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ABSTRACT

This study seeks to resolve the complex problem of efficiently designing project defense
committees and scheduling their events. In more details, it investigates the constraints
and preferences of all stakeholders - students, advisors, supervisors, examiners, and
chairs - and the influence these factors have on committee design and event scheduling.
The currently manual and resource intensive task of forming committees and planning
project defenses poses significant logistical issues. The method often leads to sub-
optimal results, including scheduling conflicts, overload of responsibilities on committee
members, and compromised quality of evaluations, among other issues. These inef-
ficiencies highlight the necessity for an automated solution. To this end, the project
adopts mathematical programming, a technique capable of providing optimal solutions
to these kinds of intricate problems. The methodology used involved developing a user-
friendly data collection application utilizing Google Workspace apps, including Google
Forms, Google Sheets, and Google Apps Script. This system handles user data, pre-
processes it, and transfers it to a computational system, which was implemented using
the Julia programming language with the JuMP package for mathematical optimization.
The model was applied as a case study to the first semester of 2023, managing to
successfully schedule 17 out of 18 project defense events. The study highlights that the
single unsuccessful case was due to the infeasibility of overlapping schedules among
the involved individuals. Therefore the system proved to be a tremendous enhance-
ment to the previous manual process, reducing the workload for event organizers, and
demonstrating its suitability for future semesters. This comprehensive solution to the
project defense scheduling problem not only offers immediate relief to event organizers
but also presents a scalable model that can be adapted to suit future needs.

Keywords: Mathematical Optimization. Modeling. Timetable Problems.



RESUMO

Este estudo busca resolver o complexo problema de projetar comitês de defesa de
projetos e programar seus eventos de forma eficiente. Especificamente, investiga as
restrições e preferências de todas as partes interessadas - estudantes, orientadores,
supervisores, examinadores e presidentes - e a influência desses fatores no design
do comitê e na programação de eventos. A tarefa atualmente manual e intensiva em
recursos de formação de comitês e planejamento de defesas de projetos apresenta
significativos problemas logísticos. O método frequentemente leva a resultados sub-
ótimos, incluindo conflitos de agenda, sobrecarga de responsabilidades nos membros
do comitê e comprometimento da qualidade das avaliações, entre outros problemas.
Essas ineficiências destacam a necessidade de uma solução automatizada. Para isso,
o projeto adota a programação matemática, uma técnica capaz de fornecer soluções
ótimas para esses tipos de problemas complexos. A metodologia utilizada envolveu o
desenvolvimento de um aplicativo de coleta de dados amigável ao usuário, utilizando
aplicativos do Google Workspace, incluindo Google Forms, Google Sheets e Google
Apps Script. Este sistema lida com dados do usuário, pré-processa-os e os transfere
para um sistema computacional, que foi implementado usando a linguagem de progra-
mação Julia com o pacote JuMP para otimização matemática. O modelo foi aplicado
como estudo de caso ao primeiro semestre de 2023, conseguindo programar com
sucesso 17 dos 18 eventos de defesa de projeto. O estudo destaca que o único caso
de insucesso foi devido à inviabilidade de sobreposição de agendas entre os indivíduos
envolvidos. Portanto, o sistema provou ser uma melhoria tremenda em relação ao pro-
cesso manual anterior, reduzindo a carga de trabalho dos organizadores de eventos e
demonstrando sua adequação para semestres futuros. Esta solução abrangente para
o problema de agendamento de defesa de projeto não apenas oferece alívio imediato
aos organizadores de eventos, mas também apresenta um modelo escalável que pode
ser adaptado para atender às necessidades futuras.

Palavras-chave: Otimização Matemática. Modelagem. Problemas de Timetable.
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1 INTRODUCTION

In the modern world, many tasks are primed for automation or optimization.

However, these tasks are often still conducted manually or semi-manually, incurring

considerable stress and leading to substandard outcomes. One such task is the or-

ganization and scheduling of academic project defenses. This work aims to present

an automated, optimized solution for this problem, considering the constraints and

preferences of candidates, examiners, chairpersons or simply chairs, supervisors, and

advisors.

Project defenses are formal events where students present their project to a

panel of experts, serving as a platform to demonstrate their understanding of their

research work. These events allow students to showcase their expertise in a specific

subject formally and knowledgeably. They are often a significant component of an

academic degree. The appropriate composition of a project defense committee can

greatly enhance the overall event, benefiting all participants.

Every academic institution has specific requirements for scheduling and consti-

tuting project defense committees. Typically, these committees comprise at least one

examiner, a chairperson, and an advisor. In this study’s context, the project defense

participants include the student, their advisor and supervisor, an examiner, and a chair-

person.

The motivation behind addressing this problem lies in the complex and resource

demanding nature of composing and scheduling project defense committees. Given

the unique roles, constraints, availability, and capabilities of the participants, manual

management becomes increasingly challenging as the number of events grows. This

challenge substantiates the need for a computational system to automatically and

optimally assign committee members and schedule events.

Problems of this nature fall into a class known as timetable problems (EVEN;

ITAI; SHAMIR, 1975). These problems typically involve resources, time slots, events,

constraints, and objectives. In our case, the resources are the participants, the time

slots refer to the available time windows for scheduling defenses, the events are the

project defense sessions, the constraints pertain to the composition of the committee,

and the objective is to maximize the number of successfully composed and scheduled

project defense events.

Timetable problems appear in various domains. For instance, (BABAEI; KARIM-

POUR; HADIDI, 2015) analyze different approaches for the university course timetabling

problem. This problem is a classical application of timetabling, where the goal is to allo-

cate teachers, students, and courses, given limited resources such as classrooms and

equipment. Other traditional applications include public transportation timetable gener-

ation (PARBO; NIELSEN; PRATO, 2016) and employee timetable scheduling (GUYON
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et al., 2010).

Various techniques exist to address problems of this sort, including Mathematical

Programming (GUYON et al., 2010), Genetic Algorithms (BURKE; ELLIMAN; WEARE,

1994), Simulated Annealing (ABRAMSON; KRISHNAMOORTHY; DANG, et al., 1999),

and other Heuristic Algorithms (CAPRARA et al., 2006). In this study, we adopt a math-

ematical programming formulation. This formulation ensures the synthesis of an optimal

solution and an interpretable model that directly aligns with the original problem’s con-

straints, variables, and objectives. Moreover, we have access to efficient, state-of-the-art

algorithms for solving problems of this nature.

1.1 OBJECTIVES

The main objective of this work is to address the problem of composing project

defense committees and scheduling their activities. In more detail, we propose a so-

lution capable of managing the entire process, starting with the initial data collection

from the users to the resolution of the optimization problem that results in the optimal

timetable. This optimal timetable should align with the organizer’s objectives for suc-

cessful project defense events. This includes finding examiners interested in specific

projects and accommodating particular requests from examiners or chairs regarding

the events.

Furthermore, a secondary yet important objective is that the deployed solution

should be easily maintainable and customizable, with the intent of facilitating its use in

subsequent semesters.

1.2 CONTRIBUTIONS

The main contribution of this work lies in the automation of the process for com-

posing and scheduling project defense events. This can be divided into three main

components: the derivation of a mathematical programming model that faithfully repre-

sents the process; the development of a system adept at collecting, processing, and

storing the necessary user data; and a computational system capable of implementing

and solving the mathematical programming problem.

1.3 REPORT STRUCTURE

The document is structured into seven chapters.

Chapter 2 defines the problem of concern and its constraints in detail, illustrating

them with a small-scale example.

Chapter 3 reviews the fundamental concepts necessary to comprehend this work.

This includes an overview of mathematical programming, its classes, and algorithms,
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as well as the formalization of a timetable problem, its components, applications, and

solution methods.

Chapter 4 focuses on modeling our problem using a mathematical programming

formulation. This process is divided into three main steps: modeling of variables, con-

straints, and the objective. This chapter constitutes the most crucial part of our work.

Chapter 5 elaborates on the implementation of our solution, which is divided into

two distinct segments. The first segment covers data gathering, pre-processing, storing,

and analysis. The second segment focuses on solving the optimization problem and

drawing conclusions from its results.

Chapter 6 showcases a case study of our work, specifically the project defense

events scheduled for the first academic semester of 2023. We implement our solution

and analyze the results, providing an evaluation of the events for which we could not

derive a solution.

Chapter 7 concludes our work, summarizing the findings and discussing potential

future directions.
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2 PROBLEM FORMULATION

In the educational landscape, particularly at the higher education level, project

defenses serve as a significant element in the evaluation of student’s academic achieve-

ments. They are usually comprised of a committee with the primary role of assessing

the student’s comprehension, critical thinking, and presentation skills. The composition

of project defense committees and the scheduling of these defenses, however, often

poses a complex logistical challenge.

The problem lies in creating a fair and efficient system that respects the con-

straints and preferences of all parties involved ± students (candidates), advisors and

supervisors (counselors), evaluators and chairs (committee members). This challenge

includes finding a compatible match between students, advisors, supervisors and com-

mittee members based on their expertise, availability and interest, also ensuring that

the committee members have a manageable workload.

The current methods employed to address this problem are often manual, time-

consuming, and prone to errors and inefficiencies. They may also result in sub-optimal

outcomes, such as committee members being overloaded with project defenses or

being assigned to evaluate projects outside their area of expertise. Similarly, scheduling

conflicts can arise due to the disparate availability of the candidates, examiners, and

advisers. This can lead to delays, rescheduling, and added stress for all parties involved.

This problem not only affects the logistic efficiency of academic institutions but

also potentially impacts the quality of evaluations provided during project defenses,

thereby affecting the overall academic output of the department. Hence, there is a

critical need for a more efficient and effective solution to the design and scheduling of

project defense committees. This report aims to explore this problem and develop a

solution that will better accommodate the needs and constraints of all parties involved.

The problem instance that we will explore in this work concerns the composition

of project defense committees in the Department of Automation and Systems Engineer-

ing at the Federal University of Santa Catarina (UFSC). The scenario we consider is

comprised of a student, an advisor, a supervisor (where the advisor can also be the

supervisor), an examiner, and a committee chair for each project defense event. Given

that the student, advisor, and supervisor have already been determined, the problem left

at hand is to allocate an evaluator, a committee chair and a suitable schedule for each

project defense event, while respecting the constraints that govern the composition of

the committee.

In sequence, we explore the constraints involving the process of design and

composition of the defense committees.

• Each available time slot can only be allocated to one event, and similarly, each

event can only be allocated to one time slot. As a result, it is ensured that at most
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one event is scheduled per time slot.

• To allocate an event to a time slot, it is necessary to ensure that all participants

are available during that time slot. If any participant is not available, the event

cannot be scheduled for that time slot.

• The examiner for an event must hold one of the following positions: UFSC pro-

fessor, visiting professor, postdoctoral fellow, doctoral student or external profes-

sional.

• The committee chair of an event must be a UFSC professor from the final-project

organizing committee.

• The advisor, examiner, and chair of each event must be different individuals.

• One person can evaluate more than one event, but each event can only be evalu-

ated by one person.

• One person can chair over more than one event, but each event can only be

chaired by one person.

2.1 AN EXAMPLE

In this section, we present an illustrative example that showcases the design and

composition of defense committees. The purpose of this example is to demonstrate

how the manual timetable process works in practice and highlight the problems that

can arise during its implementation.

In this example, our objective is to schedule and organize four project defenses

events. Each committee consists of one undergraduate student, one advisor, one super-

visor, one examiner, and one chairperson. It is important to note that, in this scenario,

we consider that only p3 or p4 can be assigned as the chair of a committee. The

provided data for this example is presented on Tables 1, 2 and 3.

To solve the problem manually, we can generate supporting tables that illustrate

the availability of personnel (see Table 4) and the potential schedules an event can

take, this is the common availability of the student, advisor and supervisor (see Table

5). Utilizing these tables, we can allocate one committee at a time by examining the

possible schedules for the event and then considering the availability of the individuals

interested in the event. The goal is to match an examiner and chairperson who are

available during the same schedule, while respecting the constraints of composition of

the committee. One possible solution for the problem is shown in Table 6.

It is notable that throughout this manual process, several decisions need to

be made. These decisions involve determining which available personnel should be

allocated to each event and selecting the schedule for each event. The basis for these
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Table 1 ± People of the illustrative example.

