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RESUMO

O sistema de pesagem em movimento em pontes (B-WIM) utiliza dados obtidos de sensores
sob a estrutura da ponte de modo a avaliar as cargas dos veículos que passam. Ele tem sido
aplicado em diversos locais pelo mundo. Os dados obtidos pelo sistema também conseguem
prover informações adicionais para a avaliação de segurança da ponte e monitoramento da
saúde estrutural.

Existem muitos métodos na literatura aplicados para a pesagem estática B-WIM. Este
estudo inicialmente explora os procedimentos de solução existentes provendo uma com-
paração crítica de um subconjunto de métodos conceitualmente similares, expandindo a
discussão em seus aspectos teóricos e conduzindo experimentos numéricos

Uma vez que a saída do sistema, que é a resposta da ponte, é aplicada para estimar as
características do tráfego passante, que são as entradas do sistema, o problema pode ser
caracterizado como sendo do tipo inverso. A teoria dos problemas inversos é explorada
oferecendo um novo ponto de vista para o desenvolvimento de novos procedimentos de
solução em sistemas B-WIM.

O estudo atual foca em abordar uma das maiores ausências dos métodos atuais da
literatura: a aplicação da informação existente sobre as características do modelo de
modo a obter novos procedimentos de solução. O estudo revisa uma interpretação de
convolução do problema B-WIM, propondo soluções baseadas na estrutura existente.
Além disso, ele remodela o problema da pesagem como um problema de deconvolução
esparsa, desenvolvendo um conjunto integrado de métodos para a solução do problema de
regularização e relaxando a restrição de detecção de eixos perfeita. Por fim, ele esclarece
as relações de complementariedade entre pesagem e calibração propondo o uso de modelos
que levem em conta os possíveis erros nas variáveis

As melhorias identificadas são combinadas em novo método de solução proposto que é
testado sobre um banco de dados de simulações de sinais desenvolvido além de dados
reais de uma ponte instrumentada. Os resultados sugerem que a abordagem é viável e
efetiva, melhorando a performance de inferência da pesagem de eixos isolados ao passo
que mantém uma performance similar ao método convencional com relação a precisão do
Peso Bruto Total.

Palavras-chave: bridge weigth in motion. problemas inversos. regularização. soluções
esparsas.
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RESUMO EXPANDIDO

Introdução

Pontes são importantes estruturas em termos de deslocamento de recursos e operação de
sistemas de transporte ao redor do mundo. No Brasil, muitas das pontes foram construídas
na década de 70, sendo que muitas delas sofrem com falta de manutenção. Além disso,
pode haver incerteza quanto suas características estruturais visto que os projetos originais
podem não estar mais acessíveis. A incerteza quanto as características iniciais das pontes,
aliadas ao aumento de tráfego e carga que vem ocorrendo ao longo dos anos e combinado
com a falta de manutenção destas estruturas, compõe um cenário onde se torna interessante
aplicar mecanismos que nos permitam monitorar a resposta aos esforços causadas nestas
estruturas. Este monitoramento visa conhecer melhor as características da ponte e também
traçar um histórico da evolução de sua resposta com o passar do tempo. Neste contexto,
o sistema de pesagem em movimento em pontes (B-WIM) pode ser visto como uma
ferramenta poderosa. Trata-se de um sistema que utiliza sensores sob a ponte e com base
nos sinais obtidos fornece uma estimativa do espaçamento e peso de cada eixo de um
veículo passando sobre ela.

O sistema B-WIM pode ser visto como um problema do tipo inverso. Em um sistema
mecânico qualquer, observam-se as deformações a partir da aplicação de um carregamento.
No caso do problema B-WIM, o que se busca é utilizar a leitura das deformações estruturais
para se obter uma estimativa da forma e intensidade do carregamento que estava aplicado
sobre a estrutura. Uma dificuldade inerente dos problemas do tipo inverso é que múltiplas
configurações de forma e intensidade podem resultar em uma mesma deformação na
estrutura. Neste sentido técnicas de regularização podem ser necessárias para que se
obtenha uma resposta consistente.

De modo geral, o problema B-WIM pode ser visto a partir de ótica de um problema de
deconvolução. Está forma distinta de ver o problema, proposta no trabalho de Frøseth et
al. (2017) permite identificar uma certa estrutura fixa existente. Além da forma estrutural
fixa existente na analogia da deconvolução existem outras possibilidades pouco exploradas
na literatura para incorporar informações conhecidas para auxiliar na solução do problema.
Uma delas é característica esparsa do sinal de um veículo. Um veículo pode ser representado
por um vetor de impulsos, onde seu espaçamento e intensidade indicam o espaçamento de
eixos e peso por eixo, respectivamente. Nesse contexto, tem-se que métodos de resolução
que tentam promover a esparsidade na solução tendem a se aproximar mais da caraterística
da resposta esperada. Uma outra característica que pode ser explorada pelos métodos de
solução é não-negatividade do vetor que representa o veículo, por conta de o peso dos
eixos não poderem ser negativos. Uma vez tratando-se de um problema inverso, torna-se
interessante aplicar toda informação disponível de modo a guiar o processo de solução
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para a solução desejada. Dentro do contexto da deconvolução, existe um paralelo com a
teoria de processamento de sinais e imagens que pode ser utilizado para trazer técnicas de
outros campos de pesquisa para a aplicação em engenharia.

Objetivos

Este estudo tem como objetivo propor um método de regularização para a solução do
problema inverso associado ao método B-WIM, incorporando informações do sitema físico
e características estruturais da modelagem do sistema mecânico.

De forma específica, o estudo visa sintetizar as contribuiçãoes de diferentes métodos B-
WIM, implementando os métodos mais promissores e avaliando seu desempenho numérico.
Além disso, busca-se expor uma análise unificada dos variados métodos relacionando suas
propriedades e hipóteses numéricas.

Com relação as técnicas de solução do problema B-WIM, objetiva-se estudar os métodos
de regularização para solução de problemas inversos. Adicionalmente, é dado foco para
recuperação do vetor de impulso de forma completa, que nada mais é do que uma forma
de representação do veículo que atravessa a ponte. Dentre os métodos de regularização
buscas-se implementar o método de regularização ℓ1 em função de sua propriedade de
promoção da esparsidade que se adequa a forma do problema em questão. Além disso,
busca-se incorporar informações adicionais disponíveis sobre o sistema tornanodo-o mais
robusto a partir da modelagem de erro nas variáveis.

Metodologia

A partir de um estudo inicial, diversos métodos de solução de pesagem estática associados
ao problema B-WIM são implementados. Os métodos são comparados dentro de uma
abordagem unificadora, estabelencendo a relação teórica entre os diferentes métodos,
suas semelhanças e hipóteses básicas. Além disso, os métodos são também comparados
numericamente. Inicialmente, são aplicados para eventos simulados a partir de um modelo
numérico, considerando a interação dinâmica entre a ponte e o veículo por meio de
um sistema composto de massa, mola e amortecedor. Os parâmetros da simulação são
escolhidos a partir de recomendações da literatura e caraterísticas usuais dos veículos reais
que trafegam em pontes brasileiras. A resolução é feita por um precediemento iterativo
de integração numérica. Adicionalmente, a comparação numérica se dá a partir de dados
reais, obtidos de uma ponte intrumentada.

Posteriormente a análise inicial dos métodos é implementado uma caixa de ferramentas
criada para a solução do problema de regularização ℓ1. Este problema tem aplicação prática
para B-WIM uma vez que fornece soluções contendo modelos esparsos.

Visando solucionar da melhor forma possível o problema inverso, um novo método é
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proposto combinando diversas ideias da literatura com foco na incorporação de informações
previamente conhecidas do problema. O método combina técnicas de regularização, a
forma estrutural obtida da deconvolução e a consideração de erros nas variáveis em um
processo de solução de duas fases. De modo a verificar o desempenho do método proposto,
testes comparativos são conduzidos. Os testes compreendem tanto os dados numéricos
simulados quanto os dados reais da ponte.

Resultados e Discussão

A comparação numérica direta entre métodos da literatura por si só pode ser vista como
uma contribuição deste estudo. Além da comparação numérica, métodos de pesagem
estática promissores foram analisados do ponto de vista teórico, o que rendeu a proposição
de melhorias para alguns métodos como o pBWIM e considerações teóricas relevantes, como
a de o Método 2D Modificado recair no método matricial no caso da correta estimação
dos fatores de distribuição de carga. Em termos gerais a comparação numérica apresentou
resultados similares, havendo pequena vantagem para o método da máxima verossimilhança
(MLE).

Observar a interpretação da deconvolução com mais atenção permitiu que este estudo
focasse com mais ênfase na recuperação do vetor de impulso como um todo, ao invés
de se obter resultados dos eixos isoladamente, como usualmente é feito na literatura.
Essa mudança de paradigma trouxe o problema B-WIM para o contexto de técnicas de
regularização e problemas inversos. Dentro das técnicas de regularização, a regularização ℓ1

foi vista como a mais aplicável, em função de promover a esparsidade da resposta. Ainda
assim, existem diversas técnicas diferentes para a solução do problema ℓ1. Esta falta de
consenso sobre qual a melhor alternativa de solução propiciou outra contribuição relevante,
a criação de uma caixa de ferramentas com múltiplos métodos para solução do problema
de regularização ell1. Explorando-se o paralelo com a literatura de processamento de sinais,
foi possível buscar técnicas que incorporavam as características estruturais do problema,
como a forma matricial da matriz de dados do problema B-WIM, caracterizada por possuir
uma estrutura Toeplitz. Além disso, sabendo-se da complementaridade existente entre
os processos de calibração e pesagem foi possível incorporar na proposta de solução a
existência de incertezas nas variáveis de ambos os processos.

Foi proposto novo método de solução que faz uso das informações conhecidas do problema
como esparsidade, estrutura e erros nas variáveis. O método apresentou desempenho
satisfatório, com respostas semelhantes aos métodos atuais em termos de estimativa de
Peso Bruto Total, porém com melhora do desempenho em termos da resposta por eixo. O
método conta com uma fundamentação teórica mais robusta e pode permitir a estimativa
da posição dos eixos diretamente a partir da recuperação do vetor de impulso completo,
sem a necessidade de se instalar sensores específicos na ponte para este fim.



AGRADECIMENTOS 11

Considerações finais

O presente trabalho ofereceu um novo enfoque para o problema B-WIM, indicando novos
caminhos de solução e possíveis considerações que podem ser incorporadas aos métodos de
solução que até então não haviam sido profundamente exploradas. Foi possível contribuir
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teóricas da forma da solução além de possibilitar a redução do número de sensores adotado.

Palavras-chave: bridge weigth in motion. problemas inversos. regularização. soluções
esparsas.



AGRADECIMENTOS 12

ABSTRACT

Bridge weigh in motion (B-WIM) systems employ data gathered by sensors underneath
the bridge structure in order to evaluate the loads of passing vehicles. It has been applied
in multiple locations around the world. The data gathered by the system may also be
able to provide additional information for accessing bridge safety and structural health
monitoring.

Multiple methods exist in literature applied for B-WIM static weighing. This study
initially explores existing solution procedures providing a critical comparison on a subset of
conceptually similar B-WIM methods, further extending the discussion on their theoretical
assumptions and conducting numerical experiments.

Since the output of the system, which is the bridge response, is applied for estimating
the characteristics of the passing traffic, which are the input of the system, the problem
can be characterized as being of the inverse type. The inverse problem theory is explored
providing a new point of view for the development of novel solution procedures in B-WIM
systems.

The present study focuses on addressing one the main absences of current methods in
literature: the application of known information about the model characteristics in order
to devise new solution approaches. The study reviews a convolution interpretation of the
B-WIM problem, proposing solutions based on the existing underlying structure. Moreover,
it recasts the weighing problem as a sparse deconvolution, develops a toolbox for the
solution of the regularization problem and relaxes the constraint on perfect axle detection.
Lastly, it enlighten the complimentary characteristics of both weighing and calibration
proposing the use of models that take into account errors in variables.

The improvements identified are combined in a novel proposed solution method which is
tested against a developed public dataset of simulation signals as well as real-world data
from an instrumented bridge. The results suggest the approach is viable and effective,
improving on single-axle inference performance while retaining similar Gross Vehicle
Weight accuracy.

Keywords: inverse problems. bridge weigh in motion. regularization. sparse solutions.
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LIST OF ABBREVIATIONS AND ACRONYMS

ADMM Alternating Direction Method of Multipliers

AIC Akaike Information Criterion

BIC Bayesian Information Criterion

BP Block Pivoting

B-WIM Bridge Weigh in Motion

CD Coordinate Descent

EBIC Extended Bayesian Information Criterion

FAD Free-of-axle detector

FFT Fast Fourier Transform

FISTA Fast Iterative Soft-Thresholding Algorithm

GVW Gross Vehicle Weight

ISTA Iterative Soft-Thresholding Algorithm

Lasso Least absolute shrinkage and selection operator

MLE Maximum Likelihood Estimate

OESOM Orthantwise Enriched Second Order Method

SVD Singular Value Decomposition

TLS Total Least Squares
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1 INTRODUCTION

Infrastructure constructions like bridges are usually designed to last decades. Much
of the current bridges utilized in Brazil were constructed in the 70s and several of them
suffer from lack of maintenance. Even more concerning, the original design plans may
not be available. Therefore, given the natural degradation from constant use, the possible
lack of corrective procedures and knowledge about its structural components, it becomes
important to have a way to assess and monitor the bridge’s behavior.

Bridge Weigh in Motion (B-WIM) consists in a system that transforms a bridge
in a weighing mechanism. The implementation of such a system enables gathering data
for several activities such as traffic studies, pavement design, overweight law enforcement,
structural health monitoring and issuing Special Traffic Authorizations. The system offers
advantages with respect to other WIM systems. It is portable and the sensors can be
reallocated to other bridges. Moreover, the system does not disrupt traffic, since sensors
are hidden from conductors, being located beneath the bridge slab. Figure 1 illustrates
the strain signal obtained from the system.

Figure 1 – B-WIM system signal acquisition
Source: (ISWIM. . . , 2019)

The B-WIM system synergizes well with several activities, allowing acquisition
of information about the pavement, the passing vehicles, traffic characteristics and the
structure itself in which it is installed. Considering how different studies and decision-
making may be highly dependent on the data generated from the system, it becomes
important to ensure an acceptable weight estimation performance. Measurements may
suffer from systematic forms of error related to dynamic effects, temperature conditions,
incorrect estimation of axle spacing, etc. Therefore, despite usually having plenty of data
available, the system needs to account for the inherent uncertainties of measurement
acquisition and the model employed to represent the system.
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Figure 2 – B-WIM sensors
Source: Adapted from Road Traffic Technology (2019)

The use of the B-WIM system can be seen as an inverse problem. What one seeks
are the inputs that generate a given process output. The goal is to infer the weight of a
vehicle passing over the bridge given the measured strains and axle spacing detected by
sensors during its traversal. Figure 2 illustrates the sensors installed beneath a bridge. An
issue that may arise in this type of problem is the instability of solutions. There may exist
multiple configurations of axle spacing and weights that can generate the same measured
strains. Thus, it becomes important having ways for enforcing solutions forms that match
what is expected from a real vehicle passing over a bridge, e.g. positive axle weight.

Different studies on the B-WIM estimation problem have been proposed in recent
years. However, there is a lack of comparison between the novel approaches in literature.
In addition to methods comparison from numerical experiments, an investigation from the
theoretical point of view is missing. Considering that difference between some methods
consists of relaxing a constraint or introducing a different model hypothesis or probabilis-
tic/statistic assumption, a theoretical comparison can offer a more precise evaluation of
the generalization capabilities of each method.

Regarding the computational point of view, a recent study has proposed another
view on the B-WIM problem, establishing the relation between input and output of the
system with a convolution operation. As a result of this interpretation, the direct/inverse
problem can now be viewed as a convolution/deconvolution problem. This perspective may
offer important insights on obtaining more efficient solutions to the problem as well as
enabling the use of techniques often employed in the field of signal and image processing.

One of the techniques that shall be incorporated in this study is regularization.
In order to overcome the issue of multiple valid inputs that generate the same output,
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regularization allows for setting additional constraints to the problem. These additional
constraints limit the possible solution forms in order to achieve more reasonable solutions
given a certain metric.

With the convolution interpretation of the problem, regularization becomes even
more important since it allows for additional constraints to be exploited. Moreover, it
offers an interesting parallel with signal and image processing literature to be explored.
Images are usually represented by matrices. Convolving the matrix representation with a
particular kernel (matrix) results in a blurred image, i.e. the forward problem. However, it
may be of interest the inverse problem, where one has a blurred image, which may also
be corrupted from additional noise sources, and wants to recover the original image. As
exemplified in Figure 3, simply performing the deconvolution on the matrix may result
in an indistinguishable image. On the other hand, the application of regularization may
largely aid the accuracy of the recovery.

An Introduction To
Inverse Problems

Course notes for ELEC 404

blurred direct inverse regularized inverse

Colin Fox, Geoff K. Nicholls, Sze M. Tan
2010 Edition

Figure 3 – Deconvolution of blurred image by direct inverse and regularization approaches
Source: Adapted from Fox et al. (2010)

Both the B-WIM weight estimation and the image restoration problem in Figure 3
can be viewed as a discrete inverse problem where the shift between input and output is
aided by the convolution operator. Therefore, this originates the opportunity of bringing
the tools already employed in other fields to help improving the solution of this practical
engineering problem. Apart from the objective similarity, the employment of the convolution
operator enables the solution of the problem with greater efficiency by exploiting the
possibility of solving the problem in frequency domain.

1.1 OBJECTIVES

1.1.1 General Objective

Propose a regularization procedure for the solution of B-WIM inverse problem,
exploiting the structure and prior (available) information of the system under analysis.
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1.1.2 Specific Objectives

• Synthesize contributions from different B-WIM methods. Implement promising
methods, assess their numerical performance and provide a unifying analysis of their
theoretical assumptions and properties.

• Identify potential approaches exploiting the problem structure and prior knowledge
based on the comparative study;

• Study the use of regularization techniques for the solution of the B-WIM inverse
problem;

• Focus on the recovery of the full impulse vector which represents a vehicle over the
bridge;

• Implement ℓ1 regularization as an alternative to promote sparseness of the solution;

• Verify how to incorporate additional information to the model, such as accounting
for errors in variables.

1.2 THESIS STRUCTURE

Chapter 2 concisely describes the relevant theoretical background that is employed
for describing the problem and its possible solution procedures.

In Chapter 3 the problem being addressed is described and detailed. In addition,
the scope of the study is delimited, with the discussion of possible solution alternatives for
the problem.

In Chapter 4 the main B-WIM solution methods are presented under a common
knowledge base. The methods are discussed highlighting their conceptual similarities and
differences.

In Chapter 5 numerical experiments are conducted in order the evaluate the
presented B-WIM solution procedures and access the validity of the theoretical findings
discussed in the previous chapter.

Chapter 6 introduces the main ideas that arose from analyzing and evaluating the
proposed subset of B-WIM solution methods. In essence, the ideas aim to better exploit
the available knowledge of the problem.

Chapter 7 introduces the novel proposed method employed for accounting for
the available information from the B-WIM model. Moreover, numerical experiments are
presented evaluating the method in both simulated and real-world data.

Chapter 8 draws concluding remarks about the topic studied and the analyses
presented.
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Chapter 9 lists potential research lines further developing the novel ideas presented
in this study.

In Appendix A is attached the research paper that resulted from initial part of the
conducted studies.
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2 PRELIMINARY THEORY

In order to better understand how different approaches can be employed in the B-
WIM problem discussed in chapter 1, some initial theoretical remarks should be presented
first. This chapter presents the theoretical preliminaries and important definitions that
allow further discussion of the proposed study in the context of the B-WIM system in
chapter 3.

2.1 INVERSE PROBLEMS THEORY

Inverse problems may arise when trying to infer a cause from an effect. In a generic
evaluation procedure, one has an input that is directed through a process to obtain an
output. The inverse problem occurs when one seeks the input that generates the observed
output given a certain process, as illustrated in Figure 4.

? A b
cause

input

model

process

effect

output

Figure 4 – Inverse problem

In general, inverse problems are more complex than their direct counterpart, since
they are usually ill-posed. A well-posed problem as defined by Hadamard (1902) satisfies
the following conditions:

• Existence: a solution for the problem exists for every input;

• Uniqueness: the solution is unique;

• Stability: the solution depends continuously on the data.

If any of the above conditions are not satisfied, the problem is said to be ill-posed.

Given the possible ill-posedness of inverse problems, distinct solution techniques
from their direct counterpart should be applied. Figure 5 illustrates the general frameworks
employed in solving inverse problems. Techniques usually follow two main paths, employing
either regularization approaches or making use of Bayesian reasoning. In both cases, one
tries to provide additional problem information to guide the solution procedure.

Following the regularization framework, methods could be divided into two main
categories: Penalization and Subspace projection. In the Penalization approach, additional
constraints are added to solution form in order to penalize solutions that do not conform
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Inverse
problems

Regularization
framework

Bayesian
framework

Penalization

Subspace
Projection

Figure 5 – Alternatives for inverse problem solution

with what is expected (THEODORIDIS, 2015). This branch comprises regularization
methods such as Tikhonov, Lasso, Elastic Net and Regularized Least Absolute Deviations
(WANG et al., 2006). The other main branch in regularization approaches is that of
Subspace Projection (JENSEN, 2006). It consists of finding solutions by projection on
lower-dimensional subspaces, offering desirable properties. This achieves a regularizing effect
which may be sufficient for many applications (KILMER; O’LEARY, 2001). Such methods,
usually offer dimensionality reduction that helps when dealing with high-dimensional
problems. Instances of such methods include Truncated Singular Value Decomposition
and the family of Krylov subspace methods, which originates many iterative algorithms
such as Conjugate Gradient (HESTENES; STIEFEL, 1952), LSQR (PAIGE; SAUNDERS,
1982) and Golub-Kahan iterative bidiagonalization (GOLUB; KAHAN, 1965).

It is also possible to apply Bayesian reasoning for solving inverse problems. In fact,
there is much interplay between Regularization and Bayesian approaches, where several
Regularization procedures have equivalent interpretations under a Bayesian reasoning. For
example, a L1 regularization can be viewed as the maximum aposteriori estimate given
an Laplacian prior (HASTIE et al., 2015). The advantages of the Bayesian approach are
the possibility of better incorporating the uncertainties on the model and the possibility
of recovering not only a single value but a related probability distribution of the results
(GONÇALVES et al., 2022). The drawback is often the computational cost associated
with the estimation procedure. As examples of studies employing this approach one could
cite (TITTERINGTON, 1985; ARCHER; TITTERINGTON, 1995; FLORENS; SIMONI,
2012).
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2.2 CONVEXITY

Convexity is an important characteristic of an optimization problem. Knowing
beforehand that a function is convex enables the use of specialized methods that exploit
this property. Thus, the search becomes faster if compared to more general methods and
the solution is guaranteed to be a global optimum when a local search method such as
gradient descent is employed (WRIGHT et al., 1999).

In order to define a convex function, the definition of a convex set is required. A
set S is said to be convex if given any two points p1 and p2 in S, the line segment p1p2 is
also in S. This concept can be extended for the n-dimensional space. Mathematically, a
parametric representation of a line segment between points d(1) and d(2) can be formulated
as follows:

d = αd(2) + (1 − α)d(1); 0 ≤ α ≤ 1. (2.1)

If the entire line segment is in S, then it is a convex set (ARORA, 2004).

Considering now a function f(d) defined on a convex set S, this function is said
convex if it satisfies:

f(αd(2) + (1 − α)d(1)) ≤ αf(d(2)) + (1 − α)f(d(1)); 0 ≤ α ≤ 1. (2.2)

This condition is necessary and sufficient and applies to n-dimensional functions.
An illustrative example of a single variable convex function is shown in Figure 6.

d(2)

f(d(1))
f(d)

f (d)

d
d + )

f(d(2))

d(1) d(2)

d(1)

f (d(2))+(1 – α)f(d(1))

d

Figure 6 – Convexity check on unidimensional function
Source: Adapted from Arora (2004)

In practice, applying Equation 2.2 is difficult, as an infinite number of pair of points
must be checked. Checking the Hessian of the function is a simpler alternative. A function
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is said to be convex when its Hessian ∇2f(d), defined as:

∇2f(d) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f(d)
∂d2

1

∂2f(d)
∂d1∂d2

. . .
∂2f(d)
∂d1∂dn

∂2f(d)
∂d2∂d1

∂2f(d)
∂d2

2
. . .

∂2f(d)
∂d2∂dn

... ... . . . ...

∂2f(d)
∂dn∂d1

∂2f(d)
∂dn∂d2

. . .
∂2f(d)

∂d2
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.3)

is at least positive semidefinite everywhere, that is, has non-negative eigenvalues for all
points in S.

2.3 ORDINARY LEAST SQUARES

Data points from input-output systems may be corrupted by imperfect measure-
ments that include random error. A linear least squares problem is usually the starting
point for many modeled systems in which the presence of data errors is admitted. The
general formulation can be written as:

arg min
x

rT r; r = Ax − b (2.4)

where A is the design matrix, r is the vector of residuals, b is the vector of observations
and x is the vector of parameters. Since the sum of squared residuals term rT r is usually
different from zero, one seeks the solution x which minimizes this metric. The solution
can be found analytically, resulting in the well known normal equations (HANSEN et al.,
2013):

AT Ax = AT b, (2.5)

where the value of x that minimizes Equation 2.4 is found to be:

x = (AT Ax)−1AT b. (2.6)
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2.4 MAXIMUM LIKELIHOOD ESTIMATION

Given any machine learning context where predictions must be made, maximum
likelihood estimation (MLE) becomes an important tool for the development of solution
procedures. It consists of a general method that can be applied to any estimation problem
where a joint probability density function can be assigned to the observations (ASTER et
al., 2018).

The likelihood function associated with a certain joint probability distribution
can be interpreted as a function of the distribution parameters given the observations.
Therefore, when employing MLE, one wants to find from all parameters that could define a
model distribution, those which are most likely to have generated what has been observed.
This concept is relevant for this study since it allows for different formulations for equating
input and output. Moreover, assuming distinct forms for the distribution of errors between
observation and expected results enables the development of more general methods.

When trying to derive an estimator for the system given these data, one may
seek the solution which is best from a statistical point of view. In this regard, maximum
likelihood is one of the most popular techniques for deriving estimators (CASELLA;
BERGER, 2002).

The error function in Equation 2.4 defines a least square problem. From a statistical
point of view, such an approach is the maximum likelihood estimator when errors are
independent and normally distributed random variables (ASTER et al., 2018). These errors
are related to each measured ordinate and at the same event of calibration. However, these
underlying error assumptions may not be met when considering practical cases. For example,
missing information on formulation could be seen as correlated errors (WASHINGTON et
al., 2010). Thus, if the model description in Equation 2.4 is not accurate enough, a least
squares estimate would not provide the best result. However, useful information can still
be extracted from the application of the method, although there are minor violations of
the assumptions (CHATTERJEE; HADI, 2015).

2.5 ℓp NORMS

Different vector norms are employed in this study. Their concept can be generalized
with the introduction of the ℓp norm, defined as:

∥x∥p =
∞∑︂

i=1
|xp

i |
1
p . (2.7)

Figure 7 illustrates the different contours generated by employing different p parameters
in the ℓp norm.
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32 3. Linear Methods for Regression

region for ridge regression is the disk β2
1 + β2

2 ≤ t, while that for lasso is
the diamond |β1| + |β2| ≤ t. Both methods find the first point where the
elliptical contours hit the constraint region. Unlike the disk, the diamond
has corners; if the solution occurs at a corner, then it has one parameter
βj equal to zero. When p > 2, the diamond becomes a rhomboid, and has
many corners, flat edges and faces; there are many more opportunities for
the estimated parameters to be zero.

We can generalize ridge regression and the lasso, and view them as Bayes
estimates. Consider the criterion

β̃ = argmin
β

{
N∑

i=1

(
yi − β0 −

p∑

j=1

xijβj

)2
+ λ

p∑

j=1

|βj |q
}

(3.53)

for q ≥ 0. The contours of constant value of
∑

j |βj |q are shown in Fig-
ure 3.12, for the case of two inputs.

Thinking of |βj |q as the log-prior density for βj , these are also the equi-
contours of the prior distribution of the parameters. The value q = 0 corre-
sponds to variable subset selection, as the penalty simply counts the number
of nonzero parameters; q = 1 corresponds to the lasso, while q = 2 to ridge
regression. Notice that for q ≤ 1, the prior is not uniform in direction, but
concentrates more mass in the coordinate directions. The prior correspond-
ing to the q = 1 case is an independent double exponential (or Laplace)
distribution for each input, with density (1/2τ) exp(−|β|)/τ) and τ = 1/λ.
The case q = 1 (lasso) is the smallest q such that the constraint region
is convex; non-convex constraint regions make the optimization problem
more difficult.

