FEDERAL UNIVERSITY OF SANTA CATARINA
TECHNOLOGY CENTER
POSTGRADUATE PROGRAM IN AUTOMATION AND SYSTEMS ENGINEERING

Marduck Montoya Henao

Bifurcation analysis of non-smooth dynamical systems
with multiple boundaries

Florian6polis
2023






Marduck Montoya Henao

Bifurcation analysis of non-smooth dynamical systems
with multiple boundaries

Thesis submitted to the Postgraduate Program
in Automation and Systems Engineering of the
Federal University of Santa Catarina, as part of the
requirements for obtaining the degree of Doctor in
Automation and Systems Engineering.

Advisor: Prof. Daniel Juan Pagano, Dr.

Co-advisor: Prof. Rony Cristiano, Dr.

Florian6polis
2023



Ficha de identificagcdo da obra elaborada pelo autor,
através do Programa de Geracao Automética da Biblioteca Universitaria da UFSC.

Montoya Henao, Marduck

Bifurcation analysis of non-smooth dynamical systems
with multiple boundaries / Marduck Montoya Henao ;
orientador, Daniel Juan Pagano, coorientador, Rony
Cristiano, 2023.

164 p.

Tese (doutorado) - Universidade Federal de Santa
Catarina, Centro Tecnoldgico, Programa de Pés-Graduagdo em
Engenharia de Automagdo e Sistemas, Floriandpolis, 2023.

Inclui referéncias.

1. Engenharia de Automacgdo e Sistemas. 2. Discontinuous
piecewise smooth systems. 3. sliding mode control. 4.
multiple switching boundaries. I. Pagano, Daniel Juan
II. Cristiano, Rony. III. Universidade Federal de Santa
Catarina. Programa de Pds-Graduagdo em Engenharia de
Automacgdo e Sistemas. IV. Titulo.




Marduck Montoya Henao

Bifurcation analysis of non-smooth dynamical systems
with multiple boundaries

This doctoral thesis was evaluated and approved by an examination committee composed
of the following members:

Prof. Durval Tonon , Dr.
Federal University of Goias - UFG

Prof. Hector Bessa Silveira, Dr.
Federal University of Santa Catarina - UFSC

Prof. Marcelo De Lellis Costa de Oliveira, Dr.
Federal University of Santa Catarina- UFSC

We certify that this is the original and final format of the course conclusion work that was
considered approved for obtaining the Doctor in Automation and Systems Engineering
degree.

Documento assinado digitalmente

Julio Elias Normey Rico

Data: 18/05/2023 06:41:54-0300

CPF: ***.840.859-**

Verifique as assinaturas em https://v.ufsc.br

Prof. Julio E. Normey Rico, Dr.
Postgraduate Program Coordinator

Documento assinado digitalmente

Daniel Juan Pagano

Data: 17/05/2023 09:48:18-0300

CPF: ***.839.419-**

Verifique as assinaturas em https://v.ufsc.br

Prof. Daniel Juan Pagano, Dr.
Advisor

Florianopolis, 2023.



“One of the basic rules of the universe is that nothing is perfect.
Perfection simply doesn’t exist.....
Without imperfection, neither you nor I would exist”.

Stephen Hawking.
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Abstract

The aim of this thesis is to study the dynamics of discontinuous piecewise-smooth systems
(DPWS) that exhibit more than one switching boundary, i.e. multiple discontinuity
boundaries. In particular, 2D/3D-DPWS systems with two discontinuity boundaries
that are usually given by line/planes are studied. More precisely, we aim to investigate
the different scenarios that can appear in the phase portraits of DPWS systems when a
real parameter generates a disturbance of the system being able to manifest qualitative
changes in the dynamics of these systems. This class of dynamical phenomena leads to
the study of bifurcations in DPWS systems and can reveal classic bifurcations such as
saddle-node, Hopf, Pitchfork, etc., and discontinuity induced bifurcations (DIBs) that
are unique to piecewise smooth systems. Within this former group of bifurcations are the
boundary equilibrium bifurcations (BEBs) and the “sliding bifurcations” characterized by
having a sliding segment at the discontinuity boundary. A classical geometric approach
is adopted to study this class of dynamical systems and for the sliding dynamics that
may occur on the discontinuity boundary, the Filippov convection method is used. In
this sense, this work presents a qualitative and geometrical analysis of the bifurcations
and their unfolding, in particular, of codimension 1 and 2 that involve natural equilibria,
boundary equilibria, pseudo-equilibria, limit cycles and surfaces. We present original
contributions which are obtained from the study of DPWS systems theory applied in three
different case studies in power electronics and in a prey-predator Lotka-Volterra system
modeled by two predators competing for one prey and including harvesting actions. The
first application considers a capacitors voltage balancing system in a modular multilevel
converter (MMC) using a sliding mode control law (SMC). The second application is for a
bidirectional dc-dc buck converter feeding a nonlinear load of constant power-type (CPL).
This system is composed of two buck converters connected in a cascade structure, the first
being a buck converter controlled by a SMC and the second converter modeled by a CPL
defined by a piecewise function. The third application consists of the study of the global
dynamics of a Lotka-Volterra system described by two species of predators competing for
prey with human action of harvesting the species of predators. The fourth application
is on the analysis of the nonlinear dynamics of a DC-DC buck converter controlled by
a sliding mode control (SMC) law connected in parallel to two power converters where
one of them is a boost converter and the other is a buck converter, both modeled by
CPL piecewise functions. In addition, we present numerical simulations for a better
understanding of the dynamics of the systems in question and to verify the theoretical
results obtained.

Keywords: Discontinuous piecewise smooth systems, multiple switching boundaries,
sliding mode control, discontinuity induced bifurcations, buck power converter, constant
power load, DC distributed power system, stability analysis, two predator-one prey
system, global stability.
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Resumo

O objetivo desta tese ¢é estudar a dindmica de sistemas descontinuos suaves por partes
(DPWS) que exibem mais de um limite de comutacdo, ou seja, limites de multiplas
descontinuidades. Em particular, sdo estudados sistemas 2D /3D-DPWS com dois con-
tornos de descontinuidade que normalmente sao dados por hipersuperficies (planos). Mais
precisamente, pretendemos investigar os diferentes cenarios que podem aparecer nos
retratos de fase de sistemas DPWS quando um parametro real gera uma perturbagao do
sistema podendo manifestar mudancas qualitativas na dindmica desses sistemas. Essa
classe de fendmenos dindmicos leva ao estudo de bifurcagoes em sistemas DPWS e pode
revelar bifurcagoes classicas como sela-n6, Hopf, forquilha etc. e bifurcagoes induzidas
por descontinuidade (DIBs) que sao exclusivas de sistemas suaves por partes. Dentro
deste antigo grupo de bifurcagdes est@o as bifurcagoes de equilibrio de contorno (BEBs) e
as “bifurcagoes deslizantes” caracterizadas por ter um segmento deslizante no limite da
descontinuidade. Uma abordagem geométrica classica é adotada para estudar esta classe
de sistemas dinamicos e para a dinamica de deslizamento que podem ocorrer no limite da
descontinuidade, a convecgao de Filippov é usado. Nesse sentido, este trabalho apresenta
uma analise qualitativa e geométrica das bifurcagoes e seus desdobramentos, em partic-
ular, das codimensoes 1 e 2 que envolvem equilibrios naturais, equilibrios de contorno,
pseudo-equilibrios, ciclos limite e superficies invariantes. Apresentamos contribuigoes
originais que sao obtidas a partir do estudo da teoria de sistemas DPWS aplicada em
trés diferentes estudos de caso em eletronica de poténcia e um sistema presa-predador
Lotka-Volterra modelado por dois predadores competindo por uma presa e incluindo
agoes de colheita. A primeira aplicagao considera um sistema de balanceamento de tensao
de capacitores em um conversor modular multinivel (MMC) usando uma lei de controle
de modo deslizante (SMC). A segunda aplicagdo é para um conversor buck CC-CC
bidirecional alimentando uma carga nao linear do tipo poténcia constante (CPL). Este
sistema é composto por dois conversores buck conectados em uma estrutura em cascata,
sendo o primeiro um conversor buck controlado por um SMC e o segundo conversor
modelado por um CPL definido por uma funcao por partes. A terceira aplicacao consiste
no estudo da dinamica global de um sistema Lotka-Volterra descrito por duas espécies de
predadores competindo por presas com a agao humana de colher as espécies de predadores.
A quarta aplicacao é sobre a anélise da dindmica nao linear de um conversor DC-DC buck
controlado por uma lei de controle de modo deslizante (SMC) conectado em paralelo a
dois conversores de poténcia onde um deles é um conversor boost e o outro ¢ um conversor
buck, ambos modelados por uma funcao CPL por partes. Além disso, apresentamos
simulagoes numéricas para um melhor entendimento da dindmica dos sistemas em questao
e para verificar os resultados teéricos obtidos.

Palavras-chave: Sistemas continuos suaves por partes, sistemas descontinuos suaves por
partes, miltiplas fronteiras de descontinuidade, controle por modo deslizante, bifurcagoes
induzidas por descontinuidade, conversor buck, carga de poténcia constante, sistema de
energia distribuida CC, anélise de estabilidade, sistema de dois predadores e uma presa,
estabilidade global.
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Resumo Expandido

Introducao

A teoria dos Sistemas Dinamicos é fruto de um longo periodo de desenvolvimento
cientifico, e determinar sua origem nao é simples. No entanto, pode-se identificar o
inicio dessa teoria no século XVI, na teoria da mecéanica celeste de Johannes Kepler e
na formalizagdo da mecénica cléssica de Isaac Newton. Aleksander Lyapunov e Henri
Poincaré, mateméticos russos e franceses, respectivamente, sao considerados os fundadores
da teoria moderna dos sistemas dinamicos. Eles introduziram varios conceitos de analise
qualitativa de equagoes diferenciais, como estabilidade da solugao, comportamento assin-
totico, entre outros. Normalmente tais sistemas dindmicos sao nao lineares ou mesmo
descontinuos e dependem de parametros. Consequentemente, o estudo do comportamento
qualitativo de suas solugoes é uma tarefa dificil e desafiadora. Um método bastante eficaz
para lidar com sistemas dinamicos é a teoria de bifurcagoes, segundo a qual o problema
original ¢ uma perturbacao de um problema solucionavel, e estamos interessados em
mudangas qualitativas de propriedades de solugoes para pequenas variagoes de parametros.
Atualmente, a teoria da bifurcagdo esta bem desenvolvida e os métodos aplicados por
essas teorias sao bastante amplos, incluindo ferramentas analiticas funcionais e também
simulagoes numeéricas.

Dentro desta abrangente area, o estudo de sistemas dindmicos suaves por partes
(PWS, por suas siglas em inglés), ou sistemas dindmicos nao suaves é relativamente
recente e tem grande relevancia na pesquisa cientifica atual. Os trabalhos pioneiros de
Andronov (1971) sobre bifurcagdes em sistemas dindmicos nao suaves e de Filippov (1988)
sobre movimento deslizante estabelecem as bases para o desenvolvimento desta linha
de pesquisa. Os sistemas PWS sao frequentemente considerados em sistemas fisicos e
aplicagoes de engenharia para descrever fendmenos envolvendo fric¢ao, colisao, sistemas
intermitentemente restritos ou processos com componentes de comutacao. As bifurcagoes
em sistemas PWS tém sido objeto de estudo em diversos trabalhos de pesquisa até hoje,
pois ainda nao h& um entendimento completo das bifurcagoes locais e globais desses
sistemas.

Em sistemas dinamicos PWS pode-se, em geral, distinguir entre dois tipos de bi-
furcagoes. O primeiro tipo é semelhante as bifurcacoes que conhecemos para sistemas
dindmicos suaves. Estes incluem bifurcacoes locais, que podem ser analisadas inteira-
mente através de mudancas nas propriedades de estabilidade local de equilibrios, 6rbitas
periddicas ou outros conjuntos invariantes como cruzamentos de parametros através



de limiares criticos (n6 de sela, bifurcagoes de Hopf, etc); e bifurcagdes globais, que
geralmente ocorrem quando conjuntos invariantes maiores do sistema ’colidem’ uns com os
outros, ou com equilibrios do sistema. Eles nao podem ser detectados puramente por uma
analise de estabilidade dos equilibrios (bifurcag¢oes homoclinicas, bifurcagoes heteroclinicas
de equilibrios e o6rbitas periodicas, etc). O segundo tipo de bifurcagoes referido como
bifurcagoes border-collision esta relacionado com situagoes em que a trajetoria comega a
cruzar uma das chamadas superficies de comutacao ou superficies de descontinuidade, ou
seja, superficies que dividem o espaco de fase em dominios de diferentes dindmicas. Dentro
de cada um desses dominios, o sistema é suave, mas as equacoes de movimento mudam
abruptamente de um dominio para o outro. Este tipo de bifurcagao, que normalmente
envolve saltos abruptos nos autovalores da 6rbita, nao pode ocorrer em sistemas dinamicos
suaves.

Assim esta tese é dedicada ao estudo da dinamica de sistemas descontinuos suaves
por partes (DPWS) que exibem mais de um limite de comutagao, ou seja, limites de
multiplas descontinuidades com aplicacoes em sistemas de controle nao lineares em
diferentes areas da ciéncia e engenharia, como biologia e eletrénica de poténcia. Em
particular, sdo estudados sistemas 2D /3D-DPWS com duas fronteiras de descontinuidade
que normalmente sao dados por superficies planas. Nesse sentido, este trabalho apresenta
uma analise qualitativa e geométrica das bifurcagoes e seus desdobramentos, em particular,
das codimensoes 1 e 2 que envolvem equilibrios naturais, equilibrios de contorno, pseudo-
equilibrios, ciclos limite e superficies invariantes. Apresentamos contribui¢oes originais
que sao obtidas a partir do estudo da teoria de sistemas DPWS aplicada em trés
diferentes estudos de caso em eletronica de poténcia e um sistema presa-predador Lotka-
Volterra modelado por dois predadores competindo por uma presa e incluindo acoes
de colheita. Além disso, apresentamos simulagoes para realizar calculos de continuacao
numérica usando pacotes computacionais como o XPP-AUTO e assim obter uma melhor
compreensao da dindmica dos sistemas em questao e verificar os resultados tedricos
obtidos.

Objetivos

O principal objetivo desta tese é o estudo de sistemas dindmicos suaves por partes
(PWS) com aplicagoes em sistemas de controle nao lineares em diferentes areas da ciéncia
e engenharia, em particular:

e Estudar a dinamica e a estabilidade de um sistema de n capacitores conectados
em série a uma fonte de tensao e controlados por uma lei de controle por modo
deslizante com miltiplas fronteiras de descontinuidade usando as ferramentas da
teoria de sistemas PWS.

e Analisar a dinamica local e global de um circuito eletrénico de poténcia alimen-
tando uma carga de poténcia constante e controlado por uma lei de controle por
modo deslizante que é modelado como um sistema 3D-DPWS com dois limites de
comutacao transversais.

e Analisar a dinamica local e global de um sistema de dois predadores e uma presa
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sob agoes de colheita que sao introduzidas por meio de duas agoes de controle de
comutacgao definidas nas espécise dos predadores; e determinar as condigoes nos
parametros do sistema para que o equilibrio de coexisténcia dos predadores seja
globalmente estavel.

e Fornecer simulacoes numéricas dos sistemas estudados para ter uma melhor com-
preensao do comportamento dindmico dos mesmos e verificar os resultados tedricos
obtidos.

Metodologia

Através de uma revisao bibliografica, observamos que: é um problema complicado
analisar todos os casos possiveis para lidar com sistemas DPWS com n fronteiras, pois
nao existe uma teoria geral. Esta classe de sistemas ¢ estudada caso a caso utilizando
ferramentas de geometria de campos vetoriais. Sabemos que a teoria estabelecida por
Filippov tem como pressuposto fundamental uma superficie regular entre duas regioes
lisas, mas muitos fendmenos de grande relevancia requerem modelos onde ocorram dois ou
mais fronteiras de descontinuidade que nao sejam necessariamente superficies planas, onde
pode haver uma interse¢ao entre eles e/ou podem ocorrer mudangas em sua dindmica.
Na ultima década, trés principais metodologias surgiram para o estudo desses sistemas.
Uma das metodologias foi apresentada por Jeffrey (2014) e propoe uma extensao da
dinamica de Filippov para pontos onde a variedade chaveada X se auto-interseta através
do chamado “canopy”. Outra metodologia foi apresentada por Diece et al. (2009), que
propoe uma construcao similar onde ocorre a nao unicidade dos vetores deslizantes. Aqui,
foi mostrado que, ao impor certas hipoteses de atratividade na variedade de comutacao
>, muitas conclusoes podem ser provadas sobre o comportamento da dindmica. No
entanto, impor condigbes sobre 3 é restritivo. Finalmente, Buzzi et al. (2012) propoem
uma extensao da dinamica de Filippov para pontos onde a auto-interseccao através da
aplicacao de uma explosao adequada e o uso da Teoria da Perturbacao Singular Geométrica
(Teoria-GSP) para estudar os sistemas lento-rapidos resultantes. Embora distante de
uma generalizagao direta da convencgao de Filippov, esta metodologia também ¢é uma
abordagem natural com vantagens sobre as anteriores, uma vez que a nao unicidade do
campo deslizante é prevista e gerenciada naturalmente. Ainda mais, nenhuma suposigao
sobre ¥ ou os campos vetoriais subjacentes f) sdo necessarios aqui. No entanto, todas
estas metodologias carecem de uma apresentacao e justificagao clara para a dinamica
induzida nos pontos onde occorre uma auto-intersecgao de . Motivados no estudo de
esta classe de sistemas, por meio do estudo de casos, dedicamos esta tese ao estudo
de bifurcacoes locais e globais para sistemas dindmicos PWS com no méximo dois
limites de comutagao também chamados de superficies de descontinuidade as quais vao
ser normalmente superficies planas, onde o método dado por Filippov (convencao de
Filippov) sera aplicado para analisar a descontinuidade dos sistemas dindmicos suaves
por partes (DPWS) com aplicagbes em sistemas de controle nao lineares em diferentes
areas da ciéncia e engenharia, como biologia e eletronica de poténcia.
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Resultados e Consideragoes Finais

Como resultado de nossa pesquisa, propomos e estudamos trés aplicagoes dos sistemas
DPWS, e como resultado de ela obtivemos trés artigos publicados.

A primeira aplicacao considera um sistema de balanceamento de tensao de capacitores
em um conversor modular multinivel (MMC) usando uma lei de controle de modo
deslizante (SMC) deu origem a nossa primeira publicagdo: Rony Cristiano, Daniel J.
Pagano and Marduck M. Henao. Multiple boundaries sliding mode control applied to
capacitor voltage-balancing systems Commun Nonlinear Sci Numer Simulat., 91 (2020),
d0i:10.1016/j.cnsns.2020.105430.

A segunda aplicagao ¢ para um conversor buck CC-CC bidirecional alimentando uma
carga nao linear do tipo poténcia constante (CPL). Este sistema é composto por dois
conversores buck conectados em uma estrutura em cascata, sendo o primeiro um conversor
buck controlado por um SMC e o segundo conversor modelado por um CPL definido
por uma funcao por partes deu origem a nossa segunda publicagao: Marduck M. Henao,
Rony Cristiano, Daniel J. Pagano. Bifurcation analysis of 3D-PWS systems with two
transversal switching boundaries: A case study in power electronics, Physica D Nonlinear
Phenomena, 442 (2022), doi: 10.1016/j.physd.2022.133505.

A terceira aplicacao consiste no estudo da dinamica global de um sistema Lotka-
Volterra descrito por duas espécies de predadores competindo por presas com a acao
humana de colher as espécies de predadores deu origem a nossa terceira publicacao:
Rony Cristiano, Marduck M. Henao, Daniel J. Pagano. Global stability of a Lotka-
Volterra piecewise-smooth system with harvesting actions and two predators compet-
ing for one prey, Journal of Mathematical Analysis and Applications, 522 (2023), doi:
10.1016/j.jmaa.2023.126998.

Cabe mencionar que para o estudo de cada problema de aplicagdo apresentados neste
trabalho, foram feitos calculos de continuagao numérica usando pacotes computacionais
para assim ter uma melhor compreensao da dinamica dos sistemas estudados e também
validar os resultados tedricos obtidos.

Palavras-chave: Sistemas continuos suaves por partes, sistemas descontinuos suaves por
partes, miltiplas fronteiras de descontinuidade, controle por modo deslizante, bifurcagoes
induzidas por descontinuidade, conversor buck, carga de poténcia constante, sistema de
energia distribuida CC, anélise de estabilidade, sistema de dois predadores e uma presa,
estabilidade global.
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2V for i = 1,2,...,10. A hysteresis band of 0.1V is applied. . . . . . ..

Block diagram of a simplified dc electrical distribution system (dc micro-
grid) with cascaded interconnected converters architecture and two dc
buses (Busl and Bus2).. . . . . . ... ... ...
a) Cascaded power converters block diagram. b) Experimental CPL curve
corresponding to the PC2 plus load (P;, = Py = 2.4W, V};, = 6v).

The converter at the load point behaves as a constant power load for the
feeder buck converter, see [51]. . . . . . ..o
Basic topology of a Buck converter connected to a CPL load and under
a sliding mode and washout filter control strategy. The control function
is defined as u = 3(1 — sign[H (i1, vc, zr)]). The filtered inductor current
given by ip = iy, — zp expresses the difference between the inductor current
i, and the filtered signal zp. . . . . . ..o
Switching boundaries defined in (3.2.9). . . . . . . ... ... ... .. ..
Sliding (gray region) and crossing regions (white region) in the (y, x)-plane
for parameters w =1,b=0.2, k =2, y = 0.1, y, = 0.5 and d = 0.3.
Equilibria of system (3.2.11) when varying the value of bifurcation param-
eter d forw =1,b=0.2, k =2, yy, = 0.1, showing the collision between
regular and pseudo-equilibrium points on the (y, x)-plane. Figures (a) to
(e) y» = 0.5 and figure (f) y, =025 . . . . .. ... .. L.
Bifurcation set in (y,, d)-plane showing the main local and global bifur-
cations curves. a)(y,,d)-plane assuming b = 0.2, k = 0.1 and w = 1. b)

(yr, d)-plane assuming b = /1/3, k=05, w=1.. . . .. ... ... ...
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3.9

3.10

3.11

3.12

3.13

Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, k = 0.1, w = 1, yy, = 0.1 and y, = 0.25. Black
curves stand for the limit cycle, red line denotes the pseudo-equilibria,
blue and green line represent the equilibrium X4 and the equilibrium X,
respectively; the violet line stands for the equilibrium X3. Dashed curve
indicates the unstable equilibrium /limit cycle and the solid line indicates
the stable equilibrium/limit cycle, and dotted curves mean the virtual
equilibrium. . . . ..o
Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, k = 0.1, w = 1, y, = 0.1 and y,. = 0.5. Black
curves stand for the limit cycle, red line denotes the pseudo-equilibria,
blue and green line represent the equilibrium xX4% and the equilibrium X, ,
respectively; the violet line stands for the equilibrium X3. Dashed curve
indicates the unstable equilibrium /limit cycle and the solid line indicates
the stable equilibrium/limit cycle; and dotted curves mean the virtual
equilibrium. . . . ...
Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, £k = 0.1, w = 1, yy, = 0.1 and y, = 0.75. Black
curves stand for the limit cycle, red line denotes the pseudo-equilibria,
blue and green line represent the equilibrium X4 and the equilibrium X,
respectively; the violet line stands for the equilibrium X3. Dashed curve
indicates the unstable equilibrium /limit cycle and the solid line indicates
the stable equilibrium/limit cycle; and dotted curves mean the virtual
equilibrium. . . . ..o
Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, £ = 0.1, w = 1, y» = 0.1 and y, = 0.93. Black
curves stand for the limit cycle, red line denotes the pseudo-equilibria,
blue and green line represent the equilibrium xX4% and the equilibrium X, ,
respectively; the violet line stands for the equilibrium X3. Dashed curve
indicates the unstable equilibrium /limit cycle and the solid line indicates
the stable equilibrium/limit cycle; and dotted curves mean the virtual
equilibrium. . . . . ..
Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, £k = 0.1, w = 1, yy, = 0.1 and y, = 0.99. Black
curves stand for the limit cycle, red line denotes the pseudo-equilibria,
blue and green line represent the equilibrium X4 and the equilibrium X,
respectively; the violet line stands for the equilibrium X3. Dashed curve
indicates the unstable equilibrium /limit cycle and the solid line indicates
the stable equilibrium/limit cycle; and dotted curves mean the virtual
equilibrium. . . . ..o

X1l



3.14

3.15

3.16

4.1

4.2

4.3

4.4

Bifurcation diagrams of system (3.2.11) considering d as the bifurcation

parameter for b = \/g, k=05 w=1, yp, = 0.1 and y, = 0.937. Black

curves stand for the limit cycle, red line denotes the pseudo-equilibria,
blue and green line represent the equilibrium X; and the equilibrium X, ,
respectively; the violet line stands for the equilibrium X3. Dashed curve
indicates the unstable equilibrium /limit cycle and the solid line indicates
the stable equilibrium/limit cycle; and dotted curves mean the virtual
equilibrium. . . . . ..o
Simulation results of system (3.2.11) with parameters b = 0.2, w = 1,
k = 0.1 and y, = 0.93 showing the stable limit cycle in blue color and
the unstable limit cycle in black color; the points of focus equilibrium,
pseudo-node and boundary equilibrium are represent by green, red and
black dots, respectively. . . . . . . ..o
Simulation results of system (3.2.11) with parameters b = \/1/3, w = 1,
k = 0.5, ¥, = 0.937 and d = 0.305 showing the Grazing-sliding bifurcation
(see violet cycle) and the Homoclinic connection bifurcation (see maroon
eycle). ..o

Phase portraits of the vector field F;; in D from the choice of (1, 1),
assuming ¢ # 1, pt < 1/B, 1, < 1/8 and a = 1. The green, blue and
red dot represent the equilibrium points e, eg and e}, respectively . . . .
Configuration on ¥ = ¥; U ¥y assuming y, > 1 — Bui, 2, > 1 — Bu,,
puy < pg, pf > py, where qiy = (pg,yr,2,) € Ty N3y and gy =
(g, Yr, 2r) € Ty NE; are fold points of the sliding vector field in X{* with
its switching boundary X1 Ny, . . . . L oL
Sliding dynamics in ¥;. In (a) is shown a set of bifurcations in the (y,, 2,)-
plane of parameters assuming p3 € (uy, ;) and pf < 1/83, where the
red and blue lines indicate the Persistence BPEB involving the boundary
pseudo-equilibrium p = pj, and p = pp,, respectively. For points (y,, z,)
in the regions 1, 2 or 3, one of the pseudo-equilibria involved becomes real,
and all of them, real and virtual, are located in $:¢°, being that py, (resp.
P1») have positive coordinates if on the left of the horizontal dashed line in
red (resp. blue) color. In (b) there are shown some phase portraits of the
sliding dynamics restricted to S; =T, UX$* U T, C ¥y, taking (y,, 2,) in
the regions 1 (left), 2 (center) and 3 (right) of the bifurcations set. The
green dot represents the pi; point, the red dots represent the pi, points
and the blue dot represents the p point. They are virtual when represented
by a small circle with an empty interior. The black dots represent the
pseudo-folds g3, and q,q. Consider z* =1—fBuy. . . . . . . .. ... ..
Figure (a) shows a phase portrait of the system with parameters uf = 0.8,
py =01, uf =07, 45 =02, 8=1,a =1,y =z = 0.325 for various
initial conditions of the prey and predators populations. The green dot
represents the point p;; and the blue dot represents the pseudo-equilibrium
point p. Figures (b)-(d) exhibit the population dynamics for one prey and
two predators over time for distinct initial conditions. . . . . . . . . . ..
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4.5

5.1

5.2

2.3

5.4

3.5

Figure (a) shows a phase portrait of the system with parameters uf = 0.8,
py =01, 43 =07, uy =02, 8=1,a=1,y.=02and z, = 0.3 (y. < 2,)
for various initial conditions of the prey and predators populations. The
green dot represents the point py; and the blue dot represents the pseudo-
equilibrium point p. Figures (b)-(d) exhibit the population dynamics for
one prey and two predators over time for distinct initial conditions.

Block diagram of the studied DC microgrid. Simplified system diagram
assuming that the loads are represented by CPLs and the PV source by
a CPS. V,, is the battery voltage and DBC stands for the bidirectional
power converter controlling the DC bus voltage. . . . . . . ... ... ..
Basic topology of a dec-de buck converter controlled by a sliding mode and
washout filter control strategy, connected to two converters in parallel. The
control function is defined as u = 1(1 — sign[H (i, vc, zr)]). The filtered
inductor current given by ip = i, — zp expresses the difference between
the inductor current iy, and the filtered signal zp. . . . . . . . . ... ..
Show the switching boundaries defined in (5.2.8). Figure (a) shows the
switching boundaries when yu,1 = Yo, defined by Yo 4y. Figure (b) shows
the switching boundaries when y;,1 # Yino. - - - - - o . o o oL
Simulation results of system (5.3.1) with parameters b = 0.006742, , k =
0.6742, dy = d3 = 0.02575, y;1 = 0.0416667, yme = 0.0833333andy, =
0.5 showing the unstable limit cycle in black color; the point of pseudo
equilibrium is represented by red. . . . . . . ... ...
Bifurcation set in (k, d;)-plane showing the main local bifurcations assum-
ing b = 0.006742, ,k = 0.6742, dy = d3 = 0.02575, y;,1 = 0.0416667, y0 =
0.0833333, w =0.461288 and v, = 0.5. . . . . . . .. ... ... ...
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Introduction

Motivation and goals

Dynamical Systems theory is the result of a long time of scientific development, and
determining its origin is not simple. However, one can identify the beginnings of this
theory in the 16th century, in the celestial mechanics theory by Johannes Kepler, and in
the formalization of classical mechanics by Isaac Newton. Aleksander Lyapunov and Henri
Poincaré, Russian and French mathematicians respectively, are considered founders of
the modern theory of dynamical systems. They introduced several concepts of qualitative
analysis of differential equations, such as solution stability, asymptotic behavior, among
others. Usually such dynamical systems are nonlinear or even discontinuous and depend
on parameters. Consequently, the study of the qualitative behavior of their solutions
is a difficult and challenging task. A rather effective method for handling dynamical
systems is the bifurcation theory, whereby the original problem is a perturbation of a
solvable problem, and we are interested in qualitative changes of properties of solutions
for small parameter variations. Currently, bifurcation theory is well developed and the
methods applied by these theories are quite broad, including functional analytical tools
and numerical simulations as well; see e.g. [49, 50, 55, 57, 54, 56]

Within this comprehensive area, the study of piecewise-smooth dynamical systems
(PWS, for short), or non-smooth dynamical systems is relatively recent and it has
great relevance in current scientific research. The pioneering works of Andronov [54]
on bifurcations in non-smooth dynamical systems, and Filippov [1] on sliding motion,
lay the foundations for the development of this line of research. PWS systems are
often considered in physical systems and engineering applications to describe phenomena
involving friction, collision, intermittently constrained systems, or processes with switching
components, see [8].

Bifurcations in PWS systems have been the object of study in several works by many
researchers until nowadays because there is not yet a complete understanding of local
and global bifurcations for these systems.

In PWS dynamical systems one can in general distinguish between two types of
bifurcations. The first type is similar to the bifurcations we know for smooth dynamical
systems. These include local bifurcations, which can be analyzed entirely through changes
in the local stability properties of equilibria, periodic orbits or other invariant sets as
parameter crossings through critical thresholds (saddle-node, Hopf bifurcations, etc); and
global bifurcations, which often occur when larger invariant sets of the system ’collide’
with each other, or with equilibria of the system. They cannot be detected purely by
a stability analysis of the equilibria (Homoclinic bifurcations, Heteroclinic Bifurcation
of equilibria and periodic orbits, etc). The second type of bifurcations referred to as
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border-collision bifurcations is connected with situations where the trajectory starts to
intersect one of the so-called switching surfaces or discontinuity surfaces, i.e., surfaces that
divide the phase space into domains of different dynamics. Within each such domain, the
system is smooth, but the equations of motion change abruptly from one domain to the
next. This type of bifurcation, which typically involves abrupt jumps in the eigenvalues
of the orbit, cannot occur in smooth dynamical systems.

It is a cumbersome problem to analyze all the possible cases to deal with DPWS
systems with n boundaries since we do not have a general theory. This class of systems is
studied on a case-by-case basis using vector field geometry tools. We know that the theory
established by Filippov has as its fundamental assumption a regular surface between
two smooth regions, but many highly relevant phenomena require models where two
or more discontinuity boundaries occur that are not necessarily plane surfaces, where
there can be an intersection between them and changes in its dynamics may occur, see
8, 9, 13, 18, 97, 100]. In the last decade, three main methodologies have emerged for
the study of these systems. One of the methodologies was presented by Jeffrey and
proposes an extension of the Filippov dynamics to points where the switching manifold
> self-intersects through the so-called “canopy”, a convex-like ruled surface, for more
details see [18]|. The next one, presented by Diece et al., which is older than the previous
methodology, proposes a similar construction where the nonuniqueness of sliding vectors
happens. Here, however, it was shown that by imposing certain attractivity hypotheses
on the switching manifold ¥, many conclusions can be proved on the behavior of the
dynamics. However, imposing conditions on » is a fundamental and restrictive hypothesis
here, for more details see [9]. Finally, Buzzi et al. propose an extension of the Filippov
dynamics to points where ¥ self-intersects through the application of a proper blow-up
and the use of Geometrical Singular Perturbation Theory (GSP-Theory for short) to
study the resulting slow-fast systems. Although distant from a direct generalization of
Filippov’s convention, this methodology is also a natural approach with advantages over
the previous ones, since, the non-uniqueness of the sliding field is predicted and it is
managed naturally. Even more, no assumptions neither on ¥ or the underlying vector
fields f are required here. However, the works lack a clear presentation and justification
for the dynamics induced over points where ¥ self-intersects, for more details see [97].

This thesis is dedicated to the study of local and global bifurcations for PWS
dynamical systems with at most two switching boundaries also called discontinuous
surface (normally plane surfaces), where the method given by Filippov (Filippov’s
convention) will be applied to analyze the discontinuous piecewise-smooth dynamical
systems (DPWS systems, for short).

The PWS systems are described as a set of ordinary differential equations of the form

x=f9x), x€R; CR" (1)

where f@ : R, = R" and R; (i = 1,2,3,...,m,) are open regions separated by switching
boundaries Y;; of (n — 1)-dimension and f® and ,; are supposed to be smooth. The
union of all ¥;; and all regions R; covers the entire state space of (1).

The nonsmoothness of the system occurs on the switching boundaries >;;. Moreover,
PWS systems are classified depending on the type of non-smoothness; see [§],

e Continuous piecewise-smooth systems (CPWS systems) if the vector field (1) is
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continuous but it is not differentiable at some points, i.e.,
fOx) = fUx) with f9(x)# fP(x), forsome x € %
CPWS systems do not have sliding motion.

e Discontinuous piecewise-smooth systems (DPWS systems) if
fO(x) # f9(x) for some x € ;.

In DPWS systems there can be sliding motion in a region of 3J;; fulfilling certain
conditions. Such systems are also known in the literature as Filippov systems and
are described by a set of first-order differential equations with a discontinuous
right-hand side. Also, it is possible to construct an appropriate vector field to
describe this sliding motion, called sliding vector field (see [1]).

PWS systems exhibit the classical bifurcations (saddle-node, transcritical, Hopf,
homoclinic, etc.) of smooth systems (see [19, 50]) and also unconventional bifurcations,
unique to non-smooth systems, known as discontinuity-induced bifurcations (DIBs), see
[43]. Bifurcations that determine changes in the number and nature of the equilibria
and of the limit cycles of the system of study are of particular importance to this work.
The topological changes from real to virtual equilibrium points (or vice versa), due
to changes in some system parameters, can lead to boundary equilibrium bifurcations
(BEB); see [23, 19, 20, 24, 25]. Besides the classical bifurcations, the DIBs, such as
sliding bifurcations of limit cycles that occur when a limit cycle develops an intersection
(tangential or transversal) with a sliding region as Grazing-sliding bifurcations (GS); see
[19, 26, 37, 27, 38, 39, 28] are dealt with in this thesis; and discontinuous saddle-node
(DSN, [22]).

An important feature of PWS systems is the presence of different types of equilibrium
points such as regular equilibrium, boundary equilibrium and the so-called pseudo-
equilibrium. In particular, the latter is the equilibrium at the switching boundary
where the sliding vector field becomes stationary, and can be achieved in finite time by
trajectories initiated outside of the boundary. In Sliding mode control (SMC) processes
[14], the desired operating point is a stable pseudo-equilibrium of the system that belongs
to an attractive region into the switching boundary where the sliding occurs. The output
of the pseudo-equilibrium of this attractive sliding region, induced by the variation of
a system parameter, is usually associated with typical bifurcations of DPWS systems
such as the boundary equilibrium bifurcations (BEBs) which will be studied in detail in
this thesis.