Id Occupation Availability
p1 UFSC Professor [s1, s2, s5, s6, s7, s8]
p2 UFSC Professor [s3, s4, s5, s6, s7, s8]
p3 UFSC Professor [s1, s2, s3, s4, s5, s7, s8]
p4 UFSC Professor [s5, s6, s7, s8]
p5 UFSC Professor [s1, s2, s3, s4, s5]
p6 Visiting Professor [s7, s8]
p7 PhD student [s1, s2, s5, s6]
p8 PhD student [s2, s3, s4, s5, s6]
p9 Postdoctoral fellow [s4, s5]
p10 External professional [s1, s5]
p11 External professional [s1, s2, s5, s6]
p12 External professional [s1, s2, s5, s6]
p13 External professional [s5, s6, s7, s8]
p14 Undergraduate student [s1, s2, s3, s4, s5, s6, s7, s8]
p15 Undergraduate student [s1, s2, s5, s6]
p16 Undergraduate student [s3, s4, s5, s6]
p17 Undergraduate student [s1, s2, s3, s4, s5, s6, s7, s8]

Source: Author.

decisions is a set of criteria that align with the objective of maximizing the successful

scheduling of events. Manually executing these decisions is a time intensive iterative

process, which offers no assurance of arriving at an optimal solution. To illustrate this

with our concise example, should we assign the schedule s5 to any event other than

e3, this particular event will not be able to be successfully allocated. This situation

arises because the only examiner showing interest is, coincidentally, the sole available

president.

In this simple example, arriving at a satisfactory solution might seem trivial. How-

ever, in a practical situation involving a substantial number of events, this is not the case.

It is worth noting that in a real world scenario, a good decision may require considering

numerous additional criteria, such as a fair distribution of evaluation responsibilities,

among others. This provides the motivation for developing an automated solution to the

problem, which is also capable of leading to an optimal solution based on the given

criteria.



Chapter 2. Problem Formulation 19

Table 2 ± Schedule for the illustrative example.

Id Date Hour
s1 15/05/2023 09:00
s2 15/05/2023 10:00
s3 15/05/2023 11:00
s4 15/05/2023 12:00
s5 16/05/2023 09:00
s6 16/05/2023 10:00
s7 16/05/2023 11:00
s8 16/05/2023 12:00

Source: Author.

Table 3 ± Events of the illustrative example.

Id Author Supervisor Advisor Interested
e1 p14 p10 p1 [p6, p7, p8]
e2 p15 p11 p1 [p6, p7]
e3 p16 p12 p2 [p4, p5, p9]
e4 p17 p13 p3 [p2, p5, p9]

Source: Author.

Table 4 ± People availability for the illustrative example.

Id Occupation s1 s2 s3 s4 s5 s6 s7 s8
p1 UFSC Professor
p2 UFSC Professor
p3 UFSC Professor
p4 UFSC Professor
p5 UFSC Professor
p6 Visiting Professor
p7 PhD student
p8 PhD student
p9 Postdoctoral fellow
p10 External professional
p11 External professional
p12 External professional
p13 External professional
p14 Undergraduate student
p15 Undergraduate student
p16 Undergraduate student
p17 Undergraduate student

Source: Author.
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Table 5 ± Schedule for the illustrative example.

Id Interested s1 s2 s3 s4 s5 s6 s7 s8
e1 [p6, p7, p8]
e2 [p6, p7]
e3 [p4, p5, p9]
e4 [p2, p5, p9]

Source: Author.

Table 6 ± Event allocations in the illustrative example.

Id Author Supervisor Advisor Evaluator President Schedule
e1 p14 p10 p1 p7 p3 s1
e2 p15 p11 p1 p7 p3 s2
e3 p16 p12 p2 p4 p3 s5
e4 p17 p13 p3 p2 p3 s7

Source: Author.
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3 CONCEPTUAL REVIEW

3.1 MATHEMATICAL OPTIMIZATION

In this section, we delve into the realm of mathematical optimization, exploring its

diverse classes and focusing on the primary algorithm pertinent to our class of greatest

interest. Our review is fundamentally grounded on the work of (VANDERBEI et al.,

2020).

Mathematical optimization is a field of applied mathematics concerned with cal-

culating the best possible values for decision variables, such that an optimal behavior

is induced and the constraints of the mathematical model are satisfied. This optimal

outcome is achieved by either minimizing a performance criterion, such as cost, or

maximizing one, such as profit. The universal language for expressing optimization

problems in a declarative and consistent form is called mathematical programming.

An essential process in mathematical optimization is modeling the problem in

mathematical programming. The goal of mathematical models is to represent real

systems in a simplified, yet faithful manner, at least for certain situations and pre-

established assumptions. Modeling is certainly not a trivial task to perform, usually

taking several iterations to represent the system in the desired way. Model validation is

performed through numerical analyses, simulations, and testing.

The three main components of a mathematical optimization problem are the de-

cision variables, constraints, and the objective function. Let us introduce these concepts

through a straightforward example: a factory with limited resources wishes to maximize

its profit by producing the most demanded products for a particular day.

Decision variables constitute the elements that we have control over and seek

to determine in the optimization problem. They represent the decisions that can be

made within the given problem. In our example, these variables can be the quantities

of different products to be manufactured.

Constraints are the restrictions and limitations imposed on the decision variables.

They define the feasible region within which a solution must reside. In our scenario, it

could be the availability of resources and the minimum quantity of each product that

needs to be produced.

The objective function is the function that we are trying to optimize (either min-

imize or maximize) subject to the constraints. This function quantifies the goal of the

optimization problem in terms of the decision variables. In this example, it could be to

maximize the overall profit of the factory.

Using the mathematical programming notation, a generic optimization problem
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is described as:

Maximize f (x)

Subject to g(x) ≥ 0

h(x) = 0

x ∈ R
n

where:

• f : Rn → R is the objective function, the function to be minimized or maximized;

• g : Rn → R
g e h : Rn → R

h are the constraints that form the feasible solution

space of the model;

• x ∈ R
n is the decision variable vector, the variables whose values define the

solution of the problem.

Optimization problems can be divided into several classes, each possessing

unique properties and requiring distinct solution methods. By categorizing optimization

problems, we are able to better understand their mathematical structure, thus facilitating

the development of specific algorithms designed to exploit these characteristics. For

the scope of this work, we introduce two important classes of optimization problems:

Linear Programming and Integer Programming.

3.1.1 Linear Programming

The definition of Linear Programming (LP) refers to a category of problems

in which the decision variables are continuous and non-negative. Moreover, both the

objective functions and constraints involved in these problems are linear functions.

Using the mathematical programming notation, a generic linear programming problem

is described as:

Minimize f (x)

Subject to g(x) ≤ b

x ≥ 0

x ∈ R
n

where:

• x = (x1, x2, ..., xn) is a vector of non-negative decision variables;

• f (x) and g(x) are linear;
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Figure 1 ± Example of the feasible space of a 2-dimensional LP problem.
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The LP problem seeks to find the values of the decision variables that mini-

mize/maximize the objective function, while satisfying all the linear constraints. Those

constraints define the feasible region, which in the LP case, is a polytope in the n-

dimensional space of decision variables. The optimal solution to the LP problem is a

point within the feasible region that satisfies all the constraints and minimizes/maximizes

the objective function.

In an LP problem, if a solution exists, the optimal one will always be located

at one of the vertices of the feasible region, denoted by a polytope. Algorithms, such

as the simplex method, are designed to efficiently traverse the vertices of the feasible

region in pursuit of optimality. Figure 1 showcases a polytope representing the feasible

space of a 2-dimensional LP problem.

LP problems can be effectively solved through a range of efficient algorithms,

including the Simplex method and the Interior Point method. LP problems belong to

the polynomial complexity class P. Although the Interior Point method is an algorithm

with a worst-case polynomial complexity, the Simplex method lacks this guarantee.

However, both methods remain widely used in state-of-the-art solvers, like Gurobi. The

Simplex method’s exponential complexity case is rare in most practical applications,

which explains its continued use.
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3.1.2 Integer Programming

Integer programming (IP) is a class of problems where the decision variables

are required to take integer values. In other words, the solution to an IP problem must

satisfy not only the constraints of the problem, but also the requirement that the decision

variables take on integer values.

The general mathematical programming form of an IP problem is as follows:

Minimize f (x)

Subject to g(x) ≤ b

x ≥ 0

x ∈ Z
n

where x ∈ Z
n is a vector of integer decision variables, f (x) is the objective function, g(x)

are the constraints and b is a vector of constant values.

The integrality constraint (x ∈ Z
n) restricts the solution space of the problem,

since only a finite set of possible values are allowed for the decision variables. For

example, if a decision variable represents the number of units of a certain product to

produce, the integrality constraint would require that only integer values (e.g., 1, 2, 3,

...) are allowed, rather than fractional values (e.g., 1.5, ... , 2.25, ...). This can make

optimization problems significantly more difficult to solve, since it restricts the set of

feasible solutions and can result in a combinatorial explosion of possible solutions. For

example, an IP problem with only 12 binary decision variables can have up to 212

possible integer solutions, which can make the search for an optimal solution much

more complex.

To solve IP optimization problems, specialized algorithms such as branch-and-

bound, cutting planes, and branch-and-cut are used. These algorithms iteratively divide

the feasible region of the problem into smaller subregions and solve LP problems over

each subregion until an integer solution is found.

3.1.2.1 Branch-and-bound

Here, we present the branch-and-bound method, an efficient algorithm for solv-

ing IP problems. This algorithm is designed to find the optimal solution of an IP problem,

provided it is executed in full. The primary concept behind this method is to divide the

solution space into smaller subproblems (LP problems) and explore them systematically

to find the optimal solution. The algorithm achieves this by exploring numerous subprob-

lems, establishing both upper and lower bounds for each one and eliminating those that

cannot improve on the current best known solution. By searching and eliminating all

possible solutions, the algorithm is designed to provide an optimal solution if one exists

in the problem. Therefore, if the algorithm is executed to its end and finds a solution, it
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is guaranteed to be optimal. If the algorithm is not executed fully, it can provide a gap

between the obtained solution and the upper bound of the optimal solution.

The core concept behind the branch-and-bound algorithm is to partition the

problem into simpler subproblems, which take the form of LP problems in this context.

The process of transforming an IP problem into an LP problem is known as relaxation,

which involves relaxing the integrality constraints on the decision variables, thereby

allowing them to take continuous values. While the resulting relaxed problem may yield

solutions that are not applicable to the original problem, it can provide both upper and

lower bounds that can lead to a complete solution. It is worth remembering that LP

problems belong to the class P and can be solved using efficient methods such as the

Simplex method or the Interior Point method.

The branch-and-bound algorithm represents the solution space of the problem

using a search tree. The root node of the tree represents the relaxed version of the

original problem, with each subsequent node representing a subproblem of its parent.

The tree grows via the branching process that involves partitioning subproblems using

variable constraints, such as setting a decision variable z to either z ≤ p or z > p.

Normally, the branching process uses a depth-first or best-first search strategy. In order

to avoid unnecessary computation, subproblems with bounds worse than the current

best known solution can be pruned, eliminating the need to explore their respective

subtree. The terminal nodes, also known as leaves, represent complete solutions to

the problem. Depending on the constraints, these solutions can be either feasible or

infeasible. If a feasible solution is found at a leaf node, its objective function value can

be compared to the current best known solution to determine whether an improved

solution has been discovered. Although the ideal stopping criteria for the branch-and-

bound algorithm is to explore or eliminate all possible solutions of the problem, this may

not be possible in complex scenarios. Therefore, in those cases, the stopping criteria is

typically based on the number of iterations, time constraints, or a specific gap between

the obtained solution and the current upper bound.

We provide a simple example of the branch-and-bound algorithm using the

classic 0/1 knapsack problem. This problem can be solved by integer programming,

and its definition is as follows: Given a set of n items, denoted as i ∈ {1, ..., n}, with

corresponding weights wi and values vi , the objective is to determine the maximum

value that can be obtained by selecting a subset of items such that the total weight

does not exceed the capacity W of the knapsack.

The 0/1 knapsack problem can be formulated as an integer programming prob-
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lem, which is defined as follows:

Maximize
n
∑

i=1

vi · xi

Subject to
n
∑

i=1

wi · xi ≤ W

xi ∈ {0, 1} ∀i ∈ {1, ..., n}

where xi is the binary decision variable that represents whether item i is included in the

knapsack or not. Specifically, xi = 1 if item i is included, and xi = 0 otherwise.