In this view, the lasso, ridge regression and best subset selection are
Bayes estimates with different priors. Note, however, that they are derived
as posterior modes, that is, maximizers of the posterior. It is more common
to use the mean of the posterior as the Bayes estimate. Ridge regression is
also the posterior mean, but the lasso and best subset selection are not.

Looking again at the criterion (3.53), we might try using other values
of q besides 0, 1, or 2. Although one might consider estimating q from
the data, our experience is that it is not worth the effort for the extra
variance incurred. Values of q ∈ (1, 2) suggest a compromise between the
lasso and ridge regression. Although this is the case, with q > 1, |βj |q is
differentiable at 0, and so does not share the ability of lasso (q = 1) for

q = 4 q = 2 q = 1 q = 0.5 q = 0.1

FIGURE 3.12. Contours of constant value of
P

j |βj |q for given values of q.Figure 7 – Contours of different ℓp norms
Source: (HASTIE et al., 2009)

This measure is relevant for this study since both of most usual forms of regular-
ization procedures employ the ℓp norms in their formulation. Tikhonov regularization,
as shall be discussed, is defined according to the ℓ2 norm, while Lasso regularization is
defined according to the ℓ1 norm.

Considering the B-WIM context, another relevant norm, named the infinity norm
(ℓ∞), is also employed as a manner for comparing different distances between influence
line curves. It can be defined as an asymptotic case of the ℓp norm:

∥x∥∞ = lim
p→∞

∥x∥p = max(x) (2.8)

Additionally, when studying systems involving matrices, the Frobenious norm is
often considered. It can be seen as the equivalent of the ℓ2 vector norm for the space of
matrices. It is defined as the square root of the sum of the squares of all matrix entries.
For a m by n real matrix A that can be written as:

∥A∥F =
⌜⃓⃓⎷ m∑︂

i=1

n∑︂
j=1

a2
ij =

√︂
trace(AT A). (2.9)

The relation with the ℓ2 norm becomes more evident after defining the Frobenius inner
product:

A : B = trace(AT B). (2.10)

This operation works on the space of matrices and follows all requirements to be considered
an inner product such as linearity, symmetry and positive definiteness. Therefore, the two
expressions:

∥x∥2
2 = x · x, (2.11)

∥X∥2
F = x : x, (2.12)

are the norms induced by the inner products of the vector space, known as the dot product
and the inner product of the matrix space, respectively.
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2.6 ℓ2 REGULARIZATION

In ℓ2 regularization, additionally to the error term, the ℓ2-norm of the solution is
also minimized by incorporating a parameter λ. It can be viewed, from an optimization
perspective, as an additive penalty term to the residual function. This inclusion imposes a
new constraint, where not only the ℓ2-norm of the residual should be minimized but also
the ℓ2-norm of the solution. The trade-off between the optimization of these two quantities
is controlled by the parameter λ, which can be viewed as a Lagrange multiplier. (ARORA,
2004).

Tikhonov regularization is perhaps one of the most widely used techniques for
regularizing discrete ill-posed problems (ASTER et al., 2018). One the main difficulties
when employing this type of procedure is how to reliably estimate the optimal λ parameter.
The usual formulation reads:

x̂ℓ2 = arg min
x

∥Ax − b∥2
2 + λ∥x∥2

2. (2.13)

From Equation 2.13 one can derive the argument that minimizes this function as a function
of λ by setting the gradient to zero. Taking the differential of the previous expression, one
can identify the gradient as in:

f = ∥Axλ − b∥2
2 + λ∥xλ∥2

2 = r : r + λxλ : xλ (2.14)
df = 2r : dr + 2λxλ : dxλ (2.15)

= 2(Axλ − b) : Adxλ + 2λxλ : dxλ (2.16)
= 2(AT (Axλ − b) + λxλ) : dxλ (2.17)

∂f

∂xλ

= 2(AT (Axλ − b) + λxλ). (2.18)

where in the above derivation, the colon denotes the Frobenius inner product, i.e. A : B =
trace(AT B), with the following properties derived from the underlying trace function:

A : BC = BT A : C

= ACT : B

= AT : (BC)T

= BC : A. (2.19)
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Setting the gradient in Equation 2.18 to zero and solving for xλ one obtains:

0 = 2(AT (Axλ − b) + λxλ (2.20)
AT b = (AT A + λI)xλ (2.21)

xλ = (AT A + λI)−1AT b. (2.22)

It can be noted that the main difference from the usual normal equations that arise from
the application of least squares is the added regularization term in the diagonal of the
AT A matrix.

2.7 SUBGRADIENTS AND SUBDIFFERENTIAL

When applying optimization procedures on convex nonsmooth functions the concept
of subgradient becomes important. When gradients are available, the gradient descent
method converges quadratically to a local solution, which is also the global solution for
convex functions. However, for nonsmooth functions the gradient may not exist everywhere.
To solve the issue subgradients can be seen as a generalization of gradients applicable to
nonsmooth functions. The subgradient s is defined as a vector that satisfies the relation:

f(y) ≥ f(x) + sT (y − x), ∀x, y ∈ domf(x). (2.23)

Then, the set of all subgradients of a function f at a point x is the subdifferential, denoted
∂f(x) and written as:

∂f(x) = {s|f(y) ≥ f(x)sT (y − x), ∀y ∈ domf}. (2.24)

An important property for optimization is that x is a minimum of the convex function f

if and only if f is subdifferentiable at x and:

0 ∈ ∂f(x). (2.25)

2.8 PROCEDURES FOR FINDING REGULARIZATION PARAMETERS

2.8.1 L-curve

A trade-off exists between point-wise fidelity and the generalization introduced by
smoothing the solution given a certain regularization parameter. The L-curve method tries
to locate the optimal parameter employing a graphic procedure which relates these two
situations. It plots on a log-log scale the least-squares gap, i.e. the norm of the regularized
solution versus the norm of the corresponding residual. Calling the residual norm as Enorm

and the regularized solution norm as Fnorm, the quantities plotted in the L-curve are:
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Enorm = ∥Axλ − b∥2 (2.26)
Fnorm = ∥xλ∥2. (2.27)

When a small regularization is introduced, the total error is dominated by the noise
error. This situation is called under-smoothing and corresponds to the vertical part of the
L-curve. On the other hand, when the amount of regularization introduced is large, the
total error becomes more influenced by the smoothing error. This originates the horizontal
part of the L-curve (DOICU et al., 2010). Therefore, in the L-curve method one seeks the
best trade-off between smoothing and noise error, which corresponds to the corner of the
L-curve.

more filtering

less filtering

Enorm

Fn
or

m

Figure 8 – The generic form of the L-curve plotted in double-logarithmic scale, adapted
from: (HANSEN, 1998)

The main issue of depending on the L-curve for the assessment of the optimal
regularization parameter is the lack of a standard procedure for obtaining the corner of the
curve. One possible systematic way of evaluating this corner is by minimizing the Euclidean
distance from the origin of the graph. Another similar technique, proposed by Hansen e
O’Leary (1993), seeks the point that minimizes the L-curve curvature. Nevertheless, when
dealing with the discrete case, more robust methods are needed since corners may appear.
In this regard Hansen et al. (2007) proposes a technique for addressing this issue with an
adaptive pruning procedure.

2.8.2 Cross-validation

The basic assumption behind cross-validation is that a solution computed on a
reduced set of data points should give a good estimate of missing points. Thus in general,
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one aims to verify the suitability of a parameter by employing it on different partitions of
the same training set. Different techniques arise from different forms of partitioning the
training set. Two usual forms are Leave One Out, where each partition contains all but
one element and K-Fold Validation, where K represents the partition size (HASTIE et al.,
2009).

For the application on ℓ2 regularization, Golub et al. (1979) proposes a form of
generalized cross-validation (GCV). This method requires the minimization of the GCV
function:

V (λ) = ∥(I − A#
λ )b∥2

2

(tr(I − A#
λ ))2

, (2.28)

where Aλ for Tikhonov regularization is:

A#
λ = (AT A + λI)−1AT . (2.29)

2.8.3 Information-based methods

Another approach for choosing the optimal regularization parameter is a class of
methods based on information theory. The advantage of these methods is that they are much
cheaper computationally when compared to data-driven methods such as cross-validation.

The Akaike Information Criterion (AIC) is a model selection criterion derived
by Akaike (1998) which aims to find the best approximate model to the unknown true
data generating process. The metric for evaluating the approximation quality is the
Kullback–Leibler (KL) divergence. Since the true model is unknown, the derivation relies
on some asymptotic identities (WIT et al., 2012). The derivation results in the following
criterion when applied to the lasso problem:

λAIC = arg min
λ

(n log(SSEλ) + 2s) (2.30)

where SSEλ is the sum of squared errors associated to the considered λ, namely ∥b−Axλ∥2
2,

and s in the cardinality of the support, i.e., the number of nonzero elements in the solution.

Another popular criterion in called the Bayesian Information Criterion (BIC),
proposed by Schwarz (1978). In the Bayesian approach of model selection one aims to
maximize the posterior probability of a model given the data. Assuming all models are
equally likely maximizing the posterior probability of a model given the data is the same
as maximizing the marginal likelihood:

P (b1, ..., bn|Mi) =
∫︂

xi

L(xi|b1, ..., bn)pdf(xi)dxi (2.31)
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where L is the likelihood function, xi are the model parameters associated with model
Mi and pdf(xi) is the probability density function of the model parameters. BIC uses
Laplace method to approximate the integral and further assumptions of Independent and
identically distributed errors as well as big n in order to simplify the expression into the
following criterion (BHAT; KUMAR, 2010):

λBIC = arg min
λ

(n log(SSEλ) + s log n) (2.32)
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Figure 9 – Example BIC curve and its minimum

There is also the EBIC method proposed by Chen e Chen (2008) which is a
extension of the classic BIC. It is aimed at correcting a tendency of exceeding number
variables entering the model in high-dimensional problems. This increased sparseness is
achieved by by adding an additional penalty term on the BIC for the growing number of
parameters in the model. It is defined as:

λEBIC = arg min
λ

(n log(SSE(λ)) + s(2 log p + log n)). (2.33)

2.9 ℓ1 REGULARIZATION

Another important regularization procedure is the LASSO (least absolute shrinkage
and selection operator). This procure is also known as ℓ1 regularization since it employs
the ℓ1 norm in the formulation.

The major aspect of this regularization procedure regarding this study is the
characteristic sparseness promoting feature of the method. This means that solutions
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obtained from this regularization approach have a smaller number of non-zero entries. This
sparseness promoting feature is readily visualized when comparing the 2D case between
ℓ1 and ℓ2 regularization, presented in Figure 10. In this figure, when employing ℓ1 the
regularized solution induced w2 to become zero, which does not happen in the ℓ2 norm
case.

Figure 10 – Difference between ℓ1 and ℓ2 norms in regularization
Source: adapted from Hastie et al. (2009)

The sparseness-promoting feature can also be inferred from the formulation, since
the minimization of the absolute value of components will penalize small components more
severely than the large counterparts. The formulation reads, for a linear system of the
form Ax = b:

x̂ℓ1 = arg min ∥Ax − b∥2
2 + λ∥x∥1 (2.34)

where λ is again the regularization parameter. The solution of the ℓ1 regularization problem
is not as straightforward as its ℓ2 counterpart. This is mainly due to the fact that the
regularization requires absolute values of parameters, and the absolute value function is
non-differentiable at zero. Nevertheless, different algorithms exist implementing solution
procedures for this type of regularization, such as LARS (EFRON et al., 2004), coordinate
descent (WU et al., 2008), iterative shrinkage thresholding (BECK; TEBOULLE, 2009)
and proximal gradient descent (COMBETTES; PESQUET, 2011).

Similarly as ℓ2 regularization, ℓ1 regularization can be interpreted from a Bayesian
perspective, where the coefficients have a Laplace prior distribution. The Laplace distribu-
tion has a sharp peak at zero, due to a discontinuity in its first derivative. Therefore, an
important mass of probability becomes concentrated closer to zero than what is observed
with the Gaussian distribution. This constitutes another explanation for the sparseness
promoting characteristic of this type of regularization.
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2.10 TRUNCATED SVD

Another possible regularization involving linear systems arises from applying a
Linear Algebra matrix decomposition. Suppose that a linear system of the form Ax = b

must be solved by the least-squares method. Using the Singular Value Decomposition
(SVD) of the matrix A, which has the form:

A =
n∑︂

i=1
σiuiv

T
i = UΣV T (2.35)

the solution vector x can be written as:

xlsq =
n∑︂

i=1

uT
i b

σi

vi (2.36)

where σi are the singular values of A and the vectors ui and vi are left and right singular
vectors of A, respectively.

The methods of regularization often try to filter out the contributions to the
solution corresponding to the small singular values. Therefore, they produce solutions of
the form (GUERRA; HERNANDEZ, 2001):

xreg =
n∑︂

i=1
fi

ut
ib

σi

vi (2.37)

where fi are called filter factors.

Similarly to the ℓ2 regularization, the TSVD also depends on a parameter, namely,
the truncation parameter (VOGEL, 1986). It corresponds to the number of singular
value terms summed in the solution. In fact, following the filtering factors scheme in
Equation 2.37, both TSVD and Tikhonov can be seen as the application of the same
regularization framework where the distinction between methods lies in the choice of filter
factors. The following filter factors are employed (GUERRA; HERNANDEZ, 2001):

fi = σ2
i

λ2 + σ2
i

Tikhonov(λ > 0), (2.38)

fi =

⎧⎪⎨⎪⎩1 if i ≤ n − λ

0 if i > n − λ
TSVD(λ = 0, 1, . . . , n − 1). (2.39)

Such methods based on filter parameters are known in literature as spectral filtering
methods (HANSEN et al., 2006).
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2.11 ELASTIC NET REGULARIZATION

Elastic net is related to a recent hybrid method proposed by Zou e Hastie (2005).
The method can be viewed as a middle term between Tikhonov (ℓ2) and Lasso (ℓ1)
regularization. It aims at solving stability issues in the application of Lasso, where solutions
may become too dependent on the data.

2.12 CONVOLUTION

A major point of this study relies on the concept of convolution between two signals.
Convolution is a binary operation on functions, i.e., it takes as input two functions and
outputs another function. Recalling the definition, the convolution between two functions
x and h can be written as:

y(t) = x(t) ∗ h(t) =
∫︂ ∞

−∞
x(τ)h(t − τ)dτ, (2.40)

where τ is a delay between signals and ∗ is the convolution operator.

The discrete version of the above convolution, which encompasses an increased
relevance for this study, can be written as:

y(t) = x(t) ∗ h(t) =
∑︂
m∈Z

x(m)h(n − m). (2.41)

The convolution theorem is also useful for enabling the determination of solutions
in the frequency domain. It states that:

F{x ∗ h} = F{x} · F{h}, (2.42)

where

F(x(t)) = X (ω) =
∫︂ ∞

−∞
x(t)e−iωtdt. (2.43)

Therefore, the convolution can be performed by multiplying both signals in fre-
quency domain and reverting the transformation for the time domain as in:

x ∗ h = F−1
(︂

F(x) · F(h)
)︂
, (2.44)

where:

F−1(X (ω)) = x(t) = 1
2π

∫︂ ∞

−∞
X (ω)eiωtdω. (2.45)
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This same equation holds for the discrete case. Thus, in case of limiting computa-
tional resources, any convolution procedure can be accelerated by solving it in frequency
domain, where it enables the use of the efficient Fast Fourier Transform (FFT) algorithm.
Thus, the convolution between two signals (vectors) can be written as:

x ∗ h = ifft( fft(x) ⊙ fft(h)), (2.46)

where ⊙ is the element-wise (Hadamard) product and fft and ifft are the fast Fourier
transform and its inverse counterpart, respectively.

2.12.1 Convolution as matrix multiplication

Restricting the analysis to the discrete domain, it is possible to evaluate the
convolution between two signals, represented by finite-length vectors as a matrix-vector
multiplication. The matrix being multiplied, which is a linear mapping between the
input vector and the output vector, always follows a special form known as Toeplitz
(GRENANDER; SZEGÖ, 1958). This type of matrix is constructed by taking every row
equal a zero-padded right-shifted version of an initial vector. This effectively results
in a matrix where diagonals are always constant. In general, when a computing the
convolution between a vector a ∈ Rn with a vector b ∈ Rm the Toeplitz matrix has the
form T ∈ R(n·m−1)×n.

As an example, the following vectors t ∈ R4, a ∈ R5 are convolved:

t = {t1, t2, t3, t4}T ; a = {a1, a2, a3, a4, a5}T . (2.47)

Thus, the following Toeplitz matrix T ∈ R8×5 can be created for performing the convolution.
Toeplitz matrices are used in section 3.3 in a convolution interpretation of the use of
influence lines for obtaining axle weights.

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1 0 0 0 0
t2 t1 0 0 0
t3 t2 t1 0 0
t4 t3 t2 t1 0
0 t4 t3 t2 t1

0 0 t4 t3 t2

0 0 0 t4 t3

0 0 0 0 t4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.48)

Operating the convolution as a matrix multiplication results in:
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y = t ∗ a = Ta =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1t1

a1t2 + a2t1

a1t3 + a2t2 + a3t1

a1t4 + a2t3 + a3t2 + a4t1

a2t4 + a3t3 + a4t2 + a5t1

a3t4 + a4t3 + a5t2

a4t4 + a5t3

a5t4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.49)

Since the convolution operation is commutative the same procedure can be reapplied
considering a new convolution Toeplitz matrix A with respect to the vector a. That is:

y = t ∗ a = a ∗ t = At =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 0
a2 a1 0 0
a3 a2 a1 0
a4 a3 a2 a1

a5 a4 a3 a2

0 a5 a4 a3

0 0 a5 a4

0 0 0 a5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
t1

t2

t3

t4

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1t1

a1t2 + a2t1

a1t3 + a2t2 + a3t1

a1t4 + a2t3 + a3t2 + a4t1

a2t4 + a3t3 + a4t2 + a5t1

a3t4 + a4t3 + a5t2

a4t4 + a5t3

a5t4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.50)
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3 PROBLEM DEFINITION

The objective of any Weight-in-motion system is to obtain accurate axle load and
gross vehicle weight information. They are introduced as an alternative to conventional
static weight stations.

B-WIM systems convert an instrumented bridge in a weighing mechanism for
passing vehicles. It offers advantages when compared to other WIM alternatives since
its installation is non-destructive and its operation does not disrupt traffic. This allows
for unbiased data acquisition with respect to traffic behavior and permits the system to
be moved from one bridge to another. Moreover, the usefulness of the system comes not
simply from its weighing capability. It also offers general parameters related to the bridge
it is installed. Considering this data, such as the estimated bridge influence line, one can
estimate the current structural condition of the bridge, its service life and the stresses
developed given a hypothetical heavy vehicle (LYDON et al., 2016; JUNGES et al., 2017;
LANSDELL et al., 2017).

The two main parts needed for estimating weights are the strain measurements
and axle detection. This study concerns itself with the form of B-WIM known as nothing
on road (NOR). In the NOR B-WIM formulation, the axle detection, which often relied on
detectors on the road surface, is conducted by Free of axle detector (FAD) sensors attached
beneath the bridge slab. This contributes to avoiding traffic disruption by positioning all
sensors hidden from plain sight.

3.1 POINTS OF IMPROVEMENT

After an initial evaluation of the methods employed in literature for weight esti-
mation, which are briefly discussed in chapter 4 and resulted in the published paper in
Appendix A, two main points of improvement were identified. Both could be seen as a
consequence of the lack of information associated with either model description or solution.
Firstly, most methods employed do not directly address the dynamic effects. This, along
with other systematic forms of errors such as pavement temperature and lack of accuracy
in axle detection, were found to be detrimental for the overall performance of the system
(YU et al., 2016). The approach of better dynamic considerations was recently addressed
in literature in the work of Gonçalves et al. (2021a).

Secondly, the other major aspect that influences the system performance is related
to the ill-posedness of the inverse problem. Figure 12 illustrates how multiple vehicles
can lead to the same structural response. In the figure, two vehicles are shown, the first
representing a 4-axle vehicle with equal axle weights, the second an arbitrarily generated
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vehicle with random weights and five axles. As shall be later discussed, the process of finding
weights from B-WIM measurements involves comparing generated bending moments on
the bridge. Thus, the ill-posedness of the problem becomes clear since reversing the process
with the moment data may lead to an infinite number of valid solutions.

Ill-posedness Model description

Improved estimation

Regularization Dynamics

Figure 11 – Points of improvement

Despite common acknowledgment of this issue in literature, few studies have looked
for forms of overcoming it. Considering different inputs (vehicle weight) can generate
the same output (strains), when working backward on the inverse problem one could
aid the solution procedure by introducing a bias from prior knowledge. The alternative
that shall be explored is this thesis is regularizing the solution. In order to regularize
the solution, one needs to introduce generic constraints for restricting the solution space
in an appropriate manner. This is the main premise of this study and something that
has not been thoroughly explored in literature. Indeed, regularization techniques were
naively applied to this problem, as pointed out in the paper presented in Appendix A. For
example, in O’Brien et al. (2009) only Tikhonov regularization was considered without
discussing forms of obtaining the regularization parameter and detailing the L-curve
procedure applied.

As should be detailed throughout this section, it is possible to view the problem
under a convolution perspective. This perspective results in further possibilities for in-
corporating relevant knowledge to the problem. This information shall be used for either
constraining the problem in a meaningful way or removing constraints that were harmful
to the estimation procedure. The main purpose of this step is to actually use the available
information about the problem at hand. For example, the consideration of inaccurate axle
spacing, which relaxes the problem and is in accordance with what is generally seen on
field. Moreover, knowing that no force is applied on the bridge between axles, induces a
sparse model representation that may aid constraining the solution space. Further details
on this regard will be discussed after a more in-depth problem presentation.
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Figure 12 – Illustration of the problem ill-posedness

3.2 MOSES AND MATRIX METHOD

Moses (1979) verified the availability of using strain measurements for vehicle
weight estimation for the first time. The standard solution procedure for obtaining vehicle
axle weights consisted of a least squares approach, relating measured and expected bending
moments calculated from the influence line. The influence line is a curve that represents
values of a certain function given the passage of a unit load over the member being
considered, in this case, the bridge. For this particular application, the function of interest
is the bending moment at the mid-span, where the maximum strains occur. Figure 13
illustrates the relation between theoretical and measured moments.

Influence lines derived from purely theoretical considerations, such as support
conditions, were often seen as inaccurate for the weighing procedure (ZHAO; UDDIN,
2010). Considering that information for modeling and extracting bridge influence lines may



Chapter 3. Problem definition 38

Hooke's law


Strain ( )

Beam Flexure


Stress ( )

 Moment
( )

Influence line

Force/Position

Moment
( )

Figure 13 – Schematic representation of data relations in B-WIM

be unavailable or unreliable, O’Brien et al. (2006) proposed to overcome these issues with
the introduction of the Matrix method. The idea behind the Matrix method is obtaining
an influence line that better represents the actual bridge condition with a calibration
procedure. A vehicle with known weight traverses the bridge and that measured response
is employed for calibrating the influence line which minimizes the difference between
measured and expected bending moments.

The difference between signals is considered in a least-squares sense with the
introduction of an error function R. It is comprised of the sum of the squares of differences
between the measured bending moment Mm and the theoretical bending moment M t.
Despite being usual, the formulation equating moments is not unique for solving the
problem. One could carry a similar derivation calibrating the system by only relating
strains. The results are the same for both forms of formulating the problem since moments
and strains are only related by a multiplicative constant EZ. Following with the derivation
as usually presented, the measured term for an instant k is given by:

Mm
k =

G∑︂
g=1

EgZgεg, (3.1)

where G represent the number of girders and Eg, Zg, and εg are the elastic modulus,
section modulus and measured strain of the g-th girder, respectively. The theoretical term
introduces the influence line and reads:

M t
k =

J∑︂
j=1

WjIℓ(k−Cj), (3.2)

where:
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Cj = djf

v
, (3.3)

and J is the number of axles, Wj is the weight of the j-th axle, Iℓ(k−Cj) is the influence
ordinate at the position of the j-th axle, dj is the distance between the first axle and j-th
axle, Cj is the number of scans corresponding to dj , f is the sampling frequency and v is
the vehicle velocity. It is worth pointing out that if k − Cj results in an index that does
not match an influence line ordinate, it is attributed the value of zero.

The sum of squares of the residual reads:

R = ∥Mm − M t∥2
2. (3.4)

The derivation of the influence from Equation 3.4 is usually presented in literature
in a very cumbersome manner, hereby exemplified with the deduction for a three axle
vehicle. In the case of a three-axle truck passing over the bridge, the least-squares solution
is obtained when the gradient of the error function with respect to the influence line is
null. The error function is rewritten as:

R =
K∑︂

k=1
[Mm

k − (W1Iℓk−C1 + W2Iℓk−C2 + W3Iℓk−C3)]2 , (3.5)

while the gradient with respect to an arbitrary influence line ordinate Iℓa reads:

∂R

∂Iℓa

=2[Mm
a − (W1Iℓa + W2Iℓa−C2 + W3Iℓa−C3)](−W1)+

2[Mm
a+C2 − (W1Iℓa+C2 + W2Iℓa + W3Iℓa+C2−C3)](−W2)+

2[Mm
a+C3 − (W1Iℓa+C3 + W2Iℓa−C2+C3 + WaIℓa)](−W3) = 0

(3.6)

rearranging the terms it is possible to obtain:

Iℓa−C3W1W3 + Iℓa−C2W1W2 + Iℓa+C2−C3W2W3 + Iℓa(W 2
1 + W 2

2 + W 2
3 )+

Iℓa−C2+C3W2W3 + Iℓa+C2W1W2 + Iℓa+C3W1W3

= W1M
m
a + W2M

m
a+C2 + W3M

m
a+C3 ,

(3.7)

which, when converted to matrix form, becomes:

A Iℓ = L. (3.8)

Then, solving for the influence line can be written as:
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Iℓ = A−1L. (3.9)

The drawback of this form of presentation is that a common form for the A matrix is not
identified. Here, the case for a hypothetical 3-axle vehicle was considered. However, the
procedure would need to be reapplied for considering any other vehicle with a distinct
number of axles, resulting in a repetitive and isolated derivation for the consideration of
each different vehicle type that needs to be analyzed.

After the influence line based on direct measurements is found, one can proceed as
usual with the Moses method for finding the unknown weights of vehicles passing over the
bridge. The usual literature presentation for the weighing procedure involves the definition
of a so-called influence line matrix Λ (ZHAO; UDDIN, 2010). This matrix is of size K × J ,
and is constructed as to indicate the influence line ordinate for all axles for every k-th
measurement, i.e.:

Λkj = Iℓk−Cj
. (3.10)

It can be noted that the matrix terms take into account the fixed spacing between axles
represented by the quantity Cj for establishing each of its lines. The characteristic shifts
in matrix Λ can have a deeper meaning assigned, related to the convolution procedure.
This aspect is further discussed in section 3.3. Given this matrix, one can write:

M t = ΛW. (3.11)

Employing this form on the error function and repeating the derivation, where now
the gradient is taken with respect to the vector W , the resulting least squares solution
becomes:

W = (ΛT Λ)−1ΛT Mm, (3.12)

where W has a component representing each axle weight. Thus, the Gross Vehicle Weight
(GV W ) of the vehicle can be computed as:

GV W =
J∑︂

j=1
Wj. (3.13)

In a B-WIM system, the GVW accuracy is regarded as one of the most important features
of the system. This measurement is employed when comparing different weight estimation
methods and it serves as a basis to determine possible applications of the system such as
overweight truck law enforcement.
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It is important to highlight here the peculiar asymmetry on Equations 3.9 and
3.12 in the form they are usually presented in literature. The reader should recognize that
finding the influence line given the weights and finding the weights given the influence line
should be regarded as dual problems. Therefore, why the resulting solutions for both are
seemingly distinct in form? The insight that permits a symmetrical view of both problems
is further explored in the following section. The possibility of viewing the B-WIM problem
under this different perspective is one of the main points of this study, since it leads to
insights for further improving the B-WIM estimation procedures.

3.3 CONVOLUTION INTERPRETATION

A recent study from Frøseth et al. (2017) enabled a novel interpretation for the use
of influence lines for obtaining axle weights. Initially, one can idealize the vehicle passing
over the bridge as an impulse vector, where each impulse is spaced according to the spacing
between axles and the impulse magnitudes correspond to axle weights. Then, it is possible
to view the resulting vector of any bridge property associated with an influence line as the
convolution between the impulse vector and the influence line.

Regarding bridge safety, the evaluation of the mid-span bending moment is the
measure of interest. An illustration of the convolution is shown in Figure 14. In this figure,
Ai represents the weight of the i-th axle and Lj the influence line associated with the j-th
measurement.

