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RESUMO

Com o advento da Internet das Coisas (IoT), sistemas de posicionamento tem des-
bravado cenários além de fins navais e bélicos. Hoje, tais sistemas podem ser apoia-
dos pelo conjunto de protocolos TCP/IP, acelerando sua implementação em diferentes
cenários em vários setores da sociedade. Por definição, IoT pode ser descrito como
uma rede de objetos físicos e heterogêneos conectados à Internet. Devido à ubiquidade
destes dispositivos que podem ser denominados como borda, e de sua conexão com
a Internet, estes contribuem para a implementação de sistemas de posicionamento em
vários contextos. Tais aplicações integram hardware e software para fornecer continua-
mente a localização dos dispositivos. Cenários internos, como hospitais e demais edifí-
cios, por serem cercados por concreto, requerem tecnologias e métodos de localização
diferentes daqueles usados em cenários externos, como sistemas de navegação por
satélite. Além disso, certos contextos, como museus e aeroportos inteligentes, podem
ter variáveis dinâmicas, como o número de dispositivos detectáveis, resultando em alta
latência de rede para arquiteturas baseadas em nuvens centrais. O crescente desen-
volvimento de IoT tem motivado a distribuição do poder computacional para a borda
das arquiteturas, reduzindo o tempo de requisição-resposta e resultando em menos
processamento em data centers de alto desempenho. Entre a nuvem e os usuários
finais, existe a névoa (fog), um paradigma computacional que visa dimensionar os
recursos computacionais para mais próximo dos usuários e melhorar a qualidade do
serviço reduzindo a latência e aumentando o conhecimento do serviço (awareness). No
entanto, ao se aproximar do poder de processamento da borda da rede, ainda utilizam-
se estratégias tradicionais de alocação de serviços. Em ambientes móveis dinâmicos,
um estudo avaliando o desempenho do sistema pode beneficiar seu desempenho e
compreender suas particularidades além de modelos de mobilidade e posicionamento
de nodos de névoa. Desta forma, o este estudo teve como objetivo investigar se as alo-
cações tradicionais de serviços de localização podem ser tão agnósticas de aplicação
espacial (space-application-agnostic) em IPS (sistemas de posicionamento interno)
quanto em OPS (sistemas de posicionamento externo), ou mesmo se poderiam ser
equivalentes. Para diversificar o estudo, experimentos foram feitos usando padrões de
mobilidade aleatórios adaptados em simulações. Usando as metodologias propostas e
o software de simulação iFogSim v2, foi possível explorar posicionamentos clustered e
edge-ward em sistemas de posicionamento indoor e outdoor e desenvolver um conjunto
de modelos de mobilidade com base na equivalência dos posicionamentos. A pesquisa
mostrou que as estratégias tradicionais de posicionamento não são equivalentes ao
IPS, provando que não são estratégias comparáveis e tendem a ter pior desempenho
para migrações indoor. Além disso, foi determinado que a falta de definição do que
se constitui ambientes internos e consciência de contexto (context-awareness) é um
fator importante para o IPS, uma vez que os modelos de mobilidade usados tendem
a ser aleatórios na literatura. Além das descobertas mencionadas e dos benchmarks
padronizados desenvolvidos, foi atestado que as colocações em cluster tendem a estar
mais próximas do agnosticismo de espacial promovido e almejado pela comunidade
de código aberto.

Palavras-chave: Internet das Coisas, Fog Computing, Mobilidade, Sistemas de Local-
ização.



ABSTRACT

As most of the scenarios for positioning systems were outdoors and were historically
used for naval and warfare purposes, positioning systems were satellite-based. How-
ever, with the advent of the Internet of Things (IoT), these systems can be supported by
the TCP/IP protocol suite, which is able to accelerate their implementation in different
scenarios. By definition, the IoT can be described as a network of physical and hetero-
geneous objects connected to the Internet, and nowadays it is part of a wide range of
intelligent solutions, ranging from essential scenarios such as agriculture and power
grids to other solutions closer to end users, which can be smartphones, for example.
Because of their ubiquity, these devices, which can be referred to as edge devices,
contribute to the implementation of positioning systems in various contexts. These
applications integrate hardware and software to continuously provide the location of
devices. Indoor scenarios, such as hospitals and other buildings, because their spaces
are surrounded by concrete, require technologies and location methods different from
those used in outdoor scenarios, like GPS and other global navigation satellite systems.
Furthermore, certain contexts, such as museums and smart airports, may have dy-
namic variables, such as the number of discoverable devices, resulting in high network
latency for architectures based on Core Clouds. The growing development of IoT has
motivated the distribution of computational power to the edge of architectures, reducing
the request-response time and resulting in less processing in high-performance data
centers. Between the cloud and the users, there is the fog, a computing paradigm that
aims to scale computational resources closer to the users and enhance the quality of
service by reducing latency and increasing service awareness. However, as it brings
processing power closer to the edge of the network, it uses traditional service place-
ment strategies. Nevertheless, in dynamic mobile environments, a study evaluating the
system’s performance could benefit their performance and comprehend their particu-
larities (contextness) aside from fog node positioning and mobility models. This way,
the present work aimed to investigate if traditional location service placements could
be as space application agnostic in IPS (indoor positioning systems) as they are in
OPS (outdoor positioning systems), or even if they could be equivalent. To diversify the
study, experiments were made using adapted random mobility patterns supported by
simulations. Using the proposed methodologies and the simulation software iFogSim
v2, it was possible to explore clustered and edge-ward placements in both indoor and
outdoor positioning systems and develop a set of mobility models based on the equiv-
alence of the positionings. Our research showed the traditional placement strategies
are not equivalent to IPS, proving they are not comparable strategies and tend to have
worse performance for migration indoors. Also, it was determined that a lack of definition
of what constitutes indoor environments and context-awareness is an important factor
for IPS since the mobility models used tend to be randomized in the literature. Besides
the aforementioned findings and the standardized benchmarks developed, it was at-
tested that clustered placements tend to be closer to the space application agnosticism
promoted by the open source community.

Keywords: Internet of Things, Fog Computing, Mobility, Location Systems.
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1 INTRODUCTION

The rapid evolution of Internet of Things (IoT) devices has significantly increased
the volume, speed, and variety of data (CISCO, 2015). As a result, the global IoT market
is expected to exceed $1 trillion in four years (SAMANN; ZEEBAREE; ASKAR, 2021).
In order to avoid costs, service providers have endeavored to follow this evolution by
providing Quality of Service (QoS) in accordance with the Service Level Agreement
(SLA) provided (SAMANN; ZEEBAREE; ASKAR, 2021). In order to ease SLA flaws,
data reduction solutions have been developed on the edge of the network (PIOLI et al.,
2022). However, as it has been noticed, the computing processing has been shifted
towards the localities of the end users.

For a long time, the main infrastructure sustaining IoT ecosystems has been the
core clouds (LAN et al., 2019). However, due to the increasing demand for performance
in different scenarios, other solutions taking into account the IoT environment have been
considered (COUTINHO et al., 2018b). A computing paradigm that has contributed to
the improvement of services provided by the network is fog computing (FC) (LAN et
al., 2019). This paradigm, capable of providing a response time window closer to real
time, also reducing latency in IoT applications (CISCO, 2015), has been expanding the
possibilities of architectures by bringing more computational power to the edge of the
network (BONOMI et al., 2012).

Through the TCP/IP suite of protocols, the IoT has provided modern solutions
using the concept of a unified framework for sharing information across different plat-
forms and, therefore, possibly contexts. Each "thing" of an Internet of Things application
needs a physical representation, connection abilities, and a unique name or address
besides the computing unit. While these few and low requirements expand applica-
tion possibilities, they also increase device heterogeneity (PALLEWATTA; KOSTAKOS;
BUYYA, 2019).

Approaching IoT devices, for example, (which can be understood as edge de-
vices), different paradigms have been studied to extend the power and maintainability of
IoT environments. In the context of assisted living environments for healthcare, studies
for mitigating IoT data offloading on the network have been studied (MACEDO, D. D.
de; VON WANGENHEIM; DANTAS, 2015). Devices in IoT environments cannot only
be connected to the Internet but also can be available through Wireless technologies
like Wi-Fi and Bluetooth (FIROUZI et al., 2020). These devices acquire new interaction
methods with the environment as they can sense, monitor and even control systems
like smart homes and even autonomous vehicles. The concept of smart environments
can also be applied to small and medium environments. In positioning systems (PS),
for example, location nodes are responsible for providing the position of the mobile
nodes. Besides having the computing power to estimate and calculate their position,
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their location plays a major role in this service provision. Studies such as (MARTINS
et al., 2022), aimed to develop an algorithm to create clusters based on node range
capacity.

As benefits, IoT provides more information for business decision making (FIROUZI
et al., 2020), after all these devices, such as smartphones, are closer to your customers.
However, due to the diffusion of these devices, it is estimated that by the next decade
of 2030, the number of these devices will triple (SAMANN; ZEEBAREE; ASKAR, 2021).
Thus, the number of devices will be needed in increasingly efficient, secure and scalable
ways (GUBBI et al., 2013).

Massive data can be observed in sensible applications, such as healthcare en-
vironments. Yet, optimizing the amount of data generated is not only a data modeling
problem but also a concern for data reduction (MACEDO, D. D. de; VON WANGEN-
HEIM; DANTAS, 2015), independent of pre- or post-processing events. However, non-
sensible applications can be observed in the literature. And since these contexts may
have different priorities, at the edge level, specialized approaches (MACEDO, D. D. J.
de et al., 2019) have been developed to increase management levels.

Nowadays, it is possible to encounter various smart environments. In the litera-
ture, a smart environment can be defined by the implementation of IoT (FARAHSARI
et al., 2022). Since the edge devices in the IoT ecosystem just need to be connected
to the internet, the ease of implementation of IoT applications is one of the factors
that accelerated its rise (PALLEWATTA; KOSTAKOS; BUYYA, 2019). This effect can
be seen at different scales: smart fridges, homes, airports, parking lots, and even the
concept of smart cities and intelligent transportation systems.

Fog extends the cloud towards the devices (BONOMI et al., 2012) and the main
motif is to aid the services provided. Offering a more generic alternative that natively
supports large amounts of traffic and allows resources to be anywhere along the edge-
to-cloud continuum (YOUSEFPOUR et al., 2019). To add a layer between things (the
edge) and the cloud is to increase responsiveness, privacy protection, and location
awareness. As fog means to alter the IoT infrastructure, there have been developed
different computing paradigms within it based on application purposes. Vehicular Ad-
hoc Networks (VANETs) are vivid emerging examples of IoT (MAAD HAMDI et al.,
2020).

Open source fog simulators, emulators and testbeds are endorsed by compa-
nies and consortiums. The EdgeX Foundry (JOHN et al., 2021) is one example of open
source platform that aims to standardize Industrial IoT. Nowadays, this project been
supported by powerful companies such as Intel. Also registered by the Linux Foun-
dation, the KubeEdge project brings containers architecture to the edge (YANG et al.,
2022).

Since mobility is usually thought of as applied to outdoor environments, service
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placements, topologies, configurations, and experimentation have been used in larger
geographical environments, like smart cities (LAI et al., 2018). However, as each IoT
application has its own demands, a study evaluating the performance of service place-
ments (MARTINS et al., 2022) in fog-based IPS based on mobility patterns as well as
user interactions is yet to be developed. A lack of research in these contexts can result
in inadequate architectures for system maintainability.

1.1 PROBLEM

Mobile devices are non-fixed sources that have trajectories that are not necessar-
ily predictable. Thus, mobility is a subject of research in different systems. This element
affects, for example, mobile networks, which depend mainly on the positioning and
signal level of their towers, as well as ad-hoc networks that adapt their topologies dy-
namically. Vehicular networks (VANETs) also use the same point-to-point principles as
ad hoc networks, with the exception of dealing specifically with automotive nodes. This
specification is necessary due to the high mobility category of its nodes. Autonomous
vehicles are applications within these networks, with highways and smart cities as
scenarios. However, applications whose nodes deal with human resources are also
suitable.

In localization systems supported by the IoT that use Global Positioning Systems
(GPS) or any other global navigation satellite system (GNSS), it is possible to position
devices with satellite connection around the globe. However, due to signal loss caused
by architectural structures, these systems lack sensitivity when applied to domestic
locations. In these contexts, they are called indoor positioning systems (IPS). Even
though the definition for IPS can be misleading, since areas such as airports and smart
homes are considered indoor, the environments can be rooms or subrooms.

In short, indoor positioning systems seek to locate objects in interior (local) areas
such as equipment in smart hospitals (ADARSH et al., 2014), users in smart museums
(SPACHOS; PLATANIOTIS, 2020), and even cars in smart parking lots (SYAFRUDIN
et al., 2018). Because these applications approach near-real response times, they
require constant support from the network. Furthermore, within these scenarios, mul-
tiple devices can connect and disconnect from the network at the same time. In these
circumstances, the concept of mobility becomes fundamental.

With the expectation to grow from USD$ 3.19 billion in 2018 to USD$ 8.79 billion
by 2023 (JACHIMCZYK, 2019). There is an effort from the service providers to pre-
vent wrongful billings for Internet of Things (IoT) applications. Solutions are based on
investigating better ways to follow this evolution by supplying Quality of Service (QoS)
according to Service Level Agreements (SLA). However, as appointed by (ASLAN-
POUR; GILL, S. S.; TOOSI, 2020) a selection of incorrect metrics can mislead the
developer when it comes to real performance, causing SLA flaws.
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The literature on IPS focuses on specific problems requiring a specific number
of objects to be located while experiencing limited mobility. By increasing the number
of these objects in the localizable area, there is an increase in network latency as well
as in server processing, a scenario that is briefly explored, demonstrating a possible
gap in the scope of scalability.

When it comes to the domain of the Positioning Systems, migration and service
allocation algorithms are based on the OPS. And, because these systems’ context-
agnosticism is widely encouraged (FIROUZI et al., 2020), they can carry the particulari-
ties of these systems to IPS in a context-less form, reducing performance and making
them unsuitable for use in all indoor contexts. Some of the wide range of variables
of OPS are: user mobility patterns, number and range of fog nodes, starting points,
number and duration of user interactions. This way, a study is necessary to understand
the behavioral compatibility of both systems, if any.

Context-awareness refers to the property of an entity being informed of its sur-
roundings and is envisaged to achieve intelligent decision making utilizing information
gathered through local sources (FAROOQUI et al., 2022). In scenarios of locating de-
vices such as smart buildings and smart hospitals there is no need for dynamic IPS
application scenarios that have high turnover and number of devices to be located con-
necting, disconnecting and reconnecting (GUO et al., 2019) (SPACHOS; PLATANIOTIS,
2020) (BAZO et al., 2021). Based on this principle, distributed systems have the ability
to scale, that is, increase their computational capacity by expanding their resources to
support the growing workload (LEHRIG; EIKERLING; BECKER, 2015).

