

# UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOLOGIA

Marvim Francis Mota Alves

Padrões de densidade no Grupo Itararé usando perfilagem geofísica de poços, borda leste da Bacia do Paraná, Brasil.

Florianópolis 2023 Marvim Francis Mota Alves

Padrões de densidade no Grupo Itararé usando perfilagem geofísica de poços, borda leste da Bacia do Paraná, Brasil.

Dissertação submetida ao Programa de Pós-Graduação em Geologia da Universidade Federal de Santa Catarina como requisito parcial para a obtenção do título de Mestre em Geologia.

Orientador(a): Prof. Dr. Marivaldo dos Santos Nascimento

Florianópolis 2023

Alves, Marvim Francis Mota Padrões de densidade no Grupo Itararé usando perfilagem geofísica de poços, borda leste da Bacia do Paraná, Brasil. / Marvim Francis Mota Alves ; orientador, Marivaldo dos Santos Nascimento, 2023. 69 p.

Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Filosofia e Ciências Humanas, Programa de Pós-Graduação em Geologia, Florianópolis, 2023.

Inclui referências.

1. Geologia. 2. perfilagem geofísica. 3. padrões de densidade. I. Nascimento, Marivaldo dos Santos. II. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Geologia. III. Título. Marvim Francis Mota Alves

O presente trabalho em nível de Mestrado foi avaliado e aprovado, em 31 de março de 2023, pela banca examinadora composta pelos seguintes membros:

Prof. Dr. Luciano Soares da Cunha Instituição Universidade de Brasília

Prof. Dr. Sérgio Júnior da Silva Fachin Instituição Universidade Federal de Mato Grosso

Certificamos que esta é a versão original e final do trabalho de conclusão que foi julgado adequado para obtenção do título de Mestre em Geologia.

| :                             | ·····:      |
|-------------------------------|-------------|
|                               |             |
|                               |             |
|                               | :           |
|                               |             |
| Coordenação do Programa de Pó | s-Graduação |
|                               |             |

Prof. Dr. Marivaldo dos Santos Nascimento Orientador

> Florianópolis 2023

Aos meus familiares e amigos, pelo incentivo e apoio constante.

### AGRADECIMENTOS

Os agradecimentos estão relacionados não somente com esta dissertação de mestrado, mas se estendem a todo o período de graduação, vida profissional, minha mudança à Florianópolis. Por este motivo, aproveito esta oportunidade para agradecer a todos que participaram desta aventura geológica comigo.

Agradeço a minha família, em especial aos meus pais Francisco Alves de Araújo e Maria Aparecida da Mota Alves, pois sem o apoio e educação por eles passado eu não teria chegado até aqui.

Agradeço também a meu amigo e orientador Marivaldo, que me acompanha desde a minha chegada na UFSC e seguirá me acompanhando neste desafio, sempre disponível para discussões, sendo sua orientação e confiança de grande contribuição para o resultado desta dissertação, assim como para meu desenvolvimento como geólogo.

Um agradecimento a banca examinadora, e todos aqueles que contribuíram para a evolução deste trabalho. Agradeço ao fomento da Petrobrás, à Universidade Federal de Santa Catarina (UFSC) e os diversos professores dessa jornada, ao Laboratório de Análise de Bacias e Reservatórios (LABAC), ao Grupo de Análise de Bacias e Reservatórios (ANBA) pela infraestrutura, e a Emerson Geolog e toda sua equipe pelo suporte técnico e *software*.

Finalmente, mas não menos importante, um agradecimento a todos os colegas de graduação e pós-graduação e aos amigos que participaram desta empreitada, em especial Ana Stela, Cleudson, Mayra Stephanie, pois as conversas, edições, contribuições e vivências desde o início do curso também formaram a pessoa e o geólogo que hoje sou.

"Nenhum vestígio do começo e nenhuma perspectiva do fim..." James Hutton.

## RESUMO

As rochas do Grupo Itararé registram os eventos glaciais do permocarbonífero na Bacia do Paraná que foram intrudidas por soleiras de diabásio resultante dos eventos tectono-magmáticos relacionados à ruptura do Supercontinente Gondwana. Neste trabalho, dados perfilados de densidade, caliper, raios gama, amostragem de calha, relatórios de perfuração do poço e litologia interpretada dos poços 1HV 0001 SC e 1GO 0001 SC, um afetado e outros não afetado por magmatismo, respectivamente. Esses dados foram integrados e usados para obter os padrões de distribuição dos valores de densidade ao longo do intervalo do Grupo Itararé para avaliar seu comportamento posteriores às intrusões. Além disso, os resultados são úteis para estimar diferenças de densidade, mineralógicas e texturais entre essas rochas sedimentares influenciadas por esses eventos magmáticos. Os dados de raios gama revelaram correlação linear com os padrões de densidade, além de possíveis mudanças mineralógicas por ilitização de caulinita. Isto se dá devido ao aumento dos valores de raio gama no contato com as soleiras, que foi previamente inferida uma camada de folhelhooo pela interpretação geofísica divergindo da amostragem de calha, predominando os siltitos no contato. A espessura do poço, em relação às leituras de caliper, estão correlacionados com o decréscimo de densidade (2,35 g/cm<sup>3</sup>) e consequente aumento da porosidade em arenitos. Nos folhelhooos, mudanças mineralógicas e texturais podem ter motivado os valores de densidade maiores (2,76 g/cm<sup>3</sup>). Essa abordagem é útil para aprendizado de máquina, sísmica e geofísica potencial, como gravimetria e magnetometria.

Palavras-chave: perfilagem geofísica, intrusões de soleiras, padrões de densidade

## ABSTRACT

The rocks of the Itararé Group record permocarboniferous glacial events in the Paraná Basin, where it was intruded by diabase sills as result of tectonomagmatic events related to the rupture of the Gondwana Supercontinent. In this work, well logging data from density, caliper, gamma rays, cutting sampling, drilling reports and interpreted lithology from wells 1HV 0001 SC and 1GO 0001 SC, one affected and the other unaffected by magmatism, respectively. They were integrated and used to obtain the patterns distribution of density values along the interval of the Itararé Group to evaluate its behavior after intrusions. Furthermore, the results are useful to estimate density, mineralogical and textural differences between these sedimentary rocks influenced by these magmatic events. Gamma ray data revealed linear correlation with density patterns, in addition to possible mineralogical changes due to kaolinite illitization. This is due to the increase in gamma ray values in the contact with the sills, which was previously inferred a shale layer by the geophysical interpretation, differently from the trough sampling, where the predominating the siltstones in the contact. Regarding to caliper readings, it is correlated with a decrease in density (2.35 g/cm<sup>3</sup>) and consequent increase in porosity of sandstones. In shales, mineralogical and textural changes may have motivated higher density values (2.76 g/cm<sup>3</sup>). This approach is useful for machine learning, seismic, and potential geophysics such as gravimetry and magnetometry.

Keywords: Geophysical profiling, magmatic intrusions, density patterns.

# LISTA DE ABREVIATURAS E SIGLAS

| AGP   | Arquivo Geral de Poço                                       |
|-------|-------------------------------------------------------------|
| ANBA  | Grupo de Análise de Bacias e Reservatórios                  |
| ANP   | Agência Nacional de Petróleo, Gás Natural e Biocombustíveis |
| API   | American Petrolleum Institute                               |
| cm    | Centímetros                                                 |
| CPRM  | Companhia de Pesquisa de Recursos Minerais                  |
| DLIS  | Digital log Information System                              |
| GO    | Galvão/SC                                                   |
| g/cm³ | gramas por centímetro cúbico                                |
| GR    | Raios Gama                                                  |
| HV    | Herval Velho/SC                                             |
| in    | polegadas                                                   |
| LABAC | Laboratório de Análise de Bacias e Reservatórios            |
| LIP   | Large Igneous Province                                      |
| m     | metro                                                       |
| MEV   | Microscópio Eletrônico de Varredura                         |
| PDF   | Portable Document Format                                    |
| RHOB  | Bulk density                                                |
| SC    | Santa Catarina                                              |
| SP    | Potencial Espontâneo                                        |
| UFSC  | Universidade Federal de Santa Catarina                      |

# SUMÁRIO

| 1     | INTRODUÇÃO                                       | 13 |
|-------|--------------------------------------------------|----|
| 1.1   | OBJETIVO GERAL                                   | 15 |
| 1.2   | OBJETIVOS ESPECÍFICOS                            | 15 |
| 1.3   | JUSTIFICATIVA                                    | 15 |
| 2     | MATERIAIS E MÉTODO                               | 17 |
| 3     | GEOFÍSICA DE POÇOS                               | 22 |
| 3.1   | CALIPER                                          | 23 |
| 3.2   | RAIOS GAMA                                       | 24 |
| 3.3   | DENSIDADE                                        | 27 |
| 4     | GEOLOGIA                                         | 30 |
| 4.1   | BACIA DO PARANÁ                                  | 30 |
| 4.1.1 | Grupo Itararé                                    | 34 |
| 4.1.2 | Magmatismo Serra Geral                           | 36 |
| 5     | RESULTADOS                                       | 37 |
| 5.1   | ARTIGO SUBMETIDO BRAZILIAN JOURNAL OF GEOPHYSICS | 37 |
| 6     | CONCLUSÃO                                        | 55 |
|       | REFERÊNCIAS                                      | 57 |
|       | APÊNDICE A – 1GO_0001_SC                         | 60 |
|       | APÊNDICE B – 1HV_0001_SC                         | 65 |

## 1 INTRODUÇÃO

A Bacia do Paraná representa uma ampla cobertura sedimentarmagmática (Figura 1), totalizando uma área que se aproxima dos 1,5 x 10<sup>6</sup> km<sup>2</sup> no território brasileiro. Segundo Milani et al. (2007), o empilhamento litoestratigráfico compreende um pacote com espessura máxima em torno de 7000 metros, e o depocentro estrutural coincide geograficamente com a calha do Rio Paraná. Morfologicamente, a bacia possui um formato alongado, com eixo maior na direção NNE-SSO, esculpido por limites erosivos, relacionados, em grande parte, à geodinâmica ao longo do Meso-Cenozoico do Supercontinente Gondwana. Os ciclos de preenchimento da Bacia do Paraná correspondentes aos registros, ao longo do Fanerozoico, onde são abordados em diversas literaturas e sua caracterização é, predominantemente, por relações bioestratigráficas, cronoestratigráficas, afloramentos e dados de poços (White, 1908; Schneider et al., 1974; França & Potter, 1988; Zalán et al., 1990; Milani et al., 1994, 2007; Milani, 2020).

De acordo com Nery (2013), estudos de prospecção, pesquisa mineral, características petrofísicas desses estratos têm sido complementados através do envolvimento tanto por métodos diretos (testemunhos de sondagem, petrografia, descrição de afloramentos) bem como métodos indiretos (geofísica de poços, gravimetria, magnetometria e sísmica) de investigação de superfície e subsuperfície. Nesse sentido, o registro litológico do Grupo Itararé, representa um dos melhores alvos exploratórios da bacia possui indícios de hidrocarbonetos em espessos intervalos de arenitos com boa qualidade para reservatório, que estão em contato comfolhelhoda Formação Ponta Grossa, e associados a trapas estratigráficas de soleiras de diabásio. Ainda que haja muitos indícios de hidrocarbonetos, em acumulações subcomerciais, a Bacia do Paraná tem um significativo potencial econômico inexplorado (França & Potter, 1988).

O poço 1HV\_0001\_SC, situado em Herval Velho-SC, foi um poço pioneiro locado para testar uma anomalia relacionada a fraturas de drenagem radial e um alto estrutural evidenciado na sísmica. Com relação ao poço 1GO\_0001\_SC, localizado em Galvão, cujo a perfuração do poço foi executada com a finalidade de testar, em profundidade, uma estrutura dômica mapeada em superfície, cujo fechamento estaria limitado a oeste por falhamentos e a sul por um dia de diabásio relacionado a outra falha. Ademais, ambos dos poços têm o objetivo de avaliar possíveis acumulações de hidrocarbonetos associados às anomalias morfoestruturais supra referida.



Figura 1 - Mapa Geológico da Bacia do Paraná na região dos Poços. Mapa integrado do Brasil Escala 1:1.000.000.

Fonte: elaborado pelos autores, dados SGB (2021)

Apesar de diversos estudos correlacionando informações superficiais com os dados de poços, o significado geofísico relacionando a densidade em intervalos litoestratigráficos do Grupo Itararé ainda é pouco explorado e apresenta algumas questões. Dessa forma, o documento dessa dissertação de mestrado é voltado aos resultados do processamento, integração e análise de dados geofísicos dos poços (densidade RHOB, caliper, e raios gama) e informações litológicas, bem como suas possíveis respostas estatísticas com relação aos parâmetros de densidade; além das possíveis implicações, quando comparado com bacias análogas submetidas ao magmatismo, na análise evolucional da Bacia do Paraná.

# 1.1 OBJETIVO GERAL

O objetivo da pesquisa é identificar os padrões de densidade RHOB no Grupo Itararé, usando dados de perfilagem geofísica nos poços 1HV\_0001\_SC e 1GO\_0001\_SC, consequentemente, investigar as implicações destes dados geofísicos e suas relações com as informações litológicas (calha e interpratados) de ambos dos poços.

# 1.2 OBJETIVOS ESPECÍFICOS

Para se alcançar o objetivo geral, alguns objetivos específicos foram traçados:

- Correlacionar os dados litológicos e geofísicos de ambos os poços na unidade litoestratigráfica para analisar os padrões de densidade;
- Reproduzir novos perfis dos poços integrando as litologias interpretadas, amostra de calha e litoestratigrafia em relação aos valores de densidade RHOB;
- Validar os valores de densidade por meio das ferramentas de Caliper e raios gama.

## 1.3 JUSTIFICATIVA

A perfilagem geofísica, envolvendo densidade, Caliper e gamma-ray têm sido empregada na investigação de diversos parâmetros petrofísicos de bacias sedimentares, como: volume e espessura de poços profundos; estimar a mudança mineralógica, textural, diagenética, litológica e faciológica de estratos sedimentares;

mudanças em argilosidade, concentração de folhelhooos, padrões deposicionais e correlação lateral entre poços. A abordagem sugerida para essa dissertação de mestrado tem como base as seguintes justificativas:

 Reinterpretação de dados perfilados geofísicos para incrementar a precisão do registro geológico em amostragem de calha com a litologia interpretada;

 Avaliar esse método em relação aos estudos para melhorar as ferramentas prospectivas como *machine learning*, sísmica e geofísica potencial para exploração de hidrocarbonetos;

 Desenvolvimento e implementação de abordagens estatísticas envolvendo valores de densidade nos pacotes litoestratigráficos do Grupo ltararé dos poços e suas implicações devido as mudanças provocadas por intrusões magmáticas.

## 2 MATERIAIS E MÉTODO

Este item descreve a abordagem para a consolidação do banco de dados e posteriores informações na geração dos produtos da pesquisa. Neste estudo foram utilizados perfis geofísicos dos poços 1HV 0001 SC e 1GO 0001 SC, os quais foram disponibilizados pela Agência Nacional de Petróleo (ANP) e suas principais características podem ser observadas no Quadro 1.

Quadro 1 - Dados e informações dos Poços utilizados no estudo do Grupo

| Itararé.   |
|------------|
| HV_0001_SC |
|            |

| Poços       | 1HV_0001_SC                 | 1GO_0001_SC                |
|-------------|-----------------------------|----------------------------|
| Início      | 02/11/1972                  | 25/11/1981                 |
| Término     | 26/01/1973                  | 10/06/1982                 |
| Localização | 27°12'57,06S ; 51°27'49,28W | 26°22'56,60S ; 52°42'34,6S |
| Intervalo   | 506 metros                  | 671 metros                 |
| Soleiras    | 107 metros                  | Sem soleiras               |

Todo o conjunto de dados e informações do poço contempla três períodos

registro:

- i) dados e informações da época da perfuração (1972 e 1981), os quais puderam ser recuperados em alguns relatórios técnicos;
- ii) reprocessamento e interpretação efetuados pela PETROBRAS (1994 e 1995);
- iii) trabalhos realizados pela ANP em 2005, representados pela organização de dados e informações, geração dos arquivos finais AGP e DLIS, bem como da geração do perfil composto em formato PDF.

