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Resumo

Matéria baridnica, quando préxima da densidade de saturacio, assume formatos inomogéneos
complexos coletivamente chamados de fase pasta. Em temperaturas finitas, as diferentes formas
geométricas que compdem a pasta devem coexistir, com potenciais consequéncias na condutivi-
dade das crostas de estrelas de néutrons e no transporte de neutrinos em supernovas. Utilizando
um formalismo estatistico para considerar os multiplos componentes, nds calculamos a com-
posicao de matéria na fase pasta permitindo flutuagdes nas geometrias e densidades dos niicleos.
N6s mostramos que diferentes geometrias podem de fato coexistir em uma grande por¢ao da fase
pasta, mesmo em temperaturas da ordem da temperatura de cristalizacdo da crosta de estrelas de
néutrons, e calculamos a variancia do nimero efetivo de prétons a fim de quantificar impurezas
relacionadas a carga e geometria. Em seguida, fornecemos expressoes analiticas para as taxas
de colisdo em espalhamentos elétron—pasta eldsticos e os usamos para calcular a condutividade
elétrica de matéria magnetizada. Para estes cdlculos, nés usamos um funcional de energia
realista a partir de um modelo de campo médio relativistico, e uma tensao de superficie com de-

pendéncia em temperatura e isospin, ajustada para reproduzir a aproximagao de Thomas-Fermi.

Palavras-chaves: fisica-nuclear. astrofisica. fase-pasta. transporte.



Resumo expandido

Estrelas de néutrons sdo objetos extremamente compactos, contendo fases da matéria hddronica
que nao podem ser encontradas em condicdes terestres. Portanto, provéem condicdes para
o estudo da matéria nuclear em condi¢Oes extremas. Na crosta destas estrelas, a densidade
pode chegar proxima a densidade de saturacdo da matéria nuclear, fazendo com que os ions
figuem muito préximos, e a energia de Coulomb e a energia nuclear sejam da mesma magni-
tude. Esta competi¢ao de forcas leva a deformacao dos fons, que assumem formas geométricas
anisotropicas que sao coletivamente chamados de fase pasta. O estudo da pasta € essencial para
a descrigdo precisa de propriedades macroscépicas das estrelas de néutrons, como a evolugdo
térmica e magnética, a emissao de ondas gravitacionais e a frequéncia de modos de vibragcao
radial, por exemplo. A opacidade de neutrinos em proto-estrelas de n€utrons também pode ser
modificada pela pasta.

Atualmente, € impossivel descrever estados hadronicos pela teoria fundamental da for¢a nuclear,
a cromodinamica quantica, e por isso diversos modelos efetivos sdo utilizados. As propriedades
da fase pasta podem ser calculada em modelos como a dindmica molecular, em que potenciais
entre nicleons sdo utilizados, e geometrias complexas sdo obtidas, ou também em modelos
como teoria de campos efetiva, que € um modelo relativistico onde os hadrons sdo descritos
por espinores de Dirac e geometrias simplificadas sdo assumidas a priori. Modelos do primeiro
tipo s@o robustos, porém requerem simulacdes extremamente custosas. Eles indicam que as
diferentes geometrias que compdem a pasta podem coexistir em uma condi¢ao termodinadmica
fixa, com potenciais consequéncias na condutividade das crostas de estrelas de néutrons € no
transporte de neutrinos em supernovas. O segundo tipo de modelo descreve uma ampla gama
de fendmenos nucleares simultaneamente, porém permite o cilculo de uma tnica geometria em
uma dada condi¢do termodinamica fixa.

O objetivo deste trabalho € estender cdlculos da pasta com modelos relativisticos efetivos. Em
primeiro lugar, a meta € calcular uma distribui¢do de estruturas da fase pasta, com diferentes
nimeros de préton e geometria. Com isto, é possivel estimar o pardmetro de impureza da
crosta interna da estrela, que € um possivel mecanismo para limitar o periodo de pulsares de
raio—X isolados. Em seguida, o objetivo é prover expressoes analiticas para a frequéncia de
colisOes eldsticas entre elétrons e pasta. Tais frequéncias sdo elementos essenciais no célculo
de propriedades de transporte de carga e calor, como a condutividade elétrica e térmica. O

espalhamento entre elétrons e pasta € o mecanismo dominante na condutividade, e por isto € o



elemento de estudo deste trabalho. Tais propriedades sdo amplamente estudadas na literatura
para a parte mais exterior da crosta, onde os nucleos sdo esféricos, porém no caso da pasta tais
calculos sdo inexistentes.

Com este fim, a metodologia utilizada consiste, na primeira parte, em um formalismo estatistico
para considerar os multiplos componentes da fase pasta. A composicao de matéria na pasta é
calculada permitindo flutuagdes na geometria e nas densidades dos prétons e néutrons presentes
nos nicleos. Um termo de rearranjo € adicionado a energia livre da pasta, € demonstramos
que este € um elemento essencial para manter a equivaléncia entre o formalismo estatistico e
o de nucleo tnico, feito pela minimizacdo da energia livre. Na segunda parte, para calcular
as propriedades de transporte, nds generalizamos a expansao da taxa de transi¢do entre os es-
tados iniciais e finais de elétrons que participam do espalhamento elétron-pasta em esféricos
harmodnicos para o caso em que o nicleo ndo € esférico. N6s mostramos que, neste caso, ha
um total de nove frequéncias de colisdo para uma geometria arbitrdria, mas estas sao reduzidas
a duas quando as simetrias da fase pasta sdo aplicadas, denominadas frequéncias de colisdo
axial e perpendicular. Para obter resultados numéricos quantitativos as propriedades da pasta
sdo cdlculadas utilizando um funcional de energia realista advindo de um modelo de campo
médio relativistico. Este modelo € utilizado em todo o trabalho. A tensdo de superficie utilizada
possui dependéncia em temperatura e isospin, e foi ajustada para reproduzir a aproximacao de
Thomas-Fermi do modelo relativistico.

Os resultados obtidos mostram que, em modelos relativisticos, as estruturas da pasta com
diferentes geometria e niimero de préton coexistem em grande quantidade em uma dada profun-
didade da estrela. Os valores da impureza sdo grandes, maiores que a unidade, e estdo de acordo
com valores propostos de maneira ad hoc na literatura com o intuito de descrever fendmenos
macroscopicos. Estes resultados sdo vdlidos mesmo em temperaturas da ordem da temperatura
de cristalizacao da crosta da estrelas de néutrons, 7' = 0.1 MeV. Em seguida, nés mostramos que
as taxas de colisdo axial e perpendicular em espalhamentos elétron—pasta eldsticos se tornam
cada vez mais diferentes conforme o tamanho da pasta aumenta, porém em altas temperaturas,
se as correlagdes na pasta sdo omitidas, esta diferenca ndo € consideravelmente grande devido
ao tamanho limitado da pasta. A condutividade elétrica € cdlculada, e mostramos que a fase
pasta reduz a condutividade na crosta da estrela também de acordo com discussdes qualitati-
vas presentes na literatura. Devido a pequena anisotropia da pasta, na presenga de um campo

magnético forte as condutividades perpendicular e paralela ao campo magnético sao diferentes



somentes para campos maiores que 10'8 G.

Palavras-chaves: fisica-nuclear. astrofisica. fase-pasta. transporte.



Abstract

Baryonic matter close to the saturation density presents complex inhomogeneous phases col-
lectively known under the name of pasta phase. At finite temperatures, the different geometric
structures that make up the pasta are expected to coexist, with potential consequences on the
neutron star crust conductivity and neutrino transport in supernova matter. In the framework
of a statistical multi-component approach, we calculate the composition of matter in the pasta
phase by allowing fluctuations in the geometry and densities of nuclei. We show that different
geometries can indeed coexist in a large fraction of the pasta phase, down to temperatures of
the order of the crystallization temperature of the neutron star crust, and calculate effective
proton number variances in order to quantify charge and geometric impurities. Next, we provide
analytic expressions for the anisotropic collision rates of the elastic electron—pasta scattering
and use them to calculate the electric conductivity of magnetized matter. For these calculations
we use a realistic energy functional from relativistic mean field theory and a surface tension

with temperature and isospin dependence fitted from Thomas-Fermi calculations.

Key-words: neutron-star. astrophysics. pasta-phase. transport.
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1 Introduction

Neutron stars (NS) are compact objects with masses up to ~ 2.5 Mg and a radius around
10 km that are born either out of the supernovae explosions generated by stars from the zero age
main sequence with masses (roughly) between 8 and 25 Mg, or from the merging of two existing
neutron stars. Due to the conservation of angular momentum and magnetic flux, they rotate
quickly (1.4ms < P < 30s), and have very strong magnetic fields (10'°G < Byt < 10 G) [[1].
The name neutron star stems from the high neutron content due to electron captures (e + p —
n +v,), but their composition is much richer. The baryon density inside the star ranges from a
fraction to several times saturation density (psa = 0.16 fm™2), so the different NS layers contain
various phases of cold S-equilibrated nuclear matter. We refer to a NS as a cold compact object
because, even though it is hot with respect to earthly standards — they are born with temperatures
~ 10K and cool down to ~ 10° K (~ 0.1 MeV) — the Fermi energy is much higher than the

thermal one due to the high occupation number of Fermion states (i.e. high densities) [2}3]].

The core, for example, has densities ranging from ~ pg/2 up to somewhere in the
range 4 to 10 pg,, depending on the NS mass. The core begins when nuclear matter dissolves
into homogeneous uniform matter: the outer part is composed of neutrons, protons, electrons,
and muons, but the inner core (X 2pg) composition is highly uncertain. Many different
proposals exist in the literature, such as the appearance of excited baryon states (hyperons and
As), condensation of pions and/or kaons, and the occurrence of a deconfinement phase transition
to quark matter [4-12]. Being a highly magnetized and cold system, particles in the NS are
also prone to pairing, forming superconducting and superfluid states [[13-15[]. The microscopic
composition of the core is the main component in determining the maximum mass a NS can
have, and this constraint is important to determine how stiff the equation of state (EOS) of

nuclear matter i1

The crust is also separated into outer and inner parts. The composition of the outer part
is fairly simple, consisting of neutron-rich heavy ions with baryon numbers up to ~ 120 [16,/17]]
and a strongly degenerate electron gas. The inner crust begins at the neutron drip line 7| so a

neutron gas is additionally present, which can be in a superfluid state by undergoing Cooper

IThe equation of state refers to the relation between pressure and energy density of cold nuclear matter in
B—equilibrium.
2The point where some neutrons start to become unbound from nuclei: pgrip = 4.3 X 10! gcm -3 2 0.00028

fm 3.
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pairing [18-20], and the ions become extremely deformed, giving rise to the nuclear pasta

phase [21H23]].

The crust is essential in the determination of the radius of the neutron star, e.g. in the
analysis of canonical 1.4 Mg NS. Thus a good knowledge of its composition, along with simul-
taneous measurements of mass and radius, such as those currently being provided by NICER,
will result in important constraints on the EOS [24-27]. Additionally, the crust properties are
also important in determining the dynamic properties of the star, such as the thermo-magnetic
evolution [28-33]], the continuous emission of gravitational waves due to “mountains’ [34-37]],
quasi-periodic oscillations [38], quasi-persistent sources of soft-y ray transients and giant flares
due to the relaxation of the crust after heat deposition and neutrino emissivity in a proto-neutron
star (PNS) [39-43]]. Additionally, the superfluid neutrons in the crust are related to pulsar

glitches, a sudden change in the rotation period of stable pulsars [[19}20,44].

These macroscopic features of the NS crust are controlled by the microscopic properties:
conductivities, viscosity, breaking strain, lattice structure, defects, impurities, etc. [45[]. Such
transport properties are determined by the scattering of electrons by other electrons, ionic
impurities, and phonons in the crystal lattice. Electron-ion scattering dominates over other
mechanisms, and at the lowest densities, it has been extensively studied [46-52]. But in the
inner crust at temperatures 7 < 107 K, thermal conductivity due to degenerate electron-electron
Coulomb scattering becomes competitive with the electron conductivity due to the scattering
of electrons by impurity ions [53|] and dominates over the contribution due to electron-phonon
scattering [54]. In the innermost part of the crust, where the anisotropic pasta appears, the

situation is much more complicated.

The existence of nuclear pasta was proposed in the early 1980s by Ranvehall, Pethick,
and Wilson [21]] and independently by Hashimoto, Seki, and Yamada [22]. The shapes of nuclei
proposed in these articles were assumed a priori as cylindrical (rod and tubes) or planar (slab).
Bubble shapes could also be formed. These specific shapes were picked due to their symmetries,
which allow an analytic calculation of the associated Coulomb and surface energy. The reason
for their appearance is that the small lattice spacing in the inner crust makes the Coulomb energy
of the ions competitive with its nuclear surface energy, which is otherwise dominant. This
competition frustrates the system and allows the pasta to appear. The name pasta phase was

coined due to their resemblance with pasta meals: gnocchi (droplet), spaghetti (rod), lasagna
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(slabs), bucatini (tubes), and swiss cheese (bubble). These structures appear in this respective
order as density increases and the latter two are also known as “inverse” pasta: the dense nuclei
form a quasi-continuous medium with neutron-filled holes [53,/55]. The difficulties associated
with pasta are that they are anisotropic and form an amorphous system, so the determination of
its transport properties is a highly non-trivial problem. It has been argued that their amorphous
nature is related to the maximum period of 12 s for isolated X-ray pulsars, since the high impurity
would raise the resistivity, making the magnetic field have a steep decay after a certain age, thus

limiting the NS spin period [56,[57]].

The calculation of the pasta properties can only be performed with a reliable nuclear
model at hand. Since the 1950’s many nuclear relativistic and non-relativistic models have
been proposed to describe nuclear phenomena, since the fundamental theory of the strong force,
quantum chromodynamics, can be applied only in very specific situations: high energy scattering
and high temperature and low chemical potential via lattice simulations [58,)59]. The earliest
calculations regarding the pasta applied the compressible liquid drop (CLD) formalism [21]],
which assumes constant particle densities (or particle number) to the ions and idealized shapes
for the pasta, and then the equilibrium is found via minimization of the free energy. This same
approach has been used within relativistic mean field (RMF) models, with the simple difference
that the nuclear energy functional comes from a relativistic theory. The RMF is an approximation
for effective relativistic theories of nuclear interactions where the meson fields responsible for
the interaction are assumed to be static and isotropic. More robust models have also been used
to study the pasta, such as the Thomas-Fermi approximations for relativistic models [60-62],
where meson fields are no longer isotropic as in the RMF; molecular dynamics (MD) [42,63.64],
where interactions are described by short (long) range two-body potentials; and three-dimension
Skyrme-Hartree-Fock (3DHF) [[65H68]], where the ground state is approximated by a Slatter

determinant and the nuclear force is described by one-body potentials (Skyrme forces).

Relativistic models are interesting due to the freedom in the determination of their cou-
pling constants, which allow the description of nuclear matter bulk parameters, and astrophysical
phenomena. Additionally, the freedom in adding covariant interactions to the Lagrangian permits
one to understand the correlations between bulk and astrophysical measurements by changing
single bulk parameters. For example, the well-known correlation between the symmetry energy
and its slope with the point of the crust—core transition and the NS radius [[69-76]. However,

the simplicity of the RMF does not allow for robust calculations of the pasta, and we are obliged
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to assume the idealized shapes aforementioned and work with a sharp pasta-gas interface, as in
the CLD. In contrast, MD has only four free parameters that are fitted to describe the saturation
density and binding energies of symmetric matter, neutron matter, and some selected finite nu-
clei, and 3DHF has 10 free parameters that are fitted with focus either on ground states, fission
barriers, and surface energies or in neutron-rich matter, with astrophysical applications [77,78].
But, since they allow the simulation of single particle interactions, it is possible to follow a
system of nucleons, starting from an out-of-equilibrium state, evolving into an equilibrium one,

and forming pasta.

These simulations are done without the assumption of specific shapes, and it has been
shown by both MD and 3DHF that more exotic shapes of pasta can be formed, such as waffle-like,
gyroid, sponge-like and “parking-garage” [28),79-H83]]. CLD calculations have also corroborated
that the gyroid phase can appear as a metastable state [84]]. Moreover, these models have shown
the inner crust is a very impure system [28,29,85] and MD, in particular, has been used to
estimate the transport properties of the pasta [344/55,86.,87]. One drawback of MD is that high
temperatures and proton fractions must be used, which are thermodynamic conditions better
suited for a proto-neutron star, where the presence of the pasta is still a topic of discussion due
to the very high temperatures present [|88]]. Additionally, these simulations require a very large

computational power, and the study of a single thermodynamic condition is already very costly.

Conversely, the RMF is not costly numeric, it allows the calculation of the EOS and

pasta properties in a couple of minutes. The goal of this thesis is to, within an RMF model:

1 give a preliminar calculation of the pasta impurity parameter Qimyp;
2 provide the analytical expressions for the pasta collision rates and use them to calculate

the pasta conduction transport properties.

For the first goal, we must acknowledge that, in the RMF, the pasta phase is commonly calculated
in the one-component plasma approximation (OCP), which assumes the presence of a single
ion/pasta structure at a fixed thermodynamic condition [88-97]. The ions in the crust start as
a liquid in the proto-neutron star, and they turn into a solid when the ion melting temperature
T,, is achieved. The energy difference between ions of different proton numbers and geometries
is much smaller than the thermal energy in a NS, so we should expect that a multi-component
plasma (MCP) is formed [3,57,98-104], as already ratified by MD calculations of the impurity.

In Ref. [98]] a statistical approach was developed in order to account for the different ions that can
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coexist at finite temperatures. This MCP formalism is valid for an arbitrary EOS and provides
a framework for calculating cluster abundances. It improves on older statistical approaches
by accounting for interactions and in-medium effects [105], and it has been applied to liquid
drop [99,(101,(106] and relativistic models [107]. Furthermore, it recovers the OCP in the
zero temperature limit, where a crystalline structure is in fact expected. In Refs. [99,/101] the
charge-impurity was calculated in the crust, but only for spherical clusters, while Ref. [107]]
presents a calculation of pasta distributions only for symmetric matter. However, the calculation
of [107]does not minimize the full energy density, making their results inconsistent with the

OCP.

The different pasta structures in the system certainly modify the transport properties, and
thus the magneto-thermal evolution of the catalyzed neutron star, since they break long-range
order. This was our starting motivation for the second goal. Nevertheless, we have realized
that no formalism had been fully developed in the literature to calculate the pasta transport
properties with a general nuclear model. Indeed, transport calculations considering spherical
nuclei have been performed with the relaxation time approximation since the 1970s [46-43],
but this cannot be straightforwardly applied to the pasta, as it is founded on the assumption
of isotropic scattering. Therefore, based on the proposition of Yakovlev in [33] that the pasta
conduction is described by two collision rates, contrary to the unique one in isotropic scattering,
we show from simple assumptions that electron-pasta scattering is, in indeed, described by
Yakovlev proposal and we provide analytical equations for them. Then we use the non-linear
Walecka RMF model [108,/109] to provide quantitative values for the pasta conduction properties.
Though the quantitative properties of the pasta are model dependent, the qualitative behavior of

our results should remain valid for any realistic nuclear model [[110}/111].

In order to make this thesis self-contained we introduce, in Section [2} the non-linear
Walecka model in the mean-field approximation. We discuss the bulk properties of the
parametrization we choose to work with, the IUFSU [112]], as well as some other models
for a wider context. We calculate its thermodynamic properties and discuss how the pasta is
built in the OCP. In Secti0n|§|we introduce the MCP formalism; we show how it obeys ensemble
equivalence, being in accordance with the OCP. We show that a rearrangement term has to
be introduced due to the constraint of charge neutrality and that it is essential for ensemble
equivalence between OCP and MCP formalisms. Then we calculate the distribution of pasta

structures at different thermodynamic conditions accounting for density and geometry fluctu-
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ations and estimate the impurity parameter in the inner crust. In Section 4] we introduce the
basic concepts of transport theory: the Boltzmann equation, the collision time approximation,
and the calculation of the scattering transition rate. Afterwards we generalize the collision time
approximation to anisotropic scattering and, using spherical harmonics expansion, we derive
analytical expressions for the complex collision rates. Finally, using the pasta symmetries, and
restricting ourselves to the pasta conductivity we are able to give expressions for the physical
collision rates of the pasta. We give quantitative estimates of the electric conductivity related
to electron-pasta scattering in the high-temperature regime, where long-range ion correlations
are smaller. Finally, in Section [ we briefly summarize different works that were developed
by the author during his doctorate, but that are not directly related to the main topic of the
thesis: deconfinement phase transition in magnetars; presence and effect of heavy baryons in
proto—neutron stars and in magnetars; the effect of short-range correlations in the pasta and the

correlation between the deconfinement phase transition and the slope parameter.

Natural and gaussian units are used throughout this thesis: = ¢ = kg = 1l and ¢y = 1/4n.
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2 Relativistic mean field theory and the pasta phase

In this section, we introduce the non-linear Walecka model and the mean-field approxi-
mation, discuss different parametrizations and their predictions, and show how to build the pasta
phase. We obtain the equilibrium equations of the mixed pasta-gas phase with a variational
calculation, we discuss the pasta properties and the thermodynamic conditions under which it

may appear. The formalism developed in this section is the basis for subsequent section.

2.1 Non-linear Walecka model

The fundamental theory of strong interacting particles is quantum chromodynam-
ics [113], from which it is possible to describe high-energy quark interactions, but not in-
teractions at the nucleon level. The majority of phenomena involving nuclear matter occur
with nucleons, thus effective models become essential in order to describe them. These models
come in many forms: liquid drop [91}|100L|114], molecular dynamics [64]], relativistic mod-
els [112,/115,/116], Skyrme functionals [67], etc., with their parameters adjusted to describe
selected nuclear data, such as decay rates, astrophysical data, resonances, binding energies of
finite nuclei, bulk parameters, etc. The selected data the model describe depend on the author’s
choice. For example, binding energies of finite nuclei are not so commonly used in relativistic
models since the description of finite nuclei requires calculations beyond the mean-field approx-
imation, so they tend to be more focused on bulk and astrophysical properties. In this thesis,
we will focus solely on one relativistic model: the non-linear Walecka model. Firstly we will

describe the model, then the nuclear bulk properties commonly used to fit its parameters.

In nuclear relativistic models, the baryons are described by a Dirac spinor ¢,. The

protons and neutrons (¢ = p, n) can be written in a SU(2) doublet as

Ve , 2.1)

Yn

Y =

and they are distinguished only by their isospin (/3) and electric charge (e,). Other baryons, such
as hyperons and A resonances can be added to the model, but these particles do not appear in the
NS crust, and we shall discuss them only in Section[5] The baryons interactions occur via meson

and pion exchanges. In the non-linear version we use in this thesis, the interactions occur via the
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exchange of o, w, and p mesons. Nevertheless, other parametrizations of the Walecka model
can additionally consider ¢ and ¢ mesons [[117-119]. The ¢ meson is considered only when
hyperons are present. Pions are not considered in the Walecka model because their contribution
to the energy averages out to zero in the mean-field and Hartree level calculations [[120,[121].
Chiral models also consider the { meson that acts as a strange condensate and y dilaton field
representing a gluon condensate [116]. Even though the Walecka model is an effective one, these
mesons have a counterpart in nature, and their properties are studied through proton-proton and
pion-pion collisions [[122-132]. The fields that describe the nucleons and mesons relevant to

this work and their properties are shown in Tab. [I}

Multiplet Field Spin (S) | Isospin (/3) | Electric charge (e,)
p,n Uy 172 1/2 1,0
o o 0 0 0
w Vi 1 0 0
p%.p* | by, b, i, 1 1 (0, £1)

Table 1: Particles in the QHD and their respective fields, spin, isospin and electric charge.

The Lagrangian of the model can be written as
£:£N+-£a+£a)+-£p+-£a)p- (2.2)

The nucleon part (N) contains the usual Dirac kinematics, and couples minimally to the meson
fields
Ly=VY [y” (i(')ﬂ -V — gblabZ) + g0 — MN] v, (2.3)

as traditionally done to enforce invariance by local phase transformations. Here y* are the Dirac
matrices, defined by the Clifford algebra {y*, "} = 2p*” and the adjoint spinoris = ¢ "yo. The
scalar isoscalar o-meson and the vector isoscalar w-meson interactions have no isospin charge,
so they produce identical interactions for protons and neutrons, but the vector isovector p-meson
has isospin charge 1, being essential to describe the highly asymmetric neutron star matter.
When considering only nucleons, the p-meson can be seen as an element of the fundamental

representation of SU(2) due to its isospin charge, so we can write b, = bj;1, with the index a
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summed over a = 1,2, 3. The isospin /, can be identified with half of the Pauli matrices 7,

110 1 110 —i
I == , L= 2.4)
2\ 1 0 2
that obey [I,, I] = i€ pcl., With €5 being the completely antisymmetric unit tensor, with

€123 = +1.

The o-meson describes a long-range attractive force, and its Lagrangian is given by

1 1 K A
L, = 56,10'6“0' - Em?O'Z + 50'3 + 50'4, (2.5)
where the third and fourth-order self-couplings were not present in the original Walecka model,
being firstly added in order to reproduce measurements of the nuclear incompressibility at

saturation density [[133]]. The Lagrangian for the w and p-mesons are

— 1 uv 1 2 i fgﬁ 12
Ly = _ZQ Qy + EvaﬂV 0 (V,VH)?, (2.6)
1 y 1
L, = —ZBZVBZ + Emgb;bg, (2.7)
with kinetic terms defined by the field strength tensors
va = auvv - avv s (2.8)
B, = 0,b% — 8,b% — e bl b 2.9)

The w-meson is responsible for short-range repulsion and, in conjunction with long-range
interaction of the o, they reproduce the saturation property of the nuclear force. The fourth-
order w self-interaction is introduced to soften the high-density EOS, and it has only a small
effect on bulk properties at saturation density [[112,/134,/135]]. The vector isovector p—mesons
are essential in the description of asymmetric matter (N # Z): if they were not present in the
model, symmetric matter (N = Z) and a pure neutron system (N = A, Z = 0) would have the
same properties. The charge neutral meson (p°) is described by the fields bz, and the charged

mesons (p.) are described by the combination b;—; =b }1 + ibfl.
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An w-p interaction term is also typically added:
Lop = Avgigy (VAV) (b3D7). (2.10)

which, like the fourth-order interaction of the w-meson, only weakly affects properties at satu-
ration density. Its main impact is on the high-density behavior of the symmetry energy, which
measures the difference between a pure neutron system and a completely symmetric one. It can

also partly explain the mass difference in mirror nuclei [136,(137].

The equations of motion can be obtained by finding the extremes of the action, leading

to an Euler-Lagrange equation for each field

oL oL
5 | d*xL[®,0,H,]=0 = —-9,——— =0, 2.11
/ X‘L[ k> Ou k] oD, #a(aﬂq)k) ( )

therefore, applying it to eq. (2.2) leads to a set of field equations

[y“ (z'a,, — g V- %brabz) + g0 — M] W= 2.12)

0,0" o + mEO' + gcr2 + %0’3 =g, P¥ (2.13)

0 QY +myV” + %gﬁ(vﬂv#)\ﬂ +2A,878, (BED)VY = g, Py ¥ (2.14)
0uBl” +mpb) + 2N, g0gr (VEV )b, = g Py I, — gpeapcb B (2.15)

It is complicated to solve this system of equations. In the static case — the Thomas Fermi
approximation, they can be solved numerically, but this is quite costly computationally and only
necessary if one is interested in finite nuclei. Furthermore, the boundary conditions are taken
from the relativistic mean-field approximation, where the meson fields are replaced by their

expectation values
oo (oy=00, Vu— (Vu)=(V,0), b% — (b3) = (b, 0). (2.16)

In this approximation, we assume isotropic meson fields, which implies that vector components of
the 4-vectors vanish and charged mesons are averaged to zero. To calculate bulk parameters and
static compact star properties, the RMF is a great approximation. Indeed, many parametrizations

are derived only within this approximation, and we will use it from now on.
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The Dirac equation (2.12)) in the RMF becomes
[v° (id0 — g,Vo — go13bo) + i~ - V + geo0 — My| ¥ =0, (2.17)

and, since the meson fields are homogeneous, and thus take constant values at a fixed density
and temperature, it can be solved exactly as if the nucleons were free particles with effective
mass

My = My — 8500 (2.18)

and energy

Eqi =+F" + gvVO + I3ngb0. (219)

where E* = |k + M; 2, and the isospin projections are I3, = +1/2 and I3, = —1/2. The
full solution can be written as a superposition of plane waves u(k, s)e™** and v(k, s)e’** for

particles and anti-particles multiplied by their respective creation operators:

Wq(x) = Z/ o )3 af uf ek pt Ty zse"’@?"’“'w], q=p.n. (2.20)

The reader interested in the complete derivation is referred to [108},109]. The positive energy

q
ks

neutrons, while the negative energy solutions, related to the spinor v

and the creation operator ai &

q
k,s

solutions, associated with the spinor u represent protons and
and the operator bq’s,
represent anti-protons and anti-neutrons. The spin polarization is represented by the label
s = =1 and k is the 3-momentum. We neither show the explicit form of spinors nor specify a

representation of the y-matrices, since to calculate the EOS it is only necessary to have a few

independent relations among them, namely

U, Mo’ = Vi, Vi = Osy (2.21)
_ ) M,
Uk sUE s = —VEsVE s = F(Sss’, (222)
{af .al’ } = (2n)’5(k - K)oy, (2.23)
(b bL Y = @)’k - k)b, (2.24)

The first line is a choice of normalization on the spinors, and the second is a property that can
be proven quite straightforwardly using eq. (2.17). The third and fourth lines are the imposed

commutation relation on the fermionic creation operators at equal times, also known as second
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quantization [|138]].

The meson equations, eqs. (2.13)), (2.14) and (2.T3)), in the RMF become

K A _
mioo + ~og + 603 = g;ps = 8(PY), (2.25)
1
mVo+ =£2)Vg + 20858, Vobg = gvpi = gu(¥TY) (2.26)
mibo +2A,g282Vabo = gpp3 = gr(P1YP), (2.27)

where the baryon, scalar, and isospin densities are defined as products of the spinor ¥ as:

pp = (P = W,y + (Wiwa) = pp + pa. (2.28)
Ps = <\Plp> = <J’p¢p> + <l/_/nwn> = Psp t Psn (2.29)
. 1
p3 = (VL) = Wy L) + Wnlsnin) = 5 (Pp = pu) (2.30)

whereas expressions for the proton and neutron number and scalar densities can be obtained

with the aid of eqs. (2.21)) — (2.24)). We write them as

. A3k
pg = Wiwg) = yq/ P8 [fo+(k) = fi-(B)],  g=p.n (2.31)
and X
- ~ A’k M,
Psq = <‘//ql//q> =%q (27r)3 \/W [fq+(k7) + fq—(k)] . (2.32)

where degeneracy is accounted for with the factor y,, which is equal to 2 due to spin, and the

functions f,. are the Fermi-Dirac distribution [139]], defined as

1
k)= <anr al > =
fq+( ) ks k,s 1+ CXP[(E* - ,UZ)/T]

) 1
(k) = (bglpY ) = : -
fq (k) ks ks 1+eXp[(E* +’u;"])/T] ( )

where py, is the effective chemical potential, related to the true one py = d8,/9py, by

pg = tq—&Vo - g—bTS,qu- (239

2

AtT = 0, they relate to the Fermi momentum kg4 via piy = /k% .t M;‘{,z, defining the occupied
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energy levels of the Fermi sea. The factor My /E* in the scalar density (2.32)) represents a
Lorentz contraction, so as nucleons become more relativistic the ratio of scalar to number

density becomes smaller than unity.

Finally, energy and pressure can be calculated from the energy-momentum tensor

0L
Tuy = ) 77— Ov®@ =Ny 2.35
8,T" =0, (2.36)

which can be derived from Noether’s theorem. The theorem states that continuous symmetries of
the Lagrangian give rise to conserved currents. Energy and momentum conservation are related
to invariance in space-time translation (x — x + €). In the RMF only spinors are dynamic, thus
the meson contribution comes solely from the averaged Lagrangian. The energy density is given

by the 00-component

ab=/—<Too>—z 3 /—wqatwq L

S
d*k §gv 4
qu/(2)3 fq+ fq) 8V
q=n.p
m? K A m2
+ 703 + gag + 24(;5‘ + sz +3M, 8585V bgs (2.37)

and the pressure is given by the average of the spatial components

<Tu>— Z / O Vg + (L)

q=p,n
Ik k2 ggv A
3Z)’q/(2)3E* (fgr + fo-) + 24V
q=n.p
2 m?2 K 3 A4
The entropy is given by the classical expression
Z Yq Z / (27)3 f‘lk In for + (1 —qu)ln(l - qu)] ) (2.39)

g=n,p
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and we are now able to calculate the free energy density
Fb = Ep — TSp, (2.40)

which is the relevant quantity at a finite temperature.

Since protons are charged particles, leptons must also be taken into account to make the
system charge neutral. On the leptonic sector, we include only electrons, which obey the free
Dirac Lagrangian [[140]

Lo = (iy" 0y —me) e, (2.41)

with m, = 0.511 MeV [141]. We do not account for muons because they become significant
only at densities above saturation, and the interactions of strongly degenerate electrons are
negligible [[3]. Following the same steps as in the baryonic case, we calculate the electron

density
d*k

e W [fe+(k) - fe—(k)] ’ (242)

Pe =Y

with the Fermi-Dirac distribution given by Eq. (2.33)), but with the substitutions E* — E, =

Vk? + m2 and Mg — He. The energy density, pressure, and entropy are given by

d’k
E, = 2 )3E (for + fo), (2.43)
. Pk k?
=X G B er t 1), (2.44)
and

A3k
Se=—Ye [fex In for + (1 = for) In(1 = fer).] . (2.45)

kZ / (27)°

The total energy and pressure are then given by the sum of baryon and lepton contributions.
In catalyzed neutron stars, matter is in S-equilibrium and the baryon and electron chemical
potentials are related by

Hg = UB — €glle, (2.46)

where up i1s the chemical potential related to baryon number. If we consider nucleons only this



B/A (MeV)

J (MeV)

L (MeV)

K (MeV)

My

fkat(fnl_s)

15.8-16.5

28.6-34.4

30.6 -86.8

*

220 - 260

0.6-0.8

0.15-0.16
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Table 2: Current constraints on nuclear matter parameters, based on the values reported in [[142}143].
The value in parenthesis for the slope, marked by = is due to the recent analysis of PREX-II data [[144].
See text for details.

is simply p, = pp and p, = u, — p.. Throughout the rest of this section and in sectionElwe do
not work in S-equilibrium, rather we fix the proton fraction Y,, to understand how our results
are dependent on this quantity. In neutron stars, the typical proton fraction is ~ 0.1 and in newly
born proto-neutron stars it can range between 0.05 and ~ 0.3 in the densities of interest. To
give quantitative values to the quantities obtained in this section we must specify values for the

couplings of the baryon Lagrangian, i.e. define a parametrization.

2.2 RMF parametrizations and constraints

Several parametrizations for the Lagrangian (2.2)) exist throughout the literature, differing
in the bulk and astrophysical properties they yield. Bulk properties are defined by expanding the
energy per nucleon around the saturation density (psa) and half proton fraction (Y, = p,/pp =
0.5), i.e. symmetric matter. pg, is the point where the energy density of symmetric matter is
minimal, and thus the pressure is zero. It is also the average density of nuclei. The energy per

nucleon expansion is

E & 1 (ps—po)’ 2
—=—=Ey+ =K +(1-=-2Y,)"S , 2.47
175, Fots ( 30 ) ( »)” S (pB) (2.47)
where S is the symmetry energy
16%(& -
S(pB)zg% :J+L(pB3 po). (2.48)
Yb Y,=0.5 po

The expansion defines the binding energy per nucleon, incompressibility, symmetry energy at

saturation, and slope at saturation density as

_g 9P
dps

B 48
7= Eo- My, Ko= [9/?2 o5

dp?

, (2.49)

PB=P0

]PB=P0
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Par. | B/A(MeV) | J (MeV) | L (MeV) | K (MeV) | M3, /My | Mynax/Mo
TUFSU -16.40 31.3 472 231.2 0.6 1.94
NL3wp | -16.30 31.7 55.2 272.0 0.6 2.75
FSU2 -16.30 31.6 112.8 238.0 0.6 2.07
L3wp -16.30 31.2 743 2543 0.7 2.30
NL3wp* | -16.30 30.7 412 2585 0.6 2.75

Table 3: Bulk properties of infinite nuclear matter of a few selected RMF parametrizations.

IUFSU | NL3wp FSU2 L3wp | NL3wp*
my (MeV) | 491.5 | 508.194 | 497.479 | 512.0 | 502.574
m, (MeV) | 782.5 782.5 | 782.500 | 783.0 | 782.600
mp MeV) | 763.0 763.0 | 763.000 | 770.0 | 763.000

8s 9971 | 10.217 10.397 9.029 | 10.0944
gv 13.032 | 12.868 13.557 10.584 | 12.8065
8b 13.590 | 11.2766 8.970 8.550 | 14.4410
K 3.5695 | 4.384 3.594 6.092 4.543
A 2926 | -173.31 | -6.228 | -155.52 | -180.892
3 0.03 0.00 0.0256 0.00 0.00
A 0.046 0.03 0.000823 | 0.0185 0.045

psa (fm=3) | 0.155 0.148 0.1505 | 0.1555 0.150

Table 4: Selected RMF parametrizations.

oS

J=8(py) L= [3,0% (2.50)

o
The constraints to each of these parameters come from different experiments: saturation density
and binding energy data come from simple nuclear masses and density distributions [142,
145]); results for the incompressibility of infinite nuclear matter come mainly from isoscalar
giant monopole and isovector giant dipole resonances [146-H149]; the symmetry energy and
its density dependence can also be obtained from giant resonances, but additionally from
experimental data of pigmy dipole resonances [150,|151]], neutron skin radii [[144,152-154],
heavy-ion collisions [[152,|153]], and isobaric analog states [155,{156]. For an extensive and
comprehensible review of the current constraints to bulk properties, see [142]]. We summarize
the constraints present in [142] in Tab.[2] The values of the slope are marked with an asterisk due
to the recent PREX-II result of the neutron thickness in 2°®Pb, which yielded a slope inconsistent
with previous measurements (L = 106 + 37) [[144]. Further measurements are necessary to
resolve this tension, though a lower slope value have been hinted at CREX [157,/158]], and it
has also been argued that, considering the PREX-II data with other constraints, such high slope

values cannot be realized [[159,[160] and must stay within the bound present in Tab. [2|
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Figure 1: Symmetry energy (left) and symmetry energy slope (right) for the parametrizations shown in

Tab. EI

Astrophysical constraints are also important in the physics of dense nuclear matter. Some
important measurements of the maximum mass of massive pulsars have also aided in constraining
the EOS in the last decade, such a PSR J0348+0432 E@I and PSR J1614-2230 @@g@ﬂ with
masses (2.01 = 0.4)M and (1.97 + 0.04) M, at the 68% confidence level. More recently, the
NICER mission (Neutron Star Interior Composition Explorer), launched in 2017, reported the
determination of the pulsar PSR J0740+6620 mass to be (2.08 +0.07) M, with a simultaneous
radius measurement of R = 12.35+0.75 [[L64]. Other three simultaneous measurements of mass
and radius have been provided by NICER [24}26]. Simultaneous mass and radius measurements
are essential in constraining the high-density behavior of the EOS, around 2 and 3 times the
through accretion-powered millisecond pulsars, X-ray thermonuclear bursts, and X-ray emission
of quiescent neutron stars, but these had very large systematic errors [166-169]]. Furthermore,
the symmetry energy ([Z:48) is closely related to the NS radius, proton fraction, and fraction of

hyperons, and thus can be further constrained by future mass-radius measurements @

In Tab. 3] we show the bulk parameters of the IUFSU [112], NL3wp [I7IH173],
FSU2 [174], L3wp [[175] and NL3wp* [176|{177] parameterizations, and in Tab. [d]we show the
meson couplings and masses related to them. Due to the yet poor constraints on the density
dependence of the symmetry energy, the curve of the slope is quite different for all these models,
as shown on the right of Fig.m At densities above saturation, all bulk parameters are poorly con-
strained, and the macroscopic properties of a NS can be quite different when obtained with the
different parametrizations. Indeed, the mass-radius diagram curves of these parametrizations,

shown in fig. [2] exhibit very different maximum mass and radii predictions.
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Figure 2: Mass-radius diagram for different parametrizations.

