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Resumo

Matéria bariônica, quando próxima da densidade de saturação, assume formatos inomogêneos

complexos coletivamente chamados de fase pasta. Em temperaturas őnitas, as diferentes formas

geométricas que compõem a pasta devem coexistir, com potenciais consequências na condutivi-

dade das crostas de estrelas de nêutrons e no transporte de neutrinos em supernovas. Utilizando

um formalismo estatístico para considerar os múltiplos componentes, nós calculamos a com-

posição de matéria na fase pasta permitindo ŕutuações nas geometrias e densidades dos núcleos.

Nós mostramos que diferentes geometrias podem de fato coexistir em uma grande porção da fase

pasta, mesmo em temperaturas da ordem da temperatura de cristalização da crosta de estrelas de

nêutrons, e calculamos a variância do número efetivo de prótons a őm de quantiőcar impurezas

relacionadas à carga e geometria. Em seguida, fornecemos expressões analíticas para as taxas

de colisão em espalhamentos elétronśpasta elásticos e os usamos para calcular a condutividade

elétrica de matéria magnetizada. Para estes cálculos, nós usamos um funcional de energia

realista a partir de um modelo de campo médio relativístico, e uma tensão de superfície com de-

pendência em temperatura e isospin, ajustada para reproduzir a aproximação de Thomas-Fermi.

Palavras-chaves: física-nuclear. astrofísica. fase-pasta. transporte.



Resumo expandido

Estrelas de nêutrons são objetos extremamente compactos, contendo fases da matéria hádronica

que não podem ser encontradas em condições terestres. Portanto, provêem condições para

o estudo da matéria nuclear em condições extremas. Na crosta destas estrelas, a densidade

pode chegar próxima à densidade de saturação da matéria nuclear, fazendo com que os íons

őquem muito próximos, e a energia de Coulomb e a energia nuclear sejam da mesma magni-

tude. Esta competição de forças leva à deformação dos íons, que assumem formas geométricas

anisotrópicas que são coletivamente chamados de fase pasta. O estudo da pasta é essencial para

a descrição precisa de propriedades macroscópicas das estrelas de nêutrons, como a evolução

térmica e magnética, a emissão de ondas gravitacionais e a frequência de modos de vibração

radial, por exemplo. A opacidade de neutrinos em proto-estrelas de nêutrons também pode ser

modiőcada pela pasta.

Atualmente, é impossível descrever estados hádrônicos pela teoria fundamental da força nuclear,

a cromodinâmica quântica, e por isso diversos modelos efetivos são utilizados. As propriedades

da fase pasta podem ser calculada em modelos como a dinâmica molecular, em que potenciais

entre núcleons são utilizados, e geometrias complexas são obtidas, ou também em modelos

como teoria de campos efetiva, que é um modelo relativístico onde os hádrons são descritos

por espinores de Dirac e geometrias simpliőcadas são assumidas a priori. Modelos do primeiro

tipo são robustos, porém requerem simulações extremamente custosas. Eles indicam que as

diferentes geometrias que compõem a pasta podem coexistir em uma condição termodinâmica

őxa, com potenciais consequências na condutividade das crostas de estrelas de nêutrons e no

transporte de neutrinos em supernovas. O segundo tipo de modelo descreve uma ampla gama

de fenômenos nucleares simultaneamente, porém permite o cálculo de uma única geometria em

uma dada condição termodinâmica őxa.

O objetivo deste trabalho é estender cálculos da pasta com modelos relativísticos efetivos. Em

primeiro lugar, a meta é calcular uma distribuição de estruturas da fase pasta, com diferentes

números de próton e geometria. Com isto, é possível estimar o parâmetro de impureza da

crosta interna da estrela, que é um possível mecanismo para limitar o período de pulsares de

raiośX isolados. Em seguida, o objetivo é prover expressões analíticas para a frequência de

colisões elásticas entre elétrons e pasta. Tais frequências são elementos essenciais no cálculo

de propriedades de transporte de carga e calor, como a condutividade elétrica e térmica. O

espalhamento entre elétrons e pasta é o mecânismo dominante na condutividade, e por isto é o



elemento de estudo deste trabalho. Tais propriedades são amplamente estudadas na literatura

para a parte mais exterior da crosta, onde os núcleos são esféricos, porém no caso da pasta tais

cálculos são inexistentes.

Com este őm, a metodologia utilizada consiste, na primeira parte, em um formalismo estatístico

para considerar os múltiplos componentes da fase pasta. A composição de matéria na pasta é

calculada permitindo ŕutuações na geometria e nas densidades dos prótons e nêutrons presentes

nos núcleos. Um termo de rearranjo é adicionado à energia livre da pasta, e demonstramos

que este é um elemento essencial para manter a equivalência entre o formalismo estatístico e

o de núcleo único, feito pela minimização da energia livre. Na segunda parte, para calcular

as propriedades de transporte, nós generalizamos a expansão da taxa de transição entre os es-

tados iniciais e őnais de elétrons que participam do espalhamento elétron-pasta em esféricos

harmônicos para o caso em que o núcleo não é esférico. Nós mostramos que, neste caso, há

um total de nove frequências de colisão para uma geometria arbitrária, mas estas são reduzidas

a duas quando as simetrias da fase pasta são aplicadas, denominadas frequências de colisão

axial e perpendicular. Para obter resultados numéricos quantitativos as propriedades da pasta

são cálculadas utilizando um funcional de energia realista advindo de um modelo de campo

médio relativístico. Este modelo é utilizado em todo o trabalho. A tensão de superfície utilizada

possui dependência em temperatura e isospin, e foi ajustada para reproduzir a aproximação de

Thomas-Fermi do modelo relativístico.

Os resultados obtidos mostram que, em modelos relativísticos, as estruturas da pasta com

diferentes geometria e número de próton coexistem em grande quantidade em uma dada profun-

didade da estrela. Os valores da impureza são grandes, maiores que a unidade, e estão de acordo

com valores propostos de maneira ad hoc na literatura com o intuito de descrever fenômenos

macroscópicos. Estes resultados são válidos mesmo em temperaturas da ordem da temperatura

de cristalização da crosta da estrelas de nêutrons, 𝑇 ≈ 0.1 MeV. Em seguida, nós mostramos que

as taxas de colisão axial e perpendicular em espalhamentos elétronśpasta elásticos se tornam

cada vez mais diferentes conforme o tamanho da pasta aumenta, porém em altas temperaturas,

se as correlações na pasta são omitidas, esta diferença não é consideravelmente grande devido

ao tamanho limitado da pasta. A condutividade elétrica é cálculada, e mostramos que a fase

pasta reduz a condutividade na crosta da estrela também de acordo com discussões qualitati-

vas presentes na literatura. Devido à pequena anisotropia da pasta, na presença de um campo

magnético forte as condutividades perpendicular e paralela ao campo magnético são diferentes



somentes para campos maiores que 1018 G.

Palavras-chaves: física-nuclear. astrofísica. fase-pasta. transporte.



Abstract

Baryonic matter close to the saturation density presents complex inhomogeneous phases col-

lectively known under the name of pasta phase. At őnite temperatures, the different geometric

structures that make up the pasta are expected to coexist, with potential consequences on the

neutron star crust conductivity and neutrino transport in supernova matter. In the framework

of a statistical multi-component approach, we calculate the composition of matter in the pasta

phase by allowing ŕuctuations in the geometry and densities of nuclei. We show that different

geometries can indeed coexist in a large fraction of the pasta phase, down to temperatures of

the order of the crystallization temperature of the neutron star crust, and calculate effective

proton number variances in order to quantify charge and geometric impurities. Next, we provide

analytic expressions for the anisotropic collision rates of the elastic electronśpasta scattering

and use them to calculate the electric conductivity of magnetized matter. For these calculations

we use a realistic energy functional from relativistic mean őeld theory and a surface tension

with temperature and isospin dependence őtted from Thomas-Fermi calculations.

Key-words: neutron-star. astrophysics. pasta-phase. transport.
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1 Introduction

Neutron stars (NS) are compact objects with masses up to ∼ 2.5𝑀⊙ and a radius around

10 km that are born either out of the supernovae explosions generated by stars from the zero age

main sequence with masses (roughly) between 8 and 25 M⊙, or from the merging of two existing

neutron stars. Due to the conservation of angular momentum and magnetic ŕux, they rotate

quickly (1.4 ms ≲ 𝑃 ≲ 30 s), and have very strong magnetic őelds (1010 G ≲ 𝐵surf ≲ 1015 G) [1].

The name neutron star stems from the high neutron content due to electron captures (𝑒 + 𝑝 →

𝑛 + 𝜈𝑒), but their composition is much richer. The baryon density inside the star ranges from a

fraction to several times saturation density (𝜌sat ≈ 0.16 fm−3), so the different NS layers contain

various phases of cold 𝛽-equilibrated nuclear matter. We refer to a NS as a cold compact object

because, even though it is hot with respect to earthly standards ś they are born with temperatures

∼ 1011 K and cool down to ∼ 109 K (∼ 0.1 MeV) ś the Fermi energy is much higher than the

thermal one due to the high occupation number of Fermion states (i.e. high densities) [2, 3].

The core, for example, has densities ranging from ∼ 𝜌sat/2 up to somewhere in the

range 4 to 10 𝜌sat, depending on the NS mass. The core begins when nuclear matter dissolves

into homogeneous uniform matter: the outer part is composed of neutrons, protons, electrons,

and muons, but the inner core (≳ 2𝜌sat) composition is highly uncertain. Many different

proposals exist in the literature, such as the appearance of excited baryon states (hyperons and

Δs), condensation of pions and/or kaons, and the occurrence of a deconőnement phase transition

to quark matter [4ś12]. Being a highly magnetized and cold system, particles in the NS are

also prone to pairing, forming superconducting and superŕuid states [13ś15]. The microscopic

composition of the core is the main component in determining the maximum mass a NS can

have, and this constraint is important to determine how stiff the equation of state (EOS) of

nuclear matter is1.

The crust is also separated into outer and inner parts. The composition of the outer part

is fairly simple, consisting of neutron-rich heavy ions with baryon numbers up to ∼ 120 [16,17]

and a strongly degenerate electron gas. The inner crust begins at the neutron drip line 2, so a

neutron gas is additionally present, which can be in a superŕuid state by undergoing Cooper

1The equation of state refers to the relation between pressure and energy density of cold nuclear matter in
𝛽śequilibrium.

2The point where some neutrons start to become unbound from nuclei: 𝜌drip = 4.3 × 1011 g cm −3 ≈ 0.00028

fm−3.
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pairing [18ś20], and the ions become extremely deformed, giving rise to the nuclear pasta

phase [21ś23].

The crust is essential in the determination of the radius of the neutron star, e.g. in the

analysis of canonical 1.4 M⊙ NS. Thus a good knowledge of its composition, along with simul-

taneous measurements of mass and radius, such as those currently being provided by NICER,

will result in important constraints on the EOS [24ś27]. Additionally, the crust properties are

also important in determining the dynamic properties of the star, such as the thermo-magnetic

evolution [28ś33], the continuous emission of gravitational waves due to łmountainsž [34ś37],

quasi-periodic oscillations [38], quasi-persistent sources of soft-𝛾 ray transients and giant ŕares

due to the relaxation of the crust after heat deposition and neutrino emissivity in a proto-neutron

star (PNS) [39ś43]. Additionally, the superŕuid neutrons in the crust are related to pulsar

glitches, a sudden change in the rotation period of stable pulsars [19, 20, 44].

These macroscopic features of the NS crust are controlled by the microscopic properties:

conductivities, viscosity, breaking strain, lattice structure, defects, impurities, etc. [45]. Such

transport properties are determined by the scattering of electrons by other electrons, ionic

impurities, and phonons in the crystal lattice. Electron-ion scattering dominates over other

mechanisms, and at the lowest densities, it has been extensively studied [46ś52]. But in the

inner crust at temperatures 𝑇 < 107 K, thermal conductivity due to degenerate electron-electron

Coulomb scattering becomes competitive with the electron conductivity due to the scattering

of electrons by impurity ions [53] and dominates over the contribution due to electron-phonon

scattering [54]. In the innermost part of the crust, where the anisotropic pasta appears, the

situation is much more complicated.

The existence of nuclear pasta was proposed in the early 1980s by Ranvehall, Pethick,

and Wilson [21] and independently by Hashimoto, Seki, and Yamada [22]. The shapes of nuclei

proposed in these articles were assumed a priori as cylindrical (rod and tubes) or planar (slab).

Bubble shapes could also be formed. These speciőc shapes were picked due to their symmetries,

which allow an analytic calculation of the associated Coulomb and surface energy. The reason

for their appearance is that the small lattice spacing in the inner crust makes the Coulomb energy

of the ions competitive with its nuclear surface energy, which is otherwise dominant. This

competition frustrates the system and allows the pasta to appear. The name pasta phase was

coined due to their resemblance with pasta meals: gnocchi (droplet), spaghetti (rod), lasagna



16

(slabs), bucatini (tubes), and swiss cheese (bubble). These structures appear in this respective

order as density increases and the latter two are also known as łinversež pasta: the dense nuclei

form a quasi-continuous medium with neutron-őlled holes [53, 55]. The difficulties associated

with pasta are that they are anisotropic and form an amorphous system, so the determination of

its transport properties is a highly non-trivial problem. It has been argued that their amorphous

nature is related to the maximum period of 12 s for isolated X-ray pulsars, since the high impurity

would raise the resistivity, making the magnetic őeld have a steep decay after a certain age, thus

limiting the NS spin period [56, 57].

The calculation of the pasta properties can only be performed with a reliable nuclear

model at hand. Since the 1950’s many nuclear relativistic and non-relativistic models have

been proposed to describe nuclear phenomena, since the fundamental theory of the strong force,

quantum chromodynamics, can be applied only in very speciőc situations: high energy scattering

and high temperature and low chemical potential via lattice simulations [58, 59]. The earliest

calculations regarding the pasta applied the compressible liquid drop (CLD) formalism [21],

which assumes constant particle densities (or particle number) to the ions and idealized shapes

for the pasta, and then the equilibrium is found via minimization of the free energy. This same

approach has been used within relativistic mean őeld (RMF) models, with the simple difference

that the nuclear energy functional comes from a relativistic theory. The RMF is an approximation

for effective relativistic theories of nuclear interactions where the meson őelds responsible for

the interaction are assumed to be static and isotropic. More robust models have also been used

to study the pasta, such as the Thomas-Fermi approximations for relativistic models [60ś62],

where meson őelds are no longer isotropic as in the RMF; molecular dynamics (MD) [42,63,64],

where interactions are described by short (long) range two-body potentials; and three-dimension

Skyrme-Hartree-Fock (3DHF) [65ś68], where the ground state is approximated by a Slatter

determinant and the nuclear force is described by one-body potentials (Skyrme forces).

Relativistic models are interesting due to the freedom in the determination of their cou-

pling constants, which allow the description of nuclear matter bulk parameters, and astrophysical

phenomena. Additionally, the freedom in adding covariant interactions to the Lagrangian permits

one to understand the correlations between bulk and astrophysical measurements by changing

single bulk parameters. For example, the well-known correlation between the symmetry energy

and its slope with the point of the crustścore transition and the NS radius [69ś76]. However,

the simplicity of the RMF does not allow for robust calculations of the pasta, and we are obliged
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to assume the idealized shapes aforementioned and work with a sharp pasta-gas interface, as in

the CLD. In contrast, MD has only four free parameters that are őtted to describe the saturation

density and binding energies of symmetric matter, neutron matter, and some selected őnite nu-

clei, and 3DHF has 10 free parameters that are őtted with focus either on ground states, őssion

barriers, and surface energies or in neutron-rich matter, with astrophysical applications [77,78].

But, since they allow the simulation of single particle interactions, it is possible to follow a

system of nucleons, starting from an out-of-equilibrium state, evolving into an equilibrium one,

and forming pasta.

These simulations are done without the assumption of speciőc shapes, and it has been

shown by both MD and 3DHF that more exotic shapes of pasta can be formed, such as waffle-like,

gyroid, sponge-like and łparking-garagež [28,79ś83]. CLD calculations have also corroborated

that the gyroid phase can appear as a metastable state [84]. Moreover, these models have shown

the inner crust is a very impure system [28, 29, 85] and MD, in particular, has been used to

estimate the transport properties of the pasta [34, 55, 86, 87]. One drawback of MD is that high

temperatures and proton fractions must be used, which are thermodynamic conditions better

suited for a proto-neutron star, where the presence of the pasta is still a topic of discussion due

to the very high temperatures present [88]. Additionally, these simulations require a very large

computational power, and the study of a single thermodynamic condition is already very costly.

Conversely, the RMF is not costly numeric, it allows the calculation of the EOS and

pasta properties in a couple of minutes. The goal of this thesis is to, within an RMF model:

1 give a preliminar calculation of the pasta impurity parameter 𝑄imp;

2 provide the analytical expressions for the pasta collision rates and use them to calculate

the pasta conduction transport properties.

For the őrst goal, we must acknowledge that, in the RMF, the pasta phase is commonly calculated

in the one-component plasma approximation (OCP), which assumes the presence of a single

ion/pasta structure at a őxed thermodynamic condition [88ś97]. The ions in the crust start as

a liquid in the proto-neutron star, and they turn into a solid when the ion melting temperature

𝑇𝑚 is achieved. The energy difference between ions of different proton numbers and geometries

is much smaller than the thermal energy in a NS, so we should expect that a multi-component

plasma (MCP) is formed [3,57,98ś104], as already ratiőed by MD calculations of the impurity.

In Ref. [98] a statistical approach was developed in order to account for the different ions that can
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coexist at őnite temperatures. This MCP formalism is valid for an arbitrary EOS and provides

a framework for calculating cluster abundances. It improves on older statistical approaches

by accounting for interactions and in-medium effects [105], and it has been applied to liquid

drop [99, 101, 106] and relativistic models [107]. Furthermore, it recovers the OCP in the

zero temperature limit, where a crystalline structure is in fact expected. In Refs. [99, 101] the

charge-impurity was calculated in the crust, but only for spherical clusters, while Ref. [107]

presents a calculation of pasta distributions only for symmetric matter. However, the calculation

of [107]does not minimize the full energy density, making their results inconsistent with the

OCP.

The different pasta structures in the system certainly modify the transport properties, and

thus the magneto-thermal evolution of the catalyzed neutron star, since they break long-range

order. This was our starting motivation for the second goal. Nevertheless, we have realized

that no formalism had been fully developed in the literature to calculate the pasta transport

properties with a general nuclear model. Indeed, transport calculations considering spherical

nuclei have been performed with the relaxation time approximation since the 1970s [46ś48],

but this cannot be straightforwardly applied to the pasta, as it is founded on the assumption

of isotropic scattering. Therefore, based on the proposition of Yakovlev in [33] that the pasta

conduction is described by two collision rates, contrary to the unique one in isotropic scattering,

we show from simple assumptions that electron-pasta scattering is, in indeed, described by

Yakovlev proposal and we provide analytical equations for them. Then we use the non-linear

Walecka RMF model [108,109] to provide quantitative values for the pasta conduction properties.

Though the quantitative properties of the pasta are model dependent, the qualitative behavior of

our results should remain valid for any realistic nuclear model [110, 111].

In order to make this thesis self-contained we introduce, in Section 2, the non-linear

Walecka model in the mean-őeld approximation. We discuss the bulk properties of the

parametrization we choose to work with, the IUFSU [112], as well as some other models

for a wider context. We calculate its thermodynamic properties and discuss how the pasta is

built in the OCP. In Section 3 we introduce the MCP formalism; we show how it obeys ensemble

equivalence, being in accordance with the OCP. We show that a rearrangement term has to

be introduced due to the constraint of charge neutrality and that it is essential for ensemble

equivalence between OCP and MCP formalisms. Then we calculate the distribution of pasta

structures at different thermodynamic conditions accounting for density and geometry ŕuctu-
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ations and estimate the impurity parameter in the inner crust. In Section 4 we introduce the

basic concepts of transport theory: the Boltzmann equation, the collision time approximation,

and the calculation of the scattering transition rate. Afterwards we generalize the collision time

approximation to anisotropic scattering and, using spherical harmonics expansion, we derive

analytical expressions for the complex collision rates. Finally, using the pasta symmetries, and

restricting ourselves to the pasta conductivity we are able to give expressions for the physical

collision rates of the pasta. We give quantitative estimates of the electric conductivity related

to electron-pasta scattering in the high-temperature regime, where long-range ion correlations

are smaller. Finally, in Section 5 we brieŕy summarize different works that were developed

by the author during his doctorate, but that are not directly related to the main topic of the

thesis: deconőnement phase transition in magnetars; presence and effect of heavy baryons in

protośneutron stars and in magnetars; the effect of short-range correlations in the pasta and the

correlation between the deconőnement phase transition and the slope parameter.

Natural and gaussian units are used throughout this thesis: ℏ = 𝑐 = 𝑘𝐵 = 1 and 𝜖0 = 1/4𝜋.
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2 Relativistic mean őeld theory and the pasta phase

In this section, we introduce the non-linear Walecka model and the mean-őeld approxi-

mation, discuss different parametrizations and their predictions, and show how to build the pasta

phase. We obtain the equilibrium equations of the mixed pasta-gas phase with a variational

calculation, we discuss the pasta properties and the thermodynamic conditions under which it

may appear. The formalism developed in this section is the basis for subsequent section.

2.1 Non-linear Walecka model

The fundamental theory of strong interacting particles is quantum chromodynam-

ics [113], from which it is possible to describe high-energy quark interactions, but not in-

teractions at the nucleon level. The majority of phenomena involving nuclear matter occur

with nucleons, thus effective models become essential in order to describe them. These models

come in many forms: liquid drop [91, 100, 114], molecular dynamics [64], relativistic mod-

els [112, 115, 116], Skyrme functionals [67], etc., with their parameters adjusted to describe

selected nuclear data, such as decay rates, astrophysical data, resonances, binding energies of

őnite nuclei, bulk parameters, etc. The selected data the model describe depend on the author’s

choice. For example, binding energies of őnite nuclei are not so commonly used in relativistic

models since the description of őnite nuclei requires calculations beyond the mean-őeld approx-

imation, so they tend to be more focused on bulk and astrophysical properties. In this thesis,

we will focus solely on one relativistic model: the non-linear Walecka model. Firstly we will

describe the model, then the nuclear bulk properties commonly used to őt its parameters.

In nuclear relativistic models, the baryons are described by a Dirac spinor 𝜓𝑞. The

protons and neutrons (𝑞 = 𝑝, 𝑛) can be written in a SU(2) doublet as

Ψ =
©­«
𝜓𝑝

𝜓𝑛

ª®¬
, (2.1)

and they are distinguished only by their isospin (𝐼3) and electric charge (𝑒𝑞). Other baryons, such

as hyperons and Δ resonances can be added to the model, but these particles do not appear in the

NS crust, and we shall discuss them only in Section 5. The baryons interactions occur via meson

and pion exchanges. In the non-linear version we use in this thesis, the interactions occur via the
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exchange of 𝜎, 𝜔, and 𝜌 mesons. Nevertheless, other parametrizations of the Walecka model

can additionally consider 𝛿 and 𝜙 mesons [117ś119]. The 𝜙 meson is considered only when

hyperons are present. Pions are not considered in the Walecka model because their contribution

to the energy averages out to zero in the mean-őeld and Hartree level calculations [120, 121].

Chiral models also consider the 𝜁 meson that acts as a strange condensate and 𝜒 dilaton őeld

representing a gluon condensate [116]. Even though the Walecka model is an effective one, these

mesons have a counterpart in nature, and their properties are studied through proton-proton and

pion-pion collisions [122ś132]. The őelds that describe the nucleons and mesons relevant to

this work and their properties are shown in Tab. 1.

Multiplet Field Spin (S) Isospin (𝐼3) Electric charge (𝑒𝑞)
p, n 𝜓𝑞 1/2 1/2 1, 0
𝜎 𝜎 0 0 0
𝜔 𝑉𝜇 1 0 0

𝜌0, 𝜌± 𝑏3
𝜇, 𝑏

1
𝜇 ± 𝑖𝑏2

𝜇 1 1 (0, ±1)

Table 1: Particles in the QHD and their respective őelds, spin, isospin and electric charge.

The Lagrangian of the model can be written as

L = L𝑁 + L𝜎 + L𝜔 + L𝜌 + L𝜔𝜌 . (2.2)

The nucleon part (N) contains the usual Dirac kinematics, and couples minimally to the meson

őelds

L𝑁 = Ψ̄

[
𝛾𝜇

(
𝑖𝜕𝜇 − 𝑔𝑣𝑉𝜇 − 𝑔𝑏 𝐼𝑎𝑏𝑎𝜇

)
+ 𝑔𝑠𝜎 − 𝑀𝑁

]
Ψ, (2.3)

as traditionally done to enforce invariance by local phase transformations. Here 𝛾𝜇 are the Dirac

matrices, deőned by the Clifford algebra {𝛾𝜇, 𝛾𝜈} = 2𝜂𝜇𝜈 and the adjoint spinor is 𝜓̄ = 𝜓†𝛾0. The

scalar isoscalar 𝜎-meson and the vector isoscalar 𝜔-meson interactions have no isospin charge,

so they produce identical interactions for protons and neutrons, but the vector isovector 𝜌-meson

has isospin charge 1, being essential to describe the highly asymmetric neutron star matter.

When considering only nucleons, the 𝜌-meson can be seen as an element of the fundamental

representation of 𝑆𝑈 (2) due to its isospin charge, so we can write 𝑏𝜇 = 𝑏𝑎𝜇 𝐼𝑎 with the index 𝑎
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summed over 𝑎 = 1, 2, 3. The isospin 𝐼𝑎 can be identiőed with half of the Pauli matrices 𝜏𝑎

𝐼1 =
1

2

©­
«

0 1

1 0

ª®
¬
, 𝐼2 =

1

2

©­
«

0 −𝑖

𝑖 0

ª®
¬
, 𝐼3 =

1

2

©­
«

1 0

0 −1

ª®
¬
, (2.4)

that obey [𝐼𝑎, 𝐼𝑏] = 𝑖𝜖𝑎𝑏𝑐 𝐼𝑐, with 𝜖𝑎𝑏𝑐 being the completely antisymmetric unit tensor, with

𝜖123 = +1.

The 𝜎-meson describes a long-range attractive force, and its Lagrangian is given by

L𝜎 =
1

2
𝜕𝜇𝜎𝜕

𝜇𝜎 − 1

2
𝑚2
𝑠𝜎

2 + 𝜅

3!
𝜎3 + 𝜆

4!
𝜎4, (2.5)

where the third and fourth-order self-couplings were not present in the original Walecka model,

being őrstly added in order to reproduce measurements of the nuclear incompressibility at

saturation density [133]. The Lagrangian for the 𝜔 and 𝜌-mesons are

L𝜔 = −1

4
Ω
𝜇𝜈
Ω𝜇𝜈 +

1

2
𝑚2
𝑣𝑉𝜇𝑉

𝜇 + 𝜉𝑔
4
𝑣

4!
(𝑉𝜇𝑉 𝜇)2, (2.6)

L𝜌 = −1

4
𝐵𝑎𝜇𝜈𝐵

𝜇𝜈
𝑎 + 1

2
𝑚2
𝑏𝑏

𝑎
𝜇𝑏

𝜇
𝑎 , (2.7)

with kinetic terms deőned by the őeld strength tensors

Ω𝜇𝜈 = 𝜕𝜇𝑉𝜈 − 𝜕𝜈𝑉𝜇, (2.8)

𝐵𝑎𝜇𝜈 = 𝜕𝜇𝑏
𝑎
𝜈 − 𝜕𝜈𝑏𝑎𝜇 − 𝜖𝑎𝑏𝑐𝑏𝑏𝜇𝑏𝑐𝜈 . (2.9)

The 𝜔-meson is responsible for short-range repulsion and, in conjunction with long-range

interaction of the 𝜎, they reproduce the saturation property of the nuclear force. The fourth-

order 𝜔 self-interaction is introduced to soften the high-density EOS, and it has only a small

effect on bulk properties at saturation density [112, 134, 135]. The vector isovector 𝜌−mesons

are essential in the description of asymmetric matter (𝑁 ≠ 𝑍): if they were not present in the

model, symmetric matter (𝑁 = 𝑍) and a pure neutron system (𝑁 = 𝐴, 𝑍 = 0) would have the

same properties. The charge neutral meson (𝜌0) is described by the őelds 𝑏3
𝜇, and the charged

mesons (𝜌±) are described by the combination 𝑏±𝜇 = 𝑏1
𝜇 ± 𝑖𝑏2

𝜇.
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An 𝜔-𝜌 interaction term is also typically added:

L𝜔𝜌 = Λ𝑣𝑔
2
𝑣𝑔

2
𝑏 (𝑉 𝜇𝑉𝜇) (𝑏𝑎𝜈𝑏𝜈𝑎), (2.10)

which, like the fourth-order interaction of the 𝜔-meson, only weakly affects properties at satu-

ration density. Its main impact is on the high-density behavior of the symmetry energy, which

measures the difference between a pure neutron system and a completely symmetric one. It can

also partly explain the mass difference in mirror nuclei [136, 137].