Na Figura 2, pode ser observado o fluxograma de trabalho, que mostra o desenvolvimento sequencial das atividades necessárias para o agrupamento e obtenção de dados validados para os posteriores processamentos, visando o objetivo proposto anteriormente. A sequência pode ser agrupada, inicialmente, em quatro fases principais: i) levantamento de informações; ii) análise dos dados; iii) compilação e integração; e iv) composição do banco de dados validado.



# Figura 2 – Fluxograma de trabalho com o método de desenvolvimento da pesquisa.

Fonte: elaborado pelos autores

O levantamento bibliográfico envolveu dois temas centrais: i) litologias e litoestratigrafia da Bacia do Paraná); ii) geofísica de poço. No primeiro caso, utilizando os trabalhos de Schneider *et al.* (1974), França & Potter (1988), Zalán *et al.* (1990), Milani *et al.* (1994; 2007) e Milani (2020), as informações sobre as unidades litoestratigráficas e as litologias destas integrantes foram compiladas, em caráter regional e local, com relação às imediações e adjacências dos poços. No segundo caso, nas obras de Rider (2002), Ellis & Singer (2007), Nery (2013) e Liu (2017), foram encontradas importantes informações sobre os tipos de levantamento, ferramentas, correções e implicações petrofísicas inerentes aos diferentes métodos geofísicos utilizados em poços, em especial, os métodos destinados aos registros de densidade (RHOB), raios gama (GR) e diâmetro do poço (caliper). Adiante, na

apresentação e discussão dos resultados, poderão ser encontradas referências e menções específicas às obras citadas, bem como às obras adicionais que foram consultadas em caráter complementar. O conhecimento oriundo da integração das informações sobre os dois temas centrais em questão serviu como importante balizador na implementação da validação final dos dados, informações litológicas, litoestratigráficas e geofísicas, utilizadas nas etapas de trabalhos a serem desenvolvidas.

A análise das informações de fichas e relatórios de perfuração descrevia sobre a estratigrafia esperada, a espessura de broca, os levantamentos de perfilagem realizados, bem como a descrição litológica de amostras de calha, no qual apresentam os dados em porcentagem de rocha, representando intervalos a cada 3 metros, além de informações litoestratigráficas durante o avanço da perfuração. Posteriormente, campanhas de reavaliação e interpretação realizadas pela E&P SUL/GERET/Petrobrás, possibilitaram complementar dados litológicos (compostos) e litoestratigráficos. Em virtude da disponibilização dos dados do Arquivo Geral de Poço (AGP), pela Agência Nacional de Petróleo (ANP), foi possível notar os detalhes do levantamento e complementares para a plotagem dos novos perfis, esses dados foram sintetizados, gerando o empilhamento litoestratigráfico e litológico. De posse desses dados, foram conduzidas a tabulação e à organização em planilhas (*Microsoft Office Excel*) para posterior integração dos dados no *software* de processamento (*Paradigm 19 Geolog Well*).

Nos arquivos agrupados e disponibilizados pela ANP, em formato DLIS (curvas geofísicas) e o perfil composto plotado (PDF), destacam-se as leituras geofísicas do poço utilizadas no trabalho, conduzindo a análise preliminar e as respostas ao longo da interação litológica e litoestratigráfica. O conjunto de registros perfilados (*logs*), consistindo em densidade (RHOB), raios gama, e caliper, em formato ".dlis", foram inseridos em *softwares* apropriados (*Paradigm 19 Geolog Well*), convertidos em arquivos ".well". Em seguida, implementou-se a verificação, a correção e a conversão de unidades de medidas para os padrões internacionais conferidos pela *American Petrolleum Institute* (API) para consolidação dos dados validados e coerentes com a situação litológica e litoestratigráfica do empilhamento nos poços. O banco de dados gerado, ajustado e correlacionado na devida unidade litoestratigráfica do Grupo Itararé, consequentemente, esse arranjo foi compilado, processado, segmentado e compartimentado, retirando a leitura ao longo das

soleiras de diabásio. Assim, foram gerados produtos com perfis logs, contendo intervalos litoestratigráficos, composição litológica, tanto em porcentagem de calha quanto compostos, e os dados das leituras da perfilagem geofísica.

Para a composição do banco de dados, as informações relevantes do acervo bibliográfico, envolvendo a geofísica de poço e a evolução da Bacia do Paraná, foram destacadas, correlacionadas e, consequentemente, integrando suas implicações e interpretações petrofísicas com os parâmetros litológicos e litoestratigráficos do Grupo Itararé, na área dos poços, preparando-os para subsequentes processamentos e geração de produtos. A partir da validação, como exibido na Figura 2, pode ser observado o fluxograma que demonstra as etapas do desenvolvimento e processamentos para geração dos produtos e resultados do trabalho, a sequência de atividades desenvolvida a partir do Banco de Dados consolidado, que pode ser agrupada inicialmente em quatro fases principais: i) geração de perfis integrados, ii) análise e correlação, iii) processamento e geração de produtos, culminando em dados estatísticos de densidade ao longo de ambos dos poços.

No processamento e geração, novos perfis dos poços foram plotados, envolvendo dados geológicos com a litologia (Amostra de calha e interpretada) delimitados pelos litotipos do Grupo Itararé. Adicionalmente, no perfil gerado com os dados geofísicos (*Logs*) constituído de densidade (RHOB), espessura (Caliper), a partir dos dados validados. Essas informações foram confrontadas e analisadas tanto entre as descrições litológicas durante a perfuração (litologia amostras calha) quanto os pós processados pela GERET/Petrobrás e ANP (litologia interpretada); conduzindo-os para uma análise comparativa e de compatibilidade de ambos os perfis litológicos, litoestratigráfico com os dados geofísicos.

De posse dos atributos e das composições litológicas, além das leituras geofísicas, contendo os dados de densidade (RHOB), conduziu-se os agrupados ao longo dos intervalos litoestratigráficos. Posteriormente, gerando correlação entre as leituras geofísicas de densidade (RHOB) e as leituras mecânicas de espessura (caliper). Métodos estatísticos a partir de geração de histogramas com os parâmetros máximo, mínimo, range, média (harmônica, geométrica, aritmética), moda, mediana, variância, e desvio padrão, nos intervalos citados; além disso, gráficos de correlação (*cross-plot*) da leitura RHOB e os diferentes parâmetros de controle foram abordados e correlacionados entre calibre e densidade, para

incremento de confiabilidade de interpretação do dado obtido. Assim, caracterizando os padrões estatísticos de densidade dos poços 1HV\_0001\_SC e 1GO\_0001\_SC.

## **3 GEOFÍSICA DE POÇOS**

A perfilagem geofísica, desenvolvida na França por Conrad Schlumberger e Henri Doll, retrata a leitura contínua de parâmetros geofísicos ao longo de um poço profundo, gerando o perfil geofísico de poços (geophisical well log), onde as medidas são plotadas continuamente em relação a profundidade do poço (Rider, 2002). Atualmente, há uma diversidade de modernos tipos de dados geofísicos de poços que podem ser adquiridos em poço aberto (open hole) (Tabela 1), por exemplo, que podem ser relacionados aos parâmetros espontâneos, como a radioatividade natural (Gama Ray), que requere um detector muito sensível à radiação; ou parâmetros induzidos, como log de velocidade sônica (sonic log), no qual a ferramenta emite uma onda sonora na rocha e é medido o tempo de propagação até o receptor em uma distância predeterminada (Johnson e Pile, 1988).

| Tipo de Perfilagem        | Parâmetro medido                                                                                                                                                       |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Caliper                   | Diâmetro do Poço                                                                                                                                                       |  |  |
| Temperatura               | Temperatura do Poço                                                                                                                                                    |  |  |
| SP (Potencial Espontâneo) | Corrente elétrica espontânea                                                                                                                                           |  |  |
| Raios Gama                | Radioatividade natural                                                                                                                                                 |  |  |
| Resistividade             | Resistência a corrente elétrica                                                                                                                                        |  |  |
| Indução                   | Condutividade a corrente elétrica                                                                                                                                      |  |  |
| Sônico                    | Velocidade de propagação sonora                                                                                                                                        |  |  |
| Densidade                 | Reação ao bombardeamento de Raios                                                                                                                                      |  |  |
|                           | Gama                                                                                                                                                                   |  |  |
| Fotoelétrico              | Reação ao bombardeamento de Raios                                                                                                                                      |  |  |
|                           | Gama                                                                                                                                                                   |  |  |
| Neutônio                  | Reação ao bombardeamento de Nêutron                                                                                                                                    |  |  |
|                           | Tipo de Perfilagem<br>Caliper<br>Temperatura<br>SP (Potencial Espontâneo)<br>Raios Gama<br>Resistividade<br>Indução<br>Sônico<br>Densidade<br>Fotoelétrico<br>Neutônio |  |  |

Tabela 1 - Classificação de medidas de perfis geofísicos de poços e parâmetros associados.

Fonte: Adaptado de Rider, 2002.

A perfilagem geofísica de poços é necessária devido às condições durante a perfuração rotativa, ocorrendo contaminações de material por cortes, manobras de ferramenta, e atrito com as camadas superiores, tornando muito imprecisa o registro fiel das formações. Embora seja possível realizar a amostragem integral e precisa, trazendo a rocha para a superfície através de perfuração e sondagem mecânica; esse processo é muito lento e caro (Rider 2002). No entanto, a perfilagem geofísica não é capaz de resolver as diversas questões que uma amostra de testemunho poderia propor, sendo necessária interpretação para elevar o nível de coerência dos dados perfilados com relação as características geológicas e/ou petrofísicas. Entretanto, a perfilagem geofísica preenche os intervalos entre a seção cortada, integrando dados, podem trazer suficiente informações até a superfície sobre a realidade das rochas do empilhamento (Lui, 2017).

## 3.1 CALIPER

A ferramenta de *Caliper* realiza a medida vertical simples, de forma mecânica, a partir de dois braços articulados (ou mais), que descem rente à parede do poço, registrando as variações de espessura e formato, em polegadas (in), consequentemente, estimando o volume do poço. O movimento lateral destes braços é traduzido em movimentos angulares, essas variações são convertidas em diâmetros após processamentos e calibrações. Frequentemente, os equipamentos de perfilagem geofísica são automaticamente equipados com ferramentas Caliper embutidas, como, por exemplo, micrologs e densidade-neutron, onde os braços de Caliper são usados para a aplicação dos métodos já mencionados (Rider, 2002).

As interpretações das leituras do perfil Caliper podem ajudar na compreensão da qualidade do poço (Figura 3), indicando boas técnicas de perfuração quando a espessura da broca e as leituras de espessura coincidem (*on gauge*). Diferentemente, intervalos onde a espessura da leitura do Caliper difere muito da espessura da broca, podem indicar erosão ou desbarrancamento do poço (*washed out* e *caved*). Isso pode ser causado durante o atrito das ferramentas de perfuração, ou podem ter relação com a circulação com a lama de fluido. Entretanto, erosão é típico em determinadas litologias, como carvão ou mesmo folhelhos orgânicos, tornando certas feições morfológicas do poço como algo previsível. Por exemplo, em seções de folhelho do carbonífero na região de Midlands, Leste da Inglaterra, onde moderados desbarrancamentos são comuns devido aos intervalos ricos em matéria orgânica em uma vasta área lateral (Rider, 2002; Liu, 2017).



Figura 3 – Perfil Caliper com o diâmetro do poço, efeito do mudcake.

Fonte: adaptado de Rider (2002).

# 3.2 RAIOS GAMA

A perfilagem de Raios Gama (*Gama Ray*) mensura a emissão natural essencialmente de apenas três recursos: a radioatividade de elementos da família do Tório, da família do Urânio radioativo e dos isótopos de Potássio <sup>40</sup>K, expressa em API (*American Petroleum Institute*). Quantitativamente, o potássio é o mais abundante dos três elementos, entretanto, sua contribuição no panorama geral da radioatividade em relação ao seu peso é pequena. Todavia, a contribuição dos três elementos apresenta similar ordem de magnitude, a abundância é inversamente proporcional a contribuição em energia: uma pequena quantidade de urânio tem um maior efeito de radioatividade, uma grande quantidade de potássio um pequeno efeito (Elis e Singer 2007; Nery 2013).



Figura 4 – Perfil raios gama com as respectivas respostas litológicas.

Fonte: Adaptado de Rider (2002).

A Tabela 2 apresenta o conteúdo de potássio em argilominerais, os quais variam consideravelmente, a ilita contém a maior parte enquanto a caulinita possui pouco conteúdo. Dessa forma, a consequência das misturas desses minerais em argilas com alta caulinita ou alta esmectita acarreta menor radioatividade pelo potássio do que argilas essencialmente com ilitas (Rider, 2002; Nery 2013).

| Mineral    | % em peso   | Média (%) | Elementos                 |
|------------|-------------|-----------|---------------------------|
| llita      | 3,51 – 8,31 | 5,20      | K, Al, Silicatos          |
| Glauconita | 3,20 - 5,80 | 4,50      | K, Mg, Fe, Al, Silcatos   |
| Caulinita  | 0,00 - 1,49 | 0,63      | Al, Silicatos             |
| Esmectita  | 0,00 - 0,60 | 0,22      | Ca, Na, Mg, Al, Silicatos |
| Clorita    | 0           | 0         | Mg, Fe, Al, Silicatos     |

Tabela 2 – Conteúdo de Potássio (k) em argilas.

Fonte: Adaptado de Rider (2002).

Conforme Rider (2002), o principal uso da perfilagem em raios gama é, majoritariamente, na quantificação do volume de folhelho e argilas (Figura 4). Qualitativamente, pode ser usada para correlacionar, sugerir fácies e sequências, e identificação de litologias. Adicionalmente, o espectro de raios gama pode ser usada para quantificar a radioatividade mineral, volume e a dominância de tipos de argilominerais, além de indicar o ambiente de deposição, fraturas e ajudar na localização de rochas fontes (Tabela 3).

Tabela 3 – O principal uso da perfilagem geofísica de Raios Gama e possíveis

|               | Aspecto        | Parâmetro                       | Significado                |
|---------------|----------------|---------------------------------|----------------------------|
| Quantitativo  | Petrofísica    | Volume folhelho (Vsh)           | GR (min a max)             |
| Qualitativo   | Geologia       | Folhelho (argilosidade)         | GR (min a max)             |
|               |                | Litologia                       | Típicos valores de         |
|               |                |                                 | radioatividade             |
|               |                | Identificação Mineral           | Radioatividade mineral     |
|               | Sedimentologia | Fácies                          | Relação de tamanho do grão |
|               | Sequência      | Sequência condensada            | Relação de tamanho e       |
|               | Estratigráfica |                                 | material orgânico          |
| Estratigrafia |                | Correlação                      | -                          |
|               |                | Discordâncias                   | -                          |
|               |                | inconformidades                 |                            |
|               | Fc             | onte: Adaptado de Rider (2002). |                            |

significados.

### 3.3 DENSIDADE

Conforme Rider (2002), o perfil da densidade (*bulk density*) é uma leitura contínua da formação geológica, conhecida como RHOB, que é um parâmetro da densidade dos minerais formadora da rocha e o volume do espaço livre que é preenchido (i.e., porosidade). Quantitativamente, os principais usos são relacionados ao cálculo da porosidade e, indiretamente, densidade dos hidrocarbonetos. Qualitativamente, é um eficiente indicador litológico, pode ser usado para identificar certos minerais, e podem identificar pressão geostática (*overpressure*) e porosidade por fraturamento (Tabela 5).

A técnica da perfilagem RHOB é realizada através de uma ferramenta (usualmente Cs ou Cobalto) que bombardeira raios gama com energia média a alta (0,2-2,0 MeV), colimado, que excita os elétrons, em seguida, é medida a atenuação entre a fonte emissora e o detector (Figura 5). Essa relação física entre a emissão e atenuação fornece a quantidade de elétrons que a formação contém – seus elétrons densidade (elétrons/cm<sup>3</sup>) – no qual está intimamente relacionada com a densidade comum (g/cm<sup>3</sup>) (Rider 2002; Nery 2013).



Figura 5 – Princípio esquemático de obtenção da densidade aparente e fotografia da ferramenta.

