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ABSTRACT

In recent years, sophisticated technical optics and thin glasses have seen increased
usage in German growth markets such as the automotive, electronics, and tech indus-
tries. Due to the complexity of these products, their serial production is susceptible
to irregularities; therefore, procedures for quality control need to be employed. There
is a special concern for quality control during the hot forming of thin glass, given that
it is difficult to measure details about this process using sensors. There are alterna-
tives to predict the outcome using machine learning models; nevertheless, they usually
demand trained data scientists and a significant amount of high-quality data, which
are challenging requirements for small and medium enterprises to meet. This thesis
presents an approach using hybrid models that combine machine learning and physics-
based models and have fewer prerequisites regarding historical data and specialized
personnel. This solution aims to develop a framework that automatically creates and
configures a hybrid model structure to predict the shape deviation of glass during the
hot forming process. To meet this objective, initial studies were conducted to explore the
state of the art in the applications of hybrid machine learning models and to understand
the different layout possibilities. Subsequently, the requisites of the project were further
analyzed, and a workflow was created to describe the process of generating hybrid
models. Thereafter, a computer program was created using Python to put this logic into
practice and its validity was checked by applying it to the use case.

Keywords: Hybrid models. Machine learning. Hot forming. Glass molding.



RESUMO

Nos últimos anos, objetos óticos sofisticados e vidros finos têm sido usados cada vez
mais por mercados alemães em crescimento, como os setores automotivo, de ele-
trônica e tecnologia em geral. Devido à complexidade, a produção em série desses
produtos está suscetível a irregularidades e, portanto, faz-se necessário o emprego the
procedimentos de controle de qualidade. Existe uma preocupação especial em relação
ao processo de conformação a quente de vidros finos, por causa da dificuldade em me-
dir este procedimento utilizando sensores. Existem alternativas para prever o resultado
dessa operação utilizando aprendizado de máquina, mas elas demandam cientistas
de dados treinados e uma quantidade significativa de dados de alta qualidade, o que
são requisitos desafiadores para pequenas e médias empresas cumprirem. O presente
Projeto de Finalização de Curso apresenta uma abordagem usando modelos híbridos,
que combinam aprendizado de máquina e modelos baseados na física e possuem
menos exigências em relação a dados históricos e equipe especializada. Essa solução
tem como objetivo o desenvolvimento de um módulo que automaticamente cria e con-
figura modelos híbridos para prever o desvio de forma de vidro durante o processo de
conformação a quente. Para cumprir esse objetivo, foram conduzidos estudos iniciais
para explorar o estado da arte das aplicações de modelos híbridos de machine learning
e para entender as diferentes possibilidades de estrutura. Em seguida, os requisitos do
projeto foram analizados e um fluxo de processo foi criado para descrever a geração
de modelos híbridos. Posteriormente, a lógica criada foi colocada em prática utilizando
Python e a validade foi verificada aplicando-a ao caso de uso.

Palavras-chave: Modelos híbridos. Aprendizado de máquina. Conformação a quente.
Modelagem de vidro.
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1 INTRODUCTION

The use of machine learning has been constantly growing over the last years,

due to the numerous benefits and capabilities of these data-driven algorithms. However,

there are some situations in which traditional engineering knowledge still provides

valuable insights.

Hybrid models are a solution that holds the potential to revolutionize production

by combining the advantages of machine learning and the usage of expert knowledge

to solve complex prediction problems. The aim of this bachelor thesis is to develop a

configuration framework that creates hybrid models, applied to the use case of process

optimization of complex optics by predicting the shape deviation.

This initial chapter will outline the context and motivation for the work, followed

by an introduction to the OptiMassKI project, in which the thesis is contained. The

general and specific objectives of the bachelor thesis will then be detailed, along with a

description of the scope of the work. Finally, the document structure is presented.

1.1 MOTIVATION AND CONTEXT

Over the last few years, the hot forming of glass has increased its relevance in

the production process of sophisticated technical optics and thin glasses. These items

are crucial to several growth markets in Germany, such as the automotive, electronics,

and tech industries.

Production of complex optics through hot forming processes is very sensitive and

the quality of the output product is easily influenced by variables such as temperature,

that are difficult to measure (YAN et al., 2009). The prediction of aspects about the

quality of the final product, such as the shape deviation, can be used to identify issues

in production and improve the overall process.

Those aspects can be predicted using simulation models, expert knowledge

about the process flows and their physical laws, and Machine Learning (ML) algorithms.

However, expert knowledge requires a high level of expertise and may not sufficiently

consider conditions such as environmental influences and machine configurations. Fur-

thermore, the use of ML algorithms, although able to solve complex problems, requires

trained data scientists and often a large amount of data, which can be a problem,

especially for Small and Medium-Enterprises (SMEs) (KERSTING, 2018).

Hybrid modeling is a solution that combines both process knowledge and ma-

chine learning. The hybrid models addressed in this document consist of a white-box

part (mathematical-physical model) and a black-box part (data-driven model) (RUDIN,

2019). It is intended to find out if this framework can deliver better performance, requires

a smaller amount of data, and also provide explainable and comprehensible results.
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1.3 OBJECTIVE OF THE THESIS

1.3.1 General objective

As part of the OptiMassKI project, the bachelor thesis aims to develop a frame-

work that automatically generates and configures a hybrid ML model, combining models

from a white-box library and Automated Machine Learning (AutoML), for the black-box

part. This configuration component should process admin and user inputs and return as

an output a suggestion of hybrid models that should proceed in the prediction pipeline.

In the context of the bachelor thesis work, the configuration framework will be

applied in the process of predicting the shape deviation in the production of complex

optics. However, the framework should ideally be modular and possibly be applied in

different use cases, or under different inputs and updates of the white-box library.

The challenges of this work are describing and characterizing the white-box

models, choosing the structure of the model, and defining the criteria to choose the ap-

propriate white-box and black-box models. The final result should also explain what are

the user inputs required to enable automatic configuration, and how the configuration

module should stand in the prediction pipeline and a user-friendly software tool.

1.3.2 Specific objectives

Based on the main objective describes, specific tasks were defined to achieve a

configuration framework that satisfies all requirements:

• Study the literature in search of a basis on the structure of hybrid models and how

they are usually applied.

• Creation of the concept that describes the functionalities of the configuration

framework.

• Definition of a guideline on how to proceed with the training of hybrid models.

• Implementation of the configuration framework into code.

1.4 DOCUMENT OUTLINE

This document is divided into seven chapters to detail the development of the

hybrid model configuration framework.

Chapter 1 explores the context and motivation for the OptiMassKI project, in

which the bachelor thesis is contained. It also details the scope of the student’s work.

Chapter 2 addresses the theoretical background of the thesis. Thus, it outlines

concepts of glass molding and machine learning that are fundamental for understanding

the remaining chapters.
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Chapter 3 focuses on the presentation of the state of the art on machine learning

applied to glass science and hybrid models. Therefore, it summarizes recent academic

works on the topics and also presents the author’s conclusions about the research.

Chapter 4 presents the concept of the developed configuration framework. It

provides an overview of the project requisites and initial assumptions. Moreover, it

details the configuration process, including the requirements and limitations of each

step.

Chapter 5 covers the implementation of the configuration framework using

Python scripts. It discusses the technologies used and describes the class structure

developed to implement the configuration module. This chapter ends with a validation

of the created program applied to the use case.

Finally, chapter 6 concludes the work and discusses the result of the thesis

compared to the initial objectives. It also provides an outlook on further work regarding

the OptiMassKI project.
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2 THEORETICAL BACKGROUND

This chapter comprehends a theoretical overview of important subjects for the

thesis. In the first section, the glass molding process is outlined, highlighting the tech-

niques that are involved in the project. The second section addresses machine learning

and artificial intelligence, providing a summary of the fundamental concepts and a

summary of the most used algorithms.

2.1 GLASS MOLDING

2.1.1 Overview of the production of complex optics

Recently, the automotive industry became the most relevant growth market for

products made of thin glass. To meet the demands of autonomous driving and driving

assistant systems, it is necessary to manufacture complex lenses and thin glasses.

Examples of such optic products are the glasses used for Light Detection and Ranging

(LiDAR) and laser-based systems.

The market volume of systems for driving assistance, in which LiDAR is included,

is expected to triple in the next decade. (BBC, 2021) In fact, optics and photonics

industries in Germany, in which hot-forming glass is applied, are large, with a turnover

of 37.5 billion euros in 2019 and employment figures of over 140,000. A considerable

fraction of these companies are SMEs.

Hot forming of glass is used for the production of complex optics in numerous

markets. Some different products of these manufacturing processes are displayed in

Figure 2.

Figure 2 ± Examples of glass products manufactured with hot forming.

Automotive Lighting Light Guides Lighting Optics Sensors Lens Arrays

Coverglasses Mirror Optics Center Consoles Structured Optics Wafer Optics

Source: Author.
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The glass molding press is considered a promising approach for the efficient

production of optical elements with complex shapes. Traditionally, this process is per-

formed using the Precision Glass Molding (PGM) method, also known as isothermal

glass molding, in which the pressing is done when the temperature of the glass is the

same as the temperature of the mold. However, the isothermal molding process implies

a high time consumption in the heating and cooling stages. An alternative method is

non-isothermal glass molding, which decreases the molding cycle time and can also

extend the mold’s life. (ZHOU et al., 2010; VU, A.-T. et al., 2016)

2.1.2 Non-isothermal glass molding

Non-isothermal Glass Molding (NGM) is a replicative hot-forming process based

on the concept that the glass and the mold assume different temperatures. The blank

pressing process is used in solid forming. The glass is heated to a value higher than its

transformation temperature, while the mold press mold is separately heated to a lower

temperature. Then, the mold surface is additionally heated right before the pressing

process, which lasts a few seconds. Finally, the glass component is cooled in a furnace.