General Purpose

The main objective of this thesis is the study of piecewise smooth (PWS) dynamical
systems with applications in non-linear control systems in different areas of science and
engineering such as biology and power electronics. In particular, we are interested in
PWS systems with two and three dimensions, and in the qualitative analysis of these
systems, paying special attention to the constant solutions on the switching boundaries
associated with the resulting sliding vector field equilibrium, as well as the characterization
and classification of bifurcations induced by the switching boundaries by numerical and
analytical methods.
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Specific Objectives

e Study the dynamics and the stability of a system of n capacitors connected in a
serial arrangement to a voltage source and controlled by a switching control law
with multiple boundaries by using the tools of the PWS systems theory.

e Analyze the local and global dynamics of a power electronic circuit feeding a
constant power load and controlled by a sliding mode control law which is modeled
as a 3D DPWS system with two transversal switching boundaries.

e Analyze the local and global dynamics of a two-predator one-prey system under
harvesting actions that it is introduced by means of two switching control actions
defined on the predator species and determine the conditions on the system param-
eters so that the coexistence equilibrium (which is the reference pseudo-equilibrium
of the system) of the predators is globally stable.

e Provide numerical simulations of the studied systems to better understand the
dynamic behavior of such systems, and to check the theoretical results obtained.

Outline

This document is organized as follows:

Chapter 1 presents the elementary definitions related to the DPWS systems as
well as the tools to analyze the dynamic behavior of these systems. Also, we describe
briefly discontinuous-induced bifurcations (DIB) such as boundary equilibrium bifurcation
(BEB), discontinuous saddle-node (DSN) and Grazing-sliding bifurcation.

Chapter 2 we study an application of the capacitor voltage-balancing system found in
modular multilevel converters (MMC) and we show an important result on local stability
of the model with n submodules (SM). Moreover, we describe the global dynamics of
systems with two SMs, modeled by 2D-DPWS and 3D-DPWS systems with two
transversal switching boundaries. Also, we analyze and characterize the sliding vector
field at the intersection of two transversal switching boundaries. Finally, to validate the
theoretical analysis, we provide the results of numerical simulations on a MMC with
10 SMs. This chapter originated from the published paper: Rony Cristiano, Daniel J.
Pagano and Marduck M. Henao. Multiple boundaries sliding mode control applied to
capacitor voltage-balancing systems Commun Nonlinear Sci Numer Simulat., 91 (2020),
d0i:10.1016/j.cnsns.2020.105430.

Chapter 3 we analyse a dc-dc bidirectional buck composed of two buck converters
connected in a cascade structure being the first buck converter controlled by a sliding
mode control (SMC) law and the second converter modeled by a piecewise constant
power load (CPL). In particular, we analyze a piecewise smooth dynamical system in
R? with two transversal switching boundaries where the sliding motion occurs only
at the SMC-boundary. Furthermore, the local and global phenomena associated with
bifurcations induced by two transversal switching boundaries are shown (DIB, BEB,
DSN, GS). Also, we present numerical results on the bifurcation and study the vanishing
(or birth) of limit cycles. This chapter originates from the published paper: Marduck
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M. Henao, Rony Cristiano, Daniel J. Pagano. Bifurcation analysis of 3D-PWS systems
with two transversal switching boundaries: A case study in power electronics, Physica D
Nonlinear Phenomena, 442 (2022), doi: 10.1016/j.physd.2022.133505.

Chapter 4 consists of an investigation of the global dynamics of a three-dimensional
Lotka-Volterra system described by two predator species competing for one prey and with
human harvesting action on the predator species. The harvesting action is introduced by
means of two switching control actions defined on the predator species. We prove that there
is a global stable equilibrium point where the three species can coexist due to the proposed
harvesting action. This chapter originates from the published paper: Rony Cristiano,
Marduck M. Henao, Daniel J. Pagano. Global stability of a Lotka-Volterra piecewise-
smooth system with harvesting actions and two predators competing for one prey, Journal
of Mathematical Analysis and Applications, 522 (2023), doi: 10.1016/j.jmaa.2023.126998.

Chapter 5 we analyse the nonlinear dynamics of a DC-DC buck converter controlled
by a sliding mode control law connected to two power converters where one of them is
a boost converter and the other is a buck converter, both modeled by a CPL piecewise
function. The main focus is to study the stability analysis method of this type of model
and its pseudo equilibrium point, which is the operating point. The results obtained in
this chapter will be published in another scientific journal.

Chapter 6 presents the final remarks of this thesis.
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Chapter 1

Preliminaries and background materials

In this chapter, we present a brief outline of the mathematical structure and notations
that we will use throughout this work. We start with a brief introduction to the qualitative
theory for smooth dynamical systems, including a quick review of classical bifurcations
for these systems (saddle node, transcritical, Hopf, etc.), highlighting that they also make
sense for nonsmooth systems. Then we present the definitions and notations regarding
DPWS dynamical systems, as well as the tools for the analysis of these systems. In
particular, we are interested in two and three-dimensional DPWS systems with two
switching boundaries.

1.1 Smooth dynamical systems

We begin with a formal definition of a dynamical system and recall elements of
the concept from the theory of smooth dynamical systems that can also be applied to
non-smooth systems. In general terms, dynamic systems are systems whose states evolve
over time. Knowing the current state of the system and the laws that govern its evolution,
the behavior of such a system can be predicted to some extent, provided the laws do
not change over time. Therefore, a dynamical system can be defined through three
components: a state space, a non-empty set representing the space of time, and a law of
evolution of the state in time.

Let X C R” be the state space. We can define an operator ¢ in x that evolves
previously known elements zy through a “ time” ¢ to a state x;:

o X = X
T = 9l(x) = x4

The time ¢ assumes values in a set of indices 7, which is usually discrete (Z) or
continuous (R). The operator ¢ is called “the evolution operator” and defines a dynamic
system when it is equipped with a semi-group structure, see [8].

Definition 1.1.1. A state space X, a time set T and the evolution operator ¢' define a
dynamical system if

(i) ¢°%(x) =x, for allx € X,
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(i) ¢'5(x) = ¢'(¢*(x)), for allx € X and t,s € T.

The above definition is quite general and encompasses the two major strands of
dynamic systems theory, namely, continuous-time and discrete-time dynamical systems.
We will consider here only systems of the first type, that is, when 7 is an interval I C R,

18].

Consider a system of ordinary differential equations (ODEs)
x = F(x), xeDCR", (1.1.1)

where D is a domain and F': D C R® — R" is a vector field sufficiently smooth.
If we define X =D, T =1 C R and ¢'(x) = ¢(x,t), where p(x,t) is the flow that
takes the initial condition x to its solution at time ¢:

9 o(x,1) = Flp(x. 1)), px0) =x
then {X, T, ¢'} defines a continuous dynamical system.

We say that a dynamical system is smooth of index r, or of class C", if the first r
derivatives of ¢ with respect to x exist and are continuous at every point x € X. Thus,
if we suppose that the vector field F in (1.1.1) is of class C"~! for some r > 2, then the
flow p(x,1) is of a smoother index and therefore the dynamical system {D, I, ¢} is C".

Definition 1.1.2. The subset O(x¢) = {x € D : x = p(x0,t),t € I} is called orbit
or trajectory through the point xo. The phase portrait of the dynamical system is the
partitioning of the state space into orbits.

Definition 1.1.3. A point x € D C R" is said to be an equilibrium point of (1.1.1) if
F(x) =0.

Definition 1.1.4. A cycle (or a closed orbit) is a periodic orbit, that is, an orbit vy not
reduced to a point such that each point x € v satisfies p(x,t + ty) = @(x,t) for some
to > 0.

Definition 1.1.5. A closed orbit v in a neighborhood in which there are no other cycles
18 called a limit cycle.

Usually, it is important that the dynamics of the system behave in a stable manner,
that is, the final state of the dynamics does not change due to small changes in the initial
conditions.

Definition 1.1.6. An equilibrium point xo of (1.1.1) is (Lyapunov) stable if for all
netghborhood Uy C D of xq there is a neighborhood Uy C Uy of Xo such that every solution
©(x0,t) of (1.1.1) with p(x¢,0) € Us is defined and in Uy for all t > 0.

Definition 1.1.7. An equilibrium x¢ of (1.1.1) is said to be asymptotically stable (in the
sense of Lyapunov) if

(i) it is stable;

(il) limy e p(X,t) = Xq, para todo x in some neighborhood of Xg.
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We will say that an equilibrium s unstable if it is not stable according to Definition 1.1.6.

One of the goals of the dynamical system theory is to qualitatively classify dynamics.
Roughly speaking, structurally stable systems are those in which all “close” systems
have qualitatively “equivalent” dynamics. The notion of proximity and equivalence is
formalized below, following [8].

We will denote by 2" = Q7(D) the space of the vector fields of class C" in D, with
r > 1. Consider C" a topology of 2", whose basic neighborhood of radius € of a field
Fy € Q) is defined as

B(Fy,e) = {F € O [|F — Fo||, < e},

where
[E -= sup{||Fl, [DEY, ..., [[D"F[}.
xeD
Remark 1.1.8. || - ||sup denotes the norm of vectors (and matrices) called the supremum
norm
[%[sup = sup 237? and || Allsup = sup 5
i=1
where X = (21,...,2,) and A = (a;)n-

Now consider two dynamical systems

x=F(x), xeDCR", (1.1.2)
x=G(x), xeDCR", (1.1.3)

where F' and GG are smooth vector fields in D.

We say that the systems (1.1.2) and (1.1.3) are e-prozimals in D if |F — G|, < € for
some € > 0, or equivalently, if it exists some basic neighborhood B, of Q" that contains
F.GeqQ.

Definition 1.1.9. Perturbation of parameter of the system (1.1.2) generates another
system given by
x=F(x)+uG(x) xe€eDCR" pekR, (1.1.4)

where G 1s smooth field in D and p € R is the parameter.

Notice that, if 4 =0 in (1.1.4), we recover (1.1.2). Thus, (1.1.4) can be rewritten as
follows
x=Gx,u) x€DCR" pekR,

with G(x,0) = F(x). A perturbation (1.1.4) has a maximum size € if (1.1.4) is e-proximal
to system (1.1.2).

Definition 1.1.10. Two dynamical systems X = F(x) and X = G(x) are topologically
equivalent if there exists a homeomorphism h : R" — R™ that carries the orbits of the
first system onto orbits of the second one, preserving the orientation of the trajectories in
time.
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Definition 1.1.11. A system is structurally stable if there is an € > 0 such that all
perturbations of maximum size € to the vector field F' are topologically equivalent to G.

There is also the concept of smooth system conjugations, where the travel time of a
trajectory is conserved by homeomorphism, see [8].

Definition 1.1.12. The systems x = F(x) and X = G(x) are topologically conjugates if
it exists a homeomorphism h : R" — R"™ such that,

p(x,t) = b (¢(h(x),1))
where p(x,t) and Y(h(y),t) are the flow generated by fields F' and G, respectively.

Consider again a smooth dynamical system that depends on parameters, that is,

x=F(x,u) x€eDCR", peR’.

When considering a perturbation of the system under the action of the parameters,
its phase portraits may vary. Thus, there are two possibilities: either the system
remains topologically equivalent to the original or its topology changes. Next, we define
a bifurcation in terms of the loss of structural stability when a parameter acts as a
perturbation of the system (some types of smooth system bifurcations have been studied
and classified; for more details see [49, 57, 54, 56]).

Definition 1.1.13. A bifurcation occurs at a parameter bifurcation p = g if the dynamic
system 1s not structurally stable.

e An unfolding of a bifurcation is a simplified system that for u close to pg it contains
all possible structurally stable phase portraits that arise under small perturbations
of the system at the bifurcation point.

e The codimension of a bifurcation is the dimension of parameter space required to
unfold the bifurcation.

e A bifurcation diagram is a graphic representation that helps to understand how the
phase portrait of the system varies with the parameter.

For more details see [8].

1.2 Piecewise-smooth control system

In this section, we present definitions, notations, and elementary concepts regarding
DPWS systems as well as the tools for the analysis of the dynamic behaviour of
such systems, and properties related to boundary equilibrium bifurcations (BEBs). In
particular, we are interested in DPWS systems with multiple switching boundaries.

Since our interest is to study the piecewise-smooth control systems we consider a
control system of the form

x = f(x) + g(x)u, (1.2.1)

where x = (x1, Z9, ..., x,) € R" is the state vector, n > 2, the dot ”-” indicates derivatives
with respect to ¢ and the functions f : R” — R"™ and g : R” — R™*™ such that g(x) # 0,
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are smooth and the control signal u = (uy,us, ..., u,,) is supposed to be a discontinuous
function, which gives the discontinuity of the dynamical system (1.2.1). We assume that

Uy, Us ,...,U, are piecewise constant functions, defined by
Jr .
Ju, i hg(x) >0,
Uk = {u,;, if hi(x) <0, (1.2.2)

for k=1,2,...,m and u; # u, , where each function hy : R™ — R fulfill Vh(x) # 0, for
all x € R™, where Vhy(x) represent the gradient of hy. Thus, system (1.2.1) presents m
switching boundaries of (n — 1)-dimension, being defined by

Zk:{XGRnhk(X):O}

In addition, we assume that the gradient vectors {Vh,}}", are linearly independent and
My 2k is not empty.

System (1.2.1) endowed with the control law (1.2.2) constitutes a DPWS system of
form
x =F;(x), ze€R CR" (1.2.3)

where R;, 1 =1,2,...,2™, are open regions separated by m switching boundaries ¥, of
(n — 1)-dimension, transversely intersecting at a same point. The union of all boundaries
Y, and all regions R; covers the entire state space D of (1.2.3), i.e.,

(Ur'sy) U (U7 R,) = D.

The non-smoothness occurs at one of the switching boundaries ¥j and, if 3;; is the
boundary that separates R; from R;, then F;(x) # F,(x) for some x € ¥;;, see [8].

Remark 1.2.1. It is worth to mention that (1.2.3) does not specify how the dynamics of
the system evolve within the switching boundary. This basically depends on the dynamics
of each vector field f; near the border. One possibility is that the piecewise-smooth system
crosses transversely X;;, as in Figure 1.1; in this case, without loss of generality, we
can establish that X;; belongs to a single region R;. However, there may be a case where
the dynamics of the DPWS system are confined to a switching boundary after contact
with it (sliding motion). The region on ¥;; where the sliding motion occurs is knowns
as the sliding region. There are two approaches to studying the dynamaics of this kind of
system in the sliding region: Utkin’s control method [1}] and Filippov’s Convex Method
[1] (Utkin’s method is an extension of Filippov’s Method).

Definition 1.2.2. Two piecewise-smooth systems with switching boundaries ¥y and Xy,
are topologically equivalent by parts if:

1.) They are topologically equivalent, that is, there is a homeomorphism h : R — R"
that carries the orbits of the first system into the orbits of the second, preserving
the orientation of the trajectories, so that ¢(x,t) = h~'((h(x),s)), where the
application t — s(t) is continuous and inverse.

2.) The homeomorphism h preserves each of the switching boundaries, that s, h(3y) =
k-
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Figure 1.1: Piecewise-smooth vector field.

The sliding dynamics of system (1.2.3) occurs on ¥ = [J;-, 3y and exists when
> attracts close trajectories in finite time, so that trajectories become restricted to X
following a sliding motion. Associated to the sliding dynamics there is a vector field,
known as sliding vector field. Following [1], we consider that a sliding vector field is any

vector field given by
27”

F,(x) = Z i (%)Fy(x),

such that x € X, A\(x) > 0 and Y., A\;(x) = 1. The functions A (x), Aa(x),..., are
selected in such a way that F, is tangent to ¥ at x, that is, A\; must satisfy the constraint
Vhi(x)T - Fy(x) =0, i.e.,

2m
Z Ni(x)Vhe(x)T - Fi(x) =0, for k=1,2,..,m.
i=1

From the constraint above it is generally not possible to obtain \;(x)’s functions
uniquely, which can lead to many sliding vectors at x, see [18]. This ambiguity problem
does not appear when the sliding motion occurs at a single switching boundary, as shown
in Subsection 1.2.1. The method used in this case is well known in the literature and
appears in many works, see for instance [19, 20|. On the other hand, when the sliding
motion occurs at the intersection of two or more switching boundaries, there is still no
widespread general method that determines a single sliding vector field, being able to
describe the dynamic characteristics of this sliding motion. Some recent works deal with
the problem of sliding vector ambiguity and present proposals on how to define a sliding
vector field at the intersection of switching boundaries, see for instance [10, 18].

However, for DPWS systems derived from the control system given in (1.2.1)-(1.2.2),
it is possible to obtain a single solution for the sliding vector at the intersection of
switching boundaries. To see this, just use the equivalent control method, see |14, 15] and
Subsection 1.2.2. Then, we define A% (x) = [h1(X) ha(X) ... hp(X)], Lyh(x) = hy(x) - g(x)
and L;h(x) = hy(x) - f(x), where h,(x) is a m X n matrix whose rows are the gradients
of the functions hy. In addition, we assume that L,h(x) is nonsingular for all x. The
equivalent control u.,(x) is solution of

d

%h(x) = Lh(xX) 4 Lyh(x) - tieg(x) = 0,

ie.,

Ueg(X) = — (Lyh(x)) ™" - Lyh(x). (1.2.4)
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Introducing the equivalent control in the equations of system (1.2.1), we obtain the sliding
vector field

F.(x) = f(x) — g(x) - (Lgh(x)T1 - Lyh(x), (1.2.5)
restricted to the intersection of the switching boundaries ¥, 3, ..., given by hA(x) = 0.
By the above assumptions, if m > n then the switching boundaries intersect trans-

versely at a single point of R™, say x, and the sliding vector field on it is null, i.e, F (x) = 0.
In this case, x is a pseudo-equilibrium point of the switching system.

Definition 1.2.3. Consider the dynamical system (1.2.3) and let x € R™. We say that:

(i) x is a regular equilibrium point associated to the vector field F; if F;j(x) =0 and
X € U?Zl R;. It is real (admissible) whenever x € R;, or virtual in the other case.

(i1) x is a boundary equilibrium point associated to the vector field F; if Fi(x) =0
and x € R; (implies x € ¥y, for some k).

(11i) Some other stationary point that is not equilibrium in any of the vector fields
F;, may appear over one of the switching boundaries 31, ,..., including at the
intersection of two or more boundaries. Such a point is called pseudo-equilibrium.
In addition, if x is a pseudo-equilibrium then it s an equilibrium of the sliding
dynamics induced by vector fields Fi, Fo,..., in the neighborhood of x.

It is a difficult problem to analyze all possible cases for dealing with DPWS systems
with n boundaries, as we do not have a general theory. This class of systems is studied case
by case. It might not be surprising that simulating a set of equations across a discontinuity
results in some irregular or unpredictable behavior. In the intersection of discontinuity
surfaces the dynamic of the system evolves approximately along a discontinuity surface,
the dynamics find an attractor that approximates, but the attractor can be sensitive to
parameters of the vector field or the switching method, undergoing numerous bifurcations
that affect the speed of the sliding motion. The problem of motion along the intersection
of discontinuity surfaces was left open in Filippov’s influential work [1| and has recently
been taken up from a variety of perspectives based on practical considerations of how
to model dynamics around discontinuities, see e.g. [11, 12, 9, 18, 13, 100] or on more
theoretical considerations such as equivalence classes and stability, see e.g. [98, 99| and
references therein. Next, we will show theoretical tools for qualitative analysis of DPWS
systems in R™ with one or two discontinuity boundaries (plane surfaces).

1.2.1 A single switching boundary

We consider m = 1 in system (1.2.3), and ¥ = {z € R" : h(z) = 0} for some
h : R™ — R, as being a switching boundary splitting the state space into two open regions

Ry ={zeR":h(z) <0} and Ry = {x € R" : h(z) > 0}

such that R” = R; U Ry U X. Therefore, the general system (1.2.3) becomes a DPWS
dynamical system of the form:

o Fl(X), if x€ Ry,

x= {FQ(X), if x€ R, (126)
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Remark 1.2.4. The contact type of the orbits of a vector field ¥ with a switching boundary
Y defined by h(x) = 0, are provided by the directional Lie derivatives: Lgh = VhT - F
(or Lph = (Vh,F)). The higher order Lie derivatives are given by Lyh = VL%_lhT -F
(or LLh = (VLL 'h, F)).

The switching boundary > can be partitioned into regions with different dynamical
behaviours: (i) crossing regions (X), where one vector field is pointing to ¥ and the
other is pointing out of the boundary; (ii) attractive sliding region (¥,s), where the
vector fields F; and Fy point towards X from both sides; (iii) repulsive sliding region
(3,s), where both F; and Fy are pointing out of ¥ from either sides. Points in such
regions are qualified accordingly. Thus, we can explicitly determine the sliding and
crossing regions as follows:

Sus = {x € 01 Ly, h(x) < 0 < Lp, h(x)}, (1.2.7)
Yos={xe€X:Lph(x) <0< Lp,h(x)}, (1.2.8)
Y. ={x€eX: Lgh(x) <0and Lp,h(x) < 0}, (1.2.9)
Y ={x€X: Lph(x)>0and Lp,h(x) > 0}. (1.2.10)

These regions are separated by lines formed by tangency points of the vector fields
F,, with 3, satisfying the tangency condition Lg, ,h(x) = 0 and h(x) = 0. Then, we
define two sets of tangential singularities:

T, ={x €Y : Lp,h(x) =0}

and
T ={xeX:Lph(x)=0}

one for each vector field involved. Note that these tangency points are assumed to be
smooth curves contained in X, that is, to Ty (resp. 7_) as the tangency line of F,
(resp. Fy). Points where both vector fields Fy 5 are tangent to ¥, that is, x € Ty NT_ are
called double tangency points which are classified generically as two-fold singularities.
The following provides the definition of tangential singularities; see [1, 19].

Definition 1.2.5. (i) X € X is a fold point of ¥y if x € T, Lp,h(x) = 0 and
L3 h(X) # 0 (the contact of Fy with ¥ is quadratic). Moreover, we say that this
fold point is visible (resp. invisible) if L3 h(x) < 0 (resp. Lg h(x) >0), i.e., the
orbit of x = F1(x) starting at X, belongs to Ry (resp. Ry) for all sufficiently small
|t| # 0. See Figure 1.2(a)-(b), respectively.

(i) % € X is a fold point of Fy if x € T_, Ly, h(X) = 0 and L§ h(X) # 0. Moreover,
we say that this fold point is visible (resp. inwvisible) if Ly h(x) > 0 (resp.
L3, h(X) <0), i.e., the orbit of X = Fo(x) starting at X, belongs to Ry (resp. Ry)

for all sufficiently small |t| # 0. See Figure 1.2(a)-(b), respectively.
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(a) Visible fold. (b) Invisible fold.

Figure 1.2: Tangent points: (a) visible and (b) invisible of a plane Filippov system. The
solid region (dotted) of the boundary ¥ represents the sliding region (crossing).

Definition 1.2.6. (i) x. € X is a cusp point of Fy if xc € T, L§ h(xc) = 0,
L} h(xc) # 0 and the set {Vh(xc), V Ly h(xc), VL§ h(xc)} is linearly independent.

(i) xc € ¥ is a cusp point of Fy if xe € T, Ly, h(xc) = 0, Ly, h(xc) # 0 and the set
{Vh(xc), VLg,h(xc), VL3, h(xc)} is linearly independent.

The orbits of system (1.2.6) can be constructed by concatenating standard solutions

in Ry » and sliding solutions on ¥ following the Filippov convex method [1]. Once the

sliding mode has been achieved introduced by the discontinuous vector field (1.2.6), the

states are forced to follow a trajectory over the surface. This dynamic is restricted to the
sliding set ¥,, U X,5, and described by the sliding vector field

LF1h<X>
LFlh(X) - LF2h(X)7

F,(x) = (1 — M)F () + \Fa(x), with A = (1.2.11)

Oor more concretely,
F (X) _ LFQh(X)Fl(X) — LFlh(X)FQ(X)
s LF2h(X) — LFlh(X) ’

provided that the above denominator does not vanish. Therefore, A € (0, 1) for all
X € Y5 UX,s. While A = 0 implies that Ly h(x) = 0, i.e., x is a tangency point of
the vector field Fy with the boundary ¥ and F(x) = Fy(x) (x becomes a boundary
equilibrium if Fy(x) = 0); and A\ = 1 implies that Lg,h(x) = 0, i.e., X is a tangency point
of the vector field Fy with the boundary 3 and F(x) = F5(x) (x becomes a boundary
equilibrium if Fo(x) = 0). Naturally, A\ € (—00,0) U (1,00) for all x € ¥ U X .

(1.2.12)

Figure 1.3: Geometric definition of the sliding vector field.

31



The sliding vector field F, can be rewritten in terms of the f and g functions from
the control system given in (1.2.1). For this, we use the general sliding vector field given
in (1.2.5), obtained from Utkin’s equivalent control method [14], and so

Fi(x) = Fi(x) + Fa(x)uey(x),

where L h(x)
F X
Ueg(X) = ————.
LF2h(X)
Note that the transversality condition Lg,h(x) # 0 is a necessary condition for the
existence of u.,. Moreover, the attractive sliding condition at x € ¥ becomes

Lg,h(x)u™ < Lp, h(x) < Lp,h(x)u’.

Crossing

Figure 1.4: Some modes on X. In (a) is shown the attractive sliding motion that occurs
in the set ¥,5, where Lp,h(x) < 0 and Ly, h(x) > 0. In (b) the crossing mode is shown,
where a trajectory crosses ¥ at a point of X (restricted to Ly, h(x) < 0 and Ly, h(x) < 0),
passing from Ry to R;. In (c)-(d) are shown the behavior of the system’s orbits close to
a tangency point at 0, associated to vector field Fy, being of the invisible fold type in (c),
since Ly,h(0) = 0 and Lg, h(0) < 0, and of the visible fold type in (d), since Lg,h(0) =0
and Lg, h(0) > 0.

The orbits of system (1.2.6) can be constructed by concatenating standard solutions in
Ry U Ry, and sliding solutions on ¥ following the sliding system & = F(x); see [19, 21, 20].
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The forward orbit of (1.2.6) that crosses X, goes from R; to R through zy € ¥F and
goes from Ry to R; through zy € X (see Figure 1.4(b)). The forward orbit of (1.2.6)
that intersects Y at a point xg € ¥,,, continues from this point zy on a contained sliding
motion in ¥ (see Figure 1.4(a)). The forward orbits of (1.2.6) through 2y € Ry U Ry
never reach the repulsive sliding region ¥,,. But if xq € ¥, we can assume that there is
a sliding motion starting at xzy that follows the orbit of F.

Sliding regions are delimited by tangency points. In addition, the sliding vector field
F, is transversal to the set of tangency singularities at any fold point of this set, such
that each invisible fold point is an entry point for attractive sliding dynamics and each
visible fold point is an exit point from attractive sliding dynamics. The trajectory that
leaves the attractive sliding region by a visible fold point of F; (resp. Fy), enters the R
(resp. Ry) region, see [21, 20]. Next, we refine the definition of natural equilibrium and
pseudo-equilibrium point given in Definition 1.2.3(iii) for the vector field (1.2.6).

Definition 1.2.7. The points X € X are called pseudo-equilibrium point of the Filippov
system (1.2.6) if X € X5 U X, and it is an equilibrium for the sliding vector field Fy, i.e.,

F,(X)=0 and h(X)=0.

For instance, suppose that Fy and F; are transversal to ¥ and anti-collinear at a
certain point of this surface, that is, there exist A, Ay > 0, such that

)\1F2 + )\2F1 - O

The point is necessarily in X, since then Ly, ,x)h(x) are non-zero and with different
sign. In fact, it is immediate to conclude that at such point one has Fg = 0, being a
pseudo-equilibrium for (1.2.1). Reciprocally, if x is a point of ¥ with Fs(x) = 0 and
it is not tangency point, both vector fields are anti-collinear at point. Sliding regions
are delimited by points where the vector fields F, 5 are tangent to X. We recall that the
discontinuous system (1.2.1) inherits the equilibrium vector field (1.2.12), and that they
can be admissible (real) or non admissible (virtual) equilibria depending on its position
with respect to the switching boundary.

Definition 1.2.8. A point X € R" is a natural equilibrium of (1.2.6) if it is an equilibrium
of the vector field Fy or Fy. Moreover, we say that X € R™ is real (admissible) if

Fi(X) =0 and h(X) <0,

or
F2(X) =0 and h(X) > 0.

Whenever Fy(X) = 0 or F;(X) = 0 and h(X) = 0, the point X is called boundary
equilibrium of system (1.2.6). Thus, a boundary equilibrium point is at the boundary of
the sliding set ¥,4; and so from [19] it can also be considered a pseudo-equilibrium point.
Therefore, some interaction between the equilibria of the two involved vector fields and
the pseudo-equilibria of the sliding vector field appears whenever, by moving parameters,
a real equilibrium point collides with Y. We say then that the system undergoes a
boundary equilibrium bifurcation of codimension-two (BEB for short).
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1.2.2 Two switching boundaries

We consider in system (1.2.3) that m = 2 and there are two switching boundaries
that intersect transversely, defined by

21 = {X e R": hl(X) = 0},
Yo ={x € R": hy(x) =0}.

In this case we have four open regions, given by

Ry = {x € R": hy(x) > 0 and hy(x) > 0},
Ry = {x € R": hy(x) < 0 and hs(x) > 0},
R3 = {x € R": hy(x) < 0 and hy(x) < 0},
Ry ={x € R": hy(x) > 0 and hy(x) < 0};
as Figure 1.5 shows.
2
Ry : Fy Ry Fy
_) (_
1= <L, Tl
b))
FS_ FS+
_ —
Xy ) 53
I 1
— - —
Rs: F3 1 Ry: Fy

Figure 1.5: State space configuration in R3 with ¥; U X, attracting in finite time all
nearby trajectories. The vector fields F; point to the switching boundaries »; and X,
in all regions. Then, sliding vector fields can be defined in X1, ¥5 and »; N X5, being
denoted by F*, F SiQ and F§, respectively.

S17

The ¥; boundary is divided into two parts, one for hy(x) > 0 and the other for
hy(x) < 0, denoted by ¥ and X7, respectively. In each part we can find sliding, crossing
and tangency sets, as well as points of boundary equilibrium and of pseudo-equilibrium.
Such elements are obtained and classified using the results and tools for the case with a
single switching boundary, presented in the previous subsection. In addition, the sliding
dynamics in ¥} (resp. ¥;) can be analyzed using the sliding vector field defined in
(1.2.11). The same applies to the X5 boundary.

The interesting thing when it comes to systems with two switching boundaries is what
happens at the intersection of these boundaries. Of course, in >; N Y5 we can also find
singularities as the pseudo-equilibria, boundary equilibria, tangencies, besides sliding and
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crossing sets. But for this, we must take into account the four vector fields, Fq, Fs, F3
and F,, around this intersection.
We assume that there is a subset ¥, of 31 N X5, such that

Lehi(x) <0,  Lp ha(x) <0 (1.2.13)
Ly,hi(x) >0, Lp,ho(x) <0 (1.2.14)
Ly hi(x) >0 Ly, ha(x) >0, (1.2.15)
Lehi(x) <0, Lpha(x) > 0 (1.2.16)

for all x in that subset. In this case, both the switching boundaries ¥; and ¥, present
sets of attractive sliding in a neighborhood of ¥; N 5. In ¥; the sliding vector field,
denoted by Fy, is a piecewise smooth vector field of form

_ [Fi(x), if hy(x) >0,
F, (x) = {F— (x), if ho(x) <0,

S1

with F calculated from (1.2.11), getting

_ LF2h1 (X) . Fl(X) — LF1 hl (X) . FQ(X)
LF2h1 (X) — LF1 hl (X) ’

Fj (x)

for he(x) > 0 and

Fo— Lg,hi(x) - F4(x) — Ly, hi(x) - F5(x)
o Lp,hi(x) — Ly, hi(x) 7

for ho(x) < 0.
In X, the sliding vector field, denoted by F
form

sy, 18 a piecewise smooth vector field of

~[FL(x), if hi(x) >0,
Fo,(x) = {F (x), if hi(x) <0,

52

with FE calculated from (1.2.11), getting

Ly, ho(x) - Fi(x) — Lg, ha(x) - Fy(x)

F! =
52 LF4h2 (X) - LF1 hg (X) ’
for hy(x) > 0 and
F- — LF3h2(X) . FQ(X) — LF2h2<X> . Fg(X)
52 LF3 hg (X) — LF2 hg (X) ’

for hy(x) < 0.

Note that 3, N Xy = ¥ is the switching boundary for both the vector fields Fy,,
restricted to 3;, and Fy, restricted to ¥,. The assumed conditions (1.2.13)-(1.2.16)
ensure that X, C Yy is attractive in finite time, that is, for any x € ¥, we have

LF:I ho(x) < 0, LFfth(X) > 0,
Lgs I (x) <0,  Lp-hi(x) > 0.
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We assume that the sliding vector field, denoted by F, and restricted to Y, is given
by

where \;’s are smooth functions of x, such that A; > 0 and A\; + Xy + A3 + Ny = 1.
The A;’s functions must be chosen in order to fulfill the equations Lg_ hi(x) = 0 and
Ly ha(x) = 0. For systems like (1.2.1)-(1.2.2), if we define F{(x) = f(x) + g(x)u™™,
Fy(x) = £(x) + g()u", Fy(x) = f(x) + g(x)u— and Fy(x) = £(x) + glx)u~, where

+ - - +
U _ U __ U _ U
Uy Uy Uy Uy

then (1.2.17) is reduced to Fy(x) = f(x) + g(x)ue, after taking
)\1U++ + )\QU_+ + >\3U__ + >\4U+_ = Ueq-

The u,, vector, so-called equivalent control (see [15]), is obtained in a unique way
from formula (1.2.4), leading to a well-defined and smooth sliding vector field at the
intersection of »; and s, which is, consequently, calculated by the formula given in
(1.2.5).

1.3 Bifurcations of piecewise-smooth dynamical sys-
tems

In this section, we describe the basic concepts of smooth (or non-smooth) systems
bifurcations, for which it is necessary to talk a little about limit cycles.

A limit cycle is an isolated and closed trajectory that can appear in the phase portrait
of nonlinear systems. An isolated periodic orbit means the absence of other infinitesimally
close closed trajectories. In this sense, neighboring trajectories close to a limit cycle must
either approach or move away from it. If the trajectories that start in a neighborhood
tend to the limit cycle, then we say that the limit cycle is stable, see Figure 1.6(a);
otherwise, in which the trajectories move away from the limit cycle, we say that there is
an unstable limit cycle, see Figure 1.6(b). If for certain neighborhoods the trajectories
converge to the limit cycle and for other neighborhoods, the trajectories move away from
the limit cycle, we say that the limit cycle is semi-stable, see Figure 1.6(c). The study of
limit cycles has been used to model the behavior of a large number of dynamical systems
in the real world, as the dynamics of a system can be characterized by its critical points
and position of the variant manifolds. This generated a great deal of research interest
in mathematicians, physicists and engineers. Although there is a lot of work on the
existence and number of limit cycles in DPWS systems, this is still an open problem, even
if we consider the discontinuity manifold as a straight line or plane surface. In general,
finding limit cycles in a system is an arduous task and almost impossible in some cases.
However, there are qualitative and numerical methods to find them.

The most important kind of limit cycle is the stable limit cycle, where nearby curves
spiral toward the limit cycle on both sides. Periodic processes in nature can often be
represented as stable limit cycles, so great interest is attached to finding such trajectories
if they exist. Unfortunately, surprisingly little is known about how to do this, or how to
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(a) Stable limit cycle. (b) Unstable limit cycle. (c¢) Semi-stable limit cycle.

Figure 1.6: Limit Cycle Trajectories.

show that a system has no limit cycles. There is active research on this subject today,
for example, the Poincare-Bendixson Theorem, Bendixson’s Criterion, Levinson-Smith
Theorem, for more details see [101, 102, 50].

In this sense, it is necessary to describe what is meant by bifurcations in non-smooth
systems. Consider a general invariant set of a piecewise-smooth system. Bifurcations that
involve invariant sets contained in a single region R; for all parameter values of interest
can be studied using the bifurcation theory for smooth systems. The topological changes
in the phase portrait of the system can be confined to arbitrarily small neighborhoods of
the bifurcation fixed points by moving the bifurcation parameter close to such bifurcation
point (hence "local").

