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RESUMO

A ebulição em piscina nucleada é um dos processos de transferência de energia mais efici-
entes encontrados na indústria. Entretanto, a ebulição requer monitoramento e controle
rigorosos para evitar a crise de ebulição. Técnicas de medição comumente empregadas
são caras e requerem manutenção frequente, enquanto modelos numéricos têm incertezas
elevadas associadas. Recentemente, algoritmos de aprendizado de máquina foram aplica-
dos para estimar o fluxo de calor na ebulição em piscina a partir de imagens de baixa
resolução. No entanto, a generalização desses modelos para diferentes superfícies de ebuli-
ção e a otimização de sua arquitetura ainda são questões em aberto. Este estudo explora
esses aspectos, investigando o desempenho de modelos treinados e avaliados com diferen-
tes superfícies aquecedoras. Uma nova metodologia baseada em aprendizado de máquina
automatizado foi proposta para encontrar arquiteturas performáticas de forma eficiente.
Uma bancada de ebulição em piscina foi adaptada para gerar dados de treinamento uti-
lizando fios e fitas como superfícies aquecedoras. Medidas do fluxo de calor e imagens
do processo de ebulição foram coletadas durante cada experimento. Quatro conjuntos de
dados foram gerados empregando dois fios de diâmetros distintos e duas fitas em posições
diferentes. As fases de pré-processamento de dados e de treinamento foram implementadas
em Python com a biblioteca TensorFlow, e foram validadas treinando-se modelos com
uma arquitetura de base e comparando-se o seu desempenho com estudos de referência. O
aprendizado de máquina automatizado utilizou o algoritmo guloso disponível na biblioteca
AutoKeras para buscar arquiteturas de redes neurais convolucionais e hiperparâmetros de
treinamento que minimizassem o erro de predição sem aumentar o tamanho do modelo.
O primeiro grupo de resultados consistiu na validação e na otimização da sequência de
pré-processamento. Observou-se que a padronização das imagens melhora o desempenho
dos modelos em até 47%. Posteriormente, o desempenho de modelos treinados e avaliados
com diferentes superfícies foi investigado. Os resultados mostraram que os modelos foram
incapazes de generalizar corretamente para superfícies não vistas no seu conjunto de trei-
namento. Por isso, o conjunto de treinamento deve conter exemplos de todas as superfícies
de interesse para alcançar um desempenho aceitável. Modelos treinados e avaliados nas
quatro superfícies de ebulição obtiveram resultado superior à maioria das correlações
numéricas da literatura. Por fim, um último grupo de resultados empregou o aprendizado
de máquina automatizado para encontrar arquiteturas mais performáticas e minimizar o
erro de predição. Os modelos encontrados tiveram desempenho significativamente superior
aos modelos de base, reduzindo o erro de validação em até 80%. Além disso, os modelos
encontrados são até 30 vezes menores que os modelos de base, uma característica essencial
para aplicações em tempo real. Quando treinados e avaliados sobre uma mesma superfície,
os modelos tiveram performance superior à melhor correlação numérica encontrada na
literatura.

Palavras-chave: Ebulição em piscina. Aprendizado de máquina automatizado. Redes
neurais convolucionais.





RESUMO EXPANDIDO

Introdução

A crescente demanda por energia em escala global motiva a busca por métodos gradativa-
mente mais eficientes de se gerar, transportar e armazenar energia, objetivando minimizar
os seus impactos ambientais e econômicos. Nesse contexto, a ebulição demonstra ser um
dos mecanismos de troca de calor mais eficientes devido ao elevado fluxo de calor que
se obtém com pequenas diferenças de temperatura. Por isso, a ebulição é encontrada
como o principal mecanismo de transporte de energia em diversas aplicações industriais.
Em contrapartida, sistemas que operam com ebulição requerem intenso monitoramento e
controle para garantir a máxima eficiência e segurança operacional. Entretanto, técnicas
de medição bem estabelecidas são intrusivas, de elevado custo e necessitam de frequente
manutenção, ao passo que correlações numéricas que modelam o processo de ebulição são
limitadas em sua aplicabilidade e estão geralmente associadas a elevadas incertezas, de
até ±100%. Tendo isso em vista, estudos recentes aplicaram algoritmos de aprendizado
de máquina para estimar o fluxo de calor dissipado na ebulição em piscina a partir de
imagens de baixa resolução obtidas com uma câmera convencional. Demonstrou-se que
redes neurais convolucionais são capazes de estimar o fluxo de calor com erros tão baixos
quanto ±7.37%. Apesar do resultado promissor, esses estudos se limitaram a estudar uma
única superfície de ebulição e não exploraram a influência da arquitetura dos modelos no
seu desempenho. Dessa forma, a aplicabilidade de tais modelos em outras condições de
operação e o máximo desempenho que podem alcançar ainda são questões em aberto. O
presente trabalho objetiva explorar tais aspectos. Especificamente, buscou-se investigar
e otimizar o desempenho de redes neurais convolucionais quando treinadas e avaliadas
em diferentes superfícies de ebulição, bem como estudar a influência da arquitetura dos
modelos no seu desempenho. Para tanto, uma nova metodologia baseada em aprendizado
de máquina automatizado foi proposta para a busca eficiente de arquiteturas de redes
neurais convolucionais performáticas.

Metodologia

A fim de gerar os conjuntos de dados empregados no treinamento de redes neurais, uma
bancada de ebulição em piscina foi adaptada para utilizar diferentes fios e fitas como
superfícies de ebulição. Os experimentos consistiram na ebulição saturada de água deioni-
zada à pressão atmosférica sobre diferentes superfícies de ebulição. Para forçar a ebulição,
corrente elétrica foi aplicada sobre o sistema em níveis crescentes, partindo de zero, até
que a seção de teste falhasse pela crise de ebulição. Dessa forma, cada conjunto de dados
contém exemplos dos regimes de convecção natural, ebulição nucleada parcial, ebulição
nucleada totalmente desenvolvida e ebulição em filme. Ao longo de cada experimento, me-
didas do fluxo de calor foram coletadas por um sistema de aquisição de dados, e pareadas
com imagens do processo de ebulição adquiridas por uma câmera convencional. A partir
desse procedimento, quatro conjuntos de dados foram gerados utilizando diferentes seções
de teste: dois fios de diâmetros diferentes e duas fitas instaladas nas posições vertical e
horizontal. O conjunto de dados obtido a partir do fio de maior diâmetro é o que mais se
assemelha ao conjunto de dados utilizado em estudos anteriores, e por isso foi utilizado
como base para a avaliação do desempenho dos modelos sobre as demais superfícies.

Empregando os conjuntos de dados gerados, redes neurais convolucionais foram treinadas
para estimarem o fluxo de calor dissipado na ebulição em piscina, a partir das imagens de



baixa resolução obtidas nos experimentos. As etapas de pré-processamento de dados e de
treinamento de modelos foram implementadas em Python 3.10, empregando a biblioteca
de código aberto TensorFlow 2.10, e validadas com base em estudos anteriores. Na etapa
de pré-processamento, as imagens de ebulição foram cortadas, transformadas em escala de
cinza e reduzidas a fim de diminuir a dimensionalidade dos dados. Além disso, como moti-
vado por um dos resultados, as imagens também foram padronizadas para que a média e o
desvio padrão da luminância de seus pixels fossem iguais a zero e um, respectivamente. O
método de treinamento padrão consistiu em treinar uma rede neural convolucional com a
arquitetura de referência por 100 épocas utilizando o otimizador Adam e o erro quadrático
médio como a função de perda. Por sua vez, o aprendizado de máquina automatizado utili-
zou o algoritmo guloso disponível na biblioteca AutoKeras 1.0.20 para buscar arquiteturas
de redes neurais convolucionais e hiperparâmetros de treinamento que minimizassem o
erro de predição sem aumentar o tamanho do modelo.

Resultados

Com base na metodologia proposta, três grupos de resultados foram obtidos. O primeiro
grupo de resultados estudou as etapas de pré-processamento de imagens buscando validar
as escolhas feitas e maximizar o desempenho dos modelos treinados. Em especial, mostrou-
se que a padronização das imagens é capaz de melhorar o desempenho dos modelos em
até 47%.

O segundo grupo de resultados investigou o desempenho de modelos treinados e avaliados
em diferentes superfícies de ebulição. Observou-se que modelos treinados em visualização
direta, quando a superfície de ebulição é visível, têm performance significativamente
superior à de modelos treinados na visualização indireta, quando a superfície de ebulição é
removida das imagens. Além disso, mostrou-se que os modelos são incapazes de generalizar
corretamente para superfícies de ebulição ausentes do seu conjunto de treinamento. Assim,
para alcançar desempenho aceitável, é necessário que o conjunto de treinamento contenha
exemplos de todas as superfícies de ebulição de interesse. Com base nisso, modelos foram
treinados utilizando imagens das quatro superfícies de ebulição, obtendo resultado superior
ao da maioria das correlações numéricas encontradas na literatura.

Por fim, o terceiro grupo de resultados empregou aprendizado de máquina automatizado
para buscar arquiteturas mais performáticas e minimizar o erro de predição. Os modelos
obtidos tiveram desempenho significativamente superior ao dos modelos de base. Na vi-
sualização direta, o erro de validação foi reduzido em 73%, ao passo que, na visualização
indireta, o erro foi reduzido em 80%. Quando treinados e avaliados sobre uma única
superfície, os modelos encontrados tiveram performance superior à da melhor correlação
numérica encontrada na literatura, representando uma conquista significativa deste tra-
balho. Além disso, os modelos obtidos são consideravelmente menores que os modelos de
base, o que pode ser útil para aplicações em tempo real.

Palavras-chave: Ebulição em piscina. Aprendizado de máquina automatizado. Redes
neurais convolucionais.



ABSTRACT

Nucleate pool boiling is one of the most efficient energy transfer processes found in the
industry. However, it requires close monitoring and control to avoid a boiling crisis. Com-
monly employed measurement techniques are expensive and require frequent maintenance,
whereas numerical models have high associated uncertainties. Machine learning algorithms
have recently been applied to estimate the heat flux in boiling pools from low-resolution
images. However, the generalization of these models for different boiling surfaces and
the optimization of their architecture are still open questions. This study explores these
aspects, investigating the performance of models trained and evaluated with different
heating surfaces. A new methodology based on automated machine learning was proposed
to find performing architectures efficiently. A pool boiling bench was adapted to generate
training data using wires and ribbons as heating surfaces. Heat flow measurements and
images of the boiling process were collected during each experiment. Four datasets were
generated using two wires of different diameters and two ribbons in different positions.
The data preprocessing and training pipelines were implemented in Python with the Ten-
sorFlow library. They were validated by training models with a baseline architecture and
comparing their performance with reference studies. The automated machine learning
pipeline used the greedy algorithm from the AutoKeras library to search for convolutional
neural network architectures and training hyperparameters that minimized the prediction
error without increasing the model size. The first group of results consisted of validating
and optimizing the preprocessing pipeline. It was observed that image standardization
improves the models’ performance by up to 47%. Subsequently, the performance of models
trained and evaluated with different heater surfaces was investigated. The results showed
that the models could not generalize correctly to surfaces not seen in their training set.
Therefore, the training set must contain examples of all surfaces of interest to achieve
acceptable performance. Models trained and evaluated on all four boiling surfaces obtained
better results than most numerical correlations in the literature. Finally, a last group of
results employed automated machine learning to find more performant architectures and
minimize prediction error. The models performed significantly better than the baseline
models, reducing the validation error by up to 80%. Furthermore, the models found by
automated machine learning are up to 30 times smaller than the baseline models, an
essential characteristic for real-time applications. When trained and evaluated on the
same surface, the models performed better than the best numerical correlation found in
the literature.

Keywords: Pool boiling. Automated machine learning. Convolutional neural networks.
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1 INTRODUCTION

Nucleate pool boiling is one of the most efficient heat transfer processes due to

the high heat transfer rate obtained with a relatively small temperature difference, espe-

cially when compared to monophasic convection. Because of its high efficiency, boiling is

fundamental in various applications: evaporators in refrigerators, heat exchangers, and

steam generators (BERGMAN et al., 2011). Additionally, boiling plays a crucial role in

nuclear power plant reactors since it is the primary heat transfer mechanism under normal

operating conditions and can be also dominant in catastrophic scenarios (IAEA, 1999).

However, the design of boiling-driven thermal systems must often observe limita-

tions imposed by the heater surface and operating conditions. For instance, most boiling

systems have the Critical Heat Flux (CHF) as an upper bound for the heat transfer rate.

When the heat flux is the controlled variable, heat fluxes higher than the CHF cause an

abrupt increase in the surface temperature, potentially exceeding its operating limits and

leading the system to fail in the boiling crisis. Therefore, monitoring the heat flux q′′ is

essential to ensure the safe operation of thermal systems. Moreover, quantifying the heat

flux and the heat transfer coefficient h is indispensable to ensure the efficient operation of

thermal systems (ÇENGEL; GHAJAR, 2009; BERGMAN et al., 2011).

Despite its critical role in thermal systems, boiling is a complex phenomenon

whose modeling and simulation are difficult or, in many cases, almost impossible. Even

well-established numerical correlations for estimating the heat transfer coefficient in pool

boiling setups are associated with errors as high as ±100%. Similarly, the CHF can be

calculated with an uncertainty of up to 25%, as discussed in detail in Section 2.1.3. Given

these limitations, most thermal systems require precise measurement subsystems to ensure

their safe and efficient operation.

Recently, the application of Convolutional Neural Networks (CNNs) to the study of

heat transfer processes has shown promising results. CNNs have been effectively employed

to classify boiling regimes and quantify the heat transfer rate on low-resolution images

of pool boiling from a nichrome wire (HOBOLD; DA SILVA, 2018b, 2019b). Compared

to other well-established machine learning methods, such as Support Vector Machines

(SVMs) and Multi-Layer Perceptrons (MLPs), CNNs demonstrated a significantly better

performance in classifying pool boiling regimes. Furthermore, CNNs estimate heat flux

with lower uncertainties than traditional techniques, such as most numerical correlations

that take the temperature as input (HOBOLD; DA SILVA, 2019b).

Employing machine learning models to estimate heat fluxes in pool boiling setups is

a promising approach that overcomes many limitations of traditional measurement systems.

In particular, visualization-based models are non-intrusive, low-cost technologies that can

be easily implemented in industrial applications. In addition, since machine learning

models learn directly from data, they do not require domain expertise to be developed,
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making them easier to extend to new scenarios and operating conditions. Despite those

benefits, recent studies have not fully explored the impact of varying operating conditions

on pool boiling behavior, limiting their overall applicability. A crucial open question in

this field is the models’ specificity to the boiling heater surface they are trained on and

their ability to generalize to new, unseen surfaces.

To better understand that limitation, Scariot (2019) adapted the experimental

apparatus from Hobold and da Silva (2018b,a, 2019a,b) to utilize bi-dimensional heating

surfaces, obtaining models capable of estimating heat fluxes with less than 33% of relative

error. While this is a promising result, it still falls short compared to the performance

achieved by Hobold and da Silva (2019b), demonstrating that the performance of CNNs

strongly depends on their architecture and training dataset.

The studies by Hobold and da Silva (2018b,a, 2019b,a) and Scariot (2019) highlight

CNNs as a powerful, cost-effective, non-intrusive method for estimating heat flux in pool

boiling systems from low-speed, low-resolution visualization. However, the unexplored

aspects of those studies leave room for improvement in the performance of models. Notably,

each study considered only a single heater surface and operating condition, limiting the

generalization ability of the models. Moreover, Hobold and da Silva (2018b,a, 2019b,a)

tested only three CNN architectures, whereas Scariot (2019) tested a single one, leaving

room for further exploration and improvement in the architecture design.

The present work seeks to address the limitations of previous studies in applying

CNNs for quantifying heat flux in pool boiling setups. The main focus of this work is to

explore the influence of the heater surface on the performance of CNNs and to perform

a systematic architectural search for optimal CNN architectures. Section 1.1 outlines

the primary objective of this study and describes the associated specific objectives to

be accomplished. With the potential demonstrated by CNNs in the classification and

quantification of heat transfer in pool boiling, this work aims to further advance the

understanding and utilization of CNNs in this area.

1.1 OBJECTIVES

The objective of this study is to assess the effectiveness of CNNs in modeling pool

boiling processes in varying operating conditions. More precisely, the focus is on evaluating

and optimizing the performance of CNNs in quantifying heat flux in pool boiling setups

using image data collected from different heater surfaces.

This work aims to accomplish the following tasks to achieve the primary objective:

• Conduct a comprehensive review of existing literature on the use of visualization-

based machine learning algorithms for monitoring pool boiling systems;

• Design and execute pool boiling experiments to gather image and heat flux data

from different heater surfaces to train machine learning models;
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• Develop data preprocessing and machine learning training pipelines for predict-

ing heat flux from the pool boiling data;

• Validate the training pipeline by building and training a CNN in conditions

similar to those reported in Hobold and da Silva (2019b) and verifying that

equivalent performance is achieved;

• Optimize the preprocessing pipeline to improve the performance of CNNs;

• Investigate the performance of the CNNs in quantifying heat transfer in a pool

boiling setup with various heater surfaces;

• Execute a systematic CNN architecture search to minimize prediction error.

1.2 DOCUMENT OUTLINE

This Thesis is divided into the following chapters to address the research objectives

comprehensively:

Chapter 1 – Introduction: this introductory chapter provides the background and

motivation for this research and outlines the objectives;

Chapter 2 – Literature review: presents a comprehensive literature review covering

three main aspects: (a) the pool boiling phenomenon, including its fundamental

aspects such as bubble nucleation and growth, the heat transfer mechanisms, and

parametric effects, as well as the state-of-the-art numerical correlations and mecha-

nistic models along with their associated uncertainties for later comparison with the

machine learning models developed in this work; (b) machine learning fundamentals,

encompassing deep learning, CNNs and Automated Machine Learning, with focus

on the architecture search technique applied in this study; (c) application of machine

learning algorithms to visually estimate heat flux in pool boiling setups, including

previous studies such as Hobold and da Silva (2018b,a, 2019b,a) and Scariot (2019);

Chapter 3 – Experimental methodology: outlines the pool boiling experimental setup

built as part of this work and details the experimental procedure used to gather the

datasets utilized in this research;

Chapter 4 – Machine learning methodology: provides a comprehensive description

of the data preprocessing and training pipelines employed in this research. The

Chapter explains the design decisions behind each step, justifying them to ensure

the reproducibility of results. Additionally, it presents the validation results demon-

strating the correctness of the training pipeline. Finally, this Chapter explains the

architecture search pipeline employed, which represents one of the main contributions

of this work;
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Chapter 5 – Results and discussion: presents and analyzes the results obtained in

this work, covering the optimization of the data preprocessing pipeline, the evaluation

of CNNs in quantifying heat flux in pool boiling setups with different heater surfaces,

and the results of the automated architecture search. A thorough discussion of the

findings is provided to highlight the key insights and implications of the study.

Chapter 6 – Conclusion: summarizes this research’s key findings and main conclusions.

It includes a brief overview of this study’s main contributions and highlights the lim-

itations and areas for improvement. This Chapter concludes by offering suggestions

for future research that can build upon the work presented in this Thesis.



35

2 LITERATURE REVIEW

This Chapter provides a comprehensive literature review to lay the foundation

for the research presented in this Thesis. The review includes fundamental concepts and

recent publications closer to the state of the art. Section 2.1 focuses on pool boiling, the

phase-change phenomenon of interest to this work, while Section 2.2 explains machine

learning, the proposed solution for non-intrusive heat transfer measurement. Subsequently,

Section 2.3 presents recent studies on the application of machine learning models to mea-

sure phase-change phenomena, emphasizing non-intrusive, visualization-based methods.

Finally, Section 2.4 describes the aspects left unexplored by the literature and outlines

the contributions this Thesis expects to bring to the understanding of the subject.

2.1 POOL BOILING

Boiling is a type of convective process associated with phase change. This process

occurs when a liquid at temperature T∞ enters into contact with a solid surface at a

temperature Ts that exceeds the liquid saturation temperature, Tsat. If the wall superheat,

∆Tsat = Ts − Tsat, is sufficiently high, bubble nucleation occurs (BERGMAN et al., 2011).

In these circumstances, the heater surface transfers heat to the liquid at a heat transfer

rate q. The heat transfer coefficient, defined as

h =
q′′

∆Tsat
, (1)

is a measure of the heat transfer process. In this equation,

q′′ =
q

As
(2)

is the heat flux transferred from the heater with surface area As to the liquid medium.

Pool boiling is, by definition, a mode of boiling in which a heater surface transfers

heat to a quiescent liquid. Pool boiling happens under natural convection conditions. The

transport of mass and energy is greatly intensified by the movement of vapor bubbles in the

liquid after their nucleation, growth, and detachment from the heater surface. This mode of

boiling differs from forced convection boiling (also known as flow boiling), which includes

a forced, directed fluid motion. Pool boiling can be classified as either saturated, when the

liquid is at its saturation temperature, T∞ = Tsat, or subcooled, when T∞ < Tsat (BEJAN;

KRAUS, 2003; BERGMAN et al., 2011; ÇENGEL; GHAJAR, 2009; KANDLIKAR, 1999).