In this thesis, we choose to work with the [UFSU parametrization. It is a very appealing
parametrization to study the pasta since simulations within the Thomas-Fermi approximation
were performed with it [I15]], and a ready-to-use surface tension fit was made available to be
used in the RMF. On the other hand, the parametrization is at the lower end of the error bar of
the NICER measurements at 20~ confidence level. Additionally, hyperons and A baryons cannot
be added to this model, since their addition softens the EOS and diminishes the NS maximum
mass [178]. Therefore, in Section [5]we will use parametrizations L3wp and NL3wp* to study
the NS core. The first one was built to constrain NICER data and the second was built to describe
the very high mass measured in the GW 190814 event, though is not known to be a neutron star
or a black hole [179]. Now, with a defined parametrization and an understanding of the model

bulk properties, we now turn to the nuclear pasta.

2.3 Nuclear pasta: one-component plasma

In the outer crust of a NS there are nuclei arranged as a Coulomb crystal and degenerate
electrons, and in the core, there is homogeneous matter, independent of the particle composition.
But in the inner crust, beyond the neutron drip line, there is a coexistence of two phases of nuclear
matter: ions and a very neutron-rich nuclear gas. Indeed at zero temperature, the gas is purely
made of neutrons, and protons appear only due to thermal excitations. The presence of this
mixed phase can be understood from the negative values of the baryonic pressure at sub-saturation
densities, in the right of Fig. El which indicate the existence of an instability that culminates
in a mixed phase with separately conserved charges [[180}[181]]. We will label the dense phase,

consisting of bound nucleons, as I and the gas phase as II. Equilibrium is commonly established



32

990 T T T
960

30
00

Hq (Mev)

o« O W

70

P, (Mev fm™3)

840 | proton  — -
neutron
1

0 0.04 0.08 0.12 0.16 0 0.04 0.08 0.12 0.16
pp (fm=3) pp (fm=3)

810

Figure 3: Chemical potential of protons (black) and neutrons (orange) and baryon pressure (right) for
proton fractions ¥}, = 0.5, 0.3, 0.1 and pure neutron matter using the IUFSU parametrization.

through the Gibbs conditions

Hp = 1y - (2.51)
o =y (2.52)
pl=pl (2.53)

On the left of Fig.El we show the proton and neutron chemical potentials of homogeneous matter

at zero temperature. All curves are drawn using the IUFSU parametrization.

Moreover, the spacing between nuclei becomes smaller when the densities get higher
increasing Coulomb self (pp) and lattice (pe and ee) interactions, which become more similar.
Competition between the total Coulomb and the nuclear surface energy leads to a deformation
of the clustered nuclei: from spherical to cylindrical and then to rectangular shapes. These are
collectively called pasta phase, and we denote these geometries by the integers d = 3,2, 1 [21}
[22)[56]. Inverse pasta structures further appear as densities increase such as tubes and bubbles,
with the dense phase forming a continuum containing “holes’ filled with neutron gas. These
holes become smaller as density continues growing, up to the point where matter becomes
completely homogeneous. This overall picture does not hold in all models: some geometries
might not appear and it might also happen that from rods or slabs the system changes directly to

homogeneous matter.

The pasta occupies a volume f inside a Wigner-Seitz (WS) cell and the dripped nucleons

occupy the excluded volume (1 — f) in the WS cell. Each cell has volume Vs and its geometry
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2 Rws

Figure 4: Illustration of Wigner-Seitz cells containing droplets, rods, and slabs.

corresponds to the one of the pasta inside, which occupies a volume V/. The WS volume is

given by
4TNR%VS’ d=3
Vis = {nR2, Ly d=2 (2.54)
2RwsL? d=1

whereas geometry has a characteristic radius R; (Rws) corresponding to the pasta (WS cell)
radius, and the cylindrical and planar shapes have an additional length L., which is the same for
cluster and for the WS cell. In Fig. il we show what each of these lengths signifies. In order to
compare the free energy density of the different geometries, the volumes of rods and slabs must

be normalized to one of the droplets, i.e.

dr
?ngs = 7R3 wsLa = 2RiwsLj. (2.55)

While the tube is normalized to the bubble. For simplicity we define the volume fraction

f= V! /Vws, with 0 < f < 1, which can be written as

d
f= (ﬁ) . (2.56)

Rws

The cell must obey the constraints of mass and charge conservation and charge neutrality:

on=floy—pPi) +pp, (2.57)
pp = f(oh = pi)+pll. (2.58)

Pp = pe. (2.59)
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The total baryon density of a cell is pg = p,, + p,, and its proton fractionis Y, = p,/pp.
The free energy density of the WS cell receives bulk contributions from the pasta and the gas,
from the electron that makes the cell charge neutral, from the Coulomb energy due to pp, pe,

and ee interactions, and from surface terms, i.e.
Fws =fFy + (1= F) +BFscd + Fe, (2.60)

where the bulk free energy density of the cluster and gas is given by Eq. (2.40), and ;. 4 is the
sum of surface and Coulomb energies [21,88,92]. The surface energy of the cell is given by the

surface tension times the surface area

40nR3, for spheres (d=3)

Fy=0(Y,,T)A = {207R,L,, forrods (d=2) (2.61)

O'L%, for slabs (d=1)

so eq. (2.54)) allows us to write the surface energy density as

FS _ ﬁd O-(Yp’T)

FFa= Vs Ry

(2.62)

where § = f for droplets, rods and slabs and 8 = 1 — f for tubes and bubbles. The surface
tension o is a function of isospin asymmetry 6 = 1 —2Y), and temperature T, and the appearance
of the pasta is largely sensitive to its value [61,70,92,182,/183|]. Next, we use the surface tension
fit provided in Ref. [115]] which reproduces the value obtained in a Thomas-Fermi calculation,

where meson fields are not homogeneous and, in the thin-wall approximation [93]]
o= [ dz @ - @2 - @bo?]. (2.63)
The fit was made to the functional
ox,T) =d(x) [1 — a(T)xT — b(T)T? - c(T)sz] , (2.64)

where x = 62 stands for the squared relative neutron excess. & (x) is the surface tension at 7 = 0
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IUFSU  &(x) a(T) b(T) (1)
oo L.16473 - - -
o1 -0.659167 ; - .
ao ; 0.00404325  0.00767923  0.0066774

ai -2.25482  0.00828207  -8.58068x107>  -0.0514285
a -5.64237  -0.00153301  4.43918x10™7  0.00949505
as 37.8471  7.26763x107 -5.44453x1077 - 0.000427613

as -81.6617 - - -
as 81.2696 - - -
ag -31.0227 - - -

Table 5: Surface tension coefficient parameters fitted within the Thomas-Fermi approximation. The
coefficients are for 7 in MeV and oy is in MeV/fm~2.

and a, b and c are functions of the temperature:

ox) = oy exp(—o’1x3/2) (1 +a1x + arx*
+asx® + asx* + asx® + aex®)

a(T) = a0+a1T+a2T2+a3T3+a4T4+a5T5

b(T) a0+a1T+a2T2 +CZ3T3 +a4T4+a5T5
c(T) = ao+aiT + a2T2 + a3T3 + Cl4T4 + a5T5,

(2.65)

where o7 is the surface coefficient at 7 = 0 for symmetric matter. In Table 5] the parameters of
the surface tension fit for the IUFSU parametrization are given. In Ref. [115] one can also find
the surface tension for the NL3, NL3wp, and FSUGold parametrizations. In Fig |§| we show the
surface tension as a function of proton fraction for two different parametrizations at 7 = 0 (left)
and temperatures (right) with the IUFSU parametrization. As Y, — 0 the surface tension goes
to zero since ion and gas matter become more alike. The rise in temperature reduces the surface

tension due to the extra kinetic energy of particles, which reduces particle interactions.

The Coulomb energy can be exactly calculated for the idealized pasta geometries by
integrating the expression

dE. = %qﬁdQ (2.66)

in the WS cell. In Appendix [A]the main steps of the calculation are presented. The result can
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Figure 5: Surface tension for different parametrizations at T=0 (Left) and for different temperatures in
the IUFSU parametrization (Right).

be compactly written as:
E. 2p2 (1 1\
ﬁgtc‘,d = Vi = 27Tﬁ€ Rd (pp - pp ) (Dd(ﬁ)’ (267)

whereas the geometry dependence is encoded in the function @, given by

2 —dgl=t 1
- ——, ifd=1,3:
( d=2 +ﬁ)d+2’1 =

D4(B) = (2.68)

~1-1n(B) +B e
120 . ifd =2;

The first term on the @, function comes from the nuclei self-energy, while the second and third

are from pe and ee interactions @ﬂ?ﬁ{]. The sum of surface and Coulomb energies (S+C) is

od 2 ,
Fscd = Fsd+ Fea = R, +me’ R} (Pﬁ = Pf) D4(8), (2.69)

and its minimization yields the equilibrium radius R, of the pasta

R =
d
4re? (p{, - p{,f)ZCDd(ﬁ)

1/3
(2.70)

and the virial relation ¥ 4 = 2F, 4.

Notice though that the Gibbs conditions can be obtained by minimizing the free energy
density ([2.60) if the S+C energy is neglected. Indeed the overall strategy followed in the RMF
literature is this: to minimize the free energy density and later introduce the S+C energy @
93|[TT5/[181}[182]). This approach is usually called coexistence phases approximation (CPA).
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Figure 6: Free energy density per baryon for T=0 (3) MeV at the left (right) for ¥, = 0.5,0.3 and 0.1 for
homogeneous matter and for the pasta phase, obtained with the CPA.
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Figure 7: Difference between pasta and homogeneous free energy density per baryon for T=0 (3) MeV
on the left (right) for ¥, = 0.1. The different colors represent the pasta geometries, as in Fig.@

In Fig. |6| we show the free energy density of the pasta obtained with the CPA along with the
free energy density of homogeneous matter for different proton fractions and temperatures. The
pasta appears when it becomes energetically favorable, that is Fpusa < Fhomog. The difference
between T=0 and T=3 MeV is very small in the geometry transitions and in free energy value.
Indeed, at such temperatures, the thermal effect in the bulk energy is very small, and its main

contribution comes from the S+C term.

This method of minimizing the free energy density in a WS cell and finding the equi-
librium leads to a unique configuration at a thermodynamic condition, so this is known as one
component plasma approximation (OCP). The OCP is used in various tabled EOS, e.g. the

Lattimer and Swesty., based on the compressible liquid drop model, the Shen EOS, based on
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Figure 8: Same as Fig.for Y, =0.5.

the RMF [89][95|[184] and also in several other mean-field studies of the pasta [92,[931961/97].
This is a common approach to astrophysical applications, but the presence of different ions in a
macroscopic system can modify transport properties, for example. In the outer and inner crust

of a NS, a distribution of ions with different proton numbers was obtained in [98H101].

In the case of the pasta, the small energy difference between the geometries implies that
they can also coexist at a given depth of the star. We confirm this in Figs. E] and [8] where we
show the difference in energy between the pasta geometries and homogeneous matter for T=0
(left) and T=3 MeV (right). For a proton fraction of 0.1 the energy between geometries is of
only a few keV even at low densities. The energy difference is reduced even more by a rise in
temperature. Thus, the pasta is formed in a warm NS, with a very amorphous crust, and as the
star continues to cool down, the crust is not expected to reach the full ground state, but rather
to freeze out with different metastable states coexisting, due to this very small energy barrier
separating the pasta geometries. More sophisticated simulations [85] indeed corroborate the
idea of coexisting pasta structures. This is the topic of the next section, but before, we must
use a more consistent way of finding the ground state of the pasta: minimizing the free energy

density accounting for the S+C term.

This can be done in a variational fashion, by minimizing eq. (2.60) with the constraints

of mass and charge, eqgs. 2.57) and .38), with respect to the linear radius, volume fraction and

cluster and gas number densities: {pll,,pfz,p[[f, pil. F, Bl Q1=85}EI 86]. To do so we define the
thermodynamic potential

Q=Fws = tnPn — HpPps (2.71)
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Figure 9: Linear radius for nuclear matter at zero temperature with proton fractions ¥, = 0.5,0.3 and
0l

Here, u, are the thermodynamic chemical potentials that act as Lagrange multipliers and are
to be determined by the minimization. We should expect that the S+C term enters as an extra
contribution to the thermodynamic chemical potentials. This method is necessary to calculate
the coexistence of pasta geometries in SectionE]and we refer to it as the compressible-liquid
drop (CLD) approach. This is in contrast to Ref. [107]], where the authors applied the CPA to

calculate the pasta distribution to study the symmetric nuclear matter.

We begin by noticing that the only dependence on the linear radius is on the S+C energy,

therefore
0Q 3
OR,;

aﬁc,d _

0= IR, =0,

(2.72)

leading to the linear radius equilibrium equation (2.70). The linear radius for the pasta config-
uration that minimizes the energy is plotted in Figﬂfor Y, = 0.3 and 0.5 at T=3 MeV. With
these we can also obtain the pasta WS length L, from the volume conservation (2.53). These
are shown in Fig. [@l and the pattern we see is that from rods to slabs and then from slabs to

tubes, the length L jumps to a lower value, as expected from the radii shown in Fig. Ei

Taking the derivative of the thermodynamic potential w.r.t. the particle densities leads

40
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Figure 10: Lenght L, for nuclear pasta at zero temperature with proton fractions ¥, = 0.5,0.3 and 0.1.
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combining these, we can write thermodynamic chemical potentials y, as

I ﬂaﬁc,d

= + —
luq 'uq f apL[I

1, B 9Fsca

Hy 1-f 8pf/’

where we defined the bare chemical potentials

o7 y_ 0%

! = — bl .
Opé Hq ﬁpél

Hq

40

(2.73)

(2.74)

(2.75)

(2.76)

This is equivalent to the Gibbs conditions (2.8T)) and (2.82)) but with corrected chemical poten-

tials, now given by the right-hand side of the upper (lower) part of eq. for phase I (I).

Using the explicit expression for the S+C energy we can write the derivatives as

0Fsea _df(1-Y)p) do 2Fc.a

= +
Py psRa 0Yy  (p}, - p}f
aﬁc,d_d(l_f)(l_yp) oo _ 27:c,d
ool peRe O, (oh-pl)’

OFrea  dfYp 90
dph — psR40Y,
IFrea  d(1= )Y, o
opll ~ psRa 0¥,

and arrive at the following equations for the bare chemical potentials

Iul _#11 _ 2BFc.a
P A= Doy
= 4y

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

The proton chemical equilibrium condition is modified by the Coulomb force while the neutron

one is unaltered, as expected since only the proton is charged. In Figs.[TT]and [I2] we show the

thermodynamic, cluster, and gas chemical potentials obtained within the CLD, the thinner curve
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Figure 11: Thermodynamic, cluster and gas chemical potential of neutrons (left) and protons (right) at
Yp = 0.1 and T=0.
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Figure 12: Same as Fig.for Y, =0.5.

shows the CPA result. The cluster and gas bare chemical potentials differ more at higher proton
fractions, both from each other and from the CPA result, due to the increasing Coulomb energy
with proton number. For a proton fraction of 0.1 there is not a big difference, even from the

CPA result.

The equation for pressure equilibrium is obtained by minimizing eq. w.r.t. the

volume fraction f:

0Q T 11 1 11 1 11 aﬁ ag__"f
a7 Fo = Fp —tp(0p =Py ) = nlpn = Pp )+§Tsc+ﬁ

af =0. (2.83)

By substituting the thermodynamic potentials, eqs. (2.79)), and using the thermodynamic relation

P{f = —9’7;( + ,u[]fpf + ,unKp,If, K=L1II, the expression above can be written as

2BF (p{, = fpp =Py )
f=1) () = pp))

d 1 do
"Pé"‘Pr?"'g (ﬁc,d+ﬁfﬁ,dad dﬁd)-

=0. (2.84)

All the equilibrium equations are in agreement with those presented in Refs. IQIES%WI.
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Figure 13: Histograms comparing the densities where each pasta geometry appears in the CPA and CLD
approaches.

In Fig. E] we see there is almost no difference in the densities where each geometry
appears between the CLD and CPA approaches. The CPA approach is enough to determine
the thermodynamic properties of the crust, but the CLD is necessary for the multi-component

approach presented in the next section.

The numerical recipe to find equilibrium is to guess the effective chemical potentials
g, and nucleon masses M, in each phase (I and 1), and then use an iterative method to search

for the true solution while simultaneously solving the meson fields — eqs.(2.23), .26), @.27) -

and obeying the mass and charge constraints — eqs. 2.57) and 2:38). For this a reasonable first
guess is essential, and the properties of homogeneous matter can be a guide in the process. For
this numerical purpose, we use the Ceres Solver @ to solve the system of non-linear equations
and the GSL library to perform integrations and interpolations [[I88]]. The code written to obtain
all results in this thesis is publicly available [T89].

Computationally, the cost of finding the equilibrium conditions is higher with the CLD
rather than with the CPA: the latter is independent of the geometries, so itis only necessary to find
one solution for each thermodynamic condition, while the CLD requires solving Eqs. (2.81)) -
(2:84) for each geometry, each yielding different chemical potentials. Furthermore, the 1/(1- f)
terms imply that divergences might be reached when searching for the solution. Now we turn to

the multi-component approach.
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3 Fluctuations in the pasta phase

In this section, we introduce the formalism of the multi-component plasma for the pasta
phase. We use the RMF model discussed in the last section to calculate the abundance of pasta
geometries at a certain thermodynamic condition and calculate the pasta impurity parameter for
the first time with an RMF model. Fluctuations are made on the geometry and on the proton
and neutron densities of the pasta. To account for the geometric anisotropy of the pasta in the
impurity parameter, we define an effective proton number that depends on the pasta surface area

in a given direction.

3.1 Multi-component plasma

In the previous section, we discussed the OCP approach, which is reasonable to determine
thermodynamic quantities such as energy, entropy and pressure [90]]. Nevertheless, transport
properties and reaction rates can be modified by system impurities. To calculate the pasta
abundances and estimate its impurity using an RMF model we turn to the multi-component
plasma (MCP) formalism developed in Ref. [98]], which has been applied to supernovae [[106]]
and to the NS crust [99,[101,/107], and extend it to the pasta phase.

Consider a system of macroscopic volume V' composed of WS cells, each occupying
a volume ng Inside the cell, there is a pasta structure, a nucleon gas, composed mainly of
neutrons, and an electron gas. The gases are assumed to have constant density throughout the
entire system, to avoid interface discontinuities in the chemical potentials of different cells. The
constancy of the electron density is further justified by its high incompressibility [[182]]. The

grand partition function is defined as

3.1

Z = Zexp [—,BZ NN’dQ{}VV’g .
{n} N.d

The sum over {n} indicates the different system configurations, NV*¢ is the total number of cells
with clusters in a configuration (N, d), Q%g is the cell thermodynamic potential, and 8 = 1/T
is the inverse temperature. The superscript N is used to denote quantities that vary between
different WS cells due to proton and neutron density fluctuations, and it substitutes the I that was

utilized in Section@ The sum over d = 3,2, 1 accounts for droplets, rods, and slabs. We do not
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consider the tubes and bubbles, since cluster and gas are exchanged and this would introduce
the extra complication of discontinuities between cells. The nucleon gas is now denoted by the

subscript g instead of the superscript /1, thus changing our notation to:

ph oo F>FN, fofN, Ri—RY

Pl > pge  FH o Fop o g ul ol
The one-cell thermodynamic potential, introduced in eq. (3.1)), is given by [98]]
Qs = ViysTws +6F™ = tupllyys = 1Pl s = Hepes (3.2)
with the free energy density of the cell Td,vs’d defined as in the SNA case — Eq. (2.60),
Foe = fVFY + (1= fN) T+ FNFY  + Fe (3.3)
and a total proton and neutron densities of

Pows = TN} = Ppe) + Ppgs (34)

Phws =N (0N = Png) + Png» - (3.5)

in each cell. We allow the densities pg , oY to fluctuate between different WS cells but in
principle, both linear radius and volume fraction could also fluctuate independently of the
densities. However, we choose to constrain them. The reason is that if both densities and
volume fraction were to fluctuate, local net charge fluctuations would exist, leading to long-
range Coulomb terms that would violate the hypothesis of linear mixing between the different
cells, i.e. the additivity of free energies [98,/]190]. We impose charge neutrality by assuming
that the global proton density p,, is equal to the fixed electron density p,.. In practice we must

impose this locally: pl’X ws = Pp = pe by fixing f~ from Eq. (3:4), such that

Y=L Llrs, (3.6)
Pp ~ Ppg

The price to be paid is the introduction of the rearrangement term § F" in the free energy. We
discuss how to calculate it in Sec[3.2] Finally, u, are the thermodynamic chemical potentials

derived in Eq. which we take as input from the CLD solution.
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Regarding the linear radius, we assume it to be determined from the equilibrium of the

S+C energy in each cell

p 1/3
g ) , (3.7)

RY =
¢ (4ne2<pﬁ = Ppg)*®a(fV)

as in Eq. (2.70), but it will vary in each cell due to fluctuating densities. The volume of slabs,

rods and droplets are
N N (;N)? N N\ N N v\
V=RV (L), v = (RY) LY, v =an (RY) /3, (3.8)
respectively. The length parameters L) are determined as in eq. (2:33)
vN=vV=v)=v), (3.9)

and values were shown in Fig.[T0] The proton and baryon numbers in the pasta are independent

of the pasta geometry and are given by
ZN =y (pj,v —p,,g), AN =y (pN —pg) . (3.10)

Now that the main variables of the WS cell are defined we turn to the grand partition
function, eq. (]3;1'[) which we rewrite in terms of the number density nNd = NN-d /V, in the spirit

of RMF, which deals with quantities per volume:

Z=>"exp|-pv ) n™QNd|. (3.11)
{n} N
The number densities are normalized as
>onMvie=1. (3.12)

N.d

By substituting the densities given by eqs.(2.57) and (2.58)) in the thermodynamic potential,
eq. (3:2), we are able to factorize the partition function into cluster, nucleon gas and electron
components

Z=Zazyzy, (3.13)
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with

ze = exp [ (Fe = Hepe)] (3.14)

g = €Xp [_ﬁ (ﬁg ~ HnPng — :upppg)] > (3.15)

Za =) exp|-pV > nMIQN4| (3.16)
{n} N.,d

The cluster partition function is simply that of an ideal classical gas, and a factorial factor
must be introduced to enforce indistinguishability of clusters [98}106,(191]. Since the number of
occurrences for the different configurations NV>¢ can be any positive integer, we can analytically

calculate the sum as:

00 _ QNd
Z CXP ﬁ ]) l—lexpa)N’d, (3.17)

where we define

WV = exp (—BQN’“’) (3.18)

and the cluster thermodynamic potential
OV = VY [N = T + TN = s (P = pg) = 1p (0] = o) | +6FY. 3.19)
The chemical potential of the cluster is

:uN =v [/Jn(piv ~ Png) + Hp (P,IY - ppg)] . (3.20)

and the free energy is

Fc]\lhd =vN [?N —Fbg+ 7js]cvd] : (3.21)

Finally, the equilibrium number density for a fluctuation (pg N ) is readily found from

the cluster partition function to be

N.d

Ny 10InZ, i Nd iw (3.22)
n = — N = n oo o= _, .
V opu =1 =1
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while the probability of cell with pasta density (pg‘r oY ) and geometry d is

v oxp (-p0M)
P ST TS ey () 2]
N.d N.d

an the probability that a pasta structure of dimension ¢ is dominant in a cell is obtained by
summing eq. (3.23) over N:
Pl Y pta (3.24)
N

The results are shown for proton fractions Y}, =0.1 and 0.3 and temperatures T=1, 3 and 5 MeV
in Fig. @ where we see that there is a larger mixing of pasta geometries at higher temperatures
and for more asymmetric matter, that is, these are more impure. Particularly for T=5 MeV
and Y, = 0.1, the fraction of droplets at the onset density is already about 40%. The high
predominance of slabs when the density goes beyond 0.06 fm~ may be due to our negligence
of tubes and bubbles that may already exist at such densities. In some cells, it is possible that
the pasta even dissolves and the cell contains purely homogeneous matter, even though we do

not take this into account in the calculation.

3.2 Ensemble equivalence: the rearrangement term

For standard Poissonian fluctuations as the ones we are modeling, we expect that the
most probable configuration (optimal) coincides with the average one. Moreover, ensemble

equivalence at the thermodynamic limit implies that this optimal MCP configuration should

Pd
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Figure 14: Abundances of pasta structures at proton fractions ¥, = 0.1 (left) and 0.3 (right) and
temperatures T=5, 3, 1 MeV plotted with solid, dash-double-dotted and dashed lines, respectively.
Geometries are plotted with different colors: droplets are in magenta, rods in yellow and slabs in blue.
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coincide with the unique one obtained in the OCP, where the Wigner-Seitz free energy density
is minimized. In this section we will analytically show that our calculation respects ensemble
equivalence and that taking the chemical potentials from the CLD, instead of the CPA, is

essential.

We begin by calculating and discussing the rearrangement term, an essential quantity in

this context [[I0TL[T06]. The rearrangement was introduced in eq. (3.2)) and to understand its

N

i p,]lv  f N and Rfiv to fluctuate, the total proton fraction

origin we notice that, had we allowed p

of the system, given by

pp = VY (0N = ppe) + pp (3.25)
N.d

would be different from the total electron density p., which is fixed from the OCP, and the system
would have a net charge. Microscopically, each cell would also have a net charge, leading to
long-range Coulomb interactions. In order to avoid these issues, we fix the global proton cell
by imposing that it is equal to the electron one: p, = p.. Moreover, the WS cell proton density
is equal to the global one by constraining volume fraction fV via eq. (3.6). By doing so, the
assumption of independent fluctuations in different cells is broken. Now the volume fraction

Nd e,

becomes a function of the global proton density, and thus of the number densities n
N = fN(p,(n"-?)). In turn, this implies that the thermodynamic potential (3.2)) also acquires a
dependency on the number densities. To be mathematically precise, we write the average cluster

free energy density as

(Fe) = Y nMFNA, (3.26)

N.,d

where the cluster free energy is given in eq. (3.21)) and the single-cluster thermodynamic potential

1s [98.,[106]

~ O{Fer)
Nd _ yN N
R A = R (P = pge) |- (3.27)
q
Substitution of Eq. (3.26) gives us the derivative inside the brackets:
M.d
va 0T ,OFM:
Nd _ 9T cl) _ N ma el
Fi'= S g = Fit+ Don e (3.28)

M.,d’
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where we identify the rearrangement with

N M.d' aFA;I’d/
oF" = n"ht —— . 3.29
%/ anN’d ( )

The calculation can be done straightforwardly with a change of variables. Using Eqgs. (3.4)

and (3.23):

o OFY g ft
SEN = /?Vpd Z pitd el f
on'V Lot oft ap,

=V (o) = ppg) . a1 (3.30)
= Pp ~ Ppg & 9 M pgxl _ppg. :

If we additionally assume that the different averaged quantities are not correlated, such that
the average commutes with the product — (x){y) = (xy) — then we can divide the cluster
volume coming from the free energy by WS cell average, appearing in the denominator of

nV-d = pN-d /(Vy6), and the rearrangement becomes

(3.31)

M 9FM
(SFN:VN (pg_ppg)< f SC,d>,

péw ~ Ppg an

which is an expression similar to the ones proposed in Refs. [101,{106,/107]. Nevertheless, in
those, the average was introduced by hand due to a missing sum over M, d in the calculation. We
have shown that the average appears directly from the calculation if the change of variables is
done properly (with the extra assumption of uncorrelated averages). The notation (X) indicates

ensemble average.

Nevertheless, a complete determination of the pasta probabilities becomes numerically
challenging with the rearrangement, since we must determine the number densities and the
rearrangement term simultaneously and self-consistently. To avoid this complication we identify
the average value of the rearrangement with its value calculated in the OCP with optimal geometry

do:

M OFY N\ Fegd®  dof (Pfo—Ppg) ~Y, (0" = pg) 5o
a\ _ Tea d® |
Py = ppg O © df  Raps Ph = Ppe Y,

Now we analytically prove that ensemble equivalence is respected by demonstrating that
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the equilibrium equations of the MCP are equivalent to those of the OCP — eqs. (2.82), (2.81))
and (2.84). We characterize the most probable cluster by the superscript Ny = { pg 0 pNo yNoy,
and we find the conditions by taking the derivative of the one-cell cluster thermodynamic

potential (3.27) w.r.t. to these variables at the point where it is equal to zero.

We begin with the derivative w.r.t. the proton cluster density, with cluster volume and

neutron density kept fixed

= [ N
OQN-4 _yN OFy  9a [+ < M aTsc,d>
- ~Fp
apg p,ly,VN apg aplpy p,I:],VN plly _ppg 8fM
[ N N
v| v P sca N Teea
=V7 |k + 9o N 91N
Pp fN pN yN Pp ~ Ppg f PN ol VN
M
fM ‘7:sc d
—up + =1, (3.32)
’ <pf,” ~ppg OFY
and rewrite it at equilibrium — when the derivative is zero — as
N N
/JNO " a7:sc,0d + fNO 7:sc,od =y + f 7jsc,d (3 33)
p N N No _ FP 1 _ I : :
appo ppo_p[’g af 0 pl’_pP af OCP

The terms with derivatives of the S+C energy w.r.t. fV cancel out exactly when the MCP

solution coincides with the OCP — see eq. (2.75)). For the neutron density, we take the derivative

aON4 v |87y 0Ty,
N =V N N~ Hn
o pN. VN | dpn dpn
[ OFN
SV ) U (3.34)
"oapl T

which is the minimum when neutron density is pY = p!, as can be seen by comparison with

eqs. (2.73) and (2.82).

Finally, to complete the proof, we turn to pressure equilibrium by taking the derivative
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w.r.t. VN which is a function of RQ’ :

OF Y 4 ORY
ORY VN

1 a?—Md
N 5C,
- . 3:39
+ (pp ppg) (pﬁd _ppg an ( )

dQy

OVN | ~

. = GC/,N = ﬁ,g - :up(p]]}‘r = ppg) = :un(p:j:} - png) + Tg‘](\'id + VN
Pp +Pn

This is exactly equivalent to eq. (2.83), and thus to the OCP equilibrium condition. This is only

true due to our assumption that the S+C energy is minimized in each cell.

To illustrate the importance of the rearrangement term we show the probabilities cal-
culated both with and without it in Fig. @ The vertical dashed line is drawn over the OCP
solution. The rearrangement is clearly more important at higher proton fractions, due to the
larger contribution of the Coulomb energy, nevertheless, even at ¥, = 0.1 there are differences
between the most probable cluster with and without the rearrangement. For simplicity, these
probabilities were calculated by fluctuating only the cluster proton density and pasta geometry,
while maintaining the neutron one fixed (p = p!).

pp =0028 fm™* T =5 McV
0.09 ‘ : T ‘

Yp=0.1 : Y, =03 Y, =05

0.06 | droplets
’ rods -
slabs

W/ rear —

0.03 /o rear = = =

RY (fm) RY (fm) Ry (fm)

Figure 15: Pasta probabilities calculated with (continuous lines) and without (dashed lines) the
rearrangement term. The vertical dashed line is drawn over the OCP linear radius. The plots are for
pp =0.028 fm ™3, T=5 MeV and ¥,, = 0.1,0.3 and 0.5.

Additionally, in Fig. @we show the average linear radius
(R = X p™4RY (3.36)
N.d

along with the OCP value for T=3 MeV. On the left we show the curves for proton fractions
Y, = 0.3 and 0.5, where the optimal geometry is much more abundant than the others— see
Fig.@f and on the right side, we show Y, = 0.1. For the higher proton fractions, which are less

impure systems, the average radii coincide with the OCP, while for a large mixing of geometries,
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Figure 16: Average linear radius (line-points) and radius obtained by minimizing the S+C energy for the
optimal geometry (dashed lines) for ¥, = 0.3, 0.5 on the left and ¥, = 0.1 on the right. Both for T=3

MeV.
10? ‘ ‘ , . . .
T=1 MeV ZSNA T=5 MeV
Z s
" (Z‘) .
10 o
droplets = =
rods =
10t slabs w =
0 0.01 002 003 004 005 0.06 0.07 0 0.01 002 0.03 004 005 0.06 0.07
pr(fm=?) pp(fm™?)

Figure 17: Average proton number (line-points) compared to the OCP value (dashed lines) for
Y, =0.1,0.3 and T=1 and 3 MeV on the left and right, respectively.

this is not the case. Thus, the linear size of the pasta seems to be a good quantity to quantify the
geometric impurity.
3.3 Impurities

Lattice impurities are quantified by the charge variance, that is an increasing function of

the baryonic density and temperature [101}/192

Qmp = (82) = Y ™4 (2¥ — 2’ (3.37)
N.d
=((Z")h) 2"y (3.38)

Of course the average proton number
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2RY

0 0.02 0.04 0.06 0.080 0.02 0.04 0.06 0.08
pp(fm™) pr{fm™?)

Figure 19: Average proton number (continuous line) and effective proton number in the x, y and z axis
(red, green and blue dashed lines) for ¥, = 0.1,0.3 and T=1 (left) and 5 MeV (right).

zNy=) pNiz¥ (3.39)
Nd

is independent of the pasta geometries, as shown in Fig.m But the pasta geometric anisotropy
implies that, if itis “seen” from different angles, its effective proton number will change. We state
this in the same spirit that transport and elastic properties are sensitive to the pasta geometrical
anisotropy [331/40]. Thus, in order to quantify these directional changes we define an effective
proton number according to the ratio of the pasta surface area in a certain direction to the droplet

surface area.

Axis szvk SN

Table 6: Effective surface of the pasta structure in the axis of motion of an incident probe. The rods are
considered to have length Lz ws in the x-axis, and the slabs have length L wg in the x and y directions.
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We consider that the pasta structures are oriented as illustrated in Fig. [I8 the cross-
sectional area of rods is in the z and LIZV defines their length in the z direction. Slabs have length
L11V in both y and z directions, and size 2R’1V in the x axis. An incident probe moving in the

k—direction sees a surface area SV

45> Perceiving a larger number of protons Z*N > ZN _if the

area is larger than that of droplets, and a smaller number, if there is a smaller area. The surface
areas for rods and slabs are summarized in Tab. @ Droplets have S’SV = 27T(R§V )2, which is half

of the droplet total surface, as seen by an object moving towards it.

In this point of view, we define the effective proton number seen by a probe moving in
the k-axis as
SN
Z5N = ZN 2% 3.40
=25 (3.40)
3
and we show their values in Fig. @for Y, =0.1,0.3 and T=1 and 5 MeV. As more rods or slabs
are present, the effective number of protons seen by a probe moving in the z direction decreases,

and as rods turn to slabs the y proton number also decreases, but in x it increases.

Using eq. (3.40) we define the orientation-dependent variances in the same spirit as

eq. (3.37)

(AZp? =y N (3 - <Z;N>)2, (3.41)
N.,d

which are shown in Figs.[20]and [21]for T=1 and 5 MeV, respectively, along with the one defined
by eq. (3.37), which is displayed as a solid line. The order of magnitude is consistent with
previously proposed values: in ref. [S7], Pons proposes curves with the impurity ranging from
0.1 and 100, while in [29] they calculate a value ranging between 30 and 40 in molecular
dynamics simulations, and in [28]] they calculate the average impurity of the crust to be 29. In
our results, larger anisotropic fluctuations occur near changes in dominant geometry. The results

of this section were published in [195].
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Figure 20: Total (solid line) and orientation-dependent (dashed) proton number variances for T=1 MeV,
Y, = 0.1 (left) and 0.3 (right). The x, y and z axis denote the direction of motion of the probe, and are
represented by the colors red, green and blue, respectively. We assume local domains of different
geometries aligned along a common symmetry axis x.

10t

103
(AZ)]

107

10!

107 ¢

10-L I L I i | :
0 0.02 0.04 0.06 0 0.02 0.04 0.06

pp(fm=3) pp(fm—3)

Figure 21: Same as Fig.for T=5 MeV.



56

4 Conductivity of nuclear pasta

In this section, we introduce the formalism of transport theory via the Boltzmann equation
and the relaxation time approximation. We generalize the formalism of elastic isotropic electron-
ion scattering to the elastic electron-pasta scattering and calculate the anisotropic collision
frequencies that arise due to the pasta anisotropic geometry. The RMF model is used to give

quantitative estimations of the conductivity and collision rates.

4.1 Transport coefficients and the Boltzmann equation

Transport phenomena occur when some conserved physical quantity in a system, such
as charge or momentum, changes position. These changes are induced by out-of-equilibrium
conditions, such as temperature gradients, non-homogeneous chemical composition, or the
presence of electric potentials, which modify the particle distribution functions f(r, p, ) and

give rise to currents of charge, heat and momentum. These are respectively defined as

d3

JeiZQZ‘/# Vif(r’p’t)’ (41)
‘ o

Joi= Z/ G (e = 10) v f .1, 4.2)
d3p

IL;; = Z/ Wpi v f(r,p,1), 4.3)

where the variables r, p, v, g, €, and y are the position, momentum, velocity, charge, energy, and
chemical potential of the particle affected by the out-of-equilibrium conditions. The function
f(r,p, 1) is the probability distribution of the particle. At equilibrium, it is simply given by the

Fermi-Dirac expression, eq. (2.33)), which we will denote hereafter as £(%.

The main transport coefficients are electric (6) and thermal (<) conductivity and shear
(17) and bulk (é ) viscosity, which are respectively defined as a linear response to an effective

electric field E;‘ =E;+ g~ 'Vu, temperature gradient VT, and to variations in the center of mass
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velocity V' (7, 1), i.e.

Je,,‘ = (7','jE;f (44)
or
' Y 6xj
2
H,‘j =1Nijkl [Ble + 0V — §6le -V]+ {ijV - V. (4.6)

The values of these coeflicients are dependent on microscopic particle collisions and flavor-
changing processes that occur, which modify the particle distribution function. The distribution
function obeys the Boltzmann equation, which can be derived by taking the time derivative of f

as:
of of of df _
E-H).E-FF'G_p_dt_l[f] *7)

where v = 7, F' = p are the external forces and /[ f] is the collision integral that takes into

account the microscopic processes.

Astronomical observations related to the thermal, magnetic, and spin evolution of neutron
stars can provide us with indirect information on the transport properties of dense matter [29,
102,/196|]. These observations must be compared with simulations by properly modeling the
coupled magneto-thermal evolution. Hence, models are necessary for the microscopic processes
that give rise to the conductivities and viscosity throughout the star [[53/197,/198]], which are

then used as inputs to the macroscopic simulations, see [[199-201]).

In the crust, electrons, are the primary carriers of heat, charge, and momentum. Their
scattering with ions, lattice phonons, and other electrons determines the rate at which these
quantities are transported. The dominant contribution depends on the state and composition of
the system: electron-electron collisions become relevant only at very small temperatures and
densities or in a low Z plasma, which may be interesting in the context of the NS surface or
in white dwarfs [202,203]] and electron-ion contributions are the dominant ones both in liquid
(T > T,) and in solid (T < T,,) ions [50f]. In the solid phase, the main contribution comes
from the scattering with lattice vibrations of the ions (phonons), while in the liquid it comes
from the direct electron-ion scattering [47,149,198]. The free neutrons in the inner crust can
also contribute to the heat and momentum transport via scattering with magnetic moments of
electrons or phonons, though their contribution is likely relevant only close to the crust-core

transition [46}204,[205].
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In compact stars, electrons are strongly degenerate (T' < Tr = u, — m,), SO microscopic
processes are restricted to excitations near the Fermi surface. This greatly simplifies calculations
since the electron energy in can be taken as the Fermi energy itself. The reader interested in
the non-degenerate case should refer to the appendix of ref. [206], which is a reference that also
provides an interesting review of NS cooling. In principle to determine the transport coefficients
one must have full knowledge of the collision integral and solve the Boltzmann transport equation
to find the particle distribution, and then rewrite eqs. (@.1)), (@.2)) and (&.3)) as a linear response to
the gradient fields. Nevertheless, this is a very ambitious program. Solutions are usually found
in a variational fashion or with the relaxation time approximation, which can be used as long as
the temperature is sufficiently high so that quantum corrections to the scattering can be ignored

(w =€, — €,y < T). We will follow this path.

In the relaxation time approximation, we assume the distribution function to be slightly

out of equilibrium, such that

f(r,p,t) = fO(r,p,t) + 5 (p), (4.8)

with the position and time dependence in the equilibrium term coming from the temperature

and chemical potential fields 7'(r, ¢) and u(r, t). The collision integral is written as

_9f

T

I1f]= (4.9)

where 7 is the relaxation time of electrons, thus the approximation name. For simplicity, we
shall use the collision rate v = 1/7 from now on. We shall assume the electrons are in an external
force F' and have a center of mass velocity V (7, t), such that the dispersion relation becomes a

function €, (v, V (r,1)).