(BLIEDTNER; GRÄFE, 2008; FELDMANN; KASPER; LANGOSCH, 2012)

For thin glasses, a vacuum-assisted process is applied. The steps are analogous

to solid forming, with the difference that the driving forming forces are executed by

gravity and a vacuum in the forming cavity. Both the blank pressing and the vacuum-

assisted processes are represented in Figure 3. (MENDE et al., 2022)

Figure 3 ± Non-isothermal glass forming process principles.

LoadingPreheating Heating Forming Fast
cooling Unloading External

annealing

Solid
forming

Thin glass
forming

Source: Author, based on Mende et al. (2022).

Due to the heat exchanges and the highly complex material behaviors, the mold-

ing process usually causes imperfections in the produced components. In serial pro-

duction, it is expected that these faults, if not detected in the molding step, lead to a

considerable amount of waste and energy consumption. Root Mean Square (RMS) and

Peak-to-valley (P-V) are commonly used methods to measure the surface form devia-
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tion, as they describe how well the molded shape matches the expected form. In the

study conducted by Mende et al. (2022), the shape deviation is measured by collecting

the value of the peak point of the lens and two equally spaced points on either side of

the peak. (VU, A. T. et al., 2022)

2.2 MACHINE LEARNING

2.2.1 Fundamentals of artificial intelligence and machine learning

In order to understand the concept and state of the art of hybrid models, it is

crucial to have an overview of ML, one of the branches of Artificial Intelligence (AI).

According to McCarthy (2007), founder of the field, AI is "the science and en-

gineering of making intelligent machines, especially intelligent computer programs."

The research on AI grew after the Second World War, especially with the English

mathematician Alan Turing, who was the one to advocate for the shift from machine-

building approaches to programming-based methodologies. By the end of the 1950s,

the research in AI had many contributors, most of them having their work based on

programming computers.

While the objective of AI is quite broad and includes multiple tasks involving

problem-solving, reasoning, and general learning, the field of ML studies specifically

the learning process (KERSTING, 2018). T.M. Mitchell (1997) defines ML as the science

"concerned with the question of how to construct computer programs that automatically

improve with experience".

Using statistical methods, ML algorithms are trained to perform tasks such as

predicting values, classifying elements, and identifying patterns or outliers within given

data. These ML methods fall into three main categories: supervised, unsupervised, and

reinforcement learning. (RAVINDER et al., 2021; JORDAN; MITCHELL, T. M., 2015)

Supervised learning algorithms, the most used approach, have the objective to

identify the relationship between input features and corresponding outputs, sometimes

called "labels". To learn this association, the ML model is provided with "training" data,

composed of a X dataset, that represents the inputs, and a y dataset to represent the

outputs. This method can be used for classification or regression (prediction) tasks and

some of the most common algorithms include decision trees, logistic regression, and

neural networks. (JORDAN; MITCHELL, T. M., 2015)

Unsupervised learning methods are used in the analysis of unlabelled data to

identify hidden patterns. Examples of applications using this approach involve cluster-

ing, which is grouping the data by similar features, and outlier detection. Some of the

most common algorithms are k-means and k-Nearest Neighbours (k-NN). (JORDAN;

MITCHELL, T. M., 2015)

Finally, in reinforcement learning algorithms, the agent learns the action that
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maximizes the reward. The training data in this case only offers a signal indicating if

the action is correct or not, rather than specific instructions or labels. This method is

commonly used in games, multi-agent systems and to solve optimization problems.

(RAVINDER et al., 2021; JORDAN; MITCHELL, T. M., 2015)

2.2.2 Pipeline of a machine learning project

Developing a ML project goes beyond training the model. It is important to know

the main stages of this process to understand its limitations and challenges, which are

outlined subsequently. Some of the steps of the process discussed here are general,

but the focus is on supervised models, which is where falls the prediction task of the

bachelor thesis.

After extracting the data and executing a preliminary analysis of the information,

one of the first steps is to split the data into two or three groups. The training set

contains data that is used to train the ML algorithm. It is usually composed of 70%

of the available data. The validation set includes data that is used to fine-tune the

hyperparameters of the ML algorithm. It is usually composed of 20% of the available

data. Finally, the test set incorporates data that is used to evaluate the performance of

the model, after the training is complete. It is usually composed of 10% of the available

data. In some cases, the data is only split into training and test sets, being generally

composed of 80% and 20% of the data, respectively. This split is important to avoid

bias in the ML algorithm. When working with separate sets, it is possible to evaluate

the actual learning capacity of the model, instead of its ability to "memorize" the results,

given an input. (GOODFELLOW; BENGIO; COURVILLE, 2016; GÉRON, 2019)

The next important step concerns preparing the data for the ML algorithms.

This involves mostly cleaning the data and preprocessing the formats and necessary

features. Although simple in concept, this is commonly one of the most time-consuming

stages of the ML pipeline. (GÉRON, 2019)

After the data is adequately prepared, the next step is to select and train the

model. This is hardly a straightforward step, as it usually requires multiple iterations to

fine-tune the model and even change the selected algorithm, if necessary. (GÉRON,

2019)

Finally, the model is evaluated. There are several ways to assess the perfor-

mance of a ML algorithm, and they differ according to the objective of the model. Some

of the most common evaluation metrics for regression tasks are the Root Mean Squared

Error (RMSE), the Mean Absolute Error (MAE), and the Coefficient of Determination

(R2). The success of an ML model will be indicated by its ability to produce small train-

ing errors and produce test errors that have little disparity towards the training error.

(GOODFELLOW; BENGIO; COURVILLE, 2016; GÉRON, 2019)
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2.2.3 Machine learning algorithms

As mentioned previously, regression tasks fall under the category of supervised

learning. This is the case of the ML task of this bachelor thesis project, which aims to

predict the shape deviation of glass in the hot forming process.

Even inside this category, there are numerous ML algorithms to choose from.

Among the popular methods are linear regression, polynomial regression, decision

trees, and random forest. The most notable, or at least most famous, ML method is

Artificial Neural Network (ANN), often called simply Neural Network (NN). The subfield

that studies these algorithms is called deep learning. Neural networks are composed of

layers, which, in turn, are composed of nodes, as shown in Figure 4. (GÉRON, 2019)

Figure 4 ± Generic structure of a simple neural network.
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Each node has its own parameters w and b and applies a linear function followed

by an activation function on the input vector. In the final layer, the node’s output is the

prediction result. This logic is represented in Figure 5. (GÉRON, 2019)

Because of their detailed structure, neural networks are usually applied to infer

complex knowledge, such as ones involving the evaluation of images in the field of

computer vision. The complexity of this type of model also makes them commonly used

in applications in glass science, as discussed in the next chapter.
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Figure 5 ± Representation of the returned output for each node in a neural network.
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2.2.4 Challenges of machine learning

Despite the field’s immense potential and recent growth, there are several chal-

lenges encountered in the pursuit of developing robust and efficient ML solutions. Some

of these obstacles are listed and outlined subsequently. Generally, they concern the

characteristics of the provided data and of the structure of the ML model. (PERES et al.,

2020; GÉRON, 2019)

• Data availability and quantity. ML solutions require a significant amount of data

to perform properly. And as the complexity of the algorithm increases, so does

the quantity of data needed. However, not only the quantity but the quality of the

data provided to the ML model should be considered. The training data should be

consistent, accurate and contain samples that cover the whole scenario in which

the model is intended to perform. (PERES et al., 2020; GÉRON, 2019)

• Complexity of the model. There are numerous ML algorithms to choose to

perform each kind of task. Some are more simple, such as linear regressors,

and some are more elaborate, such as deep neural networks. Although common

sense would suggest that more complex models lead to better outcomes, that is

not always the case. In noisy datasets, for example, complex models would detect

patterns in the noise itself, producing inaccurate results. (PERES et al., 2020)

• Governance and explainability. Most ML models have a "black-box" nature. That

is, it is not exactly clear how the algorithm managed to learn the pattern from the

data and produce outcomes. (PERES et al., 2020)

Those challenges are considered when assessing the performance of the ML

algorithms. When the training error is large, it could represent an underfitting case. This

means that the model is not being able to fit a function to the provided data. In this case,

the complexity of the model should probably be increased. (GÉRON, 2019)

If the model performs well on the training set but produces significantly worse

results with the test data, a case of overfitting is likely to be occurring. This could be
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addressed by reducing the complexity of the model or increasing the amount or quality

of the data. (GOODFELLOW; BENGIO; COURVILLE, 2016).

2.2.5 The No Free Lunch Theorem

One interesting concept proposed by Wolpert (1996) is the No Free Lunch The-

orem, which states that there is no ML algorithm that is universally better than another.

Therefore, the goal of ML is not yet to find a universal answer for all problems but to

identify the tools needed to produce the best results in each case.

Since the beginning of the studies on ML much has evolved and now it is com-

mon to encounter complex models that can produce great outcomes in unexpected

scenarios, sometimes even better than humans. Nonetheless, the limitations still exist

and sometimes they make it unfeasible to implement ML learning solutions.

The next chapter outlines the use of ML to address problems in the context of

optics and also introduces the state of the art on hybrid models, a solution that combines

machine knowledge with physical principles, overcoming some of the challenges in ML

that were listed previously.
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3 STATE OF THE ART

The present chapter intends to provide an overview of relevant academic works

that will serve as a basis for the development of this thesis.

The first section addresses applications of ML in glass science, outlining the

involved challenges, and providing a summary of significant research projects in the

field. Subsequently, the second section approaches hybrid models, stating a compre-

hensive description of the fundamentals, applications, and definition of the structure.

The chapter ends with the author’s conclusion about the literature survey.

