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RESUMO

Um progresso considerável foi alcançado no desenvolvimento de sistemas
avançados de assistência ao motorista (ADAS) nos últimos anos. Esses dispositivos
aumentam a segurança do veículo e dos demais usuários do trânsito, oferecendo
avisos ao motorista ou mesmo assumindo o controle total do carro, a fim de evitar
possíveis acidentes. A frenagem autônoma de emergência (AEB) realiza a frenagem
de acordo com as possíveis situações de risco, capturadas do ambiente por
sensores. Este trabalho propõe um algoritmo de AEB básico, desenvolvido com
técnicas de aprendizado por reforço profundo, onde a máquina aprende qual decisão
tomar com base em recompensas ou punições, recebidas após cada ação tomada e
seus estados futuros. Neste caso particular, as funções de recompensa foram
desenvolvidas com fatores baseados no tempo de colisão e na velocidade desejada,
que combinados buscam acumular recompensas, evitando colisões e mantendo a
velocidade da estrada. O agente final é uma rede treinada com duas camadas
ocultas de 38 nós cada, capazes de agir de maneira semelhante a um controlador
AEB. São usadas como entrada, a velocidade atual, a distância dos objetos, e as
posições do pedal do acelerador e do freio a fim de calcular as posições ideais para
esses pedais e evitar colisões à frente. Para treinar o algoritmo em situações de
tráfego e realizar o aprendizado por reforço, algumas abordagens são feitas no
simulador de direção IPG CarMaker™. Atualmente, esses métodos simulados são
amplamente aplicados no desenvolvimento inicial de dispositivos ADAS antes da
migração para ambientes reais de teste. Após treinado, o algoritmo realiza dentro do
ambiente simulado o protocolo de testes para AEB da EuroNCAP e seus resultados
são comparados com outra solução AEB já validada. Durante os cenários CCRs e
CCRm, o código apresentou melhores distâncias relativas finais do que seu
concorrente na faixa entre 10 e 50 km/h. Apesar de passar e também não colidir nas
velocidades mais altas, o sistema parou completamente em distâncias mais curtas, o
que gerou discussões e possíveis caminhos de melhoria para suas próximas
versões. Durante o cenário CCRb, entretanto, o sistema provou ser capaz de aplicar
desacelerações maiores do que as encontradas no ambiente para garantir que não
ocorresse colisão. A função de recompensa demonstrou eficácia uma vez que
procuramos o agente e os resultados que ele realizou em cada cenário. Para testar
a abordagem em novos cenários, não utilizados durante o treinamento, para avaliar
a resposta dinâmica, o sistema teve um desempenho significativamente bom. Em
uma análise qualitativa simples, ao não colidir o sistema seria definitivamente
aprovado se ele realizasse em testes reais os mesmos resultados obtidos nas
simulações. Entretanto, em uma análise quantitativa mais profunda, pode-se ver que
ainda há oportunidades para melhorar a função de recompensa e o método de
treinamento para velocidades interurbanas.

Palavras-chave: Frenagem autônoma de emergência; Aprendizado por reforço;
Simulador de direção.
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RESUMO EXPANDIDO

INTRODUÇÃO

Os acidentes de trânsito são uma das principais causas de morte no mundo, com
aproximadamente 1,35 milhões de usuários das estradas morrendo a cada ano
(World Health Organization, 2019). A segurança rodoviária é medida utilizando o
número anual de mortes acima de 100.000 pessoas, no qual o Brasil não tem
relatado melhorias significativas desde 2009 (World Health Organization, 2019).
Organizações internacionais desenvolveram iniciativas para encorajar as
autoridades regionais a tomar medidas para melhorar as tecnologias de segurança
veicular, tais como a "Década de Ação para Segurança Viária 2011-2020" (World
Health Organization, 2011) e o programa Visão Zero da Comissão Européia
(European Commission, 2011). Os fabricantes de automóveis foram encorajados a
acelerar a implantação de dispositivos para evitar colisões, os chamados sistemas
avançados de assistência ao motorista (ADAS) (Yoffie, 2014). Dentro dessas
tecnologias estão os sistemas autônomos de frenagem de emergência (AEB) que
são capazes de reduzir a probabilidade de impacto (Spicer, 2018), por meio das
Unidades de Controle Eletrônico (ECUs) que assumem o controle total do veículo
em situações perigosas (Sini & Violante, 2020). Os recentes avanços na inteligência
artificial (IA) permitiram o uso de novas e mais rápidas técnicas para desenvolver
software para o gerenciamento de ADAS, como o aprendizado de máquinas (Kim,
2017), que pode treinar modelos para prever os resultados futuros. O aprendizado
de reforço é usado para treinar agentes para tomar ações a fim de maximizar
recompensas cumulativas (François-Lavet, 2018), e o aprendizado profundo é usado
para implementar arquiteturas de redes neurais para executar essa tarefa de
aprendizado (The MathWorks Inc., 2018). As redes neurais são combinadas com
métodos de aprendizado por reforço para modelar sistemas mais complexos como já
aplicado em um sistema de AEB para evitar colisão com pedestres (Li et al., 2020).
Simuladores de condução podem ser usados para validar o software, que é a
abordagem adotada no presente trabalho para desenvolver um algoritmo para a
AEB usando o Aprendizado de Reforço Profundo.

OBJETIVOS

O objetivo central deste trabalho de pesquisa é desenvolver um algoritmo AEB com
técnicas de aprendizado por reforço profundo, capaz de agir de forma semelhante a
um controlador, a fim de evitar colisões traseiras em veículos à frente do veículo sob
teste. Para isso serão necessários os objetivos específicos a seguir: (a) Desenvolver
uma rede neural profunda capaz de resolver o problema; (b) Criar e integrar cenários
virtuais ao algoritmo dentro de uma plataforma de simulação de condução, a fim de
gerar dados para treinamento e posterior validação; (c) Estabelecer uma função de
recompensa eficaz para o agente, possibilitando um processo de treinamento eficaz.
(d) Testar a abordagem em novos cenários, não utilizados durante o treinamento,
para avaliar a resposta dinâmica, e finalmente (e) medir velocidades, acelerações e
distâncias, para uma discussão quantitativa sobre o nível de segurança da solução
final.
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METODOLOGIA

O problema foi modelado seguindo o conceito de aprendizado por reforço entre
agente e ambiente, onde o veículo considerado o agente, recebe do ambiente seus
estados e as recompensas geradas para o momento atual , e sua tomada de𝑠

𝑡
𝑟

𝑡
decisão para a próxima ação é guiada pelas recompensas que terá no estado𝑎

𝑡+1
futuro . O processo de treinamento por reforço buscará otimizar a política𝑟

𝑡+1
π

endereçando a ação mais recompensadora para cada estado encontrado. Dessa
forma são estabelecidos os vetores de estado, que inclui a distância relativa entre o
veículo sob teste e o veículo à frente, a velocidade relativa entre ambos, a
velocidade atual do veículo sob teste e suas posições de pedal do acelerador e
pedal de freio. Como vetor de ações, o sistema deve retornar uma variável chamada
pedal, que direciona entre -1 e 1 a posição de pedal de freio ou acelerador que deve
ser aplicada. Para definir as funções de recompensa, foram criados dois fatores, o
fator de tempo e o fator de velocidade . O fator de tempo fará uma∆𝑇 ∆𝑉
comparação entre o tempo para colisão baseado a partir do ponto atual e o tempo
para parada total. Já o fator de velocidade irá comparar a velocidade do veículo com
a velocidade desejada para a via, a fim de manter o veículo em movimento.
Baseadas nesses dois fatores, as funções de recompensa são estabelecidas,
podendo somar nos melhores casos uma recompensa igual a 1 e nos piores casos
uma recompensa igual a zero, ou também chamada punição. Para estabelecer a
rede neural profunda foram criados os nós de input, um para cada variável de estado
e o nó de output, que nesse caso é apenas a variável pedal. Entre as duas camadas
de input e output, foram incluídas outras duas camadas de nós, as quais
caracterizam o sistema como rede neural profunda, ambas com 38 nós cada,
estabelecidos após testes prévios de otimização de performance. Definidos os
vetores, as funções de recompensa e a rede neural, aplica-se então o processo de
treinamento da rede. O ciclo de treinamento uniu treinamento offline com
treinamento online, onde o sistema recebe inicialmente os dados a partir de um
cenário fixo gerado por meio do software IPG CarMaker™, usando lotes pequenos e
atualizando os pesos de cada ligação entre nós, o sistema atualiza então a rede
para iniciar o treinamento online, onde as ações reportadas pelo algoritmo são
enviadas para o simulador em tempo real. Esse processo é gerenciado por um
diagrama de blocos via Matlab/Simulink™, onde o algoritmo roda como um bloco de
função, recebendo os sinais do simulador e reenviando as ações para ele. A fim de
testar a eficiência da rede neural e capacidade de evitar colisões do sistema,
optou-se por comparar o mesmo com a solução de AEB já implementada no
simulador IPG CarMaker™ e para tal, usou-se o protocolo de testes do European
New Car Assessment Programme (EuroNCAP). EuroNCAP também introduziu
terminologias importantes, como AEB City e AEB Inter-Urban, que são
categorizadas por velocidade, assim como diferentes tipos de colisões, como CCRs,
CCRm, e CCRb. No cenário CCRs, o veículo sob teste (VuT) varia sua velocidade
em diferentes tentativas, de 10 a 80 km/h enquanto se aproxima do veículo objetivo
global (GVT), que está estacionário no meio da estrada. No cenário CCRb, ambos
os carros começam à mesma velocidade de 50 km/h, e a distância entre eles é
testada a 12 metros e 40 metros, enquanto o freio varia a 2 m/s² ou 6 m/s². No
cenário CCRm, o VuT deve se aproximar de um GVT que mantém uma velocidade
constante de 20 km/h. Diferentes velocidades iniciais são testadas, variando de 30 a
80 km/h. Estes cenários e manobras fornecem uma avaliação abrangente dos
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sistemas AEB e sua capacidade de evitar colisões em diferentes situações. Ao longo
do capítulo de resultados, serão feitas algumas discussões sobre a resposta
dinâmica do VuT durante os cenários de teste, bem como a validação do algoritmo
proposto em comparação com a outra solução conhecida, o AEB embutido em
CarMarker™.

RESULTADOS

O capítulo de resultados apresenta o comportamento do sistema para os cenários
CCRm, CCRb e CCRs em termos de distâncias finais alcançadas e acelerações
máximas. Neste último, CCRs, são explorados os dados da resposta dinâmica para
o pior caso, quando o VuT se aproxima de GVT com velocidade de 80 km/h.
Partindo do cenário CCRm, nota-se que o algoritmo aprendeu como frear o VuT e
evitar o choque com o carro à frente, mas as distâncias finais são significativamente
diferentes da solução do concorrente. Quando parte de 80 km/h, o VuT pára a 3,33
metros usando o algoritmo proposto, ao mesmo tempo em que manteria cerca de 10
metros de distância usando a solução AEB do CarMaker™. Aqui, as estratégias por
trás da distância de segurança são diferentes. O CarMaker™ segue uma distância
relativa fixa de qualquer objeto principal, que, neste caso, tinha sido ajustada para
10 metros. Por outro lado, o algoritmo proposto segue apenas o que havia aprendido
por suas recompensas e punições. Estas regras permitem ao controlador reduzir a
velocidade do carro enquanto se aproxima, respeitando o fator de tempo
estabelecido para cálculo das recompensas. A diferença entre as distâncias finais
acontece porque a curva de desaceleração aplicada pelos códigos é diferente.
Apesar de ter uma distância final relativa pequena, o algoritmo proposto realiza a
manobra de frenagem com uma desaceleração menor em velocidades mais altas,
como 70 e 80 km/h. Já no cenário CCRb, simulando as manobras inesperadas de
frenagem, o algoritmo proposto mostrou distâncias finais mais seguras para todas as
situações. Tanto partindo de uma distância de 40 metros quanto de uma distância de
12 metros, o VuT é capaz de frear com desaceleração suficiente para não se
aproximar nem colidir com o veículo adiante. Este comportamento demonstra
robustez no método de recompensa estabelecido, já que em nenhum momento nos
cenários de treinamento o VuT enfrentou algo do gênero. Isto prova que o algoritmo
proposto é capaz de aplicar desacelerações maiores do que as encontradas no
ambiente, a fim de manter seus compromissos com a busca pela maior recompensa
acumulada. Neste caso, deve-se concordar que o peso da não-colisão foi peça
chave na tomada de decisão do algoritmo. Durante a execução do cenário CCRs, os
algoritmos se comportaram de forma diferente entre altas e baixas velocidades. Ao
operar dentro da faixa considerada pela EuroNCAP (2017) como AEB City, de 10 a
50 km/h, os resultados da AEB proposta são muito interessantes, com distâncias
finais iguais ou até mais conservadoras do que seu concorrente. Nos casos de
velocidade inicial igual a 70 e 80 km/h, há uma grande diferença entre os métodos.
Nestes casos sabemos que, embora não haja colisão, as distâncias finais são muito
pequenas, o que se assemelha muito ao caso CCRm do início. Apesar da pequena
distância, ainda se pode considerar que, mesmo que haja colisões, a velocidade de
impacto é significativamente reduzida. Dentro do conceito da AEB, também
podemos entender sua função como atenuador de impacto e não apenas como um
mecanismo capaz de evitar todas as situações perigosas com zero colisões. No
caso mais crítico de CCRs, notou-se que o comportamento dos pedais de acelerador
e freio é diferente para cada solução. O sistema proposto não aplica curvas
contínuas de pedal de acelerador e freio, mas picos de frenagem e aceleração,
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potencialmente explicados pelo processo de treinamento, quantidade de dados para
o treinamento inicial e pelo método de recompensa. Tais resultados podem ser
melhorados pela geração de conjuntos maiores de dados para o treinamento inicial,
com mais cenários e uma função de recompensa contínua. Outra influência neste
comportamento é a função de recompensa descontínua, que dá valores
escalonados e assim, limita a modulação da resposta final durante o tempo. Na
análise dinâmica o sistema concorrente começa sua desaceleração tarde, porém
mais acentuada, atingindo -3,99 m/s² e isto promove a convergência para a parada
mais cedo. Enquanto isso, o sistema proposto inicia sua desaceleração
instantaneamente a -1,83 m/s², o que é mais confortável, mas consequentemente
leva mais tempo para parar completamente. O pedal do freio, que no caso proposto,
embora oscilando inicialmente, entra em regime contínuo inferior, em torno de 25%.
Após uma longa e mais suave manobra de frenagem, o algoritmo proposto pára
completamente a 0,86 m antes do carro da frente. O competidor aplica uma
desaceleração mais severa e converge antes para a distância final, que é de 4,98
metros. Mesmo sem colisão, a situação de 0,86 m para distância relativa final não é
uma condição totalmente segura e isso é uma motivação sólida para continuar
desenvolvendo o algoritmo AEB proposto. Para todos os cenários EuroNCAP, o
sistema proposto estaria aprovado, entretanto numa análise quantitativa nota-se a
necessidade de melhorias para situações em velocidades acima de 50 km/h.
Algumas novas funções de recompensa poderiam ser propostas para estes casos,
talvez mais centradas na distância de segurança e não tão preocupadas com o
conforto dos ocupantes.