Let us consider a specific instance of the 0/1 knapsack problem:

• Knapsack capacity W = 8;

• Number of items n = 4;

± Item 1: w1 = 3, v1 = 12;

± Item 2: w2 = 4, v1 = 16;

± Item 3: w3 = 5, v1 = 45;

± Item 4: w4 = 6, v1 = 55.

We will now solve this instance of the problem step-by-step using the branch-

and-bound algorithm. Table 7 shows all the solutions x of the subproblems and their

corresponding objective value ζ.

Table 7 ± Branch-and-bound subproblem solutions

node (x1, x2, x3, x4) ζ

(a) (0, 0, 0.4, 1) 73
(b) (0.66, 0, 0, 1) 63
(c) (0, 0, 1, 0.5) 72.5
(d) (0, 0.5, 0, 1) 63
(e) (1, 0, 0, 0.83) 57.83
(f) (1, 0, 1, 0) 57
(g) x3 ≥ 1 & x4 ≥ 1 Infeasible
(h) (0, 0, 0, 1) 55
(i) (0, 1, 0, 0.66) 52.66
(j) (1, 1, 0, 0) 28
(k) x3 ≤ 0 & x1 ≥ 1 & x4 ≥ 1 Infeasible

Source: Author.

We first obtain a non-valid solution by solving the relaxed version of the original

problem. This solution is non-valid because the decision variable x3 takes a non-integer

value, which means that we need to start branching. To do this, we branch on the
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Figure 2 ± Second level of the branch-and-bound tree
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variable that is not an integer, choosing the two closest integer values. By solving all

the subproblems at the second level of the tree, we obtain the tree shown in Figure 2.

We then proceed to solve the third level of the tree using the same branching

logic. At node (f), we find a complete solution, which allows us to update our lower

bound up the tree. Since node (g) is infeasible, we can finish the search on the right

branch. Figure 3 illustrates this step of the algorithm.

Figure 3 ± Third level of the branch-and-bound tree
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At the fourth level, we find new complete solutions at nodes (h) and (j), an

infeasible node at (k) and we note that (i) has an upper bound lower than its parent’s

current lower bound. Therefore, we don’t need to branch any further, and we can

guarantee that the global optimum of this problem is x = (1, 0, 1, 0) → 57. The full

branch-and-bound tree is depicted in Figure 4.

3.2 TIMETABLE PROBLEM

The problem of timetable refers to the difficulty of creating an efficient and effec-

tive schedule or timetable that accommodates all the necessary activities and resources

within a certain time frame. The main challenge in creating a timetable is to allocate lim-
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Figure 4 ± Fourth level of the branch-and-bound tree
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ited resources such as time, space, and personnel in a way that maximizes productivity

and efficiency, while respecting the problem constraints.

This problem requires careful planning and coordination to ensure that all the

necessary activities are scheduled at the right time and place, with the appropriate

resources and personnel. Therefore, solving this problem manually can lead to a lot of

work, sometimes resulting in obtaining an ineffective or inefficient solution. Furthermore,

there are often various constraints and factors to consider when creating a timetable,

such as the availability of resources and personnel, the number of students or cus-

tomers to be served, and the desired outcomes or objectives. These constraints can

further complicate the problem and make it difficult to create an optimal timetable.

Following a similar approach as shown in (GROSS; YELLEN; ZHANG, 2013),

we formally define the timetable problem, as being comprised of the following elements:

T denotes a set of time slots; R denotes a set of resources; E denotes a set of events;

C denotes a set of constraints; and O represents the objective of the problem. The

timetable problem is to allocate time slots and resources to events in a manner that

improves the objective, while concurrently satisfying the constraints. We delve in more

details about each of these components.

Time slots T are discrete units of time during which events can be scheduled.

Their durations could range from brief to extended periods, could be constant or variable,

and a time slot could be exclusive or not to a particular event. The number of available

time slots and their individual durations stand as significant parameters of the problem.

Resources R encompass all elements, excluding time slots, that can be allocated

to an event. The nature of these elements vary based on the problem context. For

instance, in a management context, it could refer to personnel with distinct skill sets.
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Resources may be limited in several aspects such as availability, capacity, and efficiency.

Understanding these parameters is crucial to achieve an optimal management of these

resources.

Events E are individual units of work or tasks that need to be scheduled. Each

event typically requires certain resources and must take place within a designated time

slot. These events may possess a time duration that must be accommodated within the

allocated time slot.

Constraints C represent the inherent rules and limitations that arise when as-

signing time slots and resources to events. Some common restrictions encountered in

the timetabling problem include:

• Availability Constraints. Certain resources are accessible only during specific time

slots. For instance, an employee might have a fixed work schedule for the week.

• Capacity Constraints: Resources may possess a limited capacity. For example,

an employee may only handle a predetermined number of tasks each day.

• Precedence Constraints: Some events must be performed before others can be-

gin. For instance, in a manufacturing process, certain parts need to be assembled

prior to others.

• Grouping Constraints: Certain events may need to be bundled together within the

same time slot. For instance, in a manufacturing process, there could be tasks

that need to be executed concurrently.

A timetable problem can be interpreted as an assignment problem, signifying

that under certain circumstances, it can be solved without a specific objective, rendering

any feasible solution as optimal. In contrast, in other scenarios, an objective is essential

to direct the assignment process, such as minimizing costs or maximizing the number

of successfully allocated events.

Given the comprehension of these components, the timetable problem can be

perceived as a multidimensional assignment issue, with tasks extending beyond merely

assigning events to time slots. The challenge also lies in allocating resources and

respecting various constraints. This complexity amplifies, particularly when the number

of events, resources, time slots, and constraints is substantial.

Multiple methodologies, including optimization algorithms, heuristic methods,

and machine learning techniques can be employed to solve this problem. The choice of

method often depends on the specific requirements of the problem and the resources

available for solving it. In this work, we utilize a mathematical programming formulation

to tackle the timetable problem. Mathematical programming is an extremely apt way of

representing such a problem. Its systematic approach allows for human comprehension,
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providing insights into the problem and its solution. Moreover, it is designed to identify

the optimal solution within the boundaries of a given set of constraints.

This problem arises in various contexts, including schools, universities, trans-

portation systems, and businesses. In sequence, we discuss the application in educa-

tion in more details.

3.2.1 Application: Education

In an educational setting, the problem of timetable is particularly challenging

because it involves scheduling a variety of courses and activities that may require

different resources and personnel. We explore an example of the timetable problem

applied to the scheduling and composition of university classes.

In this example, the events are the classes that need to be scheduled. Each

class is an individual event that must be allocated a time slot and resources. Given

enough resources multiple classes can occur simultaneously.

Resources can be anything required to conduct a class, which may encompass

elements such as teachers, classrooms, and equipment.

Time slots are the periods during which the classes can take place. In a university

context, a week could be segmented into Monday to Friday, and a day further divided

into morning, afternoon and evening segments. Here, each time slot can correspond to

a constant 50 minute duration. Breaks can be scheduled between each class and at

each transition of period. In this scenario, a lecture might span more than one time slot

and may extend across multiple days.

Constraints represent the conditions that must be upheld when constructing the

university timetable. These might include: Availability Constraints, where each professor,

faculty member, or student possesses a schedule that restricts their availability; Capac-

ity Constraints, where each classroom has a maximum occupancy limit; Sequencing

Constraints, such as a lab class which must always be after its respective theoretical

class.

The objective refers to the optimization target of the timetable. In this educational

context, the aim could be to maximize the number of students who secure their first

choice of classes, or alternatively, to minimize the total duration of classroom idleness.

The main motivation for solving this problem is to ensure that the educational

institution operates in an effective way. A well made timetable can enhance the over-

all learning and teaching experiences, make better use of resources, and improve

the overall functioning of the school. Constructing a custom timetable based in the

school’s principles can provide opportunities for the institution to experiment with vari-

ous teaching theories and methodologies. For instance, the school could impose unique

specifications in its timetable to stimulate diverse learning experiences. One such spec-

ification could be that every week day begins with a creative class Ð such as music,
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art, or physical education Ð to kickstart the learning process.

However, it is notable that creating a custom timetable is a complex procedure,

particularly as the problem increases in the number of variables and constraints. Conse-

quently, specific algorithms and heuristics are required to effectively solve the problem.

Despite these challenges, the benefits of achieving an effective timetable make it a

problem worth tackling. Consequently, this has prompted numerous authors to conduct

research in this field, aiming to facilitate the modeling and resolution of such complex

problems.

In the study conducted in (DE WERRA, 1985), an overall introduction to the

timetabling problem is provided. The paper explores the diverse categories of timetabling

problems encountered in education, namely school timetabling, course timetabling, and

exam timetabling. Furthermore, it delves into the constraints that emerge within these

problem domains. The article also critically appraises early methodologies employed

for addressing timetabling problems, such as graph coloring and heuristic search al-

gorithms. Also, highlighting more contemporary approaches, including mathematical

programming.
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4 PROBLEM MODELING

In this chapter, we initiate the process of modeling. First, we outline the data

at our disposal, partitioning it into distinct sets to enhance its comprehensibility. Sub-

sequently, we provide a concise overview of the problem in a mathematical fashion.

Finally, we proceed to model the entirety of the problem using mathematical program-

ming notation.

4.1 PROBLEM FORMULATION AS A TIMETABLE PROBLEM

The time slots within our problem maintain a constant duration of one hour, with

each slot capable of being assigned to at most one event. The total count of time

slots depends upon the number of expected events. Typically, there is not a significant

disparity between the number of anticipated events and the number of allocated time

slots. This fact, however, complicates the process of scheduling these events due to

the limited flexibility.

The resources of the event are the participants, all of whom have limitations in

terms of their availability. Notably, the examiner is further constrained by their particular

interest in evaluation. Certain resources, such as the undergraduate student, examiner,

and committee chair, are essential for the event. Others, however, possess a greater

degree of flexibility. For instance, the advisor can also assume the role of the supervisor,

and neither the advisor nor the supervisor are mandated to attend the event.

The events of our problem are the project defense presentations, each of which

must occur within a single time slot. As for the necessary resources, each event requires

the presence of the respective undergraduate student, an examiner, and a chair. The

advisor and supervisor also have the option to participate in the event, should they so

desire.

The constraints of the event are the particular conditions that must be followed in

the composition and scheduling of the project defense presentations. These are identi-

cal to those previously outlined in the problem definition chapter. For the convenience

of the reader, we shall reiterate them:

• Each available time slot can only be allocated to one event, and similarly, each

event can only be allocated to one time slot. As a result, it is ensured that at most

one event is scheduled per time slot.

• To allocate an event to a time slot, it is necessary to ensure that all participants

are available during that time slot. If any participant is not available, the event

cannot be scheduled for that time slot.

• The examiner for an event must hold one of the following positions: UFSC profes-

sor, visiting professor, postdoctoral fellow, or doctoral student.
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• The chairperson of an event must be a UFSC professor from the conclusion

projects organizing committee.

• The advisor, examiner, and chairperson of each event must be different individu-

als.

• One person can evaluate more than one event, but each event can only be evalu-

ated by one person.

• One person can preside more than one event, but each event can only be presided

by one person.

The main objective of our timetable problem is to maximize the occurrence of

events, adhering to the designated resources, constraints, and time slots. The residual

events represent those which could not be accommodated within the optimal timetable

and, consequently, require individual intervention for scheduling.

4.2 SETS

The problem at hand is marked by a high degree of complexity, considering the

several factors that can influence the outcomes of events, depending on the choices

made by the participants. In order to gain knowledge on the problem with more depth,

we classify the gathered data into distinct sets, facilitating our understanding of the

relationships and patterns within the data. The selection and definition of these sets

can substantially aid the subsequent modeling process.

There are numerous methodologies to partition data into meaningful categories.

We opted to segment the data utilizing some of the key components of a timetable

problem: time slots, resources, and events.

The time slots in our problem represent the scheduled allotments for project

defense presentations during the given semester. This set is referred to as the available

schedule set, represented by H. Each instance within the set corresponds to an avail-

able time slot for a project defense presentation. Each time slot contains two attributes:

one for the date and the other indicating the time.

H (available schedule): Each available date to schedule for the defense h ∈ H has

the following attributes:

• date(h);

• time(h).

The resources of the problem consist of the participants. This set is named as

the people set, denoted by P, where each instance within the set corresponds to a

unique individual. Each person possesses inherent data such as name, occupation,
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and email, in addition to variables that correlate with the other key components such as

availability, possibility and interest in evaluation.