3.1 APPLICATIONS OF MACHINE LEARNING IN GLASS SCIENCE

3.1.1 Challenges and considerations

Even though glasses have been part of the human routine for millennia, the

optimal serial production of complex optic products is still a challenge. Glasses have

a disordered nature, which makes them difficult to deal with when the objective is to

measure the output quality of a moulding process.

The focus of this thesis is on the hot forming process of thin glasses. In the

context of serial production, defects must be detected in the moulding phase, to avoid

glass rejects and the energy cost involved in repairing product failures (VU, A. T. et al.,

2022).

However, due to the glass’s complex structure, such defects are difficult to mea-

sure. And modelling the values using physics-based systems should also lead to inac-

curate results because of the nonlinearities existent in the process. Given this situation,

ML comes as an interesting approach, with the offer to produce data-driven models that

can predict glass properties in numerous applications, including, but not exclusive to,

the hot forming problem. (LIU et al., 2021)

Even though ML is a promising tool in glass science, many obstacles come along.

As discussed previously, ML models rely on the quantity and quality of the data to deliver

a great performance. Nevertheless, it is quite challenging to build a glass dataset that is

consistent, complete, accurate, and numerous. ML applications in glass science usually

suffer from bad extrapolation ability, as the dataset is usually restrained to a certain

range of operations and the model does not learn how to behave in extremely different

environments. (RAVINDER et al., 2021)

It is also demanding to detect and deal with outliers, given that the disordered

nature of glasses makes the dataset itself contain nonlinearities and anomalies. In

addition, in ML it is extremely difficult to interpret the "learned" relationship between the

inputs and outputs, which compromises the reliability of the model and eliminates the

opportunities for new insights. (RAVINDER et al., 2021)
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3.1.2 A review of machine learning in the production of optics

Within glass science and engineering, ML can be employed in numerous situ-

ations, including simulations of structural engineering applications (KRAUS; DRASS,

2020), design of glass types (LIU et al., 2021; RAVINDER et al., 2021) and quality

control (LIANG et al., 2019; PARK et al., 2020).

The probable pioneer study using ML in glass science was conducted by Brauer,

Rüssel, and Kraft (2007) and applied a neural network to predict the solubility of the

glass P2O5±CaO±MgO±Na2O±TiO2 as a function of its composition. Many posterior

works had similar approaches. (LIU et al., 2021)

A recent work by Tandia, Onbasli, and Mauro (2019) describes how Corning,

one of the major companies in glass research and creator of Pyrex® glassware, used

data-driven models, such as neural networks and Genetic Algorithms (GA) to enhance

their products. The study outlines the development of composition-dependent models

to predict key glass properties: liquidus temperature, viscosity and Young’s modulus.

Their work used a neural network approach to model the liquidus temperature.

The best results were found when employing Bayesian optimisation (BO) to select the

best NN architecture. The same method was used to predict glass viscosity. However,

it was using a Physics-informed Neural Network (PINN), combined with BO to define

the best architecture, that the optimal performance was achieved. The PINN was built

based on the MYEGA model for glass viscosity. A PINN model is a type of hybrid ML

model and details and elaboration on this topic will be provided in a subsequent section.

Finally, for predicting Young’s modulus, the model’s robustness is even more relevant

than its accuracy. Since standard NN usually fail to extrapolate, the best-performing

approach was found when employing a genetic algorithm method. In this way, it was

possible to obtain great predictions for the compositions in extreme regions of data.

On account of this work, it was demonstrated that ML approaches allow researchers

to advance the process of creating new material by predicting glass properties. The

use of data-driven methods contributed to making Corning’s damage-resistant glassy

products used in over 4.5 billion devices.

With respect to the hot forming of thin glass, an interesting work was conducted

by Anh Tuan Vu et al. (2022). The focus of this piece was on using Infrared (IR) ther-

mography and ML to predict the final shape of the glass after a molding process. An IR

camera was placed after the molding step to collect time-series images recording the

temperature fields of the glass. These images were pre-processed before they were

given as inputs to the learning models.

Three approaches were assessed to apply Convolutional Neural Network (CNN)

in the prediction task. The first was using transfer learning, the second used a self-built

2D CNN model and the third employed a 3D CNN model with similar architecture to

the CNN-2D, except for the three-dimensional input and the use of intermediate 3D
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layers. This last approach was the only one that considered the time-series data, as

the third dimension of the input tensor refers to the time component (frame number).

The first two approaches only used the first frame of the collected data. Among the first

and second approaches, the transfer learning model using DenseNet-169 delivered

the best results. However, the self-built 2D CNN model was sufficiently accurate while

presenting low complexity, which makes it more adequate for real-time applications,

such as the one envisioned by the study. Regarding the 3D CNN model, it presented

lower mean and minimum error values, compared to the 2D CNN. However, it has a

high level of complexity and consequently a long training time. As a result of this work,

it was presented a feasible method to employ real-time quality control in the hot-forming

process using ML. This is a promising result to minimize the efforts for measuring

precision glass during production.

3.1.3 Research conclusions

It is possible to encounter many results in the literature that sustain that ML can

be successfully employed in glass science and engineering to predict variables that are

often difficult to measure or calculate based on first-principles systems. Although the

use cases are usually different than the hot forming of thin glass approached in this

thesis, the existent research provides some rich insights about the use of ML to predict

glass properties.

It is true that the studies present a satisfying outcome, however, these results

do not come easily. In both of the works that were further outlined in the previous sub-

section, the ML models employed were complex and often required further resources,

such as the use of Bayesian optimisation to find the optimal NN architecture and the

configuration of a PINN model, in the piece by Tandia, Onbasli, and Mauro (2019).

This reinforces the existence of obstacles when applying ML when predicting

glass properties, as detailed previously. In relation to SMEs, the implementation of ML

models becomes even more challenging, since they usually require the expertise of a

data scientist and the algorithms tend not to be comprehensible. In addition, the use of

additional equipment such as the IR camera employed by Anh Tuan Vu et al. (2022) is

often not feasible in economic and logistic terms.

One approach that was mentioned in various reviews about ML and AI in glass

science is the use of hybrid ML models. This method can overcome some of the

constraints accompanying the standard ML models like the demand for large amounts

of data and the poor interpretability.
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3.2 HYBRID MACHINE LEARNING

3.2.1 Fundamentals of hybrid models

Hybrid models are defined as ones that combine parametric and nonparametric

structures. In parametric models, the structure is fixed according to a priori knowledge,

such as mechanistic and phenomenological models, (e.g., a rheological model, a simu-

lation, or expert knowledge). On the other hand, in nonparametric models, the structure

is inferred from data, which is exactly the case of ML models. Therefore, the combina-

tion of both structures results in semiparametric hybrid models, which is the focus of

the bachelor thesis work. (GLASSEY; STOSCH, 2018)

By using a semiparametric structure, it is possible to obtain key advantages over

both types of models, as follows:

• Increase of the model’s physical significance, which also enhances its interpretabil-

ity;

• Fewer requirements on the data, regarding quantity and quality and improved

handling of uneven datasets, given that the parametric model outlines a structure

to the system;

• Advanced extrapolation capabilities, allowing the model to act beyond the data

range. (GLASSEY; STOSCH, 2018; ZENDEHBOUDI; REZAEI; LOHI, 2018)

Hybrid models were introduced around 1992 as a way to obtain more robust and

interpretable neural network models. Then, Thompson and Kramer (1994) portrayed

hybrid models as the combination of parametric and nonparametric models described

previously. (GLASSEY; STOSCH, 2018)

The research on the topic has been evolving ever since and many applications

have been proposed, some of which will be discussed in the next section. The motiva-

tion for analysing these studies in this bachelor thesis is to explore how different types

of hybrid models are employed and elucidate their architectural characteristics.

3.2.2 Hybrid model applications

The concept of hybrid modelling was introduced by Psichogios and Ungar (1992)

to determine the kinetics of fedbatch bioreactors, which are difficult to model because

of their dynamic characteristic. To explore the effects of including first-principles knowl-

edge in neural networks, the study compares a standard NN model to a hybrid model

approach, both applied to the same context.

The structure of the hybrid model developed by the authors is represented in

Figure 6.
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Figure 11 ± Structure of the hybrid model employed to predict friction forces in a micro-
pullwinding process.
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Source: Adapted from Doriûen, Heymann, and Schmitt (2022).

strated better results. The hybrid method performed better in 90% of the experiments

and was able to achieve a R2 of 0.9576.

These results prove that hybrid ML is promising and can be successfully applied

in a production environment. The authors cite as future challenges the creation of

an efficient approach during development to decide which model could acquire better

outcomes.

In the literature on hybrid models, it is common to find approaches using Physics-

informed Neural Networks (PINN). This concept, introduced by Raissi, Perdikaris, and

Karniadakis (2019), consists of a method to incorporate parametric knowledge into an

initially nonparametric neural network.

The principle behind standard neural networks is generally based on using back-

propagation to minimise the Mean Squared Error (MSE) between the predicted and the

actual data points. In PINN, the NN’s loss function is augmented with a term that corre-

sponds to the physical model of the problem. This allows the NN to integrate structure

and previous knowledge regarding the analysed model, enhancing its generalisation

interpretation ability.

However, although the results achieved by PINN models are considered satis-

factory and promising, the implementation of this method is not simple and is very

case-specific. It is necessary to develop a mathematical expression that represents a

physical constraint to be minimised in the form of a Partial Differential Equation (PDE),

which will then be added to the neural network’s loss function. (CAI et al., 2021)

In conclusion, PINN is a very interesting and relevant concept in the subject of

hybrid modelling. It was proven to deliver promising predicting results and excellent

extrapolation capability (VU, A. T. et al., 2021; TANDIA; ONBASLI; MAURO, 2019; WU

et al., 2022). Nevertheless, this technique is not suitable for the use case approached

in this bachelor thesis.