Scalability issues in FC architectures for IPS can have significant implications
for system maintainability. Furthermore, while brief studies on the performance and
mobility of FC-based architectures in indoor contexts have been conducted, a more
comprehensive study is required to help validate potential and next solutions. Thus,
the interrogations that guide this work are: can location services in IPS be space-
application-agnostic? Are standard fog location service placements from OPS to
IPS equivalent?

1.2 MOTIVATION

Fog computing can reduce network latency by allowing tasks to be executed
closer to real time (CISCO, 2015).In this way, the scalability problem in IPS can be
better deepened with the investigation of mobility variables in a fog environment. With
this research, it may be possible to compare the performance of various architectures
while accounting for the constants of each scenario. Furthermore, when it comes to
edge device mobility, these agents can have an impact on the performance of the IoT
ecosystem, not only through location systems but also through mobility-driven migration
architectures. Therefore, the architectures of localization systems must be prepared to
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maintain a desirable performance.
It is worth noting that the context configuration, which encompasses: the number

and positioning of nodes, the service allocation approach, and the very movement of
users in indoor systems, is also a factor to be considered. The investigation of factors
related to the mobility of users, as well as geographic space, allows or does not allow for
the existence of proposals for generic architectures. It is defined here as space-agnostic
architectures, which are architectures that are independent of their geographic spaces,
and application-agnostic architectures, which are architectures that are independent of
the type of application being implemented, whether it is a museum or a smart parking
lot.

Furthermore, there is encouragement in the IoT and FC communities, such as
LF Edge from the Linux Foundation and the Alliance for Internet of Things Innovation,
to develop solutions that are application agnostic in order to build an aligned view of the
edge and fog computing paradigms (ANTONINI; VECCHIO; ANTONELLI, 2019). The
advancement of research can also aid in the advancement of FC-supported IPS. It is
emphasized that, although energy efficiency and security are equally important topics,
the present study seeks to meet demands based mainly on performance metrics.

1.3 OBJECTIVES

The main objective of this work is to determine whether standard cloud ser-
vice locations work equally well on fog-based IPS or at a similar level. In this way,
the following specific objectives were achieved:

• Analysis of open source virtual environments for fog computing that enable indoor
positioning systems mobility

• Identification of performance metrics for fog computing applied to indoor position-
ing systems

• Study and comparison of indoor and outdoor environments in the contexts of
positioning systems

• Research, implementation, and comparative analysis of different contexts and
approaches based on fog computing supported by simulation

1.4 CONTRIBUTIONS

As methodological contributions, this work enabled a set of service placement
strategies for fog architectures compatible with indoor positioning system contexts. In
this manner, it was possible to enhance the study also at the edge of the network. When
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it came to mobility models, a randomized mobility model has also been improved to
support mobile nodes in indoor positioning systems.

The adaptation of outdoor positioning systems to indoor positioning systems
through a simulated environment was also made available. The reference models can
lay the groundwork to validate derived models that use fog computing and indoor po-
sitioning systems, based on the provided evaluation procedures, such as performance
metrics comparison values.

Through the benchmarks developed, it is possible to investigate the bottlenecks
when it comes to migration in IPS environments. This concept is relevant for context-
awareness issues, since the achievement of intelligent transportation systems could
depend on the sharing of contexts among machines. Considering standardized fog
nodes location as gateways, it is possible to apply machine learning or stochastic
algorithms to evaluate the performance of overall systems that could provide more
contextful scenarios.

1.5 SCOPE DELIMITATION

Although energy efficiency and security are equally important issues, this work
sought to meet demands based mainly on performance metrics and scalability. It should
be noted that the tests presented are specifically focused on performance without
packet loss. Besides, as this work investigated the concept of space and application
agnosticism, the environments presented tested the corner of the definition of context-
lessness by using generic indoor environments and not a specific context.

Due to the distributed nature of fog computing, each node can have different
memory and storage capacity. Depending on the scenario, these IoT contexts could be
understood as Jungle Computing. To avoid these scenarios, each fog and edge node
is uniform when it comes to properties such as downlink, uplink, power consumption,
processing power and etc. And since the experiments were standardized, it was chosen
the two most traditional service placement approaches. The choice of the placements
standing out in this work, is because each represents the conventional extreme for
placement: cluster is horizontal placement and edge vertical.

For the edge, besides the computing power being uniform, there are particu-
larities when it comes to mobility. The mobility models used for this study omitted
architectonic boundaries such as walls, doors, etc. This occurred because there was no
simulation support for loss signals in WLAN environments (indoor or not) at the edge
in the tested softwares, which makes the total indoor environment simulation idealistic
and therefore, was kept out of the scope.
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1.6 DOCUMENT OUTLINE

The research background and state of the art are presented in Chapter 2, and
a bibliographic review, as well as related works, are presented in Chapter 3. Chapter
4 provides the research methodology as well as the methodological procedures. Next,
in Chapter 5, details regarding the experiments are supplied. Chapter 6 discusses and
evaluates the experimental results, and Chapter 7 concludes this study with conclusions
and future research.
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2 BACKGROUND

Indoor positioning systems, when compared to the outdoors, can seem to be
trivial as a subject of study, however these systems are generally adapted from the
outdoor perspective and need to be better analyzed, since data mined from environment
surroundings can provide the efficient management of them as application and as its
applicability. Some of the scenarios for the IPS, for example, is a building of a university
campus. The versatility of these systems is rooted in the capacity of using mobility as
input and output. Using mobility as input, the system can coordinate services in runtime
and as output, can suggest the locality of beacons by mining user data utilizing time
as parameter, for example. However, computer paradigms and architectural designs
that can truly support these systems is still a discussion, as each of them have their
own particularities when it comes to their positive and negative aspects. Therefore, this
section presents the state of art of positioning systems, computer paradigms, mobility
and strategies for allocating services based on mobility concepts regarding to the
scenarios simulated.

2.1 POSITIONING VS LOCATION VS NAVIGATION VS TRACKING SYSTEMS

These systems are made up of two parts: fixed reference nodes (RNs), also
known as anchors with known positions, and mobile nodes (MNs), also known as bea-
cons or tags, which are the targets to be located. The location of the MNs is determined
by distance, angle from the RNs, or deviation from themselves, (FARAHSARI et al.,
2022). Even though these systems can be used interchangeably (SOKOLOVA, n.d.),
each of them has its own characteristics. Localization systems find the location related
to reference objects, meaning that information regarding the environment is also pro-
vided (FARAHSARI et al., 2022). A location system might be attributed to a context with
a qualitative approach.

Positioning systems, express the quantitative coordinates of an object in given
space, which can be either indoors or outdoors. Inside positioning systems, there are
two categories: navigation and tracking systems (Figure 1). Navigation systems actively
determine the position and course of an object in relation to a destination point. Tracking
systems, as opposed to navigation systems, are used to passively indicate the position
of an object.

Mobility involves the position, direction, and velocity of a given device, and de-
pending on the context, like indoor positioning systems, it can also be limited to architec-
tural structures. As a user moves between different access points, the IoT application
must deal with the change of location with minimal impact on performance and there-
fore on the user experience. As a result of the nature of these systems, any of them can
be included in location-based systems (LBS), particularly for low-range applications
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Figure 1 – Positioning system classification from (FARAHSARI et al., 2022)

(SOKOLOVA, n.d.).

2.2 INDOOR POSITIONING SYSTEMS

The rise of IoT and residential and commercial automation has increased de-
mand for location services, including those in indoor environments (MACKEY; SPA-
CHOS, 2017). Popularity can be noted in home care (MARIN; BOCICOR; MOLNAR,
2020) environments, (PIETRABISSA et al., 2013) hospitals, (SPACHOS; PLATANIOTIS,
2020) museums and airports (KARWA, 2019). As indoor systems usually take place in
the previously presented environments, there is a lack of definitions for what the max-
imum range/area is for an indoor environment. In literature, for example, (MAINETTI;
PATRONO; SERGI, 2014), categorize indoor environments as rooms and subrooms
without defining how large these spaces in meters can be, for example. In this docu-
ment, contexts are referred to as these environments, whether for hospitals, smart
homes, or industries.

Positioning systems (PS) are divided into two types: external environments (out-
door) and internal environments (indoor) (MAINETTI; PATRONO; SERGI, 2014). In
outdoor positioning systems (OPS), satellite navigation systems are generally used,
such as the Global Positioning System (GPS). In indoor systems, due to the low power
of satellites caused by the loss of signal from the architectural structures, such as the
concrete of the buildings, their use is not suitable. Having this particularity in mind, there
is a set of possible technologies used for data transmission and reception. Signals can
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be classified into three types: radio frequency, light and optic, and sound.
Sound-based positioning systems can be ultrasonic or acoustic. Acoustic tech-

nologies estimate the position of the objects based on sounds captured. An example
of these acoustic systems are the autonomous underwater vehicles. The ultrasonic
positioning systems rely on the rate between transmitter and receiver based on the
sound velocity to estimate the distance of multiple nodes. SONAR, or sound navigation
and ranging, is a navigation technique that uses sound propagation to track nodes in
submerged environments.

Visual (or optical) positioning systems, with the help of computer vision and vari-
ous ML algorithms, can be applied to autonomous driving vehicles, both actively and
passively, as well as for locating personnel or things in indoor environments. These
systems can be applied to urban areas and underwater environments. Strategies for
locating nodes, usually use a camera or a set of cameras. Large databases are neces-
sary for storing features, and depending on the application, advanced processors are
necessary when deploying these systems (ANUP; GOEL, A.; PADMANABHAN, 2017).

Radio frequency-based positioning systems can be developed using short-range
technologies such as WiFi, Bluetooth (BT), Radio Frequency Identification (RFID), Ultra-
wide band (UWB), Zigbee (ZB). Even though all of these technologies are highly
available in the market, there are some particularities (BAZO et al., 2021) (SAN-
TOS; AVANÇO; PEREIRA, 2020). BT, for example, covers the range from 2.4GHz
to 2.583GHz and is used to locate devices dynamically, enabling real time applications
with low energy consumption during transmission and reception of signals. With the
4.0 version, also known as Bluetooth Low Energy or even Bluetooth Smart, device
communication no longer requires pairing, and device discovery can be passive and
continuous between devices and applications.

The Zigbee protocol operates at a global frequency range of 2.4GHz. Despite
the fact that it can cover a greater distance than BT, this protocol is intended for low-
data-transmission applications. It is often chosen due to its low cost, energy efficiency,
and off-the-shelf components, which reduce hardware complexity. It is widely used by
the home automation and care industries.

RFID is a ubiquitous technology that can be defined as a system containing
electronic circuits attached to things. It is necessary to have three components: a tag
attached to the thing, the reader (device responsible for detecting the presence of the
target tag), and the antenna, the passive device that is used by the reader to transmit
the radio frequency signals. The active tag contains a battery and can transmit signals
autonomously, whereas passive tags have no battery and require an external source to
emit signals.

UWB provides high precision, low energy consumption, small tag size, and op-
erates on frequencies ranging from 3.1 GHz to 10.6 GHz, with the ability to handle
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Table 1 – Comparison of wireless radio frequency IPS technologies

Accur. (m) Cov. (m) Cost Compl. Energ. C. Env.
WiFi 10-800 20-50 Medium/Low Low High Indoor/Outdoor
BT 1-10 1-30 Low Low High Indoor/Outdoor
ZB 1-200 1-30 Low Low High Indoor/Outdoor

RFID 0.5-5 1-10 Low Low Low Indoor
UWB 1-15 High Medium/Low Low High Indoor/Outdoor

interference and provide high precision tracking down to 20 centimeters. However, its
widespread usage still depends on greater market availability and lower cost. Using
wide bandwidth, which can be defined as for IPS and OPS, this technology is used to
transmit data.

The Table 1 presents a comparison of the IPS technologies based on their
capabilities: accuracy, coverage, cost, energy consumption, and environment. WiFi,
Bluetooth, Zigbee, RFID and UWB represent the most used technologies for wireless
solutions.

2.2.1 Wireless Local Area Network IPS

Wireless Fidelity, or as its acronym is known, Wi-Fi, is the most well-known
communication technology, It is based on the IEEE 802.11 standard and operates
in the ISM radio band at frequencies of 2.4 and 5 GHz, as well as 1—6 GHz in its
802.11.ax version (MAINETTI; PATRONO; SERGI, 2014). When applied to a local area
network, Wi-Fi, can be used to estimate the location of a MN within the network. Even
though Wi-Fi is not suitable for localizing small objects, it is convenient and accurate
enough for tracking human beings in IoT applications.

One of its main advantages is its cost effectiveness, since nowadays the ma-
jority of devices are equipped with this technology without the need of installing new
software, besides its high data rate and availability in most devices (MAINETTI; PA-
TRONO; SERGI, 2014). In these networks, a node emits or receives signals from or
to the wireless router, which determine the precise location of the target device. One
of the remarks regarding the WLAN IPS, is the fact that these systems heavily depend
on the placement of beacons, since the quantity of the beacons can lower the system’s
performance and accuracy and increase the total cost of the system (ANUP; GOEL, A.;
PADMANABHAN, 2017).

The algorithms (or techniques) for locating devices can be characterized into
three groups: time based, direction-angle-based, and signal-strength-based. Time-
based techniques use the time of signal propagation to define the mobile node’s lo-
cation, which can be based on the propagation time between receiver and transmitter
without the need for time synchronization (Time of Arrival), the difference between ar-
rival times in multiple anchor nodes (Time Difference of Arrival), or even the time it
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Figure 2 – Wifi fingerprint based on (ZHAO et al., 2018)

takes for a signal to be transferred from transmitter to receiver and back (Round Trip
Time).Direction based techniques rely on the angle of the received signals, requiring
anchors to determine the intersection of multiple orientations using directional anten-
nas (Angle of Arrival). The power and strength of the received signals are used by
signal-based systems to determine the MN’s location.

In WLAN contexts, it is generally used as the Received Signal Strength Indicator
(RSSI) because of its accessibility and popularity. This method is based on determining
the received signal strength values (VARSHNEY; GOEL, R. K.; QADEER, 2016).RSS
can be used to locate a device using the following techniques: angulation, lateration,
and fingerprinting.Lateration is a method that determines the position of an unknown
object based on the distance from more than two known reference nodes. Trilateration,
which is the most popular use of lateration, uses three reference nodes. Angulation
utilizes the geometric measurement of the arrival angle of the signal, using Angle of
Arrival techniques.

For Scene Analysis and Pattern Matching, spatial information of specific points
is collected to form a database. Fingerprinting (Figure 2 is a method using RSSI that
is classified in the given approach. In this technique, there are three phases: area
mapping and storing, comparing measured RSSI values to predefined values in the
database, and then mapping the current position. Even though this approach may result
in accurate positions, remapping is needed for any change.

2.3 ENABLING IOT COMPUTING PARADIGMS OR IOT-ENABLED COMPUTING
PARADIGMS

Cloud computing has, for a long time, been the most widely used and stable
technology for IoT applications. However, nowadays, due to the increase in possible
applications, it has become necessary to develop new, singularity-driven IoT Computing
Paradigms. The Figure 3 shows a summarized range of these current IoT paradigms.
As the intersection of all the paradigms, the main goal is to bring computing resources
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Figure 3 – IoT Computing Paradigms (YOUSEFPOUR et al., 2019)

closer to the users, reducing latency, costs and increasing QoS; however, each of
them differs on the technologies and applications. As this computing paradigm can be
defined as a set of computing resources geographically far from the devices with high
computation power and availability, devices can only connect to the cloud through the
core network.