The equations of motion can be obtained by őnding the extremes of the action, leading

to an Euler-Lagrange equation for each őeld

𝛿

∫
𝑑4𝑥L [Φ𝑘 , 𝜕𝜇Φ𝑘 ] = 0 ⇒ 𝜕L

𝜕Φ𝑘

− 𝜕𝜇
𝜕L

𝜕
(
𝜕𝜇Φ𝑘

) = 0, (2.11)

therefore, applying it to eq. (2.2) leads to a set of őeld equations

[
𝛾𝜇

(
𝑖𝜕𝜇 − 𝑔𝑣𝑉𝜇 −

𝑔𝑏

2
𝜏𝑎𝑏

𝑎
𝜇

)
+ 𝑔𝑠𝜎 − 𝑀

]
Ψ = 0 (2.12)

𝜕𝜇𝜕
𝜇𝜎 + 𝑚2

𝑠𝜎 + 𝜅
2
𝜎2 + 𝜆

6
𝜎3

= 𝑔𝑠Ψ̄Ψ (2.13)

𝜕𝜇Ω
𝜇𝜈 + 𝑚2

𝑣𝑉
𝜈 + 𝜉𝑔

4
𝑣

6
(𝑉𝜇𝑉 𝜇)𝑉 𝜈 + 2Λ𝑣𝑔

2
𝑣𝑔

2
𝑏 (𝑏

𝜇
𝑐 𝑏

𝑐
𝜇)𝑉 𝜈 = 𝑔𝑣Ψ̄𝛾𝜈Ψ (2.14)

𝜕𝜇𝐵
𝜇𝜈
𝑎 + 𝑚2

𝑏𝑏
𝜈
𝑎 + 2Λ𝑣𝑔

2
𝑣𝑔

2
𝑏 (𝑉 𝜇𝑉𝜇)𝑏𝜈𝑎 = 𝑔𝑏Ψ̄𝛾𝜈 𝐼𝑎Ψ − 𝑔𝑏𝜖𝑎𝑏𝑐𝑏𝑏𝜇𝐵

𝜈𝜇
𝑐 . (2.15)

It is complicated to solve this system of equations. In the static case ś the Thomas Fermi

approximation, they can be solved numerically, but this is quite costly computationally and only

necessary if one is interested in őnite nuclei. Furthermore, the boundary conditions are taken

from the relativistic mean-őeld approximation, where the meson őelds are replaced by their

expectation values

𝜎 → ⟨𝜎⟩ = 𝜎0, 𝑉𝜇 →
〈
𝑉𝜇

〉
= (𝑉0, 0), 𝑏𝑎𝜇 →

〈
𝑏3
𝜇

〉
= (𝑏0, 0). (2.16)

In this approximation, we assume isotropic meson őelds, which implies that vector components of

the 4-vectors vanish and charged mesons are averaged to zero. To calculate bulk parameters and

static compact star properties, the RMF is a great approximation. Indeed, many parametrizations

are derived only within this approximation, and we will use it from now on.
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The Dirac equation (2.12) in the RMF becomes

[
𝛾0 (𝑖𝜕0 − 𝑔𝑣𝑉0 − 𝑔𝑏 𝐼3𝑏0) + 𝑖γ · ∇ + 𝑔𝑠𝜎0 − 𝑀𝑁

]
Ψ = 0, (2.17)

and, since the meson őelds are homogeneous, and thus take constant values at a őxed density

and temperature, it can be solved exactly as if the nucleons were free particles with effective

mass

𝑀∗
𝑁 = 𝑀𝑁 − 𝑔𝑠𝜎0 (2.18)

and energy

𝜖±𝑞 = ±𝐸∗ + 𝑔𝑣𝑉0 + 𝐼3𝑞𝑔𝑏𝑏0. (2.19)

where 𝐸∗ =

√︃
k2 + 𝑀∗

𝑁
2, and the isospin projections are 𝐼3𝑝 = +1/2 and 𝐼3𝑛 = −1/2. The

full solution can be written as a superposition of plane waves 𝑢(k, 𝑠)𝑒−𝑖𝑘 ·𝑥 and 𝑣(k, 𝑠)𝑒𝑖𝑘 ·𝑥 for

particles and anti-particles multiplied by their respective creation operators:

𝜓𝑞 (𝑥) =
∑︁
𝑠

∫
𝑑3𝑘

(2𝜋)3

[
𝑎
𝑞

k,𝑠
𝑢
𝑞

k,𝑠
𝑒−𝑖𝜖

+
𝑞 𝑡+𝑖k·x + 𝑏𝑞 †

k,𝑠
𝑣
𝑞

k,𝑠
𝑒−𝑖𝜖

−
𝑞 𝑡−k·x

]
, 𝑞 = 𝑝, 𝑛. (2.20)

The reader interested in the complete derivation is referred to [108, 109]. The positive energy

solutions, associated with the spinor 𝑢𝑞
k,𝑠

and the creation operator 𝑎𝑞
k,𝑠

, represent protons and

neutrons, while the negative energy solutions, related to the spinor v
𝑞

k,𝑠
and the operator 𝑏𝑞

𝑘,𝑠
,

represent anti-protons and anti-neutrons. The spin polarization is represented by the label

𝑠 = ±1 and k is the 3-momentum. We neither show the explicit form of spinors nor specify a

representation of the 𝛾-matrices, since to calculate the EOS it is only necessary to have a few

independent relations among them, namely

𝑢
†
k,𝑠
𝑢k,𝑠′ = 𝑣

†
k,𝑠
𝑣k,𝑠′ = 𝛿𝑠 𝑠′ (2.21)

𝑢̄k,𝑠𝑢k′,𝑠′ = −𝑣̄k,𝑠𝑣k′,𝑠′ =
𝑀∗
𝑁

𝐸∗ 𝛿𝑠 𝑠′ , (2.22)

{𝑎𝑞
k,𝑠
, 𝑎

𝑞 †
k′,𝑠′} = (2𝜋)3𝛿(k − k′)𝛿𝑠𝑠′ , (2.23)

{𝑏𝑞
k,𝑠
, 𝑏

𝑞 †
k′,𝑠′} = (2𝜋)3𝛿(k − k′)𝛿𝑠𝑠′ , (2.24)

The őrst line is a choice of normalization on the spinors, and the second is a property that can

be proven quite straightforwardly using eq. (2.17). The third and fourth lines are the imposed

commutation relation on the fermionic creation operators at equal times, also known as second
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quantization [138].

The meson equations, eqs. (2.13), (2.14) and (2.15), in the RMF become

𝑚2
𝑠𝜎0 +

𝜅

2
𝜎2

0 + 𝜆
6
𝜎3

0 = 𝑔𝑠𝜌𝑠 = 𝑔𝑠⟨Ψ̄Ψ⟩, (2.25)

𝑚2
𝑣𝑉0 +

1

6
𝜉𝑔4

𝑣𝑉
3
0 + 2Λ𝑣𝑔

2
𝑣𝑔

2
𝑏𝑉0𝑏

2
0 = 𝑔𝑣𝜌𝐵 = 𝑔𝑣 ⟨Ψ†Ψ⟩ (2.26)

𝑚2
𝑏𝑏0 + 2Λ𝑣𝑔

2
𝑣𝑔

2
𝑏𝑉

2
0 𝑏0 = 𝑔𝑏𝜌3 = 𝑔𝑏⟨Ψ̄𝐼3Ψ⟩, (2.27)

where the baryon, scalar, and isospin densities are deőned as products of the spinor Ψ as:

𝜌𝐵 = ⟨Ψ†
Ψ⟩ = ⟨𝜓†

𝑝𝜓𝑝⟩ + ⟨𝜓†
𝑛𝜓𝑛⟩ = 𝜌𝑝 + 𝜌𝑛, (2.28)

𝜌𝑠 = ⟨Ψ̄Ψ⟩ = ⟨𝜓̄𝑝𝜓𝑝⟩ + ⟨𝜓̄𝑛𝜓𝑛⟩ = 𝜌𝑠𝑝 + 𝜌𝑠𝑛 (2.29)

𝜌3 = ⟨Ψ†𝐼3Ψ⟩ = ⟨𝜓†
𝑝 𝐼3𝑝𝜓𝑝⟩ + ⟨𝜓†

𝑛 𝐼3𝑛𝜓𝑛⟩ =
1

2

(
𝜌𝑝 − 𝜌𝑛

)
, (2.30)

whereas expressions for the proton and neutron number and scalar densities can be obtained

with the aid of eqs. (2.21) ś (2.24). We write them as

𝜌𝑞 = ⟨𝜓†
𝑞𝜓𝑞⟩ = 𝛾𝑞

∫
𝑑3𝑘

(2𝜋)3

[
𝑓𝑞 +(k) − 𝑓𝑞 −(k)

]
, 𝑞 = 𝑝, 𝑛 (2.31)

and

𝜌𝑠𝑞 = ⟨𝜓̄𝑞𝜓𝑞⟩ = 𝛾𝑞
∫

𝑑3𝑘

(2𝜋)3

𝑀∗
𝑁√

k2 + 𝑀∗2

[
𝑓𝑞 +(k) + 𝑓𝑞 −(k)

]
. (2.32)

where degeneracy is accounted for with the factor 𝛾𝑞, which is equal to 2 due to spin, and the

functions 𝑓𝑞± are the Fermi-Dirac distribution [139], deőned as

𝑓𝑞+(k) =
〈
𝑎
𝑞†
k,𝑠
𝑎
𝑞

k,𝑠

〉
=

1

1 + exp
[
(𝐸∗ − 𝜇∗𝑞)/𝑇

]
𝑓𝑞−(k) =

〈
𝑏
𝑞†
k,𝑠
𝑏
𝑞

k,𝑠

〉
=

1

1 + exp
[
(𝐸∗ + 𝜇∗𝑞)/𝑇

] , (2.33)

where 𝜇∗𝑞 is the effective chemical potential, related to the true one 𝜇𝑞 = 𝜕E𝑞/𝜕𝜌𝑞, by

𝜇∗𝑞 = 𝜇𝑞 − 𝑔𝑣𝑉0 −
𝑔𝑏

2
𝜏3,𝑞𝑏0. (2.34)

At 𝑇 = 0, they relate to the Fermi momentum 𝑘𝐹𝑞 via 𝜇∗𝑞 =
√︃
𝑘2
𝐹 𝑞

+ 𝑀∗
𝑁

2, deőning the occupied
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energy levels of the Fermi sea. The factor 𝑀∗
𝑁
/𝐸∗ in the scalar density (2.32) represents a

Lorentz contraction, so as nucleons become more relativistic the ratio of scalar to number

density becomes smaller than unity.

Finally, energy and pressure can be calculated from the energy-momentum tensor

𝑇𝜇𝜈 =
∑︁
{Φ}

𝜕L
𝜕

(
𝜕𝜇Φ

) 𝜕𝜈Φ − 𝜂𝜇𝜈L, (2.35)

𝜕𝜇𝑇
𝜇𝜈

= 0, (2.36)

which can be derived from Noether’s theorem. The theorem states that continuous symmetries of

the Lagrangian give rise to conserved currents. Energy and momentum conservation are related

to invariance in space-time translation (𝑥 → 𝑥 + 𝜖). In the RMF only spinors are dynamic, thus

the meson contribution comes solely from the averaged Lagrangian. The energy density is given

by the 00-component

Eb =

∫
𝑑3𝑥

𝑉
⟨𝑇00⟩ = 𝑖

∑︁
𝑞=𝑝,𝑛

∫
𝑑3𝑥

𝑉
𝜓†
𝑞𝜕𝑡𝜓𝑞 − ⟨L⟩

=

∑︁
𝑞=𝑛,𝑝

𝛾𝑞

∫
𝑑3𝑘

(2𝜋)3
𝐸∗ (

𝑓𝑞+ + 𝑓𝑞−
)
+ 𝑚

2
𝑣

2
𝑉2

0 + 𝜉𝑔
4
𝑣

8
𝑉4

0

+ 𝑚
2
𝑠

2
𝜎2

0 + 𝜅
6
𝜎3

0 + 𝜆

24
𝜎4

0 +
𝑚2
𝑏

2
𝑏2

0 + 3Λ𝑣𝑔
2
𝑣𝑔

2
𝑏𝑉

2
0 𝑏

2
0, (2.37)

and the pressure is given by the average of the spatial components

𝑃𝑏 =
1

3
⟨𝑇𝑖𝑖⟩ =

−𝑖
3

∑︁
𝑞=𝑝,𝑛

∫
𝑑3𝑥

𝑉
𝜓̄𝑞γ · ∇𝜓𝑞 + ⟨L⟩

=
1

3

∑︁
𝑞=𝑛,𝑝

𝛾𝑞

∫
𝑑3𝑘

(2𝜋)3

𝑘2

𝐸∗
(
𝑓𝑞+ + 𝑓𝑞−

)
+ 𝑚

2
𝑣

2
𝑉2

0 + 𝜉𝑔
4
𝑣

24
𝑉4

0

+
𝑚2
𝑏

2
𝑏2

0 −
𝑚2
𝑠

2
𝜎2

0 − 𝜅

6
𝜎3

0 − 𝜆

24
𝜎4

0 + Λ𝑣𝑔
2
𝑣𝑔

2
𝑏𝑉

2
0 𝑏

2
0. (2.38)

The entropy is given by the classical expression

𝑆𝑏 = −
∑︁
𝑞=𝑛,𝑝

𝛾𝑞

∑︁
𝑘=+,−

∫
𝑑3𝑘

(2𝜋)3

[
𝑓𝑞𝑘 ln 𝑓𝑞𝑘 + (1 − 𝑓𝑞𝑘 ) ln

(
1 − 𝑓𝑞𝑘

) ]
, (2.39)
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and we are now able to calculate the free energy density

F𝑏 = E𝑏 − 𝑇𝑆𝑏, (2.40)

which is the relevant quantity at a őnite temperature.

Since protons are charged particles, leptons must also be taken into account to make the

system charge neutral. On the leptonic sector, we include only electrons, which obey the free

Dirac Lagrangian [140]

L𝑒 = 𝜓̄𝑒
(
𝑖𝛾𝜇𝜕𝜇 − 𝑚𝑒

)
𝜓𝑒, (2.41)

with 𝑚𝑒 = 0.511 MeV [141]. We do not account for muons because they become signiőcant

only at densities above saturation, and the interactions of strongly degenerate electrons are

negligible [3]. Following the same steps as in the baryonic case, we calculate the electron

density

𝜌𝑒 = 𝛾𝑒

∫
𝑑3𝑘

(2𝜋)3
[ 𝑓𝑒 +(k) − 𝑓𝑒 −(k)] , (2.42)

with the Fermi-Dirac distribution given by Eq. (2.33), but with the substitutions 𝐸∗ → 𝐸𝑒 =√︁
𝑘2 + 𝑚2

𝑒 and 𝜇∗𝑞 → 𝜇𝑒. The energy density, pressure, and entropy are given by

E𝑒 = 𝛾𝑒
∫

𝑑3𝑘

(2𝜋)3
𝐸𝑒 ( 𝑓𝑒+ + 𝑓𝑒−) , (2.43)

𝑃𝑒 =
𝛾𝑒

3

∫
𝑑3𝑘

(2𝜋)3

𝑘2

𝐸𝑒
( 𝑓𝑒+ + 𝑓𝑒−) , (2.44)

and

𝑆𝑒 = −𝛾𝑒
∑︁
𝑘=+,−

∫
𝑑3𝑘

(2𝜋)3
[ 𝑓𝑒𝑘 ln 𝑓𝑒𝑘 + (1 − 𝑓𝑒𝑘 ) ln(1 − 𝑓𝑒𝑘 ).] . (2.45)

The total energy and pressure are then given by the sum of baryon and lepton contributions.

In catalyzed neutron stars, matter is in 𝛽-equilibrium and the baryon and electron chemical

potentials are related by

𝜇𝑞 = 𝜇𝐵 − 𝑒𝑞𝜇𝑒, (2.46)

where 𝜇𝐵 is the chemical potential related to baryon number. If we consider nucleons only this
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𝐵/𝐴 (MeV) 𝐽 (MeV) 𝐿 (MeV) 𝐾 (MeV) 𝑀∗
𝑁

𝜌sat (fm−3)
15.8 - 16.5 28.6 - 34.4 30.6 -86.8 ∗ 220 - 260 0.6 - 0.8 0.15 - 0.16

Table 2: Current constraints on nuclear matter parameters, based on the values reported in [142,143].
The value in parenthesis for the slope, marked by ∗ is due to the recent analysis of PREX-II data [144].

See text for details.

is simply 𝜇𝑛 = 𝜇𝐵 and 𝜇𝑝 = 𝜇𝑛 − 𝜇𝑒. Throughout the rest of this section and in section 3 we do

not work in 𝛽-equilibrium, rather we őx the proton fraction 𝑌𝑝, to understand how our results

are dependent on this quantity. In neutron stars, the typical proton fraction is ∼ 0.1 and in newly

born proto-neutron stars it can range between 0.05 and ∼ 0.3 in the densities of interest. To

give quantitative values to the quantities obtained in this section we must specify values for the

couplings of the baryon Lagrangian, i.e. deőne a parametrization.

2.2 RMF parametrizations and constraints

Several parametrizations for the Lagrangian (2.2) exist throughout the literature, differing

in the bulk and astrophysical properties they yield. Bulk properties are deőned by expanding the

energy per nucleon around the saturation density (𝜌sat) and half proton fraction (𝑌𝑝 = 𝜌𝑝/𝜌𝐵 =

0.5), i.e. symmetric matter. 𝜌sat is the point where the energy density of symmetric matter is

minimal, and thus the pressure is zero. It is also the average density of nuclei. The energy per

nucleon expansion is

𝐸

𝐴
=
E𝑏
𝜌𝐵

= 𝐸0 +
1

2
𝐾

(
𝜌𝐵 − 𝜌0

3𝜌0

)2

+
(
1 − 2𝑌𝑝

)2 S (𝜌𝐵) , (2.47)

where S is the symmetry energy

S (𝜌𝐵) =
1

8

𝜕2 (E/𝜌𝐵)
𝜕𝑌2

𝑝

�����
𝑌𝑝≈0.5

= 𝐽 + 𝐿
(
𝜌𝐵 − 𝜌0

3𝜌0

)
. (2.48)

The expansion deőnes the binding energy per nucleon, incompressibility, symmetry energy at

saturation, and slope at saturation density as

𝐵

𝐴
= 𝐸0 − 𝑀𝑁 , 𝐾0 =

[
9𝜌2 𝜕

2E/𝜌𝐵
𝜕𝜌2

]
𝜌𝐵=𝜌0

= 9
𝜕𝑃

𝜕𝜌𝐵

����
𝜌𝐵=𝜌0

, (2.49)
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Par. 𝐵/𝐴 (MeV) 𝐽 (MeV) 𝐿 (MeV) 𝐾 (MeV) 𝑀∗
𝑁
/𝑀𝑁 𝑀max/𝑀⊙

IUFSU -16.40 31.3 47.2 231.2 0.6 1.94
NL3𝜔𝜌 -16.30 31.7 55.2 272.0 0.6 2.75
FSU2 -16.30 31.6 112.8 238.0 0.6 2.07
L3𝜔𝜌 -16.30 31.2 74.3 254.3 0.7 2.30

NL3𝜔𝜌∗ -16.30 30.7 41.2 258.5 0.6 2.75

Table 3: Bulk properties of inőnite nuclear matter of a few selected RMF parametrizations.

IUFSU NL3𝜔𝜌 FSU2 L3𝜔𝜌 NL3𝜔𝜌∗

𝑚𝑠 (MeV) 491.5 508.194 497.479 512.0 502.574
𝑚𝑣 (MeV) 782.5 782.5 782.500 783.0 782.600
𝑚𝑏 (MeV) 763.0 763.0 763.000 770.0 763.000

𝑔𝑠 9.971 10.217 10.397 9.029 10.0944
𝑔𝑣 13.032 12.868 13.557 10.584 12.8065
𝑔𝑏 13.590 11.2766 8.970 8.550 14.4410
𝜅 3.5695 4.384 3.594 6.092 4.543
𝜆 2.926 -173.31 -6.228 -155.52 -180.892
𝜉 0.03 0.00 0.0256 0.00 0.00
Λ 0.046 0.03 0.000823 0.0185 0.045

𝜌sat (fm−3) 0.155 0.148 0.1505 0.1555 0.150

Table 4: Selected RMF parametrizations.

𝐽 = S(𝜌0) 𝐿 =

[
3𝜌
𝜕S
𝜕𝜌

]
𝜌𝐵=𝜌0

. (2.50)

The constraints to each of these parameters come from different experiments: saturation density

and binding energy data come from simple nuclear masses and density distributions [142,

145]; results for the incompressibility of inőnite nuclear matter come mainly from isoscalar

giant monopole and isovector giant dipole resonances [146ś149]; the symmetry energy and

its density dependence can also be obtained from giant resonances, but additionally from

experimental data of pigmy dipole resonances [150, 151], neutron skin radii [144, 152ś154],

heavy-ion collisions [152, 153], and isobaric analog states [155, 156]. For an extensive and

comprehensible review of the current constraints to bulk properties, see [142]. We summarize

the constraints present in [142] in Tab. 2. The values of the slope are marked with an asterisk due

to the recent PREX-II result of the neutron thickness in 208Pb, which yielded a slope inconsistent

with previous measurements (𝐿 = 106 ± 37) [144]. Further measurements are necessary to

resolve this tension, though a lower slope value have been hinted at CREX [157, 158], and it

has also been argued that, considering the PREX-II data with other constraints, such high slope

values cannot be realized [159,160] and must stay within the bound present in Tab. 2.
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Figure 4: Illustration of Wigner-Seitz cells containing droplets, rods, and slabs.

corresponds to the one of the pasta inside, which occupies a volume 𝑉 𝐼 . The WS volume is

given by

𝑉WS =




4𝜋
3
𝑅2

WS
, d=3

𝜋𝑅2
WS
𝐿2 d=2

2𝑅WS𝐿
2
1

d=1

(2.54)

whereas geometry has a characteristic radius 𝑅𝑑 (𝑅WS) corresponding to the pasta (WS cell)

radius, and the cylindrical and planar shapes have an additional length 𝐿𝑑 , which is the same for

cluster and for the WS cell. In Fig. 4 we show what each of these lengths signiőes. In order to

compare the free energy density of the different geometries, the volumes of rods and slabs must

be normalized to one of the droplets, i.e.

4𝜋

3
𝑅2

3 WS = 𝜋𝑅2
2 WS𝐿2 = 2𝑅1 WS𝐿

2
1. (2.55)

While the tube is normalized to the bubble. For simplicity we deőne the volume fraction

𝑓 = 𝑉 𝐼/𝑉𝑊𝑆, with 0 < 𝑓 ≤ 1, which can be written as

𝑓 =

(
𝑅𝑑

𝑅WS

)𝑑
. (2.56)

The cell must obey the constraints of mass and charge conservation and charge neutrality:

𝜌𝑛 = 𝑓 (𝜌𝐼𝑛 − 𝜌𝐼 𝐼𝑛 ) + 𝜌𝐼 𝐼𝑛 , (2.57)

𝜌𝑝 = 𝑓 (𝜌𝐼𝑝 − 𝜌𝐼 𝐼𝑝 ) + 𝜌𝐼 𝐼𝑝 . (2.58)

𝜌𝑝 = 𝜌𝑒 . (2.59)
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The total baryon density of a cell is 𝜌𝐵 = 𝜌𝑝 + 𝜌𝑛 and its proton fraction is 𝑌𝑝 = 𝜌𝑝/𝜌𝐵.

The free energy density of the WS cell receives bulk contributions from the pasta and the gas,

from the electron that makes the cell charge neutral, from the Coulomb energy due to 𝑝𝑝, 𝑝𝑒,

and 𝑒𝑒 interactions, and from surface terms, i.e.

FWS = 𝑓 F 𝐼
𝑏 + (1 − 𝑓 )F 𝐼 𝐼

𝑏 + 𝛽F𝑠𝑐,𝑑 + F𝑒, (2.60)

where the bulk free energy density of the cluster and gas is given by Eq. (2.40), and F𝑠𝑐,𝑑 is the

sum of surface and Coulomb energies [21,88,92]. The surface energy of the cell is given by the

surface tension times the surface area

𝐹𝑠 = 𝜎(𝑌𝑝, 𝑇)𝐴 =




4𝜎𝜋𝑅2
3
, for spheres (d=3)

2𝜎𝜋𝑅2𝐿2, for rods (d=2)

𝜎𝐿2
1
, for slabs (d=1)

(2.61)

so eq. (2.54) allows us to write the surface energy density as

𝛽F𝑠,𝑑 =
𝐹𝑠

𝑉𝑊𝑆
=
𝛽𝑑 𝜎(𝑌𝑝, 𝑇)

𝑅𝑑
, (2.62)

where 𝛽 = 𝑓 for droplets, rods and slabs and 𝛽 = 1 − 𝑓 for tubes and bubbles. The surface

tension 𝜎 is a function of isospin asymmetry 𝛿 = 1−2𝑌𝑝 and temperature 𝑇 , and the appearance

of the pasta is largely sensitive to its value [61,70,92,182,183]. Next, we use the surface tension

őt provided in Ref. [115] which reproduces the value obtained in a Thomas-Fermi calculation,

where meson őelds are not homogeneous and, in the thin-wall approximation [93]

𝜎 =

∫
𝑑𝑧

[
(𝜕𝑟𝜎0)2 − (𝜕𝑟𝑉0)2 − (𝜕𝑟𝑏0)2

]
. (2.63)

The őt was made to the functional

𝜎(𝑥,𝑇) = 𝜎̃(𝑥)
[
1 − 𝑎(𝑇)𝑥𝑇 − 𝑏(𝑇)𝑇2 − 𝑐(𝑇)𝑥2𝑇

]
, (2.64)

where 𝑥 = 𝛿2 stands for the squared relative neutron excess. 𝜎̃(𝑥) is the surface tension at 𝑇 = 0
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IUFSU 𝜎̃(𝑥) 𝑎(𝑇) 𝑏(𝑇) 𝑐(𝑇)
𝜎0 1.16473 - - -
𝜎1 -0.659167 - - -
𝑎0 - 0.00404325 0.00767923 0.0066774
𝑎1 -2.25482 0.00828207 -8.58068×10−5 -0.0514285
𝑎2 -5.64237 -0.00153301 4.43918×10−7 0.00949505
𝑎3 37.8471 7.26763×10−5 -5.44453×10−7 - 0.000427613
𝑎4 -81.6617 - - -
𝑎5 81.2696 - - -
𝑎6 -31.0227 - - -

Table 5: Surface tension coefficient parameters őtted within the Thomas-Fermi approximation. The
coefficients are for 𝑇 in MeV and 𝜎0 is in MeV/fm−2.

and 𝑎, 𝑏 and 𝑐 are functions of the temperature:

𝜎̃(𝑥) = 𝜎0 exp
(
−𝜎1𝑥

3/2
)
(1 + 𝑎1𝑥 + 𝑎2𝑥

2

+𝑎3𝑥
3 + 𝑎4𝑥

4 + 𝑎5𝑥
5 + 𝑎6𝑥

6)

𝑎(𝑇) = 𝑎0 + 𝑎1𝑇 + 𝑎2𝑇
2 + 𝑎3𝑇

3 + 𝑎4𝑇
4 + 𝑎5𝑇

5

𝑏(𝑇) = 𝑎0 + 𝑎1𝑇 + 𝑎2𝑇
2 + 𝑎3𝑇

3 + 𝑎4𝑇
4 + 𝑎5𝑇

5

𝑐(𝑇) = 𝑎0 + 𝑎1𝑇 + 𝑎2𝑇
2 + 𝑎3𝑇

3 + 𝑎4𝑇
4 + 𝑎5𝑇

5,

(2.65)

where 𝜎0 is the surface coefficient at 𝑇 = 0 for symmetric matter. In Table 5 the parameters of

the surface tension őt for the IUFSU parametrization are given. In Ref. [115] one can also őnd

the surface tension for the NL3, NL3𝜔𝜌, and FSUGold parametrizations. In Fig 5 we show the

surface tension as a function of proton fraction for two different parametrizations at 𝑇 = 0 (left)

and temperatures (right) with the IUFSU parametrization. As 𝑌𝑝 → 0 the surface tension goes

to zero since ion and gas matter become more alike. The rise in temperature reduces the surface

tension due to the extra kinetic energy of particles, which reduces particle interactions.

The Coulomb energy can be exactly calculated for the idealized pasta geometries by

integrating the expression

𝑑𝐸𝑐 =
1

2
𝜙𝑑𝑄 (2.66)

in the WS cell. In Appendix A the main steps of the calculation are presented. The result can
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to

𝜕Ω

𝜕𝜌𝐼𝑞
= 𝑓 𝜇𝐼𝑞 + 𝛽

𝜕F𝑠𝑐,𝑑
𝜕𝜌𝐼𝑞

− 𝑓 𝜇𝑞 = 0, (2.73)

𝜕Ω

𝜕𝜌𝐼 𝐼𝑞
= (1 − 𝑓 )𝜇𝐼 𝐼𝑝 + 𝛽𝜕F𝑠𝑐,𝑑

𝜕𝜌𝐼 𝐼𝑞
− (1 − 𝑓 ) 𝜇𝑞 = 0 (2.74)

combining these, we can write thermodynamic chemical potentials 𝜇𝑞 as

𝜇𝑞 = 𝜇
𝐼
𝑞 +

𝛽

𝑓

𝜕F𝑠𝑐,𝑑
𝜕𝜌𝐼𝑞

= 𝜇𝐼 𝐼𝑞 + 𝛽

1 − 𝑓

𝜕F𝑠𝑐,𝑑
𝜕𝜌𝐼 𝐼𝑞

, (2.75)

where we deőned the bare chemical potentials

𝜇𝐼𝑞 =
𝜕F 𝐼

𝑏

𝜕𝜌𝐼𝑞
𝜇𝐼 𝐼𝑞 =

𝜕F 𝐼 𝐼
𝑏

𝜕𝜌𝐼 𝐼𝑞
. (2.76)

This is equivalent to the Gibbs conditions (2.81) and (2.82) but with corrected chemical poten-

tials, now given by the right-hand side of the upper (lower) part of eq. (2.75) for phase I (II).

Using the explicit expression for the S+C energy we can write the derivatives as

𝜕F𝑠𝑐,𝑑
𝜕𝜌𝐼𝑝

=
𝑑𝑓 (1 − 𝑌𝑝)
𝜌𝐵𝑅𝑑

𝜕𝜎

𝜕𝑌𝑝
+ 2F𝑐,𝑑
(𝜌𝐼𝑝 − 𝜌𝐼 𝐼𝑝 )

(2.77)

𝜕F𝑠𝑐,𝑑
𝜕𝜌𝐼 𝐼𝑝

=
𝑑 (1 − 𝑓 ) (1 − 𝑌𝑝)

𝜌𝐵𝑅𝑑

𝜕𝜎

𝜕𝑌𝑝
− 2F𝑐,𝑑

(𝜌𝐼𝑝 − 𝜌𝐼 𝐼𝑝 )
, (2.78)

𝜕F𝑠𝑐,𝑑
𝜕𝜌𝐼𝑛

= −
𝑑𝑓𝑌𝑝

𝜌𝐵𝑅𝑑

𝜕𝜎

𝜕𝑌𝑝
(2.79)

𝜕F𝑠𝑐,𝑑
𝜕𝜌𝐼 𝐼𝑛

= −
𝑑 (1 − 𝑓 )𝑌𝑝
𝜌𝐵𝑅𝑑

𝜕𝜎

𝜕𝑌𝑝
, (2.80)

and arrive at the following equations for the bare chemical potentials

𝜇𝐼𝑝 = 𝜇
𝐼 𝐼
𝑝 − 2𝛽F𝑐,𝑑

𝑓 (1 − 𝑓 ) (𝜌𝐼𝑝 − 𝜌𝐼 𝐼𝑝 )
, (2.81)

𝜇𝐼𝑛 = 𝜇
𝐼 𝐼
𝑛 . (2.82)

The proton chemical equilibrium condition is modiőed by the Coulomb force while the neutron

one is unaltered, as expected since only the proton is charged. In Figs. 11 and 12 we show the

thermodynamic, cluster, and gas chemical potentials obtained within the CLD, the thinner curve
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3 Fluctuations in the pasta phase

In this section, we introduce the formalism of the multi-component plasma for the pasta

phase. We use the RMF model discussed in the last section to calculate the abundance of pasta

geometries at a certain thermodynamic condition and calculate the pasta impurity parameter for

the őrst time with an RMF model. Fluctuations are made on the geometry and on the proton

and neutron densities of the pasta. To account for the geometric anisotropy of the pasta in the

impurity parameter, we deőne an effective proton number that depends on the pasta surface area

in a given direction.

3.1 Multi-component plasma

In the previous section, we discussed the OCP approach, which is reasonable to determine

thermodynamic quantities such as energy, entropy and pressure [90]. Nevertheless, transport

properties and reaction rates can be modiőed by system impurities. To calculate the pasta

abundances and estimate its impurity using an RMF model we turn to the multi-component

plasma (MCP) formalism developed in Ref. [98], which has been applied to supernovae [106]

and to the NS crust [99, 101, 107], and extend it to the pasta phase.

Consider a system of macroscopic volume 𝑉 composed of WS cells, each occupying

a volume 𝑉𝑁
𝑊𝑆

. Inside the cell, there is a pasta structure, a nucleon gas, composed mainly of

neutrons, and an electron gas. The gases are assumed to have constant density throughout the

entire system, to avoid interface discontinuities in the chemical potentials of different cells. The

constancy of the electron density is further justiőed by its high incompressibility [182]. The

grand partition function is deőned as

𝑍 =

∑︁
{𝑛}

exp

[
−𝛽

∑︁
𝑁,𝑑

N𝑁,𝑑
Ω̃
𝑁,𝑑
𝑊𝑆

]
. (3.1)

The sum over {𝑛} indicates the different system conőgurations, N𝑁,𝑑 is the total number of cells

with clusters in a conőguration (𝑁, 𝑑), Ω̃𝑁,𝑑
𝑊𝑆

is the cell thermodynamic potential, and 𝛽 = 1/𝑇

is the inverse temperature. The superscript 𝑁 is used to denote quantities that vary between

different WS cells due to proton and neutron density ŕuctuations, and it substitutes the I that was

utilized in Section 2. The sum over 𝑑 = 3, 2, 1 accounts for droplets, rods, and slabs. We do not
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consider the tubes and bubbles, since cluster and gas are exchanged and this would introduce

the extra complication of discontinuities between cells. The nucleon gas is now denoted by the

subscript 𝑔 instead of the superscript 𝐼 𝐼, thus changing our notation to:

𝜌𝐼𝑞 → 𝜌𝑁𝑞 , F 𝐼
𝑏
→ F 𝑁

𝑏
, 𝑓 → 𝑓 𝑁 , 𝑅𝑑 → 𝑅𝑁𝑑

𝜌𝐼 𝐼𝑞 → 𝜌𝑞𝑔 F 𝐼 𝐼
𝑏

→ F𝑏,𝑔 𝜇𝐼 𝐼𝑞 → 𝜇𝑞𝑔, 𝜇𝐼𝑞 → 𝜇𝑁𝑞 .