The project’s main objective is to create a framework that automatically con-
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figures hybrid models and the specificity required in PINN makes this goal difficult to

achieve. Furthermore, PINN involves a mathematical model founded on PDEs. That

will not always be the case for the WB models of the use case, which assume different

formats, being mostly represented by simulation models.

3.2.3 Structures of hybrid models

In the applications outlined in the previous section, it should be observed that

different combinations of nonparametric and parametric models are employed. Hybrid

models can vary in quantity and type of sub-model and even the simplest model, com-

posed of a WB model and a BB model, can be arranged in two modes: parallel or serial.

(ZENDEHBOUDI; REZAEI; LOHI, 2018)

3.2.3.1 Parallel structure

Figure 12 illustrates a semiparametric model combined using a parallel structure.

Figure 12 ± Generic parallel structure of a hybrid model.

White-box model

Black-box model

Source: Adapted from Glassey and Stosch (2018).

This type of combination is usually implemented when a full parametric model of

the system is available, although it fails to provide sufficiently accurate results. In this

case, a nonparametric model is added in parallel to estimate the error of the mechanistic

model. The outputs of both models are then summed to form the final result of the hybrid

model. (GLASSEY; STOSCH, 2018; ZENDEHBOUDI; REZAEI; LOHI, 2018)

3.2.3.2 Serial structure

Serial structures, represented in Figures 13 and 14 are employed when there

are unknown parts of the mechanistic model. The nonparametric model is responsible

for describing the unidentified information. A hybrid model formed by a WB model

followed by a BB model is shown in Figure 13. This configuration is similar to the
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parallel structure, given that the BB model is used to correct mispredictions, based on

the input given by the WB model. (GLASSEY; STOSCH, 2018)

Figure 13 ± Generic serial structure of a hybrid model that combines a WB model
followed by a BB model.

White-box model Black-box model

Source: Adapted from Glassey and Stosch (2018).

The other arrangement possibility of a serial hybrid model is represented in

Figure 14. This formatting is valid when detailed information about the mechanistic

process is not provided. The BB model is used to predict this knowledge, based on the

process inputs, and propagates it to the WB model, which computes the final result.

(GLASSEY; STOSCH, 2018; ZENDEHBOUDI; REZAEI; LOHI, 2018)

Figure 14 ± Generic serial structure of a hybrid model that combines a BB model
followed by a WB model.

Black-box model White-box model

Source: Adapted from Glassey and Stosch (2018).

When it is feasible to use more sub-models, it is also possible to implement a

mixed structure, that combines serial and parallel configurations (GLASSEY; STOSCH,

2018). This architecture was employed by Doriûen, Heymann, and Schmitt (2022), as

mentioned in the previous section.

Finally, it is important to state that there is not a generally preferred structure.

The choice of the combination method strongly depends on the available knowledge

and also on the quality of the information acquired by each sub-model. (GLASSEY;

STOSCH, 2018)
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3.2.4 Research conclusions

The studies analyzed in this section proved that the expected benefits of hybrid

models are achieved in practice. All results demonstrated that semiparametric models

performed better while requiring fewer training resources (e.g. computational power

and quality and amount of data) when compared to standard ML models.

The selection of the appropriate structure for hybrid models remains a challenge,

given that there is no universally outperforming architecture and the choice of the pre-

ferred arrangement is strongly dependent on the available information in each use case.

In addition, extensive exploration of the literature has revealed an absence of informa-

tion regarding the application of hybrid models in the specific use case of the bachelor

thesis project: predicting the shape deviation of glass in the hot forming process, which

makes it even more challenging to estimate the ideal hybrid model structure for this

prediction task.

However, research has provided a comprehensive overview of the applications

of different semiparametric combinations and this knowledge will be a resourceful input

to the practical work of this bachelor thesis. Furthermore, the general approach to

implementing hybrid models was shown to involve three key steps: determining the

structure, training the BB model, and analyzing the obtained results.

All of the references and knowledge acquired thus far will be taken into account

in the upcoming chapter, which describes the development of a framework that auto-

matically configures hybrid models for predicting shape deviation in the hot forming of

glass.
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4 CONCEPT OF THE CONFIGURATION FRAMEWORK

This chapter introduces the developed concept of the configuration framework.

It begins by highlighting the project requisites and describing some initial assumptions.

Thereafter, the configuration workflow is proposed and all of its steps are thoroughly

detailed. Finally, a description of the process for training hybrid models is presented,

providing a guideline for future works.

4.1 PROJECT REQUISITES

As a general objective, the OptiMassKI project aims to use hybrid models to

predict the glass flow behavior and achieve process optimization in hot forming. The

creation and use of the hybrid model will be automatically implemented in a user-friendly

software tool, which will support mostly SMEs. Thus, the companies will be able to use

explainable ML without the need for specialized personnel.

This bachelor’s thesis is focused on developing the configuration module of the

software tool, with the primary purpose of automatically creating the architecture

of a hybrid model. To sustain this feature, the module should receive input from the

user, describing the use case and the available process data. It should also access a

White-Box library, containing options of parametric models to form the hybrid structure.

The outcome of the configuration module is crucial to the elaboration of future

tasks in the OptiMassKI project including the training of the hybrid models using produc-

tion data and the development of a user interface to sustain the framework. Therefore, to

ensure that the configuration module meets the project necessities, some requirements

should be satisfied, as listed in the following.

• The White-Box Library should be able to be populated by use-case specialists.

• The elements of the White-Box Library should sufficiently characterize parametric

models.

• The user of the framework should be capable of describing the available produc-

tion data and selecting the adequate WB model from the library.

• The hybrid model should have its structure configured automatically, i.e. without

the intervention of the user.

• The hybrid model structure should contain a characterization of the required sub-

models (WB and BB), including a description of the inputs and outputs.

• Although the use case should be used as a guideline for the development, the

configuration module should be adaptable to different applications.
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parameters and provide them to the WB model of type (i), which uses a material model

to simulate shape deviation.

Finally, the third option uses a combination of serial and parallel configurations.

A BB model is initially employed with the function of performing a feature extraction of

the prediction data. This is given as input, in parallel to the WB model of type (i) and

a second BB model. The WB simulates the shape deviation and the final BB model

predicts the residuum. Both outputs are summed to achieve the final value for the shape

deviation.

These structures are merely a starting point for the development of the configura-

tion module. This means that the options for the hybrid model structure should include

but not be restricted to them.

4.3 CONFIGURATION WORKFLOW

As stated in the previous chapter, the selection of the best hybrid model structure

strongly depends on the knowledge available (GLASSEY; STOSCH, 2018). Thus, it is

challenging to generically select a hybrid model structure that could work in various

scenarios, as it is required by the use case.

The chosen approach is to analyze the use case based on the description of the

production data that is available to be input into the hybrid model and the information

that is required by the corresponding WB model. With this information, it is possible to

generate possibilities of hybrid model structures, that, in theory, will result in satisfac-

tory performance. Then, these options are trained with historical production data and,

based on the evaluation and comparison of each model’s performance, the best hybrid

structure is chosen.

A workflow for the configuration of the hybrid model was designed, as shown in

Figure 16. The diagram illustrates the relationship between the different components of

the process.

There are two major components in the configuration process of a hybrid model.

The first is assigned with the definition of the model architecture, based on the use

case requirements given by the user. This step has three primary objectives: definition

of promising model configurations, selection of an adequate WB model, and definition

of the requirements for the ML model.

Then, the acquired model configuration is passed into the next component, re-

sponsible for the model coordination and performance evaluation. The general idea of

this step is to train the hybrid model, especially the BB part, and evaluate the perfor-

mance of hybrid models to choose the best one. The training is executed in iterations

of communications with an AutoML1 tool and the White-Box library, which should be
1 AutoML refers to the use of algorithms to automate the process of building and optimizing ML models.



Chapter 4. Concept of the configuration framework 39

Figure 16 ± Workflow that represents the process of configuring the hybrid model.
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Source: Author.

filled with the existing WB models. This training process includes the execution of the

WB model, which, depending on the case, might require an interface with an external

simulation.

The training task has a complexity of its own. Due to this reason and the existing

lack of production data, the execution of this step is not included in the scope of the

bachelor thesis.

To better comprehend the configuration process, it can be divided into minor

steps. These sub-tasks are outlined subsequently.

4.3.1 Loading the White-Box Library

Chronologically, the first step in the configuration of the hybrid model is to add

entries to the White-Box Library. This can be considered as a setup task. In the work-

flow, this is mentioned as the "admin input" and should be executed by the use-case

specialist, e.g., someone who fully understands the physical behavior of the production

process.

When filling the library, the admin should register the existing WB models and

their features. To properly characterize the model, the information provided should

contain:

• The name of the model.

• The type of the model (external simulation, mathematical model, or expert knowl-

edge).
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• The core of the model. In the case of a mathematical model, this would consist of

a set of equations, for example.

• The required parameters or variables to execute the model (inputs).

• The output parameters.

4.3.2 Generation of hybrid model layouts

With the setup complete and once the user inputs the use case description and

requirements, this information is provided to the component that defines the model

architecture. The first task within this step is to generate the potential hybrid model

layouts.

To simplify this goal and to make sure that all the possibilities are explored, this

step is executed without yet considering the use case limitations and requirements. In

addition, some assumptions are made:

• Only one WB model is being used.

• More than one BB model can be used.

• Two BB models should not be placed consecutively in a serial configuration.

• A parallel combination can only be made with a WB model and a BB model, not

with two models of the same type.

Taking these premises into account, the possibilities for hybrid structures are

generated, producing different combinations of serial, parallel and mixed arrangements.

4.3.3 Evaluation of the hybrid model layouts

After the creation of all possible layouts, they should be evaluated and compared

to the requisites specified by the user. It was previously stated that the structure of the

hybrid model depends on the available knowledge. Therefore, the evaluation addresses

two main questions involving this matter:

(i) Are all the required parameters for the WB model available as process data?