Mobile computing (MC), also known as nomadic computing, has as its agents
portable devices, such as laptops, tables, and phones. Used to create pervasive context
aware apps, such as location-based ones. As aspects, these carry, low processing
power and require low or no hardware implementation since they are connected through
BT, Wifi, ZigBee or others. They are networks with limited resources that employ a
distributed architecture.

Edge computing (EC) improves the management, storage, and processing of
data generated by MCC; however, unlike this computing paradigm, the edge is not
located on IoT devices, but rather at the network’s edge close to them. The Open
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Edge Computing Initiative (YOUSEFPOUR et al., 2019) defines it as the processing
or computation done at the edge of the network through small data centers. Through
ubiquitous concepts, common uses are filters, pre-processing intelligently using specific
cloud services closer to the devices. EC Because the devices are interconnected and
decentralized, they have lower latency when compared to the MCC and CC, as well as
higher service availability.

Mobile cloud computing (MCC) is a hybrid of cloud and mobile computing. This
paradigm processes and stores data outside of the mobile device, as apps are not just
destined for the devices. It can be used for crowd sourcing, healthcare, and sensor data
processing, and it can use dynamic offloading for computationally intensive apps. How-
ever, as it aims to connect cloud providers and mobile devices, challenges regarding
connectivity are an open issue. It requires large-scale data centers.

Mobile ad hoc networks (MACC), which use temporary and dynamic topologies
to accommodate in highly unstable environments, may not be a suitable option for poor
infrastructure. It can be used in disaster relief, video streaming, and autonomous vehi-
cles by forming small clouds, similar to clusters. Mobile devices perform the functions
of data providers, storage devices, and processors. These devices are also in charge
of routing traffic among themselves and are computationally intensive. Services are
available through mobile devices connected through radio frequency technologies, such
as WiFi, BT and other cellular protocols.

MEC extends to other radio access technologies, such as 5G and 4G, within
the Radio Access Network, closer to mobile devices. It can be used in video analytics,
connected vehicles, health monitoring, and augmented reality. It uses virtualization, can
use WAN, cellular connections, has a focus on network infrastructure providers and
mobile devices, can use SDN, NFV, and can deliver mission-critical, delay-sensitive
apps over the mobile network.

Cloudlets are typically used in WiFi environments to bring the cloud closer to
users by utilizing resource-rich computers that can be organized as clusters.They use
miniaturized clouds that are only a one-way hop away from the devices. The aim is
to offload computation from devices to dedicated VMs. high potential for wearable
assistance. can support local services for devices that distribute tasks among cloudlet
nodes in close proximity via WiFi, Bluetooth, and Bluetooth Low Energy.Devices can
be providers or clients.

The Mist computing paradigm refers to processing at the extreme edge, like in a
wearable, mobile device, smart watch, or smart fridge. It can be considered a subset
of MACC. It is used when there is a necessity to reduce the load of WiFi infrastructure.
It is worth noting that the devices can function as thin clients or servers. Since this
paradigm is self contained, it can preserve the privacy of users data using the local
processing.
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2.4 FOG COMPUTING

The concept of fog computing (FC) is introduced so as to enhance IoT systems
scalability, reactivity, and efficiency using moderate computing resources at a low power
level. Although there may be exceptions, the hardware can be located closer to the
clients.Fog can be accessed through connected devices from the edge to the network
core. The fog nodes do not necessarily need to be connected or even have a fast
Internet connection, thus providing offline or even real time apps.

This paradigm aims to extend the Cloud Computing paradigm to the edge of
the network, allowing a variety of "silent services" (NASIR et al., 2019). Through high
virtualization, it provides compute, storage and networking services between edge
devices and data centers of Cloud (TRAN et al., 2020). It causes decentralization of
the flow of applications in distributed services and, as a result, reduced latency and
energy costs (MANSOURI; BABAR, 2021) by allocating processing power closer to the
sensors and actuators.

As they are closer to the devices, they are used when there is a need for
pre-processing and monitoring of short-term data and in critical real-time applica-
tions (CISCO, 2015). Another feature is that FC supports large-scale sensor networks
(BONOMI et al., 2012).This property has been used in the context of real-time systems
(BATTISTONI; SEBILLO; VITIELLO, 2019) or even for low latency purposes (GUO et
al., 2019). However, as a technology, formal architectures are rare and not accepted as
standardized for IoT applications (NASIR et al., 2019).

2.4.1 Fog computing vs. Edge computing

Although many authors assign Edge as a synonym for Fog, both paradigms
carry particularities (IORGA et al., 2018). The OpenFog Consortium defines the fog as
having hierarchies, thus providing computing, networking, storage and control from the
cloud to the things. The edge is limited to the computing from the end devices (sensors
and actuators).

• Fog computing: runs on applications in a multi-layered architecture that allows
dynamic reconfigurations for different applications while performing intelligent
computing and streaming services. It is hierarchical and has support for storing,
controlling, and accelerating data processing.

• Edge Computing: runs specific applications in a fixed logic location and pro-
vides direct service transmission. It is usually limited to a few peripheral de-
vices.Depending on the architecture and context, this could be referred to as
the IoT layer.
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In this way, FC can be seen as a transformation of data into information, in which
at each layer the data analysis decreases the amount of transmitted data and increases
the "quality" of the information (BATTISTONI; SEBILLO; VITIELLO, 2019).

2.4.2 Standard fog architecture

Different researchers may use different models; however, in the most common
FC scenarios, three main layers are used: Cloud, Fog and End Devices (MARGARITI;
DIMAKOPOULOS; TSOUMANIS, 2020):

• End Devices or IoT layer : lower layer that represents sensors, actuators, mobile
devices, etc., has computational capabilities and forms a communication network
whose data is transmitted to the Cloud through Fog.

• Fog layer : layer above the devices, where any device that can process, store, and
connect to the network can be a fog processing device. Considering this, there
are devices that can be both IoT and fog. Resources are interconnected, and
devices form the distributed system that provides services to a set of end devices
at a specific location and manages the data that is transmitted by these.

• Cloud layer : layer above the Fog consisting of physical data centers in which each
node has a CPU, main memory, and broadband network and is used for user
requests for resources. Clouds are connected by WANs and provide intense data
analysis to end devices. They provide high-quality services with a high level of
fault tolerance.However, they have high latency due to WAN connections.

This work employs architectures as a set of configurations in the three layers, as
presented in Figure 4. Models and architectures will be considered synonymous.

2.5 STRATEGIES FOR SERVICE PLACEMENT

Because of the limited coverage of access points and multi-hops, the quality
of service may suffer; thus, better and optimal placement, closer to the newest user
location, is required in IPS. Aspects like message size, available bandwidth, and load
on the target node are also taken into account when choosing the optimal destination
node. This process is called migration.

Service migration departs from one node (source) to another (destination). Such
service migration depends on the location and identification of the intermediate node
to which the migration source can upload the application of the corresponding service
and the target migration destination can download it, if there is no direct connection
between the respective migration points, even though positioning systems remain an
open challenge for mobile applications.
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Figure 4 – Standard fog computing architecture from (IORGA et al., 2018)

To address this issue, different strategies for service placement and migration
have been developed, which, depending on the context, can have better or worse perfor-
mance. The main categories for these strategies are horizontal or vertical placements.
The following subsections present an overview of the state of the art of clustering
(horizontal) and edgewards (vertical) methodologies, taking into account positioning
systems in fog architecture systems.

2.5.1 Clustering placement

In this type of placement, each group has an orchestrator node (proxy) and N
worker nodes (gateways). The gateways of each group in the fog are interconnected,
as shown in Figure 5. The focus in question, is on the horizontal scalability of the nodes.
By decentralizing placement management and assigning responsibility for decision
making to each node, service discovery and load balancing become crucial points in
this approach.

Aiming for horizontal scalability, when configuring the clustered approach to
the architecture, the same migration strategy is also used. In the present case, by
connecting all gateway nodes in a mesh network, migration of modules directly between
source and destination is allowed. It is noteworthy that nodes in the upper layers are
not involved.

In this approach, since the relationships among clusters are blind and have to be
managed individually, a drawback regarding migration can be an issue for intercluster
events. This event can have a direct impact on overall system performance because if
the target cluster is busy, the migration will be delayed because intercluster resources
are not shared.
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Figure 5 – Topology using clustered placement

2.5.2 Edgewards placement

Based on the First Come First Serve (FCFS) strategy, the edge-ward placement,
or edgewards, favors the deployment of modules at the edge. If there are insufficient
resources, the approach moves the action to be performed to the upper layer until the
action in question is performed, even if it is only in the cloud, as shown in Figure 6.

The edgewards approach has better performance when the architecture of fog
devices is hierarchical (SILVA, D. M. A. d. et al., 2019). As a disadvantage, due to
the low computational capacity of the edge nodes, there is a tendency to make the
application as a whole more expensive; after all, there is greater use of better equipped
nodes (cloud data centers) or, depending on the architecture, also layered fog nodes.
Figure 7 shows the topology configuration using this placement.

The application flowchart based on the application model with three states is
depicted in Figure 6. Raw_data (initial request), filtered_data (pre-processed request),
and processed_data (complete request) are the three states.

2.5.3 Clustered and Edge-ward placements in OPS

The authors of (MAHMUD et al., 2022), defined a benchmark for understanding
how well these placements (clustered and edgewards) perform. The outdoor environ-
ments defined in the EUA dataset in the industrial Melbourne Central District are used
as the targeted positioning system in this paper.The experiments show there is a superi-
ority of clustering migration when compared to edgeward and cloud-centric approaches,
as described in the Audio Translation Service (ATS) experiment, and also for network
usage and coordination among computational resources in Cardiovascular Heath Mon-
itoring (CHM).
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Figure 6 – Application flowchart using vertical placement

Figure 7 – Topology using vertical placement

2.6 AWARENESS VS AGNOSTICISM

Buzzwords such as context agnostic and application agnostic have been ex-
plored in academia (PSOMAKELIS et al., 2020) (PHUNG; YOUNG; ZOMAYA, 2017).
In computer science, a software program is said to be agnostic or data agnostic if the
method or format of data transmission is irrelevant to the device’s or program’s function.
Devices or programs can receive data in multiple formats or from multiple sources,



Chapter 2. Background 36

and still process that data effectively. Therefore, agnosticism, in information technology
contexts, refers to the generalization that can represent interoperability among various
systems. The term can refer to software and hardware, for example, and some say any
type of environment (VANINI; GIORDANO, 2013).

Agnosticism is used to define architecture designs in a variety of fields. Cloud
agnostic providers refer to an organization migrating their production workloads to
another cloud provider, and language agnosticism in programming refers to the ability
to develop efficient software in any language. Besides the inclusiveness of application
agnosticism, there are some risks when developing a context agnostic architecture. For
instance, the term space-agnostic, meaning that given an architecture, it can perform
according to the SLA or QoS metrics besides the area (in meters per square). However,
different variables must be considered in positioning systems, particularly when it comes
to mobility.

In some way, for location-based systems (LBS), the terms "context" and "appli-
cation" can be used interchangeably. As placement strategy plays an important role in
an architecture, a generic one for OPS can appear to be ideal for IPS surroundings, but
the change-over of variables can mislead the developer. This way, if a part of an archi-
tecture needs to be changed to be accepted, the architecture is not agnostic anymore.
Because agnostic OPS approaches do not always cover all aspects of IPS, context
awareness should be preferred over agnosticism.

2.7 VIRTUAL EXPERIMENTATION ENVIRONMENTS

The virtual environments mentioned in this project are means of experiment-
ing before they are implemented in reality.This methodology can help to isolate the
study from real problems before there is any loss. Within this framework are included:
simulators, emulators, and testbeds (GILL, M.; SINGH, 2021).

• Simulators are capable of reproducing each step of a system, providing environ-
ments that are minimally faithful to reality before the implantation process (SILVA,
H. R. S.; COUTINHO, 2018).

• Emulators are software or hardware systems capable of behaving like any other
system and, therefore, are able to replace the original system with little loss of
performance (SILVA, H. R. S.; COUTINHO, 2018).

• Testbeds are built from prototypes and component parts of a real system and are
used to study the elements of a system and therefore focus their study on specific
parts of the whole. (FORTIER; MICHEL, 2003).

For fog computing, there are some specialized simulators, such as: iFogSim,
MyiFogSim, EdgeCloudSim and YAFS (KUNDE; MANN, 2020). For emulators: Fogbed
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(COUTINHO et al., 2018a), Fogify (SYMEONIDES et al., 2020) and EmuFog (MAYER
et al., 2017). As testbeds, there are works by National Chiao Tung University (HUANG
et al., 2017). This document focuses on Open Source Simulators in order to develop
and evaluate fog-based architectures.

2.7.1 Indoor Positioning Systems simulators

Within IPS, there are some simulators, such as: SMILe (JANKOWSKI; NIKODEM,
2018), Navindoor (OROYA-VILLALTA; DÍEZ; BAHILLO, 2019) and Pylayers (AMIOT;
LAARAIEDH; UGUEN, 2013). As some testbeds exist based on (ADLER et al., 2013)
grids and as reference model (SCHMITT et al., 2012). Considering the main simulators
used in the literature, it is noted that these systems place a greater focus on the analysis,
testing, and evaluation of localization methods. It is important to point out that although
it is possible to develop any IPS scenario, none of them provide support for testing
networks, whether fog or cloud.

2.7.2 Fog computing simulators supporting mobile nodes

As a computing paradigm becomes better understood and standardized, simula-
tion software is capable of defining its most important characteristics. These systems
are capable of defining topologies, designs, architectures and also determining whether
it is worth implementing a system in the real world. For fog computing simulators, for
example, it is possible to define the computing resources and numbers of fog nodes
and devices, as well as tiers and even placement and migration policies for services, in
order to determine whether and how an architecture can be improved.

For the variety of fog simulators, not every one has support for mobile nodes
in the IoT ecosystem. This is because the concept of supporting mobility in terms
of handling specifically migration events in run-time is still new to the fog.In order to
evaluate mobile nodes in IoT, it is important that the simulator support this functionality.
Open source simulators supporting mobility used nowadays, are iFogSim (MAHMUD et
al., 2022), MyiFogSim, EdgeCloudSim and YAFS (KUNDE; MANN, 2020). Throughout
the development of this paper, each simulator was analyzed based on two perspectives:
research and development.