As a simple example, suppose a two-axle truck is to be modeled as an impulse
vector A with the form:

A = {A1, A2}T , (3.14)

where the numerical values of A1 and A2 represent the weight of the first and second axle.
Moreover, suppose the already calibrated influence line of the bridge is represented by the
vector L:

L = {L1, L2, L3, L4, L5}T . (3.15)

Given the mentioned interpretation it is possible to compute the vector representing the
bending moment of the mid-span of the bridge as the following convolution:

M t = A ∗ L, (3.16)

recalling that ∗ is the convolution operator. The above relation is graphically presented in
Figure 14. The usual convolution pattern can be noticed, where convolving a vector of
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size n with another of size m, results in a vector of size n + m − 1.

A2              A1

L1

L2

L3

L4

L5

A1 L1

A2 L1 + A1L2

A2 L2 + A1L3

A2 L3 + A1L4

A2 L4 + A1L5

A2 L5 

=

Influence Line

Bending Moment

Figure 14 – Convolution visualization

As seen in subsection 2.12.1, the convolution operation can be performed by a
matrix multiplication, converting one of the vectors to a matrix in Toeplitz form. For this
simple two-axle vehicle the form of the matrix, here called τ , becomes:

τ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 0 0 0
A2 A1 0 0 0
0 A2 A1 0 0
0 0 A2 A1 0
0 0 0 A2 A1

0 0 0 0 A2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.17)

where the matrix is formed with the consideration of vector A padded by zeros, equating
the number of columns to the number of measurements taken or the number of influence
line ordinates considered in the analysis.

The gradient with respect to the influence line vector L is derived based on an
error measure e, corresponding to the difference between measured a theoretical bending
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moment response. The error function Re, which shall be minimized, comprises the sum of
the squares of deviations e. The derivation follows:

e = τL − Mm (3.18)
Re = ∥e∥2

2 = e : e (3.19)
dRe = 2e : de (3.20)
dRe = 2(τL − Mm) : τdL (3.21)
dRe = 2τT (τL − Mm) : dL (3.22)
∂Re

∂L
= 2τT (τL − Mm). (3.23)

Setting the above gradient to zero, one obtains the expression for the influence line
vector in the convolution interpretation of the B-WIM problem:

0 = τT τL − τT Mm (3.24)
L = (τT τ)−1τT Mm. (3.25)

Here it is possible to notice how this new relation for computing the influence line
based on known measured moments (Mm) and axle weights (τ) has a similar form, as the
form presented by weight estimation procedure (Equation 3.12).

Since the convolution operation is commutative, it permits for exchanging the
order of the convolution without loss of generality. This allows one to access the duality of
the problem. The conversion between weighing and obtaining the influence line is readily
evident when the order of the convolution terms is reversed. The Toeplitz form for the
matrix relating the influence line ordinates becomes:

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iℓ1 0
Iℓ2 Iℓ1

Iℓ3 Iℓ2

Iℓ4 Iℓ3

Iℓ5 Iℓ4

0 Iℓ5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.26)

where the theoretical bending moment vector at mid-span is now written as:

M t = ΨA. (3.27)

Considering now the unknown as being the weight and not the influence line, the moment
difference can be written as:
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e = ΨA − Mm, (3.28)

and applying the same procedure detailed above for deriving the minimal squared residual
solution, one arrives at the following expression for axle weight estimation expression:

W = (ΨT Ψ)−1ΨT Mm. (3.29)

Apparently, given the presented derivation, one arrived with Equation 3.29 at the
same result as the traditional B-WIM equation displayed in Equation 3.12. However, this
is not the case, in general. For this particular case, the impulse vector consisted of only
two terms, both of them being axle weights. In other words, the impulse vector and the
vector of axle weights are the same. Therefore, for this specific case, both equations yield
the same result. Nevertheless, Equation 3.29 is more general, since it allows for recovering
the full impulse vector. It also takes into account the spacing between axles by appending
zeros between axle weight terms, which correspond to the number of measurements taken
up to the point where the next axle passes at the influence line ordinate.

As discussed earlier, this presentation, differently from what is derived in literature,
enables a more symmetric view of the problem. The duality of the problem is readily
identified from inspecting equations Equation 3.25 and Equation 3.29. It is also possible to
identify that matrix A in Equation 3.9 is equivalent to τT τ in Equation 3.25. This enables
an easy computation of matrix A for any number of axles by employing the Toeplitz form
on the impulse vector.

For a long truck, for example, there may be numerous strain and, consequently,
bending moment measurements that are taken in the time span from between the first
and second axles entering the bridge. When trying to recover the whole impulse vector,
these inter-axle ordinates should all be zero. However, this is not the case when trying
to undo the convolution (deconvolution) by simply applying the least-squares procedure.
Figure 15 illustrates this issue by showing the original and recovered impulse vector. One
can notice that when working on this problem by the standard least-squares approach
there is a considerable amount of noise on the resulting impulse vector. Although the axle
peaks can be identified close to their correct positions, there are also a number of other
spurious peaks in the region between axles. Moreover, the inter-axle region which was
supposed to be flat at zero, contains values different from zero, even including negative
loads which do not make physical sense.

Considering the exposed discussion, it is possible to see that there is an unexplored
domain in B-WIM literature with respect to this form of solution. Only recently did Frøseth
et al. (2017) expose this other form of viewing the problem which has been neglected since
the early work of Moses (1979).
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Figure 15 – Distorted impulse vector recovered from least squares

Exploring the problem under the convolution interpretation allows another view
on the general ill-posedness of the weight estimation problem. Moreover, it opens an
opportunity for further gains in accuracy by proposing approaches which exploit the known
expected properties of the solution. Despite the contribution of the study of Frøseth et al.
(2017), no further developments on B-WIM estimation were achieved by them, where their
approach was presented only as an alternative with better computational performance. This
thesis aims to use the bridge and analogy that the convolution interpretation promoted in
order to propose better solutions to the problem, bringing together the already established
knowledge applied in correlated literature topics such as signal processing and image
processing. In this regard, this study proposes the use of regularization procedures for
enforcing the constraints which are seen to be violated on the standard least-squares
solution. This aspect was briefly explored in B-WIM literature by the work of O’Brien et al.
(2006), which employed Tikhonov regularization for computing weighing estimates. Despite
the study claims that the method achieved good performance, few information was given on
how the regularization procedure was conducted, especially regarding the form employed
for obtaining the regularization parameters. In the preliminary study that originated the
published paper (Appendix A), comparisons relating the regularization procedure with
the standard Matrix Method have shown very similar results obtained for both methods
in simulated and real-world data. One of the points that may explain this similarity when
not working for recovering the full impulse vector is that the resulting system of equations
is “stiffened” in such a way that it becomes well-posed. This rigidity originates from
incorporating into the formulation the spacing between axles and neglecting all inter-axle
data. As a matter of fact, numerical experiments emphasized this intuition given the
difficulty in finding the corner of L-curve for estimating the regularization parameter. The
L-curve observed was, in fact, not L-shaped at all. Therefore it is proposed by this study
to work directly with the recovery of the impulse vector which more easily conveys the
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regularization necessity.

O’Brien et al. (2006) have not explored in depth the possibilities provided by
distinct regularization approaches. Despite ℓ2 or Tikhonov regularization being one of the
most widely employed procedures, the theoretical soundness of employing this metric was
not justified by the authors. Indeed, this thesis proposes to initially study a regularization
form with better properties than that employed for the problem being analyzed.

Considering the prior knowledge of the impulse vector form, it is evident that the
solution being sought is sparse. In general, B-WIM systems operate with signal acquisition
rate of 512 or 1024 measurements per second. This is often enough to incorporate numerous
measurements in-between axles, which corresponds to more null terms in the impulse
vector. Thus, it becomes advantageous to explore regularization procedures which could
better handle the characteristics of the solution.

Given the available regularization methods in literature, ℓ1 or Lasso regularization
seems to be a rational choice when considering the characteristics of the B-WIM problem.
With the small number of non-zero terms on the original vehicle impulse vector, ℓ1

regularization should lead to improved results, given its sparseness promoting formulation.

The implementation of regularization techniques other than the common ℓ2 regu-
larization often results in expressions where no closed-form solution exists. Thus, finding
the solution may involve some form of optimization procedure. This may result in higher
computational costs for obtaining a solution. Since it may be desirable for the B-WIM
system to have real-time monitoring capabilities, one must be careful in designing robust
and efficient solution procedures. Given the possibility of the proposed solution being
too computationally expensive, this study also aims at evaluating forms of performing
the regularization procedure in frequency domain. As already discussed, performing a
convolution in frequency domain is equivalent to a point-wise multiplication between
two vectors. This, combined with the existence of fast algorithms for transferring the
problem to the frequency domain (FFT) may allow possible computational drawback to
be overcome.

Other exploratory alternatives may also arise as a consequence of the previously
mentioned parallel with signal and image processing literature. Viewing the problem as a
signal decovolution establishes a direct relation with a number of common problems in
domains such signal filtering and image deblurring/reconstruction (RUDIN et al., 1992).
Given the recency of the establishment of this view, authors in B-WIM literature have not
yet explored the adequacy of the application of methods from those domains estimation
process. Therefore, as a long-term goal, this study intends to explore additional solutions
procedures exploiting the analogy.

Thus the main topics that are novel in literature and are adressed in this study
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can be summarized in:

• Look for the full impulse vector instead of each axle separately;

• Employ regularization for addressing the problem ill-posedness;

• Enforce the expected sparseness of the impulse vector;

• Exploit the structure of the problem model;

• Enable variations on axle spacing estimates;

• Explore the parallel with signal and image processing literature.
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4 ANALYSIS AND DISCUSSION OF STATIC BWIM SOLUTION METH-
ODS

Numerous studies have proposed methods for the solution of the BWIM problem.
In this chapter, a subset of static algorithms present in literature will be discussed and
their theoretical aspects will be analyzed.

4.1 MAXIMUM LIKELIHOOD ESTIMATE (MLE)

In statistics, maximum likelihood estimate (MLE) consists of a method for esti-
mating the parameters of a probability distribution based on a set of observed data. The
goal of MLE is to find the set of parameters that maximize the likelihood of the observed
data given the probability distribution. Therefore, MLE finds the set of parameters which
makes the observed data most probable (TARANTOLA, 2005).

In the B-WIM context, the MLE method proposed by Ieng (2015) follows the idea
of Moses method, employing the influence line for weighing an unknown vehicle passing
over the bridge. However, the main difference of this method is the way it employs data
from multiple calibration vehicles for obtaining an estimated influence line.

It is assumed in MLE that the measurements are corrupted by ϵ, a zero mean
multivariate normal random variable:

Mm = M t + ϵ, (4.1)

where Mm and M t are the vectors of measured and modeled moments, respectively, such
that:

M t = AIℓ, (4.2)

where IL is a vector with the ordinates of the influence line and A is a Toeplitz matrix of
the loads. The matrix A is based on the impulse load vector W :

Wi =

⎧⎪⎨⎪⎩Wj, if i = Cj + 1

0, otherwise
, (4.3)

where Wj is the weight of the j-th axle and Cj is analogous to that one defined in
Equation 3.3. This impulse vector represents the whole vehicle, with each axle load at
their respective axle position. The A matrix is formed by shifting W in each line of A,
which corresponds to a discrete convolution, where each line relates to a time step of the
vehicle passing over the bridge:
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1 . . . 0 . . . 0
... . . . ... . . . ...

WJ . . . W1 . . . 0
... . . . ... . . . ...
0 . . . WJ . . . W1
... . . . ... . . . ...
0 . . . 0 . . . WJ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(K×K−CJ )

, (4.4)

where K and J are the total number of scans and axles, respectively.

The modeling premise of this methods is that the series of N events are independent.
Then, the likelihood P of observing the data is the product of the probabilities of observing
each data point individually, i.e., the product of the marginal probabilities:

P =
N∏︂
i

pdf(ϵi|Iℓ) (4.5)

where pdf is the probability density function of the error ϵ. In order to obtain the maximum
likelihood estimate, it often makes calculations easier by rewriting the problem as the
equivalent minimization of the negative log-likelihood:

arg max
Iℓ

P = arg min
Iℓ

−
N∑︂
i

log(pdf(ϵi|Iℓ)) = arg min
Iℓ

g(Iℓ) (4.6)

4.1.1 Equivalence relation to least squares

Assuming that data comes from n independent and identically distributed samples,
the likelihood can be written as:

p(D|w) =
n∏︂

i=1
p(Di|w) (4.7)

It is often useful express the formula in terms of minimization, changing its sign
and introducing the logarithm to convert the products into a summation.

wMLE = arg max
w

[︄
n∏︂

i=1
p(Di|w)

]︄
≡ arg min

w

[︄
−

n∑︂
i=1

log p(Di|w)
]︄

(4.8)

p(ϵi) = 1√
2π

exp
(︄

−ϵ2
i

2

)︄
(4.9)

The Gaussian likelihood term can be written as
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p(yi|xi, w) = 1√
2π

exp
(︄

−(wT xi − yi)2

2

)︄
(4.10)

Thus, instead of maximizing the likelihood, one can proceed with the equivalent
minimization of the negative log-likelihood:

f(w) = −
n∑︂

i=1
log

(︄
1√
2π

exp
(︄

−(wT xi − yi)2

2

)︄)︄
(4.11)

= −
n∑︂

i=1

[︄
log

(︄
1√
2π

)︄
+ log

(︄
exp

(︄
−(wT xi − yi)2

2

)︄)︄]︄
(4.12)

= (constant) + 1
2

n∑︂
i=1

(wT xi − yi)2 (4.13)

= (constant) + 1
2∥Xw − y∥2. (4.14)

Ignoring the scaling fraction and the constant terms, the expression for the maximum
likelihood estimate becomes:

wMLE = arg min
w

f(w) ≡ arg min
w

∥Xw − y∥2 (4.15)

Thus, its possible to observe the equivalence of the Least Squares solution with the
MLE when assigning a likelihood which follows a Gaussian distribution.

4.2 PROBABILISTIC B-WIM (PBWIM)

The pBWIM method proposed by O’Brien et al. (2018) aims to incorporate a
deeper probabilistic reasoning into the problem formulation. It applies data from multiple
vehicle passages in order to construct an influence line. The main assumption of the
method is that ordinates of the influence line are random variables following a Gaussian
distribution each with a certain mean and variance to be determined.

The matrix method is employed to derive the parameters of these distributions,
based on a single influence line for each event. Finally, the estimated axle weights are
those with the highest probability of occurrence among all possible combinations.

As usual, the method starts with the Moses approach aiming to relate theoretical
and measured bending moments. The theoretical response M t

k for each scan k is taken as
the sum of products of axle weights and influence line ordinates:

M t
k =

J∑︂
j=1

WjIℓk−Cj
(4.16)
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where j is the number of axles, W is the vector of axle weights, Iℓk−Cj
is the influence

line value at ordinate k − Cj and Cj is the offset distance between the ordinates of the
influence line related to axle j.

It can observed from Equation 4.16 that the expected response is a linear combina-
tion of the random variables associated with the influence lines and the constant weight of
the axles. That is:

Rk = e +
∑︂

k

WjIℓk−Cj
(4.17)

where the e term corresponds to the zero mean random measurement noise.

As seen from probability theory, the sum of independent Gaussian random variables
also follows a Gaussian distribution (DEGROOT; SCHERVISH, 2012). Characterizing the
random variables associated to each measured influence line ordinate as having mean µk

and standard deviation σk, the random variable associated with a particular weight vector
combination can be characterized by the following equations:

µc
r,k =

K∑︂
k=1

J∑︂
j=1

W c
j µc

k−Cj
(4.18)

σ =
√︄∑︂

i=1
(4.19)

where the superscript c identifies a possible combination of weights for the W vector.

In order to compute the weights the original pBWIM method employs a grid search,
which increases the computational burden of the method, especially for higher number of
axles. Recent research from Gonçalves et al. (2021b) has shown that these weights may be
more efficiently estimated by employing a gradient based optimization procedure.

4.3 CONSIDERATION OF TRANSVERSE WEIGHT DISTRIBUTION

The consideration of the transverse weight distribution of axle loads on the bridge
girders is a innovative augmentation of the Moses method proposed by Zhao et al. (2014).
In usual practice, the measured responses from the sensors installed beneath the bridge
are averaged over each girder. This study proposes that the responses remain separated,
deriving an individual influence line for each girder of the bridge.

One of the possible issues that arrive from trying to consider the bridge as two
dimensional structure is the need for establishing the fraction of the total vehicle load
that gets transmitted to each girder. The study from Zhao et al. (2014) proposes the
introduction of a Q term that tries to account for vehicle weight distribution across girders.
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The transverse load distribution factor of the wheel load for the j-th girder and scan k is
given by:

Qj,k = ϵj,k∑︁J
j=1 ϵj,k

(4.20)

Note the essentially the Q coefficient is the ratio between the currently analyzed
girder strain and the total observed strain from all sensors at any given instant. Inherently
this is a quantity subject to variations across the longitudinal direction of the bridge. Ideally,
the tranverse distribution factor should be constant, in order to decompose independent
influence lines for each girders. In order to enforce this condition, the author employs an
arbitrary criterion, assuming it as a constant calculated as the average Q value from the
set of the 50 largest strain measurements.

The strain from each girder is then calculated by summing the contributions of the
vehicle axles for each girder separately:

εt
g,k = 1

EgZg

J∑︂
j=1

WjQgIg,(k−Cj) (4.21)

where WjQg is the weight contribution of the j-th axle on the g-th girder.

the influence line for each girder could be calculated as:

ILg =
(︂
(AQg)T (AQg)

)︂−1
(AQg)T EgZgεm

g , (4.22)

where ILg is the vector of influence line ordinates for the girder g, A is the Toeplitz matrix
of loads described in Equation 4.4.

The weighing procedure is based on a least square minimization between predicted
and measured moments, considering the axle weights as variables of interest. In order to
maintain consistency with previous formulation, the weighing procedure may be written
as:

W =
(︂
(ΛQ)T ΛQ

)︂−1
ΛQ

G∑︂
g=1

(EgZgεm
g ) (4.23)

=
(︂
(ΛQ)T ΛQ

)︂−1
ΛQMm, (4.24)

where ΛQ is a matrix of influence line ordinates defined by:

ΛQ = ILG ×n QT , (4.25)
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where Q is the vector grouping the transverse distribution parameters of all girders, ×n is
the n-mode tensor product (KOLDA; BADER, 2009) of the third-order tensor ILG with
the vector Q, with ILG defined as:

ILkjg
G = Λkj

g (4.26)

with Λg defined by Equation 3.10 for every girder g. The tensorial product mentioned
performs a parallel operation, scaling each of the third-order tensor inner matrices by the
contribution factor and aggregating them, which results in a single matrix ΛQ.

In order to verify its application conditions it is important to identify how this
version is related to usual Matrix Method. This relation becomes more clear by rewriting
Equation 4.22 and isolating the terms related to the contribution factor:

ILg =
(︂
(AQg)T (AQg)

)︂−1
(AQg)T EgZgεm

g

= Q−2
g (AT A)−1QgAT EgZgεm

g

= Q−1
g (AT A)−1AT EgZgεm

g .

= Q−1
g (AT A)−1AT Mm

g . (4.27)

As it can be seen, the resulting influence line is the same as the one obtained by
the usual Matrix method but divided by the contribution factor.

In fact, under some conditions, the modified 2D Moses method and Matrix method
are identical. For the case of constant transverse distribution along the bridge, Qg can be
written as:

Qg =
εm

g∑︁G
g=1 εm

g

. (4.28)

Substituting Equation 4.28 into Equation 4.27 one can write:

ILg =
(︄

εm
g∑︁G

g=1 εm
g

)︄−1

(AT A)−1AT EgZgεm
g

= (AT A)−1AT EgZg

G∑︂
g=1

εm
g . (4.29)

Therefore, Equation 4.29 shows that when considering girders with equal properties, that
is, the same values for Eg and Zg, the Modified 2D method results in equal influence lines
for each girder. Moreover, this influence line is precisely the one that would be obtained
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if one employs the Matrix method. Thus, under this assumption, the methods can be
considered equivalent for extracting an influence line.

Under the same assumptions, this analysis can be extended for the weighing
procedure. Recalling the equation relating theoretical and measured moments:

G∑︂
g=1

EgZgεt
g =

G∑︂
g=1

WQgΛg. (4.30)

Again, assuming that Eg and Zg are the same for all girders, namely E and Z, it follows
that the influence lines ILg are all equal, as previously discussed. Thus, Λg will also
become constant, since it is a matrix constructed from of the influence lines of each girder.
Dropping to subscript from Λ to indicate the constant value, one can write:

EZ
G∑︂

g=1
εt

g = WΛ
G∑︂

g=1

(︄
εm

g

εm

)︄
(4.31)

G∑︂
g=1

EgZgεt
g = WΛ. (4.32)

Thus, the predicted moments for Matrix method and modified 2D Moses are the same,
in this case. Therefore, one can conclude that, under the hypotheses of constant weight
distribution and same mechanical properties for each girder, the weighing procedure also
recovers the same solution found when applying the Matrix method, becoming independent
of the distribution parameters.

4.4 TIKHONOV REGULARIZATION

The use of regularization procedures within B-WIM has been applied by O’Brien et
al. (2006). The author proposes the use of the form known as Tikhonov regularization. In
this form, the L2 norm is incorporated into the linear equation which defines the problem.
The reason for applying regularization is the ill-possedness of the B-WIM problem.

Since one is dealing with an inverse problem, inputs are sought by its model output
only. However, the output data may be corrupted by noise. In the presence of noise, the
recovery processes may become unstable, and noise can be largely amplified in the solution.
Thus, regularization aims to provide a more stable solution by rewriting the problem and
constraining solutions towards less flexible models, avoiding over-fitting. In the case of
Tikhonov regularization, solution terms are shrinked employing the L2 norm as in:

f = ∥r∥2
2 + λ∥W∥2

2 = r : r + λW : W. (4.33)
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The parameter λ in the above equation is called the regularization parameter. It is the
variable responsible for controlling the trade-off between the original problem and the
regularization effect. That means the

Given the proposed formulation, it is straightforward to compute the differential
and gradient of the function being minimized as follows:

df = 2r : dr + 2λW : dW

= 2(Mm − ΛW ) : −ΛdW + 2λW : dW

= 2ΛT (ΛW − Mm) : dW + 2λW : dW

= (2ΛT (ΛW − Mm) + 2λW ) : dW

∂f

∂W
= 2ΛT (ΛW − Mm) + 2λW. (4.34)

Setting this gradient to zero, one can find an expression for the optimal weight matrix,
which minimizes the augmented function f :

2ΛT (ΛW − Mm) + 2λW = 0
ΛT ΛW − ΛT Mm + λW = 0

(ΛT Λ + λI)W = ΛT Mm

W = (ΛT Λ + λI)−1ΛT Mm, (4.35)

where the matrix I represents the identity matrix.

The expression for the weight can be seen as a function of the regularization
parameter λ. When λ is zero, the regularized solution becomes the least squares solution,
which means no importance is being given for how the L2 norm of the solution behaves. On
the other hand, when one increases this regularization parameter, the augmented function
seeks more aggressively to minimize the norm of the solution, up to a extreme where the
solution is shrinked into a vector of zeros.

Since the choice on the regularization parameter λ leads to solutions Wλ with
distinct characteristics, it is important to define a strategy for selecting this parameter.
That is non-trivial task, which has been addressed in multiple ways by literature. One
can employ, for example, cross-validation, ridge trace or the L-curve method. In the study
of O’Brien et al. (2009), the L-curve method is applied. This method tries to establish
a middle ground between two defined norms. The first one is the residual norm of the
solution error, called Enorm and calculated as:

Enorm =
√︂

(M − TWλ)T (M − TWλ). (4.36)
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The second norm is called Fnorm and takes into account the norm of the solution
associated with the regularization parameter:

Fnorm =
√︂

W T
λ Wλ (4.37)

The L-curve is then the curve obtained from plotting on a log-log scale the points
(Enorm, Fnorm) for a range of λ values. The corner of this curve, is assumed to represent a
good trade-off between bias and variance on the system approximation. In Figure 16 is
shown the expected L-curve formed by the method.

more filtering

less filtering

Enorm

Fn
or

m

Figure 16 – The generic form of the L-curve plotted in double-logarithmic scale, adapted
from: (HANSEN, 1998)

Solving for the λ corresponding to the corner is also not a simple task, specially
for the cases where the transition between the effects of the two norms is not smooth. The
corner, then, may not be well defined, and the “optimal” lambda may depend on which
method was employed for obtaining it. Some methods in literature include the Spline-based
Curvature Method (HANSEN; O’LEARY, 1993), Triangle Method (CASTELLANOS et
al., 2002) or Adaptive Pruning (HANSEN et al., 2007).

4.4.1 Bayesian interpretation

An interesting parallel exists between regularization procedures and Bayesian
statistics. The general goal of a Bayesian inference procedure is to encode the problem
uncertainty in terms of probability distributions (GREGORY, 2005). These distributions
are then manipulated and updated taking into account newer collected data, and then used
for making predictions about the modelled problem. That is, by the Bayesian perspective,
initial probability statements are updated, providing a posterior distribution that combines
both prior knowledge and the data at hand (CONGDON, 2007).
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It is possible to derive a single estimate from such posterior as, for instance, its
maximum a posteriori (MAP). The prior distribution is independent from the results
of measurements, and could be selected in order to better encode the properties of the
problem (TARANTOLA, 2005). In a BWIM application, for example, the prior may
enforce the knowledge about the non-negativity of predicted axle weights.

MLE and MAP are connected by the Bayes rule:

p(w|D)⏞ ⏟⏟ ⏞
posterior

= p(D|w)p(w)
p(D) ∝ p(D|w)⏞ ⏟⏟ ⏞

likelihood

p(w)⏞ ⏟⏟ ⏞
prior

(4.38)

The term in the denominator, called evidence or marginal likelihood does not
depend on w. It can be considered a scaling constant, which ensures that the integral of
the posterior probability distribution has unit value. Since it is a constant in w, this term
is often omitted from the maximization procedure.

Therefore, MAP seeks to find the parameters which maximize the product of the
likelihood and the prior. In this context, the prior is related the belief that the parameters
are correct before seeing the data.

wMAP = arg max
w

P (Y |X, w)P (w)

= arg max
w

[︂
log P (Y |X, w)⏞ ⏟⏟ ⏞

log−likelihood

+ log P (w)⏞ ⏟⏟ ⏞
log-prior

]︂
(4.39)

The logarithm is a monotonic increasing function. Applying it to the objective
function being maximized does not shift the location of the maximum. Therefore, working
with logs is often preferred as it converts the product of probabilities into a summation.
From Equation 4.39 it can be seen that the MAP estimate can be decomposed in a
log-likelihood term and a log-prior term, in which the log-prior acts as a penalty for
optimization procedure. Thus, several regularization methods that consists of including a
penalty term have a Bayesian interpretation related to the assigned log-priors distribution.

For example, assuming the Gaussian prior with zero mean and variance σ2:

p(wi) = 1√
2π

exp
(︄

− w2
i

2σ2

)︄
. (4.40)

Applying the logarithm to the prior and ignoring constant terms:

log p(w) ∝ log
(︄

exp
(︄

− 1
2σ2

n∑︂
i

w2
i

)︄)︄
. (4.41)

Rewriting the expression in terms of a parameter λ = − 2
σ2 :



Chapter 4. Analysis and discussion of static BWIM solution methods 58

log p(w) ∝ log
(︄

exp
(︄

λ
n∑︂
i

w2
i

)︄)︄
= λ∥w∥2. (4.42)

Therefore, the MAP estimate found when considering a Gaussian prior and Gaussian
likelihood, matches the formulation employed in ℓ2 regularization, where the regularization
parameter λ is proportional to the constant variance attributed to the prior.

4.5 OTHER APPROACHES FOUND IN LITERATURE

Regarding the methods that are focused in this paper, it is worth to point out
that there are some proposed methodologies that address the same problem, however with
characteristics that prevent a suitable comparison. In what follows, some of them are
summarized and such aspects are discussed.

An approach to construct a more realistic influence line was proposed by Zhao et al.
(2017). Their research intended to overcome the limitations of the theoretical influence line
used by Moses in his first work. The bridge was modeled with semi-rigid connections and
horizontal springs as boundary conditions. Moreover, it was included in the formulation
the transverse load distribution, as proposed by Zhao et al. (2014). To completely define
the model, it was necessary to estimate the values of some stiffness coefficients. In order
to find this values, the authors performed a trial and error procedure comparing measured
and modeled values. Two algorithms were proposed: semi-rigid approach, adjusting end
moments and semi-rigid approach, using moments of the whole bridge. Such methods
were compared with Moses, employing the theoretical influence line. The experimental
procedure used two trucks to calibrate and validate the method. The results showed
that both proposed approaches achieved better results, specially the second method,
which reached the lowest error among all. However, the procedure for finding the stiffness
parameters that defines the model does not have a clear definition. Thus, as such analysis
could be user dependent, performed comparisons may be inconclusive.

