that uses word embed-
dings (MIKOLOV et al., 2013) in a neural network classification. It encapsulates all trajectory
dimensions: space, time, and semantics, and uses them as input to a neural network classifier.
It is the first work to use the geoHash (NIEMEYER, 2008) on the spatial dimension, combined
with other dimensions. MARC outperforms the Movelets (FERRERO et al., 2018) with very
high accuracy when using all dimensions, as Movelets is unable to choose the best dimension.
However, the resulting patterns of MARC are not interpretable, as the classifier is limited to
neural networks.

Movelets and MASTERMovelets are inspired by shapelets from time series literature.
Time series is a similar problem to multiple aspect trajectory, as it is a sequence of discrete
time ordered data. For this reason, we introduce some other optimization techniques from time
series literature. Several optimization techniques are used in time series shapelets, for instance,
early abandoning (YE; KEOGH, 2011; MUEEN; KEOGH; YOUNG, 2011), SAX encoding
techniques to reduce the search space and run time (RAKTHANMANON; KEOGH, 2013), and
sampling the dataset for fast candidate search (JI et al., 2019). The early abandoning technique
is not useful for movelets because multiple aspect trajectories are in general more sparse than
time series, and this technique is interesting for sequences with high number of points.

Some works used statistical analysis, such as an Analysis of Variance A(NOVA) Zuo,
Zeitouni e Taher (2019). In time series, numerical values and statistical analysis can be used to
identify regions from which to extract shapelets that have discriminant power over other classes
and to filter redundant and low-quality candidates. Works as Zhang et al. (2018) used Local
Fisher Discriminant Analysis (LFDA) to determine the most relevant parts of the time series
from which to extract shapelet candidates that are most likely to achieve good classification
results. The works in time series, as those mentioned above, generally search discriminant
shapelets in one dimension individually, while MASTERMovelets evaluates the dimensions
individually and combined with others.

2.4 SUMMARY

In this chapter we presented the basic concepts related to trajectory and relevant subtra-
jectory representations, movelet discovery, and evaluation metrics. We discussed how movelets

41

are evaluated, the search for best alignment, and split points. Those parts are important steps
to movelet discovery, which is a similar way to separating the classes as done by the Support
Vector machines. We presented how movelets represent the complex trajectory data in features
being transformed into an attribute-value matrix for the classifier.

In this chapter, we also discussed several techniques for trajectory classification. We
summarized the techniques by the datasets employed, the evaluated classifier, its classification
purpose, and to which works it is compared. We started describing methods developed for
raw trajectory data, and methods able to use some semantic information. We discussed some
techniques used in time series classification, a similar problem to multiple aspect trajectories.
We presented some common similarity measures, and other statistical analyses, that have been
used to perform trajectory classification. Then, we presented methods based on movelet discov-
ery, other recent works, and methods developed for transportation mode inference. We finally
presented the characteristics of movelet-based methods, including our methods presented in
Chapter 3.

We observe that most works in the literature focus on extracting local or global features
to perform trajectory classification, which is not very informative of the behaviors of a class.
Another drawback is that only a few works in the literature can use multiple trajectory dimen-
sions other than space and time. Discovering relevant subtrajectories for classification, such as
movelets, has the potential to reveal behavior patterns of classes. However, it is a computation-
ally expensive task. To the best of our knowledge, our work is filling a gap in the literature
providing efficient methods for discovering movelets, and ways to better understand behavior
patterns.

42

3 STRATEGIES FOR REDUCING THE SEARCH SPACE IN MOVELET DISCOV-
ERY

As discussed in Chapter 2, existing methods for movelet extraction explore all combi-
nations of subtrajectories of different lengths and their attributes to find the most discriminant
movelets for classification problems. That implies a combinatorial explosion and requires more
computational resources as the volume of data increases.

This chapter presents the new methods developed during the Ph.D. for discovering
movelets with different strategies to reduce the search space. The main idea is to avoid compar-
ing all subtrajectories in the dataset and, as a consequence, improve the computational perfor-
mance compared to the state-of-the-art methods. The first method, introduced in Section 3.1, is
called HiPerMovelets (PORTELA; CARVALHO; BOGORNY, 2022), which explores the tra-
jectories inside a class pruning the redundant ones. We evaluate its performance by comparing
the accuracy and running time to the state-of-the-art and its scalability with increasing points,
trajectories, and dimensions.

HiPerMovelets outperforms state-of-the-art methods in terms of computing time while
preserving high accuracy. However, not always the best discriminant patterns are frequent.
For this reason, in Sections 3.2.1 and 3.2.2, respectively, we introduce and discuss two other
methods, called RandomMovelets and UltraMovelets, to limit the search space and the number
of attribute comparisons. Preliminary experiments show that both methods are very promising
for trajectories and sequential data from other domains.

3.1 HIPERMOVELETS: IN CLASS PRUNING AND FREQUENCY-BASED STRATEGY
FOR MOVELET DISCOVERY

The method presented in this section is the main contribution of the thesis. A new
algorithm, called HiPerMovelets, reduces the search space in movelet discovery by looking for
relevant subtrajectories inside a class and does an early redundant trajectory pruning. We recall
that relevant subtrajectories mean trajectory parts that can discriminate classes. In general, the
method (i) discovers relevant subtrajectories using a frequency-based ranking in the subset of
trajectories of each class and (ii) prunes the entire trajectories from the search when a trajectory
meets the coverage criteria by the movelets already discovered. HiPerMovelets (PORTELA;
CARVALHO; BOGORNY, 2022) performs faster than MASTERMovelets even in raw trajec-
tory datasets and significantly reduces the number of movelets and the classification running
time. HiPerMovelets is inspired by the greedy search algorithm for feature selection proposed
in Gigli et al. (2016), and its main advantage is simplicity.

Figure 9 gives an overview of HiPerMovelets, which is composed of four phases
named: HiPerMovelet Candidate Generation, HiPerMovelet Candidate Pruning, HiPerMovelet

Generation, and Trajectory Pruning, each consisting of one or more steps. Given a dataset of
T trajectories, the algorithm performs the following steps:

43

• Step 1: selects the trajectories T’ of one class;

• Step 2: for each trajectory Ti in the class trajectory dataset T’, all remaining steps from 2
to 9 are applied;

• Step 3: generates all HiPerMovelet candidates for the trajectory Ti, where a HiPerMovelet
candidate is each subtrajectory with one of the possible dimension combinations;

• Step 4: for each HiPerMovelet candidate it computes the relative frequency with respect
to the trajectories T’ of the same class, which is computed by the quality defined in
Equation 3.2;

• Step 5: does the HiPerMovelet candidate pruning, where candidates with quality lower
than τ are removed;

• Step 6: The remaining candidates are compared to all trajectories in the dataset T to
define which of the candidates become HiPerMovelets for Ti;

• Step 7: Their F-Score quality is computed and then HiPerMovelets with low F-Score

are pruned. The HiPerMovelet pruning is the selection of the HiPerMovelet candidates
with F-Score higher than zero and with none overlapping points, which are the resulting
HiPerMovelets of Ti;

• Step 8 and 9: with the resulting HiPerMovelets of Ti, their covered trajectories are re-
moved from the T’, thus reducing the number of trajectory comparisons.

T'
HiPerMovelet

Candidate
Generation

HiPerMovelet
Candidate
Generation

Trajectory
Pruning

1
4

5

6

7

8

HiPerMovelet
Candidate Pruning by

Low Relative
Frequency (τ)

Compute Candidate
Quality based on

F-Score and Generate
HiPerMovelets

HiPerMovelet
Pruning by

Low Quality (F-score)

Compute
Relative Frequency

9

T
Database

Class Trajectories

Ti
3

2

Class-Based
Pruning

HiPerMovelet
Generation and

Pruning

Figure 9 – Overview of the HiPerMovelets method.

Algorithm 1 summarizes the HiPerMovelets method. The input is a set of trajectories
T, and the output is the set of HiPerMovelets M extracted from each class. It starts searching
for relevant subtrajectories inside the trajectories of each class (line 2); it fills a queue with
the trajectories T’ (line 3), and extracts movelet candidates of one trajectory at a time, with

44

subtrajectories of trajectory Ti (line 6). We propose two implementations to movelet candidate
generation, with pivots and without pivots, as detailed in Subsection 3.1.1. Each movelet can-

didate is qualified with its relative frequency inside the class. The movelet candidates are then
filtered by the value of τ , which is learned for each trajectory and consists of 90% of the rel-
ative frequency from the best qualified candidate (lines 8 and 9). This step is known as early
pruning. Only the movelet candidates with τ relative frequency or higher are compared to all
subtrajectories of T for discovering the movelets. This filter reduces the number of candidates,
keeping only the most probable to become movelets. The movelet candidates are computed and
filtered with the F-Score quality (lines 13-14). It is necessary to compare each candidate with
the entire dataset, and by reducing the number of movelet candidates, this task can be done sig-
nificantly faster. The candidates with the best F-Score quality that do not share points become
HiPerMovelets.

Algorithm 1: HiPerMovelets
Input: T Trajectory dataset
Output: M Set of HiPerMovelets

1 M← /0
2 foreach class trajectories T’ ∈ T do
3 queue← T’
4 while queue ̸= /0 do
5 Ti← queue.pop()

/* 1. HiPerMovelet Candidate Generation: */
6 candidatesTi ← moveletCandidateGeneration(Ti,T’) /* Subsection 3.1.1 */

/* 2. HiPerMovelet Candidate Pruning - by frequency (or 10% of the candidates): */
7 candidatesTi .sort()
8 τ ← candidatesTi [0].quality ∗ 0.9 /* τ is learned based on highest frequency */
9 candidates f req←{Mi ∈ candidatesTi |Mi.quality≥ τ and i≤ |candidatesTi | ∗0.1}

/* 3. HiPerMovelets Generation: */
10 MTi ← /0
11 while MTi = /0 and candidatesTi ̸= /0 do
12 foreach M in candidates f req do
13 M.quality← QualityF−Score(M,T)

/* HiPerMovelet Pruning - by F-Score: */
14 MTi ← moveletPruning(candidates f req,T)
15 if MTi = /0 then /* Gets next subset of most frequent HiPerMovelet candidates */
16 candidatesTi ← candidatesTi − candidates f req
17 candidates f req←{Mi ∈ candidatesTi | i≤ |candidates f req| ∗2}

/* 4. Covered Trajectory Pruning: */
18 coveredTi ← trajectoryPruning(MTi) /* Subsection 3.1.2 */
19 queue← queue− coveredTi /* Removes trajectories already covered */
20 M←M∪MTi

21 return M

In its original formulation presented in Ferrero et al. (2020), Movelet candidates rep-
resent subtrajectories with different sizes and any dimension combination. In our proposal, we
extend the definition of movelet candidate as given in Definition 6. In our method, a HiPer-
Movelet candidate is a subtrajectory that is frequent in the trajectories of a class and not in the
entire dataset, significantly decreasing the relevant subtrajectory search space.

Definition 6. HiPerMovelet Candidate. A HiPerMovelet candidate is a tupleM= (Ti, s(start,end),
C, W, quality, sp, TM), where Ti is a trajectory from the set of class trajectories T’; sstart,end is

45

a subtrajectory extracted from Ti; C is a subset with the candidate attributes, and C ⊆ A (where
A is set of the trajectory attributes); W is a set of pairs (W s

Tj
,classTj), where W s

Tj
is a distance

vector that contains the distances of the best alignment of M to every trajectory T’, that are
the same class as Tj. The distances are calculated using the best alignment between s(start,end)

and each trajectory Tj in the attributes A; TM are the covered trajectories, i.e., a subset of class
trajectories that contain the candidate M (TM ⊆ T’); sp is a set of distances W s

Tj
, with one

value for each attribute, that better divide the classes (used to measure the candidate relevance),
and quality is a relative frequency score given to the candidateM.

The quality score of a HiPerMovelet candidate is based on the relative frequency (a
proportion) that appears in its class trajectories. For each dimension of a HiPerMovelet can-
didate, we define a relative frequency as presented in Equation 3.1, which considers each di-
mension separately. Equation 3.1 describes the relative frequency function for a dimension k

(f reqk) from a HiPerMovelet candidateM j to the trajectories T’ of a class:

f reqk(Mx) =
∑

i=|T’|
i=1

(︂
max(M.W[k])−W s

Ti
[k]

)︂
max(M.W[k]).|T’|

(3.1)

Since the distances of the different dimensions can be in a different scale, to make the
comparisons more accurate, we normalize the distance value by subtracting it from the maxi-
mum distance value (max(M.W[k])) in that dimension. The frequency is the average between
the sum of the distances and the maximum possible sum of distances (max(M.W[k]).|T’|). The
quality of a HiPerMovelet candidate, given in Equation 3.2, aggregates the relative frequency of
dimensions in one quality value and is the average proportion that a candidate has in trajectories
T’ of its class in each dimension k.

QualityRF =
∑

k=|C|
k=1 f reqk(M j,T’)

|C|
(3.2)

As there are different dimension combinations for a candidate, we use a ‘soft’ approach
for measuring its frequency and a ‘hard’ approach to do trajectory pruning (Subsection 3.1.2).
The f reqk is a weighted average of all distances in each dimension. This way, even in cases
where HiPerMovelet candidates are not exact matches (an exact match is when distances are all
zeros), the method can still find the most similar ones since the quality is proportional to the
maximum distances.

HiPerMovelet candidates are selected based on their quality (defined by the relative
frequency), and only those with high (concerning a given threshold) relative frequency will
become HiPerMovelets. Our method evaluates the HiPerMovelet candidates with at least τ

relative frequency (M.quality ≥ τ), where τ is calculated from the HiPerMovelet candidate
with the highest score. This strategy in the proposed method limits the search for HiPerMovelets
in the set of HiPerMovelet candidates with high relative frequency. The candidates quality is
then evaluated using F-Score considering all trajectories in the dataset. The formal definition of
a HiPerMovelet is given in Definition 7.

46

Definition 7. HiPerMovelet. Given a trajectory Ti, and a HiPerMovelet candidate Mx con-
taining a subtrajectory sa,b (sa,b ⊆ Ti), Mx is a movelet if for each HiPerMovelet candidate
My containing a subtrajectory u f ,g with u f ,g ⊆ Ti that overlaps sa,b in at least one point,
Mx.qualityRF ≥ τ andMx.quality F-Score >My.quality F-Score.

Another essential strategy employed in the proposed method to reduce the trajectory
comparisons is not to generate HiPerMovelet candidates from all trajectories in the database.
Trajectories that contain the same HiPerMovelets are considered similar and therefore do not
need to be analyzed several times. We call these trajectories covered trajectories, as defined in
Definition 8.

Definition 8. Covered Trajectory. A trajectory Tj is covered by a HiPerMovelet candidate of a
trajectory Ti when the same subtrajectory exists in Tj.

The HiPerMovelet candidates of a trajectory that cover another trajectory of the same
class are likely to represent both trajectories. Therefore, it is unnecessary to search for HiPer-
Movelets in the covered trajectory. Covered trajectories are then ignored by our method, thus
avoiding searching for HiPerMovelets in trajectories of the same class.

3.1.1 HiPerMovelet Candidate Generation

In the HiPerMovelet Candidate Generation step (Figure 9), HiPerMovelets generates
all subtrajectories from trajectory Ti and only computes distances to trajectories T’ of the same
class. Thus its quality is based on the frequency inside the class. Although there is a combina-
torial explosion, this step is limited to the number of class trajectories.

We propose two approaches for HiPerMovelet candidate generation: (i) without pivots
and (ii) using pivots. The first one, detailed in Algorithm 2, generates all HiPerMovelet candi-

dates of any size limited to the natural log of trajectory size. Starting from size one to the limit
size m (line 3), it generates the HiPerMovelet candidates (line 4) and then calculates the relative
frequency to each candidate (line 7).

Algorithm 2: MOVELETCANDIDATEGENERATION(Ti,T’) Without Pivots
Input: Ti, A trajectory

T’ Trajectory set for the class
Output: candidates f req Set of high relative frequency HiPerMovelet candidates

1 candidatesTi ← /0
2 m← log2 (Ti.length)
3 for size← 1 to m do
4 candidatessize← findCandidates(Ti, /0,size)
5 candidatesTi ← candidatesTi ∪ candidatessize

6 foreach M in candidatesTi do
7 M.quality← QualityRF(M,T’)

8 return candidatesTi

The second strategy, using pivots, is exemplified in Figure 10, which shows a trajectory
with seven points (Figure 10 a). This strategy finds HiPerMovelet candidates of size ranging

47

from one to the natural log of the trajectory size, and at each step, pruning the candidates
by relative frequency. The first time, the algorithm generates the candidates of size one and
filters them by relative frequency, as shown in Figure 10 (b) (suppose these points are p2 and
p6). Subsequently, the algorithm looks for candidates of size two in the nearest neighbors (see
Figure 10 (c)), either starting or ending at the points of the previous candidates of size one (the
neighbor points p1, p3, p5, and p7). Then, the algorithm generates the candidates of size 2
(p1→ p2, p2→ p3, p5→ p6, and p6→ p7), prunes again by low relative frequency (candidate
p2→ p3 in Figure 10 d), and searches new candidates of size three in the neighborhood points
(p1 and p4). Each candidate will generate two new candidates, one including the previous point
and the other with the next point, similar to the idea of the nearest neighbor. Then, the algorithm
removes candidates with overlapping points, keeping candidates with higher relative frequency.

. .
p
3

. p4

. p5

.
p6

.
p
1

T1 p
2

. .
p
3

. p4

. p5

.
p6

.
p
1

T1 p
2

. .
p
3

. p4

. p5

.
p6

.
p
1

T1 p
2

. .
p
3

. p4

. p5

.
p6

.
p
1

T1 p
2

(a)

(b)

(c)

(d)

p7

.
p7

.
p7

.

p7

.
Figure 10 – (a) Trajectory T1, (b) The pivots of size one, (c) The pivots neighborhood, and (d) one pivot of size

two neighborhood.

Algorithm 3: MOVELETCANDIDATEGENERATION(Ti,T’) With Pivots
Input: Ti, A trajectory

T’ Trajectory set for the class
Output: candidatesTi Set of high relative frequency HiPerMovelet candidates

1 candidatesTi ← /0
2 m← log2 (Ti.length)
3 for size← 1 to m do
4 candidatessize← findCandidates(Ti,candidatessize,size)
5 foreach M in candidatessize do
6 M.quality← QualityRF(M,T’)

7 τ ← candidatessize[0].quality ∗ 0.9
8 candidates f req←{Mi ∈ candidatessize |Mi.quality≥ τ}
9 candidatesTi ← candidatesTi ∪ candidates f req

10 return candidatesTi

Algorithm 3 presents the pivots strategy. First, this strategy generates the candidates
of size one (line 4), assesses their relative frequency (line 6), and filters those with relative
frequency lower than τ (line 8). Then, it restarts the loop looking for candidates of size two

48

from the neighborhood of the previous candidates of size one (line 4), and prunes again by low
relative frequency (line 8). The FINDCANDIDATES function generates subtrajectories only from
the previous size candidates by adding the nearest neighbor point before and after, increasing
the size until it reaches the trajectory size limit m.

3.1.2 Class-based Pruning

From the discovered movelets of each trajectory, HiPerMovelets evaluates the covered
trajectories (Class-based Pruning step in Figure 9). Algorithm 4 shows how covered trajectories
are found from the movelets of a trajectory Ti (line 3). First, each trajectory is mapped with the
number of occurrences in the movelets coverage (lines 4 and 5). Then, it selects the trajectories
covered by at least half of the HiPerMovelets (lines 6-8), a reasonable value not to limit the
search space excessively. If a class contains similar trajectories, then HiPerMovelets search
space can be reduced as the HiPerMovelets will cover more examples (trajectories) in the class.
However, classes with distant trajectories will need more examples to discover HiPerMovelets.

Algorithm 4: TRAJECTORYPRUNING(MTi)

Input: MTi Set of HiPerMovelets of trajectory Ti
Output: covered Set of covered trajectories

1 covered← /0 ;
2 covered count←Map[] ;
3 foreach M ∈MTi do
4 foreach Tx ∈M.TM do
5 covered count[Tx]++ ;

6 foreach Ty ∈ covered count do
7 if covered count[Ty]> (|MTi |/2) then
8 covered← covered ∪ Ty ;

9 return covered

3.1.3 Experimental Evaluation

We evaluate the proposed method with the Trajectory-User Linking (TUL), described
in detail in Gao et al. (2017). This classification problem consists of classifying which user
generated a given trajectory based on historical and labeled data. We also perform the tasks of
transportation mean and animal species classification.

We compare HiPerMovelets (HM) and HiPerPivots (HP) computational cost and clas-
sification power w.r.t MASTERMovelets (MM). The method Movelets has already outper-
formed all similarity measures on KNN classification in Ferrero et al. (2018). Therefore we
do not compare HiPerMovelets with similarity measures. First, we evaluate the computational
cost of learning the model and compare the running times with MASTERMovelets-Log. Then,
we compare the classification power with MASTERMovelets-Log and MARC on raw and MAT
datasets, the datasets on which MASTERMovelets achieved the best results. We compare the

49

number of movelets and resulting movelets, from now on also referring to HiPerMovelets. In
the following sections, we describe the datasets, the setup of the experiments, the obtained
results, and the scalability of HiPerMovelets.

3.1.3.1 Datasets

We evaluate our method on five publicly available datasets1 of multiple aspect trajec-
tories (Gowalla, Brightkite), and raw trajectories (Animals, GoTrack, and Vehicles) also used
in May Petry et al. (2020), Ferrero (2020), Leite da Silva (2020). We evaluate our method on
raw trajectories consisting of space and time dimensions to demonstrate that it can achieve good
results also in these types of data.

The multiple aspect trajectory datasets are from two different Location-Based Social
Networks (LBSN) composed of check-in trajectories enriched with semantic attributes. The
trajectories of all five datasets were split by week to increase the trajectory examples of each
class label. Table 4 presents the characteristics of each dataset, with the average trajectory size,
the number of trajectories, points, classes, and the attributes of the dataset.

Table 4 – Summary of the used trajectories datasets.