As for researchers, it is important that the simulator have a solid grounding in the
theory. We decide to measure the acceptance in academia using the number of citations
through the Google Scholar platform 1. As the iFogSim simulator study group updated
the software to version 2, demonstrating the new functionalities and its background,
there was another paper, which we kept separately, as presented in Table 2.
1 https://scholar.google.com/
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Table 2 – Comparison of fog simulators regarding academia aspects

Year N°of citations
iFogSim (GUPTA et al., 2017) 1365

iFogSim v2 (MAHMUD et al., 2022) 32
MyiFogSim (LOPES et al., 2017) 101

EdgeCloudSim (SONMEZ; OZGOVDE; ERSOY, 2018) 429
YAFS (LERA; GUERRERO; JUIZ, 2019) 143

The iFogSim was the first open source fog simulator available worldwide. It was
developed by the Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
a study group located at the University of Melbourne in Australia. The simulator is an
evaluation platform that enables the quantification of the performance of resource man-
agement policies on an IoT or Fog computing infrastructure in a repeatable manner
(GUPTA et al., 2017). It is possible to measure the impact of resource management
techniques using this software in terms of latency, network congestion, energy consump-
tion, and cost. Nowadays, it supports mobility driven events, such as user interactions
(movements), in run-time (MAHMUD et al., 2022).

MyiFogSim was developed in the Computer Network Laboratory at the Institute
of Computing at Unicamp with collaboration from researchers at Western University. It
aims to address resource allocation in fog computing in the face of user mobility, sup-
porting mobility through the migration of virtual machines between cloudlets (LOPES
et al., 2017) as it extends the first version of the iFogSim.However, the direction and
speed of the presented mobility models lack customization.

EdgeCloudSim is an open source simulator based on the CloudSim simula-
tor that was developed at Bogazici University to address edge computing demands.
Different architectures are supported (n-tiers) as well as mobility models (SONMEZ;
OZGOVDE; ERSOY, 2018). Despite supporting various networking resource customiza-
tion, service placement and allocation are not mentioned in the presented article.

Differently from the previously presented simulators, which were built in Java,
YAFS uses the Python language. This open source software was developed in the
University Of Balearic Islands and provides a wide variety of customizations of archi-
tectures, from the allocation of resources, billing management, network design, and so
on (LERA; GUERRERO; JUIZ, 2019). Yet, when accessing the online documentation
available on the Github platform, aside from the absence of code implementations and
theoretical background, there were sections still in development (alpha version).

The most cited simulator was the iFogSim, followed by the EdgeCloudSim, YAFS
and finally the MyiFogSim. As for the year of publication, chronologically, it starts with
the first version of iFogSim, then, MyiFogSim, EdgeCloudSim, YAFS and ultimately
version two of iFogSim. Even though the first version of iFogSim, did not have support
for mobile nodes, this project was the only one to publish more than a paper version
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featuring the new functionalities.
From a developer perspective, as all of the simulators are open source, metadata

is publicly available. In these cases, popularity can be measured in Github using the
number of stars - because it is used to demonstrate interest citegithubStars - the date
of the last update, and the number of open issues in Github. For the last topic, the result
was based on the date of February 8th, 2023 as presented in Table 3.

Table 3 – Comparison of fog simulators regarding development aspects

Last update on N°of Stars Open issues
iFogSim Sep 20, 2022 78 5

MyiFogSim Sep 29, 2020 8 3
EdgeCloudSim Nov 2, 2020 338 37

YAFS Nov 23, 2022 66 2

For the analysis of the documentation coverage, an important factor had to be
taken into account: the comparability of indoor to outdoor environments should be
possible. YAFS comes closer to this possibility but does not support the latitude and
longitude (locality) of fog nodes or either of the edge devices. Only iFogSim v2 had
geographical support for the creation of the environments, providing a more suitable
configuration for comparing IPS environments to OPS ones. However, there is a lack
of documentation for placement algorithms, which makes creating new ones difficult.
Finally, it is worth noting that the iFogSim supports applications in real-time (AWAISI
et al., 2021).

2.8 MOBILITY MODELS

A mobility model represents the moving behavior of each mobile node. (ARIYAKHA-
JORN; WANNAWILAI; SATHITWIRIYAWONG, 2006). These models can be defined by
two types: synthetic and mobility-trace-based base models. Synthetic base models can
be generated using statistical data in such a way there is a pattern. These models are
known to have low deployment costs and easy implementation. Nonetheless, there is
little resemblance to reality, which adds to the study’s complexity.On the other hand, mo-
bility traces can mimic real life mobility. These models can show more simple patterns
through large datasets and, therefore, high overhead (BATABYAL; BHAUMIK, 2015).

The challenge for developing and using mobility models is that they should be
as close as possible to reality. For that, there are some categories of mobility models
used in MANETs that are accepted and used in the literature of the positioning sys-
tems. The authors of (BAI; HELMY, 2004) use as main categories the random models
and the ones with temporal, spatial, and geographic dependency. Figure 8 shows the
organization developed by the authors.
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Figure 8 – Categories of mobility models used ind MANETs from (BAI; HELMY, 2004)

Figure 9 – Traveling pattern of an MN using the Random Waypoint mobility model from
(ARIYAKHAJORN; WANNAWILAI; SATHITWIRIYAWONG, 2006)

2.8.1 Random waypoint

Random Waypoint Mobility Models (RW) are based on the direction and/or speed
value changes, including the stopping of movements for a certain period of time (CAMP;
BOLENG; DAVIES, 2002). Inspired mobility models use geographic or geometric bound-
aries as a threshold so that the MN does not exceed the simulation area and can turn
around for the next interactions.Because of its simplicity, it is widely used in simulation
research, and is included by default in these softwares.However, this implementation,
like in the iFogSim v2, is prepared only for outdoor positioning systems (MAHMUD
et al., 2022). We were able to convert this mobility model to geographical (latitude and
longitude) indoor positioning systems as presented in the Appendix A.

Differently from the Random walk and Random Direction, the RW mobility pattern
involves two states of interaction: walking and stopping (pausing). This alternation of
states can provide a more accurate simulation when it comes to user movements in IoT
dynamic environments. Figure 9 depicts a traveling pattern using RW.
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3 BIBLIOGRAPHIC REVIEW

In this section, works related to the theme of this document are presented
through a bibliographic review. Three articles were selected as relevant to this research.
At the end of the section, we provide a discussion regarding the proposals of each
article and ours.

3.1 RESEARCH PLANNING

In order to define the strategies to be adopted, the objective is to understand the
current scenario of IoT research supported by the Fog Computing paradigm in
wireless IPS contexts. To assist in the research, 4 specific questions were defined,
listed below:

• QE1: Which localization technologies and methods are being studied?

• QE2: What are the context(s) for applied IPS?

• QE3: How important is scalability?

• QE4: What are the metrics used to evaluate the work?

The databases ACM DL, IEEExplore, Science Direct, Springer, Web of Science
and Scopus were chosen as search sources. The Table 4 displays the references of
the search elements used for better visualization.

Table 4 – Synthesis of search elements

Acronym Search element
IoT ("IoT" OR "internet of things")
FC "fog computing"
In "indoor"
Lc ("location" OR "localization" OR "locationing" OR "navigation" OR "tracking" OR "position" OR "positioning")

The search expression was applied to the abstracts of the works in order to find
the most relevant searches for this section; more details will be provided in Phase 1.The
number of results returned from each of the sources for the expression used is shown
in Table 5

Table 5 – Relation between the search expression and the results obtained from the
sources

Expression IEEE ACM DL Springer Web of Science Scopus Science Direct
IoT + FC + In + Lc 3 1 102 0 12 1
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Table 6 – Criteria used in the phases

Exclusion Criteria
E1 - Not written in English
E2 - Be published after the 2016-2021 time frame
E3 - Not having the content of the search string in the summary
E4 - Not being a complete article
E5 - Being a survey, a systematic literature review, or mapping without results
E6 - Do not use wireless location technologies

3.2 PRIMARY STUDIES SELECTION

With the criteria defined above, the following steps were defined for the selection
of papers:

• Phase 0: Duplicate Removal

• Phase 1: Reading the abstract of each article and applying the criteria

3.2.1 Phase 0

Due to the selection of multiple sources, it becomes necessary to reduce the
chances of reading duplicate articles. This step was performed by comparing the titles
of the papers, making it possible to reduce from 119 papers to 116.

3.2.2 Phase 1

It is important to note some nuances of the fonts:

• The Springer source does not have a search feature in the abstract, being neces-
sary to read each one. The feature for including preview content in searches has
been disabled.

• For the Web of Science, the Capes Portal was used with search by subject.

• The Science Direct font searches for both title, keywords, abstract and highlights.

• For the Science Direct source, as it is only possible up to eight Boolean combi-
nations, it was necessary to divide the search element Lc, described in the Table
4, into two parts: one with just the term ( "navigation" OR "tracking" OR "posi-
tion" OR "positioning") and another with the term ("location" OR "localization" OR
"locationing") in its place, returning the same work and accounting for 1 .

Criteria E1 and E2 were applied first because they could be combined with
the use of search expressions, which was made possible by the support provided by
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the source search engines.Afterwards, criteria E3 and E4 were applied, excluding all
articles that were also conference presentations, leaving six articles. Next, criteria E5
and E6 were performed in order to investigate only papers applied with results.

Although the search expression used for this review is "IoT + FC + In + Lc", out of
curiosity, the word "scalability" was added to check which papers mention scalability in
the abstract. The only sources that returned results were Springer with 62 and Science
Direct with 1 result.

• Springer: In the case of Springer, as the source does not support searching within
the abstract, all the abstracts of the indicated papers were read, and there were
no papers that met the expression criteria in the abstract.

• Science Direct: In the case of the Science Direct source, it was possible to identify
a work that met the expression requirements, but because it is a literature review,
and the term "indoor" appears only in Highlights it was not possible to consider
her either.

The results of the steps were organized in a spreadsheet available in the footnote
1.

The quality assessment stage was skipped due to the work-results’ suitability to
the required scope.

3.3 RELATED WORKS

In (BATTISTONI; SEBILLO; VITIELLO, 2019), published in 2019, the objective
was to develop a framework of an application agnostic architecture using low-cost com-
ponents with an internal navigation system as a use case. In this article, the authors
consider Edge as being the execution of specific applications in fixed locations con-
nected directly with Cloud services. In this way, they mention another component in
their architecture: Mist.

Mist Computing is a more specialized paradigm with smaller computational re-
sources and are located even closer to the end (user) devices. In the paper, this layer
is supported by the multi-hop network. Mist nodes generally share the same location
as end devices, to which they provide low-latency computational services.

The authors use ESP32-WROVER as a Mist node, Raspberry PI 3 Model B+ as
a Fog node, the MQTT protocol and the MQTT Mosquitto broker. The MQTT protocol
is used as a notification system for the proposed navigation and position systems.
Because it is a low-cost proposal, the authors use beacons Bluetooth Low Energy
(BLE).
1 Worksheet for the Literature Review: https://docs.google.com/spreadsheets/d/1oP4S_

OrUwbY4LKM2glS9iMettqO6E7DwGMeJhWYu-zQ/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1oP4S_OrUwbY4LKM2glS9iMettqO6E7DwGMeJhWYu-zQ/edit?usp= sharing
https://docs.google.com/spreadsheets/d/1oP4S_OrUwbY4LKM2glS9iMettqO6E7DwGMeJhWYu-zQ/edit?usp= sharing


Chapter 3. Bibliographic Review 44

In the work of (PEŠIĆ et al., 2018) a real-time positioning and estimation system
based on beacons BLE is proposed. The system can detect signal propagation from
obstacles, enabling disturbance correction, trajectory exploration, and self-discovery
via machine learning. Location estimation is semi-supervised and highly accurate.

BLEMAT, the authors’ proposal, is sensitive to context, that is, changes in the
environment such as: different flows of people over a period of time or new obstacles.
Although the proposal is based on three levels: sensor, fog and cloud, the authors’ focus
is on testing, application, and evaluation of algorithms. In this architecture, the Fog level
performs trilateration based on measured RSSI values and is responsible for reactive
decision-making, such as Kalman filter application and corrections.

In (PEŠIĆ et al., 2019), the authors continue with (PEŠIĆ et al., 2018), applying
the BLEMAT system in a proposal for managing smart buildings with data analysis and
neural networks. The test environment is a residential building with Wi-Fi access points
acting as BLE beacons and providing Internet access.The dataset is available online.

3.4 RESULT ANALYSIS

In a general analysis, it can be noticed that two of the three works are related and
follow-ups by the same group of researchers. Concerning the answers to the previously
set research questions, they are presented below:

QE1. All studies used Bluetooth location technology and Received Signal Strength
Indication as the location method. In (PEŠIĆ et al., 2018) and (PEŠIĆ et al., 2019), ma-
chine learning (ML) and a Kalman filter are used to improve localization and estimation.
All items also use mesh netting.

QE2. In (BATTISTONI; SEBILLO; VITIELLO, 2019), the authors study a generic
use case (office with several branches), while (PEŠIĆ et al., 2018) experiments with
offices with applications in smart buildings with a model declared semi -space-agnostic,
(PEŠIĆ et al., 2019) implements a real-world situation in a residential space.

QE3. In (BATTISTONI; SEBILLO; VITIELLO, 2019), the authors state that their
model is scalable both vertically and horizontally due to the ease of adding layers
and nodes within layers. The authors in (PEŠIĆ et al., 2018) cite scalability only in
communicating with the MQTT protocol throughout the text and place greater emphasis
on the machine learning model. There are no references or citations about scalability in
(PEŠIĆ et al., 2019).It is important to point out that none of the corresponding articles
experiment (benchmarks) in varying the number of devices.

QE4. In (BATTISTONI; SEBILLO; VITIELLO, 2019), the authors propose a frame-
work for an architecture in a theoretical way, not providing evaluation or testing metrics.
In (PEŠIĆ et al., 2018), the available benchmark compares the mean absolute error
and the standard deviation in meters of the proposal with other localization algorithms
from other papers. In (PEŠIĆ et al., 2019), as the authors use the BLEMAT to predict
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Table 7 – Comparison of articles and the research proposal
[1] [2] [3] Our Proposal

Objective Architecture
Architecture and location
location estimation module
based om ML

Framework for prediction,
detection and data analysis
for housing and mobility data
based on previous work

Comparison study of traditional
placement strategies in IPS
based on QoS indicators

Context
Theoretical
space-agnostic and
application-agnostic

Semi-space-agnostic
and context-aware Semi-space-agnostic Space-application

agnostic

Technologies and
location methods BLE, RSSI BLE, RSSI BLE, RSSI Wi-Fi, RSSI

Testing and
simulation - Datasets Datasets and

real world application
Datasets and
simulation

and detect housing, the authors use their own dataset with square root mean error and
Edit Distance on Real Signals. However, none of the works points out network metrics.

3.5 DISCUSSION

The research scenario is relatively recent, having its first publication in (BATTIS-
TONI; SEBILLO; VITIELLO, 2019) and last publication in 2019 (PEŠIĆ et al., 2019) and
a consolidated working group ((PEŠIĆ et al., 2018),(PEŠIĆ et al., 2019)). The tech-
nologies used are convergent (RSSI and Bluetooth) and are for generalized contexts.
However, researches differs regarding the actual application, having (BATTISTONI; SE-
BILLO; VITIELLO, 2019) a theoretical approach, and (PEŠIĆ et al., 2018) and (PEŠIĆ
et al., 2019), applied. The Table 7 compares our proposal from the presented articles.