The one-cell thermodynamic potential, introduced in eq. (3.1), is given by [98]

Ω̃
𝑁,𝑑
𝑊𝑆

= 𝑉𝑁𝑊𝑆F
𝑁,𝑑
𝑊𝑆

+ 𝛿𝐹𝑁 − 𝜇𝑛𝜌𝑁𝑛,𝑊𝑆 − 𝜇𝑝𝜌
𝑁
𝑝,𝑊𝑆 − 𝜇𝑒𝜌𝑒, (3.2)

with the free energy density of the cell F 𝑁,𝑑
𝑊𝑆

deőned as in the SNA case ś Eq. (2.60),

F 𝑁,𝑑
𝑊𝑆

= 𝑓 𝑁F 𝑁
𝑏 + (1 − 𝑓 𝑁 )F𝑏,𝑔 + 𝑓 𝑁F 𝑁

𝑠𝑐,𝑑 + F𝑒, (3.3)

and a total proton and neutron densities of

𝜌𝑁𝑝,𝑊𝑆 = 𝑓 𝑁 (𝜌𝑁𝑝 − 𝜌𝑝𝑔) + 𝜌𝑝𝑔, (3.4)

𝜌𝑁𝑛,𝑊𝑆 = 𝑓 𝑁 (𝜌𝑁𝑛 − 𝜌𝑛𝑔) + 𝜌𝑛𝑔, . (3.5)

in each cell. We allow the densities 𝜌𝑁𝑝 , 𝜌
𝑁
𝑛 to ŕuctuate between different WS cells but in

principle, both linear radius and volume fraction could also ŕuctuate independently of the

densities. However, we choose to constrain them. The reason is that if both densities and

volume fraction were to ŕuctuate, local net charge ŕuctuations would exist, leading to long-

range Coulomb terms that would violate the hypothesis of linear mixing between the different

cells, i.e. the additivity of free energies [98, 190]. We impose charge neutrality by assuming

that the global proton density 𝜌𝑝 is equal to the őxed electron density 𝜌𝑒. In practice we must

impose this locally: 𝜌𝑁
𝑝,𝑊𝑆

= 𝜌𝑝 = 𝜌𝑒 by őxing 𝑓 𝑁 from Eq. (3.4), such that

𝑓 𝑁 =
𝜌𝑝 − 𝜌𝑝𝑔
𝜌𝑁𝑝 − 𝜌𝑝𝑔

. (3.6)

The price to be paid is the introduction of the rearrangement term 𝛿𝐹𝑁 in the free energy. We

discuss how to calculate it in Sec.3.2. Finally, 𝜇𝑞 are the thermodynamic chemical potentials

derived in Eq. (2.75) which we take as input from the CLD solution.



45

Regarding the linear radius, we assume it to be determined from the equilibrium of the

S+C energy in each cell

𝑅𝑁𝑑 =

(
𝜎𝑑

4𝜋𝑒2(𝜌𝑁𝑝 − 𝜌𝑝𝑔)2Φ𝑑 ( 𝑓 𝑁 )

)1/3

, (3.7)

as in Eq. (2.70), but it will vary in each cell due to ŕuctuating densities. The volume of slabs,

rods and droplets are

𝑉𝑁1 = 2𝑅𝑁1

(
𝐿𝑁1

)2

, 𝑉𝑁2 = 𝜋
(
𝑅𝑁2

)2

𝐿𝑁2 , 𝑉𝑁3 = 4𝜋
(
𝑅𝑁3

)3

/3, (3.8)

respectively. The length parameters 𝐿𝑁
𝑑

are determined as in eq. (2.55)

𝑉𝑁 ≡ 𝑉𝑁1 = 𝑉𝑁2 = 𝑉𝑁3 , (3.9)

and values were shown in Fig. 10. The proton and baryon numbers in the pasta are independent

of the pasta geometry and are given by

𝑍𝑁 = 𝑉𝑁
(
𝜌𝑁𝑝 − 𝜌𝑝𝑔

)
, 𝐴𝑁 = 𝑉𝑁

(
𝜌𝑁 − 𝜌𝑔

)
. (3.10)

Now that the main variables of the WS cell are deőned we turn to the grand partition

function, eq. (3.1), which we rewrite in terms of the number density 𝑛𝑁,𝑑 = N𝑁,𝑑/𝑉 , in the spirit

of RMF, which deals with quantities per volume:

𝑍 =

∑︁
{𝑛}

exp

[
−𝛽𝑉

∑︁
𝑁

𝑛𝑁,𝑑Ω̃
𝑁,𝑑
𝑊𝑆

]
. (3.11)

The number densities are normalized as

∑︁
𝑁,𝑑

𝑛𝑁,𝑑𝑉𝑁𝑊𝑆 = 1. (3.12)

By substituting the densities given by eqs.(2.57) and (2.58) in the thermodynamic potential,

eq. (3.2), we are able to factorize the partition function into cluster, nucleon gas and electron

components

𝑍 = 𝑍cl𝑧
𝑉
𝑔 𝑧
𝑉
𝑒 , (3.13)
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with

𝑧𝑒 = exp [−𝛽 (F𝑒 − 𝜇𝑒𝜌𝑒)] , (3.14)

𝑧𝑔 = exp
[
−𝛽

(
F𝑏,𝑔 − 𝜇𝑛𝜌𝑛𝑔 − 𝜇𝑝𝜌𝑝𝑔

) ]
, (3.15)

𝑍cl =

∑︁
{𝑛}

exp

[
−𝛽𝑉

∑︁
𝑁,𝑑

𝑛𝑁,𝑑Ω̃𝑁,𝑑

]
. (3.16)

The cluster partition function is simply that of an ideal classical gas, and a factorial factor

must be introduced to enforce indistinguishability of clusters [98,106,191]. Since the number of

occurrences for the different conőgurations N𝑁,𝑑 can be any positive integer, we can analytically

calculate the sum as:

𝑍𝑐𝑙 =
∏
𝑁,𝑑

∞∑︁
N=0

(
exp

[
−𝛽Ω̃𝑁,𝑑

] )N
N !

=

∏
𝑁,𝑑

exp𝜔𝑁,𝑑 , (3.17)

where we deőne

𝜔𝑁,𝑑 = exp
(
−𝛽Ω̃𝑁,𝑑

)
(3.18)

and the cluster thermodynamic potential

Ω̃
𝑁,𝑑

= 𝑉𝑁
[
F 𝑁
𝑏 − F𝑏,𝑔 + F 𝑁

𝑠𝑐,𝑑 − 𝜇𝑛
(
𝜌𝑁𝑛 − 𝜌𝑛𝑔

)
− 𝜇𝑝

(
𝜌𝑁𝑝 − 𝜌𝑝𝑔

)]
+ 𝛿𝐹𝑁 . (3.19)

The chemical potential of the cluster is

𝜇𝑁 = 𝑉𝑁
[
𝜇𝑛 (𝜌𝑁𝑛 − 𝜌𝑛𝑔) + 𝜇𝑝 (𝜌𝑁𝑝 − 𝜌𝑝𝑔)

]
, (3.20)

and the free energy is

𝐹
𝑁,𝑑
𝑐𝑙

= 𝑉𝑁
[
F 𝑁 − F𝑏,𝑔 + F 𝑁

𝑠𝑐,𝑑

]
. (3.21)

Finally, the equilibrium number density for a ŕuctuation
(
𝜌𝑁𝑝 ,𝜌

𝑁
𝑛

)
is readily found from

the cluster partition function to be

𝑛𝑁 =
1

𝑉

𝜕 ln 𝑍𝑐𝑙

𝜕𝛽𝜇𝑁
=

3∑︁
𝑑=1

𝑛𝑁,𝑑 =

3∑︁
𝑑=1

𝜔𝑁,𝑑

𝑉
, (3.22)
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coincide with the unique one obtained in the OCP, where the Wigner-Seitz free energy density

is minimized. In this section we will analytically show that our calculation respects ensemble

equivalence and that taking the chemical potentials from the CLD, instead of the CPA, is

essential.

We begin by calculating and discussing the rearrangement term, an essential quantity in

this context [101, 106]. The rearrangement was introduced in eq. (3.2) and to understand its

origin we notice that, had we allowed 𝜌𝑁𝑝 , 𝜌
𝑁
𝑛 , 𝑓

𝑁 and 𝑅𝑁
𝑑

to ŕuctuate, the total proton fraction

of the system, given by

𝜌𝑝 =
∑︁
𝑁,𝑑

𝑛𝑁,𝑑𝑉𝑁
(
𝜌𝑁𝑝 − 𝜌𝑝𝑔

)
+ 𝜌𝑝𝑔, (3.25)

would be different from the total electron density 𝜌𝑒, which is őxed from the OCP, and the system

would have a net charge. Microscopically, each cell would also have a net charge, leading to

long-range Coulomb interactions. In order to avoid these issues, we őx the global proton cell

by imposing that it is equal to the electron one: 𝜌𝑝 = 𝜌𝑒. Moreover, the WS cell proton density

is equal to the global one by constraining volume fraction 𝑓 𝑁 via eq. (3.6). By doing so, the

assumption of independent ŕuctuations in different cells is broken. Now the volume fraction

becomes a function of the global proton density, and thus of the number densities 𝑛𝑁,𝑑 , i.e.

𝑓 𝑁 = 𝑓 𝑁 (𝜌𝑝 (𝑛𝑁,𝑑)). In turn, this implies that the thermodynamic potential (3.2) also acquires a

dependency on the number densities. To be mathematically precise, we write the average cluster

free energy density as

⟨F𝑐𝑙⟩ =
∑︁
𝑁,𝑑

𝑛𝑁,𝑑𝐹
𝑁,𝑑
𝑐𝑙
, (3.26)

where the cluster free energy is given in eq. (3.21) and the single-cluster thermodynamic potential

is [98, 106]

Ω̃
𝑁,𝑑

= 𝑉𝑁

[
𝜕⟨F𝑐𝑙⟩
𝜕𝑛𝑁,𝑑

−
∑︁
𝑞

𝜇𝑞

(
𝜌𝑁𝑞 − 𝜌𝑞𝑔

)]
. (3.27)

Substitution of Eq. (3.26) gives us the derivative inside the brackets:

𝐹̃
𝑁,𝑑
𝑐𝑙

≡ 𝜕⟨F𝑐𝑙⟩
𝜕𝑛𝑁,𝑑

= 𝐹
𝑁,𝑑
𝑐𝑙

+
∑︁
𝑀,𝑑′

𝑛𝑀,𝑑
′ 𝜕𝐹

𝑀,𝑑′

𝑐𝑙

𝜕𝑛𝑁,𝑑
, (3.28)
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where we identify the rearrangement with

𝛿𝐹𝑁 =

∑︁
𝑀,𝑑′

𝑛𝑀,𝑑
′ 𝜕𝐹

𝑀,𝑑′

𝑐𝑙

𝜕𝑛𝑁,𝑑
. (3.29)

The calculation can be done straightforwardly with a change of variables. Using Eqs. (3.4)

and (3.25):

𝛿𝐹𝑁 =
𝜕𝜌𝑝

𝜕𝑛𝑁,𝑑

∑︁
𝐿,𝑀,𝑑′

𝑛𝑀,𝑑
′ 𝜕𝐹

𝑀,𝑑′

𝑐𝑙

𝜕 𝑓 𝐿
𝜕 𝑓 𝐿

𝜕𝜌𝑝

= 𝑉𝑁
(
𝜌𝑁𝑝 − 𝜌𝑝𝑔

) ∑︁
𝑀,𝑑′

𝑛𝑀,𝑑
′ 𝜕𝐹𝑀,𝑑

′

𝜕 𝑓 𝑀
1

𝜌𝑀𝑝 − 𝜌𝑝𝑔
. (3.30)

If we additionally assume that the different averaged quantities are not correlated, such that

the average commutes with the product ś ⟨𝑥⟩⟨𝑦⟩ = ⟨𝑥𝑦⟩ ś then we can divide the cluster

volume coming from the free energy by WS cell average, appearing in the denominator of

𝑛𝑁,𝑑 = 𝑝𝑁,𝑑/⟨𝑉𝑊𝑆⟩, and the rearrangement becomes

𝛿𝐹𝑁 = 𝑉𝑁
(
𝜌𝑁𝑝 − 𝜌𝑝𝑔

) 〈
𝑓 𝑀

𝜌𝑀𝑝 − 𝜌𝑝𝑔

𝜕F 𝑀
𝑠𝑐,𝑑

𝜕 𝑓 𝑀

〉
, (3.31)

which is an expression similar to the ones proposed in Refs. [101, 106, 107]. Nevertheless, in

those, the average was introduced by hand due to a missing sum over 𝑀, 𝑑 in the calculation. We

have shown that the average appears directly from the calculation if the change of variables is

done properly (with the extra assumption of uncorrelated averages). The notation ⟨𝑋⟩ indicates

ensemble average.

Nevertheless, a complete determination of the pasta probabilities becomes numerically

challenging with the rearrangement, since we must determine the number densities and the

rearrangement term simultaneously and self-consistently. To avoid this complication we identify

the average value of the rearrangement with its value calculated in the OCP with optimal geometry

𝑑0:

〈
𝑓 𝑀

𝜌𝑀𝑝 − 𝜌𝑝𝑔

𝜕F 𝑀
𝑠𝑐,𝑑

𝜕 𝑓 𝑀

〉
=
F𝑐,𝑑0

Φ

𝑑Φ

𝑑𝑓
+ 𝑑0 𝑓

𝑅𝑑0
𝜌𝐵

(
𝜌𝐼𝑝 − 𝜌𝑝𝑔

)
− 𝑌𝑝

(
𝜌𝐼 − 𝜌𝑔

)
𝜌𝐼𝑝 − 𝜌𝑝𝑔

𝜕𝜎

𝜕𝑌𝑝
.

Now we analytically prove that ensemble equivalence is respected by demonstrating that
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the equilibrium equations of the MCP are equivalent to those of the OCP ś eqs. (2.82), (2.81)

and (2.84). We characterize the most probable cluster by the superscript 𝑁0 = {𝜌𝑁0
𝑝 , 𝜌

𝑁0
𝑛 , 𝑉

𝑁0},

and we őnd the conditions by taking the derivative of the one-cell cluster thermodynamic

potential (3.27) w.r.t. to these variables at the point where it is equal to zero.

We begin with the derivative w.r.t. the proton cluster density, with cluster volume and

neutron density kept őxed

𝜕Ω̃𝑁,𝑑

𝜕𝜌𝑁𝑝

�����
𝜌𝑁𝑛 ,𝑉

𝑁

= 𝑉𝑁

𝜕F 𝑁

𝑏

𝜕𝜌𝑁𝑝
+
𝜕F 𝑁

𝑠𝑐,𝑑

𝜕𝜌𝑁𝑝

�����
𝜌𝑁𝑛 ,𝑉

𝑁

− 𝜇𝑝 +
〈

𝑓 𝑀

𝜌𝑀𝑝 − 𝜌𝑝𝑔

𝜕F 𝑀
𝑠𝑐,𝑑

𝜕 𝑓 𝑀

〉
= 𝑉𝑁


𝜇𝑁𝑝 +

𝜕F 𝑁
𝑠𝑐,𝑑

𝜕𝜌𝑁𝑝

�����
𝑓 𝑁 ,𝜌𝑁𝑛 ,𝑉

𝑁

+ 𝑓 𝑁

𝜌𝑁𝑝 − 𝜌𝑝𝑔

F 𝑁
𝑠𝑐,𝑑

𝜕 𝑓 𝑁

�����
𝜌𝑁𝑝 ,𝜌

𝑁
𝑛 ,𝑉

𝑁

−𝜇𝑝 +
〈

𝑓 𝑀

𝜌𝑀𝑝 − 𝜌𝑝𝑔

F 𝑀
𝑠𝑐,𝑑

𝜕 𝑓 𝑀

〉]
, (3.32)

and rewrite it at equilibrium ś when the derivative is zero ś as

𝜇
𝑁0
𝑝 +

𝜕F 𝑁0

𝑠𝑐,𝑑

𝜕𝜌
𝑁0
𝑝

+ 𝑓 𝑁0

𝜌
𝑁0
𝑝 − 𝜌𝑝𝑔

F 𝑁0

𝑠𝑐,𝑑

𝜕 𝑓 𝑁0
= 𝜇𝑝 +

𝑓

𝜌𝐼𝑝 − 𝜌𝐼 𝐼𝑝
F𝑠𝑐,𝑑
𝜕 𝑓

�����
𝑂𝐶𝑃

. (3.33)

The terms with derivatives of the S+C energy w.r.t. 𝑓 𝑁 cancel out exactly when the MCP

solution coincides with the OCP ś see eq. (2.75). For the neutron density, we take the derivative

𝜕Ω̃𝑁,𝑑

𝜕𝜌𝑁𝑛

����
𝜌𝑁𝑝 ,𝑉

𝑁

= 𝑉𝑁

[
𝜕F 𝑁

𝑏

𝜕𝜌𝑁𝑛
+
𝜕F 𝑁

𝑠𝑐,𝑑

𝜕𝜌𝑁𝑛
− 𝜇𝑛

]

= 𝑉𝑁

[
𝜇𝑁𝑛 +

𝜕F 𝑁
𝑠𝑐,𝑑

𝜕𝜌𝑁𝑛
− 𝜇𝑛

]
, (3.34)

which is the minimum when neutron density is 𝜌𝑁𝑛 = 𝜌𝐼𝑛, as can be seen by comparison with

eqs. (2.75) and (2.82).

Finally, to complete the proof, we turn to pressure equilibrium by taking the derivative
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We consider that the pasta structures are oriented as illustrated in Fig. 18: the cross-

sectional area of rods is in the 𝑧 and 𝐿𝑁
2

deőnes their length in the 𝑧 direction. Slabs have length

𝐿𝑁
1

in both 𝑦 and 𝑧 directions, and size 2 𝑅𝑁
1

in the 𝑥 axis. An incident probe moving in the

𝑘−direction sees a surface area 𝑆𝑁
𝑑,𝑘

, perceiving a larger number of protons 𝑍∗ 𝑁 > 𝑍𝑁 , if the

area is larger than that of droplets, and a smaller number, if there is a smaller area. The surface

areas for rods and slabs are summarized in Tab. 6. Droplets have 𝑆𝑁
3
= 2𝜋(𝑅𝑁

3
)2, which is half

of the droplet total surface, as seen by an object moving towards it.

In this point of view, we deőne the effective proton number seen by a probe moving in

the 𝑘-axis as

𝑍∗ 𝑁
𝑑,𝑘 = 𝑍𝑁

𝑆𝑁
𝑑,𝑘

𝑆𝑁
3

. (3.40)

and we show their values in Fig. 19 for 𝑌𝑝 = 0.1, 0.3 and T=1 and 5 MeV. As more rods or slabs

are present, the effective number of protons seen by a probe moving in the 𝑧 direction decreases,

and as rods turn to slabs the 𝑦 proton number also decreases, but in 𝑥 it increases.

Using eq. (3.40) we deőne the orientation-dependent variances in the same spirit as

eq. (3.37)

(Δ𝑍∗
𝑘 )2

=

∑︁
𝑁,𝑑

𝑝𝑁,𝑑
(
𝑍∗𝑁
𝑑𝑘 − ⟨𝑍∗ 𝑁

𝑘 ⟩
)2

, (3.41)

which are shown in Figs. 20 and 21 for T=1 and 5 MeV, respectively, along with the one deőned

by eq. (3.37), which is displayed as a solid line. The order of magnitude is consistent with

previously proposed values: in ref. [57], Pons proposes curves with the impurity ranging from

0.1 and 100, while in [29] they calculate a value ranging between 30 and 40 in molecular

dynamics simulations, and in [28] they calculate the average impurity of the crust to be 29. In

our results, larger anisotropic ŕuctuations occur near changes in dominant geometry. The results

of this section were published in [195].
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4 Conductivity of nuclear pasta

In this section, we introduce the formalism of transport theory via the Boltzmann equation

and the relaxation time approximation. We generalize the formalism of elastic isotropic electron-

ion scattering to the elastic electron-pasta scattering and calculate the anisotropic collision

frequencies that arise due to the pasta anisotropic geometry. The RMF model is used to give

quantitative estimations of the conductivity and collision rates.

4.1 Transport coefficients and the Boltzmann equation

Transport phenomena occur when some conserved physical quantity in a system, such

as charge or momentum, changes position. These changes are induced by out-of-equilibrium

conditions, such as temperature gradients, non-homogeneous chemical composition, or the

presence of electric potentials, which modify the particle distribution functions 𝑓 (r,p, 𝑡) and

give rise to currents of charge, heat and momentum. These are respectively deőned as

𝐽𝑒 𝑖 = 𝑞
∑︁
𝑠

∫
𝑑3p

(2𝜋)3
𝑣𝑖 𝑓 (r,p, 𝑡), (4.1)

𝐽𝑄 𝑖 =
∑︁
𝑠

∫
𝑑3p

(2𝜋)3

(
ϵ𝑝 − 𝜇

)
𝑣𝑖 𝑓 (r,p, 𝑡), (4.2)

Π𝑖 𝑗 =

∑︁
𝑠

∫
𝑑3p

(2𝜋)3
𝑝𝑖 𝑣 𝑗 𝑓 (r,p, 𝑡), (4.3)

where the variables r, p, v, 𝑞, ϵ𝑝 and 𝜇 are the position, momentum, velocity, charge, energy, and

chemical potential of the particle affected by the out-of-equilibrium conditions. The function

𝑓 (r,p, 𝑡) is the probability distribution of the particle. At equilibrium, it is simply given by the

Fermi-Dirac expression, eq. (2.33), which we will denote hereafter as 𝑓 (0) .

The main transport coefficients are electric (σ̂) and thermal (κ̂) conductivity and shear

(η̂) and bulk (ζ̂) viscosity, which are respectively deőned as a linear response to an effective

electric őeld 𝐸∗
𝑗 = 𝐸 𝑗 + 𝑞−1∇𝜇, temperature gradient ∇𝑇 , and to variations in the center of mass
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velocity V (r, 𝑡), i.e.

𝐽𝑒,𝑖 = 𝜎𝑖 𝑗𝐸
∗
𝑗 (4.4)

𝐽𝑄,𝑖 = 𝜅𝑖 𝑗

(
− 𝜕𝑇
𝜕𝑥 𝑗

)
, (4.5)

Π𝑖 𝑗 = 𝜂𝑖 𝑗 𝑘𝑙

[
𝜕𝑘𝑉𝑙 + 𝜕𝑙𝑉𝑘 −

2

3
𝛿𝑘𝑙∇ · V

]
+ 𝜁𝑖 𝑗∇ · v. (4.6)

The values of these coefficients are dependent on microscopic particle collisions and ŕavor-

changing processes that occur, which modify the particle distribution function. The distribution

function obeys the Boltzmann equation, which can be derived by taking the time derivative of 𝑓

as:
𝜕 𝑓

𝜕𝑡
+ v · 𝜕 𝑓

𝜕r
+ F · 𝜕 𝑓

𝜕p
=
𝑑𝑓

𝑑𝑡
= 𝐼 [ 𝑓 ] (4.7)

where v = ¤r, F = ¤p are the external forces and 𝐼 [ 𝑓 ] is the collision integral that takes into

account the microscopic processes.

Astronomical observations related to the thermal, magnetic, and spin evolution of neutron

stars can provide us with indirect information on the transport properties of dense matter [29,

102, 196]. These observations must be compared with simulations by properly modeling the

coupled magneto-thermal evolution. Hence, models are necessary for the microscopic processes

that give rise to the conductivities and viscosity throughout the star [53, 197, 198], which are

then used as inputs to the macroscopic simulations, see [199ś201].

In the crust, electrons, are the primary carriers of heat, charge, and momentum. Their

scattering with ions, lattice phonons, and other electrons determines the rate at which these

quantities are transported. The dominant contribution depends on the state and composition of

the system: electron-electron collisions become relevant only at very small temperatures and

densities or in a low 𝑍 plasma, which may be interesting in the context of the NS surface or

in white dwarfs [202, 203] and electron-ion contributions are the dominant ones both in liquid

(𝑇 > 𝑇𝑚) and in solid (𝑇 < 𝑇𝑚) ions [50]. In the solid phase, the main contribution comes

from the scattering with lattice vibrations of the ions (phonons), while in the liquid it comes

from the direct electron-ion scattering [47, 49, 198]. The free neutrons in the inner crust can

also contribute to the heat and momentum transport via scattering with magnetic moments of

electrons or phonons, though their contribution is likely relevant only close to the crust-core

transition [46, 204, 205].
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In compact stars, electrons are strongly degenerate (𝑇 ≪ 𝑇𝐹 = 𝜇𝑒 −𝑚𝑒), so microscopic

processes are restricted to excitations near the Fermi surface. This greatly simpliőes calculations

since the electron energy in (4.7) can be taken as the Fermi energy itself. The reader interested in

the non-degenerate case should refer to the appendix of ref. [206], which is a reference that also

provides an interesting review of NS cooling. In principle to determine the transport coefficients

one must have full knowledge of the collision integral and solve the Boltzmann transport equation

to őnd the particle distribution, and then rewrite eqs. (4.1), (4.2) and (4.3) as a linear response to

the gradient őelds. Nevertheless, this is a very ambitious program. Solutions are usually found

in a variational fashion or with the relaxation time approximation, which can be used as long as

the temperature is sufficiently high so that quantum corrections to the scattering can be ignored

(𝜔 = ϵ𝑝 − ϵ𝑝′ ≪ 𝑇). We will follow this path.

In the relaxation time approximation, we assume the distribution function to be slightly

out of equilibrium, such that

𝑓 (r,p, 𝑡) = 𝑓 0(r,p, 𝑡) + 𝛿 𝑓 (p), (4.8)

with the position and time dependence in the equilibrium term coming from the temperature

and chemical potential őelds 𝑇 (r, 𝑡) and 𝜇(r, 𝑡). The collision integral is written as

𝐼 [ 𝑓 ] = −𝛿 𝑓
𝜏
, (4.9)

where 𝜏 is the relaxation time of electrons, thus the approximation name. For simplicity, we

shall use the collision rate 𝜈 = 1/𝜏 from now on. We shall assume the electrons are in an external

force F and have a center of mass velocity V (r, 𝑡), such that the dispersion relation becomes a

function ϵ𝑝 (v,V (r, 𝑡)).

By using eq. (4.8) we can linearize the Boltzmann equation (4.7). To do so we begin by

taking the differential of the equilibrium component

𝑑𝑓0 =
𝜕 𝑓0

𝜕𝑡
𝑑𝑡 +

(
− 𝜕 𝑓0
𝜕ϵ𝑝

) [(
𝜕𝜇

𝜕r
+ 𝑝𝑘

𝜕𝑉𝑘

𝜕r
+

( ϵ𝑝 − 𝜇
𝑇

) 𝜕𝑇
𝜕r

)
· 𝑑r −

𝜕ϵ𝑝

𝜕p
· 𝑑p

]

=
𝜕 𝑓0

𝜕𝑡
𝑑𝑡 + 𝜕 𝑓0

𝜕r
· 𝑑r + 𝜕 𝑓0

𝜕p
· 𝑑p (4.10)

such that we can now use eqs. (4.8) and (4.10) in eq. (4.7). By keeping only őrst-order terms in
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𝛿 𝑓 we arrive at the linearized Boltzmann equation

(
− 𝜕 𝑓0
𝜕ϵ𝑝

)
𝑣𝑘

[
𝜕𝜇

𝜕𝑥𝑘
− 𝐹𝑘 +

ϵ𝑝 − 𝜇
𝑇

𝜕𝑇

𝜕𝑥𝑘

]
+ 1

2

(
− 𝜕 𝑓0
𝜕ϵ𝑝

)
𝑝 𝑗𝑣𝑘

[
𝜕𝑉 𝑗

𝜕𝑥𝑘
+ 𝜕𝑉𝑘
𝜕𝑥 𝑗

− 2

3
𝛿 𝑗 𝑘∇ · V

]

+
[
𝜕 𝑓0

𝜕𝑡
+

(
− 𝜕 𝑓0
𝜕ϵ𝑝

)
1

3
𝑢𝑘 𝑝 𝑗𝛿 𝑗 𝑘∇ · V

]
+ 𝐹𝑘

𝜕𝛿 𝑓

𝜕𝑝𝑘
= 𝐼 [ 𝑓 ] . (4.11)

The őrst term contains the temperature gradient and electric őeld that give rise to the conductiv-

ities, and it is őrst order in the momentum (∝ 𝑣𝑘 ). The second term contains the mathematical

structure of the bulk viscosity deőnition, eq. (4.6), and it is of second order in the momentum

(∝ 𝑝 𝑗𝑣𝑘 ). The third term is related to the shear viscosity, which is due to ŕavor-changing

processes.

Our main interest in this thesis is the conductivity, so we’ll simply ignore the terms

related to the viscosity by keeping only linear terms in v,

(
− 𝜕 𝑓0
𝜕ϵ𝑝

)
v ·

[
𝜕𝜇

𝜕x
+ 𝑒E +

ϵ𝑝 − 𝜇
𝑇

𝜕𝑇

𝜕x

]
− 𝑒(v ×B) 𝜕𝛿 𝑓

𝜕p
= 𝐼 [ 𝑓 ], (4.12)

where we used F = −𝑒 (E + v ×B). Let’s also ignore the magnetic őeld momentarily. By

using the relaxation time approximation, eq (4.9) we straightforwardly őnd a solution for 𝛿 𝑓 :

𝛿 𝑓 =
1

𝜈

(
− 𝜕 𝑓0
𝜕ϵ𝑝

)
v ·

[
𝜕𝜇

𝜕x
+ 𝑒E +

ϵ𝑝 − 𝜇
𝑇

𝜕𝑇

𝜕x

]
. (4.13)

To őnd the electric conductivity we take ∇𝑇 = 0 and substitute the solution in eq. (4.1), and for

the thermal one we take E∗ = 0 and substitute it in eq. (4.2). We get

J𝑒 =
𝑒2𝑝2

𝐹
𝑣𝐹

3𝜋2𝜈
E∗

=
𝑒2𝑛𝑒

𝑚∗
𝑒𝜈

E∗ (4.14)

and

J𝑞 =
𝑇 𝑝2

𝐹
𝑣𝐹

9𝜈
(−∇𝑇) = 𝜋2𝑇𝑛𝑒

3𝑚∗
𝑒𝜈

(−∇𝑇) (4.15)

where we have performed a direct integration in the solid angle Ω𝑝

∫
𝑑Ω𝑝𝑣𝑖𝑣 𝑗 =

4𝜋𝑣2

3
𝛿𝑖 𝑗 (4.16)
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and used the Sommerfeld expansion [207]

∫ ∞

0

𝑑ϵ 𝐺 (ϵ)
(
−𝜕 𝑓

0

𝜕𝜖

)
≈ 𝐺 (ϵ𝐹) +

𝜋2

6
𝑇2𝐺′′(ϵ𝐹) +

7𝜋4

180
𝐺′′′′(ϵ𝐹) + · · · (4.17)

to őrst order by making the change of variable 𝑑𝑝 = 𝑑ϵ/𝑣. Thus we őnd, in the relaxation time

approximation, the conductivities [47, 48, 51]

𝜎𝑖 𝑗 =
𝑒2𝑛𝑒

𝑚∗
𝑒𝜈𝜎

𝛿𝑖 𝑗 𝜅𝑖 𝑗 =
𝜋2𝑇𝑛𝑒

3𝑚∗
𝑒𝜈𝜅

𝛿𝑖 𝑗 (4.18)

where 𝑚∗
𝑒 is the effective electron mass and 𝑝𝐹 (𝑣𝐹) the Fermi momentum (velocity). The

collision frequencies are the same only in the case that no quantum effects are taken into

account, otherwise, there are different kinematic factors entering 𝜈𝜎 and 𝜈𝜅 [47, 50].