(ii) Is the output of the WB model the same as the user-required output for the entire

hybrid model?

These questions should be applied to each structure generated in the previous

step. As a result of this analysis, it is possible to filter the options in a way that only

the feasible layouts remain in the configuration workflow. It is also then possible to

characterize the sub-models concerning their objective, inputs, and outputs, which will

be covered separately in the next subsection.
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4.3.4 Characterization of the sub-models

To fully define the hybrid model architecture, the remaining task is to, for every

layout option, describe and specify each sub-model by detailing its objective, inputs,

and outputs. The sub-models can be specified by their occurrence in the layout, as

outlined subsequently.

In the case of the white-box models, their inputs and outputs are predetermined

by their characterization in the WB Library. Therefore, this depiction will be maintained

in this step.

Regarding the black-box models placed in parallel with a WB model, there

is only one possible objective. Their purpose is to predict the irregularities in the result

produced by the WB model in parallel. This is achieved by receiving the same inputs as

the WB model and generating the corresponding noise as output. An example of this

depiction is the first BB model of the structure presented by Doriûen, Heymann, and

Schmitt (2022).

To characterize the single BB models, that are placed in series with other com-

ponents, it is crucial to look into the analysis of the questions made in the previous

subsection.

When not all the required parameters for the WB model are available and a

black-box model is placed preceding a WB model or a parallel configuration, its

function is to predict the unknown information. To achieve this, it receives the same

inputs as the hybrid model and outputs the missing parameters. This logic is employed

in the model suggested by Psichogios and Ungar (1992).

Concerning the situations with a black-box model following a WB model or a

parallel configuration it receives as input a combination of the hybrid model input and

the output of the previous component (a single WB model or the parallel configuration),

and it generates the desired output for the hybrid model. However, the objective of this

BB model depends on the output of the WB model.

If the output of the WB model is the same as the hybrid model’s, then the BB

model’s function is to predict the noise. An example of this scenario is found in the

architecture proposed by Aguiar and Filho (2001). On the contrary, the BB model has

the purpose of predicting the desired output of the hybrid model, as is the case of the

second BB model in the structure presented by Doriûen, Heymann, and Schmitt (2022).

4.3.5 Description of the training process

Although the scope of this thesis does not encompass the implementation of

the training of the hybrid model, it is important to outline how this step should proceed.

The training task requires understanding the concept of the hybrid models and the

generated architectures. Thus, a description of this process is crucial for the continuity
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of the work and to guarantee that it is feasible.

It is necessary to train the hybrid models because they are composed of BB

models, which require training. In this step, the WB models only need to be executed in

order to obtain the required data to train the BB models.

This step involves feeding the necessary historical data to the sub-models, con-

trary to the model definition step, which only demanded a description of the data. For

the WB model, it is only required to provide the input data, while it is needed to supply

input and output data to train the BB models.

Prior to describing the general training process, it is crucial to comprehend the

execution of the WB model. The steps of this task vary according to the type of the

model, as detailed subsequently.

• Automatic external simulation

1. Set the values of the required parameters.

2. Trigger the execution of the simulation program.

3. Set the value of the output parameters based on the result of the simulation.

• Manual external simulation

1. Set and export the values of the required parameters.

2. Save current information about the training process.

3. Pause execution and wait for user to continue with execution.

4. Resume execution.

5. Set the value of the output parameters based on the result of the simulation.

• Mathematical model

1. Set the values of the required parameters.

2. Evaluate the equations that characterize the WB models.

3. Set the value of the output parameters based on the result of the simulation.

• Expert knowledge

1. Get the input parameters.

2. Wait for the user to perform a manual feature selection based on physics

knowledge.

3. Set the selected parameters as outputs.
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The training process is focused on training the BB sub-models of the hybrid struc-

ture. In future works, an AutoML tool is going to be used to execute this task. Therefore,

the only requirement, at the moment, is to determine or provide the necessary training

data.

Generally, the BB model can be placed in three different ways: in parallel with a

WB model, following a WB model/parallel configuration, or preceding a WB model/par-

allel configuration.

When the BB model is placed in parallel with the WB model, the output dataset

is not directly available to train the BB model. Hence, the WB model should be executed

and the output dataset is then obtained by calculating the difference between the global

and the WB model outputs.

In the case of the BB model being placed following a WB model, the input dataset

is not directly available to train the BB model. Thus, the WB model should be executed

to acquire this data. This is analogous to the procedure when the BB model is placed

following a parallel component.

The situation in which the BB model is placed preceding a WB model or parallel

configuration is not as simple to handle. In this case, the BB model is used to predict the

missing parameters of the WB model. However, given that this is unknown information,

there might be cases where there is also no historical data to train the BB model.

Two approaches are proposed to handle this case by generating a training

dataset of unknown information. The first involves creating a ML model to identify

the relation between the missing parameters and the global input and output, with the

help of the WB model. The second option is to use an optimization algorithm to find

values for the missing parameters that, when applied to the WB model, produce the

closest value to the known global output.

These approaches can be exemplified using the second hybrid model structure

presented in section 4.2, as shown in Figure 20.

Figure 20 ± Example of a hybrid model structure where the missing parameters are
not available as historical data.
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Source: Author.

In this case, the first approach consists of the following steps:

1. Run the simulation n times using (different) values of X and y to obtain Sd .
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2. Create a standard ML model to identify the relation between y , X and Sd .

3. Input the training values of X and Sd to the ML model and obtain y

4. Proceed to train the official BB model with the generated y data.

Alternatively, the second approach performs the steps:

1. Iteratively try to find values for y using an optimization algorithm.

2. The idea is to find values for y that when applied to the WB model produce the

closest value to the Sd training value.

Taking into account the considerations about the placement of the BB model

and the execution procedure of the different WB models, a workflow that describes the

training process of a hybrid model is displayed in Figure 21. The implementation of this

process is reserved for a future task within the OptiMassKI project when the required

production data is available, as outlined in section 6.2.
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5 CODE IMPLEMENTATION

After defining the concept of the configuration framework in the previous chapter,

the present chapter concerns the implementation of the workflow in Python scripts. An

object-oriented approach is used to represent the major elements of the framework.

Thus, each created class is detailed. Finally, the created package is put to the test by

executing the workflow using information from the use case.

5.1 TOOLS AND TECHNOLOGIES STACK

As stated in section 1.2, the main product of the OptiMassKI project is a software

tool that handles the creation and usage of hybrid ML models. Thus, after creating the

concept of the configuration framework, the next step is to develop a computer program

to put it into practice.

The chosen programming language to implement the functionalities was Python.

Aside from being easy to use, it is the most famous language for data science and

ML. Another advantage of Python is its object-oriented structure, which will be used to

develop the desired steps of the workflow, as outlined in the next section.

In future works, FastAPI and AutoML tools should also be used in the OptiMassKI

project. FastAPI is a framework for building APIs with Python and will be used to make

the communication between the backend and frontend interfaces of the software tool.

AutoML is a concept in which the process of developing a ML model is completely

automated, and it will be employed in the training process of the BB models. The most

used AutoML libraries in Python are Auto-sklearn and Auto-PyTorch.

Given that these tools are known for being user-friendly and having easy imple-

mentation, their integration with the module developed in this thesis should be uncom-

plicated and require minimal effort.

5.2 OBJECT-ORIENTED DESIGN

An object-oriented approach was employed to implement the configuration mod-

ule in Python. This procedure facilitated the design and development of the workflow

by organizing the system into modular and reusable components.

Object-Oriented Programming (OOP) is a concept in which the software is orga-

nized around objects, instead of functions and logic. The main component of a OOP

structure is the classes, data types that characterize objects, including methods and

attributes. The objects are the instances of classes, with specifically assigned data.

Methods are functions of a class that defined certain behaviors and attributes are used

to represent the state of the object.

The class diagram of the configuration module is depicted in Figure 22.
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Figure 22 ± Class diagram of the configuration module.
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Each created class represents an important instance within the configuration

workflow, as described in the subsequent topics. They were built respecting the require-

ments stated in the previous chapter, in order to achieve the expected functionality.

Aside from their own functionalities, every class has the save and load methods.

They are responsible for storing and retrieving the existent objects from pickle files.

A pickle file has the extension ’.pkl’ and is used to store serialized Python objects

in a binary format. It retains the structure and data of the original objects and can be

used with various types, including classes and instances.

The code that creates the save and load methods is very similar for each class.

An example of how it is done in the Parameter class is depicted in Code Listing 1.

Code Listing 1 ± Definition of the save and load methods for the Parameter class.
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1 @classmethod

2 def save(cls):

3 file_name = "./data/" + cls.__name__ + ".pkl"

4

5 with open(file_name, ’wb’) as f:

6 pickle.dump((cls.all, cls._existing_names,

cls._id_counter), f)

7

8 @classmethod

9 def load(cls):

10 file_name = "./data/" + cls.__name__ + ".pkl"

11 try:

12 with open(file_name, ’rb’) as f:

13 cls.all, cls._existing_names, cls._id_counter =

pickle.load(f)

14 except FileNotFoundError:

15 cls._existing_names = set()

16 cls._id_counter = 0

17 cls.all = []

In the save method, the pickle file is opened and the class attributes, that store

all the necessary information, are stored in it. Then, in the load method, the same file

is opened and the contained information is loaded. If the file has not yet been created,

the class attributes are initialized with empty values.

5.2.1 Parameter class

The Parameter class is used to represent all the variables and constants involved

in the hybrid model. It is later used to compose the inputs, outputs, and equations.

Parameter has three class attributes, _existing_names, _id_counter, and all,

that support the logic of creating new instances. To initiate a new Parameter object, its

name must be provided. A conference is made to make sure there is no other instance

registered with the same name and the object is created by setting its attributes id,

name, value, and description and updating the class’s attributes. Then the attributes

can be set later using the methods set_value and set_description, respectively.