Fonte: Serra (2004)

O esquema abaixo ilustra o comportamento das leituras de densidade (RHOB) obtidas pela ferramenta ao longo dos intervalos litológicos e as esperadas respostas dos valores de densidade ao longo de um poço profundo (Figura 6).



Figura 6 – Perfil de Densidade RHOB com as respostas por litologia e porosidade.

Fonte: Adaptado de Rider (2002).

A Tabela 4 apresenta a densidade em argilominerais que variam consideravelmente, a ilita e clorita contém a maior densidade enquanto a esmectita possui menores valores. Dessa forma, a consequência das misturas desses minerais em rochas, tanto no preenchimento da porosidade quanto da composição, (Totten *et al.*, 2002).

| Grupo das argilas | Densidade (g/cm³) |
|-------------------|-------------------|
| llita             | 2,60 - 2,90       |
| Muscovita         | 2,77 – 2,88       |
| Caulinita         | 2,61 – 2,68       |
| Esmectita         | 2,00 - 2,60       |
| Clorita           | 2,60 - 3,33       |

Tabela 4 – Densidade dos minerais de argila.

Fonte: Adaptado de Deer et al., (1966)

A tabela 5 apresenta os principais usos e significados quantitativos e qualitativos das interpretações em relação a perfilagem geofísica da densidade pela ferramenta RHOB.

Tabela 5 – O principal uso da perfilagem geofísica de RHOB e aplicações.

|               | Aspecto      | Parâmetro                | Significado                  |
|---------------|--------------|--------------------------|------------------------------|
| Quantitativo  | Petrofísica  | Porosidade               | Densidade da matriz          |
|               |              |                          | Densidade do fluido          |
|               | Sísmica      | Impedância acústica      | Correlação                   |
| Qualitativo e | Geologia     | Litologia                | Combinado com neutrônio*     |
| Semi-         |              | Mudança textural         | Média das tendências         |
| quantitativo  |              | folhelhos                |                              |
|               |              | Identificação Mineral    | Densidade mineral            |
|               | Geologia de  | Identificação de pressão | Média das tendências         |
|               | Reservatório | geoestática              |                              |
|               |              | Reconhecimento de        | Porosidade sônica            |
|               |              | fraturas                 |                              |
|               | Geoquímica   | Avaliação da rocha       | Densidade – Matéria orgânica |
|               |              | fonte                    |                              |

\*utilizando perfil de densidade combinado com neutrônio em escalas compatíveis.

Fonte: Adaptado de Rider (2002).

# 4 GEOLOGIA

# 4.1 BACIA DO PARANÁ

A Bacia do Paraná tem sido objeto de estudo por diversos pesquisadores, com os trabalhos pioneiros de White (1908) envolvendo mapeamentos geológicos, além de posteriores estudos bioestratigráficos, correlações litoestratigráficas a partir de poços perfurados pela Petrobrás na prospecção de reservas de hidrocarbonetos. Estes estudos geraram um vasto acervo em relação a evolução estratigráfica, onde algumas obras protagonizaram particular relevância (Figura 7) como sínteses dos litotipos empilhados, como os trabalhos de Schneider *et al.* (1974), França e Potter (1988), Zalan *et al.* (1990) e Milani *et al.* (1994 e 2007).

| вк   | 1     | E      | ROBRAS                          |                                                          |                | D/                                               | ACIA DU PARA  | INA          |                                                       | 0.00                                                           | NUCCE STURN             | 111.05         |
|------|-------|--------|---------------------------------|----------------------------------------------------------|----------------|--------------------------------------------------|---------------|--------------|-------------------------------------------------------|----------------------------------------------------------------|-------------------------|----------------|
|      |       |        | GEOCRONO                        | LOGIA                                                    | EADA<br>FACADA | AMRIENTE                                         |               |              | LITOESTRATIGE                                         | RAFIA                                                          | ESPESSURA               | 18042/2011     |
| Ma   | RA    | 008    | ÉPOCA                           | IDADE                                                    | NATURE:        | DEPOSICIONAL                                     | DISCORDÂNCIAS | GRUPO        | FORMAÇÃO                                              | MEMBRO                                                         | ANIKAM<br>(#)           | SEQUENCIA      |
| -    |       | E.     |                                 | BARDEBIAND                                               |                | MAGMAT, FISSURAL                                 | EOCRETACICA   | 1            | SERRA                                                 | N. PRATA                                                       | 1700                    |                |
|      | 9     |        |                                 | VALANCIANO<br>REPRIATIANO                                | COMT.          | EÓLICO                                           |               |              | BOTUCATU                                              |                                                                | 450                     | GONDWWN<br>[1] |
| 150- | 0     | 00     | NEO                             | KINNERIDGIANO<br>OXFORDIANO                              |                |                                                  | NEOJURASSICA  |              | -                                                     |                                                                |                         | 12             |
| -    | 0     | SSI    | MESO                            | ENTRY AND<br>ENTRY AND<br>SALASSAND                      |                |                                                  |               |              |                                                       |                                                                |                         |                |
| -    | MES   | JURA   | 60                              | TOARCIAND<br>PLIESSEACHIANO<br>EINEMURIAND<br>FETRUSIAND |                |                                                  |               |              |                                                       |                                                                |                         |                |
| -    |       | SICO   | NEO                             | NORIANO                                                  |                |                                                  |               |              |                                                       |                                                                |                         |                |
| -    |       | RIAS   | MESO                            | LADINIAND                                                | TINCO          | FLÚVIO -<br>LACUSTRE                             |               |              | SANTA<br>MARIA                                        |                                                                | 300                     | GONDWAV<br>II  |
| 250- | 1     | ON     | EO<br>LOFINGIANO<br>UADALUPIANO | CHURCH DE LO<br>PUTE LA TECINA<br>CAPITANIANO            | CONTINENT      | EÓLICO<br>FLUVIAL<br>LAGOS RASOS                 | EOTRIASSICA   | SSA          | RIO DO<br>RASTO<br>TERESINA                           | MORRO PELADO<br>SER RINHA                                      | 650<br>850              | INAI           |
| -    |       | PERMIA | CISURALIAND                     | ARTINSEIAND<br>SARWARIAND                                | WHATEN         | PLATAFORMA<br>RESTRITO<br>PLATAFORMA<br>COSTEIRO |               | ₫ Ö<br>GUATÁ | SERRAALTA<br>IRATI<br>PALERMO<br>RIO BONITO<br>TACIBA | ASSISTENCIA<br>TEDUARAL<br>SIDEROPOLIES<br>MARAGUACU<br>TRUNED | 100<br>70<br>300<br>350 | GONDWA         |
| 300- | 2     | ERO    | ENNSYLVANIANI                   | GAHALIANO<br>NASHKINIANO                                 | W              | PERIGLACIAL                                      | 1             | ITARARÉ      | CAMPO MOURAO<br>L. AZUL                               | C. TENENTE                                                     | 1500                    |                |
| -    |       | BONIE  | WIREISSIPIAND                   | VISEAND                                                  |                |                                                  |               |              |                                                       |                                                                |                         |                |
| 350- |       | CAR    |                                 | TOURNALSIANO                                             |                |                                                  |               |              |                                                       | DIAMICTITO<br>ORTIGUEIRA                                       |                         |                |
| -    | C 0   | ON     | NED                             | FAMENIANO                                                |                | GLACIAL                                          |               | 1            |                                                       | -                                                              |                         | 4              |
|      | 2 0   | AINC   | MESO                            | FRASNIANO                                                | MHIM           | PLATAFORMA RASA                                  | NEODEVONIANA  | RAN          | PONTA<br>GROSSA                                       | SÃO<br>DOMINGOS                                                | 660                     | RAN            |
| 400- | L E 0 | DEVC   | EO                              | EIFELIAND<br>EMSIANO<br>FRACULARO                        |                | PLATAF. DISTAL                                   |               | PA           | FUDNAS                                                | TIBAGI<br>JAGUARIAIVA                                          | 227                     | PA             |
| ]    | V     | 0 N    | PROOF LUIDEOW                   | POCHKOVIANO                                              | C.M            | FLUX / CUSI.                                     |               |              | PURINAS                                               |                                                                | 33/                     | - 12<br>       |

Figura 7 – Coluna estratigráfica Bacia do Paraná.

Fonte: Milani et al., (2007)

O registro geológico em relação à arquitetura do espaço-temporal das rochas que preenchem a Bacia do Paraná, são relacionados com os megaestágios evolutivos da sinéclise. Conforme Milani *et al.* (2007), o pacote magmático-sedimentar da Bacia do Paraná constitui-se de seis Supersequências limitadas por expressivas discordâncias: Neossiluriana, Neodevoniana, Eotriássica, Neojurássica e Eocretácica.

Os sedimentos clásticos do pacote devoniano, o Grupo Paraná, era previamente interpretado como a primeira sequência deposicional da sinéclise, compreendendo as formações Furnas e Ponta Grossa, respectivamente, arenosa basal e uma argilosa superior. A amplitude lateral dessa supersequência assenta-se sobre os estratos ordovício-silurianos do Grupo Rio Ivaí, mas também sobre as rochas que representam o embasamento da sinéclise. A base do pacote devoniano é caracterizada por uma superfície deposicional regular e aplanada, que apresenta notável geometria regional, configurada por um imenso acamamento, em particular na Formação Furnas, com cerca de 250 metros de espessura em toda sua abrangência (Schineider *et al.* 1974, Milani *et al.* 2007).

A Formação Furnas tem como característica uma sucessão de arenitos quartzosos brancos, médios a grossos, caulínicos e exibindo estratificações cruzadas de várias naturezas. Próximo à base, são frequentes leitos conglomeráticos com até 1 m de espessura. Na sua porção intermediária, dominam arenitos de granulometria média, que se intercalam a delgados níveis de siltito e folhelho muscovítico, salientando o aspecto estratificado desse intervalo. Para o topo, arenitos médios a grossos passam a dominar, mas também aparecem camadas de arenitos muito finos. Em subsuperfície, a porção mais superior da Formação Furnas mostra um incremento paulatino nas leituras do perfil de raios gama, o que indica um aumento contínuo de argilosidade, evidenciando uma passagem gradacional para a Formação Ponta Grossa (Milani *et al.*, 1994 e 2007).

Com espessura ultrapassando 600 metros em subsuperfície, a Formação Ponta Grossa é constituída por três membros: Jaguariaíva, Tibagi e São Domingos, representando as porções inferior, médio e superior, respectivamente. O membro inferior (composto por folhelho com cerca de 100 m de espessura, no topo apresenta fácies preto laminado carbonoso), reflete o afogamento dos sistemas transicionais da porção superior da Formação Furnas. O membro Tibagi, areno-síltico, corresponde a um contexto regressivo de progradação de sistemas deltaicos, além de potencial gerador de hidrocarbonetos gasosos. O membro São Domingos, dominantemente pelítico, registra nova inundação em ampla escala. Localmente restrita, uma camada do diamictito Ortigueira, com espessura 1,5 metros, constituída por clastos de granulometria variada (desde arenosa até seixos), dispersos numa matriz argilosa a síltica, micácea, maciça, fecham o registro devoniano da sinéclise.

A Supersequência Paraná constitui o segundo ciclo transgressivoregressivo do registro estratigráfico da Bacia do Paraná. O pacote Furnas exibe uma característica assinatura transgressiva que vai culminar nos pelitos da base da Formação Ponta Grossa, documentando a primeira grande inundação do ciclo devoniano. Um segundo episódio de expansão marinha seria culminado no Mesodevoniano, que promoveu uma conexão entre as bacias do Paraná e do Parnaíba, esse afogamento persistiu, embora não com a magnitude e o desenvolvimento anóxico observados até então nas bacias paleozoicas do Norte brasileiro (Milani *et al.*, 2007).

No Eocarbonífero, a Bacia do Paraná experimentou um dos episódios de maior instabilidade em sua evolução, fatores climáticos e tectônicos atuantes na margem meridional do Gondwana, inibiram a sedimentação, gerando um hiato de 45 Ma devido ao desenvolvimento de calotas polares e epirogênese positiva (Milani, 1997). Com o degelo, a retomada da deposição no pensilvaniano ao Eotriássico, com espessura máxima total de 2500 metros, engloba o maior volume sedimentar da Bacia do Paraná, representada pelos Grupos Itararé, Passa Dois e Guatá.

Em função do degelo e, em consequência, aumento no nível do mar, conhecido como transgressão permiana, sucederam os estratos glaciogênicos do pacote sedimentar Grupo Guatá. Representado pelas Formações Rio Bonito e Palermo, constitui-se de siltitos cinzas, esverdeados e de arenitos com intercalações de camadas de carvão, além de folhelho carbonosos que se distribuem verticalmente desde o Grupo Itararé até a base da Formação Irati (Schneider *et al.*, 1974).

A Formação Rio Bonito, subdividida nos membros Triunfo, Paraguaçu e Siderópolis, compreende uma seção basal arenosa, uma média essencialmente argilosa e uma superior areno-argilosa, respectivamente, contendo os principais leitos de carvão explorados na Bacia do Paraná. As características litológicas e sedimentares dessa unidade indicam ambiente fluvio-deltaico nas porções basais, que evoluiu para um ambiente marinho transgressivo, com oscilação de nível de mar, para um sistema marinho litorâneo (Schneider *et al.*, 1974). Um episódio de convergência fruto da colisão da Patagônia e Antártica, conhecida como orogenia Finiherciana, pode ter causado um influxo arenoso na Formação Rio Bonito (Zalan *et al.*, 1990).

Retomadas as condições transgressivas, depositou-se a Formação Palermo, representada por siltito e siltito arenoso, intensamente bioturbado, assentando-se numa ampla plataforma marinha rasa, abaixo do nível de ação das ondas (Schneider *et al.* 1974, Milani *et al.* 1994). Adicionalmente, ocorrem folhelho cinza-escuros, compondo uma superfície de correlação regional relacionada à máxima inundação da Supersequência Gondwana I (Milani *et al*, 2007).

Acima, o Grupo Passa Dois, comportando as Formações Irati, Serra Alta, Teresina e Rio do Rastro, registra um singular momento na evolução da sinéclise, quando houve uma restrição à circulação de águas. Sob tais condições, acumularam-se carbonatos, evaporitos e folhelho betuminosos, acompanhados por uma definitiva tendência regressiva em grande escala, quando finalmente, folhelho da Formação Serra Alta soterraram esse pacote hipersalino. Consequentemente, sistemas deposicionais regressivos em grande escala passaram a dominar a bacia de acumulação. Neste cenário, depósitos dominantemente pelíticos de argilito e siltito, com estruturas sedimentares ligadas à ação de marés da Formação Teresina, dão lugar a um complexo progradacional, incluindo pelitos lacustres, lobos deltaicos, arenitos eólicos e depósitos fluviais da Formação Rio do Rastro (Milani et al, 2007). Os sedimentos areno-argilosos na região norte da bacia, representam a Formação Corumbataí, são cronocorrelatos aos das formações Teresina e Rio do Rastro (Milani et al., 1994). No Eotriássico, um contexto sedimentar análogo, representado pelas formações Piramboia e Sangra do Cabral, geograficamente nas porções setentrional e gaúcha, respectivamente, constituída por arenitos médios a finos, localmente conglomeráticos, trata-se de depósitos fluviais e eólicos associados a lagos rasos e localizados (Milani et al., 2007).

Em suma, o comportamento estratigráfico da Supersequência Gondwana I documenta um ciclo transgressivo-regressivo completo, que se inicia na base do pacote glacial, atinge condições de máximo afogamento marinho na Formação Palermo, e encerra em depósitos continentais, que passaram a dominar a sinéclise já no início do Mesozoico. A Supersequência Gondwana III, denominada como "Sequência Jurássica-Eocretácica" na concepção de Milani *et al.* (1994), compreende o intervalo do registro estratigráfico da Bacia do Paraná em que se posicionam os sedimentos eólicos da Formação Botucatu e os magmatitos da Formação Serra Geral. Tal seção, se acrescida do pacote sedimentar suprabasáltico, encontrará correspondência no Grupo São Bento, de Schneider *et al.* (1974).