Kim et al. (2009) proposed an approach to weigh vehicles using deformation
measures as inputs to neural networks, obtaining the weights of each axle as the output.
The error for both gross vehicle weight (GVW) and weight by axle were considerably low,
indicating that the proposed approach could be applied in real situations. Nevertheless, the
training process needed numerous training examples, preferably containing vehicles with
distinct number of axles, which is not available in most practical cases. The advantage of
this method was that it could be applied in cases where the traditional approach have
some difficulties, which is not the focus of the present work.

In the work of Helmi et al. (2014) three weigh methods were compared utilizing
data of a real bridge in Canada. The first two methods were developed by the authors and
consisted in the creation of an equivalent uniform distributed load to represent the axle
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loads, considering the influence line of a simply supported beam. The authors tried to find
the fraction of the bridge span, corresponding to the length of the equivalent distributed
load, which causes the maximum moment in the bridge. Thus, GVW could be calculated
as the ratio between the maximum moment and this length. Nevertheless, both of the
authors’ proposed methods performed worse than the third alternative tested, namely the
Beta method from Ojio e Yamada (2002). This method used the area under the moment
or strain curve to calculate GVW, where errors of less than 5% were observed. However,
none of such methods is able to distinguish the weight contribution of each axle, which is
a parameter of comparison in the present paper.

The work of Frøseth et al. (2017) intended to overcome issues related to imple-
mentation complexity and computational cost through the realization that the response
of the structure is the convolution of the influence line and the loading. Thus, instead
using the well-established matrix method, the author suggested that the convolution
could be performed in frequency domain, since the convolution integral transforms into
an element-wise multiplication operation, which is very efficiently handled. The reported
gains in computational time were, in general, of one order of magnitude, at least. Another
advantage of viewing the problem under the proposed aspect, was that the matrices utilized
in the least-squares approach in O’Brien et al. (2009) were straightforward to generalize
for arbitrary number of axles. It is worth to mention that it may be necessary to apply
a Tikhonov regularization in order to perform the deconvolution. The reason is that the
system solution could result in an ill-posed problem in the frequency domain, for example,
when the passing vehicle has two axles with identical loads. The authors concluded that
the obtained influence line provides virtually identical results in comparison with the
matrix method. Therefore, the main practical utility of this approach was not precision,
but computational gains. As computational complexity is not addressed in the present
paper, no further analyses are performed for this method.
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5 NUMERICAL EXPERIMENTS

Along with the unifying theoretical analysis regarding the premises and modelling
considerations conducted for the surveyed methods, numerical experiments were also
performed. The main objective is to provide a numerical framework for testing and
validating the theoretical findings and analyses presented in the previous chapter. Moreover,
the framework establishes a reproducible and comprehensive data-set for evaluating any
other applicable solution methods.

Recalling, the methods evaluated are the Matrix method (O’BRIEN et al., 2006),
maximum likelihood (MLE) (IENG, 2015), pBWIM (O’BRIEN et al., 2018), Regularization
(O’BRIEN et al., 2009) and Modified 2D Moses (ZHAO et al., 2014). The procedure
employed for finding the corner of the L curve for the regularization approach consisted
on minimizing the Euclidean distance between adjacent points, as suggested in Frasso e
Eilers (2012). This is done utilizing all the pairs (Enorm, Fnorm) employed for plotting the
L-curve.

Table 1 – Literature method comparisons

Method Comparison Data IL Weight
Matrix Measured/Predicted Real ✓ -
MLE Matrix method Real ✓ -
PBWIM Matrix method Real - ✓
Regularization Matrix method Synthetic - ✓
Modified 2D Moses Measured/Predicted Real ✓ ✓

5.1 SIMULATED VEHICLE DATA

In order to evaluate the analyzed methods performance on distinct conditions, a
dataset comprised of algorithmically generated sensor data was developed. The data was
generated simulating several vehicles crossing a multi-girder bridge at different levels of
measurement noise and surface roughness. The model simulated each vehicle as series of
moving sprung-masses, each of them representing a vehicle axle and the bridge girders as
Euler-Bernoulli beams with distinct properties.

The axle arrangement employed aimed at simulating real traffic, where distinct
vehicle classes were selected based on real data reports from the brazilian infrastructure de-
partment (DEPARTAMENTO NACIONAL DE INFRAESTRUTURA E TRANSPORTES,
2006). The classes are defined by the weight of the truck, the number of axles and their
spacing. Since this standard classification only establishes a lower bound for the axle
spacing on some classes, the value of 5 meters was adopted for constraining the upper
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bound and allowing generating vehicles assuming an uniform distribution. Table 2 presents
all classes of vehicle employed as well as their number of axles. In order to allow a more
concise presentation, axle spacing and weight of each employed truck are omitted. For
assessing such values, the reader is referred to Departamento Nacional de Infraestrutura e
Transportes (2006).

Table 2 – Vehicle types employed in the study

Vehicle Class Axles
2C 2
3C 3

4CD, 2S2 4
3I2, 2S3, 3S2 5

2R4, 3S3, 3D3, 3N3 6
3D4 , 3N4 7

3D5 8
3M6 , 3Q6 9

Despite the standard classification employed, the dynamical attributes of axles
which is applied to the vehicle-bridge interaction model, comprised of moving sprung
masses, still have to be defined. In this regard, axles were divided in three categories: rear,
front and semi-trailer. The stiffness and damping coefficients are distinctly modeled as
uniformly distributed random variables. The mean values of the random variables are
shown in Table 3. For the lower and upper bound of these variables, factors of 0.5 and 1.5
times the mean value were employed, following the studies of Fancher (1986) and Nosseir
et al. (1982).

Table 3 – Mean values of stiffness and damping coefficients for each kind of axle

Axle type Stiffness (N/m)Damping (Ns/m)
Rear 1000000 10000
Front 400000 10000

Semi trailer 750000 10000

After assigning the properties to the model, the vehicle-bridge interaction model
is solved, whereas the solution procedure follows the studies of of Biggs (1964), Yang
et al. (2004) and Yang e Lin (2005). The solution consists on the application of model
decomposition on the equation of motion of the bridge, which results in the following
equation:

q̈i + 2ξiωiq̇i + ω2
i qi =

N∑︂
j=1

2Pj

m̄L
sin iπV t

L
, (5.1)
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where N is the number of axles, qi, ωi and ξi are the modal coordinates, natural frequency
and damping of the i mode, respectively. Furthermore, dotted variables represent the
derivative with respect to time, Pj is the load of the j axle, V the speed of the vehicle, L
is the length of the bridge and m̄ is the mass per unit length of the bridge.

The equations of motion for each sprung-mass system is given by Equation 5.2:

Mvj z̈j + Cvj żj + Kvjzj = Kvj (u + y) |x=V t + Cvj (u̇ + V y′) |x=V t, (5.2)

where Mvj, Cvj and Kvj are the mass, damping and stiffness of axle j. Furthermore, u

represents the bridge vertical displacement, zj is the vertical position of the j axle, y is
the pavement elevation ordinate and a prime denotes the derivative with respect to x.

Both bridge displacement and its first derivative could be computed directly with
the modal coordinates and mode shapes of the simply supported beams:

u =
m∑︂

j=1
sin

(︃
jπx

L

)︃
qi, (5.3)

u̇ =
m∑︂

j=1
sin

(︃
jπx

L

)︃
qi̇, (5.4)

where m is the number of modes applied, which is equal to 5 in all simulations.

The simulation of pavement roughness applied here is a common approach in
studies in the same subject (MÚČKA, 2017; MIGUEL et al., 2016; WANG et al., 2017).
The ordinates of the pavement irregularities are modeled as a random process, with a
specific power spectral density function (PSD):

Φ(Ω) = Φ(Ω0)
(︄

Ω
Ω0

)︄−2

, (5.5)

where Φ(Ω0) is the amplitude coefficient, analyzed in previous sections, measured in
(10−6m3/cycle) and Ω0 is a reference spatial frequency. Thus, the road profile is generated by
sampling from this PSD, using the method of superposition of harmonics (DHARANKAR
et al., 2017):

y(x) =
nΩ∑︂
i=1

√︂
2∆ΩΦ(ωi) cos (2πΩix − ϕi) (5.6)

where y(x) is the generated road vertical profile, ϕi is a random uniform phase angle
between 0 and 2π, ∆Ω is a constant increment, nΩ is the total number of frequency
increments in the interval and Ωi is a frequency uniformly distributed in the range of
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Ωmin and Ωmax. The parameters adopted are Ω0 = 0.01 cycle/m, Ωmin = 0.001 cycle/m,
Ωmax = 4 cycle/m and ∆Ω = 0.001 cycle/m.

It is worth to mention that for each run a distinct road profile is generated, since
in the practical scenario lateral deviations occur. Moreover, a moving average with total
size of 30 cm is employed to approximate the real contact between tire and pavement
(MIGUEL et al., 2016).

The interaction between bridge and vehicle clearly appears in Equation 5.2, by
means of the displacement term related to the beam at the current axle position. Moreover,
such interaction also occurs in Equation 5.1, due to the Pj term. This relation is remarked
in Equation 5.7:

Pj = pjδ(x − V t)
(︃

H (t − tj) − H
(︃

t − tj − L

V

)︃)︃
, (5.7)

pj = −Mvjg + Kvj(z − (u + y)|x=V t) + Cvj(ż − (u̇ + V y′)|x=V t), (5.8)

with δ() and H() representing the Dirac delta and Heaviside functions, respectively.
Moreover, g is the acceleration of gravity and tj is the time that the j axle arrives the
bridge.

The equations of motion are solved independently, by a decoupled approach. Both
bridge and vehicle equations are solved numerically by applying the Newmark-β method,
with 1400 time steps. The time window begins when the first vehicle axle enters the
bridge and ends when the last axle leaves it. The problem is solved iteratively, since the
interaction force in the bridge-vehicle system changes with the displacement of both beam
and sprung mass. An initial guess of interaction force is given to the beam equations,
where the beam displacement is calculated. Such a displacement is then enforced to the
vehicle model and a new interaction force is calculated. This procedure continues until the
change in the interaction force reaches a small tolerance (10−5). Usually such procedure
converges rapidly, within 5 iterations. The midspan strains (s), which are the main output
of simulation, are also updated with this interaction. Adopting, without loss of generality,
a unit vertical distance from the neutral axis, and utilizing the fact that strains are related
with the second derivative of displacement with respect to x, the strains can be written as:

s = −
m∑︂

i=1

(︃
iπ

L

)︃2
qi sin

(︃
iπ

2

)︃
. (5.9)

For the case of multiple beams, a transverse distribution factor (Q) is provided and
applied to divide the axle loads for each beam. Thus, each beam is simulated independently.

In order to simulate the inherent imperfections of the measured signal due to all
possible aspects in the measurement field, noise is applied to the simulated response. The
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noise applied consists of a white Gaussian random noise, with a constant signal to noise
ratio of 20.

Numerical simulation aims to evaluate not only multiple methods on equal measured
data but also how bridge characteristics influence the overall results for estimating gross
vehicle weights. The two bridge characteristics accounted for are the bridge span length
and pavement roughness. Three distinct road profiles are evaluated, with Power Spectral
Density (PSD) amplitudes of zero (no roughness), 4 and 16, where roughness increases
with the amplitude. For the bridge span parameter, three cases are considered, with spans
of 10, 20 and 30 meters. Thus, the combination of every case of road profile and bridge
span results in 9 distinct cases. Furthermore, a Gaussian noise with signal to noise ratio of
20 is added to every signal, aiming to incorporate measurement errors due to other sources
than pavement roughness. The choice of values adopted for these parameters follows the
recommendations from Jacob (1999) for B-WIM sites, hence, reproducing practical cases
of interest. The combination of road profile and bridge length results in the following 9
simulated situations:

1. bridge span length of 10m and no road roughness

2. bridge span length of 10m and road roughness class A

3. bridge span length of 10m and road roughness class B

4. bridge span length of 20m and no road roughness

5. bridge span length of 20m and road roughness class A

6. bridge span length of 20m and road roughness class B

7. bridge span length of 30m and no road roughness

8. bridge span length of 30m and road roughness class A

9. bridge span length of 30m and road roughness class B

5.1.1 Numerical results

The algorithms are evaluated in a set of different scenarios for assessing performance
aspects and sensitivity of the methods. The comparison criterion consists of the mean
absolute percentage error related to the known GVW. The results are shown in Figure 17, as
a function of roughness amplitude and bridge length. In order to facilitate the distinction
among methods performance, these values are also presented in Table 4, where some
differences appears more evidently.

The simultaneous presentation of performance evolution with respect to both
parameters, in Figure 17 and Table 4, allow for quite interesting remarks. Firstly, all



Chapter 5. Numerical Experiments 65

30

Length (m)

20

100
Roughness amplitude

4

16

4

3

2

1

0M
ea

n 
ab

so
lu

te
 e

rr
or

 (%
)

Matrix method
MLE
pBWIM
Regularization
Modified 2D Moses

Figure 17 – Mean absolute error of each method as a function of bridge length and
roughness amplitude

Table 4 – Mean absolute error for each method and case

Amplitude Length (m) Matrix MLE pBWIM Regularization Modified 2D Moses
0 10 0.26 0.26 0.61 0.26 0.26
4 10 0.88 0.88 0.99 0.88 0.88
16 10 1.65 1.62 2.39 1.65 1.65
0 20 1.02 0.93 0.75 1.02 1.02
4 20 1.17 1.09 0.98 1.17 1.17
16 20 1.28 1.24 1.69 1.28 1.28
0 30 3.31 2.99 3.19 3.31 3.31
4 30 3.35 3.06 3.21 3.36 3.35
16 30 3.32 3.00 3.15 3.32 3.32

methods showed similar performance, mainly Matrix method, Regularization and Modified
2D Moses. The MLE method also shared a same trend, however its performance surpassed
the other methods when bridge span increases. This fact is observed independently of the
roughness amplitude applied. Thus, although the difference is not so remarkable, MLE
method can be argued as the most accurate method for this data set.

On the other hand, pBWIM method showed similar performance for lower roughness
amplitude, becoming worse than the others with the increase in this parameter. It is worth
mentioning that the performance loss occurs in conjunction with a more computationally
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expensive prediction procedure.

Since the whole bridge is simulated as a unique beam, it is already expected for
Modified 2D Moses and Matrix method results to be numerically identical. Indeed, in all
evaluated cases and runs, the results are exactly the same. However, Regularization also
shows similar behavior, presenting only slight deviations from the trends in the Matrix
method. Such aspects can be seen in Table 5, where the maximum deviation of each method
with respect to the Matrix method is presented. One can conclude that, in the conditions
of this analysis, the difference in performance among Matrix method and Regularization is
not significant. The reason is that the parameters found were usually close to zero, which
promotes solutions very close to the least squares in the Matrix method. Nevertheless, it
does not mean that the regularization approach is not useful, however, in the examples,
the application of the L-curve corner lead to similar results. Therefore, it did not have a
large influence in the cases analyzed here.

In order to correctly analyze the method presented by Zhao et al. (2014), it is
necessary to take into account multiple beams in the bridge, which is addressed in the
following sections.

Table 5 – Max of absolute difference between each method and the Matrix method

Amplitude Length (m) MLE pBWIM Regularization Modified 2D Moses
0 10 0.12 1.32 0.02 0.00
4 10 0.30 5.44 0.02 0.00
16 10 0.53 18.26 0.03 0.00
0 20 0.52 2.43 0.01 0.00
4 20 0.93 6.30 0.01 0.00
16 20 1.54 15.21 0.01 0.00
0 30 1.22 5.24 0.01 0.00
4 30 1.30 6.15 0.01 0.00
16 30 1.38 5.35 0.01 0.00

When comparing the evolution of mean absolute error regarding bridge length
and roughness amplitude separately, one can conclude that the first is more problematic.
The difficulty of static methods in dealing with long span bridges is a fact already well
known on BWIM literature (JACOB, 1999; KIM et al., 2009). However, the comparison of
variation of bridge length and roughness amplitude shows an interesting aspect. Analyzing
the results, it is clear that bridge length has a higher impact on the overall result than
the roughness amplitude, since the cases of smooth profile and 30 m bridge span easily
surpasses the error of the 10 m bridge span and roughness amplitude of 16.

It is interesting to notice that the increase in bridge length spreads the effect of
roughness in the prediction accuracy. Thus, the result is more sensible to the road pavement
profile for short span bridges. The opposite is not true, in other words, independently of



Chapter 5. Numerical Experiments 67

Table 6 – Load distribution factors for each beam (%)

Case Beam 1 Beam 2 Beam 3
Q1 33.3 33.3 33.3
Q2 20.0 40.0 40.0
Q3 25.0 50.0 25.0

the roughness amplitude, the increase in bridge length decreases the accuracy of weight
prediction.

5.1.2 Multiple girder analysis

Given that Modified 2D Moses and Matrix method resulted in rigorously the same
predictions in previous analyses, it becomes necessary simulating cases where the bridge
response is modeled considering multiple beams. In this section, the bridge structure is
comprised of 3 distinct beams. Moreover, the same vehicles and properties previously
defined are adopted in this section. Three distinct cases of transverse distribution (Q) are
considered, defined by Table 6.

Since pBWIM, MLE and Regularization methods do not make any assumption
regarding transverse distribution of loads, their evaluation for this new case should not
bring any new insight. Thus, only as a comparison criterion, the Matrix method is jointly
evaluated with Modified 2D Moses. As a result of this analysis, Figures 18, 19 and 20
present the influence of roughness amplitude and transverse distribution case for each
bridge span.

Roughness amplitude

16

4

0

Transverse distribution

Q1

Q2

10

25

20

15

5

0
Q3

M
ea

n 
ab

so
lu

te
 e

rr
or

 (%
)

Matrix method
Modified 2D Moses

Figure 18 – Comparison between Matrix method and Zhao for bridge span of 10 meters
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Figure 19 – Comparison between Matrix method and Modified 2D Moses for bridge span
of 20 meters
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Figure 20 – Comparison between Matrix method and Modified 2D Moses for bridge span
of 30 meters

In all cases, Modified 2D Moses performed equally or worse than Matrix method.
In the case of low roughness amplitude, both methods could be argued as similar. When
roughness amplitude increases, otherwise, there is a trend for the Modified 2D Moses
method to present higher errors, for all analyzed bridge spans. Such performance gap is
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specially remarkable in the 10 m bridge. This last statement is in agreement with the
previous section, where the effect of road profile showed higher impact for short span
bridge cases.
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Figure 21 – Influence of error in transverse distribution factor on the difference between
methods

One possible explanation for the performance gap can be seen in Figure 21. It
shows the influence of the error in approximating Q (measured as the mean of Euclidean
distance among predicted and real Q values) and the percentage difference between the
results of the two methods. This figure makes clear that the accuracy in Q estimate is
directly related to the difference in performance when compared with the Matrix method.
Therefore, if transverse distribution factors can be accurately predicted, Modified 2D Moses
approximates Matrix method performance. This fact is in accordance with section 4.3,
since Q values are kept constant in the simulation. On the other hand, the increase in
difference of such factors also increases the likelihood that weight prediction is corrupted.

5.2 FIELD-TESTING

The application of B-WIM technology in Brazil is still incipient. Trial experiments
were conducted in bridges from the state of Goiás in a research project partnership between
DNIT and UFSC. Data collected from the Itinguijada bridge instrumented with strain
and free-of-axle (FAD) sensors and located at the city of Uruaçu is utilized in this study.
The objective is to apply the previously discussed methods on non-simulated data and
evaluate if the findings and general trends observed in both the theoretical investigation
and simulated analysis carry over for the practical engineering problem.
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The Itinguijada bridge, shown in Figure 22, is comprised by two girders and five
cross beams, with a total length of 29.0 m. Figures 23 and 24 show the main dimensions
of the cross section and the lateral view, respectively. One FAD sensor is installed in the
mid-span of the bridge, while the other is spaced 4 meters longitudinally from the first.
Two strain sensors are attached to each girder, at the mid-span.

Figure 22 – Itinguijada bridge

Figure 23 – Mid-span cross section dimensions

Figure 24 – Lateral view dimensions
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5.2.1 Numerical results

In this section, following what is done in practice, as reported in Lydon et al. (2016)
and Yu et al. (2018), one influence line is constructed for each lane. The analyses are based
on prediction for three distinct quantities, defined by Jacob (1999): GVW, single axle and
group of axles. The mean absolute error of such quantities for each method on the whole
data set is presented in Table 7.

Table 7 – Mean absolute error

Matrix
method MLE pBWIM Regularization Modified

2D Moses
GVW (%) 4.47 4.08 4.91 4.40 4.41

Single axle (%) 17.79 15.26 36.46 15.35 16.91
Group of axles (%) 6.62 5.38 5.78 6.22 6.52

All methods showed higher errors for single axle prediction when compared to the
group counterparts, which is in accordance with most studies in this subject, as in Zhao et
al. (2014) and O’Brien et al. (2009). The prediction for GVW and group of axles weight
showed reasonable results, with mean absolute errors always smaller than 7%. However,
single axle prediction did not present the same level of performance, achieving values as
high as 36% for pBWIM method.

MLE reached the best results, independently of the quantity being measured.
However, for almost all methods and quantities measured, the mean absolute errors
reported remained at a quite similar level. Since all methods disregarded dynamic effects,
it is expected that the higher such effects are, the lower the suitability of all approaches are.
As in this bridge the dynamic behavior is not remarkable, the results for MLE suggests that
this method should perform better in cases where the model seems to be more suitable.

The similarity of measured errors previously discussed justify a more detailed
analysis on it. Table 8 focus on this statement, based on the absolute difference in GVW,
for each event, between all methods and the Matrix method, taken as reference here.
The parameters presented are the mean, standard deviation and maximum value of the
absolute difference.

Table 8 – Difference between each approach and the Matrix method

MLE pBWIM Regularization Modified 2D Moses
Mean (%) 1.2101 4.2554 0.3860 0.1526
Std (%) 0.6351 3.6975 0.2901 0.1153

Maximum (%) 2.5673 16.6928 1.2900 0.6864

From the five analyzed methods, two can be seen as almost identical to the Matrix
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method. The first of them is the Regularization method, whose maximum difference in
GVW for all events does not surpass 1.29 %. This lack of difference, as previously discussed,
is caused by small regularization parameters obtained from the application of L-curve
method. The second method quite similar to the Matrix method is Modified 2D Moses, in
which maximum difference did not reached 1%. As already discussed, all girders have the
same mechanical properties, which remain constant along the span. Thus, it is possible
that the contribution factor Qg resulting for each girder and event be approximately a
constant value. As presented in section 4.3, in such a case it is already expected for results
of Matrix method and modified 2D Moses to be similar.

The remaining two methods, MLE and pBWIM, showed more distinct values,
rendering them as alternative approaches for the Matrix method. Observing these three
methods by a probabilistic point of view, these differences are remarked. The Matrix
method is based on least squares, which assumes that errors are uncorrelated, normally
distributed and with the same variance, using all the measurements of one event as
realization of only one normal random variable. The MLE method also applies the least
squares approach, however now considering a multivariate normal distribution whose
variables are moments measured in each ordinate, independently of the other ordinates.
The pBWIM relaxes the assumption of equal variance, allowing for each ordinate to have a
standard deviation estimated by the value of each influence line previously calculated from
calibration events. Therefore, in some cases, namely when the data from both distinct
events and the whole bridge have the same normal distribution, all methods should present
virtually the same results. However, considering the real-world examples presented, this is
not the case in practical applications.

One could say that pBWIM should achieve the best result, since this method has
the least restrictive formulation. However, one must realize that this can only occur if the
assumptions are met, and this is not the case for the pBWIM formulation, as demonstrated
in section 4.2. It could be observed that this method assumes uncorrelated error moments.
Yet, the formulation based on uncertainties in influence line will necessarily results in
banded correlation of the resulting moments random variable, violating this assumption.

5.3 FURTHER REMARKS

Among five tested methods, three of them showed almost identical results for all
events evaluated, namely, the Matrix method, Regularization and Modified 2D Moses.
Although the pBWIM method could be argued as an alternative approach for weight
prediction, both theoretical and practical results are not promising. Comparing MLE
and Matrix method, the results for the simulated runs were very similar, however with
MLE being slightly better. Furthermore, when field-testing was conducted, MLE approach
showed even better performance. These points, together with its more suitable statistical



Chapter 5. Numerical Experiments 73

background, indicates that MLE is the most promising method evaluated in the present
study. Some suggestions for improving these methods are included in the following.

The formulation employed for Regularization leads to a solution that recovers only
weights associated to each axle. However, it is possible that the regularization approach can
have improved results when trying to recover the whole impulse vector, as more information
about its characteristics may be incorporated and enforced by the regularization procedure.
Furthermore, it may be worth to employ different regularization procedures instead of
Tikhonov, such as Lasso, which uses the L1 norm instead of the usual L2 (TIBSHIRANI,
1996). As a further step, the non-negativity of the vector can be enforced as in the work
of Hummelsheim (2014).

Discussing specifically the pBWIM method, it could be concluded that an assump-
tion made in the approach formulation is conceptually violated. Thus, it is useful to change
such a methodology to account for a covariance matrix that is not diagonal. Furthermore,
the procedure suggested to find the most likely weights in the original paper is a quite
time consuming task. Thus, applying an optimization procedure is necessary for achieving
a reasonable computational cost.

The procedures applied are clearly divided in two steps: building influence line and
weighing the vehicles. From this perspective, one could easily apply distinct methods for
each step. For instance, MLE could address the former and regularization the latter. Since
it was not the focus of this work, coupling methods was not evaluated. However, it has
potential to improve the accuracy of predicted axle weights.

Overall, it becomes clear that the main point that should be addressed is the
incorporation of additional knowledge to the model. One aspect is related to the dynamic
effects. The results could be improved by a more suitable consideration on the dynamic
behavior of the vehicle-bridge system model. A second aspect is related to the form
of the solution. The knowledge that a vehicle is modeled by point loads on each axle
imposes constraints on the form of the impulse vector and the sign of the resulting weights.
Nevertheless, relaxing assumptions that over-constrain the model, such as the correctness
of axle spacing measurement, may improve flexibility and robustness to the methods.

For all evaluated methods, the weigh procedure disregarded some prior information
that could lead to more reliable estimates. As examples, one could cite the non-negativity
of weights and the trend for axle weights having values at the same order of magnitude.
As discussed previously, a Bayesian approach could be employed in such a case, using
these prior information to create improved estimators for axle weights.

When observing methods by the statistical point of view, the assumptions implicitly
made in the development of such formulations arose in a more clear fashion. Thus, the
possibilities of relaxing some of those assumptions could be seen as a good initial point for
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the development of new methods. Furthermore, by knowing in advance which statistical
assumption was made, it becomes possible to easily predict for which real cases the
new methods could perform better. As an example, allowing errors to be correlated
should perform better in problems where model fits poorly, since missing information on
formulation could be seen as correlated errors. Thus, enabling the model to allow correlated
error is an alternative to address the dynamic effects.

The comparison criterion of the evaluated methods was done without a clear
performance threshold. Thus, although it is possible to verify which method is best in
the tested cases, nothing can be said about robustness or suitability of overall results.
Therefore, it motivates the development of a methodology for extracting more useful
information from such results, mainly regarding robustness in practical applications.
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6 EXPLOITING PROBLEM KNOWLEDGE

As discussed in chapter 1, one of the aims of this study is to apply the knowledge of
specific characteristics of the B-WIM problem in order to devise a general and robust weight
recovery procedure. As shown in chapter 3 the B-WIM problem in its original form proposed
by Moses (1979) is viewed from a pure least squares perspective, relating theoretical and
measured bending moments. This linear system assumes that the observations in vector b

are corrupted by an additive noise vector e in the form of:

b + e = Ax. (6.1)

Assuming that information on axle location is not enforced, the solution of this system is
not sparse, as shown in Figure 15 from chapter 3. The enforcement of axle information
consists of solving the least squares problem in Equation 6.1 by considering only a subset
of the columns of the matrix A, where each column considered corresponds to the inferred
axle spacing. This solution procedure can be regarded as performing a regression subset
selection (GATU; KONTOGHIORGHES, 2013):

xs = arg min
xs⊆x

∥Asxs − bs∥2
2, (6.2)

where the subscript s consists of the relevant indices. In the B-WIM case, it means
those related to the nonzero entries of the recovered impulse weight vector. Since the
sparsity information is obtained from axle detection sensors either on the pavement or
beneath the bridge slabs, the resulting information is subject to measurement noise.
Thus, the assumption of perfect knowledge on the sparse entries of the impulse vector
has consequences for weight estimation. In a sense, it effectively constraint the possible
recovered solutions, ignoring most of the measured data from sensors. For example,
considering a vehicle with 6 axles passing over a instrumented bridge and 1000 measured
moments are collected during the crossing. In the formulation employing the restricted
least squares, bs would only have 6 elements, that is, only 6 of 1000 measurements would
be employed to estimate the vehicle weight. Moreover the location of those points would be
fixed and unrelated to the measured strains and moments, depending only on the accuracy
of the axle detection. Therefore, it can be beneficial the employment of a method that
results to sparse solutions without assuming perfect sparsity knowledge and also utilizing
all available data in order to try to improve the estimation procedure.
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6.1 SPARSENESS

The simplest and most direct form for incorporating the sparseness constraint into
the least squares formulation is by considering the ℓ0 norm:

x = arg min
x

∥b − Ax∥2
2 s.t. ∥x∥0 ≤ s (6.3)

where ∥x∥0 represents the ℓ0 norm of x and s is an unknown non-negative integer. Recalling
from chapter 2, the ℓ0 effectively counts the number of non-zero entries. Thus, the problem
constraint establishes a minimum level of desired sparsity.