Pool boiling can be a very efficient form of heat transfer and is the primary mode of boiling

in various energy conversion and heat exchange systems (KANDLIKAR, 1999). Bergman

et al. (2011) point out that heat transfer coefficients higher than 10 000W/(m2K) are

characteristic of the nucleate pool boiling regime described in Section 2.1.1, which is

considerably larger than most heat transfer processes with no phase change.
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Figure 1 presents examples of pool boiling photographs at different dissipated heat

flux levels. As it can be observed, the system’s behavior changes visibly as the heat flux

increases.

(a) 5W/cm2 (b) 15W/cm2 (c) 35W/cm2 (d) 70W/cm2 (e) 95W/cm2

Figure 1 – Pool boiling photographs obtained with a nichrome wire with a diameter of
0.5mm and length of 6.5 cm at different heat flux levels.

The following Sections describe the boiling curve, the effects that operating con-

ditions have on the boiling process, and the most popular and widely used numerical

correlations and mechanistic models for estimating heat transfer in pool boiling.

2.1.1 Boiling curve

Nukiyama (1966) was the first to identify the boiling curve using a pool boiling setup

and a nichrome wire as the heater surface. In that study, the heat flux dissipated to the

liquid, q′′, was controlled, and the associated wire surface superheat, ∆Tsat, was measured.

The corresponding pairs (∆Tsat,q
′′) constitute the boiling curve, which can be illustrated

as in Figure 2 (BERGMAN et al., 2011; ÇENGEL; GHAJAR, 2009). Note that the boiling

curve shown and described in this Section is obtained when the heat flux is the controlled

variable and the temperature is measured. This is consistent with the experimental setup

utilized in this work and many end industrial applications. For information about the

alternative boiling curve obtained when the temperature is controlled and the heat flux is

measured, consult Bergman et al. (2011), Çengel and Ghajar (2009), Rohsenow, Hartnett,

and Cho (1998) and Kandlikar (1999).

The boiling curve obtained with the control of heat flux can be divided into

segments, or regimes, with specific characteristics determined by the dynamics of vapor

bubble formation (BERGMAN et al., 2011; ÇENGEL; GHAJAR, 2009; NUKIYAMA,

1966; ROHSENOW; HARTNETT; CHO, 1998; KANDLIKAR, 1999):

• Natural convection (O–ONB): The first regime in the boiling curve is

natural convection, also known as free convection. In this region, there is no

phase change, and monophasic heat exchange happens due to the decrease in

density caused by the local increase of the liquid temperature near the heater

surface.

• ONB: The point known as Onset of Nucleate Boiling (ONB) marks the end

of the single-phase, natural convection regime and the start of nucleate boiling.
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regime. Each bubble grows and detaches itself from the surface independently. In

this segment of the boiling curve, higher temperatures activate more nucleation

sites and increase the average bubble size. In lower temperatures, bubbles tend

to collapse in the liquid phase before reaching the free surface. The detachment

of bubbles and their subsequent motion towards the free surface agitates the

liquid in the vicinity of the heater surface, enhancing the direct exchange of

heat between the liquid and the solid. This mechanism is the primary cause of

the increase in the heat transfer coefficient in this region.

• Fully developed nucleate boiling (B–DNB): As the heat flux rises, the

average bubble size, the frequency of bubble departure, and the density of active

nucleation sites increase as well. Consequently, bubbles interfere with each other

and coalesce, forming continuous columns and jets of vapor that move in the

interior of the liquid and reach the free surface, where the vapor is released into

the atmosphere. This regime’s primary heat exchange driver is the combined

effect of evaporation and liquid entrainment. The fully developed regime is less

sensitive to system parameters compared to partial nucleate boiling.

• DNB: The point known as Departure of Nucleate Boiling (DNB) corresponds to

the CHF and is characterized by a sharp decrease in the heat transfer coefficient

due to the deterioration in the heat transfer mechanisms. This is caused by

the formation of a vapor layer between the heater surface and the liquid phase,

causing bubbles to grow at the liquid-vapor interface and not on the solid

surface. In this situation, heat is transferred primarily via conduction in the

vapor film and radiation from the heater surface. The vapor film acts as an

insulator, causing the surface temperature to rise sharply.

• Film boiling (DNB–Burnout): After the DNB, the decrease in the heat

transfer coefficient causes the surface temperature to rise abruptly, possibly

exceeding its operating temperature and leading to system failure. This phe-

nomenon is known as the boiling crisis and is destructive to many thermal

systems, being therefore avoided in various industrial applications.

Other regions and characteristic points can also be observed in the boiling curve. For

instance, Kandlikar (1999) explains that, at the ONB, the sudden activation of nucleation

sites causes the surface temperature to drop slightly while keeping the heat flux constant.

In addition, a region known as transition boiling can be reached by carefully manipulating

system parameters. Those regions are out of the scope of this work, but more information

about them can be found in Rohsenow, Hartnett, and Cho (1998), Kandlikar (1999),

Çengel and Ghajar (2009) and Bergman et al. (2011).

Because of the boiling crisis, the CHF is considered the upper limit of the fully de-

veloped nucleate boiling regime and the safe operation of the equipment (KANDLIKAR,
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1999). Therefore, controlling and, in particular, monitoring boiling processes become

mandatory to ensure satisfactory performance and the safe operation of thermal systems.

In particular, nuclear reactors require strict temperature control at several points to pre-

vent operational accidents. This monitoring is done mainly through invasive sensors such

as Resistance Thermometers (RTDs) and thermocouples (IAEA, 1999; HASHEMIAN;

JIANG, 2009). The utilization of such sensors, however, leads to a series of complications.

Many factors may impair RTDs’ precision or response time, the most prominent ones

being their premature failure, calibration errors, and incorrect installation (HASHEMIAN;

JIANG, 2009). This way, it is evident a need for developing and improving reliable tech-

nologies for monitoring boiling processes quickly and securely.

The general properties of the boiling curve generalize for different conditions of

operation. However, the exact shape and positioning of the curve might change, including

the ONB and the value of the CHF. Section 2.1.2 discusses in more detail those and other

parametric effects.

2.1.2 Parametric effects

Several system parameters impact the pool boiling phenomenon. The observable

affected characteristics usually are (a) the boiling curve, including its shape and the

position of the characteristic segments described in Section 2.1.1, (b) the density of active

nucleation sites, (c) the average bubble formation frequency, and (d) the average departure

bubble size (ROHSENOW; HARTNETT; CHO, 1998). The boiling curve is of primary

interest to industrial applications since it locates the points of maximal heat transfer and

efficiency and the departure from nucleate boiling. The other quantities are also of great

interest to visualization-based measurement tools because they are accessible via images,

as illustrated in Figure 3.

According to Rohsenow, Hartnett, and Cho (1998), the main system parameters

that influence pool boiling are (a) the system pressure; (b) the degree of subcooling; (c) the

nature, shape, and surface finishing of the heater surface; (d) the surface inclination;

(e) gravity; and (f) the mode of the test, that is, if heat flux increases, decreases, or

remains constant during the experimental run. In this work, only the effects of the heater

surface are covered in more detail since the other parameters are kept constant during the

experiments, as explained in Chapter 3.

Regarding the heater surface effects, many studies investigated the effects that the

shape, size, and inclination of the heater surface have on the boiling curve, the CHF,

and bubble parameters in the pool boiling phenomenon, such as the bubble departure

frequency and diameter. This Section presents some studies about the expected effects

that can be visualized in the datasets utilized in this work and which machine learning

models can use to make their predictions.

J. H. Kim, You, and Pak (2006) investigated the characteristics of the saturated









2.1. Pool boiling 43

for instance, heat flux was enhanced more than four times on the vertical surface compared

to the horizontal case. The increase in the h is likely due to the significant increase in

the density of active nucleation sites and the sliding movement of bubbles on the heater

surface. These observations are in agreement with the reviews of other studies provided

by Rohsenow, Hartnett, and Cho (1998) and Emir et al. (2022).

The effects of the heater size and inclination can hence be summarized as:

• effects of the heater size: on wires, as the diameter decreases, the heat

transfer coefficient increases at a given temperature. In addition, thinner wires

result in smaller departure bubble diameters and a higher frequency of bubble

formation. Reducing the heater diameter also reduces the CHF;

• effects of inclination: on flat surfaces, it was observed that vertically-oriented

surfaces shift the boiling curve to the left, resulting in higher values for the heat

flux at a given wall superheat compared to upward-facing surfaces. Additionally,

the CHF tends to decrease on inclined surfaces. Regarding bubble parameters,

inclined surfaces result in a significantly higher density of active nucleation sites.

They also present a lower frequency of bubble formation but a larger average

bubble departure diameter.

Finally, as demonstrated by Rohsenow, Hartnett, and Cho (1998), Kandlikar (1999)

and Emir et al. (2022), changing the heater surface geometry can alter most of the

observable boiling behavior, including the boiling curve and the bubble parameters. Most

models and equations depend on assumptions around the surface geometry and become

invalid if that changes.

In conclusion, the parametric effects described in this Section justify the choices of

heater surfaces in Chapter 3 since both the intrinsic system behavior, represented by the

boiling curve and the CHF, and the visible bubble parameters are affected by the heater

geometry, size, and inclination.

2.1.3 Numerical correlations

In order to make the project of thermal systems feasible, several authors developed

numerical correlations that allow the estimation of the heat flux q′′ or the heat transfer

coefficient h from system parameters or operating conditions.

According to Bergman et al. (2011) and Çengel and Ghajar (2009), the most

widely used correlation for nucleate boiling was developed by Rohsenow (1952), allowing

the calculation of the heat flux from the wall superheat ∆Tsat and the physical properties

of the fluid. The correlation states that

q′′ = µℓiℓv

[

g(ρℓ − ρv)

σ

]1/2(cpℓ∆Tsat

KiℓvPrnℓ

)3

, (3)

where µℓ is the saturated liquid dynamic viscosity; iℓv is the specific enthalpy of vaporiza-

tion; ρℓ and ρv are the saturated liquid and vapor massic densities, respectively; σ is the
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surface tension; cpℓ is the saturated liquid specific heat at constant pressure; and Prℓ is the

saturated liquid Prandtl number. The constants K and n are determined experimentally

and depend respectively on the surface-fluid combination and the fluid.

Even though Equation (3) provides a simple, direct correlation between heat flux

and wall superheat, it may result in errors of up to 100% when calculating the heat flux

from the wall superheat, or approximately 30% when calculating the wall superheat from

the heat flux (BERGMAN et al., 2011; ÇENGEL; GHAJAR, 2009). Even in the rare case

in which all other variables in Equation (3) are known with negligible error, the inherent

uncertainty of the equation makes it unfeasible to be used for monitoring and controlling

thermal systems. For instance, the uncertainty of 30% when calculating the wall superheat

from the heat flux makes the point of maximum heat transfer coefficient and the DNB

indistinguishable for some fluids.

In a review of recent predicting correlations for the heat transfer in pool boiling,

Gorenflo et al. (2014) compared nine studies covering 55 fluids under different operating

conditions. In the general case, the Heat Atlas (GORENFLO; KENNING, 2010) prediction

method was shown to predict heat transfer with the least error, resulting in a Mean

Absolute Percentage Error (MAPE) of 9.5% measured over all 55 fluids. This method

corresponds to the correlation

h

href
= Fq′′ · Fp∗ · Fℓ · Fs (4)

where Fq′′ represents the dependency of the heat transfer coefficient h on the heat flux

q′′; Fp∗ is the dependency on the reduced pressure p∗[1]; and Fℓ and Fs are functions of

the thermophysical properties of the working fluid and the heater surface, respectively.

The quantity href is the reference heat transfer coefficient, a reference value used for all

fluids. Even though the Heat Atlas (GORENFLO; KENNING, 2010) correlation shows

promising results, it requires specific data fitting to determine Fℓ and Fs. Despite having

a smaller associated error than Equation (3), this uncertainty can still be prohibitively

high for real-time estimation and control of the boiling process.

Specifically for the pool boiling of water, Gorenflo et al. (2014) reported that, among

the correlations they analyzed, the one by Yagov (2009) performed the best, achieving

4.82% of error for predicting the heat transfer coefficient for the reference experimental

data. The correlation states that

h = 3.43× 10−4
(

1 +
iℓv∆Tsat

2RTsat
2

)

λ2ℓ∆Tsat
3

νℓσTsat

[

1 + (1 + 800B)
1/2 + 400B

]

(5)

where

B =
iℓv(νℓρv)

3/2

σ(λℓTsat)
1/2

, (6)

[1] The reduced pressure p∗ is defined as p∗ = p/pc where p is the local pressure and pc is the critical
pressure of the fluid, that is, the pressure at its critical point.
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R is the specific gas constant, λ is the thermal conductivity and ν is the kinematic viscosity.

Despite having a relatively low error associated, Equation (5) requires measuring

∆Tsat, a process which may itself bring high uncertainty to the prediction. Additionally,

as noted by Gorenflo et al. (2014), those correlations take little, if any, information about

the heater surface into account, thus being constrained to the surface for which they were

developed. Understanding the effects of the heater surface and incorporating them into

the correlations is the top priority for future studies.

Emir et al. (2022) reviewed more than 30 correlations for estimating the CHF in

various conditions, such as different working fluids, system pressures, subcooling temper-

atures, orientations, and surfaces. The correlations behave relatively well and provide

crucial insight into the understanding of pool boiling systems. However, they are typically

associated with uncertainties of around 25% or above. One of the correlations covered in

that review was fine-tuned with more data points, and the authors were able to reduce its

associated uncertainty to 7.5%, representing a substantial improvement. However, even

though the correlations analyzed behave relatively well within their applicability range,

they cannot be extrapolated to other operating conditions.

In summary, as detailed in this Section, empirical and semi-empirical correlations

allow the calculation of heat transfer parameters such as the heat flux, the heat transfer

coefficient, and the CHF from other quantities such as operating conditions and fluid

properties. However, those correlations are usually associated with uncertainties or errors

that limit their applicability. In addition, generic correlations that cover multiple, different

use cases are frequently associated with higher uncertainties, which poses a trade-off

between their applicability and the confidence around their predictions.

2.1.4 Mechanistic models

Alternatively to the empirical or semi-empirical numerical correlations, described

in Section 2.1.3, mechanistic models allow the calculation of heat transfer parameters

from physical, observable inputs, such as the average bubble departure diameter and the

number of active nucleation sites. Those models are more similar to visualization-based

machine learning models (detailed in Section 2.2) since the same inputs are directly or

indirectly accessible to them.

Based on mechanistic analyses, Mikić and Rohsenow (1969) developed an expression

for calculating the heat flux q′′ or the heat transfer coefficient h from visible and measurable

quantities such as the density of active nucleation sites, Na; the average bubble diameter at

departure, Dd; and the average frequency of bubble formation, f . Their model considered

the contribution of transient heat conduction in the neighborhood of the active nucleation

sites and of natural convection in the inactive regions as the two governing sources of

heat transfer in the nucleate regime. Because of the clear separation between the different

contributors to the heat flux, this model is known as the heat flux partitioning model.



46 Chapter 2. Literature review

Their model was later expanded by Judd and Hwang (1976) to account for evaporation

in the microlayer beneath the bubbles, resulting in the expression

h =

[

K2
fit

2
CℓNaD

2
d

√

f +

(

1− π
K2

fit

2
NaD

2
d

)

hNC +
π

4
NaD

2
dhEV

]

(7)

where Kfit is a numerical constant obtained from fitting experimental data and Cℓ is

a function of the saturated liquid properties. The heat transfer coefficients hNC and

hEV represent the coefficient obtained solely from natural convection and the one due

to microlayer evaporation, respectively. The comparison of this model with experimental

data showed good agreement in behavior, but the deviation was considerably high.

According to M. Kim and S. J. Kim (2020), other studies further improved Equa-

tion (7). However, errors were still significantly high, particularly close to the DNB, where

bubble coalescence becomes prominent. To address this shortcoming, they proposed a new

mechanistic model incorporating the effects of bubble coalescence in the pool boiling from

a flat surface. According to their model,

h =
λℓ√
παℓtw

{

1 +
π

4
Dd

2Na

[

CA,1K
2
A + CA,2

(

5

2

√

3π

Prℓ
− 2

)

sin2 θ

]}

, (8)

where α is the thermal diffusivity; tw is the bubble waiting time for departure; KA is an

adjusted constant known as the influence area factor, defined as the ratio of the diameter

of the quenching region to the diameter of the evaporation region; θ is the contact angle

between the heater surface and the bubble interface; and CA,1 and CA,2 are area correction

factors which can be calculated from the distance between adjacent bubbles and their

departure diameter.

M. Kim and S. J. Kim (2020) evaluated their proposed model on a saturated water

dataset and measured the Root Mean Squared Error (RMSE) between the modeled boiling

curve and experimental data. The RMSE reduced from 239 kW/m2, obtained using the

heat flux partitioning model, to 20 kW/m2 using the new model, an improvement of more

than 90%.

Despite the promising results obtained with mechanistic models and numerical

correlations, those approaches are limited to the specific use cases for which they were

designed. In addition, they depend on input quantities that need to be measured, a process

that increases the global uncertainty around the final prediction. Furthermore, for real-

time measurement and control of thermal systems, that process may even be unfeasible

depending on the response time of the measurement systems. Therefore, recent studies have

attempted several alternative approaches for the measurement of heat transfer parameters

in order to overcome those limitations, such as the ones presented in Section 2.3.
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2.2 MACHINE LEARNING

The advances in computer hardware and software in the last decades made feasible

the application of progressively more efficient and robust computational algorithms in a

multitude of situations. Among such new technologies, Machine Learning (ML) rises as

one of the most powerful tools available for solving data-centric problems. Algorithms that

learn with their experience have been successfully applied in the last decade in various areas

such as the identification of risk factors for cancer (FRIEDMAN; HASTIE; TIBSHIRANI,

2001), stock market forecasting (JAMES et al., 2013), the recognition of objects and faces

in images (KRIZHEVSKY; SUTSKEVER; HINTON, 2012; HE et al., 2016; SANDLER

et al., 2018), and many others (GOODFELLOW; BENGIO; COURVILLE, 2016).

Machine Learning can be defined as the improvement of a machine’s performance

in executing a task as it gains experience (MITCHELL, 1997). According to Goodfellow,

Bengio, and Courville (2016), learning can be categorized as supervised or unsupervised,

the former of which is the focus of this work. In supervised learning, models consume

datasets in the form D =
{(

x(i), y(i)
)}m

i=1
, where each x(i) is an input called a feature

vector, and y(i) is the corresponding desired output. The two most popular examples of

supervised learning are regression and classification problems. In regression problems,

each y(i) ∈ R, known as a target, is assumed to belong to a bounded, continuous real

interval. On the other hand, in classification problems, each example belongs to a specific

class; in this situation, each y(i) is called a label and is an element of the set { 1, . . . , C }
where C is the number of classes in the problem.

Machine Learning fundamentally differs from Optimization in its goal. Optimization

aims to minimize an error metric computed over a training set Dtrain. On the other hand,

in ML, although there is still an optimization problem over the training set to be solved, the

goal is to minimize the generalization error, that is, the expected error over a new, unseen

test set Dtest. In order to estimate the generalization error and use this estimate to choose

or calibrate different models, a validation set Dval is defined as a subset of the training

data. With this setup, the training set Dtrain is utilized to learn the model’s parameters,

that is, to find an optimal function in a parameterized class. In turn, the validation set

Dval is employed to choose the model’s hyperparameters, non-trainable parameters that

control the learning algorithm. Finally, the model’s performance is measured on the test

set Dtest (GOODFELLOW; BENGIO; COURVILLE, 2016).

A standard definition in the literature is the differentiation between a model’s

parameters and hyperparameters. Parameters are the variables that specify a function

from the parametrized class associated with the model. In deep learning models, described

in Section 2.2.1, those are the trainable weights. In contrast, hyperparameters are the non-

trainable variables that configure the training algorithm or define the parametrized class.

The number of layers and units in deep learning models, the Adam optimizer learning



48 Chapter 2. Literature review

rate (KINGMA; BA, 2014), and the dropout rate (SRIVASTAVA et al., 2014) are examples

of hyperparameters.

For evaluations on the test set to be statistically significant, unbiased estimates for

the generalization error, it is crucial that test examples are never shared with the training

and validation sets. Similarly, performance metrics evaluated on the test set cannot be

used to tune training hyperparameters since that would introduce bias. Consequently,

test metrics are only utilized in this work for communication and reporting purposes,

not for designing machine learning models. Because of this limitation, the validation

set is employed to estimate the generalization error when training models and tuning

hyperparameters.

Ideally, a model learns the relationship between the examples in the training set

and thus generates a correct representation for them or fits the data. If this does not

happen, and the training error is significantly high, the model is said to underfit the

data. In general, models underfit when their hypothesis space, the set of functions from

which the learning algorithm selects the solution, does not represent the training data.