A Formação Botucatu constitui-se quase totalmente, em toda sua ampla área de ocorrência, por arenitos médios a finos, de elevada esfericidade e aspecto fosco, róseos, que exibem estratificação cruzada tangencial, de médio a grande porte, numa assinatura faciológica muito característica que possibilita um pronto reconhecimento do "deserto Botucatu" em todos os pontos nos quais aflora.

Envelopando e intrudindo os pacotes sedimentares, o Grupo Serra Geral, constituindo ampla província magmática que, no conjunto de todas as áreas por ela compreendidas, define a maior manifestação ígnea não-oceânica durante o Fanerozóico e uma importante contribuição à geração da crosta continental do planeta. O magmatismo reflete a manifestação dos estágios precoces da ruptura do Gondwana e abertura do Atlântico Sul, que resultou no empilhamento de até 2.000 metros sobre os sedimentos da Bacia do Paraná, além de intrudí-los na forma de uma intrincada rede de diques cortando a inteira seção sedimentar e múltiplos níveis de soleiras intrudidas, segundo os planos de estratificação. De modo geral, petrograficamente, é representado por basaltos teloíticos e andesitos basálticos, com riolitos e riodacitos subordinados (Milani et al. 1994 e 2007).

#### 4.1.1 Grupo Itararé

Segundo França e Potter (1988), a unidade basal do Grupo Itararé coincide com a Formação Aquidauana, ambas sob a influência do clima glacial. As camadas oxidadas e vermelhas da Formação Aquidauana, na porção norte noroeste, são correlatas e representam o Grupo Itararé, de coloração cinza, na porção sul. Predominam nestas unidades pacotes diamictíticos intercalados a espessas seções de arenitos.

A unidade basal, não-aflorante, do Grupo Itararé, é representada pela Formação Lagoa Azul, composta de um pacote arenoso inferior (Membro Cuiabá Paulista); sobreposto por folhelho e diamictitos (Membro Tarabaí), têm ocorrência na região centro-sul de São Paulo, norte do Paraná, e sudeste do Mato Grosso do Sul. Comumente assenta-se a discordância erosiva do Grupo Paraná, quando não presente, a Formação Lagoa Azul assenta-se diretamente sobre o embasamento (França e Potter 1988).

A principal unidade arenosa e mais ampla do Grupo Itararé é representada pela Formação Campo Mourão, equivalente às Formações Mafra e Campo do Tenente, descritas por Schineider et al (1974). Em algumas áreas da bacia, um importante pacote de diamictitos comparece na porção média da Formação Campo Mourão. Ademais, a distinção dos pelitos vermelhos da base da Formação Campo Mourão foi reagrupada como pertencente ao Membro Campo do Tenente (Milani *et al.* 1994 e 2007).





Fonte: Rodrigues et al., (2020).

Conforme atribuído por Potter e França (1988) a Formação Taciba recobre concordantemente às demais unidades do Grupo Itararé e até mesmo extrapolando a área de ocorrência destas, esse pacote é subdividido em três membros: Rio Segredo, Chapéu do Sol, Rio do Sul. Essa Formação é composta por lamito seixoso, arenito, folhelho e algum siltito, apresenta contato superior concordante com o Grupo Guatá. A litologia predominante do membro Rio Segredo é de arenitos cinzas, maciços, de grosseiro a médio. Essencialmente composto por

lamito seixoso e raros corpos arenosos, o membro Chapéu do Sol afina em direção ao norte da bacia do paraná, está ausente em Goiás, Mato Grosso e Norte do Mato Grosso do sul. Os sedimentos do membro Rio do Sul (compostos por argilitos, folhelhos, arenitos finos, ritmitos e diamictitos) estão presentes na parte superior do Grupo Itararé, que foram denominados Formação Rio do Sul por Schneider *et al,.* (1974).

## 4.1.2 Magmatismo Serra Geral

O Grupo Serra Geral ocorre envelopando e intrudindo os pacotes sedimentares, constituindo ampla província magmática que, no conjunto de todas as áreas por ela compreendidas, define a maior manifestação ígnea não-oceânica durante o Fanerozoico e uma importante contribuição à geração da crosta continental do planeta. O magmatismo reflete a manifestação dos estágios precoces da ruptura do Gondwana e abertura do Atlântico Sul, que resultou no empilhamento de até 2.000 metros sobre os sedimentos da Bacia do Paraná, além de intrudí-los na forma de uma intrincada rede de diques cortando a inteira seção sedimentar e múltiplos níveis de soleiras intrudidas, segundo os planos de estratificação. De modo geral, petrograficamente, é representado por basaltos toleíticos e andesitos basálticos, com soleiras de diabásio, riolitos e riodacitos subordinados (Milani *et al.*, 1994, 2007, Rivas *et al.*, 2019).

# **5RESULTADOS**

# 5.1 ARTIGO SUBMETIDO BRAZILIAN JOURNAL OF GEOPHYSICS

Artigo científico, submetido à publicação na Brazilian Journal of Geophysics (BrJG), em 06 de março de 2023.



https://mc04.manuscriptcentral.com/brajgeophys

Fonte: elaborado pelos autores



# INFLUENCE OF VOLCANIC INTRUSIONS IN THE DENSITY PATTERNS OF SEDIMENTARY ROCKS OF THE ITARARÉ GROUP, PARANÁ BASIN.

Area: Petrophysics and Well Logging

Received: March 6, 2023; Accepted: date; Published: date

**ABSTRACT.** Intrusive magmatism are common features within rifted sedimentary basins. Here, this paper shows density patterns from well logging using RHOB, caliper and gamma ray. The well cutting sampling and lithology data were integrated and used to obtain the distribution of density values along the well and to assess the influence of volcanic intrusions in sedimentary rocks of the Itararé Group. The results are useful for estimating density differences between sedimentary rocks along the two wells, affected  $(2.35 - 2.76 \text{ g/cm}^3)$  and unaffected  $(1.62 - 2.69 \text{ g/cm}^3)$  by diabase sills from Serra Geral Group. The sedimentary rocks have wide range of density, where the lowest values were recorded mostly in the stratigraphic intervals with the highest occurrence of sandstones. Also, the increasing in density values was observed when these rocks occur in contact with volcanic sills, mineral changes due to illitization. Additionally, in shales intervals unaffected by intrusions the density values are much lower. The result of this approach is useful as improvement to prospect purpose such as machine learning, seismic and gravimetry.

Keywords: RHOB; gama ray; caliper; lithology

## INTRODUCTION

The relationship of igneous intrusions into sedimentary rocks has been studied around the world for petroleum exploration (Bulgruroglu & Milkov, 2020; Duffy et al., 2021). Magmatic processes, such as sills and dikes, when emplace sedimentary successions produce several property changes. It has been focused on exploration for hydrocarbons in volcanic basins (e.g., Faroe Shetland Basin, North Atlantic Margin; Gunnedah Basin, Australia; Cambay Basin, India; Kaoroo Basin, Africa; Paraná, Amazonas, and Parnaíba basins in Brazil). For example, in the Paraná Basin, the Itararé

Group has sedimentary units that were affected by magmatic intrusions from the Serra Geral Group (França & Potter, 1988; Milani, 2007). The wireline logging in the Itararé Group provides geophysical data that allow investigating not only the behavior of density, but also how diameter, and the amount of clay along the well would change the density of those rocks.

Density log (RHOB) is a continuous record of the apparent density throughout a formation and is used specially to determine the internal density in large volumes of rock during the drilling of a well. Bulk density is controlled by the rock-forming minerals and the composition of the free fluids in the porosity. The survey method is unique for many important reasons; for example, it is sensitive to very small variations in formation density, and the measurements are unaffected by fluids, rugosity, casing, cement, or invasion by drilling fluids (Beyer & Clutsom, 1988; Rider, 2002; Liu, 2017).

To ensure and evaluate the quality of a geophysical survey, such as density, caliper measurements have proven to be useful. It is made by articulated arms pushed against the borehole wall in lateral movement, so the simple mechanical records are translated into the size and shape of a borehole, and it shows whether the tool touches the borehole wall. Besides the caliper, there is the gamma ray log, one of the oldest parameters applied in well-logging, which continues to be universally used across the geosciences not only for its ability to discriminate clay but also for its sensibility in facies differentiation (Behdad, 2019; Rider, 2002).

This work aims to analyze and discuss the implications that have influenced density patterns (RHOB) in Permo-Carboniferous sedimentary successions of the Itararé Group by using data from wells 1GO-0001-SC and 1HV-0001-SC (Fig. 1). The first one does not show evidence of being affected by magmatic intrusions, while the second one does. As well as discussions regarding the lithology on wireline logging records such as caliper and gamma ray.



**Figure 1** – Location of wells 1GO-0001-SC and 1HV-0001-SC (ANP, 2021; SGB/CPRM, 2021) in the Paraná Basin.

# **GEOLOGICAL CONTEXT**

The Itararé Group is the thickest lithostratigraphic unit of the Paraná Basin. It is composed of glacial and post-glacial (Permo-Carbiniferous) sedimentary rocks, and it was shaped in the context of the Gondwana Supercontinent. Sandstones, diamictites, shales, conglomerates, and siltstones (Schneider et al., 1974; França & Potter, 1988; Milani et al., 2007) are the main lithotypes of this group, and they were affected later by volcanic sills and dikes of the Serra Geral Group.

Regarding the thermal effects of volcanic intrusions, the well 1GO-0001-SC did not have the thermal effect of diabase sills, while the well 1HV-0001-SC has sills. The thermal heating event, known as Paraná-Etendeka LIP, not only could have affected the organic elements, changing them into petroleum, but it may also have altered minerals and sedimentary porosity (Milani, et al., 2007; Gomes & Vasconcelos, 2021). Furthermore, this magmatic event was important because hydrocarbons were probably trapped and sealed by diabase sills (França & Potter, 1988; Milani et al., 2007).

### MATERIAL AND METHODS

The data from the Geological Survey of Brazil (SGB/CPRM) were used to produce a cartographic base for this work and were integrated by ArcGIS Software.

The wells 1HV-0001-SC and 1GO-0001-SC used in this work were drilled in 1972 and 1981, respectively, when PETROBRAS performed several surveys and borehole investigations of the Paraná Basin, southern Brazil. These wells were drilled to reach the basement rocks to verify and provide an understanding of the anomalous structure of the Paraná Basin. As a result of these exploration activities, a large amount of data was acquired not only about the outcrop but also the subsurface information of the wells. The geophysical logging data was provided by the ANP (National Bureau of Petroleum). This set of information is composed of lithology cutting reports from the drilling, wireline logging, and some accessory resources such as AGP files and profiles from when the campaign was performed.

The workflow used in this research includes: (i) the input tabulation of the data from reports during drilling was used to add information of sampling lithology cutting; (ii) the review of lithostratigraphic record was made to improve the accuracy of limits between sills and sedimentary rocks; and (iii) the data were inputted in appropriate software to integrate them into a database of well logging (Fig. 2).

The database involves wire-logging from 2069 to 2575 depth meters at 1HV-0001-SC (2612 measurement), and from 3003 to 3684 depth meters at 1GO-0001-SC (3355 measurement); the survey resolution is 15.24 cm (0.5 feet). The database is composed by caliper (in), gamma ray (API) and bulk density-RHOB (g/cm<sup>3</sup>) all of them in .DLIS data resource; later, it was converted into WELL data for the *Paradigm Geolog Software*. The data set had been used for lithology cutting correlation and lithology interpreted from previous analysis. The data processing involved the correlation, interpretation, and adjustments of lithostratigraphy. To estimate the behavior of the density values and investigate how this could affect the measurements of both rocks, the data were treated and interpreted separately. Thus, it was possible to verify that the statistical calculations indicate that the sedimentary rocks of the Itararé Group have different density values. Those products were made by statistics patterns and graphics plotting (Fig. 2).



Figure 2 - Workflow used in the development of this research

# RESULTS

### Lithology ratio and inferred lithology.

Integrated data using wireline logging, lithostratigraphy, and lithology cutting samples during drilling, and the final model outputs are shown in Figures 3A and 3B. The sills are reported twice in well 1HV-0001-SC, in these depth intervals: 2190 to 2202 m and 2214 to 2318 m (Fig. 3a). The main lithotypes in this well include sandstones, siltstones, shales and diamictites (Figs. 3a and 3b). The lower portion of the sedimentary succession is composed mainly of shales, siltstones and diamictites, as well as sandstones. In the intermediate portion of this succession, siltstone with shale lens and sandstones dominate. In the upper part of the sedimentary succession, interbedded shales, siltstones and diamictites occur with minor amounts of sandstones. Finally, the last register is composed of sandstone.





(b)

**Figure 3** – Geophysical logging data, lithology ratio and inferred lithology to both wells (a) 1GO-0001-SC unaffected; b) 1HV-0001-SC affected by diabase sills.

## Well logging

Density data versus well diameter (caliper) are different (Figs. 4a and 4b) and suggest that, probably, the heat from magmatic emplacement can cause changes in the mechanical properties of the host rock. The bit size to drill for both wells was 8.5 inches, but somehow the diameter in sand rich interval gave a diameter lower than expected; it seems relative to the mud cake effect where higher porosity intervals had been reached. Also, because the interval composed of shales (Figs. 2a and 4a) can collapse during drilling with values as high as 16 inches, it causes lower values of density. Otherwise, the borehole 1HV-0001-SC intersects shales and two sills (Fig. 2b), but it has improved the rocky mechanical of the drilling cutting, and the maximum diameter does not expand over 14 inches, as noticed in figure 4b. The correlation coefficient between density and diameter was weak for well 1GO-0001-SC ( $R^2 = 0.730016$ ); on the other hand, the well 1HV-0001-SC improved its correlation ( $R^2 = 0.440283$ ).



**Figure 4** – Cross plot frequency graphics of density values of density vs caliper: (a) well 1GO-0001-SC ( $R^2 = 0.730016$ ); (b) well 1HV-0001-SC ( $R^2 = 0.440283$ ).

The density values versus gamma ray, even considering the higher numbers of measurements of the tool at the well 1GO-0001-SC, have lower values for maximum and minimum concerning gamma ray readings (Fig. 5a). There is no association regarding the coefficient of correlation ( $R^2 = 0.107672$ ); additionally, the most frequent value of the gamma ray reading was 75 (gAPI). Instead, the well 1HV-0001-SC displays the strong positive association between gamma ray and density values ( $R^2 = 0.837224$ ) (Fig. 5b), which is probably due to the changes of clay minerals into denser ones such as illites, kaolinite, or smectite. Similarly, not only the lower density values are related to the clean rich sand portion, but also to the lower amount of shales. The increasing of gamma ray measurements in the well 1HV-0001-SC indicates a greater amount of shales as well (Figs. 2b and 5b) when it hits denser intervals of the borehole.



**Figure 5** – Cross plot frequency graphics of density values of density vs gamma ray: (a) well 1GO-0001-SC ( $R^2 = 0.107672$ ); (b) well 1HV-0001-SC ( $R^2 = 0.837224$ ).

These results represent both values of the Itararé Group with and without sills, respectively. The segmentation of the Itararé Group leads to an estimate of the distribution of sedimentary filling; moreover, it provides a proper behavior for data set distribution. Sandstone predominates in the basal part of the Itararé Group, which has a local density average of 2.4 g/cm<sup>3</sup>. Also, the lowest density values in sedimentary rocks correspond to the lithology of sandstones; otherwise, the highest

density values logged were achieved in the shales. Not only do the lower density values correspond to intervals where sandstones dominate, but they may also be related to the mechanical behavior of shales due to washing out (Fig. 6). The basal sequence statistics values gave a greater range of density measurements, it is due to the diversity of grain size assemblages (Figs. 2, 6a and 6b).



**Figure 6** – Crossplot graphic of density values and depth (m): (a) the behavior of Itararé Group filling in well 1GO-0001-SC; (b) the behavior of Itararé Group filling in well 1HV-0001-SC without sills intrusions.