P (people set): Each person p ∈ P has the following attributes:

• name(p);

• email(p);

• occupation(p) ∈ { UFSC Professor, Visiting Professor, Postdoc, Doctoral

Student, Professional, Undergraduate Student };

• availability(p) ⊂ H;

• possibility(p) ⊂ E ;

• interest(p) ⊂ E .

The events in our problem relate to the project defense presentations. This

collection is identified as the event set, symbolized by E . Each instance within the set

corresponds to a distinct project defense event. Every event possesses inherent data

such as the title, undergraduate student, advisor, and supervisor involved in the event.

Additionally, there is data that needs to be determined through the resolution of the

timetable problem, such as the chairperson, examiner, and schedule of the event.

E (event set): Each thesis defense event e ∈ E has the following attributes:

• title(e);

• undergraduate(e) ∈ P;

• advisor(e) ∈ P;

• supervisor(e) ∈ P;

• president(e) ∈ P;

• evaluator(e) ∈ P;

• schedule(e) ∈ H.

Lastly, we define critical subsets to facilitate the modeling process. The first

is a subset of the schedule set that includes the common availability between the

undergraduate student, advisor, and supervisor. We denote this subset by He, where e

refers to the respective event.

He = availability(undergraduate(e))∩availability(advisor(e))∩availability(supervisor(e)).

(1)

We also denote subsets of the people set, referring to the subsets of possible ex-

aminers and possible chairs. The subset of possible examiners CEe contains individuals
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of one of the following occupations: UFSC Professor, Visiting Professor, Postdoc, Doc-

toral Student, and External Professional, provided they are not the advisor or supervisor

of the same event e.

CEe =∀p ∈ P : occupation(p) ∈ {UFSC Professor, Visiting Professor, Postdoc, (2)

Doctoral Student, and External Professional}; p /∈ {advisor(e), supervisor(e)}.

The subset of possible chairs CPe comprises individuals with the occupation of

UFSC Professor, provided they do not occupy the position of advisor or supervisor at

the event e.

CPe = ∀p ∈ P : occupation(p) ∈ {UFSC Professor}; p /∈ {advisor(e), supervisor(e)}.

(3)

In practice this subset is comprised only of the organizers of project defense events.

4.3 MATHEMATICAL PROGRAMMING FORMULATION

Having established the foundational components, we are now prepared to model

the problem using mathematical programming notation. This approach offers numer-

ous advantages. Firstly, it provides a formal representation of the problem, laying the

groundwork for a systematic understanding of the issue at hand. Secondly, it enables

the formulation of the optimization problem by defining variables, constraints, and an ob-

jective function. Finally, it facilitates the application of specialized algorithms associated

with each class of mathematical programming problems. Such algorithms are capable

of generating optimal or near-optimal solutions, thereby enhancing the efficiency of

problem solving.

The construction of a mathematical programming model typically involves three

main steps: defining the variables, specifying the constraints, and outlining the objective.

It is essential to note that modeling is an iterative process, indicating that these steps

may need to be repeated multiple times until a model that suitably represents the

problem is obtained.

Another crucial aspect of modeling is validation. Given the precision of mathe-

matical programming problems, these models can be interpreted and evaluated during

the modeling process. This is particularly useful as it allows for the examination of the

defined constraints and variables to identify potential ambiguities or discrepancies from

the original problem. Furthermore, validation can also involve assessing whether the

obtained solution makes sense given the problem context. However, it is important to

understand that these methods do not offer assurance that the model represents the

process in an desirable manner.
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4.3.1 Variables

Defining the variables is one of the most important parts of formulating a math-

ematical programming problem. We divide the variables into three categories: the de-

cision variables, which are the variables that we control and adjust to optimize the

objective function as they represent the decisions that need to be made; the auxiliary

variables, which are variables that are functions of other decision variables used for

the purpose of facilitating the problem; the parameter variables, are fixed values that

are given previous the solution of the problem, they are constant to the optimization

problem but can change overtime.

Moreover, decision variables can be further divided into two types: Continuous

variables, which can take any real value within their defined range; and Discrete vari-

ables, which can only assume specific, countable values. If a problem includes discrete

variables, it falls within the realm of integer programming or one of its subclasses. This

classification significantly alters the perspective employed in approaching and resolving

the problem.

The variables should also be defined in a way that the potential solution space

aligns with feasible solutions in the real world. In other words, variables cannot assume

values that are nonsensical in a real world context, necessitating the establishment of

lower and upper bounds for variables and/or constraints. These bounds help to refine

the solution space and ensure its practical relevance.

Another crucial aspect to consider when defining the variables of a problem

involves establishing and comprehending the range of the variables. If a variable is de-

fined over a broader range than necessary, a part of it may become disconnected from

the optimization problem. This disconnection can cause confusion and even introduce

errors into the problem.

Now we define each of the decision variables used on our optimization problem.

The auxiliary variable xe,h indicates whether there is any event e scheduled at

the time slot h.

xe,h =







1, if schedule(e) = h

0, otherwise
, ∀e ∈ E , ∀h ∈ H. (4)

The auxiliary variable ze indicates whether the event e will take place.

ze =







1, if the event e occurs

0, otherwise
, ∀e ∈ E . (5)

The auxiliary variable yEp,e indicates whether the person p is an examiner of the

event e. This person must be in the set of potential evaluators CEe .

yEp,e =







1, if the person p is the examiner of the event e

0, otherwise
, ∀e ∈ E , ∀p ∈ CEe . (6)
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The auxiliary variable yPp,e indicates whether the person p is the chairperson of

the event e. This person must be in the set of possible presidents CEe .

yPp,e =







1, if the person p is the president of the event e

0, otherwise
, ∀e ∈ E , ∀p ∈ CPe . (7)

The auxiliary variable wE
p,e,h indicates whether the person p will act as an exam-

iner for the event e at the schedule h.

wE
p,e,h =







1, if p is the examiner of e on the date h

0, otherwise
, ∀e ∈ E , ∀p ∈ CEe , ∀h ∈ He.

(8)

The auxiliary variable wP
p,e,h indicates whether the person p presides over the

event e on the date h.

wP
p,e,h =







1, if p presides over e on the date h

0, otherwise
, ∀e ∈ E , ∀p ∈ CPe , ∀h ∈ He. (9)

4.4 RESTRICTIONS

Formulating the constraints of a mathematical programming problem is an es-

sential step in the modeling process. Constraints delineate the limitations or restrictions

on the decision variables, playing a vital role in defining the feasible region, or the set of

solutions that can be selected. These constraints might arise from physical or resource

limitations, regulatory requirements, or a variety of other considerations.

Similar to the variables and objective, it is important to note that the mathematical

nature of the constraints determines the classification of the mathematical programming

problem. A single problem can be modeled in several ways, resulting in potential varia-

tions of the same problem belonging to different classes of mathematical programming

problems. Therefore, when faced with a constraint that increases the complexity of the

problem undesirably, it is worthwhile to consider alternative modeling methods.

Interactions between constraints also require careful consideration. The feasible

region is demarcated by these constraints. If a constraint does not restrict the feasible

region of a problem, it is considered redundant and can be removed without altering

the feasible region of the problem.

The constraints defined within this context should accurately reflect the real-

world limitations and characteristics of the problem. This process might necessitate

the employment of assumptions and approximations to simplify the original problem.

Having previously identified the real-world constraints of the problem, we must now

translate these into the notation of mathematical programming.
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Each event e must have only one time slot allocated to it.

∑

h∈H

xe,h = ze, ∀e ∈ E . (10)

We note that, for an event e, the range of possible schedules falls within the subset He,

that is, the possible schedules for that event are those where the undergraduate student,

his advisor, and supervisor are all available. Therefore, we can refine this constraint by

considering this subset, He, instead of the general schedule set H.

∑

h∈He

xe,h = ze, ∀e ∈ E . (11)

Each time slot h can be occupied by at most one event e.

∑

e∈E

xe,h ≤ 1, ∀h ∈ H. (12)

Analogous to the previous constraint, considering only the schedules within the subset

He would not result in any information loss. Consequently, we opt for this subset as it

would generate a tighter constraint.

∑

e∈E :h∈He

xe,h ≤ 1, ∀h ∈ H. (13)

For an event e to take place, the respective advisor, supervisor and undergradu-

ate must have availability on the same dates.

∑

h∈He

xe,h = ze, ∀e ∈ E . (14)

Note that Eq. (11) is implied by Eq. (14), therefore only the latter is necessary in the

final model, assuming that the variables xe,h, considering an event e, will be defined

only on the dates h ∈ He.

One person p can evaluate more than one event e, but an event is evaluated by

only one person.
∑

p∈CEe

yEp,e = ze, ∀e ∈ E . (15)

where CEe = CE \ {advisor(e), supervisor(e)} is the set of people that can perform the role

of examiner of the event e. We assume that the variable yEp,e is defined only for the

events e where the person p can serve as examiner.

One person p can serve as chair for more than one event e, but each event can

be chaired by only one person.

∑

p∈CPe

yPp,e = ze, ∀e ∈ E . (16)
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where CPe = CP \ {advisor(e), supervisor(e)} is the set of chairperson candidates of the

event e, who did not advise the referred work. We also assume that the variable yPp,e is

defined only for the events e where the person p can serve as chair.

The examiner and the chairperson of an event e must be different individuals.

yEp,e · yPp,e = 0, ∀p ∈ CPe ∩ CEe , ∀e ∈ E . (17)

The above constraint will be defined only for individuals who can both serve as president

and examiner of the event e. Note that the constraint above is non-linear (bilinear), but

it can also be expressed through a linear constraint, as follows:

yEp,e + yPp,e ≤ 1, ∀p ∈ CPe ∩ CEe , ∀e ∈ E . (18)

This modeling approach is preferred, as adding a bilinear constraint would introduce ad-

ditional unneeded complexity to the problem. Maintaining the linear constraints ensures

that our problem remains within the class of Integer Programming.

For an event to take place, one examiner, preferably interested in the event, must

be assigned in a available date that is feasible for all event participants. Therefore, for

each event e, the following constraints are necessary:

For all e ∈ E , h ∈ He, p ∈ CEe : e ∈ interest(p) ∪ possibility(p) :

wE
p,e,h ≤ yEp,e, (19a)

wE
p,e,h ≤ xe,h, (19b)

wE
p,e,h ≥ yEp,e + xe,h ± 1, (19c)

wE
p,e,h ≤ 1 if h ∈ availability(p), 0 otherwise. (19d)

Similarly, a chairperson must be allocated to an event at a date when the undergraduate

student and all other committee members are available. Therefore, for all event e, the

following constraints are necessary:

For all e ∈ E , p ∈ CPe , h ∈ He :

wP
p,e,h ≤ yPp,e (20a)

wP
p,e,h ≤ xe,h (20b)

wP
p,e,h ≥ yPp,e + xe,h ± 1, (20c)

wP
p,e,h ≤ 1 if h ∈ availability(p), 0 otherwise. (20d)

Lastly, an examiner has a maximum number of evaluations that he is capable of

conducting in a given semester.

∑

e∈E

yEp,e ≤ max_eval(p), ∀p ∈ CEe . (21)
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4.5 OBJECTIVE

The objective function is a mathematical representation of the goal you want

to achieve with your decisions. In a mathematical programming problem, you aim to

optimize this function - that is, to find the values of the decision variables that either

maximize or minimize the objective function, subject to the constraints.

The primary aim of our problem is to maximize the number of successfully com-

posed and scheduled events. This aim can be mathematically expressed as follows:

max δ =
∑

e∈E

ze. (22)

We also have secondary objectives which could lead to the composition of more

meaningful project defense events. These secondary objectives are addressed through

a cascade optimization methodology, where the overall problem is broken down into an

ordered sequence of simpler optimization problems. The solution to each problem in

the sequence informs or constrains the subsequent one, allowing each problem to be

solved independently, thus significantly simplifying the overall process.

It is important to note that this approach does not necessarily guarantee an

absolute optimal solution for the overall problem. Sequentially constraining options

might cause a potentially better solution to be overlooked, especially if two decisions are

not independent. However, in our case, this method effectively addresses the problem,

given the significantly greater importance of our primary objective compared to the

secondary ones.