Some standard practices to prevent underfitting include: changing the type of model, for

instance, replacing a polynomial regressor with a neural network; increasing the number of

learnable parameters, for instance, by increasing the number of units in a neural network;

changing the model’s architecture, e.g., by adding convolutional layers to a neural network,

as explained in Section 2.2.2; or tuning the model’s hyperparameters (GOODFELLOW;

BENGIO; COURVILLE, 2016).

In contrast, a model overfits the data when the generalization error is considerably

higher than the training error. Intuitively, a model overfits when it learns not only the

intrinsic properties of the distribution it models but also the noise present in the data

samples (MURPHY, 2012), thus memorizing aspects of the training set that are not present

in the test set (GOODFELLOW; BENGIO; COURVILLE, 2016). The two most common

techniques for preventing overfitting are: increasing the training set size and applying

regularization techniques, such as ℓ2 penalization or dropout (SRIVASTAVA et al., 2014).

2.2.1 Deep learning

Many ML techniques were developed in the past, aiming to model progressively

more complex functions. Among the most modern technologies, neural networks stand

out as powerful tools due to their high versatility, performance, and scalability. According

to Goodfellow, Bengio, and Courville (2016), deep neural networks, containing multiple

layers, succeed in a wide range of tasks because they rely on the general principle of

learning multiple levels of composition.

Neural networks approximate any continuous, multivariate function with arbitrary

precision as long as an adequate architecture is chosen and enough computation time is

given (GOODFELLOW; BENGIO; COURVILLE, 2016). In particular, CNNs are widely
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where W [ℓ] ∈ R
nℓ×nℓ−1 and b[ℓ] ∈ R

nℓ . The function g[ℓ] is known as the activation

function for layer ℓ, and is applied to z[ℓ] element-wise, resulting in the activation a[ℓ].

With this, the hidden layers learn non-linear correlations between their inputs in what is

known as automatic feature extraction (MURPHY, 2012). Because of the high connectivity

between their units, MLP layers are known as densely connected layers, or simply dense

layers. Note that each dense layer ℓ contains nℓ × nℓ−1 + nℓ independent parameters,

corresponding to the elements in W [ℓ] and b[ℓ].

The activation function g[ℓ] allows models to learn non-linear relationships between

their inputs and outputs. As such, choosing the activation function is an important step

for designing training pipelines. According to Goodfellow, Bengio, and Courville (2016),

the most commonly utilized activation function in CNNs is the ReLU, defined as

ReLU(x) = max { 0, x } . (10)

Details around this and other activation functions can be found in Murphy (2012) and

Goodfellow, Bengio, and Courville (2016).

In order to train an MLP, a cost function J must be chosen and minimized. The

simplest approach is to calculate the cost function from a loss function computed over

the entire dataset:

J =
1

m

m
∑

i=1

L
(

y(i), ŷ(i)
)

. (11)

According to Chollett (2018), in regression problems, it is common to choose the quadratic

error as the loss function, in which case the cost function equals the Mean Squared Error

(MSE) explained in further detail in Section 2.2.3:

J =
1

m

m
∑

i=1

(

y(i) − ŷ(i)
)2

= MSE. (12)

Additionally, Equation (11) is frequently adjusted to include regularization terms.

The training stage involves finding the parameters W [ℓ] and b[ℓ] that minimize

the cost function. To that end, gradient-based algorithms, such as Stochastic Gradient

Descent (SGD) and Adam (KINGMA; BA, 2014), were developed. In this context, the

backpropagation method rises as an efficient algorithm for calculating the cost function

gradient via the application of the chain rule to Equation (9). According to Goodfellow,

Bengio, and Courville (2016), the generalization capability of neural networks derives from

utilizing non-linear activation functions and the backpropagation method.

There are many other aspects of training deep models, such as the initialization of

weights, the choice of learning rates and momenta and learning rate decay, whose detailed

explanation can be found in Goodfellow, Bengio, and Courville (2016), Murphy (2012),

Chollett (2018), Bishop (2006) and Friedman, Hastie, and Tibshirani (2001).
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CNNs are of great interest to the modeling of image data due to four main charac-

teristics (GOODFELLOW; BENGIO; COURVILLE, 2016; CHOLLETT, 2018):

• sparse connectivity: in contrast to dense layers in which every input pixel

connects to every output pixel, in convolutional layers, each output is connected

only to the kernel parameters, which is normally several orders of magnitude

smaller than the input images. Therefore, the number of connections, and hence

matrix operations, is significantly reduced in convolutional layers, reducing their

memory footprint and runtime costs compared to dense layers.

• parameter sharing: because each filter is applied to every window of the input

image without changing its parameters, those parameters are shared between

the input windows. In contrast, dense layers contain a different set of trainable

weights for each input pixel. As a consequence, the storage requirements of

convolutional layers tend to be much lower than those of dense layers.

• translation-equivariance: since the kernels are applied to all windows of the

input image, the patterns they learn can be identified anywhere in the input, re-

gardless of where they appear. If an object is translated in the input image, then

its representation in the output is also equivalently translated without changing

its contents. In contrast, dense layers would require intensive retraining to de-

tect the same object in a different location. This makes convolutional networks

exceptionally efficient when processing time series and image data. In partic-

ular, convolutional layers require fewer training samples to learn generalized

representations since they are naturally equivariant to translation.

• spatial hierarchy learning via composition: CNNs learn spatial hierarchies

of patterns by stacking, or composing, convolutional layers. In this scenario, the

first layers, closer to the input, learn smaller and simpler local patterns, such

as edge detection; the following layers can then learn more extensive, complex,

and abstract concepts, such as object detection.

Typically, convolutional layers are followed by two additional layers (GOODFEL-

LOW; BENGIO; COURVILLE, 2016). The first layer is an activation layer where the

output of the convolution stage is activated by a non-linear activation function u, similarly

to Equation (9). The standard choice for the activation layer following convolutional layers

is the ReLU activation. The second layer is a pooling layer responsible for reducing data

dimensionality and providing local invariance.

The pooling layer applies a pooling function to windows of the activated output

from the convolutional layer. By definition, a pooling function reduces its input window

to a single value by calculating a summary statistic. The most popular pooling function is

max-pooling, which chooses the maximum value in the window, as illustrated in Figure 8.

Max-pooling is conceptually similar to a convolution, except that it uses a hard-coded

max operation instead of learning a linear transformation (CHOLLETT, 2018).





54 Chapter 2. Literature review

2.2.3 Performance metrics

Several metrics can be used to assess the performance of trained models. In regres-

sion problems, the most commonly applied metrics are error metrics that evaluate the

average distance between the data points and the predicted values.

In this work, models were analyzed using the MSE, the RMSE, the Mean Absolute

Error (MAE), the MAPE and the R2 score, respectively defined as

MSE =
1

m

m
∑

i=1

(

y(i) − ŷ(i)
)2

, RMSE =
√

MSE, MAE =
1

m

m
∑

i=1

∣

∣

∣
y(i) − ŷ(i)

∣

∣

∣
,

MAPE =
1

m

m
∑

i=1

∣

∣

∣

∣

∣

y(i) − ŷ(i)

y(i)

∣

∣

∣

∣

∣

, R2 = 1−
∑m

i=1

(

y(i) − ŷ(i)
)2

∑m
i=1

(

y(i) − ȳ
)2

(15)

where ȳ = 1
m

∑m
i=1 y

(i) is the average of the targets.

The MSE, RMSE, MAE, and MAPE equal zero only for perfect predictors, for

which all predictions match their respective true values; they are positive otherwise, with

the MSE and RMSE being more sensitive to outliers than the MAE. The MSE is commonly

used as the loss function during the training of regression models (CHOLLETT, 2018),

as well as a measure of the overall expected deviation on the validation set.

Finally, the R2 score evaluates models by comparing them with a trivial baseline

model. A perfect predictor would have a R2 score of 1 because, in this case, ŷ(i) = y(i).

On the other hand, a model scoring 0 would have the same performance as the trivial

model, the constant mean predictor for which every prediction is constant and equal to

the average target, i.e. ŷ(i) = ȳ; such models are normally discarded since they do not

outperform the trivial model (ABADI et al., 2015c).

In addition, the MAPE allows comparing models or datasets that operate on differ-

ent scales. However, it is important to note that the MAPE is asymmetric: it incentivizes

predictions with lower absolute value since low predictions are at most 100% wrong,

whereas high predictions’ errors are unbounded (TOFALLIS, 2015). This property may be

especially problematic when the MAPE is employed as the objective metric for selecting

models to serve as measurement tools, as they will tend to underestimate the measured

variable, potentially incorrectly labeling a physical system to be in a safe operating condi-

tion when it is close to failure.

Other metrics not mentioned in this Section are also helpful in different contexts.

Goodfellow, Bengio, and Courville (2016), Chollett (2018) and Abadi et al. (2015a) provide

more detailed information about them and their use cases.

The MSE is employed as both the training loss and the main performance metric

in this work. The other metrics are provided to ease the comparison with other studies

and provide further insight into the meaning of results. The search for performance
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metrics is still an active field of research, and more studies are necessary to find the best

solution for measuring the performance of heat transfer prediction models (HUGHES;

KINI; GARIMELLA, 2021).

2.2.4 Automated machine learning

Given a fixed model architecture, training a deep learning model consists of mini-

mizing the loss function defined in Equation (11) by optimizing the model’s parameters.

However, this process assumes that many preliminary decisions are made, including the

choice of the types of layers in the model (e.g., convolutional or dense layers) and the

optimizer algorithm (such as SGD or Adam (KINGMA; BA, 2014)) as well as their as-

sociated hyperparameters, for instance, the number of filters in a convolutional layer or

the learning rate in the Adam optimizer. Typically, this decision is made by human ML

practitioners according to their previous experiences (SONG; JIN, Haifeng; HU, 2022),

and this is how the studies covered in Section 2.3 designed their models.

According to Song, Haifeng Jin, and Hu (2022), the human-driven process can be

ineffective or suboptimal due to various factors, such as the cost of acquiring the necessary

knowledge and experience about ML, the complexity of the implementation process,

and the gap between theory and practice. Good and thorough knowledge is required to

formulate a problem as an ML problem, select suitable algorithms and preprocess data,

which may take significant time to research and learn. Implementation and debugging can

also be complex, especially with advanced algorithms. In addition, the performance of an

ML model often depends on the data it is trained on, which can be noisy and difficult to

interpret, clean, and control, leading to an empirical tuning process that relies on trial

and error. Even experienced practitioners may face difficulties in certain cases.

In this context, Automated Machine Learning (AutoML) rises as an excellent tool

for overcoming those limitations. AutoML consists of automating the search and evaluation

of different ML algorithms, including the choice of architecture, layer size, optimizer, and

regularization techniques. Song, Haifeng Jin, and Hu (2022) delineate the three core

components of an AutoML procedure:

• Search space: the set of hyperparameters the AutoML algorithm can choose

from to build and evaluate models. For instance, the search space for the number

of filters in convolutional layers may be specified as the finite set { 32, 64 }. Other

hyperparameters, such as the optimizer learning rate, must be sampled from

a continuous real interval, e.g.
[

1× 10−5, 1
]

. In principle, the search space

can be as large as necessary to achieve the desired performance at the cost of

demanding more time for the search algorithm to run. Therefore, a process of

search space design is mandatory to reduce the computation required to perform

the search. This process involves pruning the search space by incorporating

knowledge or task requirements. An example of search space design can be
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found in Section 4.5.

• Search strategy: the strategy to select an optimal set of hyperparameters from

the search space. The most trivial search strategy is known as grid search and

consists of testing all possible combinations of hyperparameters. Even though

grid search is guaranteed to find the best possible hyperparameters from the

search space, it is often prohibitively expensive since it requires the entire train-

ing pipeline to be executed once per set of hyperparameters. Therefore, more

cost-effective strategies are usually employed to reduce the search time and com-

putational cost. The default strategy in AutoKeras (JIN, Haifeng; SONG; HU,

2019) is the greedy algorithm, which separates hyperparameters into different

categories, such as preprocessing-related, architecture-related, and optimizer-

related hyperparameters. At each trial, the algorithm randomly selects a set of

hyperparameters from one category while keeping the hyperparameters from

other categories equal to the best ones ever observed. Other strategies, such as

Bayesian optimization (BERGSTRA et al., 2011; HUTTER; HOOS; LEYTON-

BROWN, 2011; SNOEK; LAROCHELLE; ADAMS, 2012) or Hyperband (LI

et al., 2016), are also available from AutoKeras (JIN, Haifeng; SONG; HU,

2019).

• Performance evaluation strategy: the strategy to evaluate the selected

hyperparameters. Generally, this is done by instantiating a model with the

selected hyperparameters and computing performance metrics. Thus, the best

model is the one with better performance according to those metrics.

2.3 MACHINE LEARNING-BASED ANALYSIS OF PHASE-CHANGE

Given the need for better heat transfer prediction tools, as pointed out in Section 2.1,

several studies employed visualization-based machine learning models to quantify heat

transfer or classify regimes in the context of the boiling process. This Section presents the

most relevant and closely-related works found in the literature.

Hobold and da Silva (2018b) demonstrated the application of machine learning

techniques to the classification of pool boiling regimes from a nichrome wire. Two types

of classifiers were trained: SVMs and shallow MLPs[3]. Their dataset comprised images

obtained by a conventional camera with a frame acquisition rate of 30 fps and a resolution

of 1280× 720 pixels (720 p). A detailed review of their experimental setup can be found

in Chapter 3 since the present work employed the same experimental bench. Due to the

relatively high number of features in their images, they applied dimensionality reduction

techniques. In order to do so, colored images were converted to grayscale as their first

preprocessing step, representing a threefold reduction in the number of pixels. This pre-

[3] A shallow MLP contains, by definition, a single hidden layer.
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processing step can be found in more detail in Section 4.2.2.3. The authors subsequently

applied a downscaling transformation, described in Section 4.2.2.4, to reduce the dataset

dimensionality further. The downscaling transform consists of computing neighbor pixels’

average luminosity, similar to the average pooling described in Section 2.2.2. By employing

a downscaling factor of fds = 5, they reduced the number of features by f2ds = 25 times.

Despite this dimensionality reduction, no meaningful information was lost, as evidenced

by a retained variance and cross-entropy analysis. A similar analysis was performed in

this work, as described in Section 4.2.2.4. Images were also cropped to the natural Region

of Interest (ROI) of the experiment, removing irrelevant objects such as the electrodes

and the boiling chamber. A final dimensionality reduction step was transforming image

representation using Principal Component Analysis (PCA) (MURPHY, 2012). A struc-

tural similarity analysis also showed that images acquired at 30 fps are uncorrelated, which

helps in preventing biased estimates. In the task of classifying pool boiling images between

natural convection, nucleate boiling, and film boiling (described in detail in Section 2.1),

both SVMs and MLPs achieved over 90% accuracy in indirect visualization (described in

Section 4.2.2.6), and approximately 99% of accuracy, precision, and recall in direct visual-

ization (also explained in Section 4.2.2.6). An additional investigation also demonstrated

that MLPs were more than 100 times quicker than SVMs in performing predictions.

In a subsequent study (HOBOLD; DA SILVA, 2018a), the authors showed that

CNNs perform significantly better than SVMs and shallow MLPs in classifying pool boiling

regimes, even without PCA. Based on this result, their third work (HOBOLD; DA SILVA,

2019b) evaluated the performance of CNNs in the visualization-based quantification of

heat flux in pool boiling and corroborated the hypothesis that they are superior to MLPs

in performance and in inference time. Like in Hobold and da Silva (2018b), the authors

considered the differences between direct and indirect visualization. For heat fluxes greater

than 10W/cm2, where the boiling regime is either nucleate or film boiling, they obtained

the error metrics reproduced in Table 1. Those results are used in this work in Section 4.4

to validate the training pipeline.

To achieve the results in Table 1, Hobold and da Silva (2019b) employed the CNN

illustrated in Figure 10. The model architecture consists of: the input layer; a convolutional

layer with 32 filters of 5× 5 kernel size; a 2× 2 max-pooling layer; a 200-unit dense

layer; and a single-unit output head. A ReLU activation activates the convolutional and

hidden dense layers. In contrast, the output unit is linearly activated to allow correct

real-valued predictions. Overfitting is prevented by using a 50% dropout. Images were

preprocessed using the same pipeline as Hobold and da Silva (2018b), including grayscaling,

downscaling, and cropping to the ROI. In addition, they assessed the effect of the width

of the visualization window. They discovered that images could be laterally cropped to

60% of their original size without significantly losing performance. As shown in the results

in Table 1, models trained with indirect visualization perform significantly worse than
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Table 1 – Reference metrics from Hobold and da Silva (2019b). Obtained for nucleate and
film boiling regimes defined by q′′ ≥ 10W/cm2. Validation and test metrics are
presented as functions of the type of visualization: direct, in which the heater
surface is visible in the images, or indirect, in which it is cropped out. Confidence
intervals of 95% around the mean were computed by bootstrapping using 1000
batches of 100 samples. Reproduced from Hobold and da Silva (2019b).

Direct Indirect

Metric Unit Validation Test Validation Test

R2 — 0.9828+0.0017

−0.0019 0.9826+0.0018

−0.0020 0.9557+0.0046

−0.0050 0.9564+0.0049

−0.0050

MAPE % 7.37+0.46

−0.42 7.62+0.44

−0.42 10.60+0.56

−0.56 10.35+0.52

−0.51

MAE W/cm2 2.77+0.14

−0.14 2.66+5.78

−2.55 3.98+9.93

−3.85 3.97+9.82

−3.83

MSE (W/cm2)2 13.03+1.37

−1.19 13.19+1.49

−1.31 33.55+4.05

−3.73 32.87+3.92

−3.65

their direct-visualization counterparts, almost triplicating the MSE metric. As pointed

out by Hobold and da Silva (2018b, 2019b), this is likely a consequence of the additional

information that the wire and its neighborhood contain regarding bubble formation and

departure, which is accessible to direct-visualization models only.

Finally, Hobold and da Silva (2019b) loaded their trained model onto a Raspberry

Pi 3 Model B machine to investigate the applicability of their methodology to achieve

real-time, low-cost heat flux measurement. Because of the availability of only 1GB of

RAM in that machine, they reduced their model size by cutting the number of filters

in the convolutional layer to 16. By doing this, they showed that the Pi could perform

approximately 7 predictions per second, which is a promising result. However, the RAM

limitation demonstrates that further work is necessary to reduce the memory footprint of

trained models.

Additionally, Hobold and da Silva (2019a) observed that even the classification

accuracies of 99% obtained in Hobold and da Silva (2018a) can be prohibitively low for the

detection of the DNB to prevent the boiling crisis in thermal systems since it misclassifies

one frame per 10 000 frames, or one frame each 333 s at 30 fps. Therefore, the authors

introduced a method based on Bayesian inference on top of the previously trained CNN.

This way, each image is classified depending on the CNN prediction for them and the

classification of the previous frames. With this approach, it was demonstrated that DNB

could potentially be detected with less than 10 frames.

The promising results obtained by Hobold and da Silva (2018b,a, 2019b,a) support

the application of visualization-based machine learning models to pool boiling problems.

Despite this, the authors pointed out that there is still room for significant improvements to

their methodology. In particular, only three CNN were considered in Hobold and da Silva
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Input layer
Shape: (120, 196, 1) Weights: 0

Convolutional block
Shape: (60, 98, 32) Weights: 832
32 filters, kernel size: 5× 5, stride: 1× 1

Max-pooling, size: 2× 2, stride: 2× 2
Activation: ReLU

Regularization layer
Shape: (60, 98, 32) Weights: 0

Dropout: 50%

Dense block
Shape: (200,) Weights: 37632200

200 units

Activation: ReLU

Regularization layer
Shape: (200,) Weights: 0

Dropout: 50%

Dense layer
Shape: (1,) Weights: 201

1 unit

Figure 10 – Representation of the CNN utilized by Hobold and da Silva (2019b). A convo-
lutional block is a sequence of three layers: a convolutional layer, an activation
layer, and a max-pooling layer. Similarly, a dense block is a dense layer fol-
lowed by an activation layer. Each layer is displayed alongside its outputs’
shapes and the number of trainable weights it contributes to the model. The
weights of dense layers are arranged in one-dimensional vectors whose shape
is denoted as (·,), following the Python notation for tuples of unitary length.

(2019b), and a systematic search for an optimal architecture is still open for exploration. In

addition, all studies were carried out in the same operating conditions with identical test

samples. Consequently, the proposed methodology’s generalization capability remains an

open question. Moreover, the limited availability of RAM in low-cost hardware described

by Hobold and da Silva (2019b) poses the need for smaller, more efficient models.

Scariot (2019) extended those studies by considering the quantification of the

dissipated heat in pool boiling from a flat copper surface. This represents a change in the

heater surface material and its geometry, which is likely to cause drastic changes in the

system’s behavior, as explained in Section 2.1.2. A single CNN architecture was designed

containing six convolutional layers interspersed with three max-pooling layers and topped

by a 256-unit hidden dense layer, followed by a single-unit output head. Figure 11 depicts
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this architecture. Despite the bigger model employed, a worse performance than Hobold

and da Silva (2019b) was obtained, with reported errors of up to 24% over the validation

set and 33% over the test set. Two studies were carried out, and the reported performance

metrics can be found in Table 2.