Solving the problem involving the ℓ0 norm directly is often a computationally
difficult task (DONOHO et al., 2006). As a form of problem relaxation, the introduction
of the ℓ1 norm can accomplish the same task of delivering sparse solutions while having
better properties for the development of fast solution methods such as convexity. It has
been shown that, under certain high probability conditions, the ℓ1 norm approximation is
a suitable alternative, reaching near-oracle performance (CANDES; ROMBERG, 2007;
BICKEL et al., 2009).

In view of its direct application to promote sparseness and simple formulation, Lasso
or ℓ1 regularization procedures have become very popular over the years, having received
ample attention from researchers (TIBSHIRANI, 2011). Due to the non-convex nature
of the problem, there is not a single solution procedure available. In fact, a considerable
number of variants and alternative solutions procedures have been proposed in literature.
This may become a problem when trying to choose a solution method since there are many
options and some methods are not robust enough to deal with all types of regularization
demands.

6.1.1 ℓ1 Solution Toolbox

Given the importance of finding sparse solutions for this study and the unclear
picture in literature about which are most effective solutions methods, a subset of methods
for the solution of the ℓ1 were evaluated. The methods were implemented by the author
in a unifying manner. This manner of implementation using equal variables for the same
concepts, which is not often the case when dealing with multiple authors, and employing
shared functional procedures enabled the transformation of the implementation of multiple
isolated methods into an integrated lasso optimization toolbox with different algorithms
available and source code possessing interesting educational value.
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6.1.1.1 ISTA/FISTA/RFISTA

ISTA and the FISTA/RFISTA variants consist on the application of proximal
methods and can be used for the solution of ℓ1 regularization problem. Proximal methods
are based on iterative optimization methods where each iterate is assembled from a linear
approximation and a quadratic or proximal term on the neighborhood of the iterate. For a
typical nonsmoth convex optimization one wants to solve:

arg min
x

J(x) = f(x) + h(x), (6.4)

where f(x) is convex and differentiable and h(x) is convex but nonsmooth, such as ℓ1

norm.

The proximal operator of a convex function f(x) is defined as:

proxf,t(u) = arg min
x

(︃
f(x) + 1

2t
∥x − u∥2

2

)︃
, (6.5)

where t > 0 is a scaling parameter. This mapping always exists and is unique for all x.
Another important property of this mapping is the following correspondence:

x = proxf (u) ⇐⇒ x − u ∈ ∂f(x). (6.6)

In other words, it is possible to characterize elements of the sub-gradient of the function
knowing its proximal mapping.

Consider the following quadratic approximation of a function at a point xk:

f(x) = f(xk) = (x − xk)T ∇f(xk) + 1
2(x − xk)T ∇2f(xk)(x − xk) (6.7)

≈ f(xk) + (x − xk)T ∇f(xk) + L

2 ∥x − xk∥2
2. (6.8)

Here, second order information contained in ∇2f(xk) is approximated by a diagonal matrix
LI, with L being known in literature as the Lipschitz constant.

Replacing this approximation back into Equation 6.4 and using the concept of
proximal mapping it is possible to obtain the following iterative scheme:

xk+1 = arg min
x

(f(x) + h(x)) (6.9)

≈ arg min
x

(︃
f(xk) + (x − xk)T ∇f(xk) + L

2 ∥x − xk∥2
2 + h(x)

)︃
(6.10)

= arg min
x

(︄
h(x) + L

2

⃦⃦⃦⃦
x −

(︃
xh − 1

L
∇f(xk)

)︃⃦⃦⃦⃦2

2

)︄
(6.11)

= proxh,L−1

(︃
xk − 1

L
∇f(xk)

)︃
. (6.12)
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The Lipschitz constant associated to the problem is often unknown. In practice, one may
interpret it as step s which may accelerate or slow down the convergence of the method.
Therefore, the basic iteration scheme becomes:

xk+1 = proxh,s(xk − s∇f(xk)). (6.13)

This is the core of the Iterative Soft-Thresholding Algorithm (ISTA) algorithm for
the solution of the ℓ1 regularization problem. In this case f = ∥b − Ax∥2

2 and h = λ∥x∥1.
The proximal mapping for h(x) = λ∥x∥1 is called the soft-thresholding operator. Thus:

xk+1 = softλ(xk − s∇f(xk)), (6.14)

where the soft-thresholding operator defined as:

softλ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x + λ x ≤ −λ

0 −λ ≤ x ≤ λ

x − λ x > λ

(6.15)

or in the more compact form:

softλ(x) = sign(x) max(0, |x| − λ). (6.16)

Despite being a classic algorithm and and of simple implementation, this method is
often considered to be of low practical applicability due to the generally slow convergence.
One possible improvement, which was included into the toolbox implementation of this
method is adaptive stepping. As discussed, it is possible to tweak convergence of the
algorithm by choosing an appropriate step s. The strategy consist of a backtracking line
search, where at each iteration one starts from a small step and keeps increasing it while
J(xk) > Q(xk + 1), where Q is the quadratic approximation of the function (ARORA,
2004). Since at each iteration the line search allows for big steps while still decreasing the
objective function, the convergence tends to accelerate.

As for another take on improving the convergence performance of proximal methods
applied to ℓ1 regularization, Beck e Teboulle (2009) derived a fast variant of the ISTA
called Fast Iterative Soft-thresholding algorithm (FISTA). FISTA employs the accelerated
gradient theory first proposed by Nesterov (1983). These class of methods are known
as momentum-based optimization methods. The reason for this is that they make use
of information from previous iterations, as a form of memory, in order to accelerate the
solution procedure. In the case of FISTA, an auxiliary y variable is defined which combines
the x value of the last two iterations:
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yk = xk + tk−1 − 1
tk

(xk − xk−1) (6.17)

xk = proxs,h(yk − s∇f(yk)) (6.18)

tk =

√︂
4t2

k + 1 + 1
2 . (6.19)

Differently from the classic ISTA, FISTA is not a monotone algorithm, i.e., J(xk+1) may
be higher than J(xk). As with ISTA, FISTA also allows dynamic stepping by employing a
backtracking line search.

Based on the work of O’donoghue e Candes (2015), further improvements can
be made in order to make FISTA converge faster. The RFISTA or Restarted FISTA
is an interesting optimization to the FISTA method. It consists of performing restarts,
which essentially erase the momentum memory of the optimization procedure when a
certain condition is achieved. More then one condition exists, where they can be fixed
at a certain number of iterations or adaptive based on the ongoing optimization. For
the implementation in the toolbox, the gradient condition was chosen due to the better
reported performance. In this case, the restarts occur whenever:

∇f(yk−1)T (xk − xk−1) > 0. (6.20)

This restart scheme relies is a computationally cheap observation that allows for a signifi-
cantly faster descent, as seen in a example problem in Figure 25.

6.1.1.2 ADMM

The alternating direction method of multiplier (ADMM) is prominent optimization
framework for the solution of problems involving the sum of convex functions and linear
constraints proposed by Boyd et al. (2011). It can solve problems of the form:

arg min
x

f(x) + h(x) ⇐⇒ arg min
x,z

f(x) + h(z) s.t. x = z. (6.21)

The solution method derives from the theory of Lagrange multipliers (ARORA,
2004). It constructs an augmented Lagrangian incorporating the constraints and performs
Gauss-Seidel updates on primal and dual variables for iteratively computing approximations
of the solution. The augmented Lagrangian, with an assumed parameter ρ and Lagrangian
multipliers w is written as:

Lρ(x, z, w) = f(x) + h(z) + ρ

2∥x − z + w∥2
2 + ρ

2∥w∥2
2. (6.22)
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Figure 25 – Comparison of RFISTA restart schemes
Source: Adapted from (O’DONOGHUE; CANDES, 2015)

This expression is employed for the rotation of three basic steps:

1. minimize the Lagragian over x with z and w fixed

2. minimize the Lagrangia over z with x and w fixed

3. update the lagrangian multipliers w.

For the ℓ1 regularization problem one can write:

arg min
x

{︂
∥Ax − b∥2

2 + λ∥z∥1 s.t. x − z = 0
}︂

, (6.23)

where the Lagrangian minimization results in the following updates:

xk+1 = (AT A + ρI)−1
(︄

AT b + ρ

(︄
z − wk

ρ

)︄)︄
(6.24)

zk+1 = softλ/ρ

(︄
xk+1 + wk

ρ

)︄
(6.25)

wk+1 = wk

ρ
+ xk+1 − zk+1. (6.26)

As seen, all update terms depend on the parameter ρ. This parameter can significantly
influence the convergence of ADMM. A too large value of ρ means not enough emphasis
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on minimizing f + h, while a too low value does not emphasize enough feasibility. In order
to improve the method performance, and address the need for setting the parameter ρ a
variant of the method was implemented. The variant allows for and attentively set ρ and
and relaxation parameter aimed at improving the solution speed. The method is called
Adaptive Relaxed ADMM and was proposed in the work of (XU et al., 2017).

6.1.1.3 Orthantwise Enriched Second Order Method

This method, proposed by Reyes et al. (2017), consists of a Newton-like second
order optimization. The term orthant is employed to refer to a specific subset of the
n-dimensional space where all variables are non-negative. The orthant is connstructed in a
way where it defines a feasible region for progressing with the optimization. The method
aims to minimize a function ϕ corresponding to the sum of least squares and regularization
terms:

arg min
x

ϕ(x) = ∥Ax − b∥2
2 + λ∥x∥1. (6.27)

As stated earlier, the ℓ1 norm is discontinuous, therefore one cannot compute
a gradient directly. However, following the work of Byrd et al. (2012), it is possible
to compute a discontinuous pseudo-gradient that can be used in a steepest descent
optimization procedure. It is written as:

∇iϕ(x)˜ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(AT A)−1AT bi + λ sign(xi) if xi ̸= 0

(AT A)−1AT bi + λ if xi = 0 and (AT A)−1AT bi < −λ

(AT A)−1AT bi − λ if xi = 0 and (AT A)−1AT bi > λ

0, otherwise.

(6.28)

The solution, then, employs this pseudo-gradient combined with a quasi-Newton
Hessian approximation in order to compute the descent direction. The form of the Hessian
comprises the BFGS matrix summed to a generalized Hessian diagonal matrix computed
from the generalized derivative of the ℓ1 norm. The expression for computing the directions
reads:

(Bk + Γk)dk = −∇̃ϕ(xk) (6.29)

where k is the iteration number, B is the BFGS Hessian approximation at iteration k, Γ
is a ℓ1 second order approximation term and d are the search directions.

The linear system in Equation 6.29 is solved for the search direction. Once this
direction is found a new iterate is calculated using a projected line-search whereas the
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projection ensures that the new iterate lies within the solution orthant. The orthant
information allows the propagation of the information of the active sets, that is, the
variables that have been zeroed and those that can still be updated according to the
optimality conditions of the problem.

The orthant directions are defined as:

zi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

sign(x) if xi ̸= 0

1 if xi = 0 and ∇if(x) < −λ,

−1 if xi = 0 and ∇if(x) > λ,

0, otherwise.

(6.30)

Following only the orthant directions does not guarantee that all restrictions
imposed by the ℓ1 norm are satisfied. In order to ensure the constraints, an additional
projection step is applied to the b vector. Thus, this method could be classified as a
projected gradient descent method (ARORA, 2004). The orthogonal projection applied at
each component of b can be written as:

P(y)i =

⎧⎪⎨⎪⎩bi if sign(bi) = sign(zi),

0, otherwise.
(6.31)

Thus, the iteration scheme can be written as:

xk+1 = P(xk + skdk), (6.32)

where dk is the direction computed from Equation 6.29 and sk is the step length. In order
to improve the efficiency of the method, the step length is calculated employing a projected
backtracking line search.

6.1.1.4 Coordinate Descent

The coordinate descent (CD) method exploits the fact that the lasso problem can
decomposed into separable uni-dimensional sub-problems. The optimality conditions for
the problem can be stated in terms of individual coordinates as:

n∑︂
i=1

(bi −
p∑︂

k=1
aikxk)aij + λ sign(xj) = 0, (6.33)

where n and p are the number of rows and columns from the matrix A.

Given this formulation, coordinate descent proceeds cyclically solving these equa-
tions for all j. In order to simplify the solution statement, the partial residual r is defined
as:
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ri = yi −
∑︂
k ̸=j

aikxk. (6.34)

This auxiliary variable removes from the outcome the current fit from all but the j-th
predictor. Then, the solution to the lasso sub-problem satisfies:

xj = softλ(∑︁n
i=1 rixij)∑︁n

i=1 a2
ij

. (6.35)

Therefore, a solution is obtained after cyclically applying this update to each vector index
until convergence.

Seeking further efficiency improvements for the toolbox implementation, the ideas
of screening present in the work of (FERCOQ et al., 2015) were also utilized. The basic
idea of screening is weeding out from the optimization procedure coordinates that will no
longer be active. The author is able to derive safe rules, considering the dual problem and
duality gap of the current solution in order to safely exclude certain vector indices from
the search space. This variant of the coordinate descent algorithm is known as CD-GAP.

6.1.1.5 Block pivoting

The block-pivoting method of solution is based on the work of (KIM; PARK, 2010).
The main idea of the method is to employ an active set strategy considering the optimality
conditions of the dual problem. If the main problem is:

arg min
x

J(x, λ) = 1
2∥b − Ax∥2

2 + λ∥x∥1 (6.36)

then, following a derivation presented in Kim et al. (2007), a dual problem can be written
as:

arg min
r

J(r, λ) = 1
2rT r − bT r s.t. ∥AT r∥∞ ≤ λ. (6.37)

Note that working with the dual problem has the advantage of the objective function
being smooth and the constraint being a simple inequality. The method then applies an
active set strategy with multiple candidate variables aiming to satisfy the KKT optimality
conditions. The KKT conditions for the dual problem and its implications to the primal
problem can be written as:
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w∗ = AT r∗ = AT b − AT Ax∗ (6.38)
−λ ≤ w∗ ≤ λ (6.39)

−λ < w∗
i < λ =⇒ x∗

i = 0 (6.40)
w∗

i = λ =⇒ x∗
i ≥ 0 (6.41)

w∗
i = −λ =⇒ x∗

i ≤ 0, (6.42)

where the star superscript indicates the optimal value. The method then defines three
disjoint subsets (H, F−, F+) of all p variable indices. Subset H holds the feasible indices,
while the subsets F− and F+ hold the unfeasible indices according to each of the inequality
constraints imposed by the infinity norm in Equation 6.37. For convenience it is possible
to call the unfeasible indices set as F = F− ∪ F+. The method starts with H = {1, .., p}
and F = ∅ and employs the following initial assumptions:

xH = 0, (6.43)
wF+ = λ (6.44)
wF− = −λ. (6.45)

Then, it is possible to calculate the remaining elements using the KKT conditions as:

xF = (AT
FAF)−1((AT b)F − wF) (6.46)

wH = (AT b)H − AT
HAFxF . (6.47)

From this point, some restrictions may be violated and in this case some exchange
among the working subsets indices is required. If all values obtained satisfy the relations:

−λ ≤wH ≤ λ (6.48)
xF+ ≥ 0 (6.49)
xF− ≥ 0, (6.50)

then the value of r corresponding to w is optimal for the dual problem and due to strong
duality x is the solution to the primal problem. On the contrary, if there are still unfeasible
variables, an update step on all subsets is needed. Defining the set of unfeasible variables
as:



Chapter 6. Exploiting Problem Knowledge 85

J = J1 ∪ J2 ∪ J3 ∪ J4 (6.51)
J1 = i ∈ H : wi > λ (6.52)
J2 = i ∈ H : wi < −λ (6.53)
J3 = i ∈ F+ : xi < 0 (6.54)
J4 = i ∈ F− : xi > 0, (6.55)

the update rule is written as:

H = (H − (J1 ∪ J2)) ∪ (J3 ∪ J4) (6.56)
F+ = (F+ − J3) ∪ J1 (6.57)
F− = (F− − J4) ∪ J2, (6.58)

where the − sign is interpreted as set difference. The method exchange all variables in
J at each iteration, which gives the name “block” to the method as opposed to single
pivoting schemes where a single variable is exchanged at each iteration. Swapping multiple
variables at once dilutes the computational costs matrix multiplication and inversion steps
and improves convergence. One drawback of this form is that finite termination is not
guaranteed since cycles may occur. In order to remedy this rare yet possible issue, a backup
rule is enforced which momentarily reverts the algorithm to single swapping if the number
of unfeasible variables does not decrease for more than 5 iterations.

An interesting aspect of this form of active set solution procedure is that the there
is a clear stopping criterion. Once the number of indices in J is zero, the algorithm can
safely stop knowing that the solution found is optimal. This contrasts with other iterative
algorithms which operate on the x vector as whole, such as FISTA, where depending on
the desired accuracy the algorithm may stall performing many iterations each of them
with very small improvements to the accuracy of the solution.

6.1.1.6 Homotopy

The Homotopy method, proposed by Donoho et al. (2006), exploits the fact the
ℓ1 regularization problem has piece-wise linear solutions among different values of the
regularization parameter (OSBORNE et al., 2000). Similarly to the Block Pivoting, it
belongs to the class of active set methods. The method starts with the solution for the
biggest regularization parameter, that is, the all zeros solution and tracks down the
breakpoints where variables enter or leave the active set. The method derivation employs
the concept of subgradients. The subdifferential of the lasso problem can be written as:
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∂f(x) = −AT (b − Ax) + λ∂∥x∥1, (6.59)

where the subgradient of the ℓ1 norm term can be written as:

∂∥x∥1 =

⎧⎪⎨⎪⎩ui = sign(x), xi ̸= 0,

ui ∈ [−1, 1], xi = 0
(6.60)

Denoting the support by the index set I = {i : xi ̸= 0} and calling w = AT (b − Ax)
the vector of residual correlations, one can rewrite the expression for the subdifferential as
the following two conditions:

wI = λ sign(xI), (6.61)
|wIc| ≤ λ, (6.62)

where Ic consists of the complementary index set from I. These relations state that residual
correlations on the support must all have magnitude equal to λ and signs must match
the corresponding elements of x, whereas residual correlations not present in the support
must have magnitude less than or equal to λ. Note that the two conditions obtained from
the subdifferential are essentially the same derived from the KKT conditions for the dual
problem in Block Pivoting strategy described in subsubsection 6.1.1.5, only written in a
more compact form. The solution strategy here differs, however, making use of a more
geometrical approach. The Homotopy algorithm traces the optimal x path for a certain
λ while maintaining both conditions. The algorithm starts with inital all zeros solution
maintain the I index set satisfying:

I = {j : |wj| = ∥w∥∞ = λ}, (6.63)

which is directly implied by the subdifferential conditions. Then, Homotopy computes an
update direction d by solving:

AT
I AIdI = sign(wI), (6.64)

for dI and setting dIc to zero. This direction is constructed in order to ensure equal
decrease to the residual correlations of all variables in the active set. As usual with descent
algorithms, once there is a direction there must be a step length. The step here is cleverly
calculated as the breakpoint where either a new variable enters the active set or leaves
it. The first case the may occur is when an inactive element of w increase the magnitude
beyond λ, which violating the conditions. This first occurs when:
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s+ = arg min
i∈Ic

(︄
λ − wi

1 − aT
i AIdI

,
λ + wi

1 − aT
i AIdI

)︄
, (6.65)

where ai is the i-th column of the matrix A. The other possibility occurs when an active
coordinate crosses zero and violates the sign agreement. This first occurs when:

s− = arg min
i∈I

−xi

di

. (6.66)

Once both steps have been computed, the chosen one corresponds to the minimum step,
i.e.:

s = min(s+, s−). (6.67)

From here, the index associated with the chosen step is employed in updating the active
set, either by appending it to I if the smaller step was s+ or removing it if the smaller
step was s−. The next solution for each iteration k is computed as:

xk+1 = xk + skdk, (6.68)

which is run until ∥w∥∞ = 0, which marks that the optimal value of x has been found.

6.1.1.7 Dual Projected Newton Method

The Dual Projected Newton Method (DPNM) is a ℓ1 solution procedure based on
convex duality proposed by Gong e Zhang (2011). The corresponding dual problem of
a convex optimization problem is obtained by replacing the inequality constraints with
equality constraints, and replacing the variables with their corresponding dual variables.
The objective function is also replaced by the dual objective function, which is the pointwise
infimum of the original objective function with respect to the primal variables.

In order to define the dual problem, the method first starts introducing an auxiliary
variable to the primal problem:

arg min
x,y

1
2∥b − Ax∥2

2 + λ∥y∥1 s.t. x = y (6.69)

From here, one can incorporate the constraint into the objective function employing
a vector of Lagrange multipliers µ and write the following Lagrangian function:

L(x, y, µ) = 1
2∥b − Ax∥2

2 + λ∥y∥1 + µT (x − y) (6.70)
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By minimizing the Lagrangian in Equation 6.70 with respect to variables x and y,
one can obtain the dual objective function:

D(µ) = arg min
x

(︃1
2∥b − Ax∥2

2 + µT x
)︃

− arg max
y

(µT y − λ∥y∥1). (6.71)

Utilizing the concept of dual norms introduced in Boyd e Vandenberghe (2004),
which proves that the dual norm of the ℓ1 norm is the infinity norm, one can rewrite the
second term of the expression as:

arg max
y

(µT y − λ∥y∥1) =

⎧⎪⎨⎪⎩0, ∥µ∥∞ ≤ λ

+∞, ∥µ∥∞ > λ
. (6.72)

Plugging the above expression into Equation 6.71 and maximizing it with respect
to the dual variable µ, the following dual problem is obtained:

arg min
µ

D(µ) =
(︃1

2µT Hµ + (HAT b)T µ + const
)︃

s.t. ∥µ∥∞ ≤ λ. (6.73)

where H = (AT A)−1. The solution method is based on a Newton method, aiming to
achieve quadratic convergence rate:

µk+1 = (µk − sH−1∇D(µk))+, (6.74)

where s is a step size and (.)+ is the Euclidean projection of x onto the box constraint,
written as:

(x)+ = sign(x) min(λ, |x|). (6.75)

Once convergence is reached and an optimal µ is found, the primal value of x∗ can be
found as:

x∗ = H(AT b − µ∗). (6.76)

6.1.1.8 Performance of implemented methods

The performance of the implemented sparseness-inducing regularization procedures
was evaluated on data samples similar to real-world B-WIM signals. The methods were
compared in terms of number of iterations and time taken to achieve machine precision
accuracy of the solution on 150 logarithmically spaced regularization parameters. The
objective was to see which methods performed better and which were sensitive to increase or



Chapter 6. Exploiting Problem Knowledge 89

decrease in the regularization parameter. The overall relative performance of the methods
for solving the problem can be assessed in Figures 26-29.
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Figure 26 – Change in relative error with iterations
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Figure 27 – Variation of number iterations and time with λ

Among proximal methods, ISTA presented the worst performance, being surpassed
by the fast variants. The use of a backtracking line search for selecting a step has shown
improved performance on all proximal methods and was always activated. Due to low
performance and high number of iterations required to achieve the desired precision, ISTA
was not included in the presented statistics. The restart scheme proposed RFISTA has
shown to significantly improve the search speed for the optimal solution.

The Coordinate Descent method presented poor performance and was the slowest
methods even with the implementation of gap-safe rules for ruling out some variables.
This is probably due to need to cyclically iterate on all variables and each of the updates
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relies on a matrix by vector multiplication which may be expensive depending on the size
of the matrices.

The DPNM presented drawbacks related to its dual problem nature. Since it
exploits duality to solve an easier problem, each iteration does not correspond to an
estimate of the x solution, rather an estimated of the solution to the dual problem. This
can be seen from the graph in Figure 26 where during many iterations the algorithm has
high error measurement and has a sudden jump to the correct solution. This is due to the
fact that only at the optimal point of the dual function, given the strong duality property,
one can recover the optimal x. Therefore, strategies where early termination is employed
once a certain tolerance is reached may not be possible.
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Figure 28 – Total time of across a range of λ

The ADMM implemented in its ARADMM variant has show a slow convergence
curve, even slower than FISTA. This, combined with the fact that the method relies on
good internal parameters such as ρ and the relaxation constant, makes the method be
considered one of the worst methods ℓ1 solution methods from those being evaluated.

The Orthant method enjoys fast convergence due to it belonging to the class
of second order methods. Nevertheless, numerical experimentation has shown that it is
a method that may get stuck and not converge. This is due to the fact second order
information is obtained from an approximation of the Hessian and it needs to be inverted.
This inaccurate Hessian inversion, especially considering the ill-posed matrices associated
with regularization problems, may result in numerical instability and lack of convergence.
The same drawback also applies to DPNM.

The BP method is very distinct from the other methods as it belongs to the class of
active set methods. This property allows for an efficient implementation based on boolean
arrays for performing the necessary swaps between each of the index sets. In terms of
solution performance it has shown be very competitive across most λ only starting to slow
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Figure 29 – Box plot of the number of iterations and time

down with small regularization parameters which ends up in a higher amount of swaps
required.

The Homotopy method achieved the best performance across the evaluated meth-
ods, achieving the optimal solution quickly across the complete range of regularization
parameters.

From the conducted experiments, both Block Pivoting and Homotopy algorithms
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were considered the most advantageous for real-world applications, mainly due to robust-
ness, lack of tuning parameters, ability to give highly accurate solutions up to machine
precision and evenness in terms of computational costs for either high or low regularization
parameters. In the remainder of numerical experiments, the Homotopy method was em-
ployed for solving regularization problems. The Orthant methods also showed impressive
performance, however, it was deemed not as reliable and prone to failure depending on
the matrix conditioning.

These results demonstrate the effectiveness of the toolbox and its potential for
solving L1 regularized problems in a wide range of engineering applications.

6.1.2 Impulse Vector Identification in BWIM

After having at disposal a good set of tools for finding sparse solutions employing
regularization procedures, it becomes important choosing an appropriate sparse solution.
In this regard, having a fast and reliable method for finding the parameter λ which allows
for recovering the B-WIM impulse vector becomes important.

As discussed in section 2.8 there are multiple ways for finding an optimal λ value to
use in regularization. In the context of B-WIM application those methods were implemented
and compared against B-WIM-like signals. The methods chosen were the 10-fold cross-
validation and, due to cheaper computational performance, the information based models.
The L-curve method was not considered to the difficulties associated with finding the
corner of the curve reliably for different situations. After initial experiments the AIC
method was seen to perform poorly. It is indicated in literature that AIC may perform
poorly when the number of non-zero elements is low. For this reason it was substituted
by a variant called AICc, which is a bias-correct derivation accounting for small samples
developed in (HURVICH; TSAI, 1989). From further experiments, the results from BIC
and AICc were identical.

The testing started with the a known impulse vector, called Oracle, and from this
a regularization procedure was performed on the respective convolution signal for each
λ on a grid of spaced logarithmically regularization parameters. The result in Figure 30
comprises the information-based methods and 10-fold cross validation. It is possible to see
that in B-WIM-like data the correct support is identified in all methods however with the
presence of spurious smaller magnitude variables. The cross-validation was the method
that introduced the bigger amount of extra variables. Considering the more theoretically
advanced properties of the EBIC criterion over its counterparts, which generally implies
more sparse solutions, the criterion was chosen as default for B-WIM application.

Nevertheless, a procedure was conducted in order the remove the spurious smaller
variables. Considering the real problem of finding weights of axles in a vehicle it is not often
that one axle is much heavier than the others. Thus, it is possible to apply a thresholding
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Figure 30 – Lasso solutions for multiple λ selections strategies

procedure based on the maximum vehicle axle in order to remove those spurious smaller
magnitude variables and obtain the correct support. This idea has ground in literature,
specifically the work of Slawski e Hein (2012) which shows that a useful way to obtain
a sparse solution without regularization is to first employ a non-negative least squares
procedure followed by a thresholding step to remove the small values.