Local bifurcations can be analyzed entirely through changes in the local stability
properties of equilibria, periodic orbits, or other invariant sets as parameters cross through
critical thresholds, as for example:

e saddle-node bifurcation which is common to both smooth and non-smooth dynamical
systems. It is a local bifurcation where two equilibria collide and annihilate each
other; see [50, 49].

e Hopf bifurcation is a critical point where the stability of the system switches and
a periodic solution arises. More concretely, it is a local bifurcation where a fixed
point of the dynamical system loses its stability (as a pair of complex conjugate
eigenvalues-of the linearization around the fixed point-crosses the complex plane
imaginary axis). Under reasonably generic assumptions about the dynamical system,
a small-amplitude limit cycle branches from the (critical) Hopf bifurcation point.
This limit cycle is stable if the first Lyapunov coefficient is negative, in this case, we
say that the bifurcation is a supercritical Hopf bifurcation. Otherwise, it is unstable
and the bifurcation is a subcritical Hopf bifurcation; see [49].

Hopf and saddle-node bifurcations occur only in smooth systems, but appear in nons-
mooth systems when they occur in regions defined by smooth vector fields.

Global bifurcations typically occur because ’larger’ invariant sets, such as periodic
orbits, collide with equilibria. This causes changes in the topology of the trajectories in
the phase space which cannot be confined to a small neighborhood, as is the case with
local bifurcations. Some examples of global bifurcations are:
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e Homoclinic bifurcation is where a limit cycle collides with a saddle point, see Figure
1.7. The variant above is one type of homoclinic bifurcation. Still, there is another
type of homoclinic bifurcation in which the homoclinic orbit "traps" the other ends
of the unstable and stable manifolds of the saddle. Higher codimension bifurcations
can occur in three or more dimensions, producing complicated, possibly chaotic
dynamics, see [8, 49].

(a) Periodic orbit. (b) Homoclinic orbit. (¢) Homoclinic orbit is broken.

Figure 1.7: Homoclinic bifurcation for a saddle equilibrium creating a stable limit cycle.
In figure (a) there is a stable periodic orbit; in figure (b) the periodic orbit approaches
the homoclinic orbit; and in figure (c), the homoclinic orbit is broken and there is no
periodic orbit.

e Heteroclinic bifurcation is when a limit cycle collides with two or more saddle points
(see Figure 1.8). A heteroclinic orbit is an invariant set in the phase space of a
dynamical system. If a heteroclinic orbit is asymptotically stable, approaching
trajectories spend longer and longer periods of time in a neighbourhood of successive
equilibria. In general, the heteroclinic connections of dynamic systems are of high
codimension, that is, they will not persist if the parameters are varied.

(a) Unstable equilibrium and (b) Heteroclinic orbit. (¢) Limit cycle before hetero-
two saddles coexisting. clinic bifurcation.

Figure 1.8: Heteroclinic bifurcation for two saddles equilibrium creating a stable limit
cycle. In figure (a) there is an unstable equilibrium coexists with two saddles; in figure
(b) the heteroclinic orbits connecting the saddles, forming a heteroclinic cycle; and in
figure (c) there is a stable limit cycle that disappears through heteroclinic bifurcation.
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Global bifurcations can also involve more complicated sets such as causing the sudden
appearance or disappearance of a chaotic attractor in a boundary crisis bifurcation, see
8]

The classical bifurcations (saddle-node bifurcation, Hopf bifurcation, etc) also occurs
in DPWS systems. However, there exists other bifurcations that are exclusive of
the piecewise-smooth systems, such as those that normally involve interactions of an
invariant set with a discontinuity boundary, known in the literature as discontinuity-
induced bifurcations (DIBs); see [8, 64]. These bifurcations occur when an invariant
set (equilibrium point, limit cycle, etc) crosses or touches tangentially the switching
boundary ¥ in state space. The topological changes from real to virtual equilibrium
points (or vice versa), due to changes in some system parameters, can lead to a BEB; see
[19, 20, 23, 24, 25|. There are other DIBs, such as sliding bifurcations of limit cycles that
occur when a limit cycle develops an intersection (tangential or transversal) with a sliding
region; see [59|, Grazing-sliding bifurcations (GS) that occurs when a limit cycle intersects
tangentially a switching boundary; see, [19, 26, 27, 28, 37, 38, 39|, and discontinuous
saddle-node (DSN) bifurcation that occurs when the equilibria in different vector fields
collide, defined as a non-smooth analog of the saddle-node bifurcation; see [22].

1.3.1 Boundary equilibrium bifurcations

The boundary equilibrium bifurcations (BEB) have been the object of study of many
works in the last few years and they have been identified in mathematical models of
a wide variety of physical systems. For two-dimensional DPWS systems, there is a
complete classification of the BEBs and their unfolding, see [1, 24, 25, 59, 63]. For
three-dimensional DPWS systems, the BEBs have a greater complexity of phenomena,
with many possible geometric combinations. We still do not find a classification in the
literature that is similar to the two-dimensional systems for the three-dimensional ones,
although there are recent studies focused on the study of phenomena linked to BEBs as,
for example, [23, 26, 20].

Definition 1.3.1. The DPWS system (1.2.6) undergoes a boundary equilibrium
bifurcation on the parameter = p* (u € R) in relation to vector fields ¥; (i =1,2), if
there is a point x* such that:

(i) Bt %) = 0, but Ty, 1) £ 0;
(ii) h(x*,p*) = 0;

(111) YV, Fi(x*, 1u*) is invertible (equivalently, Det[V F;(x*, u*)] #0);
(iv) Vuh(x*, p1*) = Voh(x*, 1*) [V.F; 'V, Fi] (x5, 0%) # 0.

_(_0 o) o] _ (. 0 o] o)
where Vm—(%,a—m,,ﬁ) cmd VM_(a_m’a_ug""’ 8#,1)'

Remark 1.3.2. Items (i)-(i1) say just that x* is a boundary equilibrium at parameter
= pu*. After the analysis of just the linear part of the system, we have that with the
Implicit Function theorem! we can conclude the validity of the results for the complete
non-linear system, as indicated by the item (iii). item (iv) means that the branches of the

1See, [8, Theorem 2.4]
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equilibria of the vector fields Fi and Fy cross X transversely at the bifurcation point of
the boundary equilibrium (x*, pu*).

A BEB is classified according to two possible scenarios, that take into account only
the positions of the equilibria involved in relation to the boundaries of their respective
vector fields:

(i) Persistence scenario occurs when a natural equilibrium turns into a pseudo-
equilibrium. In this case, if the natural equilibrium is real (resp. virtual), then the
pseudo-equilibrium is virtual (resp. real).

(ii) Nonsmooth fold scenario occurs when both a natural equilibrium and a pseudo-
equilibrium collide and disappear. In this case, if the natural equilibrium is real
(resp. virtual), then so is the pseudo-equilibrium.

To distinguish between the persistence and nonsmooth fold scenarios, we use the
BEB-Theorem shown in [8] which is enunciated below.

Theorem 1.3.3. Let D C R"™ be the region containing the origin, the Filippov system

. _ JFix ), if h(x,p) >0,
T {F2(X7M), if h(x,p) <0, (1.3.1)

where x € R", p € R, F1,Fy : R — R" and h : R"" — R are smooth functions in D,
and 3 is a switching boundary. Suppose that (1.3.1) undergoes a boundary equilibrium
bifurcation at (x*, ;*) = (0,0) in relation to Fy. So, assuming

CTN'E #0,
where N1 = V,F1(0,0), CT = V_h(0,0), E = Fy — Fy, we have :
(i) The persistence scenario occurs if C'N;'E < 0.

(ii) The nonsmooth fold scenario occurs if CTN;'E > 0.

1.3.2 Discontinuous saddle-node bifurcation

A Discontinuous saddle-node bifurcation is a codimension-one situation defined as by a
nonsmooth analog of the saddle-node bifurcation. This type of bifurcation is a nonsmooth
fold, that is, two equilibria coexist and collide and annihilate at the discontinuous
bifurcation. It is worth mentioning that this bifurcation occurs in the CPWS systems;
see [22].

1.3.3 Grazing-sliding bifurcation

Another important case of DIB caused by the interaction of a trajectory with the
boundary of a sliding region is the grazing-sliding bifurcations(GS) that occurs when a
limit cycle entirely contained in some region R; collides with the switching boundary
Y., generating a sliding cycle. The dynamics associated can be simple or extremely
complicated and appear under a continuous small change in initial conditions, see [8|.
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Figure 1.9 (below) shows that as we vary parameter p € R in a 2D-DPWS system,
two generic cases can appear depending on the stability of the tangent cycle L at u =0
In Case 1 (Fig. 1.9(a)), the L cycle is stable and, for u < 0, there is a stable limit cycle
L, C Ry. This cycle becomes a sliding cycle for p > 0. In Case 2 (Fig. 1.9(b)), the L
cycle is unstable and, for u < 0 there are two limit cycles: an unstable L} C R; cycle
and a stable L, sliding cycle. In this case, when g > 0 there is no cycle, see [19].

<0

<0

(b) Case 2.

Figure 1.9: Grazing-sliding bifurcation in 2D.
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Chapter 2

Multiple boundaries sliding mode
control applied to capacitor
voltage-balancing systems

In this chapter, we are interested in studying the stability of an active voltage
balancing strategy for pre-charging MMCs (Modular Multilevel Converters), since the
voltage balancing of the floating capacitors in the submodules of the MMC during its
pre-charging operating stage is a key issue insomuch as it is a critical task for the
correct operation of these converters. The adopted voltage-balancing strategy consists
in adding a resistance to each submodule of the MMC by means of a controlled switch.
These switches are being controlled by a sliding mode control algorithm with multiple
boundaries (discontinuity surfaces of high co-dimension). These systems are essentially
discontinuous piecewise smooth dynamical systems (Filippov systems) commanded by
electronic switches. In this chapter, the local stability of the voltage balanced system
is analytically proven for an arbitrary number of sub-modules. In addition, a detailed
analysis of the global dynamics of this system with two sub-modules and two switching
boundaries sliding mode control is presented. Moreover, simulation results obtained on
an MMC with 10 submodules are shown to validate the theoretical analysis.

2.1 Introduction

A very interesting problem in power electronics is to equalize the voltage of an
arbitrary number of floating capacitors connected in series or parallel arrangements to a
voltage source. This problem so called capacitor voltage-balancing is well known to power
electronics engineers and its solution has motivated different balancing strategies. These
systems are in essence dynamic switching systems (Filippov systems [1]) commanded by
electronic switches, typically MOSFET for low power applications and insulated-gate
bipolar transistors (IGBT) for medium power systems.

Capacitor voltage-balancing systems are commonly used in different circuit applications
in power electronics, see for instance [2]. A particular application of the capacitor
voltage-balancing techniques is found in modular multilevel converters (MMC) during its
pre-charge operating stage [3, 4]. A typical three-phase MMC, first proposed by Lesnicar
and Marquardt in 2003 [5], is shown in Figure 2.1. Nowadays, it is one of the main
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Figure 2.1: MMC with pre-charge circuit. L, stands for the equivalent arm inductance;
Ly is the output ac inductance; Vg, is the de voltage source; R; stands for the equivalent
circuit resistance; R, and S, are the balancing resistance and control switch, respectively;
S7 and Sy are the submodule switches; C; is the submodule capacitor; APS is the
auxiliary power supply; K, Ky and K,. denote pre-charge and operating circuit switches.

Adapted from [7].

modular converter topologies used in High Voltage Direct Current (HVDC) and is also
widely used in other applications including medium voltage drives and renewable energy
sources integration. The MMC is composed of fundamental units called submodules
(SM). A set of serially connected submodules is called an arm, and two arms, one superior
and one inferior compose one phase leg of the MMC. A detailed state-space model of the
three-phase MMC can be found in [6]. The topology used within the SMs can vary, being
the most common the half-bridge and full-bridge converters, connected to a capacitor.
Summing up the output voltages of several SMs it is possible to have different levels of
voltage in each phase [7].

In practical MMCs, each SM local signal electronics circuits are self-powered by means
of a local auxiliary power supply (APS) fed from the SM DC-link [7]. However, the
cascade of hundreds of SMs also brings a major challenge to the system’s capacitor
voltage balancing during the pre-charge stage where this configuration might not lead to
balanced or stable SM voltages. The connection of the converter to the grid can only be
performed after pre-charging all capacitors to minimum voltage levels, which prevents
inrush currents. In this sense, the balancing of the MMC’s capacitor voltages during its
pre-charge stage is critical for the correct operation of these converters [7]. The capacitor
voltage balancing of the MMC can be classified into two different methods (i) a passive
balancing strategy that consists in adding a balancing fixed resistance in parallel to each
one of the SMs; (ii) an active balancing strategy implemented by controlled switches that
connect/disconnect the balancing resistance for each SM.

A passive balancing strategy considering the switch Sy, closed in Figure 2.1 and varying
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the balancing resistance Ry, is studied in depth in |7]. In this chapter, an active balancing
strategy that consists in adding a balancing resistance in parallel to each one of the SMs
being controlled by a switch S, is analysed from the point of view of the discontinuous
piecewise smooth dynamical systems (DPWS systems, for short) theory [8].

In DPWS systems, when a discontinuous flow through a switching boundary points
inwards, so that it cannot escape, it induces a single flow within the boundary, so called
sliding mode regime. When several of these switching boundaries intersect (discontinuity
surfaces of high co-dimension), a method to analyse this type of systems is to seek a
flow within the intersection, but some difficulties can arise. The widely adopted Filippov
method [1| to define the sliding vector field is, in general, ambiguous. For instance,
when sliding takes place on a surface of co-dimension 2, that is, the intersection of two
co-dimension 1 surfaces, even if the surface attracts nearby dynamics, an ambiguity
may arise to solve the problem. The ambiguity involved in this situation can be solved
by different practical approaches: (i) globally smoothing out the vector field, see for
instance, previous works on DPWS with two or more switching boundaries, Dieci et al.
[9, 10] ; (ii) blending technique, that is essentially an interpolation of the vector fields in
the neighborhood of the discontinuity boundaries, see [11], [12]; (iii) to impose further
constraints on the class of Filippov vector fields, in order to regularize the problem on
the co-dimension 2 surface [13].

For DPWS systems derived from control systems like (1.2.1)-(1.2.2), Utkin’s equiva-
lent control method [14, 15] provides a single sliding vector field at the intersection of the
m switching boundaries. When the system is linear with respect to the control variable,
the Filippov and Utkin methods return the same sliding vector field over a switching
boundary between two vector fields, but may differ if this relationship is non-linear, see
[16]. The same occurs when the sliding motion is restricted to the intersection of m
switching boundaries. However, Utkin’s method for determining the sliding vector field at
the intersection of the m switching boundaries of control systems such as (1.2.1)-(1.2.2)
is simpler to apply than Filippov’s method, which can show up to m possible ways to
obtain the same sliding vector field.

The main contributions of this chapter is to study the dynamics and the stability
of a system of n capacitors connected in a serial arrangement to a voltage source and
controlled by a switching control law with multiple boundaries. Our case is to solve the
problem of capacitor voltage balance during pre-charge operation of multilevel modular
converters, as it is an interesting problem, less addressed in the literature. Moreover, we
use standard tools for DPWS systems and we have numerical simulations of the studied
systems, which verify the analytical results.

This chapter is organized as follows. Section 2.1 presents a brief introduction to
the problem of capacitor voltage-balancing. Section 2.2 is dedicated to modeling and
introducing the main result obtained on local stability of the model with n submodules;
see Theorem 2.2.1. A brief description of other results obtained in the following sections
is also provided. A qualitative analysis of the case in R? corresponding to two SM
planar systems is studied in Section 2.3. In Section 2.4 we analyze the case in R?® with
two switching boundaries, taking into account the dynamics of the equivalent inductor.
Simulation results are shown in Section 2.5. Finally, Section 2.6 presents the main
conclusions.

Previous results on DPWS systems are necessary for the development of this work.
Chapter 1 reviews the main aspects of these systems, relevant to our objectives.
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2.2 Model description and main result

Only one leg with two arms of the MMC circuit shown in Figure 2.1 is reduced to an
equivalent circuit that operates during pre-charge operation, as shown in Figure 2.2, to
analyze the voltage balancing mechanism of the active capacitor. The equivalent circuit
is obtained when K is closed, K5 is open, K, is open, all the IGBTs are blocked and
the APSs are turned on. The control switches S, are employed to switch-on/switch-off
the balancing resistances R, in such a way to control the SM voltages.

S,
ir Rl ﬁ
—— W
(%o
T —C @ Py Ry,
Sb
2
~
’Ucﬂ
2
T —C N |:X:| P N Ry ¥

~
Vo,
L Y
T -Cvn Py Roy
Shu
~
VO
T ::CN X PN RbN

Figure 2.2: Equivalent circuit for one leg with two arms of the MMC circuit shown in
Figure 2.1. Note that N is an even number and the symbol [»>4] denotes a constant
power source (P;/v¢;).

The dynamics of the circuit shown in Figure 2.2 can be expressed by equations

dUci . Pz UC’Z
Ci = — — — U
) dt ve, Ry, (2.2.1)
1 .
Lad—f Vie — LR — S0 ve,
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for i =1,2,3,..., N, where N (even number) stands for the number of SMs of the MMC.
If we can assume that the second equation of (2.2.1) has fast-scale dynamics and it is
everywhere stable, so we have the approximation

N
0=Vae—irRi— > ve, (2.2.2)

k=1

for very small L, value (L, > 0) and we can solve this equation for iy, to get

N

. 1

i = I (VdC — E Uck> ; (2.2.3)
k=1

then a standard singular perturbation analysis shows that (2.2.1), by substituting (2.2.3)
in first equation of (2.2.1), can be reduced to

N
dve, 1 P e,
Ci—2 = — | Vigo — — b Gy, 2.2.4
= ( Z) -y (224

fori=1,2,3,...,N.

In system (2.2.4) the state variables are the voltage capacitors ve, = ve,(t), such that
ve, € (0, Vge|, the parameters are V. > 0, C; > 0, P, > 0, B, > 0, Ry, > 0. The control
variables are u; € {0,1}, 0 for open switch (Sp, in Figure 2.1) and 1 for closed switch.
The control objectives are basically: (i) to stabilize the voltage of each capacitor at a
desired value V;, € (0, Vi), where Vg, > S°~ | V,; (i) to ensure the robustness of the
system to parameter variations, produced mainly by load and power demand changes
(parameters P; and Ry, ). We adopt a Sliding Mode Control (SMC) strategy that depends
on the voltage capacitor error signal on each capacitor, given by

1
u; = 5(1 + sign [ve, — Vi, ]), (2.2.5)

for « =1,2,...,n, where ve, — V,, = 0 stands for the switching boundaries. This leads us
to deal with piecewise smooth systems that have n switching boundaries that intersect at
the desired operating point since there are N independent control variables. Such class
of switching control law is well-known as multiple boundaries SMC.

For the study carried out in this and the next section, we consider the system (2.2.4)-
(2.2.5) in a normalized form given by

k=1
with .
w; = —(1 +sign [x; — w4)), (2.2.7)

2
and for ¢ = 1,2, ...,n. System (2.2.6)-(2.2.7) is obtained by applying the standard change
of variables (state and time, see Wang et al. [17]) and parameters, defined in Table 2.1,
to the original system (2.2.4)-(2.2.5). So, the new state vector is x = (z1, X2, ..., T,) €
D C R such that
D={0<z;<1 for i=1,2,...,n},
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and Xyof = (f41, o, .-, fbn) is the normalized voltage reference vector whose components
meet the inequality gy + po + ... + p, < 1. Switching boundaries are defined by

Y,={x€D:hi(x)=mz; —pu; =0}

for i = 1,2,...,n. In this case, if h;(x) > 0 then u; = 1 and if h;(x) < 0 then u; = 0. Note
that these sets are orthogonal to each other and ¥; N ¥ N -+ NE, = {Xper}-

State and Time Variables Parameters
x; = v¢; /Vae i = Vo, [ Vie

a; = CN/ C;
bi = PR/ V},

T = t/(RlCN> C; = Rl/Rbi

Table 2.1: Normalization.

In what follows, the local stability of the desired operation equilibrium point (balanced
system) of the equivalent system shown in Figure 2.2 is analytically proven for an arbitrary
number of submodules.

Theorem 2.2.1. Point (V,,,V,,,..., V) is a local attractor for system (2.2.4)-(2.2.5)

y Vryn
whenever N v
Vi, R V.

Vie — V., ——V,. P, Vie — V. |. 2.2.8
i (T gn) <neg(ngu) e

1 ; 1
fori=1,2,...n.

Proof. We use a special notation for Lie derivatives, namely
Cdr o dr
in order to simplify the analysis of the contact of the system’s orbits with the switching
boundaries >;. From this, we can determine the sliding regions in ¥; and conditions on
the system parameters to ensure stability at the point X,¢f, which is the desired operating

point.
Attractive sliding regions are given by

(%)

(up=1) and z; (x) (u; =0),

NP ={xe i (x) <0< (x)},

where

it (x)=a; [ 1— — 2 — d & (x)=a;[1—- — =],
T (x) =a ( 521 Tp - c:v) and Z; (x) =a ( E Tg ﬂfz>

k=1

We have 395N 325 N - N2 = {Xper} iff 77 (Xpef) < 0 < 2 (Xpef) for all i. This condition
is obtained for the system parameters satisfying

1 (1 — Zuk — ci,ui> < b; < <1 — Zuk> . (2.2.9)
k=1 k=1
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Condition (2.2.9) is rewritten as condition (2.2.8) of Theorem 2.2.1, applying the changes
given in Table 2.1.

Assuming (2.2.9) in system (2.2.6)-(2.2.7), we can ensure that it exists a neighborhood
V' of X,ef, including x,.¢, such that for any x in V' we get

iy (x) >0 if z; <p, and If(x)<0 if x>,

for all . Then x, is a local attractor of system (2.2.6)-(2.2.7), which we call pseudo-
equilibrium point. Furthermore, such a pseudo-equilibrium point is reached in finite
time. O]

In this way the local stability of the desired operation point (V,,,V,,,...,V,.,) of
the equivalent system is analytically proven for an arbitrary number of submodules.
Determining the attraction domain of this equilibrium point remains an interesting issue
for future research.

2.3 Qualitative analysis of the planar case with two-
boundaries

In this section we consider in system (2.2.6)-(2.2.7) that n = 2, and we get

ldx b

ad—; = 1—x2—(1+01u1)x1—x—11, (2.3.1)
dx b
d_7-2 =1 1 — (1 —+ CQ'LL2>$2 — I_Z’ (232)

with (z1,22) € D C R? and
1 .
U = 5(1 + sign [z — 1)), (2.3.3)
1 .
Uy = 5(1 + sign [zg — ua). (2.3.4)
Switching boundaries are defined by

21 = {($1,$2> eD: h1($1,x2) =T — i = 0}7
22 == {(:E]_,:BQ) & D : hg(l‘l’xz) = T9 — N2 — O},

which are orthogonal at (i1, p2). Then the state space is divided into four open
regions, namely

Dy = {(z1,22) € D : hy(z1,22) > 0 and ho(xy,z2) > 0},
Dy = {(x1,22) € D : hy(z1,22) < 0 and hy(x1, z2) > 0},
D3 = {(x1,22) € D : hy(z1,22) < 0 and hy(xq,22) < 0},
Dy ={(z1,22) € D : hy(z1,22) > 0 and hy(x1,x2) < 0}.

In each of these regions there is a distinct vector field acting, obtained from system
(2.3.1)-(2.3.4) and defined as in Figure 2.3.
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D, D,
Ui 0 ’LL1=U2—1 :
u2_1 F-H- i
F_, |

2 : 22
Dj Dy |
U1:UQ:0 Z;;l i
F__ !

Foo 0
0 M1 1 o

Figure 2.3: State space of system (2.3.1)-(2.3.4): D =3, UXyU Dy U Dy U D3 U Dy.

System (2.3.1)-(2.3.4) is then represented as a 2D-DPWS system of the form

% F++(.Z‘1,Z‘2), if (.Il,xz) € D1

dr _ F_+(ZL‘17ZL’2), if (ZL'l,ZEQ) € D2 (2 3 5)
de F__(Il,l‘g), if (xl,l’g) € D3 ’ e
E F+_(.CE1,.CE2), if (.231,5172) S D4

composed by the vector fields

Fi(2,20) = ¢ <1 —(+e)m —a; - Z_ll> F_ (21,29) = ¢ <1 SR 2_11>
7 1—[E1—<1+62)J]2—2—22 7 ’ 1—171—(14—02)1'2—2—2 7

(2.3.6)

[a(l — 2y — 2y — & (1_1+ _ _b_1>
P (21.29) = (1 - x11_ x22_ él)} and F,_(z),1) = [a ( 1 1) — Ty — 2 7
L — T1 — T2

N (2.3.7)

forug =us =1, uy =0and us =1, uy =uy =0, u; = 1 and uy = 0, respectively. Vector
fields must be appropriately extended to the switching boundaries using Filippov’s theory.
2.3.1 Case Study for by =b, =0 (P,=0)
Sliding segments and tangential singularities
There is in »; an attractive sliding region given by the vertical line segment
S ={ri =, 1— (1+e)m <z <1—pm},

and obtained from the solution of the inequalities

Ly, hi(p1,22) = Le__hq(p1, 22) = a(l — puy — 2) > 0,

Le, hi(p,22) = Ly, _hi(p1,22) = a(l — (1 4+ c1)pn — z2) < 0.
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The same happens in Y, but given by the horizontal line segment
Nt = =po, 1= (T+co)pe <21 <1— po},
which is obtained from the solution of the inequalities
Lg__ho(xy, p2) = Ly, _ho(x1, p12) = 1 — 21 — pip > 0,

and
Ly_, ho(x1, p2) = Ly, ho(z1,p2) =1 — 21 — (1 4+ co)p2 < 0.
According to the previous section, by constraint (2.2.9), 3¢* N34° = {(u1, u2)} occurs
whenever the inequalities
I—(14ce)pr —pe<0<1l—pg—py and 1—p —(14c)pe <0<1—py — pio.

are satisfied. For this, the system parameters must satisfy the constraint:

L=

Mazx
1+ Co

; 1— (1 +cl)u1 < 2 < 1-— M- (238)

The ends of the sliding segment 3>{° are tangency points of the system orbits with >,
and such points have coordinates given by

Ty =(u,1—m) and T = (m, 1~ (1+c)m).

Similarly, the ends of the sliding segment 3§° are tangency points of the system orbits
with X5, and such points have coordinates given by

Ty =(1—pg,pe) and Ty = (1 — (1 + ca)uz, pa) -

Obviously, the sliding dynamics in X¢* and ¥%° can be extended to its extremes. In this
case we can consider the sliding dynamics in 2 acting in all 9% U T, UT,", and in 3
acting in all X3 UT, UTy .

We assume that the condition (2.3.8) is satisfied. Next, we identify which tangency
points Ty, T}, T, and T are associated with the vector fields of (2.3.5). See Figure
2.4.

(i) Vector field F, is transverse to the switching boundaries 3, and X, because
I1—(14c)pe < <zyand 1 — (14 ¢1)p < po < x9, and therefore

LF++h1(/L1,JI2) = CL(l — (1 -+ 61),u1 — JIQ) < O,
LF++h2(l’1,,u2) =1—x — (1 +02)M2 < 0.

(ii) Vector field F__ is transverse to the switching boundaries ¥; and X, because
1 < py <1 —po, x9 < pg < 1 — py, and therefore

Ly hy(p,22) = a(l — g —xg) > 0,
Lp  ho(xy,pe) =1 —a1 — po > 0.
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(iii) Vector field F_, is tangent to 3; at the point 7} and it is tangent to 3, at 75 .
Both tangency points are classified as invisible fold, because

LF7+h1 (Tl_) = 0, L%\7+h1 (Tl_) = GCQ(l — [1,1) > O,
LF_+h2 (T;) = 0, L]2§‘,+h’2 (T;) = —aCyly < 0.

(iv) Vector field F, _ is tangent to ¥; at 73" and it is tangent to ¥ at T, . Both
tangency points are classified as invisible fold, because

Ly, hi (T77) =0, Lg, _hi (T}") = —acym <0,
Ly, hy (Ty) =0, Lg__hy (Ty) = acy(1 — p2) > 0.

‘/I"st 21

- \ S L
: T-;/‘ ’\' 1/22

D3 :F__ T1+0 Dy:Fyo N i
T \ ¢ : >
0 251 1 T1

Figure 2.4: A geometric illustration of vector fields of the system (2.3.5)-(2.3.7) assuming
b1 = b2 =0 and (238)

Regular equilibria and stability
Below we describe the equilibria of the vector fields F,,, F_. F__ and F,_.

(i) Vector field F__ has no equilibrium point. But there is an invariant line of equation
r9 = 1 — x1. Note that % > 0 and dd% > ( for x5 < 1 — x1, whereas dd% < 0 and
dd% < 0 for x5 > 1 — x;. Therefore, this invariant line is attracting. Following
(2.3.8) we take s < 1 — py and, thus, such a line does not cut the region Ds.

(ii) Vector field F_, has an equilibrium point at (1,0). As (1,0) ¢ D, it is a virtual
equilibrium.
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(iii) Vector field F,_ has an equilibrium point at (0,1). As (0,1) ¢ Dy, it is a virtual
equilibrium.

(iv) Vector field F, ;. has an equilibrium point at (T, Ts), where

_ 1 _ 1
T)=——— and Tp=_—0r.
14 —Fa 1+Cg+a
Note that T; < 1 and Ty < 1. Moreover, 1 — 71 — Ty = % > 0, then (7, T2) is

located in the region below the straight line x9 = 1—x. This equilibrium is virtual if
p1 > T (since hy(T1,Te) = T1—pq < 0) orif g > Ty (since ho(T1, To) = To—pg < 0).
In the case u; < 7; and s < 7o this equilibrium becomes real. However, the
condition (2.3.8) does not allow the existence of a real equilibrium.

Both regular equilibria are classified as asymptotically stable node, since

Det[A] = a(cyui (1 + coug) + coug) > 0,
Tr[A] = =1 — a(1 4 cyuy) — cous < 0,
A = Tr[A]? — 4Det[A] = 4a + (=1 + a(1 + cyu;) — 02u2)2 >0,

where A is the Jacobian matrix of system (2.3.1)-(2.3.2) with b; = by = 0 and for u; and
uo not simultaneously null. So the eigenvalues of A are real negative and distinct.

Sliding dynamics and pseudo-equilibria

Sliding motion occurs on segment lines defined by T;" UX4* U T, and T,f UX% U T, .
Tangency points 75 and T35 are of the invisible fold type whenever the condition (2.3.8)
is satisfied. Then, if an orbit system touches ¥; (or ¥3) at a point of X§* (or 3§°) for
some time 7 = 75 > 0, it remains in X* (or X3°) for all 7 > 79, sliding to a stable
equilibrium. We will show below that this stable equilibrium is unique and appears at the
point (u1, p2) € X§° N X5%, which is called pseudo-equilibrium of system (2.3.5)-(2.3.7).

The sliding vector field defined in ¥; is given by

0

Fsl(:uba:Q) = |:1 — {1 — (]. + CQUQ)’IQ

and, therefore, the sliding dynamics in ¥ is described by the piecewise linear one-
dimensional system

% _ {f+($2) =1 — U1 — (1 +CQ)ZL'2 if x> M2, (2 3 9)

dr J-(x2) =1 — 1y — 29 if xy < po.

Point x5 = 5 is a single stable pseudo-equilibrium of (2.3.9) only for (u1, p2) satisfying
the condition (2.3.8), because only then we get fi(x2) < 0 for all zg > uy and f_(z2) >0
for all z9 < po. In this case, point x9 = o is reached in finite time for any initial condition
in S U UTY.

The sliding vector field defined in Y5 is given by

1—(14cup)x; —
FSQ(x17M2):a ( 101) Lo
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and, therefore, the sliding dynamics in X5 is described by the piecewise linear one-
dimensional system

dri_ [gi(z1) =a(l = (1+c)zr —p2) if 21>, (2.3.10)
dr g_(x1) = a(l —x1 — o) itz < py. o

Point x1 = 4 is a single stable pseudo-equilibrium of (2.3.9) only for (u1, u2) satisfying
the condition (2.3.8), because only then we get g, (1) < 0 for all ; > p; and g_(x;) > 0
for all x1 < py. In this case, point x1 = py is reached in finite time for any initial condition
in e UT, UT, .

Therefore, (p1, 12) is the only pseudo-equilibrium of system (2.3.5)-(2.3.7) for b, =
by = 0, and it is globally stable in 7" UX$* UT, UT, UX$* UT, whenever the condition
(2.3.8) is satisfied.

Global analysis and simulations

We assume system (2.3.5)-(2.3.7) under the condition (2.3.8) and with by = by = 0.
We include to the state space D the coordinate axes x; and z9, being redefined as

D={(r1,72) ER*: 0< 2, <1 and 0<zy <1}

For any initial condition in D the system trajectory remains in Int[D] for all 7 > 0.
In fact, since the vector fields of system (2.3.5)-(2.3.7) point into square D everywhere on
its sides, except at the vertices (1,0) and (0, 1) where the acting vector field is tangent;
see Figure 2.4. This is verified by analysing the signal of the vector components

[—a(c; +x 1—|—c x

F++(17$2) = _(1(41» 02);2):| ) F++ xla = |: —r — 162 1:| ’
T oa(l =) —ary

F,+(O,x2> = -1 o (1 +CQ)I'2:| y -xla |: Ty — CQ:| )

(a(1 — x a(l —x
F**(OaxZ) = (1 _ I22):| ) —— wla [ (1 _ ZL‘ll 1

[a (1= (14 ¢))x —a(c;+x
F+*<x17 O) = ( 1(_ x 1) 1):| ) F+7<1,[I§'2) = |: (_lxz 2):| :

Figure 2.4 illustrates, based on the results obtained so far, how the vector fields of the
system (2.3.5)-(2.3.7) are organized in D. Such an illustration helps us understand how
the trajectories of system (2.3.5)-(2.3.7) evolve inside D. For any initial condition x¢ in
the region D; the system trajectory intersects the switching boundary: (i) ¥q; or (ii) %o,
at a crossing or sliding point x;; and (iii) there is a particular initial condition that leads
directly to the pseudo-equilibrium point (u1, p2). If x3 is a crossing point the trajectory
goes to region (i) Ds or (ii) Dy. If x; is a sliding point then the trajectory starts to slide

n (i) 3 or (ii) X, towards the point (pq, u2); or (iii) remains at (pg, o). The same is
true for initial conditions in D3. For any initial condition in the region D, the system
trajectory intersects the switching boundary >, or s, at a sliding point and then slides
on Y, or Y, towards the point (pg, 12). Also, there is a particular initial condition that
leads directly to (1, p2). The same is true for initial conditions in Dy.
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Note that the tangency points, which mark the ends of the sliding segments, are of
the invisible fold type. Therefore, any trajectory that goes into sliding motion no longer
comes out (except for a brief moment after a sudden small change in the reference values
;). In addition, all sliding trajectories tend to the point (uq, pi2), and in finite time since
this point is not a regular equilibrium of system (2.3.5)-(2.3.7) nor sliding systems (2.3.9)
and (2.3.10).

Based on the study carried out in this subsection, we enunciate the following Lemma,
whose proof is obtained directly from the previous results presented.

Lemma 2.3.1. Assume in system (2.3.5)-(2.3.7) that by = by = 0 and that (2.3.8) is
satisfied. Then the point (1, pe) is the global attractor of this system, being achieved in
finite time.

Example 1. Figure 2.5 shows simulation results of the system (2.3.5)-(2.3.7) for some
initial conditions in D. In (a) we visualize the system phase portrait and in (b) the time
response of each state variable. The constraint given in (2.3.8), which ensures global
stability for the pseudo-equilibrium (u1, p2), is geometrically represented by the region
within the triangle in Figure 2.5(a), with the sides defined by the blue dashed lines. The
region inside this triangle we call the Operating Region in (x1, xe)-plane and (uy1, p2) is
a global attractor only when located in that. Obviously, the global stability is preserved if
(1, p2) is exactly on one side of this triangle. However, this is a critical situation, since
a disturbance in system parameter values may cause the system to operate at a different
point than the desired one (uy, p2). Therefore, we discard this situation and we consider
the operating region only inside the triangle shown. In Figure 2.5(b), time solutions
of (2.3.5)-(2.3.7) are represented in different colors for different initial conditions. We
observed in these simulations that the sliding trajectories have a small oscillation around
the operating point (u1, pe). This is due to the introduction of a small hysteresis band,
required for the implementation of the sliding mode controller.

! "o0305
0.8f
o6 3 .
wl 0.295
0.4;777 24 245 25 255+ 26 -
0.2F
0 ‘ w w . .
5 05 1 15 2 25 3
0.505 """"“,0”“
ok AR
0.6F 0.495 ““"’,’ “""’"““ ]
T LT 24 245 25 255y 26
0.4r
0.2f
0 - ; L . .
0 05 1 15 2 25 3
7[s]
(a) Phase portrait. (b) Time response.

