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Ricardo Beliel, 1976.

Queremos saber

O que vao fazer

Com as novas invencoes
Queremos noticia mais séria
Sobre a descoberta da antimatéria
E suas implicagoes

Na emancipacao do homem

Das grandes populacoes

Homens pobres das cidades

Das estepes, dos sertoes

Queremos saber

Quando vamos ter

Raio laser mais barato
Queremos de fato um relato
Retrato mais sério

Do mistério da luz

Luz do disco-voador

Pra iluminacao do homem
Tao carente e sofredor
Tao perdido na distancia
Da morada do senhor

Queremos saber

Queremos viver

Confiantes no futuro

Por isso se faz necessario

Prever qual o itinerario da ilusao
A ilusédo do poder

Pois se foi permitido ao homem
Tantas coisas conhecer

E melhor que todos saibam

O que pode acontecer

Queremos saber
Queremos saber
Todos queremos saber

- Gilberto Gil, 1976.
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CHAPTER 1

Introduction

This doctoral thesis was set in a joint co-supervision agreement between Universidade Fed-
eral de Santa Catarina (UFSC, Brazil) and Communatué Université Grenoble-Alpes (ComUE
UGA, France), under the supervision of Dr. Julio Elias Normey-Rico and Dr. Olivier Sename,
respectively.

Predictive control is an optimal framework for the regulation of constrained processes,
with applicability to many complex nonlinear systems. Accordingly, linear parameter varying
models are often able to describe these dynamics. Therefore, the main topic investigated along
this work is the exploitation of model predictive control schemes for linear parameter varying
systems. Specifically, I face the problem of how to conceive accurate algorithms without
requiring the complete knowledge of the future scheduling parameter trajectories.

Thus, in order to proceed debating the investigated topic, I begin this document by pre-
senting a brief overview of (nonlinear) predictive control methods and the most recent advances
on this topic. Then, I span the general context of linear parameter varying systems and detail
how these realisations are able to describe nonlinear, time-varying dynamics. I bridge these
two fields of research by presenting the available linear parameter varying predictive control
methods, debating their scholastic interest in the context of robust and nonlinear control.
Finally, I lay out the available investigation threads within the detailed scope and present the
overall objectives of the thesis, as well as the organisation of the remainder of this document.

Before moving on to proper details, I note! that a concrete and thorough survey on model
predictive control schemes conceived on the basis of linear parameter varying models is avail-
able in [Morato, Normey-Rico, and Sename 2020a|. Therefore, only a concise overview is
presented next; the Reader is invited to refer to the latter reference for a more comprehensive
debate.

'In this Chapter, I intentionally used the singular first-person active voice, since I explain the overall lines
of my doctoral thesis. Nevertheless, in the following Chapters I prefer to politely use the plural first-person
voice. Many of the advances on predictive control that I present in the sequel were also partially discussed and
elaborated in conjunction with my colleagues and supervisors in published material: thus, “we”. In the final
Chapter, I return to the use of the first-person voice, for general conclusions.

3



4 Chapter 1. Introduction

1.1 Why is Model Predictive Control relevant?

Control systems literature has profoundly blossomed over the course of the last five decades.
Nevertheless, until the late 80’s, the industrial practice of control theory consisted on the use
of simple Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) controllers
for the vast majority of applications, despite all theoretical advances. It was only with de-
velopment of Model Predictive Control (MPC), as proposed in the original papers by Cutler,
Clark and fellow colleagues [Cutler and Ramaker 1980; Clarke, Mohtadi, and Tuffs 1987],
that more advanced control techniques were implemented in real industrial contexts?. Since
then, predictive control has become an active and field of research, with widespread industrial
acceptance [Camacho and Bordons 2013]: a wide range of successful MPC implementations is
nowadays recognised (for the most diverse kinds of systems!) [Alamir 2013].

1.1.1 General lines

The main reason why predictive control is so well-established resides on the fact that it has
the ability to jointly consider performance optimisation and constraint satisfaction under a
relatively simple (and intuitive) synthesis framework. For the sake of the argument, consider
a system with known dynamical behaviour® 9B. Then, when applying a predictive control
algorithm in order to regulate this system, one extracts an optimal control action w from
the solution of an optimisation problem?® that includes the performance objectives and the
systems’ constraints. This optimisation solution is repeated online during the implementation:
at each discrete unit of time (sample), a new optimisation is solved, and thus leading to a
corresponding new control input.

Consider that a system ¥ is linear time-invariant® (LTI). Furthermore, assume that its
behaviour 9B can be partitioned in a single-input single-output (SISO) channel © < y in such
a way that Byey = {Iy R, (u,y) € Bly= S aiz Ty >0 biz 'u}. Furthermore,
consider the following performance goal and constraints: (a) the output y should be brought
to a steady-state regime target denoted y,, while (b) the control signal must be bounded to the
convex operational set [0,1]. Accordingly, one can formulate an MPC based on the following
optimisation, to be solved at each discrete-time instant k:

. N, i
ming, A ‘ Zi:pl HZ y— yTH
"Bk = st (Zlya'zl_lu) € %uﬁy’ Vi e N[LNP] ’ (11)
.t Si=1y, c [07 1], Vi € N[LNp] )

being Uy := col{u, ... z"»~1u} the control trajectory along the future prediction horizon Nj,.
Note that the optimisation problem B; minimises the deviance of the output channel from

the steady-state regime, thus seeking to ensure the satisfaction of the performance goal “(a)”.

%In fact, these original MPC algorithms were originally coined for chemical systems and oil refineries.

38 is the vector space that collects all maps from a time azis to the signal space.

4This optimisation is expressed in terms of the future dynamic behaviour of the system along a prediction
horizon of N,, steps, i.e. 2'B, Vi € Nio,n,], being 2 the time-shift operator.

5That is, whose behaviour 9B, satisfies 28 C B for any time-shift z > 1.
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The static solution of the optimisation By in Eq. (1.1) (i.e. solving it only once, instead
of doing this repeatedly, at each sample) is, by itself, already of practical interest. Indeed, the
application of the corresponding control sequence U} is usually called optimal control. Linear
Quadratic Regulators (LQRs), for instance, can be represented within this framework using an
infinite horizon formulation, i.e. finding the feedback which solves the static limy, - 100 Po-

Yet, in contrast to a static solution of the optimisation, MPC operates under a sliding-
horizon paradigm. This means that, at each discrete instant k, the constrained optimisation
problem By, is solved, and the first entry of its minimiser U} is applied to the process (the
remainder is disregarded). Such rolling-horizon mechanism procedure provides inherent ro-
bustness properties to MPC, as argues [Allan et al. 2017], since By, is updated according to
the available measurements of the process. Figure 1.1 provides a block diagram representation
of the implementation of MPC scheme, in order to further elucidate the current debate®

Controlled Process

Exogenous Signals =) E Measured Outputs

Control Input _

Future Prediction

|

1

< |

% < I
<

|

|

|

|

Optimisation Procedure

A

Take &
First Entry |~ Uk ‘Bk Constraints,

Performance Goals

Predictive Control Scheme

Figure 1.1: Block diagram: Implementation of an MPC algorithm.

Next, I present some examples in order to motivate the contributions presented in this
thesis. Specifically, [ aim in highlighting how MPC can, indeed, be an interesting control option
for the several types of systems’, given the fact that it allows optimal performances, from the
viewpoint each sampling instant. These examples are presented with little mathematical
details, bringing to focus the conveniences® of predictive control: it takes account the effect of
measurements online, counter-acts the effect of uncertainties and disturbances by construction,
and also allows the designer to explicitly consider constraints in the synthesis.

Example 1. Consider a vehicular semi-active suspension system, as illustrated in Figure 1.2.
A wvehicle suspension comprises a controllable damper and a spring, connecting each wheel

5In Chapter 2, a broader overview of the theoretical background on MPC is presented. This includes dis-
cussions on how to ensure closed-loop stability using terminal ingredients, optimality, and recursive feasibility
of the MPC optimisation. As a side-note, I recommend the following references for the interested Reader:
[Allgower and Zheng 2012; Griine and Pannek 2017; Limon et al. 2018].

7Along this thesis, I have studied indeed MPC application for distinct system dynamics and descriptions.

8Furthermore, I highlight that MPC is, a priori, able to consider any kind of process description (linear,
nonlinear, multivariable, etc). In practice, the only requirement is that the model predictions can be made
solely based on the available measurements.
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to the chassis; for a comprehensive debate on suspension system analysis, refer to [Savaresi
et al. 2010]. In [Morato et al. 2018a, an MPC is tuned to minimise the influence of the
road upon the comfort of the passengers within vehicle; the control actuator is the suspension
damper, which varies stiffness along time to diminish chassis’ vibration. The main advantage
of using a prediction of the dynamics along a rolling horizon is that, at each instant, the
effects of the future road disturbances are considered (a road preview is used), which makes the
controller take anticipating measures to counter-act the effects caused on the chassis’ vibration.
Accordingly, Figure 1.3 shows a car chassis’ acceleration behaviour when running over a bumpy
road. These results consider the application of a fast MPC scheme, a static optimal controller
(equivalent to an LQR approach), and no closed-loop law (i.e. passive damping behaviour
using minimal or maximal damping). In practice, MPC' is able to provide better comfort to
the onboard passengers, making an efficient use of the suspension system. I note that the
resulting performance with the MPC can be understood as better’ because the variation of
acceleration signal is smaller, smoother, and with reduced peaks, when compared to what is

obtained with the LQR.

Chassis link

Damper

= gyl \.3‘
o '5%;_ —p
S e

~ Wheel link

Figure 1.2: Example 1: Automotive suspension systems.

Complementary, I make reference to [Morato, Normey-Rico, and Sename 2021c|, where a
similar robust MPC scheme is tested for a suspension system against a robust LQR method,
which also takes into account constraints (via saturation, clipping) and uncertainties. Figure
1.4 shows the corresponding chassis’ and wheels’ accelerations. Once again, the MPC approach
1s able to outperform the LQR method, providing subtler responses.

Example 2. As another illustration of the application of MPC, I mention the recent works on
planning social distancing measures for the COVID-19, e.g. [Morato et al. 2020c; Morato et
al. 2020a]. In these papers, the optimisation problem By includes the problem of minimising
the amount of individuals infected by the SARS-CoV-2 wvirus, while also seeking to lighten
social distancing guidelines and considering a hard constraint for the amount of hospitalised
people (which should not saturate the availability for treatment). Thereof, the resulting control
action ensures that a social health catastrophe does not happen (i.e. the heath system remains
able to treat all infected individuals). Again, MPC' is an interesting approach because, due
to the future predictions, it acts by providing social distancing guidelines that act to revert
an infection peak that is previewed to happen in the future. In Figure 1.5, I present some

9This is merely a qualitative assessment. In the end of this Chapter, quantitative performance metrics are
presented.
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1 1 1

- = Uncontrolled, passive damper: Minimal damping
Uncontrolled, passive damper: Maximal damping

— Optimal control (LQR)

—-=-Model Predictive Control -

Chassis Accelearation (m/s?)

Time (s)

Figure 1.3: Example 1: Chassis’ acceleration.

of the obtained results'® with regard to the number of active symptomatic infections. In red
dashed plots, one can see the expected situation with no social distancing or control whatsoever
(e.g. “Open-loop”), while in blue plots, the results obtained with the predictive control scheme.
In light blue, the population response to social distancing is presented: this normalised curve
represents the percentage of people distanced in the susceptible population set. In sum, the
MPC policy acts to mitigate the number of infections, always maintaining this curve below the
Intense Care Unit (ICU) threshold.

MPC also has a significant interest in the context of managing renewable energy systems
with multiple sources and carriers. The so-called energy management systems are often syn-
thesised using predictive control algorithms, e.g. [Vergara-Dietrich et al. 2019; Morato et al.
2020e; Morato et al. 2021b|. In the following example, I present a brief insight in how such
application operates, considering a real energy plant from Brazil.

Example 3. Consider the renewable energy generation problem from the state of Sao Paulo,
Brazil, as investigated and described in [Morato et al. 2020b]: three different generation units
(microgrids) belong to the same distributer, but are physically apart, see Figure 1.6. These
microgrids are powered by solar power and sugarcane biomass residues, which are locally burnt
i boilers and generate energy through vapor-engine turbines. The owner sells the generated
renewable energy outlet to the state distributer. These microgrids have the same baseline
structure, but the biomass production at each site is different, and so are the efficiencies of
the local units (boilers, turbines, solar panels, and so on). The energy systems are not so far
apart, so one could transport the exceeding biomass from one site to another, if profitable. The
main control problem is the following: how to mazximise local renewable energy generation and

0T hese results consider the data available in the early beginning of the COVID-19 pandemic in Brazil,
around May, 2020. Thus, they are out of realistic scale.
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Figure 1.4: Example 1: Chassis’ and wheel acceleration, control action.

the total profit from the three systems?

As detailed thoroughly in [Morato et al. 2020b], MPC' is well-suited framework to address
these kinds of multivariable control problems that economic concerns, feedforward compensa-
tion, and constraints. With MPC, there is no need to synthesise individual local controllers to
avoid coupling effects, and the economic objective can be directly embedded to the optimisation.
Moreover, the use of the future predictions directly embed feedforward to the controller, which
acts to compensate future solar irradiance meteorological data that can be directly included
i the optimisation. The economic constraints, as well as the physical constraints of each
subsystem, can be also expressed directly as convex set operations in the MPC' optimisation.

1.1.2 Research frontiers

The core principle of MPC relies on having an adequate process model in order to predict the
future behaviour of state (or output) variables. If a trustworthy model is not available, the
derived control law may simply be unrealistic and thereby the controller may be insufficiently
robust to counter-act the uncertainties caused by the prediction mismatches (even stability

may be lost, in some dramatic settings).

Therefore, the research on MPC has consistently debated what happens when imperfect
process models are used in the optimisation. Accordingly, the theoretical properties closed-
loop MPC schemes have been throughly investigated over the last decades. Next, I recap some
of the recent research advances in the context of nonlinear and robust MPC syntheses.
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Figure 1.5: Example 2: MPC for the control of the COVID-19 pandemic in Brazil.

Nonlinear MPC

Nonlinear Model Predictive Control (NMPC) algorithms are of great relevance when nonlinear
systems are controlled over larger operating conditions or when the process responses heavily
depend on external parameters. However, the inclusion of nonlinear model predictions is not
trivial and increases the resulting algorithm’s complexity, see [Allgower and Zheng 2012]. The
increased numerical burden becomes an impediment for some real-time applications. In order
to exposit this complication, I present a stimulating illustration:

Example 4. Recall the suspension system from Example 1.2, in which an MPC is tuned to
control a semi-active damper in such a way to reduce vibration from the vehicle chassis and
thus provide a more comfortable ride for the onboard passengers. In this system, due to the
coupling effects and load transfers between vehicle corners, the complete vertical dynamics can
only be accurately represented with a seven degrees-of-freedom monlinear model, as elaborates
[Nguyen 2016]. Complementary, the damper dynamics also present polynomial models with an
adjustable number of damping coefficients''. Furthermore, these systems operate under very
fast sampling periods, usually below 5 or 10 ms threshold.

Thence, this control problem becomes quite intricate in practice, since the available time to
compute the control law is reduced and the model is highly complex. For the application of MPC,
these issues are even more elaborate given that the numerical complexity of the optimisation
problem grows exponentially with the number of system states and the control horizon. In
the application paper [Morato et al. 2018a/, the MPC solution could only be achieved with
a linearisation of the optimisation problem at each sampling instant. If the full nonlinear
predictions were consider, the Ts threshold was rapidly violated. As indicates [Nguyen 2016],

1With more coefficients, the damper dynamics are better represented.
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Figure 1.6: Example 3: Renewable microgrids in the state of Sao Paulo, Brazil.

considering over six damping coefficients in the damper model already led to an “explosion” of
the mean computational time required for the MPC' solution in an embedded vehicle test-bench,
due to mized integer constraints.

In order to alleviate the computational complexity of NMPC, the research on fast for-
mulations and their theoretical guarantees has gained pace (and concreteness) over the last
few years. Refer, for instance, to the survey [Gros et al. 2020|. One of the main aims of
these investigation threads has been to develop solver-based solutions, which approximate the
resulting nonlinear program by simpler programs (while maintaining the accuracy of the re-
sulting control law). This is made viable mainly through real-time iteration methods, such
as ACADO and CasADi [Houska, Ferreau, and Diehl 2011; Quirynen et al. 2015; Andersson
et al. 2019], and Lagrange and gradient-based solutions, such as GRAMPC [Richter, Jones,
and Morari 2011; Képernick and Graichen 2014; Englert et al. 2019]. The main interest of
these algorithms is that they allow for real-time implementation, thus serving for the control
of nonlinear processes with (very) fast sampling rates.

The focus of this thesis is not the development of solver-based NMPC scheme as detailed
the prior, but I mention them as benchmark references for the algorithms which I develop.
The main advantage of these implementation-oriented approaches is that they are able to
recover embedded MPC laws (for systems with relatively large order) within the millisecond
range, which is rather impressive. Furthermore, they result in near-optimal performance
with constraint satisfaction, close to what would be obtained with a “full-blown” NMPC

implementation'?.

2Through the sequel, I refer to “full-blown” NMPC as nonlinear predictive control algorithms that consider
full-order nonlinear predictions, without any kind of approximation. In this case, the resulting optimisation is
a nonlinear program, whose complexity exponentially grows with the horizon size, the number of states, and
the number of control inputs.
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Robust MPC

Yet with great practical value, the standard (linear and nonlinear) MPC design lacks guaran-
tees of recursive feasibility or closed-loop stability at the presence of disturbances. Therefore,
in parallel to the research on fast NMPC, there has also been a large enthusiasm on robust
MPC schemes with performance certificates, e.g. [Kohler et al. 2020; Santos and Cunha 2021].

Since the 00’s, there has been a growth of research body on robust MPC techniques,
i.e. those with focus on the achievement of optimal closed-loop performances, feasibility, and
constraints satisfaction despite the effects caused on the outputs by unmeasurable disturbances
or model uncertainties. The basic premise for the design of robust MPC schemes is that the
uncertainties should be bounded'® (and the bounds are known or, at least, estimated). Thus
the performance certificates can be provided by robustifying the MPC optimisation with regard
to the uncertainties’ bounds. This can be done via min-max optimisation [Limon et al. 2006a;
Lofberg 2012], constraints tightening [Kohler, Miiller, and Allgéwer 2018; Santos et al. 2019,
tube-based disturbance propagation [Yu et al. 2013; Abbas et al. 2019], and so forth!4.

Along this thesis, I provide developments on novel robust MPC schemes (presented in Part
III), considering the use of linear parameter varying models. Synthetically, the main concept
is that an adapted optimisation problem is solved, which is irrespective of the uncertainty
terms, but rather written in terms of its bounds, thus ensuring certificates. Next, I provide a
brief example to illustrate this concept!®.

Example 5. Consider an LTI system whose behaviour is given by: y(k+1) = ay(k) +bu(k) +
w(k), being u the control input, y the controlled output, and w a bounded disturbance term such

that |lw(k)|| <w,Vk. Then, consider the application of an unconstrained MPC, whose control
Jk

Np
law is found by solving ming, Z ly(k + i) — vy ||, where y, is an output set-point target. By
i=1
replacing the model in Jy, one obtains ming, ;-V:po_l llay(k+7)+bu(k+j)+w(k+j)—y,||, which
cannot be solved since w(k + j) is unknown. Yet, since this term is bounded, a robust solution
can benefit from the known bounds. Consider that J, < J, being Jj = MAX||yy(k+5) || <w k-
Thus, it follows that the minimiser U = argming, Jy is also a minimiser to Jy for all
llw(k + j)|| < w. By exploiting this property, the performance certificates are maintained.

13Here, uncertainties encompass any kind of model discrepancy as well as load disturbances. Boundedness
is a quite bland assumption, since, in the majority of real processes, bounds can be directly obtained from
physical characteristics.

MThere are other kinds of robust MPC approaches, but these are some of the most interesting ones, due
their implementation simplicity and academic acceptance.

51n the following example, I provide an illustration of an MPC scheme which is robust against (bounded)
disturbances, and not model uncertainties. In many cases, the term robustness is used to refer to the ability
of a given controller to tolerate model uncertainties.
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1.2 A brief background on Linear Parameter Varying systems

Next, I bring focus to the second main topic of this thesis: Linear Parameter Varying (LPV)
systems. In parallel to the establishment of modern MPC schemes, there grew a concerted
scrutiny on robust control, including structured robustness analysis and the generalisation of
the Small Gain Theorem, e.g. [Doyle, Wall, and Stein 1982; Scherer 2006]. Accordingly, from
the fabric of robust control theory, the LPV system framework was developed [Mohammadpour
and Scherer 2012; Sename, Gaspar, and Bokor 2013|. This analysis and control toolkit has
become popular and widely used to handle processes with complex (nonlinear, time-varying)
dynamics, as debated in [T6th 2010; Hoffmann and Werner 2014].

6 as a special class of nonlinear processes,

which are well suited for the control of dynamics with scheduled parameter variations. In some
17

In synthesis, one can understand LPV systems!
sense, LPV systems are found somewhere in between the nonlinear and LTT formalisms™‘, since
they are linear in the state space, while nonlinear in the parameter space. Differently than in
the LTI case, the state and output transitions depend on time-varying parameters, which are
called the scheduling variables, denoted p. These parameters are assumed to be known'®

and bounded, and thus they can be used for control.

Consider a generic system ., whose behaviour is given by:

{ 2(k+1) = A(p)a(k)+ Blp)u(k), o)
y(k) = Clp)z(k) + D(p)u(k), '
where x represents the vector of system states, u gives the vector of control inputs, and y
stands for the vector of controlled outputs. We stress that k& > 0 denotes the discrete-time
stamp and that A(-), B(+), C(-) and D(-) matrix functions given with respect to the vector of

scheduling parameters p.

According to the nature of the model parameters p and the dependency of the matrices,
Eq. (1.2) may represent different kinds of dynamics: (a) if the parameters are static (constant
and time-invariant), then model is LTI; (b) if p is a function of time, e.g. p(k), then the
model stands for Linear Time Varying (LTV) dynamics; (¢) when the parameters are time-
varying, yet measured and bounded, the model becomes LPV. In the LPV philosophy,
the designer is not interested in the explicit dependency of the state matrices on time, but
rather on the dependency of these matrices on the scheduling parameters themselves. Then,
the LPV analysis and design methodology arises by exploiting the form of these bounded
parametric-dependencies.

16Tn some references, LPV systems are referred to as “Takagi-Sugeno” systems [Takagi and Sugeno 1985]. In
fact, there are some analogies and discrepancies between these categories. A debate on this topic is presented
in [Rotondo, Puig, and Nejjari 2016; Rotondo 2017]. For simplicity, in this thesis, I use only “LPV” as
nomenclature.

17As a major advantage, I stress that the theoretical analyses of LPV systems often fall under the scope of
an LTI-alike toolkit. Of course, there is more complexity involved in these analyses than in the classical LTI
case, but with adequate transformations and parameter-dependent operations, the toughness is alleviated, e.g.
[Szabo and Bokor 2018]. Again, I recall that thorough theoretical details are presented in Chapter 2.

BTheir current values p(k) should be either measured online, or estimated with precision. Note that,
generally, their future behaviour p(k + j), j > 1 is not known.
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Remark 1. In many references, a model is named LPV whenever (c) is true [Shamma 2012].
Nevertheless, along this thesis, there is an explicitly differentiation between "pure” LPV mod-
els to quasi-LPV (qLPV) ones: (i) in the gLPV setting, it is considered that the param-
eters are endogenous, i.e. the scheduling variables are function of system wvariables, e.g.
p(k) = fo(x(k),u(k)) (this function is named the "scheduling proxy"). In this case, if the
scheduling proxy is re-introduced to the qLPV model, a full-blown nonlinear model is obtained;
and (i) "pure” LPV models are those with exogenous parameters, which are, a priori, stan-
dard functions of time (and independent of the process variables).

In general lines, the most relevant feature of LPV techniques, in the context of control
synthesis, is that they provide a systematic design procedure for self-scheduled multivariable
controllers, benefiting from the availability of the scheduling parameters from the process.
The LPV methodology, therefore, allows performance and robustness to be integrated into an
unified framework, and this is why the topic is of great scholastic relevance.

1.3 Bridging the gap

The LPV toolkit can indeed be used to represent nonlinear dynamics with trustworthiness.
Thus, the control synthesis and analyses of nonlinear features become easier when exploiting
the availability of known scheduling variables and the corresponding LPV dynamics. Nowa-
days, LPV control synthesis is standard using fractional transforms [Casella and Lovera 2008|,
Hs and H, performance goals [Sename, Gaspar, and Bokor 2013; Emedi and Karimi 2016],
as well as for tracking and rejection [Scorletti, Fromion, and De Hillerin 2015]. Nevertheless,
the case is definitely not true for predictive control applications. The study of LPV MPC
schemes properly began in the mid-00’s. Anyhow, there are still some intricate gaps to be
further investigated on this topic, as pointed out in [Bachnas et al. 2014] and in our dedicated
survey [Morato, Normey-Rico, and Sename 2020a).

Since nonlinear mappings can be re-cast as LPV models, it seems natural to develop NMPC
algorithms by exploiting LPV realisations. It is especially interesting to use LPV models in
the synthesis of MPC because these representations retain the linearity property along the
inputs-outputs channels, which means that computationally efficient design procedures can
be rendered. Conversely, this means that the drawbacks of full-blown NMPC algorithms are
avoided (the use of nonlinear programs), without any need to approximate the solution of
the optimisation problem (as do the most modern fast NMPC solutions, such as real-time
iteration and gradient-based methods, for instance).

In the context of MPC, a full-horizon prediction model is required (i.e. to describe the
system variables along the future NN, steps ahead of each sample). Nevertheless, when an
LPV prediction model is used, this problem depends not solely on the future inputs (to be
determined by the optimisation), but also on the future scheduling parameters p(k + i), Vi €
Nio,n,—1], which are assumably unknown.

Consider an LPV model as in Eq. (1.2), with an initial condition x(k)(current state),
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under the assumption that the states are measured at each time step k. When this model
is plugged to an MPC algorithm, the optimisation has to internally elaborate the following
sequence of predictions:

1. z(k + 1|k) = A(p(k))x(k) + B(p(k
(

A( )
2. w(k +2lk) = A(p(k + 1) A(p(k))a(k)
\ (

and so forth, up to the IV,-th prediction. Notably, these predictions implicitly require the
knowledge of so-called scheduling trajectory (p(k), p(k + 1), up to p(k + N, — 1)). However,
these variables are unavailable at each instant k, when only p(k) is known. Due to this un-
availability issue, the design of MPC using LPV models get especially complicated, essentially
because recursive feasibility and closed-loop stability of the strategy theoretically require the
MPC to tolerate the uncertainties that arise due to the unavailability of the future scheduling
trajectory.

Problem statement: Thus, with respect to the discussed context, the main problem
investigated in this thesis is:

How to conceive (accurate) predictive control algorithms for LPV systems
without the actual knowledge of the future scheduling trajectory?

1.4 State-of-the-art: Available techniques

There has been some recent works on MPC design for LPV systems. In our review pa-
per [Morato, Normey-Rico, and Sename 2020a|, a detailed overview of the state-of-the-art
is presented. Here, for brevity, I recap some of the most relevant techniques, which can be
categorised into two main groups:

e Robust methods, e.g. [Jungers, Oliveira, and Peres 2011; Rakovic et al. 2012; Bum-
roongsri 2014; Hanema, Lazar, and Téth 2020], which consider the worst-case closed-
loop performances implied by the unknown future scheduling parameters. Accordingly,
the optimisation is re-written in order to take into account the bounds of all possible
future parameter variations, which can render usually conservative results.

e Gain-scheduling methods, e.g. |Ayala et al. 2011; Brunner, Lazar, and Allgéwer 2013;
Mate et al. 2019; Alcala, Puig, and Quevedo 2019]. In these papers, the LPV model
is replaced, at each sampling instant, by an LTI model (or a sequence of LTI models)
based on a guess for the scheduling trajectory. In many cases, this guess is simply an
assumption that the scheduling parameters will remain constant along the prediction
horizon. While these methods operate quite fast (they exhibit reduced numerical bur-
den), sub-optimality may be implied. Nevertheless, when the scheduling trajectory is
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accurate (as seen for the qLPV case in |Cisneros, Voss, and Werner 2016; Cisneros and
Werner 2017b; Cisneros and Werner 2019]), an exact nonlinear MPC solution is obtained
by the means of quadratic optimisation programs, thus rendering a solution comparable
to state-of-the-art solver-based NMPC solutions (such as ACADO and CasADi).

1.4.1 Investigation gaps related to the problem

Although there exist, nowadays, generalised NMPC formulations, the synthesis of MPC al-
gorithms using the LPV formalism is of utter academic and practical interest, given the fact
that the linearity property can be exploited in such a way that the resulting algorithm has
relieved numerical complexity. In consonance with the works that have already been proposed
regarding this topic, as recapitulated in the prequel, there are still some investigation threads
available for further research:

e Firstly, I stress that LPV formulations in the input-output (IO) form, although being
supported by strong theoretical holds in the sense of identification, e.g. [Bachnas et al.
2014], have only a handful of control synthesis counterparts. The vast majority of LPV
control synthesis (including MPC) is settled for state-space descriptions. Nevertheless,
industry is much more prone!® to accept 10 formulations, as discusses [Froisy 2006].
Therefore, the bridge between theory and industrial applications for the case of LPV
MPC design will be further sustained when a theoretical research body 10 formulations
becomes available. Despite this topic being fundamental and promising, there exist
rather few papers that elaborate upon it, e.g. [Abbas et al. 2015; Abbas et al. 2016,
thus lacking further assessments.

e In the context of gain-scheduled LPV MPC methods, there exists a lack on fur-
ther exploitation of performance certificates of such algorithms. The use of the LPV
parameteric-dependency on the stability arguments and its implications have only briefly
evaluated, i.e. in |Cisneros and Werner 2017b; Cisneros and Werner 2020].

e As argued, gain-scheduled LPV MPC algorithms with accurate scheduling trajectory
estimate are real-time capable and altogether comparable to the modern NMPC tech-
niques. Nevertheless, the exploitation of the scheduling function (of qLPV models)
to generate scheduling trajectory estimates with accuracy (and thus synthesise an LPV
MPC with optimality close to that of an NMPC) has only been briefly evaluated, lacking
further proofs in the sense of theoretical holds?.

e Even though the application of robust MPC schemes for LPV systems is rather settled,
recent works, e.g. |Cisneros and Werner 2018|, have pointed out how dissipativity theory

19 Just to give an example: the original GPC algorithm [Clarke, Mohtadi, and Tuffs 1987] has wide acceptance
in many real-world applications due to the use of a simple IO prediction model. This issue is explicitly
mentioned in [Darby and Nikolaou 2012], for instance.

20The majority of papers, e.g. [Cisneros, Voss, and Werner 2016; Cisneros, Voss, and Werner 2016; Cisneros
and Werner 2019, only provide empirical and practical results, deficient stronger theoretical holds on the
accuracy of the scheduling trajectory estimates and the corresponding convergence. The only theoretical
assessments on these properties is seen in [Hespe and Werner 2021].
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can be used to smooth the online toughness of the resulting optimisation. Yet, a more
thorough debate on this matter, with corresponding application results, can still be
provided.

1.5 Thesis’ objectives

Over the last decades, there has been a growing interest in the development of fast MPC
algorithms for nonlinear systems. Accordingly, the linear parameter varying toolkit arises as an
interesting alternative to address this topic without the necessity of any solver-based solution,
since embeddings or scheduled realisations can be used to describe nonlinear dynamics with
exactitude (or good precision).

Nevertheless, the application LPV MPC schemes requires the knowledge of the future
scheduling trajectory, which is typically not available. The state-of-the-art, and the cor-
responding research gaps, point out to two alternatives to handle this matter: (i) robust
synthesis; and (i) gain-scheduled design based on trajectory estimates. Each one of these
branches has certain limitations and advantages, but they are all of philosophical and theo-
retical enthusiasm.

Therefore, bearing in mind this thesis’ problem statement (Section 1.3), and considering
the available state-of-the-art (Section 1.4.1), the objectives of this thesis coincide, in majority,
with the available investigation threads within this novel field. For the sake of presentation
thoroughness, I consider three main objectives, which are corroborated by some specific goals.
Below, I list and discuss them in detail, being the items marked in roman numbering the
primary objectives, and the ones marked with capital letters, the specific ones:

(i) Provide new algorithms in order to estimate the future LPV scheduling tra-
jectories, from the viewpoint of each sampling instant, envisioning accurate
predictions for the MPC.

(i.A) Ensure relieved computational burden of these tools, making them simpler to be
implemented than methods based on the scheduling proxy (sequential QPs), i.e.
[Cisneros and Werner 2020.

(i.B) Demonstrate convergence properties of the developed methods with regard to the
true scheduling sequence.

(ii) Develop novel gain-scheduled predictive control algorithms with recursive
feasibility and stability certificates.

(ii.A) Consider the solution using a state-feedback formulation, corroborated by contract-
ing terminal constraints.

(ii.B) Provide the corresponding formulation for the dynamic output-feedback case, when
state measurements are not available, considering input-output descriptions.
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(iii) Propose robust predictive control algorithms for LPV systems, with fast
computation during the implementation, capable for embedded, real-time
applications.

(iii.A) Consider tracking formulations with robust constraint satisfaction certificates for
piece-wise constant reference signals (with possibly unreachable values).

(iii.B) Consider robust formulations based on dissipativity arguments, thus not requiring
the use of terminal ingredients and relieving the overall computational stress of the
resulting online implementation.

1.6 Methodology and applications

The scientific contributions that derived from this thesis, which relate to the aforementioned
objectives, are listed in Appendix A. Furthermore, I stress that this doctoral was performed
under rigorous scientific, bibliographical, and documental research methodology in order to
address the thesis’ goals. For each one of the main (and corresponding specific) objectives listed
in the prequel, looping phases of specifications, design and empirical essays were conducted.

Complementary, since one cannot disassociate the conducted research from its correspond-
ing researcher, a person with individual subjectivities, I ponder that, due to personal and
peculiar reason, and also due their scientific and societal relevance, many of the proposed
MPC algorithms were focused on the control of two specific classes of complex systems: (7)
renewable energy generation, and (i) urban mobility technologies. The two main issues that
appear with the application of the predictive control for these processes is how to handle the
model nonlinearities and the increased digital complexity of the resulting control law, which
becomes numerically too though to be implemented in real-time, under strict sampling period
thresholds. To address these concerns, the LPV formalism provides a well-suited set of tools,
as previously debated.

Since renewable energy processes, e.g. [Pipino et al. 2020b; Bernardi et al. 2021], are,
in general, nonlinear systems. Thus, they can be directly represented by LPV structures
using appropriate embeddings. The major control concern is to maximise renewable energy
efficiency, and thus reduce greenhouse gas emissions and the use of fossil fuels. For this, LPV
predictive control algorithms are adequate solutions, because they are able to incorporate
meteorological data in the predictions and adequately enhance the resulting performances.

Autonomous vehicles are at the center of societal concerns, given the importance of the
topic of modern urban mobility. These systems can often be represented using LPV models,
specially when considering vertical dynamics, as detailed in [Savaresi et al. 2010; Morato et
al. 2018a; Morato et al. 2019b; Morato, Normey-Rico, and Sename 2021c|. Moreover, they
are controlled by the means of embedded microcontrollers that generate new control actions
each 1 — 10 milliseconds, which makes “full-blown” nonlinear predictive control, in much,
impractical. In this sense, the LPV MPC approach arises as a computationally affordable
alternative.
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I highlight that these two topics are at the heart of the 2030 Agenda of the United Nations
[United Nations General Assembly 2015; United Nations 2018|, which proposes the Sustainable
Development Goals (SDGs) in order to prevent a social-environmental catastrophe of severe
magnitude and global scale [Lowy 2015]. I will not address these topic with much focus, since
it is discussed in other side works, e.g. [Morato et al. 2018b|. Nevertheless, I stress that
SDG 7 concerns clean and affordable energy generation [Nathwani and Kammen 2019|, while
SDG 11 addresses sustainable cities and communities with cohesive and universal mobility
|[Hermelin and Henriksson 2022|. Therefore, it seems evident to me how these topics are of
social relevance and, thus, also enlarge the possible significance of this doctoral work.

As a last comment regarding the considered applications®!, I note that results were pro-
vided considering other kinds of systems as well, such as industrial processes (e.g. continuous
stir tank reactor, Chapter 3), robotic systems (e.g. an inverted pendulum, Chapter 3), toy,
education-oriented benchmark systems (e.g. cascaded tanks, Chapter 5), and solar-thermal
collector plants (temperature tracking, Chapter 6).

1.7 Outline

In order to conclude this introductory debate, I present the overall structure of this thesis: I
organised this document in a rather particular manner??, dividing it into four parts. I have
chosen to partition it in this way in order to address each of the primary objectives listed
in Section 1.5 in an individual part. The first part comprises the introduction, preliminaries,
and basic developments, the two intermediate parts are concerned with the primary objectives,
while the last part recalls and discusses all the work provided herein.

The Reader should not necessarily read this thesis according to the progressive arch. Al-
though there is a crescent in unfolding (especially from Part II to III), I have sought to establish
each Chapter in such a way that it can be read individually and out of order, without having
its meaning lost from the others, bearing in bind the discussions presented in this Introduc-
tion and the overall preliminaries presented in the next Chapter??. In Figure 1.7, a suggested
reading scheme is presented, where the arrows indicate the possible order alternatives.

21T specifically note that the vehicle essays in simulation are generated using the full nonlinear models
from [Savaresi et al. 2010]; solar collector plate dynamics are represented with the nonlinear partial-differential
equations from [Torrico et al. 2010]; cascaded tank systems are represented with the adjustable nonlinear model
from [Johansson 2000]. In the sequel, when other specific models are used, I explicitly mention it. All simulation
results presented in along this thesis were conceived using the mathematical software Matlab, in consonance
with toolbox Yalmip. The majority of the results were obtained from a 2.4 GHz, 8 GB RAM Macintosh
computer, unless mentioned otherwise. The optimisation solvers were Gurobi for quadratic problems, fmincon
for nonlinear programs, and SDPT3 for the solution of linear matrix inequalities.

22The Reader can understand these parts as “big chapters”, since all Chapters that comprise a Part basically
discuss the same main overall topic. My aim with this partition is to present this thesis’ work as a “geometric”
progression. In such a way, I pursue the scientific arch into a somewhat progressive order.

ZFor Readers previously aware of the relevant results on MPC and the advances on LPV systems, I recom-
mend skipping Chapter 2, which basically recalls the background concepts and definitions, and thus moving
directly on to Part II.
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I further detail the partitioning of this thesis and content of each Chapter:

e Part I: “Preamble”

— In the rest of the Preamble, i.e. Chapter 2, I discuss the preliminaries of all that
follows, establishing the theoretical background of this thesis, recalling the ba-
sic concepts, definitions and results from the literature. I begin this Chapter by
presenting an unified LPV representation, characterising basic notions, such as
stability, system classes and so forth. I also detail the corresponding used norms
and signal spaces, including some handy LMI synthesis procedures, operations and
transforms. Then, I detail the embedding procedures that can be used to generate
LPV and qLPV models (using differential inclusions), and discuss some proper-
ties of this representation feature. Concerning the application of MPC for these
systems, I give further details on the relevance of synthesising such algorithms,
discussing the main complications that arise. Accordingly, I recap the keystone re-
sults on recursive feasibility and stability of the resulting closed-loop, which serve
to generate the so-called optimisation “terminal ingredients”, as well as presenting
the basic notions of dissipativity.

e Part II: “Gain-scheduled formulations”. In this portion, I address the topic of gain-
scheduled predictive control approaches, targeting Objectives (i) and (ii) of this thesis.
Specifically, the following topics are debated:

— As previously debated, the application of LPV MPC algorithms becomes rather
complicated because the scheduling trajectory, along the MPC prediction horizon,
is a priori unknown. Thus, in Chapter 3, I discuss the available strategies that can
be used to generate estimates for the scheduling trajectory, and the advantages (and
disadvantages) that arise with each approach, within the context of MPC. Further-
more, I present a novel extrapolation algorithm that estimates the future values
of these qLPV scheduling parameters for a fixed prediction horizon of N, steps.
The method is derived from a simple Taylor expansion, and sufficient conditions
are presented for convergent estimates (thus addressing Objective (i)). Moreover,
using different simulation benchmark examples from the literature, I illustrate and
discuss the how the different estimate approaches can be applied in practice and
compare them.

— In Chapter 4, I develop two different gain-scheduled predictive control algorithms
formalised using state-feedback and output-feedback structures, which concerns
Objective (ii):

x First, I propose a control scheme for the enhancement of the comfort of on-
board passengers in a vehicle with semi-active suspensions, within the MPC
formalism. For such, the vertical dynamics of the car modelled in a qLPV
setting and, thus, the controlled arises from the solution of a set-constrained
optimisation, which embeds a comfort performance indexes. The method is
sub-optimal because the synthesis considers a frozen scheduling trajectory ap-
proach. Anyhow, assuming bounds on the variation rates of the scheduling
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parameters, the method enables a replacement of the original complex non-
linear optimisation by a much simpler quadratic program, which comprises a
Lyapunov-decreasing cost and set-based terminal ingredients. Successful real-
istic nonlinear simulations of a one-fifth-scaled car with electro-rheological sus-
pensions are presented, for which the proposed method is tested and compared
with other optimal controllers. The results illustrate the overall good opera-
tion of the vehicle; the comfort of the passengers is substantially improved, as
measured through time- and frequency-domain indexes.

x Secondly, I develop an output-feedback gain-scheduled approach for nonlinear
systems represented under input-output qLPV models. For such, I detail how
the input-output model can generate a prediction based on a future scheduling
trajectory guess. Then, I demonstrate the asymptotic stability of the closed-
loop system (and corresponding output tracking establishment). The method
includes integral action for each input-output channel, thus ensuring tracking
with null steady-state error. Using a numeric simulation benchmark, I demon-
strate the effectiveness of the solution.

e Part III: “Robust synthesis”. In this portion of the thesis, my major concern is to present
novel robust predictive control algorithms for LPV systems, i.e. Objective (iii). Accord-
ingly, I consider formulations with both terminal ingredients and dissipativity arguments
used to ensure recursive feasibility and input-to-state stability (the formulations are un-
der state-feedback representation). The issue of tracking piece-wise constant reference
signals is also addressed. Specifically, these topics are structured as follows:

— In Chapter 5, I present a Tracking NMPC formulation for piece-wise constant
reference signals using qLPV embedding and scheduling trajectory extrapolation.
The proposed framework is able to avoid feasibility losses due to large set-point
variations, which are tracked thanks to an artificial feasible target variable, whose
distance to the real set-point is minimised through an additional offset cost. At
each sampling period, an optimisation problem is solved based on linear (sched-
uled) predictions; the average numerical toughness is comparable to a quadratic
program. Robust constraint satisfaction is achieved with zonotopes that propa-
gate the uncertainty. These sets are computed with respect to the one-step-ahead
bounds of the qLPV scheduling sequence estimation error, offering reduced con-
servatism. Closed-loop stability and recursive feasibility are provided with robust
parameter-dependent terminal ingredients. In order to illustrate the performances
of the method, I provide a benchmark example, which demonstrates that the algo-
rithm is indeed able to ensure reference tracking with reduced numerical demand
when compared to state-of-the-art techniques.

— Benefiting from the recursive extrapolation algorithm from Chapter 3 and dissipa-
tivity theory, in Chapter 6, I provide a robust MPC method that is able to fasten
the sluggish performances achieved with the robust schemes from the literature
by incorporating the bounds on the estimation errors of the scheduling parameters.
Complementary, dissipativity arguments are used in order to demonstrate recursive
feasibility and stability of the closed-loop system, demonstrated through the solu-
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tion of a linear matrix inequality remedy, which determines the zone of attraction
for which input-to-state stability is ensured. I consider the nonlinear temperature
regulation problem of a flat solar collector as case study. By the means of realistic
numerical simulation, I compare the proposed method to other robust algorithms
from the literature, demonstrating it as an interesting alternative, with fast com-
putation and relieved numerical burden.

e Part IV: “Closure™:

— In Chapter 7, I present an overall panorama of my doctoral work, where the objec-

tives are recalled and compared to the presented advances and obtained results. A
general overview of all that was developed in this work is recalled and the develop-
ments are individually analysed in terms of advantages and limitations. In this last
portion of the manuscript, I also tease on the perspectives of the open investigation
threads mention in this Introduction, shining a light on paths that are yet to be
pursued in future research.

Predictive Control Methods for Linear Parameter Varying Systems |

| Part 1: Preamble

| Part 2: Gain-scheduled design |

Part 3: Robust synthesis |

Part 4: Closure

Chapter 1: Introduction

Chapter 3: Estimating
scheduling trajectories

Chapter 5: Robust tracking
with zonotopes

Chapter 7: Conclusions and
outlook

'

'

Chapter 2: Preliminaries

Chapter 4: State- and output-
feedback

1.8 Notation

Chapter 6: A dissipative
approach

Figure 1.7: Thesis structure.

The basic notation used along this thesis is emphasised next. Along the remainder of this

work, at the moments that specific complementary notation is used, I explicitly mention it.

e The j-sized identity matrix is [;, while [}; I 1;y gives its i-th row. 1,x,, stands for the

n x m vector of unit entries. The convolution product is represented using ®.

e col{-} denotes the column vectorisation (collection) of the entries and diag{v} denotes
the diagonal matrix generated with the line vector v. v(k + j|k) gives the predicted
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value for v(k 4 j) computed at instant k. An interval matrix J € I"*™ has mid(J) and
rad(J) denoting its middle point and radius, respectively.

The set of nonnegative real numbers is denoted by R, whilst the set of nonnegative
integers (including zero) is denoted N. The index set N, ;) represents {i € N|a < i <
b}, with 0 < a < b. The set of real compact intervals is given by I = {[a,b],a,b €
R,a < b}. For sets defined within normed vector spaces, with define the Minkowski
set addition as follows: A & B := {a+bla € A, b € B}, being A and B two sets.
Accordingly, the Pontryagin set difference is given by: A © B := {a|la ® B C A}.
Furthermore, a linear mapping is given by : RA = {y € R" : y = Ra,a € A}, while
the Cartesian product holds as A x C = {z € R"™™ : 2 = (aT ¢I)T,a € A,ceC}. 1
call B = {€ € R™ : ||£]looc < 1} the unitary m-dimensional box.

1.9 Performance indexes

Along this work, in order to quantitatively assess performances of the detailed control algo-
rithms, I use the following indexes:

(i) Integral of the absolute error (IAE), i.e. Y, |le(k)]];

(ii) Root mean square (RMS), i.e. \/% ZZZO (e(k))%:

(iii) Normalised RMS (NRMS), i.c. —d5{elk)} .

maxg [le(k)]]’

(iv) Total control variance (TV), i.e. >, [[6u(k)| = > [lu(k + 1) — u(k)]|.

Note that smaller JAE, RMS and NMRS indexes indicate better regulation (or tracking).
Furthermore, smaller TV values mean better (smoother) control laws.
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Preliminaries

The background concepts that anchor the developments of this thesis are laid out in the sequel.
Since this work is concerned with the study of predictive control algorithms applied for linear
parameter varying systems, we provide the basic framework for the analysis and exploitation
of these processes, as well as the tools required for the corresponding control synthesis. This
Chapter focuses on a presentation for uninitiated readers, considering the key concepts that
are referred to along this thesis.

As per referencing, we stress that all concepts related to dynamic systems can be found
in [Khalil and Grizzle 2002, those related to robust stability in [Skogestad and Postlethwaite
2007|, and those related to optimisation and LMIs in [Boyd et al. 1994; Scherer and Weiland
2000]. The notions and background on MPC are extensively discussed in [Allgéwer and Zheng
2012; Camacho and Bordons 2013|, and also in the following Ph.D. thesis, which focus on
stability issues in MPC: [Marruedo 2002|, [Ferramosca 2011|, [Santos 2011|, and [Ko6hler 2021].
The main notions regarding LPV systems and the correlated stability issues are presented in
[Mohammadpour and Scherer 2012; Sename, Gaspar, and Bokor 2013]; further details can
also be found in the following Ph.D. thesis: [Briat 2008| and [Rotondo 2016].

This Chapter is organised as follows: first, the concept of LPV systems is re-introduced,
with details given regarding representation forms and classes. Then, we discuss how to infer
on the stability of these systems, via Lyapunov arguments and dissipativity analyses. Con-
sequently, we detail how invariant control sets can be computed and generated for nonlinear
and LPV processes. In the sequel, we get back to the topic of MPC, presenting how these
control algorithms can be generated to induce closed-loop stability and a recursively feasible
optimisation. Finally, robust stability certificates for MPC are detailed.

Remark 2. Before any detail is presented, the Reader is invited to refer to Appendix B, where
the core mathematical background is presented, in the sense of the used vector spaces, Algebrae,
norms and (particular kinds of) functions. The background on Linear Matriz Inequalities
(LMIs), along with useful lemmas for their application, are also presented therein.

2.1 (Re)-Introducing LPV systems

In this work, we consider different design and analysis methods for discrete-time Linear Pa-
rameter Varying systems. Seeking notation consistency, throughout the sequel, we only take

23
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into account discrete-time dynamics due to the fact that this research is devoted to the study of
discrete-time MPC laws applied to LPV systems, and these control laws are given in discrete-
time.

In synthesis, LPV models are used to represent dynamical systems with linear dependencies
on parameters with time-varying behaviours. As previously explained, we call these variables
the scheduling parameters, and they are considered to be bounded and measurable.

Definition 2.1

A given causal system, with discrete-time dynamics marked by sampled time stamps k € N, is
said LPV if its dynamics are linearly dependent on scheduling parameters p(k) € P, Vk > 0.
We call P C R™ the scheduling set (which is usually convez).

In state-space realisation, a generic LPV system ¥ has its dynamics described by the
following set of equations:

{fﬂ(k+1) = Alp(k))z(k) + B(p(k))u(k),
y(k) = Clp(k))x(k) + D(p(k))u(k),

where © € R™ represents the system states, u € R™ the control inputs, and y € R™ the
process variables (outputs). Notice how the scheduling parameter p acts on Eq. (2.1) by

(2.1)

internally modifying its structure along time. Due to the time-varying dependency of the
system matrices (A(-), B(:),C(:),D(:)) on the scheduling parameter p(k), the input-output
behaviour of ¥ also becomes time-varying (yet, linear).

As argues [Briat 2008|, we stress that the spirit of the LPV framework is very re-
lated to that of robust analysis and synthesis, with different, more specialised tools be-
ing used according to the type of parameter trajectories and variations. In general, either
we consider that the scheduling parameters have arbitrarily fast variations over time, i.e.
(p(k+ 1) — p(k)) unbounded, or we assume that these parameters vary slowly enough and
thus that (p(k + 1) — p(k)) € 0P, being §P a known set. These are the types of parameter
trajectories exploited in this monograph!.

Remark 3. With regard to Eq. 2.1, we specifically consider the class of affine LPV systems in
this thesis, for which the model matrices show affine dependency on the scheduling parameters,
that is, for p € P C R we obtain:

A(p) = Ao+ Aip1+ Aspa+ -+ An,pn,
B(p) = DBo+ Bip1+ Bapz+ -+ By,pn,
Clp) = Co+Cip1+Copa+---+Cppn,,
D(p) = Do+ Dip1+ Dapz+ -+ Dy, pn,

In [Briat 2008/, one can find a full details on all possible classes of LPV systems, with
affine, polynomial, rational, polytopic and lifted, interconnected structures. In general, the

'Specialised tools for specific trajectories, such as piece-wise constant and periodical ones, are available in
the literature, e.g. [Mohammadpour and Scherer 2012], but not debated in this work.
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only criteria that should hold for all classes is set upon the form of the system matrices: they
should continuous and bounded functions on p, that is: A : P — A C R*=*"= B : P —
BCRW* M P 5 CCRW ™ gnd D : P— D CRW ™ being A, B, €, and D are
bounded sets. In some cases, it is required that the matrices posses continuous and existing
derivatives with respect to the parameter, i.e. A,B,C,D € C!.

Remark 4. In the case of polytopic dependency, Eq. 2.1 can be re-stated as follows:

Alp) = S04,
B) = S0, 22)
Clp) = zgpm(p)@-,
D(p) 221 Ai(p)Dj .

the number of polytopic vertices is L, = 2", and the inclusion is certified if Z]L£1 Ai(p) =1,
where each term 0 < X\j(p) < 1,Vj € Ny

2.1.1 Scheduling parameters

As detailed in the Introduction, we can argue that the LPV system representation falls some-
where in between the classical dual landscape of linear time-invariant and nonlinear systems.
With correct parameter-varying encapsulations, LPV models as in Eq. (2.1) are able to de-
scribe both time-varying and nonlinear dynamics. Specifically, we consider two kinds LPV
systems?, with distinct types of scheduling parameters:

(1) Pure LPV systems, for which p(k) is an exogenous functions, a priori, unrelated to the
system variables:

e The use of LPV systems with exogenous, extrinsic scheduling parameters (pure
LPV kind) is often related to underlying control objectives, when these parameters
are included in order to schedule the controller in a certain manner, seeking to re-
shape the closed-loop dynamics according to performance criteria. In these cases,
usually, a higher-level hierarchical system is used to adapt the scheduling signal
online according to such criteria. As an example, we refer to [Medero et al. 2022],
where an optimal scheme is tuned to generate design-related scheduling parameters
for adaptive LPV controllers. The referred work shows the application of a pure
LPYV control system as an advanced driver assistance system, demonstrating how it
can enhance performances of semi-autonomous vehicles, when compared to state-
of-the-art approaches;

e Another simple illustration of the interest of LPV controller is on how to regu-
late the closed-loop bandwidth of linear systems. Consider the following SISO

2This is the same classification as presented in [Shamma 2012] and it is interesting to use it due to the
strong philosophical differences between qLPV and purely LPV systems. We note that in the qLPV approach,
the scheduling parameter is known and generated online, by the means of the scheduling proxy, while in pure
LPV schemes p(k) is a signal which is fed externally to the controller.
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input-output dynamics: y(k + 1) = ay(k) + bu(k), where u(k) = —p(k)y(k) +
b1 (1 —a+bp(k))r(k), where r(k) is an auxiliary input. Note how, in closed-
loop, we obtain y(k + 1) = (a —bp(k))y(k) + (1 —a + bp(k)) r(k), which means
that p(k) can be used to tune the structure of the direct loop from r(k) to y(k). As
long as (a — bp(k)) is given within the unit circle, for all fixed values of p(k), it is
direct to see that the closed-loop dynamics are asymptotically stable, and that the
bandwidth can be changed by the means of p(k). Moreover, we obtain a steady-
state regime, with limg_, y o p(k) — p,, ruled by limg_ 1 oo y(k) — limg_ o0 7(k).

(2) Quasi-LPV systems, for which p(k) is an endogenous variable, given as a function of the
system variables by the means of a known scheduling proxy, i.e. f,(x(k),u(k),y(k)):

e This formalism can be used to approximate, or even exactly describe nonlinear
dynamics (and, thus, is of special interest to this work). The procedure of obtaining
an LPV model from a nonlinear one is often referred to as ¢LPV embedding. In
Example 6, presented in the next section, we provide a brief illustration of this
concept, where SS and 10 qLPV realisations are detailed for a simple nonlinear
system.

e We note, nevertheless, that analysing the stability of a system by the means of
a qLPV model can lead to excessively conservative results, considering that the
embedding accounted for the worst-case performances implied by the chosen varying
parameter. Further discussion on LPV stability is presented in Section 2.5.

2.2 Differential inclusion

As previously disclosed, the focus of this thesis is the control of systems described by LPV
models. With regard to this matter, we recall that there is a specific property which allows us
obtain reliable qLPV descriptions of nonlinear systems: differential inclusion. We note that
there are many types of “embeddings” (i.e. inclusions) that can be used in order to generate
gLPV models?® in order to represent nonlinear dynamics, such as linear, convex-concave, and
convex differential inclusions, as argues [Sala 2017]. The different embeddings may generate
what we call “over-bounding”, which refers to a qLPV representation with excessive conserva-
tiveness (sometimes, quite common in practice, e.g. [Hoffmann and Werner 2014]).

Specifically, we detail how exact embeddings can be generated by the means of Linear
Differential Inclusion (LDI) [Boyd et al. 1994]. If a given nonlinear system ¥ satisfies the LDI
property, meaning that every trajectory of the nonlinear system is also a trajectory of the LDI.
Then, we can prove that if every trajectory of the corresponding LDI exhibits some property
(let’s say, stability, for instance), then, a fortiori, we demonstrate that every trajectory of the
original nonlinear system also exhibits this property. For rationale purposes, consider, then,
a generic time-invariant discrete-time nonlinear system 3, whose behaviour is defined by the

3In [Abbas et al. 2014], a thorough overview of different qLPV embeddings is presented, for a wide variety
of applications, with corresponding identification and validation results.
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following set of SS equations:
D = £, (23)
y(k) = h(z(k),uk)) ,
where z € R™ are the system states, y € R™ its outputs, and u € R"* are inputs.
Definition 2.2

Consider the nonlinear system % as described by Eq. (2.3). Suppose that, for each state x and
entry u, there exists a matriz G(z,u) € Q such that:

{ Mo } = Gy [ y ] ’ (2.4)

where Q € RMatmy)x(netnu) = Thence, we say that the nonlinear system S agrees with an exact
LDI. As long as LDI is satisfied, we can thus re-cast ¥ into the form of the following qLPV
realisation*, considering the scheduling set P C R :

ek +1) = Alp(k))x(k) + B(p(k))u(k),
y(k) = Clp(k))x(k) + D(p(k))u(k), (2.5)
p(k) = fola(k), u(k)) -

In the following example, we elucidate how linear differential inclusion features can be
used in order to generate qLPV models from nonlinear dynamics, in form of state-space and
input-output realisations:

Example 6. Consider a cascade of two cylindrical water tanks, with equal base areas Ay, as
tllustrates Figure 2.1. The upper tank is flooded by an open-valve inlet flow at its top and
deflated by a regular open hole. The second tank is flooded by the outlet of the first tank, while
also having a reqular open hole at its bottom. The inlet flow of water to the upper tank is given
by u, while its outlet flow is given by \/2gh1, being hy the level of the water in this tank and g
the gravitational constant. Equivalently, the outlet flow of the bottom tank is given by v/2gha,
being ho its water level. Assume that both levels are constantly measured; the controlled output
is y = ho. Then, assuming an Euler discretisation® with a Ty sampling period, being t = kT,
the discrete-time phenomenological dynamics of these cascaded tanks are given by:

hk+1) = hi(k) = 539 /ha(k) + Fulk),
T T (2.6)
ho(k+1) = ha(k) — 2v29+/ ha(k) + 32v/29/ T (k) ,
where h = [h1 ha]T denotes the level variables and y = hy gives the main output, which is

the level of the lower tank. Assume that exact differential inclusion is satisfied. Thus, we can
re-write the nonlinear model from Eq. (2.6) in both SS and 10 qLPV formulations, as follows:

4Note that, in many cases, qLPV models with only state-dependent functions are used. In these cases, when
p(k) = fo(x(k)), it follows that the original nonlinear functions f(x,u) and h(z,u) should be only nonlinear
with regard to x, that is: f(z,u) = fi(x) + fz(2)u and h(z,u) = hi(z) + he(x)u.

5In some cases of strongly nonlinear dynamics between samples, Euler discretisation might fail to be trust-
worthy. Then, in order for the discretized model to be reliable, we should resort to trapezoidal or Tustin
discretisation methods. For simplicity, we will explicitly mention if non-Euler discretisation methods are
required. Otherwise, we assume that Euler discretisation “holds”.
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e SS formulation: Consider p(k) = [p1(k), p2(k)]T, with p1(k) = (TSX? VJE,&?)

and pa(k) = <Ts‘ﬁ Vha (k > Then, taking x(k) = h(k), we obtain: z(k + 1) =

Ap

2(k)
A(p(k))x(k) + Bu(k), y(k) = x2(k), with affine model matrices given by:

1—p 0 ] T T
A = , B=| %+ 0 ) 2.7
(P) |: o1 1—p2(l€) [ Ay :| ( )
e 10O formulation: Consider the same  scheduling wvariables, we wuse
(1+ai(p(k))z"t + aa(p(k))) y(k) = ba(p(k))z"2u(k), with the following model
coefficients:
ai(p) = 2—p1—p2,
az(p) = 1—p1—p2+p1p2, (2.8)
ba(p) = Lo
U A

" —

[

Figure 2.1: Example 6: Level control application.

2.2.1 Overview

All in all, we can organise the wide variety of time-varying nonlinear systems of finite dimen-
sions according to the set diagram illustration in Figure® 2.2. The class of qLPV systems
is a subset of the set of generic nonlinear time-varying processes, i.e. only those that allow
differential inclusions. Furthermore, the class of LPV systems can be understood as a subset
of the qLPV ones, when the scheduling is not dependent on the system variables, but more
generically understood as exogenous signals. Finally, LTI plants are contained within the LPV
class, since these can always be given as LPV ones with constant parameters.

SFigure inspired by the Venn diagram presented in [Briat 2008].
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Differential Exogenous Constant
inclusion parameters parameters

s

LPV LTI

Systems Systems

Figure 2.2: Overview of the considered systems with finite-dimensions.
2.3 General notions of stability

Before detailing stability notions for LPV systems, we recall some standard results on the
stability of dynamical systems. For such, consider the generic nonlinear plant ¥, as described
by Eq. (2.3), assuming no control inputs, i.e. an autonomous system. The following notions
can be directly extended to the closed-loop case.

Definition 2.3
Consider the nonlinear system in Eq. (2.3). It follows that x, defines an equilibrium point of
Y, if and only if the following equality rule holds: z, = f(zy,-).

Definition 2.4
Let x, € X C R™ be an equilibrium point of the nonlinear system in Eq. (2.3). Then, it
follows that:

1. z, is a (Lyapunov) stable equilibrium if, given scalar ¢ > 0, there exists a corresponding
scalar 6(€) > 0 such that |z(0) — zy||2 < § = ||x(k) — zy||2 < € for all k > 0;
2. x, is said to be unstable when it is not (Lyapunov) stable;

3.z, is attractive if there exists a scalar § > 0 such that ||x(0) — z,]| < ¢ =
limy_ oo || (k) — 2|2 = 0, for all k > 0;

4. xy is a locally asymptotically stable equilibrium if it is (Lyapunov) stable and attrac-
tive;

5. x, is an exponentially stable equilibrium if there exists scalars §, a > 0 and 8 > 1
such that ||z(0) — x|l < 6 = ||z, — 2(k)||2 < Bek||z(0)||2;

6. x, is said to be globally asymptotically stable when it is stable and limy_,  x(k) =
Zr, for all x(0) € R™.
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2.3.1 Complementary practical stability metrics

In many cases, we assume that states of a given system Y are measurable. Thus, it becomes of
interest to analyse the stability of ¥ by the means of the input-to-state transfer. Accordingly,
we analyse input-to-state stability (ISS), which is defined as follows:

Definition 2.5 (Input-to-state stability)

Consider the system %, as given in Eq. (2.3), and assume that the states x(k) are measurable
for all sampling instants k > 0. X is input-to-state stable if u € Lo and ||ul| < @ and there
exists a pair of K-functions B(-,-) and o(-) such that the following inequality holds:

lz(R)l < B(x(0),k) + o (). (2.9)

Assume that the system X, as given in Eq. (2.3), has a closed-loop state-feedback pol-
icy u(k) = k(x(k)). Furthermore, assume that the closed-loop dynamics are affected by an
additional disturbance variable w(k), i.e.:

z(k+1) = for (z(k), w(k)) . (2.10)
Then, the analysis of closed-loop ISS is enabled by the means of the following definitions:

Definition 2.6 (Closed-loop input-to-state stability [Jiang and Wang 2001])

Consider a generalised discrete-time nonlinear plant 3, whose dynamics, under a state-feedback
closed-loop policy, are given by Eq. (2.10), where x(k) are measurable states and w(k) is a
load disturbance variable such that |w(k)|| < WV, k > 0. Then, ¥ is said to be input-to-state
stable in closed-loop if there exists a pair of K-functions 5(-,-) and o(-) such that the following
inequality holds:

lz(R)l < B(x(0),k) + o(w). (2.11)

Even though the analysis of ISS is very useful, it cannot be considered in the situations
when 3 is subject to persistent disturbance effects. In this case, the notion of input-to-state
practical stability is required:

Definition 2.7 (Input-to-state practical stability (ISpS))

Consider the system X, as given in Eq. (2.3), and assume that the states x(k) are measurable
for all sampling instants k > 0. X is said to be ISpS within Xig,s € R" if there exists a
KL-function B, a K-function o, and a scalar d, € Ry such that, for each vo € Xigps, and
all w € Lo such that ||u|| < @, it holds that the corresponding state trajectory satisfies the
following inequality holds:

lz(B)|| < Br(z(0),k)+ op(u) +d, . (2.12)

For a given nonlinear system ¥, if the origin lies in the interior of &jgps and Ineq. (2.12)
also holds for d, = 0, X is said to be ISS within Ajsps. Note how the presence of a non-null
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term d, in Ineq. (2.12) implies in a conservative ISpS criterion, i.e. for greater values of ||d,||,
we obtain a smaller ISpS region. Thus, lastly, we also recall the notions of closed-loop regional
ISpS and regional ISS, used for closed-loop dynamics subject to non-fading disturbances.

Definition 2.8 (Regional ISpS (ISS) [Magni, Raimondo, and Scattolini 2006|)
Consider the system % in closed-loop with a state-feedback, as given in Eq. (2.10). Assume
that the states x(k) are measurable and that w(k) is a load disturbance variable such that
|lw(k)|| < wVk > 0. Then, ¥ is said to be ISpS (ISS) within Xpisps € R"™* if there exists
a KL-function By, a K-function o, and a scalar d, € Ry such that, for each vo € Xpigps, it
follows that the corresponding state trajectory satisfies the following inequality:

lz®)| < Br(x(0),k)+ on(@) +dy, Vk € N. (2.13)

Furthermore, if the origin lies in the interior of Xpisps and the inequality also holds for d, = 0,
the system is said to be ISS in XRrgps.

Note that the presence of a non-null d, in the Ineq. (2.13) is, again, a conservative solution,
since for greater values of ||d, ||, we obtain a smaller ISpS (ISS) region Xrisps.

2.4 Standard stability tools (Lyapunov theory)

In order to investigate the stability properties of a given system, with regard to the defini-
tions presented in Sec. 2.3, mature theoretical frameworks are available. In this section, we
revisit the main results on Lyapunov theory. First of all, we note that there exists a specific
(Lyapunov) theorem associated to each kind of stability (asymptotic, exponential, etc). For
brevity and simplicity, we provide a synthesis of the main results in the sequel, considering
the autonomous nonlinear dynamics of ¥ in Eq. (2.3), i.e. taking u(k) = 0.

e Consider a real positive defined Lyapunov function V' : R™ — R, such that there
exists two corresponding K-class functions a1 (-) and ag(-) such that a1 (||z|]) < V(z) <
as(||z]]), for all x € B, being the closed n, ball defined as B, := {z € R" |||z| < r}.
Then, if the following condition is satisfied for all x € B,., the origin is a stable equilib-
rium point of X:

V(f(x))=V(z) < 0. (2.14)
e If the previous conditions are valid for the whole set of real-valued states, i.e. for

B, = R" then the origin is globally stable.

e Consider another real positive defined Lyapunov function V : R — R, such that there
exists three corresponding K-class functions £1(+), f2(+) and S3(+) such that gy(]|z|]) <
V(z) < Ba(||z|]), for all z € B,, Then, if the following inequality holds:

V(f(z) =V(z) < —Bs(ll]), (2.15)

the origin is an asymptotically stable equilibrium point of X.
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e Again, if the previous conditions are valid for the whole set of real-valued states, i.e. for
B, = R" then the origin is a globally asymptotically stable equilibrium.

e Again, consider a real positive defined Lyapunov function V' : R"* — R, . Furthermore,
consider that there exits two real positive scalars a and b, and scalar ¢ > 1 such that
allz||¢ < V(z) < bljz|° for all z € B,, Then, if there exists a positive scalar d such
that the following inequality holds:

V(f(z)) = V() < dlz|?, (2.16)

the origin is an exponentially stable equilibrium point of ¥. Furthermore, if the previous
conditions are valid for the whole set of real-valued states, i.e. for B, = R™«, then the
origin is a globally exponentially stable equilibrium.