CONCLUSÃO

O trabalho atual propôs um algoritmo AEB básico desenvolvido com técnicas de
aprendizado por reforço profundo. A estrutura do sistema tem duas camadas ocultas
de 38 nós cada, escolhidas após verificação inicial onde mais nós e camadas não
foram fatores significativos para o processo de aprendizagem. O algoritmo é capaz
de executar o AEB de forma semelhante a um controlador, a fim de evitar colisões
traseiras diretamente à frente de um veículo em teste. Cenários virtuais foram
usados para treinar e melhorar a resposta do algoritmo, usando uma plataforma de
simulador de direção. Os dados iniciais foram produzidos para fins de treinamento e,
posteriormente, novos cenários foram criados para validar o sistema. O ciclo de
desenvolvimento e treinamento da rede neural para o aprendizado do reforço foi
validado dentro dos três principais protocolos de teste para AEB do EuroNCAP,
todos simulados virtualmente e comparados com outra solução já validada. A função
de recompensa demonstrou eficácia. Ao testar a abordagem em novos cenários, não
utilizados durante o treinamento e avaliar a resposta dinâmica, o sistema teve um
desempenho significativamente bom. É importante notar que o sistema proposto foi
melhor que seu concorrente em cenários de até 50 km/h, onde alcançou distâncias
finais mais longas, desacelerações mais seguras e confortáveis para os ocupantes.
A solução final também permitiu medir velocidades, acelerações e distâncias,
resultando na discussão quantitativa, que concluiu que o sistema está dentro de um
nível de segurança adequado. No caso do teste CCRm, o sistema mostrou uma
curva de desaceleração muito melhor do que seu concorrente para todas as
velocidades realizadas, porém a distância final foi reduzida significativamente a partir
de 50 km/h. Em todo caso, não foram registradas colisões. Durante o teste CCRb,
onde a frenagem brusca é realizada a 40 metros e 12 metros, o sistema teve um
desempenho melhor que o de seu concorrente, com distâncias finais mais seguras.
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Neste caso, o conforto dos ocupantes foi negligenciado, alcançando acelerações de
até -6,83 m/s² para evitar colisões. No último cenário de CCRs, o sistema contou
com um tempo de aproximação mais longo contra um GVT estacionário à frente.
Neste caso, novamente nota-se que há uma fraqueza em manter desacelerações
mais baixas em altas velocidades, resultando em distâncias finais mais curtas
quando acima de 50 km/h. No pior caso, a partir de 80 km/h, o sistema parou 0,86m
atrás do GVT. Em uma análise qualitativa simples, ao não colidir o sistema, o
sistema está aprovado. Entretanto, em uma análise quantitativa mais profunda,
pode-se ver que ainda há oportunidades para melhorar a função de recompensa e o
método de treinamento para velocidades interurbanas. O código em seu estágio
atual, já é capaz de receber dados do ambiente e treinar suas redes neurais
profundas off-line, a fim de encontrar as melhores ações para as posições de gás e
pedal de freio. Potenciais próximos passos seriam: (A) fechar o loop entre hardware
e software e realizar algumas aquisições on-line, treinando-o para melhorar a
percepção da rede, (B) combiná-lo também com aplicações com simuladores físicos
como DYNA4™ ou CARLA™, utilizando softwares integradores como ROS, por
exemplo. (C) Implementar a rede final em DYNA4™, ou qualquer outro simulador
físico para uso experimental com interação humana antes de qualquer
implementação real; e por último (D) executar outras soluções AEB baseadas em
controladores, diferentes dos plug-ins dos simuladores, no mesmo ambiente e gerar
um benchmark para avaliar mais uma vez o algoritmo proposto.

Palavras-chave: Frenagem autônoma de emergência; Aprendizado por reforço;
Simulador de direção.
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ABSTRACT

Considerable progress has been reached in the development of advanced driver
assistance systems (ADAS) in recent years. These devices enhance the vehicle and
traffic participants' safety, while offering warnings to the driver or even taking full
control of the car in order to avoid possible crashes. The autonomous emergency
braking (AEB) performs braking according to potential risk situations, exposed by
data captured from the environment by sensors. This study proposes a basic AEB
algorithm, developed with deep reinforcement learning techniques, where the
machine learns which decision to make based on rewards or punishments, received
after each action taken and its future states. In this particular case, the reward
functions were developed with factors based on the collision time and the desired
velocity, which combined seek to accumulated rewards by avoiding collisions and
maintaining the road velocity. The final agent is a network trained with two hidden
layers of 38 nodes each, capable of acting similarly to an AEB controller. The current
velocity, the distance to objects, and the positions of the gas and brake pedals are
used as input in order to calculate the optimal positions for these pedals and avoid
collisions ahead. To train the algorithm in traffic situations and perform the
reinforcement learning, some approaches are taken in the IPG CarMaker™ driving
simulator. Currently, these simulated methods are extensively applied in the initial
development of ADAS devices before moving to real test environments. Once
trained, the algorithm performs within the simulated environment the EuroNCAP test
protocol for AEB and its results are compared to another AEB solution already
validated. During the scenarios CCRs and CCRm, the code presented better final
relative distances than its competitor in the range between 10 and 50 km/h. Despite
passing and also not crashing at the higher speeds, the system completely stopped
at shorter distances which generated discussions and potential improvement paths
for its next versions. During the CCRb scenario, however, the system has proven
capable of applying decelerations greater than those found in the environment to
ensure no collision. The reward function demonstrated effectiveness once we looked
for the agent and to the results it performed in each scenario. To test the approach in
new scenarios, not used during training, to evaluate the dynamic response, the
system performed significantly well. In a simple qualitative analysis, by not crashing
the system would definitely be approved if it performed in real tests the same results
obtained in the simulations. However, in a deeper quantitative analysis, it can be
seen that there are still opportunities to improve the reward function and the training
method for interurban velocities.

Key-words: Autonomous Emergency Braking; Reinforcement Learning; Driving
Simulator.
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1. INTRODUCTION

According to the latest global reports, approximately 1.35 million road users

die each year, which is almost 3,700 deaths per day. Traffic accidents are also the

leading cause of death for people between the ages of 5 and 29. (World Health

Organization, 2019).

One important indicator to measure road safety is the annual number of

fatalities over 100,000 people. Since 2009, Brazil has not reported significant

improvements (World Health Organization, 2019). In 2018, there were 32,655

fatalities and a rate of 15.58 according to its population of 209.6M (Ministério da

Saúde, 2020). In the same year, the United States of America registered a rate of

11.17, an outcome 3.1% better than its own result of 2017 (National Health and

Transportation Safety Administration, 2020). The United Kingdom and Germany

reported 3.1 (UK Department for Transport, 2019) and 4.1 (UN Road Safety

Collaboration, 2020), respectively, in the same period.

This indicator absorbs many aspects of the road safety at a given location,

such as national transport management, mobility design, quality of fleet, users

behavior and post-crash response. However, once administration and legislation

actions are taken, further results are reached by vehicle safety technologies

improvement. Since last decade, international organizations have required effective

actions of national authorities addressed to this theme.

In 2010 the United Nations Road Safety Collaboration developed a Global

Plan entitled "Decade of Action for Road Safety 2011-2020" (World Health

Organization, 2011) which some of its pillars was to develop safer vehicles,

encouraging universal deployment of crash avoidance technologies with proven

effectiveness. The European Commission also launched in 2011 the Vision Zero

program with the challenging objective to reduce road fatalities to zero within 2050,

by promoting the development of vehicles capable of assuring an increasing level of

safety (European Commission, 2011).
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Some approaches such as The Bloomberg Initiative for Global Road Safety

(BIGRS) 2015-2019 made efforts to reduce fatalities and injuries from road traffic

crashes in low-and middle-income countries by implementing proven road safety

interventions at city level (Bloomberg Group, 2020) .

Although bold, such initiatives have boosted the scientific community in the

development of new technologies for vehicle safety. In the same vein, car

manufacturers were encouraged to accelerate their vehicle automation by the

deployment of such devices.

The mainstream of methods for collision avoidance is to apply and combine

advanced driver assistance systems (ADAS). Primarily, these systems can use

environmental sensors to detect an imminent crash and then to inform the driver by

sound or light alerts (Yoffie, 2014), as forward collision warning (FCW) (Honda

Worldwide, 2003) and pedestrian protection systems (PPS) (Kovaceva et al, 2020).

Devices such as the autonomous emergency braking system (AEB) are one

step ahead, with the probability of impact being significantly reduced (Spicer, 2018).

These systems are placed in the second level of vehicles automation accordingly to

the Society of Automotive Engineers (SAE International, 2020), and uses not only

sensors and warning methods, but also mechatronic actuators operated by Electronic

Control Units (ECUs), capable of running large software packages, making decisions

and taking full control of the vehicle's longitudinal acceleration in dangerous

situations (Sini & Violante, 2020).

Recent advances in fields of artificial intelligence (AI) enabled the use of new

and faster techniques to develop software for ADAS management. Machine Learning

(ML) is a tool of AI that figures out some desired “model” out of “data” (Kim, 2017), in

this case, from data-sets of previous recorded situations on the road.

Machine learning originally had two types of techniques: supervised learning,

which trains a model on known input and output data so that it can predict future

outputs, and unsupervised learning, which finds hidden patterns or intrinsic structures

in input data (The MathWorks Inc., 2016). As a third and mixed type, Reinforcement

learning (RL) is the task of training an agent to take sequences of actions in an

environment in order to maximize cumulative rewards, based on predetermined rules

(François-Lavet, 2018).

Deep learning (DL) is usually implemented by inserting neural networks

architectures to perform the task of learning under some ML technique. The term
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“deep” refers to the number of layers in the network, and the more layers, the deeper

the network. When passing 2 layers, it is no longer a traditional network and this term

can be appropriately applied to describe the method, reaching up to hundreds of

layers if necessary (The MathWorks Inc., 2018).

Combinations of DL networks into RL methods are usually used to manage

larger quantities of data and modeling more complex systems. To increase the speed

of training, greater computational processing capacity is also required (The

MathWorks Inc., 2018).

Finally, before any real application, the software regardless of the method

used to build it, needs to be validated. For this purpose, driving simulators can be

satisfactorily applied. Their use in industry has been highly employed in recent years,

as they allow safety-critical scenarios to be reproduced under controlled laboratory

conditions. (Winner, 2016).

In the context of such technologies mentioned so far, the present work aims

to develop an algorithm for AEB using Deep Reinforcement Learning. To be tested

and validated, a simulated environment will be used, which avoids the high costs of

testing in real conditions. Figure 1 presents an illustrative scheme of the technologies

and their approach within this work.

Figure 1. Scope of technologies to be addressed by this work.

Source: Elaborated by the author.

Although already present in the market, the proposed AEB stands out for the

novelty of including a solution based on artificial intelligence, which differentiates it

from existing systems, as innovative within the ADAS research field.



24

1.1. Objectives

Develop a basic AEB algorithm with deep RL techniques, able to act similarly

to a controller in order to avoid rear-end collisions straight ahead of a vehicle under

test.

1.1.1. Specific objectives

A. To develop a deep neural network capable of solving the problem;

B. To create and integrate virtual scenarios to the algorithm within a driving

simulator platform, in order to generate data for training and later

validation;

C. To establish an effective reward function for the agent, enabling an

effective training process.

D. To test the approach in new scenarios, not used during training, to evaluate

the dynamic response.

E. To measure velocities, accelerations and distances, for a quantitative

discussion about the safety level of the final solution.
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2. LITERATURE REVIEW

This chapter presents an overview of the important and necessary topics to

be addressed during this work, as the consolidated knowledge about the

autonomous emergency braking function, the machine learning structure,

reinforcement learning tools and it ends with the state of the art on previous studies

that combined similar ideas to the purpose of this work.

The main task to be performed by the final algorithm is an AEB, theme of the

first section.

2.1. Autonomous Emergency Braking (AEB)

According to the Society of Automotive Engineering (SAE), autonomous

emergency braking is an active safety technology that can avoid or mitigate collisions

by integrating software and hardware for automatic braking in hazard situations. It

can be classified as an Advanced Driver Assistance System (ADAS), a category that

can also include other safety solutions such as active lane keeping, adaptive cruise

control, speed limit, lane changing and parking assistance (He and Zhang, 2020).

Honda has been the first manufacturer in the automotive industry to

announce the development of this technology. The system was implemented in the

2003 Honda Inspire, still with the commercial name of Collision Mitigation Brake

System (CMS). A radar sensor of 100 meters range calculated forward objects,

relative distances and velocities before activating the Forward Collision Warning

(FCW). Beyond the warning, braking was automatically activated in case of

emergency, equalizing the pressure in the circuit if the driver brake pedal position

was not enough for a safe stop (Honda Worldwide, 2003).

Since then, the development of the AEB systems has been massively

increased and from 2014 onwards, its effectiveness is already part of some costumer

safety testing programs as the European New Car Assessment Programme
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(EuroNCAP), a catalyst initiative for encouraging significant safety improvements to

new car design (EuroNCAP, 2020).

The basis of the system starts from the observation of the driver's behavior in

a situation of sudden braking. In a simple approach, the stopping time is counted

from the moment when the vehicle under test (VuT) first applies its brakes with a

known deceleration, , until the moment when it reaches steady state, as shown𝑎
𝑏𝑟𝑎𝑘𝑒

in (1).