The case of viscosity is a bit more complicated. Its expression is very similar to

eqs. (4.18)

𝜂𝑖 𝑗 =
𝑛𝑒𝑝𝐹𝑣𝐹

5𝜈𝜂
𝛿𝑖 𝑗 (4.19)

but to determine this expression and calculate the collision frequency it is necessary to introduce

a full expansion of the collision integral in spherical harmonics

𝐼 [ 𝑓 ] = −
∑︁

𝛿 𝑓𝑙𝑚 (ϵ𝑝)𝜈𝑙 (ϵ𝑝)𝑌𝑚𝑙 (Ω𝑝), (4.20)

from which we can determine that the 𝑙 = 1 term corresponds to the simple eq. (4.9), from

which we got the conductivities, while the viscosity is related to 𝑙 = 2 (𝜈𝜂 = 𝜈𝑙=2) by writing the

(complex) spherical harmonics in terms of real coefficients, i.e. an expansion in homogeneous

harmonic polynomials [198, 208ś210],

𝑓 (p) =
∑︁
𝑙 𝑚

𝑓𝑙𝑚𝑌
𝑚
𝑙 (Ω𝑝)

= 𝑓0 +
𝑝𝑖

𝑝
𝑓𝑖 +

𝑝𝑖𝑝 𝑗

𝑝2
𝑓𝑖 𝑗 + ...

This can be done by making linear combinations of the spherical harmonics to produce real

coefficients 𝑓𝑖1𝑖2...𝑖𝑘 , with the power of 𝑙 corresponding to the power of 𝑝𝑖. By orthogonality, we

can identify the őrst order power 𝑝𝑖 in the left-hand side of the Boltzmann eq. (4.11) with 𝑙 = 1

and the second order 𝑝𝑖𝑝 𝑗 with 𝑙 = 2, such that each one contributes to a different multipole of
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𝛿 𝑓𝑙𝑚 coefficients, deőned by

𝛿 𝑓 (p) =
∑︁
𝑙>0𝑚

𝛿 𝑓𝑙𝑚
(
ϵ𝑝

)
𝑌𝑚𝑙 (Ω𝑝). (4.21)

where 𝑙 = 0 is left out because it corresponds to the equilibrium distribution 𝑓 0. By direct

substitution of eq. (4.21) into the transport coefficients, eqs. (4.1), (4.2) and (4.3) we see that

𝑙 = 1 contributes to the conductivity and 𝑙 = 2 to the viscosity because the angular integral is

different from zero only if it is performed on even powers of momentum 𝑝𝑖, as in eq. (4.16).

Because of the isotropy assumption, the collision frequencies only depend on the modulus

of the electron momentum transfer q = p − p′ according to the general expression [46ś48]:

𝜈𝑙 =
4𝜋𝑒4𝑍2

𝑣𝐹 𝑝
2
𝐹

∫ 2𝑝𝐹

0

𝑑𝑞

𝑞

(
1 − 𝑞2

4ϵ2
𝐹

)
𝑅𝑙 (𝑞)

𝐹2(𝑞)
𝜀2(𝑞)

𝑆(𝑞) , (4.22)

where 𝐹 (𝑞) is the ion form factor, 𝜀(𝑞) is the dielectric function, 𝑆(𝑞) is the effective structure

factor that accounts for particle correlations, 𝑅𝑙 (𝑞) is a kinetic factor

𝑅1(𝑞) = 1, 𝑅2(𝑞) = 3

(
1 − 𝑞2

4𝑝2
𝐹

)
(4.23)

and 𝑣𝐹 , 𝑝𝐹 , and ϵ𝐹 are the Fermi velocity, momentum and energy respectively. Unfortunately,

eq. (4.22) cannot be straightforwardly generalized to the case of anisotropic scatterings. To

better understand the meaning of each term in this expression, and how to generalize it to the

pasta, let’s discuss how to calculate the collision integral for elastic electronśpasta scattering.

4.2 The collision integral

The term collision integral 𝐼 [ 𝑓 ] on the right-hand side of the Boltzmann equation (4.11)

accounts for the microscopic processes that give rise to transport phenomena such as scatterings

and decays. It can be written as [211,212]

𝐼 [ 𝑓 ] =
∫

𝑑3p ′

(2𝜋)3
[𝑃 (p ′ → p) − 𝑃 (p → p ′)] (4.24)

where 𝑃 (p ′ → p) is the probability that a process changes the electron momentum from p ′ to

p. We will assume the electrons conserve energy in the collision, and since they are strongly
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degenerate we can approximate ϵ𝑝 ≈ ϵ𝑝′ = ϵ𝐹 . Thus, the collision is elastic, and the degenerate

electrons scatter with the electric potential generated by the localized pasta. The probability of

an electron changing momentum is given by the Fermi-rule

𝑃 (p → p ′) = 2𝜋 𝛿(ϵ𝑝 − ϵ𝑝′)
1

2

∑︁
𝑠,𝑠′

|⟨0|𝐻𝐼 |0⟩|2 (4.25)

where we average over the spin states 𝑠′ and sum over 𝑠, the 𝛿-function ensures energy conser-

vation, and the electromagnetic interaction Hamiltonian is

𝐻𝐼 (𝑡) = −𝑒
∫

𝑑3x 𝜓̄(x)𝛾𝜇𝐴𝜇 (x)𝜓(x), (4.26)

where 𝐴𝜇 is the photon őeld and 𝜓 is the electron spinor. Now we can substitute plane wave

solution for electrons, as discussed in the nuclear RMF model in Section 2 ś see eq. (2.20). For

the second term of eq. (4.24), with initial and őnal momenta respectively given by p and p ′ we

have

|⟨0|𝐻𝐼 |0⟩|2 =

����� 𝑒√︁
2ϵ𝑝2ϵ𝑝′

⟨𝑎†
𝑝′ 𝑠′𝑎𝑝,𝑠⟩𝑢̄𝑝′𝑠′𝛾

0𝑢𝑝𝑠

∫
𝑑3x𝐴0(x)𝑒−𝑖(p−p

′)·x

�����
2

. (4.27)

The distinction between the two terms in eq. (4.24) is due to the order of the creation/destruction

operators. We can write the electron distribution function in terms of these operators as

⟨𝑎†𝑝 𝑠𝑎𝑝′ ,𝑠′𝑎†𝑝′ 𝑠′𝑎𝑝,𝑠⟩ = 𝑓 (p)
(
1 − 𝑓 (p′)

)
, (4.28)

such that eq. (4.25) can be written as

𝑃 (p → p ′) = 2𝜋 𝛿(ϵ𝑝 − ϵ𝑝′) 𝑓 (p)
(
1 − 𝑓 (p′)

)
𝑊𝑝𝑝′ , (4.29)

with the transition rate deőned as

𝑊𝑝𝑝′ = 𝑊 (p,p′) = 𝑒2

8ϵ2
𝑝

∑︁
𝑠,𝑠′

����𝑢̄𝑝′𝑠′𝛾0𝑢𝑝𝑠

∫
𝑑3x𝐴0(x)𝑒−𝑖(p−p

′)·x
����
2

. (4.30)
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We can contract the Dirac spinors using trace properties of the gamma matrices [138, 213]

∑︁
𝑠 𝑠′

|𝑢̄𝑝′𝑠′𝛾0𝑢𝑝𝑠 |2 = Tr
[
𝛾0(𝛾𝜇𝑝′𝜇 + 𝑚𝑒)𝛾0(𝛾𝜈𝑝𝜈 + 𝑚𝑒)

]

= 8ϵ2
𝑝

(
1 − 𝑞2

4ϵ2
𝑝

)
, (4.31)

to write the transition rate as

𝑊𝑝𝑝′ = 𝑒
2

(
1 − 𝑞2

4ϵ2
𝑝

) ����
∫

𝑑3x𝐴0(x)𝑒−𝑖(p−p
′)·x

����
2

, (4.32)

which is symmetric in the initial and őnal momentum, i.e.

𝑊𝑝𝑝′ = 𝑊𝑝′𝑝 . (4.33)

By exchangingp andp′ in eq. (4.29) and the symmetry of the transition rate, the collision

integral can be written as

𝐼 [ 𝑓 ] = 2𝜋

∫
𝑑3p ′

(2𝜋)3
𝛿(ϵ𝑝 − ϵ𝑝′)𝑊𝑝𝑝′

[
𝑓 (p′) (1 − 𝑓 (p)) − 𝑓 (p)

(
1 − 𝑓 (p′)

) ]
, (4.34)

such that the product of distributions cancel out, and the use of eq. (4.8) leads to

𝐼 [ 𝑓 ] = 2𝜋

∫
𝑑3p ′

(2𝜋)3
𝛿(ϵ𝑝 − ϵ𝑝′)𝑊𝑝𝑝′

[
𝛿 𝑓 (p′) − 𝛿 𝑓 (p)

]
, (4.35)

due to elasticity assumption.

The complete information about the scattering is in the transition rate. We restrict

ourselves to the scattering with an electric potential 𝐴𝜇 = (𝐴0, 0), given by

𝐴0(x) =
∫

𝑑3x′𝜌tot
𝑝 (x′)𝑈 (x − x′), (4.36)

where 𝜌tot
𝑝 is the proton density of a macroscopic volume 𝑉 and𝑈 is the potential of a proton in

x acting at x′

𝑈 (x − x′) = 𝑒

|x − x′ | . (4.37)

Equations with the mathematical structure of (4.36) are known as convolutions. This allows
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the application of the convolution theorem of Fourier transforms to the transform of the electric

potential [214] in eq. (4.30)

∫
𝑑3x𝐴0(x)𝑒−𝑖q·x = 𝜌tot

𝑝 (q)𝑈 (q) (4.38)

where we recall that q = p−p′ is the transferred momentum. The functions 𝜌tot
𝑝 (q) and𝑈 (q) are

the Fourier transforms of the system proton charge density and of the proton electric potential,

respectively. We begin with the potential: to calculate the Fourier transformation we add a

decaying exponential with a controlling parameter 𝛼 to contour the divergence we would obtain

otherwise

𝑈 (q) = 𝑒
∫

𝑑3x 𝑒𝑖q·x
𝑒−𝛼𝑥

𝑥
= 2𝜋𝑒

∫
𝑟2𝑑𝑟

∫
𝑑 (cos 𝜃)𝑒𝑖𝑞𝑟 cos 𝜃−𝛼𝑟 (4.39)

= 2𝜋𝑒

∫
𝑟2𝑑𝑟

[
𝑒𝑖𝑞𝑟 − 𝑒−𝑖𝑞𝑟

𝑖 𝑞𝑟

]
𝑒−𝛼𝑟 =

4𝜋𝑒

𝑞2 + 𝛼2

𝛼→0
=

4𝜋𝑒

𝑞2
. (4.40)

Though the 𝛼 parameter we added was spurious and should be taken to be zero in the end, the

őnal result, eq. (4.40) is divergent at 𝑞 → 0. This is due to the long-range nature of the Coulomb

interactions. Nevertheless, this is not a physical divergence: electrons in the plasma tend to

repel their neighbors, creating a ball around them where no other electrons are found ś a density

ŕuctuation. This hole moves along with the electron, carrying inertia and acting as a positively

charged particle that gives rise to a screening function that regularizes the divergence. The static

screening functions 𝜀(𝑞) modiőes the potential as

𝑈 (𝑞) = 4𝜋𝑒

𝑞2𝜀(𝑞)
. (4.41)

and it has been calculated for the strongly degenerate electron gas in ref. [215],

𝜀(𝑞) = 1 +
𝑘2
𝑇𝐹

𝑞2

{
2

3
− 2

3

𝑦𝑥𝑟

𝛾𝑟
log(𝑥𝑟 + 𝛾𝑟) +

𝑥2
𝑟 + 1 − 3𝑥2

𝑟 𝑦
2

6𝑦𝑥2
𝑟

log

����1 + 𝑦
1 − 𝑦

����

+2𝑦2𝑥2
𝑟 − 1

6𝑦𝑥2
𝑟

√︁
1 + 𝑥2

𝑟 𝑦
2

𝛾𝑟
log

����� 𝑦𝛾𝑟 +
√︁

1 + 𝑥2
𝑟 𝑦

2

𝑦𝛾𝑟 −
√︁

1 + 𝑥2
𝑟 𝑦

2

�����
}

(4.42)
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where 𝑦 = 𝑞/(2𝑝𝐹), 𝑥𝑟 = 𝑝𝐹/𝑚𝑒, 𝛾𝑟 =
√︁

1 + 𝑥2
𝑟 and 𝑘𝑇𝐹 is the Thomas-Fermi momentum

𝑘𝑇𝐹 =

√︃
4𝜋𝑒2𝜕𝑛𝑒/𝜕𝜇𝑒 = 2

√︁
𝛼𝑒𝑚𝛾𝑟/(𝜋𝑥𝑟)𝑝𝐹 . (4.43)

In the limit 𝑦 ≪ 1 this equation reduces to

𝜀(𝑞) 𝑦≪1
= 1 +

𝑘2
𝑇𝐹

𝑞2
, (4.44)

which is simply the potential calculated with the screening exponential in eq. (4.39) by iden-

tifying 𝛼 = 𝑘𝑇𝐹 . This correction can be calculated using the Poisson equation for the elec-

tric potential by accounting for the density screening due to the corrected chemical potential

𝛿𝜌𝑝 = 𝜌𝑝 (𝜇 + 𝑒𝐴0) − 𝜌𝑝 (𝜇) [211]. The interested reader should read section 3 of ref. [211] for

an in-depth theoretical description of screening, or section 2.1 of [3] for a concise discussion. We

should explicitly mention that, while in this work we utilize a static isotropic screening, strong

magnetic őelds can lead to anisotropic behavior producing Friedel oscillations [216, 217] and

a dynamic dielectric function is necessary in case the projectile electron has a velocity smaller

than the average plasma velocity, which is never the case for strongly degenerate matter [3,218].

Now we turn to the Fourier transform of the system proton density. In position space,

the density can be written as a sum over the centers of mass of different clusters in positions R𝑘

𝜌tot
𝑝 (r) =

∑︁
𝑘

𝜌𝑝 (r −Rk) (4.45)

=

∫
𝑑3R

∑︁
𝑘

𝜌𝑝 (r −R)𝛿3(R −Rk) (4.46)

𝜌tot
𝑝 (r) =

∫
𝑑3R 𝜌𝑝 (r −R)𝜌𝐶𝑀 (R) (4.47)

where in the second line we have added a 𝛿 function so that this equation can be written as a

convolution in the third line. Here we deőne the pasta center of mass density as

𝜌𝐶𝑀 (R) =
∑︁
𝑘

𝛿3(R −Rk) (4.48)
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and the charge density of a single pasta structure

𝜌𝑝 (r) =




𝜌𝐼𝑝 Θ(𝑅3 − 𝑟), d=3

𝜌𝐼𝑝 Θ(𝑅2 − 𝑟) Θ(𝐿2 − 2|𝑧 |), d=2

𝜌𝐼𝑝 Θ(𝑅1 − |𝑧 |) Θ(𝐿1 − 2|𝑥 |) Θ(𝐿1 − 2|𝑦 |), d=1

(4.49)

whereas the 𝜌𝐼𝑝 on the right-hand side is the constant charge density of the pasta, as calculated

in chap. 2. The convolution (4.47) allows the Fourier transform of the total proton density to be

written as

𝜌tot
𝑞 (q) = 𝜌𝐶𝑀 (q) 𝜌𝑝 (q), (4.50)

as in the case of the electric potential.

Whenever we are dealing with a macroscopic system, in order to account for all its

possible conőgurations, the thermal average ⟨...⟩𝑇 must be taken into account. In principle, this

is done at the level of the transition rate, but now we have factorized all macroscopic information

into the center of mass density, so the average is made only in the product 𝜌𝐶𝑀 (q)𝜌𝐶𝑀 (−q)

entering eq. (4.30), which we deőne as the static structure factor

𝑆(q) = ⟨𝜌𝐶𝑀 (−q)𝜌𝐶𝑀 (q)⟩

=
1

𝑉

∫
𝑑3r𝑑3r′𝑒𝑖q·(r−r′) ⟨𝜌𝐶𝑀 (r)𝜌𝐶𝑀 (r′)⟩𝑇 .

(4.51)

Additionally, we deőne the form factor as the Fourier transform of the one-pasta density nor-

malized by its proton number:

𝐹𝑑 (q) =
1

𝑍

∫
WS

𝑑3r𝑒𝑖q·r𝜌𝑝 (r), (4.52)

where we add the subscript 𝑑 to denote its dependence on the pasta dimension. The matrix

element is now written as:

𝑊𝑝𝑝′ = 𝑒
2

(
1 − 𝑞2

4 ϵ2
𝑝

) ����4𝜋𝑍𝑒 𝐹𝑑 (q)𝑞2𝜀(𝑞)

����
2

𝑆(q), (4.53)

whereas both 𝐹𝑑 (q) and 𝑆(q) are sources of anisotropy in the scattering with pasta, the form

factor accounts for the geometric anisotropy from the őnite size of a single pasta structure,

while the structure factor accounts for the lattice anisotropies due to correlations and for out-of-
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equilibrium particle excitations [198,219ś222].

In the liquid phase, the static structure factor can be obtained with OCP simulations of

Coulomb plasma with Monte-Carlo calculations, e.g. refs. [223ś225], or via the classic theory

Landau-de Gennes model of liquid crystals that accounts for thermal density ŕuctuations in

liquid-crystals [219, 220, 226, 227]. In the solid phase, electrons start to interact with lattice

phonons of the system, which are accounted for via the structure factor by considering the ion

center-of-mass displacements. 𝑆(q) will depend on the lattice structure and on the phonons

energy spectrum and polarization, which will depend on the q orientation, leading to essential

differences between scatterings perpendicular and parallel to the pasta symmetry axis. To the

best of our knowledge, the structure factor of the nuclear pasta has not been calculated yet. This

is a non-trivial task and a work in progress.

The structure factor can also account for particle excitations within a single-pasta struc-

ture, as discussed in [221] for the pasta. Nevertheless, since those are due to single-particle-

excitations within the scatterer, they are relevant for high-energy scatterings (high 𝑞), which

essentially hides the structure of the scatterer, which is more relevant at lower 𝑞, thus the con-

tributions of particle excitations in the pasta and in the homogeneous matter are identical. We

do not consider these thermal particle excitations here, since they are not a source of anisotropy.

They are equivalent to the homogeneous structure factor, which was analytically calculated at

zero temperature [228].

Due to the lack of calculations of the structure factor we consider the pasta structures

are completely uncorrelated, so scatterings occur with a static pasta structure. Substitution of

eq. (4.48) considering a unique R𝑘 leads to

𝑆(q) = 𝜌𝑖 (4.54)

where 𝜌𝑖 is the ion density [46ś48]. In this case the anisotropy is fully due to the pasta geometry,

accounted for in the form factor.

For 𝐹𝑑 (q), analytic expressions can be found by direct integration of eq. (4.52) for the

spherical, cylindrical, and planar geometries

• Droplet: For droplets the proton density is 𝜌𝐼𝑝 =
3𝑍

4𝜋𝑅3
3

and due to the rotational symmetry
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Figure 22: Cluster geometries (droplets, rods and slabs, respectively), the transferred momentum of
electrons q and the magnetic őeld B = 𝐵𝑥x̂ + 𝐵𝑧ẑ are also shown.

we can choose q to lie in the 𝑧śaxis, such that

𝐹3(q) =
3

4𝜋𝑅3
3

∫ 2𝜋

0

𝑑𝜙

∫ 1

−1

𝑑 (cos 𝜃)
∫ 𝑅3

0

𝑟2 𝑑𝑟 𝑒𝑖𝑞 𝑟 cos 𝜃

=
3

2𝑅3
3

∫ 𝑅3

0

𝑟2 𝑑𝑟

[
𝑒𝑖𝑞 𝑟 − 𝑒−𝑖𝑞 𝑟

𝑖𝑞𝑟

]

=
3

(𝑞𝑅3)3
[cos(𝑞𝑅3) − 𝑞𝑅3 sin(𝑞𝑅3)] . (4.55)

In this case, the scattering depends only on the exchanged momentum absolute value

|q |, which is equivalent to a dependence in the angle between incoming and outgoing

momentum only, since

𝑞2
= 2 𝑝2

𝐹 (1 − cos 𝜉), (4.56)

where cos 𝜉 = p̂ · p̂ ′, meaning the scattering is isotropic. For the rods and slabs, the form

factor additionally depends on the angle formed between the pasta symmetry axis (and

its parallel plane) with the transferred momentum. By choosing the symmetry axis of the

geometries to coincide with the 𝑧-axis, this dependence turns out to be in the vector q

itself. This is depicted in Fig. 22.

• Rod: For rods the proton density is 𝜌𝑝 =
𝑍

𝜋𝑅2
2
𝐿2

and we choose 𝑧 as the symmetry axis,
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leaving q to point in an arbitrary direction. The form factor can be calculated as:

𝐹2(q ) =
1

𝜋𝑅2
2
𝐿2

∫ 𝐿2/2

−𝐿2/2
𝑑 𝑧

∫ 2𝜋

0

𝑑𝜙

∫ 𝑅2

0

𝜌 𝑑𝜌 𝑒𝑖𝑞(𝑧 cos 𝜃+𝜌 cos 𝜙 sin 𝜃)

=
1

𝜋𝑅2
2
𝐿2

[
𝑒𝑖𝑞𝐿 cos 𝜃/2 − 𝑒−𝑖𝑞𝐿 cos 𝜃/2

𝑖𝑞 cos 𝜃

] ∫ 𝑅2

0

𝜌 𝑑𝜌

∫ 2𝜋

0

𝑑𝜙 𝑒𝑖𝑞𝜌 cos 𝜙 sin 𝜃

=
2

𝑅2
2
𝐿2𝑞 cos 𝜃

sin

(
𝑞𝐿 cos 𝜃

2

) ∫ 𝑅2

0

𝜌 𝑑𝜌𝐽0

(
𝑞𝜌

√︁
1 − sin2 𝜃

)

=
2

𝐿2𝑞𝑧
sin

(
𝑞𝑧𝐿

2

)
2

𝑞⊥𝑅2

𝐽1 (𝑞⊥𝜌) (4.57)

where 𝑞𝑧 = 𝑞 cos 𝜃, 𝑞⊥ =

√︃
𝑞2
𝑥 + 𝑞2

𝑦 = 𝑞 | sin 𝜃 |, 𝐽0 is the zero-th order cylindrical Bessel

function

𝐽0(𝑥) =
1

𝜋

∫ 𝜋

0

𝑑𝜙𝑒𝑖𝑥𝑐𝑜𝑠(𝜙) . (4.58)

and 𝐽1 is the őrst-order cylindrical Bessel function

𝐽1(𝑥) =
1

𝑖𝜋

∫ 𝜋

0

𝑑𝜙𝑒𝑖𝑥𝑐𝑜𝑠(𝜙)𝑐𝑜𝑠(𝜙). (4.59)

• Slab: We choose the slab to be oriented such that in the 𝑥𝑦śplane it has lengths 𝐿1, and

in the 𝑧 axis it has length 2𝑅1. The proton density of the slab is 𝜌𝑝 = 𝑍/2𝑅1𝐿
2
1
. The form

factor is

𝐹1(q ) =
1

2𝑅2
1
𝐿2

1

∫ 𝐿1/2

−𝐿1/2
𝑑𝑥

∫ 𝐿1/2

−𝐿1/2
𝑑𝑦

∫ 𝑅1

−𝑅1

𝑒𝑞𝑥𝑥+𝑞𝑦𝑦+𝑞𝑧𝑧

=

(
2 sin (𝐿1𝑞𝑥/2)

𝐿1𝑞𝑥

) (
2 sin

(
𝐿1𝑞𝑦/2

)
𝐿1𝑞𝑦

) (
sin (𝑅1𝑞𝑧)
𝑅1𝑞𝑧

)
(4.60)

where 𝑞𝑥 = 𝑞 sin 𝜃 cos 𝜙, 𝑞𝑦 = 𝑞 sin 𝜃 sin 𝜙 and 𝑞𝑧 = 𝑞 cos 𝜃.

We write compactly for future reference:

𝐹𝑑 (q) =




3

(𝑞𝑅3)3
[sin(𝑞𝑅3) − 𝑞𝑅3 cos(𝑞𝑅3)] , d=3

2

𝑞𝑧𝐿2

sin

(
𝑞𝑧𝐿2

2

)
2

𝑞⊥𝑅2

𝐽1 (𝑞⊥𝑅2) , d=2

2

𝐿1𝑞𝑥
sin

(
𝐿1𝑞𝑥

2

)
2

𝐿1𝑞𝑦
sin

(
𝐿1𝑞𝑦

2

)
1

𝑅1𝑞𝑧
sin (𝑅1𝑞𝑧) , d=1

(4.61)

Recall that the radius 𝑅𝑑 can be calculated from the RMF model from eq. (2.70), but the length
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4.3 Isotropic case

In the isotropic case the matrix element 𝑊𝑝𝑝′ is a function of the absolute value of q

or, equivalently, of the angle between the electron initial and őnal momentum cos 𝜉 = p̂ · p̂′,

therefore we can make an expansion in Legendre polynomials

𝑊𝑝𝑝′ (𝑞) =
∑︁
𝑙

𝑤𝑙𝑃𝑙 (cos 𝜉) = 4𝜋

2𝑙 + 1

∑︁
𝑙

𝑙∑︁
𝑚=−𝑙

𝑤𝑙 𝑌
𝑚
𝑙 (Ω𝑝)𝑌𝑚∗𝑙 (Ω𝑝′), (4.69)

then we substitute eq. (4.69) and the expansion of the variation of the distribution function,

eq. (4.21) into the collision integral, eq. (4.35), such that

𝐼 [ 𝑓 ] = 2𝜋

∫
𝑑3p ′

(2𝜋)3
𝛿(ϵ𝑝 − ϵ𝑝′)𝑊𝑝𝑝′

[
𝛿 𝑓 (p′) − 𝛿 𝑓 (p)

]
,

= − 𝑝2

4𝜋2𝑣

∑︁
𝑙𝑚 𝐿𝑀

4𝜋

2𝐿 + 1
𝑤𝐿 𝛿 𝑓𝑙𝑚

∫
𝑑Ω𝑝′𝑌

𝑀
𝐿 (Ω𝑝)𝑌𝑀∗

𝐿 (Ω𝑝′)
[
𝑌𝑚𝑙 (Ω𝑝) − 𝑌𝑚𝑙 (Ω𝑝′)

]
, (4.70)

where we have used that

∫
𝑑 𝑝 𝑝2 𝛿(ϵ𝑝 − ϵ𝑝′) =

∫
𝑑ϵ𝑝 𝑝

2

|𝑑𝑣𝑝/𝑑𝑝 |
𝛿(ϵ𝑝 − ϵ𝑝′) =

𝑝2

𝑣
. (4.71)

By using the orthogonality property of spherical harmonics

∫
𝑑Ω𝑌𝑚𝑙 (Ω)𝑌𝑚′

𝑙′
∗(Ω) = 𝛿𝑙𝑙′𝛿𝑚𝑚′ (4.72)

and noticing that

∫
𝑑Ω𝑌𝑚𝑙 (Ω) =

√
4𝜋

∫
𝑑Ω𝑌𝑚𝑙 (Ω)𝑌0

0

∗(Ω) =
√

4𝜋𝛿𝑙0𝛿𝑚0 (4.73)

the collision integral is simpliőed to

𝐼 [ 𝑓 ] = − 𝑝2

4𝜋2𝑣

∑︁
𝑙𝑚

4𝜋 𝛿 𝑓𝑙𝑚𝑌
𝑚
𝑙 (Ω𝑝)

[
𝑤0 − 𝑤𝑙

2𝑙 + 1

]
. (4.74)

From this expression, we are able to deőne the isotropic collision time, deőned in

eq. (4.20), to be

𝜈𝑙 =
𝑝2

𝜋

[
𝑤0 −

𝑤𝑙

2𝑙 + 1

]
. (4.75)
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By inverting the matrix element expansion (4.69)

𝑤𝑙 =
2𝑙 + 1

2

∫ 1

−1

𝑑 cos 𝜉 𝑊𝑝𝑝′ 𝑃𝑙 (cos 𝜉) , (4.76)

we get the well-known result

𝜈𝑙 =
𝑝2

2𝜋𝑣

∫ 1

−1

𝑑 cos 𝜉𝑊𝑝𝑝′ [1 − 𝑃𝑙 (cos 𝜉)] , (4.77)

which can also be found in eq. 3.135 of [211].

To get the result commonly used in the literature of transport [32, 46ś48] we make a

change of variable using 𝑞2 = 2𝑝2(1 − cos 𝜉) :

∫ 1

−1

𝑑 cos 𝜉 =

∫ 2 𝑝𝐹

0

𝑞2𝑑 𝑞

𝑝2
(4.78)

such that for 𝑙 = 1 we have

𝜈𝑙=1 =
1

4𝜋𝑝2𝑣

∫ 2 𝑝𝐹

0

𝑞3𝑑𝑞𝑊𝑝𝑝′

=
4𝜋𝑒4𝑍2

𝑝2𝑣

∫ 2 𝑝𝐹

0

𝑑𝑞

𝑞

(
1 − 𝑞2

4 ϵ2
𝑝

)
𝐹2(𝑞)
𝜀2(𝑞)

𝑆(𝑞).
(4.79)

which is exactly eq. (4.22) if evaluated at the Fermi energy. Likewise, for 𝑙 = 2

𝜈𝑙=2 =
3

4𝜋𝑝2𝑣

∫ 2 𝑝𝐹

0

𝑞3𝑑𝑞

(
1 − 𝑞2

4𝑝2

)
𝑊𝑝𝑝′

=
12𝜋𝑒4𝑍2

𝑝2𝑣

∫ 2 𝑝𝐹

0

𝑑𝑞

𝑞

(
1 − 𝑞2

4 ϵ2
𝑝

) (
1 − 𝑞2

4𝑝2

)
𝐹2(𝑞)
𝜀2(𝑞)

𝑆(𝑞)
(4.80)

which can also be conőrmed by eqs. (2) and (3) of [51].

4.4 Anisotropic collision rates

Now we turn to the calculation of the pasta collision rates by generalizing the isotropic

calculation shown in 4.3. We will show that the pasta is described by two collision rates,

an axial (𝜈𝑎) and a perpendicular one (𝜈𝑝), and will derive analytical expressions for them.

Our results are in agreement with the intuitive proposal of [33] to generalize the collision time



76

approximation (eq. (4.9)) to the pasta as

𝐼 [ 𝑓 ] = −𝚽⊥ · v⊥𝜈𝑝 −Φ𝑧𝑣𝑧𝜈𝑎 (4.81)

where v is the electron velocity and 𝚽(ϵ𝑝) is deőned by 𝛿 𝑓 = v · 𝚽. While in [33] the

expression for the pasta conductivity was obtained using (4.81), the collision rates were treated

as free parameters and no analytical expressions for them were derived.

To do so we will make use of the spherical harmonics expansion one more time. The

collision integral expansion is now written as as [198]

𝐼 [ 𝑓 ] = −
∑︁

𝑙𝑚 𝑙′𝑚′
𝛿 𝑓𝑙𝑚

(
ϵ𝑝

)
𝜈𝑙

′𝑚′

𝑙𝑚 𝑌𝑚
′

𝑙′ (Ω𝑝), (4.82)

differing from the isotropic case as now the multiplicities 𝑙 and 𝑙′ can be mixed and there is an

explicit dependence on 𝑚 and 𝑚′. The coefficients 𝛿 𝑓𝑙𝑚 are the ones deőned in eq. (4.21)

To obtain analytical expressions for the collision rates we must use expansions of the

variation of the distribution, eq. (4.21), and of the transition rate (4.30) in (4.35). However,

the matrix element 𝑊𝑝𝑝′ for electron-pasta scattering is a function of the vector q, not of its

absolute value |q |, so the expansion in Legendre polynomials (4.69) of the isotropic case can no

longer be used. To proceed we consider the transition rate to be a function of the solid angles

of the incoming and outgoing electrons, 𝑊𝑝𝑝′ = 𝑊𝑝 𝑝′
(
Ω𝑝,Ω𝑝′ , ϵ𝑝

)
such that its expansion in

spherical harmonics is

𝑊𝑝 𝑝′
(
Ω𝑝,Ω𝑝′ , ϵ𝑝

)
=

∑︁
𝑙𝑚 𝑙′𝑚′

W𝑙𝑚 𝑙′𝑚′ (ϵ𝑝)𝑌𝑚𝑙 (Ω𝑝)𝑌𝑚
′

𝑙′ (Ω𝑝′). (4.83)

This expansion does not assume the nature of the anisotropy, being valid for any scattering.