Dataset Description Dimensions

Gowalla

Traj Size: 18.42±8.05

Lat, Lon, POI, Time,
Weekday, User ID

of Traj.: 5,329
of Points: 98,158

of Classes: 300
Class Label: User

Brightkite

Traj Size: 16.50±7.07

Lat, Lon, POI, Time,
Weekday, User ID

of Traj.: 7,911
of Points: 130,494

of Classes: 300
Class Label: User

Animals

Traj Size: 146.96±144.96

Lat, Lon, Time, Species
of Traj.: 102

of Points: 14,990
of Classes: 3 (elk, deer, and cattle)
Class Label: Animal Species

GoTrack

Traj Size: 111.09±534.91

Lat, Lon, Time, Class ID
of Traj.: 163

of Points: 18,107
of Classes: 2 (bus and car)
Class Label: Transportation Mean

Vehicles

Traj Size: 467.98±627.02

Lat, Lon, Time, Class ID
of Traj.: 381

of Points: 178,299
of Classes: 2 (bus and truck)
Class Label: Transportation Mean

Brightkite: dataset from Brightkite social media, collected between April 2008 and
October 2010 (CHO; MYERS; LESKOVEC, 2011). It used a total of 300 users for analysis,
randomly selected, with a total of 7,911 trajectories, a minimum of 10 points, and a maximum
of 50 points per trajectory for consistency. Trajectories provide the anonymized user of the
check-in, the POI, space, and time information, enriched with the semantic weekday informa-
tion.
1 https://github.com/bigdata-ufsc/datasets

50

Gowalla: dataset from the Gowalla Location-Based Social Network (LSBN), col-
lected between February 2009 and October 2010 (CHO; MYERS; LESKOVEC, 2011). It is
a multiple aspect trajectory check-in dataset with anonymized users worldwide. We used a total
of 300 random users for analysis, limiting the trajectory sizes minimum of 10 and a maximum
of 50 points, resulting in a total of 5,329 trajectories. It is composed of the exact dimensions of
the Brightkite dataset, including the enriched semantic information of the weekday.

The raw trajectory datasets have much longer trajectories than the previous datasets,
ranging from 100 points up to 600 in the Vehicles dataset. The Animals2 dataset contains
trajectories of three animal species that are the class labels: elk, deer, and cattle. The GoTrack3

dataset from UCI repository contains GPS trajectories from the GO!Track app in the Northeast
of Brazil. Trajectories are labeled by two transportation means: bus or car. The Vehicles4

dataset contains trajectories of school buses and trucks collected in the Athens metropolitan
area, and the class labels are bus and truck.

3.1.3.2 Experimental Setup

The datasets are split in a 5-fold hold-out proportion of 80% of the trajectories for
training and 20% testing respecting the class balance (similar number of trajectories of each
class). The reported results are the average of the 5-fold cross-validation. We evaluated two
classification algorithms: the Neural Network Multilayer-Perceptron (NN) and the Random
Forest (RF), as they are commonly used and achieved the best results in (FERRERO et al.,
2020; May Petry et al., 2020; Leite da Silva, 2020). The classifiers were implemented using
the Python language, with the keras5 package in the same way as (FERRERO et al., 2020;
Leite da Silva, 2020). The NN has a fully-connected hidden layer with 100 units, a Dropout
Layer rate of 0.5, a learning rate of 10−3, and an Output Layer with softmax activation. We also
applied Adam Optimization to improve the learning time and to avoid categorical cross-entropy
loss, the same as in the work of Leite da Silva (2020), with 200 of batch size and a total of 200
epochs for each training. The Random Forest was built with 300 decision trees.

In MASTERMovelets and HiPerMovelets configurations, the distance was calculated
in each dimension by using: (i) euclidean distance for the space, (ii) difference for the numer-
ical, and (iii) simple equality (if is equal or not) for the semantics. In both methods, the size
of the extracted subtrajectories was limited to the natural logarithm of the trajectory size as
in (FERRERO et al., 2020; LEITE; PETRY; BOGORNY, 2019). For Gowalla and Brightkite
datasets, the τ limit is 90% of the highest frequency, and in raw trajectory datasets, the τ is 50%
in HiPerMovelets configurations.

The experiments were performed in an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz,
2 http://www.fs.fed.us/pnw/starkey/data/tables/
3 https://archive.ics.uci.edu/ml/datasets/GPS+Trajectories
4 http://www.chorochronos.org/
5 https://keras.io/

51

with 8 cores (limited to 4 threads) and 32GB of main memory. The scalability experiments were
performed in Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz, with 8 cores, limited to 4 threads,
and 32GB of RAM in Windows 10 Pro 64-bit.

3.1.3.3 Accuracy, Number of Movelets, and Processing Time

In this section, we compare the number of movelet candidates generated by the MASTER-
Movelets-Log, HiPerMovelets and HiPerPivots, the number of movelets, the time spent in this
task, the accuracy, the classification time of each classifier, and the number of compared trajec-
tories by HiPerMovelets methods. The classification results in both classifiers, NN and RF, are
given by the Accuracy metric. We compare the running time of HiPerMovelets and MASTER-
Movelets-Log, limiting the computer resources to 4 threads for fair time comparison. MARC
was the fastest method in all the experiments, but it had available all computer resources, with
eight cores and GPU acceleration, thus, its running time is reported but not compared.

3.1.3.3.1 Results for Multiple Aspect Trajectory Datasets

We present the results for each dataset in Table 5, where the highest value for each
metric is in bold, and the second best is underlined. We also present the comparison for the
total number of evaluated movelet candidates and the number of movelets in Figure 11. The
first observation is that NN achieves the same or better accuracy than RF. For both datasets,
the accuracy values are very similar, but HiPerPivots achieves higher accuracy than HiPer-
Movelets, generating significantly less movelet candidates, although it obtains more movelets.
Consequently, with less movelet candidates, it is faster to extract movelets but slower when its
movelets are used in the classification task because it generates a higher number of movelets.
HiPerMovelets is mainly based on subtrajectory frequency for discovering the movelets, and
therefore the patterns are different from MASTERMovelets in two ways: (i) the movelets rep-
resent the most frequent patterns that are discriminant for classes, and (ii) the reduced number
of movelets, but still accurate results show that these patterns are more meaningful for trajectory
classification.

Figure 12 presents the running time to discover movelets. Compared with MASTER-
Movelets-Log, for the Gowalla dataset, HiPerMovelets running time reduced from hours to
minutes, from more than 7 hours to 42 minutes, a reduction of more than 90%. The classification
accuracy increased from 95.051 of MASTERMovelets-Log to 95.245 with HiPerMovelets and
95.271 with HiPerPivots. HiPerPivots performed better in both datasets, with an average time
of 1h31 in the 5-fold experiments on Brightkite; and 33 minutes on Gowalla, a reduction in
comparison to MASTERMovelets-Log of 91.45% (17 hours and 52 minutes) and 92.78% (7
hours and 39 minutes), respectively.

The reduction in running time is directly related to the reduction in the number of
evaluated movelet candidates. Figure 13 shows the total number of compared trajectories (top)

52

Table 5 – Results for 5-fold cross-validation (MAT datasets).

Dataset MARC MASTER-
Movelets HiPerMovelets HiPerMovelets

-Pivots

Gowalla
(specific)

Candidates - 4,795,992 2,474,286 297,338
Movelets - 62,584 30,851 44,178
ACC NN 94.760 95.051 95.245 95.271
ACC RF - 93.017 92.472 92.703

Time (Movelets) 8m18s 7h39m50s 42m29s 33m13s
Time (NN) - 14m38s 7m30s 10m44s
Time (RF) - 15s 10s 12s

Trajs. Compared 4,262 4,262 2,325 3,163
Trajs. Pruned - - 1,937 1,099

Brightkite
(specific)

Candidates - 6,152,724 3,084,087 579,544
Movelets - 89,038 42,907 77,811
ACC NN 96.052 96.669 96.171 96.387
ACC RF - 95.959 95.446 95.607

Time (Movelets) 6m05s 17h52m03s 1h41m47s 1h31m37s
Time (NN) - 38m27s 16m38s 34m40s
Time (RF) - 22s 15s 21s

Trajs. Compared 6,328 6,328 3,405 5,585
Trajs. Pruned - - 2,923 743

Figure 11 – Number of movelet candidates (top), and number of movelets (bottom) bar plots for all methods in
multiple aspect trajectory datasets.

and the total number of pruned trajectories (bottom) of our methods. We can observe that HiPer-
Movelets prunes almost half of the trajectories in both datasets, reducing the number of movelet
candidates by approximately half (Figure 11). Although HiPerPivots prunes a lower number of
trajectories, it explores less movelet candidates because of the pivot strategy, thus resulting in
faster running time.

In conclusion, the results confirmed that HiPerMovelets and HiPerPivots significantly

53

reduce the number of movelet candidates, the number of movelets, the movelet extraction time,
and the classification processing time. It happens because of the HiPerMovelets candidate
pruning strategy and because distances are computed among significantly fewer trajectories.
The general processing time of HiPerMovelets reduced by more than 90% in both check-in
datasets, decreasing the accuracy only in the Brightkite dataset and in less than 0.3% (from
96.669 to 96,387).

Table 6 – Results for 5-fold cross-validation (spatio-temporal datasets).

Dataset MARC MASTER-
Movelets HiPerMovelets HiPerMovelets

-Pivots

Animals

Candidates - 232,896 216,531 47,901
Movelets - 6,523 5,513 7,943
ACC NN 80.509 87.175 89.281 87.276
ACC RF - 88.276 86.170 88.075

Time (Movelets) 23s 1m05s 3m15s 1m27s
Time (NN) - 6s 6s 7s
Time (RF) - 1s 1s 1s

Trajs. Compared 81 81 75 72
Trajs. Pruned - - 6 9

GoTrack

Candidates - 286,447 242,146 62,802
Movelets - 6,873 5,103 8,516

ACC (NN) 74.822 83.497 84.636 80.465
ACC (RF) - 79.838 82.853 76.750

Time (Movelets) 1m02s 1m28s 7m09s 3m40s
Time (NN) - 6s 6s 7s
Time (RF) - 1s 1s 1s

Trajs. Compared 130 130 119 123
Trajs. Pruned - - 11 6

Vehicles

Candidates - 3,294,900 709,367 144,208
Movelets - 98,670 20,672 26,876

ACC (NN) 74.535 98.947 98.421 98.428
ACC (RF) - 98.147 97.887 98.147

Time (Movelets) 3m43s 9h14m37s 3h05m24s 1h09m15s
Time (NN) - 35s 11s 13s
Time (RF) - 1s 1s 1s

Trajs. Compared 304 304 111 103
Trajs. Pruned - - 193 201

Figure 12 – Running time bar plots for all methods in multiple aspect trajectory datasets.

54

Figure 13 – Total compared trajectories (top), and pruned trajectories (bottom) in multiple aspect trajectory
datasets.

3.1.3.3.2 Results for Raw Trajectory Datasets

In the raw trajectory datasets presented in Table 6, HiPerMovelets achieves either the
same or higher accuracy results than MASTERMovelets. On the one hand, our method achieved
a higher accuracy for smaller datasets such as Animals and GoTrack, although it was initially
designed with a focus on performance. On the other hand, for these specific cases, the pro-
cessing time of HiPerMovelets is greater when compared to MASTERMovelets (Figure 14).
It happens because the low number of trajectories does not justify the computational overhead
introduced by the additional calculations and mechanisms that try to reduce the amount of data
analyzed for movelet extraction. The processing time of HiPerMovelets reduced by more than
66% in the Vehicles dataset, decreasing the accuracy only in 0.5%. Both HiPerMovelets and
HiPerPivots classification accuracy is higher than MARC in all datasets. From this experiment,
we note that the processing time is not a problem for small datasets. Both methods run in a few
minutes, but our approach achieves the best accuracy, which is the most important in classifica-
tion problems. When looking at the results on a larger dataset as the Vehicles, we can observe
how HiPerMovelets took only one-third of the processing time and achieved a similar level of
accuracy as MASTERMovelets.

The Animals and GoTrack datasets do not present a significant reduction in the num-
ber of evaluated trajectories or pruned trajectories, which explains the increase in running time.
However, the vehicles dataset presents a more significant reduction in the number of com-
pared trajectories (Figure 15) and, consequently, the running time. We observe that both HiPer-

55

Figure 14 – Running time bar plots for all methods in raw trajectory datasets.

Movelets and HiPerPivots prune almost two third of the trajectories in the Vehicles dataset,
significantly reducing the number of movelet candidates and movelets (Figure 16).

Figure 15 – Total compared trajectories (top), and pruned trajectories (bottom) in raw trajectory datasets.

HiPerMovelets and HiPerPivots present the most significant reduction in the number
of movelet candidates and the number of movelets in the Vehicles dataset. The more significant
reduction in the number of movelet candidates in that dataset is 95% for HiPerPivots and 72%
in the number of resulting movelets. In conclusion, our methods can reduce the search space by
early pruning the covered trajectories as an efficient strategy for discovering movelets.

56

Figure 16 – Number of movelet candidates (top), and number of movelets (bottom) bar plots for all methods in
raw trajectory datasets.

3.1.3.4 Scalability Analysis

In this experiment, we evaluate how HiPerMovelets scales in datasets with different
characteristics, comparing the computational time spent in the movelets extraction. We used
three synthetic datasets with different configurations inspired by the methodology adopted in
Ye e Keogh (2011) and the same design as in Ferrero et al. (2020). We use three datasets: (i)
with a fixed number of 200 trajectories and varying the trajectory size from 10 to 400 points
and 1 dimension in every trajectory, (ii) with fixed trajectory size of 50 points and varying the
number of trajectories from 100 to 2000 trajectories with 1 dimension, and (iii) with a fixed
number of 200 trajectories and fixed trajectory size of 50 points, but varying the number of
dimensions from 1 to 5. Fig. 17 shows the performance results.

In all experiments in Figure 17 we can see that both HiPerMovelets and HiPerPivots
scale well as the dataset grows, spending less computational time in comparison to MASTER-
Movelets-Log. In Figure 17 (a), the time reduction of HiPerMovelets and for HiPerPivots is
more than 99% in comparison to MASTERMovelets-Log when the number of points increases.
In Figure 17 (b), we can see that HiPerMovelets presents a reduction of 17% when the number
of trajectories increases from 100 to 2000, and HiPerPivots a reduction of 53.95%.

In Figure 17 (c), we compare the running time for our methods and MASTERMovelets-
Log to show that MASTERMovelets-Log needs more time as the number of dimensions in-
creases because it generates movelet candidates with all dimensions combinations. HiPer-
Movelets shows a reduction of 77.77% compared to MASTERMovelets-Log with five dimen-

57

(a) (b)

(c)

Figure 17 – Scalability analysis of running time varying (a) the number of trajectory points (b) the number of
trajectories and (c) the number of dimensions.

sions. HiPerPivots, on the other hand, shows a reduction of 97.20%, and is not much affected
as the number of dimensions increase. The higher the number of dimensions in a subtrajectory,
the less common/frequent it will be because it requires a repetitive movement with exactly the
same characteristics (e.g., visit Gym 8 am, three times a week, on weekdays). This is the main
advantage of our proposal, as the frequency of subtrajectories tends to decrease as the num-
ber of dimensions increase, and they will either be pruned or not selected, the running time of
HiPerMovelets grows from one to two dimensions (Figure 17 c), and then decreases.

We observed that HiPerMovelets performed very well in raw and multiple aspect tra-
jectory datasets. The scalability of HiPerMovelets, especially HiPerPivots, allowed for a reduc-
tion in computational time compared to the state-of-the-art method for movelet discovery. It
does not need to evaluate all movelet candidates but only the most frequent in class. However,
we also observed in raw datasets (Table 6) that HiPerMovelets has some limitations when the
value of the frequency bound τ is high, needing to adjust in order to select more movelet can-
didates for evaluation. In trying to overcome this limitation, we investigated new methods. We,
therefore, investigated different movelet extraction criteria trying to reduce the search space in
movelet discovery. We introduce and discuss in the following sections the UltraMovelets and
RandomMovelets approaches.

58

3.2 REDUCING THE SEARCH SPACE AND ATTRIBUTE COMPARISON IN MOVELET
DISCOVERY

Dealing with one class at a time can limit the performance depending on the num-
ber of classes, especially in binary classification. Another problem is that in some datasets,
the frequency strategy adopted by HiPerMovelets might not be the best one, due to less fre-
quent relevant subtrajectories. Indeed, most frequent subtrajectories are short in size. For such
datasets, the frequency might not be the best strategy to identify discriminant movelets, and a
random strategy gives the movelets the same chances to be selected but more efficiently.

Another problem is that the classification task becomes more challenging in gener-
alized datasets. Generalized datasets are anonymized with the detailed information removed
(e.g., use the label Hotel instead of Ibis Hotel; or remove the geographic coordinates) to make
the problem more challenging or for privacy protection (PORTELA; VICENZI; BOGORNY,
2019), which implies that less specific information is available. For example, the dataset has
the category of the places (e.g., Hotel) but not the specific instance name (e.g., North Beach
Hotel). In generalized datasets, the most frequent patterns might not describe a class behavior
due to the lower variability of the data. It means some datasets have a trade-off where the best
discriminant subtrajectories are infrequent.

In this section, we introduce two more methods that we have investigated to cope with
the limitations of HiPerMovelets: RandomMovelets and UltraMovelets. These methods are
domain-independent, and the evaluation results are preliminary. The RandomMovelets main
idea is a random pruning of movelet candidates of a trajectory before comparing them to the
entire dataset. In this method, we do not use a ranking strategy to select movelet candidates
but randomly choose a percentage of the candidates to calculate F-Score quality. That can limit
the search space by drastically reducing the number of evaluated movelets. Random selection
increases the chances of quickly selecting relevant movelets for general-purpose classification.
Moreover, it is not class dependent as HiPerMovelets since it does not prune trajectories based
on class movelets, processing each trajectory independently.

UltraMovelets selects subtrajectory pivots with high F-Score quality as starting points.
The pivots are subtrajectories of one point and one dimension that recursively are incremented
in points and dimensions, generating new movelet candidates. That allows the evaluation of
the F-Score quality in each step, and to stop the search at any time based on the quality value.
When the quality criteria is met, the movelets are selected abandoning, the search on longer
subtrajectory combinations of points and attributes. Thus, this method can discover movelets
without configuring a limit to the search by the size of the subtrajectory or the number of
attribute combinations. UltraMovelets selects only the best combination of dimensions and
subtrajectory size. It is parameter-free, essential since parameter definition is a well-known
data mining problem, as parameters are difficult to estimate and directly impact the results.
In addition, it generates subtrajectories one at a time, thus reducing memory use and making
scalability easier.

59

A fundamental difference between the methods is that UltraMovelets extracts movelets
that can share the same trajectory point but not the exact dimensions. On the other hand,
RandomMovelets and HiPerMovelets do not extract movelets that share the same point. The
following sections detail RandomMovelets and UltraMovelets.

3.2.1 RandomMovelets: A Random-based Movelet Candidate Pruning Strategy for Movelet
Discovery

We believe that randomly selecting movelet candidates can increase the chances of
finding movelets faster without the need of evaluating all possible movelet candidates. By
randomly evaluating movelet candidates, we can reduce the search space without needing extra
processing steps, such as frequency calculations and ranking.

Inspired by (RAKTHANMANON; KEOGH, 2013), we introduce a new method for
fast discovery of movelets, called RandomMovelets. It is not purely random since the movelet
candidates quality is evaluated, and the best ones become movelets. The main idea is to itera-
tively select an α number of movelet candidates to be qualified with F-Score, independent of
any ranking strategy for candidate selection.

Figure 18 presents an overview of the RandomMovelets method. At first, for each
trajectory Ti, it extracts all movelet candidates (steps 1-3), which are of any size and any com-
bination of dimensions. Then, a α percentage of those candidates are chosen randomly (step
4). The F-Score quality is calculated for each selected candidate (step 5), and the ones that have
insufficient quality are pruned (step 6). If movelets are not found, it will restart the third step by
randomly selecting new candidates, twice as many, to increase the chances of finding movelets
(same as HiPerMovelets). Movelets are found when the randomly evaluated candidates have
good quality scores (step 7).

RandomMovelet
Candidates
Extraction

1 4

T
Database

Class Trajectories

Ti
3

5

6
7

Compute Candidate
Quality based on

F-Score and Generate
RandomMovelets

RandomMovelet
Pruning:

Low Quality (F-score)

RandomMovelet
Candidates

Selection (α)
based on proportion

M'
Class Movelets

Trajectory-Based
Pruning

2
T'

RandomMovelet
Candidate
Generation

RandomMovelet
Generation and

Pruning

Figure 18 – Overview of the RandomMovelets method.

Before we go into the details of the algorithm, we must define the concept of Random-
Movelet Candidate and RandomMovelet. The RandomMovelets candidates (Definition 9) are
selected randomly from a set of all possible subtrajectories of a trajectory Ti.

60

Definition 9. RandomMovelet Candidate. A RandomMovelet candidateM from a subtrajec-
tory sstart,end is a tupleM = (Ti,start,w,C,W,quality,sp), randomly selected from Ti, which
is a trajectory of the dataset T; All terms are identically defined as the movelet in Definition 4.

The quality of a RandomMovelet candidate is then evaluated using F-Score consider-
ing all trajectories in the dataset. The best qualified randomly chosen candidates are Random-

Movelets, a formal definition is given in Definition 10.

Definition 10. RandomMovelet. Given a trajectory Ti, and a randomly selected RandomMovelet
candidateMx containing a subtrajectory sa,b (sa,b ⊆ Ti), Mx is a RandomMovelet if for each
other randomly selected RandomMovelet candidate My containing a subtrajectory u f ,g with
u f ,g ⊆ Ti that overlaps sa,b in at least one point,Mx.quality >My.quality.

Algorithm 5 gives more details of the method and is divided into three main steps: (i)
the movelet candidates generation, (ii) the random selection of α percentage of movelet candi-
dates, and (iii) the movelets evaluation. First, subtrajectories with all possible combinations of
dimensions are generated up to the natural log size of the trajectory (lines 3-7). Then, only a α

percentage of the previously generated candidates are randomly selected to be evaluated with
F-Score quality (line 8). The third step iteratively evaluates movelet candidates until it finds
movelets (lines 9-17), following the steps:

Algorithm 5: RandomMovelets
Input: T Trajectory dataset

α Percentage of movelet candidates to evaluate.
Output: M Set of movelets

1 M← /0
2 foreach trajectory Ti ∈ T do

/* 1. Movelet Candidate Generation: */
3 candidatesTi ← /0
4 m← log2 (Ti.length)
5 for size← 1 to m do
6 candidatessize← findCandidates(Ti,size)
7 candidatesTi ← candidatesTi ∪ candidatessize

/* 2. Movelet Candidate Pruning - Random Selection of α candidates (α=10%): */
8 candidatesR← random(candidatesTi , |candidatesTi | ∗α)

/* 3. Movelets Evaluation: */
9 MTi ← /0

10 while MTi = /0 and candidatesTi ̸= /0 do
11 foreach M j in candidatesR do
12 M j.quality← QualityF−Score(M j,T)

13 candidatesR.sort()
/* Movelet Pruning - by F-Score and duplicates: */

14 MTi ← moveletPruning(candidatesR,T)
15 if MTi = /0 then /* Gets next subset of random movelet candidates */
16 candidatesTi ← candidatesTi − candidatesR
17 candidatesR← random(candidatesTi , |candidatesR| ∗2)

18 M←M∪MTi

19 return M

i. Evaluate selected movelet candidates with F-Score (line 12) and order them by quality
(line 13);

61

ii. Prune candidates with zero quality and the ones that share the same points and dimensions
with lower quality value (line 14). This movelet pruning is the same described in HiPer-
Movelets (Section 3.1);

iii. If no movelets are found in this iteration, randomly select a new set of movelet candi-
dates with twice the size of the previous set, and repeat until movelets are found or all
candidates have been evaluated (lines 15-17).