τ
𝑠𝑡𝑜𝑝

= 𝑣
𝑉𝑢𝑇

/𝑎
𝑏𝑟𝑎𝑘𝑒 (1)

As an inherent human factor, the driver has a reaction time to the stimuli and

reflexes he receives. This delay time, , must be considered and added to theτ
𝑟𝑒𝑎𝑐𝑡

stopping time if the system is designed to deliver for the driver some assistance, as

the FCW system for example. In this case, the total travel time, which can be taken

as , will be the sum of the car and driver processes, expressed in (2).τ
𝐹𝐶𝑊

τ
𝐹𝐶𝑊

=  τ
𝑟𝑒𝑎𝑐𝑡

+ τ
𝑠𝑡𝑜𝑝

= τ
𝑟𝑒𝑎𝑐𝑡

+  𝑣
𝑉𝑢𝑇

/𝑎
𝑏𝑟𝑎𝑘𝑒 (2)

Considering only the FCW system and the human driver intervention, the first

concept basic idea of the system is presented in Figure 2. It is considered that only a

FCW system is not yet a complete AEB solution, as there is no automatic brake

application at this stage.

Figure 2. Basic FCW system diagram.

Source: The MathWorks, Inc. (2020).
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It is important to explain that Ego Vehicle or Vehicle under Test (VuT) means

the same subject and for easy understanding, VuT will be selected as the standard

for this work. In Figure 2, another important term to explain is the Time-To-Collision

(TTC). Based on current distance and velocities of both cars, TTC will be the

necessary time for both cars to collide if they stay in the same path and no

intervention happens. Basically, when the TTC becomes less than , the alert ofτ
𝐹𝐶𝑊

an imminent collision must be activated. A detailed explanation of the TTC

expression deployed in this work will be presented in the Methodology chapter.

If the driver fails to interfere into the brakes during the expected time after the

alerts, perhaps due to distractions, or if the minimum deceleration is not𝑎
𝑏𝑟𝑎𝑘𝑒

achieved, the system is allowed to take control of the vehicle and perform the

necessary brake maneuver. In this way, the system can therefore be called an AEB

system, because it is not only a warning emitter, but an autonomous decision maker.

Basic AEB systems typically apply cascaded braking, which consists of the

multi-stage partial braking followed by full braking (Hulshof et al.,2013). This type of

approach is shown in Figure 3.

Figure 3. Basic AEB system diagram.

Source: The MathWorks, Inc. (2020).

The Figure 3 shows three potential stages of deceleration, two of them, 𝑃𝐵1

and on partial braking and using the full available braking power provided by𝑃𝐵2 𝐹𝐵

the mechanical system. The system intervention in this case must follow the data

updated in real time from the sensor, which means that the three stages will not

always be necessary. It occurs, for example when the driver manually brakes, the

leading vehicle accelerates or leaves the same lane from the VuT. For this reason the
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system constantly updates the times and makes new decisions (The MathWorks, Inc.

2020).

In real applications, the system can be mounted as the functional diagram in

Figure 4. The study by Lu and Chen (2019), followed the standard composition of the

solutions currently on the market, where AEB is embedded in a central control unit,

also called AEB control node. The data from the front sensor, which in this case was

a radar type, the current speed and the position of the brake pedal are defined as

inputs for the node (blue lines). The outputs (red lines) are the final brake signals to

be applied to each wheel. In this case, the car has been equipped with individual

electrical brakes.

Figure 4. Functional block diagram of an AEB system.

Source: Lu & Chen (2019).

The physic assemble may follow different strategies, changing input and

output technologies, or even adopting more complex diagrams to ensure the

necessary redundancies for the occupants safety. The actual study will be centered

in the main algorithm to be executed inside the control node, the ECU responsible for

the system. The inputs and outputs will be discussed in the methodology chapter.

The programming structure adopted for the main algorithm of ECU and

controllers may follow different strategies. In the field of stability control, Amaral

(2018) has implemented machine learning for stability control of an electric sport car,

in her case the resulting controller was able to perform torque vectoring, reducing the

vehicle sideslip angle. Drechsler (2019), applied an actor-critic reinforcement learning

strategy to control the slip ratio of an electric kart in different ground conditions, only
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with the input of the longitudinal velocity, motor current, vehicle acceleration, gas

pedal position and wheel velocity.

As the cited works have already confirmed the solution capacity of controllers

generated from machine learning techniques, this theme will be expanded in the next

sections.

2.2. Machine Learning

In the field of Artificial Intelligence (AI), Machine Learning (ML) is a promising

tool and it has received emphasis in the last years by its high capability of solving

complex systems. Different applications had success, such as applications in

autonomous driving, big data management, financial market solutions and medical

diagnosis systems (Paluszek & Stephanie, 2017).

For Kim (2017), ML can be defined as a method that extracts some desired

model from some data, in this case, from data-sets of previous tried scenarios, called

training data. In Figure 5, ML is part of the vertical flow, also called the learning

process. Once delivered by the learning process, the model must return outputs

based on the input data it will experience in new scenarios.

Figure 5. Machine learning basic workflow.

Source: Kim (2017).

Although they originate from similar scenarios, it is not recommended that

the training data fully cover all input data to which the model can be submitted in later

application A validation set, hidden from the training data, is used for checking the

accuracy of the model responses. Through this process, called generalization, the
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creation of a good model is guaranteed, where its performance is not locked only into

the known situations. The more generalized the model, the more prepared it will be

for unexpected scenarios (Kim, 2017).

Machine learning initially had two types of techniques: supervised and

unsupervised learning. Later, the development of Reinforcement Learning was

integrated, achieving the three known machine learning techniques, summarized in

Figure 6.

Figure 6. Machine learning techniques.

Source: Kim (2017).

In supervised learning, a set of training data is applied to the system whose

answers are already known. The model, therefore, learns from the combinations that

are already established. The learning process is successful when the differences

between the model outputs and the ideal outputs are minimized (Paluszek &

Stephanie, 2017).

Unsupervised learning is a process in which only the inputs are known. Thus,

learning happens in the search for recognizing hidden patterns and classifying future

responses. Since there are no expected answers, the system can find patterns in

data, which previously were not identified (Paluszek & Stephanie, 2017).

Reinforcement learning, according to Kim (2017) is the most used technique.

It can be considered a combination of the previous techniques, where inputs can be

known but not all outputs can be established. Thus, the model is built by a learning

process where the best responses are obtained by mapping states and actions that

return a maximum sign of reward. The necessary factors for learning are the training

data, some outputs and a rule that guides the rewards or penalties during the

process (Sutton & Barto, 2017; François-Lavet, 2018).
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The three techniques, despite differences, start from a set of training data.

For this reason, it is important to reinforce that the composition of the initial data is

fundamental to achieve a successful model, prepared for a substantial range where

multiple inputs can be experienced (Kim, 2017).

The main features that are useful for creating an RL method will be

presented in the following sections

2.3. Reinforcement Learning

Although there are previous records of the application of this technique, the

current concepts of RL, for the most part, were developed by Richard Sutton in the

eighties, and have continued to be improved since then, as more problems are

solved by it, becoming the main technique of machine learning. (Sutton & Barto,

2017; Sutton, 1999; Wiering & Otterlo, 2012).

The great differential of the technique is that it does not depend on the

complete knowledge of the outputs that the model must deliver. But through

pre-established feedback, as rewards or punishments, the system learns how to

execute the best decisions. This can be very useful to model non-linear systems or

implement controllers where previously decisions depended on human intervention

(Sutton & Barto, 2017).

The essential features of RL and its elements are listed in the following

subsections.

2.3.1. Elements of Reinforcement Learning

The RL approach starts with the definition of two main elements: agent and

environment. The agent comprises the unit that makes decisions and executes

actions based on the states in which the environment is located. The environment is

all the external characteristics of the agent, known or not, which receives the actions

and modifies itself, returning to the agent new states (Sutton & Barto, 2017; Nandy &

Biswas, 2018).

The system's composition may have sub-elements, listed by Sutton and

Barto (2017) as: policy, reward function, value function and environment model.
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The policy, henceforth identified by π, is the rule developed by the agent who

guides it in generating the set of actions for each set of states received from the

environment. There are several methods of generating the policies, being them

simple, complex, fixed, stochastic generated or updated as the system is re-trained

(Sutton & Barto, 2017; Wiering & Otterlo, 2012).

The reward function is important to define the purpose of the agent within the

environment. It is defined during the system's conception phase and remains

constant throughout the learning process. It is the mechanism that assigns to each

set of states generated by a previous set of actions, a certain feedback, which can be

positive (a reward) or negative (a punishment) (Sutton & Barto, 2017).

While the reward function quantifies how good are the actions taken for the

current states, the value function cares about the long term. The value function aims

to estimate the amount of rewards that the agent can expect starting from the actual

state and taken action. The best sequence of actions will be the one that

accumulates the highest number of rewards (Sutton & Barto, 2017).

The environment model is basically an attempt to reproduce the behavior of

the environment. Modeling the environment can be a good strategy for predicting

future states and rewards. This way, better actions can be performed without the

costly trial and error process. (Sutton & Barto, 2017).

The expressions set for each RL element introduced above will be presented

partially in the next subsection and in the methodology chapter, while these

parameters need to be fitted to the study case.

2.3.2. Agent-environment interface

The basic operation of an RL process occurs in the cyclically interaction

between its two main elements previously defined as agent and environment,

presented in the diagram of Figure 7. The agent's continuous decision-making

process creates new actions based on a current state. Such actions, applied to the

environment, cause new states and with them comes new respective rewards. A new

cycle is started from then on (Sutton & Barto, 2017).



33

Figure 7. Agent-environment interaction in an RL process.

Source: Sutton and Barto (2017, p. 52).

It is necessary to point out that the two elements interact within a discrete

model, where at each step , the agent receives some representation of the state.𝑡

From this state, a possible action is chosen, leading to the next state . The𝑠
𝑡+1

reward is then calculated based on the state and actions taken. The state and𝑟
𝑡+1

the reward are sent to the agent that chooses the next action. In this way, the

process will always try to maximize the reward by means of actions that return the

best values in the long term (Sutton & Barto, 2017).

The learning cycle may be implemented by an online mode or an offline one.

Both are themes for the next section.

2.3.3. Online versus Offline learning

The RL method can be applied during a problem execution in online or offline

mode. This is differentiated by the way the state data is being updated. This data can

be originated directly from the execution of the actions in the real environment or

from a simulated environment. The real environment approach, called online

learning, can present some challenges such as the time consuming and safety in

hazard situations when the policies are not trained enough (Wiering & Otterlo, 2012).

Simulated environment, or also called virtual environment, is applied for

offline learning and performs the learning using a simulator to generate data, or in

some cases, using a dataset previously captured and saved. Offline learning is a safe

and fast way to train the policy in the previous stages of development, while

permitting the agent to avoid dangerous errors and high costs. The combination of
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both processes, offline followed by online learning, can be a great solution, fitting the

policy for the dataset and then, fine-tuning it in a real task (Wiering & Otterlo, 2012).

The way in which the process advances searching actions to obtain the

highest possible reward value can follow two strategies: exploration or exploitation.

Both will be discussed in the next item.

2.3.4. Exploration and Exploitation strategies

During the process of choosing the action for each state received, the agent

performs a search that returns the best or most recommended action for that

situation. The RL, different from other ML methods, guides the policy construction by

rewards given to previous states and actions. A trial and error approach can be used

as a method to define this policy. In this case, it follows an exploration process

(Sutton & Barto, 2017).

An exploration strategy aims to maximize the cumulative amount of rewards

in the long term. It takes into account not only the current action, but also the next

potential actions in order to reach, in the end, a sequence of well rewarded choices.

It returns the most recommended action, which perhaps generates intermediate

rewards at the moment, but leads to better actions and rewards in the next stages. If

the method does not look for the future and performs only the most rewarded action

for the current state, it is following an exploitation approach (Sutton & Barto, 2017).

Exploiting strategy looks for maximizing the expected reward in the present

cycle. In a pure exploitation approach, the agent makes choices without paying

attention to the behavior of the system in the next stages, failing to consider better

actions. Well-designed learning processes must balance between these two

approaches during the policy construction, performing what is called by Sutton and

Barto (2017) as an exploration-exploitation problem.

The combination of both strategies can lead to a very complex management

between values estimation, uncertainties and remaining number of tries. However,

there are alternatives that simplify this impasse. One of them is the -greedy method,ε

which exploits most of the time, and based on the small probability , chooses aϵ

random action from a set of possible actions (Sutton & Barto, 2017).

Applications using an -greedy methods often permit the convergence of allε

rewards to the maximum value. It occurs because as the number of plays increases,
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all possibilities are tried many times. However, the convergence behavior is attached

to the defined probability . A better illustration of this influence is shown in Figure 8.ϵ

Figure 8. Average performance of the ϵ-greedy method.

Source: Sutton and Barto (2017, p. 29).

In the Figure 8, three average reward curves are plotted, following

probabilities of , and . The convergence to the highest valueϵ = 0 ϵ = 0. 01 ϵ = 0. 1

is faster reached by the method that sets . It means that the agent used 10%ϵ = 0. 1

of its choices to explore among possible actions and 90% of the time it passed

exploiting. Even receiving bad rewards at the very beginning, it quickly understood

the system and adapted its policy.

An intermediate response is presented by the method of . In thisϵ = 0. 01

case, it has a slower convergence, and that is expected because now the agent is

only 1% of the time performing exploration. If more plays would be performed,

probably the average reward would pass the method results in the long term.ϵ = 0. 1

Of course, the worst situation comes from the method. This strategy isϵ = 0

purely exploitation, which stops the bad rewards generation very fast in the

beginning, but the converged value is a lower offset of the total possible reward it

could extract from the system. This occurs due to the high possibility of getting the

policy stuck in suboptimal performance, no longer exploring better rewards (Sutton &

Barto, 2017).

Regardless of the strategy adopted, it is necessary to consider that the

problem also adopts a Makrovian approach. The benefits of this property are

discussed below.
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2.3.5. Markov Decision Process

In order to solve all interaction problems between environment and agent in

an efficient way, it is necessary to make predictions about states and expected

rewards. Normally, the environment in time is the outcome not only of an action𝑡 + 1

taken at time but all past states and actions. If the system is kind of a Markov𝑡

Decision Process (MDP), the current state and action in time depend only on𝑡 + 1

the state and action in time . In other words, it is possible to predict values and make𝑡

an optimal future decision based only on the knowledge of the current state, which

carries all information about the past (Wiering & Otterlo, 2012).

It is possible to describe the concept in terms of a probability, stated in the

relation of (3).