Nevertheless, the pasta geometric symmetries and the assumption of elastic collision will sim-

plify our calculation later by constraining the coefficients W𝑙𝑚 𝑙′𝑚′ : in the 𝑥𝑦−plane rods are

invariant under arbitrary rotations 𝜙 → 𝜙+𝛿𝜙 and slabs under 𝜋/2 rotations: 𝜙 → 𝜙′ = 𝜙+𝜋/2.

Imposing these symmetries to the matrix element, a constraint on the sum𝑚+𝑚′ can be applied.

In the 𝑧-axis both are invariant under reŕections in the 𝑧śaxis, 𝜃 → 𝜋 − 𝜃, such that 𝑙 + 𝑙′ is
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constrained. The constraints due to the pasta symmetry in the coefficients W𝑙𝑚 𝑙′𝑚′ are

Rods



𝑙 + 𝑙′ = 2𝑘

𝑚 + 𝑚′ = 0

Slabs



𝑙 + 𝑙′ = 2𝑘

𝑚 + 𝑚′ = 4𝑘′
(4.84)

with 𝑘, 𝑘′ ∈ Z. Furthermore, elasticity implies that p and p′ are interchangeable, such that

𝑊𝑝𝑝′ = 𝑊𝑝′𝑝 =⇒ W𝑙𝑚 𝑙′𝑚′ = W𝑙′𝑚′ 𝑙𝑚 . (4.85)

Now we can substitute eqs. (4.21) and (4.83) into eq. (4.35) such that’

𝐼 [ 𝑓 ] = 2𝜋

∫
𝑑3p ′

(2𝜋)3
𝛿(ϵ𝑝 − ϵ𝑝′)𝑊𝑝𝑝′

[
𝛿 𝑓 (p′) − 𝛿 𝑓 (p)

]
,

= − 𝑝2

4𝜋2

∑︁
𝑙𝑚 𝐿𝑀 𝑎𝑏

W𝐿𝑀 𝑎𝑏 𝛿 𝑓𝑙𝑚

∫
𝑑Ω𝑝′𝑌

𝑀
𝐿 (Ω𝑝)𝑌 𝑏𝑎 (Ω𝑝′)

[
𝑌𝑚𝑙 (Ω𝑝) − 𝑌𝑚𝑙 (Ω𝑝′)

]

= − 𝑝2

4𝜋2

∑︁
𝑙𝑚 𝐿𝑀 𝑎𝑏

W𝐿𝑀 𝑎𝑏 𝛿 𝑓𝑙𝑚𝑌
𝑀
𝐿 (Ω𝑝)

[√
4𝜋𝛿𝑎0𝛿𝑏0𝑌

𝑚
𝑙 (Ω𝑝) − (−1)𝑚𝛿𝑎𝑙𝛿𝑏𝑚

]

= − 𝑝2

4𝜋2

∑︁
𝑙𝑚 𝐿𝑀

𝛿 𝑓𝑙𝑚𝑌
𝑀
𝐿 (Ω𝑝)

[√
4𝜋W𝐿𝑀 00𝑌

𝑚
𝑙 (Ω𝑝) − (−1)𝑚W𝐿𝑀 𝑙−𝑚

]
, (4.86)

where from the second to third line we used that 𝑌𝑚
𝑙

∗(Ω) = (−1)𝑚𝑌−𝑚
𝑙

(Ω), the orthogonality of

spherical harmonics (4.72), and simpliőed the 𝑝 integral with the 𝛿 function using eq. (4.71).

From the third to the fourth line, we simpliőed the Kronecker-𝛿s with the summations. In the

őrst term inside brackets we have a product of spherical harmonics of equal arguments, so we

use the contraction property

𝑌𝑚𝑙 (Ω)𝑌𝑀𝐿 (Ω) =
∑︁
𝑙′𝑚′

(−1)𝑚′
√︂

(2𝑙 + 1) (2𝐿 + 1) (2𝑙′ + 1)
4𝜋

©­«
𝑙 𝑙′ 𝐿

0 0 0

ª®¬
× ©­«

𝑙 𝑙′ 𝐿

𝑚 −𝑚′ 𝑀

ª®¬
𝑌 𝑏𝑎 (Ω)

(4.87)

to write it in terms of a unique one. Here,
©­«
𝑙1 𝑙2 𝑙3

𝑚1 𝑚2 𝑙3

ª®
¬

are the 3-j Wigner symbols, which are

not zero only if 𝑚1 + 𝑚2 + 𝑚3 = 0, |𝑙1 − 𝑙2 | < 𝑙3 < 𝑙1 + 𝑙2 and the sum 𝑙1 + 𝑙2 + 𝑙3 is an integer.
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They also obey the symmetry property

©­
«
𝑙1 𝑙2 𝑙3

𝑚1 𝑚2 𝑚3

ª®
¬
=

©­
«
𝑙2 𝑙3 𝑙1

𝑚2 𝑚3 𝑚1

ª®¬
=

©­«
𝑙3 𝑙1 𝑙2

𝑚3 𝑚1 𝑚2

ª®¬
, (4.88)

and their values can be read off tables or calculated via their connection to ClebschśGordan

coefficients ⟨𝑙1𝑚1, 𝑙2𝑚2 |𝑙3 − 𝑚3⟩ [232, 233]

©­
«
𝑙1 𝑙2 𝑙3

𝑚1 𝑚2 𝑚3

ª®¬
=

(−1)𝑙1−𝑙2−𝑚3

√
2𝑙3 + 1

⟨𝑙1𝑚1, 𝑙2𝑚2 |𝑙3 − 𝑚3⟩. (4.89)

Using eq. (4.87) the collision integral (4.86) is written as

𝐼 [ 𝑓 ] = − 𝑝2

4𝜋2

∑︁
𝑙𝑚 𝐿𝑀

𝛿 𝑓𝑙𝑚

[
W𝐿𝑀 00

∑︁
𝑙′𝑚′

(−1)𝑚′√︁(2𝑙 + 1) (2𝐿 + 1) (2𝑙′ + 1)

× ©­«
𝑙 𝑙′ 𝐿

0 0 0

ª®¬
©­«
𝑙 𝑙′ 𝐿

𝑚 −𝑚′ 𝑀

ª®¬
𝑌𝑚

′

𝑙′ (Ω𝑝) − (−1)𝑚W𝐿𝑀 𝑙−𝑚𝑌
𝑀
𝐿 (Ω𝑝)

]
.

(4.90)

Now we have a unique spherical harmonic and we are able to identify eqs. (4.82) and (4.90)

with each other. We can obtain the collision rates either by renaming the dummy indices or by

multiplying both equations by 𝑌 𝑏𝑎
∗(Ω𝑝) and integrating them in Ω𝑝, such that the orthogonality

relation (4.72) can be used to write

𝜈𝑙
′𝑚′

𝑙𝑚 =
𝑝2

4𝜋2𝑣

[
(−1)𝑚′√︁(2𝑙 + 1) (2𝑙′ + 1)

∑︁
𝐿𝑀

W𝐿𝑀 00

√
2𝐿 + 1

× ©­«
𝑙 𝑙′ 𝐿

0 0 0

ª®¬
©­«
𝐿 𝑙 𝑙′

𝑀 𝑚 −𝑚′
ª®¬
− (−1)𝑚W𝑙′𝑚′ 𝑙−𝑚

]
.

(4.91)

As a side note, we notice that a more compact form can be obtained for his expression by using

the WignerśEckart theorem and the spherical harmonics representation of irreducible tensor

operators of rank 𝑙 [234, 235],

𝐶 𝑙𝑚 =

√︂
4𝜋

2𝑙 + 1
𝑌𝑙𝑚 (Ω) , (4.92)

such that eq. (4.91) becomes

𝜈𝑙
′𝑚′

𝑙𝑚 =
𝑝2

4𝜋2𝑣

[∑︁
𝐿𝑀

W𝐿𝑀 00

√
2𝐿 + 1⟨𝑙′𝑚′|𝐶𝐿𝑀 |𝑙𝑚⟩ − (−1)𝑚W𝑙′𝑚′ 𝑙−𝑚

]
. (4.93)
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To further progress, we restrict ourselves to the case of conductivities. Recall that, since

only odd powers of momentum in a 𝛿 𝑓 expansion will contribute to the currents (4.1), (4.2),

meaning that only odd 𝑙 terms in the expansion (4.21) contribute. The left-hand side of eq. (4.12)

is linear in p, implying that only the coefficient 𝑙′ = 1 in eq. (4.82) contributes to the currents.

Nevertheless mixing between the 𝑙′ = 1 of the spherical harmonics and 𝑙 = 1, 3, 5... of 𝛿 𝑓𝑙𝑚

can occur. This is different from the isotropic case, where no mixing of multiplicities occurs

and only 𝛿 𝑓1𝑚 contributes to the conductivities. Nevertheless, these mixings are expected to

be corrections, and to this őrst calculation, we neglect them and restrict ourselves to the most

important contribution (see also [198]) by writing 𝜈𝑙
′𝑚′

𝑙𝑚
= 𝜈1𝑚′

1𝑚
𝛿𝑙1𝛿𝑙′1 in eq. (4.82). Due to the

symmetry rules in (4.84), this approximation is probably better justiőed in the case of pasta.

Since spherical harmonics are complex functions, so are the associated coefficients of

the expansion, namely 𝛿 𝑓𝑙𝑚 and 𝜈𝑙
′𝑚′

𝑙𝑚
. To obtain physical collision rates we must rewrite the

expansions eqs. (4.21) and (4.82) in terms of real coefficients. To this goal, we deőne the real

spherical harmonics

Y𝑙𝑚 =




𝑖
√

2

(
𝑌𝑚𝑙 − (−1)𝑚𝑌−𝑚

𝑙

)
𝑚 < 0

𝑌0
𝑙 𝑚 = 0

1
√

2

(
𝑌−𝑚
𝑙 + (−1)𝑚𝑌𝑚𝑙

)
𝑚 > 0

(4.94)

The 𝑙 = 1 term of eq. (4.21) is now written as

𝛿 𝑓 (p)
���
𝑙=1

= Y11𝛿 𝑓𝑥 + Y1−1𝛿 𝑓𝑦 + Y10𝛿 𝑓𝑧 (4.95)

where the real (physical) coefficients are

𝛿 𝑓𝑥 =
𝛿 𝑓1−1 − 𝛿 𝑓11√

2
, 𝛿 𝑓𝑦 =

𝛿 𝑓1−1 + 𝛿 𝑓11√
2𝑖

, 𝛿 𝑓𝑧 = 𝛿 𝑓10, (4.96)

and substituting eqs. (4.94) and (4.96) in the collision integral expansion, eq. (4.82), we get

𝐼 [ 𝑓 ] =
(
Y11 Y1−1 Y10

) ©­­­­«

𝜈𝑥𝑥 𝜈𝑥𝑦 𝜈𝑥𝑧

𝜈𝑦𝑥 𝜈𝑦𝑦 𝜈𝑦𝑧

𝜈𝑧𝑥 𝜈𝑧𝑦 𝜈𝑧𝑧

ª®®®®¬

©­­­­«

𝛿 𝑓𝑥

𝛿 𝑓𝑦

𝛿 𝑓𝑧

ª®®®®¬
(4.97)
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with the physical collision rates ν̂ given by:

ν̂ =

©­­­­­«

1
2

(
𝜈11

11
+ 𝜈1−1

1−1
− 𝜈1−1

11
− 𝜈11

1−1

)
𝑖
2

(
𝜈11

11
− 𝜈1−1

1−1
+ 𝜈1−1

11
− 𝜈11

1−1

)
1√
2

(
𝜈10

1−1
− 𝜈10

11

)
𝑖
2

(
−𝜈11

11
+ 𝜈1−1

1−1
+ 𝜈1−1

11
+ 𝜈11

1−1

)
𝑖
2

(
𝜈11

11
+ 𝜈1−1

1−1
+ 𝜈1−1

11
+ 𝜈11

1−1

)
𝑖√
2

(
𝜈10

1−1
+ 𝜈10

11

)
1√
2

(
𝜈1−1

10
− 𝜈11

10

)
−𝑖√

2

(
𝜈11

10
+ 𝜈1−1

10

)
𝜈10

10

ª®®®®®¬
(4.98)

The constraint of elasticity in the coefficientsW𝑙𝑚 𝑙′𝑚′ given in eq. (4.85) can be expressed

in the complex collision frequencies as 𝜈1𝑚′

1𝑚
= (−1)𝑚+𝑚′

𝜈1−𝑚
1−𝑚′ , making them matrix ν̂ symmetric:

𝜈𝑖 𝑗 = 𝜈 𝑗𝑖. Additionally, the pasta symmetries given in eq. (4.84) imply

𝜈11
1−1 = 𝜈1−1

11 = 𝜈1±1
10 = 𝜈10

1±1 = 0 ⇒ 𝜈𝑥𝑦 = 𝜈𝑥𝑧 = 𝜈𝑦𝑧 = 0

𝜈11
11 = 𝜈1−1

1−1 ⇒ 𝜈𝑥𝑥 = 𝜈𝑦𝑦 .

(4.99)

That is, off-diagonal terms vanish and the collision rates perpendicular to the symmetry axis, 𝑥𝑥

and 𝑦𝑦, are equal 3, so our collision rate matrix is

ν̂ =

©­­­­«

𝜈𝑥𝑥 𝜈𝑥𝑦 𝜈𝑥𝑧

𝜈𝑦𝑥 𝜈𝑦𝑦 𝜈𝑦𝑧

𝜈𝑧𝑥 𝜈𝑧𝑦 𝜈𝑧𝑧

ª®®®®¬
=

©­­­­«

𝜈𝑝 0 0

0 𝜈𝑝 0

0 0 𝜈𝑎

ª®®®®¬
(4.100)

Whereas we have őnally obtained the axial and perpendicular collision rates, which can be

calculated from eq. (4.91) using the symmetries of the 3j-Wigner symbols to be

𝜈𝑎 (ϵ𝑝) = 𝜈10
10 =

𝑝2

4𝜋2𝑣

[
W00,00 −W10,10 +

1
√

5

(
𝑊20,00 +W00,20

) ]
(4.101)

and

𝜈𝑝 (ϵ𝑝) = 𝜈11
11 =

𝑝2

4𝜋2𝑣

[
W00,00 −

1

2
√

5

(
W20,00 +W00,20

)
+ 1

2

(
W11,1−1 +W1−1,11

) ]
. (4.102)

To be certain that this is equivalent to the collision rates proposed in [33] we write, without any

loss of generality, 𝛿 𝑓𝑘 =
√︁

4𝜋/3Φ𝑘 (ϵ𝑝) |v |, 𝑘 = 𝑥, 𝑦, 𝑧, which is equivalent to

𝛿 𝑓 |𝑙=1 = v ·𝚽, (4.103)

3In the case of slabs this is valid only because 𝐿1𝑥 = 𝐿1𝑦 = 𝐿1
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such that the 𝑙′ = 𝑙 = 1 term of the collision integral expansion, eq. (4.82), can be rewritten as

𝐼 [ 𝑓 ] = −𝑣𝑧Φ𝑧𝜈𝑎 − v𝑝 ·𝚽𝑝𝜈𝑝, (4.104)

which is exactly Eq. (8) of [33].

To write the collision rates in terms of eq. (4.30) we invert the expansion of eq. (4.83)

W𝑙𝑚 𝑙′𝑚′ =

∫
𝑑Ω𝑝𝑑Ω𝑝′𝑊𝑝𝑝′𝑌

𝑚
𝑙

∗(Ω𝑝)𝑌𝑚
′

𝑙′
∗(Ω𝑝′), (4.105)

such that

𝜈𝑎
(
ϵ𝑝

)
=

3

32𝜋3𝑣

∫
𝑑Ω𝑝𝑑Ω𝑝′𝑊𝑝𝑝′ 𝑞

2 cos2 𝜃𝑞 (4.106)

𝜈𝑝
(
ϵ𝑝

)
=

3

32𝜋3𝑣

∫
𝑑Ω𝑝𝑑Ω𝑝′𝑊𝑝𝑝′ 𝑞

2 1

2
sin2 𝜃𝑞 .. (4.107)

These expressions could apply to any elastic collision with cylindrical or planar symmetry, not

necessarily the electronśpasta we are dealing with. To write this in a form that can be compared

with the isotropic eq. (4.22) we make a change of variable

∫
𝑑Ω𝑝𝑑Ω

′
𝑝 =

2𝜋

𝑝2

∫
𝑑3q

𝑞
, (4.108)

and we use eq. (4.30) to write the anisotropic collision rates as:

𝜈𝑎
(
ϵ𝑝

)
=

12𝜋𝜌𝑖𝑒
4𝑍2

𝑣𝑝2

∫ 2𝑝

0

𝑑𝑞

𝑞

1

𝜀2(𝑞)

(
1 − 𝑞2

4ϵ2
𝑝

) ∫
𝑑Ω𝑞

4𝜋
|𝐹𝑑 (q) |2 cos2 𝜃𝑞 (4.109)

𝜈𝑝
(
ϵ𝑝

)
=

12𝜋𝜌𝑖𝑒
4𝑍2

𝑣𝑝2

∫ 2𝑝

0

𝑑𝑞

𝑞

1

𝜀2(𝑞)

(
1 − 𝑞2

4ϵ2
𝑝

) ∫
𝑑Ω𝑞

4𝜋
|𝐹𝑑 (q) |2

1

2
sin2 𝜃𝑞 . (4.110)

Comparing these to the isotropic collision frequency, eq. (4.22), we notice the difference to be the

presence of a multiplicative factor of 3 in both expressions and an angular average in Ω𝑞, which

weights the form factors by cos 𝜃𝑞 and sin2 𝜃𝑞/2 in the axial and perpendicular components,

respectively. These equations are the main results we have obtained.

Following the spirit of calculations in the isotropic regime we write the collision rates
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in terms of adimensional functions named Coulomb logarithms

𝜈𝑘 =
12𝜋𝜌𝑖𝑒

4𝑍2

𝑣𝑝2
Λ𝑑,𝑘 (4.111)

with

Λ𝑑,𝑘 =

∫ 2𝑝𝐹

0

𝑑𝑞

𝑞

1

𝜀2(𝑞)

(
1 − 𝑞2

4ϵ2
𝐹

)
⟨𝐹2
𝑑 (𝑞)⟩𝑘 (4.112)

for which we deőned the weighted averages

⟨𝐹2
𝑑 (𝑞)⟩𝑎 =

∫
𝑑Ω𝑞

4𝜋
|𝐹𝑑 (q) |2 cos2 𝜃𝑞, (4.113)

⟨𝐹2
𝑑 (𝑞)⟩𝑝 =

∫
𝑑Ω𝑞

4𝜋
|𝐹𝑑 (q) |2

1

2
sin2 𝜃𝑞 (4.114)

(4.115)

that are shown in (a) and (b) of Fig. 28 with 𝐿eff
𝑑

=
√

2𝐿1𝑊𝑆. For the rods the perpendicular

average is larger than the axial one, as expected intuitively from its geometry. The opposite is

true for the slab. In panels (c) and (d) of the same őgure we show the angular averaged form

factor

⟨𝐹2
𝑑 (𝑞)⟩𝑎 + 2 ⟨𝐹2

𝑑 (𝑞)⟩𝑝 =
∫

𝑑Ω𝑞

4𝜋
|𝐹𝑑 (q) |2 (4.116)

of rods and slabs compared to the form factor of the droplet, with its radius calculated at the

same density as the pasta. The difference is essentially at low 𝑞, where the average form factor

of the pasta is smaller than the one of spherical droplets.

To evaluate the effect of the uncertainty on the estimation of 𝐿𝑑 , in Fig. 29 we show

the axial and perpendicular Coulomb logarithms eq.(4.112) and the ratio of perpendicular to

axial collision frequency eq.(4.111) as a function of the ratio of the pasta length 𝐿𝑑 to the WS-

radius 𝑅𝑊𝑑 for rods and slabs. For rods (slabs), the perpendicular component of the Coulomb

logarithm is larger (smaller) than the axial one, and the difference between them increases

with the growing length of the pasta, varying up to 100 (0.01) when 𝐿𝑑 ≈ 150 𝑅𝑊 . This

shows that a precise estimation of the length of the structures is important for the quantitative

determination of the collision frequencies, as it affects in a considerable way the difference

between the two scattering directions. In particular, the deviation from an isotropic scattering is

small only for small values of 𝐿𝑑/𝑅𝑊 , corresponding to the high-temperature regime. At smaller

temperatures, as correlations become more important, a larger transverse length will contribute
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4.5 Pasta conductivity

Now we turn to connect our calculation of the pasta collision rates to the conductivities

by calculating the electron distribution function variation 𝛿 𝑓 , which amounts to őnding 𝚽.

This calculation was őrst made in [33], and we reproduce it in detail. We assume an external

magnetic őeld lying on the 𝑥𝑧-plane B = 𝐵 (cos 𝜃𝑏x̂ + sin 𝜃𝑏ẑ) and a weak electric őeld E such

that F = −𝑒(E + v ×B), and can start our discussion from eqs. (4.12) and (4.81)

(
− 𝜕 𝑓0
𝜕ϵ𝑝

)
v ·

[
𝜕𝜇

𝜕x
+ 𝑒E +

ϵ𝑝 − 𝜇
𝑇

𝜕𝑇

𝜕x

]
− 𝑒(v ×B) · 𝜕𝛿 𝑓

𝜕p
= −𝑣𝑧Φ𝑧𝜈𝑎 − v𝑝 ·𝚽𝑝𝜈𝑝, (4.117)

For simplicity, we deőne the electron gyrofrequency 𝜔 = 𝑒𝐵/ϵ𝑝, the unity vector b that

points in the direction of the magnetic őeld b = B/𝐵 and the vector

F =

(
− 𝜕 𝑓0
𝜕ϵ𝑝

) [
𝜕𝜇

𝜕x
+ 𝑒E +

ϵ𝑝 − 𝜇
𝑇

𝜕𝑇

𝜕x

]
. (4.118)

Note that, by substituting 𝛿 𝑓 ≈ 𝛿 𝑓 |𝑙=1 = 𝚽·v in eq. (4.117), our problem amounts to determining

the vector 𝚽 and application of linear algebra techniques become straightforward. Using the

relations above and writing the derivative in the term with magnetic őeld as 𝜕𝛿 𝑓 /𝜕p = 𝚽/ϵ𝑝,

eq. (4.117) can be written as

v · F − 𝜔𝚽 · (v × b) = −𝑣𝑧Φ𝑧𝜈𝑎 − v𝑝 ·𝚽𝑝𝜈𝑝, (4.119)

Using 𝚽 · (v × b) = v · (b ×𝚽) and 𝐼 [ 𝑓 ] = v · 𝜈̂ · 𝚽 we are able to completely factorize the

vector v

v · F = v ·
[
ν̂ ·𝚽 + 𝜔𝑏 ×𝚽)

]
, (4.120)

and now we can write this equation in matrix form as

F = 𝚷̂𝚽 (4.121)

where

𝚷̂ =

©­­­­
«

−𝜈𝑝 −𝜔𝑏𝑧 0

𝜔𝑏𝑧 −𝜈𝑝 −𝜔𝑏𝑥
0 𝜔𝑏𝑥 −𝜈𝑎

ª®®®®
¬
, (4.122)
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and the task of determining Φ amounts to őnding the inverse of 𝚷̂ such that

𝚽 = 𝚷̂
−1
F . (4.123)

We can conőrm that the matrix is indeed invertible by assuring the determinant is not zero:

Δ = − det 𝚷̂ = 𝜈2
𝑝𝜈𝑎 + 𝜔2𝑏2

𝑥𝜈𝑝 + 𝜔2𝑏2
𝑧𝜈𝑎 ≠ 0 (4.124)

and to őnd the solution we need the adjoint of the 𝚷̂ matrix, 𝚷̂
∗
, since the inverse can be written

as [236]

𝚷̂
−1

= − 1

Δ
𝚷̂

∗
(4.125)

which can be readily obtained by calculating the minors of 𝚷̂. The result is

𝚷̂
∗
=

©­­­­«

𝜈𝑎𝜈𝑝 + 𝜔2𝑏2
𝑥 −𝜔𝑏𝑧𝜈𝑎 𝜔2𝑏𝑥𝑏𝑧

𝜔𝑏𝑧𝜈𝑎 𝜈𝑎𝜈𝑝 −𝜔𝑏𝑥𝜈𝑝
𝜔2𝑏𝑥𝑏𝑧 𝜔𝑏𝑥𝜈𝑝 𝜈2

𝑝 + 𝜔2𝑏2
𝑧

ª®®®®
¬
. (4.126)

To calculate the conductivity we can take 𝜕x𝑇 = 0, such that, from eq. (4.1)

𝐽𝑒 𝑖 = −𝑒2

∫
𝑑3p

(2𝜋)3
𝑣𝑖𝑣 𝑗

(
− 𝜕 𝑓0
𝜕ϵ𝑝

) (
− 1

Δ
Π

∗
𝑗 𝑘

)
𝐸∗
𝑘 , (4.127)

which leads to

𝐽𝑒 𝑖 =
𝑒2

3𝜋2Δ

∫ ∞

0

𝑑ϵ𝑝2𝑣

(
− 𝜕 𝑓0
𝜕ϵ𝑝

)
Π

∗
𝑖 𝑗𝐸

∗
𝑗 . (4.128)

The use of eqs. (4.16) and of the Sommerfeld expansion, eq. (4.17), which in our case

implies

𝐽𝑒 𝑖 =
𝑒2𝑝2

𝐹
𝑣𝐹

3𝜋2Δ
Π

∗
𝑖 𝑗 (ϵ𝐹) 𝐸∗

𝑗 . (4.129)

leads to the expression for the electric conductivity via the linear response deőnition (4.4):

𝜎𝑖 𝑗 =
𝑒2𝑝3

𝐹

3𝜋2𝑚∗
𝑒Δ

Π
∗
𝑖 𝑗 =

𝑒2𝑛𝑒

𝑚∗
𝑒Δ

Π
∗
𝑖 𝑗 , (4.130)

where we use 𝑚∗
𝑒 = ϵ𝐹 since this is a more standard notation in the literature when natural units
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are not used (𝑚∗
𝑒 = ϵ𝐹/𝑐2). In the limit of 𝐵 → 0 we get

𝜎𝑖 𝑗 =
𝑒2𝑛𝑒

𝑚∗
𝑒

©­­­­«

𝜈−1
𝑝 0 0

0 𝜈−1
𝑝 0

0 0 𝜈−1
𝑎

ª®®®®¬
, (4.131)

that is, we get a perpendicular and an axial conductivity, given by

𝜎0𝑝 =
𝑒2𝑛𝑒

𝑚∗
𝑒𝜈𝑝

, 𝜎0𝑎 =
𝑒2𝑛𝑒

𝑚∗
𝑒𝜈𝑎

. (4.132)

The thermal conductiviy can be found using the Wiedemann-Franz law

κ̂ =
𝜋2𝑘2

𝐵
𝑇

3𝑒2
σ̂. (4.133)

The behavior of both conductivities is identical as a function of pasta length and density,

thus it would be interesting to study the thermal conductivity as a function of temperature.

Nevertheless, our high-temperature limit is very restrictive, so we restrain ourselves to analyzing

only the electric conductivity.

Though we have provided a complete formalism to the calculation of the conduction, the

collision rates depend on the proton number as 𝑍2 and 𝑍 depends on the pasta length as ∝ 𝐿2

(∝ 𝐿2
1
) for rods (slabs). Therefore, even though we have őxed the effective scattering length as

𝐿𝑑 =
√

2𝐿1𝑊𝑆, there is a very large uncertainty associated with this choice. The dependence of

⟨𝜎0⟩ with the choice of 𝐿 is shown on the left-hand side of Fig. 32, where we see a variation of

four orders of magnitude. On the right-hand side, however, we show the average conductivity

as a function of density using the effective lengths eq. (4.67). In the high-temperature regime

assumed here, there is a discontinuity when the abrupt change of geometry happens. Even

though the collision rates are not dramatically different from the isotropic one, this discontinuity

can be attributed to the discontinuity in the proton number, since the discontinuities in the

Coulomb logarithms are not as pronounced ś see őg. 30. The anomalously high resistivity of

the pasta layer reported in the literature [40] is nicely reproduced by our calculations, and it is

seen to be essentially due to the high 𝑍 value of the clusters close to the crust-core transition,

more than to the speciőc geometry of the pasta phases.

We now turn to the effect of the magnetic őeld on the conductivities. When including the
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and 𝜎𝐻 = e1 · 𝜎̂ · e2, such that

©­­­­
«

𝜎⊥

𝜎∥

𝜎𝐻

ª®®®®
¬
=
𝑒2𝑛𝑒

𝑚∗
𝑒Δ

©­­­­
«

𝜈𝑝𝜈𝑎𝑏
2
𝑥 + 𝜈2

𝑝𝑏
2
𝑧 + 𝜔2

𝜈𝑎𝜈𝑝 (𝑒2
1𝑥
+ 𝑒2

1𝑦
) + 𝜈2

𝑝𝑒
2
1𝑧

𝜔(𝜈𝑎𝑏2
𝑧 + 𝜈𝑝𝑏2

𝑥) − 𝑒1𝑧𝑒1𝑦𝑏𝑥 (𝜈2
𝑝 − 𝜈𝑎𝜈𝑝)

ª®®®®¬
(4.134)

and we can average the coefficients over all possible directions of the magnetic őeld, which is

equivalent to assuming random pasta directions with a constant magnetic őeld. Making the

average

⟨𝜎𝑥⟩ =
1

4𝜋

∫
𝑑 cos 𝜃𝑏𝑑𝜙𝑏𝜎𝑥 (4.135)

leads to the average perpendicular, parallel, and Hall conductivities

©­­­­«

⟨𝜎⊥⟩

⟨𝜎∥⟩

⟨𝜎𝐻⟩

ª®®®®¬
=
𝑒2𝑛𝑒

𝑚∗
𝑒𝜔

2

©­­­­«

(𝜔2 + 𝜈𝑝𝜈𝑎) (𝜈2
𝑝 + 𝜔2)𝐻 − 𝜈𝑝

1
2
[𝜈𝑎𝜈𝑝 (𝜔2 − 𝜈2

𝑝)𝐻 + 𝜈𝑝]

𝜔(1 − 𝜈𝑎𝜈𝑝𝐻)

ª®®®®
¬

with 𝐻 =




(𝑠𝑟)−1 arctan(𝑠/𝑟) 𝜈𝑎 > 𝜈𝑝

(𝑠𝑟)−1 arctanh(𝑠/𝑟) 𝜈𝑎 < 𝜈𝑝

(𝜈3
𝑎 + 𝜔2𝜈𝑎)−1 𝜈𝑎 = 𝜈𝑝

(4.136)

𝑠 = 𝜔
√︁
|𝜈𝑎 − 𝜈𝑝 | and 𝑟 =

√︃
𝜈𝑝 (𝜔2 + 𝜈𝑎𝜈𝑝). For 𝐵 → 0 we get

⟨𝜎⊥⟩ = ⟨𝜎∥⟩ =
𝑒2𝑛𝑒

𝑚∗
𝑒

⟨𝜈−1⟩, ⟨𝜈−1⟩ = 1

3

(
2

𝜈𝑝
+ 1

𝜈𝑎

)
(4.137)

and the Hall parameters is zero ⟨𝜎𝐻⟩ → 0. One must notice that the average conductivity is

proportional to the average of the inverse of ⟨𝜈⟩, and not ⟨𝜈⟩ itself, therefore its calculation

does not amount to averaging the matrix element over Ω𝑞. In Fig. 35 we show the average

conductivities for rods and slabs, respectively, in units of the average conductivity with 𝐵 = 0.

To conclude this discussion, it is important to note that for all the calculations reported in

this thesis, the inner crust structure was computed without accounting for the magnetic őeld.