The concept of stable autonomous system ¥ (i.e. Eq. (2.3) with u(k) = 0) can be trans-
lated and generalised to the closed-loop case (to non-autonomous systems). Thus, stability
becomes stabilisability, meaning that, if ¥ is stable for u(k) = 0, there exists a control law
u(k) # 0 which makes the closed-loop interconnection stable. Thereby, all previous notions
of stability can be extended directly to the closed-loop case. Furthermore, we stress that all
conditions presented in the prequel are merely sufficient, and can be used to infer if ¥ has
the origin as an (asymptotically, exponentially) stable equilibrium. Anyhow, there exists also
sufficient and necessary equivalencies, valid under certain hypothesis, as detailed in [Khalil
and Grizzle 2002]. These stronger conditions are not recalled here, for brevity.

2.4.1 Invariant set theory

The concept of stability, and the corresponding analysis using the Lyapunov framework, is
closely related to the notions of invariant sets. In practice, such sets are used to guarantee
that MPCs ensure closed-loop stability.

Definition 2.9 (Positively invariant set [Blanchini and Miani 2008])

A set Xy C R™ is said to be a positively invariant set for a given system X, as in Eq. (2.3), if
for any x(k) € Xy, it follows that x(k+1) € Xy, Vk > 0. This is, the whole state trajectory
always lies inside this set Xy, which is thus called invariant.

Basically, if a system trajectory reaches a positively invariant set Xy, i.e. the states are
found inside this set, the remainder of the state trajectories will also be contained therein.
Any system that has an associated positive invariant set is a stabilisable system. That is, if a
given system ¥ has the origin as a stable equilibrium point, it follows that V' (f(z)) — V() is
negative for all z € B, and, thus, V(x(k)) decays as k evolves for any trajectory that departs
from R"™ © B,, i.e. V(z(k)) < V(x(0)), Yk > 0. Consider a K-class function a;(-). Thence,
it follows that X; := {x € R™ |V (z) < aq(r)} is subset of B,, which implies that for all
x € Xy, it follows that:

ar([|z(k)]) < V(xz(k)) < ai(r),Vk>0. (2.17)
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Alternatively, we obtain [|z(k)|| < 7, V& > 0 and, thus, that X; C B, is a postively invariant
set for 3. Note that for any z(0) such that V(z(0)) < aq(r), we obtain V(z(k)) < V(z(0)) <
ai(r), since x(k) € Xy. Therefore, the origin is stable equilibrium for . In brief, if the
negativeness of V(f(x)) — V(x) is verified within a given set Xy, for a system 3, it follows
directly that X is a positively invariant set for ¥, because the system trajectories departing
from Xy will be contained therein.

The previous discussion resided in debating how positive invariant sets can be used to
ensure stability. Closely related to these sets are the so-called control invariant set, which can
be understood as a generalisation of positively invariant sets used specifically for control.

Definition 2.10 (Control invariant set [Fiacchini, Alamo, and Camacho 2010])

Consider the nonlinear system X in Eq. (2.3). A set Xy C R™ is said to be a control invariant
set for ¥ if for all (0) € Xy, there exists a state-feedback control law u(k) = k (z(k)) such
that x(k) € Xy and that u(k) € U, Vk > 0, being U C R™ a set that defines an admissible
control input.

Based on this definition, we can conclude that if there exists a control invariant set Xy
for a given system 3, we are able to synthesise an admissible state-feedback controller u(k) =
k (z(k)) which stabilises the origin in closed-loop. This is of specific interest when designing
MPC laws that enable closed-loop stability. Furthermore, the notion of control Lyapunov
functions is also of interest:

Definition 2.11 (Control Lyapunov function [Primbs, Nevisti¢, and Doyle 1999])
A function V. : R™ — Ry is a control Lyapunov function associated to the nonlinear system
Y in Eq. (2.3) if it is positive defined and satisfies:

min (V (f(z,u)) -V (2)) < 0, (2.18)

for all x € B,. Again, U C R™ is a set that defines an admissible control input.

Synthetically, if there exists a control Lyapunov function V(-), we can generate an admis-
sible state-feedback policy u(k) = & (x(k)) € U, Vk > 0 that ensures that the closed-loop
dynamics satisfy

V(f(z,k(x) < V(z),VzeB,

and, thus, that the system is stabilised to the origin. The existence of a control Lyapunov
function implies that the corresponding system is stabilisable, we can thus generate a control
invariant set for this system.

Remark 5. Along this thesis, in many applications, we consider ellipsoidal invariant
sets. These sets, generically stated as Egyipsoid - {33 € R"= |:cTP:c < 1}, when used in
the context of MPC as terminal constraints, render the problem non-quadratic (note that
z(k + Np|k)T Px(k + Ny|k) < 1 is a nonlinear constraint). Nevertheless, there are many
alternatives that can be pursued in order to find polyhedron sets in the form of &€powyhedron :
{z € R" | Hyx < wy}, such that Epoiyhedron © ERllipsoid- Thus, using Hyx(k + Nplk) < wy
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as a terminal constraint, in the context of MPC, the same properties as when using the orig-
inal ellipsoidal set are maintained (control invariant, recursive feasibility, etc), whereas the
optimisation remains a QP. Thereof, we say that MPC algorithms (with linear models and
quadratic constraints) with ellipsoidal terminal constraints render an optimisation in the form
of a QP, assuming that a polyhedron replaces the ellipsoid. Refer to [Bitsoris 1988; Pluymers
et al. 2005] for more details on such polyhedra. [Alessio et al. 2007] gives a practical algorithm
able to generate a polyhedron subset from a given ellipsoid.

2.4.2 Dissipativity

Another way to verify the stability of ¥ is to determine if an associated energy function V(-)
dissipates over time. Mathematically, we define system dissipativity as follows:

Definition 2.12 (System dissipativity [Scherer 2022])

A generic system x(k + 1) = f(x(k),u(k)), with u(k) € U and z(k) € X,Vk > 0 is
dissipative with respect to the supply rate s : (U x X) — R if there exists a storage function
V : X — R such that the dissipation inequality

ko—1

V(e(k2)) < Vi(a(ka))+ Y s (u(@),z(d) , (2.19)

i=k1

holds for all admissible trajectories of the system and all time instances k1,ky € N such that
k1 < kg and (Zkrl s (u(z),x(z))) is mon-negative.

i=k1

Remark 6. The particular choice of the supply rate s(u,z) = ul

passitivity.

x implies in what is called

We stress that the notion of dissipativity has an underlying physical interpretation: if the
combination of forces that operate upon a given system are dissipative (and thus there exists
a corresponding non-negative supply rate), we say that the system is dissipative (the stored
energy decays); otherwise, we call it conservative.

Example 7. Consider a vehicle subject to a variable horizontal acceleration force u(k) and to
friction due to the contact of the tires with the road. The dynamics of the car’s velocity y(k)
are, by Newton’s second law of motion, as follows:

y(k+1) = yk) +bu(k) — c*(k), (2.20)

Take the following associated energy map V (k) = V (y(k)) = y* (k) Py(k). Accordingly, in
order to verify that this system is indeed dissipative, we must ensure that V(k+1)—V (k) <0,
for all k > 0, with an initial positive energy V(0) > 0. For simplicity, let us consider u null.
Complementary, note that as long as ¢ > 0, we have y(k + 1) = y(k)(1 — cy(k)) = a(k)y(k).
Then, V(k+1) —V (k) < 0 is valid as long as a* (k)Pa(k) — P < 0. Taking P = I, we obtain
(1 —cy(k)T(1 —ey(k)) — 1 <0 and, thus, 0 < cy(k) < 2,Vk. Since we seek a dissipative
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2

, we can ensure that V will
y(0)

system, it follows that y(k) < y(0) and thus as long as ¢ <
dissipate.

In many settings, it becomes quite hard to prove dissipative arguments due to nonlinearities
and complicated inequalities. In such cases, an interesting option is to use an abstraction to
describe the input-output behaviour of given systems (or uncertainties): Integral Quadratic
Constraints (IQCs). With respect to the last example, this would be equivalent to detach the
nonlinear dependency of a(k) from the analyses. A time-domain IQC is defined next:

Definition 2.13
Let ¢ € RHZSX("””?’) and M : P — R" (symmetric). A system operator y =: Lu satisfies
the IQC denoted Z(V, M) if the following inequality holds for all u € La:

ko

> 2(i)"Ma(i) = 0. (2.21)

i=k1

Basically, if we can employ an IQC abstraction in order to describe the input-output
behaviour of a system, a filter, or an uncertainty. Then, instead of analysing the system’s
dissipativity, we can infer if its dissipative by determining an M that satisfies Ineq. (2.21). This
property can be directly generalised to systems with bounded uncertainty interconnections
described via IQCs. In Chapter 6, we provide a typical application of this framework in the
context of MPC, where an IQC is used to describe the predictive controller.

2.5 Stability of LPV systems

Stability and robustness of LPV systems deserve special attention in this thesis. Since LPV
models exhibit time-varying parameters, the stability analysis becomes more complex than in
the LTT case. Although a LPV model can be verified stable for all frozen parameter values
within its scheduling set, it can be unstable due to the variation of these parameters along
the samples, which can be understood as a switching law between different LTT systems.
Accordingly, the stability methods described in the prior should be adapted to the LPV
context, thus accounting for parametrical variations between samples. In this thesis, we
consider two different kinds of stability analysis for LPV systems: quadratic stability and
robust stability.

Definition 2.14 (Quadratic LPV stability)
Consider an autonomous LPV system ¥, as in Eq. (2.1) with u = 0. X is said to be quadrat-
ically stable if there exists a positive Lyapunov storage function V. : R™ — R, such that
V(z) = 2T Pz > 0 for every x # 0 and V(0) = 0 such that:
AV(z,p) = V(A(p)z)—V(z) (2.22)
= 2TAT(p)PA(p)z — TPz < 0,

forallp € P.
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Synthetically, an LPV system is quadratically as long as there exists a constant matrix
P € R"™*" guch that Ineq. (2.22) holds. Note, nevertheless, that quadratic stability is
ensured for a Lyapunov matrix P which is parameter-independent, yet Ineq. (2.22) should
hold for all scheduling parameter values (i.e. for all p € P). In many cases, the analysis of
quadratic stability becomes quite conservative, with possibly infeasible solutions (inexistent
matrix P). In order to avoid such issue, the notion of robust LPV stability is typically used.

Definition 2.15 (Robust LPV stability)

Consider an autonomous LPV system 3, as in Eq. (2.1) with w = 0. X is said to be robustly
stable if there exists a positive parameter-dependent Lyapunov storage function V. : R xP —
Ry such that V(z,p) = 2T P(p)x > 0 for every x # 0 and V(0,p) = 0 such that:

AV(z,p) = V(A(p)z,p) —V(z,p) (2.23)
S awx,p))
+ opi—m— | »
d;;g;)
AV(z,p) = V(A(p)z,p) —V(z,p) (2.24)
+ 2" AT (p) (P(p+ 0p) — P(p)) Ap)z,
AV(z,p) = 2l AT(p)P(p+ dp)A(p)z — 2" P(p)x < 0, (2.25)

for all p € P, and all 6p; € §P;.

The derivative term of the storage candidate V' (z, p) with regard to the scheduling param-
dzg)p ), appears due to the fact that Lyapunov theory requires one to evaluate the
decay of this function over time. Since P(p) is parameter-dependent, the decay of V (-,-) is
directly affected by the variation of the scheduling variables between samples, denoted here

as 6p(k) = (p(k) — p(k —1)) € oP.

eters, i.e.

The term dl;(pp) in Ineq. (2.25) illustrates the importance of the rate of variation of the

scheduling parameters in the stability of LPV systems. When the bounds on these rates (i.e
the sets dP;) are unknown, the designer must assume that the parameters vary arbitrarily

between samples, and thus that dZ—E)p) is a priori unbounded. Thereby, robust LPV stability
dP(p)

cannot be inferred, but rather taking B = 0 which implies that P(p) = Py (parameter-

independent matrix) and thus that only quadratic LPV stability can be inferred. In practical
situations, d];(op ) can be very small, whenever the variations of the scheduling parameters are

too subtle and thus we can use %E)p) ~ 0 in Ineq. (2.25) as an approximated argument.

For the vast majority of practical LPV applications, the scheduling parameters indeed
exhibit bounded variation rates over samples. That is, dp(k) is bounded for all k¥ > 1. This
property is often exploited in order to synthesise less conservative controllers, which benefit
from the robust LPV stability framework (and thus use parameter-dependent stabilisation
arguments). We note that, along this thesis, the majority of systems account for bounded
scheduling parameter variations. A typical example of this fact is observed in physical systems
with scheduling-state dependencies, that is, represented in the form of z(k+1) = A(p(k))z(k),
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with p(k) = f,(x(k)). In these processes, since the states (k) are bounded due to physical
properties, we can easily infer on bounds for dp(k) = f,(x(k)) — f,(x(k — 1)) using interval
algebra or optimisation tools.

Remark 7. Quadratic LPV stability is a particular case of parameter-dependent stability, as
argued above. Therefore, quadratic stability implies in robust stability, and it can also be used
as a sufficient condition for stability (i.e. if X is quadratically stable, it is stable).

2.6 (Re)-Introducing predictive control

Model Predictive Control, sometimes referred to as sliding-horizon control, is an optimal
control approach, for which the control action is generated with regard to some performance
criteria. As argued in [Ferramosca 2011; Santos 2011|, we recall that MPC is of interest
specially because it can deal with coupled, multivariable dynamical processos, while explicitly
handling state, input, and output constraints. Moreover, MPC is able to conceptually handle
nonlinearities with ease, and, at the same time, express optimality concerns under a systematic
design procedure. In synthesis, MPC consists in the feedback implementation of optimal
control on the basis of a finite, sliding prediction horizon and the online computation of
an optimisation problem. As indicated in [Alamir 2013], one can find over 5800 successful
industrial applications of this control method, in many different areas.

2.6.1 Basic ideas on MPC

The basic concepts of MPC are the following: (7) It makes explicit use of a model to make
predictions of the process behaviour along a prediction horizon. (i) A receding approach
is used, which means that, at each discrete-time instant, the prediction horizon is displaced
towards the future (rolls forward). Thus, at each discrete-time step, a new window of future
predictions of fixed size is taken into account. (4ii) A full-horizon control sequence is generated
at each discrete-time step, from which only the first entry is applied. In more details, we can
describe the main characteristics of MPC as follows:

1. At each instant k, the future N, states are previewed, i.e. x(k+1|k), z(k+2|k),..., z(k+
Np|k). These predicted variables z(k + i|k), Vi € N|j y,) depend on the known variables
(past inputs u(k + j — 1|k) and states z(k + j|k),Vj € Npj ;) and on the future control
signals (u(k + j — 1[k),Vj € Nj; n,))), which are to be sent to the system and to be
calculated.

2. The sequence of future control signals Uy is calculated, at each instant, by the means
of an optimisation procedure (Eq. (2.27)). In most MPC applications, the optimisation
cost takes a quadratic form, weighting states and inputs. Note that an explicit solution
to the optimisation can be obtained if there are no constraints’.

"Remark that, in some cases, even if there are active constraints, explicit solutions can also be found,
although they are usually not linear nor trivial [Besselmann, Lofberg, and Morari 2012].
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3. The control signal u*(k|k) is sent to the process at each instant k, whilst the next control
signals calculated are neglected u*(k + i|k), Vi € Ny, N,—1) from Uy are neglected. This
repeated solution of the optimisation problem is used because, at the following sampling
instant, new state measurements are available, i.e. z(k+ 1|k + 1), and the control input
u(k|k) has already been applied. Thus, the optimisation is re-iterated based on the new
process variables, and all prediction sequences are brought up to date. Accordingly,
the control law u(k + 1) = w*(k + 1|k + 1) is calculated at instant k& + 1 based on
the measurements z(k + 1). Note that, in principle, u*(k 4+ 1|k + 1) is different from
u*(k + 1|k) due to the fact that new information is included in the optimisation. This
rolling-horizon paradigm implies that the whole control sequence solution at a given
instant k£ does not necessarily correspond to the real sequence of inputs. The first entry
of each sequence Uj is the one that composes the real control signal, while the following
do not correspond to the actual control that is applied in the following sample, since
new measurements update and correct the previewed inputs, i.e. u*(k+ 1|k) is probably
different than v*(k + 1|k + 1), and so forth.

2.6.2 Setting up an MPC algorithm

MPC algorithms three main components in order to operate: (i) an accurate prediction model;
(i) a performance-related cost function (usually quadratic); and (iii) the set of operational
constraints that should be respected. We detail these elements individually:

(i) The prediction model: MPC requires a model in order to predict the system variables
along the future horizon. A prediction model is an analytical mathematical expression
which describes the expected behaviour of the process in a given sampling instant. This
model can be linear, nonlinear, LPV, variant or invariant in time, written in terms of
state variables or in the input-output form. In general, MPC prediction models are
written in discrete-time, since this control method is inherently discrete. As of this, only
discrete-time models are in used along this thesis.

e For any known process model z(k + 1) = f(x(k),u(k)), and y(k) = fy(x(k),y(k)),
being z, u and y the states, inputs and outputs, respectively, we use z(k + j|k),
u(k+j—1|k) and y(k+j—1[k), Vj € Nj ) in order to denote the predicted values
for the states, inputs and outputs, when computed at instant k. It is implied, under
this notation, that initial state prediction is given by a known measurement, i.e.,
x(k|k) = z(k), whereas all remaining variables are stances along the prediction
horizon of N, steps.

e In general, when disturbances are present in the system, we can use a so-called
disturbance model in order to account for their behaviours along time. That is,
assume x(k+ 1) = f(z(k),u(k),w(k)), where w stands for the disturbances. Then,
we can use a known relationship, such as w(k+j+1|k) = fu,(w(k+1) (in this case,
an auto-regressive equation), in order to compute the future disturbance values
along the prediction horizon. In many practical situations, future data can be used
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(i)

(iii)

to compensate the term w(k + j + 1|k) in the prediction model®.

e In the context of MPC, we denote the terminal state and the terminal local
control as z(k + Np|k) and u(k + N, — 1|k), respectively. These two variables are
of special interest in order to synthesise stabilising predictive control schemes (this
topic is further detailed by the end of this Chapter).

The cost function: In predictive control, a cost function is required. This function
indicates the criterion the optimal control law is tuned to enhance. In general, an MPC
cost function Jj is positive defined and expressed in terms of the cost associated to a
predetermined system evolution along the prediction horizon. Jj is usually written in of
the sampled state measurement x(k) and the corresponding sequence of control inputs
Uk, in such a way that ming, J(x(k), Uy) gives the envisioned criteria enhancement. For
simplicity, the following kind of cost function is used along this thesis:

Np—1
T o= J(@k),Up) = > L(x(k+ilk),ulk+i—1]k)) (2.26)
=1

+ V(x(k+ Nplk)),

where /(-,-) is named the stage cost, related to the system behaviour at the predicted
instant k + ¢, and V(+) is called the terminal cost. Henceforth, any stage and terminal
cost is assumed positive defined for coherence, in such a way that Ji is also implied
positive defined and thus its minimal related to the sought performance criteria.

e Different criteria can be included into J, such as a regulation objective of the states,
or the tracking goal of certain outputs®. A stage cost £(x,u) := ||x||%2—|— ||u||% implies
the regulation of the system states to the origin, with weighting criteria () and R
over the state and input trajectories, respectively!®. A cost £(y) := ||y —y,| implies
the tracking goal the system output y with regard to a known reference target y,.

The constraints: As argues [Normey-Rico and Camacho 2007|, one of the main advan-
tages of MPC is that constraints can be explicitly considered in the design procedure.
These indicate the limits within which the process variables should evolve. In prac-
tice, all variables of controlled processes are related to real characteristics, which must
abide to physical rules. Moreover, constraints can be used to enact safety conditions,
or even feasibility limits of actuators and sensors. Constraints can also be used to im-
ply economic criteria to the control law, allowing the system to be maintained near a
pre-determined working region.

e In mathematical terms, constraints are given as bounds in the amplitude and in the
slew rate of the control signal, states and outputs. Considering constraints on states

8In the case of renewable energy systems, for instance, the disturbances are the renewable sources (i.e. solar

irradiance data, wind speed profiles, and so forth) and, thus, meteorological forecasts can be used within the

prediction model in order to embed a feedforward action.
9We name regulation control if the strategy is synthesed in such a way that the states are steered to the
origin, whereas tracking refers to steering outputs towards a (usually piece-wise constant) reference signal
10We stress that, in general, quadratic costs are used. Therefore, we highlight the use of the 2-norm.
Nonetheless, we emphasise that alternative formulations, using other norms,are also possible.
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and inputs, for instance, we use z(k +ilk) € X and u(k+i—1[k) €U, Vi € Ny n,),
being X and U known sets which defined admissibility. Furthermore, we note that
it is usual to require that the terminal state belongs to a given region, which is
implied by a terminal constraints, i.e. z(k+ Npylk) € Xy.

2.6.3 Implementation

Taking into account the previous discussions, we can thus define an MPC application as the
solution of a corresponding optimisation problem 3, which is solved at each sampling instant
k. In general lines, we can state such optimisation problem, composed of a prediction model,

a cost function, and constraints, as follows!!:
Problem 1.
Ik
Np—1
i (x(k k), y(k+il|k k+i1—1lk 2.2
min Z (k +ilk), y(k +ilk), u(k + i — 1[k)) (2.27)
+V( (k+ Nplk)),
s.t. x(k+ilk) = f(x(k+i—1k),u(k +1i—1]k)),
y(k +ilk) = fy(z(k +ilk), u(k +ilk)),
ulk+1—1lk) € U, Vi€ NN, 5
x(k+1ilk) € X ,Vie N[l,Np} ,
y(k +ilk) € Y,Vie Nyn,),
JY(k‘ + Np|k‘) S Xf .
In this problem, it is implied that Uy = col{u(k|k),... ,u(k+N,—1]k)} gives the sequence

of actions inside the (sliding) prediction horizon N,. Often, a different sliding horizon is
chosen for the control signal (named a control horizon N, where usually 1 < N, < N,). In
general, this optimisation also embeds a terminal control law constraint, i.e. u(k + jlk) =
kx(k+jlk), for all j € [N, N, —1], without necessarily emphasising it in its formulation, that
is, this terminal control law constraint is implicit. Here, we examplified using a state-feedback
terminal law, but this could be replaced by a a full-information policy, e.g. rix(k + Np|k) +
kww(k + Np|k), in the case of known disturbances, or even by an augmented-state feedback,
e.g. kqv(k 4+ Nplk), in the case of augmented state representations v. Henceforth, we opt to
implicitly consider that a local state-feedback terminal control law is enacted.

The optimisation problem By in Eq. (2.27) has an internal prediction model constraint. In
this setting, this prediction is nonlinear since we use the original nonlinear model to describe
the process. This renders B as a nonlinear programming problem (refer to Appendix B).
Nevertheless, as previously detailed, this work focuses on processes described by qLPV and

"Henceforth, we denote X as the collected sequence of predicted state variables, i.e. col{z(k|k), z(k +
k), ..., x(k + Nplk)}.
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LPV models. In this case, unknown terms appear from the second state prediction onwards,
as further assessed in Chapter 3. That is, we obtain z(k + 2|k) = A(p(k + 1)) A(p(k))z(k) +
A(p(k + 1))B(p(k))u(k|k) + B(p(k + 1))u(k + 1|k), and so forth. Note that p(k + 1) is not
known at the sampling instant k.

In general, MPC applications are set in the “state-feedback” form, which means that the
first entry of solution of the optimisation B, namely the minimiser U}, whose first entry is
u*(k|k), can be written as a feedback of the current state variables, i.e. k* (z(k)). Nevertheless,
state-feedback MPC is only viable if the state variables are measurable. In the case they are
not, we must adapt the MPC problem so that the control input can be expressed in terms
of the measured outputs, i.e u*(k) := £* (y(k)), and thus “output-feedback”. For this kind of
formulation, as detailed in Chapter 4, either the process model must be written in the form of
input-output realisations, or state observers are required so that an estimate of x(k) can be
generated.

2.6.4 Final notes

Predictive control schemes have had considerable interest in theory and practice. This is
mainly due to its flexible formulation, written in time-domain, open and quite intuitive.
Moreover, MPC is able to handle any kind of process (linear, nonlinear, static, multi-variable,
etc), under the same control formalism, while respecting optimality criteria and constraints.
Nevertheless, we stress that, albeit having many advantages, there are some implementation
drawbacks in MPC which should be emphasised:

e MPC is model-based and, thus, it requires the knowledge of a prediction model which
must be sufficiently precise.

e An optimisation problem must be solved online, which requires computational power.
Even tough nowadays QPs are easily handled by embedded micro-controllers, when
nonlinear prediction models are used, NPs are generated with tough numerical burden.
Thereof, in real-time settings, nonlinear MPC applications become rather complicated.

e Stability of the corresponding closed-loop can only be ensured under some conditions,
which usually relate to computing, before the implementation, some stabilising ingredi-
ents that are embedded to the MPC optimsaiton. This topic is detailed in the sequel.

2.7 Optimality, stability, and MPC

The application of MPC consists in the online solution of an optimisation problem, written
with regard to the future closed-loop dynamics. Usually, the cost function is written in order
to weight the difference between the states trajectories to a given equilibrium, and the same
goes for the control effort. Nevertheless, as stated and demonstrated in many seminal papers,
e.g. |Scokaert, Mayne, and Rawlings 1999; Mayne et al. 2000; Limoén et al. 2006b; Besselmann,
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Lofberg, and Morari 2012], even though MPC applies an optimal control action at each instant,
there are no implications that this leads to stability of the resulting closed-loop. That is: the
optimality of MPC does not imply in stability, at least a priori (in the general case).

In order to complete this discussion, let us recall some of the arguments provided in
[Marruedo 2002|: take the broader case of an infinite-horizon MPC, using a state-feedback
formulation. That is, consider u(k) = kx(k), where the feedback gain k derives from:

Joo (z(k))

K = argmm(ZE (k + 1|k), Kx(k—i—z]k))) (2.28)

st x(k+i+1|k) = f(x(k+i|k), Ke(k +i]k)),Vi >0,
Kux(k +ilk) eU,Vi >0,
x(k+ilk) € X,Vi>0.

Under regular, usual conditions!?, the resulting feedback implies in an asymptotically
stable closed-loop for all states x € X that posses an existing associated cost J(z) that
is bounded. Therefore, for any asymptotically stable equilibrium point z, there exists a
corresponding infinite-horizon stabilising MPC. Nevertheless, although applying MPC via
Eq. (2.28) seems like a reasonable option, it must be noticed that this optimal problem
can no longer be formulated under a mathematical programming problem, due to the infinite
horizon. Thus, the feedback can either be generated under Hamiltonian-Jacobi-Bellman or
Euler-Lagrange equations, which are not trivial and change solution according to each function
f(x,u), i.e. according to each controlled process (model). In practice, solving the infinite-
horizon problem does becomes of only particular interest, since the obtained solution will not
be generic nor reproducible for other systems.

Therefore, when using the general concept of MPC with a receding (fixed-size) prediction
horizon, stability-related tools must be included in such a way that the closed-loop becomes
stable just as in the infinite-horizon case. For such, extensions of Lyapunov theory and optimal
costs have been translated along the past decades to the context of MPC. In the following
sections, the general conditions for stability under MPC schemes are recalled.

2.7.1 MPC with terminal ingredients

The main formulations of stabilising MPC proposed in the 90’s can be summarised by the
results provided in the seminal paper by Mayne, Rawlings, Rao and Scokaert [Mayne et al.
2000]. In that work, the authors establish how MPC algorithms with terminal costs and
terminal constraints can, under certain conditions, stabilise any nonlinear system subject to
constraints. Moreover, sufficient conditions are provided regarding the terminal cost and the
terminal region in order for closed-loop stability to be rendered. Along this thesis, this is
main philosophy that is used in order to imply closed-loop stability of the developed MPC

12Convex compact sets X and U, observability of the stage cost £(,-), etc, refer to [Marruedo 2002].
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algorithms. The set of tools enabled since [Mayne et al. 2000] is often referred to as the
approach of MPC with "terminal ingredients". Basically, it is required that:

e The MPC should operate with a terminal constraint z(k 4+ Ny|k) € Xy, being X; an
admissible positive invariant set for the system dynamics. That is, there must exists a
local control law u = k(z) that stabilises the state dynamics within X ¢, with admissible
state and input trajectories.

e The MPC must contain a terminal cost V(z(k + N,|k)) and this cost must represent a
Lyapunov function associated to such local control law, that is:

V(f(z,k(x)) = V(z) < —(x,k(x)), (2.29)
for all x € Xy.

e The terminal control input u(k + Np|k) should be locally stabilising within X, that is:
u(k + Nplk) = w(2(k + Np|k)).

Remark 8. Note that Ineq. (2.29) can be generated by imposing that the total optimal cost
function exhibits monotonicity. Consider the cost function Jy, = J (x(k),Uy) as in Eq. (2.26),
denoting Vn,(x(k)) = J*(x(k),Uy) the optimal value of this function with regard to the
minimiser Uy Furthermore, consider that there exists a sequence of admissible inputs U1
that is based on the optimal solution obtained in the previous instant, i.e. U;. Note that this
feasible sequence Uy is nothing but the N, —1 terms that haven’t been used from the previous
sequence, i.e. u*(k+1|k), ... ,u*(k + Np — 1|k), coupled to the last term, the local control
law k(x*(k+ Nplk)). Thus, we can ensure that the difference between the MPC cost at instant
k + 1 and the previous optimal cost, at instant k, is given by:

J(x(k+1),Ugs1) — T (x(k),U;) = —l(x(k),u(k|k)) (2.30)

+0 (2" (k + Nplk), k(x*(k + Nplk)))

+V (f (@"(k + Nplk), s(2"(k + Np|k))))

—V (x*(k 4+ Npy|k)) .

The terms in the second, third and forth line of Eq. (2.30), when summed, become negative,

assumang that V(-) and £(-) are positive defined. In order to illustrate this fact, denote x* =

z*(k + Nplk) and v* = k(x*). Assume there exists a control invariant terminal set for the

controlled system. Then, there must exits a corresponding control Lyapunov function V(-),

which in turn ensures that'3 £ (z*,u*) +V (f(z*,u*)) < V (2*). Consequently, by exploiting

the use of a terminal cost, we can infer that any generated feasible input sequence Uy will
generate a following sequence that has a smaller related optimal cost. Thereby, we obtain:

" (@(k + 1), Upyr) = I (2(k), Up) < =L (2(k), 5(z(k))) , (2.31)

where k(-) indicates the state-feedback that is implies by applying the first entry of the control
sequence U}. In sum, we can conclude that Ineq. (2.29) implies in the optimal cost J*(-,-) is
a Lyapunov function that decreased with regard to the closed-loop state evolution.

13For further details, refer to [Marruedo 2002, Hypothesis 3.1|.
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These generic requirements are recalled next under stronger mathematical rigour. Con-
sider, for such, that the following assumptions are valid:

e The terminal set X is a positively invariant set and an admissible set, i.e. Xy C X;

e The stage cost £(-) is K-class lower bounded, i.e. there must exist a K-class function
B1(||z||) such that

Uz,u) > Bi(||x|]), Ve € X,uel;

e The terminal cost V' (-) is K-class upper bounded, i.e. there must exist a K-class function
Ba2(||x]|) such that 0 < V(x) < Baf||z]]),Vz € X.

Definition 2.16 (Recursive feasibility)

An optimisation algorithm is said to be recursively feasible inside a feasibility set Xp if, for
any starting condition xg € Xp, the optimisation is feasible and remains feasible throughout
the following instants.

Theorem 1 (Terminal ingredients). Consider a nonlinear system whose dynamics are de-
scribed by x(k + 1) = f(x(k),u(k)) and that the previous assumptions are valid. Consider a
rolling-horizon MPC algorithm with terminal cost and constraint. Suppose there exists a local
stabilising law v = k(x), within the terminal state set given by Xy. Then, the MPC ensured
closed-loop asymptotical stability if the following conditions hold:

(C1) The origin lies in the interior of Xy;

(C2) Any consecutive state to x, in closed-loop given by f(x,k(x)) lies within X¢;

(C3) The discrete Lyapunov equation is verified within this invariant set, this is, Vo € Xj:
V(f(z,k(x) =V () < —l(z,k(x)); (2.32)

(C4) The image of the nominal feedback lies within the admissible control domain: k(x) € U;

(C5) The terminal set Xy is a subset of the admissible state set X.

Then, assuming that the initial solution of the MPC problem is feasible, the optimisation is
recursively feasible and the controller stabilises the state origin.

The formulation of MPC algorithms enabled via the solution of the optimisation 3; as in
Eq. (1), with terminal ingredients that satisfy the requirements of Theorem 1 ensures stability
of the closed-loop and is, since the seminal work of Mayne at colleagues [Mayne et al. 2000],
well established. Let the main elements and implications of Theorem 1 be further discussed:

e Note that Theorem 1 is based on the fact that set X is invariant. If this terminal
region is indeed positive invariant, then the set of feasible states is equivalent to the set
of states that are stabilisable within N, steps. Note that the set of stabilisable states
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within NV, steps is a subset of those stabilisable within N, — 1 steps, and so forth. By
exploiting this property, the factibility of the derived predictive control law is implied
for all samples.

e Theorem 1 also indicates that the terminal cost should be a Lyapunov function with
regard to the system dynamics (C3). As discussed in Remark 8, this condition implies
that the optimal cost is strictly decreasing along discrete-time samples and, thus, a
closed-loop Lyapunov map for the controlled system. This condition, in turn, ensures
the asymptotical stability of the system in closed-loop when subject to constraints.

e This Theorem is quite omnibus, since all kinds of nonlinear systems can be considered, as
long as if the states are measurable. In the case of input-output models, an equivalent
state-space can be generated based on previous outputs and inputs (details given in
Chapter 4). When state-space descriptions are used, but state measurements are not
available, the use of state observers and estimates can also be included in the formulation,
e.g. [Kohler, Allgower, and Miiller 2019; Souza, Efimov, and Raissi 2021].

Remark 9. As also discussed in [Marruedo 2002/, we make two additional comments with
regard to the previous stability analyses of MPC using terminal ingredients:

o Fven though an MPC algorithm with terminal ingredients that satisfy Theorem 1 implies
i closed-loop stability, we cannot conclude that the closed-loop trajectory is optimal,
i.e. there may exist another trajectory with a smaller associated total cost, unlike in the
infinite-horizon case previously discussed.

e Theorem 1 also states that it is the feasibility property of an optimal control sequence
U} that implies in closed-loop stability, which thus always ensures the decay of the
associated MPC cost function. Therefore, even if the MPC may stabilise systems even
if a local minimal of the optimisation is found, i.e. there is no need for global optimal
minima to ensure stability.

As a final note, we stress that, along this thesis, a major focus is given to ensure that
the MPC optimisation problem ‘B is recursively feasible. Anyhow, in many situations, we
are not only interested in ensuring that an MPC algorithm implies in closed-loop stability
and remains recursively feasible, but also in determining the region/basin of attraction of the
controller, i.e. the set initial conditions that result in converging trajectories and recursively
feasible optimisation procedures By.

Definition 2.17 (Region of attraction)

The set of all initial conditions xog = x(0) that result in converging system trajectories and
generates recursively feasible solutions to Py is denoted R4 C R™, and called the region
(basin or domain) of attraction in closed-loop of the controller.

The task of analytically determining R 4 is not trivial (even for the case of low-order LTI
systems), since this set can be non-convex, open and unbounded, e.g. [Peaucelle et al. 2012].
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Therefore, a simple approximate is a closed R"#-ball R such that Rp C R 4. Accordingly,
we can use level sets of the associated candidate Lyapunov terminal cost V(-) in order to
compute this estimated region, as done in [Jungers and Castelan 2011]. Thus, we associate
the region of attraction of the MPC with the Lyapunov terminal map that ensures dissipativity
of the MPC cost J,. Considering that there exists a generic quadratic Lyapunov candidate
function V' (-), the associated level set is given by:

Lv(w) = {o € R™|V(2) < i} . (2.33)

2.7.2 Stability in MPC without terminal ingredients

We can also ensure closed-loop stability for systems controlled using MPC without the use of
terminal ingredients. A general result on this topic is presented in [Griine and Pannek 2017,
Chapter 6]. The main characteristic of MPC that ensure stability without terminal ingredients
is that the stability-verification path requires a priori verification, as done in [Cisneros and
Werner 2018|. This verification is closely related to the size of the prediction horizon and the
form of the MPC cost function and constraints.

For the synthesis of such stabilising predictive controllers, the setup and the algorithm are
exactly the same those related to Eq. (2.27); the only difference, obviously, is that the terminal
cost and terminal constraints are removed. Then, instead of synthesising the terminal elements
that imply stability within an invariant set, the following suitable stabilising conditions are
checked regarding the cost controllability and decay:

e Consider that the stage cost £(+) is K-class lower bounded, i.e. there must exist a K-class
function S (||z||) such that

Uz,u) > Bi(||z]]), Ve € X u e U ;

e Consider that there exists a scalar p,, > 1 such that for any admissible state z(k) € X
and any prediction horizon size N, > 1, the optimisation program in Eq. (2.27) (without
the terminal ingredients) is feasible and the value function' Vy (z(k)) = J(z(k), U})
satisfies:

VN, () < pel(z,u), Ve € X, uecl. (2.34)

e Then, consider there exists a positive horizon lower bound Ny > 0 such that, for
any prediction horizon N, > Ny, the resulting closed-loop is asymptotically stable,
following an admissible input-state trajectory (i.e. (k) € X and u(k) € U, Yk > 0).
Moreover, consider that there exists an unit scalar A\, € (0, 1] such that the following
sub-optimality estimate holds:

S VN, (2(0)  _ Vioo(2(0)
kzoe(x(k),u(k)) < - < *AH .

HRecall that U} is the control sequence minimiser to the optimisation, whereas X; is the corresponding
sequence of states (predicted trajectory).
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Basically, the prior conditions ensure that the optimal MPC cost (value function) is dis-
sipative and upper bounded, exhibiting an associated Ineq. (2.31) that holds. This result
has been exploited thoroughly in [Griine et al. 2010; Griine and Palma 2015] and [Griine,
Pirkelmann, and Stieler 2018], with analogous continuous-time conditions presented in [Reble
and Allgower 2012]. As a final remark, we note that the synthesis of stabilising MPC schemes
without terminal ingredients imply in finding a sufficiently large lower bound horizon Ny such
that the sub-optimality estimate holds (which is, in general, a tricky pursuit).

2.8 Some final comments

In this Chapter, the main concepts regarding LPV systems and MPC algorithms have been
detailed. Specifically, the classes and types of LPV systems have been discussed, and also how
differential inclusion can be exploited in order to generate qLPV models for nonlinear systems.
Furthermore, general guidelines on stability and the use of stability-related tools have been
prescribed, with specific focus to the case of LPV system. We also explained how to set
up and apply a model-based predictive control algorithm, and how these are able to imply
in closed-loop stability if adequate terminal ingredients are synthesised. The main content
of this thesis begins in the following Chapter, where the application of MPC algorithms for
nonlinear systems using LPV models is further discussed.
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CHAPTER 3

Estimating scheduling trajectories

As detailed in the Introduction, the application of MPC to LPV systems is of utter interest for
the control of nonlinear, time-varying processes. Yet, it comes with an intrinsic complication:
the so-called scheduling parameters, which coordinate the LPV dynamics, are a priori un-
known along a future prediction horizon. In this Chapter, we debate this issue, in the context
of gain-scheduled design. Specifically, we detail the four main approaches available that can
be used to compute estimates for the future scheduling trajectories (and also how to operate
the corresponding MPC algorithm). These methods are:

(i) Frozen estimates, when the controller assumes a prediction as if the parameters would
remain constant along the horizon, as deployed in [Morato, Sename, and Dugard 2018;
Alcala, Puig, and Quevedo 2019; Morato et al. 2020e];

(ii) Identification-based estimates, for which auto-regressive equations are used model the
behaviour of the future scheduling variables, as proposed in [Morato, Normey-Rico, and
Sename 2019];

(iii) Iterative rules, which generate estimates based on sequential iterations of the MPC opti-
misation, per sample, exploiting the known relationship between the scheduling variables
and the future system endogenous variables (only possible for the qLPV case). This ap-
proach is the current state-of-the-art in qLPV MPC literature, e.g. [Cisneros, Sridharan,
and Werner 2018; Cisneros and Werner 2019; Cisneros and Werner 2020,

(iv) Extrapolation schemes, which generate estimates based on a simple Taylor expansion
condition (again, only possible for the qLPV case), as proposed originally in [Morato,
Normey-Rico, and Sename 2022b| and also applied in [Morato, Normey-Rico, and
Sename 2021b; Morato et al. 2023a; Morato 2023|.

With regard to these alternatives, we present several different simulation benchmark ex-
amples from the literature, in order to illustrate and discuss their main features. These results
are also compared to state-of-the-art techniques.

Remark 10. The developments presented in this Chapter correspond (in parts) the works
published in [Morato, Normey-Rico, and Sename 2021c; Morato, Normey-Rico, and Sename
2022a; Morato 2023; Morato et al. 2023a; Morato, Normey-Rico, and Sename 2023a]. Specif-

ically, the extrapolation method (approach (iv)) is one of the main contributions derived from
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this thesis, as formalised in depth in [Morato, Normey-Rico, and Sename 2022b]. This topic
comprises, in fact, Objective (i) of this thesis (refer to Chapter 1, Section 1.5). As of this,
special attention is given to this approach. We also mote that another contribution from this
work is the recursive Least-Squares (LS) procedure presented in [Morato, Normey-Rico, and
Sename 2019] (approach (i)).

3.1 Motivations

As discussed in the introduction of this thesis, we recall that, nowadays, there exist several
efficient solver-based NMPC algorithms [Zhang, Li, and Liao 2019; Rathai et al. 2018; Gros
et al. 2020]. Nevertheless, these methods are coined using approximations of the nonlinear
optimisation problem that arises when applying nonlinear MPC. Exact NMPC formulations
require the online solution of such NPs, which is typically not solvable within small sampling
periods (in the case of fast, embedded control systems). In sum, the application of NMPC
for real-time process has an inherent impediment of solving the exact NP during the online
implementation, as pointed out by all major systematic reviews on the topic [Camacho and
Bordons 2007; Allgéwer and Zheng 2012].

We argue insistently in this work that an elegant approach to resolve this issue (reliving
the computational toughness of NMPC) is to replace the nonlinear system model by an LPV
onel. Thereby, as discussed in [Morato, Normey-Rico, and Sename 2020a], in general, the
resulting optimisation is able to be run much faster, since the original NP is replaced by a QP

(or an SQP, in some cases). Next, we discuss some complementary aspects:

e For simplicity, let us consider the application of a state-feedback MPC, enable through
the solution of the following optimisation? i, at each discrete-time sampling instant k:

Jr = J(2(k),Ur)

Np—1

min Zf (k+ilk),u(k +i—1|k)) (3.1)

PVl + N8,

s.t. Process model, Vi € N n,),
z(k+ilk) € X, Vi € Ny,
u(k+i—|k) €U, Vi € Nyn,j,
xz(k + Nplk) € X,

LThis can be done either by the means of high-fidelity LPV models with coordinated exogenous scheduling
[Toth 2010], or via exact qLPV representations, enabled via differential inclusion [Hoffmann and Werner 2014].

2As explained in Chapter 2, Section 2.7, the optimisation cost J; is composed of a stage cost and a terminal
offset cost, for stability-related purposes Furthermore, the terminal constraint x(k + Np|k) € Xy is included
for the same purposes (being Xy a control postively invariant set).
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Again, we use x € X to denote the state admissibility constraints, v € U for input
admissibility, x € X for terminal admissibility, and U}, to denote the vector of predicted
control efforts given inside the MPC horizon, i.e.:

]T

Ue = [ulklt)? ulk+10)7T ... u(k+N,—1]k)7T (3.2)

Any MPC algorithm, as the prior, takes into account the dynamics of the controlled
system over a prediction horizon of N, (the process model constraint). Thus, in the
general nonlinear setting, considering a discrete-time generic nonlinear state dynamic
x(k+ 1) = f(x(k),u(k)), the following sequence of model-based rules are evaluated
(internally by the optimiser):

a(k+1lk) = f(x(k),u(klk)) (3.3)

w(k+2k) = f(f(@(k),u(klk)), u(k+1]k)),

e+ 3K) = (7 (7 (k) ulkR))  ulk + 11R))  ulk + 2[R)),

and so on, up to the IV,-th prediction.

Note that the (original) solution of ming;, Ji (using a nonlinear model), requires the
evaluation of the predictions given in Eq. (3.3), which makes the optimisation a nonlinear
program (which may even be non-convex).

Nevertheless, when we replace the nonlinear model by an LPV one, i.e. by z(k +
1) = A(p(k))x(k) + B(p(k))u(k), the sequence of model-based prediction rules that are
evaluated by the optimiser becomes:

w(k+1]k) = A

Ju(k[k) , (3.4)
x(k+2k) = A 3.5

k)
(k[k)
)

)
(k))a(
(k))u
u(k + 1|k),
p(k +1))A(p(k))x(k) (3.6)
p(k +1))B(p(k))u(k|k)

p(k + 1)u(k + 1|k)

+ +

)

ol
+

[\]
}\/—\

(
(
(
(
x(k+3lk) = Ap
(
(
(

+ 4+ +
0
s
oy
+
[\
=

and so forth, up to the IV,-th prediction:

o(k+ Nplk) = Alp(k +Np —1)) ... A(p(k))x(k) (3.7)
+ Alp(k + Np = 1)) ... Alp(k + 1)) B(p(k))u(k|F)
+ Alp(k + Np— 1)) ... A(p(k +2)) B(p(k + 1))u(k + 1]k) +

(n(

+ B pk—f—Np—l))u(kJ—l-Np—l]k).

Notice that, in the LPV case, these predictions require the values of the future scheduling
variables, i.e. p(k + 1), p(k + 2), and so forth. We consider that the future "scheduling
trajectory" can be compacted as follows:
T
Py = [ pk)" plk+1)T ... plk+N,—1)7T ]

)
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where only p(k) is, in practice, known.

e Yet, the full scheduling trajectory vector P, can be used to analytically express the
complete vector of state predictions, i.e. Xp = [z(k + 1|k)T, ... 2k + Ny|k)T]T. As
shown in [Cisneros and Werner 2020], it follows that:

Xy = A(Pp)zx(k) + B(Py)Ug , (3.8)

where A(P;) € R=Np)x7 and B(P,) € R(=No)x(uNp) are given in Eqs. (3.9)-(3.10).
In practice, these matrices maintain form at each sample, and thus can be computed
rapidly. Thereby, the MPC law is enabled through the online solution of ming, Jj

subject to Eq. (3.8) and constraints, which is a QP, as long as P, is known?®.

e Overall, since when we replace the nonlinear model by an LPV one, the state predictions,
computed through Eq. (3.11), becomes dependent on the future scheduling trajectory
Py, as gives Eq. (3.8). Thus, we can use estimates of P in order to solve the MPC
problem efficiently.

A(p(k))

A(p(k+1)) A(p(k))
A(p(k+Np—1)) A(p(k+Np—2))...A(p(k))

B(p(k)) 0

A(p(k+1))B(p(k)) B(p(k+1))

B(P,) = : Sl (3.10)

Alp(k+Np—1))... A(p(k+1))B(p(k))  A(p(k+Np—1))...A(p(k+2)) B(p(k+1))

Based on the previous context, in this Chapter we discuss how can these scheduling trajec-
tory guesses be efficiently formulated, and which mechanisms can be used. The main elements
of the sequel are the following:

1. We discuss the four available alternatives for scheduling trajectory estimates, for both
LPV and qLPV models. Accordingly, we discuss their main features, required assump-
tions, and properties.

2. More details are given regarding the extrapolation method for qLPV scheduling param-
eters trajectories. Specifically, we present sufficient conditions that enable a convergent
extrapolation scheme, conceived with regard to the form and class of the scheduling
function and the robustness of the corresponding MPC algorithm.

3Note that we can easily re-write the cost function Jy in terms of Xj. For instance, Z?{:”Oﬂ Lx(k +
i + 1k),u(k + ilk)), with (z,u) = |z||lo + ||ullr, becomes XFQX, + UFRUy. Furthermore, due
to Eq. (3.8), this cost is equivalent to Uy ((B(Px))"QB(Px)+ R) Ux + 2 ((A(Py)z(k)" QB(Pr)) Ur +
((A(Py)z(k))" Q(A(Py)z(k))), which is clearly quadratic on the decision vector Uy.
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3. Nlustrative examples, considering benchmark models from the literature, are presented
in order to demonstrate the effectiveness and main characteristics of each mechanism.

3.2 Preliminaries

Before detailing the available methods to estimate Py, we first give more concrete details on the
investigated problem. In this Chapter, we specifically consider the class of affine discrete-time
LPV systems:

w(k+1) = Alp(k)z(k) + B(p(k))u(k), (3.11)

where x € R™ u € R™, p € R and A : R — R"™ x R™ B : R™ — R™ x R™ are
continuous affine maps. The states are measurable for all sampling instants and the scheduling
parameters belong to a convex scheduling set P C R™. Also, in the qLPV case, we assume
that? p(k) = £, (z(k)). We also consider that the following set of assumptions is verified with
regard to the controlled process:

Set of Assumptions 1.

e The system is asymptotically stable in closed-loop for all p(k) € P;

o The admissibility of states, inputs and scheduling parameters are given by known compact

sets:
X = {x € R™|z; <z <7, Vj EN[l,nI]} ’
U = {ueR™|u <u <,V eNy}-

e The variation rate of the scheduling parameters (p(k + 1) — p(k)) is bounded for all sam-
pling instants k > 0.

o The variables x, u and p are component-wise energy-bounded, in the sense of the 2 norm.
Thus, it follows that ||z|2 < T, |lulla < @ and ||pll2 < pmaz-

e In the qLPV case, the scheduling prozy satisfies® f,(X) C P.

Remark 11. The necessity of closed-loop stability is standard. For such, there must exist
a feedback u := k(-)x € R" such that x+ = (A(p) + B(p)x(-)) x is stable for all p € P.
The feedback gain k(-) could be either parameter-dependent (i.e. k(p)) or constant (i.e. k),
depending on the control synthesis. For generality, we henceforth consider the MPC state-
feedback as a parameter-dependent gain k(p). We also stress that, in some cases, one can

4We note that the following discussions are made with regard to the case of state-dependent scheduling
proxies, i.e. p = f,(z), yet all methods also apply to the more general case of p = f,(x,u).
SHere, we use an abusive notation. In fact, we mean that for all z € X, we obtain f,(z) € P; C P.
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only ensure that the MPC provides a closed-loop asymptotically stable system if the model is
open-loop controllable. That is: this hypothesis can also be viewed from the perspective of
closed-loop stabilisability. These issues should be taken into account in the control design step,
which are not the focus of this Chapter. Refer to [Morato, Normey-Rico, and Sename 2020a;
Hanema, T6th, and Lazar 2021] for further details on the synthesis of stable closed-loops for
LPV systems under MPC algorithms. Corresponding discussions have also been presented in
Chapter 2, Section 2.5 and in Chapter 5.

Proposition 1. Assume the constraints on states, inputs and scheduling parameters (z(k) €
X,u(k) € U, and p(k) € P, respectively) are known, compact, and valid for all sampling
instants. Thus, the state deviation variable Ax(k) := (x(k + 1) — x(k)) is also bounded to a
compact set AX.

Proof. Take Axz(k) = (z(k + 1) — z(k)) = (A(p(k))—1In,)z(k) + B(p(k))u(k).
Since (z,u,p) € (X xUxP) for all instants k, it follows that AX  :=
{Az € R™ [||Az;|| < Azj,VjeNp,,1}. The component-wise bounds Az; can be deter-
mined either by interval arithmetics or optimisation. O

Regarding MPC application, operated via the online solution of Eq. (3.1), where u*(k|k)
from the solution U} is applied to the plan, we consider the following main (stage) cost and
terminal cost that compose the MPC optimisation cost Jg:

C(xu) = |zllg+lulr = 2" Qz+u" Ru, (3.12)
V(z) = |zllp = 2" Pz, (3.13)

being P, @ and R positive-definite weighting matrices. Note that @ and R are weights
that determine the control objective, while P is, in general, defined with regard to stability

purposes®.

3.3 Approach (i): Frozen scheduling trajectories

The first approach seen in the literature to handle the unavailability issue regarding the
scheduling trajectory Py is based on a quite simple idea: from the viewpoint of the MPC
operation, at each sampling instant, we assume that the scheduling variables will remain
constant (thus, frozen). That is, Py is replaced by [ p(k)T ... p(k)T ]T to generate the
future state predictions Xj. In many practical applications with slowly-varying scheduling
parameters, such as the case of renewable-energy systems [Pipino et al. 2020b; Morato et
al. 2020e]|, this method is rather interesting, because the uncertainty propagation along the
prediction horizon is negligible.

Yet practically-relevant, the resulting MPC scheme that is generated when using frozen
scheduling trajectories may suffer from severe robustness-related issues. Recall that the

In some cases parameter-dependent terminal ingredients (V' (-) and Xy) are used. We focus herein in the
quadratic formulations. Refer to Chapter 5 for discussions regarding the parameter-dependent case.
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scheduling parameters enter the prediction model multiplicatively. Thus, when the MPC
is based on a nominal model” in the form of z(k + j|k) = A(px)x(k +j — 1|k) + B(pr)u(k +
j—1lk), Vj € N1,n,)- Then, the corresponding model-process prediction uncertainty is, for
the one-step ahead prediction, given by:

uwk+1) = A(plk+1)z(k+ 1|k) — A(pr)z(k + 1]k) (3.14)
+ Blp(k+1))u(k + 1|k) — Bpr)u(k + 1]k),

which, evidently, depends not only on the real future scheduling parameters p(k + 1), but also
on the future state and input trajectories.

Remark 12. In the qLPV setting, Eq. (3.14) exhibits an even harder nonlinear dependency
on states and inputs, which turns out far more complicated. That is, taking p(k + jlk) =
fo(x(k+j)), we obtain:

pk+1) = A(fp(z(k + 1k)z(k + 1|k) — A(pp)z(k + 1|k) (3.15)
+ B(fp(x(k +1|k)))u(k + 1|k) — B(pr)u(k + 1|k),

which means that the uncertainty propagation carries along the horizon influences from the real
and predicted future states, as well as future inputs. Depending on the form of the parameter-
dependent matrices A(-) and B(-), this uncertainty may hardly affect the closed-loop perfor-
mances and rapidly grown in magnitude.

For the purpose of further discussion, we exploit an affine dependency on the system
matrices in order to construct the following one-step-ahead uncertainty:
wk+1) = A(p(k+1) — pr)z(k + 1|k) (3.16)
+ Blo(k+1) — pyJulk + 1K),

where, for the case of bounded scheduling parameters’ variations over samples, i.e. dp(k) =
p(k+1) — p(k) € 0P, it follows that:

lp(k+3) — okl < jop. (3.17)

Knowing that the uncertainty grows exponentially with respect to the state predictions,
we can concretely use the following lower-bound:

itk + )l = (AN, = 1)dp)T + B((N, — 1)dp)) - (3.18)

We stress that an upper-bound 7z > ||u(k + j)|| can be found using interval algebrae,
for instance. In practice, the corresponding MPC, in order to stabilise the controlled system,
should robustly tolerate this bounded uncertainty term p(k+j). Nevertheless, under relatively
simple assumptions, the uncertainty that arises grows not only with regard to all endogenous

"Here, we use pi, to emphasise that the model is based on a frozen scheduling trajectory p(k + j) = p(k) =
pr, V3 € N ).
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variables, but also with regard to the size of the prediction horizon, as gives Eq. (3.18). Quite
easily, the bounds on p(k + j) may be even larger than the available state space, thus putting
to an end any possible performance certificate of an MPC synthesised on the basis of a frozen
LPV model.

Synthetically, the so-called frozen LPV MPC design alternative has a major theoretical
drawback: for it to ensure closed-loop stability, excessive robustness may have to be implied,
which thus shrinks the corresponding region of attraction enabled by the controllers. From
a philosophical perspective, in order to design a frozen LPV MPC algorithm which ensures
stability, even under standard assumptions, we actually seek to determine a single controller
which is able to (quadratically) stablise all LTT models in the from of z(k+1) = A(px)z(k) +
B(pr)u(k), generated by fixed values of p;, € P. Moreover, the controller must ensure that
stability is maintained even if these model change within samples, which is, of course, a tough
problem.

In any case, MPC algorithms for LPV systems described on the basis of frozen scheduling
trajectories have great practical value. For the case of LPV systems with slowly-varying
scheduling parameters, i.e. for small bounds on ||0p(k)]|, this approach is standard, and widely
exploited in the literature®. What is done, in many works, is to simply neglect the existence
of the uncertainty propagation p(k), assuming that the MPC will enable a closed-loop that is
robustly stable with regard to this variable.

Dating from an original theoretical paper from 2003, [Casavola, Famularo, and Franzé
2003|, many works with practical focus have seen been presented by using this methods of
considering frozen LPV models at each sample, e.g. in the following recent papers |Cisneros
and Werner 2017b; Alcalé, Puig, and Quevedo 2019; Rodriguez-Guevara et al. 2021; Cavanini,
Ippoliti, and Camacho 2021]. We can even argue, from the recent survey on MPC algorithms
using LPV models, as presented in [Morato, Normey-Rico, and Sename 2020a], that the frozen,
gain-scheduled approach is the standard method seen in the literature, with most number of
practical applications being registered.

3.3.1 Simulation results

Finally, before moving on to the discussion of the following approach, we present some sim-
ulation results in order to illustrate and discuss the characterstics of the frozen LPV MPC
approach. We emphasise that the most attractive feature of the approach is that the generated
prediction model is basically LTI, from the viewpoint of each sample. Thus, no calculations
are required to compute the scheduling trajectory Py, and the resulting optimisation is a QP
by nature, enabling solutions of the MPC algorithm in real-time.

Consider a continuous stirred-tank reactor (CSTR) system, composed of a reactant A that

8n Chapter 4, we provide a state-feedback LPV MPC solution based on a frozen scheduling trajectory, where
the derived uncertainty bounds are exploited by the means of the bounds on the variations of the scheduling
parameters over consecutive samples. As shown therein, we can compensate the uncertainty propagation by
shrinking the constraints of the MPC.
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becomes the product B by the means of an irreversible and exothermic chemical reaction.
The goal of this system is to regulate the concentration of A, C4, the reactor temperature, T',
and the reaction volume, V', by manipulating the output process flow rate, ()5, and coolant
flow rate, Q.. The reaction takes place in a stirred cylindrical tank, as shown in Figure 3.1,
from [Pipino et al. 2020a]. The dynamics of the CSTR system are given by the following set
of nonlinear differential equations:

¢ dV(t)

dt = Qo— Qs(t) ) -
d(]ﬁ(t) - VQ(;) (Cao — Calt)) — kos“?)CA(t) 7
WO Qe (7, — () - ke THCA) (319
+ k% <1 - e@<>> (Teo = T(1))

where V(t), C4(t) and T'(t) are the measurable states of the system (respectively, x1(t), z2(t)
and z3(t)). The output process flow rate is denoted gs(t), while ¢.(t) stands for the cooling
flow rate (control signals u;(t) and ug(t)). Finally, ¢, is the process flow rate, C4, is the feed
concentration, kg is the reaction rate constant, % is the activation energy term, T, and T,

are, respectively, the feed and inlet coolant temperatures, ky = —AHky/(uCp), ke = ‘{;gﬁ;
hA

and k3 = GicCre)? where AH is the heat of reaction, y and p. are the liquid densities, C}, and
Cpe are the specific heats and hA is heat transfer term. The considered system parameters
are reported in Table 3.1.

Go,T,,Cs From process

gs, T, Cy4 i T;;cgss

Figure 3.1: CSTR system: Illustrative diagram, from [Pipino et al. 2020a].

Following the lines of [Hoffmann and Werner 2014, an LPV model is for this CSTR system
is generated in [Bernardi 2021], by the means of Jacobian linearisation. The obtained LPV
model has the form of x(k+1) = A(p(k))z(k)+ B(p(k))u(k), with two scheduling parameters
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Table 3.1: CSTR system: Model parameters and constraints.

Parameter Value Parameter Value
Qo 1001 min ' Cao Imol 177
T, 350 K T.o 350 K
ko 7.2 x 1019 min~* £ 1x10*K
AH ~2 x 10°cal mol ™! et 1000cal 17'K™!
hA 7% 10%cal min 'K ! teChpe 1000cal 17'K™!
ki AHko/(nCp) ka tcCpe/(1Cp)
ks hA/ (11.Cpe) V(t) € [80,110]1
Calt) € [0.03,0.12] mol 17! T(t) € [440,460] K
Qs (1) €190,110]1 min~! Q.(t) € [80,100]1 min~*
Viin 80,100, 110]1 Tin [440, 450, 460] K

p(t) = [V(t) T(t)]T, and the following polytopic matrices:

" (3.20)
Blp(k) = 3 Xi(p(k))B;
j=1
4
whete 3" Ay((k)) = 1.0 < Aj(p(h) < 1, %) € Ny and
j=1
0 0 0
—E
QolCa; ~Cao) =L EC4 koe™i
Aj = f:}jz 4 _% koeFTi  — A;%j?j2 ’
—E
A31 —k'leRTj A33
B _01 8 (3.21)
j - )
0 Bso
1 0 0
Cc = 01 0|,
0 0 1
Az = Qo(T;—To) szcj (e % —1)(Tj—Teo)
VJ2 A ij )
k c; (€ 7 —1 E e
= %_Vj_}#@, (3.22)
54]@3 J
kz (Tj _Tco) (6 ¢ 1) éﬂ
B32 = V7 + k2k‘3(Tj—VZ‘CO)e g

This LPV model is (Euler) discretised with a sampling period of Ts = 3 s. In the sequel, we
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present the obtained results of a gain-scheduled MPC algorithm based on the frozen iterations
of this LPV model. For comparisons, we also include the results obtained with a full-blown
NMPC algorithm. Note that the real nonlinear phenomenological process model from Eq.
(3.19) is used to simulate the real process behaviour.

The control system is set to track a reference objective of 1001 for the reaction volume
and 450K for the reactor temperature, while guaranteeing the constraints on = and u given
in the Table 3.1. The prediction horizon is chosen as N, = 5 steps.

Figure 3.2 exhibits the time evolution for the reaction volume, the reactant concentration
and reactor temperature with regard to the applied control signals (given in Figure 3.3). We
can be seen how both control algorithms are able to drive the system to the target set-point, as
envisioned. Nevertheless, we should pay attention to some aspects of the results, as collected
in Table 3.2, which presents the IAE index for the controlled variables:

e Since no nonlinear optimisation is involved, the frozen LPV MPC method is able to
achieve overall better performances than the nominal MPC, regarding T" and C4. We
stress that in this CSTR system, for the considered operational conditions, the nonlin-
earities exhibit little influence. Furthermore, the variation of the scheduling parameters
is small, and thus the resulting uncertainty does not compromise the performance of the
frozen LPV MPC approach.

e Most importantly, we also compare the online computational effort with each method,
summarised by the . index, given in the percentage of the sampling period. This index
gives the average time required by the optimisation in order to evaluate the control
solution, showing that the LPV MPC can be evaluated much faster than the nominal,
nonlinear MPC.

e We also mention that if real-time applications are considered, the frozen-based LPV
MPC solution can indeed be an elegant and efficient approach, when the parameter
variations are subtle. In practice, the model uncertainties show very diminished impact
in the obtained results.

Table 3.2: CSTR system: Performance indexes.

Frozen LPV MPC  Nominal (nonlinear) MPC

V 21.59 20.54
IAE | Ca 0.02 0.02
T 2.02 2.50

te 0.056% 0.67%
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Figure 3.2: CSTR system: Reaction volume, concentration and temperature.
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Figure 3.3: CSTR system: Output process and coolant flow rates.
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3.4 Approach (ii): Identification-based estimates

The frozen LPV model approach for gain-scheduled MPC synthesis is quite standard in prac-
tice. Nevertheless, as evidenced, performances may be compromised when the parameters
vary rapidly between sampling periods (and, in the qLPV case, if the controller is too ag-
gressive, enforcing the state trajectories to move too fast and, thus implicitly also making
the scheduling parameters vary abruptly). Therefore, we now detail a second alternative to
generate estimates for the scheduling trajectories, which is based on an online identification
procedure. This method has been proposed within the context of this thesis, and presented
in [Morato, Normey-Rico, and Sename 2019|. Its main focus is to provide a better estimate
than simply considering the parameters to be constant along the prediction horizon.

Again, we consider that the scheduling variables p are only known (or measured) at the
current sampling instant k, meaning that the whole future scheduling trajectory behaviour Py
is unknown. Anyhow, we assume that these parameters agree to some linear auto-regressive
dynamic behaviour along time. That is, we consider that the signal p(k) satisfies the following
assumption.

Assumption 1. There exists a linear auto-regressive model 11, in the form of Eq. (3.23),
which maps the behaviour of the scheduling parameters p(k) of the controlled LPV system
from Eq. (3.11).

plk+N,) = arp(k— (N, — 1)) + -+ an,p(k) (3.23)
T+ biE(k — (N — 1) + -+ b (k).

In practice, Assumption 1 implies that there exists a discrete-time model with NV, sample
delays, which gives the relationship between an input £ and the scheduling variables p, i.e.
there exists a linear transfer p := II¢, being II gives the auto-regressive scheduling model.
Some comments are presented next with respect to the input variable of this transfer, &:

e In the case of pure LPV case, II is activated by some exogenous variable £, such as a
coordination signal or an auxiliary entry. When these signals are unavailable, Eq. (3.23)
can be converted into a pure auto-regressive model, with no inputs, or written with
regard to an input noise given within a known frequency range.

e In the qLPV setting, Assumption 1 is quite reasonable, since the scheduling parameters,
at each sampling instant, are forcefully related to the endogenous system variables. Thus,
according to which endogenous variables are included in the scheduling proxy, signal &
is chosen. That is, for state-related proxies f,(x(k)), one can simply take (k) = x(k).
Equivalently, for the case of output and input related proxies f,(u(k),y(k)), we take
Ek) = [wk)” yk)T }T, and so forth.

In compact form, denote Z = [ ¢k L E(k+ N, —1) ]T. Thence, by exploiting
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Assumption 1, we can write the following compact relationship for II:

V(k—2np+1)
plk) = ©[ Plonany) Ehanen | - (3.24)

being the auto-regressive model parameters are compacted within

0 = [al ...oan, br ... pr}. (3.25)

Then, if © is known?, the linear auto-regressive relationship can be exploited in order to
span the whole future scheduling trajectories, as follows:

+

p(k+1) = aip(k—2Ny+2)+---+an,p(k — Np+1)
bié(k— 2N, +2)+ - + by, &(k — Np + 1) (3.26)

OV (r_an,+2)

p(k+2) = aip(k—2Npy+3)+---+an,p(k — Ny +2)

b€k — 2N, + 3) + -« + by, £(k — N, +2) (3.27)

OV (42N, +3)

I+

and so forth, up to:

p(k+Np—1) = aip(k—Np)+---+an,p(k—1)
+ b€k — Ny) + - + by, E(k — 1) (3.28)
OF (k-n,)-

In order to consider more generic behaviours, with time-varying dynamics related to the
scheduling variables, we imply that the parameters in the auto-regressive model II vary over
time, and, thus, that p(k) = ©(k)¥_on,+1)- Then, the identification-based mechanism is
operated as follows:

1. At each sampling instant, one collects the stacked vector of previous scheduling variables
and auxiliary inputs, L.e. ¥ _an,11);

2. Then, an online recursive Least-Squares minimisation procedure is solved in order to
estimate parameters ©(k), that is:

O(k) = O(k—1)+ Qo (¥(-an,+1), p(k),€(K)) (3.29)

where X is an update parameter (LS forgetting factors) and Qg is an update function!©

3. The future scheduling parameter trajectory Py is estimated on the basis of:

p(k) 0
0 Wi

P, = | rewy | TR (3.30)
0 Y (k-N,)

9Note that all vectors, from P—an,+1) and Eg_an,+1) to Pr_(n,-1) and Ex_(n,-1), are known. This
means that an identification procedure can be directly applied.