𝑃 𝑠
𝑡+1

𝑠
𝑡
,  𝑎

𝑡
,  𝑠

𝑡+1| |𝑎𝑡−1
, …,  𝑠

0
, 𝑎

0( ) = 𝑃(𝑠
𝑡+1

|𝑠
𝑡
,  𝑎

𝑡
) (3)

The Equation (3) shows that the probability of an event where a state is𝑠
𝑡+1

resultant of all previous states and actions, is the same of the one where results𝑠
𝑡+1

only from the last state and action and . Therefore, if an action is taken in some𝑠
𝑡

𝑎
𝑡

state, the probability distribution to activate the next state is the same every time the

system makes the same decision. Thus, the last state and last action will have all

decisive information about the next state’s development (Wiering & Otterlo, 2012).

The rewards behavior also follows a function called , and the relation of𝑅(𝑠
𝑡
)

past, actual and future values can be very similar. To model-free applications,

normally the actual reward is also dependent on next the resultant state,

, including a term that works as an evaluation for the transition (Sutton𝑅(𝑠
𝑡
,  𝑎

𝑡
,  𝑠

𝑡+1
)

& Barto, 2017).

2.3.6. Value Functions

Value functions exist inside of RL algorithms to quantify how favorable to the

agent is the current situation it faces. The concept is based on the potential amount

of reward it will receive in the future, starting from condition of interest. Sutton and
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Barto (2017) explain the state-value function as how good for the agent is to be at

some state regarding the total reward expected if a policy is followed. Similarly,𝑠 π

state-action-value function expresses the reward influence not only by the state , but𝑠

also by the taken action if the same policy is respected.𝑎 π

Adding the MDP concept, it is possible to define the state-value and the𝑉π

action-state-value function as the expressions of (4) and (5), respectively. Both𝑄π

are defined in terms of what Wiering and Otterlo (2012) call Bellman Equation.

𝑉π(𝑠) =
𝑠'
∑ 𝑇(𝑠, π 𝑠( ), 𝑠') 𝑟 𝑠, 𝑎, 𝑠'( ) + γ 𝑉π 𝑠'( )( ) (4)

𝑄π(𝑠, 𝑎) =
𝑠'
∑ 𝑇(𝑠, π 𝑠( ), 𝑠') 𝑟 𝑠, 𝑎, 𝑠'( ) + γ 𝑄π 𝑠', 𝑎'( )( ) (5)

Two components of (4) and (5) are important: the term and the𝑇 𝑠, π 𝑠( ), 𝑠'( )
discount factor . The first one means the probability of transition between the stateγ 𝑠

to the state (simplified by ). The discount factor, a value limited from 0 to 1,𝑠
𝑡+1

𝑠'

quantifies the influence of past rewards on the agent's actual and future decisions. If

older values have no importance and the agent is called myopic, just takingγ = 0

recent rewards into account. As the increases, the rewards records become moreγ

relevant (Wiering & Otterlo, 2012).

If the policy is improved, the entire system returns more rewards and theπ

final value is increased. Then, the goal of an RL algorithm stands on the

maximization of the value functions by an optimal policy . This optimal policyπ*

selects the best actions using the state-value function of (4), resulting in the greedy

policy (6) (Wiering & Otterlo, 2012).

π*(𝑠) = arg
𝑎

max  
𝑠'
∑ 𝑇(𝑠, π 𝑠( ), 𝑠') 𝑟 𝑠, 𝑎, 𝑠'( ) + γ 𝑉* 𝑠'( )( ) (6)

The optimal state-action-value function, also called Q-function, can be

described by (7), where the best actions delivered by the optimal policy are used π *
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to return the greater possible rewards, resulting in the greatest value (Wiering &

Otterlo, 2012).

𝑄*(𝑠, 𝑎) =
𝑠'
∑ 𝑇(𝑠, π* 𝑠( ), 𝑠') 𝑟 𝑠, 𝑎, 𝑠'( ) + γ 𝑄* 𝑠', 𝑎'( ) ( ) (7)

For model-free applications, the Q-functions can assume the probability of

transition function equal to 1 and the learning process is significantly simplified

(Wiering & Otterlo, 2012). The

2.3.7. Solution methods for model-free applications

Most RL algorithms have a model-free approach, which uses sampling and

exploration to obtain the optimal policy for unknown environments, applying actions

and observing the generated states to estimate the state-action-value functions

(Wiering & Otterlo, 2012).

The main mathematical problem consists always in an approximation of the

optimal policy that maximizes the value function for each state. There are threeπ* 𝑄*

general methodologies available to solve this problem (Wiering & Otterlo, 2012):

● Model-based solution: Makes a MDP approximation to calculate the

policy. Using , and γ, it learns the probability transition function𝑠 𝑎 𝑇

and the rewards function before achieving and . The𝑟 π* 𝑄*

dependency of so many stages results in a very difficult

implementation.

● Policy-based solution: These algorithms work as continuous

developers of some policy, making constant updates on it until finding

the optimal condition, called also as direct policy-search or

actor-algorithms. It learns a parametrized policy to choose the actions.

● Value-based solution: These algorithms use the actions, states and

rewards to update a value function, and based on it, next actions are

selected. It is widely applied, in on-line, off-line, on-policy and

off-policy algorithms as Q-Learning and Deep Q Network (DQN).
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The study of Chen (2018) reinforces that value-based methods are

recommended for discrete actions spaces, while policy-based methods are

recommended for continuous actions spaces.

2.3.8. Neural Network

Neural networks seek to artificially reproduce the same functioning of the

human brain through mathematical models. The basic unit of the network is the node,

which is combined in complex interconnections ruled by different weights in order to

act in a similar way to human neurons (Wiering & van Otterlo, 2012).

A node by itself is not capable of storing information, but the association of

nodes with their weighted connections becomes capable of acquiring the ability to

understand how to perform complex functions, just as the human brain does through

its extensive network of neurons (Kim, 2017). Figure 9 illustrates an artificial neural

node.

Figure 9. Artificial neural node with three inputs, a bias and output.

Source: Kim (2017, p. 20).

A node, like the one shown in Figure 9, is an input-output relationship as a

function. It receives its inputs pondered by specific and different weights. In the

example, the 3 inputs have weights , and . The node also carries a bias𝑤
1

 𝑤
2

𝑤
3

𝑏

that must be added to the sum of the inputs, as stated in (8).

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝐼𝑛𝑝𝑢𝑡
1
𝑤

1
+ 𝐼𝑛𝑝𝑢𝑡

2
𝑤

2
+ 𝐼𝑛𝑝𝑢𝑡

3
𝑤

3
+ 𝑏 (8)
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Before proceeding outward from the node, the signal goes through an

activation function . This function acts as the processing rule that governs the nodeφ

and gives the output signal a peculiar format. (Kim, 2017). One commonly used

activation function is the sigmoid, presented in (9). It allows the node to always

deliver an output value contained between zero and one.

φ(𝑂𝑢𝑡𝑝𝑢𝑡) = 1

1+𝑒−𝑂𝑢𝑡𝑝𝑢𝑡 (9)

The assembly of many interconnected nodes as a mesh forms what is known

as a network, and similar to the brain, the execution of a single complex function can

be distributed and executed by many simple individual processes (Kim, 2017). Its

representation can be divided into layers as in Figure 10.

Figure 10. Layered structure of nodes.

Source: Kim (2017, p. 22).

In Figure 10, there is an entry layer, the square shapes, two intermediate

layers of nodes, and the output layer with the nodes that deliver the results. The

inputs, closer to the left, are only signal receivers and do not act as operating nodes.

The middle layers can also be called hidden, because they are not accessible from

the extremities (Kim,2017).

The number of layers classifies the type of network. According to Kim (2017),

the absence of intermediate layers results in the pioneering format of the method, the

single-layer network, which has only one layer of inputs connected to one layer of

outputs. Multi-layer networks are specifically called those that have hidden layers,
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having the nomenclature of shallow neural network when there is only one hidden

layer and deep neural network when there are two or more hidden layers.

There is a direct relationship between a network's data processing capacity

and the number of nodes and layers, with the most complex cases being demanded

by more elaborate networks. In this context extensive deep neural networks are

applied to the most unpredictable nonlinear behavior systems (Kim, 2017).

The learning within the structure occurs by updating weights and biases

while the achieved outputs are compared to expected outputs. Following the

updating equation (10), weights and biases use the remaining error to converge into

values that will deliver the correct output-input relation for the system.

𝑤
𝑖𝑗

=  𝑤
𝑖𝑗

+ βφ
𝑖
'(ή

𝑖
)𝑒

𝑖
𝑥

𝑗 (10)

The indexes and are used to represent the traveling signal between two𝑖 𝑗

nodes, respectively. Thus, is the weight of node output to node input; means𝑤
𝑖𝑗

𝑖 𝑗 β

the learning rate that establishes the update velocity in a range of 0 to 1; The term

is the derivative of activation function evaluated at the weighted sum of nodeφ
𝑖
' ή

𝑖( ) φ

output; is the error of node output and is the output from node (Kim, 2017).𝑖 𝑒
𝑖

𝑖 𝑥
𝑗

𝑗

The learning process assumes the workflow of Figure 11, where the neural

network replaces the central model and a learning rule becomes the ML method to

develop the policy able to correlate input and output data properly.

Figure 11. Neural Network learning workflow.

Source: Kim (2017, p. 12).
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The learning rule may follow three different schemes, the Stochastic Gradient

Descent (SGD), the batch or the minibatch (Kim, 2017):

1) SGD calculates the error for each training data and immediately updates

the weights.

2) Batch method updates the weights with the average error obtained after

an entire cycle of training data, also called as epoch. It delivers more

stability for the process but increases processing time if the datasets have

larger sizes.

3) Minibatch makes a mix of SGD and Batch methods. The algorithm uses

part of the total training data to calculate the errors and the updating of

weights is made at the same pace, allowing faster performance for larger

datasets (Kim, 2017).

The normal traveling direction of the data is from input to the output, what is

called forward propagation. Unfortunately, the error in multi-layered networks cannot

be calculated because the expected results are not known. The solution in this case

is the backpropagation, which consists of reversing the traveling direction of the error,

sending it back from output to the input. The updating equations are very similar, but

in this case after an entire cycle, the weights are calculated firstly for the latest nodes

and based on their outcomes, the previous connections are updated (Kim, 2017).

2.4. State of the Art

There is a substantial amount of ADAS currently available, which allow to

cover a wide variety of parameters and maneuvers, as lateral control, longitudinal

control, parking aid, reversing aid, vision enhancement, driver monitoring-crash

systems, road surface or low-friction warning (Lundgren & Tapani, 2006).

Low Speed AEB technology is cited to have led to a 38% reduction in

real-world rear-end crashes (Fildes et al., 2015). This is possible because the device

acts when it is still possible to avoid the accident, or significantly reduce its severity

while maintaining the high level of attention of the driver by its warnings and

interventions (Bella & Russo, 2011).

Autonomous emergency braking and steering systems (AEBSS) have proven

to be even better for perpendicular collisions, as autonomously perform braking or

evasive maneuver by steering. (Kovacevaa et al., 2020).
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Variations and combinations with AEB are also subject of research. The

study of Sandera & Lubbea (2018) showed that 80 to 90% of collisions in junctions or

intersections could be avoided by called Intersection-AEB, where the vehicle is

equipped with 180º coverage front sensors. Clearly, such a percentage of reduction

is only achievable with the hypothesis of 100% market penetration of these devices

for the long-term.

Remaining in the idea of fully equipped cars, not only direct interventions in

the driving but also forward collision warning (FCW) in addition to AEB could avoid

almost 1 million U.S. police-reported rear-end crashes and more than 400.000

injuries in 2014 (Cicchino, 2017).

For chaotic traffic situations, the concern about cyclists safety led (Duan et al,

2017) to release a method to design an adaptive Bicyclist-AEB. This particular study

is based on drivers’ behavior captured from driving simulators, during different

scenarios of conflicts vehicle-bicycle remounted from real events.

In parallel, with the advent of increasingly efficient RL methods, successful

control applications were achieved, for instance, learning of robot behaviors (Peters

& Schaal, 2006; El-Fakdi & Carreras, 2008), car driving (Riedmiller et al., 2007),

engine control (Liu et al., 2008) and even helicopter guidance (Abbeel et al., 2010).

RL techniques applied to AEB or any maneuver assistant system may act in

two levels of approach: A decision maker or a maneuver executor. As decision

makers, RL agents can be used in interactive highway environments to learn how to

drive as close as possible to a desired velocity by giving to the vehicle standard

orders to change the lane, to accelerator to brake (Mirchevska et al, 2018). As

maneuver executors, such methods actually can learn how to control the available

inputs, to understand the environment behavior and to perform the entire transition

(Wang et al., 2018).

Specifically in the field of deep learning, this technique was recently used to

learn an effective driving policy for pedestrian collision avoidance with a fast

convergence rate, acting as an AEB algorithm (Li et al., 2020).

Some advanced approaches as You et al. (2020) started from a stochastic

traffic modeling, and achieved the desired driving behaviors using both RL and

inverse reinforcement learning (IRL). In this particular case, the road geometry was

took into consideration and the algorithm was prepared to perform over possible𝑛

lanes, returning actions that avoid collisions.
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Providing faster results and saving high hardware implementation costs in

the development of these algorithms, driving simulators are disseminated among

these lines of research.

Advanced-interactive solutions provide a high degree of realism, allow

experiments to be conducted in controlled conditions and assure the highest degree

of safety for test drivers (Bella & Russo, 2011). Various studies also have shown that

observations derived from driving simulators are a reliable source of data to examine

drivers’ behavior and the assessment of rear-end collision risk (You et al., 2020;

Bella, 2009; Farah et al., 2009; Jenkins & Rilett, 2004; Broughton, 2007).

In Jirgl et al. (2019), a basic car driving simulator was designed and

implemented with MATLAB/Simulink tools to assess the human response to different

scenarios and conditions. Further studies with the aim of analyzing the efficiency of

driver assistance systems have also been developed (Cheng et al., 2002; Genya &

Richardson, 2005; Jamson et al., 2008).

This work aims to unite some of the techniques presented so far to propose a

basic AEB algorithm developed with deep RL techniques. To generate enough data

for training and to enable faster, safer and more affordable results, the tests are

virtually performed in a driving simulator. The methodology developed by the author

is shown in the next chapter.
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3. METHODOLOGY

The problem consists of a vehicle under test (VuT) that travels on a

double-lane way, where surrounding cars can suddenly brake or cross onto its lane at

lower speeds, as shown in Figure 12. All participating vehicles are randomly

generated and managed by a driving simulator while the virtual VuT actions are

performed by the developed algorithm, called RL agent. The agent does not have

any other information on the intentions of the other vehicles besides the data

provided by its frontal sensor and basic telemetry as gas pedal, brake pedal and

current speed.