This logic is implemented as shown in Code Listing 2.

Code Listing 2 ± Definition of the Parameter class.

1 class Parameter:

2 _existing_names = set()

3 _id_counter = 0

4 all = []

5

6 def __init__(self, name: str) -> None:

7 if name in self._existing_names:
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8 raise ValueError(f"A parameter with the name

’{name}’ already exists")

9

10 self.id = self._id_counter

11 self.name = name

12 self.value = 0 # default value

13 self.description = "" # default value

14

15 Parameter.all.append(self)

16 self._existing_names.add(name)

17

18 def set_value(self, value: float) -> None:

19 try:

20 self.value = float(value)

21 except ValueError:

22 print(f"Error: ’{value}’ is not a valid number")

23

24 def set_description(self, description: str) -> None:

25 self.description = description

5.2.2 Equation class

This class is used to describe the equations that form the WB model of type

"mathematical model". To create a new instance of the Equation class, it is necessary

to provide:

• The name of the equation, as a string.

• A string containing the equation, where all the parameters are limited by brackets

and the string is the result of the equation when the output variable is isolated

(e.g. "[a]*[x]+[b]" should be the string associated to equation y = a · x + b,

given that y is the output).

• The inputs of the equation, as a list of Parameter instances. They can initially

have the default value.

• The output of the equation, as a Parameter.

When an instance of Equation is initialized, the parameters of the given equation

are extracted, by looking for the characters inside brackets. Then, all of the instance’s

attributes are defined. This happens inside the __init__ method, which can be seen in

Code Listing 3.

Another essential method shown in the code snippet is solve_equation. It re-

places the parameters in the equation for their values and proceeds to solve it, storing

the result as the equation’s output. It returns an error if all the parameters have empty
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values, indicating that they should have attributed values in order for the equation to be

solved.

Code Listing 3 ± Definition of the Equation class.

1 class Equation:

2 _existing_names = set()

3 _id_counter = 0

4 all = []

5

6 def __init__(self, equation: str, name:str,

inputs:List[Parameter]=[], output:Parameter=None) -> None:

7

8 params = []

9 params_names = [match[1:-1] for match in

re.findall(r"\[.*?\]", equation)]

10 for p in params_names:

11 params.append(p)

12

13 self.id = self._id_counter

14 self.equation = equation

15 self.parameters = params

16 self.name = name

17 self.inputs = inputs

18 self.output = output

19

20 def solve_equation(self) -> float:

21 equation = self.equation

22 input_sum = 0

23 for i in self.inputs:

24 equation = equation.replace(f"[{i.name}]",

str(i.value))

25 input_sum += i.value

26

27 if input_sum > 0:

28 result = eval(equation, {"sqrt": sqrt})

29

30 print(f"{self.output.name} = {self.equation}")

31 print(f"{self.output.name} = {equation}")

32 print(f"{self.output.name} = {result}")

33

34 self.output.value = result

35 else:

36 raise ValueError(f"Please make sure that the

inputs have been provided values.")
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5.2.3 Model class

The Model class serves to define the sub-models within the hybrid structure. Its

initialization method, as demonstrated by Code Listing 4, is uncomplicated. This class

acts as a parent class for both the BlackBoxModel and WhiteBoxModel classes, which

encompass more complex functionalities.

Code Listing 4 ± Definition of the Model class.

1 class Model:

2

3 def __init__(self, inputs:List[Equation]=[],

outputs:List[Equation]=[]) -> None:

4 self.inputs = inputs

5 self.outputs = outputs

BlackBoxModel is also a straightforward class, as outlined in Code Listing 5.

Its initialization method inherits from the parent class, where two lists of Parameter

instances are assigned as the inputs and output of the sub-model, and initial values are

set for the remaining attributes. Moreover, the class includes the set_objective method,

which is used to select the objective of the BB model.

Code Listing 5 ± Definition of the BlackBoxModel class.

1 class BlackBoxModel(Model):

2 _id_counter = 0

3 all = []

4

5 def __init__(self, inputs:List[Equation]=[],

outputs:List[Equation]=[]) -> None:

6 super().__init__(inputs, outputs)

7 self.id = self._id_counter

8 BlackBoxModel.all.append(self)

9

10 def set_objective(self, objective:str):

11 self.objective = objective

The second subclass of Model is the WhiteBoxModel class, which is used to

characterize the parametric sub-model of the hybrid structure.

As outlined in Code Listing 6, the initialization of this class is similar to the others,

as it defines the main attributes instance: inputs, outputs, calculation_model, id, name

and objective. Before attributing the given calculation_model, it is necessary to assure

that it is within the valid options: "equations", "expert-knowledge", "auto-simulation" or

"manual-simulation".

Code Listing 6 ± Initialization of the WhiteBoxModel class.

1 class WhiteBoxModel(Model):

2 _id_counter = 0
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3 all = []

4

5 def __init__(self, calculation_mode:str, name:str ,

objective: str, inputs:List[Parameter]=[],

outputs:List[Parameter]=[]) -> None:

6 super().__init__(inputs, outputs)

7

8 calculation_types = ["equations", "expert-knowledge",

"auto-simulation", "manual-simulation"]

9 assert calculation_mode in calculation_types, "The

calculation mode should be chosen between ’equations’,

’expert-knowledge’, ’auto-simulation’ or

’manual-simulation’."

10

11 self.id = self._id_counter

12 self.calculation_mode = calculation_mode

13 self.name = name

14 self.objective = objective

15

16 WhiteBoxModel.all.append(self)

This class includes other relevant methods. The methods set_equations and

set_simulation are used to set the functionalities of the WB model, as displayed in Code

Listing 7. When it’s of type "mathematical model", the calculation_mode should be set

to "equations", and the collection of equations that define the model can be informed

using the method set_equations. Alternatively, if the calculation_mode is defined as

"auto-simulation" or "manual-simulation", the method set_simulation is used to define

the files where the inputs and outputs of the WB model are stored. In addition, if the

calculation_mode is "auto-simulation", it informs the command line that triggers the

execution of the simulation program.

Code Listing 7 ± Definition of the set_equations and set_simulation methods of the

WhiteBoxModel class.

1 def set_equations(self, equations: Tuple[Equation]):

2 assert self.calculation_mode == "equations", "The model’s

calculation mode should be ’equations’"

3 self.equations = equations # In the order they are going

to be evaluated

4

5 def set_simulation(self, output_file:str, input_file:str,

command_line:str=None):

6 assert self.calculation_mode in ["auto-simulation",

"manual-simulation"], "The model’s calculation mode should

be ’auto-simulation’ or ’manual-simulation’"

7 self.sim_input_loc = input_file

8 self.sim_output_loc = output_file

9
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10 if self.calculation_mode == "auto-simulation":

11 assert len(command_line) > 0, "The command line should

be provided."

12 self.sim_args = shlex.split(command_line)

The solve_model method serves to execute the WB model. This process is

different depending on the type of the model.

As shown in Code Listing 8, when the calculation mode is "equations", it is

asserted that the inputs and outputs of the provided set of equations match the ones of

the WB model. Then, each equation is solved, resulting in the final output.

Code Listing 8 ± Definition of the solve_model of the WhiteBoxModel method class

when calculation mode is "equations".

1 if self.calculation_mode == "equations":

2 assert self.inputs == self.equations[0].inputs, "The

inputs of the first equation should be the same as the

White Box Model"

3 assert self.outputs[0] == self.equations[-1].output, "The

outputs of the last equation should be the same as the

White Box Model"

4 for e in self.equations:

5 assert len(e.inputs) > 0 and e.output != None,

"Equation has no input and/or output defined"

6

7 e.solve_equation()

8

9 self.outputs[0].value = self.equations[-1].output.value

Code Listing 9 describes the case in which the calculation mode is "expert-

knowledge", where the WB model represents a manual feature selection based on

physical principles. To solve this type of model, it is required that the optional argument

selected_params of the solve_model method is not empty, as it provides the selected

parameters by the expert. Then, these given parameters are set as the outputs of the

WB model.

Code Listing 9 ± Definition of the solve_model of the WhiteBoxModel method class

when calculation mode is "expert-knowledge".

1

2 elif self.calculation_mode == "expert-knowledge":

3 assert len(selected_params) > 0, "Please provide the

parameters selected by the expert"

4 assert all(p in self.inputs for p in selected_params), "The

selected parameters should be contained in the model’s

inputs"

5

6 self.outputs = []

7 for s in selected_params:
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8 self.outputs.append(s)

When the calculation mode is "auto-simulation", the inputs of the WB model are

stored in the previously provided input file. Subsequently, a Python subprocess starts,

triggering the execution of the simulation program, and the results are read from the

provided output file into the output value of the WB model. Code Listing 10 displays the

implementation of this logic.

Code Listing 10 ± Definition of the solve_model of the WhiteBoxModel method class

when calculation mode is "auto-simulation".

1 elif self.calculation_mode == "auto-simulation":

2 with open(self.sim_input_loc, mode=’w’, newline=’’) as

file:

3 writer = csv.writer(file)

4

5 writer.writerow([’name’, ’value’])

6

7 for i in self.inputs:

8 writer.writerow([i.name, i.value])

9

10 subprocess.run(self.sim_args)

11

12 with open(self.sim_output_loc, mode=’r’) as file:

13 reader = csv.reader(file)

14 next(reader)

15 index = 0

16 for row in reader:

17 name, value = row

18 assert self.outputs[index].name == name, "Output

does not match expected parameter"

19 self.outputs[index].value = value

20 index += 1

The case in which the calculation mode is "manual-simulation" is similar to the

previous one, with the difference that the execution of the simulation program is not

automatically triggered. As represented in Code Listing 11, in the solve_model method,

the only action is storing the inputs of the WB model in the previously provided input

file. Then, the method resume_execution, defined in Code Listing 12, is used to read

the outputs provided by the simulation and associate them to the WB model. This last

method should be called after the execution of the simulation program.