6.2 ERROR IN VARIABLES

Most solution methods reviewed in this study assume noise only at the observation
vector. However, as discussed in section 3.3, the convolution interpretation allows for a dual
view of the B-WIM problem, that is, both weighing unknown vehicles assuming perfect
knowledge of the influence line as well as obtaining an influence line assuming perfect
knowledge of the vehicle characteristics are complementary sides of the same problem.
In reality, however, this perfect knowledge is not guaranteed. Influence lines depend on
the current bridge conditions and are estimated from a limited set of calibration vehicles
with all the inherent assumptions of the model such as constant speed of the vehicle,
Euler-Bernoulli bridge behaviour, force application varying only along the direction of the
crossing vehicle, etc. Thus, in B-WIM theory there is a situation where data matrix is
assumed to be error-free while it is known that such matrix follows a certain structure
constructed from data vectors that are merely estimated to begin with. From a theoretical
point of view, it can beneficial to newer solutions methods to tweak these assumptions in
order to allow for a model that more closely corresponds to reality.
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One of the ways statistical literature addresses the issue of errors on both output
and data matrix is employing the method known as Total Least Squares (TLS) (GOLUB;
LOAN, 2013). The “total” in the name refers to the fact that all variables are assumed to
contain errors, which is a more realistic premise for real-world engineering applications
such as the B-WIM problem. This method consists of a generalization of the least squares
procedure where another error variable is introduced in the form of a correction matrix.
It has been applied in different fields of science such as system identification, astronomy,
computer vision, and econometrics (MARKOVSKY; HUFFEL, 2007). For the usual Ax = b

system this becomes:

(A + E)x = b + e (6.77)

where E and e express the error data matrix and and error data vector, respectively. The
formulation for the TLS then can be written as:

xT LS = arg min
x,e,E

∥[E, e]∥2
F s.t. (A + E)x = b + e (6.78)

where ∥x∥F is the Frobenius norm.

The total least squares problem can be reformulated in terms of finding a rank-
deficient matrix C which approximates the matrix A under the Frobenius norm:

arg min
C,y

∥A − C∥F , s.t. Cy = 0, yT y = 1. (6.79)

Recasting the problem on this form allows to show that the solution for Equation 6.79 can
be obtained from SVD. The solution is obtained from the singular triplet (x, y, τ), where
τ is the smallest singular value obtained from the SVD operation (GOLUB; LOAN, 1980).
Therefore, SVD can be directly applied to solve the TLS optimization . One drawback
of the TLS method is that for applications where the problem has an inherent structure,
the solution may be inappropriate since it does not preserve any existing structure in E

(JIANG; BERRY, 2000).

6.3 STRUCTURE

As seen throughout this study, matrices are employed almost everywhere, to model
the B-WIM problem and analyze data. An important aspect of matrices is their structure,
which can greatly impact the efficiency and accuracy of algorithms used to solve problems.
The specific structure of a matrix depends on the problem being solved and the underlying
mathematical model. For the case of B-WIM, literature has not yet explored the potential
for exploiting the matrix model structure in order to propose novel solution procedures.
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As discussed in section 3.3, under the convolution interpretation, the data matrices
involving the B-WIM problem follow a definite structure. Consider for example a vehicle
traversing over the bridge. It applies a constant force on the bridge while it moves along the
bridge end direction. Assuming constant speed, at each time step this force gets displaced
by a constant amount. In terms of the impulse matrix, it results in a matrix with constant
terms along diagonals, i.e. a Toeplitz matrix. Knowledge on the structure of the matrix
employed for performing the inverse operation, the deconvolution, is something that has
not been addressed in current solution methods.

Toeplitz Impulse
vector Matrix


Toeplitz IL Matrix

Impulse vectorInfluence line

Calibration

Weighing

Figure 31 – Toeplitz structure present in B-WIM complementary problems

The Toeplitz structure is part of both the weighing and calibration procedures, as
seen in Figure 31. Thus, it can be useful to restate the B-WIM problem in terms of the
Toeplitz restriction on the convolution matrix, as well as accounting for possible errors
in this matrix and the on the measured data. That corresponds to a formulation known
as Structured Total Least Squares (STLS) (MOOR, 1993; LEMMERLING et al., 2003).
The problem formulation is very similar to the TLS with the additional constraint on the
structure of either the data matrix or observations. That is:

xST LS = arg min
x,z,E

∥[E, z]∥F s.t. (A + E)x = b + z (6.80)

and [E z] with the same linear structure as [A y]
(6.81)

The solution results by taking [Ez] as the matrix with smallest Frobenius norm
that added to [Ab] makes the result singular. As such, it is related to the smallest singular
value of [Ab] (DUMITRESCU, 2013).
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6.4 COMBINING AVAILABLE KNOWLEDGE

As seen in previous sections, considerations on noise form, sparseness, and structure
of the problem may be exploited for providing a more comprehensive and flexible model
for the solution of the B-WIM problem.

Up to this point, no study has proposed a combined effort of incorporating error in
variables, sparseness-promoting metrics and structure preserving solution procedures for
addressing neither weighing nor calibration on B-WIM data. This study aims to employ
such methods and evaluate their performance for the same numerical data provided in
chapter 5.

The work of Kazemi (2018) proposes a procedure for the solution of a inverse
problem with similar characteristics to the one found in B-WIM applications. It consists
in finding a a reflexivity series given noise-corrupted seismic recordings. It also aims
at incorporating the prior knowledge of the sparseness of the reflexivity series. Such a
description has an analogous counterpart to finding the sparse impulse vector given the
moment measure readings in B-WIM.

The problem statement consists on a variant of the STLS problem, where an
additional sparseness promoting ℓ1 term is included into the problem. It reads:

xT ST LS = arg min
x,E

∥(A + E)x − y∥2
2 + λ∥x∥1 s.t. Ex = Xe (6.82)

where X is the Toeplitz-strucutured matrix associated to the x vector and e is the
vector associated to the Toeplitz-strucutred E matrix. In order to solve the problem in
Equation 7.1 one can expand the cost function around x and E, ignore higher-order terms
and incorporate the constraint into the cost function. With this modification the problem
statement reads:

{∆̂x, ∆̂E} = arg min
∆x,∆E

∥r − ∆Ex − P∆x∥2
2 + λ∥x + ∆x∥1 (6.83)

where ∆x is the perturbation in x, ∆E is a perturbation in E, P = A + E and r = Px − y.
Using the structure constraint, one can replace ∆Ex by X∆e, which results in the following
unconstrained minimization problem:

{∆̂x, ∆̂e} = arg min
∆x,∆e

∥res − X∆e − P∆x∥2
2 + λ∥x + ∆x∥1. (6.84)

Since there two variables being optimized, one of the most straightforward ways to
solve it is to perform an alternating minimization procedure. Considering ∆x a constant,
one can take the gradient of the expression and obtain a expression for the optimal ∆e
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∆e = (XT X)−1XT (res − P∆x), (6.85)

with this estimate one can consider now this quantity fixed and solving Equation 6.84 for
∆x, which requires a ℓ1 regularization solver such as those presented in subsection 6.1.1.
After obtaining an estimate for ∆x is it possible to update the initial values of x and e

and proceed with alternating procedure obtaining newer estimates for each variable until
convergence.

The method proposed by Kazemi (2018) was implemented and tested for solving
the B-WIM problem on the analytical database. However, issues related to convergence
were observed when applying to the B-WIM data. One of the observed drawbacks of the
method is the joint optimization of both sparsity constraints and structured total least
squares constraints. Considering that the sparsity, i.e., the number of nonzero elements on
the impulse vector keeps changing throughout the iterative procedure, the solutions being
employed on each of the alternating steps of the optimization may change drastically, which
can lead into further digression from the starting points, causing degenerate solutions and
infinite loops. Nevertheless, the ideas introduced by Kazemi (2018) in the field of seismic
response are theoretically promising. This fact prompted the author to further investigate
ways to adapt this idea into the B-WIM context.
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7 PROPOSED METHOD: SPARSE AND STRUCTURED TOTAL LEAST
SQUARES

Since empirical testing demonstrated that the joint optimization the impulse vector
sparseness, structure and error in variables modeling was a hard task in the context of
the usual B-WIM data, one practical idea explored was the development of a two-phase
algorithm. The idea consists of first addressing the sparseness consideration, by finding
the correct support. Once the support, the location of non-zero elements is found, then
the main objective is proceed with the structured optimization, taking into account the
inherent Toeplitz structure established from the convolution interpretation and accounting
for the error in variables modeling.

As seen in section 6.1, ℓ1 regularization aided by a parameter selection procedure
and posterior threshold post-processing can be employed for recovering an impulse vector
support. Therefore, in the proposed two-phase algorithm, the first phase consists of finding
the support by ℓ1 regularization. The decoupling of sparseness search from the full impulse
vector recovery procedure offers an advantage. The regularization procedure does not need
to find the correct impulse values, only the correct location of the nonzero elements. This
eases an issue often found in ℓ1 regularization literature which is the shrinking of iterates
(MEINSHAUSEN; YU, 2009). Since initially one is interested only on the location of the
sparse items, it does not matter if the values obtained are smaller than they should be.

Once the support has been selected by ℓ1 regularization, the proposed algorithm
starts its second phase. In this phase, the two points of improvement identified are
addressed: error in variables and structure. For this, once more the STLS method may be
applied. However, at this time the sparseness has already been considered which allows for
a slightly different formulation. For each estimate of the new x in the STLS algorithm,
only the subset of non-zero elements is considered. From this an estimate of the vector of
structured errors e may be found for starting an alternating optimization procedure. In
order to find e however, a new derivation must be made taking into account the underlying
model constraints. The proposed formulation aims to minimize both the residual and the
error in variables, enforcing structured variable errors:

xST LS = arg min
x,E

f = 1
2∥(A + E)x − b∥2

2 + ∥e∥2
2 s.t. Ex = Xe. (7.1)

writing r = b − (A + E)x and the differential of f :
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f = 1
2(r : r + e : e) (7.2)

df = r : dr + e : de (7.3)
= r : −Xde + e : de (7.4)
= (−XT r + e) : de. (7.5)

Therefore:

∂f

∂e
= −XT r + e. (7.6)

Equating the gradient to zero and solving for e it is possible to obtain:

e = XT r (7.7)
e = XT (b − Ax − Ex) (7.8)
e = XT (b − Ax − Xe) (7.9)
e = XT (b − Ax) − XT Xe (7.10)

(XT X + I)e = XT (b − Ax) (7.11)
e = (XT X + I)−1XT (b − Ax). (7.12)

From this expression for e which enforces the Toeplitz structure into the TLS formulation,
one can derive an estimate for x considering the sparse subset of indices:

df = r : −(A + E)sdx (7.13)
= −P T

s r : dx. (7.14)

where the s subscript indicates the matrices columns associated with the non-zero values
and P = A + E. Thus:

∂f

∂x
= −P T r. (7.15)

Equating the gradient to zero and solving for xs:

−P T
s (b − Psx) = 0 (7.16)

−P T
s b + P T

s Psx = 0 (7.17)
x = (P T

s Ps)−1P T
s b. (7.18)
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Figure 32 – Range of change across alternating iterations

Thus, in the second phase of the algorithm alternate estimates for e and x are
performed. A new estimate for e augments the matrix P which contains the matrix E.
The matrix E is formed by the concatenation of errors in the structured form, i.e., for the
B-WIM case, E = Toeplitz(e). Each new estimate of x is sparse vector estimated from
the augmented matrix P . One issue that may arise in this setup is the fact that despite
converging, each new estimate of x may trade individual-point accuracy for global accuracy.
In terms of B-WIM this means that the resulting impulse vector may be further increasing
errors by axle at the expense of slightly tweaked GVW. This principle can be observed
in Figure 32. The figure illustrates how the impulse vector changes across 7 alternating
iterations. Note that the last 2 pulses present similar range of change, however at opposing
directions. The optimal x value may be in between these ranges, such that a form of early
termination to the procedure may be beneficial for more accurately estimating individual
axles.

Considering that individual axle estimates are important in context of correct
vehicle representation and classification, some form of selection criterion may be employed
for choosing a good a trade-off between generality of the solution and accuracy. In this
regard it is possible to adapt the GCV idea employed in the work of Dupé et al. (2009).
There the authors present of form of generalized cross validation applicable for sparse signal
recovery. In that study it is employed in the context of finding the optimal regularization
parameter λ. However, since every alternating step incurs in a deviation from the starting
least squares solution obtained when e = 0, then early termination of the algorithm can
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be viewed as a form of regularization. In fact, early termination has been employed as
a strategy by several authors in sparse recovery literature (GAZZOLA; NAGY, 2014).
Therefore, the optimal x is considered the one which minimizes the following measurement:

GCV (k) = ∥b − A x0 − X ek − (A + E) xk∥2
2

n − ∥x∥0
, (7.19)

where k is the current iteration, n is the number of rows in A and ∥.∥0 is the ℓ0, or the
number of non-zero elements on the vector.

7.1 NUMERICAL EXPERIMENT

Since the proposed method can be seen as a variant of the least-squares method with
improved robustness and theoretical considerations it is worth comparing the performance
of the proposed method by numerical experiments.

The method was evaluated on the publicly available vehicle simulation dataset
described in subsection 5.1.1 (GONÇALVES et al., 2019). The evaluation is applied
to all the 360 calibration vehicles in the dataset and comprises both GVW and axle
calculations for three conditions of bridge length and roughness amplitudes. The form of
error considered is the absolute mean across all simulations available. The absolute value
is employed in order to better verify the changes in the mean between methods, avoiding
the effects of negative and positive errors canceling each other. The results are presented
in the form of boxplots, in order to better highlight both the average variation, amplitude
of errors and presence of outliers. In Figures 33 and 34 the results consider the GVW
recovery across different road class and bridge length scenarios. Overall it is possible to say
that the performance of the proposed STLS optimization is very similar to that of Matrix
Method for GVW estimation. It is important to notice that a boxplot with a length fixed
conveys all simulations for all distinct surface roughness. This explains how in Figure 33
the average results for a length 20m bridge are smaller than those for the length 10 m
bridge. This is caused by increased sensitivity of the higher roughness on the small bridge
as discussed in Carraro et al. (2019). In terms of the STLS improvements, slight decreases
in the amplitude of errors and presence of outliers have been observed.

More noticeable improvements can be seen when considering the error by axle.
From Figure 35 it is possible to notice slightly worse performance on the 10m bridge,
probably caused by the amplification of dynamic effects caused by surface roughness
consideration which are not diluted across a bigger span and are not directly taken into
account by the model. Nevertheless, continuing the analysis for the 20 and 30m bridge
it is possible to observe significant decrease on the absolute errors both at average value
and dispersion. A similar remark can be made when considering the distinct road profiles
in Figure 36. For the RoadClassI which is the situation of amplitude zero, not taking
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Figure 33 – Average absolute error for GVW - Lengths

into account the roughness, it is possible to observe that the outliers seem to cluster at a
lower value, which is beneficial when considering the minimization of the maximum error.
Moreover, for RoadClassA and RoadClassB a drop in the mean average absolute error
(green line) is clear.

Lastly, the overall trend of the STLS method can be observed from Figures 37
and 38. It can be seen from Figure 37 that the GVW results are not much affected by
the introduction of the proposed STLS method. On the other hand, in Figure 38 it is
possible to notice improved single-axle performance when performing the STLS scheme
and taking into account the structure of the problem. Thus, it is possible to conclude that
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Figure 34 – Average absolute error for GVW - RoadClass

the proposed method, comprised of computationally efficient sub-algorithms is able to
improve one of the main drawbacks of traditional B-WIM solutions, which is single-axle
accuracy and doing this without sacrificing the overall performance for GVW estimation.

7.2 FIELD-TESTING DATA

Additionally to the numerically simulated experiments, data from a real instru-
mented bridge in Goiás was evaluated. The Itinguijada bridge, already employed in the
comparison of static weighting algorithms, was utilized. In order to validate the algorithm
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Figure 35 – Average absolute error for Axle - Lengths

one needs conduct the analysis knowing in advance the characteristics and the weight
of the vehicle traversing the bridge. For this reason, data from B-WIM calibration and
influence line extraction was employed. In this setting, multiple runs of two known vehicles
were utilized. Two vehicles were employed in calibration with 3 and 5 axles. A total of
31 calibration runs were recorded. Due to the small number of events, further research
should be conducted in order to more assertively assess the performance of the method. In
Figure 39 the absolute average error is displayed. It can be noticed that the overall trend
of the simulated events is still present. The novel proposed STLS method is able to provide
similar performance in the case of GVW estimation and offers a decrease in the variability
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Figure 36 – Average absolute error for Axle - RoadClass

of results for single axle estimation. In can be seen that for GVW there is a slight increase
in the mean absolute error, however, the amplitude of the outliers is decreased. Without
considering the outliers, the red line representing the 50% quantile is on the same level for
both methods. Distinctly, when considering the response by axle, a decrease in amplitude
of errors for the STLS method is visible. Moreover, the red line representing the median
without accounting for outliers is also on a smaller level, indicating a better individual
axle recovery performance.
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Figure 37 – Overall average absolute error for GVW
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Figure 38 – Overall average error for individual axles
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Figure 39 – Average absolute error for GVW and axles in Itinguijada bridge
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8 CONCLUSIONS

This work presented a comparative study regarding some methods applied in B-
WIM systems to derive bridge influence line and predict vehicle weights. In order to fairly
compare the analyzed methods, only those which do not explicitly address the dynamic
behavior of the vehicle-bridge system were considered. Furthermore, the methods were
interpreted from a statistical point of view, where their assumptions were highlighted,
remarking their theoretical differences.

In addition to the theoretical comparisons, the methods were implemented and
numerically compared, addressing the lack of comparisons found in literature. In order
to assess the similarity or the advantage of a method compared to the others, synthetic
generated and real data were considered. Furthermore, the influence of some main factors
that affects B-WIM systems were evaluated in simulated analyses, such as road profile
and bridge length.

The analysis using simulated data showed that the increase in bridge length had
more impact in corrupting the overall results than the roughness amplitude. The influence
of road profile increased when decreasing the bridge span. When analyzing performance of
the methods, results indicated that pBWIM and Modified 2D Moses were surpassed by the
other approaches. Indeed, pBWIM usually provided worse weight estimation performance,
together with a considerably higher computational cost. Modified 2D Moses was, for
all analyzed cases, equal or worse than Matrix method. The remaining methods, MLE,
Matrix method and Regularization, presented very similar results, with MLE being slightly
better. The results regarding real data followed the trend already observed in numerical
simulation, however with MLE showing superior performance. Thus, from both theoretical
and practical perspectives, the MLE could be argued as the most promising method
evaluated in this study.

Overall, the reformulation and reinterpretation of methods under a common sta-
tistical point of view allowed a better understanding of the underlying assumptions and
theoretical hypothesis. This fact enabled a better comparison among methods and gener-
ated an opportunity for further improvements. For example, developing novel methods
by relaxing the model statistical assumptions or applying a Bayesian approach to better
account for prior information.

The exploration of the convolution interpretation of the B-WIM problem has given
insights for the development of new solutions methods. The parallels established with
the fields of signal and image processing allowed transporting ideas from those distinct
science fields for the application on a practical engineering problem. Given this new
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view, multiple improvement directions were explored. Recognizing B-WIM as an inverse
problem with sparse characteristics, allowed exploring sparse recovery techniques, such
as ℓ1 regularization. Also, recognizing B-WIM as a “dual problem”, in the sense that it
possess the complementary processes of weighing and calibration, allowed the identification
that a formulation accounting for error in variables such as the one in TLS was more in
line with the real-world application. Finally, recognizing B-WIM as deconvolution problem
allowed the Toeplitz structure of the problem to be exploited in order to introduce a
consistent error vector.

Given the idea of exploiting known but underutilized knowledge about the B-WIM
problem, a novel solution strategy was formulated and implemented based on different
ideas from multiple authors and tweaked for practical considerations observed in the
practical problem. The proposed method achieved comparable performance for GVW
identification and improved performance for single axle estimation when compared to the
classic Matrix method. The approach offers a better theoretical foundation and allows for
inaccuracies in influence line data obtained from calibration, as well as indirect assessment
of non-zero entries in the impulse vector.
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9 FURTHER STUDIES

The current study has opened the venue for further research in the area of exploiting
existing knowledge in order to propose better solution methods for the B-WIM problem.

As seen in this study, the proposed solution method involved a two-step optimization
procedure that aimed at finding the support for the sparse solution first ant then conducting
the weighing procedure exploiting the existing knowledge. One area of further research
could be to investigate the potential for applying a joint optimization for noisy, sparse
and structured recovery.

As another alternative, researchers could investigate a more practical aspect of
B-WIM related to real-time applications. As seen in the Lasso optimization section, not all
methods are suitable for quick weight estimation. There is an important trade-off between
having good and complete bridge models and having the capacity of reliably offer real
time estimates based on those models. This same remark is applied for models involving
dynamic bridge simulations, which was not evaluated in this study.

On the subject of sparse recovery, another area of research could be to investigate
the use of distinct sparseness inducing norms such the combination of Lasso and Euclidean
norms employed in the Elastic Net method. Moreover, the whole class of greedy methods,
which often have significant performance advantages when compared to classical norm
methods, could be another venue for improving the overall computational efficiency of the
solution procedure and amplifying the application range of the methods.

Concluding, another interesting aspect that may be addressed by further research is
the computational improvements allowed by viewing the B-WIM problem as deconvoluition.
As seen in previous chapters, the solution procedures often involve a linear system of the
type b = Ax. However, when seeing the problem as a convolution the matrix A can be
rewritten as a simple vector a which is convolved with the vector x. Therefore, following
the approach which was already employed in similar problems that arose in literature, one
could exploit the Fast Fourier Transform, avoiding the creation of matrix A and improving
the efficiency of the solution procedure.
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A B S T R A C T

Bridge weigh in motion (B-WIM) comprises the use of sensors on existing bridges in order to assess the loads of
passing vehicles. Although numerous methods for weight estimation on static B-WIM algorithms may be found in
the literature, there is not available a comparison study among them, especially regarding accuracy and sta-
tistical assumptions. Hence, this paper provides a critical comparison on a subset of conceptually similar B-WIM
methods, further extending the discussion on their theoretical assumptions, beyond what is currently available in
literature. The methods are not only referenced but reinterpreted and reformulated in a unifying manner, al-
lowing an in-depth comparison. Moreover, a parametric study on the performance and sensitivity of methods is
conducted. Not only simulated but also real data are employed in the comparison, supporting conclusions.

1. Introduction

A bridge weigh in motion (B-WIM) system effectively turns a bridge
in a weighing mechanism by means of recovering the live load of
passing vehicles from strain information obtained through sensors.
These systems are installed underneath the bridge, which does not
disrupt road traffic and also improves the durability and portability of
the system [1]. Therefore, it can be an efficient tool for overweight
enforcement since it is able to measure vehicles weight traveling at
operating speed. The information retrieved from the system can also be
employed in other contexts such as maintenance planning, structural
health monitoring, service life estimation and traffic network planning
[2]. The cost of installing and maintaining B-WIM systems is therefore
often lower due to better accessibility and synergy effects with other
projects when compared to other traffic monitoring systems [3].

The main idea behind B-WIM systems, firstly introduced by Moses
[4], relies on equating the bending moment on the bridge with the
product of the magnitude of the applied moving load and the influence
line ordinate of the bridge. By this formulation, it is possible to estimate
the axle weights of passing vehicles as those which generate the best
agreement between theoretical and measured bending moment re-
sponse. For more aspects regarding general information about B-WIM
systems, as well as some implementation considerations, the reader is
referred to Lydon et al. [5], Yu et al. [6], Žnidarič et al. [7].

Differently from the theoretical influence line employed by Moses,

recently developed approaches apply crossing vehicles with known
weight and the corresponding measured deformations to derive the
influence line of the bridge, a procedure known as calibration [8–11].
This formulation is valid as long as the static analysis is considered. In
practice, however, the dynamical motions induced by vehicles may
increase the difficulty in the correct influence line evaluation and
consequently weight prediction [12].

Due to the dynamic behavior, B-WIM methods may be divided into
two classes, related to explicitly considering or not the dynamic for-
mulation and bridge-vehicle interaction. Several papers contributed
with different approaches in the first class, with a higher emphasis on
the concept of Moving Force Identification (MFI) [13–15,1,12,16]. This
class of methods, however, may need to consider a full 3D model of the
bridge for a suitable accuracy, thus requiring extensive computational
effort [6]. Therefore, although some promising results, MFI methods are
not yet able to deal with some important applications, such as real-time
monitoring [17]. For the static class, which is the focus of this paper,
several researchers presented novel contributions in the past decade.
Ieng [8] proposed a maximum likelihood approach to estimate the
bridge influence line, generalizing the method by simultaneously taking
into account measurements available from as many calibration trucks
as needed. Zhao et al. [9] considered the transverse distribution of
wheel loads on the axle weight estimation. Kim et al. [18] trained ar-
tificial neural networks for the estimation of Gross Vehicle Weights
(GVW). O’Brien et al. [10] introduced the concept of probabilistic
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influence line seeking to find the most probable axle weights. O’Brien
et al. [11] employed Tikhonov regularization for overcoming the ill-
posedness of the B-WIM problem.

Although the performance of proposed methods is usually argued as
useful for practical application, their results often disregard other re-
cent studies in the same subject. As a consequence, it becomes hard to
evaluate the state-of-the-art improvements, since each study relies on
specific bridges, whose performance are not directly comparable with
each other. Furthermore, although some of those methods make direct
statistical assumptions, similarities with other approaches and practical
consequences of these assumptions are usually not evaluated. Indeed,
there has not been identified any publications comparing theoretical
aspects, practical applicability as well as the performance of recent B-
WIM algorithms.

In the present work, a comparative investigation, comprised of 5
state-of-the-art methods on weight estimation using static B-WIM al-
gorithms, is conducted. The methods employed in this investigation are
presented in Ieng [8], Zhao et al. [9], O’Brien et al. [10], O’Brien et al.
[19] and O’Brien et al. [11], which are related to influence line ac-
quisition, weight prediction or both simultaneously. In the proposed
analysis, all methods are reformulated or reinterpreted in a unified
manner, allowing theoretical statistical comparisons. Furthermore, the
practical consequences of some assumptions are discussed.

In order to perform the proposed analysis, a large set of distinct
conditions, such as bridge span and road profile, is numerically simu-
lated. The generated data set is employed for improving comparisons,
since it enables relating the bridge properties and a method’s perfor-
mance. It may help users in choosing the most suitable method for their
specific case. Furthermore, real-world signals are also evaluated, of-
fering validation for the conclusions drawn based on the simulated
model.

The main contribution of this paper is to conduct an investigation of
B-WIM procedures, further explaining their theoretical considerations,
the relation among methods and presenting a comparison of their
performance. The methods are not only discussed as referenced, but are
reinterpreted and reformulated in a unifying manner, employing a si-
milar notation, which more easily enables comparisons. Thus, the
analyses pursued here aim to lead to new insights for the development
of novel methods or for choosing methods based on which cases they
are likely to perform better.

The paper is organized as follows: Section 2 employs the same
formulation framework on the analyzed methods, enabling not only
numerical but conceptual, theoretical and implementation compar-
isons. Section 3 presents the numerical comparison of all methods using
simulated data, and remarking some theoretically expected aspects. The
results obtained from real field data are presented in Section 4. Finally,
Section 5 addresses further comments and discussion while Section 6
presents concluding remarks.

2. Methods overview and discussion

General aspects regarding the methods that belong to the scope of
this study are discussed in this section. Further analyses are conducted
for five methods whose characteristics are relevant for the overall
comparative context. For the remaining methods, the aspects that
prevent their inclusion in the comparative study are remarked.

2.1. Matrix method

The study of O’Brien et al. [19] develops the matrix method for the
acquisition of the influence line. It derives the equations for three-axle
calibration trucks by minimizing a quadratic residual based on the
predicted response of a pre-weighted vehicle. In their study, the influ-
ence line for two vehicles with three and seven axles are calibrated and
the similarity between measured and predicted responses is shown. This
work contributed with a systematic way of employing direct bridge

measurements by first calibrating an influence line based on a pre-
weighted truck, which is later used for weighing arbitrary vehicles. This
contrasts with the use of the theoretical influence line proposed in
Moses [4].

2.1.1. The Matrix approach itself
The Matrix method results in a least squares solution. The basic idea

starts from Moses algorithm, where one must minimize an error func-
tion R, comprised of the sum of the squares of differences between the
measured bending moment Mm and the theoretical bending moment
Mt. The measured term, for an instant k is given by:∑= =M E Z ε ,k

m

g

G

g g g
1 (1)

where G represent the number of girders and E Z,g g, and εg are the
elastic modulus, section modulus and measured strain of the −g th
girder, respectively. The theoretical term introduces the influence line
and reads:∑= = −M W IL ,k

t

j

J

j k C
1

( )j
(2)

where=C
d f

vj
j

(3)

and J is the number of axles, Wj is the weight of the −j th axle, −IL k C( )j
is the influence ordinate at the position of the −j th axle, dj is the
distance between the first axle and −j th axle, Cj is the number of scans
corresponding to dj, f is the sampling frequency and v is the vehicle
velocity. It is worthwhile to point that if −k Cj results in a index that
does not match an influence line ordinate, it is attributed the value of
zero for it.