To train and deliver a final RL algorithm capable of longitudinally controlling

the car, this work assumes a Light Detecting and Ranging (LIDAR) sensor located on

the front end of the vehicle and a pre-processing system that compiles reliable

information on the distance and speed of the identified objects, transforming them

into the sensor’s reference coordinates. A deeper research on sensing technology is

not yet the focus of this initial work, but the development of the algorithm for AEB.

Figure 12. The environment of the RL agent.

Source: Elaborated by the author.
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In addition to the variables read by telemetry and the frontal-sensor, Figure

12 also presents a safety distance called safe zone. This parameter will be used

further in subsection 3.4 for the formulation of the reward function.

To solve the problem through a ML technique as a Reinforcement Learning

method, some assumptions need to be made and the mathematical definition of the

problem is stated in the following subsections.

3.1. The problem as a RL process

The intention of a typical RL problem, when considered as a Markov

Decision Process (MDP) (Howard, 1966), is to find an optimal policy whichπ *

addresses the states ( ) of the environment into actions ( ) that the agent𝑠 ∈ 𝑆 𝑎 ∈ 𝐴

takes at the corresponding time step-in a way of maximizing a total expected return 𝑅

. This last set is a cumulative sum of immediate rewards received over the

completion of a task (Sutton & Barto, 1998), respecting a proper reward function

.𝑟: 𝑆 𝑥 𝐴→𝑅

The sets and are state space and action space, respectively, and can be𝑆 𝐴

discrete or continuous depending on the problem. In the case of this work, the states

are considered continuous and the actions are assumed as finite, configuring a

model-free approach.

In the Figure 13, the RL agent and the environment interact during a

sequence of discrete time steps . At each time step the RL agent𝑡 = 0, 1, 2, …{ }

receives information about the environment’s state and based on that, selects𝑠
𝑡

∈ 𝑆

an action . One time step later, as a result of the action performed in , the𝑎
𝑡

∈ 𝐴 𝑠
𝑡( ) 𝑠

𝑡

RL agent receives a reward , and finds itself in a new state . A policy is a𝑟
𝑡

∈ 𝑅 𝑠
𝑡+1

π

mapping that maps each state to an action that should be executed when in .𝑆→𝐴 𝑠 𝑠
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Figure 13. RL process.

Source: Adapted from Kim (2017).

The goal of the RL agent is finding a policy to achieve the highest reward in

the long run. The state-value function which yields the optimal policy is calledπ*

optimal state-action value function , defined by (11) (Sutton & Barto, 1998).𝑄*

𝑄* = 𝑄π 𝑠, 𝑎( ) ∀   𝑠 ∈ 𝑆,   𝑎 ∈ 𝐴 (11)

3.2. State space and actions

The inputs chosen from the environment to represent it are all the information

available for the RL agent to learn the optimal value function in the training stage. In

such an approach, even variables from the vehicle itself are considered part of the

environment and the agent can be literally reduced to the ECU, or the software inside

it. All of these data are included in the state vector , updated in discrete time step .𝑆 𝑠

Aiming further expansions, the current state vector was prepared to allocate

objects in more than just the actual VuT’s lane. Then, the indexes used for this

purpose would be -central lane where the VuT is, -left lane and -right lane,𝑜𝑙 𝑙𝑙 𝑟𝑙

which are the most relevant lanes for the VuT in case of any maneuver and also

achievable by the sensor range.

The state vector , at this moment, is composed of 9 values:𝑆

𝑆 =  𝑑
𝑟

𝑜𝑙

, 𝑣
𝑟

𝑜𝑙

, 𝑑
𝑟

𝑙𝑙

, 𝑣
𝑟

𝑙𝑙

, 𝑑
𝑟

𝑟𝑙

, 𝑣
𝑟

𝑟𝑙

, 𝑣
𝑉𝑢𝑇

, 𝐺𝑃, 𝐵𝑃⎡
⎢
⎣

⎤
⎥
⎦

(12)

𝑣
𝑟

= 𝑣
𝑥

− 𝑣
𝑉 𝑢𝑇 (13)
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In (12), all variables referring to surrounding cars are already converted to

relative states, as the relative velocity , follows (13). The values are always defined𝑣
𝑟

between the VuT and the nearest cars, or objects, of each lane. When there is no

adjacent lane available, relative distance is defined as , and the relative𝑑𝑟 = 0

velocity to . In this case, it’s assumed the VuT keeps running in the central 𝑣𝑟 → ∞

lane, because there is no chance to take a different lane where the relative distance

to any object will be zero, or its relative velocity of approximation is substantially

hazardous.

In subsection 3.5, a simplification for the last two values of the vector will𝑆

be presented to facilitate implementation and training.

In terms of actions, the agent acts directly in the positions of accelerator and

brake pedals, shown in (14). The control of such variables can act directly in the

longitudinal response of the vehicle and to avoid collisions or to mitigate them.

𝐴 =  𝐺𝑃
𝐷𝑒𝑠𝑖𝑟𝑒𝑑

, 𝐵𝑃
𝐷𝑒𝑠𝑖𝑟𝑒𝑑[ ] (14)

The easy reading of gas pedal position (GP) and brake pedal position (BP),

which are already normalized values between 0 and 1, and the possibility to make

interventions in them, enable the agent to test reward responses and quickly reach a

good knowledge of the environment. In subsection 3.5, on the Training Method, a

simplification of the vectors and will be presented to facilitate implementation.𝑆 𝐴

These actions are the minimal set for achieving the goal of avoiding

collisions. No much information must be provided for a basic AEB system. The only

information about pedal position is enough to be returned into the driving simulator

and the same in a real application with no further processing, once modularized

systems already have been reported to perform better in autonomous driving than

end-to-end systems(Shalev-Shwartz & Shashua, 2020).

Before assuming some action as the best for a given situation, the RL

method uses a check step through a reward function. To understand the proposed

reward function to be shown in the subsection 3.4, the concepts of Time To Collision

(TTC) and Time To Total Stop (TTS) need to be presented.
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3.3. TTC and TTS Calculation

The idea of computing a TTC was first suggested by Hayward (Hayward,

1972). It is defined as “the time required for two vehicles to collide if they continue at

their present speed and on the same path”. The time-to-collision of a vehicle driver

combination instant with respect to a leading vehicle on the same path is𝑖 𝑡 𝑖 − 1

calculated with

𝑇𝑇𝐶
𝑖

=
𝑋

𝑖
𝑡( )−𝑋

𝑖−1
𝑡( )−𝑙

𝑖

𝑋̇
𝑖

𝑡( )− 𝑋̇
𝑖−1

𝑡( )
∀  𝑋

𝑖
>  𝑋

𝑖−1
𝑡( ) (15)

where denotes the speed, the position, and the vehicle length𝑋̇ 𝑋 𝑙

(Minderhoud & Bovy, 2001). For the problem stated in the Figure 12, the term can𝑙

be canceled, since the sensor is positioned directly on the front bumper of the VuT

and the first point of interest in the car ahead is its rear bumper.

From (15) it also can be seen that the TTC is usually computed for a specific

path. Such a condition is assumed in this work, as the pre-processing algorithm of

the frontal sensor already must consider that the objects are straight ahead of the

VuT in the same path. It is also assumed that this basic algorithm is fitted for highway

environments or low speed situations where the curvature of the road is not relevant.

As presented in (12), the current algorithm already receives as input the

relative velocity and the relative distance between the VuT and the leading car. Then,

the calculation of can be replaced by (16)𝑇𝑇𝐶
𝑉𝑢𝑇

𝑟

𝑇𝑇𝐶
𝑉 𝑢𝑇

𝑟

=
𝑑

𝑟
−𝑑

𝑠𝑎𝑓𝑒𝑧𝑜𝑛𝑒

𝑣
𝑟

(16)

where the relative velocity is positive in situations when the leading vehicle is𝑣
𝑟

slower than the VuT (approaching) and negative when it is faster (moving away).

To create an additional mechanism for safety, the distance is𝑑
𝑠𝑎𝑓𝑒𝑧𝑜𝑛𝑒

included in (16). Such dimensions must respect what is determined by

Bussgelkatalog (2020), as at least, “5/10 of half the vehicle speed”, leading to (17).
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𝑑
𝑠𝑎𝑓𝑒𝑧𝑜𝑛𝑒

=
𝑣

𝑉 𝑢𝑇

4
(17)

Another important concept to the hereafter reward function is the time to total

stop. This is stated as the time between the driver starts to brake from a cruise

velocity with total pressure ( ) and the moment when the vehicle reaches a𝐵𝑃 = 1

resting state.

This particular number is extracted from the driving simulator which

considers all vehicle dynamics modeled and also where the environment is running.

It intrinsically considers special characteristics from the specific car model used as its

weight, center of gravity, suspension response, ground adherence and even air

dynamics. The calculation also includes a 0.63 seconds delay of response due to the

human reflects and changing of pedals, presented by the last term of equation (18).

𝑇𝑇𝑆
𝑉 𝑢𝑇

=  0, 0001𝑣
𝑉𝑢𝑇
2 +  0, 0733𝑣

𝑉𝑢𝑇
+  0, 6324 (18)

The measurement was performed empirically, by varying cruising speeds and

measuring . For instance, at a cruising speed of 100km/h, the expected to𝑇𝑇𝑆
𝑉 𝑢𝑇

perform an emergency stop is 8.9 seconds. In a situations of very low speeds as 10

km/h, must be next to the delay of response. 𝑇𝑇𝑆
𝑉 𝑢𝑇

For applications with different car models, gauging needs to be replicated in

order to establish the and to fit the problem to the specific vehicle.𝑇𝑇𝑆
𝑉 𝑢𝑇

3.4. Proposed Reward Function

The RL agent must be rewarded for maintaining the safety distance and

always being in a position to completely brake the vehicle before collisions.

The final reward function is a sum of two terms, a reward based on𝑅𝐸𝑊
∆𝑇

the comparison between TTC and TTS, and a reward based on an error to a𝑅𝐸𝑊
∆𝑉

desired velocity. This second reward is design to prevent the agent from concluding

that the best action is to stay still, it is based in a desired velocity , considered𝑣
𝐷𝑒𝑠𝑖𝑟𝑒𝑑

the limit velocity of the road. The calculation of and is expressed, respectively,∆𝑇 ∆𝑉

in (19) and (20).



51

∆𝑇 =
𝑇𝑇𝐶

𝑉 𝑢𝑇
𝑟

𝑇𝑇𝑆
𝑉 𝑢𝑇

(19)

∆𝑉 =
𝑣

𝑉𝑢𝑇
−𝑣

𝐷𝑒𝑠𝑖𝑟𝑒𝑑

𝑣
𝐷𝑒𝑠𝑖𝑟𝑒𝑑

|||
||| (20)

In situations where , the calculation is a warning for a potential0 < ∆𝑇≤1

collision, as the time to completely stop the vehicle is less than the expected time to

collide. In this case it is not recommended to give rewards to the agent, as it must

avoid such situations by reducing its velocity steps earlier. Considering that

represents a leading car moving away, in this case means a𝑇𝑇𝐶
𝑉 𝑢𝑇

𝑟

< 0 ∆𝑇 < 0

safe condition and the agent can receive rewards.

To measure how near of the desired velocity and to reward the agent, when

is near to zero, the reward must be bigger. It means that the vehicle is running∆𝑉

near to the road specified velocity. This term of reward also allows the agent to learn

of accelerating again the vehicle after some braking procedure, when the leading car

has already returned into movement.

Based on the performance of the agent and consecutive iterations the

equivalent rewards and are listed, respectively, in (21) and (22).𝑅𝐸𝑊
∆𝑇

𝑅𝐸𝑊
∆𝑉

𝑅𝐸𝑊
∆𝑇

 = {
0. 5  𝑖𝑓 ∆𝑇 > 1 𝑜𝑟 ∆𝑇 < 0

0  𝑖𝑓 0 < ∆𝑇 ≤1
(21)

𝑅𝐸𝑊
∆𝑇

 = {

0. 5  𝑖𝑓 ∆𝑉 =  0

(22)
0. 4  𝑖𝑓 0 < ∆𝑇 ≤ 0. 1

0. 25  𝑖𝑓 0. 1 < ∆𝑉 ≤0. 2

0  𝑖𝑓 ∆𝑉 > 0. 2

As stated in the beginning of this subsection, the final reward is a𝑅𝐸𝑊
𝑓𝑖𝑛𝑎𝑙

sum of the two terms of (21) and (22). It means that the maximum reward

will be achieved when the safety distance is maintained at the same𝑅𝐸𝑊
𝑓𝑖𝑛𝑎𝑙

= 1
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time that VuT travels at desired velocity. Obviously, that will only happen if there is no

car ahead or if the leading car is in at the same velocity or faster.

But the combination of these two factors of reward forces the agent to

recover its velocity when the traffic turns to move again. As a further expansion to the

current algorithm, such a reward term can be used for deciding whether or not to

change lanes if the braking maneuver is not enough to prevent collisions. It may also

take such action if slower vehicles in his lane may reduce his cruising speed. These

topics will be discussed in the chapter of conclusions.

3.5. Deep Neural Network and Offline Learning Process

As stated before, the current algorithm seeks to learn how to perform actions

in an environment as an AEB system to avoid or mitigate collisions. For this purpose,

a deep neural network is implemented. The Figure 14 presents a simplified flowchart

of the multi layered network.

The neural network imitates the human brain replying its neurons by nodes.

The neurons are connected, receiving inputs, applying weights to them, following

some bias, and delivering output. The final output of each node relies on an

activation function which is responsible for giving to this method the understanding of

non-linear behaviors (Kim, 2017).

The layers at the borders make contact with the external ambient and are

responsible for data input and output. When two or more layers are placed between

these two borders, the mechanism is called a deep network, because the new layers

are not accessible from the outside. Networks with more hidden layers and hidden

neurons are allowed to solve more complex classifications and are recommended for

big sets of data. (Kim, 2017). As a first approach, the purpose of this work is creating

a basic deep neural network algorithm, so it will be considered only two hidden layers

to create the hidden network.

In terms of increasing the computational performance, two important steps

are taken to increase the convergence speed of the algorithm. First, all data are

normalized between 0 and 1. It is known as a technique to facilitate the calculation

inside the neurons without using so much computational memory (Ioffe & Szegedy,

2015).
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The second coding trick applied is to unite the information of and ,𝐺𝑃 𝐵𝑃

which vary between 0 and 1, in a single variable called , with interval [-1,1]. In𝑃𝑒𝑑𝑎𝑙

the new format, the negative values represent the brake pedal, where -1 is maximum

braking and the positive set means the gas pedal, where 1 is maximum acceleration.