Code Listing 11 ± Definition of the solve_model method of the WhiteBoxModel class

when calculation mode is "manual-simulation".

1 elif self.calculation_mode == "manual-simulation":

2 with open(self.sim_input_loc, mode=’w’, newline=’’) as

file:

3 writer = csv.writer(file)
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4

5 writer.writerow([’name’, ’value’])

6

7 for i in self.inputs:

8 writer.writerow([i.name, i.value])

9

10 print("Resume the execution after running the simulation.")

Code Listing 12 ± Definition of the resume_execution method of the WhiteBoxModel

class.

1 def resume_execution(self):

2 with open(self.sim_output_loc, mode=’r’) as file:

3 reader = csv.reader(file)

4 next(reader)

5 index = 0

6 for row in reader:

7 name, value = row

8 assert self.outputs[index].name == name, "Output

does not match expected parameter"

9 self.outputs[index].value = value

10 index += 1

5.2.4 UserInput class

The UserInput class is used to represent the use case requirements provided

by the user at the beginning of the configuration workflow. Some attributes are used to

characterize the user input and should be provided when creating a new instance of

this class:

• The inputs of the hybrid model, as a list of Parameter objects. This is used to

describe the available data.

• The outputs of the hybrid model, as a list of Parameter objects. This should

represent the variable(s) that the user requires the hybrid model to predict.

• The WB model associated with the use case, as an instance of the WhiteBox-

Model class.

• A string containing a description for the hybrid model.

These attributes can be set in the initialization of a UserInput instance. Moreover,

the assigned WB model can also be set using the set_wb_model method.

The definition of this class is given by Code Listing 13.

Code Listing 13 ± Definition of the UserInput class.

1 class UserInput:
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2 _id_counter = 0

3 all = []

4

5 def __init__(self, inputs:list=[], outputs:list=[],

6 description:str="",

selected_wb_model:WhiteBoxModel=None) -> None:

7

8 self.id = self._id_counter

9

10 self.inputs = inputs

11 self.outputs = outputs

12 self.description = description

13 self.selected_wb_model = selected_wb_model

14

15 def set_wb_model(self, selected_wb_model:WhiteBoxModel) ->

None:

16 self.selected_wb_model = selected_wb_model

5.2.5 Layout class

The Layout class holds a big part of the functionalities of the configuration work-

flow. It is used to represent the generation and evaluation of the hybrid model structures,

as well as the characterization of each sub-model.

There are some attributes that must be set when a Layout instance is created.

These are:

• A string describing the category of the layout. It can be "serial", to represent the

structures that are purely serial, or "parallel" to portray the structures that contain

any parallel component.

• A string structure_def describing the structure of the hybrid model.

• A list of WhiteBoxModels and BlackBoxModels that compose the structure of the

model.

• A boolean flag evaluated, that indicates if the layout has been already evaluated.

• A boolean flag adequate, that indicates a model that has already been evaluated

and matches the use case requirements.

Code Listing 14 portrays the initialization of a Layout object, defined by the

__init__ method.

Code Listing 14 ± Initialization method of the Layout class.

1 def __init__(self, category: str, structure_def:str,

structure:list=[], evaluated:bool=False,

adequate:bool=True) -> None:
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2

3 self.category = category

4 self.structure_def = structure_def

5 self.structure = structure

6 self.evaluated = evaluated

7 self.adequate = adequate

8

9 Layout.all.append(self)

The functionality of generating hybrid model layouts is defined by the class

method generateLayouts, as shown in Code Listing 15.

In this method, first, the quantity of spaces is defined based on the amount of

available white models. For the use case of this thesis, there is always only one available

WB model, but this function is flexible for other situations. The spaces represent the

maximum quantity of sub-models that the hybrid model can have, and it is defined as

twice the amount of WB models plus one. Each space will later be occupied by a BB

model, a WB model, or a parallel component, or it can also be left blank.

Then, the string models is created to indicate all the sub-models that can be

used in the hybrid model structure. The term ’X’ is used to represent the part that will

hold the WB model, which can be a single WB model or a parallel component, and the

term ’B’ represents a BB model.

Subsequently, a permutation is executed on the model strings, to generate all

the possible combinations of the sub-models. The result is reviewed so that there is no

structure with two consecutive BB models.

Thereafter, the Layout objects are generated. Each combination, which has an

’X’ term, will originate two layouts: one of type "serial", in which the ’X’ term is replaced

by ’W’ to represent a single WB model, and one of type "parallel", where the ’X’ term

is replaced by ’P’ to describe a parallel component. Finally, a Layout containing only a

parallel structure is also generated.

Code Listing 15 ± Definition of the class method generateLayouts of the Layout class.

1 @classmethod

2 def generateLayouts(cls, available_wb_models: list):

3

4 n = len(available_wb_models)

5 print(f’Generating layouts using {n} wb models’)

6

7 # Defining the amount of spaces

8 spaces = n*2 + 1

9

10 # Setting the models that can be combined

11 models = ’X’*n + (spaces - n)*’B’

12

13 permutations = list(set(itertools.permutations(models)))
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14

15 possible_configurations = [’’.join(permutation) for

permutation in permutations]

16

17 for i in range(len(possible_configurations)):

18 while ’BB’ in possible_configurations[i]:

19 possible_configurations[i] =

possible_configurations[i].replace(’BB’, ’B’)

20

21 for config in possible_configurations:

22 serial_structure = config.replace(’X’, ’W’)

23 parallel_serial_structure = config.replace(’X’, ’P’)

24

25 Layout(category=’serial’,

26 structure_def=serial_structure)

27 Layout(category=’parallel’,

28 structure_def=parallel_serial_structure)

29

30 # Adding a structure with only a paralel model

31 Layout(category=’parallel’, structure_def=’P’)

32

33 print(’Generated layouts:’)

34 for l in Layout.all:

35 print(f’{l.structure_def} - {l.category} ’)

To obtain a list of WhiteBoxModel and BlackBoxModel objects based on the

structure definition of each generated layout, the set_structure method is defined, as

shown in Code Listing 16. This method creates a WhiteBoxModel or BlackBoxModel

object to represent the sub-model in each space. The parallel component is represented

by a list containing a WB model and a BB model.

Code Listing 16 ± Definition of the set_structure method of the Layout class.

1 def set_structure(self, wb:WhiteBoxModel):

2 self.structure = []

3 for model in self.structure_def:

4 if model == ’P’:

5 self.structure.append([wb, BlackBoxModel()])

6 elif model == ’W’:

7 self.structure.append(wb)

8 elif model == ’B’:

9 self.structure.append(BlackBoxModel())

10 else:

11 pass

The Layout class has a last method, evaluate, that serves to analyze each struc-

ture that was previously generated, assess if it meets with the use case requisites,

and characterize its sub-models. It respects the concept and steps defined in subsec-

tion 4.3.3 and subsection 4.3.4.
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The first step in this method, as shown in Code Listing 17, is to check the two

questions: "Are all the required parameters for the WB model available as process

data?" and "Is the output of the WB model the same as the user-required output for the

entire hybrid model?".

Code Listing 17 ± Evaluation of the two questions that guide the evaluation of the gen-

erated hybrid models.

1 # Check if all wb parameters are contained in the set of

parameters given as available by the user

2 all_params_available =

set(wb.inputs).issubset(user_input.inputs)

3 # Check if the output of the wb model is the same as the one

defined by the user

4 same_outputs = wb.outputs == user_input.outputs

Then, as portrayed in Code Listing 18, the code proceeds to create an initial ver-

sion of a list of adequate layouts, based on the result of the first verification. The list Lay-

out._adequate_layouts is a class attribute and starts empty. As each generated layout

is evaluated, its adequate attribute may be altered, and the Layout._adequate_layouts

list may be populated.

Code Listing 18 ± First assessment of the generated hybrid model layouts.

1 if all_params_available:

2 # Remove options with a BB model preceding a single

3 # wb model or a parallel combination

4 for l in Layout.all:

5 if l.structure_def[0] == ’B’:

6 l.adequate = False

7 else:

8 Layout._adequate_layouts.append(l)

9 l.set_structure(wb)

10 else:

11 # Remove options without a BB model preceding a single

12 # wb model or a parallel combination

13 for l in Layout.all:

14 if l.structure_def[0] != ’B’:

15 l.adequate = False

16 else:

17 Layout._adequate_layouts.append(l)

18 l.set_structure(wb)

19

20 assert isinstance(l.structure[0], BlackBoxModel)

21

22 # inputs of l[0] = given parameters

23 l.structure[0].inputs = user_input.inputs

24 # outputs of l[0] = missing parameters
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25 l.structure[0].outputs = [i for i in wb.inputs if

i not in user_input.inputs]

26

27 l.structure[0].set_objective("predict missing

parameter")

Subsequently, the generated list of adequate layouts is set to be re-evaluated

under the perspective of the second question, as described by Code Listing 19. For

each layout, it may be removed from the list if the WB output is not the same as the

one required by the user, and there is not a BB model following a single WB model or

a parallel combination. The involved BB models are also characterized by their inputs,

outputs, and objectives. Finally, the code characterizes the BB model placed in parallel

to the WB model in every layout of "parallel" category.

Code Listing 19 ± Refinement of the list of adequate hybrid model layouts.