Figure 2.5: Simulations of the system (2.3.5)-(2.3.7) assuming ¢; =2, co =1, by = by =0,
a = 1 and input references p; = 0.3 and o = 0.5. A hysteresis band of 0.005 is considered.

54



2.3.2 Case Study for b; >0 and b, >0 (P, >0)

The sliding segments 3{° C X, and X§° C X9 are determined by imposing the sliding
motion conditions on the system (2.3.5)-(2.3.7), that is,

b
Ly_ hi(p1,22) = Le__hi(p1,22) = a <1 e —+ — $2> > 0,

251

b
LF++h1(,U,1,I2) = LF+7h1<,U,1,.T2) =a (1 — (1 + cl),ul — M_l — ZEQ) < 0,
1

and

b
Ly hy(w1, pi2) = L, _ha(1, p2) =1 =21 — g — M_2 > 0,
2

b
Ly_ ho(x1, pt2) = Ly, ho(@1, p2) =1 — 21 — (1 + co) o — M—Q < 0.
2

This way we get the sliding segments
as b b1
YIP =91 = i, 1—(1+01)M1——<$2<1—M1——
M1 H1

by b
2582{552:/12, 1—(1+C2)M2——<5€1<1—M2——2}-
2 H2

Therefore, ¥§° N X5 = {(p1, u2)} occurs only if the system parameters fulfil
(L= +ce)pr —p2) < by <pa (1= — pa), (2.3.11)
M2 (1 — (1 + CQ),MQ — ,ul) < by < 2 (1 — M1 — ,ug) . (2312)

Remember that 1 — p3 — pg > 0. According to Theorem 2.2.1, conditions (2.3.11) and
(2.3.12) ensure local stability of the pseudo-equilibrium point (g, u2). In fact, since there
is €1 > 0 such that for any (z1, us) € X5° with |z, — 1| < £1 we get

1 dxy by

— w=0 =1— — —— >0,
a dr (71, f12)|uy =0 M2 — T )
1d1’1

by
e —— (@1, p12)uy= 1*1—M2—(1+01)1‘1—$—<0

Similarly, there is €5 > 0 such that for any (u1,x) € 39° with |zo — pa| < €2 we get

dr (ul;x2)|u2 O—l—ul—x2_$_2>0
dl’Q

by
woe1 =1 —p1 — (1 - — <.
e —= (1, 2) fug=1 = 1 — 1 — (L + c2) 22 o~
Figure 2.6 illustrates how vector fields are directed in the neighborhood of the point
(p1, p2). Note that the sliding vector fields F,; and F¥,, as well as F, and F/,, are anti
collinear at (g, o). Moreover, (u1, fi2) is not a regular equilibrium point of any of the
vector fields involved. Then, this pseudo-equilibrium point is reached in finite time.
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Figure 2.6: Local stability analysis at (pq, u2).

Now, we consider in system (2.3.5)-(2.3.7) that a = 1, by = by = b and ¢; = ¢3 = c.
Then, the local stability condition at (1, p2), given in (2.3.11)-(2.3.12), is rewritten as

Maz[py (p — cpr), pa(p — cp2)] < b < Min[uip, pop). (2.3.13)

where p = p(u1, po) = 1 — 11 — p1o. The maximum interval for the variation of b is ]0, 1/8]
and occurs for (uy, pe) = (1/4,1/4) and ¢ > 2.

The domain of operation (2 is a subset of D such that for any (ui,ps) € Q the
constraint (2.3.13) is satisfied. Thus, 2 = Q; N Qy with

b
le{(xl,xg)ED:O<1—:Ul—x2——<cx1}7

T

b
QQZ{(ZE17JZ2)EDIO<1—ZL‘1—1’Q——<C(L’2}.
L2

For any b €]0,1/8] we have that € is not empty.

The set Q@ determines in the (1, x2)-plane two disjunct regions or a single region, as
shown in Figures 2.7(a)-(b) and 2.7(c) by the painted areas. The first scenario occurs if
b < m, and the second if b > m. The change from the first scenario to the second
occurs simultaneously with the disappearance of the equilibria of the vector field F ..
Such equilibria appear at the intersection points of the red curves shown in Figure 2.7,
represented by the numbers 3, 4, 5 and 7. Intersection points of the green curves indicate
the equilibria of the vector field F__, represented by the numbers 1 and 10. While the
points of intersection between a red and a green curve indicate the equilibria of the vector
fields F_, (represented by the numbers 2 and 8) and F,_ (represented by the numbers 6

and 9).
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Figure 2.7: Domain of operation for the system (2.3.5)-(2.3.7). To ensure local stability
at the desired operating point (u1, t2), we must choose values of p; and po within the
set €2, represented by the painted areas.

Naturally, for a given value of b such that 0 < b < 1/8, the domain of operation (2
has maximum area when there are only the two equilibria of the vector field F__. This
occurs for ¢ > ¢*(b), with ¢* defined above in the item (iv), which is part of the following
analysis on the existence and stability of the regular equilibria of system (2.3.5)-(2.3.7).
For the study of the equilibrium stability we use the Jacobian matrix given by

—1—cu1—|—f2 -1
J(“b“2):< 1 et )
Z3

This matrix is symmetric and thus its eigenvalues are real. Therefore, the equilib-
rium in analysis will be a saddle if Det[J(u1,u2)] < 0, but if Det[J(uy,us)] > 0 and
Tr[J(u1,uz)] <0 (resp. Tr[J(u,ug)] > 0) it will be a stable (resp. unstable) node. The
following statements hold:

(i) Vector field F__ (u; = uy = 0) has two equilibrium points, given by X* = (7%, 77F)

with .
§i21<1i\/1—85),
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(i)

whenever b < 1/8.

If the condition of local stability at the pseudo-equilibrium (p1, p10) is satisfied, that
is, the inequalities in (2.3.13) are true, then the regular equilibria X* are defined
because b < Min[up, pep] < 1/8. Moreover, under such stability condition we
have X~ real and X* virtual. In order to prove this we can assume, without loss of
generality, that p; < ps. Then, we reduce both inequalities hy(X™) =T~ — g <
hi(X7) =2 —py < 0and hy(XT) =27 — pg > 0 to form b < pq(1 — 2p1), which is
true since u1(1 — pg — po) < pp(1 — 2u1) whenever py < ps.

To determine the stability of X* we consider
b(b — 2x2 2(b— a2
Det[J(0,0)] _MO=2)  nd Tr(0,0)] :_J;_Ejél.

r1=x2 ZE% Tr1=x9 [E2

Taking x5 = T~ we obtain (z7)? < b/2 < b. Then X~ is an unstable node. And
for o =TT we obtain (Z7)? > b/2. Then X" is a saddle. Evidently, for b =1/8 a
saddle-node bifurcation occurs.

Vector field F,, (u; = uy = 1) has a maximum of four equilibria, namely X: =

(o, a®) and )_cg = <ﬁi, #) with

14142+ b
:t: d :t:
“ 22+ ¢) and 5

¢+ +/c(c—4b(1 + c)?)
2¢(1+¢) ’

being X£ defined for b < 4(2 vy and X/B defined for b < e e o If the condition

of local stability at (u1,u2) is satisfied, then these equilibria are real whenever
a~ > Max[puy, po] or virtual otherwise.

To determine the stability of X we consider

_c24¢c) (5, b 9 b
n=rs  T5 <x2 )\ 725

Det[J(1,1)]

2(1+c¢) [ , b
TriJ(1,1 == — .
), =20 (-
Taking 25 = @~ we obtain (a™)? < 2%6 < 1+c <2 whenever b < ( . Then X
is an unstable node. Taking x9 = ot we obtain (cﬁ) >t 1—+C > 5 Whenever
b < zigz- But, if 1+02 < b < g7 we obtain b (a*) 2+C Then X! is a
stable node for b < o2 and a saddle for 4(1+ oz < b < 2+C)
Regarding x Xﬁ we obtaln
1 b— ca?)’
Det[J(1,1)] _ _Qrgboc)

crq

for both zy = 7 and z; = 57, whenever b < Then ig and X are saddle.

(1+c)
In fact, just note that X! (stable
—<—: both collide for b =

A pitchfork bifurcation occurs for b = W

: and

node) and X} (saddle) coexist for b < TgEwseE

o)

o8



(iii)

§§ disappear and X (saddle) remains. Moreover X and (saddle) X _; (unstable

node) coexist for b < ( ; collide for b = ; and disappear b > Then a

+ 2+)

saddle-node bifurcation occurs for b = TEEmE

Equilibria of the vector field F,_ (u; = 1,us = 0) fulfill the equations

b
1—(1+c¢)xy —20— — =0,

X1

b
1—1’1—1’2——:0.

T2

Isolating x; in the second equation and replacing it in the first, and then isolating
the parameter ¢, we obtain

b(l — 2(132 — b/xg)
(1 — T — b/$2)2.732’

c(x2) = (2.3.14)

defined for x5 € [7,Z1]. From the graph of (2.3.14) on the (x9,¢)-plane, we can
identify the number of equilibria of F,_. Graphs of this function are plotted in
Figure 2.8(a) for some values of parameter b, showing that for each ¢ in the image
set there are always two possible values for x5. So F,_ has a maximum of two
equilibria.

Graph of (2.3.14) is illustrated in the Figure 2.8(b), where we highlight its zeros at
z~ and 1, and the maximum point at (z*, ¢*). Note that 0 < 7~ < 1/4 <zt < 1/2
for 0 < b < 1/8. Therefore, assuming 0 < b < 1/8, there are two equilibrium points
for ¢ €]0, ¢*[, they collide for ¢ = ¢* and disappear for ¢ > ¢*, with ¢* = ¢(z*) and

1 32/3
¥ = f\7—72b+2\f\/108b4b—1 749+ +31.
12 \/—72b + 2v/3\/T086(a6 — 1) + 7 + 9

In fact, since the derived function

b(b— zo(xo(day — 3) + 1))
(1 =g — b/zo)xs)?

has only one real zero, that occurs at o = x*.

() =

Equilibrium point associated to the left branch of the graph of (2.3.14) shown in
Figure 2.8(b) (solid line) is an unstable node, while the equilibrium point associated
to the right branch (dashed line) is a saddle. At the maximum value ¢ = ¢* a
saddle-node bifurcation occurs. To prove these statements we use

Det[J(1,0 = (x9) (1 — 29 — b)), 2.3.15
OO =) (- a - b 23.15)
b(b* — 2bxy + (1 + 3b)z3 — 323 + 4a3)
Tr|J(1,0 =2+ ,
[ ( )] (z1,0)=(1—x2—b/2,c(x2)) x%(l — Ty — b/l’g)Z

(2.3.16)

where 1 —x9 —b/x9 > 0 for all (x9,b) such that xo € [z7,71] and b €]0, 1/8[. Figure
2.8(c) helps us to classify the types of equilibria involved. Note that Det[.J(1,0)] =0
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Figure 2.8: Existence and stability of equilibria of the vector field F,_. (a) Graphics of
(2.3.14). (b) Bifurcation diagram in the (x9,c)-plane. (¢) Det(J(1,0)) (eq. (2.3.15)) and
Tr(J(1,0)) (eq. (2.3.16)) in the (2, b)-plane.

(dashed line) iff ¢/(z2) = 0, that occurs at xo = x*(b) for all b €]0,1/8[. We have
Det[J(1,0)] < 0 for all x > x*, while Det[J(1,0)] > 0 and Tr[J(1,0)] > 0 for all
To < z*.

We denote by x* = (z],75) the saddle equilibrium and by X~ = (z;,7,) the
unstable node equilibrium. If 7 > pu; and 7§ < then X% is real. If 7] < p; or
Ty > o then XT is virtual. If 7 > py and T, < po then X~ is real. If 7] < py or
T, > o then X~ is virtual. If 77 > p; and 75 < u then both X~ and X T are real.
If 77 < py or T3 > po then both X~ and X are virtual. All of these scenarios are
possible even when restricted to the condition of local stability at (u1, pe) given in
(2.3.13).

(iv) Vector field F_, (u; = 0,uy = 1) has the same equilibria as the vector field F _,
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but with coordinates exchanged since

01
F_+(l'1,l'2) = |:1 0:| F+_($2,I1>.

We assume (2.3.13) hold and o~ (¢,b) < Max[uy, po] (equilibria of F,; are virtual).
The basin of attraction W for the pseudo-equilibrium (g1, 112) is a subset of D such that for
any initial condition (x1(0),22(0)) = (219, x20) € V¥ the trajectory of system (2.3.5)-(2.3.7)
tends to (p1, p2). In particular, the reach time is finite since (p1, p2) is not an equilibrium
of any of the vector fields involved, including sliding vector fields. Set W is represented in
Figure 2.9 by the region in the (1, x2)-plane bounded by the purple lines.

T2 A El T2 A 21

s -
ol é/// )
NN
-2 / \\
0

0.45

g > “Z="
0] 0.4 1z, 0 2 1 2
(a) (p1,p2) = (0.4,0.45) (b) (u1, p2) = (0.2,0.7)
T2 4
1,

0.4

(c) (p1,p2) = (0.3,0.4)

Figure 2.9: Phase portraits of system (2.3.5)-(2.3.7) assuming a = 1, by = by = 0.01,
¢p =ce=1/21n (a)-(b) and ¢; = ¢ = 3 in (c).

The upper limits for the x; and x5 coordinates defined by ¥ are the same as for D,
occurring at 1 = 1 and x5 = 1. Inferiorly, the x; and x5 coordinates are bounded by two
curve segments formed from system orbits (see Figure 2.9), and the following may occur:

(a) If F_, (resp. F,_) has no equilibria or its equilibria are virtual, then the lower
limit for the x; (resp. z3) coordinate is given by a curve segment formed by the
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union between the piece of orbit of F_, (resp. F,_) with extremes in (x3,1) (resp.
(1,23%)) and (z7*, u2) (resp. (p1,25")), the latter being an equilibrium point of the
sliding vector field defined in Y5 (resp. ), the backward orbit of F__ starting at
(a7, pa2) (resp. (p,x3")) and the equilibrium point X~ of F__. See Figure 2.9(c).

(b) Based on the assumptions made at the beginning of this paragraph, the vector field
F_, (resp. F,_) can present a real saddle equilibrium. In this case, the curve
segment is formed by the union between the saddle point, the trajectories belonging
to the stable manifold of the saddle, the backward orbit of F__ starting at (z7**, us)
(resp. (w1, 23**)), this being the point of intersection of the stable manifold of the
saddle with the switching boundary Y5 (resp. 1), and the equilibrium point X~ of

F__. See Figure 2.9(a).

2.4 Study of the sliding dynamics in R?® with two-
boundaries

In this section we consider the system (2.2.1) in R? with two switching boundaries,
taking into account the dynamics of the equivalent inductor. Moreover, we consider
Cy =0y Ry = Ry, P, = P, and V,, =V,,. We will analyze the sliding dynamics of
this system, with special attention to the sliding vector field at the intersection of the
switching boundaries »; and X, located at Vo, =V, and Vi, = V,,, respectively. For
this, we take the equations of (2.2.1) in a normalized form, using the coordinates and
parameters given in Table 2.1, redefining the state variables as 1 = x and x5 = y, and
we include the state variable z = mi 1 and the parameter r = R2LC”. The normalized
parameters are assumed as a = 1, by = by = b, ¢; = ¢o = ¢ and g = po = p, for
0<u<1/2

Next, we write the normalized system as a 3D-DPWS system, namely

T F++(l’,y, Z)a if (Q?,y,Z) € ]D)l
i _ F*Jr(x’ya Z), if (1:73/72) € DQ (2 4 1)
ar || TYF(@wy2), i (zy,2) €Dy’ &
F+—(:E7ya 2)7 if (ZL‘,y,Z) €y
composed by the vector fields
[ rz—cx—2 ] [ rz—2 ]
F++(£E,y,2) = re—cy — 5 ) F_+(.T,y,Z) = rz—cy — 5 ) (242)
1 -2 —y—rz] 1 —x—y—rz]
[ rz—2 ] [ rz—cx—2 ]
F__(z,y,2) = rz — % and F, (z,y,2) = rz — 5 . (2.4.3)
1 —x—y—rz] 1 —x—y—rz]

being D = {x = (z,y,2) € R*: 0 < z,y <1, z > 0} the normalized state space. Then,
D= 21 UEQ UID)l UID)Q UID)gUID)4, where

Yi={xeD:hx)=x—pu},
Yo={xeD:hy(x)=y—pu},
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and

Dy ={xeD:hi(x)>0and hy(x) > 0},
Dy ={x € D: hi(x) < 0and hy(x) > 0},
Dy ={xeD:hi(x) <0and hy(x) <0},
Dy ={xeD:hi(x)>0and hy(x) < 0}.

System (2.4.1)-(2.4.3) presents sliding motion in ¥; U 3, provided that the sliding
conditions at X; and X, are satisfied, given by

LF++h1(M’yaz)< 0 <LF,+h1(M7yaz)7
LF+_h1(u,y,z)< 0 <LF__h1(u,y,z),

and

Lg, ho(x,p,2) < 0 < Lg,_ho(z, p, 2),
Ly ho(x,p,2) < 0 < Ly__ho(z, 1, 2),

respectively, with Ly, hi (i, y, 2) = Ly, ho(x, i1, 2) = Ly, _hi(pt,y,2) = Ly_, ho(z, p1, 2) =
rz—cu— l% and LFffhl(:uv Y, Z) = LF——hQ(m7 Ky Z) = LF—+h1(#’7 Y, Z) = LF+—h2(m7 Ky Z) =
rz — % So, there are two attractive sliding regions, namely

b b
Zfsz{x621:—<rz<—+cu},
H H

b b
ZgS:{XGEQI—<TZ<—+C/L}.
H K

In 3¢° the sliding vector field, denoted by Fy, is piecewise smooth and has two vector
fields which are calculated by formula
F] . LF,jhl : F+J o LF+jh1 : F—j
o1 LF,j h’l - LF+j h’l 7

for j =+ if y > p and for j = — if y < p. In this way, for x = p we obtain

_JFa(y,2), i y>p
FSl(M’y7Z)_{FS_1([I,7y’Z), lf y<[1/’

where

0 0
F:l(:uay>z) = re— % —Cy and Fs_l(lu’y,z) = rz — 5

l—p—y—rz l—p—y—rz

Vector fields F/, and F_; can have two equilibrium points each. For the study of the
stability of these equilibria, we can consider the vector fields

b
rz—2° —c
y Y

b
f+ _ £ _ 7"2—5
AU R R IR STV I I

composed of the last two components of F, and F, respectively. The following

statements describe the characteristics of local dynamics of F/, and F;.
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(i) Vector field FJ; has two equilibria, given by aiy = (11,91, (1 — p — 71 ») /) with

- S b 1—p)?
Uiy = Yon (4 1-——], V;:ﬂ’
: 1+c¢ v 4(1+¢)

provided that b < v . We have 75 > finc
a simple analysis of the sign of the determinant and trace of the Jacobian matrix of

>y, being g =g, iff b= v . From

£, given by

Vin _ o~ ~
qu»=2“+@<lﬁ_ﬂa+ﬂ2rﬂ2

—ijrg —rﬂfg
and
- JE\ ~
Det [JSJE((HFQ)] =2r(1+c) (yfz - 1+c> yfg»
- vt -
T [75(aa)] = —200+) (75— /5 ) - 0= i
we can conclude that if b < v then:

e g is a saddle equilibrium;

e q is a stable equilibrium whenever r > 1 — % (g; — f_{"c) .
2

(ii) Vector field F;; has two equilibria, namely q; 5 = (1, 915, (1 — pp — y15)/7) with
b 1— p)?
) oA

Yo =AVvy | 1E£4/1——
y1,2 VS’n( Vs,_n 4

provided that b < v_,. We have y, > /v, > vy, , being y, =y, iff b=r_,. From
a simple analysis of the sign of the determinant and trace of the Jacobian matrix of

.1, given by . o .
T (ar,) = 2 (\/Vsn - y1,2) T Y2 TYio
s1\d12) = —Tio —TY; o

and
Det [ (arz)] = 2r (Jie — Vi) i

™ [T ai)] = =2 (B = Vm) = (= D,

sl

we can conclude that if b < v, then:

e q; is a saddle equilibrium;
e q, is a stable equilibrium whenever r > 1 — g% (?JQ — VS;L) :
2
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In the following example we show two main scenarios for the dynamics in X{°, taking
into account that in practice » must be equal to or greater than 1. In addition, we
consider the cases where the system parameters satisfy the condition

p(l— 24 c)p) <b< p(l—2u), (2.4.4)

being that (2.4.4) is equivalent to the local stability condition established in Theorem
2.2.1 after the normalization of the variables and parameters given in Table 2.1 and the
considerations on the normalized parameters assumed in this section.

Example 2. We assume that (2.4.4) is satisfied and r > 1. Figure 2.10 shows two
main non-critical scenarios* for the dynamics in ¥9°. Such scenarios occur for p > 3 Jrlzc.
In fact, because we will have y < 75 < p and y; < p < 7, , with q;, existing, but
q, always virtual, and qu wirtual when existing. The saddle equilibrium qy is real if

gy >1—(1+c)p— % (as in Fig. (a), red dot in X{°7) or virtual otherwise (as in Fig.

(b)). Even when qi is virtual, it is a stable manifold cuts the X{°~ region keeping it
divided into two parts: one where the trajectories reach the switching boundary at y = p;
and another where they do not (i.e. the trajectories). The green line at y = u represents
the switching boundary between the vector fields F; and F/,. This line is locally attractive
and, in it, a sliding motion occurs and there is a stable equilibrium (blue dot). Naturally,
the sliding dynamics in this line is governed by the third component of F,, and FY, (which
are the same) at y = pu.

045 Y45~

1
0.35(
0.3f

0 0.1 0.2 0.3 0.4 0.5

Figure 2.10: Phase portraits of Fy; restricted to ¥{°. In (a) weuse r =1,b=1/16,c=3
and p=1/4;in (b),r=1,b=1/16, c=3/2 and p = 1/4.

In 34° the sliding vector field, denoted by F,, also is piecewise smooth and has two
vector fields which are calculated by formula

F!, =
52 Lg, hy — Ly, ho ’

!They are not altered by slight variations in the parameters.
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for i = + if x > p and for ¢ = — if x < p. Thus, we obtain

+

_ FSQ(IL‘,M,Z), if x> p
Faalw,p2) = {F;Q(x,u,zm if @ <p’

where
rz—g—ca: TZ—%
Flh(x,p,2) = 0 and  F(x,p,2) = 0
l—p—x—rz l—p—x—rz

Vector Fields F1, and F, have the same dynamic behavior as the vector fields FJ; and
F,, respectively. Thus, the phase portraits shown in Figure 2.10 also occur in 34°, and
for the same values of the parameters.

There is a line segment containing attractive sliding points, given by ¥%° = X{° N 34°,
because

LFjth(/“L7M7Z) < 0 < LFgth(Ma/'L)Z)u
LFth(p,,u,z) < 0 < LFQth(u,u,z),

where LF:rl h2(:u7 s Z) = LF;Lth(:u’ My Z) = rz—%—c,u and LF;h?(:uv M Z) = LF;th (Hﬁ H, Z) =
rz — ﬁ Then, we can determine a sliding vector field in »%*, by using the formula given
in (1.2.5). Taking into account that

rz —% ct 0 O
f(z,y,2) = 7“2—5 and g(zr,y,2)= |0 cy O,
l—2xz—y—rz 0 0 O
from (1.2.5) we get
0
Fo(p, p, 2) = 0
1—-2pu—rz

From the statements above, we can conclude the following (remember that 0 < p < %
and r > 0).

Proposition 2.4.1. Sliding dynamics in 3% is described by g—j =1—2u —rz, which has
at z = (1 —2u)/r a stable equilibrium point.

We then say that system (2.4.1)-(2.4.3) has a stable pseudo-equilibrium point at

pP(p) = (p, g, (1 = 2p) /1),

such that p(p) € ¥ whenever Lg+ hi(p(p)) < 0 < Lp- hi(p(p)) and Ly ha(p(p)) <
0 < Lp- ha(p(n)), i-e., whether the system parameters satisfy the condition (2.4.4).

Therefore, the condition (2.4.4) ensures local stability at p. As we said before in
this section, such a condition is equivalent to that established in Theorem 2.2.1. This
reinforces the fact that in the stability analysis of system (2.2.1) we can disregard the
dynamics imposed by the inductor, taking the reduced system (2.2.4), as done in the
previous sections.
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Example 3. We consider system (2.4.1)-(2.4.3) withb=1/16, c=3,r =1 and p = 1/4.
Figure 2.11 shows the system phase portrait for some initial conditions, along with the
elements involved such as switching boundaries, tangency lines delimiting the sliding sets
and equilibrium points. Such a choice for the values of the system parameters satisfies
the local stability condition (2.4.4) of the pseudo-equilibrium p (blue dot), which is a real
stable equilibrium of the sliding vector field Fy defined in X% (green line segment with
extremes in the red dots). In addition, there is a single real regular equilibrium point
(green dot), which is a saddle equilibrium of the vector field F__. Two pseudo-saddles
(black dots) also appear in the sliding regions (region between parallel black lines), one in
X% C Xy being a real equilibrium of the sliding vector field F;, and the other in ¥§° C ¥4
being a real equilibrium of the sliding vector field F,.
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Figure 2.11: Phase portrait of system (2.4.1)-(2.4.3) assuming b = 1/16, ¢ = 3, r = 1 and
p = 1/4. Gray vectors indicate sliding motion.

2.5 Simulation results

We consider system (2.2.4)-(2.2.5) with C; = C, Ry, = Ry, P, = P and V,, =V, for
all 2. Then the local stability condition established in Theorem 2.2.1 becomes

V;" Rl r
- — — P< = (Vg — :
Rl (Vdc (n+ Rb) W) <P < — (Vae—nV)
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We assume n = 10, V. = 740 V, R; = 100 £ 5% Q, C = 2.82 £ 20% mF, P = 10.74
W and R, = 375 (2, according to [7]. For these nominal values, the above constraint
is satisfied if 70.5708V <V, < 72.519V or 1.48099V < V, < 1.48183V. Naturally, the
second option should be ruled out since the basin of attraction of the operating point is
too small for this case, as there are unstable real equilibria very close to the operating
point (as seen in subsection 2.3.2). Then we take the reference voltage as V;, = 72 V.

Figure 2.12 shows two simulation results. In (a) we consider an uncertainty of £5%
in the value of R;, and in (b) an uncertainty of £20% in the value of C. In both cases,
we see that the system remains stable. Obviously, for such disturbances taken in these
parameters, the choice of V, still satisfies the stability condition of the operating point.
Note that in (a) all equations in the system have the same parameter values, and so, all
state variables have the same evolution over time, for the same initial condition in each
state variable. But in (b), each equation has a different capacitance, and so, even with
the same initial conditions for each state variable, the evolution over time of each state
variable is different from one another.

80

70F T T T T
601 IRVEPYY
C.-08xC
501 1
v, [V] —C,=085<C
40 [ L L L L n n n n n - CS=O'9><C
0.1 012 014 016 018 02 022 024 026 028 C =0.95xC
30t | 0.
— V=72V 30 —GC=C
20t Ro105 0 1 20 C,-1.04xC | |
10 ——R=100Q | ———C,~1.08:C
——R=950 10 Cy=112xC
0 ‘ ‘ ‘ ‘ 0 s w Cy=1.16xC ||
0 0.1 0.2 03 0.4 05 0 05 1 15
t[S] t[S} ——C,=2xC
(a) (b)

Figure 2.12: Response time of system (2.2.4)-(2.2.5) with initial conditions at v, (0) = 2V
for i = 1,2,...,10. A hysteresis band of 0.1V is applied.

Remember that there is a real unstable equilibrium near the origin. Specifically,
for these parameter values such equilibrium has coordinates vo, = 1.48099V for all i.
Therefore, to ensure that the operating point is reached, it is sufficient that we take equal
initial conditions for each state variable, that is, v, (0) = v, (0) = ... = v, (0) = vd,
such that 1.48099V < v < V, = 72V. Naturally, the closer to 1.48099V is the initial
condition, the longer the system’s response time to reach the operating point.

2.6 Conclusion

This chapter explored sliding mode control applied to capacitor voltage-balancing
systems. In particular, a novel active capacitor voltage-balancing method for MMCs
based on a sliding mode control with multiple switching boundaries (discontinuity surfaces
of high co-dimension) was studied in depth. The main contribution of this chapter was
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enunciated in Theorem 2.2.1 and its proof was developed in Section 2.2. In this Theorem,
the local stability of the voltage balanced system is analytically proven for an arbitrary
number of submodules. Furthermore, a detailed analysis of the global dynamics of this
system with two submodules and two switching boundaries sliding mode control was
presented, helping us to unravel the dynamical richness of this class of systems. The
methodology developed in this chapter can be applied to other capacitor voltage-balancing
systems found in power electronic circuits. As future research, a more detailed study
should be carried out in a reduced circuit that considers all three legs of the MMC circuit
and takes into account their dynamic interactions.
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Chapter 3

Bifurcation analysis of 3D-PWS
systems with two transversal switching
boundaries: a case study in power
electronics

In this chapter, we study piecewise smooth systems with two switching boundaries.
A bifurcation approach is proposed in order to study local and global phenomena on
a power electronic circuit feeding a piecewise constant power load and controlled by
means of a sliding mode control law. This case study in power electronics allows us
to characterize different switching dynamic phenomena and bifurcations like Boundary
Equilibrium Bifurcations (BEB) and Limit Cycle Bifurcations (LCB) detected on the
sliding and crossing regions. We present some novel results on the BEBs analysis in R?
and study various dynamic behaviors that are found in DPWS systems. In this sense,
the analysis of a simple power electronic circuit allows to unveil a plethora of dynamic
phenomena that are manifested in more complex DPWS. Furthermore, this case study
in power electronics can be used, as a benchmark, to study in depth different dynamic
phenomena that can lead to develop new techniques and methods to analyze this class of
systems characterizing novel local and global bifurcations. Simulation results obtained on
a controlled power buck converter feeding a constant power load are shown to validate
the theoretical and numerical analysis.

3.1 Introduction

In typical direct current (for short, dc) electrical distribution systems, more known as
dc microgrids, with a cascaded converters architecture (see Figure 3.1), loads connected
to the bus by an electronic converter behave as a constant power drawn from the feeder,
and can be modeled as a constant power load (for short, CPL); see [31, 29, 30]. Figure 3.2
shows a simplified view of two cascaded converters PC1 and PC2, also shown in Figure
3.1.
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Photovoltaic

Figure 3.1: Block diagram of a simplified dc electrical distribution system (dc microgrid)
with cascaded interconnected converters architecture and two dc buses (Busl and Bus2)..
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Figure 3.2: a) Cascaded power converters block diagram. b) Experimental CPL curve
corresponding to the PC2 plus load (P, = Py = 2.4W, V), = 6v).

Since the input and output power of PC2 (P, and P,) are constant, the static input
voltage-current (v, — 7) function, iy,s = f(v.), is ideally a hyperbola given by i = ljj .
The input resistance of PC2 has a negative impedance characteristic, where a voltagce
increment will cause a current decrease and vice versa. Therefore, the PC2 converter
as seen by PC1 can be modeled as a CPL. Thus, assuming that the BUS1 voltage
suffers small variations, the PC1 converter connected to the loads in BUS2 microgrid, see
Figure 3.1, can be analyzed by the model depicted in Figure 3.2(a), composed by a first
stage buck converter that feeds a CPL. This electronic circuit is composed of two buck
converters connected in a cascade structure being the first buck converter controlled by a
sliding mode control (for short SMC) law and the second converter modelled by a CPL,
as shown in Figure 3.2(a).

In practice, function iy,s = f(v.) can be expressed as a power piecewise function for
the buck converter case considered as a CPL. Figure 3.2(b) shows a CPL curve for a buck
converter with resistive load obtained from an experimental circuit setup. This piecewise
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function is continuous but not differentiable at v, = Vj;, being composed of two parts:
(i) one linear function for v. < Vj;,; and (ii) a hyperbolic function for v, > V};,, where
Vin stands for a voltage threshold, as will be seen in Section 3.2. This type of problem
is well-known in power electronics literature but curiously is not treated in a rigorous
mathematical form. An exception can be found in previous work on spacecraft power
systems with CPL by David Hamill et al. [32, 33|, and recent studies on applications in
systems composed of interconnected power converters in an islanded dc¢ microgrid by L.
Benadero et al. [29].

The system under study can be considered as a piecewise smooth dynamical system
in R3 (for short, 3D-DPWS system) with two transversal switching boundaries defined
by (i) the SMC law designed to control the voltage output of the first buck converter and
(ii) the voltage threshold at v, = Vi, due to the non-smooth characteristic of the CPL. It
is noteworthy that the sliding motion occurs only at the SMC-boundary and the vector
field that governs this motion, calculated following Filippov’s convention, is continuous
but not differentiable at the intersection with the CPL-boundary. In this sense, the study
carried out in this work considers the theory of CPWS systems and Filippov systems
(DPWS); see |1, 34].

DPWS dynamical system with two transversal switching boundaries has been ap-
proached by several researchers, see for instance 35, 36] (CPWS) and [10, 13, 42, 40, 18|
(DPWS) where the sliding motion can occur at all switching boundaries involved, which
is not our case study as mentioned in the previous paragraph.

The main goal of this chapter is to study local and global phenomena associated
with bifurcations induced by the switching boundaries, as the Boundary Equilibrium
Bifurcations (BEBs, [23, 19, 20, 24, 25]), the Grazing-Sliding (GS, [19, 26, 37, 27, 38,
39, 28]) and Discontinous Saddle-Node (DSN, [22]), which are part of the group of
Discontinuous Induced Bifurcations (DIBs, [41, 43]), and also the non-smooth limit cycles
bifurcations, with or without sliding part (see [19, 44, 45, 46, 47, 48]). Classic bifurcations
as the Hopf, Saddle-Node of equilibria, Saddle-Node of limit cycles, Homoclinic connection
(see |50, 49]), are also found in the system under study. In the qualitative analysis carried
out, we use standard tools for DPWS systems. Numerical continuation methods based
on AUTO software are also employed to obtain bifurcation sets and bifurcation diagrams.
The CPL equations used are class C° functions, that is, continuous but with discontinuous
derivatives. As a significant part of this chapter involves the bifurcation analysis of
dynamic systems, C*° models are more suitable for performing numerical continuation
calculations using computational packages such as XPP-AUTO for which it is necessary to
use the hyperbolic tangent functions to approximate C° nonlinearities as C*°, for instance

. pdc 1 1 Vbus — V;fh Vbus 1 1 Vbus — V;fh
s) = = 4 “tanh [ Swe  Tth S Ztanh (e T |
i(Vbus) Ubus {2 + 2 an ( € + Ry, (2 2 an €

where Ry, = % with V};, being a reference signal for the converter output voltage modeled
as CPL and € is an adjustment parameter that must be small (0 < ¢ << 1). Numerical
simulations of the studied system are provided, which help us to better understand the
dynamic behavior of this system, in addition to checking the results obtained.

This chapter is organized as follows. Section 3.1 presents a brief introduction to the
electronic circuit composed of two buck converters connected in a cascade structure.
The modeling of the de-dc bidirectional buck converter by feeding a CPL is developed
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in section 3.2 and we analyze the existence, local stability and bifurcations of regular
equilibria, and pseudo-equilibria. In section 3.3 we study the boundary equilibrium
bifurcations. Section 3.4 is dedicated to the study of limit cycle bifurcations by using
numerical analysis. In addition, we present two bifurcation frameworks in two parameters
(power load and control reference), considering two different case studies with the other
system parameters taken fixed, where many equilibria and limit cycle bifurcations are
predicted. Finally, in section 3.5 we present a brief conclusion.

Previous results on DPWS in chapter 1 are important for the development that
follows.

3.2 The buck converter feeding a nonlinear load of
CPL-type

In typical dc distribution systems with a cascaded converter architecture, loads
connected to the bus by an electronic converter behave as constant power drawn from the
feeder, and can be modelled as a load of CPL-type, see [31] and references therein. We
will consider a 3D-PWS system that models the voltage control process at the output
of the dc-de bidirectional buck converter by feeding a CPL, see Figure 3.3.

Constant Power Load (CPL)

gL : ll(oad :

Buck +7 | Converter at | + 7 !

vm@ ve P | . VLoad PLoad|Load|
. Converter — —p| load point = —> !

! |

! |

Figure 3.3: The converter at the load point behaves as a constant power load for the
feeder buck converter, see [51].

The behavior of a de-de bidirectional buck converter controlled by a sliding mode
control (SMC) law and the second converter modelled by a CPL piecewise function, can
be studied using the circuit topology depicted in Figure 3.4, its model is given by

dig,

LE =uV;, —rpip — ve, (3.2.1)
dv ,

Cd—f =iy — &(ve), (3.2.2)
dz .
d_f = wr(iL — zr), (3.2.3)

where £(ve) is a CPL piecewise function defined by

P
N lf (Yol 2 ‘/tha
(el
§lve) =9 p (3.2.4)
S i v <V
Vﬁl ) C th
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(a) de-de bidirectional buck converter.