For this simplification, it is assumed that the driver does not press both pedals at the

same time.

Thus, the 9 values of the state vector presented in (12) are reduced to 8 and

the output action vector of actions (14) is turned into a single variable, as shown in

Figure 14.

Figure 14. Deep Neural Network proposed.

Source: Elaborated by the author.

The RL agent is composed by a Deep Network with four layers: the first has

8 nodes and it is where the inputs from the environment are received; second

and third layers are hidden networks, defined with 38 nodes each one; the last and

fourth layer is a single node where used as output for the desired pedal position

which has a range between -1 and 1.

The proper number of nodes in each hidden layer was defined after previous

simulations, described in Figure 15, considering the hardware available for the tasks,

an Intel Core™ processor in parallel pool with 16 GB of RAM and its software,

Windows 11 Pro running CarMaker™ combined with MATLAB/Simulink 2019 edition.
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It is considered that all necessary settings to potentialize the hardware were

performed. The final results performed between 25 and 32 minutes of simulations

each.

Figure 15. Previous simulations to define the number of nodes per hidden layer.

Source: Elaborated by the author.

In Figure 15, an initial approach of the code was performed in 6 different

combinations of hidden layers. The results were interpolated and are best

represented by logarithmic functions, where the maximum reward value converged

over time. As the number of nodes increases, it is clear that the time to train and

accumulate the maximum reward value reduces until the increase in nodes no longer

represents a significant difference for that particular case. For this reason, without

better behavior above, the mesh was set in 38 nodes.

To generate the first set of data, a simple scenario is developed in the driving

simulator platform CarMaker™. The VuT runs in a freeway with no car ahead. This

initial step allows to assign previous values for weights and rewards, preparing the

system to operate in online flow.

The process of training and development of the agent response accuracy

follows the flowchart presented in Figure 16. The first training procedure comprises

all steps in the gray arrows which starts by extracting data from the initial set using a

Minibatch technique.
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Figure 16. The RL training workflow.

Source: Elaborated by the author.

The minibatch method selects a part of the training data set and uses them

for training in the batch method. Each weight update is calculated for all errors of the

selected data, and the average of the weight updates is used for adjusting the

weights. After this step, it trains the neural network with the averaged weight update.

As Kim, (2017) explains, if 20 arbitrary data points are selected out of 100

training data points, the batch method is applied to these 20 data points. In this case,

a total of five weight adjustments are performed to complete the training process for

all the data points (5 = 100/20). It combines speed and stability, a fitted solution for

Deep Learning, which manipulates a significant amount of data.

The way the algorithm uses these portions of points to update the Deep

Neural Network of the agent is illustrated in Figure 16 by the Learning Rule block. It

includes the activation function applied, the learning rate, discount factor and other

parameters for convergence purposes (François-Lavet, 2018), which will not be

deeply discussed in this paper.

The final parameters used during the learning process are listed in Table 1.
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Table 1. Setup of Algorithm Parameters.

Algorithm Parameter   Setup
Number of input neurons   4
Number of hidden layers 2

Number of neurons in each hidden
layer 38

Connection between layers Fully Connected
Number of output neurons 1

Activation function TanH
Mini-batch size 0.5

Gamma 0.9
Number of training iterations   20

Source: Elaborated by the Author.

Once written the main functions of the algorithm, its effectiveness can be

already tested. For learning and post-testing it is necessary to provide useful

scenarios, subject of the next section.

3.6. Proposed scenarios

All the learning and testing procedures executed with the proposed algorithm

were performed inside of a driving simulator software, the chosen solution was

CarMaker™, from IPG Automotive GmbH. Figure 17 shows the animation interface of

the simulator, where the sensor range is represented by the orange area, where

identified leading car receive a box and telemetry results can be displayed in the

background.

Figure 17. Animation extracted from simulator during tests.

Source: Elaborated by the Author.
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The simulator runs with pre-set scenarios, where each maneuver of the car

at each time step can be configured. Its dynamic responses are already verified and

validated by works as the one presented by Weber & Kanarachos (2019).

To execute the learning process, the VuT equipped with the proposed

algorithm was submitted to the training scenario described by Table 2. All maneuvers

described were performed in a straight road and all cars appeared in front of the VuT

while its desired velocity was 80 km/h. During the learning process the AEB were not

activated and the VuT was able to pass through the leading cars, this condition was

needed to deliver bad rewards to the system and to teach it what should be the right

actions before the collisions.

Table 2. Training Scenario.

Instant
[s] Maneuver Leading Car

1 [km/h]
Leading Car 2

[km/h]
Leading Car

3 [km/h]

0 Constant velocity 60 - -

23 Constant velocity - 60 -

35 Const.
Acceleration - 120 -

48 Constant Braking - 0 -

56 Stopped Car - - 0

Source: Elaborated by the Author.

For the training process, the system followed Figure 16. Once the AEB is

unable and the system only captures impressions from the environment, it is called

an offline training. After reaching the trained deep neural network, the routine enables

the AEB algorithm and submits it to the environment, starting the online training.

While the car runs again through the training scenario, its output changes the

environment which improves the algorithm even more.

The combination of different numbers of offline and online training cycles will

build the algorithm faster and/or smarter and this is one part of optimization the

system can have. But the final response can only be validated in exclusively new

scenarios where the code has not been proven. For this purpose, this work will
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combine the CarMaker™ solution with the existing test protocol used by EuroNCAP

to rank AEB systems.

3.7. EuroNCAP test protocol for AEB systems

Over the last decade EuroNCAP has played an important role in vehicle

safety by setting the test standards and safety ratings, such as the well-known 5-star

ranking, which raises the bar for manufacturers while making the safety level of their

cars public and accessible to consumers. With the entry of ADAS, EuroNCAP has

reinvented itself and established the protocols for testing this type of technology.

For AEB, the specific protocol has some important terminologies:

1) AEB City: categorized between velocities of 10 and 50 km/h.

2) AEB Inter-Urban: categorized between velocities of 30 and 80 km/h.

3) CCRs - Car-to-Car Rear Stationary: a collision in which a vehicle travels

forward towards another stationary vehicle and the frontal structure of the

vehicle strikes the rear structure of the other.

4) CCRm- Car-to-Car Rear Moving: a collision in which a vehicle travels

forwards towards another vehicle that is traveling at constant speed and

the frontal structure of the vehicle strikes the rear structure of the other.

5) CCRb- Car-to-Car Rear Braking: a collision in which a vehicle travels

forwards towards another vehicle that is traveling at constant speed and

then decelerates, and the frontal structure of the vehicle strikes the rear

structure of the other.

6) GVT: Global Vehicle Target. Also called the leading car during this work.

For AEB City, only the CCRs scenario is applicable where the AEB

functionality at lower speed is tested. In this case, the lower peak acceleration for the

passengers (called Whiplash) guarantees the better score. For AEB Inter-Urban, the

system is tested in three scenarios (CCRs, CCRm and CCRb).

For the CCRm scenario (Figure 18), the VuT must approach to a GVT that

keeps its constant velocity of 20 km/h. Different initial velocities are tried, from 30 to

80 km/h.
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Figure 18. CCRm scenario.

Source: EuroNCAP (2017).

In the CCRs scenario (Figure 19), the VuT will vary its velocity in different

attempts from 10 to 80 km/h, while approaching the GVT which is stationary in the

middle of the road.

Figure 19. CCRs Scenario.

Source: EuroNCAP (2017).

In the CCRb scenario (Figure 20), both cars start at the same velocity,

50km/h. The distance between each other is test with 12 meters and 40 meters, at

the same time the is also varied as 2 m/s² or 6 m/s².𝑎
𝑏𝑟𝑎𝑘𝑒

All the maneuvers to be executed are compiled in Table 3.
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Figure 20. CCRb Scenario.

Source: EuroNCAP (2017).

Table 3. Testing Scenarios.

Scenari
o Maneuver VuT

[km/h]
Leading

Car [km/h]

CCRm Lead car at constant lower velocity, starting 150m
ahead

30

20

40
50
60
70
80

CCRb

Sudden braking of the leading car at -2m/s²,
starting 40m ahead. 50

50

Sudden braking of the leading car at -6m/s²,
starting 40m ahead. 50

Sudden braking of the leading car at -2m/s²,
starting 12m ahead. 50

Sudden braking of the leading car at -6m/s²,
starting 12m ahead. 50

CCRs Stopped leading car, starting 150m ahead.

10

0

20
30
40
50
60
70
80

Source: Elaborated by the Author.

Across the chapter of results, some discussions will be made about the

dynamic response of the VuT during the testing scenarios, as well as the validation of

the proposed algorithm compared to the other known solution, the AEB embedded in

CarMarker™.
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4. RESULTS

During the code development, tests were performed, as shown in Figure 15,

in order to choose the number of hidden nodes, to reduce the simulation time, and

defining the parameters presented in Table 1 of the last chapter. The final code was

capable of training the network for the later three testing scenarios described in Table

3.

The proposed AEB system was evaluated comparing its behavior to other

similar software already implemented and released for learning and research

purposes. The AEB solution from CarMaker™ in the current work, performed the

same testing scenarios of the proposed AEB algorithm and the dynamic response

was recorded for comparison.

The aim of the whole process was to generate an AEB system capable, in

the simulated environment, to avoid rear-end. All the scenarios were performed and

optimized the code through new learning cycles. Such result, points that the reward

function and the training method was structured in a satisfactory manner, however

some considerations will be made to improve the code in the following sections.

In addition to the occurrence of collisions and the maximum acceleration

peak, some variables can be compared as gas pedal position, relative velocity, brake

pedal position and relative distance to the target car. After discussing the response to

each one of the three scenarios, there will be one example of dynamic response for

the critical case, CCRs scenario. Data extracted during the simulation are available in

the Annex 1.

Thus, to evaluate and compare the algorithm, let’s start with the CCRm

scenario, where there is a slower car ahead, differently from the road velocity.

4.1. Response to CCRm Scenario: Slower Leading Car

To validate the algorithm for CCRm Scenario, once trained in all scenarios

and saved, the code has been enabled during a similar situation of a slower car
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ahead, but in this case, it is important to highlight that the values were new, differently

from the training data, as shown in Tables 2 and 3. Now, the VuT faces, from training

to testing scenarios, relative velocities up to 60 km/h.

These values are the key to prove if the training process was capable of

developing the AEB characteristics only by the rewarding methods. At the same time,

new environments must be challenging as it would be in real situations of traffic.

In Figure 21, it is possible to compare the final distance reached between

the cars, VuT and GVT, using the proposed AEB and the CarMaker™ AEB.

Figure 21. Final Relative Distance between VuT and the leading car, comparing
proposed algorithm to CarMaker™ solution in Scenario CCRm.

Source: Elaborated by the Author.

In Figure 21, it is possible to see that the algorithm has learned how to brake

the VuT and avoided crashing into the leading car, but the final distances are

significantly different to the competitor solution. For example, when starting from 80

km/h, the VuT reaches 3,33 meters from the leading car using the proposed

algorithm, at the same time it would maintain around 10 meters of distance using the

CarMaker™ AEB solution.

Here, the strategies behind the safety distance are different. The CarMaker™

AEB follows a fixed relative distance from any leading object, which in this case, had

been set to 10 meters. On the other hand, the proposed algorithm had learned by its

rewards and punishments using the rules of (16), (18) and (19). These rules allow the
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controller to reduce the velocity of the car while approaching and calculating the new

safety distance, in some cases it may appear shorter but still respects the TTS of the

VuT.

In the case of initial velocity of 80 km/h, the VuT reduces until reaching the

same velocity of the leading car (20 km/h) only when their relative distance is 3,33

meters. That happens because the deceleration curve applied by the codes are

different, as shown by Figure 22.

Figure 22. Maximum deceleration during CCRm scenario.

Source: Elaborated by the Author.

Despite having a small relative final distance, the proposed algorithm in

Figure 22 performs the braking maneuver with a lower deceleration for passengers at

higher velocities, as 70 and 80 km/h. In the last section of the results, the dynamic

response will show that this does not respectively mean better comfort for the

passengers because the brake pedal actuation is not fluid all the time, as normally

pressed by the driver in real situations.

During the development of the rewards functions, no value was directly

imputed to carry the influence of the braking deceleration into the actions of the

algorithm. It could be one of the future improvements to make the deceleration even

softer when in slower approximations.

It can be considered that in cases of approach against slower vehicles,

although it has not generated any collisions, still AEB is not as decisive for the safety
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of the occupants as in cases of sudden braking of the vehicle ahead. Its performance

in this type of situation was evaluated in CCRb scenario, described below.

4.2. Response to CCRb Scenario: Sudden Breaking Leading Car

To ensure the surprise effect between training situations and online AEB use,

during CCRb Scenario, the VuT was evaluated in two situations, when the lead car

decelerates at -2m/s² and when it does so at -6m/s². The latter seeks to reproduce

situations where unexpected situations occur in front of the lead car and the risk is

transmitted to the following vehicles. Figure 23 summarizes the behavior of both

methods in the hazard situation.

Figure 23. Final Relative Distance between VuT and the leading car, comparing
proposed algorithm to CarMaker solution in the CCRb Scenario.

Source: Elaborated by the Author.

When compared to the validated CarMaker model, the new proposed

algorithm showed safer final distances for all situations. Both when starting from a

distance of 40 meters and from a distance of 12 meters, the VuT is able to brake

strongly enough to neither approach nor collide with the leading vehicle. This

behavior demonstrates robustness in the established reward method, since at no

point in the training scenarios did the VuT face anything of the sort.
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Something interesting is the final distance in the case of GVT -2 m/s² starting

at 12 meters. Here the VuT finishes at an even greater distance than before. This

proves that the proposed algorithm is capable of applying higher braking

accelerations than those found in the environment in order to keep its commitments

to the search for the highest accumulated reward. The table 4 shows these

accelerations in the second column, while the CarMaker solution is limited to brake

lower than the leading car, resulting in the shorter final distance already presented.

Table 4. Maximum acceleration during CCRb scenario.

Initial
Distance [m]

Proposed AEB Max Acc [m/s²] CarMaker AEB Max Acc [m/s²]
while GVT

braking at -2
m/s²

while GVT
braking at -6

m/s²

while GVT
braking at -2

m/s²

while GVT
braking at -6

m/s²

12 -3,73 -6,83 -1,76 -3,68

40 -2,46 -6,81 -1,84 -2,40

Source: Elaborated by the Author

Through the results, it is evident that the proposed algorithm complies strictly

with the equations established in (16), (18), and (19). However, it is necessary to

agree that for such cases, considering the short distance between the vehicles, the

deceleration efforts are greater and the consequent comfort for the user is

compromised.