Although the objectives are different, the authors demonstrate interest in appli-
cations that are somewhat agnostic. However, the articles do not explore or only lightly
explore the concept of scalability of the services, nor do they provide a thorough review
of the conversion of an OPS to an IPS environment. Also, there is a lack of evaluation
metrics, both for their FC applications. However, the authors are more concerned with
functionality than system maintainability, leaving other concepts such as scalability out
of scope.

In the presented articles, there is no mention of the categories used for the
edge mobility model; it is only known that (PEŠIĆ et al., 2018) used real world dataset.
Another detail is that in (BATTISTONI; SEBILLO; VITIELLO, 2019), the article’s idea is
based on theoretical issues, rather than experimentation, which could be better explored
through simulation. Unlike the other IPS-FC studies presented, our proposal compares
the traditional placement and migration strategies commonly used in OPS to determine
whether they can equally suffice for IPS in space agnostic environments.
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4 IPS PROPOSAL AND RESEARCH METHODOLOGY

In this section, the proposed methodological paths and the techniques to be
used are described.

According to the (MARCONI; LAKATOS, 2012) fundamentals of scientific re-
search, the nature of the work qualifies as applied research, because it aims to gener-
ate knowledge for practical applications. As an approach, this study is conceptualized
from quantitative analyzes to evaluate the model and to bring data from other studies.
The nature of the object of study is considered as descriptive due to the fact that it is a
FC study for the context of IPS. As technical procedures, bibliographical research was
used, due to the investigation being by articles and experimental because it is a study
based on simulations and emulations. Table 8 presents the synthesis.

Table 8 – Search Characterization Synthesis

Nature of Work Applied Research
Problem Approach Quantitative Research
Object Nature Descriptive Research
Technical Procedures Bibliographic Research and Experimental

4.1 METHODOLOGICAL PROCEDURES

The methodological procedures for this project, as well as the Stages, their
objectives, methods used, and results, are presented in Figures 10 and 11. In order to
understand the state of the art of IoT, the first Stage used bibliographical research. This
Stage was responsible for identifying the overall theory that supports the IoT world.

In Stage two, we refined the research to understand how fog computing is be-
ing researched and how positioning systems are implemented in these architectures.
Through bibliographical research and reviews, a new objective was met: since the
microservice (MS) placements are also being used in fog architectures, identify the
traditional MS placement strategies and understand if the mobility of indoor environ-
ments is not an issue for these approaches. This Stage enabled the conceptualization
of fog computing indoor positioning system models supported by the chosen traditional
placements.

In order to demonstrate the conceptual models, it was needed to analyze the
open-source simulators that could support our research, as though for phase three.
Firstly, it was needed to identify the fog computing simulators, the positioning systems
simulators, and then to identify the simulators that could support both fog and posi-
tioning systems. For this, we used the previously found articles of the simulators and
the iterations of these documents, to detect other authors implementations. As result,
we were capable of analyzing the simulator that supported both of the dependencies.
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Nonetheless, the proposal was unique in terms of studying placements in indoor envi-
ronments.

Developing and testing the PS in fog architectures was done in Stage 4. This
Stage was needed to identify supporting placement strategies in the simulators as well
as the contexts of OPS. These contexts were needed to observe if the simulations were
capable of handling mobility parameters ranging from edge device behavior to sensible
and critical system parameters and thresholds. Simulations were made to define FCS
OPS benchmarks.

For Stage 5, it was noticed that there was a need for further analysis of edge
behavior: mobility models. This requirement was necessary due to the fact that the
simulators did not support completely indoor environments, missing fog nodes, WiFi
range, and context structures besides critical systems, for example, concrete walls,
etc. However, even though there was no context-awareness support, the study on the
performance evaluation of both environments would be possible. For the findings, it
was possible to map the mobility models available and, therefore, develop a thorough
problem definition of service migrations. As a main result, the backbone of the research
was established: a methodological comparison of indoor and outdoor contexts. During
this Stage, the available documentation was used to analyze all of the simulators pre-
sented in section 2.7.2. It was discovered that the majority of them lacked theoretical
and coding documentation.

Using the methodological approach developed previously in Stage 6, we were
capable of implementing the traditional placements in IPS-OPS and benchmarking
them as well as the IPS. In order to develop a more realistic set of experiments, we
used the workflow presented by (PEŠIĆ et al., 2018) and (PEŠIĆ et al., 2019) through
simulation. This careful process originated with the experiments presented in section 5
and the adapted indoor mobility algorithm presented in Appendix A.

Finally, Stage 7 was dedicated to the evaluation and interpretation of the bench-
marks proposed. The goal was to provide a detailed comparison of benchmarks, the
mobility model, and the incompatibility of placements.Using simulation and the simu-
lation’s documentation, it was attested that potentially, there are placement strategies
research gaps on indoor positioning systems. These gaps start with the migration time
instability of the placement approaches and go up to the overall performance that is not
compatible in both environments, as discussed in section 5.

4.2 SIMULATION

Through the simulation, the migration occurs mobility-induced, that is, at each
user interaction (read as movement), the simulator is responsible for processing the
event based on the migration and placement policies configured. As presented in Chap-
ter 2, this study encompasses the study of passive positioning systems using the
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reference model of the OpenFog Consortium Architecture Working Group (OCAWG,
2017).

4.2.1 Architectures, topologies, and conceptual models

In order to promote deeper analyzes about the scalability of fog architectures,
two service placement approaches were selected: edge-ward and clustered. In this
present dissertation, the terminology for clustered placement will be used as horizon-
tal placement and edgewards, vertical placement. It should be noted that migration
depends on the placement strategy, and this happens before the simulation starts, so
the placement delays are not calculated. Dynamic placements, which are processed
during runtime, are not considered since this study targets traditional static placements.
The conceptualized model is shown in Figure 12, which uses both placements.

In the clustered placement, the number of clusters (regions) is equal to the prox-
ies, and in each cluster there is the same amount of gateways, except for odd numbers.
In this approach, microservices are used. The edgewards approach, however, does
not share the cluster groups, instead, the modules are set upward, making, individually
each gateway a single process unit and directly dependent on the parent node (proxy).

4.2.2 Vertical placement algorithm

Because devices closer to the network’s edge, such as routers and access
points, may not be computationally powerful enough to host all application operators,
this placement aims to iterate on fog devices towards the cloud while attempting to place
remaining operators on alternative devices.The Algorithm 1 represents the edgeward
module placement. In this case, a single instance of each MS is deployed to the cloud
for each node (GUPTA et al., 2017).

The Algorithm is defined by two steps, iteration and placement, as presented in
Algorithm 1. Iterating from the edge device to the cloud, in the physical network topology,
the placement of modules is incremented based on the CPU. Module m can only be
placed on device d, if all other modules should be placed in the southmost direction
(edge direction), in a breadcrumb style.

The placement phase, consists of first checking if an instance of m is already
placed on d and then merging the instances and putting them, if possible. Alternatively,
a search for parent devices of d that can place the merged instances is triggered. Else,
if d or its parent does not have an instance of m, it is then placed on d. In this way, if a
parent of d has an instance of m, it was already handled, since it is done leaf-to-root.
Having this in mind, multiple instances of a module m can happen at different levels;
however, if a device and its parent have instances of a module, the incoming traffic for
this module is processed by the device, not by its parent.
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In the edgeward placement, there is also fog-to-fog communication, but from
tier-1 to tier-2. For this type of placement, the monolithic representation was chosen
since, benchmarks for clustered and edgeward approaches are available for outdoor
positioning systems. These benchmarks show that vertical placements have inferior
performance (GUPTA et al., 2017) when it comes to clustering in OPS.

Algorithm 1: Microservice Edge-ward module placement from (MAHMUD et
al., 2022)

1: for p ∈ PATHS do
2: placedModules ← {}
3: for fog_device d ∈ p {leaf-to-root traversal} do
4: modulesToPlace← {}
5: for module w ∈ app {find modules ready for placement on device d} do
6: if Pw ∈ placedModules {if all predecessors of w are placed} then
7: modulesToPlace.push(w)
8: end if
9: end for

10: for module m ∈ modulesToPlace do
11: if m ∈ d .modules then
12: m′ ← m
13: if CPUreq

m ≥ CPUavail
d {device d does not have CPU capacity to host m}

then
14: m′′ ← merge(m, m′)
15: parent ← d .parent
16: while CPUreq

m ≥ CPUavail
d {find parent device of d for hosting d} do

17: parent ← d .parent)
18: end while
19: parent .place(m′′) {device d can host m}
20: placedModules.push(m)
21: end if
22: else
23: parent .place(m′′)
24: placedModules.push(m)
25: end if
26: if m ∈ d .parent .modules then
27: if CPUreq

m ≤ CPUavail
d {if parent has instance of m, will be handled by

subsequent iterations} then
28: d .place(m)
29: placedModules.push(m)
30: end if
31: end if
32: end for
33: end for
34: end for
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4.2.3 Horizontal placement algorithm

As described in the section 2, the horizontal placement aims to distribute the
modules among cluster nodes. It uses the same logic as in Algorithm 1, however as
it uses the microservice placement, a mapping for the service discovery offered is
needed.

4.2.4 Migration event

When a mobility driven event occurs, such as a user changing locations, a
migration module is triggered as presented in the Algorithm 3. As the user is always
connected to the fog node closest to the top layer (tier 1 - gateway), when moving,
each gateway has a load balancer and service discovery entity attached to it, so that
if there are multiple instances of the same microservice available in the cluster, it is
possible to migrate to the destination node. However, the migration event depends on
whether it is moving within a cluster (intracluster) or to another cluster (intercluster). In
both cases, two types of communications enable these interactions: edge-to-fog and
fog-to-fog communications.

As the Figure 13 shows, if a user moves to another domain (a), the action is
intercluster. In this case, there is a need to explore the common accessible point for
the old and new gateways (b), involving the upper-tier fog nodes in the migration of
modules. Based on the Algorithm 3, in line 8, if the parent of the new and old nearest
gateways is the same, then it is an intracluster interaction as described by the Figure
14. In this case, the application modules placed on the old nearest gateway are then
placed on the new one through the cluster communication link (fog-to-fog).

4.3 SIMULATION PARAMETERS

In order to provide a more realistic scenario for the experiments, we used the
nodes simulation parameters in iFogSim v2 for the Crowd Sensing and Cardiovascular
Health Monitoring experiments (MAHMUD et al., 2022). The fractional selectivity in the
simulator means the packet loss, which in this study is omitted, is set to 1.0.

4.4 APPLICATION MODEL

Figure 15 describes the directed acyclic graph (DAG) of the application model
based on (PEŠIĆ et al., 2018) and (PEŠIĆ et al., 2019) with the module relationships
shown on the edges. The blue circles represent the interactions of the edge devices
(input and output), and the red circles represent the microservices placed in the fog and
cloud. Because it is a simulation, the communication protocols are omitted. Application
models can also be thought of as application workflows, because each module follows
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Algorithm 2: Microservice Clustered module placement from (MAHMUD et al.,
2022)

1: for cluster ∈ clusters do
2: for p ∈ PATHS do
3: placedModules ← {}
4: for fog_device d ∈ p {leaf-to-root traversal} do
5: modulesToPlace← {}
6: for module w ∈ app {find modules ready for placement on device d} do
7: if Pw ∈ placedModules {if all predecessors of w are placed} then
8: modulesToPlace.push(w)
9: end if

10: end for
11: for module m ∈ modulesToPlace do
12: if m ∈ d .modules then
13: m′ ← m
14: if CPUreq

m ≥ CPUavail
d {device d does not have CPU capacity to host m}

then
15: m′′ ← merge(m, m′)
16: parent ← d .parent
17: while CPUreq

m ≥ CPUavail
d {find parent device of d for hosting d} do

18: parent ← d .parent)
19: end while
20: parent .place(m′′) {device d can host m}
21: placedModules.push(m)
22: registerNode(parent)
23: end if
24: else
25: parent .place(m′′)
26: placedModules.push(m)
27: registerNode(parent)
28: end if
29: if m ∈ d .parent .modules then
30: if CPUreq

m ≤ CPUavail
d {if parent has instance of m, will be handled by

subsequent iterations} then
31: d .place(m)
32: placedModules.push(m)
33: registerNode(d)
34: end if
35: end if
36: end for
37: end for
38: end for
39: end for
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Algorithm 3: Mobility Management in iFogSim v2 adapted from (MAHMUD
et al., 2022)

1: δ← maxDistance
2: for NG ∈ m.parents() do
3: if haversine(LNG, Lm) ≤ δ then
4: δ← haversine(LNG, Lm)
5: p ← NG
6: end if
7: end for
8: if p′ ̸= p {when the parent differs} then
9: pMM ← p′.placedModulesOfMobileDevice(m)

10: if p.cluster == p′.cluster then
11: pushModulesFromTo(p′, p, pMM)
12: else
13: common← null
14: n← p.pathsToCloud
15: n′ ← p′.pathsToCloud
16: for node ∈ n do
17: for node′ ∈ n do
18: if node = node′ then
19: common← node
20: break
21: end if
22: end for
23: end for
24: pushModulesFromTo(p′.modules, node.modules, pMM)
25: pushModulesFromTo(node.modules,p.modules, pMM)
26: end if
27: m.parent ← p
28: p.modules ← pMM
29: p′.terminateModules(m,pMM)
30: end if

or is followed sequentially by the others. For each module, simulation values were
assigned, such as RAM and CPU usage, input and output size, as shown in Table 11.

4.5 DATA

The location of the nodes’ geographic data, as well as the user movement
datasets, were based on the EUA dataset 1. Interactions are paths that a user takes
within an area. Each interaction counts as a geographic location containing latitude and
longitude, and for each user, 20 interactions are generated, and steps can be read, as
represented in Figures 20 and 17 by the blue markers.
1 https://github.com/swinedge/eua-dataset
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Table 9 – Nodes simulation parameters

Cloud Proxy Gateway Smartphone
Speed (MIPS) 4480 2800 2800 200

RAM (GB) 16 4 4 2
Uplink (MBPS) 100 10 50 100

Downlink (MBPS) 100 20 100 200

Table 10 – Latency simulation parameters

From To ms
Proxy Cloud 100

Gateway Proxy 4
Proxy Proxy 2*
Device Gateway 2

*: cluster link latency

Table 11 – Simulation parameters for application modules

RAM * Input ** Output ** CPU Length ***
Client 0.1 0.5 0.5 1000

Kalman F. 0.5 0.5 0.5 2000
Distance Calc. 0.5 0.5 0.5 1800

Trilat. 0.5 0.5 0.5 1000
Position Est. 0.5 0.5 0.5 500

Data An. 2 0.5 0.5 500
*:GB, **: MB, ***: MIPS

The user dataset, which contains such interactions, has predefined values (man-
ual) and is generated by the modified algorithm presented in the APPENDIX A which
simulates the possible interactions that users may have in the room within their limits,
depending only on your scenario.