0Since the focus of this thesis is not identification, we invite the Reader to refer to the complete deduction
for a recursive LS solution, as presented in [Ljung 1987, Chapter 11.2].
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Let us discuss some aspects of this identification-based approach, before presenting simu-
lation results:

e The method is conceived on the basis of Assumption 1, which can be partially false
for many systems. In many pure LPV applications, the designer has no access to some
activation signal £ and thus the only alternative is to consider the model II to be auto-
regressive and autonomous, or subject to a noisy inputs;

e In practice, when the parameters are considered time-varying and re-identified online,
by the means of a recursive LS procedure, accurate estimates can be formulated;

e The estimates are generated by the means of linear operations, Egs. (3.29)-(3.30), which
enable fast, real-time applications of the corresponding MPC algorithm;

e Yet with great practical value, and with quite satisfactory empiric results (as shown
next), the method lacks rigorous proofs of convergence (that is, we cannot ensure that
the estimates for p(k+j), Vj € N (1,N,—1] track the correct future scheduling parameters’
values), and the estimation error is, a priori, unbounded (we have no proper means of
how to compute error bounds or to ensure a generic auto-regressive model, since this
changes from system to system).

3.4.1 Simulation results

Next, we show brief results of how such LS-based approach can be used in practice. For such,
we consider the control problem of the vertical dynamics of a reduced size car (1/5-scale)
equipped with four semi-active dampers!!. Details on modelling are given in [Morato, Normey-
Rico, and Sename 2019|. Synthetically, the vertical behaviour of the car are described by a
qLPV model, which gives the dynamics of each chassis corner and each wheel (states z(k)), due
to the road disturbances w(k). The control input is the semi-active damping coefficient u(k),
and the scheduling parameter p(k) is the suspension deflection velocity (difference between
the chassis velocity and the wheel velocity): x(k+1) = A(p(k))z(k) + B1(p(k))u(k)+ Bow(k),
where p(k) = f,(x(k)). This system operates under a sampling period of Ty = 5 ms.

The control goal is to minimize both chassis and wheel accelerations and, by doing so,
to achieve a smoother and more comfortable drive, while respecting the semi-active damper
dissipativity constraints. For such, an MPC is tuned with a prediction horizon N, of 10
samples. In order to elucidate the effectiveness of the LS-based qLPV MPC algorithms, we
compare it to a simpler MPC, which uses a frozen-based prediction model (approach (i)).
Furthermore, we consider the following road disturbance scenario, presented in Figure 3.4: a
car is running in a straight line, on a dry road, when it encounters (¢’ = 0.5s) a sequence of
5mm bumps on all its wheels, which excites bouncing motion.

HResults are shown considering the front-left corner of the vehicle; similar results were obtained for the
other corners. In Chapter 4, this control problem is studied in more depht. Herein, we focus only on the
results regarding the estimation strategy for the future scheduling sequences.
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@

Road profile (m)
~

o

Figure 3.4: Suspension system: Road profile.

2
Figure 3.5 shows the control variables of interest (acceleration of the chassis axle w,

dt?

acceleration of the wheel link %, and total semi-active damper force Fy(t)), as obtained
with both scheduling trajectory estimation approaches (i) and (ii). Clearly, the LS-based
solution is able to provide a more accurate prediction model for the MPC and, thus, the
controller is able to further minimize the control objective, while abiding to the semi-active
damper dissipativity constraints. In numerical terms, the MPC based on approach (ii) presents
a 9.35% of reduction of the root-mean-square value of the performance objective'?, which
would certainly be felt in terms of passenger comfort.

05 \ PP \ \ \
0.16 oy = = LPV MPC: Frozen estimates, approach (i)
044 K —LPV MPC: ification-based esti approach (ii)

Figure 3.5: Suspension system: Sprung and unsprung accelerations and damper force.

Figure 3.6 shows some snippets of the evolution of the qLPV scheduling parameter p,
compared with the estimates made by the means of the LS solution, at some sampling instants.
Thus, it is clear that, for this case study, the auto-regressive model II is somewhat valid
(Assumption 1), since the estimates are quite close to the real scheduling trajectory. Again,
we emphasise that we have no means on how to compute bounds over estimation errors.

120btained values: 0.21217 (frozen LPV MPC, approach (i)) and 0.19233 (identification-based LPV MPC,
approach (ii)).
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Figure 3.6: Suspension system: Scheduling parameter and LS-based estimates.

Lastly, we discuss the computational complexity of both methods: in average, the LS-based
solution takes only 3.09 % longer elapsed time to compute the predictive control policy, yet
still remaining under the T threshold. Note that this additional time is required to evaluate
the linear equations that enable the scheduling trajectory estimate, i.e. Egs. (3.29)-(3.30).
This increase is arguably tolerable, given that it does not violate real-time constraints while
providing better overall control performances.

3.5 Approach (iii): Iterative estimation mechanism

The previous methods (frozen approach and auto-regressive LS-based mechanism) represent
interesting practical alternatives to solve the issue of the unavailability of the scheduling
trajectories, required to compute the MPC predictions. Both these approaches have empirical
counter-parts with good results, as registered in the literature. Nevertheless, with the frozen-
based method, approach (i), we obtain a correlated uncertainty propagation which may grow
significantly, while with the LS-based mechanism, approach (ii), we are unable to quantify

the magnitude of the estimation error (and the validity, and existence, of an auto-regressive
model).

Next, we detail another widely-employed alternative used to generate Py online, originally
proposed in [Cisneros, Voss, and Werner 2016| and applied for many applications since then,
i.e. [Cisneros and Werner 2017a; Cisneros, Sridharan, and Werner 2018; Cisneros and Werner
2019; Abbas et al. 2019; Cisneros and Werner 2020]. The mechanism is based on the iterative
operation of the MPC optimisation as a basis to generate the scheduling sequence. The
approach requires the model to be quasi-LPV, since the scheduling proxy f, (-) is used to
generate the estimates Py. Since the mechanism operates niie iterations per sample, the
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corresponding MPC exhibits a computational complexity of an SQP.

The core idea of the iterative estimation mechanism is as follows:

e At each sample, we require Py in order to solve the MPC optimisation, which gives as
outputs the optimal future control sequence U} and the predicted state sequence X7

e Then, instead of solving the MPC optimisation only once per sample, it is solved niter
times: the outputs of the optimisation from one iteration (U, ,i and X ,lf, where the super-
index [ denotes the iteration instance) are used to generate the scheduling trajectory of

the following sample, using: P,i = fp ((X,lgl)L, U,ffl), where the vector

(XEHE = [ 2 (xHT )"

collects the current state measurement and the state predictions at the [-th iteration of
the scheme, with the last entry suppressed!;

e The iterations continue until convergence is obtained (a certain threshold limit is reached,
ie. HP,i — P,i_lH < &p) or a maximal number of iterations is reached, i.e. | = Njter;

e Note that, if convergence of the scheduling trajectory estimates is indeed reached, i.e.
lim; 400 P,i is equal to the real scheduling trajectory Py, then the solution to the
corresponding MPC exact (no model prediction mismatches), and thus the same as
what would have being obtained with a “full-blown” NMPC (under convexity of the
optimisation cost and constraints);

e Figure 3.7 illustrates the mechanism: at each sample k, the MPC optimisation is re-
peated until one of the stop criteria is met. During the implementation, each predicted
scheduling sequence P,i is constructed on the basis of the scheduling proxy f,(-), ap-
plied over the predicted state and input sequences. The block "Compact" denotes the
operation of providing (X]lg_l)J-, U]i_l from Xli_l, U,i_l, and z(k).

At the first iteration (I = 1) of the first sample (k = 0), the estimation mechanism begins
with a frozen guess:

Py = [ p0)" ... p(0)" ]

Then, at each sample, the first scheduling estimate is taken as Pk1 = P,g;l. Here, Plill
denotes a shifted and "corrected" vector: at the current instant k, p(k) is already measured,
so it replaces the prediction made at the previous instant'4. Furthermore, since P;_; collects

3Note that the vector-wise operation P} = fo ((X,ifl)l, U,l;l) implies on the function application over
each vector entry, that is: p(k+j—1) = fo(x(k+j—1),u(k+j—1)),Vj € Ny n,]. Furthermore, we stress
that we require the values of p(k) up until p(k + N, — 1), while the state predictions vector X} comprises
z(k + 1|k) up until 2(k + N, — 1|k). Thereof, we eliminate the last entry of X, ', adding (k) as a first entry.
This new vector is denoted (X, ')*.

! Note that, at instant k — 1, only p(k — 1) is known and, thus, Py_; comprises an estimate for p(k).
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Iterative estimation mechanism

U*

_kb Apply first entry x(k)

-1 -1
Xk: ’ Uk:

<= Compact

lterate until | P} — P/ || < éporl < niper

Figure 3.7: Approach (iii): Iterative estimation mechanism.

the scheduling parameter estimates up until p(k + N, — 2), and P, requires the values until
p(k + N, — 1), the last entry of P;,_; is repeated in PkL_l. In synthesis, we obtain:

known from Pr_q from Pr_q from Pr_q B
Py = T T g T T
p(k)" pk+1)" ... plk+Np,—2)" p(k+ N,—2)

As discussed thoroughly in [Cisneros and Werner 2020|, empirical evidence shows that
this approach guarantees the convergence of the predicted scheduling trajectory Pj, at each
sample k, to the true scheduling behaviour. Furthermore, this property is usually achieved
within a relatively small number of iterations per sample (around 5-10 inner iterations [),
for a wide variety of systems. Practical evidence has been shown in [Cisneros et al. 2019],
which discussed how the resulting MPC algorithm becomes a competitive alternative to the
implementation of NMPC (operating embedded as fast as ACADO, or CasADi, for many
processes). In opposition to what has seen regarding the previous method, these properties
have also been verified theoretically. Despite not having any proof of the boundedness of the
estimation error, we recall the theoretical proof of convergence from [Hespe and Werner 2021]
in the sequel (Sec. 3.5.1).

The main restraint of this scheduling estimate approach is that the internal loop may
take several iterations to converge. For fast systems, this is not desirable because the num-
ber of inner iterations | needed for convergence (or until the stop criterion I < njyer is
reached) may theoretically require more time than the available sampling period threshold
(and thus convergence may not be guaranteed). Moreover, depending on the kind of non-
linearity exhibited in the scheduling proxy f,(-), the computation of each entry of P,i, using
fo(z(k+j —1|k),u(k +j — 1|k)), Vj € Ny n,], may also be numerically expensive.

We stress the main advantages of the mechanism:
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e At each sample, the MPC optimisation is formulated as a QP, and thus the computa-
tional complexity of the complete MPC algorithm is equivalent to that of an SQP, per
sample;

e The application of the mechanism is relatively simple: it requires only vector shifting
and the application of the scheduling proxy over N, vector entries;

e Empirical evidence shows that the method converges in a relatively small number of
iterations, for many different systems.

Remark 13. Unlike the discussions of the previous approaches ((i) and (ii)), simulation
results of this scheme are not presented herein, but rather in comparison to approach (iv),
presented in Section 3.7, at the end of this Chapter.

3.5.1 Convergence properties

Next, we briefly recall the convergence analysis of the iterative scheduling estimation pro-
cedure, as presented in [Hespe and Werner 2021|. For such, we interpret the corresponding
MPC application as the iterative application of an inexact Newton step procedure for root
determination.

Accordingly, we re-write the corresponding MPC from Eq. (3.1) in compact, shortened
notation, using s' := (X,i, U,i), where the super-index [ denotes the iteration index of the
method. By this, we obtain the following optimisation:

min [ls'l3 (3.31)

t G(P})s! + Cx(k)
o Ainsl

0,
bin -

IA

Note that in Eq. (3.31), the equality constraint appears in order to enforce that the
first entry of X! is equal to z(k) (measured state). The inequality constraint imposes
z(k +jlk) € X and u(k +j —1|k) € U,Vj € Ny n,). Considering V (z(k + Nplk)) =
llz(k + Nplk)||p and l(z,u) := HxHé + |Jull%, the compact weighting matrix is given by

Q := diag (In, ® Q, P, Iy, @ R), while C := [ =I,, 0 ... 0]".
Next, we consider the first-order necessary conditions of Eq. (3.31), i.e. if s! is indeed a

solution to Eq. (3.31), then there exists a real vector A of coherent dimension such that the
following equality constraints hold:

2 (k)
V| . [20s+GT(PON] [0
Fl[s X]| = g(P,g)sl+cxlEk) } = [0] : (3.32)
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Then, we compute the Jacobian of F(2!(k)) using the following approximation®®:

dF() | 20+ AT gr(p, 239
T aewd) (3.33)
Ost 0
L[ 20 g
Tl o )¢
T (24(K))

which means that solving the (unconstrained version of the) optimisation in Eq. (3.31) is
equivalent to finding the solution to the following equality rule:

F((R) + T R) (2(8) = 2 (R)) = 0, (3.34)

which exhibits the structure of an approximate Newton step (note that here we use the ap-
proximate of dii’fl), i.e. J(z'). Thus, sequentially iterating the QP in Eq. (3.31) is analogous
to the use of a Newton-based scheme to determine the root of the problem posed in Eq. (3.34).
As argues [Hespe and Werner 2021], there exist a considerable body of research devoted to
the analysis of Newton-based algorithms, which can be exploited in the detailed context to
provide sufficient conditions for the convergence of Eq. (3.31). Therefore, we apply these
conditions to demonstrate the convergence of the iteratively-estimated scheduling sequences
with the method from |Cisneros and Werner 2020).

The main arguments from |[Hespe and Werner 2021]| are recalled. These conditions are
sufficient in order to demonstrate that the iteration convergence, based on the local contraction
over one iteration. For such, we first assume that!® the following conditions are satisfied:

(i) The maps G(P}) and f,(-) are twice continuously differentiable;

(ii) G(P}) has full row rank and Q is positive definite within the kernel of G(P}), being P}
an admissible existing solution point to F(P}) = 0;

(iii) There exists two real scalar \,, < +oo and k,, < 1, an open ball B around P} such
that J(z!) is non-singular and that:

Zl Zl 1
It () EERINY <t -l 639
Zl
177G w) (FE - g < w

holds for all 2!(k), 2/+1(k) € B.

15Here, we drop the discrete-time dependency seeking a shortened notation; that is: z' represents zl(k)

1%1n [Hespe and Werner 2021], one can find full discussions on why each of these hypothesis are necessary
and how simple are they to hold (i.e. under which settings). Herein, for brevity, we present them rapidly, only
in order to formulate the convergence proof.
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Then, as long as these conditions hold, the sequence of estimates
(2 (k) , 2T1(k), 2!T2(k),...) generated by the solution of Eq. (3.34) converge towards
the real value z(k) with the following contraction rate:

A
|51 0) = 2B < kall 2 (8) — 2(R) | + S22 ) — 2R
for all z°(k) € B such that ||2°(k) — z(k)|| < 2%'

From this fact, since the contraction rate is lower bounded, we can conclude there exists a
non-empty region of attraction such that Eq. (3.34) has a solution and converges. Equivalently,
it follows that, within this region, Eq. (3.31) also converges. For a full demonstration of this
convergence rate, refer to [Hespe and Werner 2021].

3.6 Approach (iv): Taylor-based extrapolation scheme

Next, we present the last approach discussed in this Chapter, which is, in fact, one of the main
contributions of this thesis, discussed in depth in [Morato, Normey-Rico, and Sename 2022b].
All requirements, preliminary assumptions and settings for the following developments are
those presented in Section 3.2. This method is, as the previous one, only possible for the
gLPV setting, since the scheduling proxy!” fo(+) is used to generate the scheduling trajectory
estimate.

The proposed approach is recursive, in the sense that the scheduling trajectories are
generated by the means of the following law:

B = @(ﬁk,l,p(k),x(/g)). (3.36)

Thus, in the sequel, we discuss how the operator ®(-) can be linear, and how the estimated
vectors converge to the correct scheduling trajectory behaviour, in a finite amount of samples.
Note that the procedure in Eq. (3.36) generates a new extrapolation for the scheduling
trajectories Py, at instant k, based on the prior extrapolation and the new dataset available
(p(k) and z(k)). For such, the proposed recursive approach is conceived from the basis of
following assumption:

Assumption 2. The static map f,(x) can be approzimated by the following first order Taylor
expansion around T:

0
fol) Ae

being T an arbitrary linearisation point. The actual function can be analytically expressed by

%

fol@)le+ Z2| (-7, (3.37)

T

the sum of this approximation to a residual signal §,, which inherits the discrepancy between
the real static map and its Taylor approximate:
(x —7)+&,. (3.38)

fola) = Syl + 20

1"Next, we take a state-dependent scheduling proxy p = f,(z). The method can be easily applied also for
input and output-dependent proxies, without loss of generality.
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Consider Assumption 2 holds. Then, the following expression is valid, considering the
linearisation at a given instant k£ 4+ 7 — 1 and the increment along x to the following instant
k+ j, namely Az(k+j — 1):

folw(k+7)) = fola(k+i—1)+&E+5-1) (3.39)
+ afg(m) Az(k+j—1).
T g(k+j—1)

We henceforth denote fg k+j-1) = % (bti1) Expanding the expression in Eq.
z(k+j—

3.39) along the fixed prediction horizon of N, steps and embedding it to the scheduling proxy
P
p(k) = f, (x(k)) yields:

p(k+1) p(k) + [ (k) Az (k) + &, (k)

plk+Np—1) = p(k+Np—2)
+ f2(k+ N, —2)Az(k + N, — 2)
+ &k +Np,—2).

As of the qLPV model in Eq. (3.11), p(k) and Ax(k) are known, whereas ff(k) can be
numerically evaluated on the basis of the current state measurement x(k). Nevertheless, in
practice, fg(k +j)forj e N (1,N,—2] is unknown, which requires a second assumption:

Assumption 3. For simplicity, at each sampling instant k, it is assumed that the partial
derivative f?(k:) stays constant along the prediction horizon, i.e. f?(k‘ +j) = f[?(k:) ,Vj €
Ni1,n,-2)-

The partial derivatives terms f/?(k‘ + j) could be computed on the basis of the state
trajectory prediction Xy (generated by the MPC algorithm). Nevertheless, this is numerically
costly. Thus, we exploit Assumption 3 in order make our extrapolation procedure fast and
numerically cheap, thus taking f[? (k+j) = fg(k). In the sequel, we show that even by using
such approximation, convergence is still ensured.

Note that the expansions along the prediction horizon can be given in terms of the previous
scheduling parameter value and a correction term, as follows:

plk+jlk) = plk+j—1lk—=1)+ f(k)Aw(k+j— 1) (3.40)
+ &k + k),

Therefore, with a slight abuse of notation'®, we use the following vector representation:

B, = P+ fO(k)AX] +Ey, (3.41)

BAlong the sequel, the term f,? (k) in the wvector form denotes the diagonal matrix

diag{ fJ (k), £J (k). ..., fJ(k)}.
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which is a recursive estimation law of the fashion in Eq. (3.36).

Notice that ]3,:_1 stands for the previous scheduling trajectory estimation with the first
term corrected with the known value p(k) (known data), while AX} represents the state devi-
ations along the horizon (also corrected with the known value Az(k)). Since AX} represents
the difference of the states over time k, this vector is computed by adapting Eq. (3.8). For
such, we shift the control sequence U};_; as a basis for Uy, with the last entry kept constant.
This is, we take the following vector of dimension n, x Np:

u*(klk — 1)
: (3.42)

u*(k+ Np — 2|k —1)
u*(k+ Ny — 2|k — 1)

Accordingly, we obtain AXy,_; = A(P;_,)Axz(k) + B(P}_,)Uy. Lastly, we stress that =
is a bias residual vector, which “corrupts” the extrapolation. Since this vector is unknown, we
disregard it in the recursive estimation procedure, which means that Eq. (3.41) is replaced
by an approximation, as gives Eq. (3.43). Here, the * indicates a prediction (estimate) for the
referred variable, i.e. B, = [p(k)T, p(k+1k)T, ..., p(k+ N, —1|k)T]T. We stress that Eq.
(3.41) is an exact representation for any non-null (or vanishing) residual vector term =j.

Py = B+ fJ(k)AXE, (3.43)

Figure 3.8 illustrates the concept behind Eq. (3.43) and how the scheduling trajectory
estimate from the last sample Py_q is updated and thus used to generate the current estimate
Pi.. We note that the corrections on P,_; and AX} are given by:

Pr ., = AP1+vp(k), (3.44)
AXF = MX_ +vAx(k), (3.45)
withA=[0 I ... IT]Jandv=1[1 0 ... 0].
Doy ——| pk—-1) pklk=1) o plk+ Ny =2k 1)
lReE:rviive 1 Updated 1+ £2 (k) Az (k|k) 1+ fo(k)Az(k + N, — 2|k — 1)
P, ——| k) pk+1k) - p(k + N, — 1[k)

Figure 3.8: Approach (iv): Vector shifting.

Remark 14. The dimensions of X and v in Eqs. (3.44)-(3.45) should be in accordance with n,
and n,. We note that recursive extrapolation mechanism from Eq. (3.43) is not able to ensure
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that each entry of the scheduling trajectory estimate vector (i.e. p(k+7j),Vj € N[an]) abides
to the admissibility constraints (each p(k + j) € P). Thus, in order to provide “coherent”
extrapolated parameters p(k + j|k), the extrapolation vector Py is “clipped”.

Remark 15. An additional forgetting factor can be included to Eqs. (3.44)-(3.45), replacing
the identity matrices in X by exponentially decaying terms, i.e. Ie */kmar  This can serve to
attenuate the amount of mistaken information passed from one estimate Py to the following

Pryq.

Note that Assumption 3 is an approximation while the convergence property of the ex-
trapolation mechanism has not yet been established (further details in Lemma 3.6.2), since
fpa(k +7) # fﬁ (k). Nevertheless, as the system stabilizes and the extrapolation converges, it
follows that fg(k +j) ~ fpa(k) becomes a very reasonable approximation. This approximation
may be violated more easily with larger horizons NN, since the discrepancies between the real
scheduling variable p(k + j) and its extrapolated estimate p(k + j|k), grow along j € Njj n,_g).
Yet, the sliding-horizon mechanism of the MPC ensures that this imprecision has minor effects
on the closed-loop performances, as illustrated by the simulation results presented in Section
3.7. The complete recursive estimation procedure is presented in Algorithm 1.

Algorithm 1 Recursive extrapolation approach

For every sampling instant k, loop:
e Measure the system states z(k);
e Compute p(k) = f, (x(k));
e From Eq. (3.11) compute Az(k);
e Correct Py — 15,:_1 using Eq. (3.44);

e Compute the state deviations’ estimate vector AX}, based on }516*71 and (u]k, using Eq.
(3.8);

e Update this vector AX), — AX,: using Eq. (3.45);
e Compute the static derivative term f[?(k);
e Compute P, using Eq. (3.43);

e Clip each entry of the extrapolation Py, ie. each p(k + j|k) is replaced by
max(p, min(p(k + j|k) , p))-

Remark 16. The initialisation of the scheduling trajectory quess Py is of particular interest.
At the initial point, only x(0) and p(0) are known; assumably, no control input has yet been
generated, since u(0) is computed on the basis of the optimisation, which requires Py. There-
fore, since the MPC' is ensured to stabilize the system for all p € P (Lemma 3.6.1), we simply
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use Py = col{p(k)}, i.e. N, repeated entries of p(k). This is “the best possible candidate” for
the scheduling trajectory at the initial sampling instant, and it is refined progressively as the
recursive extrapolation convergences.

3.6.1 Sufficient conditions for convergence

With respect to the extrapolation algorithm, we now present sufficient conditions for its con-
vergence (that is, for the estimate scheduling trajectories to converge to the true behaviour).
For such, the following rationale is used: if the MPC controller, based on an approximated
scheduling sequence estimation, still ensures closed-loop stability, then the extrapolation P,
will converge (i.e. P, — Py). In the sequel, we present a Lemma regarding the form of the
MPC state-feedback gain, and another Lemma which provides five sufficient conditions for
convergence.

Lemma 3.6.1. There exists a terminal state-feedback policy, implied by the MPC, such that
u(k+Np) = k(p(k+Np))z(k+Np) and an upper gain ks such that ||k(p(k))|| < &(||p(k)|]) =
Koo, Vp(k) € P.

Proof. Consider an MPC application for a process with constant time-invariant parameters
(LTT), i.e. z(k+1) = Az(k)+ Bu(k). In this case, consider a terminal control law, implied by
the MPC, and given as u(k + N,) = kx(k + N,), where the state-feedback gain depends on
the system model parameters (A, B), tuning weights (P, @, R). The closed-loop stability can
be shown through classical Lyapunov arguments, which generate the nominal terminal explicit
feedback gain k. Since in our study we consider a time-varying system expressed through the
qLPV model in Eq. (3.11), the MPC can be scheduled with respect to the known scheduling
parameters, since the model matrices are dependent on this variable. Therefore, the resulting
terminal state-feedback predictive control law has the form of w(k+ Np) = k(p(k+ Np))z(k +
N,), where the feedback gain is parameter dependent, as shown in [Cisneros and Werner
2020]. Since the parameters are expressed within a bounded set P, we can benefit from the
polytopic representation of Eq. (3.11) to determine a parameter-dependent state-feedback
gain koo > ||k(p)|l,Vp € P by evaluating k(p) at the vertices of the embedding polytope. Such
state-feedback gain k(p(k)) can be explicitly computed. Assume there exist a stage cost £(z, u)
and a terminal V(z), as in Egs. (3.12)-(3.13), with positive-definite weights P(p), @, and R.
Let Y(p) = (P(p))~! and take x(p) = W(p)Y (p). Assume the closed-loop is stable and the
MPC is recursively feasible. Then, it follows that a Lyapunov argument holds for the system,
meaning that the finite-horizon MPC cost is decreasing, i.e. Jyyn,+1 — Jkrn, < 0,Vk. As
detailed in [Jungers et al. 2009], [Cisneros and Werner 2020, and in Chapter 2, this inequality
implies that V ((A(p) + B(p)k(p))x) — V(x) < —Ll(x,k(p)x),Vax € X. This condition can be
re-stated in a parameter-dependent LMI form (see [Morato, Normey-Rico, and Sename 2022b,
Theorem 1]), which is solvable in a grid of points over p € P. This LMI solution provides
the parameter-dependent matrices P(p) and W(p), which are used to generate the terminal
feedback gain k(p). This ends the proof. O

Remark 17. The considered MPC should be robustly stable, despite the model-process un-
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certainties derived using all possible “wrong” (non-ideal) scheduling sequences P.. Asin any
control method, robustness comes at the expense of performance deterioration. Anyhow, that
the proposed method provides scheduling estimates which are rather accurate, with bounded
residuals (refer to (C5) in Lemma 3.6.2, the simulation results in Sec. 3.7, and further dis-
cussions from Chapters 4, 5 and 6). Accordingly, less conservative controllers are enabled.
Moreover, we note that the method consists basically of linear vector-wise operations, which is
computationally simple. More discussions on this matter are presented in [Morato, Normey-
Rico, and Sename 2022b], omitted in this thesis for brevity.

Lemma 3.6.2. Consider the following sufficient conditions:

(C1) The static map f,(-) is, at least, class C1, i.e. first-order differentiable with respect to z,
forallz € X;

(C2) The differentiation function f[?(k:) is energy-bounded (2-norm sense) for all k;
(C3) The state deviation term Ax(k + j) is energy-bounded (2-norm sense) for all k;
(C4) The qLPV system is stable in closed-loop;

(C5) The nominal closed-loop dynamics remain stable in the sense of 2-norm even if the
MPC' is generated with a biased scheduling variable, i.e. p(k) + &,(k), for any bounded

1€ ()2 < 5o,

Then, as long as these conditions hold, the recursively proposed extrapolation tool from Eq.
(3.43) is convergent, meaning that the residual term in Eq. (3.41) satisfies limg_, o0 Zp — 0.

Definition 3.1 (Little-o notation)
A given function f(k) can be expressed as f(k) = o(g(k)) as k — oo if, for every positive
constant €, there exists another constant 5 such that |f(z)| < eg(x), for allk > 5.

Proof. We proceed by detailing each of these five sufficient conditions individually:

e (C1): f,(z) must be at least class C!, so that its derivative fg(k:) exists for all z € X.
The derivative term is necessary in order for the Taylor approximation of Eq. (3.38) to
be valid.

e (C2) and (C3): Since, for simplification purposes, the recursive extrapolation is com-
puted as if f[;a(k‘ + j) remained constant as fg(k‘) through the prediction horizon, from
the viewpoint of each sampling instant k, it must hold that || f;? K)|l2 < fT? for Py in Eq.
(3.43) to exist. Moreover, in order to construct Py, and AX,: must be energy-bounded,
which conversely implies that each term ||Az(k + j|k)||]2 < AZ. This condition is also
necessary for Lemma 3.6.1 to hold.

e (C4): For the MPC to stabilize the system, there must exist a nominal feedback u =
k(p)x such that the closed-loop dynamics are exponentially stable for all p € P, as argued
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in Remark 11. This is ensured if Lyapunov conditions are satisfied through adequate
terminal ingredients of the MPC optimisation, computed offline, as those presented in
[Cisneros and Werner 2020].

e (C5): In order to demonstrate this condition, we verify that the qLPV system is stable in
closed-loop, when scheduled by a biased law, i.e. by p(k+j[l) = p(k+j|k)+&,(k+jlk),
where ,(k + j|k) represents the uncertainty upon the scheduling parameter. In short,
we denote that the corresponding MPC input as w(k) = « (p(k) + £,(k)) (k) (assuming

N

that the bias appears already in the first entry of Py).

Accordingly, consider the qLPV system is affine (Set of Assumptions 1). Moreover, consider
the following uncertainty inputs, given in the z-domain (frequency):

Ag(2)z(z)
un,(2) = (Ai6p(2)) @ 2(2) ,
ua,(2) = (Bi&,(2)) ® u(z) .

Thus, we are able to obtain the following static state-space description of the closed-loop:

un (k)
w(k+1) = Apax(k)+ Buu(k) + (ua, (k) + ua, (k)
Ay = A+ Alp(k;) , (3.46)
By, = Bo+ Bip(k).

In order to verify the stability of this system, we use an M — A analysis framework
|Zhou and Doyle 1998|. For such, consider two “uncertainty outputs”™ ya, (k) = x(k) and
ya, (k) = u(k), being ya(k) = diag{ya,(k), ya,(k)}. The corresponding static LTI model
is expressed in the z-domain as follows:

x(z) = Gn(2)u(z) + Gal(z) (ua, () +ua,(?)) .
Gn(2) (2In, — An) "' Bn (3.47)
Galz) = (2, — Ayt

Next, we use Lemma 3.6.1 to state the biased MPC policy as u(k) = koo (z(k) + r(k)),
being r(z) a fictive input to demonstrate input-to-state stability, and ko the upper gain
computed with respect to p(k) + £,(k). Thus, we obtain:

Tn(z)
z(2)l2 < 1| (In, = Gn(2)koo) ™" Gn(2)koo (2) (3.48)
+ (In, — Gn(2)kis0) "t Ga(2)ua, (2)
+ (In, — Gn(2)koo) ' Gal(2) un, (2)]l2-

-~

Ta(2)
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The corresponding LFT of this frozen system satisfies the following inequality:

ya(z) . ua(2)
I[228H], = e [=25H], (3.49
where:
M(z)
N(z) = Ta(2) Ta(2) Th(2)
(2) < TA(2)koo TA(2)Eoo ) < Koo + T (2) koo >
(Ta(z) Ta(z)) | Tn(2)
Finally, we can write ua (k) = A(-)ya(k), with:
Ap( Yoo = Matorelz

(s -

Since [|£,(k)|2 < 5;’0““‘1 by definition, these convolution products are upper bounded as
follows:

{Hip@w!b < gz,
<

1€p @ ull2 PR
which conversely implies that:
Ar() 0
101 s |

- [ A0 } [ l&eelz g ]
= 0 B [, 0 ||5p<§qu
< [Al 0 } bound
- 0 B ||, P

Note that we obtain || M (2)|lcc < ||KooTA(2)|l00, Which means that || M (2)||eo < ||Koo(In, —
Gn(2)koo) 'GA(2)|lo- Thence, the stability condition is very direct: simply checking the
following inequality for all p € P, x € X and [|{,(k)|2 < §E°u“d (being koo is determined

according to Lemma 3.6.1):

1

AT (3:51)

[hooTa(2)]lo <

As a last remark, we note that the bias term &,(k + j|k) is bounded by definition of
the Taylor extrapolation mechanism. Note that in Eq. (3.39), we obtain &,(k + jlk) =
hw(z(k+j|k))Az(k+j|k). This function can be expressed through the little-o notation, using
ok + jlk) = o([[Ax(k + j|k)[l2), which translates to [[Sp(k + jlk)ll2 < el Az(k + j[k)]|2,
holding for any number of discrete-time steps k > S and a positive real constant €. Since the
size of the prediction of the extrapolation is IV, — 1, we obtain 5;"’““‘1 < (Np — 1)Az. This

concludes the proof. O



80 Chapter 3. Estimating scheduling trajectories

Remark 18. Condition (C5) in Lemma 3.6.2 is essential. As long as the closed-loop system
is robustly stable despite the residual term &,(k + jlk), we can demonstrate the convergence
property by showing that limy_, 1« &,(k+jlk) — 0 and that fg(k—i—j) = ff(k) Vi €N N, -2
Assume the process is stable in closed-loop. Thus, it holds that limg_,.o x(k + jlk) =
limy_yo0 #(k+j—1k). Then, take &p(k+j—1|k) = fo(a(k+7)) — folx(k+j—1k)) — fO(k+
j—1)Ax(k+j—1|k). It directly follows from (C5) that fpa(k +j—-1)= f;?(k) , Vi € Ny n,—o)-
Thus, limy oo fo(x(k+j+1)) = limpoo fo(x(k +J)) and limy_o Ax(k + j|k) = 0. Finally,
limy oo §p(k + 1K) = —limg_oo f;?(k)Ax(k‘ + jlk) — 0, which conversely ensures that the

scheduling sequence extrapolation Py, indeed converges to the real scheduling sequence.

Remark 19. In order to verify that the proposed method ensures a convergent extrapolation,
(C5) can be checked through the Algorithm 2, used to verify Ineq. (3.51). We note that
the computation of the compact set AX from Proposition 1 requires optimisation or interval
arithmetics, while the feedback gain ko is derived using LMIs (as provided in Lemma 3.6.1
and also expressed in [Cisneros and Werner 2018]).

Remark 20. The convergence of Eq. (3.43) implies that the residual errors &,(-|k) turn null
as k increases, even if consecutive biases within samples are increasing, i.e. limy_, 4o §p(-|k)
even if {p(k1 + jlk1) = &k +J + 1|k1), for any ki = 0.

Remark 21. In the following Chapters, we provide a complementary result (Lemma 4.8.2),
which gives tighter bounds on the extrapolation error &,(k + j|k), exploiting a Lipschitz conti-
nuity property of the scheduling proxy.

Algorithm 2 Checking sufficient condition (C5)

For every p € P:

e Compute the feedback gain ko via Lemma 3.6.1, solving the optimisation for each
x(k) € X and each p(k) € P;

Compute the nominal model matrices A,, and B,,;

Compute the closed-loop nominal model Ta(z);

Compute the uncertainty bound ||A(+)]|cc;

Compute ||kooTA(2)]|co and verify Ineq. (3.51).

As a final remark regarding approach (iv), we stress that the previous discussions of this
tool were presented considering the class of qLPV systems with affine parameter dependency.
Nonetheless, other classes could also be considered, such as polynomial forms A(p(k)) =
Ao+ Aip(k) + Agp*(k) + ... or LFT forms. The only difference would be the computation of
the ua (k) terms in the fifth sufficient condition (C5), which must embed the uncertainty term
on the scheduling parameter caused by a bad estimation at a given instant. As an example,
or the second-order polynomial case, we would obtain:

un, (k) = Ai&p(k) + A2(Ep(k) + 2p(k)Ep(K))Ep(K) - (3.52)



3.7. Illustrative results 81

3.7 Illustrative results

In order to conclude this Chapter, we provide several results in order to illustrate the different
scheduling trajectory estimation approaches. Specifically, we choose to discuss approach (iv)
in more details, since this is a major contribution from this thesis. We also include comparisons
to approaches (i) and (iii), being these widely used in the literature. Note that approach (ii)
is not included in these results, since comparisons and discussions with regard to approach
(i) have already been presented in the prequel. Next, we consider three different qLPV case
studies are considered: a numeric example, a semi-active suspension system, and a pendubot
system. Some aspects regarding these systems are relevant:

1. The first case study is chosen because it exhibits a time-varying derivative behaviour
f;?(k: + j). Therefore, it serves to demonstrate that even if Assumption 3 is violated,
if the five conditions from Lemma 3.6.2 are satisfied, the recursive estimation approach
(iv) is still able to ensure convergence.

2. The second and third case studies are chosen from the literature because qLPV MPC
techniques have proposed to control these systems (see [Morato, Normey-Rico, and
Sename 2019] and [Cisneros and Werner 2019], respectively). The second case presents
some load disturbances which meddle with the stabilisation of the process, while the
third has a larger number of states (six). Moreover, both these cases have constant or
null derivative terms f[? (k + j), differing from the first.

3. For these systems, the corresponding state-feedback MPCs in the form of u = k(p)z are
synthesised with identity @) and R weights and a parameter-dependent P(p).

3.7.1 Numerical benchmark

Consider a qLPV system operating at a sampling rate of 1000 Hz. It is controlled by an MPC
loop which operates within Ty, = 1 ms. The system model is z(k + 1) = A(p(k))z(k) +
B(p(k))u(k), with:

[ =0.5(1 + p(k)) 0
A(p(k)) = [ 0 —0.3(1 + p(k)) ] ’

Bp(k) = [ (1+ p(k)) ] | (3.53)

2(1 4 p(k))
p(k) = folz(k)) =sin([ 1 1 ]a(k)),
folk+j—-1) = [1 1]cos([1 1]a(k+j—1)).

This system has box-type constraints as are those in the Set of Assumptions 1, with:
z=-[0.50.3]", 7 =[0.50.4]", u = —0.025, w = 0.025, p = —1, p = 1. Both state deviation
and scheduling parameter deviation variables are energy-bounded.

With respect to the five sufficient conditions given in Lemma 3.6.2, we note that they are
all satisfied:
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A sine function is class C*° with respect to its domain;

(Cii) A cosine is always energy-bounded;

(Ci

)
)

(Ciii) Due to the box-type constraints on z, ||Axz(-)|| < 0.8;

(Civ) ndeed, the closed-loop qLPV system is stable under the corresponding MPC algorithm;
)

(Cv) Algorithm 2 verifies the inequality from (C5) for all p € P: it holds that
SUp,(1)ep 1Ko Ta(2)]loo = 0.1651, while (|A(-)]leo) ™" = 0.6667.

The corresponding simulation results are presented in the sequel, which show that the
recursive extrapolation (approach (iv)) converges within roughly five samples (i.e. 5 ms).
The control horizon is taken as N, = 30 samples. The total simulation run comprises 0.2
s. The system is perturbed by a disturbance signal at ¢ = 0.1 s. Figure 3.9 shows the
stabilisation of the states and the predictive control policy. Most importantly, Figure 3.10
shows!? the extrapolation of Pj obtained with approach (iv), at different sampling instants,

and the actual qLPV scheduling trajectories, demonstrating that convergence of P, is indeed
verified.
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Figure 3.9: Numerical example: State stabilisation (black line) and control signal (red line).

For illustration purposes, we compare approach (iv) to approaches (i) and (iii), since these
are widely used in the literature. Approach (i) is name, for simplicity, as “frozen-guess”, and
(iii) as "iterative SQPs". These MPC methods are synthesised with the same tuning weights.
We compare the obtained performances in terms of NRMS indexes for each state trajectory,
which are presented in Table 3.3. As it can be seen, the resulting closed-loop performances
are very similar with the proposed method and the one by [Cisneros and Werner 2020], both
slightly superior than the frozen guess method (baseline indexes). Nevertheless, we must stress

9The real scheduling parameter trajectory is presented in bold black line. The coloured lines represent the
extrapolated scheduling sequence at different time instants.
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Figure 3.10: Numerical example: Scheduling trajectory extrapolation and convergence.

that the MPC with the proposed extrapolation mechanism can operate four times faster than
the state-of-the-art SQP scheme, since it does not require to evaluate any nonlinear vector-wise
operation online, neither multiple QPs.

In order to further illustrate the convergence of the scheduling sequence estimates, Figure?’

3.11 compares the extrapolations derived with the proposed method against the estimated with
the iterative mechanism (approach (iii), as detailed in [Cisneros and Werner 2020]). In this
Figure, Py (real trajectory) and P, (estimate) are given for the first six simulation samples.
Note that Py is an initial guess. Clearly, both methods converge in roughly the same number of
samples. The discrepancy between p5 and Pj are slightly smaller with the iterative approach
(iii), but this advantage comes at the expense of more computational cost. Nevertheless, we
note that these discrepancies can be reduced with adequate forgetting factors (see Remark
15), such that the prior estimate data Py._1 has less effects on the following estimate P,

Table 3.3 evidences an important feature of the proposed method, which we highlight.
The additional computational time ¢, required to solve the recursive extrapolation mechanism
is of 0.01 ms (in average), with respect to the “frozen guess” MPC. Even with such minor
additional computational load (of roughly 8%, in this case), the closed-loop performances are
much enhanced. We stress that the total computational load of an MPC scheme operating
together with the proposed extrapolation algorithm is very close to that of a QP. This is due
to the fact that the operation of Eq. (3.43) consists only of linear vector-wise operations,
whose numerical toughness depends linearly on the size of the prediction horizon N, and on
the number of number of scheduling parameters n,,.

In the case of systems with a higher number of states, the numerical load required by

20The real scheduling parameter trajectory is presented in bold black lines, the estimates with the approach
(iv) are given in dotted blue lines, and the estimates with approach (iii) are found in dashed blue lines.
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proposed estimation law will represent an even smaller ration with respect to the load required
by the MPC QP, which grows exponentially with n,. This is a very relevant advantage of the
proposed method, since the state-of-the-art iterative SQP mechanism (approach (iii), from
|Cisneros and Werner 2020]) grows exponentially with respect to the number of states n, and
with the prediction horizon size N, while also being proportional to the (maximal) number
of iterations of the mechanism nje;. Thereby, for systems with an elevated number of states,
approach (iii) may easily violate the sampling period threshold of real-time applications (t. <
Ts), while the proposed scheme may not, since it will require, basically, the computational
time needed for a single QP.

Table 3.3: Numerical example: Performance evaluation.

Method NRMS{z1} | NRMS{z3} te
Approach (i): "frozen-guess" 100 % 100, % 0.124 ms
Approach (iii): "iterative SQPs" 84.62 % 89.86 % 0.632 ms
Approach (iv): "recursive extrapolation " 83.84% 89.86 % 0.134 ms
01 —Real scheduling sequence 0.1
-------- Scheduling sequence estimate: Approach (iv)
- - Scheduling sequence estimate: Approach (iii)
0.05 - 0.05
< ) ob [\ SN e
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Figure 3.11: Numerical example:

(iii) and (iv)).

.
1"
x10°

3.7.2 Semi-Active suspension system

x10°

scheduling trajectory estimation convergence (approaches

As a second study case, we consider a semi-active suspension system, represented by a quarter-
car qLPV benchmark model from the literature, as presented in the prequel (Section 3.4.1).
Recall that these dynamics comprise the displacements and velocities of a car’s chassis and
wheel (four states). The scheduling parameter is the suspension deflection velocity. This
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system operates with a Ts = 5 ms sampling period, and is disrupted by road bumping (load
disturbances). The MPC horizon is again chosen as N, = 10.

The model is z(k + 1) = A(p(k))z(k) + B(p(k))u(k) + Bow(k), where w(k) are the road
disturbances and p(k) = (z2(k) — z4(k)). Recall that the system has box-type constraints
on states and inputs. Further details (and all parameter values and constraints) are given
in references [Morato et al. 2018a; Morato, Normey-Rico, and Sename 2020b]. Again, all
sufficient conditions from Lemma 3.6.2 are satisfied:

(Ci) The difference (z2(k) — z4(k)) is a linear operator and thus class C*;
(Cii) The derivative term fﬁ‘?(k) =[010 — 1] is energy-bounded,
(Ciii) The box-type constraints ensure energy bounds on Ax;
(Civ) The qLPV model is stable in closed-loop;

(Cv) Algorithm 2 verifies the inequality from (C5) for all p € P: it holds that
sup (e o Ta ()]l = 1654, while (JA()]l) ! = 66.75.

We consider a simulation scenario of 10 s with &5 mm bump-like road disturbances at
three different instants. The extrapolation algorithm converges within 25 samples, i.e. 0.125
ms. The average computational stress is of 0.048 ms. Figure?! 3.12 shows the stabilisation of
the states to the origin, the predictive control policy and the road profile disturbances, while
Figure?? 3.13 shows the real scheduling trajectories P, and the corresponding estimates B,
obtained with approach (iv) at different sampling instants over the simulation run.

In order to corroborate the comparison discussions from the first example, we again com-
pare the results obtained with approaches (i), (iii) and (iv). All MPCs are synthesised with
the same tuning weights. In this example, due to larger number of states (n, = 4) than
the prior, we compare the obtained performances in terms of the NRMS index for the stage
cost trajectory f(xz(k),u(k)), which are presented in Table 3.4. Firstly, we stress that the
frozen-guess mechanism (approach (i)) already obtains good driving performances by itself,
as argued in [Morato, Normey-Rico, and Sename 2020b|. Nevertheless, as show in Table
3.4, the resulting closed-loop performances are enhanced with the recursive mechanism (ap-
proach (iv)) as with the iterative method (approach (iii), both with superior indexes than the
"frozen" gain-scheduled baseline result. As indicated in previous discussions, the proposed
extrapolation mechanism yield almost negligible computational time with respect to the time
required by the QP. Furthermore, the iterative SQPs approach almost violates the sampling
time constraint of 5 ms, taking over ten times more than the MPC coupled with the proposed
estimation procedure (on average). This occurs since the QPs grow exponentially with the
number of states, while the extrapolation does not.

218tate dynamics are shown in bold, black and dashed, light blue lines, the control input is given in bold,
red line, and the road disturbances is shown in bold, blue line.

22The real scheduling parameter trajectory is presented in bold black line. The coloured lines represent the
extrapolated scheduling sequence at different time instants.
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Figure 3.12: Vehicle suspension system: State stabilisation, control input, and road distur-
bances.

Table 3.4: Semi-Active suspension system: Performance evaluation.

Method NRMS{¢(z,u)} te

Approach (i): "frozen-guess" 100 % 0.370 ms
Approach (iii): "iterative SQPs" 56.85 % 3.795 ms
Approach (iv): "recursive extrapolation " 68.06 % 0.377 ms

3.7.3 Pendubot

A final simulation example is provided next. Consider the six-states pendubot benchmark
system from [Cisneros and Werner 2019]. This inverted pendulum has two arms at rotating
angles measured with respect to the vertical axis. A motor is connected to the first arm and
acts as the actuator in this system. The control goal is to stabilize the system at a vertical
up-up equilibrium (origin). The dynamics of this system may be disturbed by the occurrence
of unexpected torques against the rotating arms.

This pendubot is represented by a discrete-time qLPV model in the form of Eq. (3.11),
with an additional w(k) term summed to the state transition map, which represents the torque
disturbance. The system operates under a sampling period T of 10ms. The model exhibits
two state-related scheduling parameters: p(k) = [z1(k), 23(k)]T. This system is controlled
by a sub-optimal MPC algorithm with horizon N, = 40 steps. All matrices, parameters and
MPC weights (P, @, and R) are given in [Cisneros and Werner 2019]. Once again, all five
sufficient conditions from Lemma 3.6.2 are satisfied. It holds that sup,)ep [KoTa(2)[lcc =
0.0845, while (J|A(")]|o)™t = 0.2140.
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Figure 3.13: Vehicle suspension system: Scheduling trajectory and estimate (approach (iv)).

In order to illustrate this the closed-loop behaviour of this process under the action of
an MPC algorithm based on the proposed recursive extrapolation procedure, we consider a
simulation run of 3 s. In this scenario, the initial conditions are non-null and a load disturbance
torque that occurs at t = 2 s, which requires the controller to stabilise the pendubot at the up-
up equilibrium (steering the state trajectories to the origin) twice. In Figure?® 3.14, we show
the obtained trajectories of this system, considering the stabilisation of the first four states
(positions and velocities, accelerations are suppressed for simplicity), as well as the generated
predictive control policy. Complementary, Figure?* 3.15 presents the real scheduling trajectory
and the estimates generated with approach (iv)?®, which clearly convergences rapidly.

The average computational time required to evaluate the recursive extrapolation mecha-
nism is of 2 ms. As of this, the total control law (extrapolation and QP solution) is evaluated
within the Ty = 10 ms sampling period threshold. We also note that the extrapolation
convergence is achieved within 0.5 ms (both due to initial conditions and due to the torque
disturbance). The obtained performances are coherent with those presented in [Cisneros and
Werner 2019]. Evidently, approach (iv) is suitable for a wide variety of applications.

2The state dynamics are given in black, light blue, light purple, and gray lines, while the control signal is
shown using a red line.

24The real scheduling parameter trajectory is presented in bold black line. The coloured lines represent the
extrapolated scheduling sequence at different time instants.

250nly one of the scheduling parameters is shown, for simplicity. Similar results were obtained for the other
parameters.
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Figure 3.14: Pendubot system: State stabilisation and control signal.
Discussion

Corroborated by the simulation results presented in the prequel, we provide some comments:

Approach (i), based on a frozen-guess estimate of the scheduling trajectories, provides
sufficient performances, in many cases. It is able to operate rapidly online, since the
resulting MPC is a based only on a single QP. Nevertheless, are argued in Section 3.3,
the controller must be excessively robust in order to tolerate the prediction uncertainties,
which thus may lead to conservative performances.

Approach (ii) is an alternative to enhance the performances of the frozen-model mech-
anism. It is more appropriate for the qLPV setting, since the identification mechanism
requires, in general, an activation signal for the auto-regressive transfer (such as en-
dogenous variables which affect the scheduling parameters). Anyhow, we are unable
to ensure if the method indeed converges, and bounds on the estimation error are also
unavailable. The resulting MPC has the complexity of a QP and a LS (linear) recursive
solution, being possible for real-time applications.

Approach (iii) has been widely applied in recent works, including robustified, tube-based
MPC variations, e.g. [Abbas et al. 2019; Hanema, T6th, and Lazar 2021]. The method
has many empirical proofs of convergence of the scheduling trajectory estimates, thus
having valuable importance. Nevertheless, there is guarantee that the method converges
rapidly (within the sampling period threshold), nor there can be generated estimation
error bounds. As evidenced in the previous results, and also in [Cisneros and Werner
2020], the resulting MPC is comparable to benchmark state-of-the-art NMPC solutions,
while operating with an online complexity of SQPs.
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Figure 3.15: Pendubot system: Scheduling trajectory estimate (approach (iv)).

e Approach (iv), one of the main contributions of this thesis, is a recursive estimation
procedure based on rather simple Taylor expansion argument. With this method, we
are able to ensure convergence of the estimation, as long as the five sufficient conditions
from Lemma 3.6.2 are satisfied. Furthermore, we can compute theoretical bounds on
the estimation error during the transient behaviour, which can be accounted for in the
context of robust MPC design. Furthermore, the method is able to enhanced MPC
performances with respect to approach (i), while maintaining computational load close
to that of a single QP, thus being faster than approach (iii). The recursive extrapolation
mechanism resides on simple linear operators, with numerical toughness growing linearly
with the prediction horizon size IV, and the number of scheduling variables n,,.

e Since approach (iii) has a numerical toughness that grows exponentially with the predic-
tion horizon size IV, and with the number of system states n,, in the case of larger order
real-time systems, approach (iv) may be much more suitable, since it requires much less
computational load.

3.9 Conclusions and perspectives

This Chapter presented an overview of the available method that can be used to estimate the
future LPV scheduling parameters, in order to construct prediction laws in the context of MPC.
Four methods were detailed, with corresponding simulation results shown and discussed. Most
importantly, a novel approach is presented for the case of qLPV systems, residing in a simple
and fast recursive law, which only needs the evaluation of a partial derivative computation at
each sampling instant. Furthermore, five simple-to-verify sufficient conditions are presented
for the convergence of the this mechanism.
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As argued in the prequel, the developed approach is compared to the state-of-the-art
mechanism of estimating scheduling parameters through SQPs (looping the MPC multiple
times), showing equivalent estimates and similar convergence rate. For the avid Reader, and
in order to further illustrate the applicability of this method, more comparisons and discussions
have been presented in [Morato et al. 2021d; Morato et al. 2022b].

Overall, we note that the described scheduling trajectory estimation schemes can certainly
serve for the design of fast LPV MPC algorithms. Also, these can be exploited for the design
of NMPC by the means of LPV embeddings: the resulting controller has computational com-
plexity smaller than a nonlinear program, since the nonlinearities from the model prediction
constraints are removed in al LPV fashion.



CHAPTER 4

State- and output-feedback

In this Chapter, we discuss the exploitation of gain-scheduled LPV MPC design under novel
state-feedback and output-feedback formulations. Accordingly, the main contributions pre-
sented in this Chapter are the following:

e First, we present a comfort enhancement algorithm for passengers in a vehicle with semi-
active suspensions, synthesised under a predictive control formulation. The considered
MPC application takes into account a qLPV model of the car dynamics and embeds a
comfort performance index as its cost function. The proposed method is sub-optimal
due to the fact that it is based on a frozen estimation for the scheduling parameters along
the horizon. Bounds on the variation rates of the scheduling parameters are taken into
account and, thus, the uncertainty propagation is relieved. We handle the uncertainty
issue using set-based terminal ingredients. Successful realistic nonlinear simulations of a
scaled car are presented, comparing the developed solutions to other optimal controllers.
Results illustrate the overall good operation of the vehicle; the comfort of the passengers
is substantially improved, as measured through time and frequency domain indexes.

e Secondly, we present an MPC algorithm for qLPV systems represented in the Input-
Output (IO) form. The method is based on the recursive Taylor-based extrapolation
mechanism from Chapter 3. The main innovation is that, by using an IO description of
the system dynamics, state measurements are not necessary, which is interesting from
an industrial and practical application perspective (no need for observer design, for
instance). In order to ensure offset-free reference tracking, the algorithm includes an
explicit integral action formulation, which, coupled with quadratic terminal ingredients,
also enable asymptotic 1O stability. A numeric benchmark example is used to illustrate
the advantages of the proposed method, as well as its real-time capabilities.

Remark 22. The developments presented in this Chapter correspond (in parts) the works
published in [Morato, Normey-Rico, and Sename 2019; Morato, Sename, and Dugard 2019b;
Morato, Normey-Rico, and Sename 2020c; Morato, Normey-Rico, and Sename 2021c/ (state-
feedback formulation) and [Morato, Normey-Rico, and Sename 2022a; Morato 2023] (output-
feedback solution).

4.1 Organisation

Regarding the organisation of this Chapter, we divide it into two main branches:

91
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1. Regarding the state-feedback formulation for vehicle suspension control:

e In Section 4.2, we motivate the topic of automotive suspension control, presenting
the main reasons why MPC is a suitable approach for this (open) control problem.

e In Section 4.3, we present control-oriented qLPV model for vehicular SA suspen-
sion systems. We also detail how model predictions are generated using a frozen
scheduling trajectory guess mechanism, and debate the corresponding uncertain-
ties.

e In Section 4.4, we present the corresponding qLPV MPC algorithm setup, conceived
with terminal set constraints generated with regard to the prediction uncertainty
propagation.

e In Section 4.5, the proposed method is successfully applied to high-fidelity vehi-
cle benchmark. Results are debated according to standard performance indexes
[Poussot-Vassal et al. 2012|, in both time and frequency domains.

2. Then, with respect to the output-feedback MPC:

e In Section 4.8, we propose an explicit integral action scheme in the context of input-
output LPV MPC, which enables offset-free output tracking of piece-wise constant
reference trajectories. The scheme includes the future scheduling parameter esti-
mation scheme from Chapter 3, using a Taylor argument to conceive a recursive
extrapolation law, herein adapted to the IO case.

e Benefiting from the stability framework from [Mayne et al. 2000] as expanded to
the LPV IO setting in [Abbas et al. 2016, we provide, in Section 4.9, quadratic
terminal ingredients that ensure a recursively feasible optimisation, and an asymp-
totically stable closed-loop. These ingredients are enabled through a sufficient LMI
constraint.

e In Section 4.10, we use a numeric benchmark example from the literature in order
to demonstrate the effectiveness of the proposed 10 LPV MPC method, as well as
its advantages and capabilities of the algorithm for real-time nonlinear applications.

4.2 Automotive suspensions and control

Automotive suspension systems are able to enhance driving performance with respect to roll
handling and passenger comfort. Semi-Active (SA) suspensions are today the standard com-
ponent in many state-of-the-art high-range cars and a good deal of academic and industrial
research works have been focused on their control [Savaresi et al. 2010|. SA suspensions are
well-performing and energy-efficient, being altogether less expensive than purely active ones
|[Fischer and Isermann 2004]. In active suspension systems, damping forces can be implied in
both the direction of the deflection movement, as well as in its opposition. In SA systems, the
damping force can only be provided in the same direction as the deflection movement, benefit-
ing from it and thus consuming less energy (the damping force is dissipative, by nature). The
key investigation issue in the SA suspension research body is how to provide real-time laws
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for the controllable damper, enabling more comfortable rides for the passengers altogether
with easier maneuvering of the vehicle for the driver (keeping the car closer to the ground,
with less roll angle and less vertical trepidation). The difficulty resides in how to handle the
dissipativity constraints of the SA dampers while ensuring good performances. The key refer-
ences [Poussot-Vassal et al. 2012; Tseng and Hrovat 2015| detail some of the available methods
proposed for this goal (see, also, the cite references therein). Some of the most modern tech-
niques have been tested for these systems, such as (clipped) optimal LQRs in [Unger et al.
2013|, Hy techniques [Nguyen et al. 2015], nonlinear and Linear Parameter Varying (LPV)
strategies [Poussot-Vassal et al. 2008].

Of particular interest to this thesis, we can also find results proving the application of
MPC to the problem of SA suspension control [Beal and Gerdes 2013; Nguyen et al. 2016;
Morato et al. 2018a], which is a topic increasingly sought by the automotive industry, in
particular when considering more complex, nonlinear models. MPC is a natural framework
to address the issue of SA suspension control, since it facilitates optimal performances of
constrained processes and is able to consider input and state constraints in the design process.
SA suspension control consists, basically, in varying the damping coefficient, which implies in
variations on the delivered force. The dissipativity constraints of the damper are, thus, input
constraints, which makes this kind of problem fall into a saturation paradigm which can be
elegantly dealt by MPC.

In the sequel, the focus is given to reduced-order car frameworks (such as quarter-car or
half-car models), which decouple the vertical dynamics by vehicle corner (or side) to reduce
the complexity of the yielded MPC algorithm (quarter-car models reduce number of states by
a third, roughly, with respect to full-car models). The idea of solving the control problem for
each vehicle corner (or side) is appealing when passenger comfort is the main concern, because
the coupling and load transfer distribution between corners can be neglected as their influence
upon comfort-related variables is small, as discusses |[Nguyen et al. 2016]. Literature has
indeed shown some interesting SA suspension control solutions using MPC based on reduced-
order models. These approaches include; sub-optimal, clipped (saturated) MPC propositions
[Brezas, Smith, and Hoult 2015|; methods based on LPV quarter-car models [Morato, Sename,
and Dugard 2018], with no theoretical feasibility guarantees; fast half-car experimentally-
tested methods [Beal and Gerdes 2013|, which are able to operate within 10 ms, but cannot
account for the effect of the road disturbances. [Poussot-Vassal et al. 2012| is highlighted,
since it provides a methodology for performance evaluation of SA suspensions under optimal
control algorithms (MPC included).

With respect to [Nguyen et al. 2016; Morato et al. 2018a|, fast MPC algorithms were
developed considering full car models. The input nonlinearity and the dissipativity constraints
were handled with the use of a pre-filter, which made the model, from the MPC viewpoint,
LTI. This pre-filtering technique, for practical purposes, may cause implementation distress,
given that a bilinear term Zger(k)u(k) is converted into a linear term Zqef(k)unom + wf(k),
which means that a division by Z4ef(k) is necessary and, for situations when this velocity term
approaches zero, the pre-filtering may result in deteriorated performances. Note that near-
zero piston velocity situations are very common in SA suspensions (as in constant straight
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road profile, for instance), and, thus, have to be taken into account by the design method. We
also note that [Morato et al. 2018a] shows a solution implemented within 5ms, but residing
in sub-optimal computations due to the use of heuristics.

From the above-referenced literature, we can note that the main MPC algorithms applied
for automotive SA suspension systems which are able to run in real-time achieve sub-optimal
results. This fact does not mean that they do not enhance the performances of these systems
with respect to other control frameworks. Indeed, most papers show good performance en-
hancements. Nonetheless, as of today, no paper has presented recursive feasibility assessments
on these MPC algorithms, which are very necessary to ensure that the control method can run
despite the model simplifications. Therefore, the main motivation of this part of the current
Chapter is to present a predictive control algorithm for vehicular SA suspensions that embed
the recursive feasibility property.

In general, reduced-order SA suspension models that are able to handle the damper dissipa-
tivity constraints exhibit nonlinear characteristics. The pre-filtering method, as discussed pre-
viously, is not such a good option concerning real implementation. Nonlinear MPC (NMPC)
algorithms are indeed able to handle these dissipativity constraints without using pre-filtering,
but they are usually not able to run fast enough (in real-time). Recently, as addressed in the
first Chapters of this thesis, works have shown how nonlinear MPC can be generated by ex-
ploiting qLPV realisation [Morato, Normey-Rico, and Sename 2020a|. Indeed, SA suspension
systems can be formulated by the means of a qLPV description, as illustrated in [Morato et al.
2018a).

Motivated by the prior discussions, our aim is to develop a predictive control policy for
SA suspensions that enhances the comfort of the onboard passengers. For such, we extend
and adapt the state-feedback qLPV MPC algorithm from [Morato, Normey-Rico, and Sename
2019] to this context, herein also considering bounded rates of the scheduling parameters,
as suggested by [Jungers, Oliveira, and Peres 2011]. The motivation of improving comfort
performances lies in providing a better ride for the passengers, with less vertical trepidation,
which can be much more enjoyable than a “shaky” ride; passengers will be much less prone to
feel nausea or queasiness under less vertical acceleration.

4.3 Models, performances and constraints

We consider a vehicular suspension system which comprises four electro-rheological dampers.
Accordingly, the control system is composed of four MPC algorithms, one concerned and tuned
with regard to the performances and constraints of each one of the vehicle’s corners. Indeed,
we show next how a qLPV representation can be used to express the corner dynamics of a
moving car. Such qLPV model is also able to express the nonlinear dissipativity constraints
of the dampers in the form of linear constraints over the control input.
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4.3.1 Vehicle testbed

For accurateness and fidelity purposes, all tests are performed using a high-fidelity benchmark
system, which is derived using complete nonlinear vehicle dynamics [Morato et al. 2018a), i.e.
taking into account couplings, measurement noises, hysteresis, and so forth. The considered
benchmark is validated from a diverse set experimental essays, based on a real mechatronic
testbed: the INOVE Soben-Car, a one-fifth sized vehicle (show in Figure 4.1'). The SA
dampers in this testbed are electro-rheological, which means that the PWM signal u regulates
an electric field which varies the viscosity of a rheological fluid found inside the damper
chamber, increasing or decreasing the delivered force.

Figure 4.1: INOVE Soben-Car mechatronic testbed.

The real nonlinear behaviour of the SA dampers is shown in Figure 4.2, in terms of force
vs. deflection speed diagrams. Real experimental data is shown at the left side and fitted data
at the right side. The “dissipativity constraints” of these damper are the following: the control
action must ensure that the damping force only acts in the same direction as the deflection
speed movement. This is conversely expressed as a linear contraint over the control input
signal u(t), which should belong to the convex set U.

Remark 23. The INOVE Soben-Car interprets control laws using a fized sampling frequency
of fs =200 Hz. This condition is quite restrictive in terms of implementation purposes, since
the controller must always compute the control signal within 5ms. This sampling rate is
realistic and seen in many top-cars [Poussot-Vassal et al. 2012].

4.3.2 The control-oriented model

As stated in the prequel, we represent the dynamics of the described vehicle test-bench by
the means of a control-oriented qLPV (reduced-order) corner model [Morato et al. 2018al.
This model is used for both control design and performance analysis purposes. The state-
space description involves the vertical dynamics of the vehicle, at each corner, considering the

'Refer to full details in www.gipsa-lab.fr/projet /inove.
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Figure 4.2: Force-speed characteristics of electro-rheological SA dampers.

chassis dynamics (zs) and the displacements of the wheel link (z,s), which are meddled by
the road profile disturbances (z,). Figure 4.3 shows a schematic representation of a vehicle
corner, which is governed through the following set of differential equations:

msés(t) = —Fs(t) — F, (t),
{ muséus(t) = Fs(t) + Fd(t) i Ft(t), (41)

where Fy(t), Fy(t) and Fy(t) represent, respectively, the force delivered by spring, by the
(controlled) damper and by the tire. Table 4.1 gives the parameters values for the considered
testbed. The forced involved in the vertical dynamics of the car are further detailed: the spring
force and the tire force are given as respectively proportional to the suspension deflection
(zdef = 25 — zus) and the wheel deflection, as follows:

Suspended mass

\ m,

Suspension system \

1
Unsprung mass . =’
(or wheel mass) 3 § “us :
kS Mus 2z

Tire

Figure 4.3: Vehicle with SA suspension system.

Fs(t) = kszdef(t),
{ Fi(t) = ke (zus(t) — 20(t)) , (4.2)

being ks and k; the stiffnesses of the spring and the tire, respectively.
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In order to represent the dissipative behaviour of the damper force in qLPV control-
oriented framework, it is traced as the static nonlinear map, as suggests [Guo, Yang, and Pan
2006], which can be used for both Magneto-rheological or Electro-rheological dampers (the
technologies seen in the majority of SA suspension systems), as follows:

Fi(t) = kozdet(t) + coZaet(t) + p(t)u(t), (4.3)

where the scheduling parameter p(t) = f.tanh (kjzqef(t) + c124ef(t)) directly embeds the
hysteresis-like behaviour of the SA damper. The parameters ky and ¢g denote the nominal
stiffness and damping coefficient of the SA damper. The suspension deflection velocity variable
Z4ef(t) is bounded, due to physical limits (converted as constraints on the system variables),
and can be measured or, a least, accurately estimated. Therefore, p(t) is also known and
bounded at each time instant. Note that c(-) = (co + p(t)) stands for the complete semi-
active damping coefficient. The dissipativity constraints of the SA damper are set upon Fy(t),
which must always lie within a feasibility set whose agrees with the experimental curves of
Figure 4.2.

The control input u(t) represents the duty cycle of a PWM signal that regulates the
voltage input which provides the electrical field upon the damper. This electric field varies
the viscosity of the rheological fluid. In practice, it is this PWM signal u(t) that is the control
system’s manipulated variable for the suspension application.