Consequently, the optimal solution to our initial problem, denoted by δ∗, provides

the total number of successfully scheduled events. This number is subsequently estab-

lished as a constraint in following problems, as illustrated in Eq. 23, thus enabling the

exploration of optimal solutions that best align with our secondary objectives.
∑

e∈E

ze ≥ δ
∗. (23)

In our case, the secondary objectives we address are the maximization of the

composition of events where the examiners have expressed interest, and the maximiza-

tion of the preferred chair for the events. These could be segregated into two distinct

problems, with the solution for each one fixed for the other, or they could be integrated

into a single objective function. In our study, we have chosen to integrate both into one

objective function.

Considering p̂ as the preferred chair for all events, we propose the following

secondary objective:

max δ2 =
∑

e∈E



yP
p̂,e +

∑

p∈CEe : e∈interest(p)

yEp,e



 . (24)
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Finally, it is also possible to implement personalized constraints and objectives,

depending on the specific requirements of the semester. A notable example would be

to designate specific individuals as examiners for particular events.

4.6 FULL MODEL

By employing only the tighter constraints and discarding all redundant ones, we

obtain the full optimization problem as shown in 25.

A noteworthy observation is that the final model obtained falls into the category

of Integer Programming. More specifically, we are dealing with a binary integer pro-

gramming problem where all variables are integers and are confined to the binary set

{0, 1}.

Integer Programming problems are classified as NP-complete. This implies that

there is no known polynomial time algorithm to solve the problem optimally, although

potential solutions can be verified in polynomial time. Despite this classification, efficient

algorithms like branch-and-bound exist, which can solve large-scale IP problems either

optimally or near-optimally with notable efficiency.
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f1 : max δ =
∑

e∈E

ze (25a)

s.t . :
∑

h∈He

xe,h = ze, ∀e ∈ E (25b)

∑

e∈E :h∈He

xe,h ≤ 1, ∀h ∈ H (25c)

∑

p∈CEe

yEp,e = ze, ∀e ∈ E (25d)

∑

p∈CPe

yPp,e = ze, ∀e ∈ E (25e)

yEp,e + yPp,e ≤ 1, ∀p ∈ CPe ∩ CEe , ∀e ∈ E (25f)

For all e ∈ E , h ∈ He, p ∈ CEe : e ∈ interest(p) ∪ possibility(p) :

wE
p,e,h ≤ yEp,e, (25g)

wE
p,e,h ≤ xe,h, (25h)

wE
p,e,h ≥ yEp,e + xe,h ± 1 (25i)

wE
p,e,h = 0 if h /∈ availability(p) (25j)

wE
p,e,h ∈ {0, 1} (25k)

For all e ∈ E , p ∈ CPe , h ∈ He :

wP
p,e,h ≤ yPp,e (25l)

wP
p,e,h ≤ xe,h (25m)

wP
p,e,h ≥ yPp,e + xe,h ± 1 (25n)

wP
p,e,h = 0 if h /∈ availability(p) (25o)

wP
p,e,h ∈ {0, 1} (25p)

∑

e∈E

yEp,e ≤ max_eval(p), ∀p ∈ CEe (25q)

ze ∈ {0, 1}, ∀e ∈ E (25r)

xe,h ∈ {0, 1}, ∀e ∈ E , ∀h ∈ He (25s)

yEp,e ∈ {0, 1}, ∀e ∈ E , ∀p ∈ CEe (25t)

yPp,e ∈ {0, 1}, ∀e ∈ E , ∀p ∈ CPe (25u)

The second optimization problem is presented in 26, where δ∗ represents the

objective determined in the first optimization problem. It is crucial to note that it is

possible to introduce new terms as constraints or components of the objective function

to attain solutions that better align with the requirements of the organizers.
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f2 : max δ2 =
∑

e∈E



yP
p̂,e +

∑

p∈CEe : e∈interest(p)

yEp,e



 (26a)

s.t . :
∑

e∈E

ze ≥ δ
∗ (26b)

(25b) ± (25u) (26c)
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5 IMPLEMENTATION

In this chapter, we delve into the specifics of our computational system’s imple-

mentation. The system is divided into two parts. The first pertains to data acquisition via

forms, and the second involves the processing and resolution of the problem at hand.

5.1 DATA ACQUISITION

The initial step in our project encompasses the acquisition, storage, and process-

ing of the data essential to our problem. We seek a solution that is easy to maintain,

straightforward to understand, and resilient to potential issues.

The process begins with the identification of appropriate tools for user data col-

lection, storage, and processing. The selected tools ought to conform to the established

criteria previously outlined. Following this, we delve into details regarding the applica-

tion of these tools in addressing the problem at hand. Lastly, we introduce a description

of the process flow associated with the data acquisition phase of our solution.

5.1.1 Adopted Toolset

The initial toolset we considered for this project consisted of a web form appli-

cation integrated with a relational database. However, acknowledging potential issues

a custom solution might generate, particularly with regards to hosting and mainte-

nance, we opted for well established tools that avoid these complications. The tools

we ultimately selected belong to Google’s workspace suite: Google Forms, Google

Sheets, and Google Apps Script. These tools provide an integrated, user-friendly, easy-

to-maintain, and robust system, aligning perfectly with our predetermined criteria.

Google Forms is an intuitive online tool adept at creating a variety of data collec-

tion applications, such as surveys, quizzes, and event registration forms. This platform

facilitates users in designing, distributing, and modifying forms, besides enabling real-

time response analysis and automatic data visualization through charts. Google forms

are characterized by its user-friendly interface, customizable templates, and seamless

integration with other Google services. The previously mentioned qualities significantly

influenced in our decision to select Google Forms as the primary instrument for data

collection from users engaged in project defense events.

To demonstrate the functionality of the Google Forms application, we provide two

figures. Figure 5 displays a sample question from our Google Form application, indicat-

ing the available answer options and the corresponding sections to which each answer

leads. Figure 6 presents a pie chart summarizing the responses to the aforementioned

question, offering a convenient visual representation of the users form answers.

Google Sheets is a cloud-based spreadsheet tool. It allows for the creation,
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Figure 5 ± An example of a Google form question.

Source: Author.

Figure 6 ± An example of a Google form question answer summary.

Source: Author.

editing, and sharing of spreadsheets in real time, facilitating both individual work and

collaborative efforts. While Google Sheets encompasses a broad array of features

typically associated with spreadsheet applications, our particular interest lies in its

robust integration capabilities with other Google services. The reason for selecting

Google Sheets in our project lies in its intuitive user interface, flexibility, integration with

other Google apps, and accessibility across multiple devices.

It is noteworthy to mention that in a more sophisticated, large-scale project,

employing a more scalable data storage option, such as a relational database like

PostgreSQL, would be more adequate. However, in our current context, we are engaged

with a small scale project where data is input each semester, and our focus lies in

developing a solution that can be easily maintained in subsequent semesters. Thus,

adhering to the principle of Occam’s Razor, which advocates for simplicity in decision

making, we have opted for the straightforward and accessible Google Sheets as our

primary data storage mechanism.
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Google Apps Script is a cloud-based scripting language developed by Google

that allows for the automation, extension, and integration of Google Workspace applica-

tions, including Google Sheets, and Google Forms, among others. Utilizing JavaScript

as its foundation, it enables the creation of custom functions to automate tasks, and

build web applications directly within the Google Cloud environment. Thus, we use

Google Apps Script to integrate the previously discussed tools and automate the pro-

cess of data acquisition.

5.1.2 Development

To begin, we develop an adaptive data acquisition form that is segmented based

on user responses and occupation. In the context of project defense events, we cate-

gorize users into six distinct occupational groups: UFSC Professor, Visiting Professor,

Postdoc, Doctoral Student, External Professional, and Undergraduate Student. An in-

dividual’s specific occupation dictates their potential roles within the committee, which

can include academic, advisor, supervisor, examiner, and chairperson. Given that an

individual may assume multiple roles across different project defense events, the form

navigates through each possible role, offering users the option to bypass specific roles

to prevent unnecessary engagement.

The relation between an individual’s occupation and their potential roles within

the event are further elaborated here. Undergraduate students uniquely have a one-to-

one relationship with a role within the event, i.e., they are the academics whose work

will be evaluated. UFSC Professors are the only ones who can assume the role of an

advisor, but they may also fulfill all other roles within the committee, provided it respects

the committee’s composition restrictions. External professionals can exclusively serve

as supervisors. The roles of Visiting Professors, Postdocs, and Doctoral Students can

extend to the supervisor or examiner roles within a project defense event.

Every role within the event needs distinct data. Academics, for instance, must

supply information pertaining to their work, which includes both the title and abstract

of their thesis, in addition to details about their advisor and supervisor. Conversely,

advisors and supervisors are obliged to furnish specific data indicating the projects they

are involved in. Evaluators, on the other hand, are expected to disclose information

about the research works they have an interest in on a scale of 1 to 3. A rating of

1 signifies no interest in undertaking the evaluation, a rating of 2 suggests that the

evaluator may be willing to assess the work, while a rating of 3 denotes an interest in

performing the evaluation. Regardless of the role, there are some common data points

that all individuals filling the forms must provide. These include their full name, email

address, occupational details, and availability status.

By default, responses from the form are directly linked with a Google Sheets

application. This application is sectioned into various spreadsheets, each serving a
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specific function. One spreadsheet is dedicated to storing the raw data obtained from

the form responses, while others are designed to house organized data sets, such

as the People set, Event set, and Available Schedule set that were introduced in the

previous chapter.

To automate steps of the process of data acquisition we develop scripts within the

Google Apps Script environment. These scripts can be manually invoked or triggered

by specific events, such as the submission of a new form response. We will now delve

into further detail regarding these automation scripts.

We primarily utilize Google Apps Script for two main purposes: to automate the

creation and maintenance of questionnaire items, and to transform raw form data into

an organized tabular format. The scripts related to the former purpose run after the

initial stage of data acquisition, which occurs after undergraduate students submit their

information. Conversely, the scripts associated with the latter purpose are executed

after the form submission deadline has been reached.

To automate form creation and maintenance, we have developed two scripts.

The first script is used to populate questions relating to the work of the undergraduate

student and their respective advisor and supervisor. This script is activated upon the

opening of a form, meaning that every time someone accesses the form, the script

executes, ensuring the questions are always up-to-date.

The second script is tailored to generate questions that bridge the evaluators

with the projects they may be interested in. For every project, a unique question is

formulated, the questions are comprised of the project’s title and abstract as its content.

The evaluators are required to express their level of interest by rating each project on a

scale from 1 to 3. These scripts are executed only once, following the completion of the

initial data acquisition stage.

The scripts designed to automate the transformation of raw data into an orga-

nized tabular format follow similar format of the mathematical sets delineated in the

modeling chapter. Accordingly, we propose three distinct scripts: one for the Schedule

set, another for the Event set, and a final one for the Person set.

The Schedule dataset is relatively straightforward. Its data varies depending on

the academic semester and is not based on the form answers. We have developed a

script that receives as input a range of time slots and the specific days when events are

expected to be scheduled. This script produces a table of all generated schedules in the

DateTime format, which is a commonly used format in data handling for representing

points in time.

The Event dataset presents more complexity as it necessitates data from the

project that the undergraduate submitted, as well as the evaluators interest data. Initially,

we load the undergraduate data, then query our raw data for evaluators interested in

each project. Specifically, this table houses data about the student, their advisor and
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supervisor, their project, and those who have shown interest in their work.

Finally, the Person dataset comprises specific data about individuals, as they

themselves submitted. This encompasses their name, occupation, email, telephone,

availability, interest in evaluation, and maximum number of evaluations. We regard the

data submitted by the individual as the primary source of information. Consequently,

when discrepancies arise between the information a student submitted about their advi-

sor or supervisor, we default to the information that the advisor or supervisor submitted

as the accurate record.

5.1.3 Process Flow

The process of data acquisition is divided into two phases: the initial phase

involves collecting data from undergraduate students that are set to defend their projects

within the semester, and the subsequent phase pertains to gathering data from all other

participants involved in the semester’s project defense events. In between these phases,

automation scripts are executed to simplify the data acquisition process. A graphical

representation of this process flow can be found in Figure 7.

Figure 7 ± Flowchart of the data acquisition process.

Distribute the form to
all undergraduate

students

Run the question
generator scripts using

the undergraduate
students information

 Time limit for filling
 out the forms

Distribute the form to
all other parties

involved in the project
defense events.

Run the data pre-
processing scripts

 Time limit for filling
 out the forms

Source: Author.