4.6 FOG CONFIGURATIONS

The nodes are defined as belonging to the same region by the identifier code
of a node in the upper layer; thus, the parent node of all gateways is a proxy, and that
of a proxy is the cloud, in accordance with the architecture’s hierarchy.The proxies are
kept in the central region of the region in indoor experiments and in the first row in the
OPS-IPS comparison study.

As for the placements, in the clustered one, the number of clusters is the same
as the number of proxies, which is also considered a region, so that gateways from
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the same cluster can communicate. On the other hand, in the vertical placement, the
clusters are considered only a matter of order. In this placement, the gateways in the
same cluster do not communicate, but only through proxies (immediate parent node).

4.7 CONTEXTS

We conducted various sets of experiments in order to provide a more thorough
analysis of the placements’ performance in the various environments.These simula-
tions include IPS using clustered and edgeward placements with iterations of different
numbers and configurations of nodes, one base case for clustered OPS placement,
and also a comparison of each environment based on the clustered placement. The
adaptation process from real to virtual (digital) environments aimed to preserve scale
and mobile patterns.

4.7.1 Indoor Positioning Systems scenarios

To provide a more in-depth study of architectures within indoor contexts, two
different experiments were generated.

The application case studies are spatial application scenarios based on environ-
ments at the Federal University of Santa Catarina: Department of Sanitary Engineering
(ENS) and the Department of Informatics and Statistics (INE), both from the Techno-
logical Center (CTC), described in the next two subsections. In both scenarios, smart-
phones (users) can move in the areas described by the scenarios. To simulate their
movements, data was dynamically generated based on a predefined dataset (MAH-
MUD et al., 2022). It is important to note that the two scenarios were selected due to
their spatial divergence, i.e., format and entry points.

Since the iFogsim by default configured for OPS, code changes were necessary
for generating user movement in indoor environments, setting starting points, and locat-
ing edges and fog devices. The formation of the movement of users was based on the
mobility principles indoor, following the principles of the Gauss-Markov mobility model.
This adapted random mobility algorithm, presented in Appendix A, for indoor environ-
ments was adapted from the one available for outdoor environments in the simulator. It
was necessary to change the entry points accordingly to the scenario created, as well
as the limit region of the area. This definition can be read as boundary limits. These
limits were adjusted accordingly to the scenarios. Also, the step distance was reduced
so that each user "walked" a few meters instead of many meters. We preserved an
average of meters for the IPS scenarios.
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4.7.1.1 Department of Sanitary Engineering (ENS)

The proposed scenario is the area of the Sanitary Engineering environment
located in the Technological Center, at the Federal University of Santa Catarina (UFSC)
whose area is 310m2. There are two entry points: one to the north and one to the south.
For users, there are four north and one south, while there are eight north and seventeen
south. Figure 17 presents the movement studied with 5 and 25 users. And for better
visualization, a heatmap is presented in Figure 18.

4.7.1.2 Department of Informatics and Statistics (INE)

In this scenario, the perimeter of 104m is discussed, whose equivalent area is
460m2. This scenario is located in the area of Informatics and Statistics (INE) in the
Technological Center, at the Federal University of Santa Catarina (UFSC). As for the
user/meter ratio, for scenario 5, 20.8m2 per person, and for scenario 25, 4.16m2. The
reference dataset for 5 and 25 users used only one reference. Figure 20 presents
the movement studied with 5 and 25 users. And for better visualization, a heatmap is
presented in Figure 21.

4.7.1.3 Experiment one - E1

This experiment was considered in order to verify how much the architectures
differ depending on the number of nodes per region, relating to the proportion rate
between gateways and proxies in order to verify the possibility of patterns in blocks.The
first experiment consists of exploring the number of regions with different numbers of
gateways (Table 12).

Table 12 – Correlation of fog nodes in experiment one

Gateways Proxies Total

4 1
2

5
6

8 2
3

10
11

12 2
3

14
15

16 3
4

19
20

For a better study based on the system’s performance, the nodes were placed
based on the average distance ratio among them. Figures 25, 24, 23 and 22 present the
configurations in the demonstrated experiment for the ENS scenario. The configuration
of Figure 22 and 26 were also used in E2, but further details are provided in the related
section below.
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Based on 22, in order to compare the architectures scalability varying on the
number of fog nodes, the other configurations (Figure 23 - 25), were reduced. Firstly, it
was configured with 20 nodes (16 gateways - 4 regions) and each node had a distance
of 4 meters intracluster; secondly, 6 meters (16 gateways - 3 regions); thirdly, 8 meters
(12 gateways - 3 regions); and so forth and so on. For the E1, the rule for picking the
proxy was the fog node nearest the bounds. This selection was made to respect the
OPS EUA dataset proxy picking. The same process was made in scenarios INE and
ENS.

Figures 29, 28, 27 and 26 present the configurations in the demonstrated sce-
nario. As such, each color represents a cluster, and the fog node tier description is
also described nominally. In the presented scenarios, the proxies are preserved in the
center of their cluster region. As the setting of fog nodes was presented above, for the
INE fog nodes average distance ratio is as follows: Figure 26 was 4m and 5m, 27 was
6m and 7m, 28 was 8m and 9m and Figure 29 was 9m and 9m.

4.7.1.4 Experiment two - E2

Because of the wide range of data in E1, it was decided to create another
experiment. In this, the same number of total nodes was maintained for each proposed
architecture (Table 13). The objective proposed here is to verify the uniform variation of
each configuration. In this way, the focus is on a specific comparison of approaches by
region.

Table 13 – Correlation of fog nodes in experiment two

Gateways Proxies Total Nodes by Region
19 1 20 20
18 2 20 10
17 3 20 ≈ 7
16 4 20 5

Using the previously presented configuration of 22, Figures 30 and 31 show the
configurations in the experiment presented. Differently from the E1, the rule for proxy
setting was to divide equally the proportion of fog nodes on each cluster.

Figure 32 show the configuration of a monocluster in the scenario presented,
and Figure 33, a double cluster. The selection of proxies was different from the ENS
environment. In this case, the proxies were placed respecting the centrality of the
clusters, since this scenario has a fixed number of fog nodes.

4.7.2 Outdoor Positioning Systems scenarios

Outdoor positioning systems can be considered the traditional ones. To enable
further analysis, we provided an experiment using clusterization to understand how
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this orchestration works when it comes to scalability behavior. For this experiment, we
based our references on the case study of Crowd-sensed Data Collection presented in
(MAHMUD et al., 2022). The application model was simplified, as shown in Figure 34.

User mobility in outdoor environments, such as the one presented, can depend
on a number of variables. To ensure most of these possibilities, this section exhibits
the environments created. As a proposal, we investigate the possibility of a clustered-
fog configuration with a faster application response time than the default EUA dataset,
taking into account the following mobility parameters: speed, direction, and group-
ing.Besides the presented parameters, the architecture should also perform adequately
for the variation in the number of users.

The presented architectures are divided into three layers: edge, fog, and cloud.We
present a modern scenario in which the edge consists of users sending their geoloca-
tion, through an application on their smartphones, which are connected to the fog layer.
The fog layer contains clustered nodes located across the area. In this layer, there are
computing nodes that execute tasks and orchestrators that delegate the application
flow and are also connected to the cloud. And finally, the cloud is represented as a
single datacenter.

4.7.2.1 Fog nodes configurations

The cluster configurations are the variations of the quantity of clusters which
were eight, twelve (default EUA dataset) and twenty eight cluster groups, and also on
the number of fog nodes for each cluster. All of the clusters were generated based on
the default, preserving the centrality of the proxy (orchestrator node) in the regions,
manually. Figure 35 depicts the configurations on a map.

4.7.2.2 Users mobility

The cluster configurations differ in the number of clusters, which were eight,
twelve (default EUA dataset), and twenty-eight, as well as the number of fog nodes for
each cluster.All of the clusters were manually generated based on the default, preserv-
ing the centrality of the proxy (orchestrator node) in the regions. Figure 35 depicts the
configurations on a map.

To evaluate the cluster configurations service performance, two different sets of
users were tested: eight and fifty users. The eight-user set was configured as presented
in Table 14. The fifty-users set is a repetition of the eight-users set, which means that
the last two users (49th and 50th) were the first and second from the copied dataset,
respectively.
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Table 14 – Relation of users in eight-users dataset

Repetitions Speed Start
1 Fast NW
2 Medium S
2 Medium N
3 Slow SE

Table 15 – Simulation parameters for the devices

Cloud Proxy Gateway Smartphone
Speed (MIPS) 4480 2800 2800 200

RAM (GB) 16 4 4 2
Uplink (MBPS) 100 10 50 100

Downlink (MBPS) 100 20 100 200

4.7.3 Comparison of indoor to outdoor environment placement strategies

Indoor positioning systems consist of locating devices on a smaller scale com-
pared to outdoor environments. Not only do these systems differ in their geographic
spaces, but also in the number of objects to be located. As a result, in order to develop
experiments based on mobility for indoor systems, a standardized mobility experiment,
as presented in this subsection, was required.For this environment, we used the clus-
tered placement strategy, since it was a better approach for the OPS environments, as
described in section 4.7.2. The application model and simulation parameters used are
described in section 4.

4.7.3.1 Fog nodes configurations

We created two different configurations for each environment in order to evaluate
the performance of the configurations.Every fog node has the same computing power,
as presented in Table 15. In our experiments, we developed two environments: indoor
and outdoor. For the outdoor environment, we chose to use 16 clusters with 128 fog
nodes, with an average of 128/16 = 8 nodes per cluster, and 8 clusters with 64 fog
nodes, with an average of 64/8 = 8 as presented in Figure 37. The nodes locations
were also changed to follow a smart context logic, such as smart city and smart home,
that could be reduced and compared to an IPS, in that they are both sequential.

For the indoor environments, there were 4 nodes in 2 clusters with 4/2 = 2 nodes
per cluster and 1 cluster with 2 fog nodes, as presented in Figure 38. It is important to
note that there is a lack of IPS area definition, since these systems can be considered
anywhere from a smart home to a large smart parking lot or even airports.

Like the default dataset, we had two types of fog nodes: gateways and proxies.
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The proxies are defined as the first nodes near the entry point for the sake of simplicity.
For both environments, the timing and spacing of interactions were kept because, even
though the two environments cover different distances in meters or kilometers, the inter-
actions of the users are the same in meters because the devices in both environments
are carried by people.

Also, when it comes to investigating positioning systems, the radius of the fog
nodes (coverage) is another factor that is not usually cited. With this in mind, we define
the average radius coverage (ARC). This variable is defined by the average distance
of the intracluster and intercluster divided by two. For the OPS environment, as each
fog node was placed with an average distance of 100m intracluster and 60–70 m
intercluster, the average radius coverage was approximately 40m. As for the IPS, in
configuration A, the intracluster distance was 80m and the intercluster distance was
200m, giving an ARC of 140m. In configuration B, as there is only one cluster, the
average distance of each fog node was 200m, resulting in an ARC of 100m.

To investigate the performance equivalence of the clustered micro-service hori-
zontal placement strategy in OPS and IPS, we used two sets of fog nodes for the IPS
(4 nodes in two clusters and 2 nodes in one cluster), one set of fog nodes for OPS (130
nodes in 16 clusters), and three users (5 and 25) for each mobility pattern, as explained
in the subsections below.

The different numbers of users were used over the interactions to analyze the
scalability performance of each environment during the bootstrapping effect, i.e., at the
beginning of each experimentation. The following aspects involved in both environments
were equal or equivalent:

• Distance for each interaction: as the core of the research is the IPS, we prioritize
the similarity of interactions on each mobility pattern.

• Fog node computing resource: is equal to both the IPS and OPS scenarios.

• Geographical space: both environments are rectangular with a single entry point.

4.7.3.2 Scenarios

To evaluate the equivalence of the performance for both environments (indoor
and outdoor), we define three mobility patterns, or in this case, called scenarios. Each
of them is responsible for overloading a specific area to investigate the migration of
services, overall performance, and the existence or nonexistence of correlation based
on the context.

For each mobility pattern in the environments, the number of interactions as
well as the meters per interaction are different. This happens because the number of
interactions was calculated using the meters per interaction from the OPS. E.g.: in
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scenario one (cross area), if the meters per interaction are 5m, then each interaction
in the IPS environment should also be 5m, and since it has a lesser total area than the
OPS, the number of interactions is 34 and so the users roamed 170m.

The first of the scenarios is cross-area (CA) which draws the area diagonally in
the stated rectangle region. It aims to overload every cluster in a single line. The meters
per interaction is 5m. The Table 16 defines the relation of interactions and meters by
environment. Based on Table 16, the Figure 39 presents the exchangeability of the
environments.

Table 16 – Relation of interactions, meter and environments of scenario one

Interactions Meters Environment
34 170 Indoor
310 1550 Outdoor

The second, line through (LT) brings the computing need to the first portion of
both environments. The objective is to overload the first cluster (s) evenly. Here, the me-
ters per interaction are 8.2m. Table 17 presents the equivalence used for interactions, in
meters per environment. Based on Table 17, the Figure 40 presents the exchangeability
of the environments.

Table 17 – Relation of interactions, meter and environments of scenario two

Interactions Meters Environment
25 205 Indoor
220 1800 Outdoor

Inline (IL) is the third mobility pattern, and it brings the computing need to the first
portion of both environments. The objective is to overload the first cluster (or clusters)
evenly. Here, the meters per interaction are 8.2m. Table 18 presents the equivalence
used for interactions, in meters per environment. Based on Table 18, the Figure 41
presents the exchangeability of the environments.

4.8 DISCUSSION

One of the main challenges was finding the theoretical background for the tradi-
tional placements in the simulators. iFogSim describes both edgeward and clustered
placements using a pseudocode in the research paper. The other simulator experi-
mented was YAFS. This simulator is currently in version 0.5, and it is noticed there is a
lack of documentation as well as theoretical background for the default service place-
ments. Also, Python version problems happened during the experimentation with the
environments. The iFogSim v1, however lacked mobility features, so it was only possi-
ble to simulate static environments. Its successor, iFogSim v2 introduced the possibility
of evaluating the performance of positioning systems.
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Table 18 – Relation of interactions, meter and environments of scenario three

Interactions Meters Environment
17 107 Indoor
143 900 Outdoor

When it comes to mobility models, the random models (RM) are used in the
majority of articles, to evaluate the performance of the locationing system. Additionally,
using this model, it is possible to research hypothetical mobility events. Still about edge
behavior, signal strength and location precision are important aspects of every PS.
RSSI, for example, uses the measurement of the power signal present in a received
radio signal. In this strategy, the stronger the signal, the better the precision. However,
there are many factors that affect the precision besides the user’s distance, such as IPS,
walls, location, and even the number of users. These noise variables were minimized
in the experiment.