A limitation of RandomMovelets is that the α percentage parameter may need to be
changed. We try to mitigate this by doubling this number in each iteration (if movelets are not
found). Another limitation is that besides reducing the search space for evaluating movelet can-
didates, it still extracts all subtrajectories up to the natural log of trajectory size. We, therefore,
propose another strategy for movelet candidate generation and evaluation as an alternative to
solve some of these limitations, which is called UltraMovelets.

3.2.2 UltraMovelets: A Recursive Strategy for Efficient Movelet Candidates Generation

In this method, the movelet candidates are computed starting in simple pivot subtra-
jectories of one point and one dimension, and then each one is extended with another point (or
attribute) at a time and tested against the data. Combined with an early abandoning strategy for
searching relevant subtrajectories reduces the number of generated movelet candidates.

The extraction of movelets from data with many dimensions has the problem of Curse

of Dimensionality, which is the concept in data mining that describes the exponential growth
in computational processing when increasing the number of data dimensions. In subtrajectory
analysis, the longer the subtrajectory (in number of points) or the higher the dimensionality
(number of attributes) that composes a subtrajectory is, the more computational resources are
needed for the processing.

Figure 19 gives an overview of the UltraMovelets method. For each trajectory of a
class (steps 1 and 2), UltraMovelets starts by generating pivot subtrajectories (step 3), which are
all the subtrajectories with one dimension and one point from trajectory Ti. First, it computes
the F-Score quality of each pivot candidate (step 5) and discards pivot candidates with zero
quality, becoming the pivot subtrajectories. Second, for each pivot, UltraMovelets recursively:

1. Increments one point and evaluates the F-Score;

2. Increments one dimension and evaluates the F-Score;

3. Selects the best subtrajectory with the point added, the dimension added or the original
candidate (steps 6, 7, and 8).

The movelet candidate generation is done recursively, so it will combine points and
dimensions to the pivot until reaching the end of the trajectory and all the dimensions together,
or it reaches a point where the quality does not increase (step 9) and stops.

62

Pivot Candidates
Extraction

1

4
T

Database

Class Trajectories

Ti
3

6

7

9
Grow Pivot

Points

M'
Class Movelets

Quality
Increased?

Grow Pivot
Attributes

Compute
UltraMovelet

Candidate Quality
based on F-Score

8Yes

No

5

Select Best Quality
UltraMovelet based

on F-Score

10
T'

2

UltraMovelet Candidate Generation

Pivot-Based
Pruning

UltraPivot
Generation

UltraMovelet Candidate
Evaluation

Figure 19 – Overview of the UltraMovelets method.

The method will stop adding points or dimensions to a subtrajectory when the F-Score

quality reduces. Indeed, since continuing to add information will not generate better quality,
this is a point for abandoning the search. Thus, UltraMovelets neither requires criteria to limit
the number of dimensions nor the size of subtrajectories to search, as it automatically selects
the best combination of dimensions and subtrajectory size. While other approaches limit the
search by the natural log of the trajectory size (as MASTERMovelets-Log, SUPERMovelets,
and HiPerMovelets), or limit the number of attributes of movelets (as SUPERMovelets-λ),
UltraMovelets will stop by the quality criteria. Similarly, it does not limit the number of attribute
combinations for searching movelets since adding more attributes will not increase the movelet
candidate quality. Indeed, if adding any other attributes reduces the movelet candidate quality,
then the best combination of attributes for the subtrajectory is found.

An HiperMovelet Candidate is first evaluated with relative frequency in class trajec-
tories, the RandomMovelet Candidate is selected randomly without previous evaluation, and
UltraMovelet Candidates (Definition 11) are generated from pivots with F-Score quality greater
than zero. The three types of candidates we defined are selected as movelets by evaluating
F-Score quality in the same manner as HiPerMovelets.

Definition 11. UltraMovelet Candidate. A UltraMovelet candidate M from a subtrajectory
sstart,end is a tuple M = (Ti,start,w,C,W,quality,sp), from Ti, which is a trajectory of the
dataset T; All terms are identically defined as the movelet in Definition 4. UltraMovelet can-
didates where w = 1 and |C| = 1 are called UltraMovelet Pivots. The first point of the Ultra-
Movelet candidate subtrajectory sstart,start and the first attribute of the candidate C represents
the UltraMovelet Pivot from which originated the candidate.

The three types of candidates we defined are selected as movelets by evaluating F-

Score quality in the same manner as HiPerMovelets. The UltraMovelet, as Definition 12, differs
in concept from a movelet as they can share trajectory points but in different dimensions.

63

Definition 12. UltraMovelet. Given a trajectory Ti, and an UltraMovelet candidateMx contain-
ing a subtrajectory sa,b (sa,b ⊆ Ti),Mx is an UltraMovelet if for each other UltraMovelet can-
didateMy containing a subtrajectory u f ,g with u f ,g ⊆ Ti that overlaps sa,b in at least one point,
but does not contain the same dimensionsMx.C ̸=My.C, the F-Score quality isMx.quality >

My.quality.

Algorithm 6 details the UltraMovelets method. The first step (lines 4-6) is to find and
evaluate all movelet candidates of one point with one dimension, called pivot candidates. The
pivot candidates are pruned by their quality measured with F-Score (line 7), and each one is
recursively incremented with the next trajectory point and one of the other dimensions (line 9).

Algorithm 6: UltraMovelets
Input: T Trajectory dataset
Output: M Set of movelets

1 M← /0
2 foreach trajectory Ti ∈ T do

/* 1. Pivot Candidates Generation: */
3 candidatesTi ← /0
4 candidates1← findCandidates(Ti,1) /* Generates pivot candidate subtrajectories */
5 foreach M j in candidates1 do
6 M j.quality← QualityF−Score(M j,T)

7 pivotsTi
←{M j ∈ candidates1 |M j.quality > 0.0}

/* 2. Movelet Candidate Recursive Search: */
8 foreach M j in pivotsTi

do
/* Recursively increment points and dimensions to the pivot, returns the one with best F-Score */

9 M j← growPivot(M j,Ti,T)
10 M←M∪M j

11 return M

The essence of UltraMovelets is the recursive function GrowPivot, detailed in Algo-
rithm 7. Each pivot subtrajectory serves as a base to construct related subtrajectories, branching
out as a tree of new subtrajectory combinations of the base pivot. The first step is to create a
pivot copy with the next point of trajectory Ti , evaluate the quality (lines 1-2), and compare with
the base pivot. If the quality increases, the new pivot will be the base for recursively searching
movelets (line 3). In the second step, the pivot is recursively incremented with dimensions. A
copy of the pivot is incremented with another dimension (lines 6-7), the quality is evaluated,
and it is compared with the best pivot found so far (line 9). The algorithm finishes by returning
the best movelet candidate found recursively (line 10).

The main advantage of the recursive strategy of UltraMovelets is the possibility at each
step to eliminate the branches of combinations that will not increase the quality of a movelet
candidate. The method also deals with one subtrajectory at a time, except for parallelization,
thus reducing the memory load.

UltraMovelets discovers movelets that share the same point in the trajectory but not the
same dimensions. The other movelet-based methods only select movelets without overlapping
points. Thus, the resulting number of movelets of UltraMovelets is expected to be higher, being
at most the product of the number of trajectory points n and the number of dimensions l (n.l).

64

Algorithm 7: GROWPIVOT
Input: M j Movelet candidate pivot

Ti Trajectory of M j
T Trajectory dataset

Output: M The best found movelet

/* Recursively increment points to the pivot, returns the one with best F-Score */
1 M jp← copy M j with next neighbour point from Ti
2 M jp.quality← QualityF−Score(M jp,T)

3 M jp←
{︃
growPivot(M jp,Ti,T), i f M jp.quality >=M j.quality,

M j, else.
/* Recursively increment dimensions to the pivot, returns the one with best F-Score */

4 M jd ←M j
5 foreach A in Ti.D do
6 M ja← copy M j
7 M ja←M ja.C∪A
8 M ja.quality← QualityF−Score(M ja,T)

9 M jd ←
{︃
growPivot(M ja,Ti,T), i f M ja.quality >=M jd .quality,

M jd , else.

/* Select the best movelet candidate: */

10 M←

⎧⎨⎩M jp, i f M jp.quality >= max(M j.quality,M jd .quality),
M jd , i f M jd .quality >= max(M j.quality,M jp.quality),
M j, else.

11 return M

3.2.3 Experimental Evaluation

We evaluate the computational cost and classification power of the proposed methods
w.r.t HiPerMovelets. This evaluation compares accuracy in an 80%− 20% hold-out train test
split validation, the running time, and the number of generated movelet candidates.

The very specific nature of some data, such as the spatial position, can make the clas-
sification task easier. However, its patterns may not frequently repeat in the trajectories of a
specific class. It is unlikely for a general-purpose classification method to perform well in a
variety of datasets. However, we show that our methods HiPerMovelets, RandomMovelets, and
UltraMovelets can achieve good results in a variety of domains. Therefore, we select datasets
from domains other than raw and MAT trajectories, including genetic data and time series.

We also performed a scalability analysis and measured memory use because reducing
the search space for movelets and the combinatorial exploration of subtrajectories directly im-
pact the memory resources needed. These are preliminary results since more experiments are
needed to evaluate the methods properly: (i) k-fold cross-validations to mitigate the accuracy
differences, (ii) repetitions of RandomMovelets with different seed values, and (iii) extensive
scalability experiments.

In the following sections, we describe the datasets, and the setup configurations of the
experiments, discuss the obtained results and evaluate the scalability. We organize the results
in four parts: the experiments with multiple aspect trajectory datasets, experiments with raw
trajectory datasets, genetic sequence datasets, time series datasets, a general discussion of the
results, and scalability experiments.

65

Table 7 – Complementary summary of the used trajectories datasets for Table 4.

Dataset Description Dimensions

Foursquare NYC

Traj Size: 21.75±122.25 Specific: Lat, Lon, POI, POI Category, Time,
Weekday, Weather, Price, Rating, User ID.# of Traj.: 3,079

of Points: 66,962
of Classes: 193 Generic: POI Category, Time, Weekday, Weather,

Price, Rating, User ID.Class Label: User

Promoters

Traj Size: 57±0.0

Sequence, Protein Name, Class Name
of Traj.: 106

of Points: 6,042
of Classes: 2
Class Label: Positive or Nega-

tive

SJGS

Traj Size: 60±0.0

Sequence, Protein Name, Class Name
of Traj.: 3,190

of Points: 191,400
of Classes: 3
Class Label: Exon/Intron

boundaries

3.2.3.1 Datasets

We evaluate RandomMovelets and UltraMovelets on the same five datasets reported in
Section 3.1, but we also use more datasets to show how these methods are promising in other
domains6. In particular, we added two MAT dataset variations from Foursquare NYC data: one
with specific attributes and the other with generic attributes; one raw trajectory dataset (Hurri-
canes); two datasets of genetic sequences (Promoters and SJGS), that are problems of binary
classification; multivariate and univariate time series datasets to compare the performance of the
methods in other domains with sequential data. Globally, we employed four types of datasets
that include raw trajectories, genetic sequences, multiple aspects, and multivariate time series:
(i) three raw trajectory datasets (Animals, GoTrack, and Vehicles) as described in Subsubsec-
tion 3.1.3.1, (ii) four multiple aspect trajectory datasets (Brightkite, Gowalla, Foursquare NYC
with specific and generic attributes) also used in May Petry et al. (2020), Ferrero (2020), Leite
da Silva (2020), Portela, Carvalho e Bogorny (2022), (iii) two semantic-only datasets of genetic
sequences (Promoters, and SJGS), iv) eight multivariate time series datasets, and (v) twenty
five univariate time series datasets. Table 7 presents descriptions of the datasets included in this
evaluation (complementary to Subsubsection 3.1.3.1).

Foursquare NYC: Dataset from the Foursquare social media with multiple aspect
trajectories in New York (YANG et al., 2015). The points were enriched with the semantic in-
formation of the weekday, and the Foursquare API7 enabled to collect the semantic information
of the POI category and the numerical information of the price and rating of the POIs. Indeed,
the Weather Wunderground API 8 enabled to enrich the points with the weather situation. The
resultant dataset Foursquare NYC has a total of 3079 trajectories, with trajectory sizes varying
from 10 to 144, and Foursquare Global has a total of 20,911 trajectories, with trajectory sizes
6 https://github.com/bigdata-ufsc/datasets
7 https://developer.foursquare.com/
8 https://www.wunderground.com/weather/api/

66

varying from 10 to 211. We employed a second generic version of Foursquare NYC that has
been further anonymized with suppression of specific attributes (Lat, Lon, and POI).

Promoters Gene Sequences9: Promoter Gene Sequences dataset represents 263 DNA
sequences that have been compiled and analyzed with known transcriptional start points for E.
Coli genes. This dataset is E. Coli promoter gene sequences (DNA) with partial domain theory.

Splice-junction Gene Sequences (SJGS)10: Splice junctions are points on a DNA se-
quence at which ‘superfluous’ DNA is removed during the process of protein creation in higher
organisms. The problem posed in this dataset is to recognize, given a sequence of DNA, the
boundaries between exons (the parts of the DNA sequence retained after splicing) and introns
(the parts of the DNA sequence that are spliced out). This problem consists of two subtasks:
recognizing exon/intron boundaries (referred to as EI sites) and recognizing intron/exon bound-
aries (IE sites).

Univariate and Multivariate Time Series: we employed eight multivariate time se-
ries datasets (ArticularyWordRecognition, AtrialFibrillation, BasicMotions, CharacterTrajec-
tories, Epilepsy, ERing, EthanolConcentration, and Handwriting), and twenty five univari-
ate time series datasets (ACSF1, Adiac, AllGestureWiimoteX, AllGestureWiimoteY, AllGes-
tureWiimoteZ, ArrowHead, BME, Beef, BeetleFly, BirdChicken, Car, CBF, Chinatown, Chlo-
rineConcentration, CinCECGTorso, Coffee, Computers, CricketX, CricketY, CricketZ, Diatom-
SizeReduction, DistalPhalanxOutlineAgeGroup, DistalPhalanxOutlineCorrect, DistalPhalanxTW,
and ECG200). The descriptions of each dataset and the train and test split used are the same
as stated in the source, without any data preparation. These last large group of datasets is not
reported in Table 7 to keep the manuscript readable and since the description is already reported
in the original data source11.

3.2.3.2 Experimental Setup

The datasets are split in a hold-out proportion of 80% of the trajectories for training
and 20% testing respecting the class balance (similar number of trajectories of each class). We
evaluated the Neural Network Multilayer-Perceptron (NN) and Random Forrest (RF) classifica-
tion algorithms with the same classifier and method configurations as described in Subsubsec-
tion 3.1.3.2. We present the results of Accuracy, Accuracy Top 5, and F-Measure metrics. The
latter two metrics and total running time are displayed only with the NN classifier for readability
purposes. The Accuracy Top-5 is the accuracy for the model ability to correctly classify in any
of 5 highest probability label matches. The Accuracy Top-5 is the accuracy for the model abil-
ity to correctly classify in any of the five highest probability label matches. The F-Measure is
the average F-Score between class predictions. The F-Measure is calculated from the harmonic
mean of precision and recall of the test set as a macro average of all class labels.
9 https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Promoter+Gene+Sequences
10 http://archive.ics.uci.edu/ml/datasets/Molecular+Biology+%28Splice-junction+Gene+Sequences%29
11 http://timeseriesclassification.com

67

We include the methods for raw trajectory datasets: Xiao (XIAO et al., 2017), Dodge
(DODGE; WEIBEL; FOROOTAN, 2009), Movelets (FERRERO et al., 2018), and Zheng (ZHENG
et al., 2008). We also included the DeepeST method for trajectory classification that, for each
model, look for the optimal set of hyperparameters (A. de Freitas. et al., 2021). The MARC
and MASTERMovelets methods follow the same configurations as in Subsection 3.1.3. We set
RandomMovelets α to 10% of movelet candidates (default value), as experiments have shown
a reasonable value to prune enough candidates improving performance without restricting the
search too much.

We conducted a trial experiment for POI-F (VICENZI et al., 2020), HiPerMovelets
and HiPerPivots methods with different configurations, as presented in Figure 20. For the results
of the method POI-F, we use the variant NPOI as it achieves the best results. For NPOI, in
each dataset, we chose one attribute of the data with the highest variance. Then, we tested the
method with subsequence sizes of 1, 2, and 3 points. We also extended NPOI to concatenate
the sequences of 1, 2, and 3 points for classification, which is presented as NPOI (1+2+3). The
NPOI with 1 point achieves good classification results. However, it does not take the sequence
of the points into account. NPOI (1+2+3) can perform well in most cases as it has the attribute
information and small sequences are considered together. In the following sections, we present
the results for the NPOI (1) and NPOI (1+2+3) variations.

Figure 20 – Test configuration of NPOI, HiPerMovelets, and HiPerPivots for accuracy with the classifier NN (top)
and running time (bottom) in multiple aspect trajectory datasets.

For HiPerMovelets and HiPerPivots trial experiments, we evaluate both approaches
with three settings of τ parameter for movelet candidates selection: 50%, 75%, and 90% percent

68

of movelet candidate relative frequency. In terms of accuracy (Figure 20 top), there is a trade-
off between the value of τ and the HiPerMovelets performance on specific and generic datasets.
High values of τ work better on specific datasets where the class most frequent patterns are more
discriminant, while in the generic datasets, they are not so discriminant. However, the running
time increase (Figure 20 bottom) as the value of τ changes because more movelet candidates
are evaluated. Therefore, in each following section, we present the results for HiPerMovelets
and HiPerPivots with the τ value that achieved the best performance in general, considering
accuracy and lower running time.

The experiments were performed in five computers with the configurations and the re-
spective datasets as described in Table 8. The computer resources are limited, as described in
the table for a fair time comparison among the movelet-based methods. We also set a timer of
seven days as a limit for all experiments to complete and three days for the scalability experi-
ments.

Table 8 – Summary of the experimental setup.

Machine Processor Operating
System

RAM Cores RAM
Limit

Thread
Limit

Datasets

PC-1 Intel(R) Xeon(R) Platinum
8276L CPU @ 2.20GHz

Ubuntu
18.04.6 LTS

504GB 112 400GB 4 FoursquareNYC,
FoursquareNYC
generic, Promoters,
SJGS

PC-2 Intel(R) Xeon(R) Platinum
8276L CPU @ 2.20GHz

Ubuntu
18.04.5 LTS

512GB 112 250GB 4 Animals, GoTrack,
Vehicles

PC-3 AMD EPYC 7702 64-Core CentOS
Linux 7
(Core)

1TB 256 700GB 4 Gowalla,
Brightkite, Multi-
variate Time Series

PC-4 Intel Core i7-6700 CPU @
3.40GHz

32GB 8 30GB 4 Univariate Time Se-
ries

PC-5 Intel(R) Core(TM) i7-7700
CPU @ 3.60GHz

Ubuntu
16.04.7 LTS

64GB 8 60GB 2 Scalability datasets

3.2.3.3 Preliminary Results of Accuracy, Processing Time, and Number of Movelet Candi-

dates

This section compares the accuracy, processing time, and the number of generated
movelet candidates. The classification results of Multilayer-Perceptron Neural Network (NN)
and Random Forest (RF) are given by the Accuracy metric to evaluate the performance of
extracted features. We compare the running time of MASTERMovelets-Log, HiPerMovelets,
RandomMovelets, and UltraMovelets due to the nature of the optimization problems of movelet-
based methods. We compare the number of generated movelet candidates to indicate the method
performance. The results are summarized in bar plots. The detailed results for each dataset are
presented in Chapter 6. We only included results from experiments that finished. Xiao and
Dodge did not run on the GoTrack dataset.

69

3.2.3.3.1 Results with Multiple Aspect Trajectory Data

In this first part we compare DeepeST (A. de Freitas. et al., 2021), NPOI (VICENZI et
al., 2020), MASTERMovelets-Log (MM) (FERRERO et al., 2020), MARC (May Petry et al.,
2020), HiPerMovelets (HM), HiPerPivots (HP), RandomMovelets (RM), and UltraMovelets
(UM) methods. To compare the methods performance, we present the Accuracy metric, Ac-
curacy Top-5 and F-Measure of all classification results as bar plots. The experiments are
performed in four MAT datasets: Gowalla, Brightkite, Foursquare NYC, and Foursquare NYC
generic. These datasets are prepared in a hold-out of 80% train and 20% test split. The unfin-
ished experiments have been omitted from the figures, and the detailed results are presented in
Chapter 6.

Figure 21 – Accuracy bar plots for all methods, with the classifiers NN (top) and RF (bottom) in multiple aspect
trajectory datasets.

Figure 21 presents the Accuracy metric. Both the NN and the RF classifiers achieved
similar accuracy values. However, the NN classifiers performed better in general. All methods
present similar accuracy for the specific datasets (Gowalla, Brightkite, Foursquare NYC), with
all accuracies over 90%, except in the generic dataset. The main observation in this prelimi-
nary experiment is that the methods proposed in this thesis have similar accuracy on multiple
aspect trajectory data, compared to MASTERMovelets with improved running time. We ob-
serve that NPOI (1+2+3) improved the accuracy compared to NPOI with subtrajectories of
sizes 2 and 3 because subtrajectories of shorter size can be more discriminant as they tend to
have a higher frequency. In the Foursquare NYC generic, higher accuracy is achieved with

70

subsequences concatenated (NPOI (1+2+3)) that indicate the sequence provides important in-
formation to discriminate classes. Indeed, concatenating different sizes of subtrajectories lead
the classification to achieve higher accuracy. These results are interesting, considering that only
one dimension was used for each dataset.

In Figure 22, the Accuracy Top-5 metric presents the model’s ability to classify the
correct class label in any of the five highest probability matches. As expected, these results
showed improvements in accuracy, and the methods behavior is similar to the results presented
in Figure 21. In the Foursquare NYC generic, the accuracy is expected to drop because of the
removal of specific dimensions, and it is the dataset with more differences in terms of accuracy.
However, for movelet-based methods and MARC, in the generic dataset the Accuracy Top-5
performance improved. Thus, indicating that embeddings and movelets are techniques more
likely to rank the correct class label between the first five results.