Input layer
Shape: (128, 96, 1) Weights: 0

Convolutional block
Shape: (64, 48, 64) Weights: 640
64 filters, kernel size: 3× 3, stride: 1× 1

Max-pooling, size: 2× 2, stride: 2× 2
Activation: ReLU

Convolutional block
Shape: (32, 24, 64) Weights: 36928
64 filters, kernel size: 3× 3, stride: 1× 1

Max-pooling, size: 2× 2, stride: 2× 2
Activation: ReLU

Regularization layer
Shape: (32, 24, 64) Weights: 0

Dropout: 50%

Convolutional block
Shape: (16, 12, 64) Weights: 36928
64 filters, kernel size: 3× 3, stride: 1× 1

Max-pooling, size: 2× 2, stride: 2× 2
Activation: ReLU

Convolutional block
Shape: (8, 6, 64) Weights: 36928
64 filters, kernel size: 3× 3, stride: 1× 1

Max-pooling, size: 2× 2, stride: 2× 2
Activation: ReLU

Regularization layer
Shape: (8, 6, 64) Weights: 0

Dropout: 50%

Convolutional block
Shape: (4, 3, 128) Weights: 73856
128 filters, kernel size: 3× 3, stride: 1× 1

Max-pooling, size: 2× 2, stride: 2× 2
Activation: ReLU

Convolutional block
Shape: (2, 1, 128) Weights: 147584
128 filters, kernel size: 3× 3, stride: 1× 1

Max-pooling, size: 2× 2, stride: 2× 2
Activation: ReLU

Regularization layer
Shape: (2, 1, 128) Weights: 0

Dropout: 50%

Dense block
Shape: (256,) Weights: 65792

256 units

Activation: ReLU

Regularization layer
Shape: (256,) Weights: 0

Dropout: 50%

Dense layer
Shape: (1,) Weights: 257

1 unit

Figure 11 – Representation of the CNN utilized by Scariot (2019). The same notes for
Figure 10 apply.

Scariot (2019) presented several reasons for this increase in the error metrics com-

pared to the on-wire pool boiling results obtained by Hobold and da Silva (2019b):

(a) on-wire boiling is intrinsically a bi-dimensional problem from the camera Point of
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Table 2 – Reference metrics from Scariot (2019). Obtained for two different datasets gen-
erated by choosing different heat flux levels from the global dataset. Validation
and test metrics are computed by bootstrapping 10 000 batches of 1000 samples
each. Reproduced from Scariot (2019).

Study 1 Study 2

Metric Unit Validation Test Validation Test

MSE (W/cm2)2 47.0± 8.3 213± 34 45.0± 8.3 179± 26
MAE W/cm2 5.04± 0.44 10.88± 0.93 4.87± 0.43 10.00± 0.84
R2 — 0.965± 0.006 0.865± 0.024 0.967± 0.007 0.839± 0.032

View (PoV), whereas boiling from a flat surface contains information (such as bubbles) in

the depth direction, which is not captured; (b) the on-wire dataset also contained more

heat flux steps, which may have allowed models to generalize better; (c) Hobold and da

Silva (2019b) tested three different architectures, whereas Scariot (2019) considered only

one—even though three sets of hyperparameters do not compose a significant search space,

they may have provided sufficient performance gains; (d) in the studies carried out by

Scariot (2019), the test set was generated by holding out some heat flux levels so that

they were absent from the training set—this differs from the subsets used by Hobold and

da Silva (2019b), which are sampled from all heat flux levels.

No studies were found in the existing literature applying AutoML techniques to

find an optimal model architecture for phase-change problems. To the best of the author’s

knowledge, this is the first work to attempt that.

2.4 PROBLEM SPECIFICATION

This Chapter introduced in Section 2.1 pool boiling as an important heat transfer

phenomenon with broad applications. However, the prediction and modeling of pool

boiling systems is still an active area of research. In particular, the effects of heater surface

variability on pool boiling are challenging to consider. Additionally, Section 2.2 presented

machine learning as a promising tool for computer vision problems, and Section 2.3

reviewed recent studies exploring the application of machine learning models to quantify

the pool boiling phenomenon.

However, as indicated in Section 2.3, those studies did not consider the effects

of heater surface variability on the pool boiling phenomenon. This is a significant gap

in the literature, as the heater surface is a key component of the pool boiling system

and considerably changes the system’s behavior. Moreover, searching for optimal machine

learning architectures and training hyperparameters was not a goal of those studies, which

leaves the door open for a systematic exploration of different models aiming at minimizing

the generalization error.

As a result, this work aims to fill the gap in the literature by investigating the
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3 EXPERIMENTAL METHODOLOGY

In order to train machine learning models, it is necessary to collect data. This

Chapter describes the pool boiling experimental setup employed to generate data for this

work and the resulting datasets and their characteristics. Sections 3.1 and 3.2 describe the

experimental apparatus employed in this work and the adaptations necessary to make that

possible; Section 3.3 delineates the step-by-step procedure followed to gather experimental

data; Section 3.5 estimates the uncertainties around the heat flux measurements; and

Section 3.4 describes the datasets obtained by the experimental procedure.

3.1 EXPERIMENTAL APPARATUS

The experimental apparatus utilized in this work to obtain pool boiling data

comprises a boiling chamber, a camera, and a Data Acquisition System (DAQ)[1]. The

boiling chamber is a borosilicate-glass cylinder with an inner diameter of 144mm, a height

of 200mm, and a wall thickness of 5mm enclosed with stainless steel plates at the top

and bottom. The top plate contains openings to the atmosphere to help keep the inner

pressure of the chamber approximately constant.

Inside the chamber, two copper electrodes separated by 60mm sustain the test

sample. A 1500W Direct Current (DC) power supply provides electric current to the

test sample by imposing electric tension between the electrodes. Voltage and current are

manually adjusted. The boiling chamber is filled with deionized water to avoid current

leakage and ensure consistent behavior between experimental runs and the results in the

literature. Figure 13 illustrates the experimental apparatus, including a photograph and

two schematic representations. Examples of the frames obtained with this setup are shown

in Section 3.4.

The electric potential difference Vsample between the test sample’s terminals is

measured at the base of the electrodes, whereas the electric current I that flows through

the test section is calculated by measuring the voltage drop Vshunt at an ammeter shunt

installed in series with the circuit. The ammeter shunt has a resistance of Rshunt = 4mΩ

known with ±0.5% of uncertainty. The current I is calculated according to Ohm’s Law,

Vshunt = RshuntI. The thermal power q dissipated by the test sample by the Joule

effect is then calculated as q = VsampleI. Finally, the heat flux q′′ can be calculated as

q′′ = q/As according to Equation (2). Figure 14 contains an electrical diagram for the

system, demonstrating the two sections where electric tension is measured.

A DAQ acquires all electric data during the experiments. The electric tension

between the test sample terminals is measured with an uncertainty of ±6230 µV and the

[1] In this work, the term DAQ is used to refer to both data acquisition in general and data acquisition
systems. This confusion is an intentional simplification commonly used in the literature and in the
industry.
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I

Rshunt

Rsample

Power supply

+ −Vshunt

+ −Vsample

Boiling chamber

Figure 14 – Electrical diagram for the pool boiling experimental apparatus.

the descending liquid temperature, which is a better approximation for the bulk liquid

temperature than the rising, overheated vapor bubbles. Changes in the liquid temperature

translate into changes in the RTD’s internal resistance, which is, in turn, measured by

the DAQ using the 4-wires method with a maximum uncertainty of ±0.35 ◦C. The RTD

was calibrated to a third-order polynomial using an ultrathermostatic water bath and a

high-precision reference thermometer.

A conventional Digital Single-Lens Reflex (DSLR) HERO4 (GoPro) camera posi-

tioned in front of the chamber acquires images in 2.7K quality at a rate of 30 fps (frames

per second) with a linear Field of View (FoV), that is, without distortion. In order to

prevent the machine learning algorithms from using the scene background (irrelevant to

the boiling process) to learn and make predictions, a photographic diffuser, backlit with

a Light-Emitting Diode (LED), is installed. With that, the image background remains

unchanged from one experimental run to another.

Because of the cylindrical shape of the boiling chamber, video frames can be slightly

distorted, especially near the borders of the ROI. Despite this, no correction was made as

a deliberate simplification of the preprocessing pipeline described in Section 4.2.2. If any

correction is necessary, trained machine learning models are expected to learn them.

3.2 ADAPTATION OF THE EXPERIMENTAL APPARATUS

As part of this work, the experimental apparatus left by Scariot (2019) was reverted

to the format employed by Hobold and da Silva (2018a,b, 2019a,b) to collect pool boiling

data with different one-dimensional test samples instead of bi-dimensional surfaces. This

Section describes the changes and fixes applied.

The main adaptation consisted in replacing the copper block at the bottom of the

boiling chamber with the Polytetrafluoroethylene (PTFE) base sustaining the two copper

electrodes built by Hobold and da Silva (2018a). After this substitution, several additional

modifications and fixes were implemented to ensure the correct behavior of the apparatus:
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• maintenance and repair: (a) repair of the electric circuitry, including the

replacement of defective wires and cables; (b) corrective maintenance of the

fastening and sealing elements, like the substitution of an O-ring that lost

elasticity with age and reinforcement of the high-temperature silicone sealant

that showed signs of wearing and liquid leakage;

• substitution of equipment: (a) replacement of the previous DAQ with the

one described in Section 3.1, including the voltage, current, and temperature

input modules; (b) substitution of the ammeter shunt by a higher-precision

model, as described in Section 3.1; (c) replacement of the high-pressure outlet

valve utilized by Hobold and da Silva (2019b) with a gate valve drain; (d) sub-

stitution of the previous camera model by the HERO4 (GoPro) model described

in Section 3.1;

• addition of auxiliary components: (a) construction of a tension divider

to measure the voltage at the base of the copper electrodes. This divider is

necessary due to a limit imposed by the DAQ voltage input module of at most

10V per terminal. Since the maximum tension delivered by the power supply

is 30V, three identical resistors were assembled in series, and the potential

drop across each resistor was read by different terminals; (b) installation of a

manually-adjustable dimmer to control the thermal power dissipated by each

auxiliary heater in the range 0–750W. This is important to avoid extreme

changes in the bulk liquid temperature which could cause the borosilicate glass

to break; (c) implementation of a signaling subsystem based on a LED. In this

subsystem, a LED is positioned inside the camera’s FoV, outside the boiling

ROI. When the LED is activated, an electric signal is simultaneously sent to

the DAQ, allowing for the synchronization between the recorded video and

the voltage, current and temperature data. This signaling subsystem is also

manually activated. (d) electrostatic shielding of all signal wires and cables to

reduce the electromagnetic interference in the measurements caused by near

machinery (for instance, the power supply). Both electrostatic shields and the

boiling chamber metallic skeleton are grounded.

Those adaptations took a considerable time, mainly because some did not seem

necessary at first, like the electrostatic shielding – their need only became evident as

issues appeared during the experiments. Other changes, such as adding the dimmer to

limit the power dissipated by the auxiliary heaters, were recommended by the previous

authors based on their own experience, even though this is not explicitly reported in their

work (SCARIOT, 2019).

In addition to the changes in the experimental setup itself, due to the lack of avail-

able licenses when the experiments were run, a custom, minimal DAQ software was imple-

mented in Python 3.7 to read, store, and display measured data in real time. This program
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was built on top of Nidaqmx (NATIONAL INSTRUMENTS, 2017), PyQtGraph (CAM-

PAGNOLA, 2019), Modin (MODIN PROJECT, 2018), Matplotlib (HUNTER, 2007),

Numpy (HARRIS et al., 2020) and SciPy (VIRTANEN et al., 2020).

Despite the best efforts made to replicate the experiments from Hobold and da

Silva (2018b,a, 2019b,a), some differences between the data gathered, and hence the

trained models, are expected. Many factors can explain possible deviations between the

experimental results, such as (a) the utilization of a different camera model, which may

change the characteristics of the captured frames; (b) the employment of different DAQ

components, which may change the characteristics of the measured data; (c) natural

differences in the lighting and positioning of the various components of the experimental

apparatus; and (d) the use of different test samples, as described in Section 3.4. However,

the possible differences in the training data have not affected the trained models’ final

performance, as shown in Section 4.4.

Additional changes can be recommended for future studies to simplify the experi-

mental procedure, detailed in Section 3.3, or allow further analyses. Section 6.2 presents

those ideas and other suggestions for future work.

3.3 EXPERIMENTAL PROCEDURE

The first stage in each experimental run consists of (a) replacing the test sample, if

applicable to that run; (b) filling the boiling chamber with deionized water; (c) adjusting

the camera, ensuring that it is centered and correctly placed; (d) executing the DAQ

program in order to monitor the subsequent steps; (e) turning the auxiliary heaters on

in order to bring the liquid temperature T∞ to the saturation temperature Tsat; and

(f) waiting for approximately 1min for degassing after Tsat is reached. The degassing step

and the use of deionized water are essential to ensure that the liquid is pure water since

mixtures tend to have different properties compared to pure liquid. After degassing is

done, the data-gathering stage begins.

Each dataset was generated starting from thermal power of q = 0W, in the

natural convection regime, and increasing in steps of 5W until sample failure per burnout,

as illustrated in Figure 15a. Each power level required fine adjustment of the imposed

current and voltage until stabilization. After the correct nominal power was achieved,

LED synchronization was executed by turning the LED on and off, emitting a signal to

the DAQ and allowing posterior synchronization between the recorded video frames and

the DAQ measurements. Subsequently, an 1min video was recorded, capturing the boiling

phenomenon. After the recording was complete, the thermal power was increased to the

next level, and the data-gathering stage restarted. This process is illustrated in Figure 15b.

Note that this experimental procedure, together with the boiling setup as described

in Sections 3.1 and 3.2, is sufficient to keep all important system parameters listed in

Section 2.1.2 fixed apart from the heater surface:





3.4. Experimental cases 69

The test samples were cleaned before being connected to the electrodes using

deionized water. Apart from this, no special surface treatment or texturing was applied to

the surfaces. Hence, their characteristics are the same as those delivered by the supplier

Omega Engineering. Appendix A reproduces the datasheets for all samples.

For each sample, an experimental dataset was obtained according to the experi-

mental procedure in Section 3.3:

• Large Wire (DLW): dataset generated from the NI80-020-200 (Omega Engi-

neering) nichrome wire. Since this wire has the largest diameter, the resulting

dataset is referred to as the large wire dataset and is denoted by DLW. In

addition, because this dataset is the most similar to the one utilized by Hobold

and da Silva (2019b), this dataset is also referred to as the baseline dataset.

Figure 16 shows an example of a video frame acquired for this dataset at the

nominal power of 75W;

• Small Wire (DSW): dataset generated from the NI80-010-200 (Omega Engi-

neering) nichrome wire. Since this wire is the one with the smallest diameter,

the resulting dataset is referred to as the small wire dataset and is denoted by

DSW;

• Horizontal Ribbon (DHR): dataset generated from one of the NCRR-17-100

(Omega Engineering) nichrome ribbon samples connected to the electrodes in

the horizontal position. Consequently, the resulting dataset is referred to as the

horizontal ribbon dataset and is denoted by DHR.

• Vertical Ribbon (DVR): dataset generated from the other NCRR-17-100

(Omega Engineering) nichrome ribbon sample. In order to produce this dataset,

the ribbon was connected to the electrodes in the vertical position. For this

reason, the resulting dataset is referred to as the vertical ribbon dataset and

denoted by DVR;

The frame shown in Figure 16 is a raw frame reproduced exactly as the camera cap-

tures it. It contains elements from the experimental environment, including components of

the experimental setup, such as the LED and the light diffuser. However, this is unsuitable

for training machine learning models, as described in Chapter 4. Hence, Section 4.2.2.2

demonstrates the process of cropping frames to the ROI.

Table 3 presents representative frames from each dataset in the natural convection,

partial nucleate boiling, and fully developed nucleate boiling regimes. The frames were

cropped to the ROI to illustrate the data fed to the machine learning models. Note

from Table 3 that not all frames have the same size because the ROI changed between

experimental runs. One of the causes for this variability is that, at high heat fluxes, the

auxiliary heaters moved considerably inside the chamber due to the intensified movement

of the liquid, and care had to be taken to ensure that they did not appear in any of the

frames after cropping.
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Figure 16 – Example video frame obtained at 75W for the baseline, large wire dataset
DLW. The video frame contains environmental clues such as the LED or
reflexes, which are cropped out of the ROI, as described in Section 4.2.2.

Regarding the boiling parameters, due to the 5W steps used to increase the dis-

sipated heat flux, events such as the ONB or the DNB can only be observed within a

resolution of 5W. For instance, the last stable power level achieved for DLW before burnout

was 85W (equivalent to the heat flux level of 86.80W/cm2). Hence, it can be inferred that

the CHF was within the range of 85–90W (or 86.80–92.20W/cm2). A similar reasoning

applies to finding the ONB in an experimental run. Table 4 presents the ranges for the

ONB and the DNB observed in each experimental case. The results demonstrate good

agreement with the parametric effects described in Section 2.1.2. In particular, the DNB

happened earlier on the vertical ribbon, corroborating the statement that inclined surfaces

present a lower CHF.
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Table 3 – Representative frames from each dataset in the natural convection, partial
nucleate boiling, and fully developed nucleate boiling regimes. Note that not all
frames have the same size since the ROI changed between experimental runs.

Dataset Natural convection
Partial nucleate

boiling
Fully developed
nucleate boiling

Large wire

Small wire

Horizontal
ribbon

Vertical
ribbon
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Table 4 – Approximate ranges for the thermal power and heat flux at the ONB and the
DNB for each experimental dataset. The main ranges are the nominal thermal
power levels surrounding the event, whereas the values in parentheses are the
average heat flux calculated for those levels. Because of natural variability in
the measured heat flux, the averages in parentheses do not necessarily satisfy
Equation (2). In addition, the higher ends of the DNB intervals are unknown
since no experimental data is available for those points.

Dataset ONB DNB

Large wire 10–15W (9.88–14.38W/cm2) 85–90W (86.10–?W/cm2)
Small wire 5–10W (10.36–20.76W/cm2) 40–45W (81.03–?W/cm2)
Horizontal ribbon 5–10W (2.40–4.55W/cm2) 185–190W (85.76–?W/cm2)
Vertical ribbon 10–15W (4.78–6.75W/cm2) 170–175W (78.60–?W/cm2)



3.5. Uncertainty analysis 73

3.5 UNCERTAINTY ANALYSIS

The uncertainty analysis is a crucial step in any experimental work since it provides

a quantitative measure of the experimental error. In this work, the uncertainty analysis is

performed as explained in Appendix B.

The heat flux q′′ can be calculated from measurable or known quantities according

to the equations presented in Section 3.1:

q′′ =
q

As
, q = VsampleI, I =

Vshunt

Rshunt
. (16)

This chain of equations can be utilized to calculate the standard uncertainty of the

heat flux q′′ according to Equation (25). It can be shown that

Û
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)
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(

Û(As)
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. (17)

In this equation, Û
(

Vsample
)

= ±6230 µV and Û(Vshunt) = 174 µV are constant type B

uncertainties given in Section 3.1. The ratio Û(Rshunt)/Rshunt = ±0.5% is also a constant

given in Section 3.1. Additionally, the ratio Û(As)/As is constant in each dataset, depend-

ing only on the test sample geometry and its measurement uncertainty. Consequently,

during the experiments, the heat flux uncertainty changes depending only on the heat flux

and the voltage drop on the test sample and the shunt resistor.

Additionally, it can be inferred from Equation (17) that the heat flux uncertainty

increases with the heat flux. Therefore, it has a minimum close to zero and a maximum at

the maximum heat flux. Table 5 presents the maximum heat flux uncertainties obtained

for each experimental dataset.

Table 5 – Maximum heat flux uncertainties for each experimental dataset. The standard
and expanded uncertainty, obtained with a coverage factor of 2, are presented.
For convenience, the simplified uncertainty, as it would appear in a measurement
report, is also shown.

Uncertainty

Dataset Standard Expanded Simplified

Large wire ±0.633W/cm2 ±1.266W/cm2 ±1W/cm2

Small wire ±1.113W/cm2 ±2.227W/cm2 ±2W/cm2

Horizontal ribbon ±0.522W/cm2 ±1.044W/cm2 ±1W/cm2

Vertical ribbon ±0.483W/cm2 ±0.966W/cm2 ±1W/cm2

3.6 TEMPERATURE MEASUREMENT

A natural extension to the experimental apparatus is measuring the test sample

surface temperature. This would make it possible to train machine learning models to
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predict temperature values, which may be more valuable in industrial applications where

limiting the system temperature is mandatory to ensure safe operation. Furthermore, if

the test sample surface temperature is available in addition to heat flux measurements, it

is possible to calculate the heat transfer coefficient and manipulate the system toward the

optimal point of efficiency. In this work, several attempts were carried out to measure the

test sample temperature. However, none of them could deliver results with low enough

uncertainty to make that data useful.