Currently, the encountered simulators have received new updates for the first
semester of 2023. However, since each simulator have their own code implementation,
it would be interesting to enable comparative studies with different fog-based positioning
system simulators. Yet in the OSC, new projects like Kube Edge (XIONG et al., 2018).
Also A community hub could help developers find projects that make possible the
development of Fog IPS and newer and more specialized placement strategies. Also A
community hub could help developers find projects that make possible the development
of Fog IPS and newer and more specialized placement strategies.
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Figure 10 – Research methodology procedures (Stages 1 - 4)
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Figure 11 – Research methodology procedures (Stages 5 - 7)
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Figure 12 – Conceptual model of architectures
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Figure 13 – Migration intercluster in clustered approach

Figure 14 – Migration intracluster in clustered approach

Figure 15 – Application model for the indoor case studies based on the modules present
in (PEŠIĆ et al., 2018) and (PEŠIĆ et al., 2019)
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Figure 16 – Location of the entries and boarders of the proposed ENS scenario

Figure 17 – Moving 5 users and 25 in the ENS scenario

Figure 18 – Heatmaps for 5 users and 25 in the ENS scenario
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Figure 19 – Location of the entries and boarders of the proposed INE scenario

Figure 20 – Moving 5 users and 25 in the INE scenario

Figure 21 – Heatmaps for 5 users and 25 in the INE scenario
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Figure 22 – 16 gateways with 3 proxies on the left and 4 on the right in the ENS scenario

Figure 23 – 12 gateways with 2 left and 3 right proxies in the ENS scenario

Figure 24 – 8 gateways with 2 left and 3 right proxies in the ENS scenario
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Figure 25 – 4 gateways with 1 proxy on the left and 2 on the right in the ENS scenario

Figure 26 – 16 gateways with 3 proxies on the left and 4 on the right in the INE scenario

Figure 27 – 12 gateways with 2 left and 3 right proxies in the INE scenario



Chapter 4. IPS Proposal and Research Methodology 70

Figure 28 – 8 gateways with 2 left and 3 right proxies in the INE scenario

Figure 29 – 4 gateways with 1 proxy on the left and 2 on the right in the INE scenario
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Figure 30 – 20 nodes with 1 region on the left and 2 on the right in the ENS scenario
on E2

Figure 31 – 20 nodes with 3 regions on the left and 4 on the right in the ENS scenario
on E2
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Figure 32 – 20 nodes with 1 region on the left and 2 on the right in the INE E2 scenario

Figure 33 – 20 nodes with 3 regions on the left and 4 on the right in the INE E2 scenario

Figure 34 – Application Model used in OPS experiment
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Figure 35 – Eight, twelve and twenty eight clusters configurations

Figure 36 – A user path from south to east

Figure 37 – Configurations for OPS environments (T1 on the left and T2 on the right)

Figure 38 – Configurations for IPS environments (T1 on the left and T2 on the right)
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Figure 39 – Cross-area mobility pattern in outdoor (left) and indoor (right) environments

Figure 40 – Line-through mobility pattern in outdoor (left) and indoor (right) environ-
ments

Figure 41 – Inline mobility pattern in indoor and outdoor environments
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5 EXPERIMENTAL RESULTS AND EVALUATION

This section is dedicated to the presentation of experimental results from simula-
tions and comparative analyses of approaches and configurations in different scenarios.

5.1 METRICS

Based on available metrics, the performance of each configuration was evaluated
along with module placements using the mean and standard deviation. The average
is calculated individually by the simulator at each round. The standard deviation was
calculated from the 10 rounds in order to compare the stability of each configuration
using the following data:

Average application delay time presents the overall performance; and how long it
takes to complete the DAG flow. We use the mean of each setting. For this mea-
sure, the smaller the delay, the better the positioning and coordination decisions
between computational resources. Values in milliseconds.

Migration time indicates the performance of the service migration, as it indicates the
delay in the application modules. This metric is significantly more relevant for the
clustered approach. This occurs because module transitions are more frequent in
this approach, although they are not exclusive to it. Values in milliseconds.

Network usage indicates how much bandwidth the architecture used. Values in megabits
per seconds.

5.2 EVALUATION OF INDOOR POSITIONING SYSTEMS EXPERIMENT

In this section, the results of each experiment are detailed for the IPS experiment
referred to in subsection 4.7.1 based on the scenario, number of users, approach, and
metrics.

5.2.1 Scenario ENS + E1

The subsections below present an analysis of the performance of the config-
urations presented in the subsection 4.7.1.3 in the ENS scenario, discussed in the
subsection 4.7.1.2.

5.2.1.1 ALD benchmarks

In the ENS scenario with 5 users (Figure 42), the configuration with the best
performance was clustered 12G-3P and the worst 4G-2P, also clustered. The allocation
to the edges, on the other hand, remained the most stable and had the best average.The
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Figure 42 – ALD average per configuration in ENS with 5 and 25 users in E1

number of regions that stood out the most was the one with four, 51s, followed by three,
with an average of 58.3s and the worst was 148.5s with 2. The average horizontal
allocation by regions was 61s for a region , 148.3s for twos, 21s for threes and 28s
for fours. As for the vertical, 84s for one, 75s for two, 66.3s for three and 74s for four.
The general average, counting the standard deviations for the horizontal allocation was
74.6s, while for the vertical one, 72.75s.

With 25 users, the configuration with the best performance was 16G-3P with
clustering and the worst, 8G-2P with the same allocation, as shown in Figure 42.Over-
all, the most stable was the edgewards, with a total average of 264.37s against the
horizontal’s 407.37s. In terms of regions, the average ranged from 466.5s for 1, 355.8s
for two, 311s for three and 270 for four. For horizontal allocation, the average per region
was 457s for one, 451s for two, 373.6s for three, and for four, 328s. While for vertical,
476s, 263.3s, 248.3s and 212s are observed for the regions in the same order.

5.2.1.2 NU benchmarks

Figure 43 presents the mean and standard deviation of network usage by config-
uration and allocation. This measure involves the data transferred between the layers
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Figure 43 – Average NU per configuration in ENS with 5 and 25 users in E1

of the architecture. During the decision step, the proxy remains inactive, not consum-
ing bandwidth. Except in two cases (4G-1P and 4G-2P), vertical allocation had higher
bandwidth usage. The horizontal allocation remained stable in all cases, including its
standard deviations, unlike the vertical one, which had standard deviations from an
average of approximately 16%.

Low standard deviations indicate that network consumption did not vary consid-
erably, as can be seen in both approaches, as is evident in Figure 43. However, in this
scenario, vertical allocation used high bandwidth in most cases. Distinctly, with little
variation, the vertical allocation remained stable.

5.2.2 Scenario INE + E1

The subsections below present an analysis of the performance of the config-
urations presented in the subsection 4.7.1.3 in the INE scenario, discussed in the
subsection 4.7.1.2.
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Figure 44 – Average ALD per configuration in INE with 5 (left) and 25 (right) users in
E1

5.2.2.1 ALD benchmarks

According to Figure 44, for the scenario of 5 users, the clustered allocation had a
lower completion time in all configurations, whereas the vertical allocation took longer to
complete and had a higher standard deviation standard.As for the configurations, there
was a tie for 12G-3P and 12G-2P in the clustered versions, while the worst, edgeward
with 16G-4P.

The general average of the clustered approach was 31.6s, while the horizontal
one was 66s. The regions had as averages: 38.5s for 1 region, 39s for 2, 52s for 3, and
80s for 4. While for regions by horizontal: 44s, 56s, 75.3 and 90, respectively. Finally,
vertically: 33s, 21.3s, 28.6s, 70s for experiments with one to four regions.

In the experiment with 25 users, Figure 44, the vertical approach increased by
131s on average compared to the horizontal, with 261.125s for the first and 392.5s for
the second. As for the regions in general, the average for each set of them was 344.5s,
296.1s, 328.3s and 396.5s. Clustered allocation averaged 279s, 248.6s, 248s, 320s for
regions one through four, while vertical allocation averaged 410s, 343.6s, 408.6s, 473s.
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Figure 45 – Average NU per configuration in INE with 5 users in E1

5.2.2.2 NU benchmarks

Figure 45 presents the mean and standard deviation of network usage by config-
uration and allocation. This measure involves the data transferred between the layers
of the architecture. During the decision step, the proxy remains inactive, not consuming
bandwidth. Except in the case of 16G-4P, vertical allocation had lower bandwidth usage.
The horizontal allocation remained stable in all cases, including its standard deviations.

As shown in Figure 45, the clustered approach used less bandwidth compared
to the vertical one up to the 14 nodes (12 gateways and 2 proxies), although it remained
stable. In addition, the standard deviations of network use were more expressive in the
vertical approach.

5.2.3 Scenario ENS + E2

The subsections below present an analysis of the performance of the config-
urations presented in the subsection 4.7.1.4 in the INE scenario, discussed in the
subsection 4.7.1.2.
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Figure 46 – Average ALD per configuration in ENS with 5 users on E2

5.2.3.1 ALD benchmarks

In the present case, the clustered approach performed better in all four cases,
completing, on average for all cases, the application flow twice as fast as the vertical
approach. It is also noted that the vertical one presented greater variation, as seen
in Figure 46. The best result was driven by the clustered 1P approach and the worst,
edgeward 3P.

In the scenarios with 25 users, the vertical approach had a greater range of
performance for ALD, with the worst performance of the experiment with 687ms with
1P, as represented in Figure 46. In contrast, the horizontal approach varied less and
stood out better with 3 regions.

5.2.3.2 NU benchmarks

In the scenario with 5 users (Figure 47), although the vertical approach had a
greater variation in results, in all cases, it had lower bandwidth usage compared to
the clustered approach. Horizontally, it can be seen that its stability is also maintained
almost uniformly regardless of the number of regions.

With 25 users, the notable approach was the clustered one, which in all cases
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Figure 47 – Average of NU in ENS with 5 and 25 users on E2

used less than 30% of the network compared to the edgeward one, as shown in Figure
47. This approach had its lowest use with 1 region and the highest, 4 as well as the
vertical approach.

5.2.4 Scenario INE + E2

The subsections below present an analysis of the performance of the config-
urations presented in the subsection 4.7.1.4 in the INE scenario, discussed in the
subsection 4.7.1.2.

5.2.4.1 ALD benchmarks

Figure 48 shows the average ALD per configuration using 5 users. The strategy
with the best performance was the clustered 1P and the worst, the vertical 3P, although
the one with the greatest performance variation was the clustered 3P and 4P. It is
possible to notice a direct correlation between the number of regions and application
time, the greater the number of regions, the longer it takes to complete the application.

Figure 48 denotes the average application completion time per configuration
with 25 users. It is observed that the configuration with the best performance was the
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Figure 48 – Average ALD per configuration in INE with 5 and 25 users in E2

edgeward 2P while the worst 1P clustered. In this case, it appears that the relationship
between the clustered approach and the number of proxies is 75% inversely propor-
tional, while the vertical approach performed better with a smaller number of regions.

5.2.4.2 NU benchmarks

Although more stable, the clustered approach had higher network usage in all
cases compared to the vertical approach, as shown in Figure 49. The configuration
with the lowest network usage was the edgeward 1P versus the clustered 4P with the
highest usage.

Despite having a configuration (4P) with higher network usage than the others,
the horizontal approach had a notable lower bandwidth usage, especially the 2P with a
use of 20% compared to the vertical approach. It is also noticed that the one with less
variation between regions was the horizontal one, although there is an evident decline
in network use between 2P and 3P for the vertical one.

In E1INE with 5 and 25 users, analyzing the ALD, it is possible to follow the
same trend for both architectures in terms of regionality (12G-2P-3P). Although the
proportionality of users is 5 times, both architectures had an increase of at least 10
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Figure 49 – Average of NU in INE with 5 and 25 users in E2

times.

5.2.5 Discussion

Experiment E1 sought to analyze how much the number of nodes can vary in the
described metrics. In this, it was observed that the most successful approach (shorter
execution time and lower bandwidth usage), in the environments presented, was the
horizontal one in all cases. In E2, the same behavior was observed, however, in 75%
of the two scenarios presented. Experiment E2 analyzed the impact of regionality for
the same number of nodes. As for the relationship between regions and performance, it
was found that architectures with fewer regions performed better for a few users, while
for many users, there was a tendency for shorter execution times for multiple regions
regardless of the approach used.

Analyzing the progression from 5 to 25 users individually for each configuration,
there is an inversion of approaches in terms of performance in a 6/8 ratio, that is, of the
8 cases investigated, only 2 remained linearly equivalent. This fact denotes volatility in
contemporary service allocation approaches, so that none of the proposed approaches
scales linearly according to the number of users.
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In general, the vertical approach resulted in higher standard deviations, confirm-
ing the greater stability of cluster-based solutions, though they may be less satisfac-
tory.Even going into experiments E1 and E2 in ENS with 5 users, the high ALD in the
horizontal approach is due to the positions of the regions, that is, because there are few
gateways that cannot communicate, there is a task overhead in a region, culminating in
a high delay at the completion of the application flow. It is also emphasized about the
block location strategy, which caused great variation and inconclusive results in E1.

When compared to the horizontal approach, the vertical approach appears to be
less suitable for limited networks, as it varies by more than 15% on average. Meanwhile,
the low bandwidth standard deviations of the clustered scenarios indicated that network
consumption did not vary considerably. In this way, the recurrent network stability in
clustered systems, can be a positive aspect for the approximation of space-application-
agnostic architectures, if they exist, as well as an auxiliary in SLA contracts, refining
them. Even though the overall stability was higher, there were scenarios with fewer
clients that had higher network use in comparison to the vertical.

The scenarios proposed in this work do not consider packet loss and obstacles
such as walls or other aspects that lead to a decrease in performance. Although it
can be understood as a limitation of the present work, it also highlights the challenge
in the development and proof of the existence of totally space application agnostic
architectures. Due to temporal linearity, all users in the experiments were active during
the simulation. However, scenarios with network connection variability are important to
evaluate the overall performance and are closer to reality.

5.3 EVALUATION OF OUTDOOR POSITIONING SYSTEMS EXPERIMENT

In this section, the results of each experiment are detailed for the OPS experi-
ment referred to section 4.7.2 based on the scenario, number of users, approach and
metrics. We used ALD and MT to evaluate the experiments.

5.3.1 Eight users scenario

In the eight users scenario, the ALD and NU increased proportionally to the num-
ber of clusters, and as a consequence, large clusters were more efficient. Figure 50
shows the ALD and NU and their standard deviations versus the number of clusters.
Although the progression of the number of clusters increased both ALD and NU, the dif-
ference between clusters decreased. The ALD standard deviation, was an approximate
9% variation of the ALD and for NU, maximum 5%.

Similarly to the phenomenon effect in ALD and NU, the migration time increased
accordingly to the number of clusters. Also, in Figure 51, it is possible to notice the
difference decreasing when adding new clusters.
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Figure 50 – Application loop delay and network usage per number of clusters in eight
users scenario
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Figure 51 – Migration time per number of clusters in eight users scenario
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5.3.2 Fifty users scenario

Figure 52 portrays that as the number of clusters increased, ALD, NU decreased,
in contrast to the eight users scenario. For NU, as the service request-response was
faster in smaller clusters, less bandwidth was used. Therefore, smaller clusters had
a superior performance. As for the ALD standard deviation, even though the twelve
clusters did not follow the progression, the mean was still proportional and varied up to
2%, while the NU, 1%.