Figure 22 – Accuracy top 5 bar plots for all methods, with NN classifiers in multiple aspect trajectory datasets.

Figure 23 shows the bar plot results regarding the macro F-Measure, the harmonic
mean of precision and the recall average between class predictions. For this metric, the best
results are close to 1.0. Results in both Figures 21 and 23 are similar, demonstrating these
different metrics comparability. The lower F-Measure for the Foursquare NYC generic dataset
further shows it is a more challenging classification problem.

Figure 23 – Macro F-Measure bar plots for all methods, with NN classifier in multiple aspect trajectory datasets.

71

Figure 24 presents the total running time considering the sum of the feature extraction
and the classification time on NN classifiers. DeepeST and MASTERMovelets-Log are the
slowest methods, with higher processing times. We can highlight that NPOI and MARC are
the most efficient methods in terms of total running time on trajectory datasets, followed by
HiPerMovelets methods (with τ set to 90%) and UltraMovelets.

Figure 24 – Total running time (in hours) bar plots for all methods, sum of running time and classification time
with NN classifier in multiple aspect trajectory datasets.

The evaluation of movelet candidates determines the method running time because
finding the best alignment, defining the split point, and the ranking procedures for each candi-
date are expensive in computer resources. Our methods reduce the number of movelet candi-
dates that need to be analyzed, thus reducing the running time. Indeed, as Figure 24 shows, all
our methods performed faster than MASTERMovelets. Another observation is that the methods
with pivot strategies present the lowest total running time among the movelet-based algorithms,
and HiPerPivots with τ = 90% was the fastest among all our strategies. RandomMovelets and
UltraMovelets achieved good results. Although losing in total running time to HiPerPivots, they
achieved higher accuracy.

We now compare the distribution of the number of movelet candidates compared to
MASTERMovelets. In Figure 25 (top), the characteristics of each method in movelet candidate
generation are evident. We present the number of movelet candidates evaluated with F-Score,
the most time-consuming step in finding movelets. First, MASTERMovelets, HiPerMovelets,
and RandomMovelets generate all possible subtrajectories. However, only MASTERMovelets
evaluates all subtrajectories to find movelets. RandomMovelets has similar results in number of
candidates as MASTERPivots. HiPerMovelets has similar results independently of the value of
τ , because it also explores all subtrajectories but not on all trajectories. Therefore less movelet
candidates are produced compared to MASTERMovelets. MASTERPivots, HiPerPivots, and
UltraMovelets are the methods that generate less movelet candidates. We point out that Ultra-
Movelets does not limit the search by the natural log of the trajectory size as the other methods
but still produces less movelet candidates. That shows how promising the UltraMovelets strat-
egy is to evaluate movelet candidates. More analysis on movelets obtained in this experimental

72

Figure 25 – Bar plots of number of movelet candidates (top), and movelets (bottom), in thousands, for movelet-
based methods in multiple aspect trajectory datasets.

evaluation are presented in Chapter 4 considering the number of movelets, their quality, the
number of attributes, and their size.

3.2.3.3.2 Results with Raw Trajectory Data

In this evaluation, we included methods developed for raw trajectory data: Dodge
(DODGE; WEIBEL; FOROOTAN, 2009), Xiao (XIAO et al., 2017), and Zheng (ZHENG et
al., 2008), developed for spatio-temporal trajectories. We also included Movelets (FERRERO
et al., 2018) that better perform in this type of data. We present the same evaluations as in the
previous section, except we do not include the Accuracy Top 5 measure since all the datasets
evaluated have less than five class labels. We performed experiments in three datasets of raw
trajectories: Animals, GoTrack, and Vehicles described in Subsubsection 3.1.3.1. The results
are for 5-fold cross-validation prepared in a hold-out of 80% train and 20% test split.

We present the accuracy distribution bar plots in Figure 26. All movelet-based methods
mean accuracy is in 80% to 100% in the NN classifier, a better performance than Dodge, Zheng,
Movelets, DeepeST, NPOI, and MARC. Specifically, MARC, NPOI, and DeepeST showed a
more significant drop in accuracy distribution on these raw trajectory data compared to results
on MAT datasets. That is expected since they were developed for multiple aspect trajectories.
These results show that movelet-based methods perform well in raw trajectory datasets. The
lesser difference between NN and RF classifiers is in movelet-based methods, which indicates

73

that movelets are good features independent of the classifier used.

Figure 26 – Accuracy bar plots for all methods, with the classifiers NN (top) and RF (bottom) in raw trajectory
datasets.

Regarding the F-Measure, presented in Figure 27 with NN classifiers, the promising
results of movelet-based methods are most evident compared to other approaches in raw trajec-
tory data. F-Measure results are similar to the Accuracy results presented in Figure 26.

Figure 27 – Macro F-Measure bar plots for all methods, with NN classifiers in raw trajectory datasets.

The total running time results in Figure 28 are the sum of running time and classifi-
cation time with the neural network classifier for raw trajectory datasets. The methods Xiao,
Dodge, Zheng, NPOI, MARC, MASTERPivots, HiPerPivots (with τ set to 50%), Random-
Movelets, and UltraMovelets presented the lower total running times. However, Xiao and
Dodge could not run on the GoTrack dataset. Moreover, the running time on raw trajectory

74

Figure 28 – Total running time (in hours) bar plots for all methods, sum of running time and classification time
with NN classifier in raw trajectory datasets.

datasets is much lower for all methods than MAT datasets, primarily due to the fewer trajec-
tories and dimensions (only space and time). Indeed, the number of dimensions impacts the
running time primarily because of the exponential combinatorial explosion as more dimensions
a dataset contains. Another observation is the total running time of DeepeST, which is higher
than all other methods. It runs all combinations of hyperparameters on the train set, then chooses
the best configuration to create the model for the test set evaluation. Moreover, except for the
DeepeST, the running times of all other compared methods are in minutes (or less) for Animals
and GoTrack datasets.

Figure 29 – Bar plots of number of movelet candidates (top), and movelets (bottom), in thousands, for movelet-
based methods in raw trajectory datasets.

75

The number of movelet candidates in raw trajectory datasets follows similar behav-
ior compared to MAT datasets (Figure 29). Comparatively, the number of candidates is much
lower, which is expected as the datasets are smaller in the number of trajectories and their di-
mensions. The number of movelet candidates for MASTERMovelets is much greater than for
other methods, similar to the results on MAT datasets. HiPerMovelets in Animals and GoTrack
datasets generated as many movelet candidates as MASTERMovelets, indicating the reason
for a higher running time. As mentioned before, it is expected that HiPerMovelets methods to
perform better in larger datasets, as in the Vehicles dataset, where our methods generated less
candidates. In most cases, the methods generate a similar number of movelets, but MASTER-
Pivots, HiPerMovelets, HiPerPivots, RandomMovelets, and UltraMovelets generate less candi-
dates than MASTERMovelets.

3.2.3.3.3 Results with Genetic Sequence Data

In this preliminary evaluation, we performed experiments in two datasets of genetic
sequences: Promoters and SJGS. Both datasets are prepared in a hold-out proportion of 80%
train and 20% test split. This section and the following section on time series datasets are evalu-
ations of our methods on other domains for which movelet-based methods were not developed.
The main idea is to evaluate and compare the methods performance on other types of sequential
data. The genetic sequences are only semantic datasets with one attribute.

Figure 30 – Accuracy bar plots for all methods, with the classifiers NN (top) and RF (bottom) in genetic sequence
datasets.

76

Accuracy results in genetic sequence datasets are mostly between 50% to 80%, as
presented in Figure 30. An interesting observation is that NPOI with sequences of size three
achieved good results. Consequently, NPOI (1+2+3) presents the best classification results.
A possible explanation is that in molecular biology, the proteins are encoded by sequences of
three-nucleotide codons. Thus, sequences of size three can be the most discriminant for these
classification problems.

Both F-Measure (Figure 31) and Accuracy (Figure 30) results are comparable, showing
very similar behaviors for the classification results. MARC and DeepeST performed worse in
F-Measure and Accuracy, lower than 50%. Genetic sequences are a very different domain from
multiple aspect trajectories, and reasonably the methods perform worse. However, in this data
type, the RF classifier performed better, a disadvantage for methods based on neural networks
such as MARC and DeepeST.

Figure 31 – Macro F-Measure bar plots for all methods, with NN classifier in genetic sequence datasets.

The total running times, presented in Figure 32, are similar to evaluations in previous
sections. It is important to point out that in the Promoters dataset, most methods run in less than
one minute as it is a small dataset.

Figure 32 – Total running time (in hours) bar plots for all methods, sum of running time and classification time
with NN classifier in genetic sequence datasets.

In terms of number of movelet candidates (Figure 33), MASTERPivots, HiPerPivots,
and RandomMovelets generate less candidates. All our methods still generate less movelet can-

77

didates than MASTERMovelets. Another observation is that despite HiPerMovelets generating
around half the number of candidates compared to MASTERMovelets, it still outputs nearly
the same number of movelets. That indicates our method ability to reduce the search space for
finding the movelets.

Figure 33 – Bar plots of number of movelet candidates (top), and movelets (bottom), in thousands, for movelet-
based methods in genetic sequence datasets.

3.2.3.3.4 Results with Multivariate and Univariate Time Series Data

Multivariate and Univariate Time Series datasets are predominantly numerical and
highly sampled data. In this analysis, we compile results from datasets with a diverse num-
ber of time series and attributes. Some time series datasets present a complex classification
problem that general-purpose methods might not be enough to solve. However, as far as the
classification problem is concerned, they can be considered similar to trajectories. As described
in Section 3.2, the proposed movelet extraction methods can be used and adapted to multidi-
mensional sequential data. Therefore, we compare the mean accuracy between our methods
on these two kinds of data, as presented in Figure 34. In this evaluation, we included the best
accuracy reported in the literature with methods created specifically for classifying time series
data (BAGNALL et al., 2017; RUIZ et al., 2021). In Figure 34, the mean accuracy results are
presented as TS Best for multivariate and univariate datasets, except for one dataset (Charac-
terTrajectories) for multivariate time series, and four datasets (ACSF1, AllGestureWiimoteX,
AllGestureWiimoteY, AllGestureWiimoteZ) of univariate time series.

78

For our methods, the NN and RF classifiers have very similar results. RandomMovelets
and HiPerPivots (with τ = 50%) show the best performance in classification for these different
domains, as they present higher mean accuracy (near 75%). The NPOI method presents the
highest variation in accuracy results and the lowest values. In Multivariate datasets, we expect
our methods to perform better than in univariate time series since they combine dimensions to
find discriminant subsequences (the movelets).

Figure 34 – Accuracy bar plots for all methods, with the classifiers NN (top) and RF (bottom) in time series
datasets.

Comparing the difference in F-Measure between our methods on these two kinds of
data shows similar distribution as accuracy scores, as presented in Figure 35.

Figure 35 – Macro F-Measure bar plots for all methods, with NN and RF classifiers in time series datasets.

79

Regarding running time, presented in Figure 36, HiPerMovelets is the method that
performed better, with a lower running time, also HiPerPivots and UltraMovelets have similar
performances, despite some datasets that take much more time to run. Although further exper-
imentation is necessary, those methods present good results for general-purpose classification.
The total running time in time series datasets shows different results of our methods as in MAT
datasets (Figure 24). We notice that some running times are outside of interquartile distribu-
tions, meaning that in some datasets, the running time is much higher than the average. That is
expected since larger datasets were used. Another important observation is that UltraMovelets
running times display less variation. It is a promising result that UltraMovelets can be better
suited for larger datasets.

Figure 36 – Total running time (in hours) bar plots for all methods, sum of running time and classification time
with NN classifier in time series datasets.

So far, we can conclude that the results show that movelet-based methods are promis-
ing to reduce the search space. Generating fewer movelet candidates is a clear advantage for
reducing the running time. In this sense, we compare the distribution box plot results over
the number of generated movelet candidates on all datasets, presented in Figure 37. From the
two figures, we can draw two main conclusions about our methods: (i) RandomMovelets is the
method that generates fewer movelet candidates, (ii) UltraMovelets also generates much less
candidates, compared to HiPerMovelets, a similar number to candidates of RandomMovelets.
Another observation is that we tested the τ parameter with 50%, 75%, and 90% configura-
tions, concluding that it has little impact on the number of generated movelet candidates and,
consequently, in the number of resulting movelets.

3.2.3.3.5 Analysis with All Datasets including data from other Domains

To clarify the results obtained, we compare differences between pairs of methods:
MASTERMovelets-Log, as the state-of-the-art reference; The HiPerPivots that is our published
method with the best performance; RandomMovelets and UltraMovelets, also proposed in this
chapter. We calculated the average difference between every two methods for the total running
time, classification accuracy, number of movelet candidates, and number of output movelets.

80

Figure 37 – Bar plots of number of movelet candidates in thousands for our methods in time series datasets.

The Table 9 shows the differences, where the negative results represent a reduction, and the
positive values are a percentage increase. The first part of the table considers only trajectory
datasets for comparing with MASTERMovelets, and in the second part, we compare to HiPer-

Table 9 – Result differences of average total time, accuracy, number of movelet candidates, and number of
movelets, in percent.

Reduction or increase (%) in trajectory datasets:
Total Time ACC (NN) # of Candidates # of Movelets

MASTERMovelets-Log to
HiPerPivots τ = 90%

-50.72 -3.17 -91.99 -22.79

MASTERMovelets-Log to
RandomMovelets

-41.42 -2.20 -89.99 -34.03

MASTERMovelets-Log to
UltraMovelets

-65.62 -1.01 -87.25 50.59

HiPerPivots τ = 90% to
RandomMovelets

146.69 0.98 128.74 0.18

HiPerPivots τ = 90% to Ultra-
Movelets

19.42 2.39 79.72 160.17

RandomMovelets to Ultra-
Movelets

-31.46 1.62 27.36 164.57

Reduction or increase (%) in all datasets, including genetic sequences and Time Series:
HiPerPivots τ = 90% to
RandomMovelets

50.24 10.63 6.73 22.27

HiPerPivots τ = 90% to Ultra-
Movelets

311.99 -6.15 51.93 291.94

RandomMovelets to Ultra-
Movelets

423.75 -12.78 102.65 178.93

81

Pivots in all datasets. We highlighted in bold where the method compared to perform better.
The first observation is in trajectory datasets that compared to MASTERMovelets-Log all three
of our methods reduced the running time and the number of movelet candidates in at least 41%
and 87%. Moreover, our methods are, on average, 6 to 10 times faster than MASTERMovelets,
thus, indicating a significant reduction in the search space for movelets. UltraMovelets is the
only method that increased the number of movelets, an average of 53%, while HiPerPivots and
RandomMovelets reduced around 35%. It is essential to notice that the impact on accuracy
is not a significant difference (reduction of 3.1% and lower 1.0%). However, when compared
to HiPerPivots in trajectory datasets, RandomMovelets and UltraMovelets improved accuracy.
When comparing to HiPerPivots in all datasets (which includes time series), another aspect that
calls attention is that RandomMovelets improved accuracy.

3.2.3.4 Discussion of Preliminary Scalability Results

In this experiment, we evaluate how HiPerPivots, RandomMovelets, and UltraMovelets
scale in different datasets and with different characteristics, comparing the computational time
spent in the movelets extraction. We choose HiPerPivots as it shows the best performance from
experimental evaluation in Section 3.1 and (PORTELA; CARVALHO; BOGORNY, 2022). We
use synthetic datasets with different configurations inspired by the methodology adopted in Ye e
Keogh (2011), Ferrero et al. (2020). In particular, we use three datasets: (i) with a fixed number
of 1600 trajectories and varying the trajectory size from 10 to 160 points, 8 attributes in every
trajectory, and 32 labels; (ii) with fixed trajectory size of 160 points and varying the number of
trajectories from 100 to 1600 trajectories with 8 attributes, and 32 labels; and (iii) with a fixed
number of 1600 trajectories, trajectory size of 160 points, 8 attributes in every trajectory, and
varying the number of labels from 2 to 32. The configurations use a logarithmic scale. Figure 38
shows the performance results. The black point markers (on the left) indicate experiments that
finished in the setup configurations, while the elements with an ’x’ could not complete. We
omitted the RandomMovelets from memory use evaluation as most experiments did not finish.

When observing the scalability in Figure 38 (a) and (c), we can notice that Ultra-
Movelets performs much better than HiPerPivots, both in increasing trajectory points and the
number of trajectories. HiPerPivots achieves the time limit with 1600 trajectories and 160
points, and RandomMovelets could not finish in most cases. This difference is expressive
by comparing the maximum use of RAM (Figure 38 b and d). UltraMovelets appears to be
more stable on memory use compared to HiPerPivots. Another interesting preliminary result
is presented when varying the number of classes (Figure 38 f), the maximum memory use de-
creases as the number of classes increases. That happens as HiPerPivots has to keep movelets
on memory while it finishes processing the trajectories of the class. It impacts the running time
(Figure 38 e). However, in all three evaluations, UltraMovelets performs better under the curve
of HiPerPivots.

82

(a) running time varying trajectory points (b) max. memory use varying trajectory points

(c) running time varying number of trajectories (d) max. memory use number of trajectories

(e) running time varying number of labels (f) max. memory use varying number of labels

Figure 38 – Scalability analysis of running time (left) and maximum memory use (right).

3.3 SUMMARY

In this chapter, we focused on the problem of reducing the search space and the running
time for movelet extraction. The main contribution is the proposed new HiPerMovelets method
that reduces up to 90% of processing time compared to the state-of-the-art MASTERMovelets,
keeping similar or high accuracy. We stated several results on the accuracy, number of movelets,
and processing time comparing MARC, MASTERMovelets, HiPerMovelets, and HiPerPivots
methods, and the last is ten times faster than MASTERMovelets. The method significantly
reduced the number of movelet candidates, the number of movelets, the movelet extraction time,
and the classification time. It is a significant result that it can achieve good classification results

83

with fewer movelets since the discriminant power of the movelets is not as much related to the
quantity. Moreover, we showed that the scalability of HiPerMovelets performed better than
MASTERMovelets when increasing the number of points, trajectories, and dimensions. The
results in this chapter appeared in the journal paper (PORTELA; CARVALHO; BOGORNY,
2022).

We then investigated how we can use movelets in other domains to classify multidi-
mensional sequential data. Therefore, in this chapter, we also proposed new RandomMovelets
and UltraMovelets methods for movelet extraction. The RandomMovelets was proposed to
be independent of the domain, aiming to overcome a limitation of HiPerMovelets on general-
ized datasets. The preliminary experimental results indicate that the random strategy of this
method can achieve good results in several types of data. Furthermore, we attempt to deal
with another significant limitation of previous methods (including HiPerMovelets and Random-
Movelets), which is the high need for computational resources. We propose UltraMovelets as
a method independent of parameters that reduce the search space and the number of gener-
ated movelet candidates. We, therefore, presented preliminary experimental results for clas-
sification in several datasets of raw, semantic, and multiple aspect trajectories, as well as in
multivariate and univariate time series datasets. We compared several results of accuracy, pro-
cessing time, number of generated movelets, and number of output movelets. In preliminary
experimentation, UltraMovelets shows very promising in reducing the search space and miti-
gating the curse of dimensionality. More experiments are necessary to confirm these prelim-
inary results. Based on the assessed results, performing fine adjustments to improve Ultra-
Movelets would be possible. The code to reproduce the experiments is publicly available at
https://github.com/bigdata-ufsc/HiPerMovelets.

84

4 AUTOMATIZE: A PLATFORM FOR MOVELETS ANALYSIS

We can observe from the experimental results presented in the previous chapter how
movelets can be several in number and complex to understand due to the high dimensionality.
As a further result of this thesis, we developed a tool to support the analyst in properly visual-
izing and analyzing movelets. In this chapter, we present a tool called AUTOMATIZE to give
insights into the behavior of the classes. We describe the details of this tool and show its use-
fulness by discussing the movelets obtained in the experimental evaluation of Subsection 3.2.3.
The content of this chapter has been presented in (PORTELA et al., 2022) and was awarded as
the best demo runner-up (in International Conference on Mobile Data Management, 2022).

4.1 MULTIPLE ASPECT TRAJECTORY DATA MINING TOOL LIBRARY

Frameworks capable of trajectory data visualization as SCIKIT-MOBILITY1 and GEOPAN-
DAS2 provide managing and analysis tools based on the raw spatio-temporal data. However, due
to the intrinsic complexity of the data, the multiple aspect trajectory analysis needs more specific
tools that could offer visualization associated with patterns discovered from multidimensional
data. Moreover, another fundamental issue is how to make the patterns extracted from such
high-dimensional data understandable.

Movelet-based trajectory data mining faces the following major challenges:

1. Visualizing the high dimensional data;

2. Visualizing the movelets associated to the trajectory data;

3. Providing the user with a unique platform for accessing the different tools available for
movelet extraction and trajectory classification.

This section introduces the AUTOMATIZE framework (PORTELA et al., 2022), an
interactive web system and python library that provides a friendly interface to run multiple
aspect trajectory classification and analysis. More precisely, the system provides tools to (1)
configure the experimental environment, (2) select movelets extraction methods, (3) run differ-
ent classifiers, and (4) summarize and visualize the results. For example, a data analyst can
use AUTOMATIZE for wildlife monitoring since he/she can visualize and compare movelets
extracted from animal trajectories to classify species moving patterns.

The present tool can be useful for multiple aspect trajectories and in a more general
setting of Multivariate Time Series data mining.
1 https://github.com/scikit-mobility/scikit-mobility
2 https://doi.org/10.5281/zenodo.705645

85

As a contribution to the research community, we make available AUTOMATIZE3 as
an online web application and as a Python library to provide developers and data analysts with
a comprehensive platform for classification of multidimensional data.

4.1.1 System Architecture

The AUTOMATIZE framework is available as a library in Python that can be easily
imported in scripts or notebook coding and as an interactive web platform that integrates public
datasets, classification methods, and experimental results. The prototype web platform is cur-
rently working with public datasets of multiple aspect trajectories, spatio-temporal trajectories,
and time series datasets4.

AUTOMATIZE has a friendly web interface that allows the user to interact with most
of the functions from the Python library. Thus, the user can perform the following activities:
a) trajectory and movelet visualization, b) public dataset review and analysis, c) results ex-
ploration, d) experimental environment preparation, and e) related publications review. It is
essential to highlight that the web-interface scalability is limited to the browser and web server
resources. It is a limit that the user has to manage, as large datasets will be very hard to load
and visualize.