The error term reads:∑= −=R M M( ) ,
k

K

k
m

k
t

1

2

(4)

where k represent each scan and K the total number of scans.
Differently from the work of Moses, where Mt was based on a theore-
tical influence line, in O’Brien et al. [19] it is now considered an un-
known and solved with the minimization of Eq. (4) by calibrating with
a vehicle with known weight. After the influence line based on direct
measurements has been found, one can proceed as usual with Moses
method for finding the unknown weights of vehicles passing over the
bridge. That is:= −W M(Λ Λ) ΛT T m1 (5)

where W is the vector of predicted axle weights and Λ is a matrix based
on the influence line ordinates, shifted according to the axle spacing,
defined as:= −ILΛ .kj

k Cj (6)

Thus, Λ is a ×K J matrix. Furthermore, the same observation done for−ILk Cj in Eq. (2) holds here.
The error function in Eq. (4) defines a least square problem. By the

statistical point of view, such an approach is the maximum likelihood
estimator when errors are independent and normally distributed
random variables [20]. These errors are related to each measured or-
dinate and at the same event of calibration. However, these underlying
error assumptions may not be met when considering practical cases. For
example, missing information on formulation could be seen as corre-
lated errors [21]. Thus, if the model description in Eq. (2) is not ac-
curate enough, a least squares estimate would not provide the best
result. Nevertheless, one could still extract useful information from the
method application, even though minor violations on the assumptions
are present [22].
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2.2. The maximum likelihood approach

The work of Ieng [8] proposes the utilization of maximum like-
lihood estimation (MLE) to obtain the influence line, based on cali-
bration data. The main reason argued by the study is that the method
proposed by O’Brien et al. [19] is not robust enough and the influence
line derivation is done only with signals produced by a single pass of the
calibration vehicle. Thus, the MLE approach intended to overcome
these issues, applying an iid (independent and identically distributed)
Gaussian random noise to the formulation.

Ieng [8] compared the MLE approach with the matrix method of
O’Brien et al. [19], using the ∞L norm (maximum value of error) be-
tween predicted and measured strains as the criterion. The presented
results were derived using different traffic data from the one employed
in calibration. Ieng [8] concluded that the applied methodology
achieved smaller errors regarding to the measured strains.

2.2.1. The MLE approach itself
Measurements are always corrupted with some kind of noise, in-

troducing uncertainties into the analysis. The maximum likelihood
approach aims to include these uncertainties into the formulation in
order to reach a more robust influence line.

It is assumed in MLE that the measurements are corrupted by ∊, a
zero mean multivariate normal random variable:= + ∊M M ,m t (7)

where Mm and Mt are the vectors of measured and modeled moments,
respectively, such that:=M AIL,t (8)

where IL is a vector with the ordinates of the influence line and A is a
Toeplitz matrix of the loads. The matrix A is based on the impulse load
vectorW :

W = ⎧⎨⎩ = +W i C, if 1
0, otherwise

,i
j j

(9)

where Wj is the weight of the −j th axle and Cj is analogous to that one
defined in Eq. (3). This impulse vector represents the whole vehicle,
with each axle load at their respective axle position. The A matrix is
formed by shiftingW in each line of A, which corresponds to a discrete
convolution, where each line relates to a time step of the vehicle pas-
sing over the bridge:

=
⎡
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where K and J are the total number of scans and axles, respectively.
Furthermore, several calibration trucks could be employed, passing

N times over the bridge. Each passage of the vehicle could be counted as
a realization of the random variable ∊. Then, the notation may be
modified to:= + ∊M M ,i

m
i
t

i (11)

where the index i ranges from 1 to N, the total number of signals col-
lected. In order to merge data from distinct runs, one could suppose that
all data collected is related to the same random variable. In this way, it
becomes necessary to interpolate the data vectors to common ordinates.

Assuming that the realizations of this variable are independent
among events, the likelihood can be written as the product of the in-
dividual probabilities:

∏= ∊=L ILpdf( | ),
i

N

i
1 (12)

where pdf is the probability density function of ∊ and L is the likelihood.
The principle of MLE is equivalent to minimizing the negative of its
natural logarithm with respect to IL:∏ ∑⎛⎝⎜ ∊ ⎞⎠⎟ = ⎛⎝⎜− ∊ ⎞⎠⎟= =IL ILargmax pdf( | ) argmin (log( pdf( | ))) .IL

i

N

i IL
i

N

i
1 1 (13)

Inserting Eq. (11) into Eq. (13), it reads:∑⎛⎝⎜− − ⎞⎠⎟= M M ILargmin (log(pdf( | ))) .IL
i

N

i
m

i
t

1 (14)

As the variable ∊ follows a multivariate normal distribution, the
expression of its pdf could be introduced into the formulation:∑⎛⎝⎜− ⎛⎝⎜ ⎞⎠⎟⎞⎠⎟= − − −−

π
argmin log 1

|Σ| (2 )
exp ,IL
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M AIL M AIL

1

1
2 (( ) Σ ( ))i

m T
i
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where Σ is the covariance matrix of the random variable ∊, |. | is the
determinant operator and K is the number of dimensions of the multi-
variate distribution, which corresponds to the number of scans in this
case. Using the logarithm properties:∑⎛⎝⎜ ⎛⎝ + − − ⎞⎠⎞⎠⎟= −π M AIL M AILargmin log(|Σ| (2 ) ) 1

2
( ) Σ ( ) .IL

i

N
K

i
m T

i
m

1

1

(16)

This expression can be minimized by setting to zero its first derivative
with respect to IL. Supposing that the covariance matrix Σ is in-
dependent of the IL ordinates, it results that the derivative of the first
term is zero. The derivative of the remaining expression can be written
as:∑ ∂∂ − − == −

IL
M AIL M AIL1

2
(( ) Σ ( )) 0,

i

N

j
i
m T

i
m

1

1

(17)

which results in:∑ − == −M AIL A(( ) Σ ) 0.
i

N

i
m T

1

1

(18)

Recalling that =AB B A( )T T T and Σ is a symmetric matrix:∑ − == −A M AIL( Σ ( )) 0.
i

N
T

i
m T

1

1

(19)

Rearranging the expression and assuming that the covariance is a di-
agonal matrix, with equal variance:∑ ∑== =A AIL A M ,
i

N
T

i

N
T

i
m

1 1 (20)

the expression proposed in the study is reached. To find the solution it is
necessary for ∑ = A Ai

N
i
T

i1 to be invertible, condition that is satisfied ac-
cording to Ieng [8]. Similarly to the work of O’Brien et al. [19], the MLE
method provides a way to find the influence line based on calibration
data. Thus, the weighing procedure is also analogous to that stated by
Moses.

2.2.2. Comparing MLE and matrix method
The comparative aspect between MLE and matrix method was al-

ready assessed in the work of Ieng [8]. The matrix method was derived
based on data of only one calibration run, while the MLE approach
could be seen as a generalization of the matrix method for cases where
more calibration runs were performed. Hence, the matrix method needs
some kind of assembly strategy, such as performing the mean of re-
sulting influence lines from several runs. It is worthwhile mentioning
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that, as previously discussed for the matrix method, the MLE approach
will only be the maximum likelihood estimator when errors are in-
dependent and normally distributed random variables, with equal
standard deviation.

2.3. pBWIM

The pBWIM approach was proposed by O’Brien et al. [10], which
aimed to directly incorporate probabilistic information about several
passages of calibration vehicles to construct the influence line. This
formulation assumed that each measured influence line ordinate fol-
lows a normal distribution, obtained from field testing. The matrix
method is employed to derive the parameters of these distributions,
based on a single influence line for each event. Finally, the estimated
axle weights are those with the highest probability of occurrence among
all possible combinations.

In order to derive the pBWIM results, two different levels of in-
formation were applied to generate the influence line: the whole cali-
bration data or only a subset of events. The goal was to reproduce a
situation closer to the real case, whose small number of calibration
events are available. The results showed that with less information, the
pBWIM achieved better results in comparison with the traditional ap-
proach.

2.3.1. The pBWIM approach itself
Considering that the response Mt is the sum of products of axle

weights and influence line ordinates, the response related to scan k M, k
t ,

could be written as:∑= = −M W IL ,k
t

j

J

j k C
1

j
(21)

where J is the number of axles, W is the vector of axle weights, −ILk Cj is
the influence line value at ordinate −k Cj and Cj is the offset distance
between the ordinates of the influence line related to axle j. If the value
of −k Cj results in an index that does not correspond to an influence
line ordinate, the value zero is attributed to it, since it reflects a si-
tuation where the axle is out of the bridge.

Since each influence line ordinate follows a known normal dis-
tribution and the response Mk

t is a linear combination of normal vari-
ables, the response Mk

t itself also follows a normal distribution. Thus,
each ordinate has a corresponding normal distribution defined by the
parameters:∑= = −μ W μk

M

j

J

j k C
1

j
(22)∑= += −( )σ W σ τ ,k

M
j

J
j k C1

2 2
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where μk
M and σk

M are the mean and standard deviation of the random
variable related to the predicted moment of each bridge ordinate k,
respectively. Furthermore, τ and −σk Cj are the standard deviation of the
measurement noise and influence line, respectively.

Given the measured moments Mk
m, related to a specific bridge or-

dinate, the probability of a set of weights being responsible for gen-
erating such measures could be formulated as (highlighting those terms
that rely on the weights W):
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σ W π

M μ W
σ W

( ) 1
( ) 2

exp 1
2

( )
( )

.k
k
M

k
m

k
M

k
M

2

(24)

Assuming that all random variables related to the measured moments
on each ordinate are independent, an expression for finding the weights
that most likely have generated such data could be formulated as:

∏⎛⎝⎜ ⎞⎠⎟= P Wargmax ( ) ,W
k

K

k
1 (25)

where K is the total number of scans in the measured response.
Therefore, it is necessary to find the weights that maximize this ex-
pression. The procedure described by O’Brien et al. [10] to obtain the
axle weights is based on a grid search, whose bounds and increments
are arbitrary parameters. Such study has applied 0.8 and 1.2 times the
weights predicted by the matrix method as bounds and 0.1 kN as in-
crement. It is worth pointing that such a procedure is quite time-con-
suming, especially when increasing the number of axles.

2.3.2. The assumption of independence
Although pBWIM method provided reasonable results, an assump-

tion made in the derivation of the procedure seems to be violated. In
order to better understand it, one can write the response Mt in matrix
formulation, as already discussed in Eq. (8):=M AIL,t (26)

where A is the Toeplitz matrix for a given set of axle loads and IL is the
influence line vector, assumed to be comprised by independent Gaus-
sian random variables by O’Brien et al. [10]. As IL is supposed to be
Gaussian, it is straightforward to calculate the covariance matrix of the
resulting moments random vector Mt, dealing with A as a linear
transformation applied to the IL random variables:= A AΣ Σ ,M

T
ILt (27)

where ΣMt and ΣIL are the covariance matrix of the predicted moments
and influence line, respectively. Recalling that ΣIL is diagonal, since the
influence line ordinates are defined as independent random variables,
and writing the matrix multiplication with index notation, results in an
expression for each term of the ΣMt matrix:∑= = A AΣ Σ ,M

ij

k

K

ik IL
kk

jk
1

t
(28)

where K is the total number of scans. As already mentioned, for the
predicted moments to be independent random variables, it is necessary
that ΣMt be diagonal. Matematically, for all i and j, with ≠i j, one must
have =Σ 0M

ij
t . Thus, for showing that such independence does not

occur, it is enough that there are i and j, with ≠i j, such that ≠Σ 0M
ij

t .
Observing Eq. (28), it could be noticed that A A,ik jk and ΣIL

kk will
always be non-negative. The first two because of the structure of matrix
A, which is comprised only by axles weights and zeros, as seen in Eq.
(10). The last one is strictly greater than zero, since it is the diagonal of
a covariance matrix. Therefore, just one term of the summation greater
than zero is sufficient to ensure a non-diagonal covariance. In other
words, it is enough that, for any k, there are i and j, with ≠i j, such
that: >A A 0.ik jk (29)

One could see that the condition of Eq. (29) is always met when, at
least, one column in A has more than one non-negative value. For the
Toeplitz matrix A, it occurs when the passing vehicle has more than one
axle, being the difference between the corresponding i and j equal to the
number of scans separating both axles. Thus, for the general case, ΣMt is
not a diagonal matrix and predicted moments are not independent
random variables, violating this assumption. It is worth to mention that
if the matrix A is diagonal, which corresponds to a vehicle with only
one axle passing over the bridge, the independence holds. However,
such a case is clearly unrepresentative for B-WIM applications.

2.3.3. Comparing pBWIM and MLE approaches
In the definition of the pBWIM approach, O’Brien et al. [10] account

for a zero mean error in the measurement. In this way, the stated for-
mulation could be seen as a total least squares, with the form:
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+ ∊ = +IL W M τ( ) ,m (30)

where IL now is a matrix containing the influence line ordinates in each
column, shifted by the corresponding axle spacing in the rows and W is
the vector of weights. However, as it became necessary to have some
estimate for the standard deviation of the measurement noise, O’Brien
et al. [10] set this value to zero. Therefore, resulting in a problem such
that:+ ∊ =IL W M( ) . (31)

Such a formulation remarks the difference between pBWIM and MLE
approaches. The former accounts for error in the independent variable
while the latter sums it to the dependent variable. While the formula-
tion of MLE results in a closed-form solution, the approach of pBWIM
requires some form of optimization procedure in order to find the most
likely weights. Furthermore, pBWIM does not make any assumption
regarding errors with equal standard deviation, which is the case for
MLE.

2.4. Tikhonov regularization

O’Brien et al. [11] applied Tikhonov regularization to the matrix
method equations. The reason is that the final system of equations used
to solve the axle weights has an ill-conditioned or ill-posed nature. With
this approach, the authors intended to achieve better results mainly for
the weight by axle, which is acknowledged to have worse prediction
precision than total vehicle weight. The author used the well known L
curve method [23] to define the regularization parameter, evaluating
parameters ranging from −10 90 to 600,000. It is worth to mention that
the solution is unique for each parameter.

The method was theoretically tested using dynamic simulations of a
series of moving forces on a bridge. The author concluded that the
regularized solution performed better than the matrix method.
However, as the vehicle dynamics increased, the convergence of the
regularized solution was not as accurate.

2.4.1. The Tikhonov regularization approach itself
Tikhonov or ridge regression is a regularization technique that uses

the least squares framework with the addition of another term that
depends on a regularization parameter λ. This term can be viewed as a
penalization aimed at improving the conditioning of the system. One
can employ the colon notation to denote the Frobenius inner product
and Frobenius norm, respectively:=A B A B: tr ( ),T (32)= =A A A A A‖ ‖ tr ( ) : ,F

T2 (33)

and consider the error function of the full matrix case:= −R M TW ,m (34)

where Mm represents measured moments, W are axle weights and T is a
matrix used to perform the convolution procedure between influence
line and weights.

In Tikhonov regularization, one should minimize a function f,
comprising the error norm as well as the regularized solution norm,
with respect to the matrix W. Therefore, writing function f as:= + = +f R λ W R R λW W‖ ‖ ‖ ‖ : : ,F F

2 2 (35)

it is straightforward to compute the differential and gradient as follows:= += − − += − += − +
df R dR λW dW

M TW TdW λW dW
T TW M dW λW dW
T TW M λW dW

2 : 2 :
2( ): 2 :
2 ( ): 2 :
(2 ( ) 2 ):

T

T (36)∂∂ = − +f
W

T TW M λW2 ( ) 2 .T
(37)

Setting this gradient to zero, one can find an expression for the optimal
weight matrix:− + =− + =+ == + −

T TW M λW
T TW T M λW

T T λI W T M
W T T λI T M

2 ( ) 2 0
0

( )
( ) ,

T

T T

T T

T T1 (38)

where the matrix I represents the identity matrix.
Considering that each λ parameter defines a unique regularized

solution Wλ, the nontrivial task is to obtain the optimal regularization
parameter for the problem solution. Numerous methods exist for this
task such as cross-validation [24], ridge trace [25], and the L-curve
method [26]. In their study, O’Brien et al. [11] opts for the L-curve
method where two norms are defined. The first one is the residual norm
of the error for each specific regularization parameter, given by:= − −E M TW M TW( ) ( ) .norm λ

T
λ (39)

The second, is the norm of the solution for each regularization para-
meter, given by:=F W W .norm λ

T
λ (40)

According to the method, the optimal λ is located at the corner of the
curve constructed by plotting Fnorm and Enorm on a log-log scale. The
corner, represents a trade-off between bias and variance on the system
approximation. Fig. 1 illustrates the usual shape of the L-curve. O’Brien
et al. [11] does not details the process of optimal lambda selection.
Nevertheless, other regularization parameters could be obtained given
different approaches for finding the L-curve corner such as the Spline-
based Curvature Method [27], Triangle Method [28] or Adaptive
Pruning [29]. Considering that the numerous algorithms focused only
on the L-curve approach exist, which often returns different “optimal”
points, the task of finding the optimal regularization parameter is seen
as complex and subjective [10].

2.4.2. Statistical aspects behind the regularization approach
In order to understand the statistical interpretation of the for-

mulation employed by O’Brien et al. [11], we make use of the analogy
of Bayesian methods and regularization where the maximum a priori
estimate of a normal prior with normal likelihood results in the same
estimation as a Tikhonov regularization (for demonstration and proof
the reader is referred to Aster et al. [20]). That is, by the Bayesian
perspective, initial probability statements are updated, providing a
posterior distribution that combines both prior knowledge and the data

Fig. 1. The generic form of the L-curve plotted in double-logarithmic scale,
adapted from: [23].
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at hand [30]. Thus, instead of a single estimate as output, Bayesian
statistics provide a probability distribution for the model parameters. It
is worthwhile mentioning that it is possible to derive a single estimate
from such posterior as, for instance, its maximum a posteriori (MAP).
The prior distribution is obtained independently of the results of mea-
surements [31]. It could represent in a B-WIM application, for example,
the knowledge about the non-negativity of predicted axle weights.

The regularization procedure could be interpreted from a Bayesian
perspective. The MAP solution obtained by using a prior with in-
dependent and normally distributed model parameters is precisely the
Tikhonov regularized solution, as demonstrated in Aster et al. [20].
Aligning this interpretation with the already discussed aspect of a trade-
off between bias and variance, the regularization parameter arises as
the ratio between noise and prior variances [32]. Thus, a lower reg-
ularization parameter means a less informative prior is adopted. For the
extreme case of zero in the regularization parameter, the least square
solution is obtained.

However, Tikhonov regularization and Bayesian approach are not
entirely equivalent, since Bayesian solution is a probability distribution,
while the Tikhonov solution is a single set of parameters [20]. Hence,
the regularization procedure could be seen as a bridge between non-
Bayesian and Bayesian estimation problems [32].

When employing Bayesian or regularization approaches, some bias
is introduced to the formulation. Accordingly to the adopted method,
straightforward ways for incorporating each kind of prior knowledge
could be reached. However, the formulation developed by O’Brien et al.
[11] has not made use of any prior information as, for example, the
already discussed non-negativity of axle weights. Thus, making use of
such knowledge could result in improved weigh procedures, for both
regularization and Bayesian approaches.

2.5. Including transverse position into formulation

The work of Zhao et al. [9] accounts for the transverse distribution
of axle loads on each girder in the formulation. By using the calculated
influence line of each girder as a reference, a modified 2D Matrix
method was derived to identify axle weights of moving vehicles. Zhao
et al. [9] emphasized that, although there are theoretical approxima-
tions for the transverse load distribution, the measured data was em-
ployed to generate one transverse distribution coefficient for each
girder.

The results presented are based on two calibration vehicles, passing
10 times on each lane. Therefore, the influence line of each girder is the
mean of each event. Zhao et al. [9] concluded that the method is sui-
table for simply supported concrete slab-girder bridges. It is noteworthy
that the study did not compare the results with the matrix method, or
any other method. Finally, some limitations are cited at the end of the
paper, such as that the methodology is not suitable for box-girder
bridges or other long-span bridge forms.

2.5.1. The modified 2D Matrix method itself
An additional parameter Qg is introduced into the model of the 2D

modified method. It is supposed to represent the transverse distribution
of the vehicle loads on each girder. Zhao et al. [9] calculated it based on
the 50 largest strains, as the ratio between the strain of a given girder
and the total value:= ∑ =Q

ε
ε

,g
g k

g
G

g k

,

1 , (41)

where k is a scan related to one of the 50 largest strains and εg k, is the
strain measured for scan k and girder g, of a total of G girders. Thus, this
measure can be seen as the percentage of total strain that distributes on
each girder. Although the study recognizes that along the driving di-
rection the transverse load distribution factor of each girder is position-
dependent, a constant value for each girder was applied. The reason is

that most slab-girder bridges have equally distributed lateral con-
nectivity in the vicinity of the mid-span. Furthermore, it supposes that,
after calculating the contribution of each girder, each one is responsible
for their own load only, independent of the others.

The algorithm for influence line calculation is analogous to the
Matrix method, however resulting in one influence line per girder. It is
based on a least-squares minimization of the difference between the
measured and predicted strains at mid-span:∑= −=R ε ε( ) ,g

k

K

g k
m

g k
t

1
, ,

2

(42)

where εg k
m
, and εg k

t
, are the measured and predicted strains at scan k and

girder g. Furthermore, Rg is the squared error, calculated individually
for each girder g. The predicted strain could be written as:∑= = −ε

E Z
W Q I1

g k
t

g g j

J

j g g k C,
1

,( )j
(43)

where W Qj g is the weight contribution of the −j th axle on each girder.
Using the matrix notation applied for all methods analyzed here, the

influence line for each girder could be calculated as:= −IL AQ AQ AQ E Z ε(( ) ( )) ( ) ,g g
T

g g
T

g g g
m1 (44)

where ILg is the vector of influence line ordinates for the girder g A, is
Toeplitz matrix of loads described in Eq. (10).

The weighing procedure is based on a least square minimization
between predicted and measured moments, considering the axle
weights as variables of interest. In order to maintain consistency with
the previous formulation, the weighing procedure may be written as:∑= − =W E Z ε((Λ ) Λ ) Λ ( )Q

T
Q Q

g

G

g g g
m1

1 (45)

= − M((Λ ) Λ ) Λ ,Q
T

Q Q
m1 (46)

where ΛQ is a matrix of influence line ordinates defined by:= ×IL QΛ ,Q G n
T (47)

where Q is the vector grouping the transverse distribution parameters
of all girders, ×n is the n-mode tensor product [33] of a third-order
tensor ILG with the vector Q, with ILG defined as:=IL ΛG

kjg
g
kj

(48)

with Λg defined by Eq. (6) for every girder g.

2.5.2. Comparing Matrix method and its 2D modification
In order to better understand the relation of the method proposed by

Zhao et al. [9] and the Matrix Method in O’Brien et al. [19], one should
take into account the formulation differences. Recalling Eq. (44), it is
thus, possible to extract the constant Q as in:===

−− −− −
IL AQ AQ AQ E Z ε

Q A A Q A E Z ε
Q A A A E Z ε

(( ) ( )) ( )
( )
( ) .

g g
T

g g
T

g g g
m

g
T

g
T

g g g
m

g
T T

g g g
m

1

2 1

1 1
(49)

For the special case where the transverse distribution is constant along
the bridge, this expression can be further simplified by writing:

=Q
ε
ε

,g
g
m

m (50)

where εm is the total strain over all girders obtained during one cali-
bration event. Merging Eqs. (49) and (50):

F. Carraro, et al. Engineering Structures 198 (2019) 109463

6



∑
= ⎛

⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

=
∑

−
−

− =
=

IL A A A E Z ε

A A A E Z ε

( )

( ) .

g
ε

ε

T T
g g g

m

T T
g g

g

G

g
m

1

1

1

1

gm

g

G
gm

1

(51)

Therefore, if all girders have the same properties, namely Eg and Zg, the
Modified 2D method results in equal influence lines for each girder. Still
under this condition, ILg recovers the expression that would be ob-
tained by employing the Matrix method. Thus, under such assumptions,
both methods are equivalent in calibration.

In order to extend the analysis for the weighing procedure, the same
assumption made in Eq. (50) could be incorporated into the theoretical
bending moments expression, for any given scan:∑ ∑== =E Z ε WQ Λ .
g

G

g g g
t

g

G

g g
1 1 (52)

Supposing that Eg and Zg are equal for all girders, namely E and Z, it
results that the influence lines ILg would be the same, as previously
discussed. Thus, Λg will also be the same, since it is a function of the
influence lines of each girder. Calling Λ such a matrix of influence lines:∑ ∑ ⎜ ⎟= ⎛⎝ ⎞⎠= =EZ ε W

ε
ε

Λ
g

G

g
t

g

G
g
m

m
1 1 (53)∑ == E Z ε W Λ.

g

G

g g g
t

1 (54)

Thus, the predicted moments for Matrix method and modified 2D Moses
are the same, in this case. Therefore, one can conclude that, under the
hypotheses of constant weight distribution and same mechanical
properties of each girder, the weighing procedure also recovers the
same solution found when applying the Matrix method, becoming in-
dependent of the distribution parameters.

2.6. Other approaches found in the literature

Regarding the methods that are focused in this paper, it is worth to
point out that there are some proposed methodologies that address the
same problem, however with characteristics that prevent a suitable
comparison. In what follows, some of them are summarized and such
aspects are discussed.

An approach to construct a more realistic influence line was pro-
posed by Zhao et al. [34]. Their research intended to overcome the
limitations of the theoretical influence line used by Moses in his first
work. The bridge was modeled with semi-rigid connections and hor-
izontal springs as boundary conditions. Moreover, it was included in the
formulation the transverse load distribution, as proposed by Zhao et al.
[9]. To completely define the model, it was necessary to estimate the
values of some stiffness coefficients. In order to find these values, the
author performed a trial and error procedure comparing measured and
modeled values. Two algorithms were proposed: semi-rigid approach,
adjusting end moments and semi-rigid approach, using moments of the
whole bridge. Such methods were compared with Moses, employing the
theoretical influence line. The experimental procedure used two trucks
to calibrate and validate the method. The results showed that both
proposed approaches achieved better results, specially the second
method, which reached the lowest error among all. However, the pro-
cedure for finding the stiffness parameters that define the model does
not have a clear definition. Thus, as such analysis could be user-de-
pendent, performed comparisons may be inconclusive.

Kim et al. [18] proposed an approach to weigh vehicles using de-
formation measures as inputs to neural networks, obtaining the weights
of each axle as the output. The error for both gross vehicle weight

(GVW) and weight by axle were considerably low, indicating that the
proposed approach could be applied in real situations. Nevertheless, the
training process needed numerous training examples, preferably con-
taining vehicles with distinct number of axles, which is not available in
most practical cases. The advantage of this method was that it could be
applied in cases where the traditional approach have some difficulties,
which is not the focus of the present work.

In the work of Helmi et al. [35] three weigh methods were com-
pared utilizing data of a real bridge in Canada. The first two methods
were developed by the authors and consisted in the creation of an
equivalent uniform distributed load to represent the axle loads, con-
sidering the influence line of a simply supported beam. The authors
tried to find the fraction of the bridge span, corresponding to the length
of the equivalent distributed load, which causes the maximum moment
in the bridge. Thus, GVW could be calculated as the ratio between the
maximum moment and this length. Nevertheless, both of the authors’
proposed methods performed worse than the third alternative tested,
namely the Beta method from Ojio and Yamada [36]. This method used
the area under the moment or strain curve to calculate GVW, where
errors of less than 5% were observed. However, none of such methods is
able to distinguish the weight contribution of each axle, which is a
parameter of comparison in the present paper.

The work of Frøseth et al. [3] intended to overcome issues related to
implementation complexity and computational cost through the reali-
zation that the response of the structure is the convolution of the in-
fluence line and the loading. Thus, instead using the well-established
matrix method, the author suggested that the convolution could be
performed in frequency domain, since the convolution integral trans-
forms into an element-wise multiplication operation, which is very ef-
ficiently handled. The reported gains in computational time were, in
general, of one order of magnitude, at least. Another advantage of
viewing the problem under the proposed aspect, was that the matrices
utilized in the least-squares approach in O’Brien et al. [11] were
straightforward to generalize for arbitrary number of axles. It is worth
to mention that it may be necessary to apply a Tikhonov regularization
in order to perform the deconvolution. The reason is that the system
solution could result in an ill-posed problem in the frequency domain,
for example, when the passing vehicle has two axles with identical
loads. The author concluded that the obtained influence line provides
virtually identical results in comparison with the matrix method.
Therefore, the main practical utility of this approach was not precision,
but computational gains. As computational complexity is not addressed
in the present paper, no further analyses are performed for this method.