Therefore, measuring the heater surface temperature is left as a suggestion for future

studies. If that is done, models can be trained to estimate the heat transfer coefficient

instead of the heat flux, which might be more interesting for specific applications.
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4 MACHINE LEARNING METHODOLOGY

This Chapter explains the machine learning methodology employed in this work.

Section 4.1 describes the implementation of the training pipeline and the execution envi-

ronment. Section 4.2 describes the datasets and the preprocessing steps applied to them.

Section 4.3 details the training pipeline that takes datasets as inputs and outputs trained

machine learning models. Section 4.4 demonstrates the correctness of the preprocessing

and training pipelines by comparing the results obtained with the ones from Hobold and

da Silva (2019b). Finally, Section 4.5 describes the AutoML algorithm employed in the

AutoML studies.

Regarding the development of machine learning systems, Goodfellow, Bengio, and

Courville (2016) recommend a practical methodology of four steps:

• Choosing performance metrics: determining the most important metrics to

optimize is essential for designing machine learning models. The performance

metrics guide decision-making and the evolution of models during training and

hyperparameter tuning. This Thesis utilizes the MSE as the primary metric for

comparing models and optimizing the data preprocessing and training pipelines.

The MSE is a suitable choice for regression tasks, as it measures the average

squared difference between the predicted and the true targets. In addition, it is

employed as the loss function in the training pipeline described in Section 4.3.

Other metrics are also presented for information and easier comparison with

the literature. However, they are not utilized to make decisions.

• Defining baseline models: a baseline model is the starting point on top of

which analyses are performed. In this Thesis, the baseline model is a CNN of

the same architecture as the best model found by Hobold and da Silva (2019b).

It is trained with the same preprocessing pipeline and hyperparameters as in

their work. The results from training this model are presented in Section 4.4

and are utilized to measure progress in the results from Chapter 5.

• Gathering additional data: in case the performance of the baselines is not

satisfactory, Goodfellow, Bengio, and Courville (2016) recommends gathering

additional data as the best option for improving it. However, as demonstrated

in Section 4.4, this step is unnecessary for this work.

• Selecting hyperparameters: the last step consists of choosing the set of hy-

perparameters that specify the data preprocessing pipeline and the training

algorithm. Hyperparameters can be selected either manually or via AutoML,

explained in Section 2.2.4. In this Thesis, data preprocessing hyperparameters

are chosen manually based on the results from Section 5.1. The training hyper-

parameters, including the optimizer and the model architecture, are selected

via AutoML and are presented in Section 5.3.
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4.1 IMPLEMENTATION AND EXECUTION

All computation was performed on an Ubuntu 20.04.5 LTS machine with 32GB

of 3200MHz RAM, an 11th Gen Intel Core i7-11800H central processing unit running at

2.3GHz, and an NVIDIA GeForce RTX 3070 Graphics Processing Unit (GPU) with the

CUDA 11.5 (NICKOLLS et al., 2008) toolkit installed. Persistent data was stored on a

2TB hard disk drive.

The entire training and evaluation pipeline was implemented in Python 3.10 (PYTHON

CORE TEAM, 2015) and made available at Comelli (2023). The codebase was written

following multiple paradigms with a strong focus on immutable data structures and type

correctness. Lazy evaluation is employed to delay computation (for instance, data pre-

processing) until it is needed, thus preventing the waste of computational resources and

reducing memory consumption. In addition, persistent caching allows the re-use of previ-

ously calculated results across different pipeline runs. Many libraries were utilized either

as direct or indirect dependencies in the various subsystems of the pipelines, the main

ones being (COMELLI, 2023):

• NumPy 1.23.5 (HARRIS et al., 2020), scikit-image 0.19.3 (WALT et al., 2014),

and TensorFlow 2.10.1 (ABADI et al., 2015d), for the image pre-processing and

analysis described in Section 4.2.2;

• TensorFlow 2.10.1 (ABADI et al., 2015d), as the deep learning framework,

accessed via the Keras API (CHOLLET et al., 2015). Preprocessed images are

assembled in TensorFlow dataset pipelines and fed to models defined using

Keras for training;

• KerasTuner 1.1.3 (O’MALLEY et al., 2019) and AutoKeras 1.0.20 (JIN, Haifeng;

SONG; HU, 2019) for AutoML, described in Section 2.2.4.

4.2 DATASETS

The definition of the datasets is the first step in the training pipeline, as it de-

termines the scope of the problem and the available data to train and evaluate the

machine learning models. This Section describes the datasets utilized in this work and

the preprocessing steps applied to them. All datasets were generated by manipulating the

experimental data obtained as explained in Chapter 3.

4.2.1 Dataset splitting

The splitting between the training, validation, and test sets is the first decision to

be made in order to ensure that the datasets are well-defined. In particular, to allow an

unbiased estimation of model performance, the test set must not be employed to train

models or optimize hyperparameters.
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In this work, the dataset splitting is done using the hold-out algorithm, in which

those subsets are disjoint and complementary to each other, and remain fixed during all

runs of the training pipeline. This is in opposition to other algorithms, such as the k-fold

cross-validation, in which the training and validation datasets are randomly sampled from

the global dataset k times in order to train and evaluate a model (GOODFELLOW;

BENGIO; COURVILLE, 2016). The hold-out splitting is considerably less computation-

intensive than its alternatives since the splits are defined only once and re-used across all

subsequent executions of the program. According to Goodfellow, Bengio, and Courville

(2016), the hold-out splitting algorithm is usually valid when the global dataset comprises

enough data for the validation and test metrics to be computed with confidence, as is the

case in this study.

Goodfellow, Bengio, and Courville (2016) recommend assigning 80% of the training

data to the training set and the remaining 20% to the validation set. In addition, it is

advisable to keep the validation and test sets nearly the same size. For this reason, this

work assigns 70% of each heat flux level to the training set, 15% to the validation set, and

15% to the test set. Table 6 presents the resulting subset sizes for each dataset. Similarly

to Hobold and da Silva (2019b), the splitting is done by randomly subsampling examples

from each heat flux level separately, an important consideration to ensure a balanced

representation of each level in the subsets. The splitting was done once and re-used across

all executions of the training pipeline in order to avoid the accidental sharing of examples

between those runs.

Table 6 – Dataset split sizes. Each subset (training, validation and test) is a disjoint
subsample of the global dataset. The split sizes are shown along with the total
dataset size for each experimental dataset.

Dataset
Training set Validation set Test set Total
(70%) (15%) (15%) (100%)

Large wire 26 416 5661 5662 37 739
Small wire 12 950 2773 2775 18 498
Horizontal ribbon 58 774 12 593 12 594 83 961
Vertical ribbon 51 276 10 987 10 987 73 250

The dataset splits are utilized as recommended by Goodfellow, Bengio, and Courville

(2016) and Chollett (2018): (a) the training set is employed to train machine learning

models and find the weights described in Section 2.2; (b) the validation set is employed

to estimate the generalization error of trained models. With this, it is possible to tune

hyperparameters, define early stopping criteria and compare different models; (c) finally,

the test set is employed to estimate the unbiased generalization error of models. In order

to reduce bias during this estimation, the test metrics cannot be utilized to optimize

hyperparameters. For this reason, this work only uses the test metrics for reporting and

communication, but no design decisions are made based on them.
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The significantly reduced number of frames in the small wire dataset is due to the

earlier DNB occurring naturally on smaller heater surfaces, as explained in Section 2.1.2

and verified in Table 4. Since all experimental runs consist of 1min records obtained in

steps of 5W, the anticipated DNB results in fewer heat flux levels and, consequently, fewer

samples. Similarly, due to the decrease in the CHF on inclined surfaces, the horizontal

ribbon dataset contains more samples than the vertical ribbon dataset.

4.2.2 Image preprocessing

Data preprocessing is one of the critical stages in developing machine learning

models since it determines the learning substrate for machine learning models to consume.

Despite this, as Goodfellow, Bengio, and Courville (2016) suggested, computer vision

problems require relatively little preprocessing. Image preprocessing steps are usually

designed to remove irrelevant variability or information from the dataset.

Preprocessing steps that reduce the number of features in an example represent

a form of dimensionality reduction (BISHOP, 2006) and usually cause the loss of infor-

mation. This reduced amount of information available can either deteriorate or improve

performance, depending on the removed pieces of information being relevant or containing

excessive noise. Additionally, dimensionality reduction helps reduce the computational

complexity of machine learning models, which is essential for developing real-time appli-

cations.

This Section describes the image preprocessing pipeline employed in this work to

reduce data dimensionality and improve the performance of machine learning models. The

resulting preprocessing pipeline transforms images as illustrated in Figure 17. Similar

preprocessing steps were utilized by Hobold and da Silva (2018b, 2019b) and Scariot

(2019), proving their effectiveness in the context of heat flux estimation.

(a) Original. (b) Preprocessed.

Figure 17 – Demonstration of the results of the preprocessing pipeline, with (a) the original
image and (b) its preprocessed version.
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4.2.2.1 Image pixel format conversion

Whenever images of a given pixel data type are used in processing pipelines that

expect a different data type, data may be accidentally corrupted by rounding or clipping.

This fact was overlooked in the initial stages of this Thesis and proved to be a difficult

issue to detect.

In order to prevent data corruption, all images were appropriately converted

to 32-bit-precision floating-point numbers (NumPy’s float32 data type) using Tensor-

Flow’s (ABADI et al., 2015d) converters before being fed into the subsequent stages of

the pipeline. This conversion does not change the dataset’s contents, only its representa-

tion. Floating-point number types are required in the preprocessing steps of grayscaling

(Section 4.2.2.3), downscaling (Section 4.2.2.4), and standardization (Section 4.2.2.8).

4.2.2.2 Region of interest cropping

The pipeline’s first dimensionality reduction preprocessing step consists of cropping

the experimental images to the correct ROI, as illustrated in Figure 18. Table 7 presents

the image shapes before and after this preprocessing step. Note that the final image shapes

are not necessarily equal across all datasets. This happened because the auxiliary heaters

moved naturally due to the movement of the liquid inside the boiling chamber. Hence,

different datasets required different cropping positions to ensure they are outside the ROI.

(a) Original. (b) Cropped.

Figure 18 – Demonstration of the preprocessing step of cropping an image to the ROI.
Obtained from the large wire pool boiling dataset at the power level of 30W.

The motivation for this preprocessing step is manifold since it: (a) reduces the

storage footprint of caching steps; (b) prevents the model from using environmental clues

unrelated to the phase-change phenomenon, such as the background and the auxiliary

heaters, to make predictions; (c) speeds up the preprocessing and training pipelines;
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Table 7 – Image shapes before and after the ROI cropping preprocessing step for each
pool boiling dataset. Shapes are presented in the format height × width ×
color channels.

Dataset Image shape before Image shape after

Large wire 1520× 2704× 3 970× 855× 3
Small wire 1520× 2704× 3 870× 790× 3
Horizontal ribbon 1520× 2704× 3 850× 790× 3
Vertical ribbon 1520× 2704× 3 900× 830× 3

(d) reduces the model size; and (e) introduces domain knowledge by explicitly telling the

algorithms that the only region that matters is the ROI and nothing outside it.
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4.2.2.3 Grayscaling

Grayscaling consists in converting a colored image to a scale of gray. This process

combines the original image’s red, green, and blue channels using a weighted average, as

illustrated in Figure 19, resulting in a three-fold dimensionality reduction. The underlying

assumption behind grayscaling is that color is not an essential feature of phase-change

phenomena and hence can be safely discarded without compromising model performance.

Figure 20 supports this claim since there is little perceived difference between the colored

and grayscale images. Table 8 presents the image shapes before and after grayscaling.
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Figure 19 – Demonstration of the preprocessing step of grayscaling an image in matrix
representation. The input image is encoded in 8-bit unsigned integer type and
its color channels are shown as separate matrices for easier understanding.

(a) Colored. (b) Grayscale.

Figure 20 – Demonstration of the preprocessing step of grayscaling an image. Obtained
from the large wire pool boiling dataset at the power level of 30W. There
is little perceivable difference between (a) the colored and (b) the grayscale
images.
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Based on those results and the analysis presented in Figure 22, this Thesis employs a

downscaling factor of fds = 5, effectively reducing the dataset dimensionality by 25 times.

Figure 23 demonstrates the application of the downscaling preprocessing step to a pool

boiling frame. Table 9 reports the image shapes before and after this step.

(a) Full scale. (b) Downscaled.

Figure 23 – Demonstration of the preprocessing step of downscaling an image using a down-
scaling factor of fds = 5. Obtained from the large wire pool boiling dataset
at the power level of 30W. There is little perceivable difference between (a)
the full-scale and (b) the downscaled images, but the dataset dimensionality
is reduced in f2ds = 25 times.

Table 9 – Image shapes before and after downscaling each pool boiling dataset by a factor
of fds = 5. Shapes are presented in the format height×width× color channels.

Dataset Image shape before Image shape after

Large wire 970× 855× 1 194× 171× 1
Small wire 870× 790× 1 174× 158× 1
Horizontal ribbon 850× 790× 1 170× 158× 1
Vertical ribbon 900× 830× 1 180× 166× 1

4.2.2.5 Size uniformization

As described in Sections 3.3 and 3.4, each experimental case includes multiple

independently recorded videos. Because of variations in the positioning of the camera and

other objects in the boiling chamber, such as the auxiliary heaters, the ROI for each video

may be different from the others, even if only slightly. Consequently, the ROI cropping

step described in Section 4.2.2.2 results in frames with different shapes, which propagates

down the preprocessing pipeline.

However, standard deep-learning models require their inputs to have the same

shape, including image datasets. Therefore, the size uniformization step ensures that all

images belonging to the same dataset have the same height and width via center cropping,

a preprocessing method in which images are symmetrically cropped at their borders,
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keeping their centers invariant. Hobold and da Silva (2018b,a, 2019a,b) also utilized this

process.

According to Goodfellow, Bengio, and Courville (2016), some machine learning

models do not require image resizing; for instance, some models accept variably-sized

inputs while keeping the output shape constant, whereas some other convolutional models

have variable-sized outputs that scale with the inputs. Exploring such models, however,

is out of the scope of the current study, and hence enforcing uniform shapes is regarded

as a necessary step.

Size uniformization also provides an opportunity to meet hardware requirements

for maximum efficiency. For instance, NVIDIA Tensor Cores enable performance boosts

when training machine learning models on supported GPUs, as is the case in this work,

as long as image dimensions are multiples of 8 (NVIDIA, 2022). Consequently, all images

are center-cropped to the largest multiples of 8 that fit internally in the entire dataset.

In this work, the size uniformization preprocessing step is applied together with

the visualization cropping. For this reason, the processed image shapes and an example

are only shown in Section 4.2.2.6.

4.2.2.6 Vertical visualization cropping

In the pool boiling datasets, it is possible to differentiate two subcases: direct and

indirect visualization, illustrated in Figure 24. This terminology follows Hobold and da

Silva (2018b,a, 2019a,b). In direct visualization, the ROI contains the heater surface. In

principle, direct visualization allows models to base their predictions on the behavior

of bubbles before and during departure and on the visible characteristics of nucleation

sites. On the other hand, in indirect visualization, an additional cropping step removes

the heater surface from the images. In this situation, predictions are based only on the

characteristics of bubbles after their departure, including how they interact in the liquid as

they rise to the free surface. According to Hobold and da Silva (2018b), two main reasons

justify the study of indirect visualization in addition to direct visualization: first, in some

applications, the heater surface is not visible, and hence indirect observation is the only

option; second, direct visualization might induce non-negligible bias in the predictions.

The direct and indirect visualization modes correspond to two datasets generated

from the same source. In this work, the direct visualization dataset is the source dataset,

and only height uniformization is performed in the visualization cropping step. The indirect

visualization dataset, in its turn, is generated from the direct visualization dataset by

cropping images at the bottom.

In order to keep consistency with Hobold and da Silva (2019b) and simultaneously

keep shapes as multiples of 8, as justified in Section 4.2.2.5, all pool boiling frames

are vertically cropped to 120 p in height, in direct visualization, and 72 p, in indirect

visualization. Table 10 presents each dataset’s final image shapes in direct and indirect
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(a) Original. (b) Direct visualization. (c) Indirect visualization.

Figure 24 – Demonstration of the preprocessing step of size uniformization and visualiza-
tion cropping, either (b) keeping the heater surface in the pool boiling images
in direct visualization; or (c) removing it in indirect visualization.

visualization.

Table 10 – Image shapes before and after height uniformization and vertical crop in direct
and indirect visualization. Shapes are presented in the format height×width×
color channels.

Dataset Image shape before Direct visualization Indirect visualization

Large wire 194× 171× 1 120× 171× 1 72× 171× 1
Small wire 174× 158× 1 120× 158× 1 72× 158× 1
Horizontal ribbon 170× 158× 1 120× 158× 1 72× 158× 1
Vertical ribbon 180× 166× 1 120× 166× 1 72× 166× 1

4.2.2.7 Horizontal visualization window cropping

Aiming to reduce data dimensionality further, Hobold and da Silva (2019b) per-

formed a horizontal visualization window analysis by decreasing frame width via center

cropping and evaluating trained models on them. Even though reducing the horizontal

visualization window reduced model performance for all visualization fractions, the per-

formance hit was insignificant for visualization windows larger than 50% of the original

frame. Based on that, they employed visualization windows with 60% of the input width.

Section 5.1.3 evaluates the visualization window size’s effects on the models’ per-

formance. Based on those results, the analyses from Hobold and da Silva (2019b), and to

keep consistency with their results, this work also utilizes 60% of the visualization window

of 196 p. As a result, this final cropping step uniformizes all frames to 120 p in width after

rounding 60%× 196 p to the nearest multiple of 8. Consequently, the final shape of the

pool boiling images is uniformly equal to 120× 120× 1, in direct visualization, and to

72× 120× 1, in indirect visualization.
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(a) Direct visualization. (b) Indirect visualization.

Figure 25 – Demonstration of the preprocessing step of horizontal visualization window
cropping for (a) direct and (b) indirect visualization.

4.2.2.8 Standardization

According to Goodfellow, Bengio, and Courville (2016), either image normalization

or standardization are frequently necessary since datasets containing images of varied pixel

intensity ranges usually lead to training failure. In standardized images, the distribution

of pixel luminance is equalized across all images in the dataset, which is beneficial to the

optimization algorithm.

Images are standardized by moving their mean to 0 and their contrast to 1 via

a linear transformation. Because of this, standardized images are more consistent with

one another and tend to provide an easier learning landscape for model training. The

default configurations of optimizers generally assume standard datasets (GOODFELLOW;

BENGIO; COURVILLE, 2016); hence, standardized images simplify the search for optimal

training hyperparameters. Moreover, image standardization also exempts the need for

image brightness and contrast augmentation since any changes to those values are reverted

during the standardization step.

A grayscale image represented by a matrix I is standardized by subtracting its

mean and dividing by its standard deviation, as in

Istandardized =
I − I
√

VAR(I)
, (21)

and as illustrated in Figure 26.

The standardization study presented in Section 5.1.1 demonstrates that image

standardization significantly improves model performance with a negligible additional

computational cost. For this reason, unless specifically stated the contrary, all dataset

images in this work are normalized before being fed to machine learning models.

For comparison, Hobold and da Silva (2019b) and Scariot (2019) did not apply

image standardization but only normalization, a process that scales pixel luminosity to a

different range, generally [0, 1]. In this Thesis, normalization is accomplished during the

image pixel format conversion preprocessing step, described in Section 4.2.2.1.
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The results from Figure 27 indicate that subsampling is unnecessary for the datasets

employed in this work. This is also confirmed by the learning curve results from Sec-

tion 5.1.4, which show that models benefit the most from training on the full dataset.

4.3 TRAINING

With the datasets well defined and preprocessed, a training pipeline is established

to train the machine learning models according to the concepts explained in Section 2.2.

The training pipeline consists of:

• Datasets: each training session requires a dataset to train models. Most

datasets in this work are generated by submitting one of the experimental

datasets obtained in Chapter 3 to the preprocessing pipeline. For each study,

a different preprocessing configuration may be chosen to evaluate the effect

of the preprocessing steps on the model performance, as done in Section 5.1.

Additionally, the datasets are split into training, validation, and test sets, as

described in Section 4.2.1.

• Model architecture: models are instantiated from an architecture, which de-

fines the type, number, configuration, and connectivity of layers. All models

trained in this work are CNNs containing a sequence of convolutional, activa-

tion, and pooling layers, topped by hidden dense layers and an output layer.

Since this work focuses on the regression problem of quantifying a single scalar

value, the output layer contains a single unit with a linear activation function.

Except for the architectures generated by the AutoML pipeline explained in

Section 4.5, this work employs the same architecture as Hobold and da Silva

(2019b), illustrated in Figure 10.

• Optimization algorithm: models are trained by the Adam (KINGMA; BA,

2014) optimizer with a learning rate of 1× 10−3, the same as Hobold and da

Silva (2019b) and Scariot (2019). Data is fed to the models in batches of 200

samples for consistency with Hobold and da Silva (2019b).