The architecture of AUTOMATIZE is shown in Figure 39, is composed of five main
modules: Data Preprocessing, Scripting, Analysis, Results, and Visualization Tools, described
below.

Automatize

Python Web-interface

Preprocessing AnalysisScripting Visualization

Datasets experimental_history.csv

- preprocessing.py

- generator.py

- script.py

- run.py

- analysis.py

- classifiers.py

- methods*

Results
- results.py - movelets.py

- graphics.py

Figure 39 – The architecture of AUTOMATIZE platform.

Data Preprocessing: module capable of reading and writing trajectory datasets in
three formats: (i) sequential data in comma-separated values, (ii) sequential data in cache format
zip files, and (iii) multivariate time series files format. It provides methods for hold-out splitting
and joining the data, k-fold data split, format conversions, and dataset statistics. This module
3 Platform and source codes: https://github.com/ttportela/automatize
4 From https://archive.ics.uci.edu/ and http://timeseriesclassification.com/

86

also is capable of generating trajectory datasets based on random or sampling data with control
of the number of trajectories, points, dimensions, and classes;

Scripting: the scripting module provides functions to generate command-line scripts
for running methods and classifiers. Available methods to generate scripts include methods
developed in: (XIAO et al., 2017; ZHENG et al., 2010; DODGE; WEIBEL; FOROOTAN,
2009; FERRERO et al., 2018; VICENZI et al., 2020; May Petry et al., 2020; FERRERO et
al., 2020; PORTELA et al., 2021; PORTELA; CARVALHO; BOGORNY, 2022), but it can be
easily extended with other methods;

Analysis: provides python implementation of classifiers for multiple aspect trajecto-
ries and movelet-based methods: MARC (May Petry et al., 2020), POI-F (VICENZI et al.,
2020), Multi-layer Perceptron (MLP), Random Forest (RF), Decision Tree (DT), and Support
Vector Machine (SVM) (implemented in (FERRERO et al., 2020));

Results: the module provides functions to read and compile statistics from the experi-
mental results file, such as running time and accuracy. The web interface will read a result file
pre-computed in (PORTELA; CARVALHO; BOGORNY, 2022). Four types of results visual-
ization are provided: critical difference diagrams, box plots of the results, average ranks, and
filtered raw results. Again, this can be easily extended to other results files;

Movelets Visualization: library of tools that provides visualization schemes for movelets
as Sankey diagrams5, Markov chain6, class heat map per class, and a movelet tree visualization.

4.1.2 Visualization Tools

The AUTOMATIZE platform provides the following four types of trajectory and movelet
visualizations:

Statistics: display statistics of the trajectories (number of trajectories, attributes, tra-
jectories by class, trajectory sizes, and descriptive statistics by each dimension). When im-
porting movelet files, it displays descriptive statistics about the movelets by class, such as the
quality, sizes, and used features;

Trajectories and Movelets: displays the trajectory data in each dimension, ordered
by the sequence of points. The trajectory points present in movelets (for each dimension) are
highlighted. The user can interact by selecting the range of trajectories and the dimensions to
display. It is important to highlight that the interface allows the user to visualize trajectories and
their movelets together;

Movelets: this interface displays the movelets of one selected trajectory (Figure 40).
The trajectory points are here displayed aligned with its movelets. This visualization shows the
position in the trajectory where the movelets were extracted or they best fit. The user can look
for insights from the movelet patterns that could characterize the class behavior;
5 https://en.wikipedia.org/wiki/Sankey diagram
6 https://setosa.io/ev/markov-chains/

87

Figure 40 – Movelets visualization screen for selected trajectory.

Movelets Graph: provides three forms of graphical visualization of the movelets,
where the user can select the movelet range, the dimension to display, and the visualization
type:

• The Movelet Sankey Diagram is a visualization tool that shows the movelet sequences
flowing from one set of values to another. It depicts the movelet sequences, starting with
the class label, in an interactive way to show how the movelets can inter-connect;

• The Movelet Markov Chain shows how the movelet patterns flow from one point to an-
other as a directed graph network. The user can visualize the points and the sequences
that connect these points inside movelets;

• The Class Heat Map provides a heat map view of the movelets attributes frequency by the
class label. It displays the frequency of an attribute that appears in the movelets of each
class. Thus, helping to understand which attributes are best to discriminate the classes;

• The Movelet Tree provides a tree view of the movelets ordered by the higher quality value
computed as F-Score (FERRERO et al., 2020) and aggregated based on overlapping ele-
ments. In other words, it displays the movelets in a top-bottom order of the most relevant
subtrajectories to the less significant. It is a simple way of organizing the movelets to
help the user understand a class behavior.

Results Exploration: The Results Exploration interface provides ways to summarize,
filter, and explore the obtained results with experimental evaluations. The user can display a

88

predefined results file or load a new one in comma-separated values. The user can filter results
and build rankings of methods by selecting datasets, methods, and classifiers. The rankings are
built by accuracy, running time of the method execution, and classification running times. Four
types of result visualizations are provided: critical difference diagrams, box plots of the results,
average ranks, and filtered raw results. The displayed results can be filtered and exported to a
file.

4.2 MOVELETS ANALYSIS AND STATISTICS

Multidimensional and sequential data is not trivial by definition, thus, complex to ana-
lyze. Movelets present an opportunity to understand the patterns of this data. In this section, we
analyze the statistics of the resulting movelets of Subsection 3.2.3 obtained with the methods:
MASTERMovelets, HiPerMovelets, RandomMovelets, and UltraMovelets. First, we analyze
the number of movelets, the average number of features, size and quality of generated movelets
by each method (Subsection 4.2.1). Since the number of movelets is very high, we presented
the distribution box plot of the average on each dataset for the number of features, size, and
quality of generated movelets. That is to maintain a balanced visual representation between the
datasets. Then, we discuss the attribute dependency by the class label in the Foursquare NYC
dataset (Subsection 4.2.2). We present this analysis only in trajectory datasets to compare with
MASTERMovelets.

4.2.1 Number of Movelets, Features, Size, and Quality

To better understand how each movelet-based method works, we present an analysis
of movelet characteristics in this section. We present the distribution of the number of movelets
and the average number of features, size, and quality of generated movelets by each method
on trajectory datasets, and the two datasets of genetic sequences. The results presented in
this section correspond to one evaluation of each method on each dataset, to be fair, since
raw datasets are evaluated in five folds. We included the raw, semantic, and multiple aspect
trajectory datasets from experimental evaluation in Subsection 3.2.3.

The movelets are input to a classifier, which in very large datasets will impact the
classifier running time. As presented in Figure 41, the methods with more extracted movelets
are MASTERMovelets, and UltraMovelets. Indeed, UltraMovelets is expected to output more
movelets since it can select subtrajectories with the same points in different dimensions, differ-
ent from other compared methods. However, as shown in Subsection 3.2.3, it is a disadvantage
of the method since the classification accuracy is not significantly higher compared to our other
methods. The method with fewer extracted movelets is MASTERPivots, followed by HiPer-
Movelets and HiPerPivots, as we consider the mean values. For both HiPerMovelets variations,
the value of τ seems to have little impact on the total number of output movelets. HiPer-

89

Movelets methods are designed to generate fewer movelets due to their pruning strategies, and
the reduction, compared to MASTERMovelets, is significant.

Figure 41 – Distribution box plots of the number of movelets by method.

Movelets are subtrajectories that combine different dimensions and points to represent
relevant patterns in the trajectories of a class. The number of features in movelets is the com-
bined dimensions in that subtrajectory. We analyze the average number of features of movelets
extracted in each dataset, as presented in Figure 42. On average, all methods generate movelets
with less than 3.5 combined dimensions, most with a mean average below 2 dimensions. That
indicates that no much more than 2 dimensions combined are necessary to discriminate behav-
iors. On average, the UltraMovelets extract movelets with fewer dimensions combined, as it
does only the necessary combinations while quality improves. The methods seem to present
the most differences when comparing the average size of the subtrajectories. As shown in
Figure 43, on average, HiPerPivots is the method that extracts the shorter movelets, followed
by HiPerMovelets and UltraMovelets, respectively. RandomMovelets and MASTERMovelets
extract movelets with longer subsequences of the trajectories that have more variation of the
average size between datasets (larger interquartile range). On average, subtrajectory sizes are
all under three points, meaning that most subtrajectories up to three points appear to be the most
discriminant, an important aspect of behavior analysis. That can indicate that short subtrajecto-
ries can be the most discriminant.

The quality of movelets represents how discriminant the subtrajectory is for classifica-
tion purposes. Since all compared methods employ F-score as a quality measure, we compare
the average quality of the movelets presented in Figure 44. Between the presented methods, the
quality is very similar. Most average quality values are between 40% to 60%. The quality alone,
however, is not enough to tell how well a classifier will perform on a set of movelets. Indeed,
it is important to how representative the movelets are, which depends on whether they cover
sufficient examples of the moving object trajectories and how distinct they are to the classifier
to reduce confusion.

90

Figure 42 – Distribution box plots of average movelet number of attributes by method.

Figure 43 – Distribution box plots for average movelet number of points by method.

Figure 44 – Distribution box plots of average movelet quality by method.

4.2.2 Attribute Confidence Analysis

The movelets can indicate the most discriminant attributes on a given dataset. When an
attribute is good at separating the classes, it is expected to appear more in movelets. We analyze
the attribute confidence of our methods in comparison to MASTERMovelets by the proportion
of each attribute appearing on extracted movelets. We employ AUTOMATIZE tool to generate
heat map plots in a proportion scale of 0 to 1, representing the ratio of attribute occurrence by
the total number of movelets. First, we present the movelet attribute use on the Foursquare
NYC dataset with specific and generic configurations by each movelet-based method. Second,

91

we present the proportion of each attribute by the 30 first users.

Figure 45 – Heat map for movelet attribute use by method in Foursquare NYC specific.

Figure 46 – Heat map for movelet attribute use by method in Foursquare NYC generic.

Figure 45 presents the attribute frequency (from 0 to 1) for Foursquare NYC specific
dataset. Latitude and Longitude (lat and lon) appear equal in proportion, as they are always
treated as one spatial attribute, never split by the methods. MASTERMovelets relies most on
spatial and POI attributes, while other methods rely most on Spatial data, followed by the hour,
category, and day in almost half of the movelets. The spatial information is very specific for
classification, thus, is expected to be very present in movelets. POI depends on the spatial
attribute and is specific enough to be frequently selected. The Hour and Day attributes appear
to be very important in discriminating the behaviors of the classes. Indeed, Foursquare NYC
represents check-in trajectories of people segmented by week spam, which can indicate people
behaviors repeat at specific times and days of the week. Moreover, when removing the very
specific data (the spatial and POI attributes), the movelets reliance on Hour and Day attributes
increase, as presented in Figure 46. In this scenario, Category and Rating also appear more
frequently. The category attribute represents the POI generic categorization and depends on
spatial information. The Rating and Price depend on the POI, but the place Rating appears more

92

discriminant of the class behaviors than the Price for some methods. The weather condition,
however, has the least impact on discriminating classes, less common in the movelets.

We chose to detail the attribute reliance of the first 30 class labels for movelets ex-
tracted with HiPerPivots on Foursquare NYC generic, as presented in Figure 47. The first ob-
servation is that the day of the week attribute is present in over 50% of movelets in all classes.
However, the weather condition seems much less relevant for any class labels. The Hour and
Category also appeared more consistently in the classes, except for users 172 and 642, mainly
distinguished by the day of the week. That indicates the different importance of each attribute
to represent the behaviors of such classes.

Figure 47 – Heat map for movelet attribute use by class in Foursquare NYC generic.

We argue that we can discover knowledge from the movelets not only by visualizing
the subtrajectories but also by analyzing the characteristics of the movelets of the classes. It can
reveal important information about class behaviors. Visualizing the movelets and the multidi-
mensional trajectory is a powerful way of investigating classification results. Thus, the platform
described in this chapter is a valuable tool to support analysts and researchers on trajectory data
mining.

4.3 SUMMARY

In this chapter, we presented the AUTOMATIZE platform, both a web interface and a
python library that provides tools to perform trajectory and multidimensional data classification
tasks. AUTOMATIZE is tailored for multiple aspect trajectories and more general multidimen-
sional sequential datasets and offers several options to visualize both trajectories and movelets.
That speeds up the task of creating interactive visualizations that data analysts need to compare
and offers unique views of the movelets that can give insights to the data analyst. The main
features of this platform are supporting the analyst, or researcher, to develop experimental envi-
ronments, retrieve classification results and visualize the trajectory classification data. The tool
also supports the preprocessing of data, including generating synthetic datasets.

We discussed the movelets obtained in several trajectory datasets with MASTER-
Movelets, HiPerMovelets, RandomMovelets, and UltraMovelets. Using the tool, we analyzed
the distribution of the number of movelets, and the distribution averages of the number of fea-
tures, size, and quality of generated movelets, presenting differences and similarities of each

93

method. This statistical analysis of movelets aims to give insights into the knowledge to be
discovered in movelets. We presented the frequency of appearance in movelets of attributes
from the Foursquare NYC dataset in both specific and generic data. This analysis reveals what
dimensions better discriminate the classes and the fundamental differences between them. For
instance, a person that is almost only distinguished by the attribute time can indicate that his
behavior is particularly governed by the periods of time it moves and is less dependent on the
visited places. We discussed the differences between methods, attribute dependencies, and pos-
sibilities to analyze discriminant attributes by the class label. The platform and source codes
are available at https://github.com/ttportela/automatize.

94

5 CONCLUSION AND FUTURE WORKS

In this thesis, we addressed the problem of multiple aspect trajectory (MAT) classifi-
cation, an important topic in trajectory data mining. Existing trajectory classification methods
have mainly been developed for raw trajectory data, considering only space and time dimen-
sions, ignoring the large number of semantic attributes of MATs.

Among the works that can deal with MAT trajectories and that show the best accuracy
are MARC and MASTERMovelets. MARC is based on embeddings of the dimensions, and
MASTERMovelets extracts discriminant subtrajectories called movelets. MASTERMovelets
generates interpretable patterns, i.e., trajectory parts that better discriminate a class. Although
the method presents high accuracy, it has a high computational cost, making it almost impossi-
ble to apply to large datasets.

Trying to answer our research question “Can we develop new algorithms for dis-
covering movelets that are faster than Movelets and MASTERMovelets maintaining or
improving classification accuracy?” we tackled the trajectory classification problem propos-
ing faster, scalable, and still accurate strategies for finding movelets. We propose a main method
called HiPerMovelets, two methods that have shown promising results for other domains called
RandomMovelets and UltraMovelets, and a tool for facilitating trajectory classification and
movelet analysis.

HiPerMovelets is an in-class pruning and frequency-based strategy for movelet discov-
ery. HiPerMovelets uses a greedy approach with a frequency-based technique to find the most
discriminant subtrajectories for classification problems. It does not compute the distance matrix
of a trajectory point to all other trajectory points in the dataset, but to the points of the trajec-
tories of a single class. It extracts movelets only from subtrajectories that occur more in the
trajectories of the same class and then evaluates the subtrajectories by calculating their relative
frequency of occurrence in the trajectories of the class. HiPerMovelets also limits the number
of trajectories searched in the dataset by counting the covered trajectories from the movelets.
HiPerPivots is a variation that can further reduce the search space by selecting pivot points
more likely to generate movelets. Experimental results show that HiPerMovelets and HiPer-
Pivots are 10 times faster than MASTERMovelets, reduce the high dimensionality problem,
are more scalable, and present a high classification accuracy in all evaluated datasets with both
raw and multiple aspect trajectories. These methods, specially HiPerPivots, are more scalable
than MASTERMovelets when comparing increasing number of trajectories, trajectory points,
and dimensions. In comparison to MARC, our proposals are more accurate and generates inter-
pretable patterns.

A limitation to HiPerMovelets is that not always frequency is the best strategy for
efficiently searching movelets. In some datasets as generalized data, where the very specific
dimensions are omitted or replaced for categorical information, the most discriminant patterns
are less frequent. As secondary contributions we proposed RandomMovelets and UltraMovelets
methods to reduce the search space for movelets.

95

RandomMovelets uses a random strategy that gives the movelets the same chances to
be selected without other pre selection calculations. Movelet candidates are randomly selected
and then evaluated for movelet discovery. It reduces the search space by limiting the number of
candidates compared to the dataset. We investigate the method performance in raw, semantic,
multiple aspect (including a generic dataset), and time series data. Preliminary results indicate
RandomMovelets has good classification accuracy and a reasonable running time. Compared to
MASTERMovelets it reduces the running time by half on average. It also reduces the number
of movelet candidates and movelets keeping similar accuracy as MASTERMovelets and im-
proved accuracy compared to HiPerPivots. The RandomMovelets method shows improvements
in accuracy also for other domains compared HiPerPivots, and in the generic dataset.

The UltraMovelets method recursively selects the best combination of subtrajectory
points and dimensions to evaluate movelets, thus reducing the high number of explored can-
didates. It early stops the combinatorial explosion of points and dimensions from subtrajecto-
ries that will not increase movelet quality. It shows promising results in reducing the gener-
ated movelet candidates, does not require any parameter configuration, reduces the generated
movelet candidates, and scales better than HiPerPivots. Reducing the combinatorial exploration
of subtrajectories shows a direct impact on reducing memory resources. UltraMovelets per-
formed better in scalability experiments comparing to HiPerPivots, the method that previously
showed better scalability results.

Both RandomMovelets and UltraMovelets in preliminary experiments showed im-
provement in accuracy in detriment of running time, which shows a trade-off between the time
to search for the movelets and the classification accuracy. RandomMovelets is a strategy best
suited for problems where the dataset characteristics are unknown or little known. The random
uncertainty is a limitation of the method, but in some level mitigated by the iterative search of
movelets, which will evaluate all movelet candidates if necessary. The UltraMovelets method,
instead, is purely based on the F-Score quality to search movelets, which is more reliable to
the patterns discovered. The UltraMovelets are different patterns from the discovered from
HiPerMovelets and RandomMovelets considering the size and dimensions present in the output
movelets. It can represent a different knowledge extracted from the data.

In order to facilitate the trajectory classification task, we proposed AUTOMATIZE. It
is a tool to support the user in the classification task of multiple aspect trajectories, specifically
for extracting and visualizing the movelets. It integrates into a unique platform the fragmented
approaches available in the literature for multiple aspect trajectories and, in general, for mul-
tidimensional sequence classification into a unique web-based and python library system. The
tool provides resources to:

1. Configure the experimental environment;

2. Select movelets extraction methods;

3. Run different classifiers;

96

4. Summarize and visualize the results:

5. Visualize the multidimensional data and the movelets;

6. Preprocess the data and generate synthetic datasets.

The AUTOMATIZE tool is tailored for multiple aspect trajectories but also to more
general multidimensional sequential datasets. It offers several options to visualize trajectories
and movelets, by hiding many details of the python coding. Due to the intrinsic complexity
of the multiple aspect trajectory data, the analysts need more specific tools that could offer
visualization associated with patterns discovered from multidimensional data. Multiple aspects
trajectories is a model general enough to represent other domains, such as the multivariate time
series, event logs, or genetic sequences. AUTOMATIZE is an open source platform that was
designed to be easily extended for other types of data and feature visualizations.

It is important to highlight that movelets are interpretable and so far, the only represen-
tation of sequential patterns from the multidimensional data. Movelets present an opportunity
for data analysts to understand the behaviors of multiple aspect trajectories, the discriminant
sequential patterns, and which dimensions characterize the classes. Movelets can be several in
number and complex to understand due to their high dimensionality, therefore, a proper tool for
visualizing and analyzing movelets such as AUTOMATIZE is needed to give insights about the
behavior of the classes for data analysts.

Another fundamental issue we tackled is how to make understandable the patterns
extracted from the high dimensional trajectory data. We explored the discovered movelets com-
paring MASTERMovelets, HiPerMovelets, RandomMovelets, and UltraMovelets in several
datasets. From the distribution of the number of movelets, the number of sequential points, the
number of attributes, and the quality to have insights about the characteristics of the methods.
The main conclusions is, from the reduced number of movelets generated by HiPerMovelets, it
enables to the production of faster classification models. RandomMovelets presents more vari-
ability in movelets size and number of attributes, being able to perform well in datasets with
very different characteristics (like the specific and generic data). The UltraMovelets method,
however, produces simpler subtrajectories that are smaller in size and with fewer attributes. In
terms of the average quality of the movelets, the methods present low variability, which the
results indicate their ability to perform high accuracy classification.

In order to overcome some limitations of our methods, we propose the following future
works.

For trajectory classification it is important to find a way of counting the presence or
absence of the movelet in a trajectory, and if it can be done without the need of finding the split
point, or best alignments, it is possible to improve the method performance. Thus, proposing
a new strategy to do the split point and the best alignment that avoids calculating distances
for every position in all trajectories is a solution. The split point is a multidimensional point
that better separates trajectories from a target class and non-target classes. Finding the split

97

point requires comparing the distances of a movelet candidate to every trajectory in the dataset.
The best alignment is done by calculating the distances (point-to-point) of that candidate to
all possible positions in a trajectory (by aligning the points). Thus, for evaluating the F-score

quality, first, point-to-point distances are calculated; the minimal distance of a candidate is
chosen as the best alignment for each trajectory; and one of the best alignments is selected as
the split point as it provides the higher F-Score. Those are complex steps that can be improved.

Movelets are evaluated with F-score quality, which works as an internal classifier to
measure the relevance of the subtrajectories for discriminating classes. A solution might be
neither using the best alignment nor the F-score but another efficient quality measure, as for
instance, the Gini (that measures the inequality among different groups) or TF-IDF (term fre-
quency and inverse document frequency). Other classification methods could be used to eval-
uate the subtrajectories quality like random forests, decision trees, linear or logistic regression,
covariance, neural networks, etc.

The performance of extracting movelets was improved by not comparing all trajec-
tory points, or combining all attributes in movelet discovery. Another solution could be a new
method for distributed processing of trajectories. A parallel distributed method for movelets
discovery can divide the dataset into many parts for distributed processing, thus, allowing to
grow scalability for Big Data. The challenge to this is to discover movelets which have to
be compared to subtrajectories of the entire dataset, thus requiring a new method for movelet
evaluation.

Many classifiers are being used for trajectory classification. Random Forest and Multi-
layer Perceptron Neural Networks, Random Forests, and Support Vector Machines have been
used for trajectory classification using movelets. Other methods have employed embeddings,
deep learning, extracting features, and other recent techniques to classify trajectories. An-
other architecture for a classifier can be used to improve the results, as for instance the use of
deep learning, ensemble methods, and convolutional neural networks with the aggregation of
movelets. A new direction is to investigate new classifiers with movelets or the combination
of movelets and new classification techniques to improve the classification results. It could be
done with the combination of movelets, other features and ensemble methods.