(b) Washout filter. ¢) Sliding mode controller.

Figure 3.4: Basic topology of a Buck converter connected to a CPL load and under

a sliding mode and washout filter control strategy. The control function is defined as
= 3(1 — sign[H (i, vc, zp)]). The filtered inductor current given by ip = if — zp

expresses the difference between the inductor current i;, and the filtered signal zp.

where L, C', and r;, denote the inductance, the capacitance and the inductor resistance,
respectively. ve > 0 and i, € (—imaz; imaz), fOr sOme 7,4, > 0, are the instantaneous
capacitor voltage and inductor current, respectively. The load parameter is denoted by
P € R and V4, is the voltage threshold. The filtered inductor current, denoted by variable
zp, is the output of the washout filter modelled by equation (3.2.3), where wy < 1/v/LC
is the cut-off filter frequency, which should be assigned to the natural frequency of the
system (see [31, 52|).
The control law is defined as

1 : .
= 5 (1 = sign[H (iz, ve, zr))), (3.2.5)
where u = 0 means that switch S} in Figure 3.4(a) is off and u = 1 means that it is on.
Switches S7 and Sy are complementary. From this, the control surface is chosen as

H(?;L,UC,ZF) :vC_‘[r'ef+K(iL_ZF> :O, (326)

where v, &= V,.y < Vi, is the reference voltage (desired voltage value at the output) with
Vin denoting the source voltage and K > 0 is the control parameter, which must be
adjusted properly to ensure stability (at least local) of the desired operating point.

To obtain the desired voltage value V,.; at the output, a control strategy by sliding
modes based on the use of a washout filter is implemented, as illustrated in Figure 3.4(b)-
(c). The washout is a high-pass linear filter that washes out steady-state inputs while
passing transient inputs (see [53]), and is chosen in order to reject load perturbations.
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3.2.1 Normalized model

Looking for a simplified model with two planar switching surfaces, the equations
(3.2.1)-(3.2.3) are normalized by applying the change of variables, time and parameters,
given by Table 3.1. The switch position function is invariant with respect to normalization.
In this way, we obtain a dimensionless dynamical system of the form

r=u—bxr —uy,
y=1z—&(y), (3.2.7)
Z=(1—-kbx+ (w—k)y—<E&y) —wz—wy, + ku,

where £(y) is a normalized CPL piecewise function given by

d .
; if Yy Z Yth,
§W) =9, (3.2.8)
y .
— if Yy <ym,
Yin

with 2 € (—Zmaz, Tmae) for some 2,4, > 0, y > 0 and z € R are the normalized variables
of inductor current, capacitor voltage and filter, respectively. The normalized parameters
d>0,b>0,we (0,1, k>0, ysn >0 and 0 < y, < 1 correspond to the CPL, inductor
resistance, filter cut-off frequency, control parameter, voltage threshold, and reference
voltage, respectively (the dot “-” indicates derivatives with respect to the normalized
time 7).

Remark 3.2.1. Throughout this chapter, we assume that 0 < y, < y, < 1. Moreover,
we will consider 0 <b <1 and 0 < k < 1/b.

State and Time Variables Parameters
i = Viny/ Vies = 4 Vin
vo = Vipy P=V2 %d
2p = ig, + Yo Ve Vin2 K=Fk/L
t =+CLt r, =0 é
Wp = \/%

Table 3.1: Normalized variables, parameters and time

We denote x = (z,v, 2) € A, where
A={x€R®: 2 € (~Tmaws Trmaz), Tmaz > 0,5 >0 and 2z € R}.

Now for the normalized system (3.2.7), the control law can be rewritten as u = (1 +
sign|z]) an by redefining the planar switching surface as hy(x) = z = 0. In addition,
there is another switching boundary, imposed by CPL loads and given by the planar
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switching surface hy(x) = y — y, = 0. In this way, the switching boundaries are defined
by

Yp={xe A: hx)=2=0}, (3.2.9)
Yo:={x€A:hy(x)=y—yw, =0}.

The system state space is divided into four different regions (see Figure 3.5), namely

Dy ={xeA:hi(x)>0 and hy(x)> 0},

Dy = {X cA: hl(X) >0 and hg(X) < O},

Dy3={xeA:h(x) <0 and hy(x) <0}, (3:2.10)
)

Dy={xeA:h(x)<0 and ho(x

In each one of these regions there is a distinct vector field acting, obtained from system
(3.2.7) and it is represented as a 3D-PWS system of the form

F1<X> if xe Dl;
. F2<X> if xe DQ,
x= F3<X) if x S D3, (3211)
F4(X) if xe D4,
composed of the vector fields
—br —y —br —y
d d
Fix)=|z—- |, Fux)=|z——5vy], (3.2.12)
Y Yin
f31(x) f32(x)
L —bx—y 1—bx—y
d d
Fix)=| z— 5y | and Fy(x)= r— = ) (3.2.13)
Yin Y
f32(x) + K f31(x) +k
where p
Fa) = (1= kb + (0 = K)y = & — w2~y
and

fo2(x) =(1—kb)x + (w—Fk)y — %y — Wz — WY
th
It should be noted that F;(x) = Fa(x) and F3(x) = Fy(x) for all x € X5, however,
the first derivatives of F(x) and Fy(x), as well as F3(x) and F4(x), are not the same
in ¥5. Thus, the switching boundary s is a crossing switching boundary, that is, the
system trajectories that reach s, always cross it or are tangent to it. The following
proposition predicts this.

Proposition 3.2.2. There is no sliding motion at the switching boundary 3o defined in
(3.2.9).

Proof. A straightforward calculus yields, Ly, ,x)ha2(X) - Ly, ;x)h2(x) = (2 — &(y))? > 0,
where ¢ is the piecewise function defined as in (3.2.8). Therefore, 3, is just a crossing
boundary, containing a double tangency line at = £(yu) and y = y,. O
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D2 Dl

/ D3 Dy
T

Figure 3.5: Switching boundaries defined in (3.2.9).

In order to analyze the dynamic behavior of system (3.2.11) on the switching boundary
Y1, we calculate the sliding and crossing regions according (1.2.7) taking into account
the discontinuity of £(y) at y = vy, for which we divided the study in two cases as follows
and they are depicted in Figure (3.6).

(i) For y > y,: the crossing and sliding regions are defined, respectively, by

Yoo =1{x€X:y>0, and z>a(y) or z <ay)},
Yo, ={x€X:y>0, and a(y)<z<aly)},
where

_ (w—k)y* —wy,y —d
aly) = =

(w—k)y* — (wyr = k)y —d

(ii) For y < yu,: the crossing and sliding regions are defined by

262:{x621:y>0, and x> f(y) or x<§(y)},
S, ={x€%:y>0, and By) <z <By)},

where

B(y) _ (wygh - kyfh — d)y + (k — U)yr)ych and 5(3;) _ (wyfh — kytzh — d)y — wyrych.
(0k — 1)yp, - (0k — 1)yp,

7



Figure 3.6: Sliding (gray region) and crossing regions (white region) in the (y, z)-plane
for parameters w =1, =0.2, k =2, y4, = 0.1, y, = 0.5 and d = 0.3.

3.2.2 Regular equilibria and stability

In what follows, we analyze the equilibria of the vector fields F;(x), for i =1,2,3,4
and its stability considering only the dynamics with respect to the variables (x,y), since
that first and second components of the vector fields mentioned above are independent of
the dynamic in their third component z, whose dynamic is stable since the associated
eigenvalue is —w < 0. Thus, we just need to consider the reduced linearization Jacobian
matrix given by

A= [_15 _g(ly)l : (3.2.14)

(i) Vector field Fy(z,y, z) has no equilibrium for d > 0.

(ii) Vector field Fo(x,y, z) has only one equilibrium point, given by X3 = (0,0, —y,.),
and it is virtual because hy(Xz) = —y, < 0. The stability in Fy(z,y, 2) is equal to
that of the vector field F3(x,y, z) wich we will see below.

(iii) Vector field F3(x,y, z) has an equilibrium point,

i3:( d Yin yt2h —y).
bd+yt2h7bd+yt2h7bd+yt2h '

It is real for d > % (h1(X3) < 0)and d > UL;)ym (ha(X3) < 0), or equivalently

{ A—yen)yen  (1=yr)y3,
b ) by

Moreover this point is a boundary equilibrium for d = % (h2(X3) = 0). The
determinant and trace are given by

d > max } = (l_ygh)yth because vy, < y,.. Otherwise, it is virtual.

2
Det [A(X3)] = bd —z Yin and  Tr[AX3)] = — (b + iz) :
Yin Yin

This equilibrium is always stable because d > 0. Moreover, analyzing the dis-
criminant A = Tr[A(X3)]? — 4Det [A(X3)] (A < 0 or A > 0) we have that X3
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is: (i) a virtual stable focus for d € (0, (2 + b)y3,); (ii) a virtual stable node for

1— 1—
de <(2 + b)Yz, %), and (iii) a real stable node for d > %

(iv) Vector field Fy(z,y, z) has two equilibrium points, namely

. <1—i—7 1—7 1—2yT—7) __(1—7 I+~ 1_2yr+7)
X, = and X, = )

207 27 2 207 27 2

with v = /1 — 4bd defined for 0 < d < 1/4b. Equilibrium X} is real for y, > 52

(h1(X]) < 0) and gy, < 52 (ha(X]) > 0). Otherwise it is virtual. It becomes

a boundary equilibrium at X, for y, = 1_77 > Y, Or at Xy for yy, = 1_77 < Y.

Likewise, the point X, is real whenever y, > H77 (h1(X;) < 0) and yy, < HT”

(ha(X;) > 0). Otherwise it is virtual. It becomes a boundary equilibrium at ¥; for
Yr = HT” > Y, O at g for yy, = HT” < 4y,. The determinant and trace are given
by

T S
and - TrIAG)] = b+ e (3:215)

4bd — 1 F ~

Det [AGF)] =~

Equilibrium X} is a saddle point because Det [A(X])] = 4bd2b¢11_7 <0Oforall 0 <d<
. On the other hand, the equilibrium iz has Det [A(Zy)] = L1487 5 ) for all

2bd
0 < d < 5. Moreover, T'r [A(_Z)] —b+ 7% 1+7)2 <0 Whenever 0<d< (HZQ)Q, thus
1+b22 < d < 4 we have Tr [A(X})] = b+(1 5 >0,

this mean that X, is unstable.

X, is stable Besides, for

Interesting phenomena, such as classical and discontinuous bifurcations, appear
wrapping the equilibrium points of the vector fields F3 and F4. In the following proposition,
we can draw some conclusions from the previous stability analysis.

Proposition 3.2.3. Consider the vector fields F3 and ¥y defined in (3.2.13). The
following statements hold.

(a) Ford= (H%)Q a subcritical Hopf bifurcation occurs at X .

(b) Ford= 4 a saddle-node bifurcation occurs at X{ =X; = (3,3,3 — Yr)-

(c) Assume yy, < 1/2. Ford = % a discontinuous saddle-node bifurcation occurs
at Xy = X{ = (" Yo Yon — Yr) -

Proof.  (a) From the second equation in (3.2.15) and using the trace of jacobian matrix
(3.2.14) at X, , we conclude the following holds for all 0 < b < 1:

- _ 21 2
Det[A(%, )]L#WI; 5= (1+0%)(1-0%) >0,
TrlA(X; )Hd:ﬁ =0

d - o1+ 1?)
@TT{A(M )”d:m =1z # 0.

79



Thus, we show the necessary condition to obtain the Hopf bifurcation. The z and
y components are decoupled from the z component, so consider the planar analytic

system
. 1 2
T = —m(bx—i—y)—i-bxy—y :

obtained from a translation of (3.2.15) in such a way that X is translated to the
origin. Then, according to [54|-page 243, the first Lyapunov coefficient of the vector
field Fy is given by
b(1+0%)%(3 - b3
lfzﬂ( + )1 5 )>0, VO<b<l1.
2v/2(1 — b2)>2

Hence, we have an unstable limit cycle and so, this Hopf bifurcation is subcritical.

It is important to note that at the bifurcation point the equilibrium X, is real if

1
yr > 5T

(b) From stability analysis of F; we obtained that the equilibria X} and X, are well
defined for 0 < d < 5; and collide with each other at d = J, i.e., X{ = X; =
(%, %, % — %), then both disappear for d > ﬁ, where X is saddle and X is node
near to the collision point. Therefore at d = ﬁ a saddle-node bifurcation occurs. It
is worth mentioning that the equilibria involved are real for y, > 1/2.

(c) From stability analysis of F3 and F, we obtained that the equilibria X3 and
X, are real for d > w, they collide for d = U=¥lven i o 1/2, ie.,

b
T = (1_5/’5” s Yth, Ytn — Yr) and then both equilibria dissapear (become virtual)

for d < %, where X3 is a stable node and X; is a saddle near to the collision

igzi

point. Therefore, for d = % a discontinuous saddle-node bifurcation occurs.
Notice that the bifurcation point is a nonsmooth-fold boundary equilibrium in >,
see Figure 3.7(b).

(]

The bifurcations presented in Proposition 3.2.3, will be observed in the numerical
analysis carried out in Section 3.4.

3.2.3 Sliding vector field and pseudo-equilibria

The sliding vector field associated to the dynamical system (3.2.11) is calculated
according to (1.2.12), and it is defined as

w(yr—y)—z+€(y)
k

Fiz,y,2)=| z—-£&y) |, (3.2.16)
0

where (z,y,z) € ¥y C ;. Pseudo-equilibrium points of system (3.2.11) are obtained
by solving the equation system F(x,y,0) = 0 taking into account h;(x) = 0 and the

80



discontinuity of £(y) at y = yu, (ha(x) = 0). So, we have a pseudo-equilibrium point
that depends on the values of &, namely x = (£(y,), ¥, 0). For y, > yy,, then the pseudo-

equilibrium has coordinates given by x = <3%, Yr, O). The reduced Jacobian matrix is

given by

Notice that Det[A(X)] = £ > 0 and Tr[A(X)] = k‘gé’?‘ <0ifd < %, then X is stable,

otherwise is unstable. Moreover, the pseudo-equilibrium is real (located in the sliding

region) whenever d < —(1_?14:)3”,

k‘lgdm
=}

Proposition 3.2.4. Consider the vector field ¥y defined in (3.2.16). For d =
subcritical Hopf bifurcation occurs at X.

Proof. The proof is similar to Proposition 3.2.3(a) with the first Lyapunov coefficient of
the vector field Fy, which can be calculated, and it is given by

s _ 3mk? -0
! AVEkw(l + kw)y?

]

This phenomenon will be observed in the numerical analysis carried out in section 3.4.

3.2.4 Two local DIBs of equilibrium collision with borders

In the system (3.2.11), two types of equilibrium collision with the boundaries 3; and
Y9 can occur. The boundary equilibrium bifurcations (BEBs) (see [19]) are typical of
PWS discontinuous systems, occurring by varying the parameter bifurcation d (chosen as
the parameter bifurcation BEB) involving the equilibria of the vector fields F4 and F,
occurring in 1, studied in the next section. Another bifurcation is called discontinuous
saddle-node (DSN) involving the equilibria of the vector fields F3 and Fy, occurring in ¥,
(see Proposition 3.2.3), defined as a non-smooth analogue of the saddle-node bifurcation
(see |22]).

Figure 3.7 shows the rise and disappearance of equilibria of the system (3.2.11) when
varying the value of bifurcation parameter d for fixed w =1, b= 0.2, k = 2, 4, = 0.1 and
y, = 0.5. In Figure 3.7(a) with d = 0.3, we illustrate the interaction between nullclines
(black lines) given by n; : x = I_Ty (u=1) and ny : = —¥ (u = 0) and the CPL
piecewise function (3.2.8) (red curve); notice that a virtual equilibrium point Xs and X
of the vector field Fy and Fy4, respectively; and the pseudo-equilibrium x, appears.

In Figure 3.7(b) with d = 0.45 it can be seen that the nullcline n; touches the
discontinuity point of the CPL piecewise function and a DSN occurs. As d increases until

it reaches 1, in Figure 3.7(c), we can note the rise of the equilibria X3 and X} .
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(e) d=14 (f) d =0.65 and y, = 0.25

Figure 3.7: Equilibria of system (3.2.11) when varying the value of bifurcation parameter
dforw =1, 0= 02, k =2, y, = 0.1, showing the collision between regular and
pseudo-equilibrium points on the (y, z)-plane. Figures (a) to (e) y, = 0.5 and figure (f)
yr = 0.25

Figure 3.7(d) shows the simultaneous collision of both equilibriums X; and X, with
the pseudo-equilibrium X, which occurs for d = 1.25 (Here, a SN and a degenerate BEBd
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occur simultaneously). In other words, at this point, it happens a typical two-parameter
bifurcation of a Filippov system on a codimension-two point where a curve of BEB changes
from persistence to nonsmooth-fold type, see [59]. The nonsmooth and persistence cases
will be studied in detail in Section 3.3. From this point onwards, the pseudo-equilibrium
comes out of the sliding region (gray region) and falls into the crossing region (white
region) where it becomes virtual as observed in Figure 3.7(e) with d = 1.4. Finally,
Figure 3.7(f) illustrates the behavior of the equilibrium of the normalized system (3.2.7)
for other values in the bifurcation parameters; in this case for d = 0.65 and y, = 0.25.

3.3 Boundary equilibrium bifurcations

A boundary equilibrium bifurcation (BEB) occurs when an equilibrium collides with
a discontinuity surface in a DPWS system of ordinary differential equations due to the
variation of one or more parameters. Such type of bifurcations have been identified in
mathematical models of a wide variety of physical systems involving abrupt events, such
as control systems with switching elements, and ecological systems; see e.g., [20, 58|.
Various invariant sets (such as limit cycles) can be created in BEBs. But if we look only
at equilibria, then there are two generic scenarios. These are distinguished by the relative
coexistence of the regular equilibrium and the pseudo-equilibrium undergoing the BEB.
When the regular equilibrium transitions to a pseudo-equilibrium (on the discontinuity
surface) occurs the persistence scenario. In this case, if the regular equilibrium is real
(resp. virtual), then the pseudo-equilibrium is virtual (resp. real). On the other hand,
if the regular equilibrium collides and annihilates with a coexisting pseudo-equilibrium
the nonsmooth fold scenario occurs. In this case, if the regular equilibrium is real (resp.
virtual), then so is the pseudo-equilibrium; see [20] and references therein.

Some results on BEBs are presented in [20] for a particular class of 3D-DPWS
systems of the form

%= {F_(x) =Px+n, if h(x)=2<0 (3.3.1)

Ff(x)=Px+n", if h(x)=2>0"

with P = (p;;)3 for 4,7 € {1,2,3}, and n* = (n{,ny,n3). In addition, the following

assumptions are made: (i) p3; # 0 and/or pss # 0, and ny —ng > 0; (ii) there are
(generally) two cusp points x, one for each vector field F*(x); (iii) L¥.h(xF) is not

identically zero. The following result was essentially shown in [20].

Theorem 3.3.1. Assume ass # 0 and v # p, where

+

8Det [P] 8Det [RY] 8Det[R~] . bu Pz 1y

3 = —— 1% 3 H=—"T—"—"—"3 3 V=———"": 3 RT = P21 D22 Mg
(=) (15 =) (ng = m3) D31 P32 ni:%t

Then, the system (3.3.1) has two regular equilibria and one pseudo-equilibrium point,
given in canonical coordinates by

i_: (_1707L)7 i—i_: (17O7£)7 i: (I/_'_—M’O’())’
93 Q23 v—np

and a BEB occurs for v =10 if u # 0 or for u =0 if v #£ 0. In addition, the following
statements hold.
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(a) The BEB at j1 = 0 corresponds to persistence scenario if assv > 0, and to nonsmooth

fold if assv < 0.

(b) The BEB at v = 0 corresponds to persistence scenario if assp < 0, and to nonsmooth
fold if aszp > 0.

Now we are going to show the occurrence of BEBs in system (3.2.11). We chose the
parameter d as the BEB bifurcation parameter. Taking z = 0 and solving the equations
F;(x,y,0,d) =0, for i = 1,2, 3,4 respect to (z,y, z,d), we get

2
s y’l” yr
(Xbu dB1) = (—?7 Yr, Y, _y) ) (332)
2
(§b2’dB2> = _&ayh 7_% P (333)
b b
= 1 - Yr (1 - yr)y2
(sza dBd) = ( b s Yr,s 0, b—yrth , (334)
1— T 1- r)Jr
(Rp,, dp,) = (Tyyo %) , (3.3.5)

where X, (i = 1,2,3,4) denote the boundary equilibrium related to the vector field
defined at (3.2.11), and appearing for the critical value d = dp, (i=1,2,3,4) of the load
parameter.

Once we assume ¥, > vy, the boundary equilibria X;, and X;, are always virtual,
that is, the BEBs at these boundary equilibria are not observed. On the other hand,
the boundary equilibria X;, and X;, are always real, and the BEBs at these boundaries
equilibria are observed. However, as we are assuming that d > 0, the boundary equilibrium
Xp, is left out of our study. In what follows, we study the BEBs that occur at the point
Xby -

Lemma 3.3.2. System (3.2.11) undergoes a Boundary Equilibrium Bifurcation for d =
% if yr # % In addition, this BEB corresponds to persistence scenario if y, > %,
and to nonsmooth fold if y, < %

Proof. A piecewise-linear version of (3.2.11) for y > v, at the boundary equilibrium
point (Xy,,dp, ), is obtained and represented by

. |Px+n, if 2<0
N {Px+ nt, if 2>0’ (3.3.6)
with
[ —b -1 0
P = 1 dp,/y? 0 (3.3.7)
|1 -0k dp,/yl+w—Fk —w
- . .
n- = —(d +dg,)/yr , n"= —(d+dp)/y- |, (3.3.8)
| —(d+dp,)/yr — wyr + & —(d +dp,)/yr — wy,

where dp, = % is the critical value for the BEB.
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Following [20], first we check the hypotheses to obtain a canonical form. So, we
assume in system (3.2.11) that p3; = 1 — bk # 0 and n; —ng = k > 0. Moreover the
parameters (y,, k, b,w) are easily selected so that

Det [Q] = — (dB—)4 bk — (dB—)2 F(k,b,w) — g(k,b,w) # 0,

Yr Yr
L{:h(x}) = Det [R*] not identically zero,

being
Vh(xZ)
Q = VLFi h(Xét) s
VIZh(x)

flk,byw)=w—k—b(1—-k(b+w—Fk))and g(k,b,w) =1+ (w— k) + b?kw — b(k + w).
Next, we calculate the critical parameters as3, v and p for our system using (3.3.6)-
(3.3.8), namely

8wb(d + dp, ) 8wh(d — dp,) 8wh(d — dp,)
d) = =— - d) = —— P d) = =20
a23( ) k’3y$ ? V( ) k3yr ? /’L< ) k3yr

Note that u:u—i—‘; < .
Regarding the vector field F,, we get

64w?(1 — 2y,

v(dg,) =0, as3(dp, ) u(dp,) = 6

#£0 if y. #£1/2.
If y, > 1/2 then a persistence BEB is observed at the boundary equilibrium point X;,,
but if y,. < 1/2 then a nonsmooth fold BEB is observed. ]

3.4 'Two-parameter bifurcation analysis

In this section, a two-parameter bifurcation study (codimension-two analysis) is
presented. The two parameters are the power load (parameter d) and the voltage
reference (y,). They were chosen due to their relevance in the operation of the power
distribution system. Bifurcation sets in (y,;d)-plane with the main local and global
bifurcations are shown in Figure 3.8(a)-(d). In this analysis, we only consider the right
side of the vertical line y, = vy, because we assumed ¥y, > y;,. The black parabolic curve
indicates the occurrence of BEBs. In the complete parabolic curve of dg = dp, = %,
the left branch refers to the nonsmooth fold BEByp involving the equilibria X4 4 and X,
of the vector fields Fy and F,, respectively. On the same curve, the right branch refers to
the persistence BE Bp involving the equilibria X; and X, of the vector fields F, and F,

respectively.
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Figure 3.8: Bifurcation set in (y,, d)-plane showing the main local and global bifurcations
curves. a)(y,,d)-plane assuming b = 0.2, £ = 0.1 and w = 1. b) (y,, d)-plane assuming

b=/1/3, k=05, w=1.

The vector fields F4 and Fy exhibit some classical bifurcations. The green line in
Figure 3.8(a)-(b) refers to a saddle-node bifurcation (SN,) at d = 1/4b (see Proposition
3.2.3) defined for 0.5 < y, < 1. The blue straight line segment refers to subcritical
Hopf bifurcation (Hgy) at d = b/(1 + b*)? (see a Proposition 3.2.3) of the equilibrium
X, defined for 0.96 < y, < 1. The red parabolic curve segment in 0.1 < y, < 0.334
indicates a subcritical Hopf bifurcation (H:,) at d = y?/k of the pseudo-equilibrium
X (see a Proposition 3.2.4); and the violet line refers to a discontinuous saddle-node
(DSN) at d = % (see Proposition 3.2.3). Table 3.2 shows the characteristics of the
equilibria of system (3.2.11) for each region enumerated in Figure 3.8(a), and studied in
the previous sections.
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Regions X3 i;f Xy X

1 real stable virtual virtual virtual

2 real stable | real saddle virtual real unstable
3 real stable | real saddle virtual real stable
4 real stable | real saddle real stable virtual

5 real stable | real saddle | real unstable virtual

6 virtual virtual virtual real stable
7 virtual virtual virtual real stable
8 virtual virtual real unstable virtual
9 virtual virtual real unstable virtual
10 virtual virtual real stable virtual
11 virtual virtual virtual real stable
12 virtual virtual real unstable virtual
13 virtual virtual real stable virtual

Table 3.2: Classification of Equilibria and Pseudo-equilibria according to figure 3.8(a).

Figure 3.8(b) shows two important global bifurcations: a Homoclinic bifurcation
(HC) and a Grazing-sliding bifurcation (GS) represented by dark green curve and a
maroon curve, respectively. Another important phenomenon occurs when two limit cycles
collapse, one stable and the other unstable, which is called a saddle-node bifurcation of
periodic orbits (SNpo) represented by orange curves. These bifurcations are determined
numerically as it will be seen in the next subsection.

The points {P;} in Figure 3.8 indicate the two-codimension bifurcations where two or
more bifurcations occur simultaneously, but not necessarily involve the same equilibrium
point. Such points in Figures 3.8(a)-(d) are: Py(1/2,1/(4b)), when the Saddle-node
bifurcation (SN,) occurs simultaneously to BEBp; Py(k/(b+ k), k/(b+ k)?), when the
subcritical Hopf bifurcation (H¢,,) occurs together to BEByr; P3(1/(1+6%),b/(1+0%)?),

when the subcritical Hopf bifurcation (Hg,p) occurs at the same time to BEBp; Py, when
the BEBp occurs concomitantly to SNpo; Ps((1+ \/1 —4(1 = yen)yen) /2, (1 — yen)yen /b)),

when the DSN occurs together to BEBp; Pﬁ((lfyzh)yth, \/ k(lfybth)yth), when the DSN
occurs concurrently to H? .; and P;, when the subcritical Hopf bifurcation Hy,, occus at

sub?
the same time to SNpp. Bifurcation points that occur only for bifurcation set in Figures
3.8(a) are: P., when the DSN ocurs simultaneously to SNpo; and at P,, a BEBp occurs
together to SNpp. Bifurcation points that occur only for bifurcation set in Figures 3.8(b)
are: At Py a Grazing sliding bifurcation (GS) occurs concurrently to SNpo; Py, when
the homoclinic connection (HC) occurs concomitantly to BEBp; and Pyg when the DSN

occurs at the same time to SNpp and an HC.

3.4.1 Limit cycle bifurcations

In this subsection we present some results of the numerical analysis of the existence
of limit cycles and bifurcations, considering the bifurcation diagrams shown in Figure
3.9-3.14, which were used to obtain the curves of the bifurcation set diagrams shown in
Figure 3.8.

For the sake of brevity we adopt in Figure 3.9-3.14 the following notation: (i) solid line
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branches indicate stable invariant sets (equilibria or limit cycle), and dashed line branches
indicate unstable ones; (ii) black line branches represent the amplitude of limit cycles;
(iii) red line branch represents the coordinates of X; (iv) blue and green line branches
represent the coordinates of the equilibria X; and X, , respectively; (v) violet line branch
stands for the coordinates of the equilibrium X3; (vi) dotted line branches stand for the
virtual equilibria, while solid and dashed branches represent the real equilibria.

Figures 3.9(a)-(d) show the bifurcations diagram of system (3.2.11) with respect to
variation in the bifurcation parameter d assuming y, = 0.25. A saddle-node bifurcation
occurs at d = 1.25 (point A) when the equilibria of F, collapses. A saddle-node bifurcation
of periodic orbits indicated by C and C', occurs at d = 0.029 when two limit cycles
collapse, one stable and one unstable with a smaller amplitude. Note that when increasing
a constant power load d, the amplitude of the limit cycle decreases until it disappears in
the subcritical Hopf bifurcation at d = 0.62 (point H), so the pseudo equilibria become
unstable; and soon it collides with equilibrium X; at d = 0.9375 (point D) and set off
virtual. As the power load increases further, the stable limit cycle disappears (collapses)
when a saddle-node discontinuous (DSN) rises for d = 0.45 (point B). At this same point
a collision between X3 and X, occurs and becomes real from a DSN bifurcation. Note
that between D and B the equilibrium Xj is real unstable; outside this interval it is
virtual and X, is also virtual.

Figure 3.10(a)-(d) show the bifurcations diagram with y, = 0.5. In this case, a pseudo-
equilibrium point collapsed with the saddle-node bifurcation in the degenerate boundary
equilibrium point (A) at d = 1.25, thereafter it becomes virtual. Other bifurcations
happen when the amplitude of the limit cycle increases as it varies, starting in the
subcritical Hopf bifurcation at point A and disappearing (with maximum amplitude) on
a saddle-node discontinuous at d = 0.44995 (point B). Notice that the change from the
unstable to stable limit cycle occurs at d = 0.04270 (points C' and C"). Between A and
B the equilibrium X is real; outside this interval it is virtual and X is also virtual.

Figure 3.11 (a)-(d) show the bifurcations diagram with y, = 0.75. A saddle-node
bifurcation occurs at d = 1.25 (point A) when the equilibria of F4 collapses. In this case, a
pseudo-equilibrium point collides with an equilibrium X, at a boundary equilibrium point
in (D) at d = 0.93, after this, a pseudo-equilibrium becomes virtual. A discontinuous
saddle-node bifurcation happens at d = 0.449 (point B); the change from the unstable to
stable limit cycle occurs at d = 0.051 (points C' and C"). Notice that between A and B,
the equilibrium X is real; outside this it is virtual; and between A and D the X is real,
outside this is virtual.

Figure 3.12(a)-(d) shows the bifurcations diagram with y, = 0.93. Discontinuous
saddle-node bifurcation occurs at d = 1.25 (point A) when the equilibria of F, collapses.
In this case, a pseudo-equilibrium point collapses with the equilibrium X, at a boundary
equilibrium point in D at d = 0.93 after this becomes virtual. A saddle-node bifurcation
of periodic orbits indicated by C' and C’, occurs at d = 0.4901 when two limit cycles
collapse, one stable and one unstable. The stable limit cycle disappears (collapses) when
a discontinuous saddle-node bifurcation (DSN) arises for d = 0.449 at point B. The
unstable limit cycle disappears when it collides with another stable limit cycle having
a sliding segment in another SNpo bifurcation in E and E" at d = 0.0645. Note that
between A and B the equilibrium X is real; outside this interval it is virtual; and between

A and D the equilibrium X, is real, outside this interval is virtual.
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Figure 3.13(a)-(d) shows the bifurcations diagram with y,. = 0.99. A saddle-node
bifurcation occurs at d = 1.25 (point A) when the equilibria of F, collapses. In this case,
a pseudo-equilibrium point collapses with the equilibrium X, at a boundary equilibrium
point in D at (d=0.0495) after this becomes virtual. A saddle-node bifurcation of
periodic orbits indicated by C and C', occurs at d = 0.05889 when two limit cycles
collapse, one stable and one unstable. The stable limit cycle disappears (collapses) when
a discontinuous saddle-node bifurcation (DSN) arises for d = 0.449 at point B. The
unstable limit cycle disappears when it collides with another stable limit cycle having
a sliding segment in another SNpo bifurcation in E and E at d = 0.3928. Another
SNpo occurs at point F' (point d = 0.18479), from which bifurcates an unstable (smooth)
limit cycle and a stable (non-smooth) limit cycle with a sliding segment. The unstable
(smooth) limit cycle disappears in subcritical Hopf bifurcations at G' (d = 0.1849). In this
last situation, the coexistence of 4 limit cycles is observed, which is the maximum number
of limit cycles found for system (3.2.11). Note that between A and B the equilibrium X;
is real unstable; outside this interval it is virtual; between A and G the equilibrium X, is
unstable real and between GG and D is real stable, outside this interval is virtual. Figure
3.15 shows a case with 3 limit cycles, from the simulation of the system in state space.
Table 3.3 shows the maximum number of limit cycles in each region of Figure 3.8(a), and
in Table 3.4 for the Figure 3.8(b).

Figure 3.14(a)-(d) shows the bifurcations diagram considering d as the bifurcation

parameter for b = \/g, k=0.5,w=1, y;, =0.1and y, = 0.937, in this case a pseudo-

equilibrium point collapses with the equilibrium X; at a boundary equilibrium point in
D at d = 0.10224, thereafter it becomes virtual. A saddle-node bifurcation occurs at
d = 1.25 (point A) and a discontinuous saddle-node bifurcation happens at d = 0.15588
(point B). We observe the occurrence of a subcritical Hopf bifurcation in G' at d = 0.3247
and the emergence of an unstable limit cycle (saddle) when decreasing the parameter
d. This cycle is entirely contained in the region D, of the system state space, defined in
(3.2.10) until it touches the switching boundary ¥, and so a Grazing-sliding bifurcation
occurs (P) at d = 0.3047. Then it becomes a cycle with a sliding part and persists until
it disappears after the homoclinic connection in O at d = 0.2558.
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Figure 3.9: Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, k = 0.1, w = 1, yy, = 0.1 and y, = 0.25. Black curves stand
for the limit cycle, red line denotes the pseudo-equilibria, blue and green line represent
the equilibrium X4 and the equilibrium X, respectively; the violet line stands for the
equilibrium X3. Dashed curve indicates the unstable equilibrium/limit cycle and the
solid line indicates the stable equilibrium/limit cycle, and dotted curves mean the virtual
equilibrium.
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Figure 3.10: Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, £ = 0.1, w = 1, yy, = 0.1 and y. = 0.5. Black curves stand
for the limit cycle, red line denotes the pseudo-equilibria, blue and green line represent
the equilibrium X4 and the equilibrium X, respectively; the violet line stands for the
equilibrium X3. Dashed curve indicates the unstable equilibrium/limit cycle and the
solid line indicates the stable equilibrium /limit cycle; and dotted curves mean the virtual

equilibrium.
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Figure 3.11: Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, k = 0.1, w = 1, yy, = 0.1 and y, = 0.75. Black curves stand
for the limit cycle, red line denotes the pseudo-equilibria, blue and green line represent
the equilibrium X4 and the equilibrium X, respectively; the violet line stands for the
equilibrium X3. Dashed curve indicates the unstable equilibrium/limit cycle and the
solid line indicates the stable equilibrium /limit cycle; and dotted curves mean the virtual
equilibrium.
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Figure 3.12: Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, k = 0.1, w = 1, yy, = 0.1 and y, = 0.93. Black curves stand
for the limit cycle, red line denotes the pseudo-equilibria, blue and green line represent
the equilibrium X4 and the equilibrium X, respectively; the violet line stands for the
equilibrium X3. Dashed curve indicates the unstable equilibrium/limit cycle and the
solid line indicates the stable equilibrium /limit cycle; and dotted curves mean the virtual
equilibrium.
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Figure 3.13: Bifurcation diagrams of system (3.2.11) considering d as the bifurcation
parameter for b = 0.2, k = 0.1, w = 1, yy, = 0.1 and y, = 0.99. Black curves stand
for the limit cycle, red line denotes the pseudo-equilibria, blue and green line represent
the equilibrium X4 and the equilibrium X, respectively; the violet line stands for the
equilibrium X3. Dashed curve indicates the unstable equilibrium/limit cycle and the
solid line indicates the stable equilibrium /limit cycle; and dotted curves mean the virtual
equilibrium.
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Figure 3.14: Bifurcation diagrams of system (3.2.11) considering d as the bifurcation

parameter for b = \/g, k=05 w=1, 1y, =0.1and y, = 0.937. Black curves stand
for the limit cycle, red line denotes the pseudo-equilibria, blue and green line represent
the equilibrium X; and the equilibrium X, , respectively; the violet line stands for the
equilibrium X3. Dashed curve indicates the unstable equilibrium/limit cycle and the
solid line indicates the stable equilibrium /limit cycle; and dotted curves mean the virtual
equilibrium.

| Regions [1]2[3]4][5]6][7]8[9]10][11]12]13]
Stable limit cycle [0 |0 |00 |1 |1|1]1|2| 10
Unstable limit cycle |O O |1 (0|10 |1|0|1|0 ] 0| 1] 2

Table 3.3: Number and stability of coexisting limit cycles from the bifurcation set of
Figure 3.8(a).
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| Regions [1]2[3]4][5]6][7[8[9]10][11]12][13]14]
Stable limit cycle J[OJO0[0[o[1]1[1JoJoJo[o0oJo]oO][1
Unstable limit cycle | O |0 |1 (0011|110 ] 0] 0]O0

Table 3.4: Number and stability of coexisting limit cycles from the bifurcation set of
Figure 3.8(b).