By using eq. (4.8) we can linearize the Boltzmann equation (#.7)). To do so we begin by

taking the differential of the equilibrium component

dfoz%dt+(—%) [(‘9—”+ k%+(e”_”) aT)-dr—aj-dp]

ot dep ) |\ OT PEor T ) or op
_ofe O . Of
= dt + . dr + op dp (4.10)

such that we can now use eqs. [.8)) and (#.10) in eq. (4.7). By keeping only first-order terms in
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0 f we arrive at the linearized Boltzmann equation

afe\ [ ou ep—uar] 1( afy v, v 2
F — |+ = |- 5a.V-V
(Gep)v [ak s vl I el L0021
dfo 9/ s f
2o 5V V| +F 11£1. 411
+[az +( ae,,):s“"pf w¥-Vi+ b, =11 “.10)

The first term contains the temperature gradient and electric field that give rise to the conductiv-
ities, and it is first order in the momentum (e v;). The second term contains the mathematical
structure of the bulk viscosity definition, eq. (4.6)), and it is of second order in the momentum
(ec p;jvi). The third term is related to the shear viscosity, which is due to flavor-changing

processes.

Our main interest in this thesis is the conductivity, so we’ll simply ignore the terms

related to the viscosity by keeping only linear terms in v,

dfo ou —puoT 0o f
— Ly eE+ T x B =1I[f], 4.12
( ae,,) ox T oz el ) /] (4.12)
where we used F' = —e (E +v X B). Let’s also ignore the magnetic field momentarily. By

using the relaxation time approximation, eq (4.9) we straightforwardly find a solution for ¢ f:

0 —por
L o eE+ K

e T 7 9m (4.13)

-1

4

3f0)

Je,

To find the electric conductivity we take VT = 0 and substitute the solution in eq. (4.1)), and for

the thermal one we take E* = 0 and substitute it in eq. (4.2)). We get

e pLy 2
J, = Pr TP e C e px (4.14)
32y mhv
and )
T 2T .
J, = ’; (-vr)y= 21" " (=V7) (4.15)

where we have performed a direct integration in the solid angle €,

4 2
/ dQviv; = %5,,- (4.16)
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and used the Sommerfeld expansion [207]]

/OO ( fo) 2~ 7 7
de G(¢€) G(er )+ T G"(er )+ —G""(ep) +-- 4.17)
0

Oe 180

to first order by making the change of variable dp = de/v. Thus we find, in the relaxation time

approximation, the conductivities [47,48,51]

e’n, n*Tn,

o, = —0;; Kij = ——
P mivy Y ! 3mtv,

5 (4.18)

where m; is the effective electron mass and pr (vr) the Fermi momentum (velocity). The
collision frequencies are the same only in the case that no quantum effects are taken into

account, otherwise, there are different kinematic factors entering v, and v, [47,50].

The case of viscosity is a bit more complicated. Its expression is very similar to

egs. [@.18)
NeDFVF

Sij 4.1
Svp 7 19

nij =

but to determine this expression and calculate the collision frequency it is necessary to introduce

a full expansion of the collision integral in spherical harmonics

- Z S fim(€p)vi(€p)Y]" (Qp), (4.20)

from which we can determine that the [ = 1 term corresponds to the simple eq. (£.9), from
which we got the conductivities, while the viscosity is related to / = 2 (v;, = v;=2) by writing the
(complex) spherical harmonics in terms of real coefficients, i.e. an expansion in homogeneous

harmonic polynomials [[198},208-210],

FP) =) fim¥"(Qp)
Im

PiDj

=ﬁ+%ﬁ L

This can be done by making linear combinations of the spherical harmonics to produce real
coeflicients f; ;,. ;,, with the power of / corresponding to the power of p;. By orthogonality, we
can identify the first order power p; in the left-hand side of the Boltzmann eq. (4.11)) with / = 1

and the second order p;p; with [ = 2, such that each one contributes to a different multipole of
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0 fim coeflicients, defined by

5f(P) = D fim (€)Y (Qp). 4.21)

1>0m

where [ = 0 is left out because it corresponds to the equilibrium distribution f°. By direct
substitution of eq. (#.21) into the transport coefficients, eqs. (.I)), @.2) and @.3) we see that
[ = 1 contributes to the conductivity and [ = 2 to the viscosity because the angular integral is

different from zero only if it is performed on even powers of momentum p;, as in eq. (.16).

Because of the isotropy assumption, the collision frequencies only depend on the modulus

of the electron momentum transfer ¢ = p — p’ according to the general expression [46-48]:

4re*Z? [F d 2 F?
w= T [T L) R 5 Ls), (422)
vEpy Jo q der. £*(q)

where F(q) is the ion form factor, £(q) is the dielectric function, S(q) is the effective structure
factor that accounts for particle correlations, R;(q) is a Kinetic factor

2
Ri(g) =1, Ry(q)=3|1- -1 (4.23)
4pr

and vp, pr, and ef are the Fermi velocity, momentum and energy respectively. Unfortunately,
eq. [@.22)) cannot be straightforwardly generalized to the case of anisotropic scatterings. To
better understand the meaning of each term in this expression, and how to generalize it to the

pasta, let’s discuss how to calculate the collision integral for elastic electron—pasta scattering.

4.2 The collision integral

The term collision integral /[ f] on the right-hand side of the Boltzmann equation (.1T])
accounts for the microscopic processes that give rise to transport phenomena such as scatterings
and decays. It can be written as [211}212]

d3p/

= | Gnp [P(p" > p)-P(p—p)] (4.24)

1111

where P (p’ — p) is the probability that a process changes the electron momentum from p”’ to

p. We will assume the electrons conserve energy in the collision, and since they are strongly
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degenerate we can approximate €, ~ €, = €. Thus, the collision is elastic, and the degenerate
electrons scatter with the electric potential generated by the localized pasta. The probability of

an electron changing momentum is given by the Fermi-rule
, 1
P(p—p)=2m8(cp ~ep)5 ) IOIHO) (4.25)
5,8’

where we average over the spin states s’ and sum over s, the -function ensures energy conser-

vation, and the electromagnetic interaction Hamiltonian is

Hi(1) = e / P §(@)y A @)v (@), (4.26)

where A, is the photon field and y is the electron spinor. Now we can substitute plane wave
solution for electrons, as discussed in the nuclear RMF model in Section 2] see eq. (2.20). For
the second term of eq. (4.24)), with initial and final momenta respectively given by p and p’ we

have

2

e + _ i),
OIH 10)? = |——==(a, yap)ipsY ttps / dxAo(@)e PP (4.27)

vV2€p2€,

The distinction between the two terms in eq. (4.24)) is due to the order of the creation/destruction

operators. We can write the electron distribution function in terms of these operators as
(ahap va), waps) = f(p) (1= F(P)), (4.28)
such that eq. (4.23) can be written as
P(p—p')=2n6(ep — ) f(p) (1= f(P") Wpp, (4.29)

with the transition rate defined as

2 2
e _ —i(p—p")-
Wy = W(p,p') = S?E ity s / dPxAg(x)e PP (4.30)
P 5,8
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We can contract the Dirac spinors using trace properties of the gamma matrices [[138,213]]

D iy sl = Te [y pl, + me)y (7 py + me)]
2
= 8¢ (1 - q—) : (4.31)

2
4€p

to write the transition rate as

2 2
Wop = |1 - / BaAy(x)e PP (4.32)
de;
which is symmetric in the initial and final momentum, i.e.
Wpp = Wprp. (4.33)

By exchanging p and p’ in eq. (#.29) and the symmetry of the transition rate, the collision

integral can be written as

d3p, ’ /
11f] = 2n / R0 = Wy () (1= 1) = 1) (1= F@))]. @39

such that the product of distributions cancel out, and the use of eq. (#.8) leads to

d’p’
If]=2n / #5(% — €)Wy [0£ (D) =6 ()] (4.35)

due to elasticity assumption.

The complete information about the scattering is in the transition rate. We restrict

ourselves to the scattering with an electric potential A, = (Ao, 0), given by

Ao(z) = / ' p (2" )U(x - a), (4.36)

tot

where p,,

is the proton density of a macroscopic volume V and U is the potential of a proton in

x acting at =’
e

Ulx-x') = (4.37)

|z — |

Equations with the mathematical structure of (.36) are known as convolutions. This allows
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the application of the convolution theorem of Fourier transforms to the transform of the electric

potential [214]] in eq. (@.30)
/ Ao ()™ = p (@)U (q) (4.38)

where we recall that g = p—p’ is the transferred momentum. The functions pg’t(q) and U(q) are
the Fourier transforms of the system proton charge density and of the proton electric potential,
respectively. We begin with the potential: to calculate the Fourier transformation we add a
decaying exponential with a controlling parameter a to contour the divergence we would obtain

otherwise

U(q) :e/d3a: eiae & = ﬂe/rzdr/d(COS 0)e! " o0 (4.39)
X
igr _ ,—iqr
:2ﬂ€/r2dr R . ‘ e = e
rLqr q2+a2
04
20 g_ (4.40)

Though the @ parameter we added was spurious and should be taken to be zero in the end, the
final result, eq. (4.40) is divergent at ¢ — 0. This is due to the long-range nature of the Coulomb
interactions. Nevertheless, this is not a physical divergence: electrons in the plasma tend to
repel their neighbors, creating a ball around them where no other electrons are found — a density
fluctuation. This hole moves along with the electron, carrying inertia and acting as a positively
charged particle that gives rise to a screening function that regularizes the divergence. The static

screening functions &(g) modifies the potential as

4re

Y@= e

(4.41)

and it has been calculated for the strongly degenerate electron gas in ref. [215]],

k2. (2 2 yx
=1+ TF )=« < J)4r
&(q) —{3 3,

x%+1—3x%y210 ‘1+y‘
(]2

log(x, +v,) +
g(xr +yr) oo =y

r

+2y2x3 — 11 +x2y?

6yx?2 Yr

Yy + V1 +x7y?
YYr = V1 +x7y?

log

} (4.42)



65

where y = ¢/ (2pF), X, = pr/me, ¥r = V1 + x2 and k7 is the Thomas-Fermi momentum

krr = \[471'626”6/8,“6 = 2Naemyr /(7 ) PF- (4.43)

In the limit y < 1 this equation reduces to

e(q) =" 1+ kZLZF (4.44)
q

which is simply the potential calculated with the screening exponential in eq. (4.39) by iden-
tifying @ = krp. This correction can be calculated using the Poisson equation for the elec-
tric potential by accounting for the density screening due to the corrected chemical potential
0pp = pp (u+eAp) — pp (1) [211]. The interested reader should read section 3 of ref. [211] for
an in-depth theoretical description of screening, or section 2.1 of [3]] for a concise discussion. We
should explicitly mention that, while in this work we utilize a static isotropic screening, strong
magnetic fields can lead to anisotropic behavior producing Friedel oscillations [216,[217] and

a dynamic dielectric function is necessary in case the projectile electron has a velocity smaller

than the average plasma velocity, which is never the case for strongly degenerate matter [3,218]].

Now we turn to the Fourier transform of the system proton density. In position space,

the density can be written as a sum over the centers of mass of different clusters in positions Ry

P (r) = > pp(r = Ry) (4.45)
k
= / d3RZ pp(r — R)5*(R - Ry) (4.46)
k
pir) = [ @R py(r = Rypeu(R) (4.47)

where in the second line we have added a ¢ function so that this equation can be written as a

convolution in the third line. Here we define the pasta center of mass density as

pew(R) = ) 8 (R - Ry) (4.48)
k
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and the charge density of a single pasta structure

Pl O(R3 =), d=3
pp(T) = {p) O(Ry — 1) O(Ly - 2|2)), d=2 (4.49)
P, O(Ry —|z]) O(L1 - 2[x]) O(L; - 2|y)), d=1

whereas the pf, on the right-hand side is the constant charge density of the pasta, as calculated
in chap. 2] The convolution (.47) allows the Fourier transform of the total proton density to be

written as

P (@) = peu (@) pp(Q), (4.50)

as in the case of the electric potential.

Whenever we are dealing with a macroscopic system, in order to account for all its
possible configurations, the thermal average (...)r must be taken into account. In principle, this
is done at the level of the transition rate, but now we have factorized all macroscopic information
into the center of mass density, so the average is made only in the product pcy(q)pcy(—q)

entering eq. (4.30)), which we define as the static structure factor

S(q) = {pcm(=q@)pcm(q))

) . ) 4.51)
- V/ Brddr e (r-r )<PCM("“)PCM(7“,)>T-

Additionally, we define the form factor as the Fourier transform of the one-pasta density nor-

malized by its proton number:

1 .
Filg) = [ dretmp,m, (452)
Z Jws
where we add the subscript d to denote its dependence on the pasta dimension. The matrix

element is now written as:

dnZe Fy(q) 2
q*e(q)

Pe
2
de;,

S(q), (4.53)

Wyp = € (1 -

whereas both F;(q) and S(q) are sources of anisotropy in the scattering with pasta, the form
factor accounts for the geometric anisotropy from the finite size of a single pasta structure,

while the structure factor accounts for the lattice anisotropies due to correlations and for out-of-
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equilibrium particle excitations [[198,219-222].

In the liquid phase, the static structure factor can be obtained with OCP simulations of
Coulomb plasma with Monte-Carlo calculations, e.g. refs. [223H225]], or via the classic theory
Landau-de Gennes model of liquid crystals that accounts for thermal density fluctuations in
liquid-crystals [219,220,226L[2277]. In the solid phase, electrons start to interact with lattice
phonons of the system, which are accounted for via the structure factor by considering the ion
center-of-mass displacements. S(q) will depend on the lattice structure and on the phonons
energy spectrum and polarization, which will depend on the g orientation, leading to essential
differences between scatterings perpendicular and parallel to the pasta symmetry axis. To the
best of our knowledge, the structure factor of the nuclear pasta has not been calculated yet. This

is a non-trivial task and a work in progress.

The structure factor can also account for particle excitations within a single-pasta struc-
ture, as discussed in [221]] for the pasta. Nevertheless, since those are due to single-particle-
excitations within the scatterer, they are relevant for high-energy scatterings (high ¢), which
essentially hides the structure of the scatterer, which is more relevant at lower ¢, thus the con-
tributions of particle excitations in the pasta and in the homogeneous matter are identical. We
do not consider these thermal particle excitations here, since they are not a source of anisotropy.
They are equivalent to the homogeneous structure factor, which was analytically calculated at

zero temperature [[228|].

Due to the lack of calculations of the structure factor we consider the pasta structures
are completely uncorrelated, so scatterings occur with a static pasta structure. Substitution of

eq. (@.48) considering a unique Ry leads to

S(q@) = pi (4.54)

where p; is the ion density [46-48]. In this case the anisotropy is fully due to the pasta geometry,

accounted for in the form factor.
For F,(q), analytic expressions can be found by direct integration of eq. (#.52) for the
spherical, cylindrical, and planar geometries

3Z

* Droplet: For droplets the proton density is pg =0
3

and due to the rotational symmetry
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Figure 22: Cluster geometries (droplets, rods and slabs, respectively), the transferred momentum of
electrons q and the magnetic field B = B,& + B, 2 are also shown.

we can choose q to lie in the z—axis, such that

3 2 1 R3 .
3/ d¢/ d(cos 9)/ P2 dr e'47cos?
4nR; Jo -1 0

3 R3 igr _ ,—iqr
= — r2 dr ¢ - - ¢
2R3 Jo iqr

F3(q) =

= R [cos(gR3) — gR3 sin(gR3)] . (4.55)
3

In this case, the scattering depends only on the exchanged momentum absolute value
|q|, which is equivalent to a dependence in the angle between incoming and outgoing
momentum only, since

q* =2 p%(1 —cosé), (4.56)

where cos ¢ = p - p’, meaning the scattering is isotropic. For the rods and slabs, the form
factor additionally depends on the angle formed between the pasta symmetry axis (and
its parallel plane) with the transferred momentum. By choosing the symmetry axis of the
geometries to coincide with the z-axis, this dependence turns out to be in the vector g

itself. This is depicted in Fig. 22]

* Rod: For rods the proton density is p, = —Z__ and we choose z as the symmetry axis,
2

2
nR5L
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leaving g to point in an arbitrary direction. The form factor can be calculated as:

1 Ly/2

2 Ry . .
F2(q) = TR2L dz / d¢/ pdp elq(ZCOS9+pcos¢sm0)
b2 J-1y)2 0 0

1 eiqLcos@/Z _ e—iqLcosO/Z Ry 2r ) ]
— / pdp/ d¢ elqpcos¢sm6’
nR3L, iqcos@ 0 0

2 . [gLcos8 /Rz )
= sin dpJ ( 1 —sin 9)
R%qucose ( 2 ) 0 paplo\ae

2 qu) 2
= sin J 4.57)
Lyg, ( 2 ] q.R 1(g2p)

where g, = gcos 0, g1 = \|q% + g3 = q|sin|, Jy is the zero-th order cylindrical Bessel

function

I
Jox) =~ /0 dpe~cos(® (4.58)

and J; is the first-order cylindrical Bessel function
1 [” ;
Ji(x) = — / dpe P cos(p). (4.59)
T Jo

» Slab: We choose the slab to be oriented such that in the xy—plane it has lengths L, and
in the z axis it has length 2R;. The proton density of the slabis p, = Z/2R 1L%. The form

factor is

1 Ly/2 Ly/2 Ry S
FI(Q) - dx / dy / edxXtdyy+qzz
2R%L% -L/2 -Ly/2 -R;

_ (2sin (qux/2>) (2sin (quy/2)) (sin (quz)) 4.60)
Lig, Ligy Riq;
where g, = gsinfcos ¢, g, = gsinfsin¢ and g, = g cos 6.
We write compactly for future reference:
——— [sin(gR3) — gR3cos(qR3)], d=3
(qR3)?
2 . CIZLZ 2
= J R . d=2 .
Fa(q) 7L Sln( > ) e (q1R2) (4.61)
2 L 2 L 1
sin( 1qx) sin( My) sin(R1q;), d=1
Ligy 2 Lle 2 Riq;

Recall that the radius R; can be calculated from the RMF model from eq. (2.70), but the length
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Figure 23: Left panel: correlation function decay parameter 7 for slabs. Middle (right) panel:
estimation of the correlation between neighboring slab structures as a function of density (temperature),
see text for details. Curves for 7 =0.1, 0.5, 1, 3, and 5 MeV are shown on the left and center, and for
pp =0.07,0.075 and 0.08 fm > on the right.

L4 of rods and slabs is unconstrained by nuclear theory. Indeed, the length will depend on the
temperatures analyzed and on the strength of the thermal fluctuations that disrupt long-range

order, which is related to the structure factor.

These fluctuations have been calculated in the axis perpendicular to the size L, for the
pasta [88]229] within the aforementioned Landau-de Gennes model of liquid crystals [219].
For slabs, the thermal displacement presents a logarithmic divergence with the linear dimension
of the sample, reflecting the Landau-Peierls instability that destroys one-dimensional order in
a three-dimensional system. This is quantified by a critical temperature at which the thermal
displacement becomes as large as the cell radius, so thermal fluctuations of slabs in the z direction
can become larger than Rys [88]226]. Concerning the rod phase, the thermal displacement is
finite and the long-range order in the transverse plane is in principle preserved. The critical
temperature was shown to strongly decrease with increasing baryonic density and, for fiducial
values of the surface tension, to be of the order of a few MeV both for slabs and for rods
[88]. Above such temperatures, it is reasonable to expect that the pasta is fully destroyed, even

if complex deformed disordered cluster structures may still be present, as suggested by MD
simulations [29}/32}/79,[83].
Nonetheless, even though complete calculations of the structure factor are lacking,

there exists asymptotic results for the density correlation of slabs |1231=§%%@§] (np(r)n,(r'))r =
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Figure 24: Total proton number as a function of density for temperatures of 7 = 1 and 3 MeV.

(6n*(r — r'))r showing the power law behavior:

(on*(r)r o 2|7 |z = 0 (4.62)
oc rf" r, — 0o, (4.63)
where )
q,T
= 2 4.
1= 8xaC, F04)

with go = 7/Rw1, A2 = R%,l(l +2f —2f2)/45, f = Ri/Rw: and Cy = 6g¢, where &c is the
average Coulomb energy density in the slab-cell [229]]. More recently, the calculations of elastic
constants were improved by [2_31] We limit ourselves in this paper to temperatures high enough
for the hypothesis of uncorrelated scatterers to be realistic. To this aim, we plot in the center
and right parts of Fig. @the quantity 277 as an estimation of the ratio between the correlation
function at z = 2Ry, corresponding to a distance containing two different slabs, and the same

quantity at z = Ry, such that a single slab is accounted for, i.e.

- 6n2(2RW1 )

o 9" (Rw1)
6n?(Rw1)

(4.65)
Even if these distances might be small to justify the use of the asymptotic behavior given by
eq. [@.62), the quantity 277 can be taken as an estimation of the correlation reduction due to
thermal effects. The numerical values of the i parameter itself are displayed in the left part
of Fig. @ for different temperatures as a function of the baryonic density. These results are
numerically obtained from the pasta configuration predicted by the RMF model described in

Section [2'} As expected, the correlation decreases with temperature and density. We can see
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Figure 25: Left: Effective length of the pasta transverse to the symmetry axis, normalized to the
Wigner-Seitz radius. Right: Proton number of the pasta as a function of density. The different pasta
geometries are indicated with different colors. The temperature is fixed to T = 3 MeV.
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0-8 T T T
7N\ (quo q:kp/z (Dq:"'T/4
0.6 | / 1 4= ke
o ;‘; \
S 04} / 1
Ca:—:
0.2 1
0 = 1 A d = : i
0 /2 T 0 /2 T w/2 T
8 0 4

g

q

q

Figure 26: Squared form factor for rods at the representative density pg = 0.06 fm~=3 (left, yellow) and
slabs at pp = 0.08 fm~2 (middle and right, blue) as a function of the azimuthal angle, for different
transferred momenta g = kg /2, kr and 2k shown as continuous, dashed and dotted curves,
respectively. For slabs we fix ¢, = 0 (middle) and /4 (right). The effective lengths L are taken from
Figure@ The temperature is fixed as T = 3 MeV.

that only at very high temperatures — above 1 MeV — the hypothesis of incoherent scattering
appears justified. For the following numerical applications, we will focus on 7' = 1 and 3 MeV
as a representative temperature value. The proton fraction is now constrained by S-equilibrium

(Hp = Hn — pe), and it is shown in Fig.[24]

Since the correlation asymptotically follows the same power law in the transverse
and in the longitudinal plane, we define the effective length of the slab L; from the same

order-of-magnitude consideration:

sn2 (LT

& 0 4.66
5n2(LW1) ( )

where Lw is defined by normalizing the slab WS volume to the droplet volume at identical
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Figure 27: Squared form factor for rods at the representative density pg = 0.06 fm =3 (left, yellow) and
slabs at pp = 0.08 fm~? (middle and right, blue) at ¢ = kr /2 as a function of the azimuthal angle, for
different pasta lengths momenta L = V2, 10, 100 Lys shown as continuous, dashed and dotted curves,
respectively. For slabs we fix ¢, = 0 (middle) and 7 /4 (right). The temperature is fixed to 7 = 3 MeV.

thermodynamic conditions, as done in the MCP calculation of Section@ Comparing egs ([@.63)
and @ we consider that the effective length of the slabs is

L = V2L, (4.67)

For the rods, in the absence of an analogous calculation of S(q), we assume the length of interest

to be equal to the slabs one if they were dominant at the same density
B = IERE, (4.68)

The resulting numerical values of the pasta length and proton number at 7 = 3 MeV are shown
in Fig. @ Due to the fiducial nature of our length estimation, we will still discuss how our

results are sensitive to the pasta size.

The relation between the size probed by a particle and the momentum are inverse,
therefore low momentum interactions probe the pasta as a whole, whereas higher momentum
would probe the excitations of its constituents [221]]. Since we account for the pasta as a whole
through the form factor, we expect them to be larger at lower ¢ and lower at higher ¢. Indeed, in
figs.[26]we show the structure factors of rods and slabs calculated at different ¢ as a function of
the azimuthal angle #,, and we confirm that, while the shape of the form factor is the same for
different g, its absolute value diminishes as g increases. The same is true if we fix ¢ and increase
the size of the pasta: as the length increases the form factor becomes more concentrated at lower
g, as shown in Fig. 27] Additionally, the form factors are peaked in the elongated direction of

the pasta: at 6§, = /2 for the rods and 6, = 0 and 7 for the slabs.
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4.3 Isotropic case

In the isotropic case the matrix element W), is a function of the absolute value of g
or, equivalently, of the angle between the electron initial and final momentum cosé = p - v,

therefore we can make an expansion in Legendre polynomials

Wopr (q) = D wiPi (cos ) = Z Z WiV (@Y (@), (4.69)
[

21+1

then we substitute eq. (4.69) and the expansion of the variation of the distribution function,

eq. (4.Z1) into the collision integral, eq. (.33)), such that

d’p’
11f] = 2n / Eaey Wiy [87") - 67 p)].

2
4 4r .
= - 47‘[2\} L+ 1WL 6ﬁm / de’Yl]}/[(Qp)Y[],W (Qp') [Ylm(gp) - Ylm(Qp')] , (470)
Im LM

where we have used that

2 dep P’ p?
/a’p p-o(ep—€y) = |dvp/d | o(ep —€p) = - 4.71)

By using the orthogonality property of spherical harmonics

/ dQY( QY (Q) = 6116 (4.72)
and noticing that
/ dQY"(Q) = Varn / dQY"(QYY (Q) = V4rb106m0 (4.73)

the collision integral is simplified to

I[f]=-

A7 6 fim¥™(Qp) |wo — —| . (4.74)
Z )|

47'[2 21+ 1

From this expression, we are able to define the isotropic collision time, defined in

eq. (@.20), to be

2
-2 =524
7 o wo T+1) 4.75)
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By inverting the matrix element expansion (@.69)

2041 (1
wi=— / dcosé Wy, Py(cosé), (4.76)
-1
we get the well-known result
»? 1
V= — dcoséW,, [1 — Py (cosé)], 4.77)
2nv J_4

which can also be found in eq. 3.135 of [211]].

To get the result commonly used in the literature of transport [32,46-48] we make a

change of variable using ¢ = 2p?(1 — cos &) :

1 2pF 2d
/ d cos & :/ 14 (4.78)
-1 0 p
such that for / = 1 we have
1 2pF 3
=1 = d W ’
Vi=1 47Tp2V ‘/O q aq Wpp .
4netZ? /2pF dq | 7 Fz(q)S( : (4.79)
v S g 1e2| &g
which is exactly eq. (#.22) if evaluated at the Fermi energy. Likewise, for [ = 2
3 2pF 3 q2
= dg [1-L\w,,
Vi=2 47rp2v/0 q d4q ( 4pz) rr
(4.80)

472 p2pF 2 2 2
_ 127r§ Z / dgq |4 (1—q—2) Fz(q)S(q)
rv Jo 4p=) &(q)

which can also be confirmed by eqs. (2) and (3) of [S1]].

4.4 Anisotropic collision rates

Now we turn to the calculation of the pasta collision rates by generalizing the isotropic
calculation shown in 3] We will show that the pasta is described by two collision rates,
an axial (v,) and a perpendicular one (v,), and will derive analytical expressions for them.

Our results are in agreement with the intuitive proposal of [33] to generalize the collision time
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approximation (eq. (4.9)) to the pasta as
I[f]=-®, -v,v, —Dv,v, (4.81)

where v is the electron velocity and ®(€,) is defined by 6f = v - ®. While in [33]] the
expression for the pasta conductivity was obtained using (4.8T)), the collision rates were treated

as free parameters and no analytical expressions for them were derived.

To do so we will make use of the spherical harmonics expansion one more time. The

collision integral expansion is now written as as [[198]

If1== D 6fim(€p) vim Vi (Qp), (4.82)
Im U'm’
differing from the isotropic case as now the multiplicities / and /’ can be mixed and there is an

explicit dependence on m and m’. The coeficients 6 f;,, are the ones defined in eq. {.21)

To obtain analytical expressions for the collision rates we must use expansions of the
variation of the distribution, eq. (4.21)), and of the transition rate (@.30) in (@.35)). However,
the matrix element W,/ for electron-pasta scattering is a function of the vector g, not of its
absolute value |q|, so the expansion in Legendre polynomials (#.69) of the isotropic case can no
longer be used. To proceed we consider the transition rate to be a function of the solid angles
of the incoming and outgoing electrons, Wy, = W), v (), Q,, €,) such that its expansion in

spherical harmonics is

Wop (R Qs €p) = > Wi (€)Y ()Y (Qp). (4.83)

Iml'm’
This expansion does not assume the nature of the anisotropy, being valid for any scattering.
Nevertheless, the pasta geometric symmetries and the assumption of elastic collision will sim-
plify our calculation later by constraining the coefficients W}, ;,,v: in the xy—plane rods are
invariant under arbitrary rotations ¢ — ¢+09¢ and slabs under /2 rotations: ¢ — ¢’ = ¢p+7/2.
Imposing these symmetries to the matrix element, a constraint on the sum m +m’ can be applied.

In the z-axis both are invariant under reflections in the z—axis, 8 — m — @, such that [ + [’ is
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constrained. The constraints due to the pasta symmetry in the coefficients W, /s are

[+1' =2k [+1'=2k
Rods Slabs (4.84)

m+m' =0 m+m' =4k’

with k, K € Z.. Furthermore, elasticity implies that p and p’ are interchangeable, such that

pr/ = Wp/p — (M/lm U'm' = (M/l’m’ Im- (485)

Now we can substitute eqs. (4.21)) and (4.83) into eq. (.33) such that’

3.7
11f] = 2x / éTppaep ey Wy [6£() - 6£(p)] .

2
=- 57 Z Wimab 6 fim / dQu Y Q)Y (Qy) [Y(Qp) = ¥ ()]
Im LM ab
p2
=13 Z Winab 0 fim¥] (Qp) [x/zt_n(saoabonm(gp) - (_1)m5a,5bm]
Im LM ab
2
- ‘f? D Sim¥ Q) VAT Wi oot (@) = (-1 Winiw |, (486)
Im LM

where from the second to third line we used that ¥"*(€2) = (=1)"Y, (L), the orthogonality of
spherical harmonics {.72)), and simplified the p integral with the § function using eq. (.71).
From the third to the fourth line, we simplified the Kronecker-ds with the summations. In the
first term inside brackets we have a product of spherical harmonics of equal arguments, so we

use the contraction property

Y@y (Q) = Z(—l)m’\/ QL+ D@L+ DI +1)
'm’

4r
(4.87)
I I' L [ L\,
x Y2 (Q)
0 0O m -m" M
o . L L I3 _ .
to write it in terms of a unique one. Here, are the 3-j Wigner symbols, which are

m; mp l3
not zero only if my + my +m3 =0, |[} — | < I3 <[] +[; and the sum /| + [; + [3 is an integer.
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They also obey the symmetry property

L b 1 L I3 1 Iz L1 1
A B T 1):(3 1 2)’ (4.88)

mp my ms3 my m3 mj m3 mp mj

and their values can be read off tables or calculated via their connection to Clebsch—Gordan

coeflicients {Iym, l[amy|lz — m3) [232,[233]

L L I3 —1)li1—l—m3
= Lﬂlml, Lms|lz — m3). (4.89)

mp mp ms 2[3 + 1

Using eq. (@.87) the collision integral (4.86) is written as

2
1= =253 6 fum| Wenoo Y (=) @I+ QL+ D21 +1)
an Im LM | 'm’
(4.90)
LroL\ft oL\ . i "
X er (Qp)_(_l) (WLMl—mYL (Qp) :
00 O)/]\m -m" M

Now we have a unique spherical harmonic and we are able to identify eqs. (¢.82) and (#.90)
with each other. We can obtain the collision rates either by renaming the dummy indices or by
multiplying both equations by Yf*(Q ») and integrating them in €, such that the orthogonality

relation (4.72)) can be used to write

2
vhn' = L1y R D@+ D) Y Wi o0V2L + 1
42y e o)
I I L\[L 1| U . '
X - (_1) Wim? 1=m |-
0 0 O/J\M m -m

As a side note, we notice that a more compact form can be obtained for his expression by using

the Wigner—Eckart theorem and the spherical harmonics representation of irreducible tensor

4
Cl, = \/—21 V(). (4.92)

operators of rank / [[234,[235]],

such that eq. (4.91)) becomes

2
U'm’ _ p
Im 472y

2, Wew oo V2L+ ('m|Cllm) = (=1)" Wraw 1o | (4.93)
LM
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To further progress, we restrict ourselves to the case of conductivities. Recall that, since
only odd powers of momentum in a §f expansion will contribute to the currents (1)), @.2),
meaning that only odd / terms in the expansion (4.21)) contribute. The left-hand side of eq. {#.12))
is linear in p, implying that only the coefficient I = 1 in eq. (4.82)) contributes to the currents.
Nevertheless mixing between the I’ = 1 of the spherical harmonics and [ = 1,3,5... of § f;,
can occur. This is different from the isotropic case, where no mixing of multiplicities occurs
and only 0 f1,, contributes to the conductivities. Nevertheless, these mixings are expected to
be corrections, and to this first calculation, we neglect them and restrict ourselves to the most
important contribution (see also [[198]]) by writing vf;’:’/ = vm'él 161 in eq. (#.82). Due to the

symmetry rules in (4.84)), this approximation is probably better justified in the case of pasta.
Since spherical harmonics are complex functions, so are the associated coefficients of

the expansion, namely ¢ f,, and vfﬂ’l” To obtain physical collision rates we must rewrite the

expansions eqs. (@.21)) and (@.82) in terms of real coefficients. To this goal, we define the real

spherical harmonics

i

ki ~1)"™7™) m <0

Yim =Y, m=0 (4.94)

Ly ey mso

V2

The [ = 1 term of eq. @.21) is now written as
5 (D) = Yusf+ Yioify + Yiod s, (495)

where the real (physical) coefficients are

0fi-1 = o f11 5f, = 0fi-1 +9df11 5
N V2i

and substituting eqs. (@.94) and (@.96)) in the collision integral expansion, eq. (4.82), we get

Ofc= fz =6 fho, (4.96)

Vix Vxy Vxz 0 fx
I[f]:(yn U/ ylo) Vyx Vyy Yy [0Sy 4.97)

Vo Vzy Vzz of;
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with the physical collision rates & given by:

11 =1 _ 0=1 _ 0y i 00 i=1 i-1_ 1y (10 _ 10
ooy b)) s s k) (Vl—l V11)
S SN § SR It U S S T S0 AU SR B PN | Y S BN TV 1)
D=5 (vn it wvil) s (v v ) \/5("1_1‘“’11) (4.98)
A (-1 _ 1 =i (11, 1-1 10
AWD Vlo) > (V10+V10 ) V1o

The constraint of elasticity in the coefficients ‘W), 1, givenin eq. (4.83)) can be expressed

1

in the complex collision frequencies as v, = (=1)"*" vl:zz,, making them matrix £ symmetric:

1
vij = vj;. Additionally, the pasta symmetries given in eq. (4.84) imply

1 _ 1-1 _ 1+l _ 10 _ _ _ _
Visg =V =V =V =00 =0 vy = Ve =y =0
(4.99)
1 _ _1-1 _
Vit =Vi-r = Ve = Vyy:

That is, off-diagonal terms vanish and the collision rates perpendicular to the symmetry axis, xx

and yy, are equal | so our collision rate matrix is

Vix Vxy Vaz Vp 0 O
D=|vy vy vy:[=|0 v, O (4.100)
Vi Vi Vi 0 0 v,

Whereas we have finally obtained the axial and perpendicular collision rates, which can be

calculated from eq. (@.91)) using the symmetries of the 3j-Wigner symbols to be

2 1
va(€p) = vi) = 4:;—2‘} [Woo,oo - Wio,10 + NS (W20,00 + Wo0.20) ] (4.101)

and

2 1 1
vp(€p) = vi| = 47[;—2‘} [Woo,oo - ﬁ (Wao,00 + Woo20) + 7 (Wiii-1 + Witin) ] (4.102)

To be certain that this is equivalent to the collision rates proposed in [33]] we write, without any

loss of generality, 0 fi = \/4r/3®(€,)|v|, k = x,y, z, which is equivalent to

Oflimy =v- @, (4.103)

3In the case of slabs this is valid only because Liy = L1y = L;
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such that the I’ = [ = 1 term of the collision integral expansion, eq. (4.82), can be rewritten as

I[f] = —v,Qvq —vp - ®pvp, (4.104)

which is exactly Eq. (8) of [33].

To write the collision rates in terms of eq. (4.30) we invert the expansion of eq. (.83)

Wi irm = / dQ,dQ, W,y Y™ (Q)Y 7 (Q,), (4.105)
such that
3 2 2
Va (Ep) = m dede/pr’ q- COS 6(1 (4106)
Vp (Gp) = % dede/ pr/ q E S Oq.. (4107)

These expressions could apply to any elastic collision with cylindrical or planar symmetry, not
necessarily the electron—pasta we are dealing with. To write this in a form that can be compared

with the isotropic eq. (#.22)) we make a change of variable

2 d3
dQ,doy == [ £9. (4.108)

and we use eq. (#.30) to write the anisotropic collision rates as:

127 p;e* 2> /2p dg 1 q> / dQ, _
va (€,) = ——— — 1-—=| | —2IF, cos’ @ 4.109
( p) sz 0 q gz(q) 46127 47T | d(q)l q ( )
127p;e*Z? /21’ dg 1 q* /qu o1,
Vp |€ = b 1-— — |F, —sin“ 4, . 4.110

Comparing these to the isotropic collision frequency, eq. (4.22)), we notice the difference to be the
presence of a multiplicative factor of 3 in both expressions and an angular average in €, which
weights the form factors by cos 6, and sin? 64/2 in the axial and perpendicular components,

respectively. These equations are the main results we have obtained.

Following the spirit of calculations in the isotropic regime we write the collision rates
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Quantities for rods (slabs) are calculated at pg = 0.06 fm™3 (pp = 0.08 fm~?) and plotted in yellow
(blue). In the upper panel, the perpendicular (axial) component are displayed as dashed (continuous)
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The representative temperature I’ = 3 MeV is chosen.
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in terms of adimensional functions named Coulomb logarithms

127 p;e*Z?
LA W @.111)
vp
with
2pF g 1 2
q q 2
Aak = — 1 - F 4.112
" /0 T ( | o (4.112)
for which we defined the weighted averages
dQ
(Fi(@))a= | ——=|Fa(q)|* cos b, 4.113)
4r
dQ 1
2 q 21 2
<Fd(q)>p=/ﬂ|Fd(q)| 5 sin” g, (4.114)
(4.115)

that are shown in (a) and (b) of Fig. with LZE = V2L, ws. For the rods the perpendicular
average is larger than the axial one, as expected intuitively from its geometry. The opposite is
true for the slab. In panels (c) and (d) of the same figure we show the angular averaged form

factor

dQ
FaNa+ 2@y, = [ SLIFdaF @.116)

of rods and slabs compared to the form factor of the droplet, with its radius calculated at the
same density as the pasta. The difference is essentially at low ¢, where the average form factor

of the pasta is smaller than the one of spherical droplets.

To evaluate the effect of the uncertainty on the estimation of Ly, in Fig. 29 we show
the axial and perpendicular Coulomb logarithms eq.(@.112)) and the ratio of perpendicular to
axial collision frequency eq.@.1T1) as a function of the ratio of the pasta length L, to the WS-
radius Ry, for rods and slabs. For rods (slabs), the perpendicular component of the Coulomb
logarithm is larger (smaller) than the axial one, and the difference between them increases
with the growing length of the pasta, varying up to 100 (0.01) when L; = 150 Ry. This
shows that a precise estimation of the length of the structures is important for the quantitative
determination of the collision frequencies, as it affects in a considerable way the difference
between the two scattering directions. In particular, the deviation from an isotropic scattering is
small only for small values of L,/ Ry, corresponding to the high-temperature regime. At smaller

temperatures, as correlations become more important, a larger transverse length will contribute



84

0~6 T T T T
T=1MeV T =3 MeV _ i
05 \ 1 & | droplets =
i \ rods
04| . A A slabs —
= T tubes —_—
= 0.3 | / - T~ 5 ‘| bubbles —
0.2 . 4 F \/_ k=p - -
- - -
0.1 1 ! 1 - l
0.04 0.06 0.08 0.04 0.06 0.08
pp(fm=3) pp(fm=)

Figure 30: Axial (continuous) and perpendicular (dashed) Coulomb logarithms as a function of baryon
density, for T = 1 MeV (left panel) and 7 = 3 MeV (right panel). The different pasta geometries are
indicated with different colours.
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Figure 31: Top: ratio of perpendicular to axial relaxation time. Bottom: Average electric conductivity.
Curves are shown as a function of density for the representative temperatures of 7' = 1 (dashed) and 3
(continuous) MeV. The different pasta geometries are indicated with different colours.

to the scattering, and the difference in the anisotropic frequencies will be more pronounced,

likely reaching those expected in [33].