The potential of movelet-based methods goes beyond the classification of multiple
aspect trajectories. Indeed, research can benefit from experimental evaluations on any multidi-
mensional sequential data and other domains. Movelets can potentially be a way of discovering
interpretable patterns in other complex types of data.

The scalability experiments give insights into methods behaviors on increasing vol-
umes of data. Extensive scalability experimentation can help identifying problems, and lead to
solutions for more scalable methods. It is necessary to do scalability experiments on the num-
ber of trajectories, number of points, number of dimensions, number of classes, and threading
parallelization.

Movelets are the patterns that discriminate classes. Movelets can have many appli-
cations beyond the task of trajectory classification. By identifying what discriminates classes

98

can be possible to do other mining tasks, such as: anonymization, by hiding what reveals the
user identity; prediction, for instance, the level of a hurricane with the beginning of the storm
trajectories; and clustering trajectories by finding similar subtrajectories. Thus, another future
work is investigating other application domains for movelets.

99

BIBLIOGRAPHY

A. de Freitas., N. et al. Using deep learning for trajectory classification. In: INSTICC.
Proceedings of the 13th International Conference on Agents and Artificial Intelligence -
Volume 2: ICAART,. [S.l.]: SciTePress, 2021. p. 664–671. ISBN 978-989-758-484-8. ISSN
2184-433X.

AGRAWAL, R.; SRIKANT, R. Fast algorithms for mining association rules in large databases.
In: Proceedings of the 20th International Conference on Very Large Data Bases. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1994. (VLDB ’94), p. 487–499.
ISBN 1558601538.

BAGNALL, A. et al. The great time series classification bake off: a review and experimental
evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery, v. 31,
n. 3, p. 606–660, May 2017. ISSN 1573-756X. Disponı́vel em: https://doi.org/10.1007/s10618-
016-0483-9.

BAYAT, S. et al. GPS driving: a digital biomarker for preclinical alzheimer disease.
Alzheimer's Research & Therapy, Springer Science and Business Media LLC, v. 13, n. 1,
jun. 2021. Disponı́vel em: https://doi.org/10.1186/s13195-021-00852-1.

BAYAT, S. et al. A GPS-based framework for understanding outdoor mobility patterns of older
adults with dementia: An exploratory study. Gerontology, S. Karger AG, p. 1–15, abr. 2021.
Disponı́vel em: https://doi.org/10.1159/000515391.

BIAN, J. et al. Trajectory data classification: a review. ACM Transactions on Intelligent
Systems and Technology, v. 10, n. 4, 2019. ISSN 21576912.

BOLBOL, A. et al. Inferring hybrid transportation modes from sparse gps data using a moving
window svm classification. Computers, Environment and Urban Systems, Elsevier, v. 36,
n. 6, p. 526–537, 2012.

BREIMAN, L. Random forests. Machine Learning, v. 45, n. 1, p. 5–32, Oct 2001. ISSN
1573-0565. Disponı́vel em: https://doi.org/10.1023/A:1010933404324.

CHEN, L.; ÖZSU, M. T.; ORIA, V. Robust and fast similarity search for moving object
trajectories. Proceedings of the ACM SIGMOD International Conference on Management
of Data, p. 491–502, 2005. ISSN 07308078.

CHEN, T.; GUESTRIN, C. Xgboost: A scalable tree boosting system. In: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. New York, NY, USA: Association for Computing Machinery, 2016. (KDD ’16), p.
785–794. ISBN 9781450342322. Disponı́vel em: https://doi.org/10.1145/2939672.2939785.

CHO, E.; MYERS, S. A.; LESKOVEC, J. Friendship and mobility: User movement
in location-based social networks. Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, p. 1082–1090, 2011.

DABIRI, S.; HEASLIP, K. Inferring transportation modes from GPS trajectories using a
convolutional neural network. Transportation Research Part C: Emerging Technologies,
Elsevier, v. 86, n. August 2017, p. 360–371, 2018. ISSN 0968090X. Disponı́vel em:
https://doi.org/10.1016/j.trc.2017.11.021.

100

DODGE, S.; WEIBEL, R.; FOROOTAN, E. Revealing the physics of movement: Comparing
the similarity of movement characteristics of different types of moving objects. Computers,
Environment and Urban Systems, Elsevier Ltd, v. 33, n. 6, p. 419–434, 2009. ISSN
01989715. Disponı́vel em: http://dx.doi.org/10.1016/j.compenvurbsys.2009.07.008.

DRUCKER, H.; WU, D.; VAPNIK, V. N. Support vector machines for spam categorization.
IEEE Transactions on Neural networks, IEEE, v. 10, n. 5, p. 1048–1054, 1999.

ENDO, Y. et al. Deep feature extraction from trajectories for transportation mode estimation.
In: SPRINGER. Pacific-Asia Conference on Knowledge Discovery and Data Mining. [S.l.],
2016. p. 54–66.

ETEMAD, M.; Soares Júnior, A.; MATWIN, S. Predicting transportation modes of GPS
trajectories using feature engineering and noise removal. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), v. 10832 LNAI, n. ii, p. 259–264, 2018. ISSN 16113349.

FERRERO, C. A. Discovering Relevant Subtrajectories for Multidimensional Trajectory
Classification. 118 p. Tese (PhD thesis) — Universidade Federal de Santa Catarina,
Florianópolis, SC, Brasil, 2020.

FERRERO, C. A.; ALVARES, L. O.; BOGORNY, V. Multiple aspect trajectory data
analysis: Research challenges and opportunities. Proceedings of the Brazilian Symposium
on GeoInformatics, v. 2016-Novem, p. 56–67, 2016. ISSN 21794847. Disponı́vel em:
http://mtc-m16c.sid.inpe.br/col/sid.inpe.br/mtc-m16c/2017/02.21.11.53/doc/56-67ferrero.pdf.

FERRERO, C. A. et al. Movelets: Exploring relevant subtrajectories for robust trajectory
classification. In: Proceedings of the 33rd Annual ACM Symposium on Applied
Computing. New York, NY, USA: Association for Computing Machinery, 2018. (SAC ’18),
p. 849–856. ISBN 9781450351911. Disponı́vel em: https://doi.org/10.1145/3167132.3167225.

FERRERO, C. A. et al. MasterMovelets: discovering heterogeneous movelets for multiple
aspect trajectory classification. Data Mining and Knowledge Discovery, v. 34, n. 3, p.
652–680, 2020. Disponı́vel em: https://doi.org/10.1007/s10618-020-00676-x.

FURTADO, A. S. et al. Unveiling movement uncertainty for robust trajectory similarity
analysis. International Journal of Geographical Information Science, Taylor & Francis,
v. 32, n. 1, p. 140–168, 2018. Disponı́vel em: https://doi.org/10.1080/13658816.2017.1372763.

FURTADO, A. S. et al. Multidimensional similarity measuring for semantic tra-
jectories. Transactions in GIS, v. 20, n. 2, p. 280–298, 2016. Disponı́vel em:
https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12156.

GAO, Q. et al. Identifying human mobility via trajectory embeddings. IJCAI International
Joint Conference on Artificial Intelligence, p. 1689–1695, 2017. ISSN 10450823.

GIGLI, A. et al. Fast feature selection for learning to rank. ICTIR 2016 - Proceedings of the
2016 ACM International Conference on the Theory of Information Retrieval, p. 167–170,
2016.

HOLT, G. T. et al. Multi-Dimensional Dynamic Time Warping for Gesture Recognition.
Annual Conference of the Advanced School for Computing and Imaging, 2007.

101

JI, C. et al. A fast shapelet selection algorithm for time series classification. Computer
Networks, v. 148, p. 231–240, 2019. ISSN 13891286.

JIANG, X. et al. Trajectorynet: An embedded gps trajectory representation for point-based
classification using recurrent neural networks. In: IBM CORP. Proceedings of the 27th
Annual International Conference on Computer Science and Software Engineering. [S.l.],
2017. p. 192–200.

JúNIOR, A. S.; RENSO, C.; MATWIN, S. Analytic: An active learning system for trajectory
classification. IEEE computer graphics and applications, IEEE, v. 37, n. 5, p. 28–39, 2017.

KLEENE, S. C. Representation of events in nerve nets and finite automata. In: .
Automata Studies. (AM-34), Volume 34. Princeton: Princeton University Press, 2016. p.
3–42. Disponı́vel em: https://doi.org/10.1515/9781400882618-002.

LEE, J. G. et al. TraClass: Trajectory classification using hierarchical region based and
trajectory based clustering. Proceedings of the VLDB Endowment, v. 1, n. 1, p. 1081–1094,
2008. ISSN 21508097.

LEE, J.-G. et al. Mining discriminative patterns for classifying trajectories on road networks.
IEEE Transactions on Knowledge and Data Engineering, IEEE, v. 23, n. 5, p. 713–726,
2011.

LEHMANN, A. L.; ALVARES, L. O.; BOGORNY, V. Smsm: a similarity measure
for trajectory stops and moves. International Journal of Geographical Informa-
tion Science, Taylor & Francis, v. 33, n. 9, p. 1847–1872, 2019. Disponı́vel em:
https://doi.org/10.1080/13658816.2019.1605074.

LEITE, C.; PETRY, L. M.; BOGORNY, V. A Survey and Comparison of Trajectory
Classification Methods. 2019 8th Brazilian Conference on Intelligent Systems (BRACIS)
(submitted), p. 788–793, 2019.

Leite da Silva, C. Pivot-based approaches for Movelets and MASTERMovelets
Optimizations. 88 p. Tese (Master thesis) — Universidade Federal de Santa Catarina,
Florianópolis, SC, Brasil, 2020.

May Petry, L. et al. MARC: a robust method for multiple-aspect trajectory classification via
space, time, and semantic embeddings. International Journal of Geographical Information
Science, 2020. ISSN 13623087.

MELLO, R. d. S. et al. MASTER: A multiple aspect view on trajectories. Transactions in
GIS, 2019. ISSN 14679671.

MIKOLOV, T. et al. Distributed representations of words and phrases and their
compositionality. In: Advances in neural information processing systems. [S.l.:
s.n.], 2013. p. 3111–3119.

MUEEN, A.; KEOGH, E.; YOUNG, N. Logical-shapelets: An expressive primitive for time
series classification. Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, p. 1154–1162, 2011.

NIEMEYER, G. Geohash. 2008. [Online]. Available: https://en.wikipedia.org/wiki/Geohash.

102

PATEL, D. et al. Incorporating duration information for trajectory classification. In:
Proceedings of the 2012 IEEE 28th International Conference on Data Engineering. USA:
IEEE Computer Society, 2012. (ICDE ’12), p. 1132–1143. ISBN 9780769547473. Disponı́vel
em: https://doi.org/10.1109/ICDE.2012.72.

PETRY, L. M. et al. Towards semantic-aware multiple-aspect trajectory similarity
measuring. Transactions in GIS, v. 23, n. 5, p. 960–975, 2019. Disponı́vel em:
https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12542.

PORTELA, T. T. et al. Automatise: Multiple aspect trajectory data mining tool library. In: 2022
23rd IEEE International Conference on Mobile Data Management (MDM). Online: [s.n.],
2022. p. 282–285. Awarded: MDM 2022 Best Demo Runner-Up. [Detailed in Chapter 4].

PORTELA, T. T.; CARVALHO, J. T.; BOGORNY, V. Hipermovelets: high-performance
movelet extraction for trajectory classification. International Journal of Geographical
Information Science, Taylor & Francis, v. 0, n. 0, p. 1–25, 2022. [Detailed in Section 3.1].
Disponı́vel em: https://doi.org/10.1080/13658816.2021.2018593.

PORTELA, T. T. et al. Fast movelet extraction and dimensionality reduction for robust multiple
aspect trajectory classification. In: BRITTO, A.; DELGADO, K. V. (Ed.). 2021 10th Brazilian
Conference on Intelligent Systems (BRACIS). Cham: Springer International Publishing,
2021. p. 468–483. ISBN 978-3-030-91702-9. [Detailed in Chapter 2].

PORTELA, T. T.; VICENZI, F.; BOGORNY, V. Trajectory data privacy: Research
challenges and opportunities. In: FILHO, J. L.; MONTEIRO, A. M. V. (Ed.). XX
Brazilian Symposium on Geoinformatics - GeoInfo 2019, São José dos Campos,
SP, Brazil, November 11-13, 2019. MCTIC/INPE, 2019. p. 99–110. Disponı́vel em:
http://urlib.net/rep/8JMKD3MGPDW34R/3UFDFDB.

RAKTHANMANON, T.; KEOGH, E. Fast shapelets: A scalable algorithm for discovering
time series shapelets. Proceedings of the 2013 SIAM International Conference on Data
Mining, SDM 2013, p. 668–676, 2013.

RUIZ, A. P. et al. The great multivariate time series classification bake off: a review and
experimental evaluation of recent algorithmic advances. Data Mining and Knowledge
Discovery, v. 35, n. 2, p. 401–449, Mar 2021. ISSN 1573-756X. Disponı́vel em:
https://doi.org/10.1007/s10618-020-00727-3.

SANTOS, I. J. P. dos; JR, I.; ALVARES, L. O. TRACTS: um método para classificação de
trajetórias de objetos móveis usando séries temporais. In: XXXI Congresso da Sociedade
Brasileira de Computação. [S.l.: s.n.], 2011.

SHARMA, L. K. et al. Nearest neighbour classification for trajectory data. In: SPRINGER.
International Conference on Advances in Information and Communication Technologies.
[S.l.], 2010. p. 180–185.

SHOKOOHI-YEKTA, M. et al. Generalizing DTW to the multi-dimensional case requires
an adaptive approach. Data Mining and Knowledge Discovery, Springer US, v. 31, n. 1, p.
1–31, 2017. ISSN 1573756X.

SOLEYMANI, A. et al. Integrating cross-scale analysis in the spatial and temporal domains
for classification of behavioral movement. Journal of Spatial Information Science, v. 2014,
n. 8, p. 1–25, 2014.

103

SPACCAPIETRA, S. et al. A conceptual view on trajectories. Data and Knowledge
Engineering, Elsevier, v. 65, n. 1, p. 126–146, 2008. ISSN 0169023X.

TRAGOPOULOU, S.; VARLAMIS, I.; EIRINAKI, M. Classification of movement data
concerning user’s activity recognition via mobile phones. ACM International Conference
Proceeding Series, 2014.

VARLAMIS, I. Evolutionary data sampling for user movement classification. 2015 IEEE
Congress on Evolutionary Computation, CEC 2015 - Proceedings, IEEE, p. 730–737,
2015.

VICENZI, F. et al. Exploring frequency-based approaches for efficient trajectory classification.
Proceedings of the ACM Symposium on Applied Computing, p. 624–631, 2020.

VLACHOS, M.; KOLLIOS, G.; GUNOPULOS, D. Discovering similar multidimensional
trajectories. Proceedings - International Conference on Data Engineering, p. 673–684,
2002. ISSN 10844627.

WANG, H. et al. Detecting transportation modes using deep neural network. IEICE
TRANSACTIONS on Information and Systems, The Institute of Electronics, Information
and Communication Engineers, v. 100, n. 5, p. 1132–1135, 2017.

XIAO, Z. et al. Identifying different transportation modes from trajectory data using tree-based
ensemble classifiers. ISPRS International Journal of Geo-Information, v. 6, n. 2, 2017.
ISSN 22209964.

YANG, D. et al. Modeling User Activity Preference by Leveraging User Spatial Temporal
Characteristics in LBSNs. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
v. 45, n. 1, p. 129–142, 2015.

YE, L.; KEOGH, E. Time series shapelets: A novel technique that allows accurate,
interpretable and fast classification. Data Mining and Knowledge Discovery, v. 22, n. 1-2, p.
149–182, 2011. ISSN 13845810.

ZHANG, Z. et al. Discriminative extraction of features from time series. Neurocomputing,
v. 275, p. 2317–2328, 2018. ISSN 18728286.

ZHENG, Y. Trajectory data mining: An overview. ACM Transactions on Intelligent Systems
and Technology, v. 6, n. 3, p. 1–41, 2015. ISSN 21576912.

ZHENG, Y. et al. Understanding transportation modes based on GPS data for web applications.
ACM Transactions on the Web, v. 4, n. 1, 2010. ISSN 15591131.

ZHENG, Y. et al. Understanding mobility based on gps data. In: ACM. Proceedings of the
10th international conference on Ubiquitous computing. [S.l.], 2008. p. 312–321.

ZHOU, F. et al. Trajectory-user linking via variational autoencoder. IJCAI International Joint
Conference on Artificial Intelligence, v. 2018-July, p. 3212–3218, 2018. ISSN 10450823.

ZUO, J.; ZEITOUNI, K.; TAHER, Y. Exploring interpretable features for large time series
with se4tec. In: 22nd International Conference on Extending Database Technology, EDBT
2019. [S.l.: s.n.], 2019.

104

6 EXPERIMENTAL RESULTS FOR SEVERAL DATASETS

In this appendix, we present a more detailed description of the results obtained in
the experimental evaluation done during the Ph.D. period. The following sections provide a
summary of the results obtained in experimental evaluations. First, we present the compilation
of results in tables for all datasets. Then, we present a summary of the results as box plots,
organized into four parts: experiments with multiple aspect trajectory datasets, experiments
with raw trajectory datasets, genetic sequence datasets, and time series datasets.

105

6.1 ACCURACY RESULTS FOR ALL DATASETS WITH NEURAL NETWORK CLASSIFIER

Table 10 – Results of Accuracy with neural network classifier for all dataset.

Dataset
Dodge Xiao Zheng Movelets RF XGBoost DeepeST

NPOI
MARC

MASTERMovelets HiPerMovelets HiPerPivots Random-
Movelets

Ultra-
Movelets1 2 3 1+2+3 Log Log+Pivots τ = 90% τ = 75% τ = 50% τ = 90% τ = 75% τ = 50%

Animals 61.569 76.256 76.150 78.456 80.175 77.885 63.397 86.123 57.717 37.226 82.113 79.456 87.175 86.323 85.471 87.376 89.281 83.466 86.471 85.271 88.228 87.175
GoTrack ** ** 66.347 73.553 73.871 78.257 71.905 82.321 80.446 74.398 82.265 74.804 83.497 83.515* 82.909 83.497 84.049 79.288 80.447 81.053 82.854 81.035
Vehicles 90.293 96.589 88.166 97.108 91.307 90.821 71.077 71.657 72.436 71.657 72.970 60.817 98.161 98.947 98.268 98.687 98.421 98.687 98.687 98.687 98.421 98.168
Gowalla 70.525 60.944 95.205 95.698 82.476 56.453 93.704 96.222 96.537 94.439 96.222 95.698 96.118 95.803 96.013 96.118 95.908 95.383

Brightkite 91.831 86.093 95.950 95.779 95.031 91.967 95.167 96.460 96.732 96.256 96.596 96.596 96.801 97.073 96.732 96.801 97.209 97.073
FoursquareNYC (generic) 17.489 18.135 73.271 38.164 43.759 41.894 41.033 99.713 80.488 70.014 67.001 73.171 75.897 74.175 75.323 76.040 78.623 74.462

FoursquareNYC 48.795 45.882 98.766 99.139 92.539 67.862 98.852 99.139 98.422 96.844 98.709 84.935 85.366 98.852 88.092 88.235 99.283 98.135
Promoters 100.000 100.000 46.364 86.364 95.455 100.000 100.000 45.455 77.273 77.273 50.000 50.000 50.000 77.273 81.818 81.818 77.273 77.273

SJGS 94.444 95.321 52.128 53.991 57.121 63.224 62.441 43.349 63.067 51.956 50.704 57.433 57.746 55.399 58.998 59.311 51.643 63.693
ArticularyWordRecognition 9.333 7.000 4.333 10.000 95.667 98.000 97.333 94.000 98.000 98.000 97.667 96.667

AtrialFibrillation 40.000 40.000 26.667 26.667 13.333 20.000 20.000 20.000 20.000 13.333 20.000 13.333
BasicMotions 32.500 25.000 25.000 27.500 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

CharacterTrajectories 8.565 9.958 9.262 8.426 91.086 93.245 92.618 90.460 92.758 92.618 91.574 88.928
Cricket 16.667 18.056 18.056 22.222 91.667* 88.889* 90.278* 94.444 94.444 94.444 97.222 93.056
ERing 16.667 16.667 16.667 16.667 66.296 71.111 69.259 67.037 63.704 67.778 78.148 51.481

Epilepsy 81.159 76.087 56.522 78.986 93.478 94.928 93.478 94.203 94.203 94.203 97.101 94.928
EthanolConcentration 34.601 33.080 25.475 36.882 39.163 38.403* 39.924* 33.460 36.502 33.840 34.981 35.741

Handwriting 5.176 5.059 5.059 4.588 12.471 12.588 13.294 13.059 15.176 14.000 24.706 12.706
ACSF1 27.000 10.000 10.000 23.000 73.000 85.000 86.000 86.000 87.000 88.000 88.000 81.000
Adiac 3.325 1.790 2.302 2.813 34.271 43.223 45.013 43.223 47.570 48.849 50.384 19.182

AllGestureWiimoteX 32.571 35.286 33.714 37.857 28.857 28.571 29.857 35.571 38.429 39.286 40.286 37.571
AllGestureWiimoteY 38.714 39.143 34.143 37.857 34.857 35.286 34.571 40.000 40.714 40.143 41.429 39.571
AllGestureWiimoteZ 35.143 31.714 27.571 32.286 25.857 28.429 27.857 31.286 33.714 35.143 35.857 32.857

ArrowHead 29.714 39.429 30.286 30.286 57.714 57.143 57.714 66.286 65.714 67.429 65.143 57.143
BME 39.333 38.667 42.000 45.333 45.333 44.667 46.667 45.333 48.667 52.667 50.667 48.000
Beef 23.333 20.000 20.000 16.667 60.000 53.333 63.333 53.333 53.333 60.000 53.333 60.000

BeetleFly 50.000 50.000 50.000 50.000 80.000 80.000 80.000 90.000 95.000 95.000 85.000 90.000
BirdChicken 50.000 50.000 50.000 50.000 90.000 90.000 80.000 90.000 90.000 90.000 90.000 75.000

CBF 33.111 33.111 33.111 33.111 60.111 60.667 60.444 60.333 60.778 63.000 72.111 62.222
Car 25.000 23.333 23.333 30.000 58.333 66.667 65.000 65.000 71.667 71.667 66.667 60.000

Chinatown 53.936 32.945 27.405 50.437 92.711 93.878 93.294 93.003 95.627 93.878 91.837 83.673
ChlorineConcentration 53.229 53.255 53.255 57.891 60.156 60.417 57.682 58.385 58.333 64.193 **

CinCECGTorso 25.942 24.783 24.855 24.493 58.551 58.333 57.101 61.812 58.478 57.391 64.855 54.638
Coffee 53.571 53.571 53.571 53.571 89.286 89.286 92.857 92.857 85.714 92.857 96.429 85.714

Computers 50.000 50.000 50.000 50.000 68.000 71.600 73.200 76.000 81.600 82.000 74.400 65.600
CricketX 8.205 6.923 7.692 6.667 25.385 30.513 31.538 24.615 33.590 40.256 44.359 25.385
CricketY 8.718 8.462 8.462 9.231 31.026 35.385 36.667 29.744 34.872 39.231 45.128 25.897
CricketZ 7.692 8.462 6.154 8.718 23.846 27.949 32.564 24.615 35.641 40.256 43.590 23.333

DiatomSizeReduction 31.699 30.065 30.065 31.699 73.529 71.569 72.549 72.876 75.490 78.105 85.294 73.529
DistalPhalanxOutlineAgeGroup 46.763 46.763 46.763 47.482 61.151 71.223 74.820 71.223 71.942 72.662 74.101 68.345

DistalPhalanxOutlineCorrect 58.333 58.333 58.333 58.333 67.029 75.362 76.087 73.551 72.826 74.638 78.261 72.464
DistalPhalanxTW 30.216 30.216 30.216 30.935 63.309 64.748 65.468 62.590 65.468 64.748 64.748 58.273

ECG200 64.000 64.000 64.000 64.000 69.000 69.000 70.000 70.000 70.000 69.000 72.000 67.000

106

6.2 ACCURACY RESULTS FOR ALL DATASETS WITH RANDOM FORREST CLASSIFIER

Table 11 – Results of Accuracy with random forest classifier for all dataset.