Boundary focus collision

If we take (y,,d) in the parabola segment with extremes at P, (resp. P,) and Pj,
shown in Figure 3.8(a) (resp. 3.8(b)), then a persistence BEB involving the unstable
focus equilibrium X; and the stable pseudo-node Z, is observed in system (3.2.11). This
dynamic scenario is simulated and shown in Figure 3.15(b)-(d), where the points of focus
equilibrium, pseudo-node and boundary equilibrium are represented by green, red and
black dots, respectively. A stable limit cycle with a sliding part rises in the state space
for d > dp, = 0.4.

This kind of BEB is known as Boundary Focus Bifurcation (BFB), from which it was
proved the existence of five generic critical cases; see [19]. In planar Filippov systems, such
a BEB involves a regular focus equilibrium, a pseudo-equilibrium, and a fold singularity.
In the case where the regular equilibrium is an unstable focus, the pseudo-equilibrium is
stable and we have a persistence BEB, such a bifurcation produces a stable limit cycle
that is composed of two orbit segments, one defined by the sliding vector field and the
other by vector field below (or above) the switching boundary. In addition, this limit cycle
is present in the state space when the focus is a real equilibrium close to the switching
boundary and the pseudo-equilibrium is virtual and the fold singularity is visible.

Naturally, the scenario described in the previous paragraph also occurs in 3D systems,
as we have observed from system (3.2.11). As in the two-dimensional case, a stable limit
cycle with sliding segment arises from a boundary equilibrium of dynamic unstable focus
for F4 and stable node for F,. But, unlike the planar case, here the tangential singularity
involved is of the cusp type and divided the tangency line into visible and invisible
folds. In addition, this limit cycle is present in the state space when the focus is a real
equilibrium close to the X, the pseudo-equilibrium is virtual and the cusp singularity is
“visible" (that is, L}, h(x;) < 0 at the cusp point; see [20].

Beside the stable limit cycle with the sliding part mentioned above, there are also two
more crossing limit cycles, one stable (blue cycle) and the other unstable (black cycle) as
shown in Figure 3.15(e)-(f).
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Figure 3.15: Simulation results of system (3.2.11) with parameters b = 0.2, w = 1, k = 0.1
and y, = 0.93 showing the stable limit cycle in blue color and the unstable limit cycle in
black color; the points of focus equilibrium, pseudo-node and boundary equilibrium are
represent by green, red and black dots, respectively.
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Grazing-sliding Bifurcation

Consider in system (3.2.11) that b = /1/3, w = 1, k = 0.5, y, = 0.937 and d = 0.305.
In this case, there is an unstable limit cycle around the real focus equilibrium of the vector
field F4, which is tangent to the switching boundary Y1, see Figure 3.16(a) (violet cycle).
For a small perturbation in the parameter d (for d < 0.305) this limit cycle persists, but
has a sliding segment thereafter, as shown in Figure 3.16(b) (maroon cycle). Then we
have a Grazing-sliding bifurcation occurring in system (3.2.11) (see Figure 3.16(a)). More
specifically, this type of bifurcation appears when a periodic orbit touches the surface
where the system is discontinuous (switching boundary) (see [37, 60]). This result is
expected according to the bifurcation diagrams in Figure 3.14.

A Homoclinic connection bifurcation occurs when the unstable limit cycle with sliding
segment collides with the saddle equilibrium of the vector field Fy; see Figure 3.16(b)
(maroon cycle). This phenomenon is expected according to the bifurcation diagram
shown in Figure 3.14(c). Notice that near the homoclinic connection is the stable node
equilibrium of the vector field F3. There is a combination of system parameters (point
Py in Figure 3.8(b)) such that the homoclinic connection is formed in a (nonsmooth)
saddle-node equilibrium, which appears at the switching boundary >, when the regular
equilibria node and saddle, of the vector fields F3 and F, respectively, collide.

" 05

LR

Figure 3.16: Simulation results of system (3.2.11) with parameters b = 1/1/3, w = 1,
k= 0.5, y. = 0.937 and d = 0.305 showing the Grazing-sliding bifurcation (see violet
cycle) and the Homoclinic connection bifurcation (see maroon cycle).

3.5 Conclusion

This chapter addressed the nonlinear analysis of DPWS dynamical systems with
two transverse switching boundaries through a real case study: a cascade of two buck
converters connected to a common bus in a DC microgrid. A bifurcation approach is
proposed in order to study local and global phenomena of a power electronic circuit
feeding a piecewise constant power load and controlled by means of a sliding mode
control law. In the interconnected power converters structure, the two boundaries were
defined by (i) the SMC law of the first buck converter and (ii) a piecewise constant

98



power load modelling the second buck converter. The nonlinear behavior of this system
was analyzed and some results on bifurcations induced by two transversal switching
boundaries, obtained from a two-parameter analysis, were presented. Typical bifurcations
of DPWS systems were detected in the system under study, such as the BEB, BFB,
DSN and GS bifurcations. In addition, from the study carried out, we have predicted the
coexistence of at least 4 limit cycles. Other bifurcations of equilibrium and limit cycles
(Hopf, SN, SNpo, HC) were also found in this case study:.

The nonlinear analysis performed is very useful to determine the safe parameter region
which guarantees robust stability at the desired operating point for the system, under
changes considered in the parameters of load power and control reference voltage. This
information can be summarized in bifurcation diagrams and bifurcation sets leading to
practical rules for choosing the control parameters in order to achieve a suitable SMC
design.

99



Chapter 4

Global stability of a Lotka-Volterra
piecewise-smooth system with
harvesting actions and two predators
competing for one prey

In this chapter, we will study the global dynamics of a three-dimensional Lotka-
Volterra system described by two predator species competing for one prey and with
human harvesting action on the predator species. The harvesting action is introduced by
means of two switching control actions defined on the predator species. A well-known
result in the study of ecosystem modeling is that there are two states of coexistence
of one of the predatory species with the prey species assuming that the principle of
competitive exclusion or coexistence of competing species is fulfilled. In this sense, the
three species cannot coexist in this class of system. In this chapter, it is proved that
there is a global stable equilibrium point where the three species can coexist due to the
proposed harvesting action.

4.1 Introduction

According to the theory of evolution, competition within a species and between
species plays a fundamental role in natural selection, However, it is not always a simple
phenomenon and can occur indirectly, affecting the structure of the ecosystems. In
general, it is an important issue in nature and society since competition is related to the
concept of selection that is required to obtain or facilitate success in certain environments.
Therefore, the study of global dynamics on the competitive resource model is important
to understand the behavior and survival mechanism of the fittest (natural selection). In
addition, the analytical and numerical study of these models becomes very important in
different lines of research, see |66, 69, 70, 71, 85].

The study of the dynamics of predator-prey systems was originated in the works of
Lotka [68] and Volterra [67] who considered a model for one predator and one single
prey in an uniform environment. They also argued that the coexistence of two or more
predators competing for fewer prey resources is unfeasible, which is called the principle
of competitive exclusion. Recently, the control strategy for predator-prey models has
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generated much interest in the mathematical society [86], since to understand its dynamics
it is important to use the qualitative analysis techniques related to Filippov non-smooth
systems, which are part of DPWS systems. The stability of equilibria of the system, the
existence of pseudo-equilibria of the sliding mode dynamics, different kinds of bifurcations,
global stability, etc, are in constant study and some of them are also investigated using
numerical analysis; see [87, 91, 90, 89, 83, 92|.

We will study the dynamics of a 3-dimensional predator prey Lotka-Volterra system,
which describes two predators competing for food or sharing one resource. The two preda-
tory species are supposed to compete in a purely exploitative way without interference
between rivals, the growth rate of the prey species is logistic or linear in the absence of
predation, and the functional response of the predator is linear. Thus, the model given
by a system of ordinary differential equations of the form

%it) = (7‘3 — %S(t) - bll’l(t) - bg%g(t)) S(t)7

dxc}ft) = (a1 S(t) = ) w1 () — wiaa (1), (4.1.1)
d[L‘Q(t) .

= (aaS(t) — r9) wa(t) — ugwa(t),

where x;(t) for i = 1,2 stand for the population density of the i-th predator at time t,
S(t) represents the population density of the prey at time ¢, 73 > 0 is the intrinsic rate
of growth of the prey, K > 0 is the carrying capacity of the prey, which describes the
richness of resources for prey.

Notice that, if K = oo, then the prey can increase unlimited, which implies that the
growth rate of the prey species is linear in the absence of predation; b; > 0 is the effect of
the i-th predation on the prey, r; > 0 is the natural death rate of the i-th predator in
the absence of prey, a; is the effciency and propagation rate of the i-th predator in the
presence of prey. Notice that x;(t) > 0 and S(t) > 0. Thus, system (4.1.1) is considered
only in the non-negative octant R?. The control variables u; 5 stand for a proportional
removal of the predator population given by

up = ki1p1(p1) and  ug = kada(p2),

where k; 5 are the control effort parameters to be designed and ¢ 2(p;1.2) are defined as,

(1, if p>0, 1, i pe >0,
“bl(pl)_{o, if <0, and ¢2<p2)_{0, it py <0,

with p; = 21(t) — 2,1 (t) and py = 72(t) — ,2(t) representing the variables that define the
threshold, which is dependent on the system states, with x,; and x,o denote the reference
parameters for predatory species.

It is worth mentioning that the model (4.1.1) without control was studied by Llibre
and Xiao in [84], where results of the global dynamics of the system are presented.

System (4.1.1) under the proposed control strategy is represented by a piecewise
smooth system with two switching boundaries that cross perpendicularly between them
and has a sliding motion that is described in this work following Filippov’s convention.
The main result of this work is the proof of global stability of system (4.1.1) with two
switching boundaries under the action of control (4.1.2). From this study, we have

(4.1.2)
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explicitly determined the conditions on the system parameters so that the coexistence
equilibrium (which is the reference pseudo-equilibrium of the system) of the predators is
globally stable, see Theorem 4.4.1. As far as we know, there is no work in the literature
that deals with the global stability of system (4.1.1) with harvesting actions defined by a
sliding mode control strategy. Other contributions are: (i) the identification of a special
boundary equilibrium bifurcations that occurs in sliding vector fields, called boundary
pseudo-equilibrium bifurcation (BPEB), see Theorems 4.3.2 and 4.3.4; (ii) the description
of the sliding dynamics on each switching boundary, even at the intersection between
them, see sections 4.3.1-4.3.2.

This chapter is organized as follows. Section 4.2 presents a detailed analysis of the
dynamics of the system. Conditions of global stability for the coexistence of the predators
are given in Section 4.4. The main conclusions are presented in Section 4.5.

4.2 A two-predator one-prey system under harvesting
actions

The system (4.1.1) is normalized by applying the change of variables and time, defined
by

_ T3 __ T3 __ T3 _ 1
S=2=r, wm=3y T2=3z  l=T (4.2.1)

Then, we obtain the simplified system

Y= (ax - E) Y — ﬂy, (4.2.2)

where z is the prey normalized variable, y and z are the predator normalized variables,

a=,/% and 8 = =~ are normalized parameters. The control variables are rewritten
as K./a1az
as

L k
Uy = 51 (1+ Sign[h]), and wup = 52 (1+ Signlha]),

being hy(x) = y—y, and ha(x) = z— 2, the normalized switching functions, and y, = %%1
and z, = %:prg are the normalized reference parameters.
We denote the state variables by x = (z,y, z) € D, where

D:{XGRSZ x>0, y>0 and z>0}.

We consider D* = {x€R*: x>0, y>0 and =z >0}
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The system state space is divided into four different regions, given by

Rir ={x€D:hi(x)>0and hy(x) > 0},
R_i ={x€D:hi(x)<0and hy(x) > 0},
R__={x€D:h(x)<0and hy(x) <0},
Ri_ ={x€D:hi(x)>0and hy(x) < 0},

separated by two transverse switching boundaries, namely

Y1 ={x€eD:hx) =y—y. =0},
Yo={x€D:hy(x)=2—2 =0}

System (4.2.2) is then represented as a discontinuous piecewise smooth system of the
form

Fii(x), if x€R4y,
- F,+(X), if x c R7+,
*TIF__(x), if xeR__, (4.2.3)
F+_ (X)7 if x S R+_7
composed of the vector fields
(1-pxr—y—2z)x
Fij(x) = oz — py)y : (4.2.4)
Lo - i)z
for i = +,— and j = +, —, where p} and ;ﬂé are normalized parameters defined by
Iu1+ = _7“1:01?1’ M; = —O‘(r2+k2), Iu; — 7;—1(1, ,U; = a2, (425)

3 3

Notice that 0 < p;” < p;" for I = 1,2 since ky 5 > 0.

4.2.1 Dynamics of vector field F;;

System (4.2.3) has an equilibrium at the origin 0 = (0,0, 0) and another equilibrium
at the point e = (1/4,0,0) for all the values of the parameters. In addition, they are
equilibria of both the vector fields F,,, F_, F__ and F,_, but they are admissible only
for F__. If ut # ,ug then there are two more equilibria for each vector field F;;, located
at the points ‘ ' '

ezl = (/1’1171_6”@17()) and ej2: (uévoal_ﬁﬂé>

The point e (resp. e]) is an equilibrium for the vector fields F__ and F_, (resp. F,_
and F, ), but it is admissible only for F__ (resp. F,_) and if y. > 1 — Su; > 0 (resp.
0 <y, <1—pBuf). The point e, (resp. e;) is an equilibrium for the vector fields F__
and F,_ (resp. F_, and F, ), but it is admissible only for F__ (resp. F_,) and if
2> 1—Buy >0 (resp. 0 <z <1—Buf). If pi =y =y < 1/6 then there are
infinitely many equilibria of F;; located at the line segment LY = {(u",1 — Bu" — z,2) :
0 <2 <1-— Bu“}. Predators can coexist in the latter case, but this is a structurally
unstable scenario as it is not preserved after a small variation in parameter ) or 1

In what follows we consider only the cases of our interest, which are those that have
equilibria € and e} with coordinates in D.
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Proposition 4.2.1. Assume in system (4.2.3) that p® # ,u% and Mfz < % The following
statements hold on the equilibria of F;.

(1) The trivial equilibrium 0 is a saddle with a 2-dimensional stable manifold and a
1-dimensional unstable manifold.

(ii) The equilibrium e is a saddle with a 1-dimensional stable manifold and a 2-
dimensional unstable manifold.

(iii) The equilibrium e’i'z's asymptotically stable zf,ul1 <'/L%', with local dynamics of focus
(resp. node) for u < %ﬁiﬁ (resp. >). If % > pd then it is a saddle-focus (resp.
saddle) with a 2-dimensional stable manifold and a I1-dimensional unstable manifold

for pi < %Bfﬁa (resp. >).

(iv) The equilibrium eg s asymptotically stable Zf s >‘ug, with local dynamics of focus
(resp. node) if pl < %ﬁ (resp. >). If b < pd then it is a saddle-focus (resp.
saddle) with a 2-dimensional stable manifold and a 1-dimensional unstable manifold

for 1, < %ﬁa4+4 (resp. >).

Proof. The (i)-(iv) statements are easily proven from the eigenvalues of the Jacobian
matrix given by: (i) AY =1, \j = —apd, Ay = =14 for the equilibrium 0; (i) A{ = —1,
o= o (% —,ui1>, A = é(% —[L%) for the equilibrium e; (iii) \Y = i — 1),

)\gg = —@ﬁ (1 + \/1 - 5{‘6 (% - uﬁ)) for equilibrium e?; and (iv) A = —a(u} — 1),

)\33'1’12 = —67“; (1 + \/1 -4 (% — M%)) for the equilibrium e%. O

apdB
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Figure 4.1: Phase portraits of the vector field Fy; in D from the choice of (1, 1),
assuming p8 # g, pi < 1/ B, 3y < 1/B and a = 1. The green, blue and red dot represent
the equilibrium points e, e} and e}, respectively

It is well known in the literature that the Lotka-Volterra system (4.1.1) has a globally
asymptotically stable equilibrium point if {+ # 22, see for instance [66, 84| (that implies
(it # 11 in the normalized system (4.2.3)); and [86, 93] with harvesting action on predator
and prey species. In this case, if we assume the field F;; defined in the whole D, then
that vector field has a globally stable equilibrium. Whenever p} < ,ug < 1/ the globally
asymptotically stable equilibrium of F;; is the point e}, but if 1, < pt < 1/6 then €}
takes place. Such property is observed in the phase portraits of the vector field F;; in D,
obtained from the choice of u} and ug in the (pd, ,u%)—plane of parameters, as shown in
Figure 4.1. Notice that k; and k parameters are defined by (4.2.5) and both are also
positive as previously defined in the text.

4.2.2 Configuration on X = >; U X,

To study the contact of vector fields with the switching boundaries we use the Lie
derivatives: Ly, hy = VR - F;; and L%ij hy, = VL%;th -Fi;, for k=1,2 and ¢ = 2,3.
The flux of F; is tangent to the switching boundary ¥; at the points (z,y,2) € ¥4

105



such that Lp, hi(z,y,,2) = ay.(x — p}) = 0, and it is tangent to Xy at the points
(z,y,2) € ¥y such that Lg, ho(z,y,2,) = 2.(x — p3)/a = 0. Then, we define two sets of
tangential points for each vector field F;;, namely

T, ={(z,y,2) €X1: z=u), y=y.} and Ty ={(z,y,2) €Xa: v =pd, z =21},
(4.2.6)
for i,j € {+,—}. Note that T} is the tangency line for F,, and F, _, and that T} is
the tangency line for F_, and F__. Similarly, T, is the tangency line for F,, and F_ |
and T, is the tangency line for F__ and F,_. In addition, the tangency lines T} and
Ty are parallel straight lines in 3, while 75" and 7T, are parallel straight lines in ;.
In T} and in TQj it may appear a cusp point with coordinates given by

qzl = (,uliayrvl _6lull _yT) and q% = (N’%al_ﬁué_'zmz?")?
respectively. Note that q} and qg have positive coordinates only if y, < 1 — Su} and
2, < 1 — Bud, respectively.

(i) We say that qf is a real cusp point for F, | if y, + 2z, < 1 — Buf, or for F,_ if
Yr + 2, > 1—Buf. Iy, + 2 =1—Buf then qf € X1 N, and it is a boundary
cusp point.

(ii) We say that q; is a real cusp point for F_, if y. + 2. < 1 — Suy, or for F__ if
Yr+ 20 >1—Puy. Yy +2 =1—pPpu; then q; € ¥1 N3y and it is a boundary
cusp point.

(iii) We say that qg is a real cusp point for F o if y, + 2, < 1 — Bud, or for F_, if
Yr+ 2, >1—Bug. Iy, +2=1— Bus then q € 31N, and it is a boundary
cusp point.

(iv) We say that q, is a real cusp point for F,_ if y, + z. < 1 — fu,, or for F__ if
Yr+ 20 >1—Buy. fy. +2 =1—Pu, then q, € ¥; N3y and it is a boundary
cusp point.

Other points of 77 and in TJ are classified as visible or invisible fold.

Proposition 4.2.2. Let Ti and sz be the tangency lines of system (4.2.3), and assume
py # gy, 2 =1=Bu =y #0 and § =1 — Py — 2. # 0, fori,j € {+,—}.
(i) Tangential singularities in 3 :
al) (z,y,2) € T;" is a visible fold point for all z < z*, an invisible fold point for
Y 1
all z > zZ", and at z = z* it is a cusp point.
bl) (x,y,z) € 1] s a visible fold point for all z > zZ~, an invisible fold point for
1
all z < z7, and at z = Z~ 1t 18 a cusp point.
(ii) Tangential singularities in 3y:
(a2) (x,y,2) € Ty is a visible fold point for all y < §*, an invisible fold point for
ally > y*, and at y = y* it is a cusp point.
b2) (x,y,z) € Ty s a visible fold point for all y >y, an inwvisible fold point for
Y 2 y->y
ally <y~, and at y =y~ it 1s a cusp point.
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Proof. (i) Computing the second and third Lie derivatives at the tangency lines T}
and at the cusp point q', respectively, we get

L, b (15,9, 2) = ayppi (2 = 2),

(al) Notice that, Lg hi(uf, s 2) # 0 if 2 # z*, therefore, (z,y,2) € T} is a
visible fold for z < z*, and for z > z* then (z,y,2) € T} is a invisible fold.
Now, if z = z* then we have L%ijhl(pj,yr,z) = 0 and L%ijhl(qf) # 0, ie.,
the point q is a cusp point.

(bl) Analogously, (z,y,z) € Ty is a visible fold point for all z > z~, an invisible

fold point for all z < z7, and at z = z~ the point q; it is a cusp point.

(ii) Computing the second and third Lie derivatives at the tangency lines 77 and at
the cusp point qj, respectively, we get

J
. Zrlly .
L%‘i]’hQ(:uéay7zT') = Ta2(y] - y>7

L§, ho(ad) = 2o (ph — pid).

(a2) Notice that, L%ijhg(,u;,ymz) # 0 if y # y*, therefore, (z,y,2) € Ty is a
visible fold for y < ¢, and for y > g then (z,y,2) € T, is a invisible fold.
£ — gt 2 + _ 3 + -
Now, if y = y* then we have Ly, ha(ps,yr, 2) = 0 and Ly, hao(ay) # 0, Le.,
the point q7 is a cusp point.
(b2) Likewise, (x,y,2) € Ty is a visible fold point for all y > ¢, an invisible fold
point for all y < y~, and at y = y~ the point q; it is a cusp point.
O]

Between the parallel tangency lines 7, and 7" contained in Y, there is the attractive
sliding region
E?S = (.T,y, Z) € Xy py <z < :uira &= yr}v (427)

and on the outside there are the crossing regions
Yt ={(z,y,2) €1 x>uf, 2=y} and X{ ={(z,y,2) €Xi:x<pu, 2=y}
The same configuration appears in Yo, with the attractive sliding region

25 ={(z,y,2) €Xa: py <x<p3, Y=z}, (4.2.8)
and the crossing regions
Yt ={(z,y,2) €Y x> pug,y=2} and X5 ={(z,y,2) €Xo: v < py,y =2}

With that we have completed the set > = 31 U Xs. Figure 4.2 shows a particular
situation that occurs when y, > 1 — Buy, 2 > 1 — Buy, py < py and pf > pg3. In
this case, the cusp points q} and q} have negative coordinates and, thus, the tangency
lines T;" and T, consist only of invisible fold points, while the tangency lines T} and
T, consist only of visible fold points. Moreover, there is an intersection between the
attractive sliding sets, given by 325 N X3% = {(2,y,, 2,) : fy < T < pig }.
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Figure 4.2: Configuration on ¥ = ¥; U¥, assuming y, > 1 —0ui, 2, > 1 =By, puy < py,
i > pg, where ago = (i3, Y, 2,) € Ty N and gy = (U5, Y, 2-) € Ty MY are fold
points of the sliding vector field in ¥{* with its switching boundary >; N 3.

4.3 Sliding vector fields and pseudo-equilibria

4.3.1 Sliding dynamics on Y; and bifurcations

System (4.2.3) has sliding orbits on the switching boundary 3; that are restricted
to the attractive sliding region »§° C 1, being extended to their borders given by the
parallel tangency lines 77 C ¥; and T1+ C X4. The sliding vector field Fg; : 57 — D that
governs the dynamics of the sliding motion in S; = T, U X2 U T} is given by

_ F&(.’L’,y,Z) lf hQ(I,y,Z) <07
Fateor ) {EH0 0D i by 920 431
where
‘ (1-pr—y—2)x
Fgl(xvyu Z) - O 3 (432)

(@ — )z
for j = +,—, and defined for y = y,, u; < x < pf and z > 0. This vector field is
piecewise smooth and has the switching line SY = {(z, y,, 2,) : p; <z < pi} that divides
the state space S into two zones: S; = {(z,9,,2) 1 u; <z <puf, 0 <2<z} and
St =A{(z,yr,2) iy Sw <, 2>z}
The regular equilibria of Fy;, which are pseudo-equilibria for the system (4.2.3), are
located at the points: p1o = (0,¥,,0) ¢ S,

]_ — Yy . . .
P11 = <—7y7“7 0) and p{Z = (:uévyﬂ 1- B,LL% - yT) (433)

Note that pyg is always a virtual equilibrium for both F_; and FJ, thus being excluded of
the stability analysis that follows. Point py; € S is a virtual equilibrium for F; and real
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for F5 if y, € (1 — Buf, 1 — Buy). But if pyy ¢ Sy, that is, if y, ¢ [1 — Bu, 1 — Bui],
then it is virtual for both F; and F_;. Moreover, it becomes a boundary equilibrium such
that p11 =e; € Ty ify, =1—Bu; or piy =ef € Iy if y, = 1— Bpf. Point py, € S is
a real equilibrium of F_; whenever y, < 1— Bu; <y, + 2. and puy; € (uy, pf), being that
P =P when y, =1 —Buy. Iy, + 2. =1— Bu; and py; € (py, pf) then it becomes a
pseudo boundary equilibrium such that py, = p € S}, where p denotes the non-trivial
pseudo-equilibrium of Fy; which will be introduced later. In other cases, that is, pp, € S;
or pp, ¢ Si, this equilibrium is virtual. Point pj, € S is a real equilibrium of FJ
whenever y, + 2, <1 — Buy and pi3 € (uy,pf). W yr + 2, =1~ Buy and py € (g, uy)
then it becomes a boundary equilibrium such that pj, = p € S?. In other cases, that
is, pfy € S7 or pfy ¢ Sy, this equilibrium is virtual. Remember that we are assuming
qui 7é :u% for 1,] € {+> _}7 then p]12 ¢ TIZ

The following proposition presents the stability characteristics of these pseudo-
equilibria.

Proposition 4.3.1. Consider the pseudo-equilibrium points p11 and p{Q, for j =+, —,
of system (4.2.3). The following statements hold.

(i) p11 is a stable pseudo-node if y. € (1 — Buy, 1), and a pseudo-saddle if y. > 1 or
Yr < 1—Busy .

(ii) pl, is a pseudo-saddle if y, > 1— i), a stable pseudo-node if y, € [1 T - zué, 1— ﬂ,u%) ,

aB?ud
2.

and a stable pseudo-focus if y, <1 — ﬁ/ﬂé —

Proof. The sliding dynamics in S is described by the vector field (4.3.1), which can be
investigated by the two-dimensional system

#= -y o=z, (4.3.4)
; L —py)z, if z2<z,
o {é(l‘ — )z i 2> oz (4.3.5)

Jacobian matrix is 85 B
—pz -z
J‘ f, Z) = _ _ ) )
9= (o)
where T and Z denote the coordinates x and z of the equilibrium points p;; and p{z, with
eigenvalues given by

1~ Bus — | J 4 ~
Lllz{yr—l,%} and LJHZ{—% (li\/l—aﬁglé-(l—ﬁu%—yr))}

for p;1 and p{z, respectively.

(i) It is easy to see that the equilibrium point p;; is a stable pseudo-node if y, €
(1—Bpus, 1), since the eigenvalues in Lq; are negative reals; and, it is a pseudo-saddle
for y, > 1 or y. < 1 — Bu; since the eigenvalues in Ly; have opposite signs.

(ii) It is easy to see that the equilibrium point p{Q is a pseudo-saddle if y, > 1 — [ ué,
since the eigenvalues in Lj, have opposite signs; and, it is a stable pseudo-node
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[0}

. 2 7 . .
for y, € [1 — Bud — 4“%, 1— ﬂu%) since the eigenvalues in L}, are negative reals;

aB?ul . . .
1, since the eigenvalues in

and, it is a stable pseudo-focus when g, <1 — B,u% —
L7}, are complex conjugate with a negative real part.

O

The vector field FJ; (resp. F;) is tangent to the switching line S C ¥; N3, at the
point q3y = (i3, Yr, 2r) € Tyr Ny (vesp. Ay = (K5, Yr, 2+) € Ty N'X1), being this point
classified as invisible fold if y, + 2, > 1 — Bug (resp. y, + 2. < 1 — Buy ) and visible fold
if ¥, + 2, <1— Bug (resp. y, + 2. > 1 — Bu, ). In the segment that joins the fold points
4,0 and gy, there is a new sliding motion, generated by the vector fields F;; and FJ;. If
1ty € (uy, 1) then this sliding segment is all inside S?, as in the case shown in Figure
4.2. In general, the sliding segment is denoted by S and defined by

S=3NY = {(2,y,2) : max[u, ;| <z <minlu], pug]}. (4.3.6)
These results are checked with the Lie derivatives: LFj1h2<.flf,yr, z) = Z=(x — 1) and

. j .
Ly ho(az) = =2 (1 = Bz — g — 2).
The sliding dynamics in S has the equations

T = (1_yr_2r_5x)$7
j=0, (4.3.7)
i =0,

with a stable non-trivial equilibrium at

1 — 4. —
p= (#yz) . (4.3.8)

The point p is a pseudo-equilibrium of the sliding vector field Fg;. In addition, it is real
whenever
1 — B min[pf, uy] < yr + 2, < 1 — B max|uy, py]- (4.3.9)

Considering only the switching boundary »; and the sliding motion occurring there,
we get a two-dimensional DPWS system (4.3.4)-(4.3.5) with the switching boundary
SY € ¥y, which has three regular equilibria and one non-trivial pseudo-equilibrium. In
this system (4.3.4)-(4.3.5) two Persistence bifurcations of boundary equilibria occur,
which is one of the scenarios of the well-known Boundary Equilibrium Bifurcation (BEB),
typical of DPWS systems, see for instance [20, 19]. However, such regular equilibria
and pseudo-equilibrium of the two-dimensional DPWS system, are equivalent to the
pseudo-equilibrium points pi1, Py, Pia; and to the pseudo-equilibrium point p. With that,
the bifurcation point is a boundary pseudo-equilibrium of system (4.2.3) and, therefore,
we renamed such a BEB as Boundary Pseudo-Equilibrium Bifurcation (BPEB). The
following theorem predicts the unfolding scenarios of BPEBs in system (4.2.3), that occur
in sliding dynamics restricted to ;.

Theorem 4.3.2. Assume 1, € (u7, 1), pi < 1/8, yp < 1 — Bug and y, + 2, €
(1 — Buf,1— Buy). System (4.2.3) undergoes a BPEB for y, + z, = 1 — Bug or for
Yr + 2, = 1 — Bug . Moreover, in both cases, the bifurcation is of the Persistence type and
involves the pseudo-equilibria p and pj, or p and py,, as described below.
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(a) If y, + 2z, < 1 — Bug then p is virtual, pyy is real and pyy is virtual.

(b) If yr + 2, =1 — Bug then p = p;y becomes a boundary pseudo-equilibrium, and piy
remains virtual.

(¢) Ify. + 2. € (1 — Bug,1 — Buy ) then p is real, py, and piy are virtual.

(d) If y, + 2, = 1 — Bu, then p = p, becomes a boundary pseudo-equilibrium, and piy
remains virtual.

(e) If y, + 2z, > 1 — Buy then p is virtual, py, is real and py, is virtual.

Proof. (a) If y, + 2z, < 1 — Bug then by (4.3.9) we have that p is virtual, since p ¢ SY;
and, by (4.3.3) we have that pf, is real and py, is virtual, since pf, € S and
P €57

(b) If y. + 2, = 1 — Bug then by (4.3.9) we have that p = p}, is a boundary pseudo-
equilibrium, since pf, € SY; and, by (4.3.3) we have that py, is virtual since
P € ST

(c) Iy, + 2, € (1 — Bug, 1 — Buy) then by (4.3.9) we have that p is real since p € Sy;
and, by (4.3.3) we have that py, and pf, are virtual, since pj, € S;" and pf, € Sy .

(d) If y, + 2, = 1 — Buy then by (4.3.9) we have that p = py, is a boundary pseudo-
equilibrium since pj, € SY; and, by (4.3.3) we have that pj, is virtual since

_l’_ —

P12 € 57

(e) If y + 2. > 1 — Buy then by (4.3.9) we have that p is virtual since p ¢ SY; and, by
(4.3.3) we have that pi, is real and pj, is virtual, since pj, € S; and pj, € Sy .
]

A bifurcation set in the (y,, z,)-plane of parameters is shown in Figure 4.3(a), and in
4.3(b) there are shown some planar phase portraits of the sliding dynamics of system
(4.2.3) restricted to Sy = Ty UX{* UTy" C ¥;. We are considering the hypothesis of

Theorem 4.3.2 and also y, < 1 — B,ué — %2“% from the Proposition 4.3.1, in order to
obtain pJ, and p inside X%, and also to obtain a focus dynamics in (x, z)-plane for both
the pseudo-equilibria p}, and pj,. For any (y,, 2,) in the regions 1, 2 or 3, on the left
horizontal dashed line in red color, the statement (a), (c) or (e) of Theorem 4.3.2 occurs,
respectively. These scenarios are structurally stable and the planar phase portrait for
each case is shown in Figure 4.3(b). For any (y,, 2.) at the border of regions 1 and 2
(solid red line) or at the border of regions 2 and 3 (solid blue line), the statement (b)
or (d) of Theorem 4.3.2 occurs, respectively. In both cases, a Persistence bifurcation
occurs at a boundary pseudo-focus. Looking at the planar sliding dynamics, we observe
the presence of typical unfoldings from boundary-focus bifurcations of Planar Filippov
systems, see [19].
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Figure 4.3: Sliding dynamics in 3. In (a) is shown a set of bifurcations in the (y,, z)-
plane of parameters assuming ;5 € (uy, 7)) and puf < 1/8, where the red and blue
lines indicate the Persistence BPEB involving the boundary pseudo-equilibrium p = pJ,
and p = py,, respectively. For points (y,, z.) in the regions 1, 2 or 3, one of the pseudo-
equilibria involved becomes real, and all of them, real and virtual, are located in ¥¢°,
being that py, (resp. pj,) have positive coordinates if on the left of the horizontal dashed
line in red (resp. blue) color. In (b) there are shown some phase portraits of the sliding
dynamics restricted to S; = T} UX{* UT," C ¥4, taking (y,, 2,) in the regions 1 (left),
2 (center) and 3 (right) of the bifurcations set. The green dot represents the py; point,
the red dots represent the pi, points and the blue dot represents the p point. They
are virtual when represented by a small circle with an empty interior. The black dots
represent the pseudo-folds q4, and q,. Consider z* =1 — [y, .
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4.3.2 Sliding dynamics on s and bifurcations

We now consider the sliding orbits of system (4.2.3) restricted to attractive sliding
region >§° C Yo, including its borders located at the parallel tangency lines 75, C 3o
and 75" C ¥,. The sliding vector field Fy; : Sy — R3 that governs the dynamics of the
sliding motion in Sy = T, U X3 U T, is given by

_ FS_2<.T,y7Z> if hl(ZE,y,Z) < 07
Fol®.y,2) = {Fsé(x,y,Z) if  hi(z,y,2) >0, (4.3.10)

where
_ (1-px—y—2)x
Flo(x,y,2) = alx — @)y : (4.3.11)
0

for © = +, —, and defined for z = z,, pu; < < ,u; and y > 0. This vector field is
piecewise smooth and has the switching line S = {(x,y,, 2,) : py < x < pg } that divides
the state space Sy into two zones: Sy = {(z,y,2.) 1 s <2 < py, 0 <y <y} and
Sy ={(x,y,2) 1y <x <pz, y> vy}

Sliding dynamics on Y5 has the same characteristics as the sliding dynamics on 3,
described in the previous subsection. We then proceed in a similar way to the previous
subsection. The regular equilibria of Fg, which are pseudo-equilibria for the system
(4.2.3), are located at the points: pay = (0,0, z,.) & S,

B

Proposition 4.3.3. Consider the pseudo-equilibrium points pa1 and pby, for i = +, —,
of system (4.2.3). The following statements hold.