Numerous studies exist in the literature addressing this point, using CLD or Thomas-Fermi

techniques with different nuclear models, see e.g. [239ś242]. The general result of these works

is that only extreme magnetic őelds of the order of 𝐵 = 1018 G affect the density proőles of

the Wigner-Seitz cells, with an increased average proton fraction, particularly in the outer part

of the inner crust dominated by spherical nuclei, and an increase of the charge of the pasta

structures, that however does not exceed ≈ 10 − 20%. These modiőcations would not affect the

results presented in Figs. 34 and 35, and would lead to an extra decrease of the conductivity
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5 Digression: related work

In this section, we brieŕy discuss other works I have either published or submitted during

the period of my doctorate but which did not őt the main scope of the thesis.

5.1 Effect of short-range correlations in nuclear pasta

In this section, we examine how short-range nucleon correlations can impact the ap-

pearance of the nuclear pasta. Pairs of nucleons are strongly correlated in nuclei, leading to a

high momentum tail in the single nucleon distributions that decays as 𝑘−4. Such short-range

correlations (SRCs) can modify many of the nuclear properties [244ś248]. To construct an

equation of state with SRC included, the Lagrangian density is still given by Eq. (2.2), but with

the Fermi-Dirac distribution (2.33) replaced by a new momentum distribution function, namely,

𝑓𝑛,𝑝 (𝑘) =




Δ𝑛,𝑝, 0 < 𝑘 < 𝑘𝐹 𝑛,𝑝

𝐶𝑛,𝑝 𝑘
4
𝐹 𝑛,𝑝

𝑘4
, 𝑘𝐹 𝑛,𝑝 < 𝑘 < 𝜙𝑛,𝑝𝑘𝐹 𝑛,𝑝,

(5.1)

with Δ𝑛,𝑝 = 1 − 3𝐶𝑛,𝑝 (1 − 1/𝜙𝑛,𝑝), 𝐶𝑝 = 𝐶0 [1 − 𝐶1(1 − 2𝑌𝑝)], 𝐶𝑛 = 𝐶0 [1 + 𝐶1(1 − 2𝑌𝑝)],

𝜙𝑝 = 𝜙0 [1 − 𝜙1(1 − 2𝑌𝑝)] and 𝜙𝑛 = 𝜙0 [1 + 𝜙1(1 − 2𝑌𝑝)]. The values of the constants 𝐶0,1,

𝜙0,1 we use are 𝐶0 = 0.161, 𝐶1 = −0.25, 𝜙0 = 2.38 and 𝜙1 = −0.56. All these numbers were

extracted from Ref. [244]. The idea is that the SRCs reduce the Fermi-Dirac step function up

to 𝑘𝐹 , which is done by the multiplicative factor Δ𝑞 < 1, and a high-momentum tail ∝ 𝑘−4

is added between 𝑘𝐹 and 𝜙𝑞𝑘𝐹 > 𝑘𝐹 , for the density to be kept constant. The modiőcations

introduced in the momentum distribution function then affect all thermodynamic quantities of

the system, namely the scalar densities (2.32), chemical potentials of protons and neutrons, the

energy (2.37), and the pressure (2.38).

When SRCs are included, the Lagrangian parametrization changes. The new parametriza-

tion is obtained by imposing that it reproduces the same bulk parameters of their versions without

SRC, namely, saturation density (𝜌0), binding energy, effective mass, incompressibility, symme-

try energy, and symmetry energy slope, all of them evaluated at 𝜌0, as shown in Tab. 3. In Tab. 7

we show the IUFSU-SRC parametrization, which reproduces the IUFSU parameters. While the

original parametrizations might have been constructed to correctly describe some features of
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Table 8: Vacuum mass, electric charge, isospin 3rd component, spin, normalized magnetic moment, and
normalized anomalous magnetic moment of baryons considered in this work. Electric charge is shown

in units of the electron charge and 𝜇𝑁 is the nuclear magneton.

𝑀𝑏 (MeV) 𝑒𝑏 (𝑒) 𝐼3 𝑏 𝑆𝑏 𝜇𝑏/𝜇𝑁 𝜅𝑏/𝜇𝑁
𝑝 939 +1 +1

2
1/2 2.79 1.79

𝑛 939 0 −1
2

1/2 −1.91 −1.91

Λ 1116 0 0 1/2 −0.61 −0.61

Σ+ 1193 +1 +1 1/2 2.46 1.67

Σ0 1193 0 0 1/2 1.61 1.61

Σ− 1193 −1 −1 1/2 −1.16 −0.37

Ξ0 1315 0 +1
2

1/2 −1.25 −1.25

Ξ− 1315 −1 −1
2

1/2 −0.65 0.06

Δ++ 1232 +2 +3
2

3/2 4.99 3.47

Δ+ 1232 +1 +1
2

3/2 2.49 1.73

Δ0 1232 0 −1
2

3/2 0.06 0.06

Δ− 1232 −1 −3
2

3/2 −2.45 −1.69

2.7+1.0
−1.3

± 1.5 that comes from the 𝛾𝑝 → 𝑝𝜋𝛾′ reaction [255], while for the Δ++ there are several

measurements coming from the 𝜋+𝑝 → 𝜋+𝑝𝛾 bremsstrahlung cross section, with values in

the range 𝜇Δ++/𝜇𝑁 = 3.7 − 7.5 [254]. These measurements include systematic uncertainties,

but additional theoretical uncertainties lead to errors ≈ ±3. Complementary to experimental

results, lattice quantum chromodynamics (LQCD) has been able to extract AMM values for Δ

baryons. The values utilized in this paper are based on the predictions from LQCD provided

in [256] that lie within the experimental uncertainties of the experimentally measured AMMs.

Although the expression (5.2) is derived for spin-1/2 fermions in the non-relativistic regime,

it is still commonly employed in the description of the Δ baryonsç [257, 258]. This subject is

controversial, as the Rarita-Schwinger equation with minimal coupling predicts a gyromagnetic

ratio of 2/3, while low energy/optical theorems predict a value of 2. For a more in-depth

discussion, we refer to [259], which studies a generic non-minimal electromagnetic coupling

in the Rarita-Schwinger formalism. In this work, we also account for the leptons (electron and

muon) AMMs, given by 𝜅𝑒/𝜇𝐵𝑒 = 1.15965 × 10−3 and 𝜅𝜇/𝜇𝐵𝜇
= 1.16592 × 10−3, respectively,

with 𝜇𝐵𝑙 = 𝑒/2𝑀𝑙 , for 𝑙 = {𝑒,𝜇}. Different properties of the baryons considered in this study

are shown in Tab. 8.

To describe magnetized baryons with AMMs we add the hyperons and Δs to the La-

grangian by adding a sum over baryons 𝑏 = 𝑁, 𝐻,Δ instead of the nucleon Lagrangian (2.3),
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i.e.

L𝑁 =⇒
∑︁
𝑏

L𝑏 (5.3)

with

L𝑏 = 𝜓̄𝑏

[
𝛾𝜇

(
𝑖𝜕𝜇 −

1

4
𝜅𝑏𝜎𝜇𝜈𝐹

𝜇𝜈

)
− 𝛾0

(
𝑔𝑣𝑏𝑉0 + 𝑔𝜙𝑏𝜙0 + 𝑔𝑏𝑏 𝐼3𝑏𝑏0

)
+ 𝑔𝑠𝑏𝜎0 − 𝑀𝑏

]
𝜓𝑏, (5.4)

in the RMF, and 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈−𝜕𝜈𝐴𝜇, 𝜎𝜇𝜈 = 𝑖
2
[𝛾𝜇,𝛾𝜈], and the vector potential 𝐴𝜇 = (0, 0, 𝐵𝑥, 0)

is chosen such that the magnetic őeld is parallel to the 𝑧-axis. We additionally introduce the

strange 𝜙-meson that couples to hyperons. Since Δs are spin 3/2 particles, they are in fact

described by the Rarita-Schwinger equation, but in the mean őeld approximation its Lagrangian

can be written as if it were a spin 1/2 particle, thus the index 𝑏 includes nucleons, hyperons and

Δs [260]. A dynamic term to the photon őeld also has to be added

L𝐸𝑀 = −1

4
𝐹𝜇𝜈𝐹𝜇𝜈 . (5.5)

A solution to the equations of motion can be found by choosing a representation of the Dirac

matrices [261, 262]. The main effect in the thermodynamic quantities is that the 3-momentum

integrals are changed: while the 𝑧-component is still integrated as a continuum, in the plane

perpendicular to the magnetic őeld the momentum integral turns to a summation in discrete

Landau levels 𝜈 [263], ∫
𝑑3k → |𝑒𝑏𝐵 |

2𝜋

∑︁
𝜈

∫ ∞

−∞

𝑑𝑘𝑧

2𝜋
(5.6)

which are given by

𝜈 = 𝑛 + 1

2
− 𝑠

2

𝑒𝑏

|𝑒𝑏 |
, (5.7)

with 𝑛 = 0,1,2.... For particles with spin 1/2, the őrst Landau level (𝜈 = 0) is occupied by a

single spin projection: 𝑠 = +1 for 𝑞𝑏 > 0 and 𝑠 = −1 for 𝑞𝑏 < 0. The second level (𝜈 = 1) and

above are occupied by both spin projections 𝑠 = {±1}. For the spin-3/2 positively charged Δs,

the őrst level (𝜈 = 0) is occupied by the spin projections s= {+3, +1}, the second level (𝜈 = 1)

by 𝑠 = {+3,±1}, and hereafter all spin states are occupied. For the negatively charged Δ− spin

projection, signs are reversed for the lowest levels. At zero temperature, there is a maximum

Landau level

𝜈max𝑏 (𝑠) =
⌊ (
𝐸∗
𝐹 𝑏

+ 𝑠𝜅𝑏𝐵
)2 − 𝑀∗

𝑏
2

2|𝑒𝑏 |𝐵

⌋
. (5.8)
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where the Fermi energy is

𝐸∗
𝐹 𝑏 = 𝜇𝑏 − 𝑔𝑣𝑏𝜔0 − 𝑔𝑏𝑏 𝐼3𝑏𝜌0 − 𝑔𝜙𝑏𝜙0 , (5.9)

The maximum Landau level is determined by the point where the Fermi momentum is zero. The

Fermi momentum squared is given by

𝑘2
𝐹 𝑏 =



𝐸∗
𝐹 𝑏

2 −
(
𝑀∗
𝑏
− 𝑠𝜅𝑏𝐵

)2
𝑒𝑏 = 0

𝐸∗
𝐹 𝑏

2 −
(√︃
𝑀∗2
𝑏

+ 2𝜈 |𝑒𝑏 |𝐵 − 𝑠𝜅𝑏𝐵
)2

𝑒𝑏 ≠ 0

(5.10)

so for charged particles, it diminishes as 𝜈 increases. Furthermore, we assume particles are in

𝛽-equilibrium, so relation (2.46) is valid. With all this information, we can calculate particle

densities, energy, and pressure from eqs. (2.31)(2.32) (2.37), (2.38).

Now we notice that the meson couplings 𝑔𝑀𝑏 depend on the baryons 𝑏. It is usual to

determine them from the ratio of the baryon-meson coupling to the nucleon-meson one

𝑥𝑀𝑏 =
𝑔𝑀𝑏

𝑔𝑀𝑁
. (5.11)

The scalar meson couplings are őtted to reproduce the hyperon potential depth 𝑈Λ = −28 MeV

for symmetric matter at saturation density, thus őxing the parameter 𝛼𝑠,

𝑥𝑠Λ =
10 + 6𝛼𝑠

13 + 12𝛼𝑠
, 𝑥𝑠Σ =

22 − 6𝛼𝑠

13 + 12𝛼𝑣
, 𝑥𝑠Ξ =

13 − 6𝛼𝑠

13 + 12𝛼𝑣
. (5.12)

The remaining relative strength of the coupling constants are determined by SU(3) symme-

try group arguments, as proposed by [251], determining the complete hyperon-meson vector

coupling scheme from a single free parameter, 𝛼𝑣. For the 𝜔-meson

𝑥𝑣Λ =
4 + 2𝛼𝑣

5 + 4𝛼𝑣
, 𝑥𝑣Σ =

8 − 2𝛼𝑣

5 + 4𝛼𝑣
, 𝑥𝑣Ξ =

5 − 2𝛼𝑣

5 + 4𝛼𝑣
, (5.13)

for the 𝜙-meson

𝑥𝜙Λ =
√

2

(
2𝛼𝑣 − 5

5 + 4𝛼𝑣

)
, 𝑥𝜙Σ =

√
2

(
−2𝛼𝑣 − 1

5 + 4𝛼𝑣

)
, 𝑥𝜙Ξ =

√
2

(
−2𝛼𝑣 − 4

5 + 4𝛼𝑣

)
, (5.14)
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AMM makes the positively charged Δs appear at realistic NS core densities.

For magnetic őelds larger than ≈ 1016 G, the deformation of the stellar geometry away

from spherical symmetry is above 2% [275]. Therefore, the usual relativistic hydrostatic equa-

tions usually employed when describing non-magnetized stars, i.e., the Tolman-Oppenheimer-

Volkoff equations [276, 277], which assume spherical symmetry as part of their derivation

from the general relativity equations, cease to be adequate. For this reason, we make use of

anisotropic solutions from the Einstein and Maxwell equations to explore the macroscopic struc-

ture of magnetars with strong internal magnetic őelds. Beyond accounting for the non-spherical

conőgurations of stars and anisotropies introduced by magnetic őelds, this approach allows us

to obtain an ab initio magnetic őeld proőle in the interior of a given star [278,279]. to compute

the effect of the strong magnetic őelds on the structure of the magnetars, one must solve the

coupled EinsteinśMaxwell equations with the equations of state. For the chosen poloidal őeld

geometry, we solve the EinsteinśMaxwell equations within the numerical library LORENE4

using a multi-domain spectral method.

In Fig. 41, any differences between the mass-radius curves for the 𝐵 = 0 case (solid

lines) arise from the differences in the (non-magnetic) EoS, while the differences with magnetic

őeld come from the pure electromagnetic őeld contribution. We know that the Lorentz force

originating from the pure electromagnetic őeld affects the low-density part of the EoS. This

is why the maximum mass of very massive stars does not change with increasing magnetic

őeld strength, but the mass and radius of less massive stars increase signiőcantly. For the

𝐿3𝜔𝜌 model, the inclusion of Δs decreases modestly the maximum stellar mass, especially for

the larger coupling. However, for the CMF model, we do not see meaningful changes on the

mass-radius diagram with the inclusion of Δs.

Using the full numerical solution, we also study the effect of the EoS on the magnetic

őeld conőgurations inside a given star. We decompose the magnetic őeld norm in terms of

spherical harmonics

𝐵(𝑟,𝜃) ≈
𝑙𝑚𝑎𝑥∑︁
𝑙=0

𝐵𝑙 (𝑟)𝑌0
𝑙 (𝜃) , (5.16)

and plot the őrst four even multipoles (𝑙 = 0,2,4,6) as function of coordinate radius for both the

EoS models and coupling strengths in the left of Fig 42. We also plot the proőle of the dominant

monopolar, spherically symmetric, term (𝑙 = 0) inside the star in the right of Fig 42. For 𝐿3𝜔𝜌

4<http://www.lorene.obspm.fr>

http://www.lorene.obspm.fr
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Conclusions and Perspectives

In this thesis, in Section 2 I have introduced the non-linear Walecka model in the mean-

őeld approximation, the bulk and mass-radius constraints, and a few parametrizations. Then I

showed how to build the pasta phase in the one-component approach and discussed some pasta

properties. The energy functional and the pasta properties throughout the thesis were calculated

with the IUFSU parametrization which obeys most up-to-date constraints on the equation of

state. The surface tension utilized to calculate the surface and Coulomb energies was őtted to

reproduce a Thomas-Fermi calculation, where it is calculated consistently.

In Section 3 I have used the nuclear statistical equilibrium to calculate the distributions

of pasta structures with geometry 𝑑 and densities 𝜌𝑁𝑝 , 𝜌
𝑁
𝑛 , as well as pasta impurities that are

quantiőed by charge variance. In order to also quantify geometric impurities, an effective

proton number was proposed, varying according to the ratio of the pasta surface area relative

to the droplet area and to the pasta orientation. Results show that charge impurities grow

with temperature and baryonic density, and are larger for more symmetric matter due to the

higher fraction of proton number. Geometric impurities become larger as isospin asymmetry or

temperature rise, as can be reasoned from Fig. 14. We also demonstrated that our calculations

obey ensemble equivalence, given the input thermodynamic chemical potentials (2.75) obtained

with the variational approach and the inclusion of the rearrangement term.

In Section 4 I have calculated the anisotropic collision rates corresponding to elastic

electron-pasta scattering, that were proposed in [33], using an expansion in spherical harmonics.

I was able to give quantitative predictions for the electric conductivity in the magnetized and

non-magnetized crust of a NS by estimating the pasta length from asymptotic expressions for

the structure factor and restricting the calculation to the high-temperature regime, where pasta

correlations can be neglected. In Section 5 other manuscripts produced during my doctorate

were discussed.

In the future, I hope the large variances obtained in Section 3 are used in conjunction

with the transport calculation of Section 4 to estimate the impact of the pasta impurities in the

conductivity within a RMF model. Additionally, I expect to expand this calculation to derive

expressions for the pasta viscosity; to calculate density correlations due to thermal ŕuctuations;

and to estimate the impact of the mixing of multiplicity in the transport coefficients. These

calculations can then be applied to astrophysical phenomena, such as to neutrino opacity in
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supernovas and to the thermo-magnetic evolution of NSs.

The results presented in this thesis are either published or under review in international

journals [195, 243, 249,280,290].
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A Coulomb energy

In this Appendix we outline the main steps in the calculation of the Coulomb energy

density. Firstly we explicit the main steps of the derivation, and in the subsections we write the

necessary expressions to make the calculation for each geometry.

To arrive at the energy density compactly written in Eq. (2.67) we must calculate the

total coulomb energy of the cell for each case. We begin from energy

𝐸𝑐 =
1

2

∫
𝑑3r𝜌𝑐ℎ (r)𝜙(r) (A.1)

where 𝜙 is the electrical potential, that satisőes the Laplace equation

∇2𝜙 = 4𝜋𝑒𝜌𝑐ℎ, (A.2)

and can be directly calculated by integrating the electric őeld as

𝜙(𝑟) = −
∫ 𝑟

𝑅𝑤

E · 𝑑l, (A.3)

where we assume the vanishing of őeld at the boundary of the cell: 𝜙(𝑅𝑊 ) = 0. This is direct

in our case since the electric őeld can be calculated from Gauss’ law:

∫
𝑑S ·E = 4𝜋𝑄in S, (A.4)

if we consider the cylinders and slabs as sufficiently large (𝐿𝑑 ≫ 𝑅𝑑) such that contributions

from mirroring sides cancel out in E.

The contribution to energy comes from the uneven distribution of protons and electrons,

and possible contributions from the homogeneous gas 𝜌𝐼 𝐼𝑝 would cancel with the corresponding

electron counterpart. This implies that we only need to consider the ion contribution to charge,

and its electron counterpart. In this section we write:

𝜌𝑝 =
(
𝜌𝐼𝑝 − 𝜌𝐼 𝐼𝑝

)
=
𝑍

𝑉𝑁
, (A.5)



130

and

𝜌𝑒 =
𝑍

𝑉𝑊
= 𝑓 𝜌𝑝, (A.6)

where 𝑓 = 𝑉𝑁/𝑉𝑊 is the volume fraction of the ions.

Regarding the notation, in the following we use > to denote the values of a function

in the region 𝑅𝑁 < 𝑟 < 𝑅𝑊 , and and > variables in the in 0 < 𝑟 < 𝑅𝑁 . In this manner, the

potential, for example, can be written as

𝜙> = −
∫ 𝑟

𝑅𝑤

E> · 𝑑l (A.7)

𝜙< = −
∫ 𝑅𝑁

𝑅𝑤

E> · 𝑑l −
∫ 𝑟

𝑅𝑁

E< · 𝑑l. (A.8)

These are the information needed to calculate the Coulomb energy, in the following we

show the main equations needed in the speciőc cases of droplets, rods and slabs, respectively.

A.1 Sphere

• Electric őeld:

𝐸𝑟 =
𝑞

𝑟2
, (A.9)

• Volumes:

𝑉𝑁 =
4𝜋𝑅3

𝑁

3
, 𝑉𝑊 =

4𝜋𝑅3
𝑊

3
, (A.10)

• Charge distribution:

𝑞< =
4𝜋𝑒𝑟3

3
(𝜌𝑝 − 𝜌𝑒), (A.11)

𝑞> =
4𝜋𝑒

3
(𝜌𝑝𝑅3

𝑁 − 𝜌𝑒𝑟3). (A.12)

• Potential:

𝜙< =
2𝜋𝑒

3

[
𝜌𝑝

(
3𝑅2

𝑖 − 𝑟2
)
− 𝜌𝑒

(
3𝑅2

𝑊 − 𝑟2
)]
, (A.13)

𝜙> =
2𝜋𝑒

3

[
2𝜌𝑝

𝑅3
𝑁

𝑟
− 𝜌𝑒

(
𝑅2
𝑊 − 𝑟2

)]
, (A.14)
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• Coulomb energy:

𝐸𝐶 =
16𝜋2𝑒2𝜌2

𝑝𝑅
5
𝑁

15

[
1 − 3

2

𝑅𝑁

𝑅𝑊
+ 1

2

(
𝑅𝑁

𝑅𝑊

)3
]
, (A.15)

• Coulomb energy density:

𝐸𝐶

𝑉𝑊
=

4𝜋𝑒2 𝑓 𝜌2
𝑝𝑅

2
𝑁

5

[
1 − 3

2
𝑓 + 1

2
𝑓

]
, (A.16)

A.2 Cylinder

The electric őeld of the cylinder in the direction perpendicular to its symmetry axis (z)

is

• Electric őeld:

𝐸𝑟 =
2𝑄

𝑟𝐿2

(A.17)

• Volumes:

𝑉𝑁 = 𝜋𝐿2𝑅
2
𝑁 , 𝑉𝑊 = 𝜋𝐿2𝑅

3
𝑊 (A.18)

• Charge distribution:

𝑞< = 𝜋𝑒𝐿2𝑟
2(𝜌𝑝 − 𝜌𝑒), (A.19)

𝑞> = 𝜋𝑒𝐿2(𝜌𝑝𝑅2
𝑁 − 𝜌𝑒𝑟2). (A.20)

• Potential:

𝜙< = −𝜋𝑒
[
𝜌𝑝

(
𝑅2
𝑁 log

(
𝑅𝑁

𝑅𝑊

)2

+ 𝑟2 − 𝑅2
𝑁

)
+ 𝜌𝑒

(
𝑅2
𝑊 − 𝑟2

)]
, , (A.21)

𝜙> = −𝜋𝑒
[
𝜌𝑝𝑅

2
𝑁 log

(
𝑟

𝑅𝑊

)2

+ 𝜌𝑒
(
𝑅2
𝑊 − 𝑟2

)]
, (A.22)

• Coulomb energy:

𝐸𝐶 =
𝜋2

2
𝐿2𝑒

2𝜌2
𝑝𝑅

4
𝑁

[
−1 − log

(
𝑅𝑁

𝑅𝑊

)2

+
(
𝑅𝑁

𝑅𝑊

)2
]

(A.23)
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• Energy density:
𝐸𝐶

𝑉𝑊
=
𝜋

2
𝑒2𝜌2

𝑝𝑅
2
𝑁 [−1 − log 𝑓 + 𝑓 ] (A.24)

A.3 Slab

For the slab, half its size (0 < 𝑧 < 𝑅𝑊 ) and double the total Coulomb energy in the end.

Considering 𝑧 to be the symmetry axis, we obtian

• Electric őeld:

𝐸𝑧 =
4𝜋𝑞

𝐿2
1

(A.25)

• Volumes:

𝑉𝑁 = 2𝑅𝑁𝐿
2
1, 𝑉𝑊 = 2𝑅𝑁𝐿

2
1 (A.26)

• Charge distribution:

𝑞< = 𝑒𝐿2
1𝑧(𝜌𝑝 − 𝜌𝑒), (A.27)

𝑞> = 𝑒𝐿2
1(𝜌𝑝𝑅𝑁 − 𝜌𝑒𝑧). (A.28)

• Potential:

𝜙< = 4𝜋𝑒

[
𝜌𝑝

(
𝑅𝑊𝑅𝑁 −

𝑅2
𝑁

2
− 𝑧2

2

)
− 𝜌𝑒

(
𝑅2
𝑊
− 𝑧2

2

)]
, (A.29)

𝜙> = 4𝜋𝑒

[
𝜌𝑝𝑅𝑁 (𝑅𝑊 − 𝑧) − 𝜌𝑒

(
𝑅2
𝑊
− 𝑧2

2

)]
, (A.30)

• Coulomb energy:

𝐸𝐶 =
4𝜋

3
𝐿2

1𝑒
2𝜌2

𝑝𝑅
3
𝑁

[
−2 + 𝑅𝑁

𝑅𝑊
+ 𝑅𝑊
𝑅𝑁

]
(A.31)

• Energy density:
𝐸𝐶

𝑉𝑊
=

2𝜋

3
𝑒2𝜌2

𝑝𝑅
2
𝑁

[
−2 + 1

𝑓
+ 𝑓

]
(A.32)
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Fluctuations in the pasta phase

Mateus R. Pelicer,1 Débora P. Menezes,1 Celso C. Barros Jr.,1 and Francesca Gulminelli2

1Depto de Física - CFM - Universidade Federal de Santa Catarina Florianópolis - SC - CP. 476 - CEP 88.040 - 900 - Brazil
2CNRS and ENSICAEN, UMR6534, LPC,

14050 Caen cédex, France

Baryonic matter close to the saturation density is very likely to present complex inhomogeneous struc-

tures collectively known under the name of pasta phase. At finite temperature, the different geometric

structures are expected to coexist, with potential consequences on the neutron star crust conductivity and

neutrino transport in supernova matter. In the framework of a statistical multi-component approach, we

calculate the composition of matter in the pasta phase considering density, proton fraction, and geometry

fluctuations. Using a realistic energy functional from relativistic mean field theory and a temperature and

isospin dependent surface tension fitted from Thomas-Fermi calculations, we show that different geometries

can coexist in a large fraction of the pasta phase, down to temperatures of the order of the crystallization

temperature of the neutron star crust. Quantitative estimates of the charge fluctuations are given.

Introduction: It is known since the early ’80s [1] that the
equilibrium state of electrically neutral dense baryonic mat-
ter, close to the saturation density (nsat ≈ 0.17 fm−3) of
symmetric nuclear matter, may not correspond to a lattice
of spherical nuclei, but rather to a spatially periodic dis-
tribution of inhomogeneities with cylindrical (rods) or pla-
nar (slabs) symmetry. These complex pasta phases could be
present in the inner crust of neutron stars as well as in the
central regions of core collapse supernovae during the in-
fall and early post-bounce phase. Different studies suggest
that they may have sizeable impact on different astrophys-
ical phenomena, such as the magneto-thermal evolution of
compact stars [2], neutrino opacity [3, 4], timing properties
of X-ray pulsars [5], and the ellipticity of neutron stars that
can be potentially probed by gravitational wave measure-
ments [6]. The energy barrier between the different shapes
being often of a few KeV only, it is expected that complex
shapes including impurities and defects might appear even
in the crust of catalyzed neutron stars [7–9] leading to an
increased resistivity. Above the crystallization temperature,
Tm ≈ 700 KeV in the pasta region [10], pasta matter has
to be seen as a liquid and the calculation of transport prop-
erties requires the evaluation of the electrical and thermal
conductivity tensor averaged over finite domains. A rich
phenomenology is expected depending on the orientation
of the nuclear clusters [11] as well as their distribution.

In this paper, we make a first step towards the complex
problem related to the anisotropic transport in the pasta
phase at finite temperature, by calculating the distribution
and charge variance of the different geometrical structures
in a multi-component approach with a realistic microscopic
energy functional.

Pasta phases in a Relativistic Mean Field Approach:

In the single nucleus approximation it is assumed that, at
a given thermodynamical condition (ρB, Yp, T ), a crystalline
structure of identical cells is formed. Each cell contains a
dense cluster at baryonic density ρ I = ρ I

p
+ ρ I

n
, occupying

a volume fraction f of the cell, and surrounded by a homo-
geneous gas of baryons at density ρ I I = ρ I I

p
+ρ I I

n
. The cell

is neutralized by an electron gas of homogeneous density
ρe = YpρB, modelled as a free relativistic gas with free en-

ergy density F e, see Refs. [12, 13] for explicit expressions.
The different shapes of the pasta structures is denoted by
the integer d = 3, 2,1, referring to droplets, rods and slabs,
respectively.

The free energy density of a cell of total baryonic den-
sity ρB = ρp +ρn and proton fraction Yp = ρp/ρB is given
by [12]

FWS = fF I
b
+ (1− f )F I I

b
+ βFsc,d +Fe, (1)

with β = f for droplets, rods and slabs, and β = 1 − f

for tubes and bubbles. The constraints of mass and charge
conservation are imposed on the cells, ρq = f (ρ I

q
− ρ I I

q
) +

ρ I I
q

, with q = n, p.

For all our numerical applications, the bulk free en-

ergy densities F
I(I I)

b
= Fb(ρ

I(I I)
p

,ρ I(I I)
n
) of the dense (di-

lute) fraction of the cell are calculated with the IUFSU
parametrization [14] of the quantum hadrodynamics model
in the mean field approximation (RMF) [15] which is con-
sistent with a number of experimental and observational
constraints [16–18]. This version of the RMF model in-
cludesσ,ω and ρ mesons with non-linear scalar and vector
couplings, as well as an ω−ρ interaction term, with a cou-
pling fitted such as to reproduce the experimental symmetry
energy of nuclear matter [14].

The interface free energy densityFsc,d contains a surface
and a Coulomb term and it is written as [1, 19]:

Fsc,d =Fs,d+Fc,d =
σ(Yp, T ) d

Rd

+2πe2R2
d

�

ρ I
p
−ρ I I

p

�2
Φd(β),

(2)
with the Φd function given by

Φd(β) =

¨�

2−dβ1−2/d

d−2 + β
�

1
d+2 , d = 1,3;

β−1−ln(β)

d+2 , d = 2.
(3)

The temperature and proton fraction dependent surface
tension coefficient σ is taken from Ref. [20], where a fit
was obtained from Thomas-Fermi calculations employing
the same IUFSU functional.

The equilibrium densities in the cells can be found by
minimizing the thermodynamic potential Ω with respect to
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the 6 independent variables, here chosen as the cluster and
gas densities ρ I

q
,ρ I I

q
, q = n, p, the volume fraction f , and

the linear dimension of the pasta Rd :

Ω =F −µpρp −µnρn, (4)

with the conservation laws imposed by the chemical poten-
tials, µp and µn.

The equilibrium equations from the minimization of
Eq. (4) are obtained as:

µI
p
= µI I

p
−

2βFc,d

f (1− f )(ρ I
p
−ρ I I

p
)
, (5)

µI
n
= µI I

n
, (6)

−P I+P I I +
dβ

d f

�

Fsc,d + βFc,d

1

Φ

dΦ

dβ

�

−
2βFc

�

ρ I
p
− f (ρ I

p
−ρ I I

p
)
�

f (1− f )
�

ρ I I
p
−ρ I I

p

� = 0, (7)

Rd =

�

σd

4πe2(ρ I
p
−ρ I I

p
)2Φd(β)

�1/3

, (8)

where µK
q

, PK ,q=n,p, K=I,II represent bulk chemical po-

tentials and pressures, µK
q
= ∂F K

b
/∂ ρK

q
, PK = −F K

b
+

∑

q µ
K
q
ρK

q
. Eqs.(5)-(8) are in agreement with those of

Refs. [21, 22]. The variation of the thermodynamic po-
tential additionnally allows us to determine the thermody-
namic chemical potentials for the inhomogeneous system,
given as:

µq = µ
I
q
+
β

f

∂Fsc,d

∂ ρ I
q

= µI I
q
+
β

1− f

∂Fsc,d

∂ ρ I I
q

. (9)

The minimization is done independently for the different
geometries, and the one corresponding to the minimum
value of the optimizedFWS is associated to the equilibrium
configuration.