The frequency of density values shows the distribution of RHOB logging measurements versus depth (Table 1, Fig. 3), and it contains a comparison of the ratio by weight of the density components recovered with the RHOB tool measured across the wells (Table 1). While the 1GO-0001-SC has 3355 values ranging from 1.627 to 2.6989 g/cm<sup>3</sup>, the 1HV-0001-SC has 2612 values ranging from 2.3585 to 2.7617 gm/cm<sup>3</sup> for density, with given ranges of 1.0719 and 0.4031, respectively (Fig. 7). In contrast to the well affected by sill intrusions, statistical data such as mean, geometric mean, variance, standard deviation, median, and mode show not only the variability in distribution but also lower density values in 1GO-0001-SC. The differences in rocky filling, depth, and the magmatic intrusions in the well seem to be related to these density discrepancies, as discussed below.



Figure 7 - Histogram frequency of Density values: (a) Well 1GO-0001-SC values from 1.627 to 2.6989 gm/cm<sup>3</sup>; (b) Well 1HV-0001-SC values from 2.3585 to 2.7617 gm/cm<sup>3</sup>.

| RHOB (G/CM <sup>3</sup> ) | 1GO-0001-SC | 1HV-0001-SC |
|---------------------------|-------------|-------------|
| VALUES                    | 3355        | 2612        |
| MINIMUM                   | 1.627       | 2.3585      |
| MAXIMUM                   | 2.6989      | 2.7617      |
| RANGE                     | 1.0719      | 0.4031      |
| MEAN                      | 2.5399      | 2.6212      |
| GEOMeTRIC MEAN            | 2.5326      | 2.6205      |
| VARIANCE                  | 0.0319      | 0.0037      |
| STANDARD DEV.             | 0.1788      | 0.0612      |

Table 1 – Density statistics values of wells.

Braz. J. Geophys., 40(n), 2023

| MEDIAN | 2.6092 | 2.6316 |
|--------|--------|--------|
| MODE   | 2.6380 | 2.6337 |

### DISCUSSION

The dominant density higher values were achieved from the diabase sill intrusion (3.00 g/cm<sup>3</sup>) the average density of magmatic rocks is 2.96 g/cm<sup>3</sup>, which had been isolated in order to understand only the sedimentary behavior for well 1HV-0001-SC. The density patterns of the Itararé Group, for both wells, show considerable correlation with the lithology that composes it. This sequence consists of wackestones, diamictites, and black shales with low-mineral and textural maturity; it has been stablished due to the increase in sea level during Permo-Carboniferous deglaciation, the depositional cycles consist of a thinning size toward upper succession (Schneider et al., 1974; França & Potter 1988; Milani et al., 2007; Costa et al., 2018; Rodrigues et al., 2020). According to Costa et al. (2018), the main minerals of those rocks are the illite group, which can be related to increasing density values (Figs. 4c and 4b). Not only the average density of shales might increase related to the presence of illite mineral, but also when it fills the pores of sandstones.

The caliper log gave the morphology and geometry for both wells (Figs. 3 and 4). It is important to verify whether the efficiency of tool measurement was properly acquired. In this case, the caliper measurements assume that enough quality was achieved during drilling the borehole at the well 1HV-0001-SC (Figs. 3b and 4b). On the other hand, the shales bearing rocks are more propitious to increasing the diameter of the well 1GO-0001-SC (Figs. 3a and 4a). The mudcake effect was observed; it occurs when the drilling fluids fill the porosity; later, they come back to the wall of the borehole and decrease the diameter in interval of sandstones-rich lithologies. As a result, the sandstones in the lower portion of the column show an increasing caliper diameter (Figs. 2, 4b and 4d) (Rider, 2002). The data at well 1HV-0001-SC gives density ranges from as low as 2.35 for sandstone units to as high as 2.76 g/cm<sup>3</sup> for shale in sedimentary rocks. Instead, the well 1GO-001-SC Braz. J. Geophys., 40(n), 2023

values for density are lower, ranging between 1.62 up to 2.69 g/cm<sup>3</sup>, while the denser values are predominantly in shales bearing intervals (Table 1, Figs. 3 and 7). As observed, the increasing of caliper measurements in such intervals shows lower density, which is correlated to not having enough quality survey of the RHOB tool.

The bottom of host rocks, composed of siltstones with diabase sills (e.g., central portion of the well 1HV-0001-SC) shows an increase in gamma ray measurements; this was previously interpreted as shales; however, it was not observed when lithology cutting was gathered in profile (Fig. 2b). That increase in gamma ray reading might also be influenced by mineralogic changes, especially those caused by the illitization of clay minerals such as kaolinite and smectite. Duffy et al. (2021) studied the mineralogical and textural changes in sedimentary rocks affected by magmatic intrusion in the Faroe Shetland Basin. It was observed that kaolinite-rich sandstone, when submitted to a heating effect above 130°C, becomes unstable and then changes into illite. Although the increasing gamma ray reading would be interpreted as shale bearing rich in the contact with the sill, illite provides a higher potassium amount than another clay minerals; consequently, gamma ray measurements in wireline logs would increase as well (Deer et al., 1966; Rider, 2002; Duffy et al., 2021).

In the Kalahari Karoo basin, across the Atlantic Ocean, sill intrusions (> 13 meters) cause contact aureoles ranging in thickness from 31% to 137%. On the other hand, thinner sills intrusions (< 5 meters) have made contact aureoles proportionally thicker, because the quick heat dissipation increases the metamorphic zone around the intrusion (Bulgoroglu & Milkov, 2020). This behavior shows similarity when compared to several sill intrusions in sedimentary records around the world, there observed aureoles average ranging from 30% up to 250% (Aarnes et al., 2010). The sill intrusions emplaced at well 1HV-0001-SC were twice, the drilling hit in 3 meters and 106 meters of thickness, respectively. Bellow those intrusions, siltstones hold the lowest density values, even when affected by heating from magmatism. Instead, shales occurrences above the sills show a higher density measurement. Furthermore, density log (RHOB) values reveal an important connection between pronounced changes in density and porosity at intervals surrounding the sill. It is probably due to the fact that porosity does not decrease in hosted rocks afterward

intrusion. Therefore, the source of the magmatic heating related to sills intersected at 1HV-0001-SC and its ability to increase the density of sedimentary host rocks might have relationships. Additionally, the fluids would change to cement in the siltstones, which probably indicates this behavior of density values.

## CONCLUSIONS

In this approach and our analyses of the two wells in Itararé Group, density information regarding wireline logging data (RHOB, caliper, GR) and lithology (cutting and interpreted) has shown a unique opportunity to estimate the difference among them. This has allowed to provide new insights into the relationship when intrusive magmatism influence several changes such as mechanical aspects, density values, mudcake in sandstones, and illitization of kaolinite.

The 1GO-0001-SC (1.62 - 2.69 g/cm<sup>3</sup>) does not have enough survey quality at shales and sandstones in some intervals of density, it is due to mechanical behavior when caliper reading gives higher values. Instead, the magmatic event at 1HV-0001-SC (2.35 - 2.76 g/cm<sup>3</sup>) not only increased density values, but also improved mechanical aspects of the well for drilling. Additionally, the gamma ray reading has been influenced by the denser minerals, as discussed, enrichment illite through illitization of kaonilite and smectite would increase its density.

This study shows density values behaviors in two wells drilled at Paraná Basil, Itararé Group, affected and not affected by magmatism. The assumptions of igneous intrusion into sedimentary rocks density properties can lead to misinterpretation of the properties for other geophysical measurements. Further analysis of rocks, in contact between Itararé Group and Serra Geral LIP, need to be understood through petrography and thin section to ensure that the mineral changes expected occur. The result of this approach is useful as improvement to prospect purpose such as data training, machine learning, seismic and gravimetry.

# ACKNOWLEDGMENTS

This work is supported by the "Técnicas Machine Learning para reconhecimento de Padrões Sedimentológicos de Sistemas Turbidíticos" project funded by PETROBRAS, and the ANP (National Agency of Petroleum), which allowed and provided the geophysical data. We are grateful to Emerson for the GEOLOG software license for its valuable support throughout its utilization.

### REFERENCES

Aarnes, I., Svensen, H., Connolly, J.A.D., Podladchikov, Y.Y., 2010, How contact metamorphism can trigger global climate changes: modeling gas generation around igneous sills in sedimentary basins. Geochem. Cosmochim. Acta 74, 7179–7195.

Behdad, A., 2019, A step toward the practical stratigraphic automatic correlation of well logs using continuous wavelet transform and dynamic time warping technique. Journal of Applied Geophysics 167 (2019) 26–32.

Beyer, L. A., Clustom, F. G., 1988, Density and porosity of oil reservoirs and overlying formations from borehole gravity measurements, gebo oil field, hot springs country, Wyoming. United States Geological Survey USGS. Accompany Chart. Oct/88.

Bulgorouglu, M.E., Milkov, A.V., 2020, Thickness matters: Influence of dolerite sills on the thermal maturity of surrounding rocks in a coal bed methane play in Botswana. Marine and Petroleum Geology, Volume 111, January 2020, Pages 219-229

Costa, H. da S., Nascimento, M. dos S., Ferreira, F. J. F., 2018, Clay minerals and gamma-ray spectrometry as paleoclimatic indicators in the Gondwana's sedimentary sequences, Santa Catarina, Brazil. Rev. Bras. De Geofísica, 36(3): 1-15.

Deer, D.A., Howie, R.A., and Zussman, J., 1966, An Introduction to the Rock Forming Minerals, Longman Scientific & Technical, Essex, England.

Duffy, M., Farrell, N., Raeside, R., Muirhead, D. Healy, D., Brasier, A., Schofield, 2021, Observations of reservoir quality alteration in proximity to igneous

intrusions for two distinct sandstones in Scotland. Marine and Petroleum Geology Volume 129, July 2021, 105071

França, A.B. & Potter, P.E., 1988, Estratigrafia, ambiente deposicional e análise de reservatório do Grupo Itararé (Permo-Carbonífero), Bacia do Paraná. Bol. Geoc. PETROBRAS, v. 2, 147-191.

Gomes A.S., Vasconcelos and P.M., 2021, Geochronology of the Paraná-Etendeka large igneous province, Earth-Science Reviews (2021), https://doi.org/ 10.1016/j.earscirev.2021.103716

Liu, H., 2017, Principles and applications of well logging. Springer, 356 p.

Milani E.J., Melo J.H.G., Souza P.A., Fernandes L.A., França A.B., 2007, Bacia do Paraná. Boletim de Geociências – Petrobrás, 15(2):265-287.

Rider, M. (2002) The geological interpretation of well logs. Whittles Publish., 280 p.

Rodrigues, M.C.N.L., Trzaskos, B., Alsop, G.I., Vesely, F. F., 2020, Making a homogenite: An outcrop perspective into the evolution of deformation within mass-transport deposits Marine and Petroleum Geology 112 (2020) 104033

Serviço Geológico do Brasil SGB/CPRM, 2021, Mapa integrado do Brasil ao Milionésimo. Arquivos Vetoriais (shp) Mapa geológico integrado do Brasil ao Milionésimo Escala 1:1.000.000 Sistema de Coordenadas Geográficas, Datum SIRGAS-2000. (EPSG - 4674) disponível em: https://geosgb.cprm.gov.br/downloads/#

Schneider, R. L., Muhlmann, H., Tommasi, E., Medeiros, R. A., Daemon, R. F., Nogueira, A. A., 1974, Revisão estratigrafica da Bacia do Paraná. Anais Do XXVIII Congresso Brasileiro de Geologia. Sociedade Brasileira de Geologia, Porto Alegre, v.1, 41–65.

This document only illustrates the frequently encountered style elements. Authors should consult the full Instructions to Authors at https://sbgf.org.br/revista/index.php/rbgf/information/authors

## 6 CONCLUSÃO

Os dados e informações associados aos poços 1HV\_0001\_SC e 1GO\_0001\_SC, bem como o desenvolvimento e o ajuste de método de trabalho, do processamento e integração de dados geológicos, culminando na geração de produtos gráficos e estatísticos e posteriores interpretações, pode-se realizar as seguintes considerações:

 i) O método de consolidação de um banco de dados se mostrou adequado para estimativa de padrões de densidade nos intervalos do Grupo Itararé, quando integrando as descrições de amostra de calha, complementando a litologia que havia sido parametrizada como homogênea pela interpretação geofísica.

ii) Foi proposto o agrupamento das leituras de densidade, retirando as leituras de densidade sob influência das soleiras, de diabásio para eliminar os ruídos pontuais de estimativa e categorização dos intervalos litoestratigráficos. Esse procedimento auxiliou na compreensão e entendimento do comportamento litológico e mecânico das unidades litoestratigráficas, com relação à leitura geofísica de poços. Dessa forma, foi possível obter uma assinatura dos padrões de densidade mais aproximados dos sistemas de acumulação.

iii) Os padrões de densidade revelam que as sequências sedimentares do Grupo Itararé apresentam uma redução dos valores de densidade nos arenitos. Isto é corroborado por dados da literatura, onde rochas sedimentares similares, com altos valores de porosidade, apresentam decréscimo de densidade.

iv) Uma vez que o metamorfismo de contato, cause transformações minerais e texturais nas rochas encaixantes, a análise de um poço isento de intrusões magmáticas é imprescindível para comparação. Por essa razão, será realizado estudo comparativo utilizando um poço que não possua soleiras, para testar o comportamento dos padrões de densidade em intervalos similares do Grupo Itararé.

v) O material da parede do poço pode contaminar a amostra de calha, causando descompasso entre os dados geológicos e os dados perfilados. Logo, é necessário cautela e prudência na interpretação, todavia, o comportamento da perfilagem geofísica contribuiu no ajuste da acurácia.

vi) O Poço 1HV\_0001\_SC apresentou boa correlação (R<sup>2</sup> = 83,72%) de ajuste linear entre as leituras de densidade para os parâmetros de GR. Revelando

que o padrão de raios gama é diretamente proporcional ao incremento de densidade nesse poço; diferentemente, o poço 1GO\_0001\_SC apresentou baixíssima correlação ( $R^2 = 10,76\%$ ). Por outro lado, a densidade das rochas (com relação ao Caliper) apresenta correlação razoável para o poço afetado por soleiras ( $R^2 = 44,02\%$ ); entretanto, o poço não afetado por soleiras apresentou um coeficiente de correlação mais ajustado ( $R^2 = 73,00\%$ ) apesar das elevadas espessuras encontradas.

Neste trabalho, foi desenvolvido um método para estimar os valores de densidade ao longo da unidade litoestratigráfica Grupo Itararé utilizando dois poços: 1HV\_0001\_SC e o 1GO\_0001\_SC, afetado e não afetado por soleiras, respectivamente. Esse procedimento permite interpretar com maior acurácia os dados e propor modelos desses parâmetros de densidade mais realísticos para o Grupo Itararé, afim de aprimorar técnicas de prospecção.

# REFERÊNCIAS

ALMEIDA, Fernando Flávio Marques. **Geologia do Continente Sul-Americano**: Evolução da Obra de Fernando Marques de Almeida. Organizadores: Virginia Mantesso-Neto, Andre Bartoreli, Celso Dal Ré Carneiro, Benjamin Bley de Brito-Neves. 647p. 2004.

AARNES, Ingrid; SVENSEN, Henrik.; CONNOLLY, James A. D.; PODLADCHIKOV, Yuri Y. How contact metamorphism can trigger global climate changes: modeling gas generation around igneous sills in sedimentary basins. **Geochem. Cosmochim**. Acta 74, 7179–7195, 2010.

COSTA, Hérlon da Silva; NASCIMENTO, Marivaldo dos Santos; FERREIRA, Francisco José Fonseca. Clay minerals and gamma-ray spectrometry as paleoclimatic indicators in the Gondwana's sedimentary sequences, Santa Catarina, Brazil. **Rev. Bras. de Geofísica**, 36(3): 1-15. 2018.

BULGOROUGLU, Muhammed Emin; MILKOV, Alexei V. Thickness matters: Influence of dolerite sills on the thermal maturity of surrounding rocks in a coal bed methane play in Botswana. **Marine and Petroleum Geology**, Volume 111, January 2020, Pages 219-229. 2020

CPRM, Serviço Geológico do Brasil. **Mapa integrado do Brasil ao Milionésimo**. Arquivos Vetoriais (shp) Mapa geológico integrado do Brasil ao Milionésimo Escala 1:1.000.000 Sistema de Coordenadas Geográficas, Datum SIRGAS-2000. (EPSG -4674) disponível em: <u>https://geosgb.cprm.gov.br/downloads/#</u> Acesso em: 20 jan 2021.