In Fig. [30|the Coulomb logarithms, eqs. @.I12)) are shown as a function of the density
for T=1 and 3 MeV. In both cases, we can see that the abrupt change of favored geometry leads
to slight discontinuities in the Coulomb logarithms, and both overall decrease with density. This
can be understood from the increase in length, shown in Fig. @ and from Fig. @ The ratio
of perpendicular to axial collision frequency — eqs (@.111) is shown in Fig. @for the same
temperatures. The slight increase in the ratio with density is due to the increasing length. It is
important to note that, at the temperatures and lengths we are considering, the different collision
frequencies differ by a factor smaller than two, so there is only a small deviation from isotropic

scattering at high temperatures.
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4.5 Pasta conductivity

Now we turn to connect our calculation of the pasta collision rates to the conductivities
by calculating the electron distribution function variation ¢ f, which amounts to finding ®.
This calculation was first made in [33]], and we reproduce it in detail. We assume an external
magnetic field lying on the xz-plane B = B (cos 8, & + sin 65 2) and a weak electric field E such

that F' = —e(F + v X B), and can start our discussion from eqs. (.12)) and (#.81)
_of),.
Je,

For simplicity, we define the electron gyrofrequency w = eB/¢,,, the unity vector b that

00
] —e(vx B) - 6_f ==, Qv —v, - D®,v,, (4.117)
b

ou €, — uOT
L eE il
0m+e * T Ox

points in the direction of the magnetic field b = B/B and the vector

F:(—%)[‘S‘H gy HOT 4.118)

(9ep8_:ce T oOx|

Note that, by substituting 6 f = § f|;=1 = ®-v ineq. @.117), our problem amounts to determining
the vector @ and application of linear algebra techniques become straightforward. Using the

relations above and writing the derivative in the term with magnetic field as 06 f/dp = ®/¢),

eq. can be written as
v F-w®- - (vxb)=-v®v,—v, ®,vp, (4.119)

Using®@ - (vxb) =v:-(bx®)and I[f] =v -V D we are able to completely factorize the

vector v
v-F:v-[ﬁ-®+wa(I)), (4.120)
and now we can write this equation in matrix form as
F=1M® (4.121)
where
-V, —wb, 0
= wb, -v, -—wb,|, (4.122)
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and the task of determining ® amounts to finding the inverse of I such that

o=-1'F. (4.123)

We can confirm that the matrix is indeed invertible by assuring the determinant is not zero:
1 2 2,2 2,2
A=—detll =v,vs+wbivp +wbv, #0 (4.124)

and to find the solution we need the adjoint of the 1| matrix, fl*, since the inverse can be written

as [236]

~ —1] 1 s
nmn =--1 4.125
A ( )

which can be readily obtained by calculating the minors of II. The result is

VaVp + wzb?c -wb,v, wszbz
II = wb,v, VaVp —wbyv, |. (4.126)
a)szbZ wbyv, vlz, + w2b§

To calculate the conductivity we can take d,T = 0, such that, from eq. @.1)

d’p A fo 1
_ 2 N A R o *
Je,-——e /WVIV]( aep AHJk Ek’ (4127)
which leads to
62 0 0f()
Joi = depv [-=2| IIE". 4.128
3712A‘/0 epv( ae,,) e ( )

The use of egs. (@.16) and of the Sommerfeld expansion, eq. @.17), which in our case

implies
ePEVE . :
Jei = 72 Wiy () Ej- (4.129)

leads to the expression for the electric conductivity via the linear response definition {#.4)):
2
€ p% * ezne *

= Srmea 1 s 4130

O','j

where we use m;, = e since this is a more standard notation in the literature when natural units
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are not used (m; = er/c?). In the limit of B — 0 we get

v;l 0 O
e’n,
oij=——1 0 v, 0] (4.131)
e
0 0 vt
that is, we get a perpendicular and an axial conductivity, given by
2 2
Top =l gy =t (4.132)
myvp myvg,
The thermal conductiviy can be found using the Wiedemann-Franz law
L (4.133)
KR = . .
3e?

The behavior of both conductivities is identical as a function of pasta length and density,
thus it would be interesting to study the thermal conductivity as a function of temperature.
Nevertheless, our high-temperature limit is very restrictive, so we restrain ourselves to analyzing

only the electric conductivity.

Though we have provided a complete formalism to the calculation of the conduction, the
collision rates depend on the proton number as Z> and Z depends on the pasta length as o< L,
(o< L%) for rods (slabs). Therefore, even though we have fixed the effective scattering length as
Lq = V2L ws, there is a very large uncertainty associated with this choice. The dependence of
(o) with the choice of L is shown on the left-hand side of Fig. where we see a variation of
four orders of magnitude. On the right-hand side, however, we show the average conductivity
as a function of density using the effective lengths eq. @.67). In the high-temperature regime
assumed here, there is a discontinuity when the abrupt change of geometry happens. Even
though the collision rates are not dramatically different from the isotropic one, this discontinuity
can be attributed to the discontinuity in the proton number, since the discontinuities in the
Coulomb logarithms are not as pronounced — see fig. The anomalously high resistivity of
the pasta layer reported in the literature [40] is nicely reproduced by our calculations, and it is
seen to be essentially due to the high Z value of the clusters close to the crust-core transition,

more than to the specific geometry of the pasta phases.

We now turn to the effect of the magnetic field on the conductivities. When including the
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Figure 32: Average electric conductivity is shown as a function of pasta size (left) and of density (right).
The right panel shows two representative temperatures of 7 = 1 (dashed) and 3 (continuous) MeV. The
different pasta geometries are indicated with different colors.
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Figure 33: Components of the electric conductivity in units of the perpendicular conductivity at B = 0,
as a function of the magnetic field for rods at pg = 0.06 fm~>. The angle between the pasta symmetry
axis and the magnetic field is fixed at 0 (left), 45° (center) and 90° (right). In the top axis, we show the

variable x, = eB/(ervp).
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Figure 34: Components of the electron conductivity in units of the axial conductivity at B = 0, as a
function of the magnetic field for slabs at pg = 0.08 fm~3. The angle between the pasta symmetry axis
and the magnetic field is fixed at 0 (left), 45° (center) and 90° (right). In the top axis, we show the
variable x, = w/v,.

magnetic field, we show all components of the conductivity in units of the dominant conductivity
at zero magnetic field, i.e. the perpendicular (axial) conductivity for rods (slabs). In Figs.@@]}
we show the conductivity components when the magnetic field forms an angle 6, = 0, 45° and
90° with the symmetry axis of the pasta. Different off-diagonal components appear depending on
the angle of the magnetic field: if it lies on the symmetry axis of the pasta, only the perpendicular
xy component is not zero, the zz component depends only on v,, and the perpendicular xx and
vy components are determined by both v, and B. If it lies perpendicularly to the symmetry
axis, only zy is not zero, the zz component is determined by v, and B and xx = yy only by v,,.
At magnetic fields B < 10'® G, the difference between components parallel and perpendicular
to the magnetic field are due to the pasta length, with transverse components smaller (larger)
for rods (slabs), meanwhile off-diagonal terms increase steadily with the magnetic field. At
~ 10'® G, the components parallel to the magnetic field are unaffected, but the perpendicular
and off-diagonal ones start to decrease. A magnetic field of this order is not far from the one
expected at the very bottom of the inner crust of magnetars, which is about 20% of the field in

the core 237;@\ !

For the average conductivity, we follow @_)3[] once more, and assume the pasta takes
random orientations with respect to the magnetic field since up to date there is no information
regarding its orientation or prevalence of domains. To calculate the average parallel, perpen-
dicular, and Hall terms we define a plane orthogonal to the magnetic field with the vectors ey,

ey =e; Xb(ie. e;-b=er-b=0)and make the projections: o, =b-&-b, 0 =€e, -0 - e
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and oy = ej - 0 - e, such that

20202 4,2
(ol 5 VpVaby +v,b7 +w
en,
= 2 2 202 4.134
o miA vavp (e, + ely) +vpel, (4.134)
2 2 2
OH w(veb; +v,by) — elzelybx(vp - VaVp)

and we can average the coeflicients over all possible directions of the magnetic field, which is
equivalent to assuming random pasta directions with a constant magnetic field. Making the

average

1
() = o- / d cos 0,ddyoy (4.135)

leads to the average perpendicular, parallel, and Hall conductivities

(oL) (W? + vpva)(vf7 +w)H - Vp (sr)"larctan(s/r)  vq > Vp
e“n, .
(o | = 2 %[Vavp(wz - VIZ;)H+ vpl with H = 4 (sr)~'arctanh(s/r) v, < Vp
e
(on) w(l - VanH) (Vz + wZVa)—l Va =V,
(4.136)
s =wy/|va — vyl and r = [v,(w? +v4v,). For B — 0 we get
e’n, , o (2 1
(o) ={op)=—0"), vV )=x|—+— (4.137)
m, 3\vp, va

and the Hall parameters is zero (o) — 0. One must notice that the average conductivity is
proportional to the average of the inverse of (v), and not (v) itself, therefore its calculation
does not amount to averaging the matrix element over Q,. In Fig. @ we show the average
conductivities for rods and slabs, respectively, in units of the average conductivity with B = 0.
To conclude this discussion, it is important to note that for all the calculations reported in
this thesis, the inner crust structure was computed without accounting for the magnetic field.
Numerous studies exist in the literature addressing this point, using CLD or Thomas-Fermi
techniques with different nuclear models, see e.g. [239-242]. The general result of these works
is that only extreme magnetic fields of the order of B = 10'® G affect the density profiles of
the Wigner-Seitz cells, with an increased average proton fraction, particularly in the outer part
of the inner crust dominated by spherical nuclei, and an increase of the charge of the pasta
structures, that however does not exceed ~ 10 — 20%. These modifications would not affect the

results presented in Figs. 34 and [35] and would lead to an extra decrease of the conductivity
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Figure 35: Average parallel, perpendicular and Hall conductivities for randomly oriented rods (left) and
slabs (right) at pg = 0.06 fm~> and pp = 0.08 fm~3, respectively. In the top axis, we show the variable
xi =w/vi, withi = p (a) on the left (right).

in Fig.[32} since o o« Z72, see eq.(@ITI). This calculation has been accepted for publication in

the Monthly Notices of the Royal Astronomical Society [243].

The calculation presented here to calculate the anisotropic collision frequencies is novel,

to the best of our knowledge. Our calculation can be made more realistic if a better estimate

of the pasta lengths L; » and the inclusion of density correlations due to thermal fluctuations is

made. Moreover, we expect to use this method to calculate the pasta viscosity, related to /’ = 2 in

eq. (4.82), and to analyze the size of corrections due to the mixing of multiplicities in Eq. (4.82).
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S Digression: related work

In this section, we briefly discuss other works I have either published or submitted during

the period of my doctorate but which did not fit the main scope of the thesis.

5.1 Effect of short-range correlations in nuclear pasta

In this section, we examine how short-range nucleon correlations can impact the ap-
pearance of the nuclear pasta. Pairs of nucleons are strongly correlated in nuclei, leading to a
high momentum tail in the single nucleon distributions that decays as k~*. Such short-range
correlations (SRCs) can modify many of the nuclear properties [244-H248]. To construct an
equation of state with SRC included, the Lagrangian density is still given by Eq. (2.2), but with

the Fermi-Dirac distribution (2.33) replaced by a new momentum distribution function, namely,

Anp, 0<k<kpnp

Jap(k) = (5.1
Cop ki p
T» an,p <k< ¢n,kan,p’

with A, , = 1 =3C, ,(1 = 1/¢,p), Cp = Co[l — C1(1 =2Y),)], C, = Co[1 + C1(1 = 2Y))],
¢p = ¢doll — d1(1 =2Y,)] and ¢, = ¢o[1 + ¢1(1 — 2Y,)]. The values of the constants Cy ,
¢0.1 we use are Cp = 0.161, C; = =0.25, ¢o = 2.38 and ¢; = —0.56. All these numbers were
extracted from Ref. [244]. The idea is that the SRCs reduce the Fermi-Dirac step function up
to kr, which is done by the multiplicative factor A, < 1, and a high-momentum tail o k=4
is added between kg and ¢ kr > kp, for the density to be kept constant. The modifications
introduced in the momentum distribution function then affect all thermodynamic quantities of

the system, namely the scalar densities (2.32)), chemical potentials of protons and neutrons, the
energy (2.37)), and the pressure (2.38)).

When SRCs are included, the Lagrangian parametrization changes. The new parametriza-
tion is obtained by imposing that it reproduces the same bulk parameters of their versions without
SRC, namely, saturation density (pp), binding energy, effective mass, incompressibility, symme-
try energy, and symmetry energy slope, all of them evaluated at p, as shown in Tab.[3] In Tab.[7]
we show the [IUFSU-SRC parametrization, which reproduces the [UFSU parameters. While the

original parametrizations might have been constructed to correctly describe some features of
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TUFSU-SRC
mg (MeV) 491.5
m, (MeV) 782.5
my, (MeV) 763.0

gs 10.132
gy 11.867
gh 15.551
K 5.9113
A -179.28
& 0.03

A 0.0055

Psat (fm_3) 0.155

Table 7: Parametrization that reproduces the IUFSU bulk properties when accounting for SRCs.

finite nuclei such as the neutron skin thickness, as in the case of the IUFSU, for instance, these

are not taken into account when obtaining the SRC parametrization.

In Figs.@we show the chemical potentials and pressure of the [UFSU parametrization
with and without short-range correlations. The effect of SRCs is much more prominent in

asymmetric matter, which leads to a smaller (larger) proton (neutron) chemical potential. In Fig.

TUFSU IUFSU
1000 T T T T T
1050 | Yp = 0.50 —
950 | Y, =035 —
Y, =010 —
900 -
3 % 1000 | w/SRC —
= 850 & no SRC = = «

PBOF  _mm ==

| w/SRC ——
no SRQ -

L 1 . 900 L . . . .
0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3

pp (fm=3) pp (fm™3)

Figure 36: Chemical potential of protons (left) and neutrons (right)for homogeneous matter with the
TUFSU parametrization for different proton fractions, both without (dashed curves) and with (full
curves) short range correlations.

[B7)we also show how the pressure behaves as a function of the density. The differences at very
low densities, the region important in the present study, are shown in the inset, corroborating

the statement that very asymmetric matter feels the effect of SRC more strongly.

In Figs.@our results are shown for the pasta, respectively without (left) and with (right)
SRC. We use the same surface tension of the TUFSU from [I15]. As a consequence of the

already observed differences in homogeneous matter, the larger the asymmetry, the stronger the
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Figure 37: Pressure of homogeneous baryon matter for different proton fractions with IUFSU without
(dashed curves) and with (full curves) short range correlations for different proton fractions.

effects of the SRC. For symmetric matter, the results are very similar, both as far as the size of
the pasta phase as well as its internal structure. For ¥, = 0.35, the similarities disappear: not
only the pasta phase shrinks when SRC are included, but one of its internal structure, the tubes,
vanishes. When we analyze ¥, = 0.1, the most important result for the NS inner crust, the pasta
phase diminishes even more and spherical nuclei survive. We have further used the NL3 @

and FSU2R parametrizations to test the model dependence of our results, but they were

the same: the pasta disappears at low proton fractions.

) [UFSU [UFSU-SRC 012 IUFSU  TUFSU-SRC 012 IUFSU TUFSU-SRC
- ¥, =0.35 o ¥, =01
0.09 b9 0.09
?I:H hom. s— 7 hom. e— NI; hom. se—
£ 0.06 slabs m— & 0.06 tubes m— £ 0.06 tubes m—
2 rods 2 slabs s— 3 ] slabs s—

droplets - 0.03 rods » ] 0.03

droplets m—

rods »
droplets w—

Figure 38: Baryon densities where each pasta geometry is dominant for the IUFSU (left) and
IUFSU-SRC (right) for proton fractions Y, =0.5, 0.35 and 0.1 (left, center and right, respectively).

Even though the bulk parameters are kept fixed at saturation point in the models with and
without SRC, at different densities they can be completely different. Thus, the disappearance of
the pasta is likely related to the change in the symmetry energy and its slope at low densities,
as depicted in Fig.@ Nevertheless, more robust calculations in which the surface tension can
be self-consistently calculated, as explained in @] must be carried out when the SRC

are included. A manuscript containing these results [249] is currently under review in Physical

Review C.
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Figure 39: Symmetry energy (left) and symmetry energy slope (right) for the IUFSU with (full) and
without (dashed) SRCs.

5.2 Delta baryons in magnetars

In this section, we examine the role of A baryons in magnetars and the impact of
anomalous magnetic moments (AMMSs) and strong magnetic fields in particle densities. A
baryons are nucleon excitations with spin 3/2, and they are expected to appear in the core of NSs,
along baryons of spin 1/2 containing strange quarks, the hyperons [250,251]]. The high magnetic
field of a NS modifies the particle content of the core, and, in consequence, its macroscopic
properties. Accounting for the particles AMMSs can further modify the particle populations,
specially for the A baryons due to their extra isospin projections (I, = 3/2,1/2,-1/2,-3/2) and
the electric charge of the A*™*. The AMM (k}) is a deviation from the magnetic moment of that
particle, as predicted by the “classical” tree-level calculation. Historically, the term anomalous
was used to describe the deviation from the Dirac equation prediction for a system of fermions
under the influence of a magnetic field, the magnetic moment, and thus, refers to fundamental
particles. Dipole moment, on the other hand, is used for composite particles, such as baryons,
since their value depends on the configuration of quarks and gluons inside it, and thus, are not
anomalous in the strict sense. As commonly used in the literature and for simplicity, we use
the term AMM in all cases. The AMM coefficients «;, are related to the magnetic moments
through the relation

M,

!
= flpi— — 3.2
Kp = Mp — €pHUN M, (3.2)

The AMMs of nucleons are measured to a very high precision, with errors of the order of
107° L252,'253t| but the same does not apply to heavier baryons. Measurements of the hyperon
AMM s are precise to an order of 1072 [254’] while As are experimentally determined only for

the positively charged A** and A*. For the A*, there is a single measurement of pa+/uy =
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Table 8: Vacuum mass, electric charge, isospin 3" component, spin, normalized magnetic moment, and
normalized anomalous magnetic moment of baryons considered in this work. Electric charge is shown
in units of the electron charge and uy is the nuclear magneton.

My, (MeV)  ep(e) Sp Hb/UN  Kp/UN

I3
p 939 +1 43 12 279 1.79
n 939 0 -5 12 -191 -1.91
A 1116 0 0 12 -061 -0.6l1
z* 1193 +1 +1 12 246 167
x0 1193 0 0 12 161 16l
%" 1193 -1 -1 12 -116 -037
50 1315 0 +5 12 -125 -125
B- 1315 -1 -1 12 -0.65 0.06
AT 1232 +2 +§ 32 499 347
A* 1232 +1 43 32 249 173
A° 1232 0 -3 32 006 0.06
A~ 1232 -1 —§ 32 -245 -1.69

2.7f11'g + 1.5 that comes from the yp — pmy’ reaction [255]], while for the A** there are several
measurements coming from the 7*p — x*py bremsstrahlung cross section, with values in
the range pa++/uy = 3.7 — 7.5 [254]. These measurements include systematic uncertainties,
but additional theoretical uncertainties lead to errors ~ +3. Complementary to experimental
results, lattice quantum chromodynamics (LQCD) has been able to extract AMM values for A
baryons. The values utilized in this paper are based on the predictions from LQCD provided
in [256] that lie within the experimental uncertainties of the experimentally measured AMMs.
Although the expression (5.2) is derived for spin-1/2 fermions in the non-relativistic regime,
it s still commonly employed in the description of the A baryonsg [257,258]. This subject is
controversial, as the Rarita-Schwinger equation with minimal coupling predicts a gyromagnetic
ratio of 2/3, while low energy/optical theorems predict a value of 2. For a more in-depth
discussion, we refer to [259], which studies a generic non-minimal electromagnetic coupling
in the Rarita-Schwinger formalism. In this work, we also account for the leptons (electron and
muon) AMMs, given by k./up, = 1.15965 X 107 and ,,/up, = 1.16592 x 1073, respectively,
with up, = e/2M;, for I = {e,u}. Different properties of the baryons considered in this study

are shown in Tab. [8]

To describe magnetized baryons with AMMs we add the hyperons and As to the La-

grangian by adding a sum over baryons b = N, H, A instead of the nucleon Lagrangian (2.3),



97

i.e.

Ly = ) L (5.3)
b

with
_ ) 1
Ly =y [7” (lau - ZKMT,WF“V) ~ % (8o Vo + gobdo + gopIapbo) + gsp00 — My | Y, (5.4)

inthe RMF, and F,, = 0,A,-0,A,, o#" = % [¥*,y”], and the vector potential A, = (0,0, Bx, 0)
is chosen such that the magnetic field is parallel to the z-axis. We additionally introduce the
strange ¢-meson that couples to hyperons. Since As are spin 3/2 particles, they are in fact
described by the Rarita-Schwinger equation, but in the mean field approximation its Lagrangian
can be written as if it were a spin 1/2 particle, thus the index b includes nucleons, hyperons and

As [260]. A dynamic term to the photon field also has to be added

1
Ley = _ZF'uVFﬂV- (5.5)

A solution to the equations of motion can be found by choosing a representation of the Dirac
matrices [261,262]. The main effect in the thermodynamic quantities is that the 3-momentum
integrals are changed: while the z-component is still integrated as a continuum, in the plane

perpendicular to the magnetic field the momentum integral turns to a summation in discrete

Landau levels v [[263]],
|€bB | /
/ Ik E (5.6)

which are given by

vE=n+o - -—, (5.7)

with n = 0,1,2.... For particles with spin 1/2, the first Landau level (v = 0) is occupied by a
single spin projection: s = +1 for g, > 0 and s = —1 for ¢, < 0. The second level (v = 1) and
above are occupied by both spin projections s = {+1}. For the spin-3/2 positively charged As,
the first level (v = 0) is occupied by the spin projections s= {+3, +1}, the second level (v = 1)
by s = {+3, +1}, and hereafter all spin states are occupied. For the negatively charged A~ spin
projection, signs are reversed for the lowest levels. At zero temperature, there is a maximum

Landau level )
(Ej, +skpB)” = M;?
2|eb |B

(5.8)

Vmaxb (S) =
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where the Fermi energy is

Ep, = b — gvbwo — gbb 13600 = 84bP0 » (5.9)

The maximum Landau level is determined by the point where the Fermi momentum is zero. The

Fermi momentum squared is given by

E* 2—(MZ—SKbB)2 ep =0

2
E;bz— (,/M;2+2v|eb|B—s1<bB) ep #0

so for charged particles, it diminishes as v increases. Furthermore, we assume particles are in

k2, = (5.10)

B-equilibrium, so relation (2.46)) is valid. With all this information, we can calculate particle

densities, energy, and pressure from egs. (Z.31)(2.32) 2.37), 2.39).

Now we notice that the meson couplings gz, depend on the baryons b. It is usual to

determine them from the ratio of the baryon-meson coupling to the nucleon-meson one

xppp = 2ME (5.11)

8MN

The scalar meson couplings are fitted to reproduce the hyperon potential depth Uy = —28 MeV

for symmetric matter at saturation density, thus fixing the parameter s,

10 + 6a 22 — 6ay 13 — 6a,

_  oxg e 2be o 13-0a 5.12
B+ 120, " 1B+12a, (5.12)

LsA 13+ 12,

[

The remaining relative strength of the coupling constants are determined by SU(3) symme-
try group arguments, as proposed by [251], determining the complete hyperon-meson vector

coupling scheme from a single free parameter, «,. For the w-meson

4+ 2a, 8 - 2a, 5 -2a,
= N X = = X = ’
Stda,’ F T 5+4a, FT 544a,

XvA (5.13)

m

for the ¢-meson

5+4a, 5+4a,

X¢A:\/§(2av—5), xﬂ:@(ﬂ), x¢::\/§(ﬂ), (5.14)
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Figure 40: Particle composition of neutron-star matter with hyperons and As, with B = 0 (top panels)
and magnetic field B = 3 x 10" G (bottom panels), when considering (solid lines) or not (dashed lines)
the effects of the anomalous magnetic moment. The left and middle panels show results for the L3wp
model with different interactions, while the right panel shows results for the CMF model.

and, finally, for the p-meson
i =0 mpp=w g =—(1 =2ay). (5.15)

Despite the value of @, hyperons are always present in the neutron-star matter and the sequence
of hyperon thresholds is always the same, with an inversely proportional relationship between
a, and the stiffness of the EoS. In this work, we choose to use @, = 0.5, which results in values
for the additional potentials Us = +21.8 MeV and Uz = +35.3 MeV. Though the potential for
the Z~mesons is repulsive in the parametrization used, recent observational constraints predict
it to be attractive @@I but to reproduce such an attractive potential we would need an

extra free parameter in the meson couplings [175].

The A couplings are treated more freely, as their behavior is not well known. The scarce
information present in the literature, such as transport models and quasi-elastic scattering
of electrons off nuclei [268], allows us to infer that the nucleon-A potential is slightly more
attractive than the nucleon-nucleon one, so that, Uy — 30 MeV < Ux < Uy, which implies
XA 18 greater than 1. Also, the vector coupling is constrained by LQCD results as respecting

the relation 0 < x;a — XA < 0.2, and no constraint is put in the x, value [269}2
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Figure 41: Stellar mass as a function of equatorial radius for different compositions and interaction
strengths, for central magnetic fields B = (0 (solid lines), B = 5 x 10'7 G (dashed lines), and B = 10'®* G
(dotted lines). The top and bottom panels show results for the L3wp and CMF models, respectively.

investigations on the effect of these parameters were made in [272][273] and their role in the
stellar particle composition and maximum-mass was studied considering x,5 = 1.0 and 1.1,
within two classes of relativistic mean-field models in [274]. Following the previous study,
we analyse the scenarios with xoo = x,a = 1.0 and x55 = xua = 1.2, keeping x,7 = 1.0,
that generates, respectively, potentials Uy = —66.25 MeV (equal to the nucleon potential) and
—79.50 MeV. We also show results for the chiral mean-field (CMF) model [116].

In Fig.@lwe show the particle densities at B = 0 (top row) and B = 3 x 10'® G (bottom
row) with (full lines) and without (dashed lines) AMMSs. We can see that some of the charged
particles are favored when magnetic field effects without AMMs are considered, an effect that
is more pronounced for protons, whose onset density is pulled to very low densities for both
models. Asa consequence, their population becomes more similar to the neutron one in densities
below ~ 0.05 fm™>. The inclusion of AMM enhances this effect. The A~ threshold (at densities
around 0.3 fm~) coincides with the region at intermediate densities beyond which the N+H+A
EoSs are softer than the respective N+H EoSs. The A (and the Z in the CMF model) hyperons
appear at larger densities than the A™s. The remaining As appear at much larger densities and in

amounts that depend on the interactions in the L3wp model. For x;a = x34 = 1.0, including the
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AMM makes the positively charged As appear at realistic NS core densities.

For magnetic fields larger than ~ 10'® G, the deformation of the stellar geometry away
from spherical symmetry is above 2% [275]]. Therefore, the usual relativistic hydrostatic equa-
tions usually employed when describing non-magnetized stars, i.e., the Tolman-Oppenheimer-
Volkoff equations [276,277], which assume spherical symmetry as part of their derivation
from the general relativity equations, cease to be adequate. For this reason, we make use of
anisotropic solutions from the Einstein and Maxwell equations to explore the macroscopic struc-
ture of magnetars with strong internal magnetic fields. Beyond accounting for the non-spherical
configurations of stars and anisotropies introduced by magnetic fields, this approach allows us
to obtain an ab initio magnetic field profile in the interior of a given star [278,[279]. to compute
the effect of the strong magnetic fields on the structure of the magnetars, one must solve the
coupled Einstein—-Maxwell equations with the equations of state. For the chosen poloidal field
geometry, we solve the Einstein—-Maxwell equations within the numerical library LORENH?

using a multi-domain spectral method.

In Fig. B1] any differences between the mass-radius curves for the B = 0 case (solid
lines) arise from the differences in the (non-magnetic) EoS, while the differences with magnetic
field come from the pure electromagnetic field contribution. We know that the Lorentz force
originating from the pure electromagnetic field affects the low-density part of the EoS. This
is why the maximum mass of very massive stars does not change with increasing magnetic
field strength, but the mass and radius of less massive stars increase significantly. For the
L3wp model, the inclusion of As decreases modestly the maximum stellar mass, especially for
the larger coupling. However, for the CMF model, we do not see meaningful changes on the

mass-radius diagram with the inclusion of As.

Using the full numerical solution, we also study the effect of the EoS on the magnetic
field configurations inside a given star. We decompose the magnetic field norm in terms of

spherical harmonics

lmax

B(r.0) ~ > Bi(nY/(6), (5.16)
=0

and plot the first four even multipoles (/ = 0,2,4,6) as function of coordinate radius for both the
EoS models and coupling strengths in the left of Fig[#2] We also plot the profile of the dominant

monopolar, spherically symmetric, term (I = 0) inside the star in the right of Figld2] For L3wp

4<http://www.lorene.obspm.fr>
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Figure 42: Magnetic field distribution inside a neutron star of mass 1.8 M, and central magnetic field of
B =5 x 107 G for different compositions and interaction strengths. Left: Solid, dashed, dashed-dotted
and dotted are, respectively, the first four even multipoles of the magnetic field norm (/ = 0,2,4,6),
shown as functions of the coordinate radius. Right: Solid, dashed and dotted are the dominant
monopolar (I = 0) term at the polar (0 = 0), intermediate (¢ = 7/4) and equatorial (0 = 7/2)
orientations, respectively, shown as functions of the coordinate radius. The top and bottom panels show
results for the L3wp and CMF models, respectively.

model, especially if we include As, the magnetic field norm decreases slightly inside the star
but, for CMF model, we do not see any considerable changes. These results are published in

Physical Review C [280] and was one of the Editor’s choice of the issue.

5.3 Deconfinement phase transition in magnetars

In this section, we study the effects of strong magnetic fields on the deconfinement
phase transition using the non—linear Walecka model with a modified version of the NL3* @
parametrization, proposed in m] the NL3wp*. For the quark phase we use the MIT bag model
with vector interactions (vMIT) [2811284]. A complete analysis of thermodynamic consistency,
stability window, phase diagrams, and astrophysical consequences in the vMIT can be found
in @@@] To find the point of the phase transition we follow [287]

argue that the phase transition does not occur with both phases in S-equilibrium, but rather with

, where the authors

only the hadronic phase in 8-equilibrium. The quark phase is determined such that the fractions
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Figure 43: Density of baryons (top) and quarks (bottom) as a function of the chemical potential. Full
lines are densities with B = 0 and dashed lines are densities calculated with B = 3 x 10" G.

of quark flavors

1
= TN Y (5.17)
b

are conserved during the transition, because the time scale over which the strong interaction acts
is much shorter than the electroweak scale. After the phase transition occurs then S-equilibrium

settles in. Here N is the number of quarks of flavor g on the hadron b and ¥}, = ny, /np.

The Lagrangian density of the vMIT model is given by

- - 1 ¢
L = Z {¢q [ry‘ua# ~ Y08vgWo — Mq] Wy — B}@(wqwq) + imgw% + Egﬂuwg. (5.18)
5 !
The quark densities n,, energy density &, and pressure can be deduced in the same manner
as those for hadrons in Section H and Section @ with the substitutions M, — M, and
EL, —+E ;‘,q = My — 8vgwo. The quark degeneracy must be multiplied by 3 in order to include
the color degree of freedom, so now the first Landau level has degeneracy y(0) = 3 and levels
above have y(v > 0) = 6. The bag parameter B can be interpreted as the pressure exerted
pointing to the center of the hadron, balancing the outward pressure due to quarks on the

Q Q|
O 6|

hadronic surface [288

. In order to study the parameter dependence we define the variables

2
Gy = (g—) , Xp=E2 (5.19)
ml’ gl’h‘
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and to analyze how the magnetic field alters the phase transition, we consider the deconfinement

to be a first-order transition
HB = HQ = Ho PB:PQ:P() TH:TQZO. (520)

with flavor conservation.

The densities of hadrons and quarks are shown as a function of the chemical potential in
Fig.}43|for B = 0 and 3 x 10'® G. The magnetic field favors the appearance of negatively charged
particles at lower chemical potentials. In order to find the point of the phase transition, the flavor
fraction is fixed at equal chemical potentials. Another possibility would be to fix the quark
fractions at equal pressures, which would lead to the same transition point, but to different quark
densities and thermodynamic properties at points distinct from the transition point. Numerically
it is simpler to fix the flavor fraction in the chemical potential, since the pressure of the quark
phase can be negative but not the hadronic one, so one might exclude a large portion of chemical
potential by fixing the flavor fraction at equal pressures and make it difficult to find the phase

transition at very low chemical potentials.

Firstly we examine how the chemical potentials of the transition are altered with the
magnetic field for values of B4 ranging between 148 and 205 MeV, with Gy =0, 0.1, 0.2 and
0.3 fm”. As shown in Fig. increasing values of the bag parameter and of the w-coupling Gy
increase the chemical potential, and thus also the pressure of the phase transition. For values

of Gy larger than 0.3 the deconfinement phase transition occurs at chemical potentials larger

1800

1600

=
& 1400
6

1200

B= a i &
1000 |- B=3x10"®G
150 160 170 180 190 200
BY4 (MeV)

Figure 44: Chemical potential of the phase transition as a function of the bag parameter with Gy =0,
0.1, 0.2 and 0.3 fm? (black, purple, red and blue curves, respectively) and Xy = 1.0. Dashed lines are
curves with B = 0 and solid ones with B = 3 x 10'® G.
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Figure 45: Chemical potential of the phase transition as a function of fourth order coupling parameter £,
with varying values for the 8'/# and Gy = and Xy = 1.0. Dashed lines are curves with B = 0 and solid
ones with B =3 x 10" G

than 1800 MeV, which are beyond those expected in neutron stars [[I77]. The difference in the
phase transition in magnetized and demagnetized matter is larger for lower values of the bag
parameter, with the magnetic field favoring a slightly smaller chemical potential. As the bag
parameter is increased, the effect of the magnetic field becomes less noticeable because the bag

term dominates the pressure.

The addition of a fourth-order self-interaction for the w-meson stiffens the EoS and re-
duces the chemical potential of the phase transition, with its importance being more pronounced
at large chemical potentials and for higher values of the w-coupling Gy. In Fig. @]we show how
the chemical potential of the phase transition is changed as a function of &, for both magnetized
and demagnetized matter. As we turn on the fourth-order interaction the chemical potential
decreases rapidly, and as & grows larger the chemical potential varies less. This is more attenu-
ated for larger Gy, since the fourth-order interactions are weighted by G%,. The magnetic field
slightly reduces the transition chemical potential, with the effect pronounced at lower chemical

potentials.

In Fig. 6] we show the relativistic latent heat, given by

€9 —€H

L| =Py (5.21)

# EQEH

as a function of the magnetic field. This expression was proposed in [289] to quantify the
intensity of the phase transition, i.e., the discontinuity in the energy density between phases.

The latent heat diminishes in magnetized matter, more prominently for smaller bag values. The
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magnetic field becomes important on the latent heat for magnetic fields of the order of 10'® G

only. where the latent heat is shown as a function of the magnetic field. This work is published

in The European Physical Journal A [290)].
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Figure 46: Latent heat as a function of the magnetic field for bag values of 150 and 165 (left and right,

respectively), with Gy =0, 0.1 and 0.3 fm? and & =0 and 300.
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Conclusions and Perspectives

In this thesis, in Section 2] I have introduced the non-linear Walecka model in the mean-
field approximation, the bulk and mass-radius constraints, and a few parametrizations. Then I
showed how to build the pasta phase in the one-component approach and discussed some pasta
properties. The energy functional and the pasta properties throughout the thesis were calculated
with the [TUFSU parametrization which obeys most up-to-date constraints on the equation of
state. The surface tension utilized to calculate the surface and Coulomb energies was fitted to
reproduce a Thomas-Fermi calculation, where it is calculated consistently.

In Section [3]I have used the nuclear statistical equilibrium to calculate the distributions

N

i oY, as well as pasta impurities that are

of pasta structures with geometry d and densities p
quantified by charge variance. In order to also quantify geometric impurities, an effective
proton number was proposed, varying according to the ratio of the pasta surface area relative
to the droplet area and to the pasta orientation. Results show that charge impurities grow
with temperature and baryonic density, and are larger for more symmetric matter due to the
higher fraction of proton number. Geometric impurities become larger as isospin asymmetry or
temperature rise, as can be reasoned from Fig.[T4 We also demonstrated that our calculations

obey ensemble equivalence, given the input thermodynamic chemical potentials (2.75]) obtained

with the variational approach and the inclusion of the rearrangement term.

In Section ] I have calculated the anisotropic collision rates corresponding to elastic
electron-pasta scattering, that were proposed in [33]], using an expansion in spherical harmonics.
I was able to give quantitative predictions for the electric conductivity in the magnetized and
non-magnetized crust of a NS by estimating the pasta length from asymptotic expressions for
the structure factor and restricting the calculation to the high-temperature regime, where pasta
correlations can be neglected. In Section [5] other manuscripts produced during my doctorate

were discussed.

In the future, I hope the large variances obtained in Section [3] are used in conjunction
with the transport calculation of Section [ to estimate the impact of the pasta impurities in the
conductivity within a RMF model. Additionally, I expect to expand this calculation to derive
expressions for the pasta viscosity; to calculate density correlations due to thermal fluctuations;
and to estimate the impact of the mixing of multiplicity in the transport coefficients. These

calculations can then be applied to astrophysical phenomena, such as to neutrino opacity in
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supernovas and to the thermo-magnetic evolution of NSs.

The results presented in this thesis are either published or under review in international

journals [[195],243,249,280,[290]].
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A Coulomb energy

In this Appendix we outline the main steps in the calculation of the Coulomb energy
density. Firstly we explicit the main steps of the derivation, and in the subsections we write the

necessary expressions to make the calculation for each geometry.

To arrive at the energy density compactly written in Eq. (2.67) we must calculate the

total coulomb energy of the cell for each case. We begin from energy

1
Ee=s / Prpon(r)é(r) (A1)

where ¢ is the electrical potential, that satisfies the Laplace equation
V2¢ = dnepen, (A2)
and can be directly calculated by integrating the electric field as

¢(r) = —/VE-dl, (A.3)
Ry,

where we assume the vanishing of field at the boundary of the cell: ¢(Rw) = 0. This is direct

in our case since the electric field can be calculated from Gauss’ law:

/ dS - E = 470; s, (A4)

if we consider the cylinders and slabs as sufficiently large (L; > R;) such that contributions

from mirroring sides cancel out in E.

The contribution to energy comes from the uneven distribution of protons and electrons,
and possible contributions from the homogeneous gas pf,l would cancel with the corresponding
electron counterpart. This implies that we only need to consider the ion contribution to charge,

and its electron counterpart. In this section we write:

Pp = (p,’, - pif ) =y (A.5)
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and

Z

e = — = , A.6
Y Vir fpp (A.6)

where f = Vy/Vy is the volume fraction of the ions.

Regarding the notation, in the following we use > to denote the values of a function
in the region Ry < r < Ry, and and > variables in the in 0 < r < Ry. In this manner, the

potential, for example, can be written as

¢> = _/ E> * dl (A7)
Rw
RN

o =-— E. -dl - E_-dl (A.8)
Ry RN
These are the information needed to calculate the Coulomb energy, in the following we

show the main equations needed in the specific cases of droplets, rods and slabs, respectively.