Fluctuations: distribution of pasta structures

The SNA is not realistic in the sense that different clus-
ter sizes and geometries can coexist in a macroscopic system
due to the small difference in free energy densities between
them. Following Refs. [23–26], we consider a macroscopic
volume V composed of different Wigner-Seitz cells of vol-
ume V N

WS
. Each cell is composed of unbound nucleons and

electrons gases, which we assume to be of constant den-
sity over the entire volume to avoid discontinuities in the
chemical potential between cells. Since the SNA is known to
provide a good description of the average thermodynamic
quantities of the system, the densities of the nucleon gas
ρpg ,ρng are given by the solution of the coupled equations

(5)-(8), ρq,g = ρ
I I
q

, and the electron density is ρe = ρp.

The center of each cell is occupied by a cluster in the pasta
phase, with proton and neutron densities ρN

p
,ρN

n
fluctuat-

ing from cell to cell, and we introduce a superscript N to
all the variables which vary with the density fluctuations.
We consider that for a same total density ρB, that is at a
given depth inside the star, domains with pasta structures
corresponding to different geometries (d = 1,2, 3 for slabs,
rods and droplets, respectively) may also coexist, due to the
small free energy barriers.

In the presence of clusters with fluctuating densities and
shapes, the global densities are given by

ρq =
∑

N ,d

nN ,d V N
�

ρN
q
−ρqg

�

+ρqg , (10)

where V N = f N V N
WS

is the volume of the cluster, and nN ,d =

N N ,d/V is the number density of a cell containing a cluster
of density ρN = ρN

p
+ ρN

n
and dimension d, normalized to

∑

N ,d nN ,d V N
WS
= 1.

In principle, both the cluster volume V N and the volume
fraction f N could fluctuate independently of ρN

p
,ρN

n
and d.

However, in a variational theory the linear size of the clus-
ter is determined by the equilibrium with the surrounding
gas, whose density is considered constant throughout the
system. We therefore consider that the minimization with
respect to the linear size Eq.(8) holds in each cell, yielding:

RN
d
=

�

σd

4πe2(ρN
p
−ρpg)

2Φd(β
N )

�1/3

. (11)

Nevertheless, we consider the cluster volume to be inde-
pendent of its geometry. For a given fluctuation (ρN

p
,ρN

n
),

the reference volume corresponds to the spherical one

V N = 4π
�

RN
3

�3
/3, (12)

and the Wigner-Seitz cell volume is V N
WS
= V N/ f N . The

number of protons in the cluster will therefore be given by:

ZN =
�

ρN −ρpg

�

V N , (13)

independently of d. Moreover, we neglect possible long
range Coulomb interactions between neighboring cells, by
imposing charge neutrality in each cell, thus fixing the clus-
ter volume fraction f N :

ρe = f N (ρN
p
−ρpg) +ρpg . (14)

Within these simplifications, we have only two indepen-
dent variables that can fluctuate from cell to cell, that we
take to be (ρN

p
,ρN

n
). The free energy density of the global

system can be written asF =Fcl+Fg+Fe, withFg =F
I I
b

,
as obtained from the SNA calculation, and the cluster com-
ponent corresponding to a linear-mixing multi-component
plasma expression that reads:

Fcl =
∑

N ,d

nN ,d V N
�

F N
b
−Fg +F

N
sc,d

�

. (15)
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Because of the additivity of the free energy densities, the
grand-partition function of the macroscopic system can be
factorized in terms comprising the gases and the clusters
[23]:

Z = zV
g
zV

e
Zcl (16)

with each term being given by

ze = exp [−β (Fe −µeρe)] , (17)

zg = exp
�

−β
�

Fg −µnρng −µpρpg

��

, (18)

Zcl =
∑

{n}

exp



−βV
∑

N ,d

nN ,d
Ω̃

N ,d



 . (19)

Here, the chemical potentials are taken from Eq.(9), and
the first sum in Eq.(19) is extended to all the possible values

of nN ,d . Ω̃
N ,d
WS is the single-cluster grand-canonical potential,

given by [23]:

Ω̃
N ,d = V N

�

∂Fcl

∂ nN ,d
−
∑

q

µq

�

ρN
q
−ρqg

�

�

. (20)

In calculating the variation ∂Fcl/∂ nN ,d we can see that
a rearrangement term appears:

∂Fcl

∂ nN ,d
=F N ,d +
∑

M ,d ′

nM ,d ′ ∂ F M ,d ′

∂ nN ,d
, (21)

with F N ,d = V N
�

F N
b
−Fg +F

N
sc,d

�

being the N -cluster free

energy. Rearrangement terms systematically appear in ther-
modynamics when the appropriate thermodynamic poten-
tial (here: the Helmotz free energy density Fcl) depends
on (one of) the system densities. Indeed a variation of a
specific cluster density nN ,d according to Eq.(21) induces a
variation of the global densities ρq, as it can be seen from
Eq.(10), and consequently of the thermodynamic potential.
In our model, F N ,d does not specifically depend on ρn and
ρp, but a dependence on ρp is enforced by the neutrality
condition inside the cell Eq.(14), that can be viewed, for a
given fluctuation (ρN

p
,ρN

n
), as a definition of the cell volume

fraction as a function of the electron density, f N ≡ f N (ρp).
Using Eqs. (10) and (14) we immediately get:

∂Fcl

∂ nN ,d
= F N ,d +

∂ ρp

∂ nN ,d

∑

M ,d ′

nM ,d ′ ∂ F M ,d ′

∂ f M

∂ f M

∂ ρp

(22)

= F N ,d + V N
�

ρN
p
−ρpg

�∑

M ,d ′

nM ,d ′ ∂ F M ,d ′

∂ f M

V M

ρM
p
−ρpg

.

If we additionally assume that the different averaged quan-
tities are not correlated, such that the average commutes
with the product, we end up with the same expression pro-
posed in Refs.[24–26] :

∂Fcl

∂ nN ,d
= F N ,d + V N
�

ρN
p
−ρpg

�

®

f M

ρM
p
−ρpg

∂FM
sc,d

∂ f M

¸

,

(23)

where the notation 〈X 〉 indicates an ensemble average, and
can be identified with the value of the X variable taken in
the SNA approximation with the optimal geometry d0:

®

f M

ρM
p
−ρpg

∂FM
sc,d

∂ f M

¸

=
Fc,d0

Φ

dΦ

d f

+
d0 f

Rd0
ρB

�

ρ I
p
−ρpg

�

− Yp

�

ρ I −ρg

�

ρ I
p
−ρpg

∂ σ

∂ Yp

. (24)

Since the number of occurrences of the different configu-
rationsN N ,d in the thermodynamic limit can be any integer
m ≥ 0, the sum in Eq.(19) can be analytically computed as
in Ref. [24]:

Zcl =
∏

N ,d

∞
∑

m=0

�

exp
�

−βΩ̃N ,d
��m

m!
=
∏

N ,d

expωN ,d , (25)

with ωN ,d = exp
�

−βΩ̃N ,d
�

.

We can remark that the cluster partition sum Eq.(25) has
the same functional form as the ideal gas, with a reduced
density ρN

q
−ρqg in order to fulfill particle number conser-

vation. The equilibrium chemical potential of the clusters
can be immediately deduced:

µN = f N V N
WS

�

µn(ρ
N
n
−ρng) +µp(ρ

N
p
−ρpg)
�

. (26)

The equilibrium number density for a fluctuation
(ρN

p
,ρN

n
) is then readily found from the cluster partition

sum, and by summing up the different geometries:

nN =
1

V

∂ lnZcl

∂ βµN
=

3
∑

d=1

nN ,d =

3
∑

d=1

ωN ,d

V
(27)

Finally, the probability of a cluster with density (ρN
p

,ρN
n
)

and geometry d is:

pN ,d =
nN ,d

∑

N ,d

nN ,d
=

exp
�

−βΩ̃N ,d
�

∑

N ,d

exp
�

−βΩ̃N ,d
�

. (28)

Results:

To illustrate the proportion of different pasta structures
at different thermodynamic conditions we show, in Fig. 1,
the probability of each pasta structure for Yp = 0.1 and
0.3, which are typical proton fractions encountered in the
neutron star inner crust, and in supernova cores, respec-
tively. We define the probability of a pasta structure by
summing the probabilities of its occurence with different
densities, Pd =

∑

N pN ,d . For increasing temperatures or
isospin asymmetry, different pasta structures are more likely
to coexist. However, shape coexistence cannot be neglected
in a large range of densities even for the typical thermo-
dynamic conditions of the inner crust at the crystallization
point (T ≈ 1 MeV, Yp ≈ 0.1 [10]), suggesting that important
impurities may characterize even the catalyzed crust[8, 9].
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Strong magnetic fields can modify the microscopic composition of matter with consequences on
stellar macroscopic properties. Within this context, we study, for the first time, the possibility of the
appearance of spin-3/2 ∆ baryons in magnetars. We make use of two different relativistic models for
the equation of state of dense matter under the influence of strong magnetic fields considering the
effects of Landau levels and the anomalous magnetic moment (AMM) proportional to the spin of all
baryons and leptons. In particular, we analyze the effects of the AMM of ∆ baryons in dense matter
for the first time. We also obtain global properties corresponding to the EoS models numerically
and study the corresponding role of the ∆ baryons. We find that they are favored over hyperons,
which causes an increase in isopin asymmetry and a decrease in spin polarization. We also find that,
contrary to what generally occurs when new degrees of freedom are introduced, the ∆s do not make
the EoS significantly softer and magnetars less massive. Finally, the magnetic field distribution
inside a given star is not affected by the presence of ∆s.

I. INTRODUCTION

Magnetars are a class of compact objects that possess
the largest stable magnetic fields observed in nature, with
surface magnitudes inferred for the poloidal component
in the range of 1011−1015 G at the surface [1] and values
more than one order of magnitude larger in the interior
[2, 3]. Although the strength of the magnetic field in
the central region of these stars remains unknown, they
could reach ∼ 1018 G according to the scalar virial the-
orem [4, 5], and simultaneous solutions of Einstein and
Maxwells equations for poloidal [6, 7] and also toroidal
configurations [8, 9]. Such extreme conditions certainly
play a considerable role when determining the internal
composition and structure of magnetars.

The starting point for determining the macroscopic
structure of compact stars is the assumption of a spe-
cific microscopic model, which leads to the calculation of
an equation of state (EoS) for dense matter. The EoS
encodes the particle population of baryons and leptons
and how they interact through the strong interactions,
constrained by equilibrium conditions, such as β-stability
and charge neutrality. The extremely high energies esti-
mated in the core of neutron stars are more than suffi-
cient to create heavier particle species, beyond the tradi-
tional proton-neutron-electron admixture. It has become
common in the literature to consider the entire spin-1/2
baryon octet [e.g. 10–26] but, recently, the role of the
spin-3/2 decuplet has been slowly gaining attention, not
just for its influence on the microscopic aspects of dense
matter but also for the astrophysical implications, since
its presence may reduce the radius and tidal deforma-
bility in intermediate mass neutron stars [27–38]. The
lightest spin-3/2 baryons (the ∆s) are only∼ 30% heavier

∗marquezkauan@gmail.com

than the nucleons (protons and neutrons) and are even
lighter than the heaviest spin-1/2 baryons of the octet
(the Ξs). Thus, unless the ∆s are subject to a very re-
pulsive coupling, they are expected to appear at the same
density range as the hyperons (around 2 or 3 times the
nuclear saturation density). Not much is known about
how ∆ baryons couple in dense matter, but their poten-
tial for isospin-symmetric matter at saturation density is
expected to be attractive and in a range of 2/3 to 1 times
the potential of the nucleons, which is of order −80 MeV
[39–41].

Additionally, it is of special interest to investigate how
spin-3/2 baryons are affected by the presence of strong
magnetic fields due to the possibility of them having large
electric charge and additional spin and isospin projec-
tions. The effects of Landau levels in dense stellar matter
containing ∆ baryons was first discussed in the context
of neutron-star matter by Thapa et al. [42] and later by
Dexheimer et al. [37]. In this work we study for the first
time the effects of strong magnetic fields in ∆-admixed
hypernuclear stellar matter, accounting for effects due to
their anomalous magnetic moments (AMMs).

For magnetic fields larger than ∼ 1016 G, the defor-
mation of the stellar geometry away from spherical sym-
metry is above 2% [43]. Therefore, the usual relativis-
tic hydrostatic equations usually employed when describ-
ing non-magnetised stars, i.e., the Tolman-Oppenheimer-
Volkoff equations [44, 45], which assume spherical sym-
metry as part of their derivation from the general rela-
tivity equations, cease to be adequate. For this reason,
we make use of anisotropic solutions from the Einstein
and Maxwell equations to explore for the first time the
macroscopic structure of magnetars with strong internal
magnetic fields and containing ∆-admixed hypernuclear
matter. Beyond accounting for the non-spherical config-
urations of stars and anisotropies introduced by magnetic
fields, this approach allows us to obtain an ab initio mag-
netic field profile in the interior of a given star [46, 47].
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This work is structured as follows. In Section II, the
formalism employed in the microscopic description of
magnetized neutron-star matter is presented, as well as
the procedure of going from the EoS to the macroscopic
description of a compact star through General Relativity.
In Section III, the results for the matter composition and
stellar structure are shown and discussed, and, in Section
IV, the main conclusions are drawn.

II. FORMALISM

A. Anomalous magnetic moment

The AMM of a particle is a deviation from the mag-
netic moment of that particle, as predicted by the “clas-
sical” tree-level prediction. Historically, the term anoma-

lous was used to describe the deviation from the Dirac
equation prediction for a system of fermions under the
influence of a magnetic field, the magnetic moment, and
thus, refers to fundamental particles. Dipole moment, on
the other hand, is used for composite particles, such as
baryons, since their value depends on the configuration of
quarks and gluons inside it, and thus, are not anomalous

in the strict sense. As commonly used in the literature
and for simplicity, in this work we use the term AMM in
all cases.
The energy spectrum of baryons with an AMM can be

empirically determined, but a theoretical derivation of
their values from first principles is yet an unaccomplished
task. The AMMs of nucleons are measured to a very high
precision, with errors of the order of 10−9 [48, 49], but the
same does not apply to heavier baryons. Measurements
of the hyperon AMMs are precise to an order of 10−2 [50],
while ∆s are experimentally determined only for the pos-
itively charged ∆++ and ∆+. For the ∆+, there is a sin-
gle measurement of µ∆+/µN = 2.7+1.0

−1.3 ± 1.5 that comes
from the γp→ pπγ′ reaction [51], while for the ∆++ there
are several measurements coming from the π+p→ π+pγ
bremsstrahlung cross section, with values in the range
µ∆++/µN = 3.7 − 7.5 [50]. These measurements in-
clude systematic uncertainties, but additional theoreti-
cal uncertainties lead to errors ∼ ±3. Complementary
to experimental results, lattice quantum chromodynam-
ics (LQCD) has been able to extract AMM values for
∆ baryons. The values utilized in this paper are based
on the predictions from LQCD provided in [52] that lie
within the experimental uncertainties of the experimen-
tally measured AMMs.
Different properties of baryons considered in this study

are shown in Tab. I. The AMM strength coefficients κb
are related to the magnetic moments µb through the re-
lation

κb = µb − qbµN

Mp

Mb

, (1)

which depends on the baryon charge qb, the nuclear mag-
neton µN = e/2Mp, with e being the electron charge,

TABLE I: Vacuum mass, electric charge, isospin 3rd com-
ponent, spin, normalized magnetic moment, and normalized
anomalous magnetic moment of baryons considered in this
work. Electric charge is shown in units of the electron charge
and µN is the nuclear magneton.

Mb (MeV) qb(e) I3 b Sb µb/µN κb/µN

p 939 +1 + 1

2
1/2 2.79 1.79

n 939 0 −
1

2
1/2 −1.91 −1.91

Λ 1116 0 0 1/2 −0.61 −0.61

Σ+ 1193 +1 +1 1/2 2.46 1.67

Σ0 1193 0 0 1/2 1.61 1.61

Σ− 1193 −1 −1 1/2 −1.16 −0.37

Ξ0 1315 0 + 1

2
1/2 −1.25 −1.25

Ξ− 1315 −1 −
1

2
1/2 −0.65 0.06

∆++ 1232 +2 + 3

2
3/2 4.99 3.47

∆+ 1232 +1 + 1

2
3/2 2.49 1.73

∆0 1232 0 −
1

2
3/2 0.06 0.06

∆− 1232 −1 −
3

2
3/2 −2.45 −1.69

and the ratio of the proton mass Mp to the baryon
mass Mb. Although the expression (1) is derived for
spin-1/2 fermions in the non-relativistic regime, it is
still commonly employed to the description of the spin-
3/2 particles [see 53, 54]. This subject is controver-
sial, as the Rarita-Schwinger equation with minimal cou-
pling predicts a gyromagnetic ratio of 2/3, while low en-
ergy/optical theorems predict a value of 2. For a more in-
depth discussion we refer to Deser et al. [55], which stud-
ies a generic non-minimal electromagnetic coupling in the
Rarita-Schwinger formalism. In this work, we also ac-
count for the leptons (electron and muon) AMMs, given
by κe/µBe

= 1.15965 × 10−3 and κµ/µBµ
= 1.16592 ×

10−3, respectively, with µBl
= e/2Ml, for l = {e, µ}.

B. Matter description

To describe baryon-dense matter subject to a strong
magnetic field, we must start from a Lagrangian density
describing how the particles interact with each other and
with the external electromagnetic field. The photons are
simply described by the massless Proca Lagrangian den-
sity, followed by a term containing the electromagnetic
interaction for charged baryons and leptons, and a term
describing the AMMs of baryons b and leptons l

LEM = − 1

4
FµνFµν

+
∑

b,l

ψ̄b,l

(

−qb,lAµ − 1

4
κbσµνF

µν

)

ψb,l , (2)

where Fµν = ∂µAν − ∂νAµ, σ
µν = i

2 [γ
µ, γν ], and the

vector potential Aµ = (0, 0, Bx, 0) is chosen such that
the magnetic field is parallel to the z-axis. Leptons are
described additionally by the (free with respect to the
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strong force) Dirac Lagrangian density

Llepton =
∑

l

ψ̄l [iγµ∂
µ −Ml]ψl . (3)

We make use of two different relativistic models to
describe the still widely unknown strong interaction be-
tween baryons. The first model is a non-linear version
of the Walecka model, where the baryon interactions are
mediated by the σ, ω, ρ and φ mesons, within the mean
field approximation. We choose the recently proposed
L3ωρ parametrization [56], which includes an additional
ωρ interaction that allows the correct prediction of slope
of the symmetry energy, neutron-star radii and tidal de-
formabilities. The φ meson (with hidden strangeness)
couples only to the hyperons, allowing a higher maxi-
mum mass to be reproduced for neutron stars, thus cir-
cumventing the well-known hyperon puzzle [57], with an
effect similar to the higher-order ω4 self interaction, also
included. In addition to satisfying standard astrophysical
constraints from LIGO/VIRGO and NICER, the model
satisfies nuclear ground-state properties of finite nuclei
and bulk properties of infinite nuclear matter. It is also
consistent with the PREX-2 results for the symmetry en-
ergy of L = 106± 37 [58], though at the lower end of the
error band.
The model Lagrangian density is written as L =

Lb + Lm, where the first term is the (interacting) Dirac
Lagrangian density for nucleons, hyperons, and ∆s, and
the second term accounts for the self interaction among
scalar and vector mesons1

Lb =
∑

b

ψ̄b [iγµ∂
µ − γ0 (gωbω + gρbI3bρ+ gφbφ)−M∗

b ]ψb ,

(5)

and

Lm = − 1

2
m2

σσ
2 − λ

3
σ3 − κ

4
σ4 +

1

2
m2

ωω
2 +

ξ

4!
g4ωbω

4

+
1

2
m2

ρρ
2 + gωρ ω

2ρ2 +
1

2
m2

φφ
2 , (6)

where I3 b is the baryon isospin 3rd component, given in
Table I. The mass of the baryons is modified by the
medium, giving rise to an effective mass M∗

b = Mb −
gσbσ. The fittings of the self couplings λ and κ, and
the couplings between the mesons i = {σ, ω, ρ, φ} and

1 Spin-3/2 baryons are in fact described by the Rarita-Schwinger
Lagrangian density

LRS = −

∑

b=∆

1

2
ψ̄µ b

(

ǫµηλνγ5γη∂λ − imbσ
µν

)

ψν b , (4)

where ǫµηλν is the Levi-Civita symbol, σµν = i
2
[γµ, γν ], and

ψµ b is a vector-valued spinor with additional components (when
compared to the four component spinor in the Dirac equation).
Nonetheless, its equation of motion can be written compactly as
(iγν∂ν −m)ψµ = 0, see de Paoli et al. [59].

baryons b, defined in terms of the ratios xib = gib/giN ,
are discussed in detail in Lopes [56].

Relevant for this work, the scalar meson couplings are
fitted to reproduce the hyperon potential depth UΛ =
−28 MeV (for isospin-symmetric matter at saturation)
and the remaining relative strength of the coupling con-
stants are determined by SU(3) symmetry group argu-
ments, as proposed by Lopes and Menezes [60], determin-
ing the complete hyperon-meson coupling scheme from a
single free parameter, αv. Despite the value of αv, hy-
perons are always present in the neutron-star matter and
the sequence of hyperon thresholds are always the same,
with an inversely proportional relationship between αv

and the stiffness of the EoS. In this work, we choose to
use αv = 0.5, which results in values for the additional
potentials UΣ = +21.8 MeV and UΞ = +35.3 MeV,
and a stiffer EoS with respect to the values αv = 0.75
or 1.0 that are considered in Lopes and Menezes [60].
Though the potential for the Ξ−mesons is repulsive in the
parametrization used, recent observational constraints
predict it to be attractive [61–63], but to reproduce such
an attractive potential we would need an extra free pa-
rameter in the meson couplings [56].

The ∆ couplings are treated more freely, as their
behavior is not well known. The scarce information
present in the literature, such as transport models [64]
and quasi-elastic scattering of electrons off nuclei [65],
allows us to infer that the nucleon-∆ potential is slightly
more attractive than the nucleon-nucleon one, so that,
UN − 30 MeV . U∆ . UN , which implies xσ∆ is greater
than 1. Also, the vector coupling is constrained by LQCD
results as respecting the relation 0 . xσ∆ − xω∆ . 0.2,
and no constraint is put in the xρ∆ value [30, 41, 66].
Early investigations on the effect of these parameters
were made in de Oliveira et al. [67, 68] and their role in
the stellar particle composition and maximum-mass was
studied considering xσ∆ = 1.0 and 1.1, within two classes
of relativistic mean-field models in Dexheimer et al. [37].
Following the previous study, we analyse the scenarios
with xσ∆ = xω∆ = 1.0 and xσ∆ = xω∆ = 1.2, keep-
ing xρ∆ = 1.0, that generates, respectively, potentials
U∆ = −66.25 MeV (equal to the nucleon potential) and
−79.50 MeV.

The second model we use in this work is the chiral
mean-field (CMF) model, which is based on a nonlinear
realization of the chiral sigma model. As in all chiral
models, the masses of the baryons are generated (and
not just modified) by the medium. In this way, at large
temperatures and/or densities they decrease allowing chi-
ral symmetry to be restored, in agreement with LQCD
results [69]. In this work, we restrict ourselves to the
hadronic version of the model (with leptons) developed
by Dexheimer and Schramm [70], and disregard the pos-
sibility of phase transitions to quark matter. We add an
additional ωρ interaction to be in better agreement with
data for the slope of the symmetry energy, neutron-star
radii, and tidal deformabilities [71, 72]. We also add a
higher-order ω4 interaction to reproduce more massive
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neutron stars [73].
The mean-field model Lagrangian density has the

terms

Lb =
∑

b

ψ̄b[iγµ∂
µ − γ0(gωbω+ gρbI3bρ+ gφbφ)−M∗

b ]ψi ,

(7)
and

Lm =
1

2

(

m2
ωω

2 +m2
ρρ

2 +m2
φφ

2
)

+ g4

(

ω4 +
φ4

4
+ 3ω2φ2 +

4ω3φ√
2

+
2ωφ3√

2

)

− k0(σ
2 + ζ2 + δ2)− k1(σ

2 + ζ2 + δ2)2

− k2

(

σ4

2
+
δ4

2
+ 3σ2δ2 + ζ4

)

− k3(σ
2 − δ2)ζ

− k4 ln
(σ2 − δ2)ζ

σ2ζ
−m2

πfπσ

−
(√

2m2
kfk − 1√

2
m2

πfπ

)

ζ , (8)

where the effective mass of baryons is M∗
b = gσbσ +

gδbI3 bδ + gζbζ + M0b , including additional corrections
given by the scalar-isovector δ and scalar-isoscalar (with
hidden strangeness) ζ mesons, and a small bare mass
correction M0. The couplings were fitted to reproduce
hadronic vacuum masses, decay constants, nuclear satu-
ration properties, and to reach more than 2.1 M⊙ stars.
See Roark and Dexheimer [74] for a complete list of cou-
pling constants. We follow the SU(3) and SU(6) coupling
schemes for the scalar and vector couplings of mesons and
baryons. In this way, there are only two free parameters
left: one fitted to reproduce for symmetric matter at sat-
uration the potential UΛ = −27 MeV and another one
(xω∆ = gω∆/gωN = 1.25) fitted to reproduce under the
same conditions U∆ = −64 MeV ∼ UN . They result ad-
ditionally in UΣ = 6 MeV and UΞ = −17 MeV. A much
larger xω∆ would suppress all ∆s, while a much lower
value would suppress all hyperons.
For both models, the equations of motion for the

mesonic fields are obtained from the Lagrangian den-
sities via the Euler-Lagrange equations. Under charge
neutrality and β-equilibrium conditions, we can write the
chemical potential of a baryon as a relation between the
chemical potential of the neutron and the electron, µn

and µe, respectively, and its electric charge, i.e.,

µb = µn − qbµe . (9)

At low (effectively zero) temperature, the Fermi energy
spectra of baryons is

E∗
F b = µb − gωbω − gρbI3bρ− gφbφ , (10)

while for leptons it is simply E∗
F l = µe.

In the presence of a magnetic field, the Fermi momen-
tum (squared) can be calculated from the difference be-
tween the Fermi energy (squared) and

1. the square of the effective mass modified by the
AMM for particles that are not electrically charged
(qb = 0),

k2F,b(s) = E∗
F b

2 − (M∗
b − sκbB)

2
; (11)

2. the square of the effective mass modified by Lan-
dau quantization and AMM for particles that are
electrically charged (qb 6= 0),

k2F,b(ν, s) = E∗
F b

2−
(

√

M∗2
b + 2ν|qb|B − sκbB

)2

. (12)

For the momentum of leptons, M∗ is simply M . In the
latter case, the Fermi momentum refers to the local direc-
tion of the magnetic field, hereafter defined as the z-axis.
In the transverse direction to the local magnetic field, the
Fermi momentum is restricted to discrete values 2ν|qb|B,
where the Landau levels ν relate to the orbital angular
momentum n via the relation

ν = n+
1

2
− s

2

qb
|qb|

, (13)

where n = 0, 1, 2... . For particles with spin 1/2, the
first Landau level (ν = 0) is occupied by a single spin
projection: s = +1 for qb > 0 and s = −1 for qb < 0.
The second level (ν = 1) and above are occupied by both
spin projections s = {±1}. For the spin-3/2 positively
charged ∆s, the first level (ν = 0) is occupied by the spin
projections s= {+3,+1}, the second level (ν = 1) by
s = {+3,±1}, and hereafter all spin states are occupied.
For the negatively charged ∆− spin projection, signs are
reversed for the lowest levels.

At zero temperature, there is a maximum Landau level
allowed, beyond which the momentum in Eq. (12) be-
comes imaginary given by

νmaxb(s) =

⌊

(E∗
F b + sκbB)

2 −M∗
b
2

2|qb|B

⌋

. (14)

The number density for each baryon is also defined sep-
arately for electrically charged and uncharged particles,
respectively,

n
(qb 6=0)
b =

|qb|B
2π2

∑

ν,s

kF b(ν, s) ; (15)

n
(qb=0)
b = ψ̄bψb =

1

2π2

∑

s

{

k3F b(s)

3
− sκbB

2
[

(M∗
b − sκbB) kF b(s)+

E∗ 2
F b

(

arcsin

(

M∗
b − sκbB

E∗
F b

)

− π

2

)]}

, (16)
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as well as the scalar densities,

n
(qb 6=0)
s b = ψ̄bγ0ψb =

|qb|BM∗
b

2π2

∑

s,ν

√

M∗
b
2 + 2ν|qb|B − sκbB

√

M∗
b
2 + 2ν|qb|B

× ln

∣

∣

∣

∣

∣

∣

kF b(ν, s) + E∗
F b

√

M∗
b
2 + 2ν|qb|B − sκbB

∣

∣

∣

∣

∣

∣

; (17)

n
(qb=0)
s b =

M∗
b

4π2

∑

s

[

E∗
F bkF b(s)

− (M∗
b − sκbB)

2
ln

∣

∣

∣

∣

kF b(s) + E∗
F b

M∗
b − sκbB

∣

∣

∣

∣

]

. (18)

The expressions for energy density and pressure are
different for each model and can be obtained from the
energy-momentum tensor for matter (discussed in the
following).

C. Macroscopic structure

For spherically symmetric neutron stars, given an EoS
P (ε), the global structure can be obtained by solving the
Tolman-Oppenheimer-Volkoff (TOV) equations of hydro-
static equilibrium

dM

dr
= 4πr2ε(r) , (19)

dν

dr
=

(

M(r) + 4πr3P (r)
) 1

r2

(

1− 2M

r

)−1

, (20)

dP

dr
= − (ε(r) + P (r))

dν

dr
, (21)

where M(r) is the stellar mass contained within the ra-
dius r and ν(r) is a gravitational potential for the line
element in spherical coordinates

ds2 = −e2ν(r)dt2+
(

1− 2M

r

)−1

dr2+r2(dθ2+sin2 θdφ2) .