Dataset
Dodge Xiao Zheng Movelets RF XGBoost DeepeST

NPOI
MARC

MASTERMovelets HiPerMovelets HiPerPivots Random-
Movelets

Ultra-
Movelets1 2 3 1+2+3 Log Log+Pivots τ = 90% τ = 75% τ = 50% τ = 90% τ = 75% τ = 50%

Animals 81.361 82.065 81.013 80.561 89.228 85.323 85.318 86.271 86.271 86.371 87.223 87.175 85.371 85.419
GoTrack ** ** 82.285 78.497 79.232 79.857* 79.250 81.052 82.853 77.981 78.606 77.981 80.978 79.250
Vehicles 90.539 96.308 88.180 95.754 98.147 98.154 98.245 98.147 97.628 97.887 98.147 98.147 98.414 98.147
Gowalla 93.284 92.445 93.075 93.704 93.494 93.704 93.704 93.389 93.284 93.284

Brightkite 96.732 95.916 95.779 96.188 96.392 95.779 95.984 96.120 97.141 96.256
FoursquareNYC (generic) 70.732 58.106 57.963 64.706 65.854 65.136 65.997 66.284 68.436 64.706

FoursquareNYC 97.561 95.839 95.696 94.692 94.692 96.413 94.405 94.548 98.135 96.557
Promoters 77.273 81.818 50.000 50.000 50.000 77.273 77.273 77.273 86.364 77.273

SJGS 66.980 52.269 54.147 62.285 62.285 61.346 65.728 64.789 50.704 66.980
ArticularyWordRecognition 91.667 96.000 95.333 91.667 95.000 95.667 95.333 93.333

AtrialFibrillation 40.000 46.667 46.667 40.000 46.667 40.000 20.000 6.667
BasicMotions 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

CharacterTrajectories 77.437 81.476 83.983 78.621 81.476 83.565 82.312 82.591
Cricket 94.444* 91.667* 91.667* 93.056 91.667 90.278 97.222 93.056
ERing 60.000 60.741 63.704 50.000 53.333 53.333 63.333 47.778

Epilepsy 94.928 93.478 94.928 95.652 94.203 94.203 96.377 90.580
EthanolConcentration 40.304 39.924* 39.163* 39.163 41.825 41.825 42.205 41.445

Handwriting 13.529 13.176 14.471 11.529 13.529 13.059 25.412 13.294
ACSF1 76.000 86.000 88.000 87.000 85.000 88.000 86.000 83.000
Adiac 29.668 37.340 36.061 35.038 40.921 40.153 45.013 18.670

AllGestureWiimoteX 32.571 32.286 33.571 44.286 42.000 43.714 42.857 40.857
AllGestureWiimoteY 41.143 41.857 42.143 44.143 47.571 45.286 45.143 44.286
AllGestureWiimoteZ 33.286 35.286 34.571 36.429 37.429 36.857 39.571 37.286

ArrowHead 62.857 60.571 60.571 62.286 65.714 65.143 64.000 56.571
BME 48.000 48.667 54.000 48.000 48.000 57.333 50.667 52.667
Beef 53.333 53.333 53.333 56.667 66.667 56.667 53.333 50.000

BeetleFly 80.000 90.000 90.000 85.000 80.000 95.000 85.000 90.000
BirdChicken 90.000 85.000 85.000 90.000 85.000 80.000 90.000 90.000

CBF 57.556 60.556 59.111 60.000 60.222 65.667 84.667 65.111
Car 60.000 66.667 66.667 61.667 63.333 65.000 66.667 56.667

Chinatown 96.501 96.501 95.335 95.627 96.210 96.793 94.169 93.586
ChlorineConcentration 57.604 60.312 60.443 56.276 57.109 57.786 62.396 **

CinCECGTorso 55.217 55.217 55.217 57.029 57.754 57.899 55.507 60.870
Coffee 96.429 96.429 96.429 92.857 92.857 100.000 100.000 96.429

Computers 73.200 80.000 78.800 76.000 77.600 79.600 75.600 70.400
CricketX 20.256 27.436 30.513 24.872 35.641 36.667 40.513 31.026
CricketY 25.128 31.538 36.923 25.128 35.385 40.256 42.821 21.538
CricketZ 21.538 25.641 29.231 23.846 31.282 38.205 40.513 22.564

DiatomSizeReduction 73.856 73.203 73.203 83.333 78.105 87.582 89.216 88.562
DistalPhalanxOutlineAgeGroup 71.942 69.065 71.223 71.942 73.381 73.381 73.381 71.223

DistalPhalanxOutlineCorrect 67.391 77.174 78.623 71.014 71.377 73.188 75.725 72.826
DistalPhalanxTW 64.748 65.468 65.468 64.748 66.906 66.187 67.626 62.590

ECG200 71.000 75.000 75.000 73.000 73.000 72.000 79.000 72.000

107

6.3 TOTAL RUNNING TIME RESULTS FOR ALL DATASETS WITH NEURAL NETWORK CLASSIFIER

Table 12 – Results of total running time (with neural network classifier) for all datasets.

Dataset
Dodge Xiao Zheng Movelets RF XGBoost DeepeST

NPOI
MARC

MASTERMovelets HiPerMovelets HiPerPivots Random-
Movelets

Ultra-
Movelets1 2 3 1+2+3 Log Log+Pivots τ = 90% τ = 75% τ = 50% τ = 90% τ = 75% τ = 50%

Animals 23s 25s 23s 53s 1h05m24s 2h53m32s 1h16m03s 12s 12s 12s 12s 55s 1m42s 47s 5m53s 6m13s 7m14s 2m 1m57s 1m54s 53s 44s
GoTrack ** ** 9s 1m02s 1h06m04s 2h48m31s 2h57m50s 10s 10s 10s 10s 56s 2m12s 48s* 12m12s 12m22s 12m28s 4m30s 4m28s 4m36s 1m37s 1m19s
Vehicles 13s 13s 12s 2h22m56s 1h10m54s 3h54m43s 10h42m32s 4s 4s 4s 4s 2m01s 3h08m06s 56m27s 4h23m19s 5h10m59s 5h21m57s 1h05m 1h13m34s 1h17m01s 2h08m17s 1h13m12s
Gowalla 1h12m15s 4h55m57s 23h21m38s 1h24m13s 1h30m20s 1h39m05s 2h29m26s 13m16s 11h45m35s 3h35m50s 1h20m12s 2h54m43s 6h11m52s 1h06m 1h41m54s 2h46m39s 2h37m17s 2h24m28s

Brightkite 1h17m37s 5h57m15s 21h49m51s 28m53s 30m37s 32m39s 38m48s 9m22s 19h58m38s 6h04m58s 2h44m21s 6h41m05s 12h09m33s 2h44m29s 4h16m49s 5h53m47s 4h33m02s 3h47m40s
FoursquareNYC (generic) 1h38m50s 69h12m41s 42h04m30s 2m20s 1m50s 1m18s 46s 11m57s 4h35m25s 1h23m55s 58m39s 3h07m08s 4h11m39s 33m41s 1h01m23s 1h08m17s 2h25m35s 48m37s

FoursquareNYC 1h30m40s 65h14m41s 20h43m53s 20m33s 23m16s 24m33s 36m35s 14m11s 28h09m36s 4h56m30s 3h38m38s 10h54m08s 14h03m22s 2h34m34s 7h07m44s 4h54m34s 13h20m49s 1h01m07s
Promoters 1h04m32s 50m47s 13m12s 0.217s 0.217s 0.217s 0.217s 20s 38s 29s 11s 11s 11s 16s 16s 17s 34s 23s

SJGS 1h24m53s 59m10s 3h05m51s 12s 15s 15s 21s 2m40s 4h12m56s 1h17m27s 1h44m43s 2h10m48s 2h48m38s 1h07s 1h02m16s 1h21m18s 1h44m31s 2h58m40s
ArticularyWordRecognition 7m34s 7m50s 7m55s 10m39s 22m19s 1h12m10s 1h12m33s 22m58s 1h06m31s 1h17m07s 19m55s 14m44s

AtrialFibrillation 10s 12s 12s 12s 35s 38s 40s 37s 36s 36s 1m 44s
BasicMotions 10s 8s 8s 11s 3m45s 6m52s 7m08s 3m47s 7m19s 6m59s 1m59s 28s

CharacterTrajectories 3h15m 3h16m41s 3h14m39s 8h38m39s 3h29m41s 5h18m14s 5h10m22s 3h30m53s 5h18m59s 6h04m30s 1h28m30s 2h28m54s
Cricket 17m08s 17m33s 17m44s 20m18s 168h15s* 168h14s* 168h15s* 25h37m52s 27h23m02s 27h09m33s 65h40m42s 3h23m32s
ERing 8s 8s 8s 8s 23s 23s 26s 16s 12s 12s 21s 15s

Epilepsy 1m33s 1m43s 1m43s 2m03s 4m27s 1m47s 1m45s 9m07s 7m22s 7m48s 11m02s 6m23s
EthanolConcentration 6h47m59s 7h51m02s 7h53m52s 9h19m31s 148h34m55s 168h16s* 168h16s* 22h04m02s 24h15m18s 26h12m55s 76h46m08s 31h01m55s

Handwriting 3m59s 3m59s 3m59s 3m59s 2m30s 2m36s 2m34s 36s 37s 37s 1m55s 2m08s
ACSF1 33m41s 33m59s 35m02s 41m40s 1h51s 1h41m36s 1h56m33s 57m56s 1h06m58s 1h08m24s 40m01s 29m23s
Adiac 26m26s 25m29s 25m28s 39m58s 5m50s 11m50s 12m20s 5m14s 8m58s 9m56s 4m02s 3m25s

AllGestureWiimoteX 56s 59s 1m27s 1m14s 27s 28s 29s 56s 59s 1m02s 3m09s 11m53s
AllGestureWiimoteY 44s 46s 52s 57s 23s 23s 23s 1m 1m06s 1m07s 3m09s 12m13s
AllGestureWiimoteZ 47s 49s 57s 1m01s 22s 22s 23s 50s 58s 59s 3m 11m42s

ArrowHead 58s 57s 57s 1m05s 38s 41s 41s 34s 37s 37s 24s 34s
BME 15s 15s 18s 19s 14s 14s 13s 12s 13s 14s 12s 16s
Beef 40s 40s 40s 47s 57s 57s 57s 47s 50s 50s 29s 23s

BeetleFly 21s 21s 21s 25s 1m04s 1m05s 1m04s 54s 57s 56s 27s 22s
BirdChicken 22s 23s 22s 25s 1m 1m01s 59s 51s 52s 53s 25s 22s

CBF 1m15s 1m16s 1m15s 1m24s 30s 30s 31s 26s 27s 27s 24s 43s
Car 3m43s 3m43s 3m43s 4m35s 6m 6m18s 6m18s 4m04s 4m13s 4m17s 2m04s 1m38s

Chinatown 7s 6s 6s 7s 8s 8s 8s 8s 8s 8s 8s 8s
ChlorineConcentration 2h57m43s 2h50m34s 2h50m42s 1h47m54s 2h32m50s 2h32m43s 1h40m59s 1h44m29s 1h50m38s 56m20s 168h*

CinCECGTorso 3h52m23s 3h50m24s 3h51m59s 4h20m30s 1h36m39s 1h35m24s 1h37m52s 1h22m46s 1h22m35s 1h22m53s 1h09m29s 2h11m52s
Coffee 18s 18s 18s 20s 36s 40s 40s 29s 34s 35s 18s 17s

Computers 2m33s 2m34s 2m37s 2m42s 6h57m03s 7h31m45s 7h55m52s 1h03m17s 1h15m50s 1h21m37s 1h15m28s 1h06m25s
CricketX 1h01m13s 1h37s 1h56s 2h15m37s 1h20m57s 1h32m02s 1h32m57s 46m48s 49m52s 53m02s 17m02s 16m05s
CricketY 1h02m16s 59m53s 1h45s 2h13m47s 1h16m40s 1h25m51s 1h26m10s 44m53s 47m33s 48m46s 17m11s 16m14s
CricketZ 1h18s 1h01m17s 59m46s 2h24m33s 1h22m32s 1h34m49s 1h33m52s 48m20s 50m55s 51m51s 16m55s 16m29s

DiatomSizeReduction 1m15s 1m12s 1m12s 1m31s 26s 29s 28s 18s 20s 19s 22s 29s
DistalPhalanxOutlineAgeGroup 3m53s 3m49s 3m49s 5m41s 6m21s 12m06s 13m41s 3m18s 4m34s 4m40s 2m56s 7m13s

DistalPhalanxOutlineCorrect 10m20s 10m21s 10m21s 17m50s 12m02s 24m21s 28m30s 7m52s 11m19s 11m47s 7m44s 23m46s
DistalPhalanxTW 3m52s 3m52s 3m53s 5m44s 6m25s 10m20s 9m56s 2m16s 3m23s 3m31s 2m21s 3m48s

ECG200 36s 32s 33s 44s 1m12s 1m27s 1m28s 48s 49s 49s 25s 38s

108

6.4 NUMBER OF MOVELET CANDIDATES FOR ALL DATASETS

Table 13 – Results of movelet candidates for all datasets.

Dataset MASTERMovelets HiPerMovelets HiPerPivots Random-
Movelets

Ultra-
MoveletsLog Log+Pivots τ = 90% τ = 75% τ = 50% τ = 90% τ = 75% τ = 50%

Animals 232,896 10,921 220,000 221,131 222,093 41,176 42,170 42,695 232,896 47,782
GoTrack 286,447 16,908* 241,105 238,329 236,647 50,996 52,443 53,718 286,447 67,602
Vehicles 3,294,900 339,485 746,435 805,937 818,187 117,206 125,472 129,373 3,294,900 637,082
Gowalla 4,934,955 388,395 2,576,295 2,628,435 2,645,265 313,378 434,108 652,387 4,934,955 740,301

Brightkite 6,254,925 484,650 3,053,010 3,034,425 3,054,150 594,766 868,477 1,172,644 6,254,925 948,650
FoursquareNYC (generic) 14,033,061 1,067,976 5,188,680 5,699,547 5,699,547 685,687 931,331 963,701 14,033,061 766,741

FoursquareNYC 56,800,485 4,201,635 17,548,080 18,500,760 18,572,925 1,495,363 2,814,986 3,027,446 56,800,485 925,373
Promoters 82,404 5,292 1,008 1,008 1,008 7,278 7,877 12,031 82,404 23,790

SJGS 2,640,285 141,354 1,354,581 1,354,581 1,354,581 241,188 256,833 392,235 2,640,285 723,457
ArticularyWordRecognition 1,634,325 1,634,325 1,634,325 1,634,325 1,634,325 1,634,325 1,634,325 179,539

AtrialFibrillation 61,104 61,104 61,104 61,104 61,104 61,104 229,140 36,709
BasicMotions 1,474,200 1,474,200 1,474,200 1,474,200 1,474,200 1,474,200 1,474,200 48,377

CharacterTrajectories 1,019,744 1,019,744 1,019,744 1,019,744 1,019,744 1,019,744 1,019,744 261,687
Cricket 53,438,049* 50,732,325* 52,085,187* 3,274,586 3,295,615 3,295,617 73,054,548 1,157,437
ERing 168,750 168,750 168,750 9,463 10,059 10,059 168,750 12,008

Epilepsy 218,834 109,417 119,364 34,886 30,488 30,496 1,362,739 139,626
EthanolConcentration 9,465,246 9,135,063* 9,135,063* 614,998 700,718 706,457 28,725,921 2,393,156

Handwriting 156,450 156,450 156,450 17,847 18,366 18,495 156,450 24,882
ACSF1 1,310,400 1,310,400 1,310,400 316,728 392,041 413,926 1,310,400 200,169
Adiac 472,290 472,290 472,290 89,589 157,833 172,414 472,290 72,437

AllGestureWiimoteX 19,232 18,533 18,533 20,865 21,363 23,008 236,508 90,548
AllGestureWiimoteY 14,443 14,443 14,443 22,739 24,308 25,058 245,148 105,648
AllGestureWiimoteZ 13,220 12,617 12,617 17,312 20,149 21,286 238,482 92,652

ArrowHead 62,496 62,496 62,496 20,028 22,893 23,450 62,496 13,883
BME 22,590 22,590 22,590 5,902 6,289 8,214 22,590 6,734
Beef 111,960 111,960 111,960 26,772 28,404 28,859 111,960 18,515

BeetleFly 81,360 81,360 81,360 24,576 26,215 26,548 81,360 18,427
BirdChicken 81,360 81,360 81,360 25,226 26,269 26,572 81,360 19,435

CBF 22,590 22,590 22,590 6,924 8,777 9,089 22,590 6,218
Car 275,280 275,280 275,280 90,674 96,181 97,568 275,280 48,510

Chinatown 2,200 2,200 2,200 514 802 1,056 2,200 903
ChlorineConcentration 532,847 532,847 532,847 203,997 236,862 242,016 532,847 102,653*

CinCECGTorso 588,600 588,600 588,600 170,649 173,046 173,903 588,600 95,159
Coffee 55,468 55,468 55,468 15,550 20,109 21,271 55,468 14,594

Computers 1,421,536 1,421,536 1,421,536 493,532 565,726 587,209 1,433,000 343,067
CricketX 810,810 810,810 810,810 313,715 338,202 345,226 810,810 133,234
CricketY 810,810 810,810 810,810 316,296 340,353 345,711 810,810 133,839
CricketZ 810,810 810,810 810,810 315,239 338,878 345,359 810,810 133,252

DiatomSizeReduction 38,304 38,304 38,304 3,690 4,925 5,107 38,304 8,188
DistalPhalanxOutlineAgeGroup 186,000 186,000 186,000 50,354 65,534 66,854 186,000 67,100

DistalPhalanxOutlineCorrect 279,000 279,000 279,000 70,384 98,224 102,661 279,000 95,333
DistalPhalanxTW 186,000 186,000 186,000 44,762 62,574 64,162 186,000 59,149

ECG200 56,100 56,100 56,100 17,029 17,838 18,163 56,100 18,492

109

6.5 NUMBER OF MOVELETS FOR ALL DATASETS

Table 14 – Results of number of movelets for all datasets.

Dataset MASTERMovelets HiPerMovelets HiPerPivots Random-
Movelets

Ultra-
MoveletsLog Log+Pivots τ = 90% τ = 75% τ = 50% τ = 90% τ = 75% τ = 50%

Animals 232,896 10,921 220,000 221,131 222,093 41,176 42,170 42,695 23,326 47,782
GoTrack 286,447 16,908* 241,105 238,329 236,647 50,996 52,443 53,718 28,718 67,602
Vehicles 3,294,900 339,485 746,435 805,937 818,187 117,206 125,472 129,373 329,624 637,082
Gowalla 4,934,955 388,395 2,576,295 2,628,435 2,645,265 313,378 434,108 652,387 493,848 740,301

Brightkite 6,254,925 484,650 3,053,010 3,034,425 3,054,150 594,766 868,477 1,172,644 625,803 948,650
FoursquareNYC (generic) 14,033,061 1,067,976 5,188,680 5,699,547 5,699,547 685,687 931,331 963,701 1,404,239 766,741

FoursquareNYC 56,800,485 4,201,635 17,548,080 18,500,760 18,572,925 1,495,363 2,814,986 3,027,446 5,680,294 925,373
Promoters 82,404 5,292 1,008 1,008 1,008 7,278 7,877 12,031 8,316 23,790

SJGS 2,640,285 141,354 1,354,581 1,354,581 1,354,581 241,188 256,833 392,235 265,304 723,457
ArticularyWordRecognition 1,634,325 1,634,325 1,634,325 1,634,325 1,634,325 1,634,325 163,625 179,539

AtrialFibrillation 61,104 61,104 61,104 61,104 61,104 61,104 22,920 36,709
BasicMotions 1,474,200 1,474,200 1,474,200 1,474,200 1,474,200 1,474,200 147,440 48,377

CharacterTrajectories 1,019,744 1,019,744 1,019,744 1,019,744 1,019,744 1,019,744 102,699 261,687
Cricket 53,438,049* 50,732,325* 52,085,187* 3,274,586 3,295,615 3,295,617 7,305,552 1,157,437
ERing 168,750 168,750 168,750 9,463 10,059 10,059 16,890 12,008

Epilepsy 218,834 109,417 119,364 34,886 30,488 30,496 136,315 139,626
EthanolConcentration 9,465,246 9,135,063* 9,135,063* 614,998 700,718 706,457 2,872,827 2,393,156

Handwriting 156,450 156,450 156,450 17,847 18,366 18,495 17,010 24,882
ACSF1 1,310,400 1,310,400 1,310,400 316,728 392,041 413,926 135,033 200,169
Adiac 472,290 472,290 472,290 89,589 157,833 172,414 47,702 72,437

AllGestureWiimoteX 19,232 18,533 18,533 20,865 21,363 23,008 23,797 90,548
AllGestureWiimoteY 14,443 14,443 14,443 22,739 24,308 25,058 24,652 105,648
AllGestureWiimoteZ 13,220 12,617 12,617 17,312 20,149 21,286 23,986 92,652

ArrowHead 62,496 62,496 62,496 20,028 22,893 23,450 6,264 13,883
BME 22,590 22,590 22,590 5,902 6,289 8,214 2,280 6,734
Beef 111,960 111,960 111,960 26,772 28,404 28,859 11,220 18,515

BeetleFly 81,360 81,360 81,360 24,576 26,215 26,548 8,140 18,427
BirdChicken 81,360 81,360 81,360 25,226 26,269 26,572 8,140 19,435

CBF 22,590 22,590 22,590 6,924 8,777 9,089 2,280 6,218
Car 275,280 275,280 275,280 90,674 96,181 97,568 27,540 48,510

Chinatown 2,200 2,200 2,200 514 802 1,056 220 903
ChlorineConcentration 532,847 532,847 532,847 203,997 236,862 242,016 53,705 102,653*

CinCECGTorso 588,600 588,600 588,600 170,649 173,046 173,903 58,880 95,159
Coffee 55,468 55,468 55,468 15,550 20,109 21,271 5,572 14,594

Computers 1,421,536 1,421,536 1,421,536 493,532 565,726 587,209 143,500 343,067
CricketX 810,810 810,810 810,810 313,715 338,202 345,226 81,120 133,234
CricketY 810,810 810,810 810,810 316,296 340,353 345,711 81,120 133,839
CricketZ 810,810 810,810 810,810 315,239 338,878 345,359 81,120 133,252

DiatomSizeReduction 38,304 38,304 38,304 3,690 4,925 5,107 4,560 8,188
DistalPhalanxOutlineAgeGroup 186,000 186,000 186,000 50,354 65,534 66,854 18,800 67,100

DistalPhalanxOutlineCorrect 279,000 279,000 279,000 70,384 98,224 102,661 28,200 95,333
DistalPhalanxTW 186,000 186,000 186,000 44,762 62,574 64,162 18,800 59,149

ECG200 56,100 56,100 56,100 17,029 17,838 18,163 5,700 18,492

110

7 MOVELETS ANALYSIS

In this appendix, we present the statistics of the resulting movelets obtained with the
methods: MASTERMovelets, HiPerMovelets, RandomMovelets, and UltraMovelets. First, we
present the number of movelets, the average number of features, size, and quality of generated
movelets by dataset. Then, we present the attribute confidence by method in multiple aspect
trajectory datasets.