A.1 Sphere
¢ Electric field:
E ==, (A.9)
¢ Volumes:
47TR?\, 47TR‘3}’V
Vn = , Vw= , (A.10)
3 3
* Charge distribution:
drer3
4<=—3 (Pp = Pe) (A.11)
dre
q> = = (ppRy = per”). (A.12)
¢ Potential:
2me 2 2 2 2
¢<:T[pp (3Ri —-r )—pe (3RW—r )], (A.13)
2re 3

2= 2002 -0 (R3, - rz)] , (A.14)




* Coulomb energy:

po< SOCPRY || 3Ry 1
¢ 15 2Ry 2
* Coulomb energy density:
Ec 4ne’fpRy X 3f+1
Viw 5 27 2

A.2 Cylinder

is

b

Ry\’
Rw

A
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(A.15)

(A.16)

The electric field of the cylinder in the direction perpendicular to its symmetry axis (z)

Electric field:
2
E =22
I‘Lz

Volumes:

Vy =nLlaRY, Vi =nLaRy,

Charge distribution:

q< = neLar*(pp = pe),

q> = ﬂeLZ(PpR%\I _Perz)-

Potential:

[ 2
R
¢ =—me |pp (Rlz\,log (R_N) +r2_R12V)+pe (R%V—rz)],,

w

[ 2
¢ = —me ,opRIZv log (L) + Pe (R‘Z}V - rZ)
Rw
* Coulomb energy:

2 2 2 p4
EC =—Lje ppRN

2 Rw

2
R
-1 -log (—N) +

b

(A.17)

(A.18)

(A.19)
(A.20)

(A.21)

(A.22)

(A.23)



* Energy density:

A.3 Slab

2
T =3¢ PRy =1 = Tog f + ]
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(A.24)

For the slab, half its size (0 < z < Ry) and double the total Coulomb energy in the end.

Considering z to be the symmetry axis, we obtian

Electric field:

Volumes:

Charge distribution:

Potential:

¢ =4me

¢~ =4rme

* Coulomb energy:

4
Ec = —=L2*p2R},

* Energy density:

PpRN (Rw — 2) — pe ( v

Vy =2RyL], Viw =2RyL}

q< = eLiz(pp — pe),

q> = eL}(ppRy = pe2).

2 2

i R
Pp (RWRN_ - _) _pe(

R2 _Z2
2

3 p

Vi~ 3 ¢ PR

—2+%+f

R R
_2+_N+_W
Rw Ry

(A.25)

(A.26)

(A.27)
(A.28)

(A.29)

(A.30)

(A.31)

(A.32)
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Baryonic matter close to the saturation density is very likely to present complex inhomogeneous struc-
tures collectively known under the name of pasta phase. At finite temperature, the different geometric
structures are expected to coexist, with potential consequences on the neutron star crust conductivity and
neutrino transport in supernova matter. In the framework of a statistical multi-component approach, we
calculate the composition of matter in the pasta phase considering density, proton fraction, and geometry
fluctuations. Using a realistic energy functional from relativistic mean field theory and a temperature and
isospin dependent surface tension fitted from Thomas-Fermi calculations, we show that different geometries
can coexist in a large fraction of the pasta phase, down to temperatures of the order of the crystallization
temperature of the neutron star crust. Quantitative estimates of the charge fluctuations are given.

Introduction: It is known since the early ’80s [[1]] that the
equilibrium state of electrically neutral dense baryonic mat-
ter, close to the saturation density (n,,, ~ 0.17 fm™3) of
symmetric nuclear matter, may not correspond to a lattice
of spherical nuclei, but rather to a spatially periodic dis-
tribution of inhomogeneities with cylindrical (rods) or pla-
nar (slabs) symmetry. These complex pasta phases could be
present in the inner crust of neutron stars as well as in the
central regions of core collapse supernovae during the in-
fall and early post-bounce phase. Different studies suggest
that they may have sizeable impact on different astrophys-
ical phenomena, such as the magneto-thermal evolution of
compact stars [2]], neutrino opacity [3, 4]], timing properties
of X-ray pulsars [[5]], and the ellipticity of neutron stars that
can be potentially probed by gravitational wave measure-
ments [J6]]. The energy barrier between the different shapes
being often of a few KeV only, it is expected that complex
shapes including impurities and defects might appear even
in the crust of catalyzed neutron stars [[7H9] leading to an
increased resistivity. Above the crystallization temperature,
T,, ~ 700 KeV in the pasta region [[10], pasta matter has
to be seen as a liquid and the calculation of transport prop-
erties requires the evaluation of the electrical and thermal
conductivity tensor averaged over finite domains. A rich
phenomenology is expected depending on the orientation
of the nuclear clusters [[11]] as well as their distribution.

In this paper, we make a first step towards the complex
problem related to the anisotropic transport in the pasta
phase at finite temperature, by calculating the distribution
and charge variance of the different geometrical structures
in a multi-component approach with a realistic microscopic
energy functional.

Pasta phases in a Relativistic Mean Field Approach:

In the single nucleus approximation it is assumed that, at
a given thermodynamical condition (pg, Y,, T), a crystalline
structure of identical cells is formed. Each cell contains a

. . I _ I I .
dense cluster at baryonic density p* = p, + p,, occupying
a volume fraction f of the cell, and surrounded by a homo-
o I Iy T

geneous gas of baryons at density p*' = p p TP The cell
is neutralized by an electron gas of homogeneous density
p. = Y,pp, modelled as a free relativistic gas with free en-

ergy density &, see Refs. [[12] [13]] for explicit expressions.
The different shapes of the pasta structures is denoted by
the integer d = 3,2, 1, referring to droplets, rods and slabs,
respectively.

The free energy density of a cell of total baryonic den-
sity pg = p,, + p, and proton fraction Y, = p,/pjp is given
by [12]]

Fws =f Ty + (A =F)F) + BFa+ Fe, D

with B = f for droplets, rods and slabs, and p = 1—f
for tubes and bubbles. The constraints of mass and charge
conservation are imposed on the cells, p, = f(p; — py') +

pél, with ¢ = n, p.
For all our numerical applications, the bulk free en-

ergy densities 9;(11) = gb(pé(”),pfl(”)) of the dense (di-
lute) fraction of the cell are calculated with the IUFSU
parametrization [[14]] of the quantum hadrodynamics model
in the mean field approximation (RMF) [[I5]] which is con-
sistent with a number of experimental and observational
constraints [[16H18]]. This version of the RMF model in-
cludes o, w and p mesons with non-linear scalar and vector
couplings, as well as an w — p interaction term, with a cou-
pling fitted such as to reproduce the experimental symmetry
energy of nuclear matter [[14]].

The interface free energy density %, 4 contains a surface
and a Coulomb term and it is written as [[1} [19]]:

O-(Y > T) d 2
Froa = Foa+Feq = ————+21e’R% (p! = pll ) @4(P),
d
(2
with the &, function given by
2—d/31_2/d 1
—+B )75, d=1,3;
— d—2 d+2° P
de(ﬁ) - {glln(ﬁ) d)_ ; (3)
d+2 > -

The temperature and proton fraction dependent surface
tension coefficient o is taken from Ref. [20]], where a fit
was obtained from Thomas-Fermi calculations employing
the same IUFSU functional.

The equilibrium densities in the cells can be found by
minimizing the thermodynamic potential Q with respect to



the 6 independent variables, here chosen as the cluster and
gas densities pé, pél , ¢ = n,p, the volume fraction f, and

the linear dimension of the pasta Ry:

QZg_Mppp_nU'npm C)

with the conservation laws imposed by the chemical poten-
tials, u, and .

The equilibrium equations from the minimization of
Eq. (@) are obtained as:

‘LLI — ‘U,” o 2/‘s‘g.c,d (5)
PP fA=1)ep—ph
My = 1y (6)
dp 1de
—P1+P”+—(9 +BZ. ——)
df sc,d /5 c,d q)dﬂ
287.(p}y— (o} —pI")
- =0, (7
ra=(ey—et)
1/3
od
Ry = , 8
: (4ne2(p{,—py)2<1>d(/s)) ©
where ,uf;,PK,qzn,p, K=L1II represent bulk chemical po-
tentials and pressures, uy = 9.F,/dp,, PX = —F +

Mg Py - Eqs.- are in agreement with those of
Refs. [21], 22]]. The variation of the thermodynamic po-
tential additionnally allows us to determine the thermody-
namic chemical potentials for the inhomogeneous system,
given as:

07,
I /5 sc,d II
Ha=Ha® § ot

ﬁ a<g.sc,d

1—f?5111' ©

The minimization is done independently for the different
geometries, and the one corresponding to the minimum
value of the optimized %, is associated to the equilibrium
configuration.

Fluctuations: distribution of pasta structures

The SNA is not realistic in the sense that different clus-
ter sizes and geometries can coexist in a macroscopic system
due to the small difference in free energy densities between
them. Following Refs. [23H26]], we consider a macroscopic
volume V composed of different Wigner-Seitz cells of vol-
ume Vv]\\/ls~ Each cell is composed of unbound nucleons and
electrons gases, which we assume to be of constant den-
sity over the entire volume to avoid discontinuities in the
chemical potential between cells. Since the SNA is known to
provide a good description of the average thermodynamic
quantities of the system, the densities of the nucleon gas

»g> Png are given by the solution of the coupled equations

P
-, Pgg = pé’, and the electron density is p, = p,.

The center of each cell is occupied by a cluster in the pasta
phase, with proton and neutron densities p)), p} fluctuat-
ing from cell to cell, and we introduce a superscript N to
all the variables which vary with the density fluctuations.
We consider that for a same total density pj, that is at a
given depth inside the star, domains with pasta structures
corresponding to different geometries (d = 1,2, 3 for slabs,
rods and droplets, respectively) may also coexist, due to the
small free energy barriers.

In the presence of clusters with fluctuating densities and
shapes, the global densities are given by

Py =D VN () = pye ) + Py (10)

N,d

where VY = fNVN_ is the volume of the cluster, and n¢ =

AN /V is the number density of a cell containing a cluster
: N _ AN N . : .
of density p" = P, + Py, and dimension d, normalized to
NdyN _
ZN,d Vs = 1.
In principle, both the cluster volume V" and the volume
; N ; N N
fraction f* could fluctuate independently of Py Py and d.
However, in a variational theory the linear size of the clus-
ter is determined by the equilibrium with the surrounding
gas, whose density is considered constant throughout the
system. We therefore consider that the minimization with
respect to the linear size Eq.(8) holds in each cell, yielding:

1/3
d
RY = 7 . 11
i (4ne2(pg—ppg)2d>d(ﬂfv)) (v

Nevertheless, we consider the cluster volume to be inde-
. . . N N
pendent of its geometry. For a given fluctuation (o, p,,),
the reference volume corresponds to the spherical one

vN =an(RY)’ /3, (12)

and the Wigner-Seitz cell volume is VJ, = VN/fN. The
number of protons in the cluster will therefore be given by:

ZN:(pN_ppg)VN, (13)

independently of d. Moreover, we neglect possible long
range Coulomb interactions between neighboring cells, by
imposing charge neutrality in each cell, thus fixing the clus-
ter volume fraction fV:

Pe=fN(P) = Ppg) + Ppg- (14)

Within these simplifications, we have only two indepen-
dent variables that can fluctuate from cell to cell, that we
take to be (o}, o). The free energy density of the global

system can be written as & = Z,+F,+7,, with F, = F,
as obtained from the SNA calculation, and the cluster com-
ponent corresponding to a linear-mixing multi-component
plasma expression that reads:

Fy=y VN (gN -z + 28 ). (5)

N,d



Because of the additivity of the free energy densities, the
grand-partition function of the macroscopic system can be
factorized in terms comprising the gases and the clusters
[23]):

Z =545, Zel (16)

with each term being given by
e = exp[—p (Fe — phepe)] 17)
5¢ = eXP[—B (Fg —tuPug —pppg) ], (18)

zcl = Z exp

—BV > nNAaNd | (19)
{n} N,d

Here, the chemical potentials are taken from Eq.(9), and
the first sum in Eq. is extended to all the possible values

of nN+4, QI;’VS is the single-cluster grand-canonical potential,
given by [123]]:

QN,d:VN{%_ZMq(pg’—pqg) : (20)
q

In calculating the variation 8.%,,/dn™¢ we can see that
a rearrangement term appears:

0F0 w4 wa OFM
S =F +Zd:n s 21)
M,d’

with FN4 = yN [9{;’ —F,+ yg,d] being the N-cluster free
energy. Rearrangement terms systematically appear in ther-
modynamics when the appropriate thermodynamic poten-
tial (here: the Helmotz free energy density &%,;) depends
on (one of) the system densities. Indeed a variation of a
specific cluster density n™¢ according to Eq. induces a
variation of the global densities pg, as it can be seen from
Eq.(10), and consequently of the thermodynamic potential.
In our model, FN-¢ does not specifically depend on p, and
pp, but a dependence on p, is enforced by the neutrality
condition inside the cell Eq., that can be viewed, for a

given fluctuation (pg ,pY), as a definition of the cell volume

fraction as a function of the electron density, f~ = f"(p,).
Using Egs. and we immediately get:

0Z,

Md 5 ¢M
=P e S S )
n ’ n ’ M,d/ f pp
JQFMA M
=FN,d+VN(pN_p )ZHM,d )
pg —
! M’ OfM Pyl —Ppg

If we additionally assume that the different averaged quan-
tities are not correlated, such that the average commutes
with the product, we end up with the same expression pro-
posed in Refs.[[24H26]] :

2 Mo oFY
g:NCfi =FYa vy (pN_pPg) Mf zv}d ’
anN, p pp _ppg af

(23)

where the notation (X) indicates an ensemble average, and
can be identified with the value of the X variable taken in
the SNA approximation with the optimal geometry d:

fM atg.slrl,d _ gc,do d_‘i’
Pl —pp OF |7 e df

N dof (pé—ppg)—Yp(pl—pg)a_o.
Ry, P8 PL—Ppg ay,’

(249

Since the number of occurrences of the different configu-
rations A4 in the thermodynamic limit can be any integer
m > 0, the sum in Eq.(I9) can be analytically computed as
in Ref. [[24]]:

0 —BANAT)"
%, = l_[ Z (exp[ fl' D _ l_[exp w¥i (25)
N,d m=0 ) N,d

with w4 = exp (—pN?).

We can remark that the cluster partition sum Eq.(25) has
the same functional form as the ideal gas, with a reduced
density pf;’ — Pgq in order to fulfill particle number conser-

vation. The equilibrium chemical potential of the clusters
can be immediately deduced:

N = PN (a0 = pug) + p(pY —ppg)) . (26)

The equilibrium number density for a fluctuation

(py,py) is then readily found from the cluster partition
sum, and by summing up the different geometries:
10Inz 3 3, W
nN == 5 ;l = nN’d=Z—w 27)
v 9pu d=1 i1V

Finally, the probability of a cluster with density (pg , pﬁ] )
and geometry d is:

N,d _ QN,d
M= S = e ~) : (28)
nN4 Z exp (—BaM)
N N.d

Results:

To illustrate the proportion of different pasta structures
at different thermodynamic conditions we show, in Fig. [1}
the probability of each pasta structure for Y, = 0.1 and
0.3, which are typical proton fractions encountered in the
neutron star inner crust, and in supernova cores, respec-
tively. We define the probability of a pasta structure by
summing the probabilities of its occurence with different
densities, P? = Y, p"4. For increasing temperatures or
isospin asymmetry, different pasta structures are more likely
to coexist. However, shape coexistence cannot be neglected
in a large range of densities even for the typical thermo-
dynamic conditions of the inner crust at the crystallization
point (T ~ 1 MeV, Y, = 0.1 [[10]), suggesting that important
impurities may characterize even the catalyzed crust[/8}, [9]].
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FIG. 1: Probability for the pasta structures at proton fractions ¥, = 0.1 (left) and 0.3 (right) and temperatures T=5, 3, 1 MeV plotted
with solid, dash-double-dotted and dashed lines, respectively. Geometries are plotted with different colors: droplets are in magenta, rods

in yellow and slabs in blue.

The linear dimension of the structures is measured by the
average radius

(RY) = > p"RY, (29)
N.d

illustrated for T = 3 MeV and Y, = 0.3 and 0.5 in Fig.

where the dominant pasta structure occupies most of the

system volume fraction away from the transition density be-

tween geometries. In such regions the average radius and

the one obtained from the SNA solution - Eq. (8) - coin-
cide, but differences are observed in the transition regions.

Finally, the disorder of the composition can be quantified
by the variance of proton number:

AzZ=7 p% (2" —(z")),
N.d

that is displayed in Fig for T=1 MeV, as a solid line. As
observed in previous works [25] [26]], this variance is an in-
creasing function of the baryonic density and temperature

(30)
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FIG. 2: Average linear radius (dashed-dotted) and equilibrium lin-
ear radius (colored dashed), as given by Egs. @ and @, for pro-
ton fractions ¥, =0.1, 0.3 and T=3 MeV. The values in the SNA
are colorred according to the geometry, as described in Fig.m.

(not shown). Notice that the variance is mostly indepen-
dent of the presence of different geometries due to the nor-
malization to the size of the spherical cell.

To quantify the impurities present due to the different
pasta structures, we must consider that an incident probe is
sensitive to their orientation [11]]. A full caleulation of the
transport coefficients in the different thermodynamic con-
ditions, and according to the possible pasta orientations is
left for future work. However, we can appreciate the im-
portance of the anisotropies due to the impurities, by com-
puting the effective charge variance in the hypothesis of a
common symmetry axis x for the different local domains
characterized by a given geometry. To do so, we consider
the free parameters L, 5 in the volume of slabs and rods:

V¥ =RV sy, and VY =pRYLZ (31)

1,Ws
which can be determined by equating the above to the clus-
ter volume defined in Eq. (I2), in order to define the effec-
tive number of protons as seen by an incident probe
N _ oNoN JN

i =zl sy, (32)
where k=x, y, z is the axis of motion of the incident probe,
Sq . is the surface area of the pasta geometry perceived by
the probe, summarized in Tab. |[|and S} = 27(R})? is half
of the droplet total surface. Thus we can calculate the vari-

Axis Sz‘k S],k
% m(RY)? RYLy e
y 1TRIgl-z,Ws RTLLWS
z RY Ly s Liws

TABLE I: Effective surface of the pasta structure in the axis of
motion of an incident probe. The rods are considered to have
length L,y in the x-axis, and the slabs have length L, ¢ in the x
and y directions.

ances for the different orientations using Eq.@ by replac-
ing ZzV — Zﬁ. The orientation-dependent variances are
also shown in Fig.E] Though the order of magnitude of this
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FIG. 3: Total (solid line) and orientation-dependent (dashed) proton number variances for T=1 MeV] Y, =01 (left) and 0.3 (right).
The x, y and z axis denote the direction of motion of the probe, and are represented by the colors red, yellow and blue, respectively. We
assume local domains of different geometries aligned along a common symmetry axis x.

effective impurity factor is consistent with previous estima-
tions [[5}[7]], we can see that huge fluctuations are expected
as a function of the orientation, at the densities correspond-
ing to a change of dominant geometry.

Conclusions: Using a realistic microscopic energy func-
tional (the IUFSU parametrization with Thomas-Fermi fit-
ting for the surface energy), we calculated the probability of
different pasta structures coexisting at thermodynamic con-
ditions experienced in neutron star and supernovae matter,
and made estimates of the proton number variance, con-
sidering the different orientations of the pasta structures.

Quantitative calculation of the transport coefficients are in
progress.
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Strong magnetic fields can modify the microscopic composition of matter with consequences on
stellar macroscopic properties. Within this context, we study, for the first time, the possibility of the
appearance of spin-3/2 A baryons in magnetars. We make use of two different relativistic models for
the equation of state of dense matter under the influence of strong magnetic fields considering the
effects of Landau levels and the anomalous magnetic moment (AMM) proportional to the spin of all
baryons and leptons. In particular, we analyze the effects of the AMM of A baryons in dense matter
for the first time. We also obtain global properties corresponding to the EoS models numerically
and study the corresponding role of the A baryons. We find that they are favored over hyperons,
which causes an increase in isopin asymmetry and a decrease in spin polarization. We also find that,
contrary to what generally occurs when new degrees of freedom are introduced, the As do not make
the EoS significantly softer and magnetars less massive. Finally, the magnetic field distribution
inside a given star is not affected by the presence of As.

I. INTRODUCTION

Magnetars are a class of compact objects that possess
the largest stable magnetic fields observed in nature, with
surface magnitudes inferred for the poloidal component
in the range of 10! — 10 G at the surface [I] and values
more than one order of magnitude larger in the interior
[2, B]. Although the strength of the magnetic field in
the central region of these stars remains unknown, they
could reach ~ 10'® G according to the scalar virial the-
orem [4, [B], and simultaneous solutions of Einstein and
Maxwells equations for poloidal [6] [7] and also toroidal
configurations [8, [0]. Such extreme conditions certainly
play a considerable role when determining the internal
composition and structure of magnetars.

The starting point for determining the macroscopic
structure of compact stars is the assumption of a spe-
cific microscopic model, which leads to the calculation of
an equation of state (EoS) for dense matter. The EoS
encodes the particle population of baryons and leptons
and how they interact through the strong interactions,
constrained by equilibrium conditions, such as S-stability
and charge neutrality. The extremely high energies esti-
mated in the core of neutron stars are more than suffi-
cient to create heavier particle species, beyond the tradi-
tional proton-neutron-electron admixture. It has become
common in the literature to consider the entire spin-1/2
baryon octet [e.g. [[0H26] but, recently, the role of the
spin-3/2 decuplet has been slowly gaining attention, not
just for its influence on the microscopic aspects of dense
matter but also for the astrophysical implications, since
its presence may reduce the radius and tidal deforma-
bility in intermediate mass neutron stars [27H38]. The
lightest spin-3/2 baryons (the As) are only ~ 30% heavier
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than the nucleons (protons and neutrons) and are even
lighter than the heaviest spin-1/2 baryons of the octet
(the Zs). Thus, unless the As are subject to a very re-
pulsive coupling, they are expected to appear at the same
density range as the hyperons (around 2 or 3 times the
nuclear saturation density). Not much is known about
how A baryons couple in dense matter, but their poten-
tial for isospin-symmetric matter at saturation density is
expected to be attractive and in a range of 2/3 to 1 times
the potential of the nucleons, which is of order —80 MeV
[39-41].

Additionally, it is of special interest to investigate how
spin-3/2 baryons are affected by the presence of strong
magnetic fields due to the possibility of them having large
electric charge and additional spin and isospin projec-
tions. The effects of Landau levels in dense stellar matter
containing A baryons was first discussed in the context
of neutron-star matter by Thapa et al. [42] and later by
Dexheimer et al. [37]. In this work we study for the first
time the effects of strong magnetic fields in A-admixed
hypernuclear stellar matter, accounting for effects due to
their anomalous magnetic moments (AMMs).

For magnetic fields larger than ~ 10'¢ G, the defor-
mation of the stellar geometry away from spherical sym-
metry is above 2% [43]. Therefore, the usual relativis-
tic hydrostatic equations usually employed when describ-
ing non-magnetised stars, i.e., the Tolman-Oppenheimer-
Volkoff equations [44] @5], which assume spherical sym-
metry as part of their derivation from the general rela-
tivity equations, cease to be adequate. For this reason,
we make use of anisotropic solutions from the Einstein
and Maxwell equations to explore for the first time the
macroscopic structure of magnetars with strong internal
magnetic fields and containing A-admixed hypernuclear
matter. Beyond accounting for the non-spherical config-
urations of stars and anisotropies introduced by magnetic
fields, this approach allows us to obtain an ab initio mag-
netic field profile in the interior of a given star [46], [47].
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This work is structured as follows. In Section II, the
formalism employed in the microscopic description of
magnetized neutron-star matter is presented, as well as
the procedure of going from the EoS to the macroscopic
description of a compact star through General Relativity.
In Section III, the results for the matter composition and
stellar structure are shown and discussed, and, in Section
IV, the main conclusions are drawn.

II. FORMALISM
A. Anomalous magnetic moment

The AMM of a particle is a deviation from the mag-
netic moment of that particle, as predicted by the “clas-
sical” tree-level prediction. Historically, the term anoma-
lous was used to describe the deviation from the Dirac
equation prediction for a system of fermions under the
influence of a magnetic field, the magnetic moment, and
thus, refers to fundamental particles. Dipole moment, on
the other hand, is used for composite particles, such as
baryons, since their value depends on the configuration of
quarks and gluons inside it, and thus, are not anomalous
in the strict sense. As commonly used in the literature
and for simplicity, in this work we use the term AMM in
all cases.

The energy spectrum of baryons with an AMM can be
empirically determined, but a theoretical derivation of
their values from first principles is yet an unaccomplished
task. The AMMs of nucleons are measured to a very high
precision, with errors of the order of 10~ [48,[49], but the
same does not apply to heavier baryons. Measurements
of the hyperon AMMs are precise to an order of 1072 [50],
while As are experimentally determined only for the pos-
itively charged AT and AT. For the A™, there is a sin-
gle measurement of pa+ /iy = 2.7773 & 1.5 that comes
from the yp — pry’ reaction [51], while for the AT there
are several measurements coming from the 7#+p — 7 py
bremsstrahlung cross section, with values in the range
pa++/pun = 3.7 — 7.5 [50]. These measurements in-
clude systematic uncertainties, but additional theoreti-
cal uncertainties lead to errors ~ +3. Complementary
to experimental results, lattice quantum chromodynam-
ics (LQCD) has been able to extract AMM values for
A baryons. The values utilized in this paper are based
on the predictions from LQCD provided in [52] that lie
within the experimental uncertainties of the experimen-
tally measured AMMs.

Different properties of baryons considered in this study
are shown in Tab. [l The AMM strength coefficients k;
are related to the magnetic moments p; through the re-
lation

M,
= — — 1
Kb = Up — QoUN M, ( )

which depends on the baryon charge ¢, the nuclear mag-
neton py = e/2M,, with e being the electron charge,

TABLE I: Vacuum mass, electric charge, isospin 3" com-
ponent, spin, normalized magnetic moment, and normalized
anomalous magnetic moment of baryons considered in this
work. Electric charge is shown in units of the electron charge
and pn is the nuclear magneton.

My (MeV) go(e) Iso Sy pv/un Ko/pn

P 939 +1 +31/2 279 1.79
n 939 0 —31/2 -1.91 -1.91
A 1116 0 0 1/2 —0.61 —0.61
ot 1193 +1 +1 1/2 246 1.67
0 1193 0 0 1/2 161 1.61

i 1193 -1 -1 1/2 —1.16 —0.37
=° 1315 0 +%1/2 -125 -1.25
g 1315 -1 —-11/2 —0.65 0.06
ATY 1232 42 +33/2 499 347
AT 1232 +1 +3 3/2 249 1.73
A° 1232 0 —13/2 006 0.06
A 1232 -1 —33/2 —245 —1.69

and the ratio of the proton mass M, to the baryon
mass M,. Although the expression is derived for
spin-1/2 fermions in the non-relativistic regime, it is
still commonly employed to the description of the spin-
3/2 particles [see B3, B4]. This subject is controver-
sial, as the Rarita-Schwinger equation with minimal cou-
pling predicts a gyromagnetic ratio of 2/3, while low en-
ergy/optical theorems predict a value of 2. For a more in-
depth discussion we refer to Deser et al. [55], which stud-
ies a generic non-minimal electromagnetic coupling in the
Rarita-Schwinger formalism. In this work, we also ac-
count for the leptons (electron and muon) AMMs, given
by ke/pp, = 1.15965 x 1073 and Ku/ip, = 1.16592 x

1073, respectively, with up, = e/2M,, for | = {e, u}.

B. Matter description

To describe baryon-dense matter subject to a strong
magnetic field, we must start from a Lagrangian density
describing how the particles interact with each other and
with the external electromagnetic field. The photons are
simply described by the massless Proca Lagrangian den-
sity, followed by a term containing the electromagnetic
interaction for charged baryons and leptons, and a term
describing the AMMs of baryons b and leptons [

1
Ley = — ZFWF;W

- 1
+ Z%,l <—Qb,lA“ - 4f€bUWFW> Y1, (2)
b1

where F,, = 0,A, —0,A,, o = §[v*,7"], and the
vector potential A, = (0,0, Bz,0) is chosen such that
the magnetic field is parallel to the z-axis. Leptons are
described additionally by the (free with respect to the



strong force) Dirac Lagrangian density
'Clepton = Zqﬁl [Z'yua# - Ml] wl . (3)
l

We make use of two different relativistic models to
describe the still widely unknown strong interaction be-
tween baryons. The first model is a non-linear version
of the Walecka model, where the baryon interactions are
mediated by the o, w, p and ¢ mesons, within the mean
field approximation. We choose the recently proposed
L3wp parametrization [56], which includes an additional
wp interaction that allows the correct prediction of slope
of the symmetry energy, neutron-star radii and tidal de-
formabilities. The ¢ meson (with hidden strangeness)
couples only to the hyperons, allowing a higher maxi-
mum mass to be reproduced for neutron stars, thus cir-
cumventing the well-known hyperon puzzle [57], with an
effect similar to the higher-order w?* self interaction, also
included. In addition to satisfying standard astrophysical
constraints from LIGO/VIRGO and NICER, the model
satisfies nuclear ground-state properties of finite nuclei
and bulk properties of infinite nuclear matter. It is also
consistent with the PREX-2 results for the symmetry en-
ergy of L =106 437 [58], though at the lower end of the
error band.

The model Lagrangian density is written as £ =
Ly + L, where the first term is the (interacting) Dirac
Lagrangian density for nucleons, hyperons, and As, and
the second term accounts for the self interaction among
scalar and vector mesons!

Ly = Z Vb [17,0" — Y0 (Gubw + GppIaop + gepd) — My

b

()

and
1 A 1
Ly = — imgaz - 503 - 204 + Emin + %gfgbufl
1 1
+5mpn” + gupwp? + omie? (6)

where I3 is the baryon isospin 3rd component, given in
Table [ The mass of the baryons is modified by the
medium, giving rise to an effective mass My = M, —
gob0. The fittings of the self couplings A and s, and
the couplings between the mesons ¢ = {o,w,p,$} and

1 Spin-3/2 baryons are in fact described by the Rarita-Schwinger
Lagrangian density

1_ .
Lrs=—Y 70u (5“"”’%%,(% - zmbo‘“’) Yup, (4
b=A

where ¢#"\ is the Levi-Civita symbol, o*¥ = %[7“,7"], and

¥, b is a vector-valued spinor with additional components (when
compared to the four component spinor in the Dirac equation).
Nonetheless, its equation of motion can be written compactly as
(i7Y Oy — m) ¥, = 0, see de Paoli et al. [59].

baryons b, defined in terms of the ratios z;» = giv/gin,
are discussed in detail in Lopes [56].

Relevant for this work, the scalar meson couplings are
fitted to reproduce the hyperon potential depth Uy =
—28 MeV (for isospin-symmetric matter at saturation)
and the remaining relative strength of the coupling con-
stants are determined by SU(3) symmetry group argu-
ments, as proposed by Lopes and Menezes [60], determin-
ing the complete hyperon-meson coupling scheme from a
single free parameter, a,. Despite the value of «,, hy-
perons are always present in the neutron-star matter and
the sequence of hyperon thresholds are always the same,
with an inversely proportional relationship between «,
and the stiffness of the EoS. In this work, we choose to
use «, = 0.5, which results in values for the additional
potentials Uy = +21.8 MeV and Uz = +35.3 MeV,
and a stiffer EoS with respect to the values «, = 0.75
or 1.0 that are considered in Lopes and Menezes [60].
Though the potential for the =~ mesons is repulsive in the
parametrization used, recent observational constraints
predict it to be attractive [6IH63], but to reproduce such
an attractive potential we would need an extra free pa-
rameter in the meson couplings [56].

The A couplings are treated more freely, as their
behavior is not well known. The scarce information
present in the literature, such as transport models [64]
and quasi-elastic scattering of electrons off nuclei [65],
allows us to infer that the nucleon-A potential is slightly
more attractive than the nucleon-nucleon one, so that,
Un — 30 MeV < Ua < Uy, which implies 2, is greater
than 1. Also, the vector coupling is constrained by LQCD
results as respecting the relation 0 < zoa — zua < 0.2,
and no constraint is put in the z,a value [30, 41, [66].
Early investigations on the effect of these parameters
were made in de Oliveira et al. [67) [68] and their role in
the stellar particle composition and maximum-mass was
studied considering x,A = 1.0 and 1.1, within two classes
of relativistic mean-field models in Dexheimer et al. [37].
Following the previous study, we analyse the scenarios
with x,A = zoa = 1.0 and x,A = z,aA = 1.2, keep-
ing z,Ao = 1.0, that generates, respectively, potentials
Ua = —66.25 MeV (equal to the nucleon potential) and
—79.50 MeV.

The second model we use in this work is the chiral
mean-field (CMF) model, which is based on a nonlinear
realization of the chiral sigma model. As in all chiral
models, the masses of the baryons are generated (and
not just modified) by the medium. In this way, at large
temperatures and/or densities they decrease allowing chi-
ral symmetry to be restored, in agreement with LQCD
results [69]. In this work, we restrict ourselves to the
hadronic version of the model (with leptons) developed
by Dexheimer and Schramm [70], and disregard the pos-
sibility of phase transitions to quark matter. We add an
additional wp interaction to be in better agreement with
data for the slope of the symmetry energy, neutron-star
radii, and tidal deformabilities [71l [72]. We also add a
higher-order w* interaction to reproduce more massive



neutron stars [73].
The mean-field model Lagrangian density has the
terms

Ly =Y Ofiv,0" = 0(gupw + gppI3,p+ gop®) — My |
b

(7)

and

1

Lo = 3 ( 2w+ mep2 + mi(bQ)
4 4w3

+ 04 (w4+¢+3w2¢>2+¢+

2w¢3)
4 V2 V2
—ko(0? + 2+ 02) — ki (0 + %+ 02)?

ot &
— ko ( + = + 30252 + <4> — k(0 — 63)¢

2 2
0.2 _ 52 C
— k4 In (O'2C) — mgrfﬂO'
~ (Vanih - Sz )< ®

where the effective mass of baryons is M) = g0 +
95350 + gev¢ + Mo, including additional corrections
given by the scalar-isovector ¢ and scalar-isoscalar (with
hidden strangeness) ¢ mesons, and a small bare mass
correction My. The couplings were fitted to reproduce
hadronic vacuum masses, decay constants, nuclear satu-
ration properties, and to reach more than 2.1 Mg stars.
See Roark and Dexheimer [74] for a complete list of cou-
pling constants. We follow the SU(3) and SU(6) coupling
schemes for the scalar and vector couplings of mesons and
baryons. In this way, there are only two free parameters
left: one fitted to reproduce for symmetric matter at sat-
uration the potential Uy = —27 MeV and another one
(TwA = gua/gun = 1.25) fitted to reproduce under the
same conditions Up = —64 MeV ~ Uy. They result ad-
ditionally in Uy = 6 MeV and Ug = —17 MeV. A much
larger x,A would suppress all As, while a much lower
value would suppress all hyperons.

For both models, the equations of motion for the
mesonic fields are obtained from the Lagrangian den-
sities via the Euler-Lagrange equations. Under charge
neutrality and S-equilibrium conditions, we can write the
chemical potential of a baryon as a relation between the
chemical potential of the neutron and the electron, pu.,
and p., respectively, and its electric charge, i.e.,

o = Hn — Qbhe - 9)

At low (effectively zero) temperature, the Fermi energy
spectra of baryons is

Ery = 1o — gubw — gppl36p — 9o ® (10)

while for leptons it is simply E%; = pe.

In the presence of a magnetic field, the Fermi momen-
tum (squared) can be calculated from the difference be-
tween the Fermi energy (squared) and

1. the square of the effective mass modified by the
AMM for particles that are not electrically charged

(g = 0),

kpo(s) = By’ — (M — srB)” (11)

2. the square of the effective mass modified by Lan-
dau quantization and AMM for particles that are
electrically charged (g # 0),

2
k‘%’b(y, s) = E}bZ — (\/MJQ + 2v|qp| B — smbB> . (12)

For the momentum of leptons, M* is simply M. In the
latter case, the Fermi momentum refers to the local direc-
tion of the magnetic field, hereafter defined as the z-axis.
In the transverse direction to the local magnetic field, the
Fermi momentum is restricted to discrete values 2v|gp| B,
where the Landau levels v relate to the orbital angular
momentum n via the relation

v=n+-—-—, (13)

where n = 0,1,2... . For particles with spin 1/2, the
first Landau level (v = 0) is occupied by a single spin
projection: s = 41 for ¢, > 0 and s = —1 for ¢, < 0.
The second level (v = 1) and above are occupied by both
spin projections s = {£1}. For the spin-3/2 positively
charged As, the first level (v = 0) is occupied by the spin
projections s= {+3,+1}, the second level (v = 1) by
s = {+3, £1}, and hereafter all spin states are occupied.
For the negatively charged A~ spin projection, signs are
reversed for the lowest levels.

At zero temperature, there is a maximum Landau level
allowed, beyond which the momentum in Eq. be-
comes imaginary given by

voen(s) = | Eirot smB)” = My
maxb 2|qb|B

(14)

The number density for each baryon is also defined sep-
arately for electrically charged and uncharged particles,
respectively,

g7 = N k(v 5) (15)

skpB

(g=0) _ 7 _ i k?«“b(s) .
n 0 = iy = 22{ ) o

(My — skpB) kpy(s)+

My — B
o (arcsin (bE;:l)) - 72T> } } ,  (16)




as well as the scalar densities,
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pla=0 _ My
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S

kry(s) + ELy,

* 2
(M} — skpB)" In M7 — sl

] . (18)

The expressions for energy density and pressure are
different for each model and can be obtained from the
energy-momentum tensor for matter (discussed in the
following).

C. Macroscopic structure

For spherically symmetric neutron stars, given an EoS
P(e), the global structure can be obtained by solving the
Tolman-Oppenheimer-Volkoff (TOV) equations of hydro-
static equilibrium

% = 47r?e(r) (19)
% = (M(r) +4mr®P(r)) %2 (1 - 25}4)_ , (20)
P e P2, (21)

where M(r) is the stellar mass contained within the ra-
dius r and v(r) is a gravitational potential for the line
element in spherical coordinates

2M N\~
ds® = —ezy(r)dt2+(1 - >
,

(22)

The TOV equations cannot be applied to describe the
structure of the magnetars we study in this work be-
cause the spherical symmetries assumed in Eq. will
not hold. This is due to the strong magnetic fields we in-
fer for such objects, which produce highly deformed stel-
lar shapes. Instead, the stellar structure must be deter-
mined by solving equations in General Relativity describ-
ing the stationary configuration for the fluid, coupled
with Einstein field equations. The energy-momentum
tensor, which contains the information on the matter
properties of stars, enters the stellar structure equations
as the source of the Einstein equations. Neglecting the
coupling to the electromagnetic field, one generally as-
sumes a perfect fluid and the energy-momentum tensor
takes the form

T{" = (e + P) uf'u” + P g" , (23)

1
dr?+r%(d6*+sin? 0dp?) .

where e denotes the (matter) energy density, P the pres-
sure, and u* the fluid four-velocity.

The EoS then relates pressure and energy density
to the relevant thermodynamic quantities. In Chatter-
jee et al. [75], the general expression for the energy-
momentum tensor in the presence of an electromagnetic
field was derived, starting from a microscopic Lagrangian
including interactions between matter and the electro-
magnetic field

v v 1 1% 1% 1 LV
T =T} + o <—B“B + (B Butu’ + 59" (B B))
+ 2 (B*BY — (B B)(utu” + g")) (24)

Ho

where pg is the vacuum permeability, g"” the metric ten-
sor, and z is the magnetisation. The electromagnetic
field tensor has been expressed as F),, = ea,gWuﬂBa ,
with €qg,u being the four-dimensional Levi-Civita sym-
bol [76]. Assuming an isotropic medium and a magneti-
sation parallel to the magnetic field, the magnetisation
tensor M,,,, can be written as

M,uy = eaﬁpuuﬁaa ) (25)

with the magnetization four-vector defined as a, =
ﬁB/v In the absence of magnetisation, i.e. for x = 0,
this expression reduces to the standard magnetohydro-
dynamics form for the energy-momentum tensor [c.f. [76].

Strong magnetic fields result in an anisotropy of the
energy momentum tensor and break spherical symme-
try, such that with increasing strength of the magnetic
field, the shape of a magnetar departs more and more
from a spherical shape. Interpreting the spatial elements
of the fluid rest frame energy-momentum tensor as pres-
sures, then there is a difference induced by the orientation
of the magnetic field, commonly referred to as “paral-
lel” and “perpendicular” pressures. Several earlier works
tried to compute the mass-radius relations of strongly
magnetised neutron stars through a first approach us-
ing isotropic TOV equations [77H82]. In these works,
the components of the macroscopic energy-momentum
tensor in the fluid rest frame are used to obtain the en-
ergy density ¢, parallel (P) and perpendicular (P ) pres-
sures. In Heaviside-Lorentz natural units, the pure elec-
tromagnetic contribution to the energy-momentum ten-
sor, which is anisotropic, has values of B2/2 and —B?/2
in the perpendicular and parallel directions to the lo-
cal magnetic field, respectively. However, this approach
can drastically overestimate the mass of neutron stars [as
shown in Fig. 3 of B3].