The dissipativity set bounds the hysteresis behaviour of the hyperbolic-tangent function
present in the scheduling parameter p. The SA damper force can only be given in the same
direction of the deflection speed, being dissipative, in consonance with the experimental char-
acteristics presented in Figure 4.2. Accordingly, the relationship between the damper force
F,4(t) and the deflection velocity Zget(t) can be also expressed through a time-varying propor-
tional function, Fy(t) = c(-)Zqef(t), where the variation of ¢(-) derives from the control input
u(t), as discusses [Savaresi et al. 2010]. With regard to this representation, the dissipativity
constraints can be represented through the following inequalities:

Fq < Fyt) < Fy, (4.4)
0 < ¢ <c¢() < e (4.5)

Remark 24. Since the nominal dissipativity parameter is constant (i.e. given by co), the
constraints from Eqs. (4.4)-(4.5) can be expressed directly in terms of the control input variable
u(t), this is: 0 < wu(t) < 1. When u = 0, it follows that ¢(-) = ¢ = cp, and, for u = 1,
c(r) < e+ fo=c

Remark 25. As displayed in many papers from the literature with experimental validation
included, e.g. [Unger et al. 2013; Ren et al. 2016; Morato et al. 2019b], observers can be
used, using acceleration variables, to estimate the states of SA suspensions, considering corner
models. Therefore, we assume that the system states are available (computed by some accurate

observer). The issues of state measurements/estimation unavailability will be discussed, in the
context of LPV MPC synthesis, at the end of this Chapter, considering 10 model realisations.

For the reasons discussed in the prequel, the two acceleration variables from Eq. (4.1)

are considered as available process output measurements, that is: y(t) = [ Z(t) Zus(t) ]T .
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Then the qLPV state-space realisation of the described suspension system is derived by directly
applying Newton’s second law of motion, i.e. Eq. (4.1), considering the system states as
x(t) = [25(t), 2s(t), zus(t), 2us(t)]T, which gives:

#(t) = Acx(t) + Belp(t))u(t) + Bez(t),
(4.6)
y(t) = Cex(t) + Dey(p(t))u(t) + Deyzr(t) .
The matrices for the continuous-time qLPV model from Eq. (4.6) are:
0 1 0 0
—(kstko)  —co (ks+ko) <o
Ac — ms ms ms ms
0 0 0 1 ’
(ks“l‘ko) _Co _(ks+k0+kt) —Co
Muys Muys Muys T Muys
Bey(p()) = [0 720 2],
B, = (000 A, (4.7)
—(kstko)  —co (ks+ko) <o
C — ms ms ms ms
¢ (kst+ko)  co —(kstkotkt) —co ’
Muys Mus Muys Mus
Der(p(t) = RN
L Dcz = [ 0 mLiS ]

Remark 26. As done in many practical applications, the measured outputs of the SA suspen-
sion system are acceleration variables. These accelerations can be measured using accelerom-
eters/inertial units, that are widely present in top-cars. These sensors are the ones used for
the control of vertical dynamic behaviours. No additional sensors are needed, but the on-board
ones. A thorough discussion on this matter is available in [Morato et al. 2019b].

We obtain a discrete-time realisation by using an Euler discretisation method with Ty =
5ms, which yields?:

w(h+1) = Au(k)+ Bi(p(k))u(k) + Baw(k),
y(k) = Cu(k) + Di(p(k))u(k) + Daw(k), (4.8)
pk) = fetanh (A2 (k) .
where the load disturbance variable is the vertical road profile, i.e. w(k) = z.(k), and the

discrete-time matrices are:

Ap = [ k‘l C1 —]{21 —C1 } y
A - Inx + TsAc )
Bi(p(k)) = TsBe, (p(k)) ,
By = TsBe, , (4.9)
C = Ce,
Dl - Dc1 ;
Dy = D, .

2The continuous-time matrices A, B.,, and so onm are derived from Newton’s second law of motion, as
gives Eq. (4.1). Parameter values are presented in Table 4.1.
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Remark 27. Due to physical limits of the SA suspension, constraints are also set upon the
system states, considering ny =4 and n, = 1:

z(k) € X = {z; € R™|z; < z; <75} (4.10)
The input constraints are:
wk) el = {ueR™|0<u<l1}. (4.11)
Conversely, the dissipativity constraints are:

Fd(k) eD = {Fd € R™ ’Ed < F; < Fd}, (4.12)

which are always respected if x € X andu € U.

Table 4.1: SA suspension system model parameters.

Parameter Description Value  Unit
Mg Sprung mass 2.27 kg
Mays Unsprung mass 0.32 kg

ks Spring stiffness 1396  N/m
k¢ Tire stiffness 12270  N/m
ko Passive damper stiffness 1704 N/m
k1 Hysteresis displacement coefficient | 218.16 N/m
o Viscous damping coefficient 68.83 Ns/m
1 Hysteresis velocity coefficient 21 Ns/m
fe Dynamic yield force of the fluid 28.07 N

4.3.3 Performances indexes

The main problem faced when designing SA suspension controllers is how to determine a
feasible control law that is able to physically isolate the vehicle body from the disturbances
implied by the road through which the car is driven [Savaresi et al. 2010]. Vehicles with
passive suspensions, which do not have controlled dampers, present drives for which the chassis
vertically accelerates almost together with the road. This means that bumps on the road,
for instance, are proportionally translated to the chassis. When SA dampers are used, the
damping force can be used to counter-act the influence of the road and, thereby, the car
becomes easier to maneuver. Anyhow, at the same time that the chassis should be isolated
from the road, the comfort of the onboard passengers should also be enhanced, so that the ride
becomes more enjoyable. Humans are prone to motion sickness and queasiness under harsh
vertical acceleration.

The objectives of enhancing passenger comfort and providing easier maneuvering are phys-
ically conflicting. Stiffdamping enhances passenger comfort by reducing the chassis body ac-
celeration, while smooth damping enables easier road holding by reducing the vibration of the
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wheels, e.g. |[Poussot-Vassal et al. 2012|. For simplicity, we focus singularly in enhancing the
first objective, of isolating the vehicle body from road trepidations and reducing vertical ac-
celeration of the chassis. This is coherent with the considered platform application, for which
the sole objective is minimising chassis trepidations. Multi-objective performances have been
considered in [Nguyen et al. 2016; Morato et al. 2018al, for instance.

As proposed in [Poussot-Vassal et al. 2012|, a simple methodology to evaluate the comfort
of the onboard passengers is to analyse the car’s center-of-gravity (COG) acceleration. At
each corner, this analysis is reduced to the acceleration of the sprung-mass (chassis body),
given by Z;. The vertical chassis acceleration Z; response to the road disturbances w can be
evaluated within the range from 0 to 20 Hz, considering comfort specifications |[Fischer and
Isermann 2004]. Specifically, we employ two different criteria used to evaluate the comfort of
the passengers, as suggested by [Poussot-Vassal et al. 2012]:

1. A comfort performance index in the time-domain:

Jgomfort = /0 Z? (t)dt ) (413)

where T represents a given period of time. Note that this is an integral index by defini-
tion. Its interpretation in discrete time is related to the sum of discrete samples for the
chassis’ acceleration variable, i.e.:

J(fomfort ~ Z Tszg(k) : (414)

2. The most general criterion for comfort performances in the frequency-domain is the
standard ISO 2631 norm, found in [International Organization for Standardization 2016].
This normalisation index can be applied not only to vehicles, but to all sorts of vibrating
environments and systems. This standard defines the body vibration exposure limits
within the frequency range of [1, 80] Hz, wherein reduced comfort, decreased proficiency
and preservation of healthy concerns are evaluated. According to this ISO rule, the
human being is more sensible to vertical accelerations within 4 — 8 Hz. The ISO 2631
criterion is applied as a filter with the following continuous-time transfer function from
[Zuo and Nayfeh 2003|:

0.1456s* + 0.2331s% + 13.7552 + 1.705s + 0.3596

W pu—
7 = S T 5T § 19.065% § 28372 1 18525 1 723
where zfltered(s) = W, (s)%(s), being the later the car's COG acceleration. The
frequency-domain results index follows:
Tt = CUF{EMe1} 0,20, (4.15)

where f{-} represents the frequency response of the signal of interest, and C : R X

R x R — R, denoted C(z, h, h) fh |z(1)|?dp, where h and h represent the frequency
interval limits of interest, as thoroughly discussed in [Poussot-Vassal et al. 2012].
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4.3.4 MPC design

MPC is a very elegant option for constrained processes and thus can be suitably incorporated
to the context of suspension control. Recall that one of the objective of this Chapter is to
propose a state-feedback LPV predictive control algorithm. Thus, we specifically orient this
control scheme for the context of SA suspensions, in order to enhance the comfort performances
of the onboard passengers. Such control algorithm must be realisable and run within the 5ms
sampling period of the considered SA suspension system. Moreover, the control policy must
ensure input and state constraints are respected. Concerning the comfort performances of the
vehicle and the discussion in Section 4.3.3, the MPC algorithm is designed by embedding the
time-domain comfort index as a cost that is minimised along a rolling horizon. For prediction
purposes, we use a frozen scheduling trajectory guess mechanism (i.e. Chapter 3, approach
(i)). That is, we consider the following gain-scheduled state-feedback MPC problem?:

Problem 2. State-feedback MPC

Jr=J(z(k),Uk)

Np
Uf = min > C((k+ilk),ulk+i = 1k)) + V(z(k + Nylk)) (4.16)
Foi=1
s.t. x(k+ilk) = Az(k +1—1|k) + B1A(pr)u(k + i — 1]k) (4.17)
+ ng(k +17— 1) , Vi € N[LNH 5
y(k +ilk) = Cx(k + ilk) + D1 A(pr)u(k + i|k) (4.18)

+ Dow(k+i—1),Vi € N[I,Np—l] ,
u(k +ilk) € U, Vi € N,
y(k +ilk) € Y, Vi € Nyn,_1,
x(k+1ilk) € X,Vi € N[LNp—U ,
xz(k + Nplk) € Xy

Recall that U denotes the vector that comprises the sequence of actions previewed within
the prediction horizon N,. The output constraint in Eq. (4.20) is included for generality of
argument. The complete MPC optimisation cost Ji is comprised of the sum of a stage cost
¢(-) along the horizon and of a terminal stage value V' (z(k + Np|k)). We will later show that
Jy is implied as Lyapunov function that decreases over the discrete-time samples k, which
thus ensures recursive feasibility of the optimisation (and stability of the closed-loop). The
set Xy defines a terminal constraint for the MPC algorithm.

For the considered application, the future load disturbances w(k+1i), Vi € Ny n,_q] (road
profile) are required. Thus, through the sequel, we assume that w(k) € R™ are assumed
to be known at each instant £, for the corresponding next N, steps. This means that this
knowledge can be directly included to the model predictions in Eq. (4.17). We stress that, in
the case of automotive applications, this is a quite reasonable assumption. Such road preview

3Here, we mark pj, = p(k) in order to emphasise the, at each instant k, the prediction model is the frozen
version of the LPV model.
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information can be pursued with different schemes from the literature, such as frequency-based
mechanisms, adaptative estimation schemes or even extended observers that estimate the road
together with the states. Some options for these algorithms are available in [Unger et al. 2013,
Tudon-Martinez et al. 2015; Morato et al. 2019b).

As argued in Chapter 3, when we use a frozen scheduling trajectory prediction, i.e. fixing
p(k+ilk) = p(k), Vi € Ny n,_1) in Eq. (4.16), we should take into account the corresponding
uncertainty propagation. We recall that using such frozen estimation mechanism is of interest
since Problem 2 becomes a QP. Nevertheless, the numerical complexity relief comes at the
expense of yielding sub-optimal performances due to model-process mismatches. In order to
account for these mismatches, the following hypothesis is required:

Assumption 4. The scheduling variable exhibits a bounded variation rate, this is, considering
Sp(k+1) = (p(k+1) — p(k)), Vk >0, it is implied that 6p(k) € &P = [dp, dp).

Remark 28. Considering the SA suspension application, we can ensure that, in prac-
tice, the Assumption 4 holds, since p(k) = fctanh(Ayx(k)) is always bounded for all
k> 0, due to the fact that zger is bounded by construction. Thereof, ép(k + 1) =
(fetanh (Apz(k + 1)) — fotanh (A,2(k))) is also inherently bounded.

Then, from the viewpoint of each sampling k, the minimal and maximal possible scheduling
trajectories are given, respectively, by:

: (4.23)
(4.24)

By = [pk) pk)+dp ... p(k)+(Np—1)

B, = [p(k) pk)+3dp ... p(k)+(Np—1)

Figure 4.4 illustrates how these minimal and maximal scheduling trajectories bound the
real one. Therefore, it is implied that Pk,f’k € [Py, Py]. Here, Pk gives the frozen-guess
estimate, i.e. P, = [p(k), ..., p(k)]T. In the likes of Eq. (3.8), which gives the full-horizon
state prediction vector in terms of the scheduling trajectory Pj, we can obtain the following

representation for the j-th state prediction:

A;j(Py)

j—1
z(k+jlk) = [] Alp(k+ n)) (k) (4.25)
n=0

K
+ Z B(m,q)(Pk)u(] - m) )

m=1—k

m—1
Bomo@P:) = | JI Alp(@) | Blp(j —m)). (4.26)
q=k+1

Note that, here, || stands for the left-side matrix product. With a slight abuse of notation,
we use A;(Py) — A;j(Py) = A;j(Py — Py) and Bj(Py) — Bj(Py) = Bj(Py — P). Furthermore,
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Figure 4.4: Minimal and maximal scheduling trajectories.
with regard to Eq. (3.8), it follows that:
A1 (Pr)
An,—1(Pr)
4.27
By (Py) Bi,1)(Pr) (427)
B(Py) = : = : : :
By,-1(Pr) Bin,~1,0)(Px) -+ Bny—1,5,-1)(Pk)

Since the frozen-based scheduling trajectory estimate is always limited within the bounds
given by Pj and Py, the model-process mismatches that arise by using a frozen model are
also bounded and can be directly computed. Accordingly, consider u(k + j) as the mismatch
related to the j-th state prediction, computed as the difference between the real state value
x(k + j), which is a function of Py, and the predicted state x(k + j|k), which is a function of
the frozen scheduling guess Py, as gives:

wk+3) = z(k+jlk) —z(k+j) (4.28)
= (Aj(Pk — Pk)) Ty + (Bj(pk — Pk)) Uk .

At each sampling instant k, the model-process mismatch for the next j steps p(k + j) =
x(k + jlk) — z(k + j) depends on the initial state value x(k) and the control sequence Uy
within these j steps. Anyhow, this uncertainty propagation variable is inherently bounded,
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which yields:

o< ki) < B, (1.29)
p. = APy — Py + Bi(P — P)U,
ﬂj = Aj(ﬁk — Pk)mk + Bj(ﬁk — Fk)U,

where U and U represent, respectively, a N,-sized stacked vector of the maximal and minimal
control input values, respectively.

Synthetically, these mismatches are bounded by the saturation conditions implied by the
input constraints and a sequence of minimal or maximal scheduling parameter variations.
Remark that p(k + j) increases along with the prediction horizon N, departing from p(k) =
0, V& > 0. This fact is rather interesting, since the MPC procedure will re-calculate the
control sequences and predictions at each sampling instant, meaning that if the algorithm is
recursively feasible, the effects of the model-process mismatches upon the controlled outputs
will diminish over time.

4.4 State-feedback procedure

Next, we detail the elements of the proposed gain-scheduled qLPV MPC algorithm for passen-
ger comfort enhancement is SA suspension systems. For performance satisfaction, the design
of this MPC integrates tools that enable the uncertainty propagation variable p(k + j) (that
grows along the horizon) to be tolerated in closed-loop. Essentially, we adapt the MPC con-
straints and cost in such a way that, even though sub-optimal results are obtain, the algorithm
will remain recursively feasible and stabilise the system. Specifically, we make use of robust
set invariant? and thus ensure that the MPC cost Jj, is a quadratic Lyapunov function for the
closed-loop dynamics, and thus decreases over time. The referred tool is presented in details in
[Limon et al. 2018; Kohler, Miiller, and Allgéwer 2018; Santos et al. 2019; Cunha and Santos
2021|. Seeking objectivity, the proofs are abbreviated; complete counterparts are available in
[Morato, Normey-Rico, and Sename 2020c].

Assumption 5. Consider: (1) Q € R"™*" gqnd R € R™*™ as positive definite matrices;
and (2) k € R™*" qs an arbitrary stabilising state-feedback control gain. Consider that the
discrete-time model from Eq. (4.8) is controllable. Then, there exists another positive definite
matriz P € R™*"= sych that (A(py) + B(pr)k)T P(A(pr) + B(pr)k) — P = —(Q + kT Rk)
holds for all pr, € P.

Proposition 2. Consider Assumption 5 holds. Then, if the stage cost weights Q and R are
adequately chosen, is it possible to use an MPC algorithm, formulated with a quadratic stage
cost Jy, to optimise and enhance the comfort of onboard passengers, with respect to nominal
situations (those with a passive damper).

4We stress that robust constraint satisfaction and robust performances in the context of LPV MPC are
addressed in thorough details in Chapter 6, where we propose a robust controller for tracking with disturbance
propagation using zonotopes.
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Proof. Indeed, using MPC as a SA suspension control system can act to ensure a better
comfort of the onboard passengers. The MPC will, at each sampling instant, act to minimise
the primary control objective (-, -) (stage cost along the control horizon). In order to do so,
the time-domain index given in Eq. (4.13) is embedded to the stage cost ¢(-,-) by the means
of adequate weights @ and R. Thus, adapting the discrete-time formulation from Eq. (4.14)
to the horizon-long prediction yields:

NP
Jc]\c?r;nfort = Z Tszg(k + ]‘k) : (430)
=0
which is re-written as follows:
NP Np
Y 2k 4T = > llak+ k)G + lluk + § — 1k)[|% (4.31)
=0 =0
From Eq. (4.8), we obtain®:
2(k+jlk)Ts = (C{1,:}a(k+j — 1|k) (4.32)

+ Di{1,:}(plk + G — 1k)u(k +j — 1k))* T .
Thus, if @ and R are chosen, respectively, as:

Q = (C{1,:)'Ty(C{1,:}) . (4.33)
R = (D{l,:}(pk))TTS(D{l,:}(pk)), (4.34)

2

the MPC policy with stage cost (-, -) will act to minimise 27 (k) and, thus, enhance comfort

performances. O

Assumption 6. Consider there exists an admissible robust control invariant set Xy C X C
R"* such that for all x(k) € Xz, we obtain u(k) = rx(k) € U and z(k +1) = (A +
By (p)r)a(k)) + (k) € Xg, Vi(k) € [y . Finy-alop € P.

Remark 29. Assumption 6 implies in the existence of a control invariant set which is robust
against the worst-case uncertainty propagation values. Note that the bounds [N and AN, -1
grow with N, and thus the solution can be quite conservative. When such robust terminal set
1s coupled to the MPC optimisation procedure, it becomes implied that the corresponding closed-
loop domain of attraction tolerates the uncertainty that arises with the biased prediction model,
which also gives holds on (quadratic) stability and recursive feasibility of the optmisation. The
computation of such set is detailed in [Morato, Normey-Rico, and Sename 2020c/, along with
the theoretical certificates for the mentioned properties. This development is suppressed herein,
for brevity. We note that in Chapter 5, a zonotopic-based solution for robust constraints
satisfaction is developed in depth.

SM{l,:} denotes the vector formed by the I*® row of matrix M; moreover, the road profile disturbance term
w is neglected from the sequence, since the control law has no measures over it (it cannot be minimised, since
it is an external variable).
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In sum, we provided a state-feedback MPC design procedure for the control of SA suspen-
sion systems, aiming to enhance passenger comfort performances. This procedure converts the
nonlinear optimisation problem for the original qLPV model into a gain-scheduled algorithm
wit QP complexity. To make sure the simplifications of using a scheduling trajectory guess
do not compromise the control performances, a robust control invariant set is used such that
recursive feasibility is maintained. This MPC design is sub-optimal due to model-process mis-
matches, but it has a major advantage of using a single QP, which makes it computationally
practicable under the 5ms sampling period of the vehicle. For the implementation of the
algorithm, it is assumed that the road profile disturbances w(k) are known for the future NV,
steps. Notice that when computing the terminal set sequences, the road profile information is
embedded. The implementation of the proposed MPC algorithm is described in Algorithm 3.

Algorithm 3 LPV MPC for passenger comfort enhancement.

1. Use some estimation algorithm to get the future values for the road profile disturbances
w along the next N, steps;

2. Compute the LTI model that approximates the process along the horizon, based on the

scheduling evolution guess P, for j = 1, ..., Np;
3. Compute the robust terminal Xy that satisfies Assumption 6;
4. Loop from k = 0:

(a) Measure (or estimate) the system states z(k);

(b) Compute scheduling variable p(k) and corresponding frozen scheduling trajectory
vector P;

(c) Solve the the QP in Eq. (4.16);

(d) From the solution U}, take the first entry u*(k|k) = ka(k) and apply it to the
process.

4.5 State-feedback control results

In this Section, numerical simulation results are presented in order to illustrate the perfor-
mances of a SA suspension system regulated under the proposed qLPV MPC algorithm. The
simulation is performed with a realistic, validated, full vehicle nonlinear model of the exper-
imental testbed of a vehicle equipped with four SA dampers. Recall that the control input
for the SA suspension system is the PWM signal, which varies the damping coefficient of the
electro-rheological dampers by changing the electric field applied over them, which varies the
amount of force that is delivered. Furthermore, the primary control objective £(-) is taken in
order to minimise chassis accelerations, to ensure that a smoother ride is provided and the
comfort of the passengers is enhanced. The indexes provided in Section 4.3.3 are here used in
order to evaluate the enhancement provided by the proposed scheme.
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Figure 4.5: Road profile and scheduling parameters.

In the sequel, we compare the proposed method to other optimal suspension control
methodologies: the proposed method is denoted “qLPVMPC”; “COLQR” denotes a clipped
optimal LQR, based on a linearised (LTI) model of the process, using the same synthesis
weights @, R and P [Morato, Sename, and Dugard 2019al; “LTIMPC” denotes an optimal
control method based on an LTI® model [Morato et al. 2018a], using the same stage cost and
weights; finally, the results obtained with a purely passive damper strategy are marked as
“PDamp-min” and “PDamp-max” (tuned using fixed damping coefficients, respectively given

by ¢(-) = c and ¢(-) =7¢).

Following the tuning rules presented in [Morato et al. 2018a|, we choose a prediction
horizon N, of 10 samples. In order to evaluate the control strategy itself, the computational
processing time for the sequence of sets is excluded from the nominal elapsed time of the
algorithm, since they are constructed offline.

The following results consider the SA suspension at the front-left corner of the vehicle. We
stress that similar results were obtained for the other three corners (and thus not presented
herein). The chosen road profile z,(¢) = w(t) stands for a car running in a straight line on a dry
road, when it encounters (¢ = 0.5s) a sequence of two 5 mm bumps on all its wheels, exciting
the bounce motion, which must be counteracted by the suspension controller. This simulation
scenario comprises 7s. Figure 4.5 shows these bumps and the scheduling parameters along
the simulation.

Figure 4.6 depicts the evolution of both controlled outputs (Zs, Z,s) along time and, ac-
cordingly, the delivered damping force (as well as the dissipativity constraints D). From this
Figure, the comfort performances can be evaluated. Smaller/smoother vertical acceleration

SIn fact, [Morato et al. 2018a] consideres an LPV model for simulation, which is pre-filtered an becomes
LTI from the control viewpoint, at each sampling instant. The method provides no theoretical guarantees on
recursive feasibility and stability.
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Figure 4.6: Controlled outputs and control signal.

variables mean better comfort for the onboard passengers. Recall that the proposed MPC is
tuned in order to minimised these variables. Therefore, it becomes evident that the proposed
predictive controller yields smoother results than the other strategies, further minimising the
control objective £(-). The LTIMPC method also achieved good results, but not as smooth as
the ones with the proposed scheme (due to the over-approximation of the model by pre-filtering
and “hiding” of the nonlinearity). Due to saturation effects, the LQR strategy achieves results
almost equivalent to those with a passive damper (as in open-loop conditions).

In order to quantitatively assess these results, the time index J* . is computed through

comfor
a normalised root-mean-square (RMS) function of the acceleration variables; note that smaller
RMS values denote better performances. Table 4.2 shows the RMS indexes obtained for both
Zs(t) and Z,s(t) variables, and the enhancements achieved with each control method with
respect to the passive condition. The advantage of the proposed method resides in upgrading
the comfort of passengers in over 14 %, with respect to a passive damper condition, in terms of
chassis body acceleration. Recall that stiff damping (PDamp-max) provides better comfort,
related to Zs, while smooth (PDamp-min) damping provides better roll safety, related to
Zus- In terms of wheel link acceleration, the performances are enhanced in over 45%. Both

upgrades’ are quite significant.

Furthermore, in order to demonstrate the benefits of the proposed method in frequency
terms, the index Jcomfort is provided. This index is computed with respect to the chassis
acceleration curves Z; filtered by ISO 2631-1 human vibration sensitivity weightings [Inter-
national Organization for Standardization 2016]. This fifth-order filter Wy(s), as given in
[Zuo and Nayfeh 2003], selects the frequency-range of the signal that concerns human comfort
under whole-body vibration (motion sickness, etc). Figure 4.7 shows the FFT results of the

"The performance index J' ... is computed as detailed in Sec. 4.4. The upgrade percentages are given
with respect to the least performant strategy.
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Table 4.2: Performance enhancement.

RMS Method Value | Enhancement
Regulation | PDamp-min | 0.4650 0%
COLQR 0.4646 0.08 %
Z(t) > 0 | PDamp-max | 0.4572 1.67%

qLPVMPC | 0.3984 14.32%

Regulation | PDamp-max | 4.826 0%
PDamp-min | 3.008 37.67%

Zus(t) — 0 COLQR 3.005 37.73%
qLPVMPC | 2.611 45.89 %

ISO-filtered Z4(t) curves under the 0 — 20 Hz frequency range. Maximal damping is expected
to yield better comfort performances, as discussed by [Poussot-Vassal et al. 2012]. Note that
the important issue is to reduce the peaks caused when a road profile income appears. In
numerical terms, the peak with the qLPVMPC method is 22.56 % smaller than the one with
the passive (stiff) damper, which demonstrates furthermore the enhancement provided to the
passengers. Note that the enhancement with the other methods (COLQR, LTIMPC) are
smaller that the one with the proposed method. Respectively, they yielded 4.76 and 20.03 %
peak reduction.

Remark 30. The considered system is inherently complex and enhancing passenger comfort
1s a difficult task for SA suspensions, since the damping force can only be applied in the same
direction as the deflection velocity movement, i.e. there is a limited working space for the
task, regarding Fy, as illustrates Figure 4.2. Even though the provided enhancements are not
so expressive in numerical terms, their conversion provided to the comfort of passengers is
strong. Note, furthermore, that the perfromance enhancements provided with the proposed
method, in both time and frequency domain, are quite relevant considering that these results
are derived from the application of the algorithm to a scaled vehicle model. Note that the recent
real-time LTIMPC method from [Morato et al. 2018a] had already been demonstrated to yield
much better comfort and roll performances (over 50%) than other available techniques in the
literature. The avantages with the proposed methods, with respect to to [Morato et al. 2018a/,
1s that it can provide better performances and, at the same time, theoretically ensure recursive
feastbility and stability, which was not ensured by the prior.

We stress that the proposed method with its sets computations can be performed using
standard SDP optimisation tools. In fact, the control calculation step (Step 4(c) of Algorithm
3) allows to achieve reasonably reduced numerical effort (elapsed within 3.5ms < T, in
average). If the original nonlinear programming problem was to be considered (without the
frozen guess for the scheduling parameter), much greater effort would be necessary and the
law would not be able to be implemented for real-time purposes.
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4.6 State-feedback MPC: Some remarks

Before presenting the IO technique, we highlight some final remarks on the proposed state-
feedback algorithm:

e The proposed MPC represents a novel scheme for the enhancement of passenger comfort
using SA suspension systems. The suspension is modelled within a qLPV framework,
and the damping force is modelled through a nonlinear hyperbolic tangent function, as
suggested by the literature. The method embeds the nonlinearities within a scheduling
parameter, which is estimated through the prediction horizon at each sampling instant.
The frozen scheduling evolution guess is used to transform the nonlinear prediction prob-
lem into a linear QP, which can be solved within some mili-seconds. A terminal robust
positive invariant control set is used in the context of MPC so that it is able to maintain
(quadratic) stability and recursive feasibility, despite model-process mismatches (in the
regulation case). These properties are analytically demonstrated. The optimisation cost
function of the MPC is shown to embed comfort constraints, with regard to performance
indexes from the literature. The algorithm is successfully applied to the control of a SA
suspension system via realistic simulation, achieving good results compared to existing
control optimal control methods.

e The main limitation of the method resides in accounting for the frozen estimate, and
the complexity of computing the set-based ingredients. Also, the method uses state
variables, which are typically not available in practical situations.

4.7 Why use output-feedback?

As elaborated and debated along the Introduction of this thesis, we can concretely affirm
that Model Predictive Control is nowadays a widely used technique, with practical relevance
and theoretical interest. MPC schemes using state-space process models have had considerable
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research focus over the last years, with many results registered. As shown in the prequel, MPC
based on SS models can be elaborated to satisfy rigorous performance requirements. Moreover,
under bland assumptions, these algorithms enable optimal closed-loop performance.

Yet with great theoretical value, the standard SS MPC design requires the availability
of state measurements in real time. In turn, state variables are often difficult to measure
or estimate with precision. Moreover, state estimation schemes can significantly deteriorate
closed-loop performances of MPC in the presence on disturbances and constraints. Due to
these issues, SS realisations fall short of industrial expectations, which are seldom anchored
in input-output (IO) process descriptions. Since we are concerned in this work with the
exploitation of MPC algorithms for LPV systems, we also highlight that, nowadays, powerful
LPV IO identification tools exist for a great variety of applications and system classes, e.g.
[Bachnas et al. 2014].

For the reasons given, we focus henceforth on 10 MPC schemes for LPV systems. Obtain-
ing reliable SS descriptions of an LPV IO model is numerically very tough®, since the dynamic-
dependency problem hinders such translation, as argued in [T6th, Abbas, and Werner 2011].
Therefore, it is desirable to design MPC schemes directly using IO LPV models, without the
need for any IO-SS conversion. As of today, there are only a few papers which propose MPC
schemes for LPV systems described in the IO form: [Abbas et al. 2015|, [Abbas et al. 2016,
and [Abbas et al. 2018]. Although these works provide closed-loop stability assurances, they
assume that the future scheduling behaviour is known, which is false for the vast majority of
applications, or resort to the worst-case solution, robustifying the MPC by considering the
scheduling variables as bounded uncertainties, which often leads to excessive conservativeness.

Motivated by the fact that recent works have proposed (numerically-cheap) recursive linear
schemes that are able to extrapolate the future scheduling trajectories with accurateness, e.g.
[Morato, Normey-Rico, and Sename 2019; Morato, Normey-Rico, and Sename 2021b|, and the
results revisited in Chapter 3, approach (iv). Next, we formulate a novel MPC scheme for 10
LPV systems using such parameter extrapolation laws.

4.8 Input-Output LPV setup

In this Section, we provide the preliminaries of using an input-output representation in the
context of LPV systems, the corresponding fictive state-space description used for stability
analysis, and the translation of the scheduling parameter extrapolation scheme to this context.

8This issue is exploited in details in recent key papers on the topic, e.g. [Toth, Abbas, and Werner 2011;
Toth et al. 2011].
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4.8.1 Preliminaries: I0 LPV model

We consider the following discrete-time multi-input multi-output 10 LPV system:

2

Na
(Iny ¥ Zaxp(k))zﬂ) sk = S bi(o(k)= (k) (4.35)
i=1 Jj=1

where u(k) := §(k) +u(k — 1) € R™ is vector of control inputs, being §(k) the corresponding
control increments, y(k) € R™ is the process outputs vector, z~! is the one-sample backward
shift operator, ng,n, > 0, while a; € R™*™ and b; € R™*™ are coefficient functions. The

incremental control representation implies in an implicit integral action of the controller that
defines the signal d(k).

We also consider that the system in Eq. (4.35) is, in fact, quasi-LPV, being scheduled by
the vector of output-dependent time-varying parameter p(k) = f,(y(k—1)) € P C R", being
bounded and measured online (known by definition). The nonlinear scheduling map f,(y) is
algebraic, class C! for all y; P := {p € R P; <pj<pj JE N[an]} defines a compact,
convex scheduling set. By definition, the future scheduling parameters p(k + j), Vj € Npj
are unknown at time instant k.

Remark 31. We recall that many nonlinear systems can be embedded to a qLPV realisations
in the 10 form such as gives Eq. (4.35). For such, a coherent differential inclusion that maps
p(k) = fo(y(k — 1)) should be generated. More details on this topic have been presented in
Chapter 2; experimental examples are available in [Hoffmann and Werner 2014].

4.8.2 Impulse response

The IO realisation from Eq. (4.35) has an equivalent infinite impulse response form:

+oo
y(k) = > hip(k), ..., p(k —i))u(k — i), (4.36)
i=0

where h;(-) € R™*™ are known as the Markov coefficients of the LPV system. These coeffi-
cients can be computed recursively as follows, where h;(k) := hi(p(k),...,p(k —1)):

hi(k) = { bi(p(k) = S ay (o) iy (k = ), i <,
= omnm) 4 (k)i (k — ), lse.

4.8.3 SS representation for analyses

Consider the corresponding non-minimal (fictive) SS realisation of Eq. (4.35), used for stability
analysis:

w(k+1) = Alp(k))z(k) + Blp(k))d(k), (4.37)
y(k) = Clp(k))z(k) + D(p(k))d(k),
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where z(k) = [y(k — )T, ..., y(k —na)", ulk — DT, ..., u(k — ny)’] € R™ defines the
state vector with n, = ngny, + nyn,. It is important to note that in this SS representation,
all states variables are known (current and past values of the inputs and outputs). Matrices

A() | B() , ~ .
[C’() D0) } are respectively given by:
[ —ai() o =, () (o) +0i() e b () | o]
L, ... 0 0 0 0
0 0 I, 0 Ip, )
0 0 I, 0 0
"m0 o a0 GO E) - b B0

As shown in Section 4.9, these matrices are used to compute stability-related tools for the
MPC, in an offline synthesis step. During the implementation, the MPC requires only an 10
prediction equation (no state measurements!), as detailed next.

4.8.4 Full-horizon IO predictor

The 10 qLPV model from Eq. (4.35) is used by an MPC algorithm and, thus, a full-horizon
prediction equation is required to compute control law at each sample. For such, consider
that the scheduling trajectory P, = col{p(k + j|k)T}T,Vj € Njo,n,-1) is at hand, being N,
the prediction horizon. Thus, it follows that:

Y = H(Py)A(klk) +O(Py)x(k), (4.38)

where Y € R™™ collects the output predictions y(k + j|k),Vj € Njo,n,-1) in a column-
stacked vector and A(k|k) € R™"r comprises the future inputs §(k + j|k),Vj € Nio,n,-1] in
another column-stacked vector.

In MPC theory, H(P;)A(k|k) is usually named the “forced response” of the system, giving
the dynamics implied by the control effort, where ©(Py)z(k) is called the “free response”,
which gives the behaviour in the absence of future control inputs. The prediction matrices

are:

ho(k) 0

ho(k—i—l)—l—hl(k-i-l) 0

H(P(HE) = | ) | ,
: . : (4.39)
P hi(k+ N, —1) ... ho(k+ Ny~ 1)
| oP(klk) = [6(k+1)7 ... dk+N)T "

The elements of ©(P) are found using 8(k + j) = —Zin:irf(j’na) ai(p(k + 7)0(k + j —

— o
1) + D0k + ), Vj € Ny, with 80k + 7) = [~aa(p(k + 5)) - — an, (p(k + j))ba(p(k +
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— —_ — -
3)) e by (p(k + )T and IV = diag{l}, , Ir,}. Finally, each 6(k + j) is given by 0(k + 7)

with its (ng + 1)-th element added to a correction bias 25:1 hi(k + 7).

4.8.5 Process constraints

We consider that the qLPV system in Eq. (4.35) is subject to hard compact polyhedral
constraints on outputs and inputs, which define an admissible operation. Specifically, we use
y(k) € Y and u(k) € U, ¥k > 0, where:
Y = {yeRmw: |y]| < Y Vi € N[l,ny}}’ (4 40)
U = {ueR™: |uj| <uy, Vj €Ny, t- '

Due to the explicit integral description of the control input, the following constraint is also
used: §(k) € D := {6 € R™ : |§;| < 4;, Vj € Ny} Vk > 0. Furthermore, we assume that
the scheduling proxy is locally Lipschitz whenever these constraints are satisfied, i.e.:

Assumption 7. The nonlinear scheduling parameter map f, : YV — P agrees to a local
Lipschitz condition around any arbitrary point y € Y, i.e. |[fo(y) — fo(@)| < ll(y —
9|, Vy, g € Y, where the smallest constant 7, is known as the Lipschitz constant for f,(-).

4.8.6 Scheduling parameter extrapolation

The concept of MPC is based on spanning a prediction of the process variables along a future
horizon window. For such, we use the IO qLPV prediction Eq. (4.38). As previously stated,
the future scheduling sequence Py is required. In previous works on the studied topic, i.e.
[Abbas et al. 2015; Abbas et al. 2018], the scheduling trajectory Py was treated as a bounded
uncertainty variable (frozen-guess approach, as done in the state-feedback formulation), or
assumed to be known (which is false, and thus performance certificates are lost). For this,
we benefit from the extrapolation framework presented in Chapter 3 (approach (iv)), which
is based on a first-order Taylor expansion of the scheduling proxy f,(y(k —1)). As previously
demonstrated, the main advantage of this extrapolation procedure is that it guarantees a
convergent guess with a small, bounded residual error, while only resorting to linear operators.
We henceforth adapt the formulation for the IO case.

Denote dy(k) = y(k—1) —y(k—2) as the incremental output deviation. By definition, oy is
bounded to a compact and convex box-type set 6) := {0y € R™ : |dy;| < @j,Vj € Njpny -
Recall that the method is as follows: consider that the static scheduling map f,(y) can be

approximated by f,(y) = f,(y)|y + %;y) ; (y — 9) + &p, being § the expansion point and &,

a residual which inherits the discrepancy between the real static map and its approximate.

Since f,(y) is assumed class C!, it is direct that the partial derivatives 8%5?/) _ are ultimately

y

9Here, y,; and u; define box-type upper bounds for the corresponding j-th output and input, respectively.
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bounded for all § € ). From this development, we obtain:

p(k+1lk) = p(klk)+ [ (k)oy(kIk) + Ey(k[k),

p(k+ Np = 1lk) = p(k+ Np—2[k)
+ fO(k+ N, —2)5y(k + N, — 2|k)
+ &k + Ny —2k).

Note that p(k|k) = p(k) and dy(k) are known variables at each instant k, whereas fg(k)
can be numerically evaluated. In practice, fpa(k + j) is unknown for j € N [1,N,—2], but it can
be replaced by f?(k +j) = f;?(k) ,Vj € N n,—2 where f?(k) denotes the partial derivative
evaluated at instant k (refer to the discussion in Chapter 3 and in [Morato, Normey-Rico, and
Sename 2023d]). By doing so, it is implied that p(k+j|k) ~ p(k+j—1]k)+f§(k)5y(k+j—l\k).
Therefore, the estimate for the future scheduling variables can be written as the sum of the
estimate from the previous sample corrected with an adjustment term f[;d (k)oy(k + 7 — 1|k).
Accordingly, we can write the vector-wise 10 qLPV scheduling trajectory extrapolation in a
recursive fashion:

By = P+ (k)oY (4.41)
where the sequence of output increments is given by 8V}, = col{6y(k+jlk)T}T, V] € Npo,n,—2-

Lemma 4.8.1. Assume that f,(-) is class C* and that fg(k) is ultimately bounded. Then, the
recursive extrapolation algorithm in Eq. (4.41) converges if the closed-loop is stable.

Proof. This proof is reduced for brevity, full details are given in Chapter 3. The proof
is herein briefly sketched for the IO case: consider that the residual terms ,(:|k) should
turn null. Thus, use limy_,o y(k) = y. holds (stability) and take &,(k + j|k) = f,(y(k +
Jlk)) — foly(k + 5 — 1]k)) — fg(k)éy(k + jlk). Due to the stabilisation!?, it directly fol-
lows that limy_,o fo(y(k + j|k)) = limp_y00 fo(ye) and limy_,o dy(k|k) — 0, which implies in
limp_ oo §5(+|k) = —limy_y0o f/‘?éy(‘\k) — 0. This concludes the proof. O

bound
P

—~
Lemma 4.8.2. The residual error is ultimately bounded: |&,(-|k)|| < <7p + fT?) oy, Vk > 0.

Proof. The residual term in the extrapolation law is given by &,(k+ 7+ 1|k) = f,(y(k+j+
1|k)) — foly(k+jlk)) — f,?(k:)éy(k +jlk). Using a triangular inequality, we obtain ||£,(k+ j +
k)| < 1fp(y(k+5+11k) = fo(y(k+5lk) | + | £ (k)dy(k+j|k)||. Finally, due to Assumption
7, we we state that [|€,(k + 7 + 1k)|| < v,[0y(k + 5)Ik]| + || £ (k)dy(k + 7). Since f(k)

is ultimately bounded, it follows that: [|£,(k + j|k)|| < (7,, Jrfig) 0y. This concludes the

proof.

1ONote that the MPC will be verified to quadratically stabilise the LPV process for any scheduling variable
value (Sec. 4.10). Even if the future scheduling prediction is biased, the closed-loop remains stable.
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Remark 32. The extrapolation procedure presented in this section is completely detailed in
Chapter 3 and in published paper [Morato, Normey-Rico, and Sename 2023d|. The Hessian-
based estimates from [Hanema, T6th, and Lazar 2021] and the iteratively refined estimated
from [Cisneros and Werner 2017a] are comparable methods to the one considered herein. Nev-
ertheless, the main advantage of the proposed scheme is that converging estimates with reduced
error bounds, formulated by the means of linear laws. Thereof, the corresponding model-process
uncertainties that are derived when applying MPC became very reduced, enabling less conser-
vative control synthesis.

4.8.7 The MPC design

As previously stated, we consider an MPC design for LPV processes with 10 descriptions. Ac-
cordingly, we use the recursive extrapolation procedure in Eq. (4.41) to generate the scheduling
sequence estimate Py, used to generate the future output predictions Yy via Eq. (4.38).

Remark 33. The residual errors £,(k+j|k) are bounded (Lemma 4.8.2) and, in practice (Sec.
4.10), we observe that these bounds are very small (thus, negligible) and that the residuals
dissipate within a few samples. Thus, for the MPC formulation, we assume &,(k+ j|k) as null
(i.e. that the scheduling trajectory estimates via Eq. (4.41) are accurate). In Chapters 5 and
6, we provide theoretical assessments for a robustified MPCs (and in [Morato 2023/, for the
10 case).

Consider the following cost function:

Np—1
Tr = J(@(k),r(k),P) = > L(elk+ilk),d(k+ilk)) + V(z(k+ Nylk) — ),
=0
where the stage cost £(e,d) = |ellg + ||v||r is given with respect to the output tracking

error e(k) = r(k) — y(k). The terminal cost V(x — x,) requires x, which is the fictive state
description given through Eq. (4.37), and z,, the envisioned state reference target, defined
in terms of r(k); this cost is used to penalise the distance of non-minimal states at the end
of the prediction horizon to a given target, whereas ((-,-) weights the performance along
the horizon. Consider @) and R as positive definite weighting matrices, used to imply the
envisioned trade-off between control effort and output reference tracking.

Taking Jj into account, the proposed MPC resides in solving the following optimisation
problem at each instant k:

min SN0 (e(k + k), 6(k +ilk)) + V(z(k + Ny|k) — ) ,

A(k|k)
5.t : Yy = H(PO)A(K|K) + O(Py)a(k), (4.42)
y(k+jlk) € Y
u(k+jlk) eU,
5(k+ j|k) € D

(a(k + NyJk) — ) € Xy,
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where X is a terminal invariant set for the controlled IO LPV system. Let J* (x(0),r(k), Py)
be the optimal solution of the optimisation in Eq. (4.42), from which A*(k|k) is the optimal

sequence of control inputs. Then, the MPC law at time instant k considers in apply the first
entry of A(klk)*, i.e. 6*(k|k), to the process using u(k) = u(k — 1) 4+ 6*(k|k).

4.9 Stability and recursive feasibility in the IO form

We proceed by how the MPC terminal ingredients V() and Xy should be generated in order
to render an asymptotically stable closed-loop, as well as a recursively feasible optimisation.
First, let us define the admissible steady-state targets for the IO LPV system in Eq. (4.35).
We say that » € R is an admissible!! output reference target if and only if there exists a
control input u, € U such that (I, + >0 ai(fo(r)) r = (312 bi(fo(r))) up. Accordingly,
we introduce the set of all admissible state-input targets (z,,u,), that is: X, := {z, €
R™ |z, = [1p,7, 1n,ur], ¥(r,u,) € R X U}. Due to the box-type constraints over y and u, X,
can be equivalently described as {z € R" | |x;] < T;,Vj € Ny 1}

Assumption 8. The reference set-point is admissible, i.e. r(k) € R.

Assumption 9. The scheduling trajectory Py is known, with each entry p(k + jlk) € P,Vj €
Njo,n,—1]-

Assumption 10. The scheduling parameters take a constant value p, in steady-state, i.e.
p=prV(x—2)eXy.

Assumption 11. The stage cost function is positive definite and uniformly continuous such
that £(e,0) > ay(|le]l) and |€(e1,d1) — £(e2,d2)| < Ae(|ler —e2|]) + As(]|01 — d2]]), where ay, Ae
and \s are K-functions. It is implied that £(0,0) = 0.

Set of Assumptions 2.

1. There exists an admissible terminal feedback law uw(k — 1) + k¢ (z(k),r(k), Pr) € U.

2. The terminal set Xy is closed, contains the origin, and represents admissible positive
mvariant set.

3. The terminal cost V (x—x,) is continuous and positive for all xt—x, € X,.. Moreover V (+)
represents a control Lyapunov function for the unconstrained LPV system in Eq. (4.35),
meaning that there exist constants b > 0 and o > 1 such that V(x — x,) < bla — x,|7. It
is implied, thus, that V(A(fy(r))(x — z,) + B(p)re(:)) = V(z — xr) < Uy — 7, 54()), for
allr € Rand V(z1 — xp) — V(z2 — xr) < ap (|71 — x2]) (ice. V() is a K function).

Next, we provide a sufficient condition to compute the terminal elements that enable the
error dynamics e(k) = r(k) — y(k) to converge to the origin, which conversely means that

"Here, it is implied that the reference signal 7(k) is reachable. For further generality, artificial reference
variables could be included, as in [Limon et al. 2018].
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offset-free reference tracking is ensured, while maintaining recursive feasibility of the MPC
optimisation.

In order to satisfy the conditions required by Theorem 1, we choose the following quadratic
terminal cost function V(z — x,) = (v — 2,)" P(z — z,), where P = PT is a positive definite
weight. Accordingly, the terminal set X is taken as a sub-level set of the terminal cost, i.e.:
X = {z € R" |2T Pz < 1}. By definition, X is an ellipsoidal set constraint, which should
be positively invariant for the terminal feedback r¢(-). Thus, the following Theorem gives a
numerically solvable sufficient solution that can be used to generate the terminal ingredients.

Theorem 2. Terminal ingredients

Consider that Assumptions 8-2 hold. Then, conditions (C1)-(C5) from Theorem 1 are satisfied
if there exist a symmetric positive definite matriz P € R™*" and a rectangular matriz W €
R™X"e sych that Y = P~' > 0, W = KY and that LMIs (4.43)-(4.45) hold under the
minimisation of log det{Y'} for all p € P. The terminal feedback is then given by rki(-) =
K(z — x,).

Y * * *
(A(p)Y + B(p)W) Y | * *
- > .
v olot > 0, (4.43)
1% 0| 0 R'|
2 | Iy |
i {5} > 0,7 €N 4.44
I{j}YT ‘ % =z y ) € [1,ng] ( )
-2 7
[ O [ I | 0,% € Ny, - (4.45)
* Y s

Proof. This proof is reduced for brevity, a full demonstrative counter-part is available in
[Morato 2023|. Consider r(k) is piece-wise constant, thus satisfying Assumption 8. Note that
(e,v) = |lellg + [[vl|r is equivalent to ||z — z,[5 + [|v]|r, using Q = diag{QI,,n,, 0nun, }-
Consider r(k) is piece-wise constant, thus satisfying Assumption 8. Consider Py is known due
to the extrapolation procedure from Eq. (4.41). Since p(k) = f,(y(k — 1)), it follows that
p(k) = p, in steady-state, iff limg_, 1 y(k — 1) = r. Then, by applying a Schur complement
to LMI (4.43), we obtain condition (C3), which suffices for (C2). By definition, an ellipsoid
ensures (Cl). (C4) and (C5) are respectively satisfied by applying Schur complements to
LMI (4.44) and (4.45). In turn, the terminal feedback x:(-) = K(x — x,) ensures that the SS
representation in Eq. (4.37) is asymptotically stable, which conversely implies in the output
tracking of (k). This concludes the proof. O

Remark 34. The terminal ingredients provided through Theo. 2 ensure recursive feasibility
and asymptotic stability of the tracking error trajectories (refer to Propositions 3-4). Note that
LMI (4.43) is infinite-dimensional, having to hold ¥ p € P. In practice, the solution can be
found by enforcing the inequalities over a sufficiently dense grid of points (p) along P, then
verifying it for a denser grid.
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Remark 35. An alternative formulation to drop the parameter-dependency of the LMI (4.43)
is to use the full-block S-procedure over an LF'T of the LPV system [Scherer 2001], which
results in similar LMIs to those presented in [Abbas et al. 2018].

Proposition 3 (Recursive feasibility). Let there exist a solution'Y to Theorem 2. Then, given
any x € Xy, z, € Xy, 7 € R and 6 = ry(z,7,-), we have 2+ = Az + BK(z — z,) + BKu, €
Xy. Consider an optimal sequence A* = (85,07, ..., (5}*fo1) and an reference target r. Then

~

0¢ = (01, ,0§, 1, kt(x,1,")) define feasible (candidate) solution of the MPC problem in Eq.
(4.42) for any r € R, which means that the optimisation is recursively feasible.

Proof. Let Assumptions 8-2 hold. Consider there exists a solution Y to Theorem 2. Then,
from conditions (C1), (C2), (C4), and (C5) from Theorem 1, we can infer that the generated
control signal provides recursively feasible solutions to the MPC optimisation in (4.42). Take
k(-) = up+K(x—x,) and p, = f,(r). Then, the if the initial condition x(0) generates a feasible
input sequence A*, all future iterations of the optimisation will also be feasible: the generated
control law control is admissible (condition (C4)) and all state variables z € Xy generate
successor state variables 2t which are also inside X (condition (C2)), which contains the
origin (condition (C1), terminal condition for (x —z,), and X ¢ being sub-set of X,. (condition
(C5), which ensures that z,z1 are admissible). This concludes the proof. O

Proposition 4 (Asymptotic stability). Let there exist a solution Y to Theorem 2. Then,
the LPV system (4.35) in closed loop with the MPC input k(-) exhibits an asymptotic stable
tracking error dynamics. That is, for any feasible initial condition xg and constant set-point
r € R, it is implied that ||x(k) — z,|| < B(||z(0)|], k), where 5 is a K-function which passes
through the origin.

Proof. Let there be a terminal stage cost V' (-) such that Assumption 11 holds. Let Assumption
2 also hold and Proposition 3 be verified. Note that since £(-,-) is a quadratic stage cost, ay,
Xe and A, indeed exists. Consider there exists a solution Y to Theorem 2. Then, the SS
closed-loop is stable due to (C3) of Theorem 1, which conversely ensures that V(z(k) — z,) —
V(z(k—1)—z,)) < —|ly(k)—r|lg. Thus, we obtain ||y(k)—7r|o < B(||(x(0)—=z,)||,k). Since
@ > 0 (positive definite), asymptotic stability is established. This concludes the proof. O]

4.10 Output-feedback control results

In this Section, we demonstrate the effectiveness of the proposed method for controlling qLPV
systems in the IO form, without any state measure or estimation procedure involved. For such,
we consider an adapted version of the unstable second order system from [Abbas et al. 2015],
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with additional nonlinearities; the dynamics are:

—a1(p(k)) —az(p(k))

—1)2 _1)\2
yk) = (02— o.7y(k101)) Yk — 1)+ (=0.7 — 0.43/(’“101)) yk—2)  (4.46)
b1 (p(1)) ba(o()
k—1)2 k—1)2
oA 122D s a6 — 288D oy,
10 10
y(k—1)°

where the qLPV scheduling parameter is endogenous and given by p(k) = “=5=.

This system should be controlled such that the output trajectory y(k) tracks a given
piece-wise reference signal, whilst the following constraints are respected: u(k) € U = [—1,1],
d(k) € D :=[-0.04,0.04], y(k) € Y := [0,5],Vk > 0. We note that these constraints imply
that p(k) € P := [0, 2.5],Vk > 0. Furthermore, we assume the system operates under a
sampling rate of 40 Hz. The proposed MPC is tuned with a prediction horizon of N, = 10
discrete-time steps, thus previewing a window of 250 ms.

First of all, we show that there indeed exists a solution to Theo. 2, which enables quadratic
terminal ingredients computed using:

1592 1.28 1.68 2.51
* 14.94 2.31 1.46

-1 _ —
p=Y = * * 1 045 |’ (4.47)
* * * 1
w = [0.10 0.0 0.03 0.03].

Thereof, we can concritely affirm that xy(x —xz,) = K(z—2a,), with K = WP, V(x—x,) =
(x — 2,)TP(x — z,), and Xy := {z — 2, € R™ |(z — 2,)TP(x — z,) < 1} are suitable
terminal ingredients for the MPC optimisation in Eq. (4.42), ensuring recursive feasibility
and asymptotic stability (and, in turn, offset-free reference tracking). We stress that these
ingredients are generated offline, with respect to the tuning parameters @@ = 0.81,, and
R =0.2I,, and the known sets U, D, Y, and P.

Taking into account that stability is ensured by design (and, thus, Lemma 4.8.1 holds),
we now demonstrate how the scheduling parameter extrapolation procedure operates. During
the implementation, the recursive estimates are generated through the linear operator given in
Eq. (4.41). As shows Figure 4.8, the generated estimates P}, are very accurate, thus passing to
the MPC precise information regarding the future behaviour of p. In this Figure, we can also
see that the estimation error £, is indeed small (refer to Lemma 4.8.2) and converges rapidly,
which means that it can be neglected for simplicity (treating this uncertainty robustly directly
in the MPC synthesis step is a topic for future works).

Next, we show the obtained performances with the proposed method. Figure 4.9 shows
the system trajectories being steered to the terminal set Xy, as ensured by the MPC. As
one can see, the tracking error dynamics are repeatedly steered to the origin (for each new
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Figure 4.9: 10 LPV MPC: Stability and terminal invariance.

reference goal). Figure 4.10 gives the control input trajectories (and the control increment),
altogether with the piece-wise constant reference target signal (k) and the output. Evidently,
the integral-embedded MPC ensures offset-free tracking, which is significant.

Quantitatively, we stress that the RMS index of the tracking error is of 0.28. The MPC re-
quires, in average, 6.5 ms to solve the optimisation procedure, while the Taylor-based schedul-
ing extrapolation takes only 0.07 ms, in average. This clearly indicates the relieved numeric
burden of the proposed technique (6.57 ms, in average), which is ready for real-time embedded
applications. We recall, once again, that no state measures or observers are necessary, making
the proposed method coherent with industrial practices.
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Figure 4.10: 10 LPV MPC: System performances.

4.11 Some remarks on output-feedback

In the prequel, a novel MPC algorithm for IO LPV systems is proposed. The future LPV
scheduling parameters are extrapolated using a recursive Taylor expansion law, which gener-
ates the MPC prediction matrices at each sampling period. Terminal ingredients are offered
through an LMI-solvable remedy, which ensures Lyapunov properties of the closed-loop. The
method is able to ensure asymptotic offset-free reference tracking, also thanks to an explicit
integral action and to these optimisation ingredients. In order to demonstrate the effective-
ness of the method, it is to a numeric benchmark system, exhibiting good performances. We
highlight the key findings:

e The proposed IO MPC method possesses real-time capabilities, since its online imple-
mentation is only related to a linear operator (scheduling parameter extrapolation) and
to the solution of a single QP. As shown in the examples, the control law can be generated
in the range of milliseconds with standard solvers.

e The method is able to tackle the tracking control problem of highly nonlinear systems,
as long as if an IO qLPV model can be generated. Moreover, the method does not
require any additional reference tracking tool (such as the artificial reference variables).

e The offered terminal ingredients, which ensure recursive feasibility and asymptotic out-
put stability, are enabled through quadratic LMI-solvable remedies and thus can be
easily computed with standard solvers.
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4.12 Overall remarks

In this Chapter, we provided two distinct gain-scheduled MPC solutions for LPV systems:

e The first is a state-feedback procedure based on frozen scheduling trajectories. The
method included adapted, robustified state constraints in order to handle the uncertainty
propagation due to the biased prediction model. The method is applied for the control
of a semi-active suspension system, with success.

e The second is an input-output formulation, which does not require state observers or
estimation. The method is fully formulated by the means of IO LPV models, with
an implicit integral action that ensures tracking. The method also includes quadratic
terminal ingredients in order to ensure asymptotical stability and recursive feasibility of
the optimisation
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CHAPTER 5

Reference tracking with zonotopes

In this Chapter, we present an NMPC for tracking for piece-wise constant reference signals.
This scheme is computationally efficient due to the use of a qLPV-embedding realisation to
describe the nonlinear dynamics. Accordingly, we benefit from the Taylor-based extrapolation
procedure (Chapter 3, approach (iv)) in order to estimate the future behaviour of the schedul-
ing parameters with bounded estimation error. At each sampling period, the optimisation
problem uses linear predictions and thus exhibits relieved numerical toughness (comparable
to a QP). Benefiting from artificial target variables, the method is also able to avoid feasibility
losses due to large set-point variations. Robust constraint satisfaction, closed-loop stability,
and recursive feasibility certificates are provided, thanks to uncertainty propagation zono-
topes and parameter-dependent terminal ingredients. Finally, a benchmark example is used
to illustrate the effectiveness of the method, which is compared to state-of-the-art techniques.

Remark 36. The developments presented in this Chapter correspond to those presented in
[Morato et al. 2021e] (regulation) and [Morato et al. 2023a] (tracking).

5.1 Introduction

As thoroughly discussed in previous Chapters, we recall that the application of robust nonlin-
ear MPC is not trivial and comes with increased numerical burden, which may be an impedi-
ment for real-time applications. The majority of stabilizing NMPC schemes ensures regulation
of the closed-loop dynamics to a fixed target |Boccia, Griine, and Worthmann 2014|. Accord-
ingly, asymptotic stability and constraints satisfaction are usually guaranteed with terminal
ingredients, which verify invariance conditions in the neighborhood of the operation target.
This design method is not valid for set-point changes, since feasibility may be lost.

Therefore, there has been an increasing focus on “Tracking” NMPC schemes, considering
time-varying set-points. Specifically, we highlight two of the main frameworks towards this
matter, as debated in recent years: (i) artificial reference variables, as proposed in |Limon
et al. 2018], which allow for less conservative terminal constraints and thus ensure feasibility
is not lost for sudden set-point changes; and (7) terminal equality constraints and optimised
terminal sets, for the case of periodic reference signals, as developed in [Kohler, Miiller, and
Allgéwer 2020].

In this Chapter, thus, we deal with the issue of tracking possibly unreachable output target
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signals using state-feedback NMPC, closely building upon these previous papers. We focus on
addressing the following disadvantages of the prior:

1. The use of online NPs, which are numerically expensive and not viable for time-critical
applications’;
2. No model uncertainties nor disturbances are considered, which should be included for

any realistic application.

As done all along this thesis, we benefit from the LPV toolkit in order to enhance the
theoretical framework of tracking NMPC schemes, under a (partially) linear setting. By do-
ing so, we enable fast implementation of the resulting control scheme. With regard to the
detailed context?, we provide a novel Tracking NMPC algorithm based on nominal predic-
tions generated via qLPV embedding. Following the final suggestions from [Kohler, Miiller,
and Allgower 2020|, the proposed solution also incorporates robustness features against model
uncertainties and additive load disturbances (with known bounds), using a constraint tight-
ening framework [Chisci, Falugi, and Zappa 2003; Kohler, Miiller, and Allgower 2018; Santos
et al. 2019; Cunha and Santos 2021|. Based on the one-step-ahead disturbance propagation,
we enforce the satisfaction of the performance requirements by binding the prediction error
within zonotope extensions. Additionally, we benefit from the recent recursive extrapolation
method from Chapter 3, approach (iv) [Morato, Normey-Rico, and Sename 2022b| in order
to estimate the future trajectory of the qLPV scheduling parameters. Specifically, we exploit
the boundedness of the prediction error generated by the extrapolation scheme.

The main novelties of this Chapter are summarised next:

1. The proposed Tracking NMPC is based on qLPV embeddings, which enable linear model
predictions. The model is exploited by an extrapolation mechanism that provides the
complete sequence of future scheduling parameters, at each sampling instant. Accord-
ingly, we compute simple bounds on the prediction error from these qLPV realisations.
Furthermore, we propose zonotopes that bound the corresponding uncertainty propaga-
tion3, which are then used for robust constraints satisfaction.

2. We offer robust parameter-dependent terminal ingredients for the proposed NMPC.
These tools ensure recursive feasibility of the optimisation procedure and stability of the
tracking error dynamics, considering any set-point value within a predefined set. Fur-
thermore, we propose an additional optimisation for the choice of the artificial reference
variable, with relieved complexity.

1We stress that the application results provided in [Kohler, Miiller, and Allgower 2020] solve such NPs only
very fast, but relying on a solver-based solution (CaSaDi), which internally approximates the solution of the
problem.

2Up to our best knowledge, NMPC algorithms based on qLPV embeddings have only been formalised for reg-
ulation purposes, refer to the survey [Morato, Normey-Rico, and Sename 2020a] and also to [Morato, Normey-
Rico, and Sename 2019; Cisneros and Werner 2020; Morato, Normey-Rico, and Sename 2020b; Hanema, T6th,
and Lazar 2021].

3The proposed method also considers bounded process disturbances. The uncertainty propagation zono-
topes offer a direct extension for such case.
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3. Finally, using a benchmark example, we demonstrate that the numerical complexity of
the proposed online algorithm is, on average, comparable to QP, being faster than the
NP solutions from the literature.

5.2 Problem statement

The focus of this Chapter is the development of an MPC algorithm for the class of nonlinear
systems that can be represented by qLPV-embeddings. For a start, consider the following
discrete-time nonlinear system:

{ w(k+1) = [flz(k),uk) +w(k),
y(k) = h(z(k), u(k)) ,

where ©x € R"® represent the states, u € R™ the inputs, and y € R™ the outputs. The
additive disturbance w € R™ is bounded to a compact set with the origin at its interior, in
such a way that w(k) € W C R™ — |lw(k)| < w. Throughout the sequel, it is implied
that the states are measurable for all sampling instants & > 0. Consequentially, we design a
state-feedback NMPC.

(5.1)

This system is said admissibly operated if the following hard constraints are satisfied:
(x(k),u(k)) € Z =X x U, where:

X:={zxeR"™: Hix <h,},and U :={uec R"™: Hu<h,}. (5.2)

Note that an admissible operation is analogously represented® by: |zj| <Tj, Vj €N [1,n,] and
luj| <Wj, Vj € Ny, Theset YV :={y € R"™ | Hyy < hy} = h (X,U) is compact and convex,
defining the possible admissible outputs y (mapped by admissible state and input variables).

Next, the nonlinear model from Eq. (5.1) is re-written under the following exact qLPV
representation:

a(k+1) = Alp(k))z(k) + Bp(k))u(k) +w(k),
k) + D(p(k))u(k) , (5.3)

This qLPV model is scheduled by the state-dependent time-varying parameter p(k) =
fo(z(k)) € P C R™, which is implied to be bounded® for all k& > 0. We stress that this
parameter is known by definition, since (k) is measured and f,(-) is a known function. Yet,
we stress that the future scheduling trajectory p(k + j), Vj € N ) is unknown. We consider
the scheduling set as compact and convex: P := {p € R™: P; <p;j<pj JE N[an]}.

Assumption 12. The nonlinear scheduling map f, : X — P is algebraic and class C for all
x € X. Moreover, it agrees to a local Lipschitz condition around any arbitrary point x € X,

“The outer box-type bounds Z; and %; can be found from Egs. (5.1)-(5.2) using linear programming.
5Note that the boundedness of the scheduling variable p is related to the boundedness of the states.
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this is:
1fo(@) = fo@)I < plll@—2), Vz,2 € X, (5.4)

where the smallest constant vy, that satisfies Eq. (5.4) is called its Lipschitz constant. Fur-
thermore, the scheduling variables exhibit a bounded rate of variation over samples, this is:
oplk+1) = (p(k+1) —p(k)) € §PVk >0, where:

6P = {op; €R:p, <op; <Tp;.¥j €N, |- (5.5)

Remark 37. As explained in Chapter 2, the validity of the qLPV realisation requires that the
satisfaction of a differential inclusion. With regard to the nonlinear model in Eq. (5.1), we
require that the nonlinear maps f(x,u) and h(x,u) to be re-written, respectively, as fi(z)x +
fo(x)u and hi(z)x + ho(x)u, with fi(x), fo(x), hi(x) and he(x) being bounded and known for
allxz € X.

Remark 38. The requirement of Lipschitz continuity for f,(x) is often very possible, since
the selection of this function is a design choice. The qLPV realisation from Eq. (5.3) only
requires that a corresponding differential inclusion exists and that f,(x) is bounded for all states
x € X. Note, anyhow, that the bounds on scheduling parameters’ variations is not a design
choice. These bounds, which describe the scheduling variation set 0P, naturally appear due to
the discrete-time characteristic of the system. Note that 6p(k + 1) = fy(x(k+ 1)) — fo(z(k))
and, since x(k +1),z(k) € X,Yk >0, dp(k +1) € dP. Considering the nonlinear system
to be ultimately bounded, we can obtain the scheduling variation bounds by minimising® op
and —bp such that 5p < [fy(A(fo(z))z + B(fo(z))u + w) — fo(z) < op with (z,u) € Z,
(A(fp(x))x + B(fp(x))u +w,u) € Z and w € W.

5.2.1 Tracking objective

Taking into account the nonlinear system model shown in the prior, we discuss, next, the
objective of the proposed MPC: tracking piece-wise constant output reference signals (set-
points). For such, since state measurements are available, we first determine the state-input
pairs that enable possible output targets. That is, we seek the admissible steady-state pairs
(zy, ur) which imply in the stabilisation of the system in a given output target coordinate
yr. In practice, the proposed MPC is designed steer the system states x to the steady-state
regime x, such that the outputs y reach the tracking objective y;.

Following the lines of previous works on Tracking MPC, i.e. |[Limon et al. 2018; Kéhler,
Miiller, and Allgéwer 2019], we consider that there exists an unique combination of the states
and inputs which ensures that limg_, y(k) = v, (stabilisation at the set-point target). For
such, the following additional hypothesis is required:

Assumption 13. For all admissible steady-state targets y,. € )Y, there exits an unique ad-

missible steady-state state-input pair z, = (iL'TT, uZ)T € Z such that the following inequality

5The solution to this minimisation problem can be found either by interval arithmetic or optimisation.
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holds:
r = (A(fp(x)zr = B(fp(@r))ur)] _ [On,
[ C(fp(;T))xr+D(fp(£r))uT ] = [yy«] ' (5.6)

From Assumption 13, we denote Ypr C ) as the set of admissible steady-state track-
ing outputs, i.e. those generated by an admissible state-input pair z, € Z which satisfies
Eq. (5.6). Specifically, we define this set as follows: Vr = {y € Y|y = C(fp(xr))z, +

D(fy(xy))uy | ((A(fp(ajr)):m + B(fp(xT))ur)T uT)T +e € Z, Ve € eB}. Note that, in this

»

definition, € is an arbitrarily small constant included so that the frontier of Z is excluded.