It is critical to clarify that despite the data acquisition process being divided into

two phases, each participant is required to submit their information only once. The

bifurcation of the process is needed because the sequential dependence of the data

requirements. Specifically, the data gathered from the undergraduates is instrumental

in formulating the questions posted to the evaluators, advisors, and supervisors.
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5.2 COMPUTATIONAL SYSTEM

The computational system represents the second and most crucial component

of our system and is divided into two parts. The first part is tasked with the verification

and analysis of the tabular data. The second part focuses on the optimization problem,

exploring potential solutions and conducting subsequent analysis of these solutions.

We will now provide details about the identification of appropriate tools for the

development of our solution. We are seeking tools that are intuitive, powerful, and ca-

pable of dealing with all our requirements related to data analysis and mathematical

optimization. Subsequently, we discuss how these tools are utilized in the actual de-

velopment process. Finally, we delve into the overall process flow of the computational

system.

5.2.1 Adopted Toolset

The necessary tools for this segment of the project include a mathematical solver

adept at tackling problems related to Integer Programming, a programming language

compatible with an optimization framework and data analysis packages.

Mathematical optimization solvers are designed to efficiently identify the opti-

mal solutions to optimization problems. The characteristics of the problem dictate the

analysis and the algorithms required to address it. Each solver employs adaptations

of established algorithms, augmenting their problem solving efficiency. In this work, we

have utilized the Gurobi solver. Being a commercial, state-of-the-art solver, Gurobi is ca-

pable of managing a broad spectrum of problem classes, including Linear Programming,

Integer Programming, Quadratic Programming, and their respective variants.

For this project, Julia has been selected as the preferred programming language.

Julia is a high level programming language known for its user friendly syntax and

readability, all the while maintaining a high level of efficiency. As a dynamically typed

language, Julia is inherently interactive, which, coupled with its efficiency, renders it

particularly suitable for work in fields such as machine learning, statistics, and optimiza-

tion.

Julia is also equipped with a plethora of powerful packages designed for an

extensive range of applications. Among these, JuMP stands out as an open-source

package specifically crafted for mathematical programming within Julia. It provides a

high-level interface for composing and solving various classes of optimization problems,

including Linear Programming and Integer Programming.

JuMP distinguishes itself from other optimization packages by its unique alge-

braic modelling style. This approach allows us to express optimization problems using

conventional mathematical notation directly in the code. Once the problem is formulated,

the JuMP package converts it into a format interpretable by mathematical solvers.
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To further understand JuMP, we introduce its syntax for the essential compo-

nents of a mathematical optimization problem: the model, the solver, the variables, the

constraints, and the objective. The code snippet below showcases those essential parts.

Note that the complete code of the optimization problem is showcased in Appendix A.

1. opt_model = Model ( Gurobi . Opt imizer ) ;

2 . @variable ( opt_model , x [ e=1: leng th ( event_set ) , h=1: leng th ( schedule_set ) ] , se t=MOI . ZeroOne ( ) ) ;

3 . @variable ( opt_model , z [ e=1: leng th ( event_set ) ] , se t=MOI . ZeroOne ( ) ) ;

4 . for e in 1: leng th ( event_set )

5 . @constra int ( opt_model , sum( x [ e ,He [ e ] ] ) == z [ e ] ) ;

6 . end

7. @object ive ( opt_model , Max , sum( z ) )

8 . op t im ize ! ( opt_model )

The first line declares the optimization model and its respective solver, a notable

feature of JuMP that allows for seamless solver changes without needing to recast the

entire problem in a different notation.

The second and third lines declare the problem’s variables. We link them with

the optimization model, setting their range and type. Here, xe,h is a two-dimensional

variable, and ze is a one-dimensional one. Both are binary variables.

Lines four to six declare an equality constraint of the problem. Constraints can

be equalities or inequalities that relate the decision variables to a constant or other

decision variables. Here, we link xe,h with ze.

The seventh line sets the problem’s objective. The objective can be a maximiza-

tion, minimization, or even without an objective, meaning that the algorithm will strive

only to find a feasible solution. This part of the code needs the objective expression

and the linked model. The eighth line is the command to optimize the problem.

5.2.2 Development

The initial segment of our computational system focuses on the loading and

analysis of the organized form data. This data, having already undergone preliminary

pre-processing, now necessitates loading into Julia in a manner most suited for the

ensuing optimization problem, whilst maintaining data integrity. Furthermore, we con-

duct an analysis of the data to identify user input errors. Lastly, we review the data for

coherence.

In order to import data from the Google Sheets application into Julia, we can es-

tablish a direct link via the Google Cloud API or simply download the sheet information,

given that we do not need to modify it. We have chosen to use the Google Cloud API,

but if any issues arise during this process, the user can easily download the sheets and

use them directly.

Subsequent to loading the data, it is essential to reorganize it into a more un-

derstandable and manageable format. For this purpose, we employ Julia’s DataFrame

package, which stores data in a tabular format and enables various database opera-
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tions.

The next step involves identifying and rectifying any inconsistencies within the

data, such as misspellings, incoherent information, and other issues not addressed

during Google Apps Scripts pre-processing stage. At this point, we undertake a more

in-depth analysis to ensure the data appropriateness for the optimization model. In

certain cases, this analysis might necessitate human intervention to discern whether

a data entry represents two distinct entities or a single one. We provide further details

about some of these inconsistencies.

A common issue is an undergraduate student providing a name or email differing

from the advisor’s or supervisor’s inputs. We address this by initially comparing emails

and telephone numbers. If these differ, we apply a string similarity function, such as the

Damerau-Levenshtein distance, to measure the similarity between two strings based on

the minimum number of operations needed to transform one into the other. Depending

on this distance, we either automatically classify them as equal or prompt the user to

confirm whether these two strings refer to the same person.

Another issue arises when users input data where they should not. This typically

occurs with external professionals who, due to a hurried review of the form, overlook

some instructions and provide unnecessary information. We rectify this by analyzing

the user’s occupation in relation to the information provided. For instance, an external

professional expressing an interest in evaluating an event they are already supervising.

The second segment concerns the model constructed in JuMP, its generated

solutions, and an analysis on the results. The model’s solutions offer numerous insights.

We conduct analyses on the varying solutions and, if present, on the events that failed

to be scheduled, necessitating an investigation into their scheduling failure.

The initial part of this process involves converting the data from the DataFrames

into the mathematical sets elaborated in the modeling section. This conversion fa-

cilitates the code writing for variables, restrictions, and objectives, as it essentially

becomes a direct transcription of the model in JuMP notation.

With the sets in hand, we proceed to transcribe the developed mathematical

optimization problem into Julia. Here, we also have the opportunity to customize the so-

lution of the model, by employing different solvers or obtaining multiple optimal solutions,

if they exist.

Subsequently, we assess the problem’s solution and the unscheduled events. We

analyze, the latter by examining the intersection of the availability of the undergraduate

student and their respective advisor and supervisor, followed by the interested evalua-

tors. We also perform tests to ensure the solution’s feasibility by checking constraints

such as availability of all parties and composition constraints like the advisor/supervisor,

evaluator, and president being different individuals.

Lastly, we can introduce constraints and new objectives to the problem to achieve
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Figure 8 ± Process flow chart of the computational system.
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Source: Author.

a more refined solution. Two common additions include maximizing the participation of

interested evaluators in the projects and ensuring a certain individual presides over as

many events as possible. It is also possible to add constraints specified by individuals,

such as a request to include a particular evaluator in an event. We can accommodate

these additions without sacrificing our optimal solution by fixing the number of success-

fully scheduled events as a constraint. If the revised problem is infeasible, it implies that

the added constraints have restricted our problem beyond the set of original optimal

solutions.

5.2.3 Process Flow

The process flow of this part of the problem is bifurcated into two segments:

one illustrating the pre-processing of data for the optimization problem, and the other

depicting the execution and analysis of the optimization problem. The optimization

problem is executed in a cascade. This means that after our initial run, we commence

refining certain aspects of the solution to identify solutions that fit other desirable criteria

while maintaining an optimal solution. This iterative process can be repeated multiple

times, enabling us to address complaints and challenges faced by specific individuals.

The process flow diagram is illustrated in Figure 8.
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6 CASE STUDY

The case study is centered on the allocation and orchestration of project de-

fense events for undergraduate students at the Federal University of Santa Catarina,

specifically within the Automation and Control Engineering Department, during the

first semester of 2023. There were 18 students planning to present their defense that

semester. Therefore, we were tasked with composing and scheduling 18 events within

the period extending from the 10th to the 12th of July 2023. Each event lasts for one

hour and cannot take place concurrently.

Table 8 provides a comprehensive display of all potential schedules for the project

defense events in this semester. We have 24 time slots for 18 events, thereby creating

a surplus of 33%.

Table 9 presents all individuals who submitted the required registration forms. We

have a total of 49 individuals: 18 are undergraduate students, 14 are UFSC professors,

2 are visiting professors, 2 are postdoctoral fellows, 5 are doctoral students, and 8 are

external professionals. The X mark for undergraduate students indicates that they don’t

apply to evaluations.

Table 10 displays the availability of these individuals within the designated time

slots. Green symbolizes availability for the given time slot, while red denotes unavail-

ability.

Table 11 provides an overview of all the events along with their respective author,

supervisor, advisor, possible evaluators, and interested evaluators. The X mark in the

supervisor column signifies that the individual did not submit the registration forms. As

a result, the event was scheduled without taking their requirements into account. We

emphasize that an advisor can assume the role of a supervisor. In this semester, we

have encountered four such instances.

One last consideration to take before we solve the problem is that the set of

possible chairs is given by CP = {p18, p25, p38}. The preferred president is p18.

This problem, while hard to solve manually is solved instantaneously by a math-

ematical solver. In more details, our full model has 49050 variables, all of which were

binary, along with 34482 constraints, and 42676 nonzeros. This term refers to the num-

ber of nonzero coefficients in the constraint matrix, or in other words, the number of

meaningful relationships between constraints and variables.

Table 12 delineates all the assembled events and their corresponding schedules.

It is noteworthy to mention that we were only unsuccessful in scheduling one event,

namely event e19. Therefore, we managed to schedule 17 out of 18 events successfully.

There exist many possible causes for a failed scheduling attempt. In this specific

instance, event e19 was not scheduled due to the absence of common availability

among the author, supervisor, and advisor. This observation can be easily visualized
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Table 8 ± Schedule Table.

sID Date Hour
s1 10/07/2023 08:00
s2 10/07/2023 09:00
s3 10/07/2023 10:00
s4 10/07/2023 11:00
s5 10/07/2023 14:00
s6 10/07/2023 15:00
s7 10/07/2023 16:00
s8 10/07/2023 17:00
s9 11/07/2023 08:00
s10 11/07/2023 09:00
s11 11/07/2023 10:00
s12 11/07/2023 11:00
s13 11/07/2023 14:00
s14 11/07/2023 15:00
s15 11/07/2023 16:00
s16 11/07/2023 17:00
s17 12/07/2023 08:00
s18 12/07/2023 09:00
s19 12/07/2023 10:00
s20 12/07/2023 11:00
s21 12/07/2023 14:00
s22 12/07/2023 15:00
s23 12/07/2023 16:00
s24 12/07/2023 17:00

Source: Author.

in Table 10. The resolution to this problem is to manually reach out directly to the

individuals involved in the event to negotiate a suitable schedule from the remaining

available slots.

In relation to our secondary objectives, we were successful in allocating the

preferred president in 16 out of the 17 successfully scheduled events. The only event

where the preferred president could not be assigned was event e1. This was a result of

the preferred president holding the role of advisor for that particular event. Among the

interested examiners, we were able to compose events with them 14 out of 17 times.

On the whole, the results obtained were satisfactory. All objectives were ful-

filled in the most optimal manner, leading to significantly less work to the organizers

compared to previous semesters.
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Table 9 ± People Table.