7.1 MOVELETS STATISTICS BY DATASET

Table 15 – Movelets statistics on all datasets.

Dataset Method Movelets Quality Size Number of Attributes

Animals

MASTERMovelets-Log 5,367 45.447 11.765 92.593 1.8 1.0 7.0 1.9 1.0 3.0
MASTERPivots-Log 887 52.738 12.121 93.103 2.2 2.0 7.0 2.0 1.0 3.0
HiPerMovelets τ = 90% 4,427 42.758 10.000 92.000 2.0 1.0 7.0 1.0 1.0 3.0
HiPerMovelets τ = 75% 4,843 47.039 10.811 92.857 1.9 1.0 7.0 1.6 1.0 3.0
HiPerMovelets τ = 50% 5,084 49.639 10.811 93.333 1.9 1.0 7.0 1.8 1.0 3.0
HiPerPivots τ = 90% 4,351 38.973 10.811 90.909 1.6 1.0 7.0 1.0 1.0 3.0
HiPerPivots τ = 75% 5,582 41.928 10.811 91.803 1.4 1.0 7.0 1.7 1.0 3.0
HiPerPivots τ = 50% 5,980 43.507 10.811 91.803 1.3 1.0 7.0 1.8 1.0 3.0
RandomMovelets 3,156 46.673 10.811 92.000 2.7 1.0 7.0 2.0 1.0 3.0
UltraMovelets 10,218 49.205 10.811 93.103 1.4 1.0 8.0 1.7 1.0 3.0

GoTrack

MASTERMovelets-Log 6,243 23.576 5.195 66.055 1.9 1.0 8.0 2.0 1.0 3.0
MASTERPivots-Log 949 26.312 5.263 65.455 2.4 2.0 15.0 2.1 1.0 3.0
HiPerMovelets τ = 90% 5,780 26.977 5.263 66.667 2.9 1.0 8.0 1.9 1.0 3.0
HiPerMovelets τ = 75% 5,565 28.928 5.263 66.667 2.4 1.0 8.0 2.1 1.0 3.0
HiPerMovelets τ = 50% 5,364 28.957 5.263 66.667 2.2 1.0 8.0 2.0 1.0 3.0
HiPerPivots τ = 90% 7,809 24.086 5.263 66.055 1.4 1.0 8.0 2.0 1.0 3.0
HiPerPivots τ = 75% 8,209 24.442 5.263 66.055 1.3 1.0 8.0 2.3 1.0 3.0
HiPerPivots τ = 50% 8,256 24.772 5.263 66.055 1.3 1.0 8.0 2.2 1.0 3.0
RandomMovelets 4,057 26.026 5.000 66.055 2.6 1.0 8.0 2.0 1.0 3.0
UltraMovelets 13,426 27.341 5.063 65.455 1.4 1.0 7.0 1.8 1.0 3.0

Vehicles

MASTERMovelets-Log 98,283 38.983 1.786 96.386 1.5 1.0 8.0 1.5 1.0 3.0
MASTERPivots-Log 7,717 60.677 2.715 96.386 2.2 2.0 12.0 1.9 1.0 3.0
HiPerMovelets τ = 90% 19,814 37.397 1.754 96.386 1.3 1.0 8.0 1.3 1.0 3.0
HiPerMovelets τ = 75% 23,753 37.509 1.778 96.386 1.4 1.0 8.0 1.5 1.0 3.0
HiPerMovelets τ = 50% 25,292 38.217 1.770 96.386 1.5 1.0 8.0 1.5 1.0 3.0
HiPerPivots τ = 90% 21,223 34.449 1.770 96.386 1.1 1.0 8.0 1.4 1.0 3.0
HiPerPivots τ = 75% 24,382 33.671 1.778 96.386 1.1 1.0 8.0 1.6 1.0 3.0
HiPerPivots τ = 50% 26,194 34.475 1.778 96.386 1.1 1.0 8.0 1.6 1.0 3.0
RandomMovelets 45,517 34.464 1.778 96.386 2.5 1.0 8.0 1.8 1.0 3.0
UltraMovelets 141,440 39.839 1.786 96.386 1.4 1.0 10.0 1.5 1.0 3.0

111

Table 16 – Movelets statistics on all datasets (continued).

Dataset Method Movelets Quality Size Number of Attributes
Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

Gowalla

MASTERMovelets-Log 61,886 66.311 0.236 100.000 1.3 1.0 5.0 2.5 1.0 5.0
MASTERPivots-Log 8,407 82.559 0.466 100.000 2.1 2.0 5.0 1.9 1.0 5.0
HiPerMovelets τ = 90% 32,048 66.583 0.365 100.000 1.2 1.0 5.0 2.4 1.0 5.0
HiPerMovelets τ = 75% 33,790 66.244 0.297 100.000 1.2 1.0 5.0 2.5 1.0 5.0
HiPerMovelets τ = 50% 33,030 66.678 0.365 100.000 1.2 1.0 5.0 2.5 1.0 5.0
HiPerPivots τ = 90% 46,212 63.156 0.365 100.000 1.2 1.0 5.0 2.7 1.0 5.0
HiPerPivots τ = 75% 49,984 62.184 0.226 100.000 1.2 1.0 5.0 2.7 1.0 5.0
HiPerPivots τ = 50% 50,778 62.360 0.226 100.000 1.2 1.0 5.0 2.7 1.0 5.0
RandomMovelets 44,159 61.102 0.218 100.000 1.6 1.0 5.0 2.7 1.0 5.0
UltraMovelets 80,780 65.799 0.244 100.000 1.6 1.0 22.0 1.9 1.0 5.0

Brightkite

MASTERMovelets-Log 90,209 82.694 0.248 100.000 1.2 1.0 5.0 2.3 1.0 5.0
MASTERPivots-Log 10,824 88.052 0.349 100.000 2.1 2.0 5.0 2.0 1.0 5.0
HiPerMovelets τ = 90% 42,646 80.784 0.248 100.000 1.2 1.0 5.0 2.3 1.0 5.0
HiPerMovelets τ = 75% 41,668 81.057 0.248 100.000 1.2 1.0 5.0 2.3 1.0 5.0
HiPerMovelets τ = 50% 41,747 81.457 0.248 100.000 1.2 1.0 5.0 2.3 1.0 5.0
HiPerPivots τ = 90% 80,113 73.995 0.248 100.000 1.2 1.0 5.0 2.9 1.0 5.0
HiPerPivots τ = 75% 82,644 74.820 0.218 100.000 1.1 1.0 5.0 2.9 1.0 5.0
HiPerPivots τ = 50% 82,708 75.669 0.171 100.000 1.1 1.0 5.0 2.9 1.0 5.0
RandomMovelets 66,300 74.882 0.065 100.000 1.5 1.0 5.0 2.7 1.0 5.0
UltraMovelets 106,213 83.676 0.229 100.000 1.5 1.0 25.0 2.0 1.0 5.0

Foursquare NYC (generic)

MASTERMovelets-Log 22,092 23.514 0.370 100.000 2.1 1.0 6.0 3.4 1.0 6.0
MASTERPivots-Log 5,329 31.168 0.457 100.000 2.3 2.0 5.0 3.2 1.0 6.0
HiPerMovelets τ = 90% 13,466 6.473 0.200 100.000 1.4 1.0 6.0 1.8 1.0 6.0
HiPerMovelets τ = 75% 15,397 8.093 0.200 100.000 1.4 1.0 6.0 1.7 0.0 6.0
HiPerMovelets τ = 50% 14,541 8.551 0.200 100.000 1.4 1.0 6.0 1.6 0.0 6.0
HiPerPivots τ = 90% 23,541 7.003 0.220 100.000 1.0 1.0 6.0 2.4 1.0 6.0
HiPerPivots τ = 75% 23,083 7.630 0.220 100.000 1.0 1.0 6.0 1.9 0.0 6.0
HiPerPivots τ = 50% 23,086 7.661 0.220 100.000 1.0 1.0 6.0 1.9 0.0 6.0
RandomMovelets 26,123 12.985 0.200 100.000 1.8 1.0 6.0 2.7 1.0 6.0
UltraMovelets 51,130 12.355 0.576 100.000 2.0 1.0 15.0 1.5 1.0 5.0

Foursquare NYC (specific)

MASTERMovelets-Log 32,485 60.794 0.306 100.000 1.5 1.0 6.0 2.0 1.0 7.0
MASTERPivots-Log 5,633 89.749 0.835 100.000 2.0 2.0 4.0 1.5 1.0 6.0
HiPerMovelets τ = 90% 13,960 62.735 0.200 100.000 1.2 1.0 6.0 2.6 1.0 8.0
HiPerMovelets τ = 75% 14,806 64.810 0.220 100.000 1.2 1.0 6.0 2.8 1.0 8.0
HiPerMovelets τ = 50% 14,622 65.157 0.220 100.000 1.2 1.0 6.0 2.8 1.0 8.0
HiPerPivots τ = 90% 21,355 55.734 0.200 100.000 1.0 1.0 3.0 3.2 1.0 7.0
HiPerPivots τ = 75% 21,416 57.197 0.200 100.000 1.0 1.0 3.0 3.3 1.0 8.0
HiPerPivots τ = 50% 21,516 57.281 0.200 100.000 1.0 1.0 3.0 3.3 1.0 8.0
RandomMovelets 35,184 62.060 0.303 100.000 1.4 1.0 6.0 3.4 1.0 8.0
UltraMovelets 51,130 62.735 0.597 100.000 1.4 1.0 15.0 1.9 1.0 6.0

Promoters

MASTERMovelets-Log 3,255 67.617 21.277 82.192 1.5 1.0 6.0 1.0 1.0 1.0
MASTERPivots-Log 220 67.557 61.157 75.789 2.2 2.0 3.0 1.0 1.0 1.0
HiPerMovelets τ = 90% 104 66.667 66.667 66.667 1.0 1.0 1.0 1.0 1.0 1.0
HiPerMovelets τ = 75% 104 66.667 66.667 66.667 1.0 1.0 1.0 1.0 1.0 1.0
HiPerMovelets τ = 50% 104 66.667 66.667 66.667 1.0 1.0 1.0 1.0 1.0 1.0
HiPerPivots τ = 90% 1,096 67.649 56.075 75.789 2.2 1.0 3.0 1.0 1.0 1.0
HiPerPivots τ = 75% 1,283 66.113 41.758 75.789 2.3 1.0 3.0 1.0 1.0 1.0
HiPerPivots τ = 50% 1,308 65.653 35.789 75.789 2.3 1.0 3.0 1.0 1.0 1.0
RandomMovelets 1,151 60.443 8.511 82.192 2.2 1.0 6.0 1.0 1.0 1.0
UltraMovelets 4,788 67.510 66.667 75.510 1.5 1.0 3.0 1.0 1.0 1.0

SJGS

MASTERMovelets-Log 126,574 49.305 0.600 68.301 1.4 1.0 5.0 1.0 1.0 1.0
MASTERPivots-Log 11,312 48.539 34.416 67.777 2.1 2.0 4.0 1.0 1.0 1.0
HiPerMovelets τ = 90% 130,391 49.109 38.761 68.301 1.3 1.0 3.0 1.0 1.0 1.0
HiPerMovelets τ = 75% 127,476 49.294 38.761 68.301 1.4 1.0 3.0 1.0 1.0 1.0
HiPerMovelets τ = 50% 127,476 49.294 38.761 68.301 1.4 1.0 3.0 1.0 1.0 1.0
HiPerPivots τ = 90% 33,061 48.617 30.894 68.301 2.1 1.0 3.0 1.0 1.0 1.0
HiPerPivots τ = 75% 38,887 47.571 26.964 68.301 2.2 1.0 3.0 1.0 1.0 1.0
HiPerPivots τ = 50% 39,909 47.206 19.061 68.301 2.3 1.0 3.0 1.0 1.0 1.0
RandomMovelets 37,432 43.852 0.451 68.301 2.2 1.0 6.0 1.0 1.0 2.0
UltraMovelets 153,056 49.483 0.600 68.301 1.5 1.0 5.0 1.0 1.0 1.0

112

Table 17 – Movelets statistics on all datasets (continued).

Dataset Method Movelets Quality Size Number of Attributes
Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

ArticularyWordRecognition

HiPerMovelets τ = 50% 18,093 58.192 13.333 100.000 1.9 1.0 6.0 2.2 0.0 3.0
HiPerMovelets τ = 75% 18,066 57.919 13.333 100.000 1.9 1.0 6.0 2.2 0.0 3.0
HiPerMovelets τ = 90% 13,351 51.836 16.667 100.000 1.8 1.0 6.0 1.8 0.0 3.0
HiPerPivots τ = 50% 18,093 58.192 13.333 100.000 1.9 1.0 6.0 2.2 0.0 3.0
HiPerPivots τ = 75% 18,066 57.919 13.333 100.000 1.9 1.0 6.0 2.2 0.0 3.0
HiPerPivots τ = 90% 13,351 51.836 16.667 100.000 1.8 1.0 6.0 1.8 0.0 3.0
RandomMovelets 11,823 55.155 17.391 100.000 2.6 1.0 6.0 1.8 0.0 3.0
UltraMovelets 18,780 50.089 17.391 100.000 1.3 1.0 7.0 1.5 1.0 3.0

AtrialFibrillation

HiPerMovelets τ = 50% 1,275 52.314 28.571 100.000 1.6 1.0 8.0 1.1 1.0 2.0
HiPerMovelets τ = 75% 1,275 52.314 28.571 100.000 1.6 1.0 8.0 1.1 1.0 2.0
HiPerMovelets τ = 90% 1,275 52.314 28.571 100.000 1.6 1.0 8.0 1.1 1.0 2.0
HiPerPivots τ = 50% 1,275 52.314 28.571 100.000 1.6 1.0 8.0 1.1 1.0 2.0
HiPerPivots τ = 75% 1,275 52.314 28.571 100.000 1.6 1.0 8.0 1.1 1.0 2.0
HiPerPivots τ = 90% 1,275 52.314 28.571 100.000 1.6 1.0 8.0 1.1 1.0 2.0
RandomMovelets 2,295 63.010 28.571 100.000 3.0 1.0 8.0 0.8 0.0 2.0
UltraMovelets 7,380 57.626 28.571 100.000 1.4 1.0 6.0 1.2 1.0 2.0

BasicMotions

HiPerMovelets τ = 50% 2,723 91.091 26.667 100.000 1.5 1.0 6.0 1.8 0.0 6.0
HiPerMovelets τ = 75% 2,721 91.087 26.667 100.000 1.5 1.0 6.0 1.8 0.0 6.0
HiPerMovelets τ = 90% 2,562 84.869 25.000 100.000 1.5 1.0 6.0 1.8 0.0 6.0
HiPerPivots τ = 50% 2,723 91.091 26.667 100.000 1.5 1.0 6.0 1.8 0.0 6.0
HiPerPivots τ = 75% 2,721 91.087 26.667 100.000 1.5 1.0 6.0 1.8 0.0 6.0
HiPerPivots τ = 90% 2,562 84.869 25.000 100.000 1.5 1.0 6.0 1.8 0.0 6.0
RandomMovelets 2,097 86.836 25.000 100.000 1.9 1.0 6.0 1.6 0.0 6.0
UltraMovelets 3,944 80.924 16.000 100.000 1.4 1.0 7.0 1.5 1.0 4.0

CharacterTrajectories

HiPerMovelets τ = 50% 41,895 15.243 3.883 100.000 2.7 1.0 7.0 1.0 1.0 1.0
HiPerMovelets τ = 75% 39,255 14.988 3.883 100.000 2.6 1.0 7.0 1.0 1.0 1.0
HiPerMovelets τ = 90% 28,002 14.551 3.883 100.000 2.5 1.0 7.0 1.0 1.0 1.0
HiPerPivots τ = 50% 41,895 15.243 3.883 100.000 2.7 1.0 7.0 1.0 1.0 1.0
HiPerPivots τ = 75% 39,255 14.988 3.883 100.000 2.6 1.0 7.0 1.0 1.0 1.0
HiPerPivots τ = 90% 28,002 14.551 3.883 100.000 2.5 1.0 7.0 1.0 1.0 1.0
RandomMovelets 20,444 15.017 3.774 99.408 3.5 1.0 7.0 1.0 1.0 1.0
UltraMovelets 51,199 16.000 3.738 100.000 1.6 1.0 16.0 1.0 1.0 1.0

Cricket

HiPerMovelets τ = 50% 41,364 75.897 20.000 100.000 2.0 1.0 9.0 2.6 0.0 6.0
HiPerMovelets τ = 75% 35,897 75.942 20.000 100.000 2.0 1.0 9.0 2.6 0.0 6.0
HiPerMovelets τ = 90% 41,391 75.782 20.000 100.000 2.0 1.0 9.0 2.7 0.0 6.0
HiPerPivots τ = 50% 103,673 69.020 18.182 100.000 1.1 1.0 9.0 2.9 0.0 6.0
HiPerPivots τ = 75% 103,673 69.020 18.182 100.000 1.1 1.0 9.0 2.9 0.0 6.0
HiPerPivots τ = 90% 103,616 68.990 18.182 100.000 1.1 1.0 9.0 2.9 0.0 6.0
RandomMovelets 50,795 73.237 19.048 100.000 2.5 1.0 9.0 2.4 0.0 6.0
UltraMovelets 71,323 49.414 16.000 100.000 1.3 1.0 8.0 1.5 1.0 5.0

113

7.2 MOVELET ATTRIBUTE CONFIDENCE BY METHOD IN MULTIPLE ASPECT TRA-
JECTORIES

Figure 48 – Heat map for movelet attribute use by class on Animals dataset.

Figure 49 – Heat map for movelet attribute use by class on GoTrack dataset.

Figure 50 – Heat map for movelet attribute use by class on Vehicles dataset.

114

Figure 51 – Heat map for movelet attribute use by class on Brightkite dataset.

Figure 52 – Heat map for movelet attribute use by class on Gowalla dataset.

Figure 53 – Heat map for movelet attribute use by class on Foursquare NYC specific.

115

Figure 54 – Heat map for movelet attribute use by class on Foursquare NYC generic.

Figure 55 – Heat map for movelet attribute use by class on Hurricanes dataset.

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	Resumo Expandido
	List of Symbols
	Introduction
	Problem Statement
	Objectives and Contributions
	Methodology and Thesis Structure

	Basic Concepts and Related Works
	Basic Concepts
	Trajectory Classification
	Classification Metrics

	Related Works
	Summary

	Strategies for Reducing the Search Space in Movelet Discovery
	HiPerMovelets: In Class Pruning and Frequency-based Strategy for Movelet Discovery
	HiPerMovelet Candidate Generation
	Class-based Pruning
	Experimental Evaluation
	Datasets
	Experimental Setup
	Accuracy, Number of Movelets, and Processing Time
	Results for Multiple Aspect Trajectory Datasets
	Results for Raw Trajectory Datasets

	Scalability Analysis

	Reducing the Search Space and Attribute Comparison in Movelet Discovery
	RandomMovelets: A Random-based Movelet Candidate Pruning Strategy for Movelet Discovery
	UltraMovelets: A Recursive Strategy for Efficient Movelet Candidates Generation
	Experimental Evaluation
	Datasets
	Experimental Setup
	Preliminary Results of Accuracy, Processing Time, and Number of Movelet Candidates
	Results with Multiple Aspect Trajectory Data
	Results with Raw Trajectory Data
	Results with Genetic Sequence Data
	Results with Multivariate and Univariate Time Series Data
	Analysis with All Datasets including data from other Domains

	Discussion of Preliminary Scalability Results

	Summary

	AutoMATize: a Platform for Movelets Analysis
	Multiple Aspect Trajectory Data Mining Tool Library
	System Architecture
	Visualization Tools

	Movelets Analysis and Statistics
	Number of Movelets, Features, Size, and Quality
	Attribute Confidence Analysis

	Summary

	Conclusion and Future Works
	Bibliography
	Experimental Results for Several Datasets
	Accuracy Results for All Datasets with Neural Network Classifier
	Accuracy Results for All Datasets with Random Forrest Classifier
	Total Running Time Results for All Datasets with Neural Network Classifier
	Number of Movelet Candidates for All Datasets
	Number of Movelets for All Datasets

	Movelets Analysis
	Movelets Statistics by Dataset
	Movelet Attribute Confidence by Method in Multiple Aspect Trajectories

		2023-04-20T16:16:16-0300

		2023-04-24T08:28:38-0300