Following the lines of |[Limon et al. 2018|, we exploit the unique steady-state state-input
pair to tracking output set-point correspondence in terms of locally Lipschitz continuous func-
tions. That is, Assumption 13 implies that there exists locally Lipschitz continuous maps
g Y — X and gy : Y — U such that z, = g,(y,) and u, = gy(y,) for all y, € Ypr. As
debated in [Limon et al. 2018|, for these functions to exists, the Jacobian matrix of the left
hand-side in Eq. (5.6) must be square and non-singular for all z, € Z. Complementary, we
also consider a composed locally Lipschitz’ continuous function gp » Y — P that maps the
equilibrium scheduling parameter, i.e. p, = g,(yr) = fo(92(Yr), 9u(yr))-

5.2.2 Control and disturbance propagation

Taking into account the qLPV model representation and the output tracking objective, de-
tailed in the prequel, we proceed by further detailed the proposed control scheme. Since state
measurements are available, and the developed controller has the objective of steering the
states to steady-state conditions which imply an output tracking goal, we use:

ulk) = v(k)+ Kpx(k), (5.7)

where v(k) is a virtual input, determined by the MPC, and K a feedback gain, used to locally
stabilise the process and attenuate the propagation of disturbances. Accordingly, from Eqgs.
(5.3)-(5.7), we obtain the following closed-loop dynamics:
Ax(p(k))
w(k+1) = (Alp(k)) + B(p(k))Kx) x(k) + B(p(k))v(k) + w(k) . (5.8)

Then, from Egs. (5.2)-(5.8), we re-write the admissibility constraints (z(k),u(k)) € Z in
terms of the virtual input as follows: (z(k),v(k)) € Z,, where:

H 0 h
Zr {z eR : (HuKﬂ Hu> z < (hu> } ) (5.9)

Regarding the application of the Tracking MPC policy, we distinguish nominal predictions
of the system dynamics from the real system trajectories. Note that the MPC has no knowledge

"Note that g,(-) is locally Lipschitz continuous since it is a composition of locally Lipschitz continuous
functions, due to Assumption 12.
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of the disturbance variables w(k + j), ¥j > 0, and also does not know the future scheduling
trajectory p(k + j)¥j > 1, which thus makes the nominal predictions differ from the real
system trajectories. In terms of the scheduling trajectory, we assume that there exists an
estimate for its behaviour:

Assumption 14. Consider a prediction horizon of Ny, samples. Then, at each sample k, there
exists a scheduling trajectory guess Py = [ pT(klk) ... pT(k+ Np—1Jk) ]T with bounded
mismatch towards the real scheduling trajectory Py, = [ pl(k) ... pl(k+N,—1) ]T. That
is: [|Ep(k + 41R) | = [ (p(k + 5) — p(k + j1k)) | < € < 4o0.

Then, by expanding Eq. (5.8) forward, along the following N, steps, the real system
trajectories are given, from an initial condition z(k) € R™*, by:

z(k+1)
z(k +2)
X, = : = on, (x(k), Vi, Wi, Py) (5.10)
z(k + Np)
where Vi, = [oT(k) ... vT(k+N,—1) }T is the vector of future inputs and Wj, =
[wh(k) ... wl(k+N,—1) }T the vector of future disturbances.

From Assumption 14, the nominal predictions are then given, from an initial condition
z(k) € R™, by:

o(k + 1[k)

) ok +2|k) )

X, = : = ¢n, (:c(k:),Vk,O,Pk). (5.11)
2(k + N, k)

Note that, in these predictions, the future disturbances are presumably nil, i.e. Eq. (5.10)
is equivalent to using: x(k + 1|k) = Ar(p(k|k))x(k) + B(p(k))v(k), z(k + 2|k) = Az (p(k +
1k))z(k + 1|k) + B(p(k + 1|k))v(k + 1), and so forth. We stress that Eq. (5.11) is analogous
to Eq. (3.8), yet including the closed-loop propagation (i.e. here v(k) is the input).

Throughout the sequel, we use scheduling trajectory estimates Py, which verify Assumption
14 as provided by the scheme detailed in Chapter 3, approach (iv). This is, at each discrete-
time sample k, these trajectories are estimated by an extrapolation method based on first-order
Taylor expansions of the scheduling proxy f,(-). This scheme has been thoroughly detailed
in the prior, and thus we opt not to repeat the proofs and propositions of the boundedness
condition and convergence property herein (refer to Lemma 3.6.2). We recall that, as long
as the baseline hypothesis are satisfied, we obtain an estimation error §,(k + j|k) (upon each
scheduling parameter estimate) which is ultimately bounded Vj € Ny N,—1], k = 0 to the

convex set Q := {&, € R™ |[|&,|| < (’yp + fT‘?) ox} (refer to Lemma 4.8.2).
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5.3 Disturbance propagation using zonotopes

Next, we detail how to conceive zonotopes that bound the disturbance propagation that arises
between the nominal qLPV prediction model from Eq. (5.11) and the real system trajectories
from Eq. (5.10). This topic is one of the contributions of this Chapter, as previously detailed.

Consider a prediction horizon of N, steps and a group of generic compact sets £(j), j €
Njo,n,—1)- These sets bound the difference between the scheduling parameter estimates gen-
erated at samples k and k + 1, using the Taylor-based extrapolation approach detailed in the
previous section (i.e. via Eq. (3.43)). That is, we consider that the scheduling parameter es-
timation error between samples (p(k + j + 1|k + 1) — p(k + j + 1|k)) belongs to the compact
set £(j), Vj € N, n,—1)-

By leveraging from Lemma  4.8.2, we can rapidly conclude  that
[ptk+5+1k+1) —pk+i+ 1N < l&E + 5 + 1k + D < &0 e
(p(k+j+1k+1)—pk+j+1]k)) € Q. Seeking simplicity, we use £(j) = Q,Vj.
Usually, this is not at all conservative since these residuals have considerably small bounds
in many applications (as shown in the validations results provided in Sec. 5.5). In any case,
if one considers a known decay rate of these residuals §,(k + j|k) as the predictions span
along the horizon j € Njg n, _1), j-decaying sets could replace Q over the prediction samples

j c N[laNp}'

Remark 39. We recall, once again, that this estimation error boundedness property stands for
a major advantage of the extrapolation method. In general, when the so-called frozen scheduling
estimates are used (often done in practice, e.g. as seen in [Morato, Sename, and Dugard
2018; Alcala, Puig, and Quevedo 2019]), the resulting scheduling estimation error is bounded
as follows: ||€,(k+j|k)|| < (Np—1)dp. Therefore, more conservative control laws would have
be generated, since the corresponding uncertainty propagation is far larger (in such case, we
would have to consider £(j) = 0P,Vj). We stress that the error obtained with the proposed
extrapolation mechanism does not depend on the horizon size, but only on characteristics
of the scheduling proxy and the bounds on the state deviations. Thus, conservatism of the
corresponding disturbance propagation zonotopes is much smaller (as detailed in the sequel).

In order to bound the deviance from the nominal state trajectories z(k + j|k) and the real
ones z(k+ j), we consider one-step-ahead propagation sets, which will be later used provide
performance certificates for our proposed MPC (in Sec. 5.4):

Definition 5.1
One-step-ahead disturbance propagation sets S(j), j € Nio,n,] are compact sets that satisfy the
following conditions:

1. The initial set S(0) bounds the load disturbances w(k), i.e. W C S(0);

2. Consider states x(k + jlk),z(k + j) € R"™ (nominal prediction, real value), con-
trol input v(k + j) € R™, and scheduling parameters p(k + jlk),p(k + j) € R™
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(extrapolated estimate, real value). Then, if following tightened bounds are satisfied:
(@(k+jlk),v(k+J)) € Zr o (S —1) x{0}), (x(k+j) —=(k+jlk)) € S —1), and
(p(k+j)— plk+jlk)) € E(j — 1), it follows that:

(Ar(p(k +5))z(k +j) + B(p(k + j))v(k + j)) (5.12)
w(ktgt1)
— (Ar(p(k +j|k))z(k + j|k) + B(p(k + jlk))v(k+ 7)) € S().Vj € Ny,
o(k+j+1]k)

1.e. the one-step-ahead deviation. from the nominal state prediction and the real state
value is bounded.

In sum, Definition 5.1 implies that z(k + j|k + 1) € z(k + jlk) ® S(j — 1), Vj € Ny v, 41)
for any admissible sequence of inputs and scheduling parameter predictions. These one-step-
ahead disturbance propagation sets S(7), thus, bound the difference between the predictions
made in k and k41, and therefore can be used to guarantee recursive feasibility and constraint
satisfaction of the MPC based on nominal predictions (Sec. 5.4).

Next, we detail an exact structure in order to compute such disturbance propagation
sets. Specifically, in the following Theorem, we provide zonotope reachable sets that satisfy
Definition 5.1, based on Lemma 5.3.1.

Lemma 5.3.1 (Zonotopic extensions, adapted from [Alamo, Bravo, and Camacho 2005;
Cunha and Santos 2021|). Consider a centered zonotope X = MBY C R™ and an inter-
val matriz J € I"*™. The columns of M € R™*™s are named the generators of the zonotope
X Then, the zonotopic inclusion of the product of the zonotope and interval matrix is defined
by:

o(JX) = midJ)X & TBL,, (5.13)

where T is a diagonal matrixz with the following entries along its diagonal:

Ng m

Tii = > rad()i| M|, Vi€ Ny, (5.14)
j=1 k=1

Thus, it holds that JX C o(Z), for all J € J.

Proof. Follows directly from Theorem 3 of [Alamo, Bravo, and Camacho 2005|, by taking
p=0and M =JM. O

Theorem 3. Consider two zonotopes Z € R"™ ™™ gqnd Sy € R™, an interval matrizv A €
[>T “and two sets of interval matrices A(j) € I"**"= and Ap(j) € ["**"™, Vj € Njg n,)-
Furthermore, consider that Sg bounds the load disturbances, i.e. W C Sy, and that Z contains
the admissibility bounds of the nonlinear system in Eq. (5.1), i.e. Zx C Z. Also, consider
that:
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1. Az(p) € A, Vp € P;
2. Ax(p(k + 7)) — Ax(p(k + jlk)) € Aa(), Vp(k + j),p(k + jlk) € P, under
(p(k+34) —plk+3lk)) € E(j),Vi € Ny n,—1;

3. B(p(k + 7)) — Blp(k + jlk)) € Ap@), Volk + j),pk + jlk) € P, under
(p(k +J) — p(k +jlk)) € £(4),Vi € Ny,n,—1)-

Then, for V(j) := o ((Aa(j) Ag(j)) Z), the following set of zonotopes S(j), Vj € Njo,n,)»
satisfy Definition 5.1:

. L SO> j = O’

S0 = { V(j) & o(AS(i ~1)). Jj € Nyw,) (519)
Proof. Use & = W. Then, consider z(k + jlk),z(k + j) € R,
vk + j) € R™, and pk + jlk),p(k + j) € R, for al j €
Ni1,n,-1J- Take A(k + jlk) = (Ax(p(k+4))z(k +7) + B(p(k +j)v(k + 7)) —

(Ax(p(k + jlk))x(k + jlk) + B(p(k + j|k))v(k 4 j)). Accordingly, we obtain:
Ak +jlk) = (Ax(p(k + 7)) — Ax(p(k + jlk)))x(k + j|k) (5.16)
+ Ax(p(k + ) (x(k +7) —x(k + jlk)) + (B(p(k + 5)) — B(p(k + jlk)))v(k + j)
€ (As() AB()Z®AS(H 1) CV() ®o(AS(j —1)) = S(). (5.17)
Therefore, the sets S(j) satisfy Definition 5.1, which concludes this proof. O

The main idea behind Theorem 3 is that is offers a direct and rather simple way on how to
compute one-step-ahead disturbance propagation sets (i.e. satisfying Definition 5.1). In order
to generate these zonotopes, one only needs the interval matrices A, A4, and Ap, which can
be found using interval algebra. Then, by using the zonotopic extensions enabled by Lemma
5.3.1, the computation of each S(j) is direct from Eq. (5.15), using Minkowski set addition
operators. The main interest behind Theorem 3 is that these zonotopes are numerically cheap
to compute, and can be directly used in the design of robust MPC algorithms

The zonotopes S(j) obtained via Theorem 3 grow with regard to the disturbance propa-
gation term A(k + j|k) from Eq. (5.16), which measures the one-step deviance from the real
system trajectories and the nominal ones, which consider the estimated scheduling parameters
from Eq. (3.43). Accordingly, these sets depend on the original admissibility bounds of the
system Z. and also on the estimation errors &,(k + j|k), which appears as a multiplicative
uncertainty. Thanks to Lemma 4.8.2, we are able to replace these errors by their worst-case
bounds fgound > ||€,(k + j|k)||. Regarding the conservatism implied with such zonotopes, we
note that the worst-case bounds 5})’0““‘1 from Lemma 4.8.2 are quite reduced, which thus make
these sets not so large with respect to the original constraints Z (as shown in practice, in Sec.
5.5).

The use of zonotopes that bound disturbance propagation has been recurrently seen in
recent robust MPC literature, e.g. [Santos et al. 2019; Cunha and Santos 2021], even for
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the LPV case, e.g. [Morato, Normey-Rico, and Sename 2019; Alcal4, Puig, and Quevedo
2019]. An alternative approach would be to compute disturbance propagation tubes, as done
in [Hanema, To6th, and Lazar 2017]. We also note that the proposed zonotopes tend to be
slightly larger than the ones proposed in [Cunha and Santos 2021], due to the addition of
the term V(j). This addition, however, is due to the use of linear estimations to describe
nonlinear dynamics, since the online update of the qLPV model must be taken into account in
the disturbance propagation. Nonlinear predictions can result in less conservative sets S(j),
but also result in a higher online computational burden. This represents a trade-off between
larger uncertainty propagation and lower online computational cost brought by the linear
predictions.

Remark 40. In the case of qLPV systems with A (p) and B(p) affine® on p, it follows that
Ar(p(k+7)) = Ax(p(k +jk)) = Ax(p(k + j) — p(k + j|k)) and B(p(k+j)) — B(p(k + j|k)) =
B(p(k+j)— p(k+jlk)), with Az(-) and B(-) being linear maps. Then, the interval matrices
A4(7) and Ap(j) can be computed directly from E(j). In the case of non-affine models,
interval arithmetic or optimisation can be used to obtain the interval matrices Aa(j) and

Apg(j) from P and E(j).

Remark 41. Being zonotopes a symmetric class of sets, the disturbance propagation given by
Theorem 3 may be overly conservative if the uncertainty distribution is highly asymmetrical.
This problem can be mitigated by considering constrained zonotopes, which do not suffer from
this source of conservatism. For this end, Theorem 8 can possibly be adapted based on the
mean-value extension of constrained zonotopes proposed in [Rego et al. 2020]. This discussion
s out of the scope of this Chapter and thus not extended herein.

5.4 The novel robust NMPC

In this Section, we present the main contribution of this Chapter, which is the novel robust
NMPC scheme for Tracking. Although the proposed strategy holds similarities to the tracking
NMPC algorithms from [Limon et al. 2018; Kohler, Miiller, and Allgower 2020], it differs
significantly due to the fact that it is based on a qLPV prediction model of the system, i.e.
Eq. (5.11). By using such qLPV nominal predictions, the proposed method is able to operate
much faster than the prior, since the resulting numerical complexity becomes much closer to
that of a QP (rather than an NP). Complementary, we employ constraint tightening, terminal
cost and terminal constraints in order to ensure recursive feasibility and stability properties
of the resulting closed-loop, as done in [Santos et al. 2019].

5.4.1 Motivation: a generic NMPC

Firstly, we motivate the debate by detailing how NMPC algorithms can be tuned for the case
of possibly unreachable output reference signals, as shown in the literature [Limon et al. 2018;

8In this case, the feedback gain K, must be parameter-independent such that A.(p) = A(p) + B(p)Kx
becomes affine.
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Kohler, Miiller, and Allgower 2018|. In general, in order to potentially increase the closed-loop
domain of attraction (and avoid feasibility losses due to set-point changes), artificial (virtual)
reference variables are included to the optimisation, e.g. [Limon et al. 2018; Skibik et al.
2021].

The concept is as follows: instead of ensuring that the output variable tracks the time-
varying output set-point y,, the MPC is tuned so that the output alternatively tracks a new
decision variable y,. Furthermore, an additional offset cost Vo(y, — yr) is included to the
optimisation, which ensured that the deviation between artificial reference y, and the real
set-point y, is minimised, while y, stays within the set of admissible output targets reached
within N, steps (horizon of the MPC). For a correct implementation, this artificial variable
tool must also be converted into related steady-state state and input variables. That is, the
MPC must choose a reachable and admissible artificial reference y, € ), and, then, convert
it into state and input coordinates through =z, = ¢.(y,) and ug, = g4(ys). These (nonlinear)
constraints are, thus, included to the optimisation problem.

Then, in the general nonlinear case, for time-varying piece-wise constant output reference
signal y, € Yr, the NMPC for Tracking algorithm (from [Limon et al. 2018|) is as given by
the solution of the following NP at each sampling instant:

J

Np—1
min Z; 0x(k + jlk) — za,u(k + j|k) — ua) + V(z(k 4+ Nylk) — z4) (5.18)

=

+V0(ya _yT)a
(w(k+ 5+ 1k) = f(a(k+ jlk), o(k + jlk) + Krz(k + jk)), 7 € N n,-1)5
u(k +jlk) = v(k + j|k) + Krx(k + jlk), j € N n,—1);

sr . ) @krjlk),o(k+jlk)) € Zx,j € Ny, -1y,

Lq = gx(ya)a Uq = gu(ya)
(x(k+ Nplk),yq) €T

Ya € Va

where, once again, £(-,-) is a quadratic stage cost, V(-) is a terminal cost, and I' is tracking
positive invariant set. From the optimal solution of this NP, i.e. V}*, the first entry v*(k|k) is
applied to the process according to Eq. (5.7), which implicitly defines u(k).

5.4.2 The new formulation

In opposition to the NP in Eq. (5.18), we propose herein a novel robust formulation, which
makes use of the qLPV model and removes the nonlinear constraints from the prior. We make
reference to Remark 9 from [Kohler, Miiller, and Allgéwer 2020|: the NMPC propositions in
previous references [Limon et al. 2018; Kohler, Miiller, and Allgower 2020] provide exponential
closed-loop stability and recursive feasibility guarantees in the case of no model mismatch.
Nevertheless, this is rarely the case in any practical application. Thus, one of the main features
of the proposed mechanism is that it includes constraint tightening tools in order to robustly
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tackled the issue of disturbances and model mismatches.

When the qLPV predictions from Eq. (5.11) are used, considering the scheduling trajec-
tory estimates from Eq. (3.43), model uncertainties inherently emerge, and thus should be
accounted for. For such, as previously debated, the synthesis of our NMPC benefits from
the zonotopes detailed in Sec. 5.3. Through the sequel, we assume that robust constraint
satisfaction is guaranteed thanks to the constraint tightening and the corresponding distur-
bance propagation zonotopes. The contracted constraints that ensure robustness are detailed:
Consider an initial constraint set Z;(0) = Z;. Then, the following sets, along the prediction
horizon (i.e. for j € Njj n,)), are iteratively given by:

Z(j+1) = Z:(j) o (8() x{0}), (5.19)

where S(j) stands for the zonotopes derived by the means of Theorem 3, which propagate the
uncertainty along the prediction horizon.

Remark 42. Note that the disturbance propagation sets S(j) increase along the horizon and
thus the sets Z.(j) from Eq. (5.19) shrink as j increases. For correctness of the NMPC
application, these sets must be non-empty for all steps within the horizon j € N1, n,]-

Furthermore, the terminal constraint in Eq. (5.18) is also adjusted. Specifically, we con-
sider a parameter-dependent tracking robust positive invariant? (TRPI) set:

Definition 5.2 (Parameter-dependent TRPI Set)

Consider a set T'(p) C R™ ™ and a terminal control law u; = K¢(z,y,) — Kzx. T(p) is a
TRPI set the qLPV system in Eq. (5.3) if, for all (z,y,) € I'(p) and w € S(Np), it follows
that (A(p)z + B(p)sel, ) + w0, ) € T(p).

Remark 43. The TRPI sets differ from the Tracking Positive Invariant (TPI) sets from
[Limon et al. 2018] due to the robustness properties. The synthesis of TPI sets implicitly
considers that the real system trajectories and the nominal predictions are identical.

Remark 44. The definition of a TRPI set implies that once the states x and the virtual
reference y, are found inside such set, terminal control law ky: R™ ™ — R™ ensures that
any subsequent state, for the same output reference, also stays inside this set, regardless of the
bounded load disturbance w € W.

Therefore, our method is as follows: at each sampling instant k, we measure the state
x(k), compute the scheduling parameter p(k), estimate the scheduling sequence Py using Eq.

9The requirement of a tracking positive invariant set is not at all restrictive for piece-wise constant reference
signals, and equally used in other references, e.g. [Limon et al. 2018]. Note that this set can be partitioned in
multiple regions, as shown in Sec. 5.5.
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(3.43), and solve the following optimisation problem:

min S @k + k) — 2o, ulk + jlk) — ug) (5.20)
k>Ya
+V (z(k + Nplk) — 2a, p(k + Np — 1]k)) + Vo (ya — vr)

z(k+j+1|k) = Az (p(k + j|k))x(k + jlk) + B(p(k + jlk))v(k + jlk), 7 € Njo v, 1),

u(k + jlk) = v(k + jlk) + Krz(k + jlk), 7 € Ny n, 1)
st (:E(k +]|k)7v(k +.7|k)) € ZW(])?] € N[O,prlb

Tg = gw(ya)a Ua = Gu(Ya)

(z(k + Nplk),ya) € L(p(k + Np — 1))

\ ya 6 ya

The main changes from the NP in Eq. 5.18 (NMPC for Tracking from [Limon et al. 2018|)
to the proposed approach in Eq. (5.20) are:

e The qLPV nominal predictions replace the nominal nonlinear predictions;
e Tightened constraints sets Z.(j) are used in order to ensure robustness;

o A parameter-dependent TRPI set I'(p) is used as a terminal set.

The set of states z(k) € X, (V) such that Eq. (5.20) has a feasible solution is called the
domain of attraction of the proposed controller!?.

5.4.3 Artificial reference choice

The pair of constraints z, = g(y.) and u, = gu(ya) in Eq. (5.20) still render it an NP.
Then, in order to further alleviate its resulting numerical burden, we proceed by providing
a final adjustment to the proposed MPC. Note that the presence of the artificial reference
variable y, € ), in the NMPC optimisation serves to prevent the possible loss feasibility
due to abrupt changes in the set-point (or non-admissible set-point value). Nevertheless, the
constraints related to this variable (i.e. x4 = ¢2(ys) and u, = g4 (ys)) significantly increase
the computational complexity of the optimisation, since they are associated to (most possibly)
nonlinear functions g, () and g,(-).

Therefore, we replace these constraints by solving the optimisation in two steps:
1. First, we determine the artificial reference variable y, via a separate optimisation (typi-

cally named "reference governor" or "target optimisation" schemes, e.g. [Chisci, Falugi,
and Zappa 2003; Kohler, Miiller, and Allgower 2019]);

2. Then, we determine the control policy. By doing so, we are able to make the proposed
NMPC optimisation only as complex as only two consecutive QPs.

YDye to the freedom provided by the artificial reference y,, the feasibility property becomes independent
of y, [Limon et al. 2018].
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First, for any new output reference target value y,, we consider the optimal admissible
target as given by:

yo = arg min Vo(ya — yr)- (5.21)
Ya€Va

Note that, since V() is a quadratic offset that weights the deviation from the artificial
set-point to the real one, we can understand this optimal target as the closes one to the new
set-point value y, within the set of admissible targets.

Next, consider a feasible candidate artificial target y5. In practice, this candidate variable
is simply taken as the last artificial reference variable y, which is ensured to be feasible due
to the recursive feasibility property (Theorem 5, presented in the sequel) of the optimisation.

Remark 45. We stress that yS can only be selected from the second piece-wise constant ref-
erence change moment onward, since, at the first iteration of the MPC, the full nonlinear
optimisation from Eq. (5.20) should be solved such that a recursively feasible candidate exists
for the following samples.

Next, let yS be a convex combination of the candidate and optimal artificial reference
targets, that is:
Yo = (I-a)ys+ayy, (5.22)

considering a selection scalar a € [0, 1]. Note that, from the convexity of V,, it is implied that
Yy € Vo, Va € [0,1].

Taking into consideration these new variables, we propose the following auxiliary optimi-
sation problem to select the artificial reference when a set-point change occurs:

max « (5.23)
Vi,
a(k+j+1|k) = Ax(p(k + jlk))z(k + j|k)
+ B(p(k + jlk))v(k + jlk),7 € Non, -1,
s.t.: (z(k + jlk), v(k +jlk)) € Z2(5),5 € Npo,n,—1]5

a € 0,1],
(2(k + Nplk),yg) € T(g,(y2))-

From the solution of the quadratic optimisation program in Eq. (5.23), we obtain the
optimal value a*, which is thus used to select the new artificial reference value y, = (1 —
a*)ys 4+ a*y?. Then, the proposed NMPC in Eq. (5.20) is solved without the constraints
ZTa = 92(Ya), Ua = gu(Ya), and y, € YV, and without the offset cost Vo(ya — yr), since y, is
no longer a decision variable, but an input to the optimisation. From it, the optimal control
sequence V;*. We stress that this two-step optimisation procedure is analogous to solving the
NP in Eq. (5.20).

Remark 46. Note that the maximisation in Eq. (5.23) is convez, quadratic and has a real
positive scalar o« € [0,1] as its decision variable. Thus, an equivalent approach to solving is
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to perform a bisection search over the unit simplex!! . By doing so, we can test the feasibility
of (5.20) for a given «. If the problem is feasible, we use the corresponding artificial variable
Yo and proceed to the MPC solution; otherwise, we pursue with the bisection.

Remark 47. Again, recall that the at the initial sample, the complete NP from Eq. (5.20)
must be solved . Anyhow, if for any consecutive time sample k > 1 (when a reference change
occurs), the solution of optimisation in Eq. (5.23) leads to o* = 1, it is implied that y, = 2.
In this case, the auziliary reference governor optimisation becomes irrelevant until there is
another variation of the set-point.

5.4.4 Synthesis requirements

Next, we give some specific hypothesis on the form of the quadratic penalties costs £(-,-), V(-),
and the terminal TRPI set I'(-), which are required to construct Eq. (5.20) with performance
certificated. We note that the following requirements are similar to those presented in [Santos
et al. 2019] and [Limon et al. 2018], which develop predictive control strategies for robust
regulation and nominal tracking, respectively.

Assumption 15. The MPC cost J = Y20 £(a(k + jIk) — 2, (v(k + jk) + Krx(k+ jlk)) -
uq) + V(x(k + Nplk) — x4, p(k + N, — 1|k)) satisfies the following requirements:

1. Its stage cost £(x,u) quadratic, positive definite and uniformly continuous. Therefore, it
follows that £(x,u) > ap(||z]|) and [€(z1,u1)—L(z2,u2)| < Ap(||x1—22]])+ A (||u1 —uzl]),
where ay, Ay and Ay are K-functions.

2. The set of reachable admissible artificial references Vo = {ya € R™: (92(Ya),Ya) €
I'(95(ya))} is a convex subset of the admissible tracking outputs reached within N, steps,

i.e. {Ya € Vr: (92(Ya), 9u(¥a)) € Zx(Np)}-

3. Its output offset cost Vo(-) is quadratic, positive definite, uniformly continuous and con-
vex, thus assuring that the minimiser yo = argming, cy, Vo(ya —yr) is unique. Further-

more, for any y, € R™ and yq € V,, we have Vo(ya—yr) — Vo (¥ —yr) > ao(||lya—v2l|),

where oo is a K-function!?.

4. Its terminal cost V (+) is a control Lyapunov function for the unconstrained qLPV system
in Eq. (5.3), such that for all (z,y,) € T'(p) there exist constants b > 0 and o > 1
such that V(x — x4, p) < blx — z4|7. Also, due to the uniform continuity of V(x,p)
with respect to z, we have: V(A(p)(z — xq) + B(p)ki(z — 24, y), p7) — V(z — 24, p) <
—U(x — o, Ke(x,y)T — Uug), where x4 = gz(Ya) and ug = gu(Ya), and V(x1 — x4, p1) —
V(e — a, p2) < A (|71 — 22]).

Furthermore, the terminal control law k¢(xq,ys) and terminal set T satisfy:

11n order to preserve the ISS property, this bisection should also ensure that the terminal offset cost decays
with the new artificial target, this is: V (z(k + 1|k) — g2 (ys)) — V (x(klk) — g2(ys)) < —L(z(klk) — g2 (ys), -)-

12 A5 long as the target output is admissible and reachable (i.e. y, € V,), the minimiser is 42 = y, and the
previous inequality can be reduced to Vo(y) > ao(|lyl]).
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1. The terminal control law implies that k¢(9z(Ya)sYa) = gu(Ya) for all admissible equilib-
rium pointst.

2. The terminal set T'(p) is an admissible TRPI set. That is, T'(p) is a subset'® of A(N,) =
{(z,y) € R™ x Yu: (x,k¢(2,y) — Krx) € Z(Np)}, thus satisfying Definition 5.2 for
the terminal control law and disturbances w € S(Np). Equivalently, it is implied that
(r,ys) € T = (2t,ys) € T,a™ = (fo(x))x + B(fo(x))ke(z,ys) +w, w € S(Np),
(x, ke(x,ys)) € Z.

5.4.5 Terminal ingredients

Next, we provide a computationally elegant solution that can be used to compute parameter-
dependent qLPV terminal ingredients, through the solution of matrix inequalities. The follow-
ing Theorems provide recursive feasibility and exponential stability guarantees for the qLPV
system in Eq. (5.3) subject to the proposed MPC control law from Eq. (5.7). For the sake of
presentation clarity, the longer proofs have been moved in Appendix C.

Specifically, we synthesise p-dependent terminal ingredients, based on a positive-definite
matrix P(p). We use an ellipsoidal invariant X; := {z|z"P(p)z < 1}, which is robust
positively invariant regarding the closed-loop dynamics (Eq (5.8)), in such way that I'(p) :=
X(p) X Va is a TRPI set. Complementary, we consider a sub-level terminal cost V(x,p) =
2T P(p)z and a parameter-dependent terminal feedback ¢ (2, ya) = K¢ (p) (2 —92(Ya)) + gu(Ya).-

Consider the tracking error dynamics e(k+j) = x(k+jlk) — g2(ya), being z(k + j|k) being
the nominal qLPV predictions from Eq. (5.11). We define 0(k + j|k) := w(k + j|k) + A(k +
jlk) € S(j) as the (bounded) uncertainties: result of the disturbance and the model-process
mismatch due to the differences between the real scheduling variables p(k + j) and p(k + j|k)
(scheduling trajectory estimates from Eq. (3.43)).

From the nominal control law w(k + jlk) = Krxz(k + jlk) + v(k + j|k) and the terminal
condition uy = Ky(, Ya) — Krx, with r(@(k + jlk),ya) = Ki(p(k + jlk))e(k + J) + gu(Ya), it
follows for all j € Ny n,_1] that:

Ap(p(k+3k))

e(k+i+1) = (A(p(k+jlk)) + B(p(k + jlk) Ki(p(k + jlk))) e(k + 7) + 0(k + j|k)5.24)
Ok +jlk) = (A(p(k + jlF)) = In.)9z(ya) + B(p(k + j1K))gu(ya) + w(k +j) € S(5)25)

Then, the following results ensure that the error dynamics from Eq. (5.24) converge to the
origin (i.e. tracking is ensured). Again, recall that the total uncertainty set S(j) encompasses
the disturbances and the model-mismatches (refer to Definition 5.1). Next, we provide a
solution to compute terminal ingredients which satisfy Theorem 1 (taking into account the
corresponding changes in the model).

13An evident explicit alternative for this terminal law is st (2, ¥a) = Ki(fo(2)) (@ — 92 (a)) + gu(Ya)-
1 Note that Z(N,) is the set of points (z,u) such that u = v + K, with (z,v) € Z.(N,).
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_ Y(p) * * % « |«
APY () +BW() Y(ph) |« x| x|
0 9T T n " N
A(P)Y(p)+B(p)W(p) Y(pT) |0 Y(pT)| x « x| >0 (5.28)
Y(p) 0 10 0 Q0T =« |«
Wip) 0 |0 0 0 Bl
L I 0 0 0 0 0 T
(ﬂi - Inu, i ur)2 * .
[ (Inu,{i}wgip)) Y(p) >0,Vie N[l,nu] ) (5.29)
(fi - Inz, i er)z * )
v (Inx,{j}i{/](}pﬁ Y(p) 20, ) € Ny
AY (p) * 0 "
(A(p)Y (p) JBB(p)W(p)) Yé/:):) . - N : o 550
(A(P)Y (p) + B(p)W(p)) Y(pT)| 6  Y(pT)

Theorem 4 (Tracking robust positive invariant set). Assume that there exists an ellipsoidal
terminal set Xr(p). Xy is a robust positively invariant set iff, for any e € Xy and p € P, i.e.
el P(p)e < 1, it follows that (et)T P(p+dp)et < 1, i.e. the successor state et is also inside
X, which implies in:

(Ai(p)e +0)" P(p+6p)(Ailp)e+6) < 1. (5.26)

Then, T'(p) is a TRPI for system (5.3) as follows:

L(p) = {(z,y) e R™ ™| (z - g.(y)) € Xs(p), h(z, Ke(p)(z — g:(y) + 9u(y)) € Vk$.27)

Proof. The validity of Eq. (5.26) follows directly from the following argument: x(k), z(k+1) €
X(p);Vk > 0 and y = h(z, Kxx + Ki(p)(x = 92(y)) + 9u(y)) € Va- 0

Theorem 5 (Terminal ingredients). Conditions (C1)-(C5) of Theorem 1 and the inequality of
Theorem 4 are satisfied if there exist a symmetric parameter-dependent positive definite matriz
P(p) : R™ — R"™*% g parameter-dependent rectangular matric W(p) : R™ — RPuXMe
and a scalar X €]0,1] such that Y(p) = (P(p))~! > 0, W(p) = Kip)Y(p) and that
LMIs (5.28)-(5.29) and the BMI (5.30) hold under the minimisation of log det{Y (p)} using
pt =p+dp for all p € P and dp € 6P, considering 0 as the vertices of S(Np).

Remark 48. The terminal ingredients provided by Theorem 5 ensure recursive feasibility and
ISS of the error trajectories (as verified in Propositions 5-6). Note that these ingredients
are robust with respect to the mismatches between the nominal model from Eq. (5.11) and
the real system trajectories from Eq. (5.10). The robustness is implied thanks to the bounds
on uncertainty, which are derived from the bounds on the scheduling trajectory estimation
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error (Lemma 4.8.2). Moreover, constraint satisfaction is also enabled by robust design, when
tightening the constraints along the horizon with the uncertainty propagation zonotopes S(j).

Remark 49. The BMI in Theorem 5 can be solved through simple bisection search over the
optimisation plane since 0 < X\ < 1, by construction, as argues [Yang et al. 2016].

Remark 50. Theorem 5 provides infinite-dimensional inequalities, which must hold ¥ p € P
and ¥Yép € O6P. In practice, the solution can be found by enforcing the inequalities over a
sufficiently dense grid of points (p,dp) along the P x P plane. Then, the solution can be
verified over a denser grid. The parameter-dependency of P may be dropped if the system is
quadratically stabilisable, but this may result in quite conservative performances.

5.4.6 Certificates

Proposition 5 (Recursive feasibility). Let there exist a solution Y (p) to Theorem 5.
Then, given any © € Xo(Np), Yo € R™ and v = Krx + v, v = k(z,y,), we have
T = A(f,())z + B(fp(x))u + w € X(Np), Vw € W. Consider an optimal sequence
VE = [(v(klk)T, (v*(k+ 1K), ... (v*(k + Np — 1|k:))T]T and an optimal artificial tar-
get yy. Then Vi§ = [(v*(k + 1]k))T, oo (U (k+ Ny — 1|l<:))T7 ke(z(k + Nplk),yx) — ua]T and
ys = yx define a feasible (candidate) solution from the optimisation in Eq. (5.20) for any
U, € R™ and w € W, which means that Eq. (5.20) is recursively feasible.

Proposition 6 (Error ISS). Let there exist a solution Y (p) to Theorem 5. Then, the qLPV
system in Eq. (5.3) in closed-loop with the MPC input from Eq. (5.7) has uniformly exponen-
tially input-to-state stable error dynamics (as of Eq. (5.24)). That is, for any feasible initial
condition xo and constant set-point y, € R™  with w(k) € W, it is implied that:

(k) = za(R)I| < Bl2(0) ]|, k) + ~(w), (5.31)

where  and ~y are respectively a KCL-function and a KC-function and W is such that ||w(k)|| <
w, Vk.

Remark 51. Note that for an admissible equilibrium state x,, the virtual control sequence
Vi = [vg,...,vg]T, where ug, = v, + Krxa, 1s admissible since it maintains the system

at x,. Therefore, the set of corresponding admissible equilibrium states {x € R™: Ju, €
R™, (2q,uq) € Zx(Np), h(xq,uq) € Va} is a subset of Xo(Np) and feasibility is not lost for
any set-point change.

Remark 52. In practice, we note that the feasible candidate solution (Vi$,ys) can be used as
a warm-start to the optimisation in Eq. (5.20).

5.4.7 A summary

Next, we provide a brief summary of how the proposed method is implemented:



5.5. Results 145

e Offline procedure:

Verify the baseline Assumption 12, required to apply the method;
— Conceive a qLPV realisation of the nonlinear dynamics, in the form of Eq. (5.20);

— Determine a (locally) stabilising state-feedback in the form of Eq. (5.7) (within the
admissibility set X);

— Map the admissible equilibrium points determined by the output target y, through
Eq. (5.6), and determine the related maps g, (-), gu(-) and g,(-);

— Compute the estimation error bounds through Lemma 4.8.2;
— Compute the uncertainty propagation sets S(j) through Theorem 3;

— Determine the robust tracking terminal ingredients through Theorem 5.
e Online procedure:
e At each sample k:
— Estimate the future sequence of scheduling variables, using the recursive extrapo-

lation method (Eq. (3.43)), obtaining Py;

— For every reference change in the piece-wise constant target signal y,: solve the ar-
tificial reference choice (Eq. (5.23) together with the bisection selection), obtaining
Yas

— Solve the MPC optimisation in Eq. (5.20), using y; and removing the related
constraints and offset COSt15;

— Apply the resulting control signal using u(k) = Kz (k) + v*(k|k).

5.5 Results

In this Section, we provide a simple case study in order to illustrate the features of the
proposed Tracking NMPC algorithm. We debate the advantages and disadvantages of our
method, comparing it to the state-of-the-art approach from |Limon et al. 2018|, i.e. Eq.
(5.18).

5.5.1 Nonlinear model and constraints

We consider the benchmark cascaded tank process from [Johansson 2000], considering the
interconnection of two tanks, with an open hole at the bottom of the first tank, which leaks

5 Remove constraints: (a) o = 92(Ya)s Ua = gu(ya), and (b) ya € Va; and also remove the offset cost:
Vo (Ya — yr)-
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fluid to the second. The latter has a pump at its end, regulated by a local proportional
controller. The nonlinear level dynamics are:

dhi(t) _  _ay 2gh1 () —&-Aiu(t)
1 )

dt - Al
dho(t) _ a2 kyy o (5.32)
i = o aphe(®).

Each h;(t) represents the water level at the i-th tank, measured in centimeters; u(t) represents
the tension applied for the main pump in volts, for which the corresponding flow is yu(t). The
tank cross sections A; are of 10 cm?, while the outlet hole cross section a is of 0.05cm?. The
pump parameter 7 is of 1.4cm3/(Vs). The proportional coefficient k, is of 1.1cm?/s. Both
level signals are considered the system state variables, i.e. x(t) = [h1(t) ha(t)]”, whereas
y(t) = hi(t) is the controlled output (the main variable of interest. The control input is the
main pump tension signal u(t). Also, we stress that this system should agree to the following
admissibility constraints:

e States: z; € [1,10]cm,Vj € Ni1,2], so that the water level does no overflow the tanks,
while always staying over a given minimal threshold;

e Input: u € [0,5]V, so that the tension signal does not saturate.
For coherence with the nonlinear model in Eq. (5.1), we assume that this process is
also subject to bounded additive disturbances w(k) € R? such that ||w(k)|| < 0.05 cm. These

disturbances perturb both level dynamics and could represent, for instance, unaccounted leaks
or flows to each tank.

5.5.2 qLPV Embedding

In order to obtain a discrete-time qLPV realisation of this nonlinear system, we first consider
an Euler discretisation using Ts = 0.25s, which yields:

h(k+1) = hy(k)— T,220MG Ly 2y,
. Tﬁl(t) : 1 (5.33)
ho(k+1) = ho(k) + T — T2 ha(t).
Then, we choose the following nonlinear scheduling proxy:
p(k) = fo(x) := (21)7%%, (5.34)

which satisfies the requirement for differential inclusion and boundedness (Assumption 12).
Thus, we obtain a qLPV-embedded model in the form of Eq. (5.3) with matrices:
_ TSO‘\/% Ts'}/
(1= =30) 0 7B(p):[,41].

A =
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From the bounds of the system states and the boundedness of the chosen scheduling proxy,
we obtain the following scheduling parameter set:

P = [0.3,1]cm 7. (5.35)

Furthermore, from the discrete-time model and the state bounds we obtain the following
bounds for the scheduling parameters’ variations:

§P:={6p € R| —0.034 < 6p < 0.0052} . (5.36)
5.5.3 Tracking

For tracking purposes, we consider the convex output tracking set of admissible references
Yr := [1,10] cm. Moreover, we stress that the output steady-state condition from Eq. (5.6)
implicitly defines the following functions:

9a(yr) = [ av/2gyr ] ) (5.37)

Gu(yr) = ~

Note that controller that defines the input u(k) must ensure that the the output y(k) =
x1(k) tracks the pierce-wise reference target y,, but also that the constraints on both states
z(k) € X and input u(k) € V are respected. These constraints are always active.

5.5.4 MPC synthesis and terminal ingredients

Using this generated qLPV embedding model, we compare the proposed NMPC method with
the "NMPC for Tracking" algorithm from |Limon et al. 2018|, i.e. Eq. (5.18). Note that
this other algorithm operates on the basis of the original discrete-time nonlinear model of
the system. In order to synthesise these predictive controllers, we use a prediction horizon of
N, = 4 steps and the quadratic stage cost ¢(z,u) = ||SU||22 + |Jull% with Q = I,, and R = 1.
We note that the short size of the horizon is specifically chosen in order to emphasise the
numerical capabilities of the proposed scheme which, even in these simpler cases, exhibits
considerable decrease on the resulting time required to compute the control action, as shown
in the sequel.

In order to synthesise the terminal ingredients via Theorem 5, we partition the output
set Yr in ten different partitions, thus finding one parameter-dependent RPI set T'(p) per
partition, ie. for y, € [1,2] or (2,3] or (3,4], and so on up to (9,10]. For the NMPC
algorithm, we use terminal ingredients synthesised through the procedure from [Limon et al.
2018, Appendix B].

Figure 5.1 shows the parameter-dependent TRPI sets and the quadratic TPI sets used
for the NMPC algorithm |[Limon et al. 2018|. The parameter-dependent sets (proposed in
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Figure 5.1: Synthesised TRPI set partitions and the quadratic TPI set partitions.

this Chapter) are shown for in bold black lines for frozen values of p € P, ie. for p =
0.3,0.37,0.44,...,1. All sets are translated to from the error coordinates (x — x,) to the
state coordinates x, centered at the different state targets x, of each partition. We note
that, albeit the parameter-dependent sets being slightly smaller than the TPI sets (due to the
robustness considerations), Theorem 5 generates sufficiently large terminal regions for each
reference partition y,. € Vp.

5.5.5 Scheduling trajectory extrapolation

Before presenting the actual control results, we provide the scheduling sequence extrapolation
estimates obtained with the recursive method presented in Chapter 3. As detailed in Lemma
3.6.2, convergence is indeed verified. The obtained bounds for the estimation error, using
Lemma 4.8.2, are ||,] < f};ound = 0.015cm™ %%, as shown in Figure 5.2. The extrapolation
mechanism offers very precise estimates P, which means that the nominal qLPV predictions
obtained through Eq. (5.11) are very close to the real system trajectories of Eq. (5.10) and
thus the disturbance propagation along the horizon is reduced.

5.5.6 Disturbance propagation

The disturbance propagation reachable sets S(j),V; € No,n,) for the proposed algorithm
were then obtained, considering the zonotopic disturbance propagation method and a closed-
loop prediction paradigm defined by (5.7), with K, = (—24.92 O) calculated as proposed
in [Cunha and Santos 2021|. Note that S(0) stands for the load disturbance set W; the
following zonotopes comprise the propagation of the load disturbances and the model-process
mismatches along the prediction horizon. These sets are computed according to Theorem 3.
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Figure 5.2: Scheduling trajectory estimates Pk, corresponding estimation error &,(k + jlk),
and error bounds.

In Figure 5.3, we show the collection of disturbance propagation sets S(j) over the z1 X x2
plane (Definition 5.1). In this Figure, we can also see the original state admissibility set X'.
Since the zonotopes S(j) are much smaller in size than X', we can infer that the conservatism
of the proposed method is quite reduced. We recall that the vertices of S(IN,) were used to
construct the terminal ingredients through Theorem 5.

5.5.7 Simulation scenarios

We consider two different simulation scenarios. Since the NMPC algorithm from [Limon
et al. 2018] is not robust by design, we first consider and compare the obtained tracking
performances of both algorithms, without the presence of load disturbances (i.e. with w
nil). Then, we consider the disturbance rejection robust performances solely of the proposed
robust algorithm. Note that both controllers consider the same system (and also the same
MPC synthesis weights), just represent via different realisations (nonlinear and qLPV models).

5.5.7.1 Nominal performances

Considering a step-like piece-wise constant output target signal which passes through y, = 2,
4,5 and 9 cm, the obtained tracking performances with both algorithms are shown in Figures
5.4 and 5.5. Figure 5.4 presents the resulting state, input and output trajectories, while Figure
5.5 shows the state phase plane and the terminal sets. Complementary, Figure 5.6 provides
the values for the artificial reference tuning variable « for the proposed mechanism.

As one can see, the obtained tracking performances with both methods are offset-free
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Figure 5.3: Zonotopic sets S(j).

steady-state output points. The proposed method ensures slightly faster convergence than the
original NMPC for Tracking scheme from [Limon et al. 2018]. The main advantage resides in its
simpler implementation, of QP-alike numerical burden, enable through the qLPV embedding.
With the qLPV model, nonlinear constraints do not have to be solved internally by the
optimisation procedure. The proposed qLPV NMPC mechanism requires only the operation
of: one linear recursive law (Eq. (3.43)) and one QP problem (Eq. (5.20)). In the moments
of reference changes, one bisection search (Remark 46) is also required, which increases the
number of QPs to, at most, five iterations per sample. In contrast, the original NMPC for
Tracking requires the solution of an NP optimisation problem per sampling instant, which is
numerical-wise much harder.

n order to better compare the two tracking controllers, we assess the obtained performance
results with performance indexes, presented in Table 5.1. The results are debated:

e Firstly, we stress that there is an overall performance enhancement with the proposed
method: there is a small decrease on IAE index with respect to [Limon et al. 2018], of
roughly 12 %. This performance enhancement can also be quantified through the RMS
index of the cost function Ji, as well as in terms of the average tracking error (2.15%
with the proposed method, while 2.68 % using [Limon et al. 2018]). This performance
enhancement is indeed an interesting feature of the proposed scheme, since the method
from |Limon et al. 2018| has been exploited in many nonlinear applications presented in
the literature.

e Complementary, we stress that the generated control input is smoother with the pro-
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Figure 5.4: Nominal performances: State and input trajectories.

posed method: we obtain a control signal with 43 % reduction on its total variance
(TV).

Furthermore, the main advantage of the proposed method is that the average compu-
tational time needed to solve the control problem (t.) is reduced over 44 %, as also
exhibited in Figure 5.7. This is a strong and very significant feature, since the system
order is small (n, = 2) and so is the chosen control horizon. The complexity of the
NP solution from [Limon et al. 2018| grows exponentially with (N, x n;), which can
a serious issue with time-critical systems. The proposed method has QP-alike burden,
and thus t. grows only linearly with (N, x n,). This means it is readily-conceived for
embedded applications.

The model-process discrepancies (differences between Egs. (5.10) and (5.11)) are very
well-handled with the zonotope-based constraint-tightening approach, since the gener-
ated sets S(j) are arguably small (see Figure 5.3). This feature corroborates with prior
discussions seen in the literature indicating this approach is promising, e.g. [Kohler,
Miiller, and Allgower 2020).

Finally, we also stress that the terminal ingredients conceived with the proposed Theorem
generate sufficiently large terminal sets, able to guarantee recursive feasibility for rather
larger output-related sets.
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5.5.7.2 Robust performances

In order to illustrate the robustness properties of the proposed algorithm, we provide a second
brief simulation scenario'®. Consider three uniformly random disturbance sequences with

unitary seeds, multiplied by decaying exponential terms, as illustrated in Figure 5.8.

In Figure 5.9, we show the state and output behaviours with respect to a step-like output
target goal .. Clearly, robust stability is ensured: as the load disturbance sequences dissipate,
the error trajectories (x—x, ) converge to the origin; moreover, while w(k) is non-null, the states
stabilize at constant steady-states regimes, as close as possible to x,. This is an additional
nice feature of the proposed method, which is able to robustly tolerate bounded disturbances,
which was not possible with competing NMPC techniques for tracking.

Table 5.1: Performance comparison.

Method IAE | RMS{J} | TV te
NMPC for Tracking 108.23 80.18 35.93 | 90.53 ms
Proposed qLPV NMPC | 95.31 80.14 20.44 | 50.55 ms

5.5.8 Final debate

As a summary of the previous results, we provide the following list of the assets and liabilities
the proposed method:

o Advantages:
1. It is able to operate faster than state-of-the-art nonlinear MPCs for tracking, given
that a reduced-complexity optimisation procedure is used (of QP-alike complexity);

2. It includes artificial reference variables such that even unreachable reference goals
are able to be directly taken into account by the controller;

3. It includes (easy-to-compute) robustness arguments, written in terms of known the
bounds of the load disturbances;

16We opt not to test the method from [Limon et al. 2018] against load disturbances since it is not a robust
algorithm, which would in turn result in an unfair comparison.
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Figure 5.9: Robust performances.

4. Certificates of recursive feasibility and stability are available, which ensures an
adequate behaviour of the resulting closed-loop.

e Disadvantages:

1. It requires a qLPV realisation of the nonlinear system, and thus the availability of
a known proxy f,(-) that generates bounded scheduling variables (and also abides
to the hypothesis given in Assumption 12).

2. As in many Tracking NMPC algorithms, the state variables should be measur-
able, since the controller guarantees output tracking by steering the states to given
steady-state variables.

3. TRPI sets must be computed offline, before the online implementation of the con-
troller, in order to ensure correct behaviours of the resulting closed-loop.

5.6 Final comments

In this Chapter, we developed a novel Tracking NMPC algorithm, based on qLPV embeddings.
The method uses the recursive estimation of the future qLPV scheduling trajectories, made
available through a simple Taylor expansion. The propagation of the model mismatches along
the NMPC horizon are addressed by the means zonotopes which bound the uncertainty prop-
agation. Furthermore, we provide an LMI-solvable remedy for the case of bounded additive
disturbances, which computes a robust LPV feedback gain and parameter-dependent terminal
ingredients. The derived tracking robust positive invariant set ensures recursive feasibility of
the optimisation procedure as well as input-to-state stability of the process.

Considering a benchmark cascaded tank system, we thoroughly compare the proposed
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method against the nominal tracking NMPC framework from [Limon et al. 2018|. We are
able to demonstrate that the proposed scheme achieved very similar tracking performances,
with much smaller computational stress, benefiting from the linear predictions enabled by
the qLPV realisation. The method is ready for embedded applications (the online stress is
similar to that of a QP) and offers robustness towards bounded load disturbances with reduced
conservatism.






CHAPTER 6

A dissipative approach

In this Chapter, we propose a robust, dissipative MPC scheme for nonlinear systems repre-
sented with qLPV models. The main novelty resides in benefiting from the recursive extrapola-
tion approach (Chapter 3, approach (iv)) in order to fasten the (usually) sluggish performances
achieved with the robust min-max schemes from the literature. The bounds on the estimation
errors of the scheduling parameters through N, are taken into account in order to formulate
an online min-max problem with reduced uncertainties: firstly, a constrained CP is solved in
order to determine the worst-case uncertainty propagation level and, subsequently, a second
constrained QP is solved to minimise this worst-case cost function with respect to the control
sequence vector. We discuss how, since the bounds on the estimation error for the scheduling
parameters are usually much smaller than the bounds on the actual scheduling parameter, the
conservativeness of the solution is quite reduced. Recursive feasibility and stability of the pro-
posed algorithm are demonstrated with dissipativity arguments given in the form of an LMI
remedy, which also determines the zone of attraction within which input-to-state stability is
certified. The nonlinear temperature regulation problem of a flat solar collector is considered
as a case study. Using a realistic simulation benchmark, the proposed technique is compared
to other robust min-max LPV MPC algorithms from the literature, proving itself numerically
efficient, whilst maintaining good performances.

Remark 53. The developments herein presented correspond to those published in the fol-
lowing works: [Pipino et al. 2020b] (solar collector application), [Morato, Normey-Rico,
and Sename 2021b] dissipativity arguments, and [Morato, Normey-Rico, and Sename 2021d;
Morato, Normey-Rico, and Sename 2023c| (closed-loop induced robustness metrics). We note
that in [Morato, Holicki, and Scherer 2023/, one can find a novel synthesis formulation for
MPC terminal ingredients based on convexly parametrised IQCs and dynamic multipliers.

6.1 Introduction

In the previous Chapters, we discussed how MPC synthesis can be formulated in both gain-
scheduled and robust settings, considering the problem of uncertainty propagation along the
prediction horizon. As discussed in Chapter 5, an option to develop fast MPC solutions for
nonlinear systems is to exploit qLPV embeddings in order to replace the nonlinear programs
by linear ones. There are quite a few MPC algorithms specifically conceived for nonlinear
systems represented by LPV realisations, as detailed in Chapters 1 and 2. With regard to this
works, we highlight some issues:

157
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e The sub-optimal and gain-scheduled methods, as detailed in Part II of this thesis, have
a major drawback in the senses that the resulting QPs may find local minima of the
original NP, which conversely may lead to poor or insufficient performances. Despite
being able to run in real-time, these algorithms may lack performance certificates for
the whole state admissibility regions, which thus compromises the obtained results (this
is specially evident for systems with hard state transition nonlinearities).

e In the robust setting, the MPC optimisation is thence written with regard to the worst-
case behaviour possibility, that is, considering (bounds of) the propagation of the uncer-
tainty caused by the variation of the scheduling variables along the prediction horizon
N,. While Chapter 5 presented a constraints tightening framework to handle the uncer-
tainty issue, there also exists another synthesis approach with large exploitation in the
literature: we refer to the so-called “min-max” robust MPCs, which robustify the con-
troller by first maximising the cost function with regard to the uncertainty (i.e. through
Je(+) = max,ep Ji() subject to constraints), and then minimising this worst-case in-
duced cost Ji(+) with regard to the sequence of control inputs Uy. In the original papers
on robust min-max LPV MPC schemes [Cao and Lin 2005; Besselmann, Lofberg, and
Morari 2009], the future scheduling parameters p(k + j) are assumed to vary arbitrar-
ily within the scheduling set P. More recently, many works [Li and Xi 2010; Jungers,
Oliveira, and Peres 2011; Bumroongsri 2014 have demonstrated that the min-max pro-
cedure can be simplified (and thus fastened) for the case of bounded rates of parameter
variations (i.e. dp(k +1) = p(k + 1) — p(k) being bounded for all & > 0), which is
standard in LPV applications. Nevertheless, we verify major drawbacks:

1. They are usually not implementable for real-time applications, due to the complex-
ity of solving the maximisation problem for the whole scheduling set P (or, the
scheduling variation set §P);

2. The formulations through offline preparations (such as the tube paradigm) are
often quite hard to design; the synthesis procedure is usually not trivial and hard
to understand, which hinders industrial acceptance.

We argue that there is gap in the literature regarding this topic: there are only a few
robust NMPC approaches, using the qLPV embedding framework, with direct and simple-
enough online implementation. Therefore, in this Chapter, we propose a formulation that is
able to run in real-time and, yet, maintains optimality concerns, leading to good performance.
The bottleneck is that the algorithm should be able to run embedded (operating in real-time,
in the range of milliseconds), whilst being able to take into account the model nonlinearities.

Remark 54. Of course, in Chapter 5 we presented an elegant solution that is indeed able to
operate in real-time, while offering robustness. Nevertheless, the constraint tightening mech-
anism s not simple to implement, and the zonotopic inclusion sets require relatively complex
interval algebra. Therefore, the focus herein is cast to min-max algorithms, which are utterly
easy to synthesise (arguably, almost as simple as LTI MPC' algorithms).

As debated in Chapter 3, there exist several estimation algorithms that can be been used
to provide trajectory guesses for the future values of the scheduling parameters along the
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prediction horizon, e.g.|Cisneros, Voss, and Werner 2016; Cisneros and Werner 2017a; Morato,
Normey-Rico, and Sename 2019|. Again, we exploit the Taylor-based recursive extrapolation
from Chapter 3 (approach (iv)), taking into account the boundedness of the estimation, as
done in Chapter 5. Herein, these bounds are used to formulate a robust min-max MPC.
Motivated by the previous discussion and the literature gap, our contributions are as follows:

e Benefiting from Lemmas 3.6.2 and 4.8.2, we develop a min-max robust qLPV MPC
framework, the use of the extrapolation of p to make model-based predictions;

e Then, resorting to dissipativity analyses, we employ an IQC to demonstrate input-to-
state stability of the resulting closed-loop system. This analysis also serves to verify
the recursive feasibility property of the proposed algorithm. An LMI-solvable remedy
to estimate the ISS zone is obtained.

6.2 Formalities

In this Section, we provide the main assumptions for the considered robust control proposition.
As done in previous Chapters, we consider, once again, a generic discrete-time nonlinear
System:

x(k+1) = f(x(k),ulk),wk)), (6.1)

where k € N represents the sampling instant, x : N — X C R"* represents the system states,
u : N — U C R™ is the vector of control inputs and w : N — W C R™ stands for load
disturbance variables. Moreover, we require the following hypothesis to hold:

Assumption 16. The nonlinear map f : X XU x W — X is continuous and continuously
differentiable with respect to x, i.e. class C*

Assumption 17. The (boz-type) sets X and U define the feasibility constraints for the sys-
tem states and the control vector, delimited by the operational (physical) limitations of these
variables. These sets yield ultimate bounds on x and u, as follows:

X = {x € R"™ : ||zj|| <z, Vj € N[an]} U = {u e R™ : ||u;]| < @;Vje N[l,nu]} )

Assumption 18. The set W defines the load disturbances. For regularity purposes, we con-
sider that W is a priori an open set.

Assumption 19. The states are measurable at all sampling instants k € N, which means
that control can be formulated under a state-feedback law.

Assumption 20. This nonlinear system agrees to a local LDI within (X x U ), which means
Eq. (6.1) can be re-written using the following qLPV realisation:

{ w(k+1) = Alp(k))z(k) + B(p(k))u(k) + Bu(p(k))w(k) ,

olk) = fole(k),u(k) € P, 6.2)
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where f, : X xU — P C R" represents an endogenous nonlinear scheduling proxy. Once
again, note that p(k) is bounded and known online at each instant k, but generally unknown
Jor any future instanl k+ jVj € Np o). Ultimate bounds are considered upon p, which are as
follows:

P = {peR"||pll <p;,Vj € Nupnyj} -

Remark 55. The LDI property, as expressed in Assumption 20 is satisfied for closed sets X
and U and not for the whole vector spaces R™ and R™ . Therefore, any synthesised control
law must ensure (k) € X and u(k) € U for all k > 0.

Remark 56. Through the sequel, for simplicity, we drop the dependency of f, on u, simply
taking p(k) = fo(x(k)). Nonetheless, we stress that all developments presented in the sequel
can be easily extended to broader case. For the sake of simplicity, we also drop the parameter
dependency from By, i.e. By(p(k)) = By. Note that this can always be done via the inclusion
of the parameter dependency into the load disturbance signal, e.g. By (p(k))w(k) = By, wa(k)

with wy (k) = fu(p(k), w(k)).

Complementary, we consider that Assumption 21 is satisfied!. This Assumption does not
compromise the proposed approach; it serves only to analytically account for model-process
mistmatch uncertainties. We also consider that the qLPV embedding of Eq. (6.2) satisfies
Assumptions 22 (local Lipschitz property of f,(-)), 23 (bounded rates of variation for p) and
24 (stabilisability).

Assumption 21. Matrices A(p(k)) and B(p(k)) are affine-dependent on p(k), as in:
A(p(k)) = Ao+ Asp(k) and B(p(k)) = Bo+ Bip(k).

Assumption 22. The nonlinear scheduling parameter map f, : X — P agrees to a local
Lipschitz condition around any arbitrary point x € X, this is:

[fo(x) = @) < yllz—-2)|, Vo € X, Vi € X, (6.3)
where the smallest constant y, that satisfies Eq. (6.3) is known as the Lipschitz constant for
Fo(t)-

Assumption 23. The deviation of the scheduling parameters is bounded, i.e. dp(k) =
(p(k) — p(k—1)) € dP,Vk € N.

Assumption 24. The open-loop qLPV model (A(p(k)), B(p(k))) is structurally stabilizable
forallp € P.

6.2.1 Model-based predictions and parameter extrapolation

Since the qLPV embedding in Eq. (6.2) retains the linearity property from inputs to outputs,
we are able to fomulate numerically-efficient design procedures using these models. As de-
bated, while LPV control is standard in both state-feedback and dynamics output-feedback

"We stress that any other kind of parameter dependency could be used (polynomial, Linear Fractional
Transformations, etc.)



6.2. Formalities 161

formulations|Mohammadpour and Scherer 2012; Shamma 2012; Sename, Gaspar, and Bokor
2013; Scorletti, Fromion, and De Hillerin 2015], the design predictive control algorithms for
LPV systems is not trivial, since solving the inherent constrained arg ming, J optimisation
problem requires the knowledge of future values for the scheduling parameter.

As done in [Cisneros, Voss, and Werner 2016] and detailed in Chapter 3, we write the state
predictions within a prediction horizon window of N, steps using Eq. (3.8). Moreover, the
scheduling trajectory is generated using an extrapolated guess P, with bounded estimation
errors (i.e. approach (iv) in Chapter 3). That is: {,(k+j|k) = (p(k+j) — p(k + j|k)) , V) €
Npo,n,—1)- This estimation residual is bounded to a a convex set Q := {{, € R ||{,[| <

(’Yp + fT?) or} = fgound (thanks to Lemma 4.8.2).

Remark 57. Generally, we obtain horizon-increasing extrapolation errors, i.e. |{,(k + j +
k)| > [€p(k + jlk)|| for j € Nyn,—2), due to the fact the more information is available
regarding the present instant than the future ones, which depend on future variables which
haven’t yet been defined (see Remark 20). Yet, as recalled next, we can use these estimates to
generate the model-based predictions since limy_, o0 §,(-|k) — 0 (Lemma 4.8.2). We stress
that f[l,"’“"d < p and, thus, Q C P.

6.2.2 The generated sub-optimal MPC

Considering the qLPV prediction model from Eq. (3.8), obtained using the extrapolate
scheduling trajectory estimate from Eq. (3.43), we detail the corresponding MPC applica-
tion. For such, the following finite-horizon cost is considered:

Np
Je = J(@k),Ux) = D (Uak+i),uk+5i—1)) |, (6.4)

j=1

where £(z,u) := 27 Qx +u” Ru is the main (qadratic) stage cost. Note that, in this Chapter,
we disregard the use of a terminal cost V(-) (refer to the discussions on stabilising MPC
schemes without terminal ingredients in Chapter 2, Section 2.7.2).

If the extrapolation error is disregarded, a sub-optimal gain-scheduled MPC algorithm can
be formulated, which would reside in solving the following constrained QP:

min Jk (6.5)
subject to X = A(By)x(k) + B(Py) Uy , (6.6)

x(k+j) e X,Vj € NN,
uk+j5j—-1)elU,Vj € N[LNp]'

As thoroughly debated in Chapters 3 and 4, such QP can lead to insufficient performances
because local minima can be found since, although the qLPV embedding equivalently repre-
sents the nonlinear dynamics, the scheduling parameters are (partially) uncertain along the
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horizon due to the residual errors &,(k + j|k) Therefore, we proceed by adapting it in order
to take into account the bounds on the estimation error of the scheduling sequence, such that
performance certificates can be provided.

Along this Chapter, we use the Hessian notation from [Petsagkourakis, Heath, and
Theodoropoulos 2020], that is: the previous QP is be re-stated as follows:

1 . .
i = avggin (RULH(AU - U (Prali)) (6.9)
k
s.t. Ainequ < bineq(k)a
Cinequ = 0;

being U} the control sequence solution. In this formulation, H (Pg) is the Hessian of the
quadratic cost function Ji and g(Py, xz(k)) is its linear part.

We recall that he MPC policy that results from the online solution of Eq. (6.9) is generated
under a paradigm of a moving-window horizon, which slides along k as time evolves. This
means that that at instant & the control sequence U} is computed considering the system
behaviour within the next N, steps. At the following instant, £ + 1, the problem min Jj; is
solved considering the performances for N, samples ahead of k + 1, computing U, ,, and so
forth. The control policy at each instant is the first entry of the solution the QP, this is:

T

Ur = k(k)z(k). (6.10)

I ]nuX(nuNT—’)

6.2.3 Terminal ingredients and dissipativity constraints

In this Chapter, we use the concept of ISS in order to provide performance certificates. Specif-
ically, we employ the generalised ISS condition for discrete-time nonlinear systems from [Jiang
and Wang 2001| (Definition 2.6). We are concerned with ISS since the considered MPC gen-
erates a state-feedback control law, which means that the states should be stabilised. Recent
results regarding ISS and ISpS, which is a weaker property?, have been presented regarding
min-max nonlinear MPCs, see [Limoén et al. 2006a; Lazar et al. 2008; He, Huang, and Chen
2014]. In general, many robust MPC methods are not able ensure ISS (but simply ISpS) be-
cause the effect of non-null disturbance inputs is taken into account by the procedure even if
the disturbance vanishes in reality. Anyhow, [Magni, Raimondo, and Scattolini 2006] demon-
strates that only a local upper bound on the MPC cost function Jj (instead of a global one,
which is more costly to demonstrate) is sufficient to ensure ISS. In this Chapter, we build
from these previous results, specially concerning the feasibility property of the maximisation
procedure.

An ISS system is asymptotically stable in the absence of inputs u and w or if the inputs are
time-decaying. Note that if the inputs are merely bounded, the evolution of the system states
are ultimately bounded to a set whose size depends on the bounds of the inputs, which is quite

2ISpS does not, impose asymptotic stability for null disturbance inputs.



6.3. Proposed min-max algorithm 163

logical. As detailed in Chapter 2, in order to verify that the MPC algorithm ensures closed-
loop ISS and recursive feasibility of the optimisation procedure, we could require the so-called
“terminal ingredients”, as done in Chapter 5. Yet, we use a different approach herein: we verify
dissipativity arguments regarding the MPC value function, as done in [Seiler, Packard, and
Balas 2010]. The main characteristic of this approach is that LMIs are yielded for verification
a posterior to MPC synthesis (the dissipativity arguments are not included to optimisation
itself). This is the path followed in this Chapter, pursuing the advances from previous works
[Seiler, Packard, and Balas 2010; Cisneros and Werner 2018].

6.3 Proposed min-max algorithm

Considering that &,(k + j|k) € Q@ C P, the sub-optimal MPC algorithm in Eq. (6.5) is now
adapted in order to ensure robustness. Recall that we seek performances guarantees despite
the uncertainties introduced by the scheduling sequence estimation error.

As previously discussed, solving a single QP with respect to a scheduling sequence guess as
in Eq. (6.9) does not ensure performances, since the solution U} may represent a local minima
of Ji. Anyhow, we know that the actual nonlinear process model in Eq. (6.1) differs from
the P,-based prediction in Egs. (3.8)-(3.43) due to the discrepancy variable £,. These model-
process mismatches along the horizon can be treated robustly, providing a worst-case bound
J}jound > Ji. Then, as done in robust min-max LPV MPC procedures, the QP is formulated

with respect to J}gound, ensuring the overlap of local minima and robust performances.