PID Occupation Possibility Interested Max Eval
p1 Undergraduate student X X X
p2 Undergraduate student X X X
p3 Undergraduate student X X X
p4 Undergraduate student X X X
p5 Undergraduate student X X X
p6 Undergraduate student X X X
p7 Undergraduate student X X X
p8 Undergraduate student X X X
p9 Undergraduate student X X X
p10 Undergraduate student X X X
p11 Undergraduate student X X X
p12 Undergraduate student X X X
p13 Undergraduate student X X X
p14 Undergraduate student X X X
p15 Undergraduate student X X X
p16 Undergraduate student X X X
p17 Undergraduate student X X X
p18 UFSC Professor [] [] 0
p19 Undergraduate student X X X
p20 UFSC Professor [] [] 0
p21 UFSC Professor [] [] 0
p22 External professional [] [e7] 1.0
p23 UFSC Professor [e9, e15] [e12] 1.0
p24 UFSC Professor [e3, e9] [e15] 1.0
p25 UFSC Professor [] [] 0
p26 UFSC Professor [e15] [] 1.0
p27 PhD student [e1, e3, e8, e9, e10, e12, e18] [e4, e6, e15] 2.0
p28 Postdoctoral fellow [e1, e12] [e9, e15] 3.0
p29 External professional [] [] 0
p30 External professional [e10, e18] [e4, e9] 3.0
p31 External professional [] [e11] 1.0
p32 External professional [e3, e9, e10, e11, e13, e15] [e1, e6, e12, e16] 2.0
p33 PhD student [e4] [e15] 2.0
p34 Visiting professor [e2, e6, e12] [e1] 2.0
p35 UFSC Professor [] [] 0
p36 UFSC Professor [e1, e5, e7, e8] [] 1.0
p37 UFSC Professor [e1, e5, e8, e11, e17] [e9, e10, e13, e18] 2.0
p38 UFSC Professor [] [] 0
p39 External professional [] [e18] 1.0
p40 Postdoctoral fellow [e11, e12, e16, e18] [e1] 2.0
p41 External professional [] [e10] 1.0
p42 UFSC Professor [] [e14] 1.0
p43 PhD student [e5] [e2, e13, e16] 3.0
p44 UFSC Professor [] [e4, e8] 1.0
p45 PhD student [] [] 0
p46 UFSC Professor [] [] 0
p47 Visiting professor [e6, e14, e16] [e5, e7] 2.0
p48 External professional [] [] 0
p49 PhD student [e3, e6, e8, e12, e18] [e2, e14] 3.0

Source: Author.
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Table 10 ± Availability Table.

pIDs1s2s3s4s5s6s7s8s9s10s11s12s13s14s15s16s17s18s19s20s21s22s23s24
p1
p2
p3
p4
p5
p6
p7
p8
p9
p10
p11
p12
p13
p14
p15
p16
p17
p18
p19
p20
p21
p22
p23
p24
p25
p26
p27
p28
p29
p30
p31
p32
p33
p34
p35
p36
p37
p38
p39
p40
p41
p42
p43
p44
p45
p46
p47
p48
p49

Source: Author.
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Table 11 ± Event Table.

eID Author Supervisor Advisor Possibility Interested
e1 p1 p18 p18 [p27, p28, p36, p37] [p32, p34, p40]
e2 p2 p27 p20 [p34] [p43, p49]
e3 p3 X p38 [p24, p27, p32, p49] [p49]
e4 p4 p49 p20 [p33] [p27, p30, p44]
e5 p5 X p42 [p36, p37, p43] [p47]
e6 p6 p21 p21 [p34, p47, p49] [p49, p27, p32]
e7 p7 X p42 [p36] [p22, p47]
e8 p8 p20 p20 [p27, p36, p37, p49] [p44]
e9 p9 X p35 [p23, p24, p27, p32] [p28, p30, p37]
e10 p10 p41 p42 [p49, p27, p30, p32] [p37, p41]
e11 p11 p31 p36 [p32, p37, p40] [p31]
e12 p12 p45 p46 [p27, p28, p34, p40, p49] [p23, p49, p32]
e13 p13 p48 p26 [p32] [p37, p43]
e14 p14 p32 p25 [p47] [p42, p49]
e15 p15 p38 p38 [p23, p26, p49, p32] [p24, p27, p28, p33]
e16 p16 p29 p20 [p40, p47] [p32, p43]
e17 p17 X p25 [p37] []
e19 p19 p39 p37 [p49, p27, p30, p40, p49] [p37, p39]

Source: Author.

Table 12 ± Scheduled and Composed Events.

eId Author Supervisor Advisor Examiner Chairperson Schedule
e1 p1 p18 p18 p34 p25 s15
e2 p2 p27 p20 p49 p18 s6
e3 p3 X p38 p49 p18 s10
e4 p4 p49 p20 p30 p18 s5
e5 p5 X p42 p47 p18 s21
e6 p6 p21 p21 p27 p18 s9
e7 p7 X p42 p47 p18 s11
e8 p8 p20 p20 p44 p18 s14
e9 p9 X p35 p30 p18 s2
e10 p10 p41 p42 p37 p18 s1
e11 p11 p31 p36 p40 p18 s8
e12 p12 p45 p46 p32 p18 s23
e13 p13 p48 p26 p43 p18 s7
e14 p14 p32 p25 p42 p18 s12
e15 p15 p38 p38 p33 p18 s18
e16 p16 p29 p20 p43 p18 s13
e17 p17 X p25 p37 p18 s22
e19 p19 p39 p37 X X X

Source: Author.
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7 CONCLUSION

In this study, we addressed a practical management challenge: the organiza-

tion and scheduling of project defense events, specifically tailored to the Control and

Automation major at UFSC. Our comprehensive solution optimally resolves this is-

sue, thereby saving a significant amount of time for event organizers each semester.

Due to its efficiency and ease of maintenance, this solution is ideally suited for future

semesters.

Our approach employed mathematical programming to create an elegant, effi-

cient, and interpretative model. This ensures that in future semesters, event organizers

can intuitively incorporate, exclude, or modify elements in the model according to their

evolving needs.

We also developed a data collection application using Google Workspace apps

such as Google Forms, Google Sheets, and Google Apps Script. These user-friendly

tools require no hosting and mitigate potential future instabilities. The designed applica-

tions automatically generate forms, handle user data, pre-process it, and transfer the

information to our computational system in an organized manner.

Additionally, we developed a computational system to handle the optimization

and analysis of our problem and its solutions. This was implemented using Julia, with

the JuMP package to handle mathematical optimization. This system has excellent

interactivity, flexibility, and efficiency, which made it well-suited to our project’s needs.

Specifically, we applied this solution to the project defense events of the Control

and Automation major during the first semester of 2023. We had 18 events to schedule

and managed to successfully allocate 17 of them. The only unsuccessful case was one

that was infeasible from the outset, as the individuals involved in the event did not have

any overlapping schedules.

With respect to our secondary objectives, which aimed to further improve the

quality of the events, we managed to allocate the preferred chair in 16 out of the 17

successfully scheduled events. The only event where the preferred chair could not be

assigned was due to the preferred chair holding the role of advisor for that particular

event. Among the interested examiners, we were able to include them in the events 14

out of 17 times.

Therefore, we conclude that the obtained results were exceptional. We managed

to automate the entire process, significantly reducing the workload for the event orga-

nizers, and also deliver superior project defense events with interested and capable

examiners.

Despite the completeness nature of the system, we acknowledge the potential for

continuous improvement and maintenance. We recommend further development in the

form structure to enhance clarity for all parties involved. There also exists considerable
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scope for generating new scripts that can further facilitate comprehension of the forms,

thereby minimizing user errors. Lastly, this system needs to dynamically adapt to the

preferences of the organizers, thereby necessitating the integration of features that

better align with the needs of organizers and users.
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APPENDIX A ± COMPLETE OPTIMIZATION CODE

The following Julia code defines all the sets as they were presented in the

modeling chapter of this document. The sets are constructed based on structured

tabular data that is exported from Google Sheets and subsequently transformed into a

DataFrame object in Julia.

### Schedule Set

mutable s t r u c t Schedule

date : : DateTime

end

function generate_schedule_set ( schedule_df : : DataFrame )

schedule_set = Vector { Schedule } ( ) ;

n = s ize ( schedule_df ) [ 1 ] ;

for i in 1 : 1 : n

push ! ( schedule_set , Schedule ( schedule_df . Schedule [ i ] ) ) ;

end

return schedule_set

end

### Person Set

mutable s t r u c t Person

name : : A b s t r a c t S t r i n g

emai l : : A b s t r a c t S t r i n g

occupat ion : : A b s t r a c t S t r i n g

a v a i l a b i l i t y : : Any

p o s s i b i l i t y : : Any

i n t e r e s t : : Any

max_eval : : I n t

Person (Name, Email , Occupation ) = new(Name, Email , Occupation ) ;

Person ( d f : : DataFrame , i : : I n t64 ) = new( d f .Name[ i ] , d f . Email [ i ] , d f . Occupation [ i ] ) ;

Person ( d f : : DataFrame , i : : In t64 , a v a i l a b i l i t y : : Any , i n t e r e s t : : Any ) = new( d f .Name[ i ] , d f . Email [ i ] ,

d f . Occupation [ i ] ) ;

end

function generate_people_set ( people_df : : DataFrame , schedule_set : : Vector )

people_set = Vector { Person } ( ) ;

n = s ize ( people_df ) [ 1 ] ;

for i in 1 : 1 : n

person = Person ( people_df , i )

person . a v a i l a b i l i t y = [ schedule for schedule in schedule_set i f schedule . date

in people_df . A v a i l a b i l i t y [ i ] ]

i f i sm iss ing ( people_df [ i , "Max Eva lua t ions " ] )

person . max_eval = 0 ;

else

person . max_eval = people_df [ i , "Max Eva lua t ions " ] ;

end

push ! ( people_set , person ) ;

end

return people_set

end

### Event Set

mutable s t r u c t Event

t i t l e : : A b s t r a c t S t r i n g

academic : : Person
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adv isor : : Person

superv iso r : : Person

i n t e r e s t e d : : Any

pres iden t : : Person # Assign

eva lua to r : : Person # Assign

schedule : : Schedule # Assign

Event ( t i t l e : : Abs t rac tS t r i ng , academic : : Person , adv isor : : Person , superv iso r : : Person ) = new( t i t l e ,

academic , advisor , superv i so r ) ;

end

function generate_event_set ( event_df : : DataFrame , people_df : : DataFrame , people_set : : Vector ,

schedule_set : : Vector )

event_set = Vector { Event } ( ) ;

n = s ize ( event_df ) [ 1 ] ;

# Add the people ob jec ts

c1 , c2 , c3 = 0 , 0 , 0

academic , advisor , superv i so r = Any , Any , Any

for i in 1 : 1 : n # f o r each event

p r i n t l n ( " Event $ i " )

for person in people_set

i f event_df . Academic [ i ] == person . name

# p r i n t l n ( " Academic : $( person . name ) " )

academic = person

c1 += 1

end

i f event_df . Advisor [ i ] == person . name

# p r i n t l n ( " Advisor : $( person . name ) " )

adv isor = person

c2 += 1

end

i f event_df . Superv isor [ i ] == person . name

# p r i n t l n ( " Superv isor : $( person . name ) " )

superv iso r = person

c3 += 1

end

end

i f c1 != i # Check i f the academic i s i n the event set

p r i n t ( " Academic $( event_df . Academic [ i ] ) E r ro r ! ! ! " )

c1 += 1;

end

i f c2 != i # Check i f the adv isor i s i n the event set

p r i n t ( " Check i f the Advisor $( event_df . Advisor [ i ] ) didn ’ t f i l l the form " )

person = Person ( " Fake Advisor $ i " , " FakeAdvisor$i@email . com" , " Fake " )

person . a v a i l a b i l i t y = [ schedule for schedule in schedule_set ]

adv isor = person ;

push ! ( people_set , adv isor ) ;

c2 += 1;

end

i f c3 != i # Check i f the academic i s i n the event set

p r i n t ( " Check i f the Superv isor $( event_df . Superv isor [ i ] ) didn ’ t f i l l the form " )

person = Person ( " Fake Superv isor $ i " , " FakeSupervisor$i@email . com" , " Fake " )

person . a v a i l a b i l i t y = [ schedule for schedule in schedule_set ]

superv iso r = person ;

push ! ( people_set , superv iso r ) ;

c3 += 1;

end

push ! ( event_set , Event ( event_df . T i t l e [ i ] , academic , advisor , superv i so r ) ) ;

end

@assert c1 == c2 == c3
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# Add the p o s s i b l i t y and i n t e r e s t to the people_set

for p in 1: s ize ( people_df ) [ 1 ]

person = people_set [ p ]

person . i n t e r e s t = [ event for event in event_set i f event . t i t l e in people_df . I n t e r e s t e d [ p ] ]

person . p o s s i b i l i t y = [ event for event in event_set i f event . t i t l e in people_df . Poss ib le [ p ] ]

end

return event_set

end ;

The following Julia code relates to the formulation of the optimization problem.