Several works obtained the global structure models
of magnetars by solving coupled Einstein-Maxwell equa-
tions, taking into account the anisotropy of the stress-
energy tensor [0, [7, @, [42] [84H90]. In these studies either
a perfect fluid, a polytropic EoS, or a realistic EoS was
assumed, but do not take into account the magnetic field
modifications due to its quantisation.

Ideally, to explore magnetic field effects such as Lan-
dau quantisation and AMM on the global properties of
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FIG. 1: Single-particle potentials of A baryons as a function of baryon number density in isospin-symmetric nuclear matter
(dashed-dotted line) and pure neutron matter (solid lines) for the L3wp model using two different A scalar interaction strengths
(lett and middle panels) and for the CMF model (right panel).

the star, one must solve the coupled Einstein-Maxwell
equations, along with a magnetic field dependent EoS.
In Chatterjee et al. and Franzon et al. [91], global
numerical models for magnetars were obtained by con-
sistently solving Einstein-Maxwell equations with mag-
netic field dependent quark EoS. It was however explic-
itly demonstrated by Chatterjee et al. [Thl 2] that the
maximum mass of a neutron star is minimally modified
due to the magnetic field dependence of the microscopic
EoS, even for the highest magnetic fields. Therefore in
this work, we assume a non-magnetic (B = 0) matter
contribution to the EoS to compute global neutron-star
models and the magnetic field enters structure calcula-
tions only through the dominant pure eclectromagnetic
field contribution. Although it remains to be checked
explicitly in future work, the effects of Landau quantisa-
tion and AMMSs are not expected to sensibly affect the
results of this study. Note however, that this is not the
case for microscopic properties of matter, as discussed in
the following.

III. RESULTS

A. Matter properties

We start our discussion with the single-particle interac-
tion potential for the A baryons in dense nuclear matter,
which is a measure of the energy cost of adding one par-
ticle b in a b-less matter with the given condition. For
the L3wp model, it can be written as

Up = —Ggob0 + gubw + gupIsnp + 9o @ . (26)

and, for the CMF model,

Uy = gobo+3s613, 6+ gcoC— M vae+Guvd +Gppl3pp+gep @

(27)
In isospin-symmetric nuclear matter, all families of
baryons experience the same potential, since the meson
field p (and 4) are null in this situation. In neutron rich
matter, particles with positive isospin projections (as the

positively charged As) are more bound than their zero-
and negative-isospin counterparts, with the largest dif-
ference occurring for pure neutron matter, that can be
taken as an extrapolation of neutron-star matter in S5-
equilibrium. The first two panels of Fig. |1} show how
the L3wp model scalar and vector interactions affect the
A potentials. In all cases, the particle potentials even-
tually become positive as the density increases, corre-
sponding to unbound states, but they stay negative in
the relevant interval of densities around nuclear satura-
tion, where their depth determines how much they are
bound.

For the L3wp model, the larger the scalar coupling
value (i.e., the parameter x,4), the lower the potentials
are in the low density regions. Complementary to that,
the larger the vector coupling (i.e., the parameter T a ),
the more repulsive the potentials for As are, which reflect
in more positive curves in the high density region, where
the repulsive channel dominates. Also, it can be seen
that the potential depends less on the species of A in the
CMF model. Magnetic-field effects are not included, but
it was verified that fields up to B = 3 x 10'* G do not
affect these results.

For B = 0, the matter EoS (namely, P vs. ) shows
a simple monotonically increasing behavior, however its
derivatives show interesting features generated, e.g., by
changes in particle composition. Next, we discuss the
incompressibility modulus (usually referred to simply as
compressibility), given by

K= 9,()—P . (28)

()‘RB

At saturation density, compressibility values for isospin-
symmetric matter can be compared with laboratory data.
We find values of 256 MeV and 300 MeV for the L3wp
and CMF models, respectively. Laboratory values range
between 220 < K < 260 MeV BOLO3] and 250 < K < 315
MeV [94].

The top panel of Fig.shows the effect of the inclusion
of different particle species in the compressibility for the
L3wp model, in the absence of an external magnetic field.
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FIG. 2: Compressibility as a function of baryon number den-
sity in isospin-symmetric matter with only nucleons (dashed-
dotted line) and neutron-star matter (full lines) shown for
different compositions and interaction strengths for the L3wp
(top panel) and for the CMF model (bottom panel). B = 0.

The kinks in the curves are consequence of the onset of
new particle species, which are shifted to lower densi-
ties by the inclusion of both As and respective stronger
scalar interactions. For x,a = 1, the effective mass of
nucleons becomes zero at ng ~ 0.85 fm~? and, for this
reason we lack solutions at higher densities. The bot-
tom panel of Fig. Q shows that in the CMF model the
kinks are much smaller than in the L3wp model, with
the only displacement of the curve occurring at the onset
of the first non-nucleon baryon. As a consequence, the
different CMF EoSs behave more similarly as the density
increases.

The stiffer EoSs are formally the ones with larger val-
ues of the speed of sound v, but here we discuss stiffness
with respect to K, related to vy through v? = K/(9u)
([958]). Tsospin symmetric matter is softer at low den-
sities, but becomes stiffer at large densities due to the
Pauli exclusion principle because, as only nucleonic mat-
ter is considered, higher Fermi levels must be occupied
(see Fig. 2). The behavior of neutron-star matter (charge
neutral and in chemical equilibrium) depends on the com-
position, but it is always softer than the symmetric mat-
ter case after the hyperon or A onsets, as the presence of
new Fermi levels turns the EoS softer. Matter with hy-
perons but no As is stiffer at intermediate densities (than
matter with As), however it is softer at large densities,
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FIG. 3: Tsospin fraction as a function of baryon number den-
sity for neutron-star matter with B = 0 (dotted lines) and
with magnetic field B = 3 x 10" ¢ when considering (solid
lines) or disregarding (dashed lines) the effects of the anoma-
lous magnetic moments and shown for different compositions
and interaction strengths. The top and bottom panels show
results for the L3wp and CMF models, respectively.

especially in the case of strong scalar interaction (for the
L3wp model). This trend was noticed previously by Dex-
heimer et al. [37], where we showed that the inclusion of
As could turn the EoS stiffer (than the cases where they
were absent), despite the fact that the new degrees of
freedom soften the EoS. This is related to isospin asym-
metry, which we discuss in the following.

We define the isospin fraction as the average 3' isospin
component of a given matter composition, weighted by
the relative densities, i.e.,

Isyn
¥, = B, (29
b

as shown in Fig. @ For nucleonic matter only, ¥, =
0 means matter with the same amount of protons and
neutrons, while Y, = —0.5 means pure neutron matter.
The density at which the curves with and without As
split marks the appearance of the A~s, which increase
the isospin asymmetry (turn the isospin fraction more
negative). The effect is much larger for the L3wp model
(top panel) than the CMF model (bottom panel), which
hints that the amount of As reproduced in each model is
different. Both effects generated by the magnetic fields,
i.e. Landau quantization and AMM, decrease the isospin
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FIG. 4: Particle composition of neutron-star matter with As, with B = 0 (top panels) and magnetic field B = 3 x 10'* G
(bottom panels), when considering (solid lines) or disregarding (dashed lines) the effects of the anomalous magnetic moment.
The left and middle panels show results for the L3wp model with different interactions, while the right panel shows results for

the CMF model.

asymmetry (less negative Y7,) at low and intermediate
densities.

A better understanding of the effects of the inclusion
of A baryons, magnetic fields, and AMM in neutron-star
matter subject to strong magnetic fields can be obtained
from Fig. Comparing the top row (B = 0) with the
lower one (B = 3 x 10'® G), we can see that some of the
charged particles are favored when magnetic field effects
without AMMs are considered, an effect that is more pro-
nounced for protons, whose onset density is pulled to very
low densities for both models. As a consequence, their
population becomes more similar to the neutron one in
densities below ~ 0.05 fm—?, turning Y7, less negative.
The inclusion of AMM enhances this effect. This ex-
plains why the isospin asymmetry depends both on the
magnetic field and on the AMM in the lower density re-
gion, as shown in Fig. EI The A~ threshold (at densities
around 0.3 fm~3) coincides with the region at intermedi-
ate densities beyond which the N+H+A EoSs are softer
than the respective N+H EoSs. The A (and the ¥ in the
CMF model) hyperons appear at larger densities than
the A~s. The remaining As appear at much larger den-
sities and in amounts that depend on the interactions in
the L3wp model.

To discriminate AMM effects on the particle compo-
sition is not trivial, as they depend on the AMM cou-
pling strength and sign, on the particle mass, charge,
and density. Additionally, different spin projections are
separately enhanced or suppressed, but this cannot be
clearly seen in Fig,. @ as it follows the usual convention
and shows the sum of all spin projections for each par-

ticle. For this reason, we make use of a quantity that
reveals the degree of spin polarization, more suited to
discuss spin projection asymmetry of fermions.

‘We define the total spin polarization of a given matter
composition, weighted by the relative densities, in anal-
ogy to Eq. (29), i.e.,

2, T (8)

pin = —Ebrs 'nb(S) 7

and shown the results in Fig. For a fixed magnetic
field strength, all charged particles are fully spin polar-
ized at low densities: only spin projection 1/2 for protons
and spin projection 3/2 for positive As, only spin projec-
tion -1/2 for leptons and negative s, and spin projection
-3/2 for negative As. When AMMs are considered, neu-
tral particles obey the same logic, presenting only pos-
itive (negative) spin projections according to their pos-
itive (negative) sign of k. At intermediate densities,
full polarization is broken for more massive particles, but
not for leptons and As. But, regardless, the polarization
never goes to zero, meaning that partial spin projection
imbalance remains at high densities. Owverall, spin po-
larization fraction is much stronger for the CMF model
(bottom panel) than for the L3wp model (top panel). Full
polarization can be understood from Egs. , . and
, which explains why particles with different isospin
projections present different momenta and why particles
occupying the first Landau level (v = 0) are more abun-
dant when only a few levels are occupied. This happens
for strong magnetic fields and low particle densities, or

A (30)
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FIG. 5: Spin polarization fraction as a function of baryon
number density for neutron-star matter with magnetic field
B =3 x 10"® G, when considering (solid lines) or disregard-
ing (dashed lines) the effects of the anomalous magnetic mo-
ments and shown for different compositions and interaction
strengths. The top and bottom panels show results for the
L3wp and CMF models, respectively.

simply less massive particles.

It is a well-established concept that the magnetic field
is not constant within neutron stars, but increases to-
wards their centers where the density is larger. But, be-
fore we discuss stellar configurations with macroscopic
magnetic fields in detail, we study how one more rel-
evant quantity changes as a function of magnetic field
strength. The fraction of exotic particles can be defined
as the following quantity

_ Zbei tp

B PR

for i = H or A, shown in Fig. On the left panel for
the L3wp model, the amount of As is slightly reduced at
a given density but then increases tremendously at the
larger density when the AMM is included, a behaviour
quantitatively not reproduced with larger coupling con-
stants, as seen on the middle panel. The amount of hy-
perons, on the other hand, is not significantly modified by
the magnetic field, only slightly decreases in the presence
of AMM and is affected by the small fluctuations related
to the De Haas-Van Alphen oscillations [96]. The right
panel shows the same qualitative behavior for the CMF
model, which has a more clear substitution of hyperons

Y (31)

el

in favor of deltas for higher values of B, independently
of the density or accounting for the AMM.

B. Macroscopic structure

In a previous study, Dexheimer et al. [37] obtained re-
sults on the effects of the inclusion of As in neutron stars
for both the L3wp and CMF models without magnetic
fields, using standard TOV equations. As expected from
the discussion regarding the hyperon puzzle [57], pure nu-
cleonic stars are always the most massive configuration,
and the inclusion of hyperons decreases the maximum
mass obtained. It was noticed that the inclusion of As,
however, does not modify significantly (and in some cases
increases) the maximum stellar mass in relation to the
composition with only nucleons and hyperons, and this
effect is more obvious for the cases where As are more
abundant. It is argued that the addition of As decreases
the fraction of nucleons (in fact, neutrons) and hyperons
(mostly As) to create As and some protons, in a way that
the overall increase in isospin asymmetry turns the EoS
stiffer, even when more species are present.

As described here in section m to compute the ef-
fect of the strong magnetic fields on the structure of the
magnetars, one must solve the coupled Einstein-Maxwell
equations with the equations of state (described in sec-
tion . For the chosen poloidal field geometry, we
solve the Einstein—Maxwell equations within the numer-
ical library LORENE? using a multi-domain spectral
method. In Figm we show the mass radius relations for
the L3wp and the CMF models, with and without As, as
a function of equatorial radius for sequences of constant
stellar central magnetic field. Despite the fact that, for
the choices discussed here for x5 and x,,A parameters in
the L3wp model, the masses of N4+H+A stars never sur-
pass the respective N+-H configurations, we still observe
that the the maximum mass (shown in Fig. E} follows the
same ordering of a large (and most relevant) portion of
Fig. Efor the compressibility.

In Fig. m any differences between the mass-radius
curves for the B = 0 case (solid lines) arise from the dif-
ferences in the (non-magnetic) EoS, while the differences
with magnetic field come from the pure electromagnetic
field contribution. We know that the Lorentz force origi-
nating from the pure electromagnetic field affects the low
density part of the EoS. This is why the maximum mass
of very massive stars does not change with increasing
magnetic field strength, but the mass and radius of less
massive stars increase significantly. For the L3wp model,
the inclusion of As decreases modestly the maximum stel-
lar mass, especially for the larger coupling. However, for
the CMF model, we do not see meaningful changes on the
mass-radius diagram with the inclusion of As. From Ta-

2lhttp://wwv.lorene.obspm.fr
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FIG. 7: Stellar mass as a function of equatorial radius for
different compositions and interaction strengths, for central
magnetic fields B = 0 (solid lines), B = 5 x 10*" G (dashed
lines), and B = 10*® G (dotted lines). The top and bottom
panels show results for the L3wp and CMF models, respec-
tively.

ble@we see that, keeping the radius of the neutron star
fixed (going up vertically in Fig. m), the increase in the
strength of the central magnetic field increases both the
central baryon and energy densities, as a larger matter
pressure is necessary to balance the Lorentz force. The
addition of As decreases both quantities, as these stars
are naturally (at B=0) smaller.
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FIG. 8: Magnetic field distribution inside a neutron star of
mass 1.8M; and central magnetic field of B = 5 x 107 G
for different compositions and interaction strengths. Solid,
dashed, dashed-dotted and dotted are, respectively, the first
four even multipoles of the magnetic field norm (I = 0,2, 4, 6),
shown as functions of the coordinate radius. The top and
bottom panels show results for the L3wp and CMF models,
respectively.

At this point, we note that the maximum mass value of
the stellar family described hy the L3wp model with As
and x,a = 1.0 (the yellow curve) has not been attained
because, as explained earlier, the EoS numerical code
stops converging at large densities due to reaching zero
nucleon masses. Such behavior indicates that hadronic
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FIG. 9: Magnetic field distribution inside a neutron star of
mass 1.8M and central magnetic field of B = 5 x 107 G
for different compositions and interaction strengths. Solid,
dashed and dotted are the dominant monopolar (I = 0) term
at the polar (6 = 0), intermediate (# = 7/4) and equatorial
(6 = w/2) orientations, respectively, shown as functions of the
coordinate radius. The top and bottom panels show results
for the L3wp and CMF models, respectively.

matter is no longer stable at this point and deconfinement
to quark matter must be considered. We leave such anal-
ysis to a future work. But, since the trend of the yellow
curve is quite obvious, we can conclude that its maxi-
mum mass is lower when compared to the other coupling
and composition.

Using the full numerical solution, we also study the ef-
fect of the EoS on the magnetic field configurations inside
a given star. We decompose the magnetic field norm in
terms of spherical harmonics

lmaa

B(r,0)~ ) Bi(nY,(0) , (32)
=0

and plot the first four even multipoles (I = 0,2,4,6) as
function of coordinate radius for both the EoS models
and coupling strengths in Fig We also plot the profile
of the dominant monopolar, spherically symmetric, term
(I = 0) inside the star in Fig For L3wp model, spe-
cially if we include As, the magnetic field norm decreases
slightly inside the star but, for CMF model, we do not
see any considerable changes.
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TABLE II: Central baryon (n.) and energy (.) densities as a
function of magnetic field strength for neutron stars of radius
12 km with L3wp model for z,a = zu,a = 1.0(1.2) in the top
panel and CMF model in the bottom panel

- —3 y 3
B(Q) ne (fm™") g. (MeV/fm?)
N+H N+H+A N+H N+H+A
0 0.672 0.618 (0.614) 742 658 (657)
5 % 10'7 0.701 0.659 (0.653) 783 712 (T08)
1 x 10*® 0.747 0.714 (0.707) 850 786 (783)

0 0.629
5 x 107 0.680
1% 10*® 0.749

0.625 678 672
0.677 747 741
0.746 843 837

IV. CONCLUSIONS

In the present work, we have used two different rel-
ativistic models, namely, one of the parametrizations of
the Walecka model with non-linear terms called L3wp and
the chiral mean ficld (CMF) model, to investigate the ef-
fects of the presence of A baryons in dense matter. When
the L3wp is used, the unknown meson-hyperon coupling
constants can be extracted from both phenomenology
and symmetry group considerations, but the choice of
meson-A couplings is still flexible. The CMF model,
on the other hand, fixes the coupling constants with
the help of phenomenological potentials uniquely. As
a consequence, single particle A baryon potentials and
the compressibility away from saturation are quantita-
tively different for both models, although they qualita-
tively present the same behavior. This is a consequence
mainly of the different hyperon and A composition at in-
termediate and large densities. Those features are carried
out when strong magnetic fields and anomalous magnetic
moments (AMMSs) are incorporated.

‘We carefully investigated particle composition and spin
polarization when A baryons are included in neutron-
star matter under the influence of strong magnetic fields
with and without AMM corrections. Due to the effects
of charge conservation and chemical equilibrium, there
is no common behavior for all the particles (as predicted
by their AMM signs and strengths). However, in general,
while the population of charged particles increases with
the inclusion of AMM, the population of neutral particles
tends to decrease.

The macroscopic properties of magnetars for the above
choice of EoS models were obtained by solving Einstein-
Maxwell equations within the LORENE library. It was
found that maximum masses as high as 2M;, can be at-
tained even on inclusion of A particles. This is due to
isospin readjustment at large densities, which turns the
EoS stiffer. The As also respond more strongly to the
AMM, which is expected due to the fact that they present
additional electric charges and isospin projections. As
a consequence, A-admixed hypernuclear stellar matter,



possesses larger spin polarization. The latter effect is
more dramatic for the L3wp model, which presents a
larger number of exotic particles than the CMF model.

Considering strong magnetic fields, heavy stars tend to
contain more As in their interiors. They are not neces-
sarily more massive (than their B=0 counterparts), but
are larger and, for a given radius, present larger cen-
tral number density and energy density. While As mod-
ify the magnetic field distribution very little inside stars,
they decrease their radii, improving the agreement with
modern observational data of neutron-star radii and tidal
deformability [O7HIOT].

Our results do not show the significant increase of stiff-
ness of neutron-star matter with As at large density, as
initially observed by Dexheimer et al. [37]. In a more
in depth analysis (to appear in a separate publication
Marquez [102]), we will show that this effect can indeed
occur and reproduce more massive magnetars, but is very
sensitive to model parameters.
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Abstract Based on the assumption that the QCD phase
diagram gives a realistic picture of hadronic and quark mat-
ter under different regimes, it is possible to claim that a
quark core may be present inside compact objects commonly
named hybrid neutron stars or even that a pure strange star
may exist. In this work we explore how the phase transition is
modified by the presence of strong magnetic fields and how
it is impacted by parameters of the quark phase, for which
we use the MIT-model with vector interactions. The phase
transition is assumed to conserve flavor when hadrons turn
into deconfined quarks. The hadronic equation of state is cal-
culated with the NL3wp* parametrization of quantum hadro-
dynamics. We find that the magnetic field slightly reduces the
pressure and chemical potential of the phase transition and
the latent heat, the latter being very model dependent.

1 Introduction

Nuclear matter can be found in a variety of thermodynamic
conditions, from low densities and high temperatures in
heavy ions collision to high densities and low temperatures
in compact stars [1-7]. The high temperatures achieved in
heavy ion collisions provide the ideal environment for the
formation of the quark-gluon plasma briefly after the colli-
sion, as the high energy enhances asymptotic freedom [8,9].
In compact stars, the high pressure environment may also
favor a phase transition from hadronic to deconfined quark
matter [10-12], so that the compact star can be either a
hybrid hadron-quark or a pure quark star, if the Bodmer-
Witten conjecture is satisfied [13—19]. The exact phase tran-
sition points at different temperatures remain unknown, since
QCD is not exactly solvable from first principles and lattice
QCD (LQCD) calculations have to deal with the sign problem

2 e-mail: m.reinke.pelicer @posgrad.ufsc.br (corresponding author)

and (so far) give accurate results only for the low chemical
potential region [20-24]. Therefore effective models play an
important role in the investigation of compact stars structure
and composition. Analysis of QCD with Polyakov loops [25]
predict the phase transition to occur at chemical potentials
higher than ~ 1050 MeV, models such as NJL, MIT and
Quark-Meson coupling predict diverse values, depending on
the hadronic model and on the choice of parameters of the
quark phase [26—34]. It is also possible to constrain the most
probable value of the phase transition, but analysis of this
kind are model dependent [35,36].

In compact stars, the surface magnetic fields can vary
from 10'2 to 10" G [37-40] and reach magnitudes of the
order of 10'® G in the core, according to both the virial theo-
rem [41,42] and solutions of coupled Einstein and Maxwell
equations [43—-46]. Since magnetic fields generate different
pressures in the directions along and across the star [47,48], it
is necessary to solve Einstein and Maxwell equations simul-
taneously, using a software such as LORENE, in order to
determine the stellar structure of a magnetized star, instead
of solving the axisymmetric TOV equations [49,50]. Never-
theless, it is possible to avoid such a complication and use an
isotropic pressure for magnetized matter by using the chaotic
field approximation, introduced in [51], which states that the
magnetic field is disordered at small scales due to the short
range magnetic interaction between moving charges, mak-
ing the magnetic field approximately isotropic at very small
scales while maintaining macroscopic order. Such a pressure
is consistent with thermodynamics, and therefore it is also
useful for analysing how the phase transition is modified in
magnetized matter. Such an approximation has been applied
to compact stars in Refs. [52-56].

The importance of the magnetic field on the strong inter-
actions is long known, as it may alter the transition tempera-
ture, chemical potential and latent heat of the deconfinement
phase transition, modify the vacuum structure, the dynamic
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quark masses and the chiral transition [57-62]. The latent
heat is an important ingredient as it quantifies the discontinu-
ity in the energy density [63,64] and general upper bounds
have been derived from nuclear physics alone [65], being
applicable to effective models and to modified general rela-
tivity theories. Moreover, it also indicates the point where the
transition changes from a first order to a crossover at finite
temperatures, when its value is zero [62], a feature expected
in the QCD phase diagram, where the critical end point is
expected to exist [66].

In the present paper we study the effects of strong mag-
netic fields on the deconfinement phase transition at zero
temperature using the non-linear Walecka model with a mod-
ified version of the NL3* [67] parametrization, proposed
in [12], which we call NL3wp*, for the hadron phase and
the MIT-bag model with vector interactions for the quark
phase. The hadronic parametrization is built to satisfy both
up to date nuclear physics constraints and also a maximum
stellar mass in the range 2.5—2.67 Mg, and can describe
very massive compact objects, as the recently detected PSR
J0952-0607, the fastest and heaviest known galactic neutron
star [68] and even the one in the mass-gap region observed
via the GW 190814 [69], which is yet unidentified and can be
either a very massive compact star or a black hole [70]. Ref-
erence [71] argues that GW 190814 is likely to be a strange
star, mainly due to the very stiff EoS required to produce
such a high mass star and the small radius expected. How-
ever, depending on the choice of model parameters, it was
shown in [12] that it can be a hadronic, a strange and even
a hybrid star. The zero temperature approximation to phase
transition calculations in compact stars is reasonable since,
in the high density and low temperature regime, the point of
the phase transition is not exceptionally changed by doing
a small temperature calculation. Though thermal effects are
less important microscopically it should be emphasized that
heat and radiation released during the transition can be impor-
tant in the cooling and spinning down of the star [72,73].

The MIT model with vector interactions has been dis-
cussed in [74-77], and a more through analysis of thermo-
dynamic consistency, stability window, phase diagrams and
astrophysical consequences can be found in [12,33,78]. To
find the point of the phase transition we follow [79], where
the authors argue that the phase transition does not occur
with both phases in S-equilibrium, but rather with only the
hadronic phase in 8-equilibrium and the quark phase is deter-
mined such that the fractions of quark flavors are conserved
during the transition, because the time scale over which the
strong interaction acts is much shorter than the electroweak
scale. After the phase transition occurs then B-equilibrium
settles in. Hence, although matter in 8-equilibrium is used in
the construction of hybrid star EoS, flavour conservation may
indeed be the favored situation during the phase transition.
As far as the QCD phase diagram is concerned, the main dif-
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ference between the transition with flavor conservation and
B-equilibrium is that the later occurs at a much smaller pres-
sure and chemical potential, as can be found in [12], where
the non-magnetized phase transition with B-equilibrium is
discussed.

In Sect. 2 we provide the main equations of quantum
hadrodynamics and of the MIT model with a vector chan-
nel and concurrently discuss the parameters of each phase.
In Sect. 4 we present the results, with a discussion on how
the magnetic field and the quark parameters impact the point
of the phase transition and the latent heat.

2 Formalism

2.1 Hadronic matter: Walecka-type model

For the hadronic phase we utilize the mean field approxima-
tion of the Walecka model with non linear terms considering
the o, w, p and ¢ mesons, with lagrangian density written

as [80-84]

Lp= Z Vb [im (0" +iepA™) — yo (8wpwo + 8pp L3600

b
+ ) — M g g L
8¢bPo 2 2 Fu 2m¢¢o
Loo A3 k4 1 55 &4 4
T 5Me% T 3390 T 7790 T M@ T 18un®@o
1
+5mpog + Augongones o (1

2

where v, is the Dirac spinor for the baryon b, y,, are the Dirac
matrices, I3} is the half of the Pauli isospin matrices t, and
Fuy = 0,A, — dyA is the electromagnetic strength tensor.
N refers to nucleon. The masses of baryons are modified by
the medium, giving rise to an effective mass M} = M} —
80100, the w-meson is responsible for the repulsive character
of the strong force, the p-meson is responsible for properly
adjusting the symmetry energy and its slope and the strange
vector channel (¢) is essential to produce massive hyperonic
stars [55,85]. The sum over b accounts for both nucleons and
hyperons. The meson field equations are not altered by the
magnetic field, and are given by

mion + 503+ Fof = ; gsbsh @)
me,o + ésgiwé +20080n 8N @0P) = ) Zubny  (3)
b
m? o0 + 2A080 N aN©HP0 = Z 8pbl3pmp “)
b
méd’o = qusbnb. ©)
b
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Neutral particles are not affected by the presence of
the magnetic field, but the momentum of charged parti-
cles becomes quantized transversely to the magnetic field,
occupying Landau levels quantified by the integer v. The
3-dimensional integral over the momentum of particles at
non-magnetized matter (B = 0) is thus replaced by a sum
over the Landau levels [48,86,87]:

d’k |e,,B| ke
Qry | @en)? Z/ ks, ©

and the effective chemical potential is also modified, being
given by

K2, +20leslB+ M e £0

2 *2 (7)
kg +M,”,

Ep) =
ep =0

= Ub — o0 — &p 1300 — o0, (8)

where p, is the chemical potential of the baryon b, which is
constrained by the B—equilibrium relation

Hbh = LB — eplhe, 9

and p p and p, are the baryonic and leptonic chemical poten-
tials, respectively. It must be emphasized that the Fermi
momentum k is the modulus of the 3-vector for uncharged
particles and the z-component for charged ones, and in the
later case it is a function of the Landau level, as it changes
in order to keep the effective chemical potential fixed on the
left hand side of Eq. (7). The spin degeneracy is also a func-
tion of the Landau level: the first level (v = 0) is occupied
by a single spin state while higher levels are occupied by
both, y(0) = 1 and y,(v > 0) = 2. The sum over v is
limited from above by the point where the Fermi momentum
becomes zero:

Vimax < [M} : (10)

2lep|B

The particle density is given by

3 S v Wkpy ep #0
b= yl)k}:b _ (11)
e e =0
and the baryon scalar density is given by
ley| BM;: krp+E},
p (V) In | ——E2— ep =0
; T LY M2 42ve,| B 7
sb =
kpp+E?
krpEY, — M 1n Lb :| ep =0
4n2[ F b /M;)kz
12)

Thermodynamic quantities can be calculated from the
stress energy tensor. The energy density is calculated from
the 00-component, and for charged particles it is given by

Iebl

Zyb(v){kaEph + (M,, + 2v|eb|B)

krp + E;b
M+ 2v]ep| B

while for for neutral ones it is

In } eh 0 (13)

Vb
€ = 162 {kaEFb +kpyErs
kpp(v) + E*
_ Ml’f4ln M } ep =0 (14)
2
My

The meson contribution is

2 4 2 2

m & m m
Smeon = 0l + "ol 0+ r0d
2
K A m
+ gag’ + o é—i— 7‘),08 + 3Ang)Ng,(2>Nw(2)p(%’

15)

From these quantities we can calculate the total baryonic
energy

EH = Zgb ~+ Emeson (16)
b

and the pressure, which can be written as

Py =Y mpnp —en. (17)
b

The lepton thermodynamics are given by the same equations
for charged particles, with the change E},;, — . and My —
M;, such that

Stot = EH + E¢ + &4, (18)
and
Pt = Py + Po + Py (19)

Formally, the contribution of the magnetic field must be
added to the energy density (+B2/2) and pressure (+B2/6
in the chaotic field approximation), but since our goal is to
study the phase transition this is not necessary, since this
contribution is identical in both phases.
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For the couplings and meson masses we use the
parametrization proposed in [12], which we refer to as
NL3wp™*, since it is a modification of the NL3* [67] force
including an wp interaction. This force has been parametrized
to produce very massive stars (2.5 < Mpax/ Mo < 2.7)
even if the star has a quark core, for which the authors have
used the same MIT-bag model with vector interactions that
we use here. Constraints on the symmetry energy, slope,
binding energy, effective mass, incompressibility and satu-
ration density are based on the reviews [88,89]. The incom-
pressibility is constrained mainly from giant monopole and
dipole resonances. These are also sources of information for
the symmetry energy, along with others, such as heavy-ion
collisions, pygmy dipole resonances and neutron skin mea-
surements. The symmetry energy slope is obtained from the
derivative of the density dependent symmetry energy, and
even though this parametrization satisfies constraints of L
from the cited papers, it is not completely consistent with the
recent PREX-2 inferred values: while one of the obtained
values is L = 106 & 37 [90], another estimation that also
takes astrophysical data into account predicts L = 531’}‘5‘
MeV [91]. Nuclear constraints utilized in the parametriza-
tion can be found in Table I of [12]. Parameters are given in
Table 1.

For the hyperon-meson couplings we use the SU(3) flavor
symmetry [92-94], where couplings to vector mesons are
calculated from a single parameter 0 < o < 1, while cou-
plings to the scalar meson are fixed to reproduce the poten-
tials Uy = —28 MeV, Uy = +30 MeV and Ug = —4
MeV. The most well known potential is that of the A-
hyperon [95,96], while the ¥ and E potentials are known
to be repulsive and attractive, respectively, but their exact
values are still uncertain [97-103]. Different choices of «
impact the strangeness fraction of the star, with higher val-
ues favoring a larger hyperon fraction. In this work we choose
to work with the intermediary value of @ = 0.5, which pro-
duces a maximum mass star of 2.57 M, with central density
ne = 0.736 fm~3. Hyperon couplings are parametrized by
the ratio xyp, = gmp/gnb, Where M is the meson and they
are given by

Xgn =0.651 xox =0.730 x,z = 0.428

Xppn = 0.714 x,5 =1.00 x,z =0.571
XA = —0.808 Xpx = —0.404 XpE = —1.01
xpA =0.00 x,5 =1.0 x,2 =0.0.

3 Quarks: modified MIT bag model

The lagrangian density of the modified MIT model is given
by

£Q = Z {lpq [iyuaﬂ — Y08wq @0 — Mq] ’ﬁq - B}@(‘ﬁq‘ﬁq)
q
LI e S I (20)
y W 0 41 wu®p»
since both hadron (Eq. (1)) and quark lagrangian densities are
of Dirac-type with different meson channels, the equations
for quark densities n,, energy density &, and pressure are
the same as those for hadrons (Egs. (11), (13), (14) and (17),
with the substitutions M; — M, and E},, — El*vq =
g —8wqwo. The quark degeneracy must be multiplied by 3 in
order to include the colour degree of freedom, so now the first
Landau level has degeneracy y (0) = 3 and levels above have
y (v > 0) = 6. The bag parameter 53 can be interpreted as the
pressure exerted inwards the hadron, balancing the outward
pressure due to quarks on the hadronic surface [104].
The total quark energy density is

b0 =Y ey + M0 4 Sy g on
; ) 8

the baryon density is
1

np =3 Z ng (22)

q

and the pressure is given by

Po =) 1tgng —€o. (23)
q

Table1 Parameters for the NL3wp™ model on the left and nuclear properties at saturation density on the right. The meson masses are M, = 502.574

MeV, M,, = 782.600 MeV, My = 1020.00 MeV and M, = 763.000 MeV

goN 10.0944
SN 12.8065

goN 14.4410

P 21.6186 (fm™1)
A 180.8916

Ay 0.045

no (fm=3) 0.150
M* /My 0.594
B/A (MeV) 16.31
K (MeV) 258
J (MeV) 30.7
L (MeV) 42

@ Springer
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1200 1400 1600 1800
1 (MeV)

1000

Fig. 1 Density of baryons (top) and quarks (bottom) as a function of
the chemical potential. Full lines are densities with B = 0 and dashed
lines are densities calculated with B = 3 x 108G

We define the chemical potential in the quark phase, at
T =0, as [79]

_ go + Po
_—nQ

no (24)

In order to study the parameter dependence we define the
variables

2
Gy = <gwu) . Xy = Sws ’ (25)

me, 8wu

In Ref. [78] it was shown that the stability window ranges
between 148 < B!/4 < 159 MeV when the vector channel is
not included and m; = 95 MeV and it diminishes to 138 <
B4 < 145 MeV when Gy = 0.3 fm?, as shown in Fig. 4
of the mentioned paper. Figure 7 of the same paper shows
how & modifies the stability window, but it must be remarked
that their parameter b4 differs from & in this paper by a factor
of 6. Their analysis of the stability window is done in -
equilibrium, and since in the current work quark properties
are calculated with flavor conservation we no longer consider
the stability window. We fix a universal quark coupling to the
vector meson, therefore g, = gwd = guws, or Xy = 1.0.

4 Phase transition

To analyse how the magnetic field alters the phase transi-
tion, we consider it to be a first order transition with flavor

1800

1600

1400

o (MeV)

1200

1000 | B=3x1018G

1 1
150 160 170 180 190 200
BY* (MeV)

Fig. 2 Chemical potential of the phase transition as a function of the
bag parameter with Gy = 0, 0.1, 0.2 and 0.3 fm? (black, purple, red
and blue curves, respectively) and Xy = 1.0. Dashed lines are curves
with B = 0 and solid ones with B = 3 x 108 G

conservation. To do so we utilize the Maxwell construction
up=uo=pno Pp=Pop=Py Tyg=Tp=0, (26)

and assume that only hadrons are in S-equilibrium, but not
quarks, as proposed in [79], with the physical justification
that the time scale of the strong interaction, responsible
for deconfinement, is much shorter than the time scale of
the electroweak interaction, responsible for B-equilibrium,
meaning that the deconfinement transition will take place
first, preserving the quark flavor fraction

1
Y=Y 3 Ngp ¥, (27)
b

where N is the number of quarks of flavor ¢ on the hadron
b and Y, = np/np. Afterwards, the electroweak interaction
will take place and S-equilibrium will be established in the
quark phase. We assume the leptonic density is fixed dur-
ing the transition, such that its energy density and pressure
are also unchanged. The assumption of a first order phase
transition is the one always found within RMF calculations
and can be justified at low temperatures only. According to
LQCD results, at low chemical potentials and high tempera-
tures, a cross over is expected and it can be obtained if quan-
tum fluctuations are taken into account [105,106]. As we are
only investigating the zero temperature situation, quantum
fluctuations can be disregarded.

The densities of hadrons and quarks are shown as a func-
tion of the chemical potential in Fig. 1 for B = 0and 3 x 10'8
G. The magnetic field favors the appearance of negatively
charged particles at lower chemical potentials. In order to
find the point of the phase transition, the flavor fraction is
fixed at equal chemical potentials. Another possibility would
be to fix the quark fractions at equal pressures, which would

@ Springer
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Fig. 3 Pressure of magnetized matter as a function of chemical potential with B!/4 = 150 and 165 MeV (left and right, respectively) with Gy =
0, 0.1 and 0.3 fm? and & = 0 and 300. We show the pressure for Xy = 1.0 on the upper panels and Xy = 0.4 on the lower ones

1800 e
B=3x10"%G
31 /2
B4 _ 190 Moy, = (.:
- WV =0.3 fin? i
— BY4 =190 MeV, Gy = 0.1 fm?
z 1400 R
z BT =165 MoV, g A
§ o 165 MeV, Gy = 0.3 2
1/4 ! e
1/4 _ 4 7 =150 MeV, Gy = 0.3 fm?
1200 :li __ 165 MeV, Gy = 0.1 fin? seoooo ]
BY/* = 150 MeV, Gy = 0.1 fm?
1000 F |
1 : 1 | | |
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3

Fig. 4 Chemical potential of the phase transition as a function of fourth
order coupling parameter £, with varying values for the /4 and Gy =
and Xy = 1.0. Dashed lines are curves with B = 0 and solid ones with
B=3x10"%G

lead to the same transition point, but to different quark densi-
ties and thermodynamic properties out of the transition point.
Numerically it is simpler to fix the flavor fraction in the chem-
ical potential, since the pressure of the quark phase can be
negative but not the hadronic one, so one might exclude a
large portion of chemical potential by fixing the flavor frac-
tion at equal pressures and make it difficult to find the phase
transition at very low chemical potentials.

Firstly we examine how the chemical potentials of the
transition are altered with the magnetic field for values of
B'/* ranging between 148 and 205 MeV, with Gy = 0, 0.1,
0.2 and 0.3 fm”. As shown in Fig. 2, increasing values of

@ Springer

the bag parameter and of the w-coupling Gy increase the
chemical potential, and thus also the pressure of the phase
transition. For values of Gy larger than 0.3 the phase tran-
sition occurs at chemical potentials larger than 1800 MeV,
which are beyond those expected in neutron stars [12]. The
difference in the phase transition in magnetized and demag-
netized matter is larger for lower values of the bag parameter,
with the magnetic field favoring a slightly smaller chemical
potential. As the bag parameter is increased, the effect of the
magnetic field becomes less noticeable because the bag term
dominates the pressure.