Based on Assumption 21, we can thus expand the LPV model along the prediction horizon
using;:
zk+j+1) = A(p(k+ jlk))z(k + j) + B(p(k + j|k))u(k + ) + Byw(k + j) (6.11)
+  (Ai&p(k + jlk)z(k + j) + Bi&p(k + jlk)ulk + j)) -

o(k+jk)

The uncertainties introduced due to the model-process mismatch (extrapolation of the
scheduling sequence) are denoted henceforth as o(k + j|k), which belong to a compact set S
whose bounds can be computed offline, with respect to §B°und, X and U:

S == {oceR™||o]| <7}. (6.12)

We concatenate the terms o(k + j|k) along the horizon as follows:
S o= [okk)T ... ok+N,—1k)T]". (6.13)

Remark 58. In regular min-max LPV MPC algorithms, e.g. [Cao and Lin 2005/, S is
computed with respect to much larger possible variations for p (usually, the whole set P). In
works [Bumroongsri 2014/ that consider bounded rates of variations for p, the uncertainty set
S is computed as if p(k + j) = p(k) £ jop(k), which yields a smaller uncertainty set S, but
in general also larger than the set considered in this Chapter.
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Embedding the uncertainty to the process predictions, we obtain:

X, = A(Pk)x(k)—i-B(Pk)Uk—i-Ek (6.14)

Then, the core idea of the proposed method is quite simple, following the lines of the
original min-max algorithms, but formulating the worst-case cost function with respect to the
uncertainties introduced by the estimation errors £,. As an abstraction®, we can understand

that there exists some ZF which induces the worst-case bound on the cost function J,Eound, ie:

max  Jg (6.15)

Ek

subject to  constraints from Egs. (6.6), (6.7) and (6.8).

The complete solution achieved with the proposed tool is then given by; U; =
arg ming, maxs, Jj subject to constraints (6.6)-(6.8). In our analyses, we proceed by view-
ing this min-max procedure as two steps, the maximisation CP with respect to Z and the
minimisation with respect to Uy (QP).

6.3.1 Implementation

Regarding the proposed min-max method, its implementation is performed according to the
following guideline:

1. Offline Procedure:

e Firstly, one should verify if the considered nonlinear process should satisfies As-
sumptions 16 to 20.

e LDI should be performed, finding the qLPV model as given in Eq. (6.2);
e Assumptions 21 to 24 should be checked;

e The smallest Lipschitz constant v, in Eq. (22) should be defined and so should the
bounds on Auz;

e With the aid of simulation tools, the recursive extrapolation algorithm of Eq. (3.43)
should be tested and the forgetting factors A and v should be adequately tuned ;

e The worst-case bound on the estimation error should be computed as f};o‘md =
(7o + fT‘?)E (thanks to Lemma 4.8.2);

e The compact uncertainty set S due to the wrong scheduling guess should be cal-
culated using Eq. (6.12);

e The MPC procedure should be prepared by tuning the cost weighting matrices @)
and R;

3We emphasise that this is an argumentation abstraction only, given that the min-max operation is a single
optimisation. Note that the vector of future control inputs Uy, decision variable to the minimisation problem,
also influences the maximisation argument.
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e Te nominal cost function Ji should be put in the Hessian form of Eq. (6.9).

2. Online Procedure: solve Algorithm 4.

Algorithm 4 Proposed robust min-max NMPC Algorithm

Initialise: 2(0) = =, p(0) = po, k = 0.
Require: Py, A, v; Require: Q, R, Ny, S;
Loop:

e Step (1): Measure the states z(k) and get the scheduling parameters p(k);

Step (2): Evaluate the derivative f;?;

Step (3): Compute the extrapolation of the scheduling parameters along the horizon
through Eq. (3.43);

Step (4): Solve the min-max problem ming, maxg, Jj, subject to constraints (6.6)-(6.8),
thus obtaining U};

e Step (5) Apply the local control policy u(k) as in Eq. (6.10);
e Step (6): Increment k, i.e. k<« k+ 1.

end

6.4 Certificates

Next, we detail the recursive feasibility properties of both CPs, and ISS of the closed-loop
system regulated by the proposed MPC paradigm. We proceed by demonstrating the asymp-
totic stability of the closed-loop system and estimating the region of attraction of each CP.
The zone of attraction for the complete algorithm is given by the smallest intersection of the
two regions. Note that asymptotic ISS is demonstrated for a given region X;gg. Then, it is
proved that for any starting condition within this region, the algorithm is recursively feasible.

We stress than an abstraction is used: in practice, we solve a single min-max problem
ming, maxs, Jj, subject to constraints (6.6)-(6.8), thus obtaining U}; yet, for our analyses, we
decouple the maximisation CP and the minimisation QP. Accordingly, we consider Zj as the
maximiser of maxg, Jj subject to constraints (6.6)-(6.8), which, plugged to the minimisation
problem ming;, Jj using the model in Eq. (6.14) implies in the worst-case cost minimisation,

i.e. ming, J,Eound.

6.4.1 The maximisation CP

In order to demonstrate the recursive feasibility property of the maximisation problem, we
follow closely discussions of previous works [Magni, Raimondo, and Scattolini 2006; Limo6n
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et al. 2006a; Lazar et al. 2008|.

Remark 59. In these previous papers, 1SS and ISpS properties are verified for the whole
min-max CP through the use of terminal ingredients. In this Chapter, we follow a dissipativity
formulation, since we do not make use of RPI sets as terminal constraints nor of terminal stage
costs in our formulation. Anyhow, the analysis of recursive feasibility of the maximisation step
can be maintained.

Remark 60. Some of the following steps are easier to follow if the weak duality property
of CPs is considered [Lifberg 2012]: an mazimisation CP can be equivalently written as a
minimisation CP over the same variables with adjusted slack variables.

The considered maximisation argument maxzs, Ji(-) subject to the inequality constraints
(6.6)-(6.8), and based on the available scheduling sequence guess Py, considers Zj, as the
sequence of uncertainties along the horizon, as gives Eq. (6.13). Note that it can be adequately
re-written in a generalised formulation with respect to =g, this is:

1_ _ _ .
max <2:;‘§ng;€ - :;‘ggg(Pk,x(k))> . (6.16)

=k

Replacing Xj, in Eq. (6.16), we obtain® H, = 2Q and g, = —2Q (.A(Pk)a:(k:) + B(Pk)Uk>

Remark 61. Note that, if constraints are disregarded, for rationale purposes only, it is direct
to evaluate that the mazimal value for Jy, with respect to = would be found with = =
(Hy)"tg,. Since g, is linear over Uy, the value for Uy that mazimises Ji is U = col{u} (a
sequence of mazimal control signals), e.g.: Zf = —(2Q)~! (A(pk)x(k) + B(pk)U) Regarding
the CP constraints, it follows that (6.8) adds no difference to this possible result. Moreover,
constraints (6.7) and (6.8) are only boz-type operations over x and u, respectively. Therefore, it
follows directly that for any starting condition xo within the feasibility set X, this maximisation
CP is recursively feasible since Jy is never be unbounded with respect to Zy due to its reqular
quadratic formulation on Zy, operated through Eq. (6.16). Nonetheless, this property only
remains true if and only if Q=1 exists, since (H,)™! = (2@)*1.

In order to demonstrate the recursive feasibility property of the CP in Eq. (6.16), we
consider that:

e The minimisation QP is also feasible. This is quite logical because the min-max formu-
lation resides in the operation of both these CPs consecutively.

e The stage cost £(-) is lower bounded for all z € Xyrax cp (this set denotes the feasibility
region for the maximisation CP). Indeed, it follows directly from Eqgs. (6.4) that:

) = a(llzl), (6.17)

being ay(||z||) a K-class function.

4Notation Q and R denote block-diagonal matrices with Q and R repeated NN, times in the diagonal,
respectively.
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Lemma 6.4.1. Based on these previous conditions, of a feasible minimisation QP and of
Eq. (6.17), it follows that the worst-case cost function J,fo’md, computed with respect to Zf, is
upper-bounded, considering that the uncertainties are described as of Eq. (6.12), such that:

Jhewnd <o (||=l]) + B4 (@), (6.18)

where ay and By are Koo-class functions.

Proof. Refer to [Morato, Normey-Rico, and Sename 2021d, Appendix C|. O

Remark 62. Since the previous Lemma requires the min. QP to be recursively feasible, it
is 1mplied that Xyee cp = Xumin Qp, where Xappn gp is the feasibility set of the second CP.
For simplicity, we henceforth denote the maximisation CP through an abstraction: we use an
operator notation (Y ) applied over the states: Zj = T(P)x(k).

6.4.2 The minimisation QP

The analysis of the ISS property of the minimisation QP is more complex. This CP solves
U = argming, Ji(-) subject to constraints (6.6)-(6.8), based on the available scheduling
sequence guess Py, and on the uncertainty vector Z3. Figure 6.1 gives a graphical block-diagram
interpretation of the system, considering both CPs (6.5) and (6.15) and the extrapolation
algorithm, where G represents the open-loop LPV embedding of Eq. (6.2).

O f—— ¢ [ "

J ~ > pa
N - ) D, T &
algorithm
 Min [ Y% I Hs w
| QP
Proposed MPC "

Figure 6.1: Graphical representation: qLPV-embedded nonlinear system and proposed algo-
rithm.

Next, we replace X}, from Eq. (6.14) in Eq. (6.9), which leads to the following Hessian
and linear term?:

HP) = 2 (1—?+B(15k)TQB(ﬁk)) , (6.19)
g(Pa(k) = —2B(P)TQ (A(B)a(k) +5f) . (6.20)

Then, in order to verify ISS, we proceed by defining a nonlinear static map ¢ : g — U}
implied by the constrained minimisation QP in its regular form of Eq. (6.9). Specifically,

®For notation compactness, we denote henceforth simply gr = g(Pr, z(k)) and ¢r = ¢(g(Py, z(k))).
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we use the formulation from [Heath, Wills; and Akkermans 2005; Petsagkourakis, Heath, and
Theodoropoulos 2017]:

Lemma 6.4.2 (Sector bound [Petsagkourakis, Heath, and Theodoropoulos 2017]). The non-
linearity u* (k) = YU}, which renders the MPC law via the optimisation in Eq. (6.9), belongs
to the sector [0, H(Py], Vp(k + j|k) € P.

Proof. Consider the nonlinear static map ¢y : g(]sk,x(k)) — U} implied by the MPC con-
strained minimisation program from® Eq. (6.9). Then, the existence of a feasible control
sequence Uy is ensured if the Karush-Kuhn-Tucker (KKT) conditions of Eq. (6.9) hold:

H(P)Uf — g+ AEX = 0,
)\j <Ainequ§ - bineq(k)j> = 0, (621)
Aj >

where \ being the Lagrange multiplier. Multiplying the first KKT condition by U kT , being
Ul = ¢r, leads to the following inequality, which should hold for all p(k + j|k) € P:

SLH(P)ok —dhge < 0, Vgi. (6.22)

This concludes the proof. O

Note that the inequality argument in Eq. (6.22) derives directly from the Lagrange-KKT
conditions of the QP, represented as a sector-bounded nonlinearities with regard to each
scheduling parameter (thus, herein named parameter-dependent). Further discussions on this
matter are available in the original paper [Heath, Wills, and Akkermans 2005].

Regarding Ineq. (6.22), we present a graphical interpretation of the considered system in
Figure 6.2. The proposed MPC policy is divided by the upper ¢ block, which comprises the
minimisation QP, and by the lower T block, which embeds the maximisation CP. Regarding,
Figure 6.1, the output of the minimisation QP Uj’ is now replaced by the nonlinear operator
¢r. Moreover, the main open-loop process in Figure 6.2 is represented by Gz,, which is a
compacted operator comprising the open-loop plant and matrix Zy, since u(k) = Z;U}. It
follows that z := G(u,w), u := Z;¢, and, thus, z := Gz, (¢, w).

In order to evaluate the previous inequality, a factorisation of the Hessian is necessary so
that parameter-dependency can be smartly dropped. We define the block-diagonal compact
set P C RV»*™ a5 the compact set within which Py, lies (recall that each entry of this vector,
p(k + jlk) is bounded to P). The factorisation is the following:

0 0 0 BB 1 [20 o 0 B(H)
o o] = Lo O] [o Lo V] e
A —
Hp(Pk)T Hop HP(Pk)

5Secking notation compactness, we use gr = g([:’k, z(k)) and ¢ = ¢ (g(f’k,x(k))>
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Figure 6.2: Graphical representation: Closed-loop system.

Based on the prior factorisation, we are able to re-write inequality (6.22) as follows:

[ * ]T <[ _OI 8 ] "‘HP(Pk)THOHP(pk)) [ ngz ] < 0. (6.24)

II(Py)

As provided in previous works |[Megretski and Rantzer 1997; Scherer 2001|, the above
parameter-dependent quadratic constraint can be cast into a regular multiplier form
ngzzg < 0, where z, is the output of a bounded linear operator \I/(pk) which factorises
II(P;), this is: TI(P},) = (\II(Pk)>* M, U(Py,). The operator II(-) stands for the “filling” of the
previous inequality (6.24). Thus, we continue by using the previous factorisation to write II(-)
in a multiplier form, given as follows:

I(P,) = U*B) 8 100l lro] (6.25)
: : { N } Hy Hp(Py) '
. (Py)

z

Figure 6.3 gives a graphical interpretation of the extraction of parameter-dependency
through W. It follows that the multiplier form of II(-) is built with:

0lo o
—1] 0 2R (6.26)
I 0
V(b)) = 0 B(P)
0 I

From the previous development, we express the dissipativity inequality (6.22) simply as:

[ 17 w(P)T MU (P) [ ngi ] < 0, (6.27)
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Figure 6.3: Graphical representation: Parameter-dependency extraction.

which is can be compacted as:
[ «]" M.z, < OVP, € P, (6.28)

being z, = V(B [ ok Uk ]T the output of the W(-) operator.

The parameter-dependency has been dropped through the previous factorisation proce-
dures. Therefore, we can perform an LFT to extract the LPV scheduling parameter depen-
dency as an upper O-block (which is connected to an LTI nominal block). Considering z, as
an output the lifted system, we graphically illustrate the LF'T in Figure 6.4, where G7, is an
LTT nominal model of the augmented plant, as follows:

w(k+1) = Arz(k) + Byw(k) +  Bjgr  + Bjuy(k)

Gy, = yo(k) = Cpz(k) + Dj,bx + Djuy(k) (6.29)
zg(k) = Clxz(k) + DI,or + DZ,u(k)
where u,(k) := Oy,(k) makes the interconnection between this nominal LTI block and the

LPV-lifted upper ©-block and =} appears now as an input to the G7 block, since it is present
1
in g5, as gives Eq (6.20).

®
9k ) o
e
Zg G7, w
P ()
) by T P
| algorithm

Figure 6.4: Graphical representation: Closed-loop with p-dependency extracted.

Finally, in order to check if the system is ISS, it remains to verify the following Lemma,
adapted from |Cisneros and Werner 2018|, which ensures that the lower G7 -© block is stable
despite the upper ¢ transfer.
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Definition 6.1 (D/G Scalings, as gives |Cisneros and Werner 2018])
Let © = diag{p1(k)Lsize(p}> - - - 5 pnp(k)Isize{pnp}}, with pj € R. Accordingly, the set of
D/G-Scalings is defined as follows:

MD/G = {|: ]\fl _]\]4\;1 :| My = Mir > 0, My +M2T =0,M10 =0M;, MO = @MQ} .
Lemma 6.4.3 (Adapted from [Cisneros and Werner 2018|). The closed-loop system given in
the LE'T form in Eq. (6.29), requlated under the proposed min-maz MPC' law in the form of
Uf = argming, Ji() subject to constraints (6.6)-(6.8) and based on the available scheduling
sequence quess Py, and on the uncertainty =3, is quadratically stable, verifying the dissipativity
inequality (6.22), if there exists a positive-definite matrizv P = PT > 0 and a constant 7 > 0

such that:
(AMTPA* — P (A")TPB} (A™)'PBy

* (BHT'PB? (BM)TPB"
¢ ¢ o P | — 7l + g < 0 6.30
« « (BryTpBy | T e He (6.30)
* * *
where
0lo o
m, = [¢7| 029 o0 [cg pr, o, |, (6.31)
—I|0 2R
cr D, D
Il = [*]TMe[ 0 6”‘75 J4 ] (6.32)

and Mo € Mp/q.

Proof. Consider the existence of a quadratic storage function V' = z? Px. From LMI (6.30),
we obtain:

(V(k+1) = V(k)) — (12) M.z,) (6.33)
T
+ ([ up(K) (k) | [ H Mo [ é] [ (k) () ]) < 0.

Leveraging from the negativeness of the supply rate term (ngzzg), Meg is implied as non-
negative. Therefore, for any 7 > 0, it follows that V(k + 1) — V(k) < 0, which means that
the propose storage function is a Lyapunov function for the system and, thus, for any starting
condition xg € ATgg, local asymptotical stabilisation to origin of the state-space is ensured
by the MPC policy. For full details refer to to [Morato, Normey-Rico, and Sename 2021d,
Appendix D]. O]

The positive definite matrix P found through Lemma 6.4.3 defines the following set:

Xincp = {z € R™ |2 Pz < 1}. (6.34)



172 Chapter 6. A dissipative approach

Thus, for any starting condition zy contained in the interior of Xy cp, the minimisation QP
ensures (local) asymptotic stabilisation to the origin. Since the proposed MPC is made of two
consecutive CPs, the complete set within which ISS is verified is given by:

Xrss = XMaxcp N XMin QP - (6.35)

Since Xyax cp := XMin Qp, it follows directly that X755 = Xwvin Qp-

6.5 Application example

In this Section, we present a nonlinear case-study for which the proposed MPC method is
applied. As discussed in energy systems literature, e.g. [Camacho et al. 2012; Pasamontes
et al. 2013; Morato et al. 2020e|, the addition of renewable energy sources to power plants
can be a good route to reduce greenhouse gas emissions and environmental impact. Anyhow,
an inherent problem to be solved is how to integrate these energy sources without loosing
efficiency and dispatchability of energy plants.

6.5.1 Solar-thermal system, phenomenological model, and control problem

We consider modern solart-thermal (ST) systems, which are structures that integrate collector
fields, accumulation tanks and gas heaters. Each subsystem has independent dynamics that
strongly influence the total output. These ST units are controlled in order to ensure efficiency
despite variations on the energy input caused due to cloudy periods of the day. We assume
that the global ST coordination as well as the control of the tanks and gas heaters are regularly
working: the heated fluid is accumulated on the tanks to compensate for the lack of heated
flow coming from the solar collectors in cloudy periods. Moreover, if the outlet temperature
is not enough to comply with demands, the gas heater is used to further heat the outlet. The
heated fluid is used to attend the heating demands of a separate industrial process.

The focus of the control system is solely to the regulate the temperature of the ST col-
lector panel. Accordingly, the collector outlet flow temperature signal must track a constant
steady-state reference, despite instaneous variations on the solar irradiance or on the external
temperature. Figure 6.5 illustrates the considered ST system.

Complete phenomenological models have previously been derived for ST collector fields,
e.g. [Pasamontes et al. 2013|, with according model-validation provided in [Ampuno et al.
2019]. These models are derived on the basis of the following set of assumptions:

1. The fluid flow through the solar collector is incompressible (with density €y), with uni-
form pressure along the field; the heat transfer capacity of the fluid is constant and
denoted C'y;
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Figure 6.5: Schematic illustration of a solar-thermal collector field.

2. The heat transfer capacity of the collector plates is constant and denoted C,,,; the density
of these metal plates is also constant and denoted €,,;

3. The balance of energy equations assume a constant thermal loss coefficient v, with
respect to the thermal energy that derives from the incident solar radiance;

4. The heat transfer coefficient of the absorver (external temperature to plates), denoted
ho, is constant, while the heat transfer coefficient of the fluid (fluid to plates), denoted
hi(+), varies positively according to the temperature of the plates.

Then, the following partial-differential dynamics arise due to balance of energy equations,
where t represents the time variable and s the space variable:

emCm A2 (1) = —domho(Ty(t) — Tu(t)) — dimhi (T,y(8))(Ty(t) — Ty(t))
demvI(t),
—u(t)esCr oL (t, 8) + dimhy(Ty(£)) (Ty(t) — Ty(1)) .

_l’_

oT
ffoAiTg(ta 8)

In these temperature gradient dynamics of Eq. (6.36), I(t) stands for solar radiance
focused upon the collectors (which is a load disturbance from a control viewpoint); T}, T, and
Ty are, respectively, the collector plate, the external (load disturbance as well) and the fluid
temperatures; u is the inlet fluid flow, which is the control input of the system; finally, A; and
A, are, respectively, the internal and external surfaces of the pipes, that have (internal and
external) diameters of d; and d.

For application purposes, the space-derivative term %lg(t, s) can be replaced, as debated
in [Pasamontes et al. 2013; Ampuitio et al. 2019; Pipino et al. 2020b|, by either a nonlinear
function or an apparent transport delay. In this Chapter, it is approximated by the following
nonlinearity:

Ty (1)

— Tmax

8Tf(t,5) ~ 1—e
s To1-e b

(6.36)

which means that the diffusion of the thermal energy of the fluid flowing along the flat collectors
increases with respect to its temperature T(t) until a certain level is attained T, after
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which the diffusion is constant, i.e. the whole fluid inside the flat collector is at the same
temperature. This approximation is quite reasonable with respect to the ST application and
in accordance with the literature, i.e. [Pasamontes et al. 2013].

The heat transfer coefficient of the fluid h; (T,(t)) is given according to the following
nonlinear equation:

—Tp(t)
1—eB™

Wi () = hi|l 7——=|

(6.37)

where h; is the maximal heat transfer coefficient of fluid, attained for Tp,(t) = Ty~

Regarding the nonlinear model of Eq. (6.36) with the relaxations of Eqgs. (6.36)-(6.37),
the parameters have been identified and adjusted for the CIESOL ST plant, located in the
CIESOL-ARFR-ISOL R& D Centre of the University of Almeria, Spain. The numerical values
for these parameters, from the work |[Pasamontes et al. 2013|, are given in Table 6.1.

Table 6.1: ST unit: Model parameters.

em | 1100kg/m® | Cp, | 440 kg%
e; | 1000kg/m® | Cy | 4018 b
A. | 0.0038m2 | A; | 0.0013 m?
d; 0.04m d. | 0.07m
ho 11 h; 800

v 3.655 - -

6.5.2 The control problem

The goal of this ST system is to track outlet temperature references to cover a certain heat
demand, which is done by varying the inlet fluid flow w. This collector field has a 160 m?
surface area, distributed in ten parallel rows composed of eight collectors per row.

In terms of performances, the temperature set-point tracking should be done as fast as
possible, while respecting the maximal temperature of 300°C that the inlet fluid can tolerate.
Moreover, the temperature of the plates should not surpass 600 °C. These performances can be
evaluated using usual reference-tracking indexes, such as the integral of the average tracking
error. Through the sequel, we denote TpSP and T?P as the constant steady-state temperature
references to the collector plate and to flowing fluid, respectively. The considered steady-state
targets for reference tracking are: TpSP = 109.93°C, and TfP = 97°C.

The inlet flow (control signal) should be always positive, since no fluid can be extracted
from the ST units, only injected, and abide to a upper bound of 0.35m?3/s. Moreover, the
control policy has to be evaluated within Ty = 0.01 s, which is the considered sampling period.
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We stress that the dynamics of this ST process exhibit average settling periods in the order
of 100 s. In practice, many control schemes have been tuned considering a sampling period
of a few seconds, e.g [Pasamontes et al. 2013; Ampuno et al. 2019]. Nevertheless, we choose
a tighter sampling period for illustration purposes, in order to verify whether the proposed
method could serve for embedded real-time applications.

The disturbances to this system (the solar radiance and external temperature variables)
are assumed to be measurable from a control viewpoint. This is quite reasonable, given that
accurate estimations for the future behaviour of these disturbances can be indeed obtained, see
|Camacho et al. 2012|. These estimation results (for solar radiance and outside temperature)
are easily provided with Neural Network tools, i.e. [Vergara-Dietrich et al. 2019|.

Table 6.2 resumes the state and input constraints. Note that the fluid and plate temper-
atures are lower-bounded by external temperature to the ST system, T¢(¢). If there is no sun
during the day, the ST system reaches a thermal equilibrium with T, (¢). For simplicity, since
T(t) > 0, the lower bounds on 7}, and T can be taken as 0.

Table 6.2: Constraints of the considered ST system.

u(t) e U U:={ueR|0<u<035m’/s}
Tpy(t) € Ty | Tp := {Tp, e R|T.(t) < T, < Tpmax} , T3 = 600°C
Ty(t) € Ty | Ty = {Ty €R|T.(t) < Ty < TP}, TP = 300°C

6.5.3 qLPV-embedded model

Since this Chapter is concerned with the application of MPC technique, the ST nonlinear
phenomenological model of Eq. 6.36, with the relaxations of Eqs. (6.36)-(6.37), is Euler-
discretised with the sampling period of 75 = 0.01s. This procedure yields a nonlinear discrete-
time model. Given that the proposed min-max MPC method is conceived for qLPV embedded
nonlinear models, and due to the fact that the LDI property holds for the yielded discrete-time
model, a qLPV model is obtained. We consider the following system states:

a(k) = H;Eg] = [Tp(k)_TpSP } : (6.38)

and the scheduling parameters as p = [p1, p2]”, which are respectively derived directly from
the nonlinearities added to the balance of energy equations due to the time-varying thermal

loss term given in Eq. (6.37) and due the partial derivative approximation given in Eq. (6.36):

_ z1 (k) -
max ;

7 1—e <TP 7TP )

diﬂ'hi 1—e—1

T
k
] = saw) - i, . (6.39)
(I—e=H)4;
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Evidently, each of the scheduling parameters is bounded to a convex set:

p1 € [p1, p1) = [0, diwh;]and (6.40)
1
p2 € [@a E] = |:07 A:| ) (641)

which means that p € P. Furthermore, note that the time-derivatives of p, denoted dp are
also available and ultimately bounded in a convex set 6P. Accordingly, the following qLPV
realisation is obtained:

{1 = AR + BRI + Bulphoth) (6.42
o) = fola(1)). |

Note that [A(p), B(p), Bw(p)] are affine on the scheduling vector p. The vector of load
disturbances is given as follows w(k) = [ I(k) Te(k) ‘ TpSP T?P } The model matrices are:

demhg 1 1
—- - p1(k) ¢ p1
AGplk)) = O I T T
e Cr A, P1 7 Cr A, P1
0
B(p(k)) = | ° ] , (6.43)
der deth derh 1 1
B k — T fmCmVAe Emczrm%e - Emérm%e - 6711,6‘777,146 pl (k) 6'rnC'mAe pl
7 CrA; P1 ;O A, P1

6.5.4 Offline preparations

The system is conceived for a steady-state reference tracking goal with the aforementioned
TpSP = 109.93°C and T;P = 97°C. Regarding this matter, we note that:

The box-type set for the states, X, is defined with the following ultimate bound: T =
[ 490 203 ] °C.

e The deviation of the states Az is, thus ultimately bounded by: Az =
[ 0162 0.2637 " °C.

The differentiation function fa( ) is ultimately bounded:

[}
a dimh; 1 e~ 490
fp (1=e” R 49‘{ oy < 03246V € X, (6.44)
1 A(d-—e D) )zoz€” 20
e With respect to X, the smallest local Lipschitz constant for the nonlinear map f,(-) is
found for:
dymh; A .
((17; ))<e 10 — ¢ 490) < - (xl—x1>‘ (6.45)
— ) |e 55 — e ;ﬁ B To — X9 ’ ’
(Ai(lie 1)) ( 2 2) P
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where:

1

(524 4
Yy = . = 0.8825. (6.46)

1 1
‘ (Ai(lfe_l))ﬁ
e The worst-case scheduling sequence estimation error is given by:

bowd = (3, +f2) Az = [ 0046 0.0015 " (6.47)
e The uncertainties o introduced due to the model-process mismatches, thus, are bounded
to the compact set S, defined as:

S == {o e R"||o]| < 4.89°C} . (6.48)

Notice, for comparison purposes, that the uncertainty set computed as if the scheduling
parameters varied arbitrarily inside P (as done in the original min-max LPV MPC design
algorithms, e.g. [Cao and Lin 2005]) is given by:

SCao et al., 20056 ._ {0 € R ’ HO-H < 59900} . (649)

while the uncertainty set computed taking the rates of variations of the scheduling parameters
(0p) into account, as done in [Li and Xi 2010], for a control horizon of N, = 30 steps, is given
by:

Slietal, 2010 ._ {o € R™||o] < 489°C} . (6.50)

Evidently, these two sets are much wider than the one with the proposed method. This means
that the online computational effort to solve the maximisation CP is smaller with the proposed
method. This issue is debated next.

6.6 Results and debate

Next, the proposed dissipative fast robust MPC method for nonlinear systems is applied to the
ST collector system. The considered process is emulated through the nonlinear high-fidelity
phenomenological partial-differential model given in Eq. (6.36), with parameters given by
Table 6.1. The proposed control method is implemented with the uncertainties defined by the
set S in Eq. (6.48). The solutions of the optimisation problems are obtained using Gurobi.

Through the sequel, the proposed control scheme is denoted “Proposed qLPV MPC”. For
comparison purposes, it is compared to the following key methods from the literature:

e A full-blown NMPC algorithm [Allgéwer and Zheng 2012|, which embeds the complete
nonlinear model predictions. To solve the resulting NP, fmincon solver is used; this
method is referred to as “Full-Blown NMPC”.
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e The original min-max LPV MPC algorithm [Cao and Lin 2005|, defined with respect to
the uncertainty set given in Eq. (6.49). It is henceforth denoted “min-max (Cao et. al,
2005)”.

e The min-max LPV MPC scheme considering bounded rates of parameter variations [Li
and Xi 2010], defined with respect to the uncertainty set given in Eq. (6.50). This
approach is denoted “min-max (Li et. al, 2010)”.

e The qLPV-embedding (SQP) MPC method from [Cisneros and Werner 2020] (approach
(iii) in Chapter 3), which uses a scheduling sequence estimation and solves sequential
QPs, solved via through iterated uses of Gurobi. This last method is henceforth marked
as “qLPV MPC (Cisneros & Werner, 2020)”.

All controllers are synthesised with the same cost function J; and prediction horizon N, =
30 samples. The cost function is set to further force the regulation of the fluid temperature
variable, with the following weights:

02 0
@ = { 0 0.8] ’ (6.51)
R = 1076,

We proceed by depicting the obtained results in terms of reference tracking, i.e. regulation
of the system states to the origin. These results comprise 950s of simulation of the considered
solar-thermal unit. The load disturbances (solar irradiance and environment temperature) are
shows in Figure 6.6.

Disturbances
1000 T T

Solar Irradiance

External
Temperature
(°C)

0 100 200 300 400 500 600 700 800 900

Figure 6.6: Disturbance scenario.
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6.6.1 Region of attraction

Firstly, we aim to demonstrate that the proposed method is indeed recursively feasible, yielding
an ISS region of attraction X7gg. According to the steps detailed in Sec. 6.4, the LMI in
Lemma 6.4.3 yields a positive definite matrix P and a constant 7 that verify the dissipativity
conditions of the proposed min-max algorithm. This is, indeed there exist P and 7 such that
the cost function of the minimisation QP decays over the simulation run. These are:

[ 0.18746 0.00011 »
P =1 087199 2400050 | 0

T = 1.6793910° 7.

(6.52)

Thus, for whichever starting condition xy found inside the ellipsoidal set Xjgg :=
{xo € R |zl Pxy < 0}, input-to-state stability is ensured. Accordingly, this is shown in
Figure 6.7, where the elipsoid Xgg is depicted altogether with the evolution of the systems
states z(k) (obtained with the proposed method).

ISS: Region of Attraction
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T
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X1 (k:)

Figure 6.7: Region of attraction (ISS certificate).

6.6.2 Scheduling trajectory extrapolation

In Figure 6.8, we present the results concerning the extrapolation of the scheduling parameters
p1 and py along the prediction horizon N,. In this Figure, the dashed black line depicts
the actual variation of p(k), whilst the full blue line shows different snippets of scheduling
sequences extrapolated according to the recursive algorithm in Eq. (3.43). The estimation
error is quite small. Furthermore, the average time needed to solve the algorithm is of 0.41 ms,
much smaller than the considered sampling period of 10 ms.
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Figure 6.8: Results: Scheduling trajectory extrapolation.

6.6.3 Regulation results

The results concerning the regulation of z(k), with all the tested methodologies, are presented
in Figure 6.9. We stress that all methods ensure state and control constraints (z € A and
u € U). The regulation of the states to the origin is not thoroughly ensured by the min-max
methods by Cao et al. and Li et al., since their respective uncertainty sets S¢a° et al. 2005
and SMetal, 2010 416 t60 Jarge with respect to X. We note that the first min-max method
stabilised z to (—66.05, —96.7) °C, while the second (bounded-rates) method brought the
state trajectories to (—65.95, —96.34) °C. The smoother performances seem to be the ones
attained the Full-blown MPC algorithm, while the proposed method and the one by Cisneros
& Werner yield quite comparable performances. We remark that the control action also acts
to attenuate the effect of the load disturbances; this is especially evident after ¢ = 500s, when
both disturbances vary abruptly (see Figure 6.6).

Table 6.3: Performances indexes: Plate temperature tracking (z1).

Method IAE (.1073) | RMS
Full-blown NMPC [Allgéwer and Zheng 2012] 7.6803 24.5295
11.5762 29.7982

min-max [Cao and Lin 2005] 60.5221 64.6373
min-max [Li and Xi 2010] 59.9912 64.2002
[Cisneros and Werner 2020] 7.9062 24.6305

The proposed method is able to ensure adequate results since its uncertainty set S is
relatively small. Moreover, the uncertainty vector = computed through the maximisation
CP norm-decreases over the simulation, as the extrapolation of the scheduling sequences gets

better (see Figure 6.8).
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Figure 6.9: Results: Temperature tracking and control signals.

Table 6.4: Performances indexes: Fluid temperature tracking (z2).

Method TAE (.1073) | RMS

Full-blown NMPC [Allgéwer and Zheng 2012] 1.1509 2.0402
Proposed qLPV MPC 1.0354 1.8946
min-max [Cao and Lin 2005] 93.0361 96.2502
min-max |Li and Xi 2010 91.5767 94.8112

qLPV MPC [Cisneros and Werner 2020] 1.9396 2.8030

We proceed by investigating these performances through performance indexes: Tables 6.3
and 6.4 show, respectively, the root-mean square (RMS) and integral-of-the-absolute-error
(IAE) indexes applied to xi(k) (plate temperature tracking) and zo(k) (fluid temperature
tracking). We stress that smaller IAE and RMS values indicate better performances, which
conversely means that the references are tracked faster and with less steady-state error.

With respect to the regulation of x1, these tables show that the performances achieved
with the Full-Blown NMPC and the qLPV MPC by Cisneros & Werner are roughly equivalent
in terms of RMS and TAE. The proposed method does not stay far behind, having slightly
slower tracking in the first few seconds, which results in the settling seen by ¢ = 200s in
Figure 6.9. It is important to notice that this fact resides in the maximisation procedure,
which implies the robustness by finding larger uncertainty vectors =} in these first moments,
which reflect on the solution found by the minimisation QP and the slight difference to the
other methods. Anyhow, we stress that the performances are comparable.

Owing to the regulation of s, it is seen that the IAE and RMS indexes indicate that the
best tracking performances are obtained with the proposed method. As seen in Figure 6.9, the
Full-Blown NMPC and the qLPV MPC method by Cisneros & Werner [Cisneros and Werner
2020| yield comparable results.



182 Chapter 6. A dissipative approach

Table 6.5 presents the TV index for each control signal. It can be seen that the smoother
control values are obtained by the Full-Blown NMPC method, with the proposed method and
the method by Cisneros & Werner not standing far behind. The min-max methods by Cao et
al. and Li et al. present negligible results, at least for this ST application for which p has a
big variation set P with also large possible variation rates (i.e. 6P is also large).

Table 6.5: Total variance of the control signal.

Method TV
Full-blown NMPC [Allgéwer and Zheng 2012] | 0.1987
0.2800
min-max [Cao and Lin 2005] 16.8449
min-max [Li and Xi 2010] 68.97871
[Cisneros and Werner 2020)| 0.2789

6.6.4 Computational stress

With respect to these results, we present a very important issue: the average computational
time (¢.) needed to solve the optimisation procedure of the methods are synthesised in Table
6.6. We recall that the sampling period of the system is of 10 ms (which is the computational
time upper bound). Evidently, the Full-Blown NMPC needs a lot of time to solve its inherent
NP, which means that this method is not applicable in practice for processes with small
sampling periods. The results obtained with this method are purely numeric and would not
be able to be applied in practice. The qLPV MPC method by Cisneros & Werner solves, in
average, five QPs (it iterates the QPs to compute the extrapolation guess Pk) The proposed
method operates, in average, within 6.3 ms, spending 0.41 ms to make the extrapolation guess
P,. These are very interesting results, meaning that the proposed solution is indeed fast and
able to operate for embedded applications. The performances of the proposed method are
equivalent to the method by Cisneros & Werner, which operates in the millisecond range as
well as the available modern NMPC solutions, such as ACADO and GRAMPC |Quirynen
et al. 2015; Englert et al. 2019].

We highlight that the obtained time performance depends on the operating computer
machine and on the size of the controlled system. In this Chapter, the considered system is
a 2 x 2 system, for which the max. CP and the min. QP are evaluated simply enough. For
larger order models, sub-optimal solutions might be necessary; refer to a previous discussion
on this matter in [Zhang, Li, and Liao 2019].

6.7 Conclusions

In this Chapter, a novel MPC algorithm for nonlinear system is proposed. The nonlinear
system is embedded into a qLPV formulation and its scheduling parameters p are extrapolated
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Table 6.6: Computational load.

Method le
[Allgéwer and Zheng 2012] | 776.5 ms
Proposed qLPV MPC 6.3 ms
min-max [Cao and Lin 2005] 7.2ms
min-max |Li and Xi 2010] 7.5ms
qLPV MPC [Cisneros and Werner 2020] 8.7ms

using a recursive Taylor expansion law. The predictive control algorithm is based on a min-
max optimisation procedure, written with respect to the uncertainty set derived by wrong
estimates of p. The dissipativity of the proposed method is verified via an LMI-solvable
remedy which ensures the Lyapunov-decrease of the stage cost and an Input-to-state stability
region. The method is applied to the nonlinear temperature control problem of solar-thermal
collector plates, exhibiting good performances.

With respect to the obtained results, some key points are emphasised:

e Full-blown nonlinear programming NMPC are not applicable for embedded applications
of processes with fast sampling rates, since the average time needed to solve the NP
is usually larger than the available sampling period. Recent literature has shown how
approximated NMPC methods (such as CaSaDi, GRAMPC and ACADO [Quirynen et
al. 2015]) and qLPV-embedding MPC algorithms [Cisneros and Werner 2020] are able
to efficiently solve such complex control problem in the range of milliseconds.

e For the considered case study, the reference tracking performances obtained with the
proposed qLPV-embedding min-max MPC method are equivalent to these fast modern
nonlinear MPC methods [Cisneros and Werner 2020], as assessed by the RMS and IAE
indexes. The numerical operability of the proposed. method is similar to previous works
[Quirynen et al. 2015; Cisneros and Werner 2020]. We note that the complexity of the
problem grows with the order of the system.

e The proposed method solves the maximisation convex programming problem with re-
spect to the error regarding the estimation of the scheduling parameters along the pre-
diction horizon. We stress that any kind of algorithm with bounded estimation errors
could be used in the place of the Taylor expansion one proposed in this Chapter. An
alternative and elegant option could be the use of the iterated mechanism [Cisneros and
Werner 2020|, which uses the state sequence computed with the minimisation QP to
compute the evolution of p along the horizon.

e The proposed method is compared to two keystone min-max LPV MPC algorithms from
the literature [Cao and Lin 2005; Li and Xi 2010], which consider, respectively, that p
can vary arbitrarily inside P and considers bounded rates of variations for p. Since
the variations of the scheduling parameters and its convex set are quite large for the
considered application, the results obtained with these methods are quite poor. The
uncertainty set with the proposed method is much smaller (by a factor of a hundredth).
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Furthermore, as time control law progresses, the extrapolation method gets better esti-
mations of p, which also makes the uncertainty output of the maximisation problem to
converge to zero, as the state trajectories converge.

Finally, the method has ensured input-to-state stability for a larger regional domain
Xjss. This property is ensure together with recursive feasibility through a dissipativity
verification framework, solved via LMIs. We note that the advantage of this framework
is that it does not require the use of terminal ingredients (constraints and costs) on the
optimisation problem, which may be quite hard to compute online for LPV systems.
Therefore, the MPC cost function is quadratic on z and u (and quite simple), which
allows its fast operation.

As a note on perspectives, we emphasize that an alternative formulation to the LPV
MPC min-max solution can be considered, in the sense that the scheduling set P can be
taken as a time-varying projection related to the scheduling proxy p = f,(z). In this
case, enhanced performances can be obtained since, as x is regulated, the variability of p
is decreased and so is the corresponding scheduling set. We stress that in the proposed
solution, a constant (full sized) scheduling set P was considered.
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CHAPTER 7

Conclusions and outlook

In this final Chapter, I present a broad overview of the developments and applications con-
ceived along these (roughly) four years of Ph.D. Also, I recap the original thesis objectives,
as presented in the Introduction, debating the achieved results in terms of limitations and
advantages. Finally, I lay out the open threads and available investigation gaps that still re-
main open, providing perspectives and an outlook regarding future works. The complete list
of publications that derived from this doctoral work is presented in Appendix A, with works
being categorised by topic and considered application.

Before any of conclusion is drawn, nonetheless, I stress that the development of my thesis
was directly affected by the COVID-19 pandemic (in many levels). As a start, I expected to
spend the year of 2020-2021 in France, as accorded in the original joint supervision conven-
tion, in order to perform experimental essays on vehicular test-beds available in GIPSA-Lab.
Secondly, I was financed by the German ministry of education (BMBF) for a three-months
research stay in Stuttgart, supervised by Prof. Carsten Scherer (this is due to the Green
Talent awarded to me my BMBF in 2019'). This research stay was planned to be carried
out just before the start of my year-long stay in France. Due to the enacted quarantine and
social distancing guidelines, these dates were postponed, which made to me aborting some
of my initial plans for the thesis, while adapting and redirecting others. For instance, I had
to replace many experimental essays by the means of validation using high-fidelity realistic
numerical simulators (especially in the case of vehicle dynamic applications). Moreover, the
developments on dissipativity theory applied to MPC were reduced, since I could only prop-
erly conducted in the last doctoral year. In the end, I could conduct some experimental essays
during the period in France, along 2022, while many of these results were not included in this
work but rather published in separate papers, e.g. [Morato et al. 2021c; Medero et al. 2022;
Morato et al. 2022b].

Apart from all these unforeseen changes in the context of the "methodological script",
planning, and initial calendar of my thesis, which, in some sense, disturbed my developments,
I emphasise, as a personal note, that the uneasiness of the COVID-19 contagion in Brazil,
corroborated by speeches of disbelief in science in a broad sense, instigated me to also pon-
der over possible implications of my scientific work (and of the algorithms investigated this
thesis) with regard to mitigating the observed? social-economic effects of the pandemic in
Brazil. Accordingly, I spent a considerable period of time, during the years of 2020 and 2021,

!See https://wuw.greentalents.de/awardees-2019.php.
2The challenges involved in controlling the SARS-CoV-2 epidemic are many. Brazil is a very large country,
which registered over 35 million infections and over 690,000 deaths due to COVID-19. In the country, the
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developing MPC applications with focus to COVID-19 contagion models (using nonlinear and
LPV frameworks), seeking to assess on how optimisation and predictive control could be used
to provide coherent (and socially applicable) guidelines for non-pharmaceutical interventions
that helped diminish the effects of the contagion®, taking into account what happened in
Brazil (with special focus to the states of Santa Catarina and Bahia). In this sense, I was able
to commit partial focus of my work, in some level, as a retribution to society in the context
of the effervescent scientific debate that span these years, with recognised contributions pub-
lished in international journals within the control community, e.g. Annual Reviews in Control,
[Morato et al. 2020c|, but also ones with much broader scope, e.g. Nature Scientific Reports,
[Pataro et al. 2021a]. With respect to this matter, I conducted a joint collaboration? with
the leading scientific institution for research and development in biological sciences in Latin
America, Oswaldo Cruz Foundation, branch of the state of Bahia (Instituto Gongalo Moniz,
Fiocruz Bahia).

Also I remark that, along these years of thesis, I was able to collaborate with many
colleagues from around the world, with connections enabled through my supervisors. Within
the Brazilian scientific community, I had fruitful collaborations with researchers from the
from the federal technical university of Parana, from the university of Brasilia, from the
federal universities of Minas Gerais, Rio Grande do Sul, and Bahia. In the international level,
I could develop joint works with colleagues from the University of Seville, in Spain, from
the Fraunhofer Institute and the University of Stuttgart, in Germany, from the University
of the Philippines Diliman, in the Philippines, from the National Technologic University, in
Argentina, from the University of Lorraine, in France, and from the University of Kragujevac,
in Serbia.

contagion spread quickly: the first cases were registered in March, 2020; the first million was surpassed in June,
2020; one year later, in June, 2021, over 17 million cases had already been confirmed. In Brazil, first-wave
mitigation strategies were largely decentralized, and the majority of governmental interventions occurred by
the means local actions taken by each of 26 states (and the federal district), and their 5,570 municipalities.
Still, mitigation efforts were inadequate and the SARS-CoV-2 transmission was never under proper control:
the collapse of health services was seen throughout the country, which directly influenced the number of fatal
outcomes observed to date. Even in some areas with high seroprevalence, such as the city of Manaus, intense
subsequent resurgent epidemic waves were seen along the year of 2021, in line with the recrudescence of the
viral transmission, confirming that herd immunity was never a feasible or ethical route to tackle COVID-19.

3Mathematical models have played a key role in assessing the effectiveness of public health policies to con-
tain the spread of SARS-CoV-2, as well as to evaluate the transmission dynamics of COVID-19 and how it is
impacted by the movement of people. However, the bridging these models to socially applicable governmental
actions is heavily limited by the inherent uncertainties surrounding the obtained estimates, interpretation diffi-
culties by policy-makers, and the lack of full understanding of a model’s predictive capabilities and limitations.
Accordingly, I investigated how optimal control algorithms, coupled to (nonlinear and LPV) epidemiological
models could provide intuitive means to derive coherent health policies from data.

4By drawing on the availability of widespread mobility traces from cell phones, and building on the premise
that circulation of individuals is a chief contributing factor for SARS-CoV-2 transmission, the main results
provided in [Pataro et al. 2021a] was the adaptation of a nonlinear MPC strategy that reliably predicts an
optimal level of governmental interventions to decrease mobility, considering different degrees of social effects,
thereby reducing COVID-19 cases, and resulting fatalities, while maintaining hospitalization requirements
below their limits and averting the unnecessary extension of restrictive measures such as lock-downs. The
developed algorithm was applied to study the disease dynamics in Bahia (before vaccine campaigns started),
the largest and most populous state of northeast of the country, with territorial extension comparable to that
of France.
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These collaborations, and all works derived along the growth of this thesis, were carried
out under strict scientific rigour, with exclusive dedication. In terms of the societal relevance
of this thesis, as stated in the Introduction, I stress that I made an effort to conduct and
align my research with focus in facilitating two concrete social issues: (i) affordable renewable
energy generation, and (i) efficient urban mobility technologies. By exploiting the application
of model predictive control algorithms for these two classes of complex systems (described
by the means of LPV models), I sought to contribute, in some level, by fostering practical
possibilities in compass with Agenda 2030 and the endowment of Sustainable Development
Goals 7 and 11, seeking to mitigate the ongoing social-environmental calamity derived from
climate changes. With regard to this matter, I present two final messages:

(i) Regarding optimization and control for renewable energy generation systems, I stud-
ied how model predictive control can serve to maximise energy generation efficiency
in different systems (especially microgrids and solar collector plants). Taking into the
Brazilian context, I investigated how the national sugarcane industries can be explored
as a practical (and economically plausible) paradigm to leverage the renewable energy
generation in the country, if coupled to photovoltaic panels and wind turbines and coor-
dinated using MPC. I also assessed on how MPC can be used as the main approach to
enhance the performance of solar-colector systems, under real-time constraints. Accord-
ingly, I demonstrated how this control method can lead to a maximised benefit of the
solar availability. These developments thus addressed SDG 7, which deals with clean
and accessible energy generation to all. Main works on this topic: [Morato et al. 2020e;
Morato et al. 2020b; Pipino et al. 2020b; Bernardi et al. 2021; Morato et al. 2021c].

(ii) Regarding automated urban mobility, I recap that SDG 11 explicitly mentions how sus-
tainable cities and communities require solutions that allow efficient control of car traffic,
such as connected vehicles that can actively act in accident prevention. Accordingly, with
regard to this topic, I developed novel MPC algorithms that improved the comfort of
passengers in modern vehicles. By exploiting the LPV formulation, these algorithms are
capable of operating in an embedded manner, in on-board microcontrollers, operating
on a scale of a few milliseconds. Furthermore, I also proposed predictive control strate-
gies for the assisted driving of semi-autonomous vehicles, with intelligent interventions
avoiding loss of stability and accidents. The issue of automated driving under faulty
situations was also investigated. Main works on this topic: [Morato, Normey-Rico, and
Sename 2019; Morato, Normey-Rico, and Sename 2020c; Morato, Normey-Rico, and
Sename 2021c; Medero et al. 2022; Morato et al. 2022a].

As a result of professional experience in classroom during the years thesis, I published with
my supervisor Julio Elias Normey-Rico, at the invitation of the Brazilian Society of Automat-
ics (SBA), a new textbook for basic courses on process control, with an approach focused
on theoretical analysis without the need for advanced mathematical tools, see [Normey-Rico
and Morato 2021; Normey-Rico and Morato 2022|. Furthermore, I also coordinated an out-
reach project that aimed to discuss the basic notions of process control and renewable energy
applications in public elementary schools in Florianépolis® [Morato et al. 2019a]. Overall, I

5As a result of my contributions, the city council awarded me, in 2020, the Prof. Jodo David Ferreira Lima
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can confidently say that these years of Ph.D. were a very interesting research journey. I am
satisfied with the obtained results, and already motivated for next scientific steps.

7.1 An overview

In this thesis, I addressed the problem of controlling linear parameter varying systems (and
nonlinear ones too, under quasi-linear parameter varying structures). For such, I developed
several model predictive control schemes, under three different kinds of exploitations: using
gain-scheduling (Part II) and robust synthesis (Part III). Each of these categories of predictive
controllers was synthesised and proposed with corresponding theoretical analysis tools which
enable closed-loop stability and recursive feasibility of the controller optimisation.

Regarding the first contributions of this thesis (Part II), I focused on novel results using
gain-scheduling (in terms of both analyses and design procedures). That is, procedures for
which the formulated controller varied according to the instantaneous (sampled) gain of the
controlled LPV system. In these methods, synthetically, the scheduling variable p(k) is used to
coordinate the optimisation (and, thus, the derived predictive control policy) at each sample
k. The future values of the scheduling variables along the prediction horizon, i.e. p(k +
7),Vj € Ny, N,)» are generally neglected (considered frozen) or replaced by an accurate estimate
p(k+jlk). By the means of the developed algorithms, I could demonstrate how gain-scheduling
can be quite useful in practice, and how nonlinear MPC can be efficiently solved by the means
of appropriate qLPV embeddings. The major highlight is that a corresponding nonlinear
predictive control can be rendered via the solution of, usually, only one QP per sample, which
is much faster than solving a nonlinear program. Note that QPs have a complexity that grows
linearly, in general, with regard to n,, n, and N, (number of control inputs, system states
and the prediction horizon size), while the growth in the nonlinear setting is exponential.

In Part III, I formulated robust MPC methods. These, in opposition to the gain-scheduling
formulations, not only considered the future scheduling variables, but also the estimation error
with regard to them, i.e. £,(k+ jlk) = (p(k+j) — p(k + j|k)). Thus, in the robust setting,
the proposed algorithms included additional tools to handle the corresponding uncertainty
propagation (maximisation program and constraint shrinking using zonotopes). By using
these features, I could demonstrate guaranteed performance certificates and constraint satis-
faction, despite the propagation of the uncertainties that arose due to the unknown scheduling
variables. I point out that the issue of tracking (possibly unreachable) reference signals was
also addressed in a robust fashion.

7.1.1 New results on gain-scheduled control synthesis

The first (main) contribution of this thesis was presented in Chapter 3. Therein, I discussed
how the future scheduling variables p(k + j) arise as uncertainties under MPC. Furthermore,

Medal, for services related to higher education in the city.
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for the case of qLPV models, a new extrapolation algorithm was provided in order to generate
a numerically non-demanding estimate for the whole scheduling trajectories. The proposed
algorithm (Section 3.6), thus, enables the fast application of nonlinear MPC, comprised of
only one QP per sample. The method is recursive, which means that the generated scheduling
trajectory guess at a given sampling instant is used a basis for the construction of the estimate
at the following sample (refer to Eq. (3.36)). Moreover, the resulting algorithm, formulated
by exploiting a simple Taylor expansion argument, was shown to converge in finite time and
five sufficient conditions for convergent extrapolation are presented (Section 3.6.1, Lemma
3.6.2). These conditions are quite simple and mainly refer to the form and class of the
qLPV scheduling function and the robustness of the gain-scheduled MPC. Several different
examples from the literature were provided in order to illustrate and discuss the algorithm
(Section 3.7), including a semi-active suspension system and a pendubot benchmark. The
method is also compared to state-of-the-art techniques that are used to generate estimated for
qLPV scheduling trajectories, showing exceptional effectiveness under much reduced numerical
burden. The application of the proposed recursive estimation algorithm (and the convergence
establishment proofs) were celebrated in depth, in both theoretical [Morato, Normey-Rico,
and Sename 2022b| and practical sense [Morato et al. 2021d; Morato et al. 2021a; Morato
et al. 2022b|. Simulation essays comparing the resulting gain-scheduled MPC algorithms for
nonlinear systems under qLPV-embeddings against to state-of-the-art NMPC algorithms were
provided, demonstrating competitive performances of the proposed framework.

Secondly, in Chapter 4, two novel contributions were presented:

e First, a gain-scheduled qLPV MPC algorithm was proposed for the control of Semi-
Active suspension systems, enabling the comfort enhancement of onboard passengers.
The method considered a frozen scheduling trajectory formulation, and thus took into ac-
count the bounds on the variation rates of the scheduling parameters in order to consider
the uncertainty propagation. Using set-based terminal ingredients, I could demonstrate
closed-loop stability and recursive feasibility. Furthermore, successful nonlinear essays
of scaled car were conducted, which served to illustrate the overall good operation of
the vehicle under the proposed scheme: the comfort of the passengers was substantially
improved, as measured through time and frequency domain indexes;

e Then, I elaborated on an MPC algorithm for qLPV systems represented in the 10 form.
The main idea is that, by considering such 10 description, no state measurements are
not necessary, which is interesting from an industrial and practical application per-
spective (no need for observer design, for instance). Taken into account the recursive
Taylor-based extrapolation mechanism from Chapter 3, I developed quadratic terminal
ingredients that enabled enable asymptotic 1O stability in closed-loop (as well as a re-
cursively feasible optimisation). Using an unstable nonlinear numerical example, I could
demonstrate the advantages of the proposed method, as well as its real-time capabilities.
I note that the IO qLPV MPC was formulated considering output tracking of piece-wise
constant reference signals, using an explicitly-included integral feature.
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7.1.2 Novel robust synthesis solutions

In Chapter 5, the first contribution regarding robust synthesis was presented. This con-
tribution is a novel nonlinear MPC scheme conceived for the purpose of tracking (possibly
unreachable) piece-wise constant reference signals. Specifically, I applied a qLPV translation
and considered the scheduling trajectory extrapolation mechanism from Chapter 3. Then, the
bounds on the scheduling parameters’ estimation errors were considered in order to generate
uncertainty propagation zonotopes and parameter-dependent terminal ingredients. Accord-
ingly, I could provide closed-loop stability, and recursive feasibility certificates. Furthermore,
the issue of avoiding feasibility losses due to large set-point variations was addressed using the
so-called "artificial target variables". Assessments on the robustness qualities and real-time
capabilities of the methods were illustrated using a two-tank system, for which the method
was compared to state-of-the-art techniques, exhibiting comparable results under much faster
computation.

Then, in Chapter 6, a different robust synthesis approach was considered. The developed
scheme took into account the solution of an online min-max problem: firstly, a constrained CP
is solved in order to determine the worst-case bound on the cost function and, subsequently,
a second constrained QP is solved to minimise this worst-case cost function with respect
to a control sequence vector. Since the bounds on the estimation error for the scheduling
parameters are usually much smaller than the bounds on the actual scheduling parameter, the
conservativeness of the solution was shown to be quite reduced. Again, I provided certificates
on recursive feasibility of the proposed algorithm, as well as closed-loop stability. These
certificates were conceived using dissipativity arguments given in the form of a an LMI remedy,
which also determines the zone of attraction for which input-to-state stability is ensured.
As a case study, the nonlinear temperature regulation problem of a flat solar collector was
considered. Using a realistic simulator, the proposed technique is compared to other robust
min-max LPV MPC algorithms from the literature, proving itself efficient and able to achieve
good performances.

7.1.3 Recalling thesis’ goals

With regard to the original objectives of my thesis (as presented in Chapter 1, Section 1.5), I
stress that they have been thoroughly attained. I detail these advances:

e Objective (i), regarding an extrapolation method for future scheduling trajectories, with
linear recursions and convergence properties, was established as of Chapter 3.

e Objective (ii), which is the development of new gain-scheduled predictive control algo-
rithms, was addressed in in Chapter 4, considering both state-feedback and IO formu-
lations;

e Finally, Objective (iii), of robust MPC alternatives for LPV systems, has been deployed
along Chapters 5 and 6.
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7.1.4 Main message

In general, I argue that this thesis serves and contributes to the context of nonlinear MPC
design by supporting the following message: the approach of using LPV models (and qLPV
embeddings) in order to model nonlinear and time-varying dynamics can serve as a support
to design real-time capable NMPC algorithms. By exploiting the linearity features along
the input-output channels of these LPV descriptions, I could show, with multiple examples,
comparisons and synthesis options, how the resulting MPC algorithm is much similar to that
of an LTI plant. Moreover, stability and robustness certificates for the resulting controller are
also much similar to those in the LTI case, which are standard nowadays. I emphasised three
main points:

1. When the scheduling trajectories are assumed constant (frozen), the resulting gain-
scheduled LPV MPC algorithm is sub-optimal. Nevertheless, from practical and empir-
ical perspectives, these controller are in much sense comparable to NMPC ones. Even
though the accuracy of the gain-scheduled prediction deteriorates as the horizon size in-
creases, the rolling-windows mechanism of the MPC inherently smoothes this issue. In
practice, the approach is relevant, easy to implement, and can solve the issue of real-time
applications. In many cases, this kind of approach is more than sufficient.

2. If one seeks to use estimation mechanisms for the future scheduling trajectories (as
the Taylor-based approach proposed herein, or the iterative scheme from [Cisneros and
Werner 2020]), the performances are enhanced. Since these mechanism ensure conver-
gence of the estimated scheduling trajectories, the resulting closed-loop is equivalent
to the one obtained with a NMPC algorithm (after a few discrete-time steps). This is
a major advance since the optimisation is thus based on an exact prediction model,
i.e. no approximation is required! Moreover, in comparison to linearisation-based tech-
niques, the accuracy of the prediction is much better (while convergence hasn’t been
established), since the errors appear on the model scheduling parameters rather than on
the full state trajectories, as what occurs with practical NMPC laws.

3. In the context of robust MPC, the LPV approach is also of interest: I assessed on
how one can opt to use constraints tightening mechanisms, given with regard to the
resulting uncertainty propagation (considering both bounded load disturbance and the
scheduling parameter estimation error), thus leading to closed-loop performances that
are not excessively conservative (yet the offline preparations are hard to synthesise), or
to min-max approaches, with more conservative results but rather simple preparations.

7.2 Outlook

Even though quite a few contributions were derived from this thesis (refer to the full list of
publications presented in Appendix A), there seem always to exist some open threads to be
further investigated. Thus, I lay out some of these possible routes, in the sense of perspectives
of future research:
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e An interesting SA suspension control scheme using state-feedback qLPV MPC was pro-

posed in Chapter 4. Yet, the main limitation of the method is that an online frozen
estimate for the future scheduling trajectory is used, which render complex set-based
ingredients. Moreover, in some cases, the considered bounds on the uncertainty prop-
agation could be excessively large, which leads to empty terminal sets. Then, taking
into account scheduling trajectory estimates, in the context of SA suspension control,
is certainly an open for further assessments. Moreover, embedding a road profile (ISO)
model to the control synthesis procedure could also be of interest, which could serve to
transforms the load disturbances into noise variables, which can thus be treated with
filtering techniques.

With regard to the output-feedback qLPV MPC synthesis in Chapter 4, I stress that it
did not take into account the issue of the errors on the scheduling parameter extrapola-
tions. This was done because the residual errors £,(k + j|k) were shown to be bounded
(Lemma 4.8.2) and, in practice, very small (Sec. 5.4), dissipating within a few samples.
Thus, for the MPC formulation, It was assumed that £,(k + j|k) was null (i.e. that the
scheduling trajectory estimates using Eq. (3.36) are exact). Nevertheless, assessments
on a robustified version of the proposed IO MPC can be provided, taking into account
the bounds scheduling prediction bias ||£,(-|k)|. Such research could be of interest for
other systems, when the bounds over ||£,(-|k)|| are not negligible.

For the case of reference tracking (Chapter 6), I stress that the bounds over the schedul-
ing parameters’ deviations over samples can be used as an additional synthesis parameter
to enforce further conservatism (or aggressiveness) to the control law. That is, instead
of considering these bounds as known and thus generating the zonotopes, the zonotopes
can be considered to enforce a pre-specified rate of varation.

As a final note, I mention that data-driven predictive control methods are also an in-
teresting field of study, specially considering qLPV embedding. The only available re-
sults on data-driven predictive control consider that the processes have LTI behaviours
[Berberich et al. 2020]. Nevertheless, embeddings could serve to generate data-driven
predictive control laws for nonlinear system within confined scheduling sets, extending
the idea of the scheduling proxy representation from [Cisneros, Voss, and Werner 2016;
Morato, Normey-Rico, and Sename 2022b] to the data-driven context.

This is the end.
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APPENDIX A

List of publications

In this Appendix, I present a broad overview of all scientific works that were derived from the
developments of this thesis. Accordingly, I categorise the complete set of publications (and
also those works that are already submitted, and are currently under review) in terms of their
main content and application purpose. This is presented in Table A.1, whose notation refers
to the list of works presented below!.

The works that are marked in navy are those that are directly related to this thesis,
meaning that they are publications linked to the thesis objectives (see Section 1.5). The other
papers are “side works” that were developed along the course of my doctorate. Nevertheless,
I stress that these complementary works are also related to this thesis in a way, since they
also assess the development of MPC algorithms using LPV models, with different degrees of
complexity. Again, I note that many of these papers were also developed jointly with fellow
colleges from other research groups which I collaborated with along the four years of thesis.

e Conference proceedings:

— 2019:

[C1] 7tP IFAC Symposium on System Structure and Control (SSSC), 2019:
Design and Analysis of Several State-Feedback Fault-Tolerant Control Strate-
gies for Semi-Active Suspensions
[Morato, Sename, and Dugard 2019a].

[C2] 14° Simpésio Brasileiro de Automacgao Inteligente? (SBAI), 2019:
Nonlinear Fault Estimation Methods for Semi-Active Suspension Dampers
[Morato, Sename, and Dugard 2019b|.
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Tools for the control of modern solar-thermal heating plants
[Branco et al. 2019].
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2019:

Novel qLPV MPC Design with Least-Squares Scheduling Prediction® [Morato,
Normey-Rico, and Sename 2019|.

'For brevity, the following publications are presented just by title, journal or conference, and date. Many
have been developed in collaboration with other colleges, and also with my supervisors. The complete biblio-
graphical details, including all author names, is indicated at the references of this thesis.

214*® Brazilian Symposium on Intelligent Automation.

3Finalist in the Young Author Award category.
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A Sequential Quadratic Programming Approach for the Predictive Control of
the COVID-19 Spread

[Morato et al. 2021a].

Brazilian Symposium on Intelligent Automation (SBAI), 2021:
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4XXIII Brazilian Congress of Automatica.
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[C15] 30" Mediterranean Conference on Control and Automation (MED),
2022:
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[C16] 30" Mediterranean Conference on Control and Automation (MED),
2022:
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[J19] International Journal of Robust and Nonlinear Control, 2021:
A fast dissipative robust nonlinear model predictive control procedure via
quasi-linear parameter varying embedding and parameter extrapolation
[Morato, Normey-Rico, and Sename 2021b].

[J20] Complex Engineering Systems, 2021:
A qLPV Nonlinear Model Predictive Control with Moving Horizon Estimation
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— 2022:

[J21] IEEE Transactions on Automatic Control, 2022:
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[Morato 2023]
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APPENDIX B

Maths: Spaces, algebrae, norms, and
functions

In this Appendix, complementary background on mathematical formalism is presented: basic
notions on vector spaces, norms, and algebra.

B.1 Norms, sets, and spaces

Norms and vector spaces are required for the computation of closed-loop performance metrics,
and in order to well characterise some maps and functions that appear when considering
nonlinear and LPV state transitions. In the sequel, the main vector spaces, corresponding
algebraic operators, norms, sets, set operations, and some special functions used along this
thesis are recalled.

In practice, Banach, Hilbert, and £, vector spaces are used for the developments of the
MPC algorithms for LPV systems. These spaces, in much, are used to characterise the sets,
functions, and elements that enable closed-loop stability using an MPC algorithm. Also, the
notions of £, vector spaces are necessary to compute the corresponding induced £,-norms of
some important signals. This can be used to characterise input-to-output energy ratios, for
instance.

Definition B.1 (Banach space)

A Banach space is a real (or complex) complete normed vector space B, with all Cauchy
sequence of points in this space have a limit that is also inside B. A Banach space has norm
Il - |lp, such that every Cauchy sequence in B has a limit defined within B itself.

Definition B.2 (Hilbert space)

A Hilbert space is a (real or complex) vector space H with an inner product that is complete
under the norm defined by itself, being this internal product denoted < -,- >. The norm of
f € H is as gives Eq. (B.1). Every Hilbert space is also a Banach space, since a Hilbert space
is complete with respect to the norm associated with its inner product.

Il = v<f.f> (B.1)

Definition B.3 (Hardy space)
A Hardy space, denoted Hy, is a certain space of holomorphic functions on the unit circle or
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upper half plane. Remark that these holomorphic functions are defined on an open subset of
the complex plane C with values in C that are complez-differentiable at all and every point.

Definition B.4 (£, space)
L, spaces define the spaces of p-power integrable functions (that posses existing Lebesgue in-
tegrals), and the corresponding sequence spaces.

Example 8 (Vector spaces, from [Sename, Gaspar, and Bokor 2013]). Consider the n-power
real and complex sets R™ and C", respectively. These spaces with the spatial p-norm, |- ||, for
1 < p < o0, are Banach spaces. Take p = 2 and thus find that these are also Hilbert spaces.
All functions within these sets that are integrable derive the (real and complex) subsets Lo .

Consider two finite real signals v : [0, N,] — R™ and u : [0, N,] — R™. Accordingly,
the (discrete-time) Lo space is characterised by following norm and inner product rules:

[v]l2, Vv € Lo = SV WT (@)o(i) < oo

. (B.2)
<v,u>Vo,u€ Ly = \/ZES(N“’N") vl (i)u(i) .

We stress that normed spaces are those with exact and explicit defined norm. This is: let
S be a vector space with finite dimensions, then Vp > 1, the application || - ||, is denoted a

1
norm over S, with ||s||, := (>, |s;:|P)? for all s € S. Then, let S be a vector space over C and
let || - || be a norm defined over S. In this case, we say that S is a normed space. Throughout
this thesis, all considered sets (and subsets) are assumed to be normed.