• Performance metrics: the MSE is chosen as the loss function optimized by

the Adam optimizer. This is in alignment with Hobold and da Silva (2019b)

and Scariot (2019) and with the recommendation by Goodfellow, Bengio, and

Courville (2016) for deep learning regression problems. The other performance

metrics described in Section 2.2.3 track the model performance on the validation

set during training.

• Early stopping: models are trained for up to 100 epochs, but training stops

earlier if the loss over the validation set stops improving for 10 consecutive

epochs. After training ends, the model with the lowest loss over the validation
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set is selected as the best model. This helps prevent overfitting since the best

model is selected based on the validation loss, not the training loss.

4.4 VALIDATION

This Section presents machine learning results obtained to validate the training

pipeline against Hobold and da Silva (2019b). This reference is chosen for validation

because it utilized the same experimental setup and CNN architecture as this work. The

validation presented in this Section consists of training models on the baseline, large wire

dataset DLW, calculating the performance metrics, and comparing them with the values

reported by Hobold and da Silva (2019b) and transcribed into Table 1. The entire pipeline

described in this Chapter is considered validated if the metrics are similar.

Table 11 presents the results of the validation study. The results are presented as

functions of the visualization mode (direct or indirect, as detailed in Section 4.2.2.6) and

the evaluation subset (training, validation, or test). The reference results from Hobold

and da Silva (2019b) are also displayed for comparison. In order to ensure a proper

comparison, the results are presented only for the nucleate and film boiling regimes,

defined by q′′ ≥ 10W/cm2.

The results in Table 11 demonstrate that the training pipeline employed in this work

achieves equivalent performance to the reference, especially if the uncertainty intervals

are considered. Additionally, the differences between the results can be attributed to

natural differences in the experimental setup. In particular, as shown in Section 5.2, model

performance is significantly affected by the heater surface, and metrics obtained by training

and testing a model on one surface do not necessarily generalize to other surfaces. Since

the large wire dataset DLW utilized in this work was obtained from a different heater

surface than the one utilized by Hobold and da Silva (2019b), differences in the results

are expected.

The validation results also provide insight into other aspects of the training pipeline.

For example, the results demonstrate that the trained model correctly generalizes to

unseen data. In direct visualization, the validation MSE is only approximately 27% higher

than the training MSE. The difference is even less significant when comparing metrics

such as the RMSE or MAPE. Indirect visualization results in even better generalization

capabilities, with the validation MSE being only approximately 14% higher than the

training MSE. This is expected since the indirect visualization is less informative than

the direct visualization; hence, the model is forced to learn more generalizable features.

According to Goodfellow, Bengio, and Courville (2016), a gap between the training and

validation metrics is always expected, even for models that generalize well, as in this case.

It can also be observed that the direct visualization mode achieves better results

than the indirect visualization mode, a similar finding to Hobold and da Silva (2019b).

This is expected since the direct visualization contains more information than the indirect
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Table 11 – Training pipeline validation results. Metrics are presented only for nucleate
and film boiling regimes, defined by q′′ ≥ 10W/cm2. Metrics for the training,
validation and test sets are presented as functions of the type of visualization:
direct, in which the heater surface is visible in the images, or indirect, in which
it is omitted. Confidence intervals of 95% around the mean were computed
by bootstrapping 1000 batches of 1000 samples. The reference results are
reproduced from Hobold and da Silva (2019b).

This work Reference

Metric Unit Training Validation Test Validation Test

Direct

MSE (W/cm2)2 12.32+0.06

−0.06 15.69+0.06

−0.06 15.41+0.03

−0.03 13+1

−1 13+1

−1

RMSE W/cm2 3.507+0.008

−0.009 3.959+0.008

−0.008 3.925+0.004

−0.004 — —

MAE W/cm2 2.720+0.006

−0.007 3.053+0.006

−0.006 3.025+0.003

−0.003 2.8+0.1

−0.1 3+6

−3

MAPE % 6.97+0.02

−0.02 7.62+0.02

−0.02 7.570+0.008

−0.008 7.4+0.5

−0.4 7.6+0.4

−0.4

R2 — 0.9688+0.0002

−0.0002 0.9601+0.0002

−0.0002 0.960 90+0.000 08

−0.000 08 0.983+0.002

−0.002 0.983+0.002

−0.002

Indirect

MSE (W/cm2)2 29.60+0.10

−0.10 33.84+0.05

−0.05 33.3+0.1

−0.1 34+4

−4 33+4

−4

RMSE W/cm2 5.439+0.009

−0.009 5.816+0.004

−0.004 5.76+0.01

−0.01 — —

MAE W/cm2 4.274+0.006

−0.006 4.475+0.005

−0.005 4.530+0.009

−0.009 4+10

−4 4+10

−4

MAPE % 10.80+0.01

−0.02 11.07+0.01

−0.01 11.38+0.02

−0.02 10.6+0.6

−0.6 10.3+0.5

−0.5

R2 — 0.9250+0.0003

−0.0003 0.9141+0.0002

−0.0002 0.9156+0.0004

−0.0004 0.956+0.005

−0.005 0.956+0.005

−0.005

visualization, especially regarding the boiling behavior near the heater surface. Because of

this, models trained on direct visualization learn more specific features and hence achieve

lower error metrics.

In addition, the validation and test metrics are very close, indicating that error

metrics evaluated on the validation set are a precise estimate for the generalization error

represented by the test metrics.

The errors in Table 11 also highlight CNNs as a promising tool for estimating heat

flux in pool boiling compared to the numerical correlations presented in Section 2.1.3. The

best correlation found for quantifying the pool boiling of water is given by Equation (5)

with an associated error of 4.82%. In addition, the correlation requires the measurement

of the temperature at the heater surface, which is not always possible, and might incur

a significant increase in the global uncertainty of the predicted values after composing

the correlation uncertainty with the measurement uncertainty. For comparison, the CNNs

trained in this Section achieved a global error of 7.62% on the validation set in direct

visualization and 11.07% in indirect visualization.

The datasets constructed in this Section and the CNNs trained are referred to in
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the following Sections as baseline datasets and baseline models, respectively, since they

represent the best results obtained in previous studies. The new results presented in

Chapter 5 are compared to them to evaluate their performance.

4.5 AUTOMATED MACHINE LEARNING

Section 5.3 presents a novel study about the application of AutoML for searching

optimal architectures of CNNs to estimate heat transfer in pool boiling. The present

Section describes the AutoML pipeline and the decisions made during its design.

AutoML is managed in this work by AutoKeras (JIN, Haifeng; SONG; HU, 2019)

utilizing the greedy search algorithm, which, as explained in Section 2.2.4, separates

hyperparameters into different categories. At each trial, the algorithm selects one of the

categories and randomly samples hyperparameters from it. The hyperparameters from the

other categories are fixed and equal to the best options found until that trial. The search

is terminated when the maximum number of 100 trials is reached.

At each trial of the AutoML pipeline, the training pipeline described in Section 4.3

is executed once with a few modifications, including the choice of the optimizer algorithm

and the model architecture. The entire AutoML pipeline can be summarized as:

• Datasets: in the AutoML studies, the datasets are preprocessed by the default

pipeline detailed in Section 4.2.2 without any modifications. The best model

is selected as the one that performs best on the validation set. Based on the

results from Section 5.1.1, images are always standardized; hence, this choice is

removed from the search space.

• Model architecture: the model architecture is part of the search space of the

AutoML pipeline. Since the problem to be solved is a visualization-based regres-

sion, the search space is constrained to only convolutional networks with a single,

linearly activated output unit. This way, the search space includes the number

and configuration of convolutional layers, including their filter count, kernel

sizes, activation function, and associated pooling operation. In addition, the

search space also includes the choice between regular and depth-wise separable

convolutions (CHOLLET, 2016) and the application of dropout (SRIVASTAVA

et al., 2014). On top of the convolutional layers, the search space includes the

number and configuration of dense layers, including their unit count, activation

function, dropout rate, and the application of batch normalization (GOODFEL-

LOW; BENGIO; COURVILLE, 2016).

• Optimization algorithm: instead of utilizing the Adam optimizer, the opti-

mizer algorithm and associated configuration parameters, such as the learning

rate, are included in the search space. The batch size during training is set to

32 instead of 200. This was necessary to avoid memory exhaustion during the
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search. The value of 32 is the default value chosen by AutoKeras.

• Performance metrics: similarly to the training pipeline described in Sec-

tion 4.3, the AutoML pipeline uses the MSE as the performance metric to be

optimized on the training set. In addition, the MSE evaluated on the validation

set is also utilized to choose the best model.

• Early stopping: differently from the regular training pipeline, in the AutoML

pipeline models are allowed to train for up to 1000 epochs, and training is

stopped when the loss over the validation set stops improving for 10 consecutive

epochs. After the training ends, the model weights that resulted in the lowest

loss over the validation set are selected as the best model.

• Maximum model size: the greedy algorithm can also be configured to avoid

training models that are considered too big. This is an important option since,

as pointed out in Section 2.3, industrial applications frequently require models

that can be deployed on embedded devices with limited computational resources.

Additionally, limiting the model size helps reduce the time complexity of train-

ing and evaluating multiple models, an essential consideration for the initial

exploratory analysis proposed in this Thesis. Moreover, size-constrained archi-

tectural search incentivizes the search algorithm to try more efficient models

instead of arbitrarily large ones. In this work, the maximum number of pa-

rameters allowed in a model is set to 23 041 233 in direct visualization and

13 825 233 in indirect visualization, corresponding to the sizes of the baseline

models trained in Section 4.4. This way, the algorithm guarantees that the best

model found will be, at most, as large as the baseline models and likely smaller.

The exact search space explored by the AutoML pipeline is presented in Table 12.

This search space is generated by the default AutoKeras (JIN, Haifeng; SONG; HU, 2019)

template for image regression problems after adding the constraints mentioned in this

Section. The search space includes constructs described elsewhere in the literature, such as

AdamW (LOSHCHILOV; HUTTER, 2019) and depthwise separable convolutions (CHOL-

LET, 2016). In addition, some hyperparameters can be duplicated and have their search

spaces multiplied depending on the values of other hyperparameters: the number of units

in each dense layer, for instance, can be different in each layer.

In order to simplify the search space and keep models within the size constraint,

widely adopted pre-trained models such as ResNet (HE et al., 2015) and Xception (CHOL-

LET, 2016) were not included in this work. Instead, adding them to the search space is

left as a suggestion for future work in Section 6.2.
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Table 12 – Automated machine learning search space. Each category of hyperparameters
is displayed separately. The search space of each hyperparameter is shown as
a discrete set of the possible values it might assume, or the set {NO, YES }
for configurations that might be absent or present, respectively.

Hyperparameter Search space

Architecture – Convolutional layers

Number of convolutional blocks { 1, 2, 3 }
Number of consecutive

convolutional layers per block
{ 1, 2 }

Convolutional kernel size { 3, 5, 7 }
Number of filters per layer { 16, 32, 64, 128, 256, 512 }

Depthwise separable convolutions? {NO, YES }
Apply max-pooling? {NO, YES }

Dropout rate { 0, 25%, 50% }
Architecture – Reduction layer

Spatial reduction layer type
{Flattening,
Global average pooling,
Global max-pooling}

Architecture – Dense layers

Use batch normalization? {NO, YES }
Number of dense layers { 1, 2, 3 }

Number of units per layer { 16, 32, 64, 128, 256, 512, 1024 }
Dropout rate { 0, 25%, 50% }

Optimizer

Optimizer algorithm { SGD, Adam,AdamW }

Learning rate
{1× 10−1, 1× 10−2, 1× 10−3,
1× 10−4, 2× 10−5, 1× 10−5}
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5 RESULTS AND DISCUSSION

Given the objectives described in Section 1.1, this Chapter presents the results of

the research conducted in this Thesis. The results are presented in the form of a series of

studies, each described in a separate section, and applying the methodology described in

Chapter 4.

In Section 5.1, the effects of the preprocessing pipeline on the performance of

machine learning models are studied. Those results justify the choices when designing

the preprocessing pipeline and act as a basis for the subsequent Sections. Section 5.2

investigates the performance of CNNs trained and evaluated on datasets gathered from

different heater surfaces. This provides a better understanding of how models generalize

from one surface to another. Finally, Section 5.3 explores the application of AutoML to

search for an optimal architecture for the CNN models and demonstrates its potential to

improve the performance of machine learning models.

5.1 DATASET PREPROCESSING

In data-centric problems such as machine learning, the definition of the dataset,

and hence the preprocessing pipeline associated with it, is of utmost importance. This

Section presents the results of the preliminary analyses made to optimize the preprocessing

pipeline and to understand the impact of the dataset on the performance of trained machine

learning models.

5.1.1 Image standardization

One of the preliminary analyses made to maximize the performance of machine

learning models was the study of image standardization. As explained in Section 4.2.2.8,

image standardization consists of transforming images so that the mean luminance of their

pixels is 0, and the standard deviation is 1.

In this study, machine learning models were trained with standardized and non-

standardized images in direct and indirect visualization, totaling four models. The baseline

large wire dataset DLW was preprocessed using the pipeline described in Section 4.2.2,

except that the standardization preprocessing step was skipped in the non-standardized

cases. In the non-standardized case, image normalization was applied due to the im-

age pixel format conversion described in Section 4.2.2.1. After training, each model was

evaluated on the validation and test sets. Table 13 presents the results in terms of the

same performance metrics reported by Hobold and da Silva (2019b) and reproduced in

Section 2.3.

As shown in Table 13, image standardization significantly reduces the final valida-

tion error of models, particularly in the indirect visualization mode. The validation error
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Table 13 – Image standardization performance metrics. Validation and test performance
metrics of the baseline architecture trained with two versions of the default
training pipeline: with and without the image standardization step. The metrics
are presented for the direct and indirect visualization cases of the baseline large
wire dataset for q′′ ≥ 10W/cm2.

Direct Indirect

Metric Unit Validation Test Validation Test

Normalized

MSE (W/cm2)2 15.69+0.06

−0.06 15.41+0.03

−0.03 33.84+0.05

−0.05 33.3+0.1

−0.1

RMSE W/cm2 3.959+0.008

−0.008 3.925+0.004

−0.004 5.816+0.004

−0.004 5.76+0.01

−0.01

MAE W/cm2 3.053+0.006

−0.006 3.025+0.003

−0.003 4.475+0.005

−0.005 4.530+0.009

−0.009

MAPE % 7.62+0.02

−0.02 7.570+0.008

−0.008 11.07+0.01

−0.01 11.38+0.02

−0.02

R2 — 0.9601+0.0002

−0.0002 0.960 90+0.000 08

−0.000 08 0.9141+0.0002

−0.0002 0.9156+0.0004

−0.0004

Standardized

MSE (W/cm2)2 9.64+0.03

−0.03 9.37+0.03

−0.03 18.08+0.03

−0.03 18.14+0.04

−0.04

RMSE W/cm2 3.103+0.005

−0.005 3.060+0.004

−0.004 4.252+0.004

−0.004 4.258+0.005

−0.005

MAE W/cm2 2.361+0.004

−0.005 2.336+0.003

−0.003 3.247+0.003

−0.003 3.233+0.003

−0.003

MAPE % 5.70+0.01

−0.01 5.633+0.007

−0.006 7.707+0.008

−0.008 7.69+0.01

−0.01

R2 — 0.975 52+0.000 08

−0.000 08 0.976 23+0.000 08

−0.000 08 0.9541+0.0001

−0.0001 0.9539+0.0001

−0.0002

decreased by nearly 39% for direct visualization and 47% for indirect visualization. The

difference between the validation errors of the two visualization modes also substantially

decreased when images were standardized.

This result aligns well with what is recommended by the literature (GOODFEL-

LOW; BENGIO; COURVILLE, 2016) and demonstrates how a simple preprocessing step

can significantly improve model performance. Due to the resulting increase in performance

with almost no extra computation, image standardization was added to the preprocessing

pipeline utilized in subsequent studies.

The improvement in the generalization error when standardizing images can be

understood by inspecting the brightness and contrast in a dataset. Figure 28 displays

a letter-value plot (HOFMANN; KAFADAR; WICKHAM, 2011; WASKOM, 2021) of

the image brightness in direct visualization, calculated as the mean luminance of the

pixels in the image, as a function of the nominal thermal power. Results in indirect

visualization are almost equal. For each nominal power level, image brightness values are

presented for the training, validation, and test sets. Outliers are discarded for simplification.

Figure 28 demonstrates that the image brightness distributions vary depending on the

nominal power level and, to a smaller degree, the subset (training, validation, or test). In

particular, apart from outliers, brightness is sufficient to distinguish the 0W power level
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modes. In order to keep consistency with the results of Hobold and da Silva (2019b),

and since the increase in the generalization error in both visualization modes is not

significant, the downscaling factor of fds = 5 was chosen in this work to integrate the

default preprocessing pipeline.

5.1.3 Visualization window size

As shown by Hobold and da Silva (2019b), the visualization window size is a hyper-

parameter that affects the model’s generalization error. In their study, they demonstrated

that, by reducing the size of the visualization window, the generalization error of the

model increased. However, this increase was only significant for visualization fractions

below 50%. For visualization fractions above 50%, the increase in the generalization error

is not enough to justify the computational cost of training the model with a larger visu-

alization window. Because of this, Hobold and da Silva (2019b) utilized a visualization

window of 60% of the original frame width.

In this work, the visualization window size’s effect on the model’s generalization

error is studied. The visualization window sizes studied were 10%, 20%, 30%, 40%, 50%,

60%, 70%, 80%, 90% and 100%. The visualization window size of 100% corresponds to

the original frame width. A model was trained for each visualization window size, with

the same architecture and hyperparameters as the baseline model described in Section 4.4.

The models were trained on the baseline, large wire dataset DLW, preprocessed by the

default preprocessing pipeline described in Section 4.2.2. Figure 30 presents the results

from this study, showing the loss as a function of the visualization window fraction for

the training, validation, and test subsets of DLW.

Figure 30 shows that a visualization window of the 60% the original frame width

results in the lowest generalization error in both direct and indirect visualization, calcu-

lated over the validation set. This is different from what Hobold and da Silva (2019b)

observed since, in their study, reducing the visualization window always deteriorated model

performance. In Figure 30, there is a local optimum around 60%. Despite this, it is also

possible to observe that the model’s generalization error is not significantly affected by

the visualization window size.

Because of this result, and to keep consistency with the results of Hobold and da

Silva (2019b), the visualization window size of 60% was chosen to integrate the default

preprocessing pipeline.
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Table 14 – Training, validation, and test metrics for models trained and evaluated on each
heater surface separately in direct visualization for q′′ ≥ 10W/cm2.

Subset

Metric Unit Training Validation Test

Large wire

MSE (W/cm2)2 5.43+0.04

−0.04 9.64+0.03

−0.03 9.37+0.03

−0.03

RMSE W/cm2 2.327+0.008

−0.009 3.103+0.005

−0.005 3.060+0.004

−0.004

MAE W/cm2 1.792+0.006

−0.007 2.361+0.004

−0.005 2.336+0.003

−0.003

MAPE % 4.48+0.02

−0.02 5.70+0.01

−0.01 5.633+0.007

−0.006

R2 — 0.9862+0.0001

−0.0001 0.975 52+0.000 08

−0.000 08 0.976 23+0.000 08

−0.000 08

Small wire

MSE (W/cm2)2 11.89+0.05

−0.04 18.15+0.05

−0.05 19.37+0.03

−0.03

RMSE W/cm2 3.446+0.006

−0.006 4.259+0.006

−0.006 4.401+0.003

−0.003

MAE W/cm2 2.679+0.005

−0.005 3.246+0.004

−0.004 3.348+0.002

−0.003

MAPE % 7.23+0.01

−0.01 8.209+0.010

−0.010 8.238+0.005

−0.005

R2 — 0.9785+0.0001

−0.0001 0.967 24+0.000 08

−0.000 08 0.964 98+0.000 05

−0.000 05

Horizontal ribbon

MSE (W/cm2)2 9.55+0.03

−0.03 12.37+0.03

−0.03 12.88+0.04

−0.04

RMSE W/cm2 3.089+0.005

−0.005 3.517+0.005

−0.005 3.589+0.005

−0.005

MAE W/cm2 2.359+0.004

−0.003 2.660+0.003

−0.003 2.715+0.004

−0.004

MAPE % 5.69+0.01

−0.01 6.267+0.009

−0.009 6.415+0.007

−0.008

R2 — 0.980 56+0.000 07

−0.000 07 0.974 81+0.000 08

−0.000 08 0.973 80+0.000 07

−0.000 08

Vertical ribbon

MSE (W/cm2)2 6.63+0.02

−0.02 9.61+0.02

−0.02 9.86+0.06

−0.05

RMSE W/cm2 2.574+0.005

−0.005 3.100+0.003

−0.003 3.137+0.009

−0.008

MAE W/cm2 1.995+0.003

−0.003 2.394+0.002

−0.002 2.384+0.005

−0.005

MAPE % 5.220+0.009

−0.009 6.140+0.008

−0.008 6.13+0.01

−0.01

R2 — 0.982 79+0.000 06

−0.000 07 0.975 06+0.000 06

−0.000 06 0.9744+0.0001

−0.0002

Similarly to what was observed on the large wire dataset analyzed in Section 4.4,

models trained in direct visualization tend to perform better than in indirect visualization.