The addition of a fourth order self interaction for the w-
meson stiffens the EoS and reduces the chemical potential
of the phase transition, with its importance being more pro-
nounced at large chemical potentials and for higher values of
the w-coupling Gy, as shown in Fig. 3, where one can see in
the upper panels that for Gy = 0.1 fm?, a & = 300 stiffens
the EoS only slightly, while for Gy = 0.3 fm? the stiffening
is much more pronounced. The parameter Xy, which is kept
fixed at 1.0 in all other figures, affects the coupling of the
w-meson to the strange quark and thus it will not affect the
qualitative behavior of our results. On the bottom panel we
show the pressure when the w-coupling to the strange meson
is determined from symmetry to be Xy = 0.4 [78], stiffen-
ing the equation of state since the hyperonic contribution is
suppressed and their effect is to soften the equation of state.
Thus, a smaller Xy also lowers the chemical potential of the
phase transition.
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Table 2 Values of 19 (in MeV) and Py (in MeV/fm?) for the phase transition at T= 0 considering three—flavored matter. Results are shown for sets
of parameters B'/4, Gy, Xy, £ within and outside of the stability window of SQM, for both magnetised and demagnetized matter

B4 (MeV) Gy (fm?) Xy £ B=0 B=3x10%G
150 0.0 - 0 Py =4.99601 Py=331123
1o = 983.957 1o = 969.932
L| =0.0102476 L|_ =0.0082077
165 0.0 - 0 Py = 65.4288 Py =64.9179
o = 1198.74 po = 1193.33
L|, =0.069284 L|, = 0.0688982
190 0.0 - 0 Py =129.98 Py =128.162
1o = 1356.8 o = 1349.32
L|, =0.142094 L|, =0.140982
150 0.1 1.0 0 Py =48.3109 Py =432135
o = 1148.14 1o = 1127.69
L|, =0.0252144 L|, =0.0214088
150 0.1 1.0 300 Py =46.7929 Py =41.173
o = 1143.39 o = 1121.07
L|, =0.025398 L|, =0.0211815
150 03 1.0 0 Py =169.208 Py = 160.899
po = 1437.43 1o = 1417.6
L|, =0.0249172 L|, =0.0212103
150 03 1.0 300 Py =92.873 Py = 90.7844
o = 1270.92 1o = 1262.1
L|, =0.0387617 L|, =0.0345084
165 0.1 1.0 0 Py = 105.568 Py =103.109
o = 1301.59 o = 1292.22
L|, =0.0738039 L|, =0.0720843
165 0.1 1.0 300 Py =102.619 Py =101.187
1o = 1294.59 1o = 1287.62
L|, =0.0755038 L|, =0.0741826
165 03 1.0 0 Py =284.83 Py = 282.095
[0 = 1638.55 o = 1631.37
L|, =0.0758115 L|, = 0.0745062
165 03 1.0 300 Py = 147.724 Py = 144.561
po = 1394.34 1o = 1384.29
L| =0.0917639 L|, =0.0891916
150 0.1 0.4 0 Py = 48.2897 Py =43.2128
1o = 1148.08 1o = 1127.68
L|, =0.0252111 L|, =0.0214087
150 0.1 04 300 Py =46.7934 Py =41.1729
o = 1143.39 o = 1121.07
L|, =0.0253982 L| =0.211814
150 03 04 0 Py = 144.805 Py = 136.405
1o = 1388.3 1o = 1367.1
L|, =0.0245113 L|, =0.0198264
150 03 04 300 Py = 89.5491 Py = 87.461
o = 1262.64 o = 1253.72

L|, = 0.0377602

L|, =0.0338778
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Table 2 continued

B4 (MeV) Gy (fm?) Xy £ B=0 B=3x 108G
165 0.1 04 0 Py =103.382 Py = 101.707
o = 1296.41 po = 1288.87
L| =0.0737347 L|, =0.0724917
165 0.1 04 300 Py = 100.603 Py =99.9313
po = 1289.77 po = 1284.58
L|, =0.0751441 L|, =0.0742676
165 03 0.4 0 Py = 229.087 Py =227.519
o = 1546.98 o = 1541.16
L|, =0.0742462 L|, =0.0741287
165 03 04 300 Py = 141.044 Py = 137.474
po = 1380.43 o = 1369.38
L|, =0.0899391 L|, =0.0859813
01 T oI T T T T T T
BY4 =150 MeV
Gy =0.1 f? e 1/4 _ '
0.08 |- 5:300.......73/ — 165 MV .
GV::Q3ﬁn2 _
0.06 1 E=300 viivver | |
L.
0.02 | = .
0 P s P | P s s N |
1017 1018 1017 1018
B(G) B(G)

Fig. 5 Latent heat as a function of the magnetic field for bag values of 150 and 165 (left and right, respectively), with Gy = 0, 0.1 and 0.3 fm?

and £ = 0 and 300

In Fig. 4 we show how the chemical potential of the phase
transition is changed as a function of &, for both magnetized
and demagnetized matter. As we turn on the fourth order
interaction the chemical potential decreases rapidly, and as &
grows larger the chemical potential varies less. This is more
attenuated for larger Gy, since the fourth order interactions
is weighted by G%,.

The magnetic field slightly reduces the transition chemi-
cal potential, with the effect pronounced at lower chemical
potential. To quantify how the phase transition is affected by
the magnetic field and by the choice of parameters we show
in Table 2 the chemical potential and pressure of the transi-
tion for different B'/4 =0, 150 and 165 MeV, Gy = 0.1 and
0.3 fm?, & =0and 300 and Xy = 1.0 and 0.4. We also show
the relativistic latent heat, given by

L| =pye—tt

&

(28)
EQEH

@ Springer

as proposed in [65], which quantifies the intensity of the
phase transition, i.e., the discontinuity in the energy density
between phases. The latent heat diminishes in magnetized
matter, more prominently for smaller bag values. The mag-
netic field becomes important on the latent heat for magnetic
fields of the order of 108 G only, as shown in Fig. 5, where
the latent heat is shown as a function of the magnetic field.

5 Conclusion

In the present paper we analysed how the deconfinement
phase transition is affected by strong magnetic fields (3x 10'8
G), possibly present in the interior of neutron stars. For the
hadron phase we have utilized the NL3wp™* parametrization
of the Walecka model and for the quark phase, the MIT bag
model with a repulsive vector channel. We find the phase
transition with the assumptions of flavor conservation, so the
hadron phase is in S-equilibrium and the quark phase is not,
as the electroweak interaction has no time to act during the
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occurrence of the transition, and of a chaotic magnetic field,
such that it can be approximated as isotropic on microscopic
scales.

We have obtained the phase transition point over a large
range of parameters of the quark phase at zero temperature.
We find that the magnetic field slightly diminishes the chem-
ical potential and pressure point of the phase transition .The
effect of the magnetic field is more pronounced for smaller
bag values (5) and hadron—meson coupling (Gy), which
corresponds to transitions at lower chemical potentials. The
fourth order self-interaction of the w-meson stiffens the quark
equation of state, reducing the chemical potential of the phase
transition, and the effect of the magnetic field is uniform
for different strengths of the self-coupling. The latent heat
is extremely dependent on the parametrization of the quark
phase, changing by a factor of two to three for different bag
values. We expect it to be also dependent on the hadron model
or parametrization, but this is left for future inspection.

As already mentioned, the approximation of zero temper-
ature (T=0) is standard in phase transition calculations in
compact stars and it is a reasonable approximation due to the
high density environment, and thus very high Fermi energy,
which makes thermal effects less important microscopically.
However, we do think that a calculation at finite temperature
has to be performed and we will investigate the effects of the
magnetic fields on the whole QCD phase transition diagram
and search for the zero latent heat, which may indicate the
CEP, in a future work.

Acknowledgements This work is a part of the project INCT-FNA Proc.
No.464898/2014-5. D.P.M. is partially supported by Conselho Nacional
de Desenvolvimento Cientifico e Tecnoldgico (CNPq/Brazil) respec-
tively under grant 301155.2017-8 and M.R.P. is supported by Coor-
denacdo de Aperfeigoamanto de Pessoal de Nivel Superior (CAPES).
M.R.P. thanks fruitful discussions with Carline Biesdorf.

Data Availability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: All results obtained
in this work are either numerical or analytical, hence, there is no asso-
ciated data.]

References

1. Garima, P.K. Deshwal, M.K. Yadav, AIP Conference Proceedings
2352,030004 (2021). https://aip.scitation.org/doi/pdf/10.1063/5.
0052529

2. E. Shuryak, Rev. Mod. Phys. 89, 035001 (2017)

3. R. Pasechnik, M. §umbera, Universe 3, 7
arXiv:1611.01533

4. F. Weber, Pulsars as Astrophysical Laboratories for Nuclear and
Particle Physics, Series in High Energy Physics, Cosmology and
Gravitation (CRC Press, 2017), ISBN 9781351420945. https://
books.google.com.br/books?id=SSw2DwAAQBAJ

5. N.Glendenning, Compact Stars: Nuclear Physics, Particle Physics
and General Relativity, Astronomy and Astrophysics Library
(Springer New York, 2012), ISBN 9781468404913. https://books.
google.com.br/books?id=cCDIBWAAQBAJ

(2017).

6.
7.
8. R. Bellwied, Nuclear. Phys. A 752, 398 (2005). (proceedings of

9.

13.
14.
15.
16.
. S. Schramm, R. Negreiros, J. Steinheimer, T. Schurhoff, V. Dex-
18.
19.

20.
21.

22.
23.

24.

25.
26.

27.
28.

29.
30.
31.
32.
33.
34.
35.

36.
37.

38.

39.
40.

41.
42.

43.

1. Vidana, Eur. Phys. J. Plus 133, 445 (2018). arXiv:1805.00837
D.P. Menezes, Universe 7, 267 (2021). arXiv:2106.09515

the 22nd International Nuclear Physics Conference (Part 2))
K. Adcox, S. Adler, S. Afanasiev, C. Aidala, N. Ajitanand, Y.
Akiba, A. Al-Jamel, J. Alexander, R. Amirikas, K. Aoki et al.,
Nuclear Phys. A 757, 184 (2005). (first Three Years of Opera-
tion of RHIC)

E. Annala, C. Ecker, C. Hoyos, N. Jokela, D. Rodriguez Fernan-
dez, A. Vuorinen, JHEP 12, 078 (2018). arXiv:1711.06244

. E. Annala, T. Gorda, A. Kurkela, J. Nittil4, A. Vuorinen, Nature

Phys. 16, 907 (2020). arXiv:1903.09121

L.L. Lopes, D.P. Menezes, Astrophys. J. 936, 41 (2022). https://
doi.org/10.3847/1538-4357/ac81c4

D.D. Ivanenko, D.F. Kurdgelaidze, Astrophysics 1, 251 (1965)
A.R. Bodmer, Phys. Rev. D 4, 1601 (1971)

E. Witten, Phys. Rev. D 30, 272 (1984)

E. @stgaard, Phys. Rep. 242, 313 (1994)

heimer, Acta Phys. Polon. B 43, 749 (2012). arXiv:1112.1853
G. Mitra, H.S. Sahoo, R. Mishra, P.K. Panda, Phys. Rev. C 105,
045802 (2022)

M. Hanauske, L.R. Weih, H. Stocker, L. Rezzolla, Eur. Phys. J.
Special Topics 230, 543 (2021)

A. Borici, Prog. Theor. Phys. Suppl. 153, 335 (2004)

A. Alexandru, M. Faber, 1. Horvath, K.F. Liu, Phys. Rev. D 72,
114513 (2005). arXiv:hep-1at/0507020

T. Mendes, Braz. J. Phys. 37, 597 (2007). arXiv:hep-lat/0609035
T. Bhattacharya et al., Phys. Rev. Lett. 113, 082001 (2014).
arXiv:1402.5175

V.A. Goy, V. Bornyakov, D. Boyda, A. Molochkov, A. Naka-
mura, A. Nikolaev, V. Zakharov, PTEP 2017, 031D01 (2017).
arXiv:1611.08093

K. Fukushima, T. Hatsuda, Rept. Prog. Phys. 74, 014001 (2011).
arXiv:1005.4814

S. Kagiyama, S. Hirooka, H. Kikukawa, J. Kikukawa, Progress
Theoret. Phys. 69, 579 (1983)

G. Alaverdyan, Symmetry 13 (2021)

C.A. Graeff, M.D. Alloy, K.D. Marquez, C. Providéncia, D.P.
Menezes, JCAP 01, 024 (2019). arXiv:1806.04170

L.A.H. Mamani, C.V. Flores, V.T. Zanchin, Phys. Rev. D 102,
066006 (2020). arXiv:2006.09401

M. Buballa, Phys. Rept. 407, 205 (2005). arXiv:hep-ph/0402234
M. Buballa, Phys. Rep. 407, 205 (2005)

S.B. Riister, V. Werth, M. Buballa, I.A. Shovkovy, D.H. Rischke,
Phys. Rev. D 72, 034004 (2005)

L.L. Lopes, C. Biesdorf, K.D. Marquez, D.P. Menezes, Phys.
Scripta 96, 065302 (2021). arXiv:2009.13552

M. Ju, X. Wu, FE. Ji, J. Hu, H. Shen, Phys. Rev. C 103, 025809
(2021). arXiv:2102.12276

7Z. Bai, Y.x. Liu, AIP Conf. Proc. 2127, 020030 (2019).
arXiv:1904.01978

Z.Miao, A. Li, Z. Zhu, S. Han, Astrophys. J. 904, 103 (2020)
U. Geppert, M. Rheinhardt, J. Gil, Astron. Astrophys. 412, L33
(2003). arXiv:astro-ph/0311121

F. Haberl, A.D. Schwope, V. Hambaryan, G. Hasinger, C. Motch,
A&A 403, L19 (2003)

Q.H. Peng, H. Tong, Mon. Notices R. Astron. Soc. 378, 159 (2007)
M. Revnivtsev, S. Mereghetti, Space Sci. Rev. 191, 293 (2015).
arXiv:1411.5843

D. Lai, S.L. Shapiro, Astrophys. J. 383, 745 (1991)

S. Bonazzola, E. Gourgoulhon, M. Salgado, J.A. Marck, Astron.
Astrophys. 278, 421 (1993)

M. Bocquet, S. Bonazzola, E. Gourgoulhon, J. Novak, Astron.
Astrophys. 301, 757 (1995). arXiv:gr-qc/9503044

@ Springer



177

Page 10 of 10

Eur. Phys. J. A (2022) 58:177

44.

45.

46.

47.

48.

49.

50.
51.

52.

53.

54.

55.
56.

57.

58.

59.

60.

61.
62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

C.Y. Cardall, M. Prakash, J.M. Lattimer, Astrophys. J. 554, 322
(2001). arXiv:astro-ph/0011148

A.G. Pili, N. Bucciantini, L. Del Zanna, Mon. Notices R. Astron.
Soc. 470, 2469 (2017)

A. Tsokaros, M. Ruiz, S.L. Shapiro, K. Urya, Phys. Rev. Lett.
128, 061101 (2022). arXiv:2111.00013

E.J. Ferrer, V. de la Incera, J.P. Keith, I. Portillo, P.L. Springsteen,
Phys. Rev. C 82, 065802 (2010)

M. Strickland, V. Dexheimer, D.P. Menezes, Phys. Rev. D 86,
125032 (2012)

J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)
R.C. Tolman, Phys. Rev. 55, 364 (1939)

Y. Zel’dovich, I. Novikov, Stars and Relativity, Dover Books
on Physics (Dover Publications, 2014), ISBN 9780486171326.
arXiv:https://books.google.com.br/books?id=69YIBAAAQBAJ
L.L. Lopes, D. Menezes, JCAP 08, 002 (2015). arXiv:1411.7209
D.P. Menezes, L.L. Lopes, Eur. Phys. J. A 52, 17 (2016).
arXiv:1505.06714

F. Wu, C. Wu, Z. Ren, Chin. Phys. C 41, 045102 (2017).
arXiv:1612.04553

L.L. Lopes, D.P. Menezes, Eur. Phys. J. A 56, 122 (2020)
B.C.T. Backes, K.D. Marquez, D.P. Menezes, Eur. Phys. J. A 57,
229 (2021). arXiv:2103.14733

R. Gatto, M. Ruggieri, Lect. Notes Phys. 871, 87 (2013).
arXiv:1207.3190

G.S. Bali, F. Bruckmann, G. Endrédi, Z. Fodor, S.D. Katz, A.
Schifer, Phys. Rev. D 86, 071502 (2012)

V. Dexheimer, R. Negreiros, S. Schramm, Eur. Phys. J. A 48, 189
(2012). arXiv:1108.4479

V. Dexheimer, R. Negreiros, S. Schramm, M. Hempel, AIP Conf.
Proc. 1520, 264 (2013). arXiv:1208.1320

E.S. Fraga, Lect. Notes Phys. 871, 121 (2013). arXiv:1208.0917
N.O. Agasian, S.M. Fedorov, Phys. Lett. B 663, 445 (2008).
arXiv:0803.3156

A. Carbone, A. Polls, A. Rios, I. Vidaiia, Phys. Rev. C 83, 024308
(2011)

1. Bombaci, D. Logoteta, P. Panda, C. Providéncia, I. Vidafia, Phys.
Lett. B 680, 448 (2009)

E. Lope-Oter, FJ. Llanes—Estrada, Phys. Rev. C 105, L052801
(2022). arXiv:2103.10799

P. Costa, M. Ferreira, D.P. Menezes, J.A. Moreira, C.M.C.
Providéncia, Phys. Rev. D 92, 036012 (2015)

G.A. Lalazissis, S. Karatzikos, R. Fossion, D. Pena Arteaga, A.V.
Afanasjev, P. Ring, Phys. Lett. B 671, 36 (2009). arXiv:0909.1432
R.W. Romani, D. Kandel, A.V. Filippenko, T.G. Brink, W. Zheng,
Astrophys. J. Lett. 934, L18 (2022). arXiv:2207.05124

R. Abbott, T.D. Abbott, S. Abraham, F. Acernese, K. Ackley,
C. Adams, R.X. Adhikari, V.B. Adya, C. Affeldt, M. Agathos
et al., Astrophys. J. Lett. 896, L44 (2020). arXiv:2006.12611

A. Tsokaros, M. Ruiz, S.L. Shapiro, Astrophys. J. 905, 48 (2020)
1. Bombaci, A. Drago, D. Logoteta, G. Pagliara, I. Vidana, Phys.
Rev. Lett. 126, 162702 (2021)

N.N. Pan, X.P. Zheng, J.R. Li, Mon. Not. Roy. Astron. Soc. 371,
1359 (2006). arXiv:astro-ph/0607051

M. Stejner, F. Weber, J. Madsen, Astrophys. J. 694, 1019 (2009).
arXiv:0801.0358

T. Klahn, T. Fischer,
arXiv:1503.07442

B. Franzon, R.O. Gomes, S. Schramm, Mon. Notices R. Astron.
Soc. 463, 571 (2016). arXiv:1608.02845

R.O. Gomes, P. Char, S. Schramm, Astrophys. J. 877, 139 (2019).
arXiv:1806.04763

M.B. Albino, R. Fariello, F.S. Navarra, Phys. Rev. D 104, 083011
(2021). arXiv:2106.12956

L.L. Lopes, C. Biesdorf, D.P. Menezes, Phys. Scripta 96, 065303
(2021). arXiv:2005.13136

Astrophys. J. 810, 134 (2015).

@ Springer

79.
80.
81.
82.
83.

84.
85.

86.
87.

88.

89.
90.
91.
92.
. L.L. Lopes, D.P. Menezes, Nucl. Phys. A 1009, 122171 (2021)
94,
95.
96.
97.

98.

99.
100.
101.

102.

103.

104.

105.

106.

1. Bombaci, D. Logoteta, Int. J. Modern Phys. D 26, 1730004
(2017)

J. Walecka, Ann. Phys. 83, 491 (1974)

J. Boguta, A. Bodmer, Nucl. Phys. A 292, 413 (1977)

H. Mueller, B.D. Serot, Nucl. Phys. A 606, 508 (1996).
arXiv:nucl-th/9603037

F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, G. Shen, Phys. Rev.
C 82, 055803 (2010)

L.L. Lopes, Communications in Theoretical Physics (2021)

S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Nuclear Phys.
A 881, 62 (2012). (progress in Strangeness Nuclear Physics)
A. Broderick, M. Prakash, J.M. Lattimer, Astrophys. J. 537, 351
(2000)

G.J. Mao, A. Iwamoto, Z.X. Li, Chin. J. Astron. Astrophys. 3,
359 (2003)

M. Dutra, O. Lourengo, S.S. Avancini, B.V. Carlson, A. Delfino,
D.P. Menezes, C. Providéncia, S. Typel, J.R. Stone, Phys. Rev. C
90, 055203 (2014)

M. QOertel, M. Hempel, T. Klédhn, S. Typel, Rev. Mod. Phys. 89,
015007 (2017)

B.T. Reed, EJ. Fattoyev, C.J. Horowitz, J. Piekarewicz, Phys. Rev.
Lett. 126, 172503 (2021)

R. Essick, I. Tews, P. Landry, A. Schwenk, Phys. Rev. Lett. 127,
192701 (2021)

L.L. Lopes, D.P. Menezes, Phys. Rev. C 89, 025805 (2014)

T. Miyatsu, M.K. Cheoun, K. Saito, Phys. Rev. C 88, 015802
(2013)

D.J. Millener, C.B. Dover, A. Gal, Phys. Rev. C 38, 2700 (1988)
J. Schaffner, C. Greiner, H. Stocker, Phys. Rev. C 46, 322 (1992)
J. Mares, E. Friedman, A. Gal, B. Jenning, Nucl. Phys. A 594,
311 (1995)

P. Khaustov, D.E. Alburger, P.D. Barnes, B. Bassalleck, A.R.
Berdoz, A. Biglan, T. Biirger, D.S. Carman, R.E. Chrien, C.A.
Davis, The AGS E885 Collaboration et al., Phys. Rev. C 61,
054603 (2000)

J. Schaffner-Bielich, A. Gal, Phys. Rev. C 62, 034311 (2000)

E. Friedman, A. Gal, Phys. Rep. 452, 89 (2007)

L. Fabbietti, V.M. Sarti, O.V. Doce, Ann.
Rev. Nucl. Part. Sci. 71, 377 (2021).
arXiv:https://doi.org/10.1146/annurev-nucl-102419-034438

S. Acharya, D. Adamova, S.P. Adhya, A. Adler, J. Adolfsson,
M.M. Aggarwal, G. Aglieri Rinella, M. Agnello, N. Agrawal,
Z. Ahammed et al. (A Large Ion Collider Experiment Collabora-
tion), Phys. Rev. Lett. 123, 112002 (2019)

E. Friedman, A. Gal, Phys. Lett. B 820, 136555 (2021).
arXiv:2104.00421

R. Bhaduri, R. Bhaduri, Models of the Nucleon: From
Quarks to Soliton, Advanced book program (Addison-Wesley,
Advanced Book Program, 1988), ISBN 9780201156737.
arXiv:https://books.google.com.br/books?id=7smBAAAAIAAJ
Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature
443, 675 (2006). arXiv:hep-lat/0611014

S. Borsanyi, Z. Fodor, J.N. Guenther, R. Kara, S.D. Katz,
P. Parotto, A. Pasztor, C. Ratti, K.K. Szabo, Phys. Rev. Lett. 125,
052001 (2020). arXiv:2002.02821

Springer Nature or its licensor holds exclusive rights to this article
under a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and appli-
cable law.



2211.14002v1 [nucl-th] 25 Nov 2022

.
.

arxiv

Do short range correlations inhibit the appearance of the nuclear pasta?
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It is well known that strongly correlated neutron-proton pairs, the short-range correlations (SRC),
can modify many of the nuclear properties. In this work we have introduced, for the first time, short
range correlations in the calculation of the nuclear pasta phase at zero temperature and checked
how they affect its size and internal structure. We have used two different parameterizations of
relativistic models in a mean field approximation and the coexistence phase approximation as a first
estimation of the effects. We have seen that for very asymmetric neutron-proton-electon matter,
the pasta phase shrinks considerably as compared with the results without SRC and all internal
structures vanish, except the simple spherically symmetric one, the droplets. Our results indicate a
possible disappearance of these complicated structures as the temperature increases.

Introduction.—Nonspherical complex structures that
appear due to a frustration in sub-saturation nuclear den-
sities are believed to be present in the inner crust of neu-
tron stars and in core-collapse supernova cores [1, 2]. Al-
though possibly present only in a small range of densities
and temperatures, different studies suggest that these ex-
otic structures may have considerable impact on different
astrophysical phenomena and on the magnetic evolution
of neutron stars [3]. Some of the consequences of the
existence of the pasta phase are expected to leave signa-
tures in quasiperiodic oscillations observed in soft-gamma
ray repeaters [4] and magnetar giant flares [5]. More re-
cently, the detection of late-time neutrinos from a Milky
Way core-collapse supernova seems to be approaching re-
ality [6] and it was claimed that neutrino diffusion seems
to be affected by the pasta phase in protoneutron stars in
such a way that its signal can be greatly enhanced after
core collapse [7].

From the theoretical point of view, there are some
models and simulations that predict that the pasta struc-
tures can be very complex indeed. Calculations departed
from the more traditional 3D, 2D and 1D geometries in
a single unit cell to density fluctuations [8, 9] as well
as to structures resembling waffle, parking garage and
TPMS [10-12]. Different calculations also show that the
pasta phase size decreases as temperature increases and
may even occupy just a small portion in between two
homogeneous phases at certain temperatures [13-15].

Most of the pasta phase calculations depend on equa-
tions of state (EOS) parameterized to satisfy nuclear
matter bulk properties. One missing ingredient in all
pasta calculations is the inclusion of short-range corre-
lations (SRC). Strongly correlated neutron-proton pairs
can modify the internal structure of the nucleus and gen-
erate a series of non trivial consequences [16-30]. In a
seminal paper on cold dense matter obtained with the
inclusion of SRC [31], the authors claimed that the differ-
ence between the types of pairs (proton-proton, neutron-
neutron and proton-neutron) is due to the nature of the
strong force and has implications for understanding cold

dense nuclear systems such as neutron stars. Hence, the
introduction of SRC in the pasta phase structure is long
due.

So...what if the complicated pasta structures are sim-
ply not there when SRC are taken into account? As a
first study, we investigate the effects of the SRC on the
pasta phase and its structure with a simple prescription,
the coexistence phase approximation (CPA) [13] within
relativistic mean field models at zero temperature.

SRC (homogeneous phase).— We start by studying
the effects of the SRC on the homogeneous phase with
two different parametrizations, namely TUFSU [32] and
FSU2R [33]. When SRC are included, the momentum (k)
distribution present in the kinetic terms of the energy
density, pressure and scalar density is modified by the
inclusion of a “high momentum tail” proportional to k~*
and, as a consequence, the model has to be reparameter-
ized in order to reproduce nuclear bulk properties. The
Lagrangian density used in the present work, the new
expressions for the quantities necessary to compute the
EOS and the new parameters for the FSU2R model are
given in [27-30]. For the IUFSU, the constants for the
model with and without SRC are given in Table I.

TABLE I: Coupling constants of the IUFSU parametrization
with and without SRC included. M,.. = 939 MeV is the
nucleon rest mass. In both cases, the last constant is fixed in
C =5.000 x 1072,

coupling ~ TUFSU TUFSU-SRC
Jo 9.971 10.132
G 13.032 11.867
9p 13.590 15.551
A/ My 1.785 2.956
B 0.488 —29.880
ah (x1072)  9.200 1.094

As the results obtained with the two models are qual-
itatively similar, we display the graphs for the ITUFSU
parameterization only. We have chosen to show re-



sults for symmetric matter (proton fraction ¥, = 0.5),
Y, = 0.35, usually considered in core-collapse supernova
and Y, = 0.1, a quantity that relates to the amount of
protons in neutron star matter.

In Fig. 1, we compare the proton and neutron chemi-
cal potentials with and without SRC for different proton
fractions. It is notorious that very asymmetric matter
is more susceptible to changes than symmetric nuclear
matter.

IUFSU
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FIG. 1: Chemical potential of protons (top) and neu-

trons (bottom) for homogeneous matter with the IUFSU
parametrization for different proton fractions, both without
(dashed curves) and with (full curves) short range correla-
tions.

As the main objective of this work is to investigate the
influence of SRC on the pasta phase and the pressure
is an important quantity in its construction, in Fig. 2
we also show how the pressure behaves as a function of
the density. The differences at very low densities, the
region important in the present study, are shown in the
inset, corroborating the statement that very asymmetric
matter feels the effect of SRC more strongly.

SRC (pasta phase).— Once we have understood how
the homogeneous matter is affected, we can obtain the
pasta phase and check its structure. In these calcula-
tions, as generally done when homogeneous matter is
compared with the pasta phase, neutron-proton-electron
(npe) matter is considered, i.e., not only nucleons, but
also electrons that are responsible for a charge neutral

IUFSU
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FIG. 2: Pressure of homogeneous baryon matter for different
proton fractions with IUFSU without (dashed curves) and
with (full curves) short range correlations for different proton
fractions.

matter, are taken into account.

As already mentioned, we use the simplest possible
prescription, in which Gibbs conditions are enforced and
the electron gas remains in the background. The two
phases are generally referred as liquid (the denser one)
and gas phase. As the proton fraction decreases, a gas
richer in neutrons starts to be contaminated with protons
as well.

The Gibbs conditions that have to be satisfied by the
CPA method are given in [13]. The surface tension co-
efficient is a crucial quantity in this formalism and we
have used a fitting to the Thomas-Fermi calculation as
a function of the proton fraction calculated in [15]. For
the FSU2R functional, we used a fixed surface tension
op = 1.2 MeVfm 2. The geometries considered are
droplets and bubbles (3D), rods and tubes (2D) and slabs
(1D). In this work, fluctuations are not taken into ac-
count as done in [8, 9], but an extension to take them
into account is planned for a future work. Hence, to ob-
tain the preferential ground state and its corresponding
geometry at each density, the homogeneous phase is com-
pared with the pasta phase for each internal structure.
The lower one in free energy is the preferential matter.

In Fig. 3, our results are shown for the IUFSU model
without (left) and with (right) SRC. As a consequence
of the already observed differences in homogeneous mat-
ter, the larger the asymmetry, the stronger the effects
of the SRC. For symmetric matter, the results are very
similar, both as far as the size of the pasta phase as well
as its internal structure. For Y, = 0.35, the similarities
disappear: not only the pasta phase shrinks when SRC
are included, but one of its internal structure, the tubes,
vanishes. When we analyse ¥, = 0.1, the most important
result for the neutron star inner crust, the pasta phase
diminishes even more and only droplets survive.

For the sake of completeness, we also show the free
energy density for different proton fractions without and
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FIG. 3: Baryon densities where each pasta geometry is domi-
nant for the IUFSU (left) and IUFSU-SRC (right) for proton
fractions ¥, =0.5, 0.35 and 0.1 (left, center and right, respec-
tively).

with SRC in Fig. 4, from where the densities related to
each pasta structure are obtained.

At this point, a word of caution is necessary: more
robust calculations in which the surface tension can be
self-consistently calculated, as explained in [14, 15], must
be carried out when the SRC are included. The modifi-
cations with respect to the fitting obtained without SRC
are certainly minor, but the quantitative results can be
slightly modified.

Analysing the present results in face of the knowledge
we have accumulated from previous works, we can guess
two important outcomes, at least for the inner crust
of neutron stars: 1) as the temperature increases just
to a few keV, probably no pasta phase will survive if
SRC are considered and if so 2) the calculation of trans-
port properties [34, 35] can be greatly simplified, as the
breaking of the clusters spherical symmetry that could
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FIG. 4: Free energy density per baryon of homogeneous npe
matter (dashed curves) and pasta (full curves) with (top) and
without (bottom) short range correlations.

lead to anisotropies in the collision frequencies would be
greatly inhibited. These features will be analysed in fu-
ture works.
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ABSTRACT

The presence of nuclear pasta is expected to modify the transport properties in the mantle of neutron stars. The
non-spherical geometry of the pasta nuclear clusters leads to anisotropies in the collision frequencies, impacting the
thermal and electrical conductivity. We derive analytical expressions for the anisotropic collision frequencies using
the Boltzmann equation in the relaxation time approximation. The average parallel, perpendicular and Hall electrical
conductivities are computed in the high-temperature regime above crustal melting, considering incoherent elastic
electron-pasta scattering and randomly oriented pasta structures. Numerical values are obtained at different densities
and temperatures by using the IUFSU parametrization of the non-linear Walecka model to determine the crustal
structure. We find that the anisotropy of the collision frequencies grows with the length of the pasta structures and,
independently of the magnetic field, the presence of rod and slab phases decreases the conductivity by more than one
order of magnitude. Our numerical results indicate that, even if the pasta structures might survive above the crustal
melting point, no strong anisotropies are to be expected in the conduction properties in this temperature regime,
even in the presence of a very high magnetic field.

Key words: dense matter — conduction — stars: neutron

1 INTRODUCTION

Observations related to the thermal, magnetic and spin evo-
lution of neutron stars can provide us with indirect infor-
mation on the transport properties of ultra-dense matter,
e.g. Horowitz et al. (2015); Montoli et al. (2020); Potekhin
& Chabrier (2021). In principle, the observations must be
compared with simulations by properly modelling the cou-
pled magneto-thermal evolution. Hence, models are necessary
for the microscopic processes that give rise to the thermal
and electric conductivities and viscosity throughout the star
(Page & Reddy 2012; Chamel & Haensel 2008; Schmitt &
Shternin 2018), which are then used as inputs to the macro-
scopic simulations, see Bransgrove et al. (2018); Pons & Vi-
gano (2019); Camelio et al. (2022).

In the crust, transport properties are determined by the
scattering of electrons by other electrons, ionic impurities and
phonons in the crystal lattice. Electron-ion scattering domi-
nates at the lowest densities and has been extensively stud-
ied (Flowers & Itoh 1976; Yakovlev & Urpin 1980; Nandku-
mar & Pethick 1984; Baiko et al. 1998; Potekhin et al. 1999;
Chugunov & Yakovlev 2005; Aguilera et al. 2009). In the in-
ner crust at temperatures T < 107 K, thermal conductivity
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due to degenerate electron-electron Coulomb scattering domi-
nates over the contribution due to electron-phonon scattering
(Shternin & Yakovlev 2006) and becomes competitive with
the electron conductivity due to the scattering of electrons
by impurity ions (Chamel & Haensel 2008).

The situation gets more complicated in the innermost part
of the crust, where it might be energetically favourable for
the ions composing the crystal lattice to deform in com-
plex structures known as “pasta”’ (Ravenhall et al. 1983;
Hashimoto et al. 1984; Oyamatsu 1993). Classical molecular
dynamics simulations suggest that this matter is disordered
and amorphous and that different shapes might coexist at
a given depth of the star, due to the small energy barriers
between them (Schneider et al. 2014; Horowitz et al. 2015;
Caplan et al. 2021; Newton et al. 2022). This shape coex-
istence has been validated by relativistic mean field (RMF)
calculations (Pelicer et al. 2021). In the case of a disordered
and amorphous inner crust with randomly distributed nu-
clear clusters of different sizes (Carreau et al. 2020; Potekhin
& Chabrier 2021) and geometries (Pelicer et al. 2021), the
main mechanism of charge and heat transport is given by
uncorrelated scattering processes between the electrons and
the clusters, which play a role similar to one of the lattice
impurities in a crystallized phase.

Regarding the possible astrophysical consequences, a high
impurity parameter in the inner crust raises the electrical
resistivity of the star, decreasing steeply the magnetic field
after a certain age and thus the spin-down. This may ex-
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plain the very small number of isolated X-ray pulsars with
spin periods larger than 12s (Pons et al. 2013; Newton 2013;
Hambaryan et al. 2017; Tan et al. 2018). The high impurity
also lowers the thermal conductivity, leading to a better fit of
the late-time cooling of the binary MXB 1659-29 (Horowitz
et al. 2015; Deibel et al. 2017). Furthermore, the presence of
the pasta layers modifies the so-called mutual friction force
between the nuclear clusters and the neutron superfluid, with
consequences on the pulsar glitch phenomenon (Antonelli &
Haskell 2020). Gravitational waves (Horowitz 2010), quasi-
periodic oscillations (Sotani 2012), quasi-persistent sources of
SXRT's and giant flares due to the relaxation of the crust af-
ter heat deposition and neutrino emissivity (Alloy & Menezes
2011; Horowitz et al. 2004; Lin et al. 2020) are also influenced
by the presence of an amorphous layer in the inner crust.

In the presence of a strong B field, electron transport is
anisotropic, as the field bends the electron trajectories in the
orthogonal plane and suppresses electron transport across the
direction of B, e.g. (Chamel & Haensel 2008). This argument
considers that the only source of anisotropy is given by the B
direction. However, the spherical symmetry of nuclear clus-
ters is spontaneously broken in the pasta layers, leading to
additional anisotropies already at the level of the microscopic
scattering process: in particular, Yakovlev (2015) has shown
that, even in the case of random orientation of the pasta
structures, anisotropic scattering can modify the transport
properties.

In the analysis of Yakovlev (2015), the scattering rates
along and across the pasta symmetry axis were taken as free
parameters. While molecular dynamics has been able to pro-
vide estimates of the transport properties in the inner crust,
by taking the angular average of the effective structure factor
of the charge distribution (Horowitz & Berry 2008; Horowitz
et al. 2015; Nandi & Schramm 2018), to our knowledge no
estimation of the different collision frequencies that arise due
to the pasta anisotropic shapes has been performed to date.

The existing microscopic simulations of the finite temper-
ature pasta (Schneider et al. 2014; Horowitz et al. 2015; Ca-
plan et al. 2021; Newton et al. 2022; Nandi & Schramm 2018)
are typically done at fixed proton fraction and high temper-
atures T > 10'° K, thermodynamic conditions that are espe-
cially aimed at the description of proto-neutron stars formed
in supernova events. In these conditions, it appears from
those calculations that the distribution of baryonic matter is
strongly disordered, and one might expect that anisotropies
should not have a strong effect on the transport properties.
On the other hand, in the case of neutron star binaries and
soft X-ray transients, the inner crust is close to S-equilibrium
and temperatures are one or two orders of magnitude lower,
which might preserve both the peculiar pasta geometrical
shapes and the lattice quasi-long range order, potentially
leading to a strong anisotropy of the scattering rates, as as-
sumed by Yakovlev (2015).

In this paper, we show how the anisotropic collision fre-
quencies can be calculated from the Boltzmann equation
in the relaxation time approximation, in the case of elastic
scattering of ultra-relativistic degenerate electrons off pasta
structures. We limit ourselves to the hypothesis of incoherent
scattering sources following the Matthiessen rule (Schmitt
& Shternin 2018; Heiselberg & Pethick 1993; Shternin &
Yakovlev 2006). Based on the behaviour of the static struc-
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ture factor, we argue that this hypothesis should be valid in
the high-temperature regime above crustal melting.

The paper is organized as follows. In Sec. 2 we calculate
the general anisotropic collision frequencies. The collision in-
tegral and the transition matrix elements are first expanded
in the spherical harmonics basis in Sec. 2.1. Then, to extract
the physical real collision frequencies, in Sec. 2.2 we consider
the lowest order (dipole) deviation from equilibrium and take
advantage of the axial symmetry of the pasta phase. The con-
tribution of the collision integral to the conductivity is given
in terms of axial and perpendicular collision frequencies, in
agreement with the analysis of Yakovlev (2015). Analytical
expressions for the conductivity matrix are given in Sec. 3 for
the case of a liquid, disordered, pasta phase. In Sec. 3.1, the
transition matrix is numerically evaluated in the temperature
domain of validity of our approximations. The conductivity
tensor with and without magnetic field is finally obtained in
Sec. 3.2. To illustrate the formalism and give quantitative es-
timations of the transport coefficients, in Sec. 4 we present
numerical calculations for the collision frequencies and con-
ductivity for different densities and B values in the high-
temperature regime. Conclusions are presented in Sec. 5.

All the numerical estimates reported in this paper are ob-
tained using the IUFSU parametrization of the RMF ap-
proach for the crustal composition, see Fattoyev et al. 2010;
Avancini et al. 2012, but our expressions can be employed
with any nuclear physics model that gives the static structure
of the crust. In particular, while our quantitative numerical
results might be model dependent, the qualitative conclusions
remain valid for any other realistic equation of state model.

We use natural units # = ¢ = kg = 1 all over the paper.

2 RELAXATION TIME APPROXIMATION FOR
ANISOTROPIC ELASTIC COLLISIONS

The thermal and electrical electron conductivities due to
electron-ion scattering have been calculated in a wide range
of temperatures T" and electron densities n., see e.g. Potekhin
(1999): for homogeneous media, and in the absence of a mag-
netic field, they are expressed in terms of the effective collision
frequencies v, . as

e’n. m2Tn.

7= mivey m= 3miv, (1)
where m is the effective electron mass, and in the liquid
regime v, = v, = v, with the collision frequency v defined as
the inverse of the relaxation time, v = 1/7. Because of the
isotropy assumption, the collision frequencies only depend
on the modulus of the momentum transfer according to the
general expression (Flowers & Itoh 1976; Yakovlev & Urpin
1980; Nandkumar & Pethick 1984):

L dmnietZ? /OQPF dgq (1 7 > F2(q)S(q)’ (2)

UFP%' q ; 4€2F e2(q)

where F(q) is the ion form factor, €(q) is the dielectric func-
tion, S(q) is the effective structure factor that accounts for
ion correlations, and vr, pr, and € are the Fermi velocity,
momentum and energy respectively. Unfortunately, eqs (1)
and (2) cannot be straightforwardly generalized to the case
of anisotropic scatterings. To derive the anisotropic collision




frequencies, we consider a multipole expansion of the Boltz-
mann equation in the relaxation time approximation, as we
detail below.