Along this thesis, specific norms are used to measure and quantify some important signals
of controlled systems. Specifically, consider a given causal finite discrete-time signal x
[0, Nz] — R. Accordingly, the following norms are used:

e The 1-norm of this mapping of this discrete function is defined as:
N
Izl = D l=(i)].
i=0

e The 2-norm of this same function is defined as:

e Finally, the corresponding co-norm of this map is:

l#lloo = supla(k)].
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B.2 Functions and operators

Along this work, in order to assess the stability of the controlled systems, some special func-
tions mapped within normed vector spaces are required. Specifically, these mappings are used
to correctly apply Lyapunov stability theory. In the sequel, some functions and classes of
functions of interest are presented, following the definitions presented in [Khalil and Grizzle
2002].

Definition B.5 (C" function)
Consider two normed vector spaces A C R™ and B C R™. Then, a function f : A — B is said
of class C™, for any integer n > 1, if and only if it is n times differentiable with continuous

n-order derivatives. That is, all Jacobian matrices (VT)nf : A — (A x B) are properly
defined.

Definition B.6 (Convex function)

A function f: A — B, with A C R™ and B C R is said to be convex if and only if for all
z,y € A and XA € [0, 1], it follows that f(Ax + (1 —N)y) < Af(z)+ (1 —N) f(y). Equivalently,
f is convex if and only if its epigraph is convex.

Remark 63. The epigraph (or supergraph) of a function f : A — B, with A C R" and
B C R, is defined as the set of points lying on or above its graph. This is:

epi(f) = {(z,y): v € Ay € B[f(z) <y}. (B.3)

Definition B.7 (K functions)

K refers to the class of positive and strictly increasing scalar functions that pass through the
origin. Thus, a given continuous scalar function f : A — B, with A, B C Ry is said of class
K if and only if f(0) = 0 and lim¢ _, o f(§) — +o00, i.e. for any a,b € A witha > b, it
follows that f(a), f(b) € B and f(a) > f(b).

Definition B.8 (K functions)

Koo refers to the class of positive and strictly increasing scalar functions that pass through
the origin with unbounded limits. Thus, a real-valued scalar function ¢ : A — B, with
A, B C Ry is said of class K if and only if it is of class K and it is radially unbounded, i.e.
limg_s 4 o0 P(8) = +00.

Definition B.9 (K Lfunctions)

KL refers to the class of double-scalar functions that are strictly increasing with regard to one
entry, while decreasing with regard to the other, passing through the origin via both entries.
Thus, a function B : A x B — C, with A, B,C C Ry, is said of class KL if and only if,
B(a,b) is of class K with regard to a € A, for all fired 0 < b € B, and ((a,b) is decreasing
with regard to b € B, for all fited 0 < a € A, i.e. limy_ 1 5(a,b) — 0.

Some properties of the prior functions should be emphasised, as recalled in [Marruedo
2002]. For such, consider fi(-) and fa(-) as K class functions defined for [0, a). Furthermore,
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consider ¢;(-) and ¢2(-) as K class functions, and 3(-,-) as a KL class function. Thus, it
follows that:

e The inverse function f; '(-) is a K class function defined for [0, a1 (a)). Furthermore, the
inverse mapping (bl_l(-) is a Ko class function.

e The cascaded functions fi(f2(-)) and ¢1(¢2(-)) are, respectively, of class K and K.
Furthermore, the composition S(fi(-),-) is of class KL.

e The maximiser max,(f1(z), f2(x)) is a K class function.

e For any K. class function, there exists another associated Ko such that ¢a(x) <
¢1(x), Yo > 0 and that ¢3(s) = x — ¢a(z) is of class K, i.e. ¢a(x) < z, Vo > 0.

Definition B.10 (Positive definite function)

A gwen function V. : A — B, with A C R"™ and B C Ry, is said (locally) posi-
tive definite (within A) if there exists a corresponding K function f(z), x € A such that
f(lzl) <V(z),Vx € A,, being A, = {x € Al|jz] <r}.

Remark 64. A function V (-) is globally positive definite if the previous definition holds for
A =R" and r — +oo. Moreover, if V(-) is indeed globally positive definite, then its corre-
sponding function f(-) is of class Koo, i.€. its radially unbounded.

Lemma B.2.1 (Positive definite functions, from [Khalil and Grizzle 2002|). Let there exist
a continuous function V- : R™ — Ry. Let V() be positive definite within the closed ball
Ay = {z € R"|||z|| < r}. Then, there also exists a corresponding KC function g(-), defined
within [0,7], such that V() < g(||z|), Yo € A,. Furthermore, as long as V(-) is radially
unbounded, then A, has no frontiers and g(-) is of class Kuo.

B.3 Optimisation

This thesis deals specifically with the application of predictive control. As discussed thoroughly
in Chapters 1 and 2, this control strategy is based on the recurrent solution of optimisation
programs, during the implementation. For such, the different kinds of optimisation that are
generated.

Definition B.11 (Nonlinear Programming Problem)

Consider an arbitrary real-valued nonlinear function f.(x.) € B CR. A Nonlinear Program-
ming Problem (NP) finds the vector x. € A CR" that minimises f.(z.) subject to g;(x.) < 0,
hj(x.) = 0 and z. € X., where g; and h; are also nonlinear.

Definition B.12 (Convex Programming Problem)

A Convex Programming Problem is a linearly constrained optimisation problem of a con-
vex function. A CP is a particular type of monlinear programming problem, for which the
function f.(x.) € B C R is inherently convex with respect to . € A C R™ and the con-
straints gi(v.) < 0 and hj(z.) = 0 are linear on xz.. Any CP can be formulated as
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xg = argming cx, fe(ze) subject to constraints Aipeqte < bineq and Aeqte = beq. It fol-

lows that: Aipeq, Aeq € R™*™, bineq, beq € R™. The solution x; to this kind of problem is
found through interior-point algorithms.

Definition B.13 (Quadratic Programming Problem)

A Quadratic Programming Problem (or simply Quadratic Problem, QP) is a linearly con-
strained mathematical optimisation problem of a quadratic function. A QP is a particular type
of convexr programming problems. The quadratic function may be defined with respect to sev-
eral variables, all of which may be subject to linear contraints. Considering a ¢ € R™ gradient
vector and a symmetric Hessian matric H. € R™ ", the goal of a QP is to determine the
vector x. € R™ that minimises a reqular quadratic function of form % (xchxc + ch) subject
to constraints Aineg®e < bineq and Acqxe = beq. The solution x; to this kind of problem is

found by many solvers seen in the literature, based on Interior Point algorithms, quadratic
search, etc.

Definition B.14 (Semi-Definite Programming Problem)
A Semi-Definite Programming Program (SDP) is defined as follows:

min lx, (B.4)

st. F(x) > 0,

being F(x) € R™ an affine symmetric matriz function of z € R™ and ¢ € R™ is a given real
vector that defines the problem’s objective.

B.4 Linear matrix inequalities

In many of the developments presented in this thesis, specially for the computation of terminal
and invariant sets, the use of Linear Matrix Inequalities (LMIs) is exploited in order to render
computationally realisable solutions. A thorough review of the application of LMIs in control
theory can be found on [Boyd et al. 1994]. Nevertheless, some basic definitions and operations
are recalled in the sequel. Note that, in any symmetric matrix or matricial operation, (*)
denotes a symmetric term.

Definition B.15 (Linear Matrix Inequality)

For two sets mapped within normed vector spaces A C R"™ and B C R™, a strict LMI
constraint over any vector x € A is defined as F(x) € B, for F(z) = Fo+y | Fyx; > 0(> 0),
where Iy = Fg and F; = FZ-T e Rmxn |

Example 9. Let one assess the stability verification of the following autonomous system x(k-+
1) = Ax(k). For such, consider the following storage function: V (k) = zT(k)Px(k). Based
on the direct Lyapunov stability method, we can infer wether this system is stable by verifying

if V(k) dissipates along time (i.e. V(k) >0 and V(k+1) — V (k) < 0,Vk > 0. Thus:
zL(k)Pz(k) > 0
2L (k)(ATPA - P)xz(k) < 0

)
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Left- and right-multiplying the previous inequalities by x(k) and its transpose, respectively,
generates:

ATpA—P
F(P) - [ o 0] <0,

being P = PT a positive-definite decision variable. The inequality F(P) < 0 is linear with
regard to P, and, thus, it is an LML

Remark 65. Reader must bear in mind how LMI-based optimisation falls within the context
of CPs. This property is fundamental as it guarantees the global (or optimal) solution x* of
a given minimization problem under LMI constraints on x (such as an SDP) can be found
efficiently, in polynomial time.

The use of LMIs allows the designer to re-state complex optimisation problems into the
form of linear structures, which thus allows for the use of convex optimisation tools. Usually,
the conversion from a nonlinear optimisation into a convex one, by the means of LMIs, requires
differents transformations (such as changes of variables, exclusions, etc). The applicability of
LMIs is wide in control theory. Next, some examples of criteria that can be handled with the
use of LMIs are recalled: control synthesis with Ho and Hoo performance goals, robustness
analyses, LQR synthesis, Ricatti equations and inequalities, robust set computation, and so
forth.

Some specific transformations are of special interest in this thesis, being applied in multiple
chapters that deal with LMIs. These transformations are given in the form of lemmas. For
further details and other transformations, refer to [Apkarian and Tuan 2000; Scherer 2001;
Scherer 2006; Duan and Yu 2013|.

Lemma B.4.1 (Schur complement). Let Q = QT and R = R” be affine matrices of compatible
size. Then, the following LMI constraint:

Q S
[ st r| =%
1s equivalent to the following set of inequalities:
R > 0,
Q- SR'ST >

Lemma B.4.2 (S-Procedure). Let F' and G be symmetrical matrices, f and g be vectors, and
a and b be real scalars. Suppose that there exists some vector xg such that the strict inequality
ngxo +2fT2g+a < 0 holds. Furthermore, suppose that there exists a scalar X > 0 such
that the following LMI constraint holds:
F
A [ / ] - [ G 9 } - 0.

f7oa

Then, it is implied that 27 Fx + 2fTx +a < 0 imposes 27 Gz + 2¢7x +b < 0.
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B.4.1 Relaxing parametrised LMIs

In many cases, LMIs are expressed with parameter-dependent variables. In the analysis of
the stability of LPV systems, for instance, LMIs are written with regard to positive-definite
variables P(p), which are analytically dependent of the scheduling parameters p € P. This
means that LMI problem becomes, a prior: infinite-dimensional.

Anyhow, when the parameter-dependency is given with regard to parameters which assume
finite values in a given set, the corresponding LMIs can be gridded, which is a direct relaxation
to make their solution feasible. Gridding refers, then, to the repeated instances of an infinite-
dimensional LMI problem in finite dimensions of a chosen grid.

Consider an LMI problem: solve L(p) < 0, Vp € P. This problem can be relaxed (gridded)
by selecting a grid of ny points over P, i.e. Pg := [ P1 -+ Png ], and thus re-writing the
original problem as: solve L£(p1) < 0 and L(p2) < 0 and ... and L(p,,) < 0.

The gridding approach is based on the fact that, by discretising the parameter space along
a finite set of values, there should exist a sufficiently dense grid which evaluates all critical
points for the considered problem. In practice, gridding is often solved over a given grid and
re-verified (if the solution holds) for a denser grid, to make sure the solution is a feasible
candidate. Full discussions on this matter are available in [Scherer 2006; Briat 2008].






APPENDIX C

Appendix to Chapter 5

C.1 Proof of Theorem 5: Terminal ingredients
We begin by showing the positive invariance of the ellipsoid. Applying the S-procedure, with
A > 0 to the inequality in Eq. (5.26) and (1 —eTP(p)e < 1), we get:

1— (Ai(p)e +0)"P(p*)(As(p)e +6) — A (1 — " P(p)e) >0,

which can be rewritten as:

() ) | N2 [(FP) = o )
L N

with N > 0 and:

Nu = AY(p) =Y (p)A] (0)P(p")A(p)Y (p), (C.2)
Nig = =Y'(p)A (p)P(p")0, (C.3)
Nat = —0TP(p")Adp)Y (p). (C4)
Nog = (1—=X)—6TP(p")8. (C.5)

Applying a Schur complement over P(p™) for each N;; leads to BMI (5.30), which ensures
the requirements of Theorem 4.

Complementary, we proceed by demonstrating that the resulting P(p) satisfies all five
conditions of Theorem 1. (C1) trivially holds due to the ellipsoidal form of X;. (C2) is
verified due to the fact that X is a sub-level set of the terminal cost V(). Therefore, if
condition (C3) is verified, (C2) is consequently ensured.

The discrete Ricatti condition (C3) in the form of Eq. (2.23) (due to the parameter-
dependency of P(p)) is verified through the solution of BMI (5.28). Since @~ > 0, R™! > 0
and Y (p*) > 0, we apply! three consecutive Schur complements to this BMI, which leads to:

(e"P(p) In, ) [ %2 %;z ] < PI(:)G > > 0, (C.6)
y .

'Here, we use %ﬁf) = e"A{ (p) (P(pT) — P(p)) Ae(p)e.

225
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with M > 0 and:

My = Y(p) =Y (p)QY(p) = W (p)RW (p) (C.7)
— YT ()AL (0)P(p)A(p)Y (p) ,

My = =Y(p)Af (p)P(p")d, (C.8)

My = —eTP<p+>At<p>Y<> (C.9)

My = —60TP(p)h. (C.10)

Using e = eP(p)Y (p) and W(p) = Ki(p)Y (p) leads to:

(Aep)e + 0T P(o)(Auple +0) - " Ploje + 231 (C.11)

+eT Qe+ e’ KT (p)RKi(p)e < 0.
which is a a sufficient condition for (C3), begin V(-) as a sub-level of Xy.

The fourth and fifth conditions (C4-C5) are verified by the direct application of the Schur
complement to Eq. (5.29a) and Eq. (5.29b), respectively, using W(p) = K;(p)Y (p). These
lead, respectively, to:

(@ — L gy r)” = (L iy 52(0)) Y (0) P(0)Y (p) (I iy Kt(0)) (C.12)
(zi — Inz,{i}xr) > (In,.113) Y (p)P(p)Y (p) (In,,{i}) ' (C.13)

Since the maximum normed Fe of an e that belongs to some ellipsoid e’ Pe < 1 is
given by \/FT (P~1) F, it follows that Ineq. (C.12) implies that the projection I,, i Ky(p)e
u,{ } p
(i.e. i-th control signal) is upper-bounded, in norm, by @; — I,,, (;3ur, Which satisfies (C4).
Analogously, Ineq. (C.13) ensures that the projection I, (e j-th state) is norm-bounded
yZr, which satisfies condition (C5). This concludes the proof. O

by fj — Inz,{j

C.2 Proof of Proposition 5: Recursive feasibility

Let Assumption 15 hold. Consider there exists a solution Y (p), W(p) to Theorem 5 which
generate a terminal state-feedback law u; = K;(p)(x — ¢9.(y)) + gu(y) and a TRPI set I'(p).
Furthermore, consider an initial state condition z(0) € X', with a corresponding initial schedul-
ing variable p(0) € P and a scheduling trajectory estimate Py. Recall that p(N, — 1|0) gives
the last entry of this vector.

Then, denote (Vj,y}) as the optimal solution of the NMPC optimisation from Eq. (5.20),
related to these initial conditions. Furthermore, consider X as the corresponding optimal
state sequence, from which the first entry is 2*(0|0) = z(0). It is implied that (z*(Np|0), y%) €

I(p(Np = 1]0)).

Let the successor state be defined as follows: 7 = A(f,(z))z + B(f,(z))K:(fp(x))(x —
9z(y%)).  Since the scheduling parameters’ deviations are bounded (Assumption 12)
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and the estimation error is also bounded (Lemma 4.8.2), we know that the following
scheduling sequence estimate P has its last entry p(N,|1) close to p(N, — 1|0), that
is: (p(Np|1) — p(Np, —1|0)) € Q C dP. Complementary, consider g& = yk, and V) =

[ @0))7 .. (0" (N, — 10))7 (K (p (N |0)) (@ (N, 10) — g5 () + 9u(u) — K" (Np10))7]

Then, the predicted sequence of candidate states for the successor step is given
N T

by: X; = |:($*(1|0))T s (@ (NyJONT 2T (N, + 1|0)] , where the last entry x:(N, +
1j0) == A(p(Np — 1]0)2*(Np|0) + B(p(Np — 1]0))K¢(p(Np — 1]0))(2*(Np|0) — g2(y3)) +
B(p(Np, — 1|0))gu(yx). This last successor state implies in x¢(N, + 1/0) — g.(v;) =
Ai(p(Np — 1]0)) (z*(Npl0) — g2(yz)) and, since (2*(Np[0),y3) € T(p(N, — 1]0)) and
(DN, [1) — p(N, — 1]0)) € Q, it follows that (zy(N,J0),5) € T(p(N,[1) — €,), V&, € Q.
Therefore, it follows that 2*(1|0) = z*, and thus that (V3,7) is a feasible solution for the
NMPC optimisation in Eq. (5.20) at the successor step, i.e. k= 1.

In order to conclude this recursive feasibility proof, we show that z(N, + 1|1) is inside the
invariant set, i.e. that (x(Np+1|1),y%) € T'(p(Np|1)) and (p(Np|1) — p(N, — 1|0)) € Q. Once
x*(Np—1]0) — g2 (y) = Ai(p(Np—1]0)) (2*(Np|0) — 92 (y;)), it follows that the corresponding
consecutive error is given by: e( ) = A(p(INp — 1]0))e(0) + (x(Np + 1|1) — 2*(IV, — 1]0)),
where 0 = (z(Np + 1|1) — 2*(N, — 1]0)) € S(N,). Thence, from (C2), we have z*(NN,|0) €
X (p(Np =1[0) = 2(Np + 1[1) € X (p(Np[1).

Generically stating, we obtain (z*(k + jlk),v*(k + jlk) € Z:(j) and 2*(k+j+ 1|k +1) =
A(p(k + jlk+1)a(k + jlk + 1)+ B(p(k + j|k + 1))v*(k + j|k + 1), where 2*(k + j + 1|k) =
A(p(k+j|k))x*(k+j|k)+B(p(k+jlk))v*(k+jlk). Since a*(k+j+1|k)—a*(k+j+1lk+1) €
V(j)®o(AS(j—1)),Vj € Npy n,—1, it holds that (2 (k+j+1|k),v*(k+j+1]k) € Z-(j+1) =
Zx(j) © (5(7) x {0}).

Finally, from conditions (C1), (C2), (C4), and (C5) from Theorem 1, we can infer that
the generated control signal is well defined. Thus, being I' a parameter-dependent TRPI set
for the closed-loop system evolution, the constraints are fulfilled as the horizon slides and the
optimisation is indeed recursively feasible. This concludes the proof. O

C.3 Proof of Proposition 6: Error ISS

Let there be a terminal stage cost V() such that Assumption 15 holds. Leveraging from
Lemma 4.8.2, assume that limg_ 4o Pr — Pg, i.e. the extrapolated scheduling trajectory
converges to the true scheduling parameter values. Furthermore, let Proposition 5 be satisfied.
Note that since £(x — x4, u — u,) is a quadratic stage cost ||z — :CGHQQ + |lu — uq||%, e, 75 and
Yy indeed exists.

Next, consider there exists a solution Y (p) to Theorem 5. Then, the closed-loop is stable
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due to (C3) of Theorem 1, which conversely ensures that:

SV(k) = V(e(k) - za(k), p(k)) = V(a(k — 1) — 2ok — 1), p(k — 1)) (C.14)
SV(E) < —lle(k) — zalk)llg + v (@)

Here, we assume that p(k+j|k) = p(k+j), for simplicity. If the scheduling uncertainty is
considered, one can account for the related model uncertainty A(k+ j|k), as gives Eq. (5.16),
and, thanks to the robust constraint satisfaction, consider that the deviation of the nominal
predicted state trajectory from the real one is bounded.

Assume that limg_, o0 Ya(k) — y2. Analogously, use limy 4o 24(k) — 29 := g.(y2).

Then, thanks to the error dynamics in Eq. (5.24), we obtain:

[z(k) = za(F)llq < Bl(2(0) = 2a(0)[|, k) + ~(w).

Since @ > 0 (and positive definite) and z,(0) = 0 (by construction), we have ||z(k) —
zq(k)|l@ > ||x(k) — za(k)|| and thus error-ISS is established.

Now we consider the convergence of Vo (y4(k)—yr) such that the limit limg_, { o ya (k) — v
holds. Let us define g, = (1 — )y, (k) + ay?, where a € [0, 1] is the optimal solution from Eq.
(5.23). From the convexity of Vi (-), we obtain:

Vo(Ja —yr) < (1 —a)Vo(ya(k) —yr) +aVo(ys — yr) -

We can use the Lipschitz continuity of the map z, := g,(y,) in order to obtain ||z,(k) —
Zall < Lz||ya(k) —Yall, where Ly > 0 is the Lipschitz constant of g, (-). Consider (yq (k) —9a) =
a(ya(k) — yg)-

Since the closed-loop is stable, it follows that the total MPC cost dissipates over time,
which implies in:

Vo (Ya(k) = yr) = Vo(¥a — yr)

< arl|za(k) = Zall” + v, (W)
+v, (@) < arLga”|lya(k) = yoll”

V(za(k) — Za) + v, (W)
a1(Lz |[ya(k) = all)”
W, (W) .

+ IA A

Then, from the convexity of Vi (-), we obtain:

Voo —yr) < (1—=a)Vo(ya(k) —yr) +aVo(ye —yr) -

. 1
Thus, since . > 1, we get:

VoWa(k) = yr) < arL3a” Hya(k) = yoll” + Y, (W)

(P50 Vol = u) + Vot - ).
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Finally, since limg_, 1 o (ITTO‘) Vo (Ya(k)—yr) — 7y (W), we obtain Vo (ya (k) —yr) — Vo (Y —

yr) < a1L%a |ya(k) — y2||7 + 4n (W), with o > 1 and a; > 0 as a constant scalars. Taking
the limit at both sides of this inequality leads to:

Vo ((,Jm ) - 0r) < Volug— )+ (@),

Note that Vo(-) is a weighted quadratic cost by definition, thus |||yal — lyrll| < ||lya —
Yrllr < Vo(ya — yr). Thus:

‘II im ya(R)| = llwell] < lva —vrlle + (@),
k—+o0
_(Hyg_yrHT‘F'yn(E))_‘_HyrH < lim ya(k)

k—+o00

< lva = yrllr + (@) + Iy -

(Y8, yr,w)

Note that, in nominal conditions (reachable reference y, € ) and null disturbances),
we obtain vy, (w) = 0 and y = v, and thus limy_,, Vo(ya(k) — yr) — 0, which means
the steady-state target is reached. In the case the reference isn’t reachable and there are
disturbances, we can only infer that limy_, 1 oo Yo (k) exists within (—u(y2, yr, @), +1(y2, Yr, W)).
Nevertheless, it is implied that limy_, {0 Vo(ya(k) —yr) is bounded, which means it converges
and error-ISS holds. This concludes the proof. O






APPENDIX D

Résumé étendu

Méthodes de Commandes Prédictive pour les Systémes Linéaires a
Parameétres Variants

Le principal sujet étudié tout au long de ce travail est ’exploitation de schémas de commande
prédictive pour les systémes linéaires & paramétres variants. Plus précisément, je suis confronté
au probléme concevoir des algorithmes précis sans nécessiter la connaissance compléte des
trajectoires futures des paramétres d’ordonnancement.

Dans la suite de ce résumé étandu, je rappelle le contexte principal de 'ouvrage et distingue
ses principaux apports. En conséquence, je détaille la structure de la thése, expliquant quels
sujets sont débattus dans chacun de ses chapitres. Je commence par récapituler le contexte
général de mon travail.

Pourquoi le MPC est-il pertinent ?

La littérature sur les systémes de controle s’est profondément épanouie au cours des cing
derniéres décennies. Neéanmoins, jusqu’a la fin des années 80, la pratique industrielle de
la théorie du controle consistait a utiliser des controleurs Proportionnels-Intégraux (Pls) et
Proportionnels-Intégraux-Dérivatifs (PIDs) simples pour la grande majorité des applications,
malgré toutes les avancées théoriques. Ce n’est qu’avec le développement de la Commande
Prédictive basée sur Modéle (MPC), tel que proposé dans les articles originaux par Cutler,
Clark et leurs collegues [Cutler and Ramaker 1980; Clarke, Mohtadi, and Tuffs 1987, que des
techniques de commande plus avancées ont été mises en ceuvre dans des contextes industriels
réels. Depuis ses débuts, la commande prédictive est devenu un domaine actif de recherche,
avec une large acceptation industrielle [Camacho and Bordons 2013|: une large gamme des
implémentations MPC réussies sont aujourd’hui reconnues (pour les types de systémes les plus
divers !), c.f. [Alamir 2013|.

La principale raison pour laquelle la commande prédictive est si bien établi réside dans
le fait qu’elle a la capacité de considérer conjointement 1’optimisation des performances et la
satisfaction des contraintes dans un cadre de synthése relativement simple (et intuitif). Pour
justifier 'argument, considérons un systéme avec un comportement dynamique connu (‘B).
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Ensuite, lorsqu’on applique un algorithme de commande prédictive pour réguler ce systéme,
on extrait une action de commande optimale u de la solution d’un probléme d’optimisation qui
inclut les objectifs de performance et les contraintes du systéme. Cette solution d’optimisation
est répétée en ligne lors de l'implémentation : & chaque unité de temps discréte (échantillon),
une nouvelle optimisation est résolue, donc conduisant & une nouvelle entrée de commande
correspondante.

Considérons qu'un systéme Y est linéaire invariant dans le temps (stationnaire,
LTI). De plus, supposons que son comportement B puisse étre partitionné dans
un canal & entrée unique et sortie unique (SISO) uw <& y tel que Byoy =
{Fy eR, (u,y) € Bly=21" aiz"'y+ > biz"u}. En plus, tenez compte de I'objectif
et des contraintes de performances suivants : (a) la sortie y doit étre ramenée & une con-
signe de régime d’équilibre noté y,, tandis que (b) le signal de commande doit étre limité a
Iensemble opérationnel convexe [0,1]. En conséquence, on peut formuler un MPC basé sur

I’optimisation suivante, & résoudre & chaque instant discret k :

. N, i
ming, ‘ ‘ lepl HZ Yy — yrH
mk = ¢ (Zly, Zz_lu) € %u@y; VZ S N[l,Np] I (Dl)
A 27y € [07 1]7 Vie N[lvNP] ’

étant Uy := col{u, ... zN»~1u} la trajectoire de la commande le long de I’horizon de prédiction
futur V,. Notez que le probléme d’optimisation 33;, minimise le déviance de la sortie y par
rapport au régime permanent y,., cherchant ainsi & assurer la satisfaction de l'objectif de

performance “(a)

7

La solution statique de 'optimisation 33, dans 'Eq. (D.1) (i.e. le résoudre une seule fois, au
lieu de le faire & plusieurs reprises, a chaque échantillon) est, en soi, déja d’un intérét pratique.
L’application de la séquence de controle correspondante U} est généralement appelée controle
optimal. Régulateurs quadratiques linéaires (LQRs), par exemple, peuvent étre représentés
dans ce cadre.

Contrairement & une solution statique de l'optimisation, MPC fonctionne sous un
paradigme d’horizon glissant. Cela signifie qu’a chaque instant discret k, le probléme
d’optimisation contraint ‘B est résolu, et la premiere entrée de son minimiseur U} est ap-
pliquée au procédé (le reste du vecteur est ignoré). Une telle procédure de mécanisme d’horizon
roulant fournit des propriétés de robustesse inhérentes au MPC, comme le soutient [Allan et
al. 2017], une fois que Py, est mis a jour en fonction des mesures disponibles du procédé.

Le principe de base de MPC repose sur le fait d’avoir un modeéle du procédé adéquat
afin de prédire le comportement futur des variables d’état (ou des sorties). Si un modele
fiable n’est pas disponible, la loi de commande dérivée peut simplement étre irréaliste et,
par conséquent, le controleur peut étre insuffisamment robuste pour contrer les incertitudes
causées par les inadéquations de prédiction (méme la stabilité peut étre perdue, dans certains
contextes dramatiques).

Donc, la recherche sur MPC a constamment débattu de ce qui se passe lorsque des modéles
de procédé imparfaits sont utilisés dans I'optimisation. En conséquence, la théorie Les schémas
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MPC en boucle fermée ont été étudiés de maniére approfondie au cours des derniéres décennies.
Ensuite, je récapitule certaines des avancées récentes de la recherche dans le contexte des
synthéses MPC non linéaires et robustes.

MPC non linéaire

Les algorithmes de commande prédictive basée sur des modéles non linéaires (NMPC) sont
d’une grande pertinence lorsque les systémes non linéaires sont controlés dans des conditions
de fonctionnement plus larges ou lorsque les réponses du procédé dépendent fortement de
parameétres externes. Cependant, I'inclusion de prédictions de modéles non linéaires n’est pas
triviale et augmente la la complexité de l'algorithme résultant [Allgdwer and Zheng 2012
L’augmentation de la charge numérique devient un obstacle pour certaines applications en
temps réel (c’est-a-dire : 'algorithme MPC n’arrive pas a calculer la loi de commande en
temps).

Afin d’alléger la complexité de calcul de NMPC, la recherche sur des formulations rapides
et leur garanties théoriques a pris de 'ampleur (et de la concrétisation) au cours des derniéres
années. Reportez-vous, par exemple, a la revue |Gros et al. 2020]. L’un des principaux objectifs
de cette ligne d’investigation a été de développer des solutions basées sur des solvers, qui se
rapprochent le programme non linéaire résultant par des programmes plus simples (tout en
conservant la précision de la loi de commande résultante). Ceci est fait viable principalement
grace & des méthodes d’itération en temps réel, telles que ACADO et CasADi [Houska, Ferreau,
and Diehl 2011; Quirynen et al. 2015; Andersson et al. 2019], et Lagrange et solutions basées
sur le gradient, telles que GRAMPC [Richter, Jones, and Morari 2011; Képernick and Graichen
2014; Englert et al. 2019]. L’intérét principal de ces algorithmes est qu’ils permettent une
implémentation en temps réel, servant ainsi 4 la commande des procédés non linéaires avec
des taux d’échantillonnage (trés) rapides.

L’objet de cette thése n’est pas le développement de schéma NMPC basé sur un solver
comme détaillé précédemment, mais je les mentionne comme références de référence pour les
algorithmes que je développe. Le principal avantage de ces approches orientées implémentation
est qu’elles sont capables de récupérer des lois MPC embarquées (pour des systémes d’ordre
relativement important) dans la plage de la milliseconde, ce qui est plutét impressionnant. De
plus, ils se traduisent par des performances quasi optimales avec des contraintes satisfaction,
proche de ce que 1'on obtiendrait avec une mise-en-ceuvre “a part entiére” du NMPC.

MPC robuste

Pourtant, avec une grande valeur pratique, la conception MPC standard (linéaire et non
linéaire) manque de garanties de faisabilité récursive ou de stabilité en boucle fermée en
présence de perturbations. Par conséquent, parallélement a la recherche sur des algorithmes
NMPC rapides, il y a également eu un grand enthousiasme pour les schémas MPC robustes
avec des certificats de performance, c.f. [Koéhler et al. 2020; Santos and Cunha 2021].
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Depuis les années 2000, il y a eu une croissance du corps de recherche sur les techniques
MPC robustes, c¢’est-a-dire celles qui se concentrent sur I’obtention de performances optimales
en boucle fermée, la faisabilité et la satisfaction des contraintes malgré les effets causés sur
les sorties par des perturbations non mesurables, ou par des incertitudes sur le modéle de
prédiction. La prémisse de base pour la conception de robuste schémas MPC est que les
incertitudes doivent étre bornées (et les bornes sont connues ou, au moins, estimées). Ainsi
les certificats de performance peuvent étre fournis en robustifiant ’optimisation MPC vis-a-vis
des bornes d’incertitudes. Cela peut étre fait via ’optimisation min-max [Limén et al. 2006a;
Lofberg 2012], resserrement des contraintes [Kohler, Miiller, and Allgéwer 2018; Santos et al.
2019|, propagation des perturbations par tubes [Yu et al. 2013; Abbas et al. 2019, et ainsi de
suite.

Un bref apercu des systémes LPV

Dans le précédent, les idées principales de MPC et les frontiéres de la littérature sur le sujet
ont été revissées. Ensuite, je détaille briévement le deuxiéme sujet principal de cette thése
. les Systémes Linéaires & Paramétres Variants (LPV). Parallélement & la mise en place de
schémas MPC modernes, un examen concerté du controle robuste s’est développé, y compris
une analyse de robustesse structurée et la généralisation du théoréme du petit gain, c.f [Doyle,
Wall, and Stein 1982; Scherer 2006]. En conséquence, a partir du tissu de la théorie du controle
robuste, le cadre du systéme LPV a été développé [Mohammadpour and Scherer 2012; Sename,
Gaspar, and Bokor 2013]. Cette boite a outils d’analyse et de controle est devenue populaire
et largement utilisée pour gérer des procédés avec des dynamiques complexes (non linéaires,
variant dans le temps), comme débattu dans [Toth 2010; Hoffmann and Werner 2014].

En synthése, on peut comprendre les systémes LPV comme une classe spéciale de procédés
non linéaires, bien adaptés au contrdle de la dynamique avec des variations programmeées de
paramétres. Dans un certain sens, les systémes LPV se trouvent quelque part entre les formal-
ismes non linéaires et LTI, car ils sont linéaires dans ’espace d’états, tandis que non linéaires
dans D’espace des paramétres. Contrairement au cas LTI, les transitions d’état et de sor-
tie dépendent de paramétres variant dans le temps, appelés variables d’ordonnancement,
notés p. Ces paramétres sont supposés connus et implicitement bornés, et peuvent donc
étre utilisés pour la commande.

Considérons un systéme générique 3, dont le comportement est donné par :

#0 = AP+ Dl D2
y(k) = C(p)a(k) + D(p)u(k), .
étant A(-), B(-), C(-) and D(-) fonctions matricielles par rapport aux parameétres

d’ordonnancement p. Dans ce modéle, x représente 1’état, u représente les entrées et y
représente les sorties controlées.

Selon la nature des paramétres p sur modéle et la dépendance des matrices sur ces
paramétres, 'Eq. (D.2) peut représenter différents types de dynamique : (a) si les paramétres
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sont statiques (constants et invariants dans le temps), alors le modéle est LTI ; (b) si p est
une fonction inconnue du temps, i.e. p(k), alors le modéle représente la dynamique LTV
(Linear Time Varying) ; (c) lorsque les paramétres varient dans le temps, mais mesuré et
limité, le modeéle devient LPV. Dans la philosophie LPV, le concepteur ne s’intéresse pas
a la dépendance explicite des matrices d’état au temps, mais plutot a la dépendance de ces
matrices aux paramétres d’ordonnancement eux-mémes. Ensuite, la méthodologie d’analyse
et de conception LPV découle de ’exploitation de la forme de ces dépendances paramétriques
bornées.

De maniére générale, la caractéristique la plus pertinente des techniques LPV, dans le
contexte de la synthése de controle, est qu’ils fournissent une procédure de conception systé-
matique pour les commandes multivariables auto-coordonnées, bénéficiant de la disponibilité
des paramétres d’ordonnancement du procédé. La méthodologie LPV permet, donc, d’intégrer
la performance et la robustesse dans un cadre unifié, et c¢’est pourquoi le sujet est d’une grande
pertinence scolaire.

En comblant les lacunes

La boite a outils LPV peut, en effet, étre utilisée pour représenter des dynamiques non linéaires
avec fiabilité. Ainsi, la synthése de controle et les analyses des caractéristiques non linéaires de-
viennent beaucoup plus faciles en exploitant la disponibilité des variables d’ordonnancement
connues et la dynamique LPV correspondante. De nos jours, la synthése de controle LPV
est standard en utilisant des transformées fractionnelles [Casella and Lovera 2008|, objec-
tives Hy et Ho [Sename, Gaspar, and Bokor 2013; Emedi and Karimi 2016|, ainsi que pour
'asservissement et le suivi de consigne [Scorletti, Fromion, and De Hillerin 2015|. Néanmoins,
le cas n’est certainement pas vrai pour les applications de controle prédictif. L’étude des
schémas LPV MPC a correctement commencé au milieu des années 00. Quoi qu’il en soit, il
reste encore des lacunes complexes a approfondir sur ce sujet, comme indiqué dans [Bachnas
et al. 2014; Morato, Normey-Rico, and Sename 2020a].

Etant donné que les fonctions non linéaires peuvent étre refondus en tant que LPV modéles,
il semble naturel de développer des algorithmes NMPC en exploitant les réalisations LPV. 11
est particuliérement intéressant d’utiliser des modeéles LPV dans la synthése de MPC car ces
représentations conservent la linéarité propriété le long des canaux d’entrées-sorties, ce qui
signifie que des procédures de conception efficaces en termes de calcul peuvent étre rendues.
Inversement, cela signifie que les inconvénients des algorithmes NMPC complets sont évités
(I'utilisation de programmes non linéaires), sans qu’il soit nécessaire d’approximer la solution
du probléme d’optimisation (comme le font les solutions NMPC rapides les plus modernes,
telles que 'itération en temps réel et les méthodes basées sur le gradient, par exemple).

Dans le contexte de MPC, un modéle de prédiction a horizon complet est requis (c’est-a-
dire pour décrire les variables du systéme le long des futures étapes N, avant chaque échan-
tillon). Néanmoins, lorsqu’un modéle de prédiction LPV est utilisé, ce probléme dépend non
seulement des entrées futures (& déterminer par l'optimisation), mais aussi des parameétres
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d’ordonnancement futurs p(k +1i),Vi € Nio,n, 1], qui sont vraisemblablement inconnu.

En conséquence, considérons qu’un probléme MPC & retour d’état est formulé. Cela signifie
qu’a chaque instant d’échantillonnage en temps discret k, le probléme d’optimisation suivant
doit étre résolu :

Jr=J(@(k),Uk)

Np—1
min  V(w(k+ Nylk)) + > (k4 i+ k), u(k +ilk)) (D.3)
i i=0
sous réserve de: Modeéle de procédé, Vi € Npj n,), (D.4)

x(k+1ik) € XVi € N[I,Np])
ulk+1i— k) e UVi € N[laNp}7
2(k+ NJk) € X;, (D.5)

en tenant compte que x € X désigne les contraintes d’admissibilité de 1’état, v € U
I'admissibilité de I'entrée, € X I'admissibilité terminale, et Uy donne le vecteur des efforts
de commande prédites au fil de I’horizon de prédiction, soit :

Ue = [uklk)” ulk+1k)T ... u(k+N,—1k)7T " (D.6)

Tout algorithme MPC, comme le précédent, prend en compte la dynamique du systéme
controlé sur un horizon de prédiction de N, (la contrainte du modéle du procédé). Ainsi, dans
le cadre non linéaire général, en considérant une dynamique d’état non linéaire générique a
temps discret z(k + 1) = f (x(k),u(k)), la séquence suivante de régles basées sur un modéle
est évaluée (en interne par l'optimiseur, c’est-a-dire le solver du probléme d’optimisation) :

a(k+1k) = f(a(k), u(klk)) (D.7)
w(k+2k) = f(f(@(k),u(klk)), ulk +1]k)),
w(k+3[k) = f(f(f(@(k),u(klk)), ulk + 1K), ulk +2[k)),

—~~

et ainsi de suite, jusqu’a la IV,-ieme prédiction.

Notez que la solution (originale) du probléme ming, J; (en utilisant un modele non
linéaire), nécessite I'évaluation des prédictions données dans I'Eq. (D.7), ce qui fait de
l'optimisation un programme non linéaire (qui peut méme étre non convexe).

Néanmoins, lorsque le modéle non linéaire est remplacé par un modéle LPV, c’est-a-dire
en utilisant 'Eq. (D.2), la séquence de régles de prédiction basées sur un modéle qui sont
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évaluées par 'optimiseur devient :

w(k+1k) = A(p(k))z(k) + B(p(k))u(k|k), (D.8)
w(k+2lk) = Alp(k + 1) A(p(k))z(k) + Alp(k + 1)) B(p(k))u(k|k) 9)
+ B(p(k+1))u(k + 1|k),
w(k+3k) = Alp(k +2))A(p(k + 1)) A(p(k))x (k) (D.10)
+ Alp(k +2))A(p(k + 1)) B(p(k))Ju(k|k)
+ A(p(k+2))B(p(k+ 1))u(k + 1|k)
+ B(p(k+2)u(k +2|k),

et ainsi de suite, jusqu’a la N,-ieme prédiction.

2+ Nyk) = A(p(k + N, — 1))... A(p(k))a (k) (D.11)
+ A(p(k+ Ny — 1)) Alp(k + 1)) B(p(k)yu(k|k)
+ A(p(k+ N, — 1)) ... A(p(k +2))B(p(k + 1))u(k + 1]k) +
+ Blplk+ N, —1))u(k + N, — 1|k).

Notez que, dans le cas LPV, ces prédictions nécessitent les valeurs des futures vari-
ables d’ordonnancement, c’est-a-dire p(k + 1), p(k + 2), et ainsi de suite. Cette “trajectoire
d’ordonnancement future” peut étre compactée, en format de vecteur, comme suit :

]T

P = [ pk)T pk+1)T ... plk+N,—DT |7, (D.12)

ou seul p(k) est, en pratique, connu. Pourtant, le vecteur de trajectoire d’ordonnancement
complet P, peut étre utilisé pour exprimer analytiquement le vecteur complet des prédictions
d’état, c’est-a-dire Xy = [z(k+1]k)T, ... 2(k+ Np|k)T]T. Comme le montre [Cisneros and
Werner 2020, il s’ensuit que:

Xy = A(Py)x(k)+ B(Py)Uy, (D.13)

ot A(Py) € R=No)xne ot B(P,) € R(No)*(nulp) " En pratique, ces matrices conservent leur
forme & chaque échantillon et peuvent donc étre calculées rapidement. Ainsi, la loi MPC est
activée via la solution en ligne de ming, Ji sous réserve de I'Eq. (D.13) et contraintes, qui est
un QP, tant que P} est connu.

Notamment, ces prédictions LPV nécessitent implicitement la connaissance de la trajec-
toire dite d’ordonnancement (p(k), p(k+1), jusqu’a p(k+ N, —1)). Cependant, ces variables
sont indisponibles & chaque instant k, alors que seul p(k) est connu. En raison de ce probléme
d’indisponibilité, la conception de MPC utilisant des modéles LPV devient particuliérement
compliquée, essentiellement parce que la faisabilité récursive et la stabilité en boucle fermée
de la stratégie exigent théoriquement que le MPC tolére les incertitudes qui surviennent en
raison de l'indisponibilité de la future trajectoire d’ordonnancement.

Enoncé du probléme :
Ainsi, par rapport au contexte discuté, le principal probléme étudié dans cette thése est :
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Comment concevoir des algorithmes de commande prédictive (précis)
pour les systémes LPV sans la connaissance réelle de la future trajec-
toire d’ordonnancement ?

Etat-de-I’art : Techniques disponibles

Il y a eu quelques travaux récents sur la conception de MPC pour les systémes LPV. Dans
notre article de revue [Morato, Normey-Rico, and Sename 2020a|, un apergu détaillé de 1'état
de l'art est présenté. Ici, par souci de briéveté, je récapitule certaines des techniques les plus
pertinentes, qui peuvent étre classées en deux groupes principaux :

e Méthodes robustes, c.f. [Jungers, Oliveira, and Peres 2011; Rakovic et al. 2012; Bum-
roongsri 2014; Hanema, Lazar, and Toth 2020|, qui considérent les pires performances en
boucle fermée impliquées par rapport aux paramétres d’ordonnancement futurs, que sont
inconnus, en tenant compte leurs bornes. En conséquence, I’optimisation est réécrite afin
de prendre en compte les limites de toutes les variations futures possibles des paramétres,
ce qui peut donner des résultats généralement conservateurs.

e Méthodes basés sur I'ordonnancement par gain, c.f. [Ayala et al. 2011; Brunner, Lazar,
and Allgéwer 2013; Mate et al. 2019; Alcal4, Puig, and Quevedo 2019|. Dans ces ar-
ticles, le modéle LPV est remplacé, a chaque instant d’échantillonnage, par un mod-
éle LTT (ou une séquence de modéles LTI) basé sur une estimation de la trajectoire
d’ordonnancement. Dans de nombreux cas, cette supposition est simplement une hy-
pothése selon laquelle les paramétres d’ordonnancement resteront constants tout au long
de T'horizon de prédiction. Bien que ces méthodes fonctionnent assez rapidement (elles
présentent une charge numérique réduite), une sous-optimalité peut étre implicite. Néan-
moins, lorsque la trajectoire d’ordonnancement est précise (comme on le voit pour le cas
qLPV dans [Cisneros, Voss, and Werner 2016; Cisneros and Werner 2017b; Cisneros
and Werner 2019|), une solution MPC non linéaire exacte est obtenue au moyen de
programmes d’optimisation quadratique, rendant ainsi une solution comparable & I’état-
des solutions NMPC basées sur des solvers de pointe (telles que ACADO et CasADi).

Lacunes de recherche liées au probléme

Bien qu’il existe, de nos jours, des formulations NMPC généralisées, la synthése d’algorithmes
MPC utilisant le formalisme LPV est d’un intérét académique et pratique total, étant donné
que la propriété de linéarité peut étre exploitée de telle maniére que ’algorithme résultant a
allégé la complexité numérique.

En accord avec les travaux qui ont déja été proposés sur ce sujet, tels que récapitulés dans
la précédente, il reste encore quelques fils d’investigation disponibles pour des recherches plus
approfondies :
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e Tout d’abord, je souligne que les formulations LPV sous la forme entrée-sortie (I0), bien
qu’étant soutenues par de fortes prétentions théoriques dans le sens de I'identification,
c.f. [Bachnas et al. 2014], n’ont qu’une poignée d’homologues de synthése de controle.
La grande majorité de la synthése de controle LPV (y compris MPC) est réglée pour
des descriptions en espace-d’état. Néanmoins, l'industrie est beaucoup plus encline a
accepter les formulations 10, comme le discute |[Froisy 2006|. Par conséquent, le pont
entre théorie et applications industrielles pour le cas du LPV MPC la conception sera
encore soutenue lorsqu’un organisme de recherche théorique sur les formulations IO
deviendra disponible. Bien que ce sujet soit fondamental et prometteur, il existe assez
peu d’articles qui I’élaborent, c.f. [Abbas et al. 2015; Abbas et al. 2016, manquant ainsi
d’autres évaluations.

e Dans le contexte des méthodes LPV MPC a gain programmé, il existe un manque
d’exploitation supplémentaire des certificats de performance de ces algorithmes.
L’utilisation de la dépendance paramétrique LPV sur les arguments de stabilité et ses
implications n’ont été que briévement évaluées, c’est-a-dire dans [Cisneros and Werner
2017b; Cisneros and Werner 2020].

e Comme indiqué, les algorithmes LPV MPC a gain programmé, basés sur une estima-
tion précise de la trajectoire de paramétres d’ordonnancement futurs, sont capables en
temps réel et tout a fait comparables aux techniques NMPC modernes. Néanmoins,
I'exploitation de la fonction d’ordonnancement (des modeéles qLPV) pour générer avec
précision des estimations de trajectoire d’ordonnancement (et ainsi synthétiser un LPV
MPC avec une optimalité proche de celle d’'un NMPC) n’a été que briévement évaluée,
sans preuves supplémentaires au sens théorétique.

e Méme si l'application de schémas MPC robustes pour les systémes LPV est plutot
établie, des travaux récents, c.f. [Cisneros and Werner 2018|, ont souligné comment la
théorie de la dissipativité peut étre utilisée pour lisser la dureté en ligne de 'optimisation
résultante. Pourtant, un débat plus approfondi sur cette question, avec des résultats
d’application correspondants, peut encore étre fourni.

Objectifs de la thése

Au cours des derniéres décennies, il y a eu une intérét croissant pour le développement
d’algorithmes MPC rapides pour les systémes non linéaires. En conséquence, la boite & outils
de variation de paramétres linéaires apparait comme une alternative intéressante pour aborder
ce sujet sans la nécessité d’une solution basée sur des solvers approchés (tel comme ACADO),
puisque les incorporations ou les réalisations planifiées peuvent étre utilisées pour décrire la
dynamique non linéaire avec exactitude (ou bonne précision).

Néanmoins, les schémas d’application LPV MPC nécessitent la connaissance de la trajec-
toire d’ordonnancement future, qui n’est généralement pas disponible. L’état de l'art et les
lacunes de recherche correspondantes indiquent deux alternatives pour traiter cette question :
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(i) la synthése robuste ; et (ii) conception & gain programmé basée sur des estimations de
trajectoire. Chacune de ces branches a certaines limites et avantages, mais elles sont toutes
d’enthousiasme philosophique et théorique.

Par conséquent, en gardant a ’esprit I’énoncé du probléme de cette thése et compte tenu de
I’état de 'art disponible, les objectifs de cette thése coincident, en majorité, avec 'investigation
disponible fils dans ce nouveau domaine. Dans un souci de rigueur de présentation, je considére
trois objectifs principaux, qui sont corroborés par quelques buts spécifiques. Ci-dessous, je les
énumeére et les discute en détail, étant les éléments marqués en chiffres romains les objectifs
principaux, et ceux marqués en majuscules, les spécifiques :

(i) Fournir de nouveaux algorithmes afin d’estimer les futures trajectoires
d’ordonnancement LPV, du point de vue de chaque instant d’échantillonnage,
en envisageant des prédictions précises pour le MPC.

(i.A) Assurer la charge de calcul allégée de ces outils, les rendant plus simples & mettre
en ceuvre que méthodes basées sur la fonction d’ordonnancement (QPs séquentiels),
c.f. [Cisneros and Werner 2020].

(i.B) Démontrer les propriétés de convergence des méthodes développées par rapport a
la véritable séquence d’ordonnancement.

(ii) Développer de nouveaux algorithmes de controle prédictif & gain programmé
avec des certificats de faisabilité recursive et de stabilité.

(ii.A) Considérez la solution en utilisant une formulation de retour d’état, corroborée par
la contraction des contraintes terminales.

(ii.B) Fournissez la formulation correspondante pour le cas de retour de sortie dynamique,
lorsque les mesures d’état ne sont pas disponibles, en tenant compte des descriptions
d’entrée-sortie.

(iii) Proposer des algorithmes de contréle prédictifs robustes pour les systémes
LPV, avec un calcul rapide lors de la mise en ceuvre, adaptés aux applications
embarquées en temps réel.

(iii.A) Envisagez des formulations de suivi avec des certificats de satisfaction de contraintes
robustes pour des signaux de référence constants par morceaux (avec des valeurs
éventuellement inaccessibles).

(iii.B) Envisagez des formulations robustes basées sur des arguments de dissipativité, ne
nécessitant donc pas 'utilisation d’ingrédients terminaux et soulageant le stress
informatique global de 'implémentation en ligne résultante.

Méthodologie et applications

Les contributions scientifiques issues de cette thése, qui se rapportent aux objectifs susmen-
tionnés, sont répertoriées en annexe A. De plus, je souligne que ce doctorat a été réalisé selon
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une méthodologie de recherche scientifique, bibliographique et documentaire rigoureuse afin
de répondre aux objectifs de la thése. Pour chacun des objectifs principaux (et spécifiques cor-
respondants) listés dans la précédente, en bouclant des phases de spécifications, de conception
et des dissertations.

Complémentairement, puisque l'on ne peut pas dissocier la recherche menée de son
chercheur correspondant, une personne avec des subjectivités individuelles, je considére que,
pour des raisons personnelles et particuliéres, et aussi en raison de leur pertinence scientifique
et sociale, un bon nombre des algorithmes MPC proposés étaient axés sur la controle de deux
classes spécifiques de systémes complexes : (i) la production d’énergie renouvelable et (i)
les technologies de mobilité urbaine. Les deux principaux problémes qui apparaissent avec
I’application de la commande prédictive pour ces procédés sont de savoir comment gérer les
non-linéarités du modéle et la complexité numérique accrue de la loi de commande résultante,
qui devient trop numérique pour étre implémentée en temps réel, sous échantillonnage strict.
seuils de période. Pour répondre a ces préoccupations, le formalisme LPV fournit un ensemble
d’outils bien adaptés, comme discuté précédemment.

Le probléeme qui apparait avec 'application de la commande prédictive pour ces systémes
est précisément lié a la complexité numérique accrue des algorithmes de contréle, qui ne
peuvent se permettre d’étre mis en ceuvre sous des seuils de période d’échantillonnage stricts,
dans de nombreux cas.

Etant donné que les procédés d’énergie renouvelable, c.f.[Pipino et al. 2020b; Bernardi
et al. 2021|, sont, en général, des systémes non linéaires. Ainsi, ils peuvent étre directement
représentés par des structures LPV en utilisant des plongements appropriés. La principale
préoccupation en matiére de contréle est de maximiser I'efficacité des énergies renouvelables,
et donc de réduire les émissions de gaz & effet de serre et I'utilisation de combustibles fos-
siles. Pour cela, les algorithmes de controle prédictif LPV sont des solutions adéquates, car
ils sont capables d’intégrer des données météorologiques dans les prédictions et d’améliorer
adéquatement les performances qui en résultent.

Les véhicules autonomes sont au centre des préoccupations sociétales, compte tenu de
I'importance du sujet de la mobilité urbaine moderne. Ces systémes peuvent souvent étre
représentés & 'aide de modeéles LPV, en particulier lorsque 'on considére la dynamique ver-
ticale, comme détaillé dans [Savaresi et al. 2010; Morato et al. 2018a; Morato et al. 2019b;
Morato, Normey-Rico, and Sename 2021c|. De plus, ils sont controlés, en général, par le
moyen de microcontréleurs embarqués qui générent de nouvelles actions de commande toutes
les 1 & 10 millisecondes, ce qui rend le MPC non linéaire “4 part entiére” peu pratique. En ce
sens, I’approche LPV MPC apparait comme une alternative abordable en termes de calcul.

Je souligne que ces deux sujets sont au coeur de I’Agenda 2030 des Nations Unies |[United
Nations General Assembly 2015; United Nations 2018], qui propose les Objectifs de Développe-
ment Durable (ODD) afin de prévenir une catastrophe socio-environnementale de grande
ampleur et a Iéchelle mondiale [Lowy 2015|. Je n’aborderai pas ce sujet avec beaucoup
d’attention, car il est discuté dans d’autres travaux paralléles, c.f. |[Morato et al. 2018b].
Néanmoins, je souligne que ’ODD 7 concerne la production d’énergie propre et abordable
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[Nathwani and Kammen 2019], tandis que ’'ODD 11 traite des villes et des communautés
durables avec des liens cohésifs et universels mobilité [Hermelin and Henriksson 2022]. Par
conséquent, il me semble évident que ces sujets sont d’importance sociale et, par conséquent,
élargissent également la portée possible de ce travail doctoral.

Comme dernier commentaire concernant les applications envisagées, je note que des résul-
tats ont été fournis en considérant également d’autres types de systémes, tels que des procédés
industriels (par exemple, un réacteur a cuve a agitation continue, Chapitre 3), des systémes
robotiques (par exemple, un pendule inversé, Chapitre 3), jouets, systémes de référence ori-
entés vers ’éducation (par exemple, réservoirs en cascade, Chapitre 5) et installations de
capteurs solaires thermiques (suivi de la température, Chapitre 6).

Disposition du manuscrit

Tenant compte du débat précédent, je présente les grandes lignes de cette thése, en détaillant
ses principaux apports et la maniére dont chaque partie et chapitre est structuré. Le travail
se compose de quatre parties, de telle sorte que chacun des objectifs principaux de cette
thése est abordé par une partie individuelle. La premiére partie comprend l'introduction,
les préliminaires et les bases développements, les deux parties intermédiaires portent sur les
objectifs premiers, tandis que la derniére partie rappelle et discute ’ensemble des travaux
fournis ici. Ces parties comprennent les sujets suivants :

e Partie I: “Preamble™

— Dans cette premiére partie de la thése, je présente le contexte principal du travail,
les objectifs envisagés et sa structure. Aussi, dans le chapitre 2, j’aborde les prélim-
inaires de tout ce qui suit, établissant le cadre théorique de cette thése, rappelant
les concepts de base, les définitions et les résultats de la littérature. Plus précisé-
ment, ce chapitre commence par présenter une représentation non linéaire unifiée,
caractérisant les notions de base, tels que la stabilité. Je présente les normes et
espaces de signaux utilisés au cours des développements qui en découlent, ainsi
que certaines procédures de synthése, opérations et les transformées. Ensuite, je
détaille les procédures d’intégration qui peuvent étre utilisées pour générer des
modéles LPV et qLPV (en utilisant des inclusions différentielles), et discute de cer-
taines propriétés de cette représentation caractéristique. Concernant 1’application
de MPC pour ces systémes, je donne plus de détails sur la pertinence de synthétiser
de tels algorithmes, en discutant des principales complications qui en découlent. En
conséquence, je récapitule les résultats clés sur la faisabilité récursive et la stabilité
du résultat en boucle fermée, qui servent & générer ce que ’on appelle I'optimisation
des “ingrédients terminaux”, ainsi que la présentation les notions de base de la dis-
sipativité.

e Partie II: “Gain-scheduled formulations”. Dans cette partie, j’aborde le sujet des ap-
proches de controle prédictif a gain programmé, ciblant les objectifs (i) et (ii) de cette
thése. Plus précisément, les sujets suivants sont débattus :



243

— Comme discuté précédemment, 'application des algorithmes LPV MPC devient as-
sez compliquée car la trajectoire d’ordonnancement, le long de 1'horizon de prédic-
tion MPC, est, a priori, inconnue. Ainsi, dans le chapitre 3, je discute des stratégies
disponibles qui peuvent étre utilisées pour générer des estimations de la trajectoire
d’ordonnancement, et des avantages (et inconvénients) qui découlent de chaque
approche, dans le contexte de MPC. De plus, je présente un nouveau algorithme
d’extrapolation, qui estime les valeurs futures de ces paramétres d’ordonnancement
qLPV pour un horizon de prédiction fixe de N, étapes. La méthode est dérivée
d’un simple argument de Taylor, et des conditions suffisantes sont présentées pour
des estimations convergentes (répondant ainsi a l'objectif (i)). De plus, en util-
isant différents exemples de référence de simulation tirés de la littérature, j’illustre
et discute de la maniére dont les différentes approches d’estimation peuvent étre
appliquées dans la pratique et je les compare.

— Dans le chapitre 4, je développe deux algorithmes différents de controle prédictif
& ordonnancement de gain formalisés & 'aide de structures de retour d’état et de
sortie, ce qui concerne l'objectif (ii) de la theése:

* Dans un premier temps, je propose un schéma de contrdle pour I’amélioration
du confort des passagers & bord d’un véhicule a suspensions semi-actives, dans
le cadre du formalisme MPC. Pour cela, la dynamique verticale de la voiture
modélisée dans un cadre qLPV et, par conséquent, le controlé découle de la
solution d’une optimisation sous contraintes, qui intégre un indice de perfor-
mance de confort. La méthode est sous-optimale car la synthése considére une
approche de trajectoire d’ordonnancement figée. Quoi qu’il en soit, en sup-
posant des limites sur les taux de variation des paramétres d’ordonnancement,
la méthode permet de remplacer 'optimisation non linéaire complexe d’origine
par un programme quadratique beaucoup plus simple, qui comprend un cotit
décroissant de Lyapunov et des ingrédients terminaux basés sur des ensem-
bles. Des simulations non linéaires réalistes réussies d’une voiture a ’échelle
un cinquiéme avec des suspensions électro-rhéologiques sont présentées, pour
lesquelles la méthode proposée est testée et comparée & d’autres contrdleurs
optimaux. Les résultats illustrent le bon fonctionnement global du véhicule ;
le confort des passagers est considérablement amélioré, mesuré par des indices
temporels et fréquentiels.

x Dans un second temps, je développe un output-feedback approche a gain
programmé pour les systémes non linéaires représentés sous les modéles
qLPV d’entrée-sortie.  Pour cela, je détaille comment le modéle input-
output peut générer une prédiction basée sur un estimation de la trajectoire
d’ordonnancement future. Ensuite, je démontre la stabilité asymptotique du
systéme en boucle fermée (et 1’établissement du suivi de sortie correspondant).
Le procédé comprend une action intégrale pour chaque canal d’entrée-sortie,
assurant ainsi un suivi avec une erreur en régime permanent nul. Avec ’aide
d’un benchmark de simulation numérique, je démontre l'efficacité de la solu-
tion.
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e Partie III: “Robust synthesis”. Dans cette partie de la thése, ma principale préoccupation

est de présenter de nouveaux algorithmes de contréle prédictif robustes pour les systémes
LPV, c’est-a-dire 'objectif (iii). En conséquence, je considére des formulations avec a la
fois des ingrédients terminaux et des arguments de dissipativité utilisés pour assurer la
faisabilité récursive et la stabilité entrée-état (les formulations sont sous représentation
de retour d’état). La question de la suivi des signaux de consigne constants par morceaux
est également abordée. Plus précisément, ces sujets sont structurés comme suit :

— Dans le chapitre 5, je présente une formulation de suivi NMPC pour des sig-
naux de référence constants par morceaux utilisant l'incorporation de qLPV et
I’extrapolation de trajectoire d’ordonnancement. Le cadre proposé est capable
d’éviter les pertes de faisabilité dues a de grandes variations de consigne, qui sont
suivies grace & une variable cible réalisable artificielle, dont la distance & la consigne
réelle est minimisée par un coiit de décalage supplémentaire. A chaque période
d’échantillonnage, un probléme d’optimisation est résolu sur la base de prédic-
tions linéaires (programmeées); la ténacité numérique moyenne est comparable a
un programme d’optimisation quadratique. La satisfaction robuste des contraintes
est obtenue avec des zonotopes qui propagent l'incertitude. Ces ensembles sont
calculés par rapport aux limites d’avance de 'erreur d’estimation de la séquence
d’ordonnancement qLPV, offrant un conservatisme réduit. La stabilité en boucle
fermée et la faisabilité récursive sont fournies avec des ingrédients terminaux ro-
bustes dépendant des paramétres. Afin d’illustrer les performances de la méthode,
je fournis un exemple de référence, qui démontre que l'algorithme est en effet capa-
ble d’assurer un suivi de référence avec une demande numérique réduite par rapport
aux techniques de ’état-de-1’art.

— Bénéficiant de l'algorithme d’extrapolation récursive de Chapitre 3 et théorie de
la dissipativité, dans le Chapitre 6, je propose un MPC robuste méthode capable
de rattraper les performances poussives obtenues avec les schémas robustes de la
littérature en incorporant les bornes sur les erreurs d’estimation des paramétres
d’ordonnancement. Des arguments complémentaires de dissipativité sont utilisés
pour démontrer la faisabilité récursive et stabilité du systéme en boucle fermée, dé-
montrée par la solution d’un reméde a I'inégalité matricielle linéaire, qui détermine
la zone d’attraction pour laquelle la stabilité entrée-état est assurée. Je consid-
ére la température non linéaire probléme de régulation d’un capteur solaire plat
comme étude de cas. Par le biais d’une simulation numérique réaliste, je compare
la méthode proposée & d’autres algorithmes robustes de la littérature, le démontrant
comme une alternative intéressante, avec des calculs allégés en charge numérique.

e Partie IV: “Closure”. dans cette derniére partie, je présente un panorama global de mon

travail doctoral, ou les objectifs sont rappelés et mis en regard des avancées présentées et
des résultats obtenus. Un apergu général de tout ce qui a été développé dans ce travail est
rappelé et les développements sont analysés individuellement en termes d’avantages et de
limites. Dans cette derniére partie du manuscrit, je taquine également les perspectives
des fils d’investigation ouverts mentionnés dans cette introduction, mettant en lumiére
des voies qui restent a poursuivre dans les recherches futures.



245

Apports et principales propositions

Les principales contributions de cette thése ont été centrées sur les chapitres 3 & 6. Ainsi, je
détaille les principaux thémes, propositions et avancées présentés dans chacun de ces chapitres.

Chapitre 3

Il existe, de nos jours, plusieurs algorithmes NMPC efficaces basés sur des solvers [Zhang,
Li, and Liao 2019; Rathai et al. 2018; Gros et al. 2020]. Néanmoins, ces méthodes sont in-
ventées en utilisant des approximations du probléme d’optimisation non linéaire qui se pose
lors de l'application de MPC non linéaire. Les formulations NMPC exactes nécessitent la
solution en ligne de ces NP, qui ne peut généralement pas étre résolue pour les petits péri-
odes d’échantillonnage (dans le cas de systémes de contrdle embarqués rapides). En somme,
I’application en temps réel des algorithms NMPC pour les procédés a un obstacle inhérent
a la résolution du NP exact lors de la mise en ceuvre en ligne, comme 'ont souligné toutes
les principales revues systématiques sur le sujet [Camacho and Bordons 2007; Allgéwer and
Zheng 2012].

Tout au long de ce travail, je soutiens avec insistance qu’une approche élégante pour
résoudre ce probléme (revivre la dureté de calcul de NMPC) est de remplacer le modéle de
systéme non linéaire par un modéle LPV. Ainsi, comme indiqué dans [Morato, Normey-Rico,
and Sename 2020a|, en général, 'optimisation résultante peut étre exécutée beaucoup plus
rapidement, puisque le NP d’origine est remplacé par un QP (ou un SQP, dans certains cas).

En effet, 'application de MPC aux systémes LPV devient d’un intérét total pour la com-
mande de procédés non linéaires variant dans le temps. Cependant, il s’accompagne d’une
complication intrinséque : les paramétres dits d’ordonnancement, qui coordonnent la dy-
namique LPV, sont a priori inconnus sur un horizon de prédiction futur.

Dans ce chapitre, je débat de cette question, dans le contexte de la conception a gains pro-
grammés. Plus précisément, je détaille les quatre principales approches disponibles qui peuvent
étre utilisées pour calculer des estimations pour les futures trajectoires d’ordonnancement (et
également comment faire fonctionner I’algorithme MPC correspondant). Ces méthodes sont :

(i) Estimations figées, lorsque le controleur suppose une prédiction comme si les parameétres
resteraient constants le long de I’horizon, comme déployé dans [Morato, Sename, and
Dugard 2018; Alcala, Puig, and Quevedo 2019; Morato et al. 2020e] ;

(ii) Les estimations basées sur l'identification, pour lesquelles des équations auto-régressives
sont utilisées, modélisent le comportement des futures variables d’ordonnancement,
comme proposé dans [Morato, Normey-Rico, and Sename 2019];

(iii) Ides regles tératives, qui générent des estimations basées sur des itérations séquentielles
de 'optimisation MPC, par échantillon, exploitant la relation connue entre les variables
d’ordonnancement et les variables endogénes du systéme futur (uniquement possible
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pour le cas qLPV). Cette approche est I’état-de-l’art actuel dans la littérature qLPV
MPC, c.f.|[Cisneros, Sridharan, and Werner 2018; Cisneros and Werner 2019; Cisneros
and Werner 2020];

(iv) Schémas d’extrapolation, qui générent des estimations basées sur une simple condition
d’expansion de Taylor (encore une fois, uniquement possible pour le cas qLPV), comme
proposé a l'origine dans [Morato, Normey-Rico, and Sename 2022b| et également ap-
pliqué dans [Morato, Normey-Rico, and Sename 2021b; Morato et al. 2023a; Morato
2023|.

A cet égard, les principaux éléments abordés dans ce chapitre sont les suivants :

1. Je discute des quatre alternatives disponibles pour planifier les estimations de trajectoire,
pour les modéles LPV et qLPV, en discutant de leurs principales caractéristiques, des
hypothéses requises et des propriétés.

2. Plus de détails sont donnés concernant la méthode d’extrapolation pour les trajec-
toires des parameétres d’ordonnancement qLPV. Plus précisément, je présente des con-
ditions suffisantes qui permettent un schéma d’extrapolation convergent, congu en ce
qui concerne la forme et la classe de la fonction d’ordonnancement et la robustesse de
I’algorithme MPC correspondant.

3. Je présente également plusieurs exemples de référence de simulation différents issus de
la littérature, afin d’illustrer et de discuter de leurs principales caractéristiques. Ces
résultats sont également comparés aux techniques de pointe.