In indirect visualization, the validation MSE is from 1.88 to 4.54 times higher than in the

direct visualization mode. For comparison, Hobold and da Silva (2019b) showed in their

study that the validation and test MSE were approximately 2.5 times higher in indirect

visualization compared to direct visualization. This result is closer to this work’s error

behavior observed for the vertical ribbon dataset.

Tables 14 and 15 show that the heater surface strongly affects model performance.



5.2. Multiple surfaces 103

Table 15 – Training, validation, and test metrics for models trained and evaluated on each
heater surface separately in indirect visualization for q′′ ≥ 10W/cm2.

Subset

Metric Unit Training Validation Test

Large wire

MSE (W/cm2)2 9.41+0.06

−0.07 18.08+0.03

−0.03 18.14+0.04

−0.04

RMSE W/cm2 3.06+0.01

−0.01 4.252+0.004

−0.004 4.258+0.005

−0.005

MAE W/cm2 2.356+0.008

−0.009 3.247+0.003

−0.003 3.233+0.003

−0.003

MAPE % 5.80+0.02

−0.02 7.707+0.008

−0.008 7.69+0.01

−0.01

R2 — 0.9761+0.0002

−0.0002 0.9541+0.0001

−0.0001 0.9539+0.0001

−0.0002

Small wire

MSE (W/cm2)2 22.54+0.08

−0.08 36.06+0.08

−0.08 35.47+0.05

−0.04

RMSE W/cm2 4.745+0.008

−0.008 6.004+0.006

−0.007 5.956+0.004

−0.004

MAE W/cm2 3.724+0.005

−0.006 4.655+0.002

−0.002 4.610+0.003

−0.003

MAPE % 10.61+0.03

−0.03 12.38+0.02

−0.02 12.10+0.01

−0.01

R2 — 0.9592+0.0001

−0.0001 0.934 81+0.000 10

−0.000 10 0.935 89+0.000 07

−0.000 07

Horizontal ribbon

MSE (W/cm2)2 41.6+0.2

−0.2 56.1+0.1

−0.1 52.8+0.2

−0.3

RMSE W/cm2 6.44+0.01

−0.01 7.49+0.01

−0.01 7.26+0.02

−0.02

MAE W/cm2 4.790+0.009

−0.009 5.520+0.008

−0.008 5.38+0.01

−0.01

MAPE % 10.85+0.03

−0.03 12.38+0.03

−0.03 11.96+0.03

−0.03

R2 — 0.9154+0.0003

−0.0003 0.8858+0.0003

−0.0003 0.8924+0.0006

−0.0006

Vertical ribbon

MSE (W/cm2)2 19.11+0.05

−0.05 24.41+0.06

−0.06 25.48+0.08

−0.08

RMSE W/cm2 4.370+0.006

−0.006 4.939+0.006

−0.007 5.046+0.008

−0.008

MAE W/cm2 3.389+0.005

−0.005 3.824+0.006

−0.006 3.882+0.007

−0.006

MAPE % 8.86+0.01

−0.01 9.89+0.02

−0.02 10.09+0.02

−0.02

R2 — 0.9504+0.0002

−0.0002 0.9367+0.0002

−0.0002 0.9338+0.0002

−0.0002

For instance, the training and validation losses vary nearly 100% when comparing the

large and small wire datasets. This is a natural consequence of the different effects of the

heater surface on the boiling process, as described in detail in Section 2.1.2.

Table 14 also indicates that, in direct visualization, models achieve the worst

performance on the small wire dataset. This can be explained by two factors. The first

one is the strong dependency of model performance on the heater surface. The second

cause is the low amount of samples in that dataset, as shown in Table 6, in conjunction

with the learning curve analysis from Section 5.1.4. Table 6 reports that the small wire
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dataset contains approximately 49% of the number of samples of the large wire dataset.

Consequently, models trained on the small wire dataset are expected to behave similarly

to models trained on 49% of the large wire dataset, corresponding closely to the dataset

subsampling rate of 50% depicted in Figure 31. For comparison, at a subsampling rate of

50%, the training, validation, and test losses of models trained on the large wire dataset

in direct visualization were 9.46 (W/cm2)2, 16.37 (W/cm2)2 and 15.51 (W/cm2)2, which

match very closely the metrics obtained in Table 14 for the small wire dataset.

Finally, compared to the numerical correlations available in the literature and

described in Section 2.1.3, the results presented in this study demonstrate the potential

of visualization-based machine learning models as a reliable tool for predicting heat flux

under different operating conditions. In particular, the error metrics presented in Tables 14

and 15 are comparable to or lower than the uncertainties associated with most numerical

correlations found in the literature.

Despite this promising result, the present study trained and evaluated models on

each heater surface separately. In order to understand how models generalize to unseen

surfaces, Section 5.2.2 presents the results of training and evaluating models on multiple

heater surfaces.

5.2.2 Multi-surface evaluation

This Section presents the results of training and evaluating models on multiple

surfaces aiming to understand how models behave when trained on images of different

heater surfaces and how they generalize to unseen surfaces. This is an extension of the

study from Section 5.2.1, which only evaluated models on the dataset they were trained.

In addition to evaluating models on different surfaces, this study also considers

merged datasets that contain samples from more than one heater surface. Merged datasets

are denoted by the merge operator
⋃

and are constructed by proportionally subsampling

each component of the merge. For example, the dataset
⋃

(

DLW,DSW
)

is constructed

by taking 50% of the samples from DLW and 50% from DSW. Similarly, the dataset
⋃

(

DLW,DSW,DHR,DVR
)

is constructed by taking 25% of the samples from DLW, 25%

from DSW, 25% from DHR, and 25% from DVR. This proportional subsampling is per-

formed to ensure that the size of the merged datasets is similar to the size of the original

datasets[2]. The sizes of each single-surface and multi-surface dataset are shown in Table 16.

Based on that definition, this study comprises seven datasets: the four experimental

datasets DLW, DSW, DHR, and DVR; a dataset containing samples from both wires,
⋃

(

DLW,DSW
)

; a dataset containing samples from both ribbons,
⋃

(

DHR,DVR
)

; and a

[2] An alternative approach would be to take the union of the datasets, but this would result in a much
larger dataset. Its size would be the sum of the components, which would require more computa-
tional resources to train and evaluate models. Taking the union of datasets would also provide more
information for models to learn than the original datasets, thus making performance comparisons
unfair.
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Table 16 – Merged datasets split sizes. Each subset (training, validation and test) is a
disjoint subsample of the total dataset. The split sizes are shown along with
the total dataset size of each dataset. The sizes for DLW, DSW, DHR and DVR

are the same as in Table 6. The size of each merged dataset is the average of
the sizes of its component datasets.

Dataset
Training set Validation set Test set Total
(70%) (15%) (15%) (100%)

DLW 26 416 5661 5662 37 739

DSW 12 950 2773 2775 18 498

DHR 58 774 12 593 12 594 83 961

DVR 51 276 10 987 10 987 73 250
⋃

(

DLW,DSW
)

19 683 4217 4218 28 118
⋃

(

DHR,DVR
)

55 025 11 790 11 790 78 605
⋃

(

DLW,DSW,DHR,DVR
)

37 354 8003 8004 53 361

dataset containing samples from all four surfaces,
⋃

(

DLW,DSW,DHR,DVR
)

. All datasets

were preprocessed by the default preprocessing pipeline.

In order to assess the ability of models to generalize across different surfaces,

a model was trained on each dataset and evaluated on the other datasets. Figures 32

and 33 present the results from this study for the direct and indirect visualization modes,

respectively. For brevity, only the validation results are presented, but the test results are

very similar and lead to the same conclusions.

The results demonstrate that the behavior of models trained and evaluated on

different heater surface datasets is similar for both visualization modes. In addition, the

main diagonal of the first four rows of Figures 32 and 33 correspond to the results shown

in Tables 14 and 15, rounded for convenience.

The most performant models mostly lie on the main diagonal of the heat maps.

This indicates that models trained on a specific surface perform best when evaluated on

the same surface, which is expected since models tend to perform best on the datasets they

were trained. In addition, by inspecting each column of the heat maps, it can be observed

that the model that performs best on a given dataset is the one that was trained on it.

Moreover, models trained on the merged datasets also perform well when evaluated on

the component datasets, meaning that they learn important features from all components.

Despite that, models do not generalize to other surfaces without being trained on them,

which can be noted from the high error metrics outside the main diagonal and, in the case

of merged datasets, when the evaluation is done on non-component datasets.

The contribution of unrelated datasets to the generalization ability of trained

models can also be investigated by comparing the model trained on
⋃

(

DLW,DSW
)

with the model trained on 50% of DLW for the learning curve study. This comparison
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performance on DSW.

The models trained on all heater surfaces,
⋃

(

DLW,DSW,DHR,DVR
)

, perform

relatively well when evaluated on all datasets in both visualization modes. In indirect

visualization, the model achieved the worst MAPE of 17% on DSW, which is still con-

siderably lower than the uncertainties or errors found in the literature. For instance, as

mentioned in Section 2.1.3, Scariot (2019) reported errors of approximately 33% on their

bi-dimensional pool boiling dataset. In addition, in direct visualization, the model achieved

a MAPE as low as 8% when evaluated on
⋃

(

DLW,DSW,DHR,DVR
)

and 10% in the

worst case, when evaluated on DSW. Those values are considerably close to the MAPE of

7.37% reported by Hobold and da Silva (2019b) and demonstrate that models correctly

predict heat flux in pool boiling even in different operating conditions as long as they are

trained on them.

In summary, this Section demonstrates that visualization-based deep learning mod-

els quantify the heat exchange in pool boiling setups with relatively low associated errors

in different operating conditions. In addition, the results consistently show that direct

visualization allows models to predict heat flux more accurately than indirect visualization.

However, this study also shows that models do not naturally generalize features learned

on one surface to other, unseen surfaces. Therefore, it is necessary to train models on

all surfaces of interest to achieve good performance on all of them. Exploring domain

generalization is left as a suggestion for future work to improve the generalization ability

of trained models.

5.3 AUTOMATED MACHINE LEARNING

The final step in the proposed methodology consists of utilizing AutoML algo-

rithms to search for an optimal model architecture and hyperparameters. As explained

in Section 2.2.4, AutoML algorithms are efficient search tools that frequently outperform

humans in the task, usually finding better models with less computation.

The results from Section 5.2 are promising, but there is still a gap between the

most performant model trained in that study and the correlation by Yagov (2009). The

optimal model architecture for predicting heat flux in pool boiling is still an open question.

In order to demonstrate the applicability of AutoML, this Section presents the

architecture search results in Section 5.3.1. Section 5.3.2 presents the best model found in

Section 5.3.1 when evaluated on all heater surfaces.

5.3.1 Architecture search

This Section explores the application of AutoML to search for an optimal model ar-

chitecture and hyperparameters by executing the AutoML pipeline detailed in Section 4.5.

In this study, the AutoML pipeline was executed on the large wire dataset DLW for both
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direct and indirect visualization modes and trained a total of 100 models of different archi-

tectures. The greedy AutoML algorithm employed in this study automatically selected the

model architecture and training hyperparameters. Table 17 shows all hyperparameters for

the best models found by the AutoML pipeline in both direct and indirect visualization

modes.

Table 17 – Best hyperparameters found by the AutoML pipeline in both visualization
modes.

Hyperparameter
Best value

Direct Indirect

Architecture – Convolutional layers

Number of convolutional blocks 2 2

Number of consecutive convolutional layers per block 2 2

Convolutional kernel size 3 3

Number of filters in layer #1 128 16

Number of filters in layer #2 64 32

Number of filters in layer #3 32 64

Number of filters in layer #4 32 16

Depthwise separable convolutions? NO NO

Apply max-pooling? NO NO

Dropout rate 50% 50%

Architecture – Reduction layer

Spatial reduction layer type Flattening Flattening

Architecture – Dense layers

Use batch normalization? NO NO

Number of dense layers 2 2

Number of units in layer #1 32 32

Number of units in layer #2 32 16

Dropout rate 0 0

Optimizer

Optimizer algorithm Adam Adam

Learning rate 1× 10−3 1× 10−3

Table 18 presents the training, validation, and test metrics for the best models

found by the AutoML pipeline for both visualization modes. The metrics demonstrate that

the proposed AutoML pipeline finds models that perform significantly better than the
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baseline. For instance, the best model found by the AutoML pipeline achieved a validation

MSE of 4.23 (W/cm2)2 in direct visualization and 6.71 (W/cm2)2 in indirect visualization,

representing decreases of approximately 73% and 80%, respectively, compared to the

baseline models.

Table 18 – AutoML search results. Metrics are presented only for nucleate and film boiling
regimes defined by q′′ ≥ 10W/cm2. Metrics for the training, validation, and
test sets are presented as functions of the visualization mode: direct or indirect.

Subset

Metric Unit Training Validation Test

Direct

MSE (W/cm2)2 2.03 4.23 4.42

RMSE W/cm2 1.426 2.057 2.102

MAE W/cm2 1.07 1.50 1.52

MAPE % 2.70 3.63 3.67

R2 — 0.9949 0.9893 0.9888

Indirect

MSE (W/cm2)2 1.19 6.71 7.11

RMSE W/cm2 1.092 2.591 2.666

MAE W/cm2 0.84 1.76 1.77

MAPE % 2.17 4.13 4.15

R2 — 0.9970 0.9830 0.9820

In addition to the general improvement compared to the baseline models, the mod-

els found via AutoML also reduce the disparity between direct and indirect visualization.

Table 11 indicates that the validation loss in indirect visualization is 2.15 times higher

than in direct visualization for the baseline models. The best models found by the AutoML

pipeline reduce this ratio to 1.59. Models trained in direct visualization are usually ex-

pected to perform better than those trained in indirect visualization due to the additional

information available in direct visualization that can be utilized for learning and is known

to be relevant to the boiling phenomenon. Despite this, the decrease in the difference

between the two visualization modes suggests that the best model found by the AutoML

pipeline for indirect visualization learned more generalizable features when compared to

the baseline.

The results presented in Table 18 also show that the models found via AutoML

outperform the correlation by Yagov (2009) in terms of the MAPE. The best model

found for direct visualization achieved a MAPE of 3.63%, and the model for indirect

visualization achieved a MAPE of 4.13%. For comparison, the correlation by Yagov (2009)
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achieved a MAPE of 4.82%. In other words, the AutoML pipeline outperformed the best

numerical correlation found in the literature in both visualization modes. To the best of

the author’s knowledge, this is the first time that visualization-based machine learning

models outperform numerical correlations in predicting pool boiling heat transfer.

In addition to the performance gains, the best models found by the AutoML

pipeline are also considerably smaller than the baseline models, requiring less RAM and

storage capacity and enabling higher prediction throughput. The best model for direct

visualization has 850 401 trainable parameters, a fraction of only 3.7% of the 23 041 233

trainable parameters of the baseline model. In indirect visualization, the best model has

3 703 121 trainable parameters, representing 27% of the 13 825 233 trainable parameters

of the respective baseline model. This result demonstrates that the AutoML pipeline finds

models that are considerably smaller than the baseline ones while outperforming them.

The ability of models to perform better than the baseline while being smaller, and

hence having less capacity, might be associated with better connectivity and arrangement of

layers. Figures 34 and 35 illustrate the best architectures in direct and indirect visualization,

respectively. The most noticeable difference between those architectures and the references

illustrated in Figures 10 and 11 is the number and size of the layers. In particular, the

best models found by the AutoML pipeline have more convolutional layers and dense

blocks than the baseline model but with fewer units. This way, the AutoML pipeline

prioritizes deeper models over wider models. As Goodfellow, Bengio, and Courville (2016)

explain, deeper models learn more abstract features by composing the learned features

from consecutive layers, which might explain the increased depth of the best models found

by the AutoML pipeline compared to the baseline models.

Indeed, there is little correlation between model size and performance. Figure 36

presents a scatter plot of the validation loss of the models tried by the AutoML pipeline

in direct and indirect visualization versus the number of trainable parameters in the

respective models. Note that the baseline model is the largest in the evaluation since its

size was set as an upper bound for the search strategy. In both visualization modes, points

are well distributed in the plot, meaning that model size does not predict performance.

Figure 36 shows that some points lie on the same vertical line, representing models

of the same size with different performance metrics. This is a consequence of the search

algorithm that optimized not only the architecture but also other aspects of the training

algorithm that do not change the model size, such as the optimizer and its associated

learning rate, as well as the dropout ratio.

In addition to providing insight into the behavior of models as a function of their

size, the results in Figure 36 also enable design decisions based on trading off performance

for compactness. For instance, it is possible to instantiate models more than a hundred

times smaller than the baseline model if performance penalties are acceptable in indirect

visualization. In this work, model size is a secondary concern, the main goal being to find
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Input layer
Shape: (120, 120, 1) Weights: 0

Standardized

Convolutional layer
Shape: (118, 118, 128) Weights: 1280
128 filters, kernel size: 3× 3, stride: 1× 1

Convolutional layer
Shape: (116, 116, 64) Weights: 73792
64 filters, kernel size: 3× 3, stride: 1× 1

Pooling layer
Shape: (58, 58, 64) Weights: 0
Max-pooling, size: 2× 2, stride: 2× 2

Regularization layer
Shape: (58, 58, 64) Weights: 0

Dropout: 50%

Convolutional layer
Shape: (56, 56, 32) Weights: 18464
32 filters, kernel size: 3× 3, stride: 1× 1

Convolutional layer
Shape: (54, 54, 32) Weights: 9248
32 filters, kernel size: 3× 3, stride: 1× 1

Pooling layer
Shape: (27, 27, 32) Weights: 0
Max-pooling, size: 2× 2, stride: 2× 2

Regularization layer
Shape: (27, 27, 32) Weights: 0

Dropout: 50%

Dense block
Shape: (32,) Weights: 746528

32 units

Activation: ReLU

Dense block
Shape: (32,) Weights: 1056

32 units

Activation: ReLU

Dense layer
Shape: (1,) Weights: 33

1 unit

Figure 34 – Diagram of the best model found by the AutoML pipeline in direct visualiza-
tion. The convolutional blocks are sequences of three layers: a convolutional
layer, an activation layer and a max-pooling layer. Similarly, the dense blocks
are dense layers followed by activation layers. The input layer is annotated as
standardized since image standardization was applied. Each layer is displayed
alongside the shape of its outputs and the number of trainable weights it con-
tributes to the model. Note that the weights of dense blocks are arranged in
one-dimensional vectors whose shape is denoted as (·,), following the Python
notation for tuples of unitary length.

the best model in terms of performance. However, size might be a primary concern in other

applications, such as embedded systems. The results in Figure 36 can guide the design of

models that are small enough to satisfy throughput or memory footprint constraints.

In summary, the present study shows that AutoML is a viable approach to designing

deep learning models for the visualization-based quantification of boiling heat transfer,

maximizing performance while reducing model size. The results also show that the AutoML

pipeline can find models that outperform the baseline model and numerical correlations

in both visualization modes.
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5.3.2 Multi-surface evaluation

Similarly to Section 5.2.2, this study evaluates the performance of machine learning

models when trained and evaluated on multiple heater surfaces aiming to understand their

ability to generalize to unseen surfaces.

In this Section, instead of utilizing the baseline model architecture, models are in-

stantiated from the best architectures found by the AutoML pipeline in both visualization

modes, depicted in Figures 34 and 35. For each dataset described in Section 5.2.2, the

best model architecture is instantiated and retrained on the training subset. Models are

retrained utilizing the same optimizer hyperparameters found by the AutoML pipeline.

This ensures that not only the model architecture is the best one found but also the

training algorithm. The resulting model is then evaluated on the validation subset of all

other datasets, and the validation loss (MSE) and MAPE are recorded. Figures 37 and 38

present the results of this process.

In many aspects, the results from this study are similar to those in Section 5.2.2:

1. the results for direct and indirect visualization modes are comparable in behav-

ior, differing mainly in the magnitude of the error metrics. In the cases where

models achieved reasonable performance, models trained on direct visualization

tend to perform from two to three times better (in terms of MSE) than models

trained on indirect visualization;

2. the best performance is found on the main diagonal of the heat maps, which

corresponds to models trained and evaluated on the same dataset. This corrob-

orates the hypothesis that models tend to perform better on the datasets they

were trained on;

3. models trained on the merged datasets perform well on the component datasets,

which means that they learn important features from all components even if

multiple surfaces are present in the training set;

4. models do not generalize well to surfaces that do not appear in their training

set. In other words, to achieve good performance on a new surface, a model

must be trained on a dataset containing samples from that surface.

As a consequence of Items 3 and 4, the model trained on all surfaces is the only one

that performs well on all datasets since it is the only model with access to samples from

all surfaces during training. This result is also in line with the findings in Section 5.2.2.

The new results from this study demonstrate that the AutoML pipeline proposed

in this work can find models that achieve high performance even on datasets contain-

ing multiple surfaces as long as the training set contains samples from all surfaces.

In the direct visualization mode, the baseline architecture trained and evaluated on
⋃

(

DLW,DSW,DHR,DVR
)

achieved a validation MSE of approximately 21 (W/cm2)2.