DEER, William Alexander; HOWIE, Robert Andrew; ZUSSMAN, J. An Introduction to the Rock Forming Minerals, **Longman Scientific & Technical**, Essex, England, 1966.

DUFFY, Marcus; FARRELL, Natalie; RAESIDE, Ronan; MUIRHEAD, David; HEALY, David; BRASIER, Alex, SCHOFIELD, Nick. Observations of reservoir quality alteration in proximity to igneous intrusions for two distinct sandstones in Scotland. **Marine and Petroleum Geology** Volume 129, July 2021, 105071

ELLIS, Darwin V.; SINGER, Julian M. **Well Logging for Earth Scientists**. Springer, 699 p. 2008.

FRANÇA, Almério Barros; POTTER, Paul Edwin. Estratigrafia, ambiente deposicional e análise de reservatório do Grupo Itararé (Permo-Carbonífero), Bacia do Paraná. **Bol. Geoc. PETROBRAS**, v. 2, 147-191. 1988

GARDNER, G. H. F; GARDNER, L. W.; GREGORY, A. R.Formation velocity and density—the diagnostic basics for stratigraphic traps. **Geophysics** 39:770–780. 1974

LaFEHR, Thomas R., NABIGHIAN, Misac N. **Fundamentals of gravity exploration**. ISBN 978-1-56080-298-3. 2012

LIU, Hongqi. Principles and applications of well logging. Springer, 356 p. 2017

JOHSON, David E.; PILE, Kathryne E. Well Logging for the nontechnical person. **Penn Well Publ.**, 111 p. 1988.

KATAHARA Keith. (2008) What is shale to a petrophysicist? **Lead Edge** 27:738–741. doi:10.1190/1.2944158. 2008.

MAINGUÉ, Edison, FEIJÓ, Flávio Juarez. **Relatório Geológico de Perfuração**, Descrição de Amostras de calha 1HV-0001-SC. 1973.

MILANI, Edison José. Bacia do Paraná. Bol. Geoc. PETROBRAS., 8(1):69-82. 1994

MILANI, Edson José. Comentários sobre a origem e a evolução tectônica da Bacia do Paraná. In: Mantesso-Neto, V. et al. (eds.) **Geologia do Continente Sul-Americano:** Evolução da obra de Fernando F. M. de Almeida, Beca Ed., cap XVI.

MILANI, Edison José; MELO, José Henrique Gonçalves; SOUZA, Paulo Alves; FERNANDES, Luiz Alberto; FRANÇA, Almério Barros. Bacia do Paraná. **Boletim de Geociências – Petrobrás**, 15(2):265-287. 2007

MILANI, Edison José. Cap. XVII Influência do embasamento na evolução de bacias sedimentares. Geocreonologia e evolução tectônica do Continente Sul-Americano. 357-391. 2020.

PARADIGM GEOLOG WELL 20. **Emerson manuais e suporte técnico**. Disponível em: <u>https://www.pdgm.com/services-support-training/technical-support-training</u> acessado em 01 de setembro de 2021.

NERY, Geraldo Girão. Perfilagem Geofísica em Poço Aberto - Fundamentos básicos com ênfase em petróleo. **SBGF - INCT**-GP/CNPq, 220 p. 2013.

POTTER, Colin C.; STEWART, Rrobert R. Density predictions using Vp and Vs sonic logs. **CREWES Research Report** — Volume 10.

RIBEIRO, Frederico Silva de Azevedo. Aplicação de análise multivariada na predição de perfis faltantes de poços no campo de namorado. Dissertação Mestrado, COPPE/UFRJ, 156 p. 2008

Rider, Malcon. The geological interpretation of well logs. **Whittles Publish**., 280 p. 2002.

RODRIGUES, Mérolyn Camila Naves de Lima; TRZASKOS, Bárbara; ALSOP, G. Ian; VESELY, Fernando Farias. Making a homogenite: An outcrop perspective into the evolution of deformation within mass-transport deposits. **Marine and Petroleum Geology** 112 (2020) 104033. 2020.

RIVAS, Ramon Sade Zapata; SALAMUNI, Eduardo; FIGUEIRA, Isabella Françoso Rebutini. Análise estrutural rúptil na zona de influência do arco de Ponta Grossa:

estudo de caso na área da UHE-Mauá-PR. Rev. Geociências, v. 38, n. 4, p. 853-869. 2021

SERRA, Oberto. Well logging data acquisition and applications. **Éditions TECHNIP**, 305 p. 2007

SERRA, Oberto. Well logging handbook. Éditions TECHNIP, 604 p. 2008

SCHNEIDER, R. L.; MUHLMANN, H.; TOMMASI, E.; MEDEIROS, R. A.; DAEMON, R. F.; NOGUEIRA, A. A.; Revisão estratigrafica da Bacia do Parana. Anais Do XXVIII **Congresso Brasileiro de Geologia**. Sociedade Brasileira de Geologia, Porto Alegre, v.1, 41–65. 1974

TOTTEN, Matthew W.; HANAN, Mark A.; KNIGHT, Denise; BORGES, Joniell. Characteristics of mixed-layer smectite/illite density separates during burial diagenesis. **American Mineralogist**, Volume 87, pages 1571–1579. 2002

ZALÁN, Pedro Victor; ASTOLFI, Marco Antonio Mendonça; WOLFF, Sven; CONCEIÇÃO, João Cláudio de Jesus; MARQUES, Airton; VIEIRA, Inês Santos; APPI, Valéria Tiriba; ZANOTTO, Osmar Antônio. Bacia do Paraná. In: Raja Gabaglia, Milani, E.J. (eds.) Origem e Evolução das Bacias Sedimentares, **PETROBRAS**, 135-168 p. 1991

YUSUF, Babatunde; OLORUNTOBI, Olalere; BUTT, Stephen. The formation bulk density prediction for intact and fractured siliciclastic rocks. **Geodesy and Geodynamics**, 10:446-45. 2019

# APÊNDICE A - 1GO\_0001\_SC

| Well        | From | to   | Litolog                                        |
|-------------|------|------|------------------------------------------------|
| 1GO_0001_SC | 3003 | 3006 | 70%arenito 0%folhelho 30%siltito               |
| 1GO_0001_SC | 3006 | 3009 | 60%arenito 0%folhelho 40%siltito               |
| 1GO_0001_SC | 3009 | 3012 | 20%arenito 0%folhelho 80%siltito               |
| 1GO_0001_SC | 3012 | 3015 | 70%arenito 0%folhelho 30%siltito               |
| 1GO_0001_SC | 3015 | 3018 | 20%arenito 0%folhelho 80%siltito               |
| 1GO_0001_SC | 3018 | 3021 | 10%arenito 80%diamictito 10%siltito            |
| 1GO_0001_SC | 3021 | 3024 | 0%arenito 100%diamictito 0%siltito             |
| 1GO_0001_SC | 3024 | 3027 | 0%arenito 100%diamictito 0%siltito             |
| 1GO_0001_SC | 3027 | 3030 | 0%arenito 100%diamictito 0%siltito             |
| 1GO_0001_SC | 3030 | 3033 | 0%arenito 100%diamictito 0%siltito             |
| 1GO_0001_SC | 3033 | 3036 | 0%arenito 100%diamictito 0%siltito             |
| 1GO_0001_SC | 3036 | 3039 | 0%arenito 100%diamictito 0%siltito             |
| 1GO_0001_SC | 3039 | 3042 | 0%arenito 10%diamictito 90%siltito             |
| 1GO_0001_SC | 3042 | 3045 | 10%arenito 10%diamictito 80%siltito            |
| 1GO_0001_SC | 3045 | 3048 | 10%arenito 80%diamictito 10%siltito            |
| 1GO_0001_SC | 3048 | 3051 | 10%arenito 90%diamictito 0%siltito             |
| 1GO_0001_SC | 3051 | 3054 | 0%arenito 100%diamictito 0%siltito             |
| 1GO_0001_SC | 3054 | 3057 | 0%arenito 90%diamictito 10%siltito             |
| 1GO_0001_SC | 3057 | 3060 | 80%folhelhoo 10%diamictito 10%siltito          |
| 1GO_0001_SC | 3060 | 3063 | 80%arenito 10%folhelho 10%siltito              |
| 1GO_0001_SC | 3063 | 3066 | 10%arenito 50%folhelho 40%siltito              |
| 1GO_0001_SC | 3066 | 3069 | 80%arenito 10%folhelho 10%siltito              |
| 1GO_0001_SC | 3069 | 3072 | 60%arenito 10%folhelho 30%siltito              |
| 1GO_0001_SC | 3072 | 3075 | 40%arenito 0%folhelho 60%siltito               |
| 1GO_0001_SC | 3075 | 3078 | 0%arenito 0%folhelho 100%siltito               |
| 1GO_0001_SC | 3078 | 3081 | 0%arenito 0%folhelho 100%siltito               |
| 1GO_0001_SC | 3081 | 3084 | 0%arenito 0%folhelho 100%siltito               |
| 1GO_0001_SC | 3084 | 3087 | 20%arenito 0%folhelho 80%siltito               |
| 1GO_0001_SC | 3087 | 3090 | 20%arenito 0%folhelho 80%siltito               |
| 1GO_0001_SC | 3090 | 3093 | 0%arenito 0%folhelho 100%siltito               |
| 1GO_0001_SC | 3093 | 3096 | 0%arenito 0%folhelho 100%siltito               |
| 1GO_0001_SC | 3096 | 3099 | 10%arenito 0%folhelho 50%siltito 40%diamictito |
| 1GO_0001_SC | 3099 | 3102 | 80%arenito 0%folhelho 20%siltito               |
| 1GO_0001_SC | 3102 | 3105 | 90%arenito 0%folhelho 10%siltito               |
| 1GO_0001_SC | 3105 | 3108 | 30%arenito 0%folhelho 70%siltito               |
| 1GO_0001_SC | 3108 | 3111 | 30%arenito 0%folhelho 70%siltito               |
| 1GO_0001_SC | 3111 | 3114 | 20%arenito 0%folhelho 80%siltito               |
| 1GO_0001_SC | 3114 | 3117 | No recovery                                    |
| 1GO_0001_SC | 3117 | 3120 | No recovery                                    |
| 1GO_0001_SC | 3120 | 3123 | No recovery                                    |
| 1GO_0001_SC | 3123 | 3126 | No recovery                                    |
| 1GO_0001_SC | 3126 | 3129 | No recovery                                    |
| 1GO_0001_SC | 3129 | 3132 | No recovery                                    |
| 1GO_0001_SC | 3132 | 3135 | 0%arenito 0%folhelho 100%siltito               |

| 1GO_0001_SC | 3135 | 3138 | 0%arenito 0%folhelho 100%siltito     |
|-------------|------|------|--------------------------------------|
| 1GO_0001_SC | 3138 | 3141 | 0%arenito 0%folhelho 100%siltito     |
| 1GO_0001_SC | 3141 | 3144 | 0%arenito 0%folhelho 100%siltito     |
| 1GO_0001_SC | 3144 | 3147 | 0%arenito 0%folhelho 100%siltito     |
| 1GO_0001_SC | 3147 | 3150 | 0%arenito 0%folhelho 100%siltito     |
| 1GO_0001_SC | 3150 | 3153 | 0%arenito 0%folhelho 100%siltito     |
| 1GO_0001_SC | 3153 | 3156 | 0%arenito 0%folhelho 100%siltito     |
| 1GO_0001_SC | 3156 | 3159 | 0%arenito 50%folhelho 50%siltito     |
| 1GO_0001_SC | 3159 | 3162 | 0%arenito 100%folhelho 0%siltito     |
| 1GO_0001_SC | 3162 | 3165 | 0%arenito 100%folhelho 0%siltito     |
| 1GO_0001_SC | 3165 | 3168 | 0%arenito 70%folhelho 30%siltito     |
| 1GO_0001_SC | 3168 | 3171 | 0%arenito 70%folhelho 30%siltito     |
| 1GO_0001_SC | 3171 | 3174 | 0%arenito 70%folhelho 30%siltito     |
| 1GO_0001_SC | 3174 | 3177 | 0%arenito 70%folhelho 30%siltito     |
| 1GO_0001_SC | 3177 | 3180 | 0%arenito 80%folhelho 20%siltito     |
| 1GO_0001_SC | 3180 | 3183 | 0%arenito 80%folhelho 20%siltito     |
| 1GO_0001_SC | 3183 | 3186 | 0%arenito 100%folhelho 0%siltito     |
| 1GO_0001_SC | 3186 | 3189 | 0%arenito 100%folhelho 0%siltito     |
| 1GO_0001_SC | 3189 | 3192 | 0%arenito 50%folhelho 50%siltito     |
| 1GO_0001_SC | 3192 | 3195 | No recovery                          |
| 1GO_0001_SC | 3195 | 3198 | No recovery                          |
| 1GO_0001_SC | 3198 | 3201 | No recovery                          |
| 1GO_0001_SC | 3201 | 3204 | No recovery                          |
| 1GO_0001_SC | 3204 | 3207 | No recovery                          |
| 1GO_0001_SC | 3207 | 3210 | 0%arenito 50%folhelho 50%siltito     |
| 1GO_0001_SC | 3210 | 3213 | 0%arenito 40%folhelho 60%siltito     |
| 1GO_0001_SC | 3213 | 3216 | 0%arenito 10%folhelho 90%siltito     |
| 1GO_0001_SC | 3216 | 3219 | 10%arenito 10%folhelho 80%siltito    |
| 1GO_0001_SC | 3219 | 3222 | 10%arenito 10%folhelho 80%siltito    |
| 1GO_0001_SC | 3222 | 3225 | 10%arenito 10%folhelho 80%siltito    |
| 1GO_0001_SC | 3225 | 3228 | 20%arenito 0%folhelho 80%siltito     |
| 1GO_0001_SC | 3228 | 3231 | 100%arenito 0%folhelho 0%siltito     |
| 1GO_0001_SC | 3231 | 3234 | 90%arenito 0%folhelho 10%siltito     |
| 1GO_0001_SC | 3234 | 3237 | 80% arenito 10% folhelho 10% siltito |
| 1GO_0001_SC | 3237 | 3240 | 90%arenito 10%folhelho 0%siltito     |
| 1GO_0001_SC | 3240 | 3243 | 90%arenito 10%folhelho 0%siltito     |
| 1GO_0001_SC | 3243 | 3246 | 90%arenito 10%folhelho 0%siltito     |
| 1GO_0001_SC | 3246 | 3249 | 50%arenito 0%folhelho 50%siltito     |
| 1GO 0001 SC | 3249 | 3252 | 50%arenito 0%folhelho 50%siltito     |
| 1GO 0001 SC | 3252 | 3255 | 90%arenito 0%folhelho 10%siltito     |
| 1GO 0001 SC | 3255 | 3258 | 90%arenito 0%folhelho 10%siltito     |
| 1GO_0001 SC | 3258 | 3261 | 90%arenito 0%folhelho 10%siltito     |
| 1GO 0001 SC | 3261 | 3264 | 90%arenito 0%folhelho 10%siltito     |
| 1GO 0001 SC | 3264 | 3267 | 90%arenito 0%folhelho 10%siltito     |
| 1GO 0001 SC | 3267 | 3270 | 90%arenito 0%folhelho 10%siltito     |
| 1GO 0001 SC | 3270 | 3273 | 90%arenito 0%folhelho 10%siltito     |
|             | -    | -    |                                      |