Je souligne que les développements présentés dans ce chapitre correspondent (en partie)
aux travaux publiés dans [Morato, Normey-Rico, and Sename 2021c; Morato, Normey-Rico,
and Sename 2022a; Morato 2023; Morato et al. 2023a; Morato, Normey-Rico, and Sename
2023a]. Plus précisément, la méthode d’extrapolation (approche (iv)) est I'une des principales
contributions dérivées de cette thése, telle que formalisée en profondeur dans [Morato, Normey-
Rico, and Sename 2022b|. Ce sujet comprend, en fait, I'objectif (i) de cette thése. Je note
également qu’une autre contribution de ce travail est la procédure récursive des moindres
carrés présentée dans [Morato, Normey-Rico, and Sename 2019| (approche (i)).

Approche (i) : Trajectoires d’ordonnancement figées

La premiére approche vue dans la littérature pour traiter le probléme d’indisponibilité de
la trajectoire d’ordonnancement Pj repose sur une idée assez simple : du point de vue
du fonctionnement MPC, a chaque instant d’échantillonnage, je suppose que les variables
d’ordonnancement resteront constantes (donc, figées). Autrement dit, Py est remplacé par
[ p(k)T ... p(k)T ]T pour générer les prévisions d’état futur Xj. Dans de nombreuses ap-
plications pratiques avec des paramétres d’ordonnancement & variation lente, comme le cas
des systémes d’énergie renouvelable [Pipino et al. 2020b; Morato et al. 2020e], cette méthode
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est plutdt intéressante, car la propagation de 'incertitude le long de ’horizon de prédiction
est négligeable.

Pourtant pertinent dans la pratique, le schéma MPC résultant qui est généré lors de
I'utilisation de trajectoires d’ordonnancement figées peut souffrir de graves problémes liés a
la robustesse. Rappelons que les paramétres d’ordonnancement rentrent dans le modéle de
prédiction de maniére multiplicative. Ainsi, lorsque le MPC est basé sur un modéle nominal
sous forme de x(k + jlk) = A(pr)z(k +j — 1|k) + B(pr)u(k +j — 1|k), Vj € Npy ;. Alors,
I'incertitude de prédiction modéle-procédé correspondante est :

wk+35) = Alp(k+4)z(k+j —1lk) — Alpr)z(k +j = 1|k) (D.14)
+ Blp(k+j))u(k +j —1|k) = B(pr)u(k +j — 1]k), Vj € Ny, -1

qui dépend non seulement des paramétres d’ordonnancement futurs réels p(k + j), mais aussi
de I’état futur et des trajectoires d’entrée.

A des fins de discussion plus approfondie, en exploitant la dépendance affine sur les matrices
du systéme, on obtient d’incertitude de modéle suivante:

u(ktd) = Alp(k+3) — pr)elk+ 5 — 1K) (D.15)
+ Blp(k+7) — pr)ulk +j —1|k), Vj € Ny n, 115

otli, pour le cas des variations des paramétres d’ordonnancement bornés sur des échantillons,
c’est-a-dire dp(k) = p(k + 1) — p(k) € 0P, il s’ensuit que :

lp(k+3) —pxll < Gop, (D.16)

qui se traduit par :

Itk + )1 < (AN, — 1)0p)T + B((Np — 1)dp)) - (D.17)

En pratique, le MPC correspondant, afin de stabiliser le systéme contrélé, devrait tolérer,
d’une fagon robuste, ce terme d’incertitude borné u(k + j). Néanmoins, sous des hypothéses
relativement simples, l'incertitude qui survient augmente non seulement en ce qui concerne
toutes les variables endogénes, mais aussi en ce qui concerne la taille de I’horizon de prédiction,
comme le donne 'Eq. (D.17). Assez facilement, les bornes sur u(k + j) peuvent étre encore
plus grandes que 'espace d’état disponible, mettant ainsi fin a tout certificat de performance
possible d’'un MPC synthétisé sur la base d’'un modéle LPV figée.

Synthétiquement, ’alternative de conception dite figée LPV MPC présente un inconvénient
théorique majeur : pour qu’elle assure la stabilité en boucle fermée, une robustesse excessive
peut devoir étre impliquée, ce qui rétrécit ainsi la région d’attraction correspondante activée
par les contréleurs. D’un point de vue philosophique, afin de concevoir un algorithme LPV
MPC figé qui assure la stabilité, méme sous des hypothéses standard, je cherche en fait a
déterminer un contrdleur unique capable de stabiliser (quadratiquement) tous les modéles
LTI dans le de x(k+ 1) = A(pg)z(k) + B(pr)u(k), généré par des valeurs fixes de pp € P. De
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plus, le controleur doit s’assurer que la stabilité est maintenue méme si ces modéles changent
dans les échantillons, ce qui est, bien stir, un probléme difficile.

Dans tous les cas, les algorithmes MPC pour les systémes LPV décrits sur la base de
trajectoires d’ordonnancement figées ont une grande valeur pratique. Pour le cas des systémes
LPV avec des paramétres d’ordonnancement variant lentement, c’est-a-dire pour de petites
bornes sur ||dp(k)||, cette approche est standard, et largement exploitée dans la littérature. Ce
qui est fait, dans de nombreux travaux, est simplement de négliger ’existence de la propagation
d’incertitude p(k), en supposant que le MPC permettra une boucle fermée robustement stable
vis-a-vis de cette variable.

Datant d’un article théorique original de 2003, [Casavola, Famularo, and Franzé 2003], de
nombreux travaux axés sur la pratique ont été présentés en utilisant cette méthode de prise en
compte de modéles LPV figés a chaque échantillon, c.f. les articles récents suivants [Cisneros
and Werner 2017b; Alcalé, Puig, and Quevedo 2019; Rodriguez-Guevara et al. 2021; Cavanini,
Ippoliti, and Camacho 2021]. Je peux méme affirmer, a partir de la récente enquéte sur les
algorithmes MPC utilisant des modéles LPV, telle que présentée dans [Morato, Normey-Rico,
and Sename 2020a], que ’approche figée & gain programmé est la méthode standard vue dans
la littérature, avec le plus grand nombre de applications pratiques en cours d’enregistrement.

Approche (ii) : Estimations basées sur l’identification

L’approche du modéle LPV gelé pour la synthése MPC & gain programmé est assez stan-
dard dans la pratique. Néanmoins, comme mis en évidence, les performances peuvent étre
compromises lorsque les paramétres varient rapidement entre les périodes d’échantillonnage
(et, dans le cas qLPV, si le controleur est trop agressif, obligeant les trajectoires d’état a
se déplacer trop rapidement et, donc implicitement, faisant également varier les parameétres
d’ordonnancement brusquement). Par conséquent, je détaille maintenant une deuxiéme alter-
native pour générer des estimations pour les trajectoires d’ordonnancement, qui est basée sur
une procédure d’identification en ligne. Cette méthode a été proposée dans le cadre de cette
thése, et présentée dans [Morato, Normey-Rico, and Sename 2019]. Son objectif principal est
de fournir une meilleure estimation que de simplement considérer les paramétres comme étant
constants tout au long de ’horizon de prédiction.

Encore une fois, je considére que les variables d’ordonnancement p ne sont connues (ou
mesurées) qu’a l'instant d’échantillonnage actuel k, ce qui signifie que I’ensemble du comporte-
ment futur de la trajectoire d’ordonnancement P est inconnu. Quoi qu’il en soit, je suppose
que ces paramétres conviennent & un comportement dynamique linéaire auto-régressif dans le
temps. Autrement dit, je considére que le signal p(k) vérifie ’hypothése suivante.

Assumption 25. Il existe un modéle linéaire auto-régressif I1, sous la forme de I’Eq. (D.18),
qui cartographie le comportement des paramétres d’ordonnancement p(k) du systéme LPV
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controlé.

p(k+Np) = aip(k —(Np— 1)) +--- +an,p(k) (D.18)
+ 01k — (Np — 1)) + -+ by, (k) -

En pratique, 'hypothése 25 implique qu’il existe un modéele a temps discret avec N, délais
d’échantillonnage, qui donne la relation entre une entrée & et les variables d’ordonnancement
p, c’est-a-dire qu’il existe un modéle linéaire transfer p := II¢, étant II donne le modéle
d’ordonnancement auto-régressif. Quelques commentaires sont présentés ci-dessous en ce qui
concerne la variable d’entrée de ce transfert, dit £ :

e Dans le cas du cas LPV pur, II est activé par une variable exogéne &, telle qu'un signal
de coordination ou une entrée auxiliaire. Lorsque ces signaux ne sont pas disponibles,
I’Eq. (D.18) peut étre converti en un modéle auto-régressif pur, sans entrées, ou écrit
par rapport & un bruit d’entrée donné dans une gamme de fréquences connue.

e Dans le cadre qLPV, I’hypothése 25 est tout a fait raisonnable, puisque les paramétres
d’ordonnancement, a chaque instant d’échantillonnage, sont fortement liés aux variables
endogénes du systéme. Ainsi, selon quelles variables endogénes sont incluses dans la
fonction d’ordonnancement, le signal £ est choisi. Autrement dit, pour les fonctions liés
a I'état f,(x(k)), on peut simplement prendre {(k) = z(k). De maniére équivalente,
pour le cas des fonctions liés a la sortie et a l'entrée f,(u(k),y(k)), je prends &(k) =
[u(k)” y(k)T ]T, et ainsi de suite.

T .. .
Sous forme compacte, notons 2, = [ £(k)T ... &(k+ N, —1) | . Ainsi, en exploitant
I’hypothese 25, je peux écrire la relation compacte suivante pour II :

V(k—2np+1)
plk) = ©[ Plonany Ehanen | - (D.19)

étant les paramétres du modéle auto-régressif compactés dans

0 = [al ..oan, b1 ... pr}. (D.20)

Ensuite, si © est connu, la relation auto-régressive linéaire peut étre exploitée afin de
couvrir I’ensemble des trajectoires d’ordonnancement futures, comme suit :

p(k+1) = aip(k —2N, +2)+ - +an,p(k — Ny +1)

4 bil(k — 2N, +2) -+ by E(k — Ny + 1) (D.21)
= OV k2N, 12)

p(k+2) = aip(k—2Npy+3)+---+an,p(k — N, +2)
+ by€(k — 2N, +3) + -+ by £(k — N, +2) (D.22)

OV (r_2n,43):
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et ainsi de suite jusqu’a :

p(k+Np—1) = aip(k—Np)+---+an,p(k—1)
+ b€k — Ny) + -+ by £(k — 1) (D.23)
= OF (1-n;,)-

Afin de considérer des comportements plus génériques, avec des dynamiques variables
dans le temps liées aux variables d’ordonnancement, j'implique que les paramétres du modéle
auto-régressif II varient dans le temps, et donc que p(k) , = ©O(k)¥(,_on,41). Ensuite, le
mécanisme basé sur I'identification fonctionne comme suit :

1. A chaque instant d’échantillonnage, on collecte le vecteur empilé des variables
d’ordonnancement précédentes et des entrées auxiliaires, c’est-a-dire W, _on, 1) ;

2. Ensuite, une procédure de minimisation en ligne récursive des moindres carrés est résolue
afin d’estimer les paramétres ©(k), c’est-a-dire :

O(k) = Ok —1)+2Q (T(—2n,+1), p(k), E(K)) , (D.24)

ol A est un parameétre de mise & jour (facteurs d’oubli moindres carrés) et Qg est une
fonction de mise & jour.

3. La trajectoire future des paramétres d’ordonnancement Py est estimée sur la base de :

p(k) 0
0 Wi

Poo= | . |tew]| T (D.25)
0 Y k-n,)

Discutons quelques aspects de cette approche basée sur 'identification, avant de présenter
des résultats de simulation :

e La méthode est congue sur la base de 'hypothése 25, qui peut étre partiellement fausse
pour de nombreux systémes. Dans de nombreuses applications LPV pures, le concep-
teur n’a pas accés & un certain signal d’activation & et donc la seule alternative est
de considérer le modéle II comme auto-régressif et autonome, ou sujet a des entrées
bruitées ;

e En pratique, lorsque les paramétres sont considérés comme variant dans le temps et
ré-identifiés en ligne, au moyen d’une procédure LS récursive, des estimations précises
peuvent étre formulées ;

e Les estimations sont générées au moyen d’opérations linéaires, les Eqgs. (D.24)-(D.25),
qui permettent des applications rapides et en temps réel de l'algorithme MPC corre-
spondant ;
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e Pourtant, avec une grande valeur pratique et des résultats empiriques assez satisfaisants
(comme indiqué ci-dessous), la méthode manque de preuves rigoureuses de convergence
(c’est-a-dire que je ne peux pas garantir que les estimations pour p(k+j), Vj € Njj 1]
suivent les valeurs correctes des futurs paramétres d’ordonnancement), et l’erreur
d’estimation est, a priori, illimitée (je n’ai pas des moyens appropriés pour calculer
les limites d’erreur ou pour garantir un modéle générique auto-régressif, puisque cela
change d’un systéme a 'autre).

Approche (iii) : Mécanisme d’estimation itératif

Les méthodes précédentes (approche figée et mécanisme auto-régressif basé sur les moindres
carrés) représentent des alternatives pratiques intéressantes pour résoudre le probléme de
I'indisponibilité des trajectoires d’ordonnancement, nécessaires pour calculer les prédictions
MPC. Ces deux approches ont des contreparties empiriques avec de bons résultats, comme
enregistré dans la littérature. Néanmoins, avec la méthode basée sur le gel, approche (i),
j’obtiens une propagation d’incertitude corrélée qui peut croitre de maniére significative, tandis
qu’avec le mécanisme basé sur LS, approche (ii), je suis incapable de quantifier 'ampleur de
Perreur d’estimation ( et la validité et I'existence d’un modéle auto-régressif).

Ensuite, je détaille une autre alternative largement utilisée pour générer P en ligne, pro-
posée a l'origine dans |[Cisneros, Voss, and Werner 2016| et appliqué pour de nombreuses
applications depuis lors, c.f. [Cisneros and Werner 2017a; Cisneros, Sridharan, and Werner
2018; Cisneros and Werner 2019; Abbas et al. 2019; Cisneros and Werner 2020|. Le mécanisme
est basé sur l'opération itérative de I'optimisation MPC comme base pour générer la séquence
d’ordonnancement. [’approche nécessite que le modéle soit quasi-LPV, puisque la fonction
d’ordonnancement f, () est utilisé pour générer les estimations Fj. Etant donné que le mé-
canisme opeére njter itérations par échantillon, le MPC correspondant présente une complexité
de calcul d’un SQP.

L’idée centrale du mécanisme d’estimation itérative est la suivante :

e A chaque échantillon, j’ai besoin de Pj, pour résoudre I'optimisation MPC, qui donne en
sortie la séquence de controle future optimale U} et la séquence d’état prédite X ;

e Ensuite, au lieu de résoudre 'optimisation MPC une seule fois par échantillon, elle est
résolue njge; fois : les sorties de 'optimisation d’une itération (U, ,i et X ,lg, ot le super-indice
[ désigne l'instance d’itération) sont utilisés pour générer la trajectoire d’ordonnancement
de I'exemple suivant, en utilisant : P} = f, ((X,ifl)L, U,lgl), ol le vecteur (X,ifl)L =

T Co. . N
[ z(B)T (X ,i_l)T ] collecte la mesure de 'état actuel et les prédictions d’état a la
[-iéme itération du schéma, la derniére entrée étant supprimée ;

e Les itérations se poursuivent jusqu’a I’obtention de la convergence (un certain seuil limite
est atteint, c’est-a-dire || P} — P,i_l | < &p) ou o nombre maximal d’itérations est atteint,
soit | = njter ;
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e Notez que, si la convergence des estimations de trajectoire d’ordonnancement
est effectivement atteinte, c’est-a-dire que lim;_, 4 P,i est égal a la trajectoire
d’ordonnancement réele Py, puis la solution de la MPC correspondante exacte (pas
d’écarts de prédiction du modele), et donc la méme que celle qui aurait été obtenue avec
une NMPC « compléte » (sous convexité du coiit et des contraintes d’optimisation) ;

Comme discuté en détail dans [Cisneros and Werner 2020], les preuves empiriques montrent
que cette approche garantit la convergence de la trajectoire d’ordonnancement prédite Py, a
chaque échantillon k, vers le véritable comportement d’ordonnancement. De plus, cette pro-
priété est généralement obtenue en un nombre relativement faible d’itérations par échantillon
(environ 5-10 itérations internes 1), pour une grande variété de systémes. Des preuves pra-
tiques ont été présentées dans [Cisneros et al. 2019|, qui explique comment 1’algorithme MPC
résultant devient une alternative compétitive a la mise en ceuvre de NMPC (fonctionnant
embarqué aussi rapidement que ACADO, ou CasADi, pour de nombreux procédés). Con-
trairement & ce qui a été vu a propos de la méthode précédente, ces propriétés ont également
été vérifiées théoriquement.

La principale contrainte de cette approche d’estimation d’ordonnancement est que la boucle
interne peut prendre plusieurs itérations pour converger. Pour les systémes rapides, cela n’est
pas souhaitable car le nombre d’itérations internes [ nécessaires a la convergence (ou jusqu’a ce
que le critére d’arrét [ < mjer soit atteint) peut théoriquement nécessiter plus temps supérieur
au seuil de période d’échantillonnage disponible (et donc la convergence peut ne pas étre
garantie). De plus, selon le type de non-linéarité présenté dans la fonction d’ordonnancement
fo(+), le calcul de chaque entrée de P}, en utilisant f,(z(k+j—1|k),u(k+ji—1[k)), Vj € Np,n,)»
peuvent également étre numériquement cotiteux.

J’insiste sur les principaux avantages du mécanisme:
e A chaque échantillon, 'optimisation MPC est formulée comme un QP, et donc la com-

plexité de calcul de l'algorithme MPC complet est équivalente a celle d’'un SQP, par
échantillon ;

e [’application du mécanisme est relativement simple : il ne nécessite que le décalage
vectoriel et I'application de la fonction d’ordonnancement sur NV, entrées vectorielles ;

e Des preuves empiriques montrent que la méthode converge en un nombre relativement
petit d’itérations, pour de nombreux systémes différents.

Approche (iv) : Schéma d’extrapolation basé sur Taylor

Ensuite, je présente la derniére approche discutée dans ce chapitre, qui est, en fait, 'une des
principales contributions de cette thése, discutée en profondeur dans [Morato, Normey-Rico,
and Sename 2022b|. Cette méthode n’est, comme la précédente, possible que pour le paramétre
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qLPV, puisque lea fonction d’ordonnancement f,(-) est utilisé pour générer I'estimation de la
trajectoire d’ordonnancement.

L’approche proposée est récursive, dans le sens ot les trajectoires d’ordonnancement sont
générées au moyen de la loi suivante :

B = @(ﬁk,l,p(k),x(k)). (D.26)

Ainsi, dans la suite, j'explique comment 'opérateur ®(-) peut étre linéaire, et comment
les vecteurs estimés convergent vers I’ordonnancement correct comportement de trajectoire,
dans un nombre fini d’échantillons. Notez que la procédure dans 'Eq. (D.26) génére une
nouvelle extrapolation pour les trajectoires d’ordonnancement Py, & l'instant k, basée sur
I'extrapolation précédente et le nouveau jeu de données disponible (p(k) et z(k)). Pour cela,
I’approche récursive proposée est congue a partir de I’hypothése suivante :

Assumption 26. La fonction statique f,(x) peut étre approchée par une expansion de Taylor
de premier ordre autour de T :

o,

@) = f@)l+ 5

(-7, (D.27)

T

étant T un point de linéarisation arbitraire. La fonction réelle peut étre exprimée analytique-
ment par la somme de cette approrimation a un signal résiduel §,, qui hérite de [’écart entre
la carte statique réelle et son approximation de Taylor :

afp(iﬂ)

fol@) = f@)l+ 2

(=) +&. (D.28)

T

Considérez que ’hypothése 26 est valide. Alors, I'expression suivante est valide, en consid-
érant la linéarisation & un instant donné k£ + j — 1 et 'incrément le long de = jusqu’a l'instant
suivant k + j, soit Ax(k+j—1) :

folwk+7)) = fola(k+j—1)+&k+7-1) (D.29)
+ 8’:;(9”) Ac(k+j—1).
T p(k+j—1)

9%

Je désigne désormais f?(k +j—-1) = H En développant 'expression dans

z(k+5—1)
I'Eq. (D.29) le long de I'horizon de prédiction fixe de N, étapes et en l'intégrant & la fonction
d’ordonnancement p(k) = f, (x(k)) donne :

plk+1) = p(k)+ fO(k)Ax(k) + &p(k)

p(k+ N, —1)

p(k+ Np —2)
+ f2(k+ N, —2)Az(k + N, — 2)
+ &k+Np,—2).
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Puisque p(k) et Az (k) sont connus, alors que f;?(k:) peut étre évalué numériquement sur
la base du courant mesure d’état (k). Néanmoins, en pratique, fpa(k +7) pour j € Ny n,_o
est inconnu, qui nécessite une seconde supposition:

Assumption 27. Pour simplifier, a4 chaque instant d’échantillonnage k, on suppose que la
dérivée partielle f;?(k) reste constante le long de la prédiction horizon, c’est-a-dire fg(k+j) =
fO(k),Vj € Ny n,—g-

Les termes des dérivées partielles fl?(k: + 7) pourraient étre calculés sur la base de la pré-
diction de trajectoire d’état Xy (généré par l'algorithme MPC). Néanmoins, le faire c’est
numériquement cofiteux. Ainsi, j’exploite 'hypothése 27 afin de rendre notre procédure
d’extrapolation rapide et bon marché numériquement, prenant ainsi fpa(k‘ +7j) = f;? (k).
Dans la suite, je montre que méme en utilisant une telle approximation, la convergence est
toujours assurée.

Notez que les expansions le long de I’horizon de prédiction peuvent étre données en fonction
de la valeur du paramétre de programmation précédent et d’'un terme de correction, comme
suit :

plk+jlk) = plk+j—1k—1)+ fO(k)Ax(k+j— 1)+ &k +jlk),  (D.30)

Par conséquent, il retient que :

By = Bii+ [J(k)AX} +Ex, (D.31)
qui est une loi d’estimation récursive de la mode dans I'Eq. (D.26).

Basé sur I'Eq. (D.31), je fournis des résultats théoriques pour la convergence de l’estimation
générée (i.e. Py convergeant vers Pj) et pour la délimitation de lerreur d’estimation (i.e.
chaque p(k + jlk) — p(k + ).

Remarques générales

Par le biais d’une large utilisation de la simulation non linéaire (haute fidélité), en considérant
les systémes de référence de la littérature, 'efficacité et les principales caractéristiques de
chacun des mécanismes d’estimation de trajectoire d’ordonnancement sont débattues. Les
remarques générales sont :

e L’approche (i), basée sur une estimation figée des trajectoires d’ordonnancement, four-
nit des performances suffisantes, dans de nombreux cas. Il est capable de fonctionner
rapidement en ligne, puisque le MPC résultant est basé uniquement sur un seul QP.
Néanmoins, le contréleur doit étre excessivement robuste pour tolérer les incertitudes de
prédiction, ce qui peut ainsi conduire & des performances conservatrices.
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e L’approche (ii) est une alternative pour améliorer les performances du mécanisme de
modéle figé. Il est plus approprié pour le réglage qLPV, car le mécanisme d’identification
nécessite, en général, un signal d’activation du transfert auto-régressif (comme des vari-
ables endogénes qui affectent les parameétres d’ordonnancement). Quoi qu’il en soit,
on est incapable de s’assurer que la méthode converge effectivement, et les bornes sur
I’erreur d’estimation ne sont pas non plus disponibles. Le MPC résultant a la complexité
d’'un QP et d’une solution récursive LS (linéaire), étant possible pour les applications
en temps réel.

e L’approche (iii) a été largement appliquée dans des travaux récents, y compris des vari-
ations MPC & base de tubes plus robustes, c.f. [Abbas et al. 2019; Hanema, T6th,
and Lazar 2021|. La méthode a de nombreuses preuves empiriques de la convergence
des estimations de trajectoire d’ordonnancement, ayant ainsi une importance précieuse.
Néanmoins, il est garanti que la méthode converge rapidement (dans le seuil de la période
d’échantillonnage), et il ne peut pas non plus étre généré de bornes d’erreur d’estimation.
Comme en témoignent les résultats précédents, ainsi que dans [Cisneros and Werner
2020], le MPC résultant est comparable aux solutions NMPC de pointe de référence,
tout en fonctionnant avec une complexité en ligne de SQP.

e L’approche (iv), 'une des principales contributions de cette thése, est une procédure
d’estimation récursive basée sur un argument d’expansion de Taylor assez simple. Avec
cette méthode, on est capable d’assurer la convergence de l'estimation, tant que cing
conditions suffisantes sont satisfaites. De plus, des limites théoriques sur l’erreur
d’estimation pendant le comportement transitoire sont disponibles, ce qui peut étre
pris en compte dans le contexte d’une conception MPC robuste. De plus, le procédé
est capable d’ameéliorer les performances du MPC par rapport a I’approche (i), tout en
maintenant une charge de calcul proche de celle d’un seul QP, étant ainsi plus rapide que
I’approche (iii). Le mécanisme d’extrapolation récursive repose sur de simples opérateurs
linéaires, avec une dureté numérique croissante linéairement avec la taille de I'horizon
de prédiction N, et le nombre de variables d’ordonnancement 7,,.

e Etant donné que I'approche (iii) a une ténacité numérique qui croit de maniére exponen-
tielle avec la taille de I’horizon de prédiction N, et avec le nombre d’états du systeme
ng, dans le cas de systémes en temps réel d’ordre supérieur, 'approche (iv) peut étre
beaucoup plus approprié, car il nécessite beaucoup moins de charge de calcul.

En résumé, le Chapitre 3 a présenté un apercu de la méthode disponible qui peut étre
utilisée pour estimer les futurs paramétres d’ordonnancement LPV, afin de construire des
lois de prédiction dans le contexte de MPC. Quatre méthodes ont été détaillées, avec les
résultats de simulation correspondants présentés et discutés. Plus important encore, une
nouvelle approche est présentée pour le cas des systémes qLPV, résidant dans une loi récursive
simple et rapide, qui ne nécessite que I’évaluation d’un calcul de dérivée partielle & chaque
instant d’échantillonnage. De plus, cinq conditions suffisantes simples & vérifier sont présentées
pour la convergence de ce mécanisme.

Comme indiqué dans la précédente, 'approche développée est comparée au mécanisme
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de pointe d’estimation des paramétres d’ordonnancement via les SQP (bouclage du MPC
plusieurs fois), montrant des estimations équivalentes et un taux de convergence similaire.
Des comparaisons et des discussions corroborantes sont également disponibles dans [Morato
et al. 2021d; Morato et al. 2022b].

Dans I'ensemble, je note que les schémas d’estimation de trajectoire d’ordonnancement
décrits peuvent certainement servir a la conception d’algorithmes rapides LPV MPC. De plus,
ceux-ci peuvent étre exploités pour la conception de NMPC au moyen d’intégrations LPV : le
contréleur résultant a une complexité de calcul inférieure & celle d’un programme non linéaire,
car les non-linéarités des contraintes de prédiction du modéle sont supprimées de maniére al

LPV.

Chapter 4

Dans le Chapitre 4, je discute de I'exploitation de la conception de MPC LPV & gain pro-
grammé sous de nouvelles formulations de retour d’état et de sortie. En conséquence, je
présente les deux principales évaluations!:

e Dans un premier temps, je propose un algorithme d’amélioration du confort des pas-
sagers d’'un véhicule & suspensions semi-actives, synthétisé sous une formulation de con-
trole prédictif. L’application MPC considérée prend en compte un modéle qLPV de la
dynamique de la voiture et intégre un indice de performance de confort comme fonction
de cott. La méthode proposée est sous-optimale du fait qu’elle est basée sur une esti-
mation figée des paramétres d’ordonnancement le long de I'horizon. Les bornes sur les
taux de variation des paramétres d’ordonnancement sont prises en compte et, ainsi, la
propagation de l'incertitude est atténuée. Le probléme d’incertitude est traité a l'aide
d’ingrédients terminaux basés sur des ensembles. Des simulations non linéaires réalistes
réussies d’une voiture & ’échelle sont présentées, comparant les solutions développées
a d’autres controleurs optimaux. Les résultats illustrent le bon fonctionnement général
du véhicule ; le confort des passagers est sensiblement amélioré, tel que mesuré par des
indices temporels et fréquentiels.

e Deuxiémement, je présente un algorithme MPC pour les systémes qLPV représentés
sous la forme entrée-soritie (I0). La méthode est basée sur le mécanisme d’extrapolation
récursive basé sur Taylor du chapitre 3. La principale innovation est que, en utilisant une
description IO de la dynamique du systéme, les mesures d’état ne sont pas nécessaires,
ce qui est intéressant du point de vue de 'application industrielle et pratique (pas besoin
de conception d’observateur, par exemple). Afin d’assurer un suivi de référence sans dé-
calage, 'algorithme comprend une formulation d’action intégrale explicite qui, couplée
a des ingrédients terminaux quadratiques, permet également une stabilité 10 asympto-

! Les développements présentés dans ce chapitre correspondent (en partie) aux travaux publiés dans [Morato,
Normey-Rico, and Sename 2019; Morato, Sename, and Dugard 2019b; Morato, Normey-Rico, and Sename
2020c; Morato, Normey-Rico, and Sename 2021c] (formulation retour d’état) et [Morato, Normey-Rico, and
Sename 2022a; Morato 2023] (formulation retour de sortie).
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tique. Un exemple de référence numérique est utilisé pour illustrer les avantages de la
méthode proposée, ainsi que ses capacités en temps réel.

En résumé, je souligne les principales remarques concernant chaque approche (formulations
LPV MPC a retour d’état et de sortie):

1. Retour d’état:

e [l est montré comment un algorithme MPC peut étre utilisé pour I’amélioration du
confort des passagers a l'aide de systémes de suspension semi-actifs. La suspension
est modélisée dans un cadre qLPV, et la force d’amortissement est modélisée par
une fonction tangente hyperbolique non linéaire, comme suggéré par la littérature.
Le procédé intégre les non-linéarités dans un paramétre d’ordonnancement, qui
est estimé a travers ’horizon de prédiction a chaque instant d’échantillonnage.
La conjecture d’évolution d’ordonnancement fixe (c’est-a-dire, figée du point de
vue de la commende) est utilisée pour transformer le probléme de prédiction non
linéaire en un QP linéaire, qui peut étre résolu en quelques millisecondes. Un
ensemble de contréle invariant positif terminal robuste est utilisé dans le contexte
de MPC afin qu’il soit capable de maintenir la stabilité (quadratique) et la faisabilité
récursive, malgré les inadéquations modéle-procédé (dans le cas de la régulation).
Ces propriétés sont démontrées analytiquement. 11 est démontré que la fonction de
cotlit d’optimisation du MPC intégre des contraintes de confort, en ce qui concerne
les indices de performance de la littérature. L’algorithme est appliqué avec succes
au controle d’un systéme de suspension SA via une simulation réaliste, obtenant
de bons résultats par rapport aux méthodes de controle optimales existantes.

e La principale limite de la méthode réside dans la prise en compte de ’estimation
figée et la complexité du calcul des ingrédients basés sur un ensemble. En outre, la
méthode utilise des variables d’état, qui ne sont généralement pas disponibles dans
des situations pratiques.

2. Retour de sortie:

e Tel qu’élaboré et débattu tout au long de cette thése, on peut concrétement affirmer
que le Model Predictive Control est aujourd’hui une technique largement utilisée,
avec une pertinence pratique et un intérét théorique. Les schémas MPC utilisant des
modéles de procédés en espace-d’états ont fait I’objet de recherches considérables
au cours des derniéres années, avec de nombreux résultats enregistrés. Des MPC
basés sur des modéles d’espace d’état peuvent étre élaborés pour répondre a des
exigences de performances rigoureuses. De plus, sous des hypothéses fades, ces
algorithmes permettent des performances optimales en boucle fermée. Pourtant,
avec une grande valeur théorique, la conception standard des MPC a retour d’état
nécessite la disponibilité de mesures d’état en temps réel. A leur tour, les variables
d’état sont souvent difficiles & mesurer ou & estimer avec précision. De plus, les
schémas d’estimation d’état peuvent détériorer considérablement les performances
en boucle fermée de MPC en présence de perturbations et de contraintes. En
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raison de ces problémes, les réalisations de I’espace d’états sont en deca des attentes
industrielles, qui sont rarement ancrées dans les descriptions de procédé du type
entrée-sortie.

e En conséquence, ce probléme est résolu par la proposition d’un nouvel algorithme
MPC pour les systémes LPV représentés sous la forme entrée-sortie. Les futurs
paramétres d’ordonnancement LPV sont extrapolés & ’aide d’une loi d’expansion
récursive de Taylor, qui génére les matrices de prédiction MPC & chaque période
d’échantillonnage.

e La méthode proposée posséde des capacités temps réel, puisque sa mise en ceuvre
en ligne est uniquement liée & un opérateur linéaire (extrapolation des parameétres
d’ordonnancement) et a la solution d’un seul QP. Comme le montrent les exemples,
la loi de commande peut étre générée en quelques millisecondes avec des solvers
standards.

e La méthode est capable de résoudre le probléme de contrble de suivi des systémes
hautement non linéaires, tant qu'un modéle d’entrée-sortie peut étre généré. De
plus, la méthode ne nécessite aucun outil de suivi de référence supplémentaire
(comme les variables de référence artificielles).

e Les ingrédients terminaux proposés, qui garantissent la faisabilité récursive et la
stabilité asymptotique de la sortie, sont activés par des solutions LMI quadratiques
et peuvent donc étre facilement calculés avec des solvers standard.

Chapitre 5

Dans le Chapitre 5, je présente un NMPC pour le suivi de signaux de référence constants par
morceaux. Ce schéma est efficace en termes de calcul en raison de 'utilisation d’une réalisation
d’intégration qLPV pour décrire la dynamique non linéaire. En conséquence, je profite de
la procédure d’extrapolation basée sur Taylor (Chapitre 3, approche (iv)) afin d’estimer le
comportement futur des paramétres d’ordonnancement avec une erreur d’estimation bornée.
A chaque période d’échantillonnage, le probléme d’optimisation utilise des prédictions linéaires
et présente donc une ténacité numérique allégée (comparable & un QP). Bénéficiant de variables
cibles artificielles, la méthode est également capable d’éviter les pertes de faisabilité dues a
de grandes variations de consigne. Des certificats robustes de satisfaction des contraintes,
de stabilité en boucle fermée et de faisabilité récursive sont fournis, grace aux zonotopes de
propagation d’incertitude et aux ingrédients terminaux dépendant des paramétres. Enfin, un
exemple de référence est utilisé pour illustrer 'efficacité de la méthode, qui est comparée aux
techniques de 1’état de 'art.

Je souligne que les développements présentés dans ce chapitre correspondent & ceux présen-
tés dans [Morato et al. 2021e| (asservissement) et [Morato et al. 2023a] (suivi de consigne).
Les principales nouveautés incluses sont résumées ci-dessous :

1. Le NMPC de suivi proposé est basé sur des intégrations qLPV, qui permettent des pré-
dictions de modéles linéaires. Le modéle est exploité par un mécanisme d’extrapolation
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qui fournit la séquence compléte des futurs paramétres d’ordonnancement, & chaque
instant d’échantillonnage. En conséquence, je calcule des limites simples sur 'erreur
de prédiction & partir de ces réalisations qLPV. De plus, je propose des zonotopes qui
bornent la propagation d’incertitude correspondante, qui sont ensuite utilisés pour la
satisfaction de contraintes robustes.

2. Je propose des ingrédients terminaux robustes dépendant des paramétres pour le NMPC
proposé. Ces outils assurent la faisabilité récursive de la procédure d’optimisation et la
stabilité de la dynamique de I’erreur de poursuite, en considérant toute valeur de consigne
dans un ensemble prédéfini. De plus, je propose une optimisation supplémentaire pour
le choix de la variable de référence artificielle, avec une complexité allégée.

3. En considérant un systéme de réservoir en cascade de référence, je compare minutieuse-
ment la méthode proposée au cadre de suivi nominal NMPC de [Limon et al. 2018]. Il est
démontré que le schéma proposé atteint des performances de suivi trés similaires, avec
un stress de calcul beaucoup plus faible, bénéficiant des prédictions linéaires permises
par la réalisation de qLPV. La méthode est préte pour les applications embarquées (la
contrainte en ligne est similaire & celle d’'un QP) et offre une robustesse vis-a-vis des
perturbations de charge bornées avec un conservatisme réduit.

En résumé des résultats obtenus par rapport au MPC LPV développé dans ce chapitre, je
list les principaux caractéristiques :

e Avantages:

1. II est capable de fonctionner plus rapidement que les MPC non linéaires de pointe
pour le suivi, étant donné qu’une procédure d’optimisation a complexité réduite
est utilisée (de complexité similaire & QP);

2. Il inclut des variables de référence artificielles telles que méme des objectifs de
référence inaccessibles peuvent étre directement pris en compte par le controleur ;

3. Il inclut des arguments de robustesse (faciles a calculer), écrits en termes de limites
connues des perturbations de charge ;

4. Des certificats de faisabilité et de stabilité récursives sont disponibles, ce qui garantit
un comportement adéquat de la boucle fermée résultante.

e Désavantages:

1. It nécessite une réalisation qLPV du systéme non linéaire, et donc la disponibilité
d’une fonction connue f,(-) qui génére des variables d’ordonnancement bornées (et
respecte également ’hypothése de Lipschitz locale).

2. Comme dans de nombreux algorithmes de suivi NMPC, les variables d’état doivent
étre mesurables, car le contréleur garantit le suivi de la sortie en orientant les états
vers des variables d’état stable données.

3. Le suivi d’ensembles d’invariants positifs robustes doit étre calculé hors ligne, avant

I'implémentation en ligne du contréleur, afin d’assurer des comportements corrects
de la boucle fermée résultante.
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Chapitre 6

Dans le chapitre 6, je propose un schéma MPC robuste et dissipatif pour les systémes non
linéaires représentés avec des modeéles qLPV. La principale nouveauté réside dans le fait de
bénéficier de 'approche d’extrapolation récursive (Chapitre 3, approche (iv)) afin de rattraper
les performances (habituellement) poussives obtenues avec les schémas min-max robustes de
la littérature.

Les bornes sur les erreurs d’estimation des parameétres d’ordonnancement par N, sont
prises en compte afin de formuler un probléme min-max en ligne avec des incertitudes réduites :
dans un premier temps, un CP contraint est résolu afin de déterminer le niveau de propagation
d’incertitude le plus défavorable et, par la suite, un deuxiéme QP contraint est résolu pour
minimiser cette fonction de coiit dans le cas le plus défavorable par rapport au vecteur de
séquence de commande. J’examine comment, puisque les bornes sur ’erreur d’estimation pour
les paramétres d’ordonnancement sont généralement beaucoup plus petites que les bornes sur
le paramétre d’ordonnancement réel, la prudence de la solution est assez réduite.

La faisabilité récursives et la stabilité de ’algorithme proposé sont démontrées avec des
arguments de dissipativité donnés sous la forme d’un reméde LMI, qui détermine également
la zone d’attraction dans laquelle la stabilité entrée-état est certifiée.

Le probléme de régulation non linéaire de la température d’un capteur solaire plat est
considéré comme une étude de cas. En utilisant un benchmark de simulation réaliste, la
technique proposée est comparée a d’autres algorithmes robustes min-max LPV MPC de la
littérature, se révélant numériquement efficaces, tout en conservant de bonnes performances.

Les développements présentés dans ce chapitre correspondent & ceux publiés dans les ou-
vrages suivants : [Pipino et al. 2020b]| (application capteur solaire), [Morato, Normey-Rico,
and Sename 2021b| arguments de dissipativité, et [Morato, Normey-Rico, and Sename 2021d;
Morato, Normey-Rico, and Sename 2023c¢| (métriques de robustesse induites en boucle fermée)
. Au regard des résultats obtenus, quelques points clés sont soulignés :

e Les NMPC de programmation non linéaire a part entiére ne sont pas applicables aux
applications embarquées de procédés avec des taux d’échantillonnage rapides, car le
temps moyen nécessaire pour résoudre le NP est généralement supérieur a la période
d’échantillonnage disponible. La littérature récente a montré comment les méthodes
NMPC approchées (telles que CaSaDi, GRAMPC et ACADO [Quirynen et al. 2015])
et les algorithmes MPC intégrant qLPV [Cisneros and Werner 2020| sont capables de
résoudre efficacement un probléme de controle aussi complexe en quelques millisecondes.

e Pour I'étude de cas considérée, les performances de suivi de référence obtenues avec la
méthode MPC min-max d’intégration qLPV proposée sont équivalentes & ces méthodes
MPC non linéaires modernes rapides [Cisneros and Werner 2020], telles qu’évaluées par
les indices RMS et IAE. L’opérabilité numérique de la méthode proposée est similaire
aux travaux précédents [Quirynen et al. 2015; Cisneros and Werner 2020]. Je constate
que la complexité du probléme croit avec 'ordre du systéme.
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e La méthode proposée résout le probléme de programmation convexe de maximisation par
rapport a l’erreur concernant l’estimation des paramétres d’ordonnancement le long de
I’horizon de prédiction. J’insiste sur le fait que n’importe quel type d’algorithme avec des
erreurs d’estimation bornées pourrait étre utilisé & la place du développement de Taylor
proposé dans ce chapitre. Une option alternative et élégante pourrait étre 1'utilisation
du mécanisme itéré [Cisneros and Werner 2020]|, qui utilise la séquence d’états calculée
avec la minimisation QP pour calculer 1’évolution de p le long de I'horizon.

e La méthode proposée est comparée a deux algorithmes keystone min-max LPV MPC de
la littérature [Cao and Lin 2005; Li and Xi 2010], qui considérent respectivement que p
peut varier arbitrairement a I'intérieur de P et considérent des taux bornés de variations
pour p. Comme les variations des parameétres d’ordonnancement et de son ensemble
convexe sont assez importantes pour 'application considérée, les résultats obtenus avec
ces méthodes sont assez médiocres. L’incertitude fixée avec la méthode proposée est
beaucoup plus faible (d'un facteur centiéme). De plus, au fil du temps, la méthode
d’extrapolation obtient de meilleures estimations de p, ce qui fait également converger
vers zéro la sortie d’incertitude du probléme de maximisation, a mesure que les trajec-
toires d’état convergent.

e Enfin, la méthode a assuré la stabilité entrée-état pour un plus grand domaine régional
Xjss. Cette propriété est assurée ainsi que la faisabilité récursive a travers un cadre de
vérification de la dissipativité, résolu via des LMI. Je note que 'avantage de ce cadre
est qu’il ne nécessite pas I'utilisation d’ingrédients terminaux (contraintes et cotits) sur
le probléme d’optimisation, ce qui peut étre assez difficile & calculer en ligne pour les
systémes LPV. Par conséquent, la fonction de cotit MPC est quadratique sur z et u (et
assez simple), ce qui permet son fonctionnement rapide.

Remarques finales

Afin de conclure ce résumé, je présente un large apercu des développements et applications
congus tout au long de cette thése. Je souligne que tous les travaux dérivés le long de la
croissance de cette thése, ont été réalisés sous une rigueur scientifique stricte, avec un dévoue-
ment exclusif. En termes de pertinence sociale de cette thése, j’ai fait un effort pour mener
et aligner mes recherches en mettant l'accent sur la facilitation de deux problémes sociaux
concrets : (i) la production d’énergie renouvelable abordable et (ii) Uefficacité technologies de
la mobhilité urbaine. En exploitant I’application d’algorithmes de controle prédictif de modéles
pour ces deux classes de systémes complexes (décrits au moyen de modéles LPV), j’ai cherché
a contribuer, & un certain niveau, en favorisant des possibilités pratiques en boussole avec
I’Agenda 2030 et la dotation du Développement Durable Objectifs 7 et 11, visant & atténuer
la calamité socio-environnementale en cours découlant des changements climatiques. A ce
sujet, je présente deux derniers messages :

(i) En ce qui concerne I'optimisation et la commande des systémes de production d’énergie
renouvelable, j’ai étudié comment la commande prédictive des modéles peut servir a
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maximiser 'efficacité de la production d’énergie dans différents systémes (en partic-
ulier les micro-réseaux et les centrales solaires). Dans le contexte brésilien, j’ai étudié
comment les industries nationales de la canne & sucre peuvent étre explorées en tant
que paradigme pratique (et économiquement plausible) pour tirer parti de la production
d’énergie renouvelable dans le pays, si elles sont couplées a des panneaux photovoltaiques
et des éoliennes et coordonnées & I'aide de MPC. J’ai également évalué comment MPC
peut étre utilisé comme approche principale pour améliorer les performances des sys-
témes de capteurs solaires, sous des contraintes de temps réel. En conséquence, j’ai
démontré comment cette méthode de contréle peut conduire & un bénéfice maximisé
de la disponibilité solaire. Ces développements ont ainsi abordé ’ODD 7, qui traite de
la production d’énergie propre et accessible & tous. Principaux ouvrages sur ce sujet
: [Morato et al. 2020e; Morato et al. 2020b; Pipino et al. 2020b; Bernardi et al. 2021;
Morato et al. 2021c|.

(ii) En ce qui concerne la mobilité urbaine automatisée, je rappelle que ’ODD 11 mentionne
explicitement a quel point les villes et les communautés durables nécessitent des solutions
permettant un controle efficace du trafic automobile, telles que des véhicules connectés
qui peuvent agir activement dans la prévention des accidents. En conséquence, en ce qui
concerne ce sujet, j’ai développé de nouveaux algorithmes MPC qui améliorent le confort
des passagers dans les véhicules modernes. En exploitant la formulation LPV, ces algo-
rithmes sont capables de fonctionner de maniére embarquée, dans des microcontroéleurs
embarqués, fonctionnant a 1’échelle de quelques millisecondes. Par ailleurs, j’ai égale-
ment proposé des stratégies de controle prédictif pour la conduite assistée de véhicules
semi-autonomes, avec des interventions intelligentes évitant les pertes de stabilité et les
accidents. La question de la conduite automatisée dans des situations défectueuses a
également été étudiée. Principaux ouvrages sur ce sujet :[Morato, Normey-Rico, and
Sename 2019; Morato, Normey-Rico, and Sename 2020c; Morato, Normey-Rico, and
Sename 2021c; Medero et al. 2022; Morato et al. 2022a].

Dans cette thése, j’ai abordé le probléme de la commande des systémes linéaires a
paramétres variants (et non linéaires aussi, sous des structures a parameétres variables quasi-
linéaires). Pour cela, j’ai développé plusieurs schémas de controle prédictif de modéles, sous
trois types d’exploitation différents : en utilisant I’ordonnancement de gain et la synthése
robuste. Chacune de ces catégories de controleurs prédictifs a été synthétisée et proposée avec
des outils d’analyse théorique correspondants qui permettent une stabilité en boucle fermée
et une faisabilité récursive de I’optimisation du controleur.

En ce qui concerne les premiéres contributions de cette thése, je me suis concentré sur de
nouveaux résultats utilisant ordonnancement des gains (en termes d’analyses et de procé-
dures de conception). C’est-a-dire des procédures pour lesquelles le controleur formulé vari-
ait en fonction du gain instantané (échantillonné) du systéme LPV contrélé. Dans ces
méthodes, synthétiquement, la variable d’ordonnancement p(k) est utilisée pour coordonner
I'optimisation (et donc la politique de controle prédictif dérivée) a chaque échantillon k. Les
valeurs futures des variables d’ordonnancement le long de ’horizon de prédiction, c’est-a-dire
plk+37),Vj €N [1,N,], sont généralement négligées (considérées comme figées) ou remplacé par
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une estimation précise p(k + jlk). Au moyen des algorithmes développés, j’ai pu démontrer
comment 'ordonnancement du gain peut étre trés utile dans la pratique, et comment le MPC
non linéaire peut étre efficacement résolu au moyen d’intégrations qLPV appropriées. Le prin-
cipal point fort est qu’un controéle prédictif non linéaire correspondant peut étre rendu via la
solution de, généralement, un seul QP par échantillon, ce qui est beaucoup plus rapide que
la résolution d’un programme non linéaire. Notez que les QP ont une complexité qui croit
linéairement, en général, en ce qui concerne n,, n, et N, (nombre d’entrées de commande,
états du systéme et taille de I’horizon de prédiction), tandis que la croissance du paramétre
non linéaire est exponentielle.

Comme deuxiéme branche d’avancées, j’ai formulé des méthodes MPC robustes. Celles-ci,
contrairement aux formulations d’ordonnancement du gain, considéraient non seulement les
variables d’ordonnancement futures, mais aussi ’erreur d’estimation a leur égard, c’est-a-dire
Ep(k +jlk) = (p(k +j) — p(k + jlk)). Ainsi, dans le cadre robuste, les algorithmes proposés
incluaient des outils supplémentaires pour gérer la propagation de l'incertitude correspondante
(programme de maximisation et réduction des contraintes a I’aide de zonotopes). En utilisant
ces fonctionnalités, j’ai pu démontrer des certificats de performance garantis et une satisfaction
des contraintes, malgré la propagation des incertitudes dues aux variables d’ordonnancement
inconnues. Je souligne que la question du suivi des signaux de référence (éventuellement
inaccessibles) a également été résolue de maniére robuste.

Message principal

En général, je soutiens que cette thése sert et contribue au contexte de la conception MPC non
linéaire en soutenant le message suivant : I’'approche consistant & utiliser des modéles LPV
(et des intégrations qLPV) afin de modéliser des dynamiques non linéaires et variant dans le
temps peut servir de support. pour concevoir des algorithmes NMPC capables de fonctionner
en temps réel. En exploitant les caractéristiques de linéarité le long des canaux d’entrée-sortie
de ces descriptions LPV, j’ai pu montrer, avec de multiples exemples, comparaisons et options
de synthése, comment ’algorithme MPC résultant est trés similaire & celui d’une usine LTI.
De plus, les certificats de stabilité et de robustesse pour le controleur résultant sont également
trés similaires a ceux du cas LTI, qui sont standard de nos jours. J’ai insisté sur trois points
principaux :

1. Lorsque les trajectoires d’ordonnancement sont supposées constantes (figées),
I’algorithme LPV MPC a gain programmé résultant est sous-optimal. Néanmoins, d'un
point de vue pratique et empirique, ces controleurs sont en grande partie comparables a
ceux du NMPC. Méme si la précision de la prédiction & gain programmé se détériore a
mesure que la taille de I'horizon augmente, le mécanisme de fenétres glissantes du MPC
atténue intrinséquement ce probléme. En pratique, I’approche est pertinente, facile a
mettre en ceuvre, et permet de résoudre la problématique des applications temps réel.
Dans de nombreux cas, ce type d’approche est plus que suffisant.

2. Si lon cherche a utiliser des mécanismes d’estimation pour les trajectoires
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d’ordonnancement futures (comme l’approche basée sur Taylor proposée ici, ou le schéma
itératif de [Cisneros and Werner 2020]), les performances sont améliorées. Comme ces
mécanismes assurent la convergence des trajectoires d’ordonnancement estimées, la
boucle fermée résultante est équivalente a celle obtenue avec un algorithme NMPC
(aprés quelques pas en temps discret). C’est une avancée majeure puisque 'optimisation
est ainsi basée sur un modéle de prédiction exact, c’est-a-dire qu’aucune approximation
n’est nécessaire ! De plus, par rapport aux techniques basées sur la linéarisation, la pré-
cision de la prédiction est bien meilleure (alors que la convergence n’a pas été établie),
puisque les erreurs apparaissent sur les paramétres d’ordonnancement du modéle plutét
que sur les trajectoires d’état complétes, comme ce qui se produit avec la pratique Lois

NMPC.

Dans le contexte de MPC robuste, I’approche LPV est également intéressante : j’ai
évalué comment on peut choisir d’utiliser des mécanismes de resserrement des con-
traintes, compte tenu de la propagation de l'incertitude résultante (en tenant compte a
la fois de la perturbation de charge bornée et de I'erreur d’estimation des paramétres
d’ordonnancement), conduisant ainsi & des performances en boucle fermée qui ne sont
pas excessivement conservatrices (pourtant les préparations hors ligne sont difficiles a
synthétiser), ou a des approches min-max, avec des résultats plus conservateurs mais
des préparations plutot simples.

En guise de commentaire final, je souligne que de nombreux travaux scientifiques sont
issus des développements de cette thése. Ceux-ci comprennent plus de vingt articles publiés
dans des revues internationales, dix-neuf actes de conférence et quelques autres soumissions

actuellement en cours d’examen.
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Abstracts

Predictive Control Methods for Linear Parameter Varying Systems

Abstract — This thesis discusses in detail the application of Model Predictive Control
(MPC) strategies for Linear Parameter Varying (LPV) models. LPV models, just as standard
Linear Time-Invariant (LTI) ones, exhibit linear relationships along the input and output
channels, together with time-varying state transitions, which are coordinated by the so-called
scheduling parameters. Thanks to input-output linearity along suitable coordinates, the the-
oretical analysis of LPV dynamics falls within the scope of the LTI toolkit, represented by
Lyapunov storage functions, Ricatti equalities and inequalities. In addition, by the means of
differential inclusions, LPV realisations are able to describe a wide variety of nonlinear and
time-varying behaviours. Therefore, the synthesis of LPV controllers is of great scholastic
interest.

Model predictive control, in turn, is a widely recognised and established approach, both in
the academic and industrial contexts. This control paradigm is enabled by the solution of
an optimization problem at each discrete-time instant. In general, MPC schemes have been
based on LTI models, since when nonlinear dynamics are accounted for, the resulting optimi-
sation problem becomes numerically complex (NP-hard), with an exponential growth of the
numerical burden with respect to the number of states and size of the prediction horizon.
As of this, recent research has been focused on solver-based approximations in order to apply
nonlinear MPC in real-time (under the millisecond range), such as real-time iteration methods
(ACADO) or gradient and Lagrange-based frameworks (GRAMPC).

With regard to this context, this thesis focuses on the exploitation of LPV realisations in order
to develop exact (nonlinear) MPC strategies with fact computation, without the need for any
kind of optimisation approximation. Nevertheless, the main issue that arises is that, when
LPV models are used for the synthesis of predictive controllers, the optimization program
derived at each sampling instant requires the future trajectories of the scheduling parameters,
along the prediction horizon.

265
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Accordingly, one of the main contributions of this thesis is a novel strategy to estimate these
scheduling trajectories, based on a simple Taylor expansion mechanism. The proposed extrap-
olation mechanism offers convergence guarantees and bounded residuals. Thus, as a second
contribution, by benefiting from these scheduling parameter estimates, novel gain-scheduled
LPV MPC controllers are proposed. Specifically, the following elements are debated: (a) a
state-feedback algorithm for semi-active suspension systems, and (b) an output-feedback for-
mulation using input-output descriptions, with stability guarantees.

As a third contribution, robustified MPC algorithms are developed, considering the issue of
uncertainties and disturbances. Specifically, two new frameworks are debated: (a) a reference
tracking algorithm with robustness guarantees enabled through constraint tightening with
zonotopes that propagate the uncertainties along the horizon; and (b) min-max approach
with input-to-state stability assessments derived based on dissipativity arguments.

Along this work, several different case studies and realistic examples are used to demonstrate
the effectiveness of the developed predictive control schemes. The resulting LPV MPC algo-
rithms are shown to be of have great practical relevance: they allow optimal performances,
comparable to those obtained with nonlinear predictive controllers, although with low com-
putational cost, thus enabling for complex control applications in real-time.

Keywords: Model Predictive Control, Linear Parameter Varying Systems, Robust Control,
Nonlinear Control, Tracking.
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Méthodes de Commandes Prédictive pour les Systémes Linéaires a
Paramétres Variants

Résumé — Cette thése discute en détail application des stratégies de Commande Pré-
dictive basée sur Modéle (CPM) pour les procédés Linéaires a Paramétres Variables (LPV).
Modéles LPV, tel comme les modéles linéaires stationnaires (LS), ont des relations linéaires
entre les canaux d’entrées-sorties. Toutefois, ils ont des transitions d’état variantes dans le
temps, coordonnées par les paramétres de planification. Grace a la linéarité entrées-sorties,
I’analyse théorique des dynamiques LPV s’inscrit dans le cadre des outils congues originelle-
ment pour les modéles LS, représenté en grande partie par les fonctions de Lyapunov, les
égalités et les inégalités de Ricatti. En plus, & travers de 'inclusion différentielle, les réalisa-
tions LPV modéles peuvent décrire une grande variétés des comportements non linéaires et
variantes. Par conséquent, la synthése de la commande LPV est d’un grand intérét scolaire.

La commande prédictive basée sur modéle, quant a elle, représente une approche largement re-
connue et établie, tant dans le contexte académique qu’industriel. Ces lois de commande sont
pilotées a travers de la résolution d’un probléme d’optimisation, & chaque échantillon discret.
En général, les schémas CPM sont basés sur des modéles LTI, car lorsque la dynamique non
linéaire est prise en compte, le probléme d’optimisation résultant devient numériquement com-
plexe (programmes de difficulté non linéaire), avec une croissance exponentielle de la charge
numérique par rapport au nombre d’états et a la taille de horizon de prédiction. Pour cette
raison, des recherches récentes se sont concentrées sur des approximations basées sur des outils
afin d’appliquer MPC non linéaire en temps réel (sous la plage de la milliseconde), tel comme
les méthodes d’itération (ACADO) ou les cadres de gradient et de Lagrange (GRAMPC).

Dans ce contexte, cette thése se concentre sur ’exploitation des réalisations LPV afin de
développer des stratégies CPM (non linéaires) exactes, avec un faible temps de calcul, sans
avoir besoin d’aucune sorte d’approximation sur ’optimisation. Néanmoins, le principal prob-
léme qui se pose est que, lorsque des modéles LPV sont utilisés pour la synthése de régulateurs
prédictifs, le programme d’optimisation dérivé a chaque échantillonnage requiére les trajec-
toires futures des paramétres d’ordonnancement, au fil de I’horizon de prédiction.

En conséquence, I'une des principales contributions de cette thése est une nouvelle stratégie
pour estimer ces trajectoires d’ordonnancement, basée sur un simple mécanisme d’expansion
de Taylor. Le mécanisme d’extrapolation proposé offre des garanties de convergence et des
résidus bornés. Ainsi, comme deuxiéme contribution, en bénéficiant de ces estimations de
parameétres d’ordonnancement, de nouveaux algorithmes LPV MPC & gain programmé sont
proposés. Plus précisément, les éléments suivants sont débattus : (a) 'approche retour-d’états
pour les systémes de suspension semi-actifs, et (b) une formulation retour de sortie en utilisant
des descriptions d’entrée-sortie, avec des garanties de stabilité.
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Comme troisiéme contribution, des algorithmes MPC robustes sont développés, prenant en
compte la question des incertitudes et des perturbations. Plus précisément, deux nouveaux
cadres sont débattus : (a) un algorithme de suivi de référence avec des garanties de robustesse
rendues possibles grace au resserrement des contraintes avec des zonotopes qui propagent les
incertitudes le long de I’horizon ; et (b) approche min-max avec des évaluations de stabilité
entrée-état dérivées sur la base d’arguments de dissipativité.

Tout au long de ce travail, plusieurs études de cas différentes et des exemples réalistes sont util-
isés pour démontrer 'efficacité des schémas de commande développés. Ainsi, les algorithmes
LPV MPC se révélent d’une grande pertinence pratique : ils permettent des performances
optimales, comparables & celles obtenues avec des contréleurs prédictifs non linéaires, bien
qu’avec un faible cotit de calcul, ce qui permet des applications embarquées des commandes
complexes, tournant en temps réel.

Mots clés : Commande Prédictive basée sur Modele, Systémes Linéaires a
Paramétres Variants, Commande Robuste, Commande Non linéaire, Suivi de Consigne.
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Métodos de Controle Preditivo para Sistemas Lineares a Parametros
Variantes

Resumo — Nesta tese, discute-se, em mintcia, a aplicagao de estratégias de Controle Pred-
itivo baseado em Modelo (CPM) para processos representados através de modelos Lineares
a ParAmetros Variantes (LPV). Modelos LPV, tais como modelos lineares e invariantes no
tempo (LIT), apresentam relagoes lineares entre os canais de entrada e de saida. Todavia,
possuem transicoes de estados nao lineares, coordenadas pelos pardmetros variantes. Gragas
a linearidade entradas-saidas, a anélise teoérica de dindmicas LPV recai sobre o arcabouco
ferramental LIT, representado em grande parte por fungoes de armazenamento de Lyapunov,
igualdades e desigualdades de Ricatti. Ademais, através da inclusdo diferencial, realizagdes
LPV sao capazes de descrever uma vasta gama de comportamentos nao-lineares e variantes
no tempo. Portanto, a sintese de controladores LPV é de sumo interesse escoléstico.

Controle preditivo, por sua vez, é uma abordagem amplamente reconhecida e estabelecida,
tanto no contexto académico e industrial. Estas leis de controle sao implementadas através
da solugao de um problema de otimizacao a cada amostra discreta. Em geral, as principais
estratégias MPC tém sido baseados em modelos LTI, pois quando a dindmica considerada é
nao linear, o problema de otimizagao resultante torna-se numericamente complexo (programas
de dificuldade n ao linear), com um crescimento exponencial da carga numérica em relagao
ao nimero de estados e tamanho do horizonte de previsao. Por esta razao, pesquisas recentes
tém se concentrado em aproximagoes baseadas em solucionadores que permitem a aplicacao
de de leis MPC nao lineares em tempo real (dentro da faixa dos milissegundos), através de
aproximagoes do problema de otimizagao, tais como métodos de iteracao (ACADO) ou basea-
dos em gradiente e argumentos de Lagrange (GRAMPC).

Com relacao a este contexto, este tese tem como foco a exploracao das diversas representagoes
LPV para o desenvolvimento de algoritmos MPC (nao lineares) exatos, com computo rapido,
sem que haja a necessidade de qualquer tipo de aproximacao da otimizagao. Entretanto, o
principal problema que surge é que, quando modelos LPV sao utilizados para a sintese de
controladores preditivos, o programa de otimizacao resultante a cada instante requer as tra-
jetorias futuras dos parametros de agendamento, ao longo do horizonte de predicao

Portanto, uma das principais contribuicoes desta tese é uma nova estratégia para estimar
tais trajetorias de agendamento, com base em um mecanismo simples de expansao de Taylor.
O mecanismo de extrapolagao proposto oferece garantias de convergéncia e termos residuais
com norma limitada. Ademais, como uma segunda contribuicdo, beneficiando-se dessas esti-
mativas dos pardmetros de agendamento, sdo propostos novos controladores LPV MPC com
ganho escalonado. Especificamente, os seguintes elementos sao debatidos: (a) um algoritmo
de realimentacao de estado para sistemas de suspensao semi-ativos, e (b) uma formulacao de
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realimentacao de saida usando representacoes entrada-saida, com garantias de estabilidade.

Como terceira contribuigao, algoritmos de MPC robustos sdo desenvolvidos, considerando a
questao das incertezas e de perturbacoes. Especificamente, dois novos arcabougos tedricos
sao discutidos: (a) um algoritmo de rastreamento de referéncia com garantias de robustez
possibilitadas pelo aperto de restrigoes com base em zonotopos que propagam as incertezas ao
longo do horizonte; e (b) uma abordagem min-max com avalia¢oes de estabilidade de entrada
para estado derivadas com base em argumentos de dissipatividade.

Ao longo deste trabalho, diversos estudos de caso e exemplos realistas sdo usados para demon-
strar a eficicia das estratégias de controle desenvolvidas. Os algoritmos LPV MPC resultantes
mostram-se de grande relevancia pratica: estes permitem desempenhos 6timos, comparéaveis
aos obtidos com controladores preditivos nao lineares, porém com baixo custo computacional,
possibilita, portanto, aplicagdes complexas embarcadas, operando em tempo-real.

Palavras-chave: Controle Preditivo. Sistemas Lineares a Parametros Vari-
antes. Controle Robusto. Controle Nao-Linear. Rastreamento de referéncia.
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Métodos de Control Preditivo para Sistemas Lineales a Parametros
Variantes

Resumen — En esta tesis, se analiza en detalle la aplicacion de estrategias de Control
Predictivo basado em Modelo (CPM) a procesos representados a través de modelos Lineales
con Parametros Variantes (LPV). Los modelos LPV, como los modelos Lineales e Invariantes
en el Tiempo (LIT), muestran relaciones lineales entre los canales de entrada y salida. Sin
embargo, tienen transiciones de estado no lineales, coordinadas por los parametros variantes.
Gracias a la linealidad de entrada-salida, el analisis tebrico de la dindmica LPV cae en el
marco de herramientas LIT, representado en gran parte por las funciones de Lyapunov y
las igualdades y desigualdades de Ricatti. Ademas, a través de la inclusion diferencial, las
realizaciones de LPV pueden describir una amplia gama de comportamientos no lineales y
variables en el tiempo. Por lo tanto, la sintesis de los controladores LPV es de gran interés
escolastico.

El control predictivo basado en modelo, a su vez, es un enfoque ampliamente reconocido y
establecido, tanto en el contexto académico como industrial. Este paradigma de control se
implementa a través de la resoluciéon de un problema de optimizacion a cada muestra discreta.
En general, las principales estrategias de CPM se han basado en modelos LTI, ya que cuando
se tiene en cuenta la dindAmica no lineal, el problema de optimizacién resultante se convierte en
numéricamente complejo (programas de dificultad no lineal), con un crecimiento exponencial
de la carga numérica con respecto al ntimero de estados y el tamano de la horizonte de
prediccion. A partir de esto, la investigacion reciente se ha centrado en soluciones basadas
en aproximaciones del programa de optimizacion para aplicar CPM no lineal en tiempo real
(en el rango de milisegundos), como métodos de iteracion (ACADO) o gradientes y marcos
basados en Lagrange (GRAMPC).

En este contexto, esta tesis se centra en la explotacion de realizaciones LPV para desarrollar
estrategias de CPM (no lineales) exactas con computado rapido y sin necesidad de ningun
tipo de aproximacién de optimizaciéon. Sin embargo, el problema principal que surge es que,
cuando se utilizan modelos LPV para la sintesis de controladores predictivos, el programa de
optimizacién derivado en cada muestreo requiere las trayectorias futuras de los parametros
variantes, a lo largo del horizonte de prediccién.

En consecuencia, una de las principales contribuciones de esta tesis es una estrategia nueva
para estimar estas trayectorias de los pardmetros variantes, basada en un mecanismo simple
de expansion de Taylor. El mecanismo de extrapolaciéon propuesto ofrece garantias de
convergencia y errores acotados. Por lo tanto, como segunda contribucién, al beneficiarse
de estas estimaciones de los pardmetros variantes, se proponen nuevos controladores LPV
MPC con ganancia programada. Especificamente, se debaten los siguientes elementos: (a) un
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algoritmo de retroalimentacion de estado para sistemas de suspension semiactivos, y (b) una
formulacion de retroalimentacién de salida utilizando descripciones de entrada-salida, con
garantias de estabilidad.

Ademas, como tercera contribuciéon de esta tesis, se desarrollan algoritmos MPC robustos,
considerando el tema de las incertidumbres y de las perturbaciones. Especificamente, se
debaten dos nuevos marcos: (a) un algoritmo de seguimiento de referencia con garantias
de robustez habilitadas mediante el ajuste de restricciones con zonotopos que propagan
las incertidumbres a lo largo del horizonte; y (b) enfoque min-max con evaluaciones de
estabilidad de entrada a estado derivadas en base a argumentos de disipatividad.

En esta obra, a lo largo de su desarrollo, se utilizan varios estudios de casos y ejemplos
realistas para demostrar la eficacia de las estrategias de control estudiadas. Los algoritmos
CPM LPV resultantes muestran una gran relevancia practica: permiten un rendimiento
6ptimo, comparable al obtenido con controladores predictivos no lineales, pero con un
bajo costo computacional, lo que permite aplicaciones complejas embarcadas, operando en
tiempo-real.

Palabras Clave: Control predictivo. Sistemas lineales con parametros vari-
antes. Control robusto. Control No lineal. Seguimiento de referencia.
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