3. Numerical investigation

In addition to the theoretical argument presented in Section 2, this
study aims to evaluate the numerical performance of discussed
methods. This is justified given the usual absence of comparison among
methods in literature. Table 1 illustrates this matter on studies that shall
be evaluated. In this table, each row presents the method name, the
comparison form employed, the type of data gathered and the method’s
characteristic of obtaining either influence line or weight. It becomes
clear that recent work on the field has not been taken into account.

In order to compare the methods in a set of different conditions, a
parametric investigation is conducted. The main factors that may

Table 1
Literature method comparisons.

Method Comparison Data IL Weight

Matrix [19] Measured/Predicted Real ✓ –
MLE [8] Matrix method Real ✓ –
PBWIM [10] Matrix method Real – ✓
Regularization [11] Matrix method Synthetic – ✓
Modified 2D Moses [9] Measured/Predicted Real ✓ ✓
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influence the performance of B-WIM algorithms are simulated nu-
merically and the trend in gross vehicle weight error is measured and
presented as result.

3.1. Numerical simulations

Recalling, the methods evaluated are the Matrix method [19],
maximum likelihood (MLE) [8], pBWIM [10], Regularization [11] and
Modified 2D Moses [9]. The procedure employed for finding the corner
of the L curve for the regularization approach consisted on minimizing
the Euclidean distance between adjacent points, as suggested in [37].
This is done utilizing all the pairs (E F,norm norm) employed for plotting
the L-curve.

Regarding computational effort, almost all methods show similar
values, being negligible for simulation purposes. The only exception is
the pBWIM method, since this method depends on an optimization
procedure for finding the most likely weights. Thus, while other
methods can perform the computation directly by solving a single linear
system, pBWIM may need several similar solution steps. The compu-
tational effort is shown to be increased by some orders of magnitude,
mainly when the number of axles increases. This issue is partially
handled in this study by employing a modified optimization procedure
than that proposed by O’Brien et al. [10], which employed a grid
search. Nevertheless, the computational effort still remains as a draw-
back for this method.

The model applied to artificially simulate the bridge strains is based
on approximating the bridge behavior by a simply supported Euler-
Bernoulli beam model, employing systems of sprung masses to re-
present each axle. The whole description of numerical procedures em-
ployed is further discussed in Appendix A.

The influence of two main aspects are evaluated on gross vehicle
weight prediction, namely, road pavement profile and bridge span.
Three distinct road profiles are evaluated, with Power Spectral Density
(PSD) amplitudes of zero (no roughness), 4 and 16, where roughness
increases with the amplitude. Further details on the description of this
model are given in the Appendix A. For the bridge span parameter,
three cases are considered, with spans of 10, 20 and 30 meters. Thus,
the combination of every case of road profile and bridge span results in
9 distinct cases. Furthermore, a Gaussian noise with signal to noise ratio
of 20 is added to every signal, aiming to incorporate measurement er-
rors due to other sources than pavement roughness. It is worth to
mention that the values adopted for all these cases intended to reflect
the recommendations of Jacob [38] for B-WIM sites, hence, reprodu-
cing practical cases of interest.

In order to better approximate simulations with the real in-service
operation behavior, a total of 200 vehicles, with number of axles ran-
ging from 2 to 9, are simulated. The procedure for generating vehicles is
random, where the absolute value of a normally distributed random
variable ( N∼θ (0, 1)), is sampled and applied to Eq. (55).= + ⌈ ⌉J θmin(1 3.5(abs( )) , 9). (55)

where ⌈ ⌉. is the ceil function, abs(.) is absolute value and J is the
number of axles of the generated vehicle.

The histogram of vehicles sampled by this procedure is presented in
Fig. 2 to illustrate that lower weight vehicles are more frequently cre-
ated, an approach that intended to simulate a usual real scenario.

After the definition of the number of axles of the vehicle, a vehicle
type is randomly chosen, which defines the bounds on axle spacing,
damping, stiffness and maximum allowable weight on each axle. A total
of 16 vehicle types are applied in this study, which are defined in
Appendix B, based on a classification often used in Brazil. Axles spa-
cing, damping, stiffness and weights are uniformly sampled based on
the previously defined limits. Since axles weights does not have a
minimum defined, a value of 80% of the maximum allowable weight is
adopted. Furthermore, the velocity is uniformly sampled from a random
variable with 10m/s and 25m/s as lower and upper bounds,

respectively. The remaining parameters related to the bridge are taken
as constants and are defined in Table 2. The same set of vehicles are
applied to each one of the 9 cases.

A total of 40 runs of the vehicles 2C and 2S2, 20 for each of them,
are applied to calibrate the system, simulating the real scenario where
only a limited amount of calibration vehicles is available. For the ca-
libration runs, vehicles speed are adopted accordingly with suggestions
of Jacob [38]. Thus, 12 runs are executed with a mean velocity,
adopted as 20m/s here, 4 runs with 16m/s and the remaining 4 runs
with 24m/s. After the calibration, all methods are applied to a test set
comprised of the 200 runs which were previously generated.

3.2. Numerical results

The algorithms are evaluated in a set of different scenarios for as-
sessing performance aspects and sensitivity of the methods. The com-
parison criterion consists of the mean absolute percentage error related
to the known GVW. The results are shown in Fig. 3, as a function of
roughness amplitude and bridge length. In order to facilitate the dis-
tinction among the performance of the methods, these values are also
presented in Table 3, where some differences appear more evidently.

The simultaneous presentation of performance evolution with re-
spect to both parameters, in Fig. 3 and Table 3, allow for quite inter-
esting remarks. Firstly, all methods showed similar performance,
mainly Matrix method, Regularization and Modified 2D Moses. The
MLE method also shared the same trend, however, its performance
surpassed the other methods when bridge span increases. This fact is
observed independently of the roughness amplitude applied. Thus, al-
though the difference is not so remarkable, the MLE method can be
argued as the most accurate method for this data set.

On the other hand, pBWIM method showed similar performance for
lower roughness amplitude, becoming worse than the others with the
increase in this parameter. It is worth mentioning that the performance
loss occurs in conjunction with a more computationally expensive
prediction procedure.

Fig. 2. Histogram of number of axles of vehicles created.

Table 2
Constant parameters.

Propertie Value (Units)

Bridge modulus of elasticity 1010 (Pa)
Bridge damping coefficient 0.05 (–)
Bridge moment of inertia 0.5 (m4)
Bridge mass per unit length 10 (kg/m)4
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Since the whole bridge is simulated as a unique beam, it is already
expected for Modified 2D Moses and Matrix method results to be nu-
merically identical. Indeed, in all evaluated cases and runs, the results
are exactly the same. However, Regularization also shows similar be-
havior, presenting only slight deviations from the trends in the Matrix
method. Such aspects can be seen in Table 4, where the maximum
deviation of each method with respect to the Matrix method is pre-
sented. One can conclude that, in the conditions of this analysis, the
difference in performance among Matrix method and Regularization is
not significant. The reason is that the parameters found were usually
close to zero, which promotes solutions very close to the least squares in
the Matrix method. Nevertheless, it does not mean that the regular-
ization approach is not useful, however, in the examples, the applica-
tion of the L-curve corner lead to similar results. Therefore, it did not
have a large influence in the cases analyzed here.

In order to correctly analyze the method presented by Zhao et al.
[9], it is necessary to take into account multiple beams in the bridge,
which is addressed in the following sections.

When comparing the evolution of mean absolute error regarding
bridge length and roughness amplitude separately, one can conclude
that the first is more problematic. The difficulty of static methods in
dealing with long span bridges is a fact already well known on B-WIM
literature [38,18]. However, the comparison of variation of bridge
length and roughness amplitude shows an interesting aspect. Analyzing
the results, it is clear that bridge length has a higher impact on the
overall result than the roughness amplitude, since the cases of smooth
profile and 30 m bridge span easily surpass the error of the 10m bridge
span and roughness amplitude of 16.

It is interesting to notice that the increase in bridge length spreads
the effect of roughness in the prediction accuracy. Thus, the result is
more sensible to the road pavement profile for short span bridges. The
opposite is not true, in other words, independently of the roughness
amplitude, the increase in bridge length decreases the accuracy of
weight prediction.

3.3. Multiple beams analysis

Given that Modified 2D Moses and Matrix method resulted in rig-
orously the same predictions in previous analyses, it becomes necessary
simulating cases where the bridge response is modeled considering
multiple beams. In this section, the bridge structure is comprised of 3
distinct beams, where the simulation details are also referred to
Appendix A. Moreover, the same vehicles and properties previously
defined are adopted in this section. Three distinct cases of transverse
distribution (Q) are considered, defined by Table 5.

Since pBWIM, MLE and Regularization methods do not make any
assumption regarding transverse distribution of loads, their evaluation
for this new case should not bring any new insight. Thus, only as a
comparison criterion, the Matrix method is jointly evaluated with
Modified 2D Moses. As a result of this analysis, Figs. 4–6 present the
influence of roughness amplitude and transverse distribution case for
each bridge span.

In all cases, Modified 2D Moses performed equally or worse than
Matrix method. In the case of low roughness amplitude, both methods
could be argued as similar. When roughness amplitude increases,
otherwise, there is a trend for the Modified 2D Moses method to present
higher errors, for all analyzed bridge spans. Such performance gap is
specially remarkable in the 10m bridge. This last statement is in
agreement with the previous section, where the effect of road profile
showed higher impact for short span bridge cases.

One possible explanation for the performance gap can be seen in
Fig. 7. It shows the influence of the error in approximating Q (measured
as the mean of Euclidean distance among predicted and real Q values)
and the percentage difference between the results of the two methods.
This figure makes clear that the accuracy in Q estimate is directly re-
lated to the difference in performance when compared with the Matrix
method. Therefore, if transverse distribution factors can be accurately
predicted, Modified 2D Moses approximates Matrix method perfor-
mance. This fact is in accordance with Section 2.5.2, since Q values are
kept constant in the simulation. On the other hand, the increase in
difference of such factors also increases the likelihood that weight
prediction is corrupted.

Fig. 3. Mean absolute error of each method as a function of bridge length and
roughness amplitude.

Table 3
Mean absolute error for each method and case.

Amplitude Length (m) Matrix MLE pBWIM Regularization Modified 2D
Moses

0 10 0.26 0.26 0.61 0.26 0.26
4 10 0.88 0.88 0.99 0.88 0.88
16 10 1.65 1.62 2.39 1.65 1.65
0 20 1.02 0.93 0.75 1.02 1.02
4 20 1.17 1.09 0.98 1.17 1.17
16 20 1.28 1.24 1.69 1.28 1.28
0 30 3.31 2.99 3.19 3.31 3.31
4 30 3.35 3.06 3.21 3.36 3.35
16 30 3.32 3.00 3.15 3.32 3.32

Table 4
Max of absolute difference between each method and the Matrix method.

Amplitude Length (m) MLE pBWIM Regularization Modified 2D Moses

0 10 0.12 1.32 0.02 0.00
4 10 0.30 5.44 0.02 0.00
16 10 0.53 18.26 0.03 0.00
0 20 0.52 2.43 0.01 0.00
4 20 0.93 6.30 0.01 0.00
16 20 1.54 15.21 0.01 0.00
0 30 1.22 5.24 0.01 0.00
4 30 1.30 6.15 0.01 0.00
16 30 1.38 5.35 0.01 0.00

Table 5
Load distribution factors for each beam (%).

Case Beam 1 Beam 2 Beam 3

Q1 33.3 33.3 33.3
Q2 20.0 40.0 40.0
Q3 25.0 50.0 25.0
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4. Field-testing

In order to compare the different methods presented in Section 3.2
on a real-world setting, data from a bridge located in the city of Uruaçu,
Brazil, is employed. The main aspects regarding such bridge and the
calibration procedure are described in what follows.

Fig. 4. Comparison between Matrix method and Zhao for bridge span of 10m.

Fig. 5. Comparison between Matrix method and Modified 2D Moses for bridge
span of 20m.

Fig. 6. Comparison between Matrix method and Modified 2D Moses for bridge
span of 30m.

Fig. 7. Influence of error in transverse distribution factor on the difference
between methods.

Fig. 8. Itinguijada bridge.

Fig. 9. Mid-span cross section dimensions.

Fig. 10. Lateral view dimensions.
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4.1. Bridge and vehicle description

The Itinguijada bridge, shown in Fig. 8, is comprised by two girders
and five cross beams, with a total length of 29.0m. Figs. 9 and 10 show
the main dimensions of the cross section and the lateral view, respec-
tively. One FAD sensor is installed in the mid-span of the bridge, while
the other is spaced 4 meters longitudinally from the first. Two strain
sensors were attached to each girder, at the mid-span.

Two trucks, with three and five axles, are used for calibrating and
evaluating the system performance. Several runs with each of these
vehicles are conducted, totaling at least 10 runs per truck and lane. The
axle spacing and weight distribution for the calibration vehicles are
shown in Table 6.

4.2. Numerical results

In this section, following what is done in practice, as reported in
Lydon [5] and Yu et al. [1], one influence line is constructed for each
lane. The analyses are based on prediction for three distinct quantities,
defined by Jacob [38]: GVW, single axle and group of axles. The mean
absolute error of such quantities for each method on the whole data set
is presented in Table 7.

All methods showed higher errors for single axle prediction when
compared to the group counterparts, which is in accordance with most
studies in this subject, as in Zhao et al. [9] and O’Brien et al. [11]. The
prediction for GVW and group of axles weight showed reasonable

results, with mean absolute errors always smaller than 7%. However,
single axle prediction did not present the same level of performance,
achieving values as high as 36% for pBWIM method.

MLE reached the best results, independently of the quantity being
measured. However, for almost all methods and quantities measured,
the mean absolute errors reported remained at a quite similar level.
Since all methods disregarded dynamic effects, it is expected that the
higher such effects are, the lower the suitability of all approaches are.
As in this bridge the dynamic behavior is not remarkable, the results for
MLE suggests that this method should perform better in cases where the
model seems to be more suitable.

The similarity of measured errors previously discussed justify a
more detailed analysis on it. Table 8 focus on this statement, based on
the absolute difference in GVW, for each event, between all methods
and the Matrix method, taken as reference here. The parameters pre-
sented are the mean, standard deviation and maximum value of the
absolute difference.

From the five analyzed methods, two can be seen as almost identical
to the Matrix method. The first of them is the Regularization method,
whose maximum difference in GVW for all events does not surpass 1.29
%. This lack of difference, as already discussed in Section 3, is caused by
small regularization parameters obtained from the application of L-
curve method. The second method quite similar to the Matrix method is
Modified 2D Moses, in which maximum difference did not reached 1%.
As already discussed, all girders have the same mechanical properties,
which remain constant along the span. Thus, it is possible that the
contribution factor Qg resulting for each girder and event be approxi-
mately a constant value. As presented in Section 2.5.2, in such a case it
is already expected for results of Matrix method and modified 2D Moses
to be similar.

The remaining two methods, MLE and pBWIM, showed more dis-
tinct values, rendering them as alternative approaches for the Matrix
method. Observing these three methods by a probabilistic point of view,
these differences are remarked. The Matrix method is based on least
squares, which assumes that errors are uncorrelated, normally dis-
tributed and with the same variance, using all the measurements of one
event as the realization of only one normal random variable. The MLE
method also applies the least squares approach, however now con-
sidering a multivariate normal distribution whose variables are mo-
ments measured in each ordinate, independently of the other ordinates.
The pBWIM relaxes the assumption of equal variance, allowing for each
ordinate to have a standard deviation estimated by the value of each
influence line previously calculated from calibration events. Therefore,
in some cases, namely when the data from both distinct events and the
whole bridge have the same normal distribution, all methods should

Table 6
Axle weights and spacing for Itinguijada bridge.

Axle weight (kN) Axle spacing (m)

Axle 1 Axle 2 Axle 3 Axle 4 Axle 5 d12 d23 d34 d45
3 axle vehicle 67.7 146.2 125.5 – – 4.78 1.28 – –
5 axle vehicle 73.6 138.3 130.4 108.9 90.3 3.57 5.59 1.26 1.23

Table 7
Mean absolute error.

Matrix
method

MLE pBWIM Regularization Modified 2D
Moses

GVW (%) 4.47 4.08 4.91 4.40 4.41
Single axle (%) 17.79 15.26 36.46 15.35 16.91
Group of axles

(%)
6.62 5.38 5.78 6.22 6.52

Table 8
Difference between each approach and the Matrix method.

MLE pBWIM Regularization Modified 2D Moses

Mean (%) 1.2101 4.2554 0.3860 0.1526
Std (%) 0.6351 3.6975 0.2901 0.1153

Maximum (%) 2.5673 16.6928 1.2900 0.6864

Table 9
Vehicle types employed in the study.

Vehicle Class Axles

2C 2
3C 3

4CD, 2S2 4
3I2, 2S3, 3S2 5

2R4, 3S3, 3D3, 3N3 6
3D4, 3N4 7

3D5 8
3M6, 3Q6 9
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present virtually the same results. However, considering the real-world
examples presented, this is not the case in practical applications.

One could say that pBWIM should achieve the best result, since this
method has the least restrictive formulation. However, one must realize
that this can only occur if the assumptions are met, and this is not the
case for the pBWIM formulation, as demonstrated in Section 2.3.2. It
could be observed that this method assumes uncorrelated error mo-
ments. Yet, the formulation based on uncertainties in influence line will
necessarily result in banded correlation of the resulting moments
random variable, violating this assumption.

5. Further remarks

Among five tested methods, three of them showed almost identical
results for all events evaluated, namely, the Matrix method,
Regularization and Modified 2D Moses. Although the pBWIM method
could be argued as an alternative approach for weight prediction, both
theoretical and practical results are not promising. Comparing MLE and
Matrix method, the results for the simulated runs were very similar,
however with MLE being slightly better. Furthermore, when field-
testing was conducted, MLE approach showed even better performance.
These points, together with its more suitable statistical background,
indicates that MLE is the most promising method evaluated in the
present study. Some suggestions for improving these methods are in-
cluded in the following.

The formulation employed for Regularization leads to a solution
that recovers only weights associated with each axle. However, it is
possible that the regularization approach can have improved results
when trying to recover the whole impulse vector, as more information
about its characteristics may be incorporated and enforced by the
regularization procedure. Furthermore, it may be worth to employ
different regularization procedures instead of Tikhonov, such as Lasso,
which uses the L1 norm instead of the usual L2 [39]. As a further step,
the non-negativity of the vector can be enforced as in the work of
Hummelsheim [40].

Discussing specifically the pBWIM method, it could be concluded
that an assumption made in the approach formulation is conceptually
violated. Thus, it is useful to change such a methodology to account for
a covariance matrix that is not diagonal. Furthermore, the procedure
suggested to find the most likely weights in the original paper is quite-
time consuming. Thus, applying an optimization procedure is necessary
for achieving a reasonable computational cost.

The procedures applied are clearly divided in two steps: building an
influence line and weighing the vehicles. From this perspective, one
could easily apply distinct methods for each step. For instance, MLE
could address the former and regularization the latter. Since it was not
the focus of this work, coupling methods was not evaluated. However, it
has potential to improve the accuracy of predicted axle weights.

Overall, it becomes clear that the main point that should be ad-
dressed is the incorporation of additional knowledge to the model. One
aspect is related to dynamic effects. The results could be improved by a
more suitable consideration on the dynamic behavior of the vehicle-
bridge system model. A second aspect is related to the form of the so-
lution. The knowledge that a vehicle is modeled by point loads on each
axle imposes constraints on the form of the impulse vector and the sign
of the resulting weights. Nevertheless, relaxing assumptions that over-
constrain the model, such as the correctness of axle spacing

measurement, may improve flexibility and robustness to the methods.
For all evaluated methods, the weighing procedure disregarded

some prior information that could lead to more reliable estimates. As
examples, one could cite the non-negativity of weights and the trend for
axle weights having values at the same order of magnitude. As dis-
cussed previously, a Bayesian approach could be employed in such a
case, using these prior information to create improved estimators for
axle weights.

When observing methods by the statistical point of view, the as-
sumptions implicitly made in the development of such formulations
arose in a more clear fashion. Thus, the possibilities of relaxing some of
those assumptions could be seen as a good initial point for the devel-
opment of new methods. Furthermore, by knowing in advance which
statistical assumption was made, it becomes possible to easily predict
for which real cases the new methods could perform better. As an ex-
ample, allowing errors to be correlated should perform better in pro-
blems where the model fits poorly, since missing information on for-
mulation could be seen as correlated errors. Thus, enabling the model
to allow correlated error is an alternative to address the dynamic ef-
fects.

The comparison criterion of the evaluated methods was done
without a clear performance threshold. Thus, although it is possible to
verify which method is best in the tested cases, nothing can be said
about robustness or suitability of overall results. Therefore, it motivates
the development of a methodology for extracting more useful in-
formation from such results, mainly regarding robustness in practical
applications.

6. Concluding remarks

This work presented a comparative study regarding some methods
applied in B-WIM systems to derive the bridge influence line and pre-
dict vehicle weights. In order to fairly compare the analyzed methods,
only those which do not explicitly address the dynamic behavior of the
vehicle-bridge system were considered. Furthermore, the methods were
interpreted from a statistical point of view, where their assumptions
were highlighted, remarking their theoretical differences.

In addition to the theoretical comparisons, the methods were im-
plemented and numerically compared, addressing the lack of compar-
isons found in literature. In order to assess the similarity or the ad-
vantage of a method compared to the others, synthetically generated
and real data were considered. Furthermore, the influence of some
main factors that affect B-WIM systems were evaluated in simulated
analyses, such as road profile and bridge length.

The analysis using simulated data showed that the increase in
bridge length had more impact in corrupting the overall results than the
roughness amplitude. The influence of road profile increased when
decreasing the bridge span. When analyzing the performance of the
methods, results indicated that pBWIM and Modified 2D Moses were
surpassed by the other approaches. Indeed, pBWIM usually provided
worse weight estimation performance, together with a considerably
higher computational cost. Modified 2D Moses was, for all analyzed
cases, equal or worse than Matrix method. The remaining methods,
MLE, Matrix method and Regularization, presented very similar results,
with MLE being slightly better. The results regarding real data followed
the trend already observed in numerical simulation, however with MLE
showing superior performance. Thus, from both theoretical and

Table 10
Mean values of stiffness and damping coefficients for each kind of axle

Axle type Stiffness (N/m) Damping (Ns/m)

Rear 1,000,000 10,000
Front 400,000 10,000

Semi trailer 750,000 10,000
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practical perspectives, the MLE could be argued as the most promising
method evaluated in this study.

Overall, the reformulation and reinterpretation of methods under a
common statistical point of view allowed a better understanding of the
underlying assumptions and theoretical hypothesis. This fact enabled a
better comparison among methods and generated an opportunity for
further improvements. For example, developing novel methods by re-
laxing the model statistical assumptions or applying a Bayesian

approach to better account for prior information.
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Appendix A. Sprung-mass simulation

In the present study, the simulations are based on the works of Biggs [41], Yang et al. [42] and Yang and Lin [43]. The resulting dataset is
available online [44]. The dynamic behavior of the bridge is modeled supposing a simply supported Euler Bernoulli beam model, under a set of
moving sprung-masses. In this approach, each sprung-mass system represents one vehicle axle. Modal decomposition is performed for the equation of
motion of the bridge, resulting in Eq. (56):∑+ + = =q ξ ω q ω q
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¨ 2 ̇
2
¯

sin ,i i i i i i
j

N
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1 (56)

where N is the number of axles, q ω,i i and ξi are the modal coordinates, natural frequency and damping of the i mode, respectively. Furthermore,
dotted variables represent the derivative with respect to time, Pj is the load of the j axle, V the speed of the vehicle, L is the length of the bridge and m̄
is the mass per unit length of the bridge.

The equations of motion for each sprung-mass system is given by Eq. (57):+ + = + + + ′= =M z C z K z K u y C u Vy¨ ̇ ( )| ( ̇ ) | ,vj j vj j vj j vj x Vt vj x Vt (57)

where M C,vj vj and Kvj are the mass, damping and stiffness of axle j. Furthermore, u represents the bridge vertical displacement, zj is the vertical
position of the j axle, y is the pavement elevation ordinate and a prime denotes the derivative with respect to x.

Both bridge displacement and its first derivative could be computed directly with the modal coordinates and mode shapes of the simply supported
beams:∑= ⎛⎝ ⎞⎠=u jπx
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where m is the number of modes applied, which is equal to 5 in all simulations.
The simulation of pavement roughness applied here is a common approach in studies in the same subject [45,46,16]. The ordinates of the

pavement irregularities are modeled as a random process, with a specific power spectral density function (PSD):

⎜ ⎟= ⎛⎝ ⎞⎠−
Φ(Ω) Φ(Ω ) Ω

Ω
,0

0

2

(60)

where Φ(Ω )0 is the amplitude coefficient, analyzed in previous sections, measured in ( −10 m /cycle6 3 ) and Ω0 is a reference spatial frequency. Thus, the
road profile is generated by sampling from this PSD, using the method of superposition of harmonics [47]:∑= −=y x ω π x ϕ( ) 2ΔΩΦ( ) cos(2 Ω )

i

n

i i i
1

Ω

(61)

where y x( ) is the generated road vertical profile, ϕi is a random uniform phase angle between 0 and π2 , ΔΩ is a constant increment, nΩ is the total
number of frequency increments in the interval and Ωi is a frequency uniformly distributed in the range of Ωmin and Ωmax . The parameters adopted
are =Ω 0.010 cycle/m, =Ω 0.001min cycle/m, =Ω 4max cycle/m and =ΔΩ 0.001 cycle/m.

It is worth to mention that for each run a distinct road profile is generated, since in the practical scenario lateral deviations occur. Moreover, a
moving average with total size of 30 cm is employed to approximate the real contact between tire and pavement [46].

The interaction between bridge and vehicle clearly appears in Eq. (57), by means of the displacement term related to the beam at the current axle
position. Moreover, such interaction also occurs in Eq. (56), due to the Pj term. This relation is remarked in Eq. (62):= − ⎛⎝ − − ⎛⎝ − − ⎞⎠⎞⎠P p δ x Vt H t t H t t L

V
( ) ( ) ,j j j j
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with δ () and H () representing the Dirac delta and Heaviside functions, respectively. Moreover, g is the acceleration of gravity and tj is the time that
the j axle arrives the bridge.

The equations of motion are solved independently, by a decoupled approach. Both bridge and vehicle equations are solved numerically by
applying the Newmark-β method, with 1400 time steps. The time window begins when the first vehicle axle enters the bridge and ends when the last
axle leaves it. The problem is solved iteratively, since the interaction force in the bridge-vehicle system changes with the displacement of both beam
and sprung mass. An initial guess of interaction force is given to the beam equations, where the beam displacement is calculated. Such a dis-
placement is then enforced to the vehicle model and a new interaction force is calculated. This procedure continues until the change in the
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interaction force reaches a small tolerance ( −10 5). Usually such procedure converges rapidly, within 5 iterations. The midspan strains (s), which are
the main output of simulation, are also updated with this interaction. Adopting, without loss of generality, a unit vertical distance from the neutral
axis, and utilizing the fact that strains are related with the second derivative of displacement with respect to x, the strains can be written as:∑= − ⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠=s iπ

L
q iπsin
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i

m

i
1

2
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For the case of multiple beams, a transverse distribution factor (Q) is provided and applied to divide the axle loads for each beam. Thus, each
beam is simulated independently.

In order to simulate the inherent imperfections of the measured signal due to all possible aspects in the measurement field, noise is applied to the
simulated response. The noise applied consists of a white Gaussian random noise, with a constant signal to noise ratio of 20.

Appendix B. Vehicle types

The vehicles employed are based on the brazilian’s traffic and infrastructure department report [48]. As some classes have only a lower bound for
axle spacing, the upper bound for such cases is defined as 5 meters, since this is necessary for generating vehicles in a uniform distribution. Table 9
presents all types of vehicle employed as well as their number of axles. In order to allow a more concise presentation, axle spacing and weight of each
employed truck are omitted. For assessing such values, the reader is referred to DNIT IPR 723 [48].

On the other hand, damping and stiffness coefficients still need to be defined. In this study, each vehicle have a specific coefficient related to each
axle, which is a random variable uniformly distributed around a mean value, presented in Table 10. This distribution have bounds of 0.5 and 1.5
times this mean value, which is adopted based on Fancher [49] and Nosseir et al. [50]. It is worth to cite that such mean values differ accordingly
with the type of axle, namely: rear, front or semi trailer axle.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.engstruct.2019.109463.
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