| 1GO_0001_SC | 3273 | 3276 | 90%arenito 0%folhelho 10%siltito                   |
|-------------|------|------|----------------------------------------------------|
| 1GO_0001_SC | 3276 | 3279 | 80%arenito 10%folhelho 10%siltito                  |
| 1GO_0001_SC | 3279 | 3282 | 80%arenito 20%folhelho 0%siltito                   |
| 1GO_0001_SC | 3282 | 3285 | 70%arenito 30%folhelho 0%siltito                   |
| 1GO 0001 SC | 3285 | 3288 | 80%arenito 20%folhelho 0%siltito                   |
| 1GO 0001 SC | 3288 | 3291 | 80%arenito 10%folhelho 10%siltito                  |
| 1GO 0001 SC | 3291 | 3294 | 70%arenito 20%folhelho 10%siltito                  |
| 1GO 0001 SC | 3294 | 3297 | 20%arenito 30%folhelho 50%siltito                  |
| 1GO 0001 SC | 3297 | 3300 | 10%arenito 60%folhelho 30%siltito                  |
| 1GO 0001 SC | 3300 | 3303 | 10%arenito 60%folhelho 30%siltito                  |
| 1GO 0001 SC | 3303 | 3306 | 70%arenito 20%folhelho 10%siltito                  |
| 1GO 0001 SC | 3306 | 3309 | 70%arenito 20%folhelho 10%siltito                  |
| 1GO 0001 SC | 3309 | 3312 | 80%arenito 10%folhelho 10%siltito                  |
| 1GO 0001 SC | 3312 | 3315 | 90%arenito 10%folhelho 0%siltito                   |
| 1GO 0001 SC | 3315 | 3318 | 70%arenito 20%folhelho 10%siltito                  |
| 1GO 0001 SC | 3318 | 3321 | 60% arenito 10% folhelho 30% siltito               |
| 1GO 0001 SC | 3321 | 3324 | 60%arenito 10%folhelho 30%siltito                  |
| 1GO 0001 SC | 3324 | 3327 | 30% arenito 10% folhelho 0% siltito 60% diamictito |
| 1GO 0001 SC | 3327 | 3330 | 10% arenito 0% folhelho 0% siltito 90% diamictito  |
| 1GO 0001 SC | 3330 | 3333 | 0%arenito 0%folhelho 0%siltito 100%diamictito      |
| 1GO 0001 SC | 3333 | 3336 | 0% arenito 20% folhelho 0% siltito 80% diamictito  |
| 1GO 0001 SC | 3336 | 3339 | 0% arenito 20% folhelho 0% siltito 80% diamictito  |
| 1GO 0001 SC | 3339 | 3342 | 0%arenito 20%folhelho 0%siltito 80%diamictito      |
| 1GO 0001 SC | 3342 | 3345 | 0%arenito 20%folhelho 0%siltito 80%diamictito      |
| 1GO 0001 SC | 3345 | 3348 | 0%arenito 10%folhelho 0%siltito 90%diamictito      |
| 1GO 0001 SC | 3348 | 3351 | 0%arenito 10%folhelho 0%siltito 90%diamictito      |
| 1GO 0001 SC | 3351 | 3354 | 0%arenito 10%folhelho 0%siltito 90%diamictito      |
| 1GO 0001 SC | 3354 | 3357 | 0%arenito 10%folhelho 0%siltito 90%diamictito      |
| 1GO 0001 SC | 3357 | 3360 | 0%arenito 10%folhelho 0%siltito 90%diamictito      |
| 1GO 0001 SC | 3360 | 3363 | 0%arenito 10%folhelho 0%siltito 90%diamictito      |
| 1GO 0001 SC | 3363 | 3366 | 0%arenito 10%folhelho 0%siltito 90%diamictito      |
| 1GO 0001 SC | 3366 | 3369 | 0%arenito 10%folhelho 0%siltito 90%diamictito      |
| 1GO_0001_SC | 3369 | 3372 | 0%arenito 0%folhelho 0%siltito 100%diamictito      |
| 1GO_0001_SC | 3372 | 3375 | 0%arenito 10%folhelho 0%siltito 90%diamictito      |
| 1GO_0001_SC | 3375 | 3378 | 0%arenito 10%folhelho 0%siltito 90%diamictito      |
| 1GO_0001_SC | 3378 | 3381 | 0%arenito 0%folhelho 0%siltito 100%diamictito      |
| 1GO_0001_SC | 3381 | 3384 | 0%arenito 10%folhelho 0%siltito 90%diamictito      |
| 1GO_0001_SC | 3384 | 3387 | 90% arenito 0% folhelho 0% siltito 10% diamictito  |
| 1GO_0001_SC | 3387 | 3390 | 90% arenito 0% folhelho 0% siltito 10% diamictito  |
| 1GO_0001_SC | 3390 | 3393 | 50% arenito 10% folhelho 0% siltito 40% diamictito |
| 1GO_0001_SC | 3393 | 3396 | 80% arenito 0% folhelho 0% siltito 20% diamictito  |
| 1GO_0001_SC | 3396 | 3399 | 80% arenito 0% folhelho 0% siltito 20% diamictito  |
| 1GO_0001_SC | 3399 | 3402 | 80% arenito 10% folhelho 0% siltito 10% diamictito |
| 1GO_0001_SC | 3402 | 3405 | 80% arenito 10% folhelho 0% siltito 10% diamictito |
| 1GO_0001_SC | 3405 | 3408 | 100% arenito 0% folhelho 0% siltito 0% diamictito  |
| 1GO_0001_SC | 3408 | 3411 | 100% arenito 0% folhelho 0% siltito 0% diamictito  |

| 1GO_0001_SC | 3411 | 3414 | 80% arenito 20% folhelho 0% siltito 0% diamictito   |
|-------------|------|------|-----------------------------------------------------|
| 1GO_0001_SC | 3414 | 3417 | 70% arenito 20% folhelho 0% siltito 10% diamictito  |
| 1GO_0001_SC | 3417 | 3420 | 0%arenito 60%folhelho 0%siltito 40%diamictito       |
| 1GO_0001_SC | 3420 | 3423 | 60% arenito 20% folhelho 20% siltito 0% diamictito  |
| 1GO_0001_SC | 3423 | 3426 | 30% arenito 50% folhelho 20% siltito 0% diamictito  |
| 1GO_0001_SC | 3426 | 3429 | 10% arenito 60% folhelho 10% siltito 0% diamictito  |
| 1GO_0001_SC | 3429 | 3432 | 20% arenito 50% folhelho 30% siltito 0% diamictito  |
| 1GO_0001_SC | 3432 | 3435 | 50% arenito 30% folhelho 20% siltito 0% diamictito  |
| 1GO_0001_SC | 3435 | 3438 | 60% arenito 30% folhelho 10% siltito 0% diamictito  |
| 1GO_0001_SC | 3438 | 3441 | 60% arenito 30% folhelho 10% siltito 0% diamictito  |
| 1GO_0001_SC | 3441 | 3444 | 60% arenito 30% folhelho 10% siltito 0% diamictito  |
| 1GO_0001_SC | 3444 | 3447 | 80% arenito 10% folhelho 10% siltito 0% diamictito  |
| 1GO_0001_SC | 3447 | 3450 | 60% arenito 20% folhelho 0% siltito 20% diamictito  |
| 1GO_0001_SC | 3450 | 3453 | 50% arenito 10% folhelho 0% siltito 40% diamictito  |
| 1GO_0001_SC | 3453 | 3456 | 40% arenito 10% folhelho 0% siltito 50% diamictito  |
| 1GO_0001_SC | 3456 | 3459 | 40% arenito 10% folhelho 0% siltito 50% diamictito  |
| 1GO_0001_SC | 3459 | 3462 | 90%arenito 0%folhelho 0%siltito 10%diamictito       |
| 1GO_0001_SC | 3462 | 3465 | 90%arenito 0%folhelho 0%siltito 10%diamictito       |
| 1GO_0001_SC | 3465 | 3468 | 90%arenito 0%folhelho 10%siltito 0%diamictito       |
| 1GO_0001_SC | 3468 | 3471 | 80%arenito 0%folhelho 20%siltito 0%diamictito       |
| 1GO_0001_SC | 3471 | 3474 | 80% arenito 10% folhelho 10% siltito 0% diamictito  |
| 1GO_0001_SC | 3474 | 3477 | 90%arenito 0%folhelho 10%siltito 0%diamictito       |
| 1GO_0001_SC | 3477 | 3480 | 70% arenito 0% folhelho 10% siltito 20% diamictito  |
| 1GO_0001_SC | 3480 | 3483 | 80% arenito 0% folhelho 10% siltito 10% diamictito  |
| 1GO 0001 SC | 3483 | 3486 | 90%arenito 0%folhelho 10%siltito 0%diamictito       |
| 1GO 0001 SC | 3486 | 3489 | 70% arenito 10% folhelho 0% siltito 20% diamictito  |
| 1GO_0001_SC | 3489 | 3492 | 80% arenito 10% folhelho 0% siltito 10% diamictito  |
| 1GO 0001 SC | 3492 | 3495 | 60% arenito 10% folhelho 0% siltito 30% diamictito  |
| 1GO 0001 SC | 3495 | 3498 | 70% arenito 10% folhelho 0% siltito 20% diamictito  |
| 1GO 0001 SC | 3498 | 3501 | 60% arenito 10% folhelho 0% siltito 30% diamictito  |
| 1GO 0001 SC | 3501 | 3504 | 60% arenito 10% folhelho 0% siltito 30% diamictito  |
| 1GO 0001 SC | 3504 | 3507 | 60% arenito 20% folhelho 0% siltito 20% diamictito  |
| 1GO 0001 SC | 3507 | 3510 | 10% arenito 50% folhelho 40% siltito 0% diamictito  |
| 1GO 0001 SC | 3510 | 3513 | 20% arenito 10% folhelho 10% siltito 60% diamictito |
| 1GO 0001 SC | 3513 | 3516 | 20% arenito 10% folhelho 10% siltito 60% diamictito |
| 1GO 0001 SC | 3516 | 3519 | 20% arenito 10% folhelho 20% siltito 50% diamictito |
| 1GO 0001 SC | 3519 | 3522 | 20% arenito 20% folhelho 20% siltito 40% diamictito |
| 1GO 0001 SC | 3522 | 3525 | 20% arenito 10% folhelho 20% siltito 50% diamictito |
| 1GO 0001 SC | 3525 | 3528 | 10% arenito 10% folhelho 10% siltito 70% diamictito |
| 1GO 0001 SC | 3528 | 3531 | 0%arenito 20%folhelho 0%siltito 80%diamictito       |
| 1GO 0001 SC | 3531 | 3534 | 0%arenito 0%folhelho 0%siltito 100%diamictito       |
| 1GO 0001 SC | 3534 | 3537 | 10% arenito 0% folhelho 0% siltito 90% diamictito   |
| 1GO 0001 SC | 3537 | 3540 | 0%arenito 70%folhelho 0%siltito 30%diamictito       |
| 1GO 0001 SC | 3540 | 3543 | 0%arenito 30%folhelho 0%siltito 70%diamictito       |
| 1GO 0001 SC | 3543 | 3546 | 0%arenito 80%folhelho 0%siltito 20%diamictito       |
| 1GO 0001 SC | 3546 | 3549 | 10% arenito 30% folhelho 0% siltito 60% diamictito  |
|             |      | . –  |                                                     |

| 1GO_0001_SC | 3549 | 3552 | 10% arenito 20% folhelho 0% siltito 70% diamictito  |
|-------------|------|------|-----------------------------------------------------|
| 1GO_0001_SC | 3552 | 3555 | 10% arenito 10% folhelho 10% siltito 70% diamictito |
| 1GO_0001_SC | 3555 | 3558 | 10% arenito 30% folhelho 20% siltito 40% diamictito |
| 1GO_0001_SC | 3558 | 3561 | 10% arenito 20% folhelho 20% siltito 50% diamictito |
| 1GO_0001_SC | 3561 | 3564 | 20% arenito 20% folhelho 20% siltito 40% diamictito |
| 1GO_0001_SC | 3564 | 3567 | 20% arenito 20% folhelho 10% siltito 50% diamictito |
| 1GO_0001_SC | 3567 | 3570 | 20% arenito 10% folhelho 10% siltito 60% diamictito |
| 1GO_0001_SC | 3570 | 3573 | 20% arenito 20% folhelho 10% siltito 50% diamictito |
| 1GO_0001_SC | 3573 | 3576 | 30% arenito 10% folhelho 20% siltito 40% diamictito |
| 1GO_0001_SC | 3576 | 3579 | 30% arenito 10% folhelho 10% siltito 50% diamictito |
| 1GO_0001_SC | 3579 | 3582 | 0%arenito 20%folhelho 30%siltito 50%diamictito      |
| 1GO_0001_SC | 3582 | 3585 | 10% arenito 10% folhelho 30% siltito 50% diamictito |
| 1GO_0001_SC | 3585 | 3588 | 20% arenito 0% folhelho 30% siltito 50% diamictito  |
| 1GO_0001_SC | 3588 | 3591 | 10% arenito 0% folhelho 20% siltito 70% diamictito  |
| 1GO_0001_SC | 3591 | 3594 | 10% arenito 0% folhelho 20% siltito 70% diamictito  |
| 1GO_0001_SC | 3594 | 3597 | 10% arenito 10% folhelho 20% siltito 60% diamictito |
| 1GO_0001_SC | 3597 | 3600 | 10% arenito 10% folhelho 20% siltito 60% diamictito |
| 1GO_0001_SC | 3600 | 3603 | 10% arenito 10% folhelho 10% siltito 70% diamictito |
| 1GO_0001_SC | 3603 | 3606 | 0%arenito 20%folhelho 20%siltito 60%diamictito      |
| 1GO_0001_SC | 3606 | 3609 | 0%arenito 60%folhelho 20%siltito 20%diamictito      |
| 1GO_0001_SC | 3609 | 3612 | 0%arenito 60%folhelho 20%siltito 20%diamictito      |
| 1GO_0001_SC | 3612 | 3615 | 40% arenito 0% folhelho 40% siltito 20% diamictito  |
| 1GO_0001_SC | 3615 | 3618 | 100% arenito 0% folhelho 0% siltito 0% diamictito   |
| 1GO_0001_SC | 3618 | 3621 | 100% arenito 0% folhelho 0% siltito 0% diamictito   |
| 1GO_0001_SC | 3621 | 3624 | 80%arenito 0%folhelho 20%siltito 0%diamictito       |
| 1GO_0001_SC | 3624 | 3627 | 80%arenito 0%folhelho 20%siltito 0%diamictito       |
| 1GO_0001_SC | 3627 | 3630 | 70% arenito 0% folhelho 10% siltito 20% diamictito  |
| 1GO_0001_SC | 3630 | 3633 | 90%arenito 0%folhelho 0%siltito 10%diamictito       |
| 1GO_0001_SC | 3633 | 3636 | 90%arenito 0%folhelho 10%siltito 0%diamictito       |
| 1GO_0001_SC | 3636 | 3639 | 100% arenito 0% folhelho 0% siltito 0% diamictito   |
| 1GO_0001_SC | 3639 | 3642 | 100% arenito 0% folhelho 0% siltito 0% diamictito   |
| 1GO_0001_SC | 3642 | 3645 | 100% arenito 0% folhelho 0% siltito 0% diamictito   |
| 1GO_0001_SC | 3645 | 3648 | 90% arenito 0% folhelho 0% siltito 10% diamictito   |
| 1GO_0001_SC | 3648 | 3651 | 90% arenito 0% folhelho 0% siltito 10% diamictito   |
| 1GO_0001_SC | 3651 | 3654 | 70% arenito 0% folhelho 20% siltito 10% diamictito  |
| 1GO_0001_SC | 3654 | 3657 | 70% arenito 0% folhelho 20% siltito 10% diamictito  |
| 1GO_0001_SC | 3657 | 3660 | 70% arenito 0% folhelho 20% siltito 10% diamictito  |
| 1GO_0001_SC | 3660 | 3663 | 60% arenito 0% folhelho 20% siltito 20% diamictito  |
| 1GO_0001_SC | 3663 | 3666 | 50% arenito 0% folhelho 50% siltito 0% diamictito   |
| 1GO_0001_SC | 3666 | 3669 | 70% arenito 0% folhelho 30% siltito 0% diamictito   |
| 1GO_0001_SC | 3669 | 3672 | 100% arenito 0% folhelho 0% siltito 0% diamictito   |
| 1GO_0001_SC | 3672 | 3675 | 100% arenito 0% folhelho 0% siltito 0% diamictito   |
| 1GO_0001_SC | 3675 | 3678 | 40% arenito 0% folhelho 30% siltito 30% diamictito  |
| 1GO_0001_SC | 3678 | 3681 | 10% arenito 0% folhelho 70% siltito 20% diamictito  |
| 1GO_0001_SC | 3681 | 3684 | 50% arenito 0% folhelho 50% siltito 0% diamictito   |