In the CCRm scenario, decelerations were better managed because in all

cases the initial distance between vehicles was 140 meters. Thus the system was

able to seek the best compromise between its reward functions to reach the final

distance more smoothly.

When exposed to the short distances of 40 meters and 12 meters in the

CCRb case, the proposed solution required maximum braking of the vehicle to avoid

the collision as learned in training. In these cases it must be agreed that the weight of

non-collision was greater and dismissed the concern for occupant comfort.
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4.3. Response to CCRs Scenario: Stopped Car Ahead

During the CCRs scenario run, the algorithms behaved differently between

high and low speeds. In Figure 24 it is possible to see some similarity between the

curves performed by both methods. However, in the case of the proposed AEB, there

is no direct correlation between distances and decelerations. It seems not to be an

exact interpolation between a well-established physical behavior.

.This is because during the training process, the hidden neural net assumes

its own weights between nodes and generates the correlations according to the

rewards it receives. And since we assume a Markov Decision Process, last state and

last action will have all decisive information about the next state's development. So if

the VuT needed more braking as it increased its initial speed, it doesn't mean that

this increase will be propositional.

Figure 24. Final Relative Distance between VuT and the leading car, comparing
proposed algorithm to CarMaker™ solution in the CCRs Scenario.

Source: Elaborated by the Author.

When operating within the range considered by EuroNCAP (2017) as an

AEB City, from 10 to 50 km/h the results of the proposed AEB are very interesting,

with final distances equal or even more conservative than the concurrent.
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In the cases of initial speed equal to 70 and 80 km/h there is a severe

difference to the validated AEB. In these cases we know that although there is no

collision, the final distances are very small, close to the dimension of passenger cars.

Something can be pondered, despite the small distance, one can still

consider that even if there are collisions, the impact speed is significantly reduced.

Within the concept of AEB, we can also understand its function as an impact

attenuator and not only as a mechanism capable of avoiding all dangerous situations

with zero collisions.

To better understand how the mechanism is different from a standard

controller, it is possible to analyze in the next section the behavior of the main output

variables of the code within the latter scenario, the CCRs.

4.4. Dynamic Response to CCRs Scenario

The VuT telemetry is capable of starting interesting discussions. In the last

case of the CCRs scenario, where initial velocity is 80 km/h against a steady GVT,

four main variables can be discussed, and .𝐺𝑃,  𝑣
𝑟
,  𝐵𝑃 𝑑

𝑟

The Gas Pedal position ( ) was directly linked to the capability of following𝐺𝑃

the target velocity of the road. In this aspect, both software actuated similarly to an

ACC system, which could be an interesting feature for future development from the

current code status.

In Figure 25, special attention must be given to the gain of the proposed AEB

Gas Pedal signal, which is higher and very oscillating in the first seconds. It occurs

because of the sampling rate, compulsorily applied to calculate next actions and

states using the neural network. The same sampling limitation is also the cause of

the sudden lacks in the signal, present in all four graphics shown in Annex 1.



68

Figure 25. Gas Pedal position - Comparison between CarMaker solution and
proposed algorithm.

Source: Elaborated by the Author.

The Gas Pedal value, near or equals 1.00 (100%), is an effect of the training

process, amount of data for initial training and the reward method. Such results can

be improved by generating larger sets of data for initial training, with more scenarios

and a continuous reward function. Another influence in this behavior is the

discontinuous reward function, which gives stepped values and so, It limits the

modulation of the final answer during the time. Despite the presence of Gas Pedal in

the first seconds of the test for both systems, the proposed system is able to initiate

the deceleration earlier, since the identification of the GVT. The competitor system,

otherwise, stays accelerating longer before initiating its braking, as can be seen in

Figure 26.
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Figure 26. Relative Velocity - Comparison between CarMaker™ solution and
proposed algorithm.

Source: Elaborated by the Author.

In Figure 26, both systems were able to locate the object at t=0s and

immediately calculate the relative velocity which started in -22m/s (-80km/h) as

expected. From the adopted coordinate system, it is assumed that negative is an𝑣
𝑟

object approaching the vehicle. This way, both systems assume a hazard situation

and start monitoring the object to execute the AEB maneuver.

It can be seen that the competitor system starts its deceleration late, but

more sharply, reaching -3.99m/s² and this promotes convergence to the stopping

earlier. Meanwhile, the proposed system starts its deceleration instantaneously at

-1.83m/s², which is more comfortable, but consequently takes longer to come to a full

stop.

This is due to the position of the brake pedal, which in the proposed case,

although oscillating initially, enters in a lower continuous regime, around 25%, as

presented in Figure 27.
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Figure 27. Brake Pedal position - Comparison between CarMaker solution and
proposed algorithm.

Source: Elaborated by the Author.

Even without crashing in both cases, this action is better than the one taken

by the proposed algorithm because it offers to the occupants more safety and

comfort.

This phenomenon is a trade-off, which needs to be better developed for the

high speeds like this exposed case, CCRs 80 to 0 km/h. Despite being more abrupt,

the CM AEB action is safer, as can be seen from the final distance obtained, shown

in the next figure.

Figure 28 shows the relative distance between the two cars. After a long and

softer braking maneuver, the proposed algorithm completely stops at 0.86 m before

the forward car. The solution used for comparison makes differently, braking harder

and converging for the safety distance earlier, which is 4.98 meters.
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Figure 28. Relative Distance - Comparison between CarMaker™ solution and
proposed algorithm.

Source: Elaborated by the Author.

Even without collision, the situation of 0.86 m for final relative distance is not

a totally safe condition and that is a solid motivation to keep developing the proposed

AEB algorithm, as it has a solid understanding of the risks and has taken its

decisions already in the right way. The final relative distance in this case is lower than

the competitor’s, which is 4.98 meters could be acceptable once there is almost the

length of one car ahead.

For both cases, the EuroNCAP tests would be approved in a real testing

protocol, but in the quantitative analysis it is clear the gap of the proposed algorithm

in velocities above 50 km/h. Some new reward function could be proposed for these

cases, maybe more centered into the safety distance and not so concerned about the

occupants comfort.

In any case, great comments can be extracted from the dynamic tests: the

Simulink™ workflows were properly designed to interpret the environment and they

have proven to work correctly in this matter. As already stated, the limitations are on

computational resources for increasing sampling rates and the definition of a different

reward function, which is already avoiding collisions but not making it using a safe

final distance at the same time it makes a soft maneuver.

More about the block diagram is in the next section.



72

4.5. Final block diagram for the code execution

In order for the code to run synchronously with the simulated one, a MATLAB

framework with Simulink was required. The final functional block diagram is

presented in the part (B) of Figure 29. Inside of the block “Interpreted MATLAB

Function” is the main code, executing the neural network decision in every time step

to deliver the next gas and brake pedal positions. Part A of Figure 29 is the diagram

used during the first training cycle, when the AEB system is disabled.

Figure 29. The function block diagram without AEB (A) and with AEB (B).

Source: Elaborated by the Author.

The algorithm was also prepared to receive more variables as states from

the environment. It allows further implementations using data from two or even three

lanes, combining front with rear sensors. For this purpose it can be used for example

to predict lane changes. Ideas for future studies in this field are also listed in section

5.1.
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5. CONCLUSION

The current work has proposed a basic AEB algorithm developed with deep

RL techniques. The system’s structure has two hidden layers of 38 nodes each,

chosen after initial verification where more nodes and layers were not significant

factors for the learning process. The algorithm is capable of performing the AEB

similarly to a controller in order to avoid rear-end collisions straight ahead of a vehicle

under test.

Virtual scenarios were used to train and improve the algorithm response,

using a driving simulator platform. Initial data were produced for training purposes

and later, new scenarios were created to validate the system. The neural network

development and training cycle for reinforcement learning has been validated within

the three main EuroNCAP AEB system test protocols, all simulated virtually and

compared to another already validated solution.

The reward function demonstrated effectiveness once we looked for the

agent and to the results it performed in each scenario. To test the approach in new

scenarios, not used during training, to evaluate the dynamic response, the system

performed significantly well. Importantly, the proposed system was better than its

competitor in scenarios up to 50 km/h, achieving longer final distances, safer and

more comfortable decelerations for the occupants.

The final solution was possible to measure velocities, accelerations and

distances, resulting in the quantitative discussion in the Results chapter, which

concluded the system is inside an adequate level of safety for a specific range.

For the CCRm test case, the system showed a much better deceleration

curve than its competitor for all speeds performed, however the final distance was

reduced significantly from 50 km/h onwards. At all events, no collisions were

recorded.

During the CCRb test, where hard braking is performed at 40 meters and 12

meters, the system performed better than its competitor with very good results. In this

case the comfort of the occupants was neglected, achieving accelerations of up to

-6.83m/s² to avoid collisions as trained.
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In the last CCRs scenario, the system relied on a longer approach time

against a stationary GVT ahead. In this case, again there is a weakness in

maintaining lower decelerations at high speeds, resulting in shorter final distances

when above 50 km/h. In the worst case, starting from 80 km/h, it came to a stop

0.86m behind the GVT.

In a simple qualitative analysis, by not crashing the system would definitely

be approved if it performed in real tests the same results obtained in the simulations.

However, in a deeper quantitative analysis, it can be seen that there are still

opportunities to improve the reward function and the training method for interurban

velocities.

5.1. Potential Future Development

As the results show, especially in CCRm and CCRs scenarios, since the

code provides better results in urban situations, between 10 and 50 km/h, and worse

results for the inter-city range, between 50 and 80 km/h, the most important next step

should be to improve the reward functions and propose specific scenarios to train the

code for higher velocities.

Changing the quality function, also known as the reward function, is one way

to modify the Deep Reinforcement Learning algorithm. However, it is not the only way

to do so, and sometimes changing the reward function alone may not be enough to

achieve the desired outcome.

Deep RL algorithms consist of several components as discussed, including

the neural network architecture, the learning algorithm, the exploration strategy, and

the reward function. Changing any of these components can alter the behavior of the

algorithm.

For example, changing the neural network architecture can affect the agent's

ability to learn complex tasks, while modifying the learning algorithm can impact how

the agent updates its policy over time. Additionally, modifying the exploration strategy

can change how the agent explores its environment, which can be crucial in certain

scenarios.

In this sense it is important to understand within neural networks how to put

together pre-acquired knowledge for a certain operating range up to 50km/h with a

new code for responses above that. The composite of different codes for different
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speed ranges should lead to an even more robust system, resulting from the

optimization of neural networks for each different type of situation.

The code in its current stage, is already capable of receiving data from the

environment and to train its deep neural networks offline, in order to find the best

actions for gas and brake pedal positions. Another potential next step would be to

close the loop in the framework and perform some online acquisitions, training to

improve the network perception.

Here there are some interesting paths to follow in order to add this algorithm

some discussion, including some applications with simulators as DYNA4™ or

CARLA™, using integrating softwares as ROS for example.

A. To implement the final network in DYNA4™, or any other physical

simulator for experimental use with human control before any real

implementation;

B. To run controller-based AEB solutions, different from the simulators

plug-ins, in the same environment and generate a benchmark to evaluate

once more the proposed algorithm;

C. To close the loop using a real car, plugged into the virtual scenario to

evaluate the performance of the system in a real implementation;
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ANNEX 1 – Testing scenarios data.

Figure 30. Data extracted from Scenario CCRm – Slower leading car.

Source: Elaborated by the Author.
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Figure 31. Data extracted from Scenario CCRb – Braking lead car.

Source: Elaborated by the Author.
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Figure 32. Data extracted from Scenario CCRs – Stopped leading car.

Source: Elaborated by the Author.
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ANNEX 2 – Structure of the Matlab code.

Below, there is the main structure of the code, which was written in Matlab. The
connection with IPG CarMaker™ was made by Simulink™ block diagram as shown
in Figure 29 inside Results.

clear; close all; clc;

TVL=22; % Desired Velocity (m/s)
safezone=2;
stnu = 13; % number of states
tau = 1; % Target update
gamma = 0.9; % discount factor
minipcent= 0.5; % Minibatch size

% Convengence parameter
hmin = 20; %number of training cycles
acte = 0.001; % Max squared error between to consecutives Q evaluations
acterror = acte;
hmax = 50;
hcount=0;

%% Data treatment
[DATA,leng]=Simulation_treatment(safezone,TVL);

%% Main Algorithm
crtb=zero_critic(stnu+1);
actb=zero_actor(stnu);

fprintf('--->->Minibatch done!\n')
fprintf('...Calculating Actor\n...Calculating Critic\n...Finding Best actions\n')

Minibatch = Select_data(DATA,stnu,actb,crtb,gamma,minipcent);
crta = create_critic(Minibatch,stnu+1);
fprintf('--->->Critic Network Creation done!\n')
acta = create_actor(Minibatch,crta);
fprintf('--->->Actor Network Creation done!\n')

save('act.mat','acta');

actb = target_update(actb,acta,tau);
crtb = target_update(crtb,crta,tau);

if stnu == 13
actbb =

actb([DATA(:,2)';DATA(:,3)';DATA(:,4)';DATA(:,5)';DATA(:,6)';DATA(:,7)';DATA(:,
8)';DATA(:,9)';DATA(:,10)';DATA(:,11)';DATA(:,12)';DATA(:,13)';DATA(:,14)']);

Qb =
crtb([actbb;DATA(:,2)';DATA(:,3)';DATA(:,4)';DATA(:,5)';DATA(:,6)';DATA(:,7)';D
ATA(:,8)';DATA(:,9)';DATA(:,10)';DATA(:,11)';DATA(:,12)';DATA(:,13)';DATA(:,14
)']);

actaa =
acta([DATA(:,2)';DATA(:,3)';DATA(:,4)';DATA(:,5)';DATA(:,6)';DATA(:,7)';DATA(:,
8)';DATA(:,9)';DATA(:,10)';DATA(:,11)';DATA(:,12)';DATA(:,13)';DATA(:,14)']);