1 for l in Layout._adequate_layouts:

2 if not same_outputs and l.structure_def[-1] != ’B’:

3 l.adequate = False

4 Layout._adequate_layouts.remove(l)

5 else:

6 if l.category == ’serial’:

7 # B after W predicts the final result based on the

output of W

8 i = l.structure_def.index(’W’) + 1

9

10 try:

11 l.structure[i].inputs = wb.outputs +

user_input.inputs

12 l.structure[i].outputs = user_input.outputs

13 l.structure[i].set_objective("predict final

output")

14 except:

15 pass

16 elif l.category == ’parallel’:

17 # Defining the inputs and outputs of the bb model

18 # when in parallel with the wb model

19 pi = l.structure_def.index(’P’)

20 bb_model = l.structure[pi][1]

21 bb_model.set_objective("predict difference")

22 bb_model.inputs = wb.inputs

23 try:

24 bb_model.outputs = [Parameter(’diff’)]

25 except:

26 for p in Parameter.all:

27 if p.name == "diff":

28 bb_model.outputs = p

29
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30 # B after P predicts the final result based on the

output of (W + B)

31 try:

32 i = l.structure_def.index(’P’) + 1

33 print(’wb’, l.structure[i-1][0].outputs)

34 print(’bb’, l.structure[i-1][1].outputs)

35 l.structure[i].inputs =

l.structure[i-1][0].outputs + l.structure[i-1][1].outputs

36 l.structure[i].outputs = user_input.outputs

37 l.structure[i].set_objective("predict final

output")

38 except:

39 pass

40

41 l.evaluated = True

5.3 VALIDATION AND TESTING

To confirm that the code implementation of the configuration module is adequate,

it is necessary to test the developed classes in an analogous situation to the use case.

Thus, the workflow presented in section 4.3 is going to be put into practice using the

created methods.

Prior to the coding, the use case must be addressed. As discussed previously,

the main objective is to predict the shape deviation in the hot forming process. In this

context, the available input parameters and the desired outputs are described in Table 1.

Table 1 ± Available input and desired output for the use case.

Input Output
Parameter Description Parameter Description

TMold (t), TGlass Time series data of temperature

Sd Shape deviation

F (t) Time series data of pressure (force)
THeat Heating temperature
tHeat Heating time

v Pressing speed
thold Holding time

µ, n∞, Tg , m, E1, T , t Simulation parameters

Source: Author.

In addition, the correspondent WB model should be described. It is executed

manually through an external simulation, and the involved parameters are defined in

Table 2.

By comparing both tables, some conclusions can be made. The first is that there

are some required inputs for the WB model that are not available in the inputs provided

by the user. This indicates that a BB model should be employed to predict the missing

parameters, and it should precede the WB model in the hybrid structure.
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Table 2 ± Inputs and outputs of the WB model employed in the use case.

Input Output

µ

Sd (Shape deviation)

v

n∞

Tg

m

E1

T

t

A(℘)
B(℘)
T0(℘)

Source: Author.

Furthermore, the output of the WB model is the same as the desired output by

the user. Thus, there is no necessity for a BB model to follow the WB model in the hybrid

structure, although this can be an approach to predict the noise of the final output.

With these definitions, it is possible to apply the use case to the configuration

module code. The first step is to create all the necessary Parameter instances, as done

in Code Listing 20.

Code Listing 20 ± Initialization of the necessary Parameter instances for the use case.

1 T_mold = Parameter(’T_mold’)

2 T_glass = Parameter(’T_glass’)

3 F = Parameter(’F’)

4 T_heat = Parameter(’T_heat’)

5 t_heat = Parameter(’t_heat’)

6 v = Parameter(’v’)

7 t_hold = Parameter(’t_hold’)

8 mu = Parameter(’mu’)

9 n_infty = Parameter(’n_infty’)

10 T_g = Parameter(’T_g’)

11 m = Parameter(’m’)

12 E_1 = Parameter(’E_1’)

13 T = Parameter(’T’)

14 t = Parameter(’t’)

15 A = Parameter(’A’)

16 B = Parameter(’B’)

17 T_0 = Parameter(’T_0’)

18 S_d = Parameter(’S_d’)

Subsequently, the correspondent WB model and user input are defined, as

shown in Code Listing 21.

Code Listing 21 ± Creation of the WhiteBoxModel and UserInput instances for the use

case validation.
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1 wb = WhiteBoxModel(calculation_mode="manual-simulation",

2 name="Material model (simulation and

3 shrinkage)",

4 goal="Predict shape deviation",

5 inputs=[mu, v, n_infty, T_g, m, E_1, T, t,

6 A, B, T_0],

7 outputs=[S_d])

8

9 user_input = UserInput(inputs=[T_mold, T_glass, F, T_heat,

10 t_heat, t_hold,mu, v, n_infty,

11 T_g, m, E_1, T, t],

12 outputs=[S_d],

13 description="Prediction of shape

14 deviation",

15 wb_model=wb)

Thereafter, the command Layout.generateLayouts([wb]) is applied to

generate all the possibilities of hybrid model structures, and finally, the command

Layout.evaluate(user_input=user_input, available_wb_models=[wb])

is executed to evaluate those options according to the use case description. As illus-

trated in Figure 23, the resultant adequate layout options are:

• The serial structure BWB.

• The mixed structure BPB.

• The serial structure BW.

• The mixed structure BP.

Figure 23 ± Hybrid model structures generated by the configuration workflow in the
use case validation.

BB WB BB

BB

WB

BB

BB

BB WB

BB

WB

BB

Source: Author.
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To analyze the characterization of the submodels, an auxiliary code was made to

detail each model in the generated structures. As an example, the output of the outline

of the first structure ("BWB") is shown subsequently.

MODEL BwB (Category: serial)

OUTLINE OF THE SUBMODELS:

Position: 0

Type: Black-box Model

Inputs: [’T_mold’, ’T_glass’, ’F’, ’T_heat’, ’t_heat’,

’t_hold’, ’mu’, ’v’, ’n_infty’, ’T_g’, ’m’, ’E_1’, ’T’, ’t’]

Outputs: [’A’, ’B’, ’T_0’]

Objective: predict missing parameter

--------------------------------------

Position: 1

Type: White-box Model

Inputs: [’mu’, ’v’, ’n_infty’, ’T_g’, ’m’, ’E_1’, ’T’, ’t’,

’A’, ’B’, ’T_0’]

Outputs: [’S_d’]

Objective: Predict shape deviation

--------------------------------------

Position: 2

Type: Black-box Model

Inputs: [’S_d’, ’T_mold’, ’T_glass’, ’F’, ’T_heat’, ’t_heat’,

’t_hold’, ’mu’, ’v’, ’n_infty’, ’T_g’, ’m’, ’E_1’, ’T’, ’t’]

Outputs: [’S_d’]

Objective: predict final output
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6 CONCLUSION

The final chapter of this document concludes the presented work and outlines

the next tasks within the OptiMassKI project. The first section provides a conclusive

summary of the bachelor thesis project, highlighting the accomplishment of the pro-

posed objectives. Then, in the second section, the future works are described, as they

provide continuity to the developed configuration framework.

6.1 CONCLUSIVE SUMMARY

This document presented the development of a configuration framework that

creates hybrid models as an approach to optimize the hot forming process in the

production of thin glass. This is an important step within the OptiMassKI project, which

aims to create a software tool that supports SMEs to improve their production process

using data-driven solutions, without the requirement for a specialized data science

team.

As a result of a literature survey, it was concluded that there are no known

applications of hybrid models to the required use case, although this is an approach

that has existed for many years and has been successfully applied to other situations.

Nonetheless, the research was valuable to provide information on the theory behind

hybrid models and how to define their structure.

Based on the gathered information and on the requirements of the use case, the

concept of the configuration framework was created. A comprehensive workflow was

developed, describing generally how the process should occur and detailing the creation

of a White Box Library, and the generation and evaluation of hybrid model structures.

Furthermore, considering the estimated limitations concerning the availability of data,

a guideline was provided on how to train the hybrid models, which is the following step

to the work presented in this document.

Thereafter, a Python package was created to implement the concept of the con-

figuration framework. An object-oriented approach was used to describe the important

instances of the process. Finally, this development was validated by going through the

workflow steps using the information on the use case.

Taking these outcomes into consideration, it is possible to conclude that the

main objectives of the bachelor thesis project were achieved. The developed framework

is capable of generating hybrid model structures automatically and can be applied to

different situations, without the need for the user to be a data science specialist. This

work is one of the central steps of the OptiMassKI project and has provided a valuable

result to base future developments.
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6.2 FUTURE WORK

There are some tasks within the OptiMassKI project that can already be outlined

and will provide continuity to the project presented by this document. These tasks

concern the training and evaluation of the generated hybrid model structures and the

creation of the user interface that will support the functionalities.

6.2.1 Training and evaluating the hybrid models using AutoML

The immediate next step to the work developed in this thesis involves applying

an AutoML tool to train the BB parts of the hybrid model. This training process should

be integrated into the existing code to ensure it aligns with the entire Hybrid Model

Configuration process.

In addition, it is necessary to define evaluation metrics that take variables like

accuracy, error, processing time, and computational effort into account, enabling the

selection of the best-performing hybrid model structure. Subsequently, a code covering

the usage phase of the tool, as described in Figure 1, also needs to be developed.

To train the hybrid models and validate both the configuration and usage pro-

cesses, historical process data is required to execute the model and ensure its effec-

tiveness.

6.2.2 Creation of user interface to configure and use the hybrid model

Another important future task of the OptiMassKI project encompasses the de-

velopment of a front-end software to sustain the constructed functionalities. This user

interface should cover both the configuration and usage phases.

In the configuration phase, the tool should enable tasks such as feeding the

WB Library with new models, setting up use case requirements (including general

inputs, outputs, available data, and selected WB models), and providing notifications

to the user when simulations are running and the process needs to be restarted. The

interface should also allow for visualizing the progress of hybrid model configuration

and evaluating trained hybrid models, with the ability to manually change the chosen

model.

In the usage phase, the interface should enable users to input process data and

easily visualize the obtained results.
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