# APÊNDICE B - 1HV\_0001\_SC

| Well        | From | to   | Litolog                                 |
|-------------|------|------|-----------------------------------------|
| 1HV_0001_SC | 2067 | 2070 | 50%arenito 40%folhelho 10%siltito       |
| 1HV_0001_SC | 2070 | 2073 | 80%arenito 20%folhelho 0%siltito        |
| 1HV_0001_SC | 2073 | 2076 | 60%arenito 40%folhelho 0%siltito        |
| 1HV_0001_SC | 2076 | 2079 | 0%arenito 10%folhelho 90%siltito        |
| 1HV_0001_SC | 2079 | 2082 | 0%arenito 0%folhelho 100%siltito        |
| 1HV_0001_SC | 2082 | 2085 | 0%arenito 0%folhelho 100%siltito        |
| 1HV_0001_SC | 2085 | 2088 | 0%arenito 0%folhelho 100%siltito        |
| 1HV_0001_SC | 2088 | 2091 | diamictito                              |
| 1HV_0001_SC | 2091 | 2094 | 60%diamictito 40%folhelho               |
| 1HV_0001_SC | 2094 | 2097 | 80%diamictito 20%folhelho               |
| 1HV_0001_SC | 2097 | 2100 | 80%diamictito 20%folhelho               |
| 1HV_0001_SC | 2100 | 2103 | 80%diamictito 20%folhelho               |
| 1HV_0001_SC | 2103 | 2106 | 80%diamictito 20%folhelho               |
| 1HV_0001_SC | 2106 | 2109 | 100%diamictito 0%folhelho               |
| 1HV_0001_SC | 2109 | 2112 | 100%diamictito 0%folhelho               |
| 1HV_0001_SC | 2112 | 2115 | 100%diamictito 0%folhelho               |
| 1HV_0001_SC | 2115 | 2118 | 100%diamictito 0%folhelho               |
| 1HV_0001_SC | 2118 | 2121 | 100%diamictito 0%folhelho               |
| 1HV_0001_SC | 2121 | 2124 | 100%diamictito 0%folhelho               |
| 1HV_0001_SC | 2124 | 2127 | 100%diamictito 0%folhelho               |
| 1HV_0001_SC | 2127 | 2130 | 100%diamictito 0%folhelho               |
| 1HV_0001_SC | 2130 | 2133 | 90%diamictito 10%folhelho               |
| 1HV_0001_SC | 2133 | 2136 | 90%diamictito 10%folhelho               |
| 1HV_0001_SC | 2136 | 2139 | 90%diamictito 10%folhelho               |
| 1HV_0001_SC | 2139 | 2142 | 90%diamictito 10%folhelho               |
| 1HV_0001_SC | 2142 | 2145 | 50% arenito 10% folhelho 40% diamictito |
| 1HV_0001_SC | 2145 | 2148 | 40% arenito 10% folhelho 50% diamictito |
| 1HV_0001_SC | 2148 | 2151 | 40% arenito 10% folhelho 50% diamictito |
| 1HV_0001_SC | 2151 | 2154 | 50% arenito 0% folhelho 50% diamictito  |
| 1HV_0001_SC | 2154 | 2157 | 30% arenito 0% folhelho 70% diamictito  |
| 1HV_0001_SC | 2157 | 2160 | 20% arenito 0% folhelho 80% diamictito  |
| 1HV_0001_SC | 2160 | 2163 | 0%arenito 0%folhelho 100%diamictito     |
| 1HV_0001_SC | 2163 | 2166 | 0%arenito 60%folhelho 40%diamictito     |
| 1HV_0001_SC | 2166 | 2169 | 0%arenito 60%folhelho 40%diamictito     |
| 1HV_0001_SC | 2169 | 2172 | 0%arenito 70%folhelho 30%diamictito     |
| 1HV_0001_SC | 2172 | 2175 | 0%arenito 90%folhelho 10%diamictito     |
| 1HV_0001_SC | 2175 | 2178 | 0%arenito 100%folhelho 0%diamictito     |
| 1HV_0001_SC | 2178 | 2181 | 0%arenito 70%folhelho 30%diamictito     |
| 1HV_0001_SC | 2181 | 2184 | 0%arenito 70%folhelho 30%diamictito     |
| 1HV_0001_SC | 2184 | 2187 | 0%arenito 10%folhelho 90%siltito        |
| 1HV_0001_SC | 2187 | 2190 | siltito                                 |
| 1HV_0001_SC | 2190 | 2193 | siltito                                 |
| 1HV_0001_SC | 2193 | 2196 | siltito                                 |
| 1HV_0001_SC | 2196 | 2199 | siltito                                 |

| 1HV_0001_SC | 2199 | 2202 | siltito                              |
|-------------|------|------|--------------------------------------|
| 1HV_0001_SC | 2202 | 2205 | diabasio                             |
| 1HV_0001_SC | 2205 | 2208 | siltito                              |
| 1HV_0001_SC | 2208 | 2211 | siltito                              |
| 1HV_0001_SC | 2211 | 2214 | siltito                              |
| 1HV_0001_SC | 2214 | 2217 | 10% diabasio 0% folhelho 90% siltito |
| 1HV_0001_SC | 2217 | 2220 | Diabasio                             |
| 1HV_0001_SC | 2220 | 2223 | Diabasio                             |
| 1HV_0001_SC | 2223 | 2226 | Diabasio                             |
| 1HV 0001 SC | 2226 | 2229 | Diabasio                             |
| 1HV_0001_SC | 2229 | 2232 | Diabasio                             |
| 1HV_0001_SC | 2232 | 2235 | Diabasio                             |
| 1HV_0001_SC | 2235 | 2238 | Diabasio                             |
| 1HV_0001_SC | 2238 | 2241 | Diabasio                             |
| 1HV_0001_SC | 2241 | 2244 | Diabasio                             |
| 1HV_0001_SC | 2244 | 2247 | Diabasio                             |
| 1HV_0001_SC | 2247 | 2250 | Diabasio                             |
| 1HV_0001_SC | 2250 | 2253 | Diabasio                             |
| 1HV_0001_SC | 2253 | 2256 | Diabasio                             |
| 1HV_0001_SC | 2256 | 2259 | Diabasio                             |
| 1HV_0001_SC | 2259 | 2262 | Diabasio                             |
| 1HV_0001_SC | 2262 | 2265 | Diabasio                             |
| 1HV_0001_SC | 2265 | 2268 | Diabasio                             |
| 1HV_0001_SC | 2268 | 2271 | Diabasio                             |
| 1HV_0001_SC | 2271 | 2274 | Diabasio                             |
| 1HV_0001_SC | 2274 | 2277 | Diabasio                             |
| 1HV_0001_SC | 2277 | 2280 | Diabasio                             |
| 1HV_0001_SC | 2280 | 2283 | Diabasio                             |
| 1HV_0001_SC | 2283 | 2286 | Diabasio                             |
| 1HV_0001_SC | 2286 | 2289 | Diabasio                             |
| 1HV_0001_SC | 2289 | 2292 | Diabasio                             |
| 1HV_0001_SC | 2292 | 2295 | Diabasio                             |
| 1HV_0001_SC | 2295 | 2298 | Diabasio                             |
| 1HV_0001_SC | 2298 | 2301 | Diabasio                             |
| 1HV_0001_SC | 2301 | 2304 | Diabasio                             |
| 1HV_0001_SC | 2304 | 2307 | Diabasio                             |
| 1HV_0001_SC | 2307 | 2310 | Diabasio                             |
| 1HV_0001_SC | 2310 | 2313 | Diabasio                             |
| 1HV_0001_SC | 2313 | 2316 | Diabasio                             |
| 1HV_0001_SC | 2316 | 2319 | Diabasio                             |
| 1HV_0001_SC | 2319 | 2322 | Siltito                              |
| 1HV_0001_SC | 2322 | 2325 | Siltito                              |
| 1HV_0001_SC | 2325 | 2328 | Siltito                              |
| 1HV_0001_SC | 2328 | 2331 | Siltito                              |
| 1HV_0001_SC | 2331 | 2334 | Siltito                              |
| 1HV_0001_SC | 2334 | 2337 | Siltito                              |

| 1HV_0001_ | SC 233 | 7 2340 | Siltito                             |
|-----------|--------|--------|-------------------------------------|
| 1HV_0001_ | SC 234 | 0 2343 | Siltito                             |
| 1HV_0001_ | SC 234 | 3 2346 | Siltito                             |
| 1HV_0001_ | SC 234 | 6 2349 | Siltito                             |
| 1HV_0001_ | SC 234 | 9 2352 | Siltito                             |
| 1HV_0001_ | SC 235 | 2 2355 | Siltito                             |
| 1HV_0001_ | SC 235 | 5 2358 | 0%arenito 80%folhelho 20%siltito    |
| 1HV_0001_ | SC 235 | 8 2361 | 0%arenito 40%folhelho 60%siltito    |
| 1HV_0001_ | SC 236 | 1 2364 | Siltito                             |
| 1HV_0001_ | SC 236 | 4 2367 | Siltito                             |
| 1HV_0001_ | SC 236 | 7 2370 | siltito                             |
| 1HV_0001_ | SC 237 | 0 2373 | siltito                             |
| 1HV_0001_ | SC 237 | 3 2376 | siltito                             |
| 1HV_0001_ | SC 237 | 6 2379 | arenito                             |
| 1HV_0001_ | SC 237 | 9 2382 | 80%arenito 0%folhelho 20%siltito    |
| 1HV_0001_ | SC 238 | 2 2385 | Siltito                             |
| 1HV_0001_ | SC 238 | 5 2388 | 10%arenito 0%folhelho 90%siltito    |
| 1HV_0001_ | SC 238 | 8 2391 | Siltito                             |
| 1HV_0001_ | SC 239 | 1 2394 | Siltito                             |
| 1HV_0001_ | SC 239 | 4 2397 | 0%arenito 80%folhelho 20%siltito    |
| 1HV_0001_ | SC 239 | 7 2400 | Folhelho                            |
| 1HV_0001_ | SC 240 | 0 2403 | Folhelho                            |
| 1HV_0001_ | SC 240 | 3 2406 | Folhelho                            |
| 1HV_0001_ | SC 240 | 6 2409 | Folhelho                            |
| 1HV_0001_ | SC 240 | 9 2412 | Folhelho                            |
| 1HV_0001_ | SC 241 | 2 2415 | Folhelho                            |
| 1HV_0001_ | SC 241 | 5 2418 | Folhelho                            |
| 1HV_0001_ | SC 241 | 8 2421 | Folhelho                            |
| 1HV_0001_ | SC 242 | 1 2424 | Folhelho                            |
| 1HV_0001_ | SC 242 | 4 2427 | 10%arenito 90%folhelho 0%siltito    |
| 1HV_0001_ | SC 242 | 7 2430 | 40%arenito 60%folhelho 0%siltito    |
| 1HV_0001_ | SC 243 | 0 2433 | 80%arenito 20%folhelho 0%siltito    |
| 1HV_0001_ | SC 243 | 3 2436 | 0%arenito 20%folhelho 80%siltito    |
| 1HV_0001_ | SC 243 | 6 2439 | diamictito                          |
| 1HV_0001_ | SC 243 | 9 2442 | diamictito                          |
| 1HV_0001_ | SC 244 | 2 2445 | diamictito                          |
| 1HV_0001_ | SC 244 | 5 2448 | diamictito                          |
| 1HV_0001_ | SC 244 | 8 2451 | diamictito                          |
| 1HV_0001_ | SC 245 | 1 2454 | diamictito                          |
| 1HV_0001_ | SC 245 | 4 2457 | diamictito                          |
| 1HV_0001_ | SC 245 | 7 2460 | diamictito                          |
| 1HV_0001_ | SC 246 | 0 2463 | Folhelho                            |
| 1HV_0001  | SC 246 | 3 2466 | Folhelho                            |
| 1HV_0001_ | SC 246 | 6 2469 | Folhelho                            |
| 1HV_0001_ | SC 246 | 9 2472 | 0%arenito 60%folhelho 40%diamictito |
| 1HV_0001_ | SC 247 | 2 2475 | 0%arenito 0%folhelho 100%diamictito |

| 1HV_0001_SC | 2475 | 2478 | 0%arenito 10%folhelho 90%diamictito                 |
|-------------|------|------|-----------------------------------------------------|
| 1HV_0001_SC | 2478 | 2481 | 0%arenito 20%folhelho 80%diamictito                 |
| 1HV_0001_SC | 2481 | 2484 | 10%arenito 90%folhelho 0%diamictito                 |
| 1HV_0001_SC | 2484 | 2487 | 70%siltito 30%folhelho 0%diamictito                 |
| 1HV_0001_SC | 2487 | 2490 | 20%siltito 80%folhelho 0%diamictito                 |
| 1HV_0001_SC | 2490 | 2493 | 0%siltito 100%folhelho 0%diamictito                 |
| 1HV_0001_SC | 2493 | 2496 | 0%siltito 100%folhelho 0%diamictito                 |
| 1HV_0001_SC | 2496 | 2499 | 0%siltito 100%folhelho 0%diamictito                 |
| 1HV_0001_SC | 2499 | 2502 | 0%siltito 100%folhelho 0%diamictito                 |
| 1HV_0001_SC | 2502 | 2505 | 10%siltito 90%folhelho 0%diamictito                 |
| 1HV_0001_SC | 2505 | 2508 | 30%siltito 70%folhelho 0%diamictito                 |
| 1HV_0001_SC | 2508 | 2511 | 0%siltito 30%folhelho 70%diamictito                 |
| 1HV_0001_SC | 2511 | 2514 | 0%siltito 30%folhelho 70%diamictito                 |
| 1HV_0001_SC | 2514 | 2517 | 30%siltito 40%folhelho 30%diamictito                |
| 1HV_0001_SC | 2517 | 2520 | 50%siltito 40%folhelho 10%diamictito                |
| 1HV_0001_SC | 2520 | 2523 | 30% arenito 50% siltito 20% folhelho 0% diamictito  |
| 1HV_0001_SC | 2523 | 2526 | 30% arenito 10% siltito 40% folhelho 20% diamictito |
| 1HV_0001_SC | 2526 | 2529 | 70% arenito 10% siltito 10% folhelho 10% diamictito |
| 1HV_0001_SC | 2529 | 2532 | 90% arenito 0% siltito 10% folhelho 0% diamictito   |
| 1HV_0001_SC | 2532 | 2535 | 0%arenito 30%siltito 70%folhelho 0%diamictito       |
| 1HV_0001_SC | 2535 | 2538 | 0%arenito 0%siltito 80%folhelho 20%diamictito       |
| 1HV_0001_SC | 2538 | 2541 | 0%arenito 0%siltito 100%folhelho 0%diamictito       |
| 1HV_0001_SC | 2541 | 2544 | 0%arenito 0%siltito 100%folhelho 0%diamictito       |
| 1HV_0001_SC | 2544 | 2547 | 0%arenito 0%siltito 100%folhelho 0%diamictito       |
| 1HV_0001_SC | 2547 | 2550 | 70% arenito 0% siltito 30% folhelho 0% diamictito   |
| 1HV_0001_SC | 2550 | 2553 | 80% arenito 0% siltito 20% folhelho 0% diamictito   |
| 1HV_0001_SC | 2553 | 2556 | 70% arenito 10% siltito 20% folhelho 0% diamictito  |
| 1HV_0001_SC | 2556 | 2559 | 80% arenito 10% siltito 10% folhelho 0% diamictito  |
| 1HV_0001_SC | 2559 | 2562 | 90% arenito 0% siltito 10% folhelho 0% diamictito   |
| 1HV_0001_SC | 2562 | 2565 | 40% arenito 20% siltito 40% folhelho 0% diamictito  |
| 1HV_0001_SC | 2565 | 2568 | 30% arenito 0% siltito 70% folhelho 0% diamictito   |
| 1HV_0001_SC | 2568 | 2571 | 60% arenito 20% siltito 20% folhelho 0% diamictito  |
| 1HV_0001_SC | 2571 | 2574 | 50% arenito 0% siltito 30% folhelho 20% diamictito  |
| 1HV_0001_SC | 2574 | 2577 | 10% arenito 0% siltito 40% folhelho 50% diamictito  |