Qa =
crta([actaa;DATA(:,2)';DATA(:,3)';DATA(:,4)';DATA(:,5)';DATA(:,6)';DATA(:,7)';D
ATA(:,8)';DATA(:,9)';DATA(:,10)';DATA(:,11)';DATA(:,12)';DATA(:,13)';DATA(:,14
)']);
else

fprintf('some value has been inputed wrongly');
end

error = gsubtract(actaa,actbb); % Calculate difference between Q
[s,n] = sumsqr(error);
acterror(hcount+1)=s/n;
hv(hcount+1)=hcount; % Create a vector of the h times that the cicle are tried
hcount=hcount+1; %Increase the counter
plot_convergence (Qa,Qb,actaa,actbb,hv,acterror);

while and(or(acterror(hcount)>=acte, hcount<=hmin),hcount<=hmax)

Minibatch = Select_data(DATA,stnu,actb,crtb,gamma,minipcent); %%
Select the data and calculates the Q value

crta = train_critic(Minibatch,crta);
acta = train_actor(Minibatch,crta,acta);
actb = target_update(actb,acta,tau);
crtb = target_update(crtb,crta,tau);

if stnu == 13

actbb =
actb([DATA(:,2)';DATA(:,3)';DATA(:,4)';DATA(:,5)';DATA(:,6)';DATA(:,7)';DATA(:,
8)';DATA(:,9)';DATA(:,10)';DATA(:,11)';DATA(:,12)';DATA(:,13)';DATA(:,14)']);

Qb =
crtb([actbb;DATA(:,2)';DATA(:,3)';DATA(:,4)';DATA(:,5)';DATA(:,6)';DATA(:,7)';D
ATA(:,8)';DATA(:,9)';DATA(:,10)';DATA(:,11)';DATA(:,12)';DATA(:,13)';DATA(:,14
)']);

actaa =
acta([DATA(:,2)';DATA(:,3)';DATA(:,4)';DATA(:,5)';DATA(:,6)';DATA(:,7)';DATA(:,
8)';DATA(:,9)';DATA(:,10)';DATA(:,11)';DATA(:,12)';DATA(:,13)';DATA(:,14)']);

Qa =
crta([actaa;DATA(:,2)';DATA(:,3)';DATA(:,4)';DATA(:,5)';DATA(:,6)';DATA(:,7)';D
ATA(:,8)';DATA(:,9)';DATA(:,10)';DATA(:,11)';DATA(:,12)';DATA(:,13)';DATA(:,14
)']);

else
fprintf('some value has been inputed wrongly');

end

error = gsubtract(actaa,actbb); % Calculate difference between Q
[s,n] = sumsqr(error);
acterror(hcount+1)=s/n;
hv(hcount+1)=hcount; % Create a vector of the h times that the cicle are

tried
hcount=hcount+1; %Increase the counter
plot_convergence (Qa,Qb,actaa,actbb,hv,acterror);

end

fprintf('\nAction converged \n')

save ('act.mat','actb');
%count_reward = sum((DATA(end-(2*leng-1):end,7))<=0.1);
save('act_count.mat','actb');
%mean_reward=mean(DATA(end-(2*leng-1):end,7));
save ('act_mean.mat','actb');
%reward_error = 0;

function net = zero_actor(n)
net=feedforwardnet([38 38]); % Create the network with 2 hidden layers
net.numInputs = n; % Define the number of the inputs
{dsx_ol...dvx_ol,GP,brake} 14
for i=2:n

net.inputConnect(1,i) = true;
net.trainParam.showWindow = 0;
net.trainParam.epochs = 1;
for i=1:n

in{i,1}=randn(1,3);
end
out = randn(1,3);
net.inputs{1}.processFcns = {};
net.outputs{2}.processFcns = {};
net.outputs{3}.processFcns = {};
fprintf('...Actor weights are reseted\n')
net = train(net,in,out);
m = length(getwb(net));
net = setwb(net,zeros(m,1));
end

function net = create_actor(Minibatch,crt)

actst = cell2mat(Minibatch{1,1});
[~,n] = size(actst);
in = (crt.numInputs - 1);
Q=zeros(27,n);
action=zeros(1,n);
max1=0;
max2=42;
zeroone = linspace(max1,max2,27);
acttest = ones(27,n);
for k = 1:27

acttest(k,:) = zeroone(k).*ones(1,n);
end
for j=1:2

for k = 1:27
if in == 13
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Q(k,:)=crt([acttest(k,:);actst(2,:);actst(3,:);actst(4,:);actst(5,:);actst(6,:);actst(7,:)
;actst(8,:);actst(9,:);actst(10,:);actst(11,:);actst(12,:);actst(13,:);actst(14,:)]);

end
end
for k = 1:n

[~, ind1(k)] = max(Q(:,k));
Q(ind1,k) = -Inf;
[~, ind2(k)] = max(Q(:,k));
max1(k) = acttest(ind1(k),k);
max2(k) = acttest(ind2(k),k);
acttest(:,k)= linspace(max1(k),max2(k),27)';

end
end

net=feedforwardnet([38 38]);
net.numInputs = in; % Define the number of the inputs {ax;i;GP;vx;vw}
for i=2:in

net.inputConnect(1,i) = true;
end
net.inputs{1}.processFcns = {};
net.outputs{2}.processFcns = {};
net.outputs{3}.processFcns = {};
net.trainParam.max_fail = 20; %Maximum validation failures
net.trainParam.min_grad = 1e-7; %Minimum performance gradient
net.trainParam.mu_max = 1e10; %Maximum mu
net.trainParam.showWindow = 0;
fprintf('...(Create_Actor) Actor training\n')
net = train(net,Minibatch{3,1},max1);
end

function act = train_actor(Minibatch,crt,act)

actst = cell2mat(Minibatch{1,1});
n = length(actst);
in = (crt.numInputs - 1);
Q=zeros(27,n);
action=zeros(1,n);
max1=0;
max2=42;
zeroone = linspace(max1,max2,27);
acttest = ones(27,n);
for k = 1:27

acttest(k,:) = zeroone(k).*ones(1,n);
end

for j=1:2
for k = 1:27 % find the Q value for all of the input actions

if in == 13 %(6 distaces, 6 velocities, vv, gp and break)

Q(k,:)=crt([acttest(k,:);actst(2,:);actst(3,:);actst(4,:);actst(5,:);actst(6,:);actst(7,:)
;actst(8,:);actst(9,:);actst(10,:);actst(11,:);actst(12,:);actst(13,:);actst(14,:)]);

end
end
for k = 1:n

[~, ind1(k)] = max(Q(:,k));
Q(ind1,k) = -Inf;
[~, ind2(k)] = max(Q(:,k));
max1(k) = acttest(ind1(k),k);
max2(k) = acttest(ind2(k),k);
acttest(:,k)= linspace(max1(k),max2(k),27)';

end
end

fprintf('...(Train_Actor) Actor training\n')
act= train(act,Minibatch{3,1},max1);
end

function net = zero_critic(n)

net=feedforwardnet([38 38]);
net.numInputs = n;
for i=2:n

net.inputConnect(1,i) = true;
end
net.trainParam.showWindow = 0;
net.trainParam.epochs = 1;
for i=1:n

in{i,1}=randn(1,3);
end
out = randn(1,3);
net.inputs{1}.processFcns = {};
net.outputs{2}.processFcns = {};
net.outputs{3}.processFcns = {};
fprintf('...Critic weights are reseted\n')
net = train(net,in,out);
positions of the weights
m = length(getwb(net));

net = setwb(net,zeros(m,1));
End

function net = create_critic(Minibatch,in)

net=feedforwardnet([38 38]);
net.numInputs = in;
for i=2:in

net.inputConnect(1,i) = true;
end
net.inputs{1}.processFcns = {};
net.outputs{2}.processFcns = {};
net.outputs{3}.processFcns = {};
net.trainFcn='trainlm';

net.trainParam.max_fail = 20; %Maximum validation failures
net.trainParam.min_grad = 1e-7; %Minimum performance gradient
net.trainParam.mu_max = 1e10; %Maximum mu
net.trainParam.showWindow = 0;

% Minibatch Array
%| {1,1} | {2,1} | {3,1} |
%|actionstate| Qvalue| state |

net = train(net,Minibatch{1,1},Minibatch{2,1});
end
function crt = train_critic(Minibatch,crt)
crt = train(crt,Minibatch{1,1},Minibatch{2,1});
end

%% Root Functions

function Minibatch = Select_data(DATA,netin,act,crt,gamma,minicent)

[m,~]=size(DATA); % take the DATA size
minisize=round(m*minicent); % Minibatch size = minipcent % of the total
DATA size
idx = randperm(m,minisize); % create a random position vector
rawbatch = DATA(idx,:); % Take the desired data from DATA to Minibatch
rawbatch = rawbatch';

% Create training data structure with vehicle speed
if netin==13 %States cosidered (6 distaces, 6 velocities, vv, gp and break)

state={rawbatch(2,:);rawbatch(3,:);rawbatch(4,:);rawbatch(5,:);rawbatch(6,:);ra
wbatch(7,:);rawbatch(8,:);rawbatch(9,:);rawbatch(10,:);rawbatch(11,:);rawbatc
h(12,:);rawbatch(13,:);rawbatch(14,:)};

nextstate={rawbatch(17,:);rawbatch(18,:);rawbatch(19,:);rawbatch(20,:);rawbat
ch(21,:);rawbatch(22,:);rawbatch(23,:);rawbatch(24,:);rawbatch(25,:);rawbatch(
26,:);rawbatch(27,:);rawbatch(28,:);rawbatch(29,:)};

actionstate={rawbatch(1,:);rawbatch(2,:);rawbatch(3,:);rawbatch(4,:);rawbatch(
5,:);rawbatch(6,:);rawbatch(7,:);rawbatch(8,:);rawbatch(9,:);rawbatch(10,:);raw
batch(11,:);rawbatch(12,:);rawbatch(13,:);rawbatch(14,:)};

Qvalue= rawbatch(15,:);
else

fprintf('\n### Wrong input value ###');
brake

end
Minibatch={actionstate;Qvalue;state};
end

function [DATA,leng]=Simulation_treatment(safezone,TVL)

load('simul_inicial_treated.mat');
rawdata=stateaction.Data;

MaxDsx = 0; %Radar range (m) ##150
MaxDvx = 0; %Max. velocity (mph) ##50

[sizei,sizej]=size(rawdata);

%Normalizes the values between 0 and 1 to improve the learning performance
for j=1:sizej

if and(j>=2,j<=7)%Columns of distance values
MaxDsx=max(abs(rawdata(:,j))); %Save maximum range(m)
if (MaxDsx==0)

rawdata(:,j) = 0;
else

rawdata(:,j) = rawdata(:,j)./MaxDsx;
end

elseif and(j>=8,j<=14)%Columns of velocity values
MaxDvx=max(abs(rawdata(:,j))); %Save maximum velocity(mph)
if (MaxDvx==0)

rawdata(:,j) = 0;
else

rawdata(:,j) = rawdata(:,j)./MaxDvx;
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end
end

end

leng = length(rawdata(:,1))-1;

rawdata=calculate_reward(rawdata,safezone,TVL);

% Create the export data structure
DATA=rawdata(1:leng,[1:14 28 29 15:27]);
save ('DATA.mat','DATA');
fprintf('DATA Updated. First Rewards Assigned!\n')
end

function rawdata = calculate_reward(rawdata,safezone,TVL)

leng = length(rawdata(:,1))-1;

%Copy the next states to the same line that the last state
for i=1:leng

for j=1:13
if (i==leng)

rawdata(i,(j+14))=rawdata(i,(j+1));
else

rawdata(i,(j+14))=rawdata(i+1,(j+1));
end

end
end
rawdata(:,28)=ones(); %future rewards (28)-->>(15)
rawdata(:,29)=ones(); %future TTC (29)-->>(16)
[sizei,sizej]=size(rawdata);

%% TTC-based Reward ('Time To Collision' against leading car) and
TTS-Based Reward ('Time To Stop' VUT)
RewardTTC=0;
RewardDelT=0;
for i=1:leng % Calculate TTC at the next step and save in rawdata(:,33)

TTC=time_to_collision(rawdata(i,15),rawdata(i,21),safezone); %Generate
TTC for lane O

TTS=(0.323.*rawdata(i,27)+1.999); %Time for total stop %Fitted for
currently car

DelT=TTC./TTS; %Time to collision compared to time for total stop
if (TTC>0) %Positive Time to Collision

if and(rawdata(i,15)>safezone,rawdata(i,21)>0) %No collision/Leading
vehicle moving away//Best situation

RewardTTC=0.5;
elseif and(rawdata(i,15)<safezone,rawdata(i,21)<0) %Collision/Leading

vehicle approaching//Worst situation
RewardTTC=0;

end

elseif (TTC<=0) %Negative Time to Collision
if and(rawdata(i,15)>safezone,rawdata(i,21)<0) %No collision/Leading

vehicle approaching
RewardTTC=0.4;

elseif and(rawdata(i,15)<safezone,rawdata(i,21)>0) %Collision/Leading
vehicle moving away

RewardTTC=0;
end

elseif (DelT>1)
RewardDelT=1; %Best situation, when TTC is bigger than TTS;

else
RewardDetT=0; %For situations where TTC is shorter and there will be

collision
rawdata(i,29)=TTC;
rawdata(i,28)=RewardTTC+RewardDetT;
end

end
%% VVL-Based Reward (Real and Desired Velocities)
RewardDelVVL=0;
for i= 1:leng

DelVVL=((minus(rawdata(i,27),TVL))./TVL);
if DelVVL>=1.1 %Real velocity over 110% os desired one

RewardDelVVL=0.6;
elseif and(DelVVL<1.1,DelVVL>=1) %Real velocity between 100-110%

RewardDelVVL=1;
elseif and(DelVVL<1,DelVVL>=0.8) %Real velocity between 80-100%

RewardDelVVL=0.6;
elseif and(DelVVL<0.8,DelVVL>=0.6) %Real velocity between 60-80%

RewardDelVVL=0.4;
elseif and(DelVVL<0.6,DelVVL>=0.4) %Real velocity between 40-60%

RewardDelVVL=0.2;
elseif DelVVL<0.4 %Real velocity under 40%

RewardDelVVL=0;
rawdata(i,28)=rawdata(i,28)+RewardDelVVL; %SUM with last reward
end

end
%% TTS-Based Reward ('Time To Stop' VUT)
RewardDelT=0;
end
function netNew = target_update(netNew,netOld,tau) %b a
netNew = setwb(netNew,(tau.*getwb(netOld)+(1-tau).*getwb(netNew)));
end
function TTC = time_to_collision(deltaX,deltaV,safe)
X=minus(deltaX,safe);
if deltaV==0

TTC=0;
else

TTC=X./deltaV;
end
end
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