11— Zr 7 i %
P21 = <—7 0, ZT> and  pyy = (:ula 1 —Buy — 2, Zr) (4'3'12)

(i) pa1 is a stable pseudo-node if z. € (1 — Buy,1), and a pseudo-saddle if z. > 1 or
zr < 1—Bp;.

(i) pby is a pseudo-saddle if z, > 1—But, a stable pseudo-node if z, € |1 — Bui — = z“li 1= B,ui),

Byl

and a stable pseudo-focus if z, < 1 — Bul — 1

Proof. The sliding dynamics in S5 is described by the two-dimensional PWS system

t=(1-2z — Pz —y)x, (4.3.13)
o Jolr =)y, iy <,

= . 4.3.14

AN (1314

Jacobian matrix is

Ji(z, %) = (;@I a(:c_—xui)> ’

where Z and ¥ denote the coordinates x and y of the equilibrium points ps; and pb,, with
eigenvalues given by

Loy = {zr -1, ol - 62“ — Zr)} and Léz = {—ﬁgll (1 + \/1 — ;2(;11 (1-— 5%%)) }

for pe; and pl,, respectively.
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(i) It is easy to see that the equilibrium point pg; is a stable pseudo-node if z,. €
(1—pBu, 1), since the eigenvalues in Lo; are negative reals; and, it is a pseudo-saddle
for z, > 1 or 2, <1 — [u; since the eigenvalues in Loy have opposite signs.

ii) It is easy to see that the equilibrium point p}, is a pseudo-saddle if z, > 1 — Bput,
22 Hy
since the eigenvalues in L, have opposite signs; and, it is a stable pseudo-node

. 2,4 . .

for z, € [1 o e ﬂui) since the eigenvalues in L}, are negative reals;

o
4

and, it is a stable pseudo-focus when z, < 1 — But —
L%, are complex conjugate with a negative real part.

, since the eigenvalues in

]

The vector field FJ; (resp. F_,) is tangent to the switching line Sy C ¥; N3, at the
point qiy = (i, yr, 2,) € T} N3y (resp. ayy = (47, Yr, 2+) € Ty N Xy), being this point
classified as invisible fold if y, + 2, > 1 — ] (resp. vy, + 2z, < 1 — Bui) and visible
fold if y, + 2z, < 1 — Bui (resp. y, + 2z, > 1 — Bui ). In the segment that joins the fold
points qj, and qj,, there is a new sliding motion, this generated by the vector fields F,
and F,. If p¢ € (g, pg) then the sliding segment S, given in (4.3.6), is all inside S3.
These results are checked with the Lie derivatives: Lyi hi(2,yr, 2,) = yya(r — pf) and
L%é2h1(q§0) = yuia(l — But — y, — z.). The sliding dynamics of vector field (4.3.10)
in S is described by the same equations for the sliding dynamics of vector field (4.3.1),
given in (4.3.7) and analyzed in the previous subsection. So, the pseudo-equilibrium p,
given in (4.3.8), is also pseudo-equilibrium of the vector field (4.3.10). In addition, it is
real whenever y, + z, satisfies the condition given in (4.3.9).

Considering only the switching boundary ¥y and the sliding motion occurring there,
we get a two-dimensional DPWS system with a switching line defined in S, C >,
which has three regular equilibria and one non-trivial pseudo-equilibrium. In vector
field (4.3.10) two Persistence bifurcations of boundary equilibria occur, involving the
pseudo-equilibrium points pa1, Pay, Pas, and the pseudo-equilibrium point p. With that,
the bifurcation point is a boundary pseudo-equilibrium (BPEB) of system (4.2.3). The
following theorem predicts the unfolding scenarios of BPEBs in system (4.2.3), that occur
in sliding dynamics restricted to .

Theorem 4.3.4. Assume pi € (uy,p3), py < 1/8, z» < 1 — Buf and y, + z €
(1—Bug,1—Buy ). System (4.2.3) undergoes a Boundary Pseudo-Equilibrium Bifurcation
for y, + z, =1 — Bui or fory, + 2z, =1 — Bu; . Moreover, in both cases the bifurcation
is of the Persistence type and involves the pseudo-equilibria p and psy or p and py,, as
described below.

(a) If y, + 2z, < 1 — Buf then p is virtual, py, is real and p,y, is virtual.

(b) If y. + 2, = 1 — Bui then p = p3y becomes a boundary pseudo-equilibrium, and pa,
remains virtual.

(¢) If yr + 2z € (1 — Bui, 1 — Buy) then p is real, pyy and pyy are virtual.

(d) If yr + 2, = 1 — Bu; then p = pyy becomes a boundary pseudo-equilibrium, and pay
remains virtual.
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(e) If yr + 2z, > 1 — Buy then p is virtual, py, is real and py, is virtual.
Proof. Analogously to Theorem 4.3.2, we have

(a) If y, + 2z, < 1 — Bu] then by (4.3.9) we have that p is virtual, since ps ¢ S5; and,
by (4.3.12) we have that p3, is real and p,, is virtual, since pj, € Sy and p,, € S5 .

(b) If y, + 2, = 1 — B then by (4.3.9) we have that p = p, is a boundary pseudo-
equilibrium, since p3, € S5; and, by (4.3.12) we have that p,, is virtual since
P2 € S;-

(c) fy, + 2. € (1 —Buf,1— Buy) then by (4.3.9) we have that p is real since p € Sy;
and, by (4.3.12) we have that p,, and p3, are virtual, since p,, € Sy and p3, € S5 .

(d) If y, + z, = 1 — Buy then by (4.3.9) we have that p = p,, is a boundary pseudo-
equilibrium since p,, € S9; and, by (4.3.12) we have that pj, is virtual since
P3 € 5.

(e) If y, + 2z, > 1 — Buy then by (4.3.9) we have that p is virtual since p ¢ S39; and, by
(4.3.12) we have that p,, is real and p3, is virtual, since p,, € Sy and p4, € S5 .

]

Sliding dynamics on ¥; N >,

By sections 4.3.1- 4.3.2, there is a sliding segment S = 39° N X%° defined in (4.3.6),
since

LF-!—lh2<.T,yr,Z7‘)< 0 <LF71h2(x,yr,zr),
LFZhl(:c,yT,zr)< 0 <LF—2h1(x,yr,zr),

where LFglhg(x,yr, z) = =(x — 1) and Lgi hi(x,yr, 2,) = yra(z — pi). Then, we can
define a sliding vector field in S as

(1-px—y—2z)z
FS (ZE Y, 2 ) = 0
0
When the trajectories achieve the sliding boundary and the states are forced to follow
a trajectory over the sliding segment S, then the dynamics described by F, at the
intersection of the switching boundaries become unidimensional as follows:

t=(1-pPx—y — z)zT, (4.3.15)
where (z,y,, z,) € S. Notice that the first cordinate of p defined in (4.3.8) is an equibrium
point for (4.3.15) that is real whenever condition (4.3.9) is satisfied, this mean that p € S,
and it is stable since Z(p) =y, + 2, — 1 < —f max|u, 15 ] < 0. Being that S C X1 N3y,
we have that p is the pseudo-equilibrium of the normalized system (4.2.3) in the sliding
segment S. In summary, we have the following result.

Lemma 4.3.5. Assuming the condition (4.3.9), system (4.2.3) has an unique real pseudo-
equilibrium in the sliding segment S C X1 U Yo, with coordinates denoted by p, given in
(4.3.8), and it is stable.
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4.4 Conditions of global stability for the coexistence of
predators

In this section, the conditions for the global stability of the pseudo-equilibrium point
p where the three species can coexist are formulated. Such conditions are derived from
the analysis of equilibria and stability carried out in the previous sections.

Theorem 4.4.1. Assume the condition (4.3.9) holds and pi, < piiy < 1/B. Then the
pseudo-equilibrium p = (2, Yy, 2), where T, = === s q globally stable point for

B
system (4.2.3) in D*.

Proof. The planes x = 0, y = 0 and z = 0, of two-dimensional coordinates in R?, are
invariant sets of system (4.2.3). Then a solution of (4.2.3) with a positive initial condition
remains in the positive octant forever. In the study carried out in [84] it was proved that
all solutions of system (4.1.1) with positive initial conditions are positive and bounded in
forward time. So, the solutions of (4.2.3) for each vector field F;; are also positive and
bounded in forward time.

By Lemma 4.3.5, taking any combination of parameters satisfying the condition
(4.3.9) and py, < MIQ < 1/, then there is an unique real pseudo-equilibrium point and
it is stable, being denoted by p = (x,,¥,, z.) (coordinates explained in (4.3.8)), with
z, = U= and located in the attractive sliding segment that appears at ¥; N 3s.
Under such conditions and according to Section 4.2.1 and Proposition 4.2.1, the vector
field F__ has two real saddle equilibria (denoted by 0 and e) and the vector field F_,
or F,_ may have a real equilibrium (denoted by ej or e, respectively), but it is also
of the saddle type. These equilibrium points appear on the borders of D. So, p is the
only attractor point for system (4.2.3). Furthermore, every future orbit starting in D*
converges to p, which can converge in finite time to a few system orbits (because p is a
pseudo-equilibrium).

To prove the global stability of p we use the Lyapunov function

V(x) = é (y — Y — yrlny£> +a (z — 2 — zrln§> +z—x,— xrlnﬁ, (4.4.1)

such that V(p) = 0 and V(x) > 0 Vx € D* \ p. From the derivative of V(x) with
respect to time we obtain

— = @)yt ) = (@ —m)y— (2 )z +(1=fr)(x—w,), for 4,5 € {+, —}.
Note that (z, — /Lzl)y + (2, — Mé)z < (z, — ,uil)yr + (2, — /L%)Zr, ie., (z, — qul)(y —yr) +
(v, — ) (z — 2.) <0, since: (i) if i = —, then y < y, and x, > ui; (ii) if i = +, then
y >y, and x, < ui; (iii) if j = —, then z < 2, and x, > py; (iv) if j = +, then z > 2,
and x, < ug. So we concluded that
v (x)" ; , ; .
BT e e+ (e )~ (2 i — (2~ )+ (1 ) — )

= _/6($ - xr)Qa

and dV (x)¥ /dt < 0 for all x € D* \ p. Therefore, the pseudo-equilibrium p is the global
attractor of the system.
O]
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4.4.1 Simulation results

The simulations below show the interaction between one prey and two populations of
predators under the proposed control. See Figures 4.4-4.5 where the blue point stands for
the pseudo-equilibrium point p (where the three species can coexist) and the trajectories
are represented by black curves.
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Figure 4.4: Figure (a) shows a phase portrait of the system with parameters pf = 0.8,
py =01, ug =0.7, uy =02, =1, a =1, y, = 2, = 0.325 for various initial conditions
of the prey and predators populations. The green dot represents the point p;; and the
blue dot represents the pseudo-equilibrium point p. Figures (b)-(d) exhibit the population
dynamics for one prey and two predators over time for distinct initial conditions.

Figures 4.4(a)-4.5(a) show a phase portrait of system (4.2.3) assuming the hypothesis
under system parameters of Theorem 4.4.1. It is observed how the trajectories of different
initial conditions go to the pseudo-equilibrium point as expected.

Figures 4.4(b)-4.5(b) expose the prey population change through time (days), in the
beginning, the number of prey increasing until a maximum of approximately 85% of its
carrying capacity depending on its initial condition, and after that, the prey population
decreases until it stabilizes at p.
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0.85

Figure 4.5: Figure (a) shows a phase portrait of the system with parameters p = 0.8,
py =01, 43 =07, 4, =02, =1, a=1,y, =02 and 2z = 0.3 (y, < z,) for various
initial conditions of the prey and predators populations. The green dot represents the
point pp; and the blue dot represents the pseudo-equilibrium point p. Figures (b)-(d)
exhibit the population dynamics for one prey and two predators over time for distinct
initial conditions.

Figures 4.4(c-d)-4.5(c-d) display the population size of each predator over time. We
observe that, at first, the two predators thrive when prey is abundant, but after a few
days, outnumber prey and their population diminishes until it stabilizes at p.

For Figures 4.4-4.5 we choose the parameters p = 0.8, uy = 0.1, ug = 0.7, u; = 0.2,
B =1, a =1, with the difference that in Figure 4.4 we take on y, = 2, = 0.325, and in
Figure 4.5 we have y, < z, such that y, = 0.2 and 2, = 0.3.

4.4.2 Harvesting control

In ecological systems, the control action can be associated with human interference
in the natural environment, which can take the form of a harvesting policy [93]. There
are basically two main reasons for obtaining control strategies for predator-prey systems.
The first one is to allow sustainable exploitation of its resources. The other one is to
restore ecological balance. These subjects have been treated by Cunha and Pagano [94]
and Meza et al. [95]. Furthermore, it is important to remark that the implementation of
a certain control signal u in the real predator-prey system might come across two major
problems: (i) feedback control laws require the measurement of the population sizes of
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both species at every instant of time. However, this might not always be possible in
numerous predator-prey interactions found in nature; (ii) the second problem is that the
control signals should model the human action on the ecosystem. Note that, in (4.2.2),
the control signals u; and wus represent the instantaneous rates of change (with respect
to t) of y and z respectively, that have to be applied into the system by human action.
Hence, if the control signals exhibit elevated rates of signal variation and/or assume a
different value at every instant of time, one can argue that human action cannot respond
in that manner in many ecosystems found in nature. In order to tackle these problems,
it is desirable to determine control signals that can be implemented by environmental
agencies as management policies. Note that, the harvesting control does not impose any
switching frequency limit because the switch rule is state-based instead of time-based.
Consequently, the switching may evolve to unacceptable high frequencies. This behavior
is treated in the literature as chattering (see more details in [93]). According to May
and Beddington [96], a constant harvest quota is an idealized model of real management
policies adopted by environmental agencies. Hence, in order to adequate human actions to
the control signals, a control strategy that determines piecewise-constant control signals
from periodic measurements of the prey and predator population sizes is proposed in [93].

4.5 Conclusion

This chapter addressed the study of the global dynamics of a Lotka-Volterra piecewise-
smooth system with two predators competing for one prey where the resource for prey
is limited (i.e., K is bounded). A control harvesting strategy defined by two switching
boundaries that determine piecewise-constant control signals for the tracking problem
of predator-prey systems was proposed since this type of signal is an idealized model
of management policies adopted by environmental agencies. The reference trajectories
of the two predator species are chosen to restore the original dynamics of a disturbed
system and to guarantee the global stability of the pseudo-equilibrium point where the
two predator species and one prey specie can coexist. In this sense, a proof of the global
stability condition for the pseudo-equilibrium point was presented.
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Chapter 5

Nonlinear analysis of DC power
converters connected in parallel

In this chapter, we study a method of stability analysis of the nonlinear dynamics
of a DC-DC buck converter controlled by a step-mode control law (SMC) connected to
two power converters: a boost converter and a buck converter, both modeled by CPL by
parts functions.

5.1 Introduction

Dc distribution systems are becoming increasingly common in industrial applications,
most specifically the distributed power systems (DPSs) with multiple switching power
converters, such as dc micro-grids, electric vehicles, aircraft, communication systems,
and other applications which provide more efficient conversion of energy, to reduce cost,
power quality, efficiency, and simpler power electronic interfaces and control.

Most research focuses on dc distributed power systems with a single DC bus. So, they
may not be able to very succinctly assess the stability of multivoltage DC distributed
power systems, since power sources and loads are connected with interfacing power
converters via a DC bus, where each converter in the DC distribution system is expected
to be well designed when operating as a standalone system by ensuring a sufficient phase
margin at the cut-off frequency of the converter and the stability of the whole system.
However, the stability assessment is valid only when the system is subject to small
signal disturbance. In practice, the DC distribution system is often confronted by large
disturbances, such as during start-up or abrupt load change. These factors may intensify
through the interaction of the subsystems, resulting in undesirable consequences on the
system’s transient stability performance. Some analysis methods have been proposed,
such as the phase-plane analysis which is suitable for numerical simulations (see [80] ),
and bifurcation analysis which can give boundaries of stable operation of the system for
stability assessment (see [81, 82]).

In this work, the system under study can be considered as a piecewise smooth
dynamical system in R? (for short, 3D-PWS system) with three switching boundaries
defined by (i) the SMC law designed to control the voltage output of the first buck
converter; (ii) the voltage threshold at vy,s = Vi1 due to the non-smooth characteristic
of the CPL of the buck converter; and (iii) the voltage threshold at vy,s = Vipo due to the
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non-smooth characteristic of the CPL of the boost converter. It is noteworthy that the
sliding motion occurs only at the SMC-boundary and the vector field that governs this
motion, calculated following Filippov’s convention, is continuous but not differentiable at
the intersection with the CPL-boundary, which involves us with the theory of CPWS
systems and Filippov systems (DPWS) [1, 34, §|.

The main goal of this chapter is to analyze the stability of multivoltage-level dc
distributed power system given by a DC-DC buck converter controlled by a sliding
mode control (SMC) law connected to two power converters where one of them is a
boost converter and another is a buck converter, both modeled by a CPL piecewise
function. We also study local phenomena associated with bifurcations induced by the
switching boundaries, as the Boundary Equilibrium Bifurcations (BEBs, [20, 19, 24, 23|
and Discontinous Saddle-Node (DSN, [22]), which are part of the group of Discontinuous
Induced Bifurcations (DIBs, [41, 43]). Classic bifurcations as the Hopf and Saddle-Node
equilibria (see [49, 50]) are also investigated.

In the qualitative analysis performed we use standard tools for DPWS systems.
Numerical continuation methods based on AUTO software are also employed to obtain
bifurcation sets and bifurcation diagrams. The CPL equations used in this work are class
CY functions, that is, continuous but with discontinuous derivatives. As a significant part
of this work involves the bifurcation analysis of dynamic systems, C* models are more
suitable for performing numerical continuation calculations using computational packages
such as XPP-AUTO (see [83]), which help us to better understand the dynamic behavior
of this system and also to verify the analytical results.

Theoretical background for understanding the dynamics of Filippov systems and
some preliminary results on DPWS systems relevant to our purposes can be found in
8, 42, 82].

The remainder of this chapter is organized as follows. The modeling of the DC-DC
buck converter controlled by a sliding mode control (SMC) law connected to two power
converters both modeled by CPL piecewise functions is developed in section 5.2, where
we analyze the existence, local stability and bifurcations of regular equilibria and pseudo-
equilibria. Due to the complexity of our model, we divided it into three case studies. In
section 5.3 we study the first case where V3, = Vipo. In section 5.4 we study the second
case where Vi1 < Vipse. In section 5.5 we study the third case where Vi > Vipe. Finally,
in section 5.6 we present a brief conclusion.

5.2 Model description

The behavior of a DC-DC buck converter controlled by a sliding mode control (SMC)
law connected to two converters in parallel: a boost converter and a buck converter, both
modeled by CPL piecewise functions; is given by
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Figure 5.1: Block diagram of the studied DC microgrid. Simplified system diagram
assuming that the loads are represented by CPLs and the PV source by a CPS. Vj, is the
battery voltage and DBC stands for the bidirectional power converter controlling the DC

bus voltage.

di
L% = uVin — rrig — vo,
dv . .
Cd_to =1L — o,
di
Lline% = Vo — Upys — Z.Orlinea (521)
AVpys ) P,
Cbusd—b =19 — (@1&1(Vbus, Vin1) + @262 (Vbus, Vinz)) + —,
t Vo
Y i — 2)
— =wp(iy — 2
dt F\'L F)

where ¢; = {0,1}, with ¢« = 1,2, In system (5.2.1), & (vpus, Vin1) is a CPL piecewise
function of conversor Buck defined by

P
v ) if Vbus 2 V;‘/hla
bus
€1<Ubusa Vthl) = P
1Vbus .
V2 ) if Upus < ‘/thla
thl

and & (vpys, Vinz) is a CPL piecewise function of conversor Boost defined by
Py

&2 (Vbus, Vinz) = { Vbus

Lip,, it Upys < Vigg,

) if Vbus Z %h?a
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DC-DC converter with MPPT
G 1py
— 3 _ Y
§ oA
_>_ = ]
PV BUCK
il o
— > _
%Rl
I BUCK . — =
: rr, L : Tline Line
ot AT
] in(t) ! io ()
‘/in <t> : \SQ C - ivo(t) Cbus :: 1'2 BOOST
\ ' o—)%i _
: I Ry
; : o— =

(a) de-dc buck converter connected to two load converters and a PV source converter.
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(b) Washout filter. (c) Sliding mode controller.

Figure 5.2: Basic topology of a dc-dc buck converter controlled by a sliding mode and
washout filter control strategy, connected to two converters in parallel. The control
function is defined as u = 1(1 — sign[H (ir,, vc, zp)]). The filtered inductor current given
by ip = i, — zp expresses the difference between the inductor current ¢;, and the filtered
signal zp.

where L, C, Line, Crus and 1, denotes the inductance of the capacitor, the voltage
capacitor, the inductance of the bus, bus capacitor and the inductor resistance, respectively.
Due to the complexity of the model in Figure 5.1, we will consider the battery as a
constant value. The power consumed by the load (load parameter) is denoted by P » € R
and Vip e are the voltage threshold. ip € (—imaz, tmaz), fOr some i, > 0, are the

inductor current and I, = tmer = Vf 52. The output buck current is denoted by ig.

Variable zp denotes a filtered inductor current and wp < 1/ V/LC is the cut-off filter
frequency. In Figure 5.2 the parameter G is the solar irradiation, T the temperature
on the PV module of a DC-DC converter with maximum power point tracking (MPPT)
and P, represents a constant power source that is the PV-converter operating in MPPT
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mode. The control law u is defined as
1 . .
U= 5(1 — sign[H:(ir, vo, 2r)]), (5.2.2)

where © = 0 means that switch S is off and u = 1 means that it is on. From this, the
control surface is chosen as

H1<iL,U0,ZF) = Vo — ’U; + K(ZL — ZF) = 0,

where K > 0 is the control parameter, which must be adjusted properly to ensure stability
at least local stability of the desired operating point and vy ~ v§ < V;, represents the
reference voltage, that is, the desired voltage for the output value, with V},, denoting the
source voltage.

It is a cumbersome problem to analyze all possible cases, therefore, in this chapter, we
will focus our study analysis on the stability condition at the pseudo-equilibrium point of
system (5.2.1) assuming q; = q2 = 1, Lyjne = 0 and 7y, = 0, consequently vg = vp,s. We
define C, = C + Cy,s as a capacitance equivalent to the voltage capacitor and the bus
capacitor. The other cases remain open problems. Thus, the system of equations defined
in (5.2.1) can be reduced to

di .
Ld_f = uVip, — rrig — vo,
dU . Ps
Ced_to =iz, — (& (vo, Vint) + &2(vo, Vinz)) + o (5.2.3)
0
LT —
— =wpliy — 2
dt F\lL F)y
with
—17 if vo > Vip,
Vo
&1(vo, Viny) = (5.2.4)
Pt if vg <V,
) 0 thl,
Vi
and
) lf Vo Z ‘/thQa

Lip,, it vy < Vipa.

System (5.2.3) is normalized by applying the change of variables and time given by
Table 5.1 Then, we obtain the simplified system of the form

T=u—bxr—y,

y=x—"E&(y)+ %, (5.2.5)

d
73:(1—kb)x+(w—k)y—§0(y)—wz—wyT—l—ku—l—ﬁ,
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State and Time Variables Parameters

) — Ce —
L = ‘/m L x Uy = Vinlr
-1 - v
UO - V;ny CL)F /Lce

op = g, + ==Yz K=k/&
t=C.Lr P =12/ %dy
Py =V2\/%d,
Py = Vi Fds

L
’T’L:b C.

Table 5.1: Normalized variable, parameters and time.

where &(y) = &1(y) + &2(y), &1 (y) is a normalized CPL piecewise function of the buck

converter given by
(

1 .
D if Yy 2 Ythi,
Yy

&i(y) = ¢ (5.2.6)
dﬂ/ .

——, if ¥ <y,
\ythl

and &(y) is a normalized CPL piecewise function of boost converter given by

¢ d )
?27 it v > Yo,
L) =1 , (5.2.7)
_27 lf ) < Yth2,
\ Yih2

such that z, ¥y and z are the normalized variables of the inductor current, capacitor
voltage and filter, respectively, of the first buck converter. The normalized parameters
dy >0,dy>0,we (0,1], k> 0,b>0, Yn1, Yo and g, correspond to the CPL to buck
converter, CPL to boost converter, inductor resistance, filter cut-off frequency, control
parameter, inductor resistance, the voltage threshold of the capacitor voltage at CPL
to the buck converter and CPL to the boost converter (respectively) and the reference
voltage, respectively. We denoted x = (z,y, z) € D, where

D={x€R®: 2 € (~Tpmazs Trmaz), Tmaz >0, y >0, zcR}

From the normalized system (5.2.5), the control law given in equation (5.2.2), can
be rewritten as u = %[1 — sign(z)], so we redefine the planar switching surface as
hi(x) = z = 0. In addition, there are two additional switching boundaries more, imposed
by CPL of buck converter and boost converter, and given by hy(x) = y — ym1 = 0 and
h3(Xx) =y — yne = 0, respectively. In this way, the switching boundaries are defined by

le{XEDZhl(X):Z:O},
Yo={x€D:hyx) =y — yy =0}, (5.2.8)
EgI{XEDZhg(X) :y—ythQIO}.
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We analize the normalized system (5.2.5) in three cases, when yi,1 = Yo, Yin1 < Yne
and Y1 > Yo

5.3 Case study for y;,1 = Yo

Throughout this section we define yu, = Y1 = Yin2, Lq2,3y = L2 = Xs and Ay 51(x) =
ha(x) = h3(x), as shown in the Figure 5.3(a). Due to the switching boundaries defined in
(5.2.8), the state space of the system is divided into four different regions, namely

Dy ={x € D: hi(x) > 0and h(x) > 0},
Dy ={x € D : hy(x) > 0and h(x) < 0},
Dy ={x € D : hi(x) < 0and h(x) <0},
Dy={x€ D:h(x)<0and h(x) > 0}.

In each one of these regions there is a distinct vector field acting, then the system (5.2.5)
is represented as a 3D-DPWS system of the form

Fl(x)y if xe D17
oo FQ(X)a if xe DQ,
X = Fy(x), if x € Ds, (5.3.1)
Fi(x), if xe€ Dy,
composed of the vector fields
—bx —y —bxr —y
Fl(x) = |T—= % + dﬁ , Fg(X) = |ox — _dly;%yth + 651_3 :
fi3 fos
[ 1—-br—y 1—bxr—vy
Fy(x) = |o— @05 + @) and Fy(x) = |z — 22 4 @)
foz+k fizg+k
where
dy + dy

f1,3=(1—k:b)1:+(w—k)y— —wz—wyT+_3’

B dy + dayn

5 —wz—wyr+—3.
Yin

fos=(1—kb)z+ (w—Fk)y

Proposition 5.3.1. There is no sliding motion at the switching boundaries Yo 3y defined
in (5.2.8).

Proof. A straightforward calculus produces, Ly, ,x)hi2,31(X) - Ly, ,(x)hi2,33(x) = (7 —
&oly) + %)2 > 0, Therefore, ¥po3 is just a crossing boundary, containing a double

tangency line at = &o(yn) — %}i and y = y;,, and z € R. O
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{

Figure 5.3: Show the switching boundaries defined in (5.2.8). Figure (a) shows the
switching boundaries when ;1 = Y2, defined by Xy 5y, Figure (b) shows the switching

3

Y9 Y3
z
Dy Do D5 Dy
2 (G H G , oA
y : |
1 | y
x

boundaries when 311 # Yino-

In order to analyze the dynamic behavior of system (5.2.5) on the switching boundary
Y1, we calculate the sliding and crossing regions taking into account the discontinuity at

y = Y. For this we divided the study in cases as follows.

(b)

(i) For y > y,: the crossing and sliding regions are defined, respectively, by

where

(ii) For y < yu,: the crossing and sliding regions are defined by

where

a(y) =

Q(y):m(

B

B

() = 1 (dly + doyun, ds
(1 —kb) thh

() = 1 <dly + doyun  ds
(1 —kb) yt2h

=)y

Yo, ={x€X: zxz>a(y) or z>ay)},

Yo ={xeX:aly) <z <aly)},

1

1

di +dy —ds + (w(z —y) + ky)y + wy,) ,

ZCQZ{x621:x>B(y) or x>é(y)},
S, ={xe%:By) <z < By},
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5.3.1 Regular equilibria and stability

In what follows, we analyze the equilibria of the vector fields F;(x), for i =1,2,3,4
and its stability considering only the dynamics with respect to the variables (x,y), since
that the first and second component of the vector fields mentioned above are independent
of the dynamics in their third component z, whose dynamic is stable the associated
eigenvalue is —w < 0. Thus, we just need to consider the reduced linearization Jacobian
matrix given by
—b -1

L (s +3)

(i) Fy(x) has no equilibrium point for d; > 0 and dy > 0.

A= (5.3.6)

(ii) F2(x) has an equilibrium point, given by

< = (dy £ 7/Vb)ysn —bdoyun F yiyVbd ~ <2bd1yr + bdayin + 29,5, £ ymx/l—))
: 2bd +y3) " bdituh 2(bdds + o7,

where v = /bd3 + 4d1d; + 4d3y?, . Equilibrium X3 is virtual because hy(X3) <
0. In other hand, X; is real for y, < (b=bda )y, (hi(X3) > 0) and d3 <

2bd1+2ytzh

(bdy+y2, +bd2)2 —b2d3
4bd; +4by?,
rium point if

(h{231(X5) < 0). Moreover, this point is a boundary equilib-

Vh—bd . (bd1 4y, +bdz)? —b*d3 <=
° Yy = W (hi(X3) =0) and d3 = ~— 351+4§y§h 2 (hi23y(X5) = 0),

Vo—bda)ys — (bd1+y3, +bd2)? —bd3 <=

oy, = W (hi(X3) =0) and d3 > ~— 351_"_4;!?’1 2 (h{2,3}(X2) <0),
h—bd - (bdy+y2, +bd2 )2 —b2d2 _

® Y. > W (hl (XQ) > 0) and dg = ! 43(:51+4b2yt2h 2 (h{2,3}(x2) = O)

The determinant and trace are given by

 bd3 + 4bdyds + Adsy?, F doy Vb

Det[A(X5
d 4ds(bd 22
T = b L)

Ui (bd2yth + Yy \/1_7>

Equilibrium X; is stable because Det[A(X; )] > 0 and Tr[A(X; )] < 0 for ﬁ <

—b2d3(di+by2,)
ds < Grirpr rg
(iii) F3(x) has an equilibrium point, given by
— _ (1 bdayin — Y £ 8 Yii, — bdoyun F 5 bt e — Yin £ 5)
PUNb L 2(bdityp) T 20bdi+yp) T 2(bdi+ )

where 8 = \/4bdzy? (bdy + v2,) + (y3, — bdaysn)?. Equilibrium X3 is real for y, >
—q2 _

M IE (1 (%) < 0) and dy+dp —dg < UL (hiy g (%F) < 0). Moreover,

this point is a boundary equilibrium point if
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.« y — W(hl( ) =0) and dy +dp—dy = L2URLn (hyy 0 (%) = 0)),

oy = BV () (x5) = 0) and dy +dy—dy < USSR (g o (%5) < 0)),

2(bdl +yth

bd2 t t B t t
.y7_>—;fdf—+ihﬁ(hl( 7)< 0) and dy +dy — dy = T2 () o (%) = 0).

. b +yen—y2, — —
In other hand, X3 is real for y, > _22J(rzz;1h—+i§:)ﬂ (hi1(X3) < 0) and dy + dy — d3 >

MT“’“‘ (hg2,31(X5) < 0). Moreover, this point is a boundary equilibrium point if

bd th— t2 — x_ th)Yt
oy =~ v (h(%5) = 0) and dy +dp — dy = LR (gy 5(%5) = 0),

oy = _—bd%%: % (hi(%5) = 0) and dy +dy —dy > L2 (1, 0 () < 0),

oy > —W (h1(%3) < 0) and dy +dy — dy = T8 () o () = 0).

The determinant and trace are given by

- —2(bd — yon) (bd1 + 43
Det[A(x})] = - . ( = ) ;h)
o (43, — by F /7, (B + A1) + o7, — 20y (dz — 2syn) )
d
TrARE)] = —b— —+
Yin

4d3(bdy + y2,)?
.
<:|:bd2yth Fy2, + /3, (02(d2 + 4dyd3) + y2, — 2byu(da — 2d3yth))>

Equilibrium Xj is a stable point because Det[A(X5)] > 0 and Tr[A(X5)] < 0 for

dy < _z?h and dz < (bdQ‘(g;’ff)(f;j i) n other hand, X3 is a saddle point, since
th
Det[A(Xy)]

F,(x) has an equilibrium point, given by

x (lEy 1F~v 1Fv-—2y,
X4_ ) ) )
2b 2 2

with v = /1 — 4b(d; + dz — d3). Equilibrium X{ is real for y, > (h1 (x1) <0)

and yy, < 52 (h(xi) > 0). Otherwise, it is virtual. Moreover X; becomes a

boundary equilibrium point if

Analogously, the equilibrium X is real for y, > 2 (hy(X;) < 0) and yy, < 52
(h(x;) > 0). Furthermore, it becomes a boundary equlhbrlum point at if

o = (n(x;) = 0) and g < 15 (h(x;) > 0),
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The determinant and trace are given by

2—4 — 4 —
Det[A(iflt)] _ b(dl + dQ : dg) Fv b(dl —+ d2 : dg) ‘
(y¥1) (vF1)

Equilibrium Xj is a stable point because Det[A(X])] > 0 and Tr[A(X})] < 0 for
&+ < di+dy—ds < ﬁ In other hand, X, is a saddle point, since Det[A(X, )] <0
forall 0 < dy +dy —ds < ﬁ).

and Tr[AX;)] = —b+

5.3.2 Sliding vector field and pseudo-equilibria
Sliding vector field associated to the dynamical system (5.2.3) is defined as

wyr—y)—z+o(y)twz _ ds
k

F.)=| ao-&p+% |, (5:3.7)
0

where (z,y,2) € ¥, C ¥;. The pseudo equilibrium points are given by x = (£,(y), y,0)
that depend of values of &y(y), i.e, the discontinuity at y = wy,. So, there are two
pseudo-equilibrium,

~ d1 + d2 — d3 ~ dlyr + d2yth d3
X = —7yr,0 and X9 = —2__>y7‘70 ’
Yr Yin Yr

for y >y, and y < yu, respectively. By hypothesis y, > 3;5,, then the pseudo-equilibrium
X is always virtual, so the stability analysis will be just for the pseudo-equilibrium point
Xj.

Since the first and second components of F(x) mentioned above are decoupled from

the third component, then we only need to consider the reduced Jacobian matrix given
by

A - % (w 4i:o(y)) +dkd;%
1 —&o(y) — "
Pseudo-equilibrium X; is stable because Det[A(X;)] = ¢ > 0 and T'r[A(X;)] = k(di+da—dy)—yi

ky?
0for 0 < k< dl+fl—72_d3 with dy + dy # d3, otherwise is unstable. Moreover, the pseudo-

equilibrium X; is real (located in the sliding region) whenever d; + dy — d3 < %

Proposition 5.3.2. Consider the vector field Fy defined in (5.3.7). For dy+dy = % +d3
a subcritical Hopf bifurcation occurs at X;.

Proof. From the determinant and trace at X;, we conclude the following
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Det[A(%)]] - Y,

d1+d2=%+d3 -k
TrlAxy)]|

a0
d(d1 + dg)

2 p—
di+d2 :% +d3

~ 1
TT[A(Xl)”dr&-dz:%—&-dg = E 7é 0.

Thus, we show the necessary condition to obtain Hopf bifurcation. Notice that, the x

and y components are decoupled from z component in (5.3.7). Now, desingularizing

the vector field FS|§O(y):d1+d2 (see (5.3.7)) and considering Fy; = k’yF5|§0(y):d1+d2, the
Yy Yy

differential equations that describe F4(x,y) are expressed as

& =w(y, —y)y —ay+di +dy — ds, (5.3.8)
y = k(zy — (di + d2) + d3),

then, translating the pseudo-equilibrium X; to the origin in (5.3.8) with d; +dy = % + ds,
we get
2

. y?
&= —wy’ —xy — YT — (5 +wyr)y, (5.3.9)

y = ky.x + kxy + y,y,

according to [19]-page 243, the first Lyapunov coefficient of the vector field F can be
calculated, and it is given by

s 3rk?
IVkw(1 + kw)y?