(22)
The TOV equations cannot be applied to describe the

structure of the magnetars we study in this work be-
cause the spherical symmetries assumed in Eq. (22) will
not hold. This is due to the strong magnetic fields we in-
fer for such objects, which produce highly deformed stel-
lar shapes. Instead, the stellar structure must be deter-
mined by solving equations in General Relativity describ-
ing the stationary configuration for the fluid, coupled
with Einstein field equations. The energy-momentum
tensor, which contains the information on the matter
properties of stars, enters the stellar structure equations
as the source of the Einstein equations. Neglecting the
coupling to the electromagnetic field, one generally as-
sumes a perfect fluid and the energy-momentum tensor
takes the form

Tµν
f = (ε+ P ) uµuν + P gµν , (23)

where ε denotes the (matter) energy density, P the pres-
sure, and uµ the fluid four-velocity.
The EoS then relates pressure and energy density

to the relevant thermodynamic quantities. In Chatter-
jee et al. [75], the general expression for the energy-
momentum tensor in the presence of an electromagnetic
field was derived, starting from a microscopic Lagrangian
including interactions between matter and the electro-
magnetic field

Tµν = Tµν
f +

1

µ0

(

−BµBν + (B ·B)uµuν +
1

2
gµν(B ·B)

)

+
x

µ0
(BµBν − (B ·B)(uµuν + gµν)) , (24)

where µ0 is the vacuum permeability, gµν the metric ten-
sor, and x is the magnetisation. The electromagnetic
field tensor has been expressed as Fµν = ǫαβµνu

βBα ,
with ǫαβµν being the four-dimensional Levi-Civita sym-
bol [76]. Assuming an isotropic medium and a magneti-
sation parallel to the magnetic field, the magnetisation
tensor Mµν can be written as

Mµν = ǫαβµνu
βaα , (25)

with the magnetization four-vector defined as aµ =
x
µ0
Bµ. In the absence of magnetisation, i.e. for x = 0,

this expression reduces to the standard magnetohydro-
dynamics form for the energy-momentum tensor [c.f. 76].
Strong magnetic fields result in an anisotropy of the

energy momentum tensor and break spherical symme-
try, such that with increasing strength of the magnetic
field, the shape of a magnetar departs more and more
from a spherical shape. Interpreting the spatial elements
of the fluid rest frame energy-momentum tensor as pres-
sures, then there is a difference induced by the orientation
of the magnetic field, commonly referred to as “paral-
lel” and “perpendicular” pressures. Several earlier works
tried to compute the mass-radius relations of strongly
magnetised neutron stars through a first approach us-
ing isotropic TOV equations [77–82]. In these works,
the components of the macroscopic energy-momentum
tensor in the fluid rest frame are used to obtain the en-
ergy density ε, parallel (P‖) and perpendicular (P⊥) pres-
sures. In Heaviside-Lorentz natural units, the pure elec-
tromagnetic contribution to the energy-momentum ten-
sor, which is anisotropic, has values of B2/2 and −B2/2
in the perpendicular and parallel directions to the lo-
cal magnetic field, respectively. However, this approach
can drastically overestimate the mass of neutron stars [as
shown in Fig. 3 of 83].
Several works obtained the global structure models

of magnetars by solving coupled Einstein-Maxwell equa-
tions, taking into account the anisotropy of the stress-
energy tensor [6, 7, 9, 42, 84–90]. In these studies either
a perfect fluid, a polytropic EoS, or a realistic EoS was
assumed, but do not take into account the magnetic field
modifications due to its quantisation.
Ideally, to explore magnetic field effects such as Lan-

dau quantisation and AMM on the global properties of
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possesses larger spin polarization. The latter effect is
more dramatic for the L3ωρ model, which presents a
larger number of exotic particles than the CMF model.
Considering strong magnetic fields, heavy stars tend to

contain more ∆s in their interiors. They are not neces-
sarily more massive (than their B=0 counterparts), but
are larger and, for a given radius, present larger cen-
tral number density and energy density. While ∆s mod-
ify the magnetic field distribution very little inside stars,
they decrease their radii, improving the agreement with
modern observational data of neutron-star radii and tidal
deformability [97–101].
Our results do not show the significant increase of stiff-

ness of neutron-star matter with ∆s at large density, as
initially observed by Dexheimer et al. [37]. In a more
in depth analysis (to appear in a separate publication
Marquez [102]), we will show that this effect can indeed
occur and reproduce more massive magnetars, but is very
sensitive to model parameters.
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Do short range correlations inhibit the appearance of the nuclear pasta?
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It is well known that strongly correlated neutron-proton pairs, the short-range correlations (SRC),
can modify many of the nuclear properties. In this work we have introduced, for the first time, short
range correlations in the calculation of the nuclear pasta phase at zero temperature and checked
how they affect its size and internal structure. We have used two different parameterizations of
relativistic models in a mean field approximation and the coexistence phase approximation as a first
estimation of the effects. We have seen that for very asymmetric neutron-proton-electon matter,
the pasta phase shrinks considerably as compared with the results without SRC and all internal
structures vanish, except the simple spherically symmetric one, the droplets. Our results indicate a
possible disappearance of these complicated structures as the temperature increases.

Introduction.—Nonspherical complex structures that
appear due to a frustration in sub-saturation nuclear den-
sities are believed to be present in the inner crust of neu-
tron stars and in core-collapse supernova cores [1, 2]. Al-
though possibly present only in a small range of densities
and temperatures, different studies suggest that these ex-
otic structures may have considerable impact on different
astrophysical phenomena and on the magnetic evolution
of neutron stars [3]. Some of the consequences of the
existence of the pasta phase are expected to leave signa-
tures in quasiperiodic oscillations observed in soft-gamma
ray repeaters [4] and magnetar giant flares [5]. More re-
cently, the detection of late-time neutrinos from a Milky
Way core-collapse supernova seems to be approaching re-
ality [6] and it was claimed that neutrino diffusion seems
to be affected by the pasta phase in protoneutron stars in
such a way that its signal can be greatly enhanced after
core collapse [7].

From the theoretical point of view, there are some
models and simulations that predict that the pasta struc-
tures can be very complex indeed. Calculations departed
from the more traditional 3D, 2D and 1D geometries in
a single unit cell to density fluctuations [8, 9] as well
as to structures resembling waffle, parking garage and
TPMS [10–12]. Different calculations also show that the
pasta phase size decreases as temperature increases and
may even occupy just a small portion in between two
homogeneous phases at certain temperatures [13–15].

Most of the pasta phase calculations depend on equa-
tions of state (EOS) parameterized to satisfy nuclear
matter bulk properties. One missing ingredient in all
pasta calculations is the inclusion of short-range corre-
lations (SRC). Strongly correlated neutron-proton pairs
can modify the internal structure of the nucleus and gen-
erate a series of non trivial consequences [16–30]. In a
seminal paper on cold dense matter obtained with the
inclusion of SRC [31], the authors claimed that the differ-
ence between the types of pairs (proton-proton, neutron-
neutron and proton-neutron) is due to the nature of the
strong force and has implications for understanding cold

dense nuclear systems such as neutron stars. Hence, the
introduction of SRC in the pasta phase structure is long
due.
So...what if the complicated pasta structures are sim-

ply not there when SRC are taken into account? As a
first study, we investigate the effects of the SRC on the
pasta phase and its structure with a simple prescription,
the coexistence phase approximation (CPA) [13] within
relativistic mean field models at zero temperature.
SRC (homogeneous phase).— We start by studying

the effects of the SRC on the homogeneous phase with
two different parametrizations, namely IUFSU [32] and
FSU2R [33]. When SRC are included, the momentum (k)
distribution present in the kinetic terms of the energy
density, pressure and scalar density is modified by the
inclusion of a “high momentum tail” proportional to k

−4

and, as a consequence, the model has to be reparameter-
ized in order to reproduce nuclear bulk properties. The
Lagrangian density used in the present work, the new
expressions for the quantities necessary to compute the
EOS and the new parameters for the FSU2R model are
given in [27–30]. For the IUFSU, the constants for the
model with and without SRC are given in Table I.

TABLE I: Coupling constants of the IUFSU parametrization
with and without SRC included. Mnuc = 939 MeV is the
nucleon rest mass. In both cases, the last constant is fixed in
C = 5.000× 10−3.

coupling IUFSU IUFSU-SRC

gσ 9.971 10.132
gω 13.032 11.867
gρ 13.590 15.551
A/Mnuc 1.785 2.956
B 0.488 −29.880
α′

3 (×10−2) 9.200 1.094

As the results obtained with the two models are qual-
itatively similar, we display the graphs for the IUFSU
parameterization only. We have chosen to show re-
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ABSTRACT

The presence of nuclear pasta is expected to modify the transport properties in the mantle of neutron stars. The

non-spherical geometry of the pasta nuclear clusters leads to anisotropies in the collision frequencies, impacting the

thermal and electrical conductivity. We derive analytical expressions for the anisotropic collision frequencies using

the Boltzmann equation in the relaxation time approximation. The average parallel, perpendicular and Hall electrical

conductivities are computed in the high-temperature regime above crustal melting, considering incoherent elastic

electron-pasta scattering and randomly oriented pasta structures. Numerical values are obtained at different densities

and temperatures by using the IUFSU parametrization of the non-linear Walecka model to determine the crustal

structure. We find that the anisotropy of the collision frequencies grows with the length of the pasta structures and,

independently of the magnetic field, the presence of rod and slab phases decreases the conductivity by more than one

order of magnitude. Our numerical results indicate that, even if the pasta structures might survive above the crustal

melting point, no strong anisotropies are to be expected in the conduction properties in this temperature regime,

even in the presence of a very high magnetic field.

Key words: dense matter – conduction – stars: neutron

1 INTRODUCTION

Observations related to the thermal, magnetic and spin evo-
lution of neutron stars can provide us with indirect infor-
mation on the transport properties of ultra-dense matter,
e.g. Horowitz et al. (2015); Montoli et al. (2020); Potekhin
& Chabrier (2021). In principle, the observations must be
compared with simulations by properly modelling the cou-
pled magneto-thermal evolution. Hence, models are necessary
for the microscopic processes that give rise to the thermal
and electric conductivities and viscosity throughout the star
(Page & Reddy 2012; Chamel & Haensel 2008; Schmitt &
Shternin 2018), which are then used as inputs to the macro-
scopic simulations, see Bransgrove et al. (2018); Pons & Vi-
ganò (2019); Camelio et al. (2022).
In the crust, transport properties are determined by the

scattering of electrons by other electrons, ionic impurities and
phonons in the crystal lattice. Electron-ion scattering domi-
nates at the lowest densities and has been extensively stud-
ied (Flowers & Itoh 1976; Yakovlev & Urpin 1980; Nandku-
mar & Pethick 1984; Baiko et al. 1998; Potekhin et al. 1999;
Chugunov & Yakovlev 2005; Aguilera et al. 2009). In the in-
ner crust at temperatures T < 107 K, thermal conductivity

⋆ E-mail: m.reinke.pelicer@posgrad.ufsc.br
† E-mail: antonelli@lpccaen.in2p3.fr
‡ E-mail: debora.p.m.26@gmail.com
§ E-mail: gulminelli@lpccaen.in2p3.fr

due to degenerate electron-electron Coulomb scattering domi-
nates over the contribution due to electron-phonon scattering
(Shternin & Yakovlev 2006) and becomes competitive with
the electron conductivity due to the scattering of electrons
by impurity ions (Chamel & Haensel 2008).

The situation gets more complicated in the innermost part
of the crust, where it might be energetically favourable for
the ions composing the crystal lattice to deform in com-
plex structures known as “pasta” (Ravenhall et al. 1983;
Hashimoto et al. 1984; Oyamatsu 1993). Classical molecular
dynamics simulations suggest that this matter is disordered
and amorphous and that different shapes might coexist at
a given depth of the star, due to the small energy barriers
between them (Schneider et al. 2014; Horowitz et al. 2015;
Caplan et al. 2021; Newton et al. 2022). This shape coex-
istence has been validated by relativistic mean field (RMF)
calculations (Pelicer et al. 2021). In the case of a disordered
and amorphous inner crust with randomly distributed nu-
clear clusters of different sizes (Carreau et al. 2020; Potekhin
& Chabrier 2021) and geometries (Pelicer et al. 2021), the
main mechanism of charge and heat transport is given by
uncorrelated scattering processes between the electrons and
the clusters, which play a role similar to one of the lattice
impurities in a crystallized phase.

Regarding the possible astrophysical consequences, a high
impurity parameter in the inner crust raises the electrical
resistivity of the star, decreasing steeply the magnetic field
after a certain age and thus the spin-down. This may ex-
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2 Pelicer et al.

plain the very small number of isolated X-ray pulsars with
spin periods larger than 12s (Pons et al. 2013; Newton 2013;
Hambaryan et al. 2017; Tan et al. 2018). The high impurity
also lowers the thermal conductivity, leading to a better fit of
the late-time cooling of the binary MXB 1659-29 (Horowitz
et al. 2015; Deibel et al. 2017). Furthermore, the presence of
the pasta layers modifies the so-called mutual friction force
between the nuclear clusters and the neutron superfluid, with
consequences on the pulsar glitch phenomenon (Antonelli &
Haskell 2020). Gravitational waves (Horowitz 2010), quasi-
periodic oscillations (Sotani 2012), quasi-persistent sources of
SXRTs and giant flares due to the relaxation of the crust af-
ter heat deposition and neutrino emissivity (Alloy & Menezes
2011; Horowitz et al. 2004; Lin et al. 2020) are also influenced
by the presence of an amorphous layer in the inner crust.

In the presence of a strong B field, electron transport is
anisotropic, as the field bends the electron trajectories in the
orthogonal plane and suppresses electron transport across the
direction of B, e.g. (Chamel & Haensel 2008). This argument
considers that the only source of anisotropy is given by the B
direction. However, the spherical symmetry of nuclear clus-
ters is spontaneously broken in the pasta layers, leading to
additional anisotropies already at the level of the microscopic
scattering process: in particular, Yakovlev (2015) has shown
that, even in the case of random orientation of the pasta
structures, anisotropic scattering can modify the transport
properties.

In the analysis of Yakovlev (2015), the scattering rates
along and across the pasta symmetry axis were taken as free
parameters. While molecular dynamics has been able to pro-
vide estimates of the transport properties in the inner crust,
by taking the angular average of the effective structure factor
of the charge distribution (Horowitz & Berry 2008; Horowitz
et al. 2015; Nandi & Schramm 2018), to our knowledge no
estimation of the different collision frequencies that arise due
to the pasta anisotropic shapes has been performed to date.

The existing microscopic simulations of the finite temper-
ature pasta (Schneider et al. 2014; Horowitz et al. 2015; Ca-
plan et al. 2021; Newton et al. 2022; Nandi & Schramm 2018)
are typically done at fixed proton fraction and high temper-
atures T ≥ 1010 K, thermodynamic conditions that are espe-
cially aimed at the description of proto-neutron stars formed
in supernova events. In these conditions, it appears from
those calculations that the distribution of baryonic matter is
strongly disordered, and one might expect that anisotropies
should not have a strong effect on the transport properties.
On the other hand, in the case of neutron star binaries and
soft X-ray transients, the inner crust is close to β-equilibrium
and temperatures are one or two orders of magnitude lower,
which might preserve both the peculiar pasta geometrical
shapes and the lattice quasi-long range order, potentially
leading to a strong anisotropy of the scattering rates, as as-
sumed by Yakovlev (2015).

In this paper, we show how the anisotropic collision fre-
quencies can be calculated from the Boltzmann equation
in the relaxation time approximation, in the case of elastic
scattering of ultra-relativistic degenerate electrons off pasta
structures. We limit ourselves to the hypothesis of incoherent
scattering sources following the Matthiessen rule (Schmitt
& Shternin 2018; Heiselberg & Pethick 1993; Shternin &
Yakovlev 2006). Based on the behaviour of the static struc-

ture factor, we argue that this hypothesis should be valid in
the high-temperature regime above crustal melting.

The paper is organized as follows. In Sec. 2 we calculate
the general anisotropic collision frequencies. The collision in-
tegral and the transition matrix elements are first expanded
in the spherical harmonics basis in Sec. 2.1. Then, to extract
the physical real collision frequencies, in Sec. 2.2 we consider
the lowest order (dipole) deviation from equilibrium and take
advantage of the axial symmetry of the pasta phase. The con-
tribution of the collision integral to the conductivity is given
in terms of axial and perpendicular collision frequencies, in
agreement with the analysis of Yakovlev (2015). Analytical
expressions for the conductivity matrix are given in Sec. 3 for
the case of a liquid, disordered, pasta phase. In Sec. 3.1, the
transition matrix is numerically evaluated in the temperature
domain of validity of our approximations. The conductivity
tensor with and without magnetic field is finally obtained in
Sec. 3.2. To illustrate the formalism and give quantitative es-
timations of the transport coefficients, in Sec. 4 we present
numerical calculations for the collision frequencies and con-
ductivity for different densities and B values in the high-
temperature regime. Conclusions are presented in Sec. 5.

All the numerical estimates reported in this paper are ob-
tained using the IUFSU parametrization of the RMF ap-
proach for the crustal composition, see Fattoyev et al. 2010;
Avancini et al. 2012, but our expressions can be employed
with any nuclear physics model that gives the static structure
of the crust. In particular, while our quantitative numerical
results might be model dependent, the qualitative conclusions
remain valid for any other realistic equation of state model.

We use natural units ~ = c = kB = 1 all over the paper.

2 RELAXATION TIME APPROXIMATION FOR

ANISOTROPIC ELASTIC COLLISIONS

The thermal and electrical electron conductivities due to
electron-ion scattering have been calculated in a wide range
of temperatures T and electron densities ne, see e.g. Potekhin
(1999): for homogeneous media, and in the absence of a mag-
netic field, they are expressed in terms of the effective collision
frequencies νσ,κ as

σ =
e2ne

m∗
eνσ

κ =
π2Tne

3m∗
eνκ

, (1)

where m∗
e is the effective electron mass, and in the liquid

regime νσ = νκ ≡ ν, with the collision frequency ν defined as
the inverse of the relaxation time, ν = 1/τ . Because of the
isotropy assumption, the collision frequencies only depend
on the modulus of the momentum transfer according to the
general expression (Flowers & Itoh 1976; Yakovlev & Urpin
1980; Nandkumar & Pethick 1984):

ν =
4πnie

4Z2

vF p2F

∫ 2pF

0

dq

q

(

1− q2

4ǫ2
F

)

F 2(q)

ε2(q)
S(q) , (2)

where F (q) is the ion form factor, ǫ(q) is the dielectric func-
tion, S(q) is the effective structure factor that accounts for
ion correlations, and vF , pF , and ǫF are the Fermi velocity,
momentum and energy respectively. Unfortunately, eqs (1)
and (2) cannot be straightforwardly generalized to the case
of anisotropic scatterings. To derive the anisotropic collision

MNRAS 000, 1–15 (2022)



Transport in the nuclear pasta 3

frequencies, we consider a multipole expansion of the Boltz-
mann equation in the relaxation time approximation, as we
detail below.

2.1 Anisotropic case: expansion in spherical harmonics

We consider a strongly degenerate relativistic electron gas
with position-dependent temperature and chemical potential
fields T (r) and µ(r) in a constant external magnetic field B

and a weak electric field E. Assuming that the gas is only
slightly out of equilibrium, we can write its distribution func-
tion as f(r,p, t) = f0(r, ǫp) + δf(ǫp), where r, v and p are
the electron position, velocity and momentum, respectively,
with the latter given by p = ǫpv. The Fermi-Dirac function
f0 is given by

f0(r, ǫp) =

[

1 + exp

(

ǫp − µ(r)

T (r)

)]−1

. (3)

The deviation from equilibrium can be found by solving the
linearized Boltzmann equation (Heiselberg & Pethick 1993;
Shternin & Yakovlev 2006)

(

− ∂f0
∂ǫp

)

v ·
[

∇µ+ eE +
ǫp − µ

T
∇T

]

− e(v ×B) · ∂δf
∂p

= I[f ] ,

(4)

where I[f ] is the collision integral that can be written as

I[f ] =

∫

d3p ′

(2π)3
[

Γp′→pf(p
′) (1− f(p))

− Γp→p′f(p)
(

1− f(p ′)
) ]

.

(5)

Here, Γp→p′ is the transition rate from an initial momen-
tum p to a final momentum p ′, introduced to account for
electron scattering with any generic potential, and we have
omitted the position dependencies as they do not affect the
calculation. We restrict ourselves to elastic scatterings with
a localized source for the potential, such that the following
simplification applies:

Γp→p′ = Γp′→p = 2πδ(ǫp − ǫp′)Wpp′ , (6)

where Wpp′ is the transition matrix element, which we will
write explicitly for the case of electron-pasta scattering in

the next section. Taking into account that deviations from
equilibrium are small, we can rewrite the collision integral,
eq. (5), as

I[f ] = −2π

∫

d3p ′

(2π)3
δ(ǫp − ǫp′)Wpp′

[

δf(p)− δf(p ′)
]

, (7)

where the Fermi-Dirac terms coming from the different mo-
menta have cancelled out due to the elasticity assumption in
eq. (6).
In isotropic scatterings, Wpp′ is a function of q = |p − p′|

and of the electron energy only. Since in this work we are
dealing with general anisotropic scatterings, we will assume
the matrix elements to be functions of the solid angles of
both incoming and outgoing electron momenta (p and p′), as
well as the energy ǫp, so there is no assumption of symme-
try for the source of potential. The transition matrix can be
expanded in the basis of spherical harmonics as

Wp p′ (Ωp,Ωp′ , ǫp) =
∑

lm l′m′

Wlm l′m′(ǫp)Y
m
l (Ωp)Y

m′

l′ (Ωp′),

(8)
whereas the assumption of elasticity implies that Ωp and Ωp′

are interchangeable, such that

Wpp′ = Wp′p =⇒ Wlm l′m′ = Wl′m′ lm. (9)

This is a generalization of the Legendre expansion used
for scattering with isotropic targets – see Sec. 3 in Pines &
Nozières (2018). In App. A we show how the isotropic limit
can be recovered from our calculation.

The deviation from equilibrium of the electron distribution
is expanded as:

δf(p) =
∑

lm

δflm(ǫp)Y
m
l (Ωp). (10)

Substitution of eqs (8) and (10) into eq. (7) allows us to use
the orthogonality of spherical harmonics and the contraction
rule

Y m
l (Ω)Y m′

l′ (Ω) =
∑

LM

(−1)M
√

(2L+ 1)(2l + 1)(2l′ + 1)

4π

×
(

l l′ L
0 0 0

)(

l l′ L
m m′ −M

)

Y M
L (Ω) (11)

to rewrite the collision integral as

I[f ] = − p2

4π2v

∑

lm,l′m′

δflm

[

Wl′m′ 00

∑

LM

(−1)M
√

(2l + 1)(2l′ + 1)(2L+ 1)

×
(

l l′ L
0 0 0

)(

l l′ L
m m′ −M

)

Y M
L (Ωp)− (−1)mWl′m′ l−mY m′

l′ (Ωp)

]

.

(12)

The 3-j Wigner symbols
(

l1 l2 l3

m1 m2 m3

)

are invariant un-

der even permutations of the columns and non-zero only if
m1 +m2 +m3 = 0, |l1 − l2| < l3 < l1 + l2 and l1 + l2 + l3 is
an integer (Brink & Satchler 1968; Edmonds 2016).

We define the anisotropic collision frequencies by expand-

MNRAS 000, 1–15 (2022)
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Figure 1. Cylindrical (rod and tube) and planar (slab) geometries of the nuclear pasta with z as the symmetry axis. The transferred
momentum vector q is drawn arbitrarily and the magnetic field B lies in the xz–plane.

ing the collision integral linearly in δf ,

I[f ] = −
∑

lm,l′m′

δflm (ǫp) [ν (ǫp)]
l′m′

lm
Y m′

l′ (Ωp), (13)

Integration of eqs (12) and (13) in Ωp yields

[ν]l
′m′

lm
=

p2

4π2v

[

(−1)m
′√

(2l + 1)(2l′ + 1)
∑

LM

WLM 00

√
2L+ 1

(

l l′ L
0 0 0

)(

L l l′

M m −m′

)

− (−1)m Wl′m′ l−m

]

. (14)

We can obtain a more compact form of this expression by us-
ing the Wigner–Eckart theorem and the spherical harmonics
representation of irreducible tensor operators of rank l (Racah
1942a,b),

Cl
m =

√

4π

2l + 1
Ylm(Ω) , (15)

such that eq. (14) becomes

[ν]l
′m′

lm
=

p2

4π2v

[

∑

LM

WLM 00

√
2L+ 1〈l′m′|CL

M |lm〉

− (−1)m Wl′m′ l−m

]

.

(16)

2.2 Derivation of the collision frequencies

To evaluate the collision frequencies in the pasta phase, we
consider idealized rod and slab-like geometries, as expected in
the basic liquid-drop modelling of the inner crust (Ravenhall
et al. 1983; Hashimoto et al. 1984). These geometries and the
definitions entering the calculations are sketched in Fig. 1.

Equation (16) is not yet a multipole expansion of the col-
lision rates because the different expansion coefficients of the

collision integral [ν]l
′m′

lm
are complex numbers. This is due to

the fact that both the electron distribution function and the
collision integral are written on the basis of complex spherical
harmonics. To relate eq. (16) to the physical quantities, we
must rewrite eqs (10) and (13) in terms of real coefficients.

To do so, we notice that the coefficients Wl′m′ lm in eq. (8)
are constrained by the symmetries of rods and slabs. Both ge-
ometries are invariant under inversion of the z-axis (z → −z),
implying that the only non-zero Wl′m′ lm are the ones having
the sum l+ l′ that is even. The sum m+m′ is constrained by

the xy–plane symmetries: cylinders are invariant under ar-
bitrary rotations: the non-zero Wl′m′ lm are only those with
m+m′ = 0; slabs are invariant over π/2 rotations, so the sum
m+m′ must be a multiple of 4. To summarize, the Wlm l′m′

are not zero if and only if:

Rods

{

l + l′ = 2k

m+m′ = 0
Slabs

{

l + l′ = 2k

m+m′ = 4k′ (17)

with k, k′ ∈ Z. To further progress, we restrict ourselves to
the case of electric and thermal conductivities. Accounting
for spin degeneracy, the electric current and heat flow are
given by

j = −2e

∫

d3p

(2π)3
vδf q = 2

∫

d3p

(2π)3
v(ǫ− µ)δf , (18)

so that only the odd l terms in the expansion (10) contribute
to the integrals in eq. (18). Moreover, in the relaxation time
approximation, the collision integral, eq. (7), is linear in δf .
The left-hand side of eq. (4) is linear in p, implying that only
the coefficient l′ = 1 in the expansion of the collision inte-
gral, eq. (13) contributes to the currents1. This is also dis-
cussed in depth in the case of isotropic scattering in Sykes &
Brooker (1970), and mentioned in the case of pasta in Schmitt
& Shternin (2018).

In the isotropic case, there is no mixing between the dif-
ferent terms of I[f ] in eq. (13) and those of δf in eq. (10).
However, in the anisotropic case, the collision frequencies can
mix the l′ = 1 contributions in eq. (13) with the l = 2, 3...
components of δflm in eq. (13). For simplicity, we neglect
such mixing and restrict ourselves to the most important

1 The multiplicity l of the spherical harmonics coincides with the
power of p in an equivalent expansion in homogeneous harmonic
polynomials since they are isomorphic (Gallier 2013; Freire 2022).
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contribution (see also Schmitt & Shternin 2018) by writing

νl′m′

lm = ν1m′

1m δl1δl′1 in eq. (13). This approximate approach
is probably good in the case of pasta, due to the symmetry
rules in (17).

We will show that the axial symmetry of the problem limits
the number of physical collision frequencies to two: an axial
frequency νa, and a perpendicular one νp. To do so, we need
to rewrite the expansions eqs (10) and (13) in terms of real
coefficients. We introduce the real spherical harmonics:

Ylm =



























i√
2

(

Y m
l − (−1)mY −m

l

)

m < 0

Y 0
l m = 0

1√
2

(

Y −m
l + (−1)mY m

l

)

m > 0

(19)

and rewrite the l = 1 term of eq. (10), δf1m, as:

δf(p)
∣

∣

∣

l=1
= Y11δfx + Y1−1δfy + Y10δfz (20)

where the coefficients are given by

δfx =
δf1−1 − δf11√

2
, δfy =

δf1−1 + δf11√
2i

, δfz = δf10.

(21)
Since the electron distribution function is real, so are the
coefficients defined above. Substituting eq. (19) and eq. (21)
in the collision integral eq. (13), we get

I[f ] =
(

Y11 Y1−1 Y10

)





νxx νxy νxz
νyx νyy νyz
νzx νzy νzz









δfx
δfy
δfz



 (22)

with the physical collision frequencies given by:

ν̂ =







1

2

(

ν11
11 + ν1−1

1−1 − ν1−1
11 − ν11

1−1

)

i

2

(

ν11
11 − ν1−1

1−1 + ν1−1
11 − ν11

1−1

)

1√
2

(

ν10
1−1 − ν10

11

)

i
2

(

−ν11
11 + ν1−1

1−1 + ν1−1
11 + ν11

1−1

)

i
2

(

ν11
11 + ν1−1

1−1 + ν1−1
11 + ν11

1−1

)

i√
2

(

ν10
1−1 + ν10

11

)

1√
2

(

ν1−1
10 − ν11

10

)

−i√
2

(

ν11
10 + ν1−1

10

)

ν10
10






(23)

The constraint of elasticity eq. (9) implies that the collision
frequency matrix is symmetric, νij = νji. Moreover, we can
see from the pasta symmetries in eq. (17) that the off-diagonal
terms vanish and that the xx and yy terms are equal. This is
valid for slabs because L1x = L1y = L1. Thus,

ν̂ =





νxx νxy νxz
νyx νyy νyz
νzx νzy νzz



 =





νp 0 0
0 νp 0
0 0 νa



 (24)

where νp = ν11
11 and νa = ν10

10 . Writing, without any loss of
generality, δf1m =

√

4π/3Φ1m(ǫp)|v|, the collision integral
expansion, eq. (13), can be simply rewritten as

I[f ] = −vzΦzνa − vp ·Φpνp, (25)

where Φ is a vector that can depend on ǫp, and the collision
frequencies νa and νp are defined parallel and perpendicular
to the pasta symmetry axis. This result exactly coincides with
the generalization of the relaxation time approximation pro-
posed by Yakovlev (2015) on symmetry arguments to include
the effect of the anisotropic medium.

The axial and perpendicular collision frequencies can be

calculated from eq. (14):

νa(ǫp) =
p2

4π2v

[

W00,00 −W10,10

+
1√
5
(W20,00 +W00,20)

]

(26)

νp(ǫp) =
p2

4π2v

[

W00,00 −
1

2
√
5
(W20,00 +W00,20)

+
1

2
(W11,1−1 +W1−1,11)

]

. (27)

To rewrite νa and νp in terms of the transition matrix
Wpp′ , we invert eq. (8) using the orthogonality of spherical
harmonics:

Wlm l′m′ =

∫

dΩpdΩp′Wpp′Y
m
l

∗(Ωp)Y
m′

l′

∗
(Ωp′). (28)

This leads to the final expression of the collision rates,
for an arbitrary interaction preserving axial symme-
try, and assuming a dipole-like deviation from the
equilibrium of the electron distribution function:

νa (ǫp) =
3

32π3v

∫

dΩpdΩp′Wpp′ q
2 cos2 θq (29)

νp (ǫp) =
3

32π3v

∫

dΩpdΩp′ Wpp′ q
2 1

2
sin2 θq. (30)

To get the generalization of eqs (1) and (2) to the physical
problem of electron-pasta scattering, we now turn to evaluate
the transition matrix Wpp′ .
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APPENDIX A: ISOTROPIC LIMIT

In this appendix, we show that the isotropic limit is obtained
from eq. (14) whenWpp′ is a function only of |q| The equation
obtained is equivalent to to eq. (3.135) of Pines & Nozières
(2018). In the isotropic case, there is no change in the l index
of spherical harmonics during the collision, and the sum of
m and m′ indexes are zero since Wpp′ is a function of the
relative angle between p and p′, therefore:

Wlm l′m′ = Wlmδll′δm−m′ . (A1)

This can be understood from the expansion in eq. (8), where
in the isotropic case the pair of spherical harmonics must
be replaced by the Legendre polynomial. Eq. (14) can be
rewritten as

[ν]l
′m′

lm
=

p2

4π2v

[

(−1)m
′√

(2l + 1)(2l′ + 1)W00 00

(

l l′ 0
0 0 0

)

×
(

0 l l′

0 m −m′

)

− (−1)m Wlm l−mδll′δmm′

]

. (A2)

We simplify this expression by utilizing the following property
of the 3j-Wigner symbols:

(

l l′ 0
0 0 0

)(

0 l l′

0 m −m′

)

=
(−1)−2l+m

2l + 1
δll′δmm′ (A3)

and defining Wlm = Wlm l−m, such that:

[ν]l
′m′

lm
=

p2

4π2v
δll′δmm′

[

W00 − (−1)mWlm

]

. (A4)

To recover the usual integral equation with the transition
matrix element we use eq. (28), with the aid of eq. (48)

Wlm =
2π

p2

∫

d3q

q
Wpp′(−1)mY m

l
∗(Ωp)Y

m
l

∗(Ωp′) (A5)

into eq. (A4) and average over the m index:

νl =
p2

4π2v(2l + 1)

∫

d3q

q
Wpp′

∑

m

[

1

4π
−Y m

l
∗(Ωp)Y

m
l

∗(Ωp′)

]

.

(A6)
Using the property of spherical harmonics

∑

m

Y m
l

∗(Ωp)Y
m
l

∗(Ωp′) = Pl(cosξ) (A7)

where cos ξ = p·p′/(|p||p′|) and changing variables as 2qdq =
−p2d(cos ξ), we obtain

νl =
p2

4πv

∫ 1

−1

d(cos ξ)Wpp′

[

1− Pl(cos ξ)

]

, (A8)

which is equivalent to eq. (3.135) of Pines & Nozières (2018)
for electron scattering with isotropic targets. We use q2 =
p2F (1− cos ξ) to change variables and write, for l = 1:

ν1(ǫp) =
1

4πp2v

∫ 2p

0

q3 dqWpp′ , (A9)

Using eq. (31), we recover eq. (2). Likewise, the viscosity can
be obtained with the l = 2 – see eqs (2) and (3) of Chugunov
& Yakovlev (2005):

ν2(ǫp) =
3

4πp2v

∫ 2p

0

q3 dq
(

1− q2

4p2

)

Wpp′ . (A10)
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