In contrast, the best architecture found by the AutoML pipeline achieved approximately
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6 CONCLUSION

This Thesis demonstrated the applicability of machine learning models to estimate

the heat flux dissipated from different heater surfaces in pool boiling setups. This closing

Chapter summarizes the findings of this work, highlighting the most important contri-

butions to the literature and the limitations of the proposed methodology. For future

work, Section 6.2 provides suggestions and recommendations based on the discoveries and

limitations of this Thesis.

6.1 SUMMARY

Chapter 5 presented and discussed the results obtained in this Thesis. First, Sec-

tion 5.1 presented the data preprocessing pipeline optimization results that justify the

design decisions made in Section 4.2:

1. image standardization reduces the validation error by nearly 39% in direct

visualization and 47% in indirect visualization;

2. image downscaling helps to improve model performance. However, the optimal

downscaling factor is dependent on the visualization mode. For direct visualiza-

tion, the optimal downscaling factor is fds = 6, while for indirect visualization,

the optimal downscaling factor is fds = 5. Image downscaling reduced the valida-

tion error by 59–74%, depending on the downscaling factor and the visualization

mode;

3. a visualization window width of 60% of the original frame width is optimal for

both direct and indirect visualization;

4. the learning curve study shows that the baseline model requires 100% of the

baseline dataset for maximum performance since dataset subsampling increases

the validation error. However, it was also observed that the validation error

stabilized after 80% of the baseline dataset was used for training, suggesting

that no additional data is required to achieve maximum performance;

Subsequently, Section 5.2 trained and evaluated models on datasets containing different

heater surfaces to assess their generalization capabilities. The results showed that:

1. models perform best in direct visualization, suggesting that they make use of

the bubble dynamics before departure to estimate the heat flux;

2. models only performed well on the heater surfaces contained in their training

set but did not generalize well to unseen surfaces;

3. models trained on merged datasets (that is, datasets containing samples from

multiple heater surfaces) performed well on the component datasets, which

means that they learn meaningful features from the different heater surfaces in

their training set;
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4. the model trained on samples from all heater surfaces performed well on all

datasets, achieving errors comparable to the baseline model and outperforming

most numerical correlations and the model by Scariot (2019);

Finally, Section 5.3 presented the results obtained by the AutoML pipeline on the baseline

dataset and the datasets containing multiple heater surfaces:

1. the AutoML pipeline found model architectures that performed significantly

better than the baseline model. The best models decreased the validation error

by 73% in direct visualization and 80% in indirect visualization;

2. the best models found via AutoML outperformed the best numerical correla-

tion found in the literature by Yagov (2009) on the baseline dataset in both

visualization modes. This is the first time that a visualization-based machine

learning model outperforms numerical correlations in the problem of estimating

heat flux in pool boiling setups;

3. when trained and evaluated on the dataset containing all heater surfaces, the

best models found via AutoML achieved a similar error to the baseline model

trained and evaluated only on a single surface. The calculated MAPE was 5.57%,

which is slightly higher than the uncertainty around the correlation by Yagov

(2009) and significantly lower than most numerical correlations considered;

4. the best models found via AutoML were also significantly smaller than the

baseline models. The best model for direct visualization had only 3.7% of the

parameters of the baseline model. The best model for indirect visualization had

27% of the number of parameters of the baseline model for that visualization

mode. This means that AutoML finds better models with fewer parameters,

which is crucial for real-time applications both in terms of time-to-inference

requirements and memory and storage constraints;

This summary demonstrates that the main objective of this work, stated in Sec-

tion 1.1, was achieved along with the associated specific objectives. The results obtained

in this work show that CNNs can estimate the heat flux dissipated from different heater

surfaces in pool boiling setups. However, models do not generalize well to unseen surfaces

and hence need to be trained on datasets containing samples from all heater surfaces of

interest. The results also show that AutoML is a powerful tool for automatically searching

for better model architectures with minimal human intervention.

6.2 RECOMMENDATIONS AND SUGGESTIONS FOR FUTURE STUDIES

Based on the findings presented in Chapter 5 and the aspects left unexplored in

this work, this Section presents several recommendations for future studies to follow to

improve their results and suggests several topics that could be further investigated in

future studies.
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The main recommendations derived from this Thesis can be enumerated as:

1. image standardization: image standardization significantly reduces the vali-

dation error without incurring significant computational costs. Note that image

standardization is different from image normalization, which was applied to the

reference dataset;

2. downscaling and decreasing the visualization window width: image

downscaling and decreasing the visualization window width were shown to

significantly reduce the validation error while reducing the dimensionality of

datasets. However, the values found in this study are likely dependent on the

experimental setup and the heater surfaces used. Therefore, it is recommended

to perform these studies for each dataset to determine the optimal values;

3. learning curve analysis: performing a learning curve analysis as soon as a

complete dataset is available allows the determination of the optimal number

of samples to use for training in order to decide if more data is required or if

datasets can be subsampled to accelerate training;

4. automated machine learning: if enough computational resources are avail-

able, utilize AutoML to search for better model architectures, which might

improve the performance of models significantly while reducing their size;

Regarding the experimental setup described in Chapter 3, the following suggestions

can be implemented to allow further analyses:

1. control the power supply through a computer: with this, it would be

possible to programmatically impose the thermal power q dissipated by the test

sample, allowing for automated experimental runs and finer control of the heat

flux levels. In order to do that, a driver officially distributed by National Instru-

ments must be installed, but it was unavailable by the time the experiments

were run in this work;

2. control the auxiliary heaters with a relay: with this, it is possible to imple-

ment an on/off control subsystem to keep the liquid temperature approximately

constant at any level. This would make it feasible to study subcooled boiling;

3. implement a test sample temperature measurement subsystem: the

measurement of the test sample temperature would allow the calculation of

the heat transfer coefficient, which is commonly the variable to be maximized

to optimize thermal systems for efficiency. The heat transfer coefficient is also

the most common output from numerical correlations. A failed attempt to

implement it was made in this work, as described in Section 3.6;

Finally, the following aspects related to the machine learning pipeline were left

unexplored in this work and could be investigated in future studies:
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1. data augmentation: data augmentation consists of artificially generating new

dataset samples from existing ones. This can be done by applying random

transformations to the images, such as rotations, translations, scaling, and

cropping. Data augmentation might reduce the performance of models on the

training set since it increases the complexity of the problem, but it can help

models generalize better to unseen data;

2. transfer learning: transfer learning consists of using a model trained on a

different problem to initialize the weights of a new model. This can be done by

freezing the weights of the first layers of the model and training only the last

layers. Another strategy is to fine-tune the weights of all model layers using a

smaller dataset. Specifically, in the problem of estimating heat flux on different

heater surfaces in pool boiling setups, a baseline model could be trained on the

baseline dataset and only fine-tuned on the other datasets containing different

heater surfaces. This would potentially allow the use of a smaller dataset for

fine-tuning, which would speed up training;

3. quantization-aware training: quantization-aware training consists of train-

ing a model with quantized weights, parameters of reduced precision types such

as float16. This significantly reduces the number of bits required to represent

the weights and activations of the model, thus reducing the time-to-inference

and the overall computational cost, including the RAM and storage footprints.

However, it might also reduce the performance of the model. According to Abadi

et al. (2015b), quantization-aware training can reduce the total model size four

times and improve latency from 1.5–4 times while keeping model performance

almost unchanged;

4. search strategies: in this work, the selected AutoML search strategy was the

greedy algorithm. Initial, informal tests showed that this algorithm could find

better models with fewer trials compared to alternatives such as the Bayesian or

the hyperband algorithms. However, these tests were not rigorously conducted.

Hence, a more systematic analysis of the available search strategies is suggested.

A better search strategy might require fewer trials to find more performant and

smaller models;

5. pre-trained model fine-tuning: in Section 4.5, it was mentioned that the

AutoML pipeline employed in this work does not include pre-trained models

such as ResNet (HE et al., 2015) or Xception (CHOLLET, 2016). Future studies

can address this limitation of the pipeline. Fine-tuning publicly available pre-

trained models can significantly reduce the number of trials required to find

better models and increase the overall performance of the pipeline;
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APPENDIX A – DATA SHEETS

A.1 NI80-020-200 AND NI80-010-200 (OMEGA ENGINEERING)

1

Resistance Heating Wire
Nickel-Chromium Alloy
80% Nickel /20% Chromium
U Withstands High  
 Temperatures up to  
 1150°C (2100°F)
U Quick Heating, Long Life
U Corrosion Resistant
U Used to Make Straight  
 or Helical Coil  
 Resistance Heaters
U Convenient 15 m (50') and  
 60 m (200') Spools Available

OMEGATM NIC80 wire is a 
resistance heating wire comprised 
of 80% Nickel and 20% Chromium. 
NIC80 wire is commonly used as a 
resistor at elevated temperatures.  
NI/CR-80/20 is essential for resistor 
elements in high temperature 
applications such as electric 
furnaces, electric ranges and radiant 
heaters operating at temperatures 
up to 1150°C (2100°F).

In addition to these qualities 
and standard uses, it has found 
wide application in technical 
applications due to its combination 
of high electrical resistance and its 
temperature coefficient of  
resistance much less than that of 
Nickel-Chrome 60.

Melting Point: Approx 
1400°C (2550°F) 

Nominal Coefficient of Linear 
Expansion: 0.000017 (10 to 1000°C)

Tensile Strength (lb/in2) at 
20°C (68°F):  
 Soft Annealed: 100,000

Nominal Temperature  
Coefficient of Resistance:  
0.00011 Ω/Ω/°C (20 to 500°C)

 To Order

     Current Temperature Characteristics* °C (°F)

  Dia. Ω per ft 425 550 650 750 875 1100 
 AWG mm (1") @ 20°C (68°F) (800) (1000) (1200) (1400) (1600) (2000) Model No.

 18 1.0 (0.040) 0.4062 8.32 10.17 12.48 15.11 18.06 24.03 NI80-040-(†)

 20 0.81 (0.032) 0.6348 6.17 7.56 9.24 11.13 13.23 17.57 NI80-032-(†)

 22 0.64 (0.0253) 1.015 4.62 5.62 6.85 8.20 9.69 12.85 NI80-025-(†)

 24 0.51 (0.0201) 1.609 3.46 4.18 5.06 6.04 7.10 9.40 NI80-020-(†)

 26 0.40 (0.0159) 2.571 2.62 3.12 3.76 4.49 5.27 6.90 NI80-015-(†)

 28 0.32 (0.0126) 4.094 1.98 2.38 2.84 3.37 3.93 5.09 NI80-012-(†)

 30 0.25 (0.010) 6.50 1.50 1.81 2.14 2.53 2.93 3.75 NI80-010-(†)

* Showing approximate amperes necessary to produce a given temperature, applying only to a straight wire stretched horizontally in free air. 
† Specify desired length in feet: “50” or “200”. Note: This wire is not intended for use in making thermocouple elements. 

Ordering Example: NI80-032-50 is a 15 m (50') spool of 20 gage bare wire.

   Factor by Which Resistance at Room Temperature Is to Be Multiplied to Obtain Resistance at Indicated Temperatures
 (These figures are given as a basis for engineering calculations and represent average material as supplied.)

 Temp °C 20 93 204 315 427 538 649 760 871 982 1093°C

 Temp °F 68 200 400 600 800 1000 1200 1400 1600 1800 2000°F

 Factor 1.000 1.016 1.037 1.054 1.066 1.070 1.064 1.062 1.066 1.072 1.078 

Specifications
Composition: 80% Ni, 20% Cr

Specific Resistance:  
650 Ω per circular mil-foot at 20°C 
(68°F). See table below for multiplication 
factors to obtain resistance at other 
temperatures.

Specific Gravity: 8.41

Density: 0.304 lb/ in3

Note: Published prices are based on market value at time of printing and are subject to change due to  
Nickel surcharges, Chromium and precious-metal market fluctuations.

Shown smaller 
than actual size.

Figure 39 – Data sheet for the test wires NI80-020-200 (Omega Engineering) and NI80-010-
200 (Omega Engineering). Reproduced from Omega Engineering (2022b,c).
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A.2 NCRR-17-100 (OMEGA ENGINEERING)

1

U  Uniformity of Resistance 
U  Mechanical Stability 
U  Fine Surface Finish 

NCRR Series 
30 m (100') Spool

Resistance Wire–Current vs. Temperature
Current Carrying Capacity of Straight Nickel Chromium Wire   
Approximate amperes to heat a straight, oxidized wire in quiet air to given temperature

                      °F 400 600 800 1000 1200 1400 

                 °C 205 315 427 538 649 760 

  AWG or Inches    
  B & S Diameter    Amperes

  15 0.057 7.2 10.0 12.8 16.1 20.0 24.5 

  16 0.051 6.4 8.7 10.9 13.7 17.0 20.9 

  17 0.045 5.5 7.5 9.5 11.7 14.5 17.6 

  18 0.040 4.8 6.5 8.2 10.1 12.2 14.8 

  19 0.036 4.3 5.8 7.2 8.7 10.6 12.7 

  20 0.032 3.8 5.1 6.3 7.6 9.1 11.0 

  21 0.0285 3.3 4.3 5.3 6.5 7.8 9.4 

  22 0.0253 2.9 3.7 4.5 5.6 6.8 8.2 

  23 0.0226 2.58 3.3 4.0 4.9 5.9 7.0 

  24 0.0201 2.21 2.9 3.4 4.2 5.1 6.0 

  25 0.0179 1.92 2.52 3.0 3.6 4.3 5.2 

  26 0.0159 1.67 2.14 2.60 3.2 3.8 4.5 

  27 0.0142 1.44 1.84 2.25 2.73 3.3 3.9 

  28 0.0126 1.24 1.61 1.95 2.38 2.85 3.4 

  29 0.0113 1.08 1.41 1.73 2.10 2.51 2.95 

  30 0.0100 0.92 1.19 1.47 1.78 2.14 2.52 

  31 0.0089 0.77 1.03 1.28 1.54 1.84 2.17 

  32 0.0080 0.68 0.90 1.13 1.36 1.62 1.89 

  33 0.0071 0.59 0.79 0.97 1.17 1.40 1.62 

  34 0.0063 0.50 0.68 0.83 1.00 1.20 1.41 

  35 0.0056 0.43 0.57 0.72 0.87 1.03 1.21 

  36 0.0050 0.38 0.52 0.63 0.77 0.89 1.04 

  37 0.0045 0.35 0.46 0.57 0.68 0.78 0.90 

  38 0.0040 0.30 0.41 0.50 0.59 0.68 0.78 

  39 0.0035 0.27 0.36 0.42 0.49 0.58 0.66 

  40 0.0031 0.24 0.31 0.36 0.43 0.50 0.57 

100' spool of NCCR-15-100 
shown smaller than actual size.

Resistance Heating  
Ribbon Wire 

U  Nickel-Chromium Wire 
(80Ni-20Cr) is Proven 
to Deliver Outstanding 
Performance Over 
Extended Periods of 
Time and is the Same 
Wire OMEGA Uses in  
Our Own Electrical 
Heating Elements

Nickel-Chromium Alloy  
80% Nickel/20% Chromium

Figure 40 – Data sheet for the test ribbon NCRR-17-100 (Omega Engineering) (part 1).
Reproduced from Omega Engineering (2022a).



A.2. NCRR-17-100 (Omega Engineering) 131

2

* Resistance tolerance: ±5% 

Ordering Example: NCRR-15-100, 100' spool of 0.0035" thickness 
of heating ribbon wire.

 To Order

 Model No. Thickness Width Ω/ft*

 NCRR-1-100  0.0015" 1⁄64" 22.75

 NCRR-2-100  0.002" 1⁄64" 17.36

 NCRR-3-100  0.0031" 1⁄64" 11.20

 NCRR-4-100  0.0035" 1⁄64" 9.99

 NCRR-5-100  0.004" 1⁄64" 8.68

 NCRR-6-100  0.0045" 1⁄64" 7.12

 NCRR-7-100  0.005" 1⁄64" 6.95

 NCRR-8-100  0.0056" 1⁄64" 6.20

 NCRR-9-100  0.0063" 1⁄64" 5.51

 NCRR-10-100  0.002" 1⁄32" 9.83

 NCRR-11-100  0.0031" 1⁄32" 5.60

 NCRR-12-100  0.0035" 1⁄32" 4.96

 NCRR-13-100  0.004" 1⁄32" 4.34

 NCRR-14-100  0.0045" 1⁄32" 3.86

 NCRR-15-100  0.005" 1⁄32" 3.47

 NCRR-16-100  0.0063" 1⁄32" 2.76

 NCRR-17-100  0.0031" 1⁄16" 3.17

 NCRR-18-100  0.0035" 1⁄16" 2.81

 NCRR-19-100  0.004" 1⁄16" 2.46

 NCRR-20-100  0.0045" 1⁄16" 1.93

 NCRR-21-100  0.005" 1⁄16" 1.74

 NCRR-22-100  0.0056" 1⁄16" 1.55

 NCRR-23-100  0.0063" 1⁄16" 1.38

 NCRR-25-100  0.0031" 3⁄32" 2.11

 NCRR-26-100  0.0035" 3⁄32" 1.87

 NCRR-27-100  0.0045" 3⁄32" 1.46

 NCRR-28-100  0.0063" 3⁄32" 0.91

 NCRR-29-100  0.0031" 1⁄8" 1.59

 NCRR-30-100  0.0035" 1⁄8" 1.40

 NCRR-31-100  0.004" 1⁄8" 1.23

 NCRR-32-100  0.0045" 1⁄8" 1.09

 NCRR-33-100  0.005" 1⁄8" 0.98

 NCRR-34-100  0.0056" 1⁄8" 0.88

 NCRR-35-100  0.0031" 3⁄16" 0.88

 NCRR-36-100  0.0035" 3⁄16" 0.78

 NCRR-37-100  0.004" 3⁄16" 0.68

 NCRR-38-100  0.0045" 3⁄16" 0.60

 NCRR-39-100  0.005" 3⁄16" 0.54

Current Carrying Capacity of Ribbon 
Nickel Chromium Wire
At 648°C (1200°F) Approximate 

The current values above are based on actual tests  
of single strands of oxidized wire mounted in quiet air  
and operated at 648°C (1200°F). The tables are 
calculated for wire having a resistivity at 648°C 
(1200°F) and a total surface watts-density of 28 W per 
square inch. 

 Width-Inches

   

 Thickness 
1⁄64

 
1⁄32

 
1⁄16

 
3⁄32

 
1⁄8

 
3⁄16

 in Inches             Amps  

 0.0063 1.56 2.89 5.5 8.2 10.1 16.6

 0.0056 1.45 2.69 5.2 7.2 9.5 15.6

 0.0050 1.35 2.52 4.9 6.8 9.0 14.7

 0.0045 1.26 2.38 4.6 6.4 8.5 14.0

 0.0040 1.18 2.23 4.1 6.0 8.0 13.1

 0.0035 1.09 2.07 3.8 5.6 7.5 12.3

 0.0031 1.01 1.94 3.6 5.3 7.0 11.5

 0.0020 — — — — — —

 0.0015 4 — — — — —

Figure 41 – Data sheet for the test ribbon NCRR-17-100 (Omega Engineering) (part 2).
Reproduced from Omega Engineering (2022a).
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APPENDIX B – UNCERTAINTY ANALYSIS

According to BIPM (2008), measured variables are subject to uncertainties caused

by the measurement process or the measurement equipment. Therefore, the uncertainty

analysis aims to quantify the uncertainty in measurements.

BIPM (2008) classifies uncertainty sources into two categories:

• Type A: comprises uncertainties estimated from the statistical analysis of a

series of observations;

• Type B: includes uncertainties obtained from other sources, such as previous

measurements, manufacturer specifications, and calibration certificates;

The type A uncertainty around the measurement of a variable Y can be calculated

from the measured values Y1, . . . , YN as

ÛA =

√

√

√

√

1

N(N − 1)

N
∑

i=1

(

Yi − Y
)2
, (22)

where Y is the average of the measured values,

Y =
1

N

N
∑

i=1

Yi. (23)

In the case where the uncertainty Û is caused by different, independent sources

Û1, . . . , ÛM , the combined standard uncertainty can be approximated by

Û =
√

Û2
1 + · · ·+ Û2

M . (24)

In particular, if the measured variable Y can be expressed as a function of other,

independent variables X1, . . . , XM , the combined uncertainty around Y can be approxi-

mated by

Û(Y ) =

√

(

∂Y

∂X1
Û(X1)

)2

+ · · ·+
(

∂Y

∂XM
Û(XM )

)2

, (25)

where Û(Xi) is the uncertainty around Xi.

The standard uncertainty Û represents the interval around the mean Y that is

expected to contain approximately 68.27% of the measured values and corresponds to

one standard deviation of the normal distribution. However, in practical applications,

increasing the confidence level of the uncertainty interval is desirable. Therefore, the

standard uncertainty is multiplied by a coverage factor k to expand the uncertainty

interval and increase the confidence level, resulting in the expanded uncertainty

U = kÛ . (26)

This work employs the coverage factor k = 2, which corresponds to a confidence level of

approximately 95.45%.
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