2.1 Anisotropic case: expansion in spherical harmonics

We consider a strongly degenerate relativistic electron gas
with position-dependent temperature and chemical potential
fields T'(r) and p(r) in a constant external magnetic field B
and a weak electric field E. Assuming that the gas is only
slightly out of equilibrium, we can write its distribution func-
tion as f(r,p,t) = fo(r,ep) + df(ep), where 7, v and p are
the electron position, velocity and momentum, respectively,
with the latter given by p = €,v. The Fermi-Dirac function
fo is given by

fo(r,ep) = [1 + exp (Q”T’(i:j)(r))] o (3)

The deviation from equilibrium can be found by solving the
linearized Boltzmann equation (Heiselberg & Pethick 1993;
Shternin & Yakovlev 2006)

—e(vx B) - —= = I[f],

(3)r
op

where I[f] is the collision integral that can be written as

Vi +eE + epi;“VT

95f _

Hﬂ:/%%ﬂHqJ@UﬂfﬂM)
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Here, I',_,, is the transition rate from an initial momen-
tum p to a final momentum p’, introduced to account for
electron scattering with any generic potential, and we have
omitted the position dependencies as they do not affect the
calculation. We restrict ourselves to elastic scatterings with
a localized source for the potential, such that the following
simplification applies:

Ly =Tprmsp = 2m6(ep — € )Wy, (6)

()

where W,/ is the transition matrix element, which we will
write explicitly for the case of electron-pasta scattering in
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the next section. Taking into account that deviations from
equilibrium are small, we can rewrite the collision integral,
eq. (), as

3,7
1) = =2 [ GEs(es =)W [370) = 65)] . (7
where the Fermi-Dirac terms coming from the different mo-
menta have cancelled out due to the elasticity assumption in
eq. (6).

In isotropic scatterings, W, is a function of ¢ = |p — p/|
and of the electron energy only. Since in this work we are
dealing with general anisotropic scatterings, we will assume
the matrix elements to be functions of the solid angles of
both incoming and outgoing electron momenta (p and p’), as
well as the energy €, so there is no assumption of symme-
try for the source of potential. The transition matrix can be
expanded in the basis of spherical harmonics as

W (2, Qpr s €p) = Z Wi v (€)Y () Y™ (2y),
Iml'm’
. o (8)
whereas the assumption of elasticity implies that Q, and €,
are interchangeable, such that

pr’ - Wp’p - Wl'ml/m’ - Wl/m’ Im- (9)

This is a generalization of the Legendre expansion used
for scattering with isotropic targets — see Sec. 3 in Pines &
Nozieres (2018). In App. A we show how the isotropic limit
can be recovered from our calculation.

The deviation from equilibrium of the electron distribution
is expanded as:

5F(P) = 0 fim(ep)Y™ (). (10)
Im

Substitution of egs (8) and (10) into eq. (7) allows us to use
the orthogonality of spherical harmonics and the contraction
rule

v (@) = Yoy L DR DR D

4
LM

(N L Bwe @

to rewrite the

collision  integral as

I[f] = —% > fim [Wumf 00 > _(=DM\/@I+ 1)@ +1)(2L + 1)

Im,l'!m/ LM

oo o)

m m -M

/ (12)
roL >YLM(QP)—(—1)mwl/mflfmw”'(ﬂp)]-

The 3-j Wigner symbols ( h L2 s ) are invariant un-
mi Mm2 ms3

der even permutations of the columns and non-zero only if
mi1 +ma +ms3 =0, |l1 —12‘ <lg<li+land !y + 12+ 13 is
an integer (Brink & Satchler 1968; Edmonds 2016).

We define the anisotropic collision frequencies by expand-
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Figure 1. Cylindrical (rod and tube) and planar (slab) geometries of the nuclear pasta with z as the symmetry axis. The transferred
momentum vector g is drawn arbitrarily and the magnetic field B lies in the zz—plane.

ing the collision integral linearly in § f,

1M1= = > 6fim(en) v (en)l Vi (), (13)

Im,l'm’

2

Integration of eqs (12) and (13) in €, yields

o ' AN m
i :4§2v (-1) \/(2z+1)(21/+1)ZWLM00\/2L+1(0 0 0) (M m )— (=1)" W 1om |- (14)

LM

We can obtain a more compact form of this expression by us-
ing the Wigner—Eckart theorem and the spherical harmonics
representation of irreducible tensor operators of rank [ (Racah
1942a,b),

Yim (), (15)

such that eq. (14) becomes

4720

!’ ! 2
[V ;T:ln S |:ZWL1W ooV2L + 1<l/m/|Cﬁ1|lm>
- (=" Wl/m,l_m} .

2.2 Derivation of the collision frequencies

To evaluate the collision frequencies in the pasta phase, we
consider idealized rod and slab-like geometries, as expected in
the basic liquid-drop modelling of the inner crust (Ravenhall
et al. 1983; Hashimoto et al. 1984). These geometries and the
definitions entering the calculations are sketched in Fig. 1.
Equation (16) is not yet a multipole expansion of the col-
lision rates because the different expansion coefficients of the
collision integral [V]ﬁ;:”/ are complex numbers. This is due to
the fact that both the electron distribution function and the
collision integral are written on the basis of complex spherical
harmonics. To relate eq. (16) to the physical quantities, we
must rewrite eqs (10) and (13) in terms of real coefficients.
To do so, we notice that the coefficients Wi,/ 1, in eq. (8)
are constrained by the symmetries of rods and slabs. Both ge-
ometries are invariant under inversion of the z-axis (z — —z),
implying that the only non-zero W/, 1, are the ones having
the sum [ +1’ that is even. The sum m +m’ is constrained by
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7m/

the xy—plane symmetries: cylinders are invariant under ar-
bitrary rotations: the non-zero W,/ 1., are only those with
m+m’ = 0; slabs are invariant over /2 rotations, so the sum
m +m' must be a multiple of 4. To summarize, the Wi, 171,/
are not zero if and only if:

I+ =2k
Rods { +

m+m’ = 4k’

I+ =2k
Slabs + 17
+m' =0
m+m' =

with k, k' € Z. To further progress, we restrict ourselves to
the case of electric and thermal conductivities. Accounting
for spin degeneracy, the electric current and heat flow are
given by

3 3
j:fZe/(gTI)’gvéf q:Q/élT??)v(efu)éf, (18)
so that only the odd ! terms in the expansion (10) contribute
to the integrals in eq. (18). Moreover, in the relaxation time
approximation, the collision integral, eq. (7), is linear in §f.
The left-hand side of eq. (4) is linear in p, implying that only
the coefficient I’ = 1 in the expansion of the collision inte-
gral, eq. (13) contributes to the currents'. This is also dis-
cussed in depth in the case of isotropic scattering in Sykes &
Brooker (1970), and mentioned in the case of pasta in Schmitt
& Shternin (2018).

In the isotropic case, there is no mixing between the dif-
ferent terms of I[f] in eq. (13) and those of 6f in eq. (10).
However, in the anisotropic case, the collision frequencies can
mix the !’ = 1 contributions in eq. (13) with the I = 2,3...
components of Jfi,, in eq. (13). For simplicity, we neglect
such mixing and restrict ourselves to the most important

1 The multiplicity ! of the spherical harmonics coincides with the
power of p in an equivalent expansion in homogeneous harmonic
polynomials since they are isomorphic (Gallier 2013; Freire 2022).



contribution (see also Schmitt & Shternin 2018) by writing

ll;nm/ = 1/11:,'{/5116111 in eq. (13). This approximate approach
is probably good in the case of pasta, due to the symmetry
rules in (17).

We will show that the axial symmetry of the problem limits
the number of physical collision frequencies to two: an axial
frequency v,, and a perpendicular one v,. To do so, we need
to rewrite the expansions eqs (10) and (13) in terms of real
coefficients. We introduce the real spherical harmonics:

i m m —m
7 "= ()"Y") m<o
Vim =Y m=0 (19)
1 —m m m
NG Y™+ (-1)"Y™) m >0
(Vll + V1 1 V111 t— Vllll)

5 (
%( vit +i2 +ug ! viln) 5 (

% (V110 L Vll(%)

The constraint of elasticity eq. (9) implies that the collision
frequency matrix is symmetric, v;; = v;;. Moreover, we can
see from the pasta symmetries in eq. (17) that the off-diagonal
terms vanish and that the xz and yy terms are equal. This is
valid for slabs because L1, = L1y = L;. Thus,

Vez Vay Va2 v, O 0
V= |vye vyy vy =0 v, O (24)
Vie Vay Vaz 0 0 v

where v, = vii and v, = vi). Writing, without any loss of
generality, 0 fim = /47/3®1m(ep)|v|, the collision integral
expansion, eq. (13), can be simply rewritten as

1[f] =

where @ is a vector that can depend on €, and the collision
frequencies v, and v, are defined parallel and perpendicular
to the pasta symmetry axis. This result exactly coincides with
the generalization of the relaxation time approximation pro-
posed by Yakovlev (2015) on symmetry arguments to include
the effect of the anisotropic medium.

The axial and perpendicular collision frequencies can be

—0: P14 — vy - Pprp, (25)

3

(ep) 327 3

3
vp (€p) = 39730

To get the generalization of egs (1) and (2) to the physical
problem of electron-pasta scattering, we now turn to evaluate
the transition matrix W, .

11
11
11
11

/ dQpdQ, Wy ¢° cos® 8,

1
/dﬂpdﬂp/ Wy ¢ 3 sin” 6.

Transport in the nuclear pasta 5
and rewrite the | =1 term of eq. (10), d fim, as:
df(p) T V116 fo +V1-10fy + Vi0d f- (20)
where the coefficients are given by
d0fi-1—4dfu 0fi—1+0dfn
5f, = —— §fy= o §f.=bf10.
I 7 Ty NGT f==14df1w0
(21)

Since the electron distribution function is real, so are the
coefficients defined above. Substituting eq. (19) and eq. (21)
in the collision integral eq. (13), we get

Vex Vey Vgz 6fz
If]= Vi Yie1 Vi) | vee vey vz | [y | (22)
Vzx Vzy Vzz 6fz
with the physical collision frequencies given by:
_V1 1+V1111—V1111) 7(’/1 1—1/11)
Vit + i+t il 7(”1 1+ vit) (23)
% (vio + Vio 1) vig

calculated from eq. (14):

2

p
va(ep) = 472y

{Woo,oo — Wio,10

+ (W20,00 + Woo,20) } (26)

1
V5

2
vp(ep) = 471172” {Woo,oo - (Wa20,00 + Woo,20)

1

2v5
1

+ 3 Wii1-1 + Wl—l,ll):|~ (27)

To rewrite v, and v, in terms of the transition matrix
W, , we invert eq. (8) using the orthogonality of spherical
harmonics:

/ 42,002 Wi YT (@)Y (). (28)
he final expression of the collision rates,
for an arbitrary interaction preserving axial symme-
try, and assuming a dipole-like deviation from the
equilibrium of the electron distribution function:

WlnLl’nL' =
This leads to

(29)

(30)
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Figure 2. Linear and Wigner-Seitz radius of the pasta as a function of density in dashed and full curves for 7= 0.5, 1, 3 and 5 MeV (panels
a, b ¢ and d, respectively). The different pasta geometries are indicated with different colours. The results for T = 0 and T = 0.5 MeV

are indistinguishable.

3 CONDUCTIVITY TENSOR FOR RODS AND SLABS

3.1 Elastic scattering matrix in the incoherent scattering
limit

In the case of isotropic scattering, the transition matrix (8)
depends solely on the absolute value of the transterred mo-
mentum q = p — p’. This is equivalent to a dependence on
the angle between the incoming and outgoing electron mo-
mentum because one can write ¢° = 2p*(1 — - p’). In the
case of anisotropic scattering, the transition matrix can de-
pend separately on the angles of both incoming and outgoing
momenta. However, because of the axial symmetry of the
pasta structures, it can only depend on the projections of the
transferred momentum in the axis perpendicular and parallel
to the symmetry axis of the pasta. We can assume without
loss of generality that the pasta symmetry axis coincides with
the z axis, such that the transition matrix becomes a function
of the vector q itself, see Fig.1.

The transition matrix W, for the elastic scattering in
the Born approximation is given by (see, e.g., equation 81.5
of Berestetskii et al. 1971)

1 e _ : —ig-x -
W@, 65) =5 30 |5t s [ zbo(w)e™
;s D g
2 q2 2
¢ (1- 15 ) W@P s (31)
7]

where in the first line v, s is the electron spinor, Aq () is the
electric potential generated by nuclei and ~° is the Dirac ma-
trix. In the second line, the Fourier transform of the potential
U(q) is introduced, and the static structure factor is defined
as (Flowers & Itoh 1976):

S(q) = (np(@)np(—a))r

=7 [drdr et e, (@)
where n,(q) is the charge density of the scatterer in momen-
tum space, (...)r is the thermal average that accounts for
correlations between protons, and the integral covers the en-
tire thermodynamic system of volume V. The structure factor
carries the whole information regarding the anisotropy of the
system both through the anisotropic shape of the pasta and
through the lattice arrangement. In principle, S(g) also car-
ries information about thermal excitations. The contribution
of single-nucleon thermal excitations to S(g) has been calcu-
lated by Schuetrumpf et al. (2020), within the framework of
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density functional theory. Since this is not a main source of
anisotropy, we do not consider it here. On the other hand,
larger-scale collective thermal vibrations of pasta structures
and deviations from lattice periodicity are likely important
to the anisotropic behaviour of transport coefficients. To the
best of our knowledge, these have not been calculated yet and
will be addressed in future work.

Still, variational theory in Wigner-Seitz (WS) cells of differ-
ent geometries with energy densities obtained from the RMF
approach, is routinely used by nuclear physicists to obtain
a microscopically funded estimation of the optimal average
charge distribution (n,(r))r, see e.g. Avancini et al. (2009,
2008, 2012) and Haensel et al. (2007); Chamel & Haensel
(2008) for reviews. In the simplest liquid-drop modelling of
Fig. 1, the pasta structures are characterized by constant den-
sity profiles. We can write for rods (d = 2) and slabs (d = 1),
respectively:

(np(r)) T

T Z O(R2 — r —mRwa2)

m

Mg Z(—)(R1 — z— mRw1)

T

(33)

(nu(r)T "

where the average linear size of the cluster R, its internal
proton (neutron) density n, (n,) and average WS cell ra-
dius Rw 4 are variationally obtained for any given tempera-
ture T and baryon density np, as well as the (uniform) elec-
tron density, and the density of the dripped neutrons?. The
sum in (33) runs over the parallel structures in the lattice.
For this application, we use the relativistic mean-field ap-
proach of Avancini et al. (2012). The mean field Lagrangian
is given by the non-linear Walecka model, parametrized by
the IUFSU force (Fattoyev et al. 2010) with a surface tension
fitted to reproduce a Thomas-Fermi simulation, see Avancini
et al. (2012) for details. In Fig. 2 we show the linear and WS
cell radii as a function of the density, for some representa-
tive temperatures that will be considered below. We can see
that non-spherical geometries are expected in the innermost
part of the inner crust, and are found to persist even at high
temperatures well above crustal melting, that occurs around
T, = 1 MeV in this density region (Carreau et al. 2020). The
different colours correspond to the geometries that are associ-
ated, for a given baryon density, with the minimal free energy

2 This last quantity does not play any role in the calculations
concerned by the present paper.
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Figure 3. Left panel: correlation function decay parameter n for slabs. Middle (right) panel: estimation of the correlation between neigh-
bouring slab structures as a function of density (temperature), see text for details. Curves for 7' =0.1, 0.5, 1, 3, and 5 MeV are shown on
the left and center, and for ng = 0.07, 0.075 and 0.08 fm~? on the right.

density. It is known that the pasta properties are model de-
pendent (Dinh Thi et al. 2021), mainly the densities at which
the different geometries appear, but the qualitative behaviour
shown in Fig.2 is obtained in all realistic nuclear models found
in the literature (Dinh Thi et al. 2021; Parmar et al. 2022).

In the case of a perfect lattice, electron band structures sup-
press the scattering rates and charge transport occurs only
through electron-phonon interactions. However, thermal fluc-
tuations disturb the lattice periodicity and destroy the long-
range order. In particular, in the disordered limit expected to
dominate with increasing temperature, the correlation func-
tion drops to zero on a length scale of the linear size of the
cluster, and the different pasta structures are fully uncorre-
lated and act as incoherent impurity scatterers. These fluc-
tuations have been calculated for the pasta by Pethick &
Potekhin (1998) within the classical approach of the Landau-
de Gennes model of liquid crystals (de Gennes & Prost 1993;
Chandrasekhar 1992). For slabs, the thermal displacement
presents a logarithmic divergence with the linear dimension of
the sample, reflecting the well-known Landau-Peierls instabil-
ity (Landau & Lifshitz 1969). Concerning the rod phase, the
thermal displacement is finite and the long-range order in the
transverse plane is in principle preserved. A critical temper-
ature for the long (or quasi-long) range order was estimated
by Watanabe et al. (2000) as the temperature at which the
thermal displacement becomes comparable to the cell radius.
Such a temperature was shown to strongly decrease with in-
creasing baryonic density and, for fiducial values of the elastic
constants, to be of the order of a few MeV both for slabs and
for rods (Watanabe et al. 2000). Above such temperatures,
it is reasonable to expect that the conventional pasta phase
is fully destroyed by thermal fluctuations, even if complex
deformed disordered cluster structures may still be present,
as suggested by molecular dynamics simulations (Horowitz
et al. 2015; Schneider et al. 2014; Newton et al. 2022; Nandi
& Schramm 2018). Below the critical temperature, the con-
sequence of the reduced dimensionality of the pasta phase is
that the long-range order (or quasi-long in the case of slabs)
is only preserved in the directions corresponding to the lat-
tice periodicity (that is along u. for the slab phase, and u
for the rod one), potentially leading to strong anisotropies in
the collision frequencies.

Interestingly, limiting behaviours can be obtained for

the density correlation of slabs (Poniewierski et al. 1998;
de Gennes & Prost 1993) {n,(r)ny(r'))r = (n?*(r — ' )ir
showing the power law behaviour characteristic of the quasi-
long range order of the smectic (slab) phase:

Gr2E)r o« [o7 J2] - o0 (34)
x 772" 1L = oo, (35)
where
2
_ @l ;
= 8rACy’ (36)

with go = 7/Rwi, A2 = Ry (1 4+ 2f — 2f%)/45 where [ =
Rl/RWl is the average volume fraction of the cluster,and
Cy = 6E¢, where E¢ is the average Coulomb energy density
in the cell Pethick & Potekhin (1998). More recently, the
calculations of elastic constants were improved by Pethick
ct al. (2020), but for our estimates we stick to the simpler
prescription of Pethick & Potekhin (1998). The numerical
values of the n parameter as a function of the density, as
numerically obtained from the average pasta configuration
predicted by the RMF model, are displayed in the left part of
Fig. 3 for different temperatures. As expected, the correlation
decreases with temperature and density.

In the absence of a complete calculation of the correlation
function, we limit ourselves in this paper to temperatures
high enough for the hypothesis of uncorrelated scatterers to
be realistic. To this aim, we plot in the center and right parts
of Fig. 3 the quantity 27" as an estimation of the ratio be-
tween the correlation function at z = 2Ry, corresponding
to a distance containing two different slabs, and the same
quantity at z = Rwi, such that a single slab is accounted
for,

an(Qij)
5T1,2(RWl) '

Even if these distances might be small to justify the use of
the asymptotic behaviour given by eq. (34), the quantity 27"
can be taken as an estimation of the correlation reduction due
to thermal effects. From Fig.3 we can see that only at very
high temperatures above 1 MeV the hypothesis of incoherent
scattering appears justified. For the following numerical ap-
plications, we will focus on T' = 3 MeV as a representative
temperature value.

27" (37)
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Figure 4. Left: Effective length of the pasta transverse to the symmetry axis, normalized to the Wigner-Seitz radius (see text). Right:
Proton number of the pasta as a function of density. The different pasta geometries are indicated with different colours. The temperature

is fixed to T'= 3 MeV.

Since the correlation asymptotically follows the same power
law in the transverse as in the longitudinal plane see eq. (35),
we define the effective length of the slab L; from the same
order-of-magnitude consideration:

5712(LW1}
where Ly is defined by normalizing the slab WS volume to
the droplet volume at identical thermodynamic conditions.

Comparing egs (37) and (38), we consider that the effective
length of the slabs is

ry @1

(38)

L3 = 3L (39)

For the rods, in the absence of an exact calculation of S(q),
we assume the length of interest to be equal to the slabs
one if they were dominant at the same density, Lg-ff = Li”.
The resulting numerical values of the pasta length and proton
number at 7" = 3 MeV are shown in Fig. 4.

_3
(qlts)?

[sin{gRa) — qRa cos(gRa)],

s
q-L2 2 L&

2 ., L 2
1n(q 2) Ji (g1 R2),
q 2

Within the hypothesis of incoherent scatterings, the struc-
ture factor integral is limited to a single cell. Charge
fluctuations within the cell being negligible we can write

(np(r)ng(r' )y = (np(r)r(ny(r'))r, leading to:

S(q) ~ Z*ni|F(q), (40)

with the form factor F(q) defined as the Fourier transform
of the charge density normalized by the number of protons
composing the cluster (Z):

1 3. iq

Z fwg dre’ T, (r),

and the number density of targets within the medium as n; =
1/V.

Analytic expressions can be found for the form factor
by direct integration of eq. (41) for spherical, cylindrical,
and planar geometries (labelled d = 3,2, 1, respectively):

F(q) = (41)

d=3

a=2 (42)

2 %in(quI> 2
quwk 2 Liqy

Here, g, = gsinfly cos ¢y, g, = gsinysing,, q. = qcosfy,
g1 = +/q% +q2, and .Jy is the cylindrical Bessel function,
1 i R
Ji(z) = — f dpe ™ **'?) cos(). (43)
i Jg

Finally, using the Fourier transform of the electric potential

dmre

Ulgq) = 44
@)= (44)
the transition matrix element is written as:
3 2
2 q AreZFy(q)
Wipt (g, €p) = nie (1 - 4—‘_23) =@ |’ (45)

where the dielectric function &(q) is introduced, regularizing

MNRAS 000, 1-15 (2022)

sin (L;qy) Rllqz sin (R1g:), d=1

the divergence at ¢ = 0, to account for electron screening. A
complete calculation within relativistic quantum mechanics,
in the random phase approximation, gives (Jancovici 1962;
Haensel et al. 2007):

k2 2 2y%z,
() =1+ ;;{——“ In(z, + )

3 3 7
x2 +1 — 3z%° 1+y
6yx? 1—y
2a; — 11+ aB? |y + VItal? } (46)
e )

where y = q/2pr, Tr = pr/me, 7+ = V1 + 32, krr is the



Rods: ng = 0.06 fm™*

Slabs: ng = 0.08 fm™®

Transport in the nuclear pasta 9

Slabs: np = 0.08 fm™*

0.8 . T
" Gy =m/4
0.6 / R
e /
o]
S 04r / \ .
=02t I 2 ¥ .
r N \
0 =~ ’ sl g - e 1
0 /2 T w/2 T
b by
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Thomas-Fermi momentum, defined as:

krr = \/47r628ne/8pc = 2\/(1(:7;,_"{7‘/(7\.'.’12,-}](51?, (47)

and the second equality supposes a strongly degenerate elec-
tron gas (Hacensel et al. 2007). Though in this work we
assume that the screening is isotropic, it is important to
observe that strong magnetic fields lead to anisotropic be-
haviour and can produce Friedel oscillations (Horing 1969;
Sharma & Reddy 2011). We leave the consideration of this
source of further anisotropies to a future study.

Bailen] = 127mn;etz? QPd 1
AT I P ET0)

() 127n.e* 72 2pd 1
v, (e,) = =1 = lg———
rer vp? o qe%(q)

Eqgs (49) and (50) are the main results of the paper. Under
the assumption of incoherent scatterings among the different
pasta structures, and using the analytical expressions eq. (42)
for the form factors, they allow calculating the thermal and
electric conductivity of the pasta phase (see eq. (55) below)
at any arbitrary temperature, density, proton fraction and
magnetic field value from a given nuclear physics model pro-
viding the composition of the matter, namely the values of
L, R and Z for the dominant pasta geometry. Some repre-
sentative results will be given in the next section.

To compute the transport coefficients, the collision frequen-
cies eqs (49) and (50) must be calculated at the Fermi energy
€p = €r, since in the strongly degenerate electron gas trans-
port occurs close to the Fermi surface. They can be written
compactly as

12n.etZ?

Ak, 51
'UFP?:' K ( )

Vi =

where pp (vp) is the Fermi momentum (velocity). We have
also defined the axial (K = a) and perpendicular (K = p)

3.2 Collision frequencies and conductivities

The expression of the transition matrix in eq. (45) allows us
to get the final result for the collision rates. We substitute
this expression into egs (29) and (30) and make the change
of variables

or [ dq
dQudY, = = [ =+ 48
[ TR TS 4 T
to get the collision frequencies

(1- q—2) [ |Fu(@) cos®s, (49)

2
4e

4

2
q qu 2 1 )
St F — & 9. . 5
45123)[ e |Falq)] an q (50)

Coulomb logarithms as

s dg 1 q2 2
A = ——(1—- — | {F 52
K [ﬂ 7 22(q) ( 4(—:%) (F )k, (52)

and the averages (F?)x as

dQ
(F)a = [ L2 IFu(@) cost, (53)
and
d<? 1.,
(P, = [ G IFla)l 5sin® 6, (54)

The calculation of the conductivities with the anisotropic col-
lision frequencies has been worked out in Yakovlev (2015), so
here we only report the main equations. The magnetic field
is assumed, without loss of generality, to lie in the zz—plane.
By defining the unit vector b = B/B = b,& + b.2 and the
cyclotron frequency for electrons w = eB/ep, the electric
conductivity tensor can be written as

2,2 2
2 Valp + W bw —wb:Va wbzbs
L e -
& = — wb.v, Valp —wbavp . (55)
m 2 2 272
€ wWbb, wha vy vy +w b2
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where A = rzgr/u + wzb_znr/p - wzbgrlu. The thermal conduc-
tivity can be obtained by the Wiedemann-Franz law x;; =
ai; (72T /3e*) which is valid for strongly degenerate elec-
trons (Ziman 2001). We do not consider neutron superfluidity,
which results in corrections to the thermal conductivity, hut
not to the electrical (Aguilera et al. 2009). For B = 0, the
conductivity becomes

0o vt o0 |. 56
P

4 NUMERICAL RESULTS

The source of anisotropy entering the collision frequencies eq.
(3) lies in the angular dependence of the form factors Fy(q).
The latter is displayed for rods and slabs in Fig. 5, as a func-
tion of the azimuthal angle 6, (see Fig.1) for different values
of g = kr /2, kr, 2kr. In these figures, the temperature is fixed
to T'= 3 MeV and the two representative densities ng =0.06,
0.08 fm~? are chosen, where rods (slabs) are expected to be
dominant according to the results presented in Fig. 2. We can
see from Fig. 5 that for the rods, the form factor is strongly
peaked at 8, = 7/2, while for slabs it is peaked at ¢, = 0 and
m. Such behaviour is expected from their geometries, as the
form factors are peaked in the elongated direction.

However, this dependence is smoothed out by the angular
average implied by egs (53) and (54). This is shown in Fig. 6,
that displays the averaged form factors (F?), , defined in
eqs (53),(54). The average value, given by 2(F?}, + (F?),, is
also plotted, in the same thermodynamic conditions as in Fig.
5. As we can expect from Fig.1 and eq. (42), the form factor is
maximum (minimum) in the symmetry axis direction in the
case of slabs (rods). This difference is pronounced at momen-
tum transfers smaller than ¢ = kg, as afterwards, both axial
and perpendicular components tend to zero. When compar-
ing the form factors to the one of the equivalent spherical
droplet (right side of Fig.6), we can see that the difference
is essentially seen at low momentum as well, where the form
factor is systematically smaller within a deformed shape than
for the equivalent spherical geometry.

In the previous figures, we have estimated the effective
pasta length Ly based on the asymptotic behaviour of the
thermal density correlation function of the smectic phase in
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the perpendicular plane (see Figure 3 and associated discus-
sion). Though qualitatively the physical origin of the electron-
pasta scattering is certainly the breaking of the long-range
order due to thermal fluctuations, our estimations are very
rough and would deserve to be confronted with microscopic
molecular dynamics simulations (Horowitz et al. 2015; Ca-
plan et al. 2021; Newton et al. 2022; Pelicer et al. 2021; Nandi
& Schramm 2018). To evaluate the effect of the uncertainty
on the estimation of Ly, in Fig. 7 we show the axial and
perpendicular Coulomb logarithms eq.(52) and the ratio of
perpendicular to axial collision frequency eq.(51) as a func-
tion of the ratio of the pasta length Ly to the WS-radius Ry 4
for rods and slabs.

For both geometries, the Coulomb logarithm decreases with
the increasing length of the pasta, and its value tends to
zero as Ly becomes sufficiently large. This is consistent with
the expectation that the lattice order should suppress the
electron-ion scattering and increase the conductivity of mat-
ter.

For rods (slabs), the perpendicular component is larger
(smaller) than the axial one, and the difference between them
increases with the growing length of the pasta, varying up
to 100 (0.01) when Ly ~ 150Ry . We can sce that a pre-
cise estimation of the length of the structures is important
for the quantitative determination of the collision frequen-
cies, as it affects in a considerable way the difference be-
tween the two scattering directions. In particular, the devia-
tion from an isotropic scattering is small only for small values
of Lgq/Rw, corresponding to the high-temperature regime. At
smaller temperatures, as correlations become more impor-
tant, a larger transverse length will contribute to the scat-
tering, so the difference in the anisotropic frequencies will be
more pronounced, likely reaching those expected in Yakovlev
(2015).

In Fig. 8 the Coulomb logarithms eqs(52) are shown as a
function of the density for T=1 and 3 MeV. In both cases,
we can see that the abrupt change of favoured geometry leads
to slight discontinuities in the Coulomb logarithms, and both
overall decrease with density. This can be understood from
the increase in length, shown in Fig. 4, and from Fig. 7.

The ratio of perpendicular to axial collision frequency
egs (51) and the average conductivity are shown in Fig. 9 for
the same temperatures. The slight increase in the ratio with
density is due to the increasing length. It is important to note
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as dashed (continuous) lines. The points in the lower plot indi-
cate the estimated effective length Li-” =2 Liw (see text).The
representative temperature T' = 3 is chosen.

that, at the temperatures and lengths we are considering, the
different collision frequencies differ by a factor smaller than
two, so there is only a small deviation from isotropic scatter-

{o1)
(o)

{ou)

2
€ Ne

miw?

w(l —vrpH)

s = wy/|va — vp| and r = /vp(w? + vuvp). For B — 0 we

get

en.

= =S=e, o =3 (2+r) @)

: Vp Vg
and the Hall parameters is zero {og) — 0. One must notice
that the average conductivity is proportional to the average of
the inverse of (v}, and not (1) itself, therefore its calculation

does not amount to averaging the matrix element over €.

(w?® + Upr/a,)(yg + W H — v,
L vavp(w® — v ) H + 1)
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ing at high temperatures. In the average conductivity on the
other hand, there is a larger discontinuity when the abrupt
change of geometry happens. This difference is mainly due to
the associated discontinuity in proton number, which can be
seen on the right side of Fig. 4. All in all, the anomalously
high resistivity of the pasta layer reported in the literature
(Caplan et al. 2018) is nicely reproduced by our calculations,
and it is seen to be essentially due to the high Z value of the
clusters close to the crust-core transition, more than to the
specific geometry of the pasta phases.

We now turn to the effect of the magnetic field on the con-
ductivities. When including the magnetic field, we show all
components of the conductivity in units of the dominant con-
ductivity at zero magnetic field, i.e. the perpendicular (axial)
conductivity for rods (slabs). In Figs. 10 (11) we show the
conductivity components when the magnetic field forms an
angle #, = 0,45°% and 909 with the symmetry axis of the

pasta. Different off-diagonal components appear depending
on the angle of the magnetic field: if it lies in the symmetry

axis of the pasta, only the perpendicular zy component is
not zero, the zz component depends only on 14, and the per-
pendicular zx and yy components are determined by both
v, and B. If it lies perpendicularly to the symmetry axis,
only zy is not zero, the zz component is determined by v,
and B and zz = yy only by v,. At magnetic fields B < 10'®
G, the zz component is not drastically modified, transverse
components increase (decrease) for rods (slabs), and the off-
diagonal terms increase steadily. At ~ 10'% G, the diagonal
components parallel to the magnetic field are unaffected, but
the perpendicular and off-diagonal components start to de-
crease. A magnetic field of this order is not far from the one
expected at the very bottom of the inner crust of magnetars,
which is about 20% of the field in the core (Chatterjee et al.
2019; Fujisawa & Kisaka 2014).

For the average conductivity, we follow Yakovlev (2015)
once more, and assume the pasta takes random orientations
with respect to the magnetic field since up to date there is
no information regarding its orientation or prevalence of do-
mains. To calculate the average parallel, perpendicular, and
Hall terms we define a plane orthogonal to the magnetic field
with the vectors e;, ez = e1 X b and make the projections:
gL =b-0-b oy=e1-5-e and oy = €1 -7 - ez, such
that averaging the coefficients over all directions leads to:

(sr)"tarctan(s/r)  v. > v
(sr) " tarctanh(s/r) v < v (57)

(v +w?va) !

with H =

Vo =Up

In Fig. 12 we show the average conductivities for rods and
slabs, respectively, in units of the average conductivity with
B = 0. This figure can be compared with Fig.3 of Yakovlev
(2015), though the parallel component in our calculation is
not so different from the perpendicular one due to the small
difference we found between the anisotropic frequencies, un-
like the assumption of Yakovlev (2015). To conclude this dis-
cussion, it is important to note that for all the calculations re-
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Figure 8. Axial (continuous) and perpendicular (dashed) Coulomb logarithms as a function of baryon density, for T = 1 MeV (left panel)
and T'= 3 MeV (right panel). The different pasta geometries are indicated with different colours.
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Figure 9. Top: ratio of perpendicular to axial relaxation time. Bot-
tom: Average electric conductivity. Curves are shown as a function
of density for the representative temperatures of 7' = 1 (dashed)
and 3 (continuous) MeV. The different pasta geometries are indi-
cated with different colours.

ported in this paper, the inner crust structure was computed
without accounting for the magnetic field. Numerous stud-
ies exist in the literature addressing this point, using CLD
or Thomas-Fermi techniques with different nuclear models,
see e.g. Nandi et al. (2011); de Lima et al. (2013); Bao et al.
(2021); Wang et al. (2022). The general result of these works
is that only extreme magnetic fields of the order of B = 10'®
G affect the density profiles of the Wigner-Seitz cells, with

MNRAS 000, 1-15 (2022)

an increased average proton fraction, particularly in the outer
part of the inner crust dominated by spherical nuclei, and an
increase of the charge of the pasta structures, that however
does not exceed =~ 10 — 20%. These modifications would not
affect the results presented in Figs. 11 and 12, and would
lead to an extra decrease of the conductivity in Fig. 9, since
7o Z72, see eq.(51).

5 CONCLUSIONS

In this paper, we studied the collision frequencies for elastic
scattering between electrons and two different pasta phase
structures. To do so, we performed an expansion of the colli-
sion integral in spherical harmonics, which allowed us to treat
also the scattering with non-spherical targets. We applied this
framework to calculate the electrical conductivity tensor.
The form factor of the pasta structures was evaluated by
direct integration, although we neglected contributions from
the structure factor, which is equivalent to assuming that
electron scatterings with different pasta targets are com-
pletely incoherent. This is a reasonable first approximation
at high temperatures of the order of the MeV or above. More
work is needed to evaluate the anisotropy of the transport co-
efficients at lower temperatures where the lattice long-range
order along the pasta symmetry axis is likely to be preserved.
We find that anisotropic collision frequencies are highly
dependent on the length of the pasta structures. In the high-
temperature regime, where the effective length that partici-
pates in the scattering is comparable to the WS length, the
anisotropy is small and affects mainly the components of the
conductivity perpendicular to the pasta symmetry axis. It
should be emphasized that neutron star properties are ex-
pected to be significantly impacted by the presence of differ-
ent and mixed pasta geometries (Caplan et al. 2021; Schnei-
der et al. 2016; Newton et al. 2022), and their (possibly disor-
dered) mesoscopic arrangement. Unfortunately, information
is still lacking on how pasta domains, defects, and impuri-
ties appear at larger scales, but the presence of this kind of
disorder is considered to be a likely feature of the pasta lay-
ers (Caplan et al. 2021; Schneider et al. 2016; Newton et al.
2022; Pelicer et al. 2021). Our treatment, at the moment,
does not include precise corrections coming from scattering
with domain boundaries and mixed geometries. Future inves-
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Figure 10. Components of the electric conductivity in units of the perpendicular conductivity at B = 0, as a function of the magnetic field
for rods at ng = 0.06 fm—3. The angle between the pasta symmetry axis and the magnetic field is fixed at 0 (left), 45° (center) and 90°

(right). In the top axis, we show the variable 2, = eB/(ep1p).

Slab: ng = 0.08 fm—3
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Figure 11. Components of the electron conductivity in units of the axial conductivity at B = 0, as a function of the magnetic field for slabs
at np = 0.08 fm~3. The angle between the pasta symmetry axis and the magnetic field is fixed at 0 (left), 45° (center) and 90° (right).

In the top axis, we show the variable z, = w/v,.

tigations of these matters must be incorporated within the
present framework to improve it.

Our numerical results are based on the IUFSU force, a sim-
plified modelling of the pasta phase using a one-component
liquid drop approach, and an estimation of the pasta sizes
based on the values of the correlation between neighbour-
ing WS cells. However, the analytical results are general and
can be used to calculate the transport properties of the inner
crust, with and without a magnetic field, by using any micro-
scopic estimation of the pasta linear dimensions and proton
number from microscopic mean-field or molecular dynamics
simulations.
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APPENDIX A: ISOTROPIC LIMIT

In this appendix, we show that the isotropic limit is obtained
from eq. (14) when W,/ is a function only of |g| The equation
obtained is equivalent to to eq. (3.135) of Pines & Noziéres
(2018). In the isotropic case, there is no change in the [ index
of spherical harmonics during the collision, and the sum of
m and m’ indexes are zero since W, is a function of the
relative angle between p and p’, therefore:

Wlm Um! = Wlm‘sll’(sm —m/ - (Al)

This can be understood from the expansion in eq. (8), where
in the isotropic case the pair of spherical harmonics must
be replaced by the Legendre polynomial. Eq. (14) can be
rewritten as

2

i =L {(—l)m,s/(Ql-i-l)(Zl’—i—l)Woooo (é lo 8)

T dAn2y
0 I U m
X (0 m 7m/> - (_1) Wlmlmall/6mm/:| . (A2)
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We simplify this expression by utilizing the following property
of the 3j-Wigner symbols:

1 1 0\/0 1 N )
(0 0 0)(0 m )= SHdwdun (3

and defining Wi = Wim 1—m, such that:

! ’ 2
W = 4:_721}511/6mm’ [Woo - (—1)szm} . (A4)

To recover the usual integral equation with the transition
matrix element we use eq. (28), with the aid of eq. (48)

2 d?
Wi = o [ €2
p q

into eq. (A4) and average over the m index:

p2 d3q 1 . y
v = m/TWW; E*Yz ()Y () |-
(A6)

Using the property of spherical harmonics

DY (@)Y Q) = Pi(cost) (A7)

where cos ¢ = p-p’/(|p||p’|) and changing variables as 2qdq =
—p?d(cos €), we obtain

» [
w= - B d(cos &)Wy

1 — Py(cos E)] ; (A8)

which is equivalent to eq. (3.135) of Pines & Nozieres (2018)
for electron scattering with isotropic targets. We use ¢? =
p%(1 — cos€) to change variables and write, for [ = 1:

! = d A
V1 (ep) q qup/: ( 9)
0

- 4mp2v

Using eq. (31), we recover eq. (2). Likewise, the viscosity can
be obtained with the [ = 2 —see egs (2) and (3) of Chugunov
& Yakovlev (2005):

(A10)
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