Hence, we have an unstable limit cycle and so, this Hopf bifurcation is subcritical.  [J

5.3.3 Boundary equilibrium bifurcation

Now we are going to show the occurrence of BEBs in system 5.3.1. By hypothesis 3, >
Y, in addition to that taking z = 0, y = y, and solving the equations F;(z,y,.,0,d) = 0
with d = dy +dy —ds, for i = 1, 2,3, 4 respect to (x,y, z,d), we get a boundary equilibrium

1 -y, L=y,
(§b47dB4) = ( by ;ymo, %) , (5310)

where X;, denote the boundary equilibrium related to the vector field F4(x) and appearing
for the critical value d; +dy —ds = dp, of the load parameter. Notice that, The boundary
equilibrium related to the vector fields F;, for ¢ = 1,2, 3 are left out of our study, since
by hypothesis d; > 0, ds > 0, d3 > 0 and y,. > 13, Therefore, the BEB occurs just at the
point X, .

In Figure 5.5 a two-parameter bifurcation study is presented. The power load
parameter (d;) and the control parameter (k). The black line indicates the occurrence of
BE By involving the equilibria X; and X;, of the vector fields F; and Fy, respectively.
The green line refers to a saddle-node bifurcation (SN.) at d; = d3 — do + 1/4b. The blue
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Figure 5.4: Simulation results of system (5.3.1) with parameters b = 0.006742, k& =
0.6742, dy = d3 = 0.02575, 11 = 0.0416667, yime = 0.0833333andy, = 0.5 showing the

unstable limit cycle in black color; the point of pseudo equilibrium is represented by red.
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Figure 5.5: Bifurcation set in (k, d;)-plane showing the main local bifurcations assuming
b=0.006742, ,k = 0.6742, dy = d3 = 0.02575, Y1 = 0.0416667, yime = 0.0833333, w =
0.461288 and y,. = 0.5.

straight line segment refers to subcritical Hopf bifurcation (Hy) at dy = d3—dy+b/(14b%)2
of the equilibrium X, . The red parabolic curve segment indicates a subcritical Hopf
bifurcation (H?,,) at d; = d3 — dy + 32 /k of the pseudo-equilibrium X; and the purple line
refers to a discontinuous saddle-node (DSN) at d; = d3 — ds + (1 — ysn1)yen1/b. The point
P; with ¢ = 1, 2 indicates the codimension-two bifurcations occur simultaneously, but not
necessarily involving the same equilibrium point. In P; the subcritical Hopf bifurcation
(HZ,,) occurs together to BEByp and, in P, the DSN occurs concomitantly to HZ,,.

5.4 Case study for y;,1 < Yo
Due to the switching boundaries defined in (5.2.8) and assuming that yi,1 < Yo, as

shown in the Figure 5.3(b). Observe that in this case the state space of the system is
divided into six different regions, namely
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Dy ={x€ D: hy(x) >0, ha(x) > 0 and hz(x) > 0},

Dy ={x€ D :hy(x) >0, hy(x) < 0and hz(x) < 0},

D3 ={x€ D:hi(x) <0, ho(x) < 0 and hs(x) < 0},

Dy={x€ D: hy(x) <0, ha(x) > 0 and hz(x) > 0},

Ds ={x€ D: hi(x) >0, ho(x) > 0 and h3(x) < 0},
) (x) (x)

Dg={x € D : hi(x) <0, hao(x) > 0 and h3(x) < 0},

such that x = (z,y,2) € D. In each one of these regions there is a distinct vector field
acting, then the system (5.2.5) is represented as a 3D-DPWS system of the form

(Fl(X), if x - D17
FQ(X)7 lf X € D27
- Fg(X), if x € Dg,
x= F4(X), if x € D4, <541)
F5(X), if xe D5,
\Fﬁ(X), if x € D67
composed by the vector fields
[ —bx—y —br —y
Ji3 Ja3
[ L—bx—y 1—br—y
Fyfo) = [o -t =+ 9| Fulo = [o- 20 g
foz+k fis+k
[ —bxr —y 1—bxr—vy
F5(x) = iU—ﬁ—dj—i—% and Fg(x) = m—y‘%—%—kdf ,
| f33 fas+k
where
dy +d d
fizs=(1—kbx+ (w—Fk)y— 1y 2+§3—wz Wy,
d d d
fos = (1—kb)x+(w—k)y—%y——2+—3—wz—wyr,
Yine Y2 Y
d d d
f3,3:(1—kb)37+(w—/€)y——2——1+—3—wz—wyr.
Yin2 Y Y

Proposition 5.4.1. There are no sliding motion at the switching boundaries Yo and X3
defined in (5.2.8).

Proof. A straightforward calculus produces, Ly, ,x)h2(X) - Ly, ¢(x)h2(x) = (@ — &o(y) +
%3)2 > 0 and Ly, ,x)h3(X) - Lr; sx)h3(x) = (2 — &o(y) + df)z > 0, Therefore, Y5 and X3
is just a crossing boundary. Containing a double tangency line at x = &o(y) — ;‘% and
Yy = Y, and z € R.
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In order to analyze the dynamic behavior of system (5.2.5) on the switching boundary
Y1, we calculate the sliding and crossing regions taking into account the discontinuity at
Yy = Yn1 and y = Yo, for this we divided the study in cases as follows.

(i) For y > ype, the crossing and sliding regions are defined by ¥, and X, as defined
in (5.3.2) and (5.3.3), respectively.

(i1) For yin1 < y < yune, the crossing and sliding regions are defined as follows

S, ={x€B1:2>0n(y) or z>py)}, (5.4.2)
S ={x€X:0(y) <z <ply)},
where
_ 1 di dy ds >
==+ = =t ky+twly —y)y +wz],
o) (1 —kb) < Y Y2 Y Y i
1 dy do ds )
(42 By Dyt wly —y) +wz ).
p(y) = kb)<y T (y =Dy +w(y —y)

(iii) For y < yuu1, the crossing and sliding regions are defined as follows

S = {xE€ D12 >T(y) or > my)}, (5.4.4
Yo, ={xeX my) <zx<w(y}, (5.4.5)
where
_ 1 diy =~ dy ds )
w(y) = + ——+ky+twly —y) +wz |,
) (1 —kb) (yfm Yino Y Y ¥~ )
1 diy dy  d3 )
w(y) = + ——+kly—-Dy+wly, —y) +wz|.
@(y) 1= k) ( 2 ey (y =Dy +w(yr —y)

5.4.1 Regular equilibria and stability

As we mentioned in Subsection 5.3.1, the first and second component of the vector
fields F;(x) (i = 1,2,3,4,5,6) are independent of the dynamic in their third component
z, whose dynamic is stable the associated eigenvalue is —w < 0. Thus, we just need to
consider the reduced linearization Jacobian matrix as defined in (5.3.6). Then, we will
analize the equilibria of the vector fields F;(x) for i = 1,2,3,4,5,6 and its stabilities
considering only the dynamics with respect to the variables (z,y).

(i) F1(x) has no equilibrium point for d; > 0 and dy > 0.

(ii) F2(x) has an equilibrium point, given by

%E = (d2y1€2h1 + ythlp/\/g7 —bday1 F YenipVb
2(bdy + thhl)ythQ 2(bd; + yfhl)ytm
_bd2yt2h1 — 2bd1 Y, Yina2 — Q?erfmytm + ytmp)
2(bdy + Y1 ) Yen2 7
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(i)

where p = \/bd3y?, + 4ds(bdy + y2,,)y3,. Equilibrium Xj is virtual because

hi(X3) < 0. Equilibrium X, is real for y, < %"% (hi(X3) > 0), d3 <

dy + ythi(bdig;‘:;i/;hiythz <h2<§2—) < 0) and ds < dy + M (h?’(iz_) < ()) Other-

wise, it is virtual. Moreover, X, becomes a boundary equilibrium point if

= _ bd ~
* - = AR (n(%;) = 0), da < dy 4 el (y(%) < 0) and
;) <0),

ds < dy + ych(bd1+yth1 (h
0), d3 = dy + ythi(bdi;zg;hiythz) (ha(X;) = 0) and

Yth1P— bd2yth1
° Yeh1p=002Uth1 X
Yr 2(bd1+yth1)ym (7 (%

3(X
)) >
d3z < dy + —ythz(bdﬁythl) (h3(Xy) < )
) >
(x

yzhig—bdzythi -
° Xy
Yr < 2(bd1+y2, ) Yen2 ( (

ds = doy + Yina (bd1+v7, ) (hy

bythl

bd <=
0), ds < di + Yen ( i;f;hlym (ha(X,) < 0) and

2)=0).

The determinant and trace are given by

2(bdy + 1) (bd5y7,, + 4ds(bdy + Y71 )Yins — doyen1pV'b)
ythl(p\/g — doyim \/5)2 ’

d 4d5(bd 2 )23
TT[A(KQ_)] - _ph— 1 3( 1 +yth1) Yino

2 2"
Yim (bde,?hl - ythlp\/5>

Det[A(x;)] =

Equilibrium X; is stable because Det[A(X; )] > 0 and Tr[A(X; )] < 0 for d3 > 0.

F3(x) has an equilibrium point, given by

—— (deiytm + Y (0da + yenz) £ =y (bdy — yuna) F &
° 2b(bdy + Y1 ) Yin2 " 2(bdy 4 Y ) Y2
—2bd1 Y Yin2 — Yiny (bda + (2yr — 1)yan2) F &
2(bdy + Y )Yena

),

where & = \/4bdzy2,, (bdy + y2,,)y20 + Yii (Yina — bd2)? Equilibrium X7 is real for
2 —
Yr > (y“étbdi‘fifﬁfiiiﬁi £ (%) <0), dy > dy + Bt + Gk = 1 (he(%F) < 0) and

Ynotyin (bd2—yin2)
d > thb2y télblch—i-y o ) (hg(
a boundary equilibrium point if

X5 ) < 0). Otherwise, it is virtual. Moreover, X, becomes

(v, —bdayina)yinz—¢ d : %
o o= U () = 0), dy > d 4 e s s () < 0)

2 9
Yino Vi1 (bd2—yin2)
and d > th2 thl

3 by, (bd1+v7,1) (hs(® ) 0),

(y2,; —bdoyin2)yrha—E& —+ y day y —y
 Yr > Taa e (1K) <0), dy = di T+ T — g (ha(Xy) = 0)

2 2
YinotYin1 (bd2—yin2) —+
and dz > b (b (hs(X3) < 0),

2 _bd —£ d =
o > U () < 0), dy > diot B+ B - (oK) < O

t + t bd —
and dy = Yk tin e 1s) (k) = 0),
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° y'r — (y?hlfbdeth2)yth27§ (hl(ig_) 0) d3 — dl‘i— ythl + d2yth1 _ Ythl (h2( g_) 0)

2(bd12+yfh12)ythz Yin2 b
and dy > Mzl (y (%7 < 0),
.y = (yfh@ﬁ‘jﬁgj:ﬁg;:j‘f (hi(%5) = 0), dy > dy + Y 4 22w (py(xF) < 0)
and dy = Pt (g(xf) = 0).
Equilibrium X is real for y, > (y?gl(l;ilﬁz%:fiz::;% (hi(X35) < 0),d; < (bd1+yth1)yt’fy§jd2 Yoo )Yehl
(he(X5) < 0) and d3 < (bdl+y’52h1)y?%ztg’ffdryt“)yf“ (h3(X3) < 0). Otherwise, it is vir-

tual. Furthermore, it becomes a boundary equilibrium point if

(Y2, —bdoyin2)yina+€ (hi(ig) < 0) dy < (bd1+y2,  Jyen2+(bdoa—yin2)yen1 (h2(i3—) <

¢ y’l‘ - Z(bd1+yt2h1)yth2 bytho
(bd1+y3, 1 )yp, o+ (bd2—yen2)vi —
0) and dy < G sh b B (hy(%5) < 0),
(y7n1 —bd2yen2)yna+E —— _ (bdi+y7 1 )yenat(bde—yen2)yint ——
¢ y7" > 2(bdl+yt2h1)yth2 (h (X3) ) d3 - bythQ (h'z(x?)) -
(bd1+y3,1)Yinat+(bd2—yin2)y; —
0) and d3 < i ”;fyfhl i (hy(X3) < 0),
(Yin1 —bd2yen2)yena+€ == (bd1+y2, ) yeh2+(bd2—yeh2)yen1 —
* Y= 2(bd1+yth1)yth2 (hl <X3) < O) d3 < byino (hQ(X3) <
(bd1+y2, 1) y? +(bd2 Yin2)y?Z —\ _
0) and dy = GO BN vy (1, (7)< ),
_ (yE, —bdoyin2)yine+E - _ (bdi+yE, v+ (bdo —yen2)yin1 —
* U= 2(bd1+y3, 1 )Yih2 (hl (X3> o O)’ dy = bYtha <h2(x3) =
(bd1+y2, 1 )YP,0t(bd2—yin2)y} —
0) and d3 < i thbztghl i (hy(X5) < 0),
(Yn1 —bd2ytn2)yn2 +€ == (bd1+y2, ) yth2+(bd2—yin2)yen1 —
* Y= (bd1+yth1)yth2 <h1< ) ) d3 < byiho (hQ(X3) <
_ (bdityd, o+ (bda—yin2)y; —
0) and d3 = T i (hy(X5) = 0).

The determinant and trace are given by

Ab*dydsypy T bdo€ — yen2€ + Yy (6°d5 + Yo + 2bysna(2dsysne — da))
2bdsY1 Ve

di  4ds(bdi + Yir) Yino

yt2h1 (ibd2yt2h1 + y§h1yth2 + 5)2

Det[A(X5)] =

I

Tr[A(xgt)] —b—

Equilibrium X3 is stable because Det[A(X5)] > 0 and Tr[A(X3)] < 0 for d3 >
~Yin1 (Yena—bda)*
Ab(bdr+y7,1)Yins |

(iv) F4(x) has an equilibrium point, given by

i (Hw 1Ty 13F7—2yr>

Xy =

26 7 2 7 2
with v = /1 — 4b(d; + dy — d3). Equilibrium x; is real for y, > 52 (hy(X]) < 0),
Y1 < 52 (ha(Xf) > 0) and yme < 52 (ha(X]) > 0). Otherw1se, it is virtual.

Moreover, becomes a boundary equihbrium point if
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oy =2 (M(X]) =0), ym = 5 (hao(X5) = 0) and yue < 32 (hs(X]) > 0),

respectively,
o yr =57 (h(X}) = 0), g < 5 (ha(X]) > 0) and yuo = 57 (hs(X]) = 0),
® Y= 1_77 (hi(X]) = 0), yar1 < 1_77 (ha(X§) > 0) and yms < 1_77 (hs(X1) > 0),
® Y > 1777 (h(X]) <0), Yo = 1777 (ha(X]) = 0) and yme < 1777 (ha(X7) > 0),
o yp > 5% (hi(X]) <0), ym < 52 (ha(X]) > 0) and yuy = 52 (hs(X]) = 0).

Analogously, the equilibrium X is real for y, > 22 (h(X]) < 0), y < 32

(ha(X;) > 0) and yue < 2 (h3(X;) > 0). Otherwise, it is virtual. Furthermore, it
becomes a boundary equilibrium point if

ey =52 (M(Xy) =0), yo = 52 (ha(Xy) = 0) and ypo < 52 (hs(X;) > 0),
oy =3 (X)) =0), yum < 5+ (ha(Xy) > 0) and yuo = 57 (hs(X;) = 0),
® Y= 1_77 (h1 (%) = 0), yam < 1—;1 (ha(Xy) > 0) and Yo < 1_77 (h3(Xy) > 0),
oy > 52 (h(Xy) <0), g = 52 (ha(Xy) = 0) and ye < 57 (hs(Xy) > 0),
oy > 52 (X)) <0), g < 5 (ha(X7) > 0) and yuo = 57 (hs(X;) = 0).

The determinant and trace are given by

Det[A(Xy)] = 2= 4b(dé,y+:Fdi); %) 77

Equilibrium Xj is a stable point because Det[A(X])] > 0 and Tr[A(x})] < 0 for

&+ < di+dy—ds < ﬁ In other hand, X is a saddle point, since Det[A(X;)] < 0

forall()<d1+d2—d3<ﬁ).

and Tr[AX;)] = —b+

F5(x) has an equilibrium point, given by

° 2Yth2 ’ 2Yth2 7 2Yth2

- (d2ﬂ:C/\/5) —bdy F (Vb _bd2_2yryth2:FC\/E>

where ¢ = \/bd3 + 4(d3 — d1)y3,, Equilibrium X7 is virtual, because h;(X3) < 0.

Equilibrium X; is real for y, < %2% (hi(X5) > 0), Y1 < &Z% (he(X5) > 0)

2
and ds —dy — dy > Z"% (h3(X5) < 0). Otherwise, it is virtual. Moreover, it becomes
a boundary equilibrium point if

° Yy = —%ﬁ;‘;dz (h(X5) = 0), g1 < —%z;i@ (he(X5) > 0) and d3 — dy — dy > %2

(hs(X5) < 0),
oy < b () (x2Y 5 0), gy = SO (hy(%5) = 0) and dg — dy — dy > Y2

2Yth2 2Yth2
(hs(X5) < 0),
o . < §\£§;l;d2 (hl(ig) > 0), Yih1 < —\gz;l;dg (hg(ig) > 0) and dg — dl — d2 = yt%
(hs(X5) = 0),
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2
® Y, = 5\/57bd2 (hl(ig) = 0) Yth1 = 5\/57bd2 (hQ(ig) = 0) and d3 — d1 — dg > yt%

2Yth2 2Yth2
(h3(§5_) < O)a
2
oy = S (hy(%5) = 0), g < 4P (y(R5) > 0) and dy — dy —dy = 2
(h3(X5) = 0)

The determinant and trace are given by

de% -+ 8<d3 — dl)yghQ _ 2d2<~\/5
(C — dg\/B)Q ’
A(dy — d2)y?
WM@ﬂ—w+éé:%%

Det[A(%;)] =

Equilibrium X; is stable because Det[A(X; )] > 0 and Tr[A(X; )] < 0 for Mlit;f?% <
th2
b3d2

(vi) Fg(x) has an equilibrium point, given by

—— (bd2 + Y2 £ —bda + Y2 F N Yenz — by — 2y, Ysna F 17)
0 2bysno ’ 2Ytn2 ’ 2Yino ’

where 1 = \/ 4b(ds — dy)y?, + (yin2 — bds)?.  Equilibrium X{ is real for y, >

Ytha—bda—n ( ( ) ) Yony < Yh2= bda—n (hg(ig) > 0) and ds > dy +dy+ (ythQ_bl)yth2

2Yth2 2Yth2
(h3(X¢) < 0). Otherwise it is virtual. Moreover, it becomes a boundary equilibrium
point if
—bdy— - —bdy—
® Y = %Tjn (h(X5) = 0), yim < % (ho(Xg) > 0) and d3 >

oy > WMl (py(XE) < 0), yu = RN (hy(XE) = 0) and dy >
d1+d2+w (hs(XF) < 0).,
o < 0), yg < LS (Ry(xE) > 0) and dy =
dy + dy + Wz lvi (o (55) = 0),
—bda— — —bdy— —
oy, = Umaod (hi(X$) = 0), yn1 = Yihz 22—l (ha(Xg) = 0) and d3 >

oy = Ytha —bd2—1) (hi (%,

2yth2 = 0)7 ythl < w (hQ(ig_) > O) and d3 -

2Yth2

)
(
)
(
oy, > Wt (py(x])
(
)
(
)
(

R bd - —bd -
Equilibrium Xg is real for y, > #22°5281 (b (Xg) < 0), ym < 2221 (hy(Xg) > 0)

and d3 < dy +ds + w (h3(Xg) < 0). Otherwise, it is virtual. Furthermore,
it becomes a boundary equilibrium point if

e Y, = Ytnz—bdz+n (hl(fg) = O), Yin1 < Yih2—bdzn (hg(ig) > 0) and d3 < dl —|—d2 +

2Yth2 2Yth2

(yth27bl)yth2 (hg(ig) < 0)7
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oy, > UMt (b (%) < 0), ym = L2 (hy(Xg) = 0) and dg < dy + ds +

(ythz—bl)ytm (hg(ig) < 0)’

oy, > Un2=bhdn (p () < 0), gy < L2090 (hy(%2) > 0) and ds = dy + dy +

2Yth2 2Yth2

(yth27bl)yth2 (hg(ig) _ 0)7

oy, = UM (b (%) = 0), ym = W22 (hy(Xg) = 0) and dg < dy + ds +

(ythz—bl)yth2 (hg(iﬁ_) < O),

oy, = un2=bhdn (p (x) = 0), gy < L2290 (hy(%2) > 0) and ds = dy + dy +

2Yth2 2Yth2

(ythszl)ythz (h3(§5) _ 0)

The determinant and trace are given by

2n
Det[AXE)] =
etlAs)] +bdy F Yo + 1’

4(d1 - d3)yt2h2
(£bda F yena +n)?

TrlAGE)] = —b+

Equilibrium X are stables because Det[A(Xz£)] > 0 and Tr[A(XE)] < 0 for
_ 2

dy € (=00,dy — (Y — bd2)?) U (dy, +00) and dy € (dy — %,dl),

respectively.

5.4.2 Sliding vector field and pseudo-equilibria

Sliding vector field associated of the dynamical system (5.2.3) is defined by (5.3.7),
where (z,y, z) € X5 C X;. The pseudo equilibrium point is given by X = (§(y), v, 0) that
depend of values of &(y), i.e, the discontinuity at y = y,1 and y = ype. So, there are
three pseudo-equilibrium points namely,

- <d1+d2—d3 )
X1 = y—7y7“70 )

d1y, d d
2:< 1Y +_2__3ayrao)7

YA Y2 Ur

~ d d d
X3 = <_2 _|_ _1 — _3’ yT7 O> ,
Yth2 Yr Yr

[l

for y > yin2, ¥ < Y and yu <y < Yue, respectively. By hypothesis, y, > ymo > yn1,
then the pseudo-equilibria X, and X3 are always virtual, so the stability analysis will be
only for the pseudo-equilibrium point X; as studied in the Subsection 5.3.2.

5.5 Case study for y;,1 > Yo

Due to the switching boundaries defined in (5.2.8) and assuming that y1 > yine.
Observe that in this case the state space of the system is divided into six different regions,
namely
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Dy ={x € D:hy(x) >0, ho(x) > 0 and hs(x) > 0},
Dy ={x€ D : hy(x) >0, hy(x) < 0 and hz(x) < 0},
D3 ={x€ D:hi(x) <0, hy(x) < 0and hz(x) < 0},
Dy={x€ D:hi(x) <0, ho(x) > 0 and hs(x) > 0},
D5 ={x € D : hy(x) >0, ha(x) < 0 and hz(x) > 0},
Dg={x€ D:h(x) <0, hy(x) <0 and h3(x) > 0}

In each one of these regions there is a distinct vector field acting, then the system
(5.2.5) is represented as a 3D-DPWS system of the form

(Fi(x), if xeDy,
FQ(X)v if x € D27
% = F‘?,(X)7 if xe D37
T ) Fu(x), if x€ Dy,
F5(X)> if x€ Ds,
\FG(X)7 if x € D67
composed by the vector fields
[ bz —y —br —y T
Fifo) = |2 — S8 &) Fyx) = o - — 9|
| s S
[ 1L —br—y 1 —bx —
F3(x) = x_%_ﬁ df . Fy(x) = x——dl‘y“b 4 da
foz+k fig+k
[ —bx —y 1—bx —
F5(x) = 55_%—@4-;3 and Fg(x) = w—%—%#—d—:”
| f33 fas+k
where
di +d d
fis=(1—kbx+ (w—Fk)y— Lt 242wz —wy,
d d d
foz = (1 —kb)z + (w—k)y — 22 + = = 2 0z —wy,
Yo Y Yo
d d d
f3:3:(1_kb)$+(W—k)y—%y+—3——2—wz—wyr.

Yim Y Y

Y

(5.5.1)

Proposition 5.5.1. There are no sliding motion at the switching boundaries Yo and X3

defined in (5.2.8).

Proof. A straightforward calculus produces, Ly, 4
y) > 0 and LF1,4(X)h3( ) LF5,6(X)h3( )
is just a crossing boundary. Containing a double tangency line at x = &o(y) —

Yy = Y, and z € R.
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In order to analyze the dynamic behavior of system (5.2.5) on the switching boundary
Y1, we calculate the sliding and crossing regions taking into account the discontinuity at
Yy = Yn1 and y = Yo, for this we divided the study in cases as follows.

(i) For y > yn1, the crossing and sliding regions are defined by ¥, and X, as defined
in (5.3.2) and (5.3.3), respectively.

(ii) For yina <y <y, the crossing and sliding regions are defined as follows

Yo, ={xeXi:x>%(y) or x> x(y)}, (5.5.2)
Yo, ={x€eX; :3(y) <z < xy)},
where
_ 1 diy dy ds
= - - k r 5
) (1 —kb) <yfh1 y oy vl y>+wz)
1 dly d2 dg
= —= - 4 ky—-1 . — )
#(y) 1= k) (ytghl " (y—1) +wly y)+w2)

(iii) For y < y2, the crossing and sliding regions are defined by X, and X, as defined
in (5.4.4) and (5.4.5), respectively.

5.5.1 Regular equilibria and stability

As mentioned in Subsection 5.3.1, the first and second components of the vector fields
Fi(x) (i = 1,2,3,4,5,6) are independent of the dynamic in their third component z,
whose dynamic is stable the associated eigenvalue is —w < 0. Thus, we just need to
consider the reduced linearization Jacobian matrix as defined in (5.3.6). In this case, the
regular equilibria and stabilities in the vector fields F;(x) with ¢ = 1,2, 3,4 are equal to
Section 5.4, when 3,1 < 2. Then, we will analyze the equilibria of the vector fields
F;(x) for i = 5,6 and its stabilities.

(i) F5(x) has an equilibrium point, given by

ii =|=x - , - y —Yr F ; )
’ b\/bd; + 2, \/bd; + ythl? Vbdy + Yy,

where, v = 1/b(ds — ds)y?,,. Equilibrium X7 is virtual, because hi(X3) < 0.
2

el — . v — Y3
Equilibrium X; is real for y, < \/ﬁ (hi(X5) > 0), d3 —dy — dy < thl

(he(X5) < 0) and d3 < do + (o) i (h3(X5) > 0). Moreover, it becomes a

Yin1
boundary equilibrium point if t

= 0), d3 —d; —dy < Yin (hz(ig) < 0) and d3 <

® Yr = N (7 (x5)

dy + P2 ((37) > 0),
thl

o Y. < \/ﬁ (hl(ig> > 0), dg — dl — dQ = Y (hjg(ig) = 0) and dg <

dy + PO (1 (%) > 0),
thl
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2
Yr < \/ﬁ (hl(ig) > O), dg — d1 — dg < ythhl (hg(ig) < 0) and d3 =

dy + P2 (y(37) = 0),

thl

b= i (%) = 0), ds —d —dy = B (ha(X5) = 0) and dy <

dy + PR (1 (37 > ),
thl

2
Yy = \/ﬁ (h(X5) = 0), ds —dy — dy < % (hy(X5) < 0) and dy =

dy + LU (y(565) = 0).
Yin1

The determinant and trace are given by

2bd Y
Det[A(%;)] =2+ —5— and TrlAXs)] = —b— - — 5.
Yin b yi

Equilibrium X; are stables because Det[A(X5)] > 0 and Tr[A(X5)] < 0 for all
d1 > 0.

(ii) Fg(x) has an equilibrium point, given by

= — (%dl + Yo £ Ym0 Yoy F Y10 Y — 2ue(bdi + i) F Z/th15)

2b(bdy +y2,,)  2(bdy + y2,)’ 2(bdy + Y1)

where 6 = /y2,, — 4b(dy — d3)(bd; + y2,,). Equilibrium X{ is real for y, > Wen1=O)yeny

2(bd1 —l—y?hl)

(M (R) < 0), ds—dy—dy > L= () (g5} < 0) and dy—dy < LRV Yo Vi e

2
bYin1

(hs3(X{) > 0). Moreover, it becomes a boundary equilibrium point if

yy = WO () = 0), dy — dy — dy > M (ho(X$) < 0) and

Z(bd1+yt2h1)
d3 — d2 < (bd1yth2+yt22;?2hh2—yfm)ythz (hg(fg_) > 0),
thl
Yr > % (hl(iér) < 0), d3 — d1 — d2 — M (hQ(ig) _ 0) and
d3 — d2 < (bdlyth2+yt22;?2hh2_y§h1)ythz (hg(fg_) > 0),
thl
be > S (n(RD) < 0), dy — di = dy > R (y(R]) < 0) and
d3 — dg = (bd1yth2+yt22;gth2—yfm)ythz (hg(fg_) _ 0),
thl

Yr = (Qy(téldl—;i_é;?;f)l (hl(igr) = 0), d3 — d1 — d2 = —(ythlibl)ythl (hQ(iZ{) = O) and

(bd1yena Y2 Yen2—Y21 )Yth2 —t
ds — dy < b2, (h,g(XG ) > O),

o = G (g (=5) = 0), dy — dy — dy > 22500 (hy()) < 0) and

(bd1yen2+y2n Yeh2a =Y, )Yth2 —+
d3 — dg = tzllltzhl thl (h,g(XG ) = O)

On the other hand, X4 is real for y, > % (hi(X5) < 0), d3s —dy —dy <
thl

(ythl—bl)ythl (h2(§g> < O) and dS o d2 > (bdlyth2+yt2hlyth2_yt2h1)ych (hg(ig) > O), other—

2
bYin1

wise it is virtual. Moreover, it becomes a boundary equilibrium point if
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-5 __ — —
° Yy = % (h(Xg) = 0), d3 — dy — dy < W=Dv (p (%) < 0) and
d3 . dg > (bd1yth2+yt22;?§;};2—y?hl)ythz (hg(ié) > 0)7
°y > —(g(f;;j;g:f; ((X5) < 0), ds — dy — dy = @zl (py(%5) = 0) and
d3 . d2 > (bd1yth2+yf;é;12/th2*y?m)ythz (hs(i(;) > O),
thl
oy, > Y (hy(x5) < 0), dy — dy — dy < UL (hy(x5) < 0) and
d3 N dg _ (bd1yth2+yfgzgth2*yfh1)yth2 (hg(fg) — 0)’
thl

o yp = Y (hy(%5) = 0), dy — dy — dy = P50 (1 (37) = 0) and

(bd1yeha Y2 Yen2 =Y )Yth2 —
d3 — dy > “Z,;tzhl th (hs(Xg) > 0),

oy = Gt (h(Xg) = 0), ds — dy — dy < U5 (y(Xg) < 0) and

bd +y? —y? __
ds — dy = (bd1yin2 ytzig}iilm Yin1)Yth2 (hg(Xﬁ) _ 0)

The determinant and trace are given by

%) =2 — 1 N b(dy + dy) - Yen10
Qb(d2 - d3) thh1 Qb(d2 - dS)yghl

da N A(dy — d3)(bdy + y5,)*

Yim (Yin1 F Ysm0)? .

Tr{AG)] = b~

Equilibrium X is a stable point because Det[A(X{)] > 0 and Tr[A(X])] < 0 for
2
ds € (dy — il ds)

Yi
Wb(bdi+42,,)’

5.5.2 Sliding vector field and pseudo-equilibria

Sliding vector field associated to the dynamical system (5.2.3) is defined by (5.3.7),
where (x,y,x) € Xy C 3y. The pseudo equilibrium point is given by X = (£,(y), y,0) that
depend of values of &y(y), i.e, the discontinuity at y = y,1 and y = ye. In this case,
there are three pseudo-equilibrium points namely,

- <d1+d2—d3 )
X1 = y—aymo )

~ d1y, d d
X2:( 1Y "‘—2__3,%70):

Yo Y2 Yr
~ <d1y3+d2yt2h1 d3,yr,0>,

Yr Yr

X3 =

for y = yun1, y < Yz and yna < Y < yum, respectively. By hypothesis y, > yin1 > Y2,
then the pseudo-equilibria X, and X3 are always virtual, so the stability analysis will be
only for the pseudo-equilibrium point X; as studied in the Subsection 5.3.2.
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5.6 Conclusion

This chapter discussed the nonlinear dynamics of a de-de buck converter controlled
by a sliding mode control (SMC) law connected to two power converters where one of
them is a boost converter and the other is a buck converter, both modeled by a CPL
piecewise function. The main goal was to guarantee system stability by balancing the
power of sources and loads through a storage element for this the nonlinear effects of the
two constant power loads and of a sliding mode controller.
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Chapter 6

Final Remarks

In this Thesis, we reviewed some concepts and definitions of the DPWS systems
theory, giving tools for the analysis of the dynamic behavior of these systems and we lay
the foundations for the development of the work. The main contributions of this thesis
work are contained in chapters 2, 3, 4 and 5; which resulted in three published articles
and one article that is still in development:

o Multiple boundaries sliding mode control applied to capacitor voltage-balancing
systems, Communications in Nonlinear Science and Numerical Simulation (2020),
DOI:10.1016/j.cnsns.2020.105430;

e Bifurcation analysis of 3D-PWS systems with two transversal switching bound-
aries: A case study in power electronics, Physica D Nonlinear Phenomena (2022),
DOI:10.1016/j.physd.2022.133505;

o Global stability of a Lotka-Volterra piecewise-smooth system with harvesting actions
and two predators competing for one prey, Journal of Mathematical Analysis and
Applications (2023), DOI:10.1016/j.jmaa.2023.126998;

e Nonlinear analysis of DC power converters connected in parallel (in progress).

The main results and contributions of this Thesis are summarized below:

In Chapter 2, a new active capacitor voltage balancing method for MMCs was studied
in depth based on a sliding mode control with multiple switching boundaries. The
main contribution in this part was to show analytically the local stability of the voltage
balanced system for an arbitrary number of submodules (see Theorem 2.2.1 in Section
2.2). Other important results are:

e the description of the global dynamics of systems with two SM, modeled by 2D-
DPWS systems with two perpendicular switching straight lines, see Section 2.3;

e the description of the global sliding dynamics of systems with two SM, considering
the presence of inductors in the circuit, being modeled by 3D-DPWS systems
with two perpendicular switching planes, see Section 2.4;

e the characterization of the sliding vector field at the intersection of the two perpen-
dicular switching planes, for the setting of the previous item;
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e the identification and classification of typical singularities for the system class under
study;

e numerical simulations of the studied systems are provided which help us to better
understand the dynamic behavior of these systems, in addition to checking the
analytical results.

In Chapter 3, local and global phenomena of power electronic circuits feeding a piecewise
constant power load controlled by a sliding-mode control law were studied. These
electronic circuits were modeled as a dynamic 3D-DPWS system with two transverse
switching boundaries, with only sliding on one of them and only crossing on the other.
Among the most important result, we highlight:

e The non-linear behavior of this system was analyzed and some results were presented

on bifurcations induced by the two transverse switched boundaries, such as BEB,
BFB, DSN and GB;

e We had predicted numerically the coexistence of at least 4 limit cycles, in addition,
we found other bifurcations of equilibrium and limit cycles, such as Hopf, SNe,
SNPO and HC bifurcations. These results are very useful to determine the safe
parameter region which guarantees robust stability at the desired operating point
for the system, in order to achieve a suitable SMC design.

e Numerical simulations are also provided to obtain bifurcation sets and bifurcation
diagrams.

In Chapter 4, we study the global dynamics of a piecewise smooth Lotka-Volterra
system with two predators competing for prey where prey resources are limited. In
this study, the control harvesting strategy was defined by two switching thresholds that
determine piecewise constant control signals for the tracking problem of predator-prey
systems. The main contribution in this chapter was the proof of the global stability
condition for the pseudo-equilibrium point, which is where two predator species and one
prey species can coexist. Other contributions:

e the identification of a special boundary equilibrium bifurcation that occurs in sliding
vector fields called boundary pseudo-equilibrium bifurcation (BPEB);

e the description of the sliding dynamics on each switching boundary, even at the
intersection between them.

In Chapter 5, a qualitative analysis of the stability of DC power converters connected
in parallel was carried out. This system was composed of a bidirectional DC-DC buck
converter controlled by a sliding mode control law (SMC) and connected to two power
converters, where one of them is a boost converter and the other is a buck converter, both
represented by two CPL functions by parts. A photovoltaic (PV + MPPT converter)
source modeled as a CPS was also included in the microgrid to make a more generic
analysis. Local phenomena associated with bifurcations induced by switching boundaries
as Boundary Equilibrium Bifurcations (BEBs) and Discontinuous Saddle-Node (DSN),
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which are part of the class of Discontinuous Induced Bifurcations (DIBs), were also stud-
ied. Furthermore, the well-known Hopf and Saddle-Node of equilibrium points bifurcation
were also studied. Numerical continuation methods using AUTO software were employed
to obtain bifurcation sets and bifurcation diagrams.

Finally, we can conclude that although this Thesis provides a minor contribution to
the theoretical aspects of DPWS systems with multiple boundaries, the cases studied in
chapters 2, 3, 4 and 5 contribute to unravel the dynamic richness of this class of systems,
providing some insights to deal with this class of systems in engineering applications.
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