It takes as input the three sets defined earlier. The code defines all variables, sets,

subsets, constraints, and objectives as outlined in the modeling chapter. It is important

to note that there is no need to utilize any specific optimizer attribute to solve this

problem.

function o p t i m i z a t i on _ fu l l _ m od e l ( people_set , event_set , schedule_set )

# Local Var iab les

# . p o t e n t i a l eva lua to r names

C_E = [ [ p for p in 1: leng th ( people_set ) i f people_set [ p ] . occupat ion in [ "PhD student " ,

" Pos tdoc to ra l f e l l o w " , " V i s i t i n g pro fessor " , "UFSC Professor " , " Ex te rna l p ro fes s i o na l " ] &&

people_set [ p ] [ event_set [ e ] . adv isor , event_set [ e ] . superv iso r ] ] for e in 1: leng th ( event_set ) ] ;

# . p o t e n t i a l p res iden t names

possible_presidents_names = [ " Prof1 " , " Prof2 " , " Prof3 " ]

C_P = [ [ p for p in 1: leng th ( people_set ) i f people_set [ p ] . name in possible_presidents_names &&

people_set [ p ] [ event_set [ e ] . adv isor , event_set [ e ] . superv iso r ] ] for e in 1: leng th ( event_set ) ] ;

# . A v a i l a b i l i t y i n common of the academic , adv isor and superv iso r

He = [ [ h for h in 1: leng th ( schedule_set ) i f schedule_set [ h ] in

i n t e r s e c t ( event_set [ e ] . academic . a v a i l a b i l i t y , event_set [ e ] . adv isor . a v a i l a b i l i t y ,

event_set [ e ] . superv iso r . a v a i l a b i l i t y ) ] for e in 1: leng th ( event_set ) ] ;

# Opt im iza t ion Model

opt_model = Model ( Gurobi . Opt imizer ) ;

# Opt im iza t ion Var iab les

@variable ( opt_model , x [ e=1: leng th ( event_set ) , h=1: leng th ( schedule_set ) ] , se t=MOI . ZeroOne ( ) ) ;

@variable ( opt_model , z [ e=1: leng th ( event_set ) ] , se t=MOI . ZeroOne ( ) ) ;

@variable ( opt_model , yP [ p=1: leng th ( people_set ) , e=1: leng th ( event_set ) ] , se t=MOI . ZeroOne ( ) ) ;

@variable ( opt_model , yE [ p=1: leng th ( people_set ) , e=1: leng th ( event_set ) ] , se t=MOI . ZeroOne ( ) ) ;

@variable ( opt_model , wP[ p=1: leng th ( people_set ) , e=1: leng th ( event_set ) , h=1: leng th ( schedule_set ) ] ,

se t=MOI . ZeroOne ( ) ) ;

@variable ( opt_model , wE[ p=1: leng th ( people_set ) , e=1: leng th ( event_set ) , h=1: leng th ( schedule_set ) ] ,

se t=MOI . ZeroOne ( ) ) ;

# Cons t ra in ts

# .1

for e in 1: leng th ( event_set )

temp = @constra int ( opt_model , sum( x [ e ,He [ e ] ] ) == z [ e ] )

set_name ( temp , " c1_e :$ e " )

temp = @constra int ( opt_model , sum( x [ e , s e t d i f f ( 1 : leng th ( schedule_set ) ,He [ e ] ) ] ) == 0)

set_name ( temp , " c1 ! _e :$ e " )

end # = #

# .2

for h in 1: leng th ( schedule_set )

Le = [ e for e in 1: leng th ( event_set ) i f h in He[ e ] ]

temp = @constra int ( opt_model , sum( x [ Le , h ] ) <= 1)

set_name ( temp , " c2_h :$ h " )
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temp = @constra int ( opt_model , sum( x [ s e t d i f f ( 1 : leng th ( event_set ) , Le ) , h ] ) == 0)

set_name ( temp , " c2 ! _h :$ h " )

end # = #

# .3

for e in 1: leng th ( event_set )

temp = @constra int ( opt_model , sum( yE [C_E[ e ] , e ] ) == z [ e ] )

set_name ( temp , " c3_e :$ e " )

temp = @constra int ( opt_model , sum( yE [ s e t d i f f ( 1 : leng th ( people_set ) ,C_E[ e ] ) , e ] ) == 0)

set_name ( temp , " c3 ! _e :$ e " )

end # = #

# .4

for e in 1: leng th ( event_set )

temp = @constra int ( opt_model , sum( yP [C_P[ e ] , e ] ) == z [ e ] )

set_name ( temp , " c4_e :$ e " )

temp = @constra int ( opt_model , sum( yP [ s e t d i f f ( 1 : leng th ( people_set ) ,C_P[ e ] ) , e ] ) == 0)

set_name ( temp , " c4 ! _e :$ e " )

end # = #

# .5

for e in 1: leng th ( event_set )

Lp = [ _p for _p in i n t e r s e c t (C_E[ e ] ,C_P[ e ] ) ]

for p in Lp

temp = @constra int ( opt_model , yP [ p , e ] + yE [ p , e ] <= 1)

set_name ( temp , " c5_e : $ ( e ) p : $ ( p ) " )

end

end # = #

# .6

for e in 1: leng th ( event_set )

Le = [ _p for _p in C_E[ e ] i f event_set [ e ] in union ( people_set [ _p ] . i n t e r e s t ,

people_set [ _p ] . p o s s i b i l i t y ) ]

for h in He[ e ]

for p in 1: leng th ( people_set )

i f p in Le

temp = @constra int ( opt_model , wE[ p , e , h ] <= yE [ p , e ] )

set_name ( temp , " 6Ea_e :$ e p :$ p h :$ h " )

temp = @constra int ( opt_model , wE[ p , e , h ] <= x [ e , h ] )

set_name ( temp , " 6Eb_e :$ e p :$ p h :$ h " )

temp = @constra int ( opt_model , wE[ p , e , h ] >= yE [ p , e ] + x [ e , h ] − 1 )

set_name ( temp , " 6Ec_e :$ e p :$ p h :$ h " )

i f schedule_set [ h ] in people_set [ p ] . a v a i l a b i l i t y

temp = @constra int ( opt_model , wE[ p , e , h ] <= 1 )

else

temp = @constra int ( opt_model , wE[ p , e , h ] <= 0 )

end

set_name ( temp , " 6Ed_e :$ e p :$ p h :$ h " )

else

temp = @constra int ( opt_model , wE[ p , e , h ] == 0)

temp = @constra int ( opt_model , yE [ p , e ] == 0)

end

end

end

end # = #

# .7

for e in 1: leng th ( event_set )

for h in He[ e ]

for p in 1: leng th ( people_set )

i f p in C_P[ e ]

temp = @constra int ( opt_model , wP[ p , e , h ] <= yP [ p , e ] )

set_name ( temp , " 7Pa_e :$ e p :$ p h :$ h " )

temp = @constra int ( opt_model , wP[ p , e , h ] <= x [ e , h ] )

set_name ( temp , " 7Pb_e :$ e p :$ p h :$ h " )
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temp = @constra int ( opt_model , wP[ p , e , h ] >= yP [ p , e ] + x [ e , h ] − 1 )

set_name ( temp , " 7Pc_e :$ e p :$ p h :$ h " )

i f schedule_set [ h ] in people_set [ p ] . a v a i l a b i l i t y

temp = @constra int ( opt_model , wP[ p , e , h ] <= 1 )

else

temp = @constra int ( opt_model , wP[ p , e , h ] <= 0 )

end

set_name ( temp , " 7Pd_e :$ e p :$ p h :$ h " )

else

temp = @constra int ( opt_model , wP[ p , e , h ] == 0)

temp = @constra int ( opt_model , yP [ p , e ] == 0)

end

end

end

end # = #

# .8

for p in 1: leng th ( people_set )

person = people_set [ p ] ;

temp = @constra int ( opt_model , sum ( [ yE [ p , e ] for e in 1: leng th ( event_set ) ] ) <= person . max_eval )

set_name ( temp , " 8 : p :$ p " )

end

# Objec t i ve

@object ive ( opt_model , Max , sum( z ) )

# Show the complete model

# p r i n t ( opt_model )

# Optimize

# . Opt im iza t ion parameters

s e t _ o p t i m i z e r _ a t t r i b u t e ( opt_model , " OutputFlag " , 0)

# s e t _ o p t i m i z e r _ a t t r i b u t e ( opt_model , " T imeLimi t " , 100)

# s e t _ o p t i m i z e r _ a t t r i b u t e ( opt_model , "MIPGap" , 1e−6)

# s e t _ o p t i m i z e r _ a t t r i b u t e ( opt_model , " NumericFocus " , 3)

# s e t _ o p t i m i z e r _ a t t r i b u t e ( opt_model , " MIPFocus " , 3)

# s e t _ o p t i m i z e r _ a t t r i b u t e ( opt_model , " NonConvex " , 2)

opt im ize ! ( opt_model )

@show te rm i na t i on_s ta tus ( opt_model )

# r e t u r n

# Show s o l u t i o n

a l loca ted_events = I n t (sum ( [ value ( z [ e ] ) for e in 1: leng th ( event_set ) ] ) )

p r i n t l n ( " Success fu l l y a l l o c a t e d $( a l loca ted_events ) events out o f the $( leng th ( event_set ) )

poss ib le events " )

for e in 1: leng th ( event_set )

# p r i n t l n ( " TEST x [ e , h ] : $ ( [ value ( x [ e , _h ] ) f o r _h i n 1 : leng th ( tes t_schedu le_set ) [ 1 ] ] ) " )

# p r i n t l n ( " TEST yA [ p , e ] : $ ( [ value ( yA [ _p , e ] ) f o r _p i n 1 : leng th ( tes t_peop le_set ) [ 1 ] ] ) " )

# p r i n t l n ( " TEST yP [ p , e ] : $ ( [ value ( yP [ _p , e ] ) f o r _p i n 1 : leng th ( tes t_peop le_set ) [ 1 ] ] ) " )

# =

# . Find the a l l o c a te d schedule

_ , h = findmax ( [ value ( x [ e , _h ] ) for _h in 1: leng th ( schedule_set ) ] )

# . Find the a l l o c a te d eva lua to r

_ , p_eva luator = findmax ( [ value ( yE [ _p , e ] ) for _p in 1: leng th ( people_set ) ] )

# . Find the a l l o c a te d pres iden t

_ , p_pres ident = findmax ( [ value ( yP [ _p , e ] ) for _p in 1: leng th ( people_set ) ] )

event = event_set [ e ]

schedule = schedule_set [ h ]
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eva lua to r = people_set [ p_eva luator ]

p res iden t = people_set [ p_pres ident ]

p r i n t l n ( " _ " ^40)

i f value ( z [ e ] ) == 1

p r i n t l n ( " Event $e was s uc c es s f u l l y a l l o c a t e d to $schedule " )

p r i n t l n ( " T i t l e : $ ( event . t i t l e ) " )

p r i n t l n ( " Author : $ ( event . academic . name) " )

p r i n t l n ( " Advisor : $ ( event . adv isor . name) " )

p r i n t l n ( " Superv isor : $ ( event . superv iso r . name) " )

p r i n t l n ( " Eva luator : $ ( eva lua to r . name) " )

p r i n t l n ( " Pres ident : $ ( p res iden t . name) " )

# . Export s o l u t i o n

event_set [ e ] . schedule = schedule ;

event_set [ e ] . eva lua to r = eva lua to r ;

event_set [ e ] . p res iden t = p res iden t ;

else

p r i n t l n ( " Event $e wasn ’ t a l l o c a t e d " )

p r i n t l n ( " T i t l e : $ ( event . t i t l e ) " )

p r i n t l n ( " Author : $ ( event . academic . name) " )

p r i n t l n ( " Advisor : $ ( event . adv isor . name) " )

p r i n t l n ( " Superv isor : $ ( event . superv iso r . name) " )

# . Export s o l u t i o n

#event_set [ e ] . schedule = Schedule ( ) ;

#event_set [ e ] . eva lua to r = Person ( ) ;

#event_set [ e ] . p res iden t = Person ( ) ;

end

p r i n t l n ( " _ " ^40)

end

# =#

end ;
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