Figure 52 – Application loop delay and network usage per cluster in the fifty users
scenario
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The figure 53 illustrates the negative relationship between the number of clusters
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and the MT. For the smaller clusters, this is a direct consequence of the application
finishing faster.

Figure 53 – Migration time per number of clusters in fifty users scenario
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5.3.3 Discussion

Using a small amount of users, the performance was better using larger (fewer)
clusters. However, by adding multiple and simultaneous tasks from new users, the
smaller clusters approach had a better outcome in all three metrics. Therefore, it was
possible to demonstrate that there was no static configuration that works better in all
user cases. Nonetheless, because the presented scenario is a metropolitan city block,
smaller clusters can be used for better performance, as a small number of users is
unlikely to be the norm.

5.4 EVALUATION OF OPS-IPS ENVIRONMENT

The results of each experiment for the IPS experiment referred to in section
4.7.3 are detailed in this section based on the scenario, number of users, approach,
and metrics.In order to evaluate the configurations by comparing their performance to
each mobility pattern and set of users, we selected the three metrics: ALD, NU and MT.
Although indicators like cost in the cloud are equally important for the evaluation of the
configurations, we selected the previously mentioned variables to reduce the scope of
the study.

5.4.1 Indoor environment

In the indoor environment, the configuration T2 had better performance for 5
and 25 users when compared to the T1 configuration for all of the mobility cases, as
presented in Figure 54. Interestingly, the performance was heavily equivalent for both
sets of users in all three mobility patterns. For the configuration T1, the mobility pattern
LT was the one that resulted in more time for completing the application loop for 5 and
25 users.
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Figure 54 – Application Loop Delay for IPS based on mobility patterns

Figure 55 shows the migration time for the IPS. As can be seen, the amount
of migration time for T2 was very low because all of the fog nodes belonged to the
same cluster, and because the number of nodes’ interactions was low, the simulator
expressed a very low number for MT.The same thing happened to T1 in the IL for the
same reason.However, LT for configuration T1 caused the most MT, having more than
twice the value for CA. It is also important to note that the number of users was inversely
proportional to the number of users for both mobility patterns, but more significantly for
LT.
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Figure 55 – IPS Migration Time based on mobility patterns

In terms of network usage, Figure 56 shows that the T1 used the least amount
of bandwidth for 5 users, despite having the worst performance for NU with 25 users in
LT.T2 was the most stable and used less network in all three MPs when compared to
T1, with the exception of the LT in 5 users, which was less in T1.
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Figure 56 – IPS Network Usage based on mobility patterns

5.4.2 Outdoor environment

Analyzing the ALD for 5 and 25 users, the configurations were equivalent, as
presented in Figure 57. The proportionality of the MP based on the number of users
was followed in T1 and also in T2. As it is possible to notice, for 5 and 25 users, the
MPs that used more time to get completed were CA, IL and then LT. The T2 showed
better performance for all the mobility cases.
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Figure 57 – Application Loop Delay for OPS based on mobility patterns

As shown in Figure 58, the configuration that used more time for the migration
process for 5 users in CA, LT, and IL were T2, T1 and T2. The order of mobility patterns
for 25 users was the same, indicating that there is a linear positive proportionality.For 5
and 25 users for each MP, the order from least to most used MT was T2, T1 and T2.

Figure 59 displays the NU for the OPS environment. The configuration that used
less bandwidth for all of the mobility patterns independently of the set of users was T2.
Linear positive proportionality is also possible to notice. For T2, the usage from 5 to 25
users was significantly less in comparison to T1.
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Figure 59 – Network Usage for OPS based on mobility patterns

5.4.3 Discussion

In OPS, it was possible to observe that there was a linear positive proportionality
from 5 to 25 users for every mobility pattern in each configuration regarding the metrics
(ALD, MT and MU). The configuration that was better for most of the cases was the
T2. The T1 (MT, ALD) was superior for the LT mobility pattern because the nodes in
the first cluster were capable of handling the tasks without needing to offload them to
higher tiers or even wait.

The most demanding MP for IPS, was the LT for all of the presented metrics in T1.
This happens because even though the nodes of the cluster were activated, the amount
was not enough. As consequence, it was necessary to migrate intercluster, causing
more delay for the completion. When there were fewer nodes and the option to migrate
intercluster was removed, the performance was better and more even. Comparing the
number of users to proposed metrics in any configuration and MP, these were directly
proportional in OPS, but inversely proportional in IPS.
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5.5 CHALLENGES AND LIMITATIONS

The number of users in the OPS environment was only 8 and 50 to understand
how a base case behaves when adding new workloads. In IPS experiments, the ob-
jective was to study the machines’ configuration and how the changes made to the
fog nodes alter the overall performance of the ecosystem. Therefore, in the IPS experi-
ments, the set of experimented users was smaller than the fog node configuration.

The experiments presented used fixed locations of nodes, so even though an
experiment with 20 nodes was reduced to 10, we preserved the same location of
previous nodes. It is important to emphasize that this location plays an important role
in the system’s performance. A possible feature could be a heatmap-based fog node
location suggestion algorithm; as input, it could use an accepted node range, like the
one presented in (MARTINS et al., 2022) and the user’s interaction. This study could
be possible using the code developed in this work 1.

1 https://github.com/vyk1/service-placements-fog-mobility
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6 CONCLUSION AND FUTURE WORK

In the present work, performance analyses of traditional service placements
taking into account user mobility in location systems in indoor environments for fog
architectures were proposed and developed through simulation. During the process, an
outline of the state of the art in the open source community for fog and mobility was pro-
vided. With the available open source software, it was possible to identify performance
metrics so that indoor experiments could be conducted.

The modifications and adaptations allowed the observed mobility to be analyzed
through performance metrics. The modifications made to the iFogSim v2 simulator,
extending it to understand internal scenarios, were also made available, enabling im-
provements and optimization for the academic community.

As the indoor environments presented significantly different behavior compared
to the outdoor, an experimental procedure to inspect the traditional placements in OPS
in contrast to IPS was developed. After different simulation experiments, the results
suggest indoor and outdoor service placements may not be used interchangeably. In
this manner, so does the concept of space-application-agnosticism in IPS environments,
due to differences in numerous factors such as: position and number of regions, and
network usage defined by the Service Level Agreement contracts.

Due to the variation of geographic spaces, movement, and number of users, it
demonstrated the improbability of completely space-agnostic architectures using the
traditional presented approaches. Likewise, a possible study gap is expressed about
SLAs aimed at indoor location systems, culminating in possible contact breaks for
architectures called application agnostic.

It was attested that the stability of the clusters can be a watershed aspect for the
maintenance of the system’s QoS, and that the migration time is one of the factors that
can be better investigated for the development of more refined methodologies. As a
result, it is worthwhile to consider developing a horizontal approach that is ready for in-
door systems. This solution could be adaptive, as horizontal approaches perform better
for larger numbers of users, such as adaptive clusters. This solution could benefit and
deepen mobility and has not yet been explored. In addition, since indoor environments
populated by people, like in museums and even smart airport contexts, the group-based
mobility is a model that could be further investigated.

Improvement in the representation of distributed data models is another feature
to be enhanced in order to reduce the migration time. As a possible solution, a hash ta-
ble structure could facilitate task delegation using one of the mobility principles, such as
approximation. However, it is worth mentioning within the ecosystem of indoor systems,
that details prior to migration, such as the allocation and discovery of services, are
state-of-the-art and should be explored within indoor systems, in this case, exclusively.
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Besides, the importance of specialized mobile supported architectures is highlighted,
since not every model handles any type of device interaction altogether, as it was
possible to describe in the comparison study.

In spite of migrations, intra- and intercluster migrations can be the main issue
related to the implacability of standard approaches on IPS. Nonetheless, a number
of factors could be affecting traditional approaches performance in IPS. Firstly, the
definition of the fog nodes location, since the WLAN nodes tend to be less powerful
when compared to OPS machines and are outnumbered. Secondly, in the softwares
considered, a maximum number of edge devices is allowed, requiring strategies to
compare performance across environments.

As previously presented, IPS studies do not specify the dimensions of the tested
environments. Therefore, there is a lack of definition for these environments: what are
outdoor and indoor positioning systems? How far apart should they be? Is it possible
to define both in meters per area? What about covered and uncovered ambients? In
this case, the classification and definition of positioning environments are required for
further research.

Still in the edge realm, mobility models for indoor environments should be more
contextual. Currently, like the random waypoint described in section 2, there are vari-
ables like speed, direction, and randomness; however, surroundings are not taken
into account. Also, most of the simulators are primarily context-agnostic, hindering the
context-awareness needs of critical or sensible applications. Another challenge is defin-
ing realistic simulated environments, as the range of the nodes is not currently included
in research values. This directly affects the reliability of the experiments, since in WiFi
contexts the nodes’ range varies.

Machine learning methods could be utilized to look into the optimal amount of
clusters given a situation because the horizontal arrangement is nearer to the agnostic
applications. With this strategy, it might be feasible to create the appropriate number of
clusters, which would decrease idle machines and hence lower energy usage.

It might be able to develop more thorough situations using artificial intelligence.
Machine learning algorithms could be used to define the user route depending on
obstacles as well as in proactive migration. However, it is important to note that reliable
input is required for accurate simulated surroundings. This means that a training dataset
that is accurate to reality is essential for a successful orchestrations based on machine
learning.

Since edge mobility tends to respect patterns, data extracted from location based
systems could also enhance the system’s performance. Microservice load balancers,
for example, in clustered approaches, could proactively prepare machines to use a
more specific amount of computing and energy power. And, besides possible IIoT
environments, reactive methodologies could also use human mobility data to alleviate



Chapter 6. Conclusion and Future Work 93

migration time.
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APPENDIX A – MODIFIED RANDOM WAYPOINT ALGORITHM MOBILITY
MODEL FOR IPS

1 package org.fog.mobilitydata;

2

3 import java.io.File;

4 import java.io.FileNotFoundException;

5 import java.io.IOException;

6 import java.io.PrintWriter;

7 import java.util.ArrayList;

8 import java.util.HashMap;

9 import java.util.List;

10 import java.util.Map;

11 import java.util.Random;

12

13 import org.json.simple.JSONArray;

14 import org.json.simple.JSONObject;

15 import org.json.simple.parser.ParseException;

16

17 /**

18 * @author Victoria Botelho Martins (2023) adapted from Mohammad

Goudarzi (2021)

19 */

20 public class RandomMobilityGenerator {

21 protected Map<Integer, List<Double>> mobilityPositions;

22 protected Map<Integer, Double> mobilityPositionsPauseTime;

23 protected Map<Integer, Double> mobilityPositionsAngle;

24 protected Map<Integer, Double> mobilityPositionsSpeed;

25 int NUM_POS = 20;

26 double speed;

27 double angle;

28 double pauseTime;

29 boolean directionFlag;

30 JSONArray mobilitySpecJSON;

31

32 public RandomMobilityGenerator() {

33 mobilityPositions = new HashMap<>();

34 mobilityPositionsPauseTime = new HashMap<>();

35 mobilityPositionsAngle = new HashMap<>();

36 mobilityPositionsSpeed = new HashMap<>();

37 mobilitySpecJSON = new JSONArray();

38 }
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39

40 private static int getRandomNumberInRange(int min, int max) {

41

42 if (min >= max) {

43 throw new IllegalArgumentException("max must be greater

than min");

44 }

45

46 Random r = new Random();

47 return r.nextInt((max - min) + 1) + min;

48 }

49

50 private static boolean positionInRangeCheck(float x, float y) {

51

52 float p1X = -27.60038f;

53 float p1Y = -48.51859f;

54

55 float p3X = -27.60045f;

56 float p3Y = -48.5185f;

57

58 float p5X = -27.60077f;

59 float p5Y = -48.51867f;

60

61 float p6X = -27.60072f;

62 float p6Y = -48.51878f;

63

64 final Polygon2D polygon = new Polygon2D();

65 polygon.addPoint(p1X, p1Y);

66 polygon.addPoint(p3X, p3Y);

67 polygon.addPoint(p5X, p5Y);

68 polygon.addPoint(p6X, p6Y);

69

70 if (polygon.contains(x, y)) {

71 return true;

72 } else {

73 return false;

74 }

75

76 }

77

78 public void createRandomData(int mobilityModel, int user_index,

String datasetReference, boolean renewDataset)
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79 throws IOException, ParseException {

80 String fileName = References.dataset_random + user_index + ".

csv";

81 File tmpDir = new File(fileName);

82 boolean exists = tmpDir.exists();

83 if (exists && renewDataset) {

84 System.out.println("The dataset: " + fileName + " is

being overwritten.");

85 if (mobilityModel == References.

random_walk_mobility_model) {

86 MobilityPositionInitiator(References.

random_walk_mobility_model, NUM_POS, user_index);

87 } else if (mobilityModel == References.

random_waypoint_mobility_model) {

88 MobilityPositionInitiator(References.

random_waypoint_mobility_model, NUM_POS,

user_index);

89 }

90 } else if (!exists) {

91 System.out.println("The dataset: " + fileName + " is

going to be created for the first time.");

92 if (mobilityModel == References.

random_walk_mobility_model) {

93 MobilityPositionInitiator(References.

random_walk_mobility_model, NUM_POS, user_index);

94 } else if (mobilityModel == References.

random_waypoint_mobility_model) {

95 MobilityPositionInitiator(References.

random_waypoint_mobility_model, NUM_POS,

user_index);

96 }

97 } else {

98 System.out.println("The dataset: " + fileName + " exists

already.");

99 }

100

101 }

102

103 public void MobilityPositionInitiator(int mobilityModel, int

numberOfPositions, int user_index)

104 throws IOException, ParseException, org.json.simple.

parser.ParseException {
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105 this.mobilityPositions.clear();

106 this.mobilityPositionsPauseTime.clear();

107 this.mobilityPositionsAngle.clear();

108 this.mobilityPositionsSpeed.clear();

109 this.mobilitySpecJSON.clear();

110 Random r = new Random();

111

112 boolean file = false;

113

114 if (file == false) {

115 List<ArrayList<Double>> tempPositions = new ArrayList<

ArrayList<Double>>();

116 tempPositions.add(new ArrayList<Double>());

117 Random rd = new Random();

118 int low = 10;

119 int high = 100;

120 int result = rd.nextInt(high - low) + low;

121

122 double positionX;

123 double positionY;

124

125 if (References.is_ine_experiment) {

126 positionX = References.ine_starting_point_reference

[0];

127 positionY = References.ine_starting_point_reference

[1];

128 } else {

129 int position = result % 2;

130 positionX = References.ens_starting_point_references[

position][0];

131 positionY = References.ens_starting_point_references[

position][1];

132 }

133

134 tempPositions.get(0).add(positionX);

135 tempPositions.get(0).add(positionY);

136

137 this.angle = getRandomNumberInRange(0, 259);

138 directionFlag = true;

139 int index = 1;

140 int tempIndex = 0;

141
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142 this.mobilityPositionsPauseTime.put(0, 0.0);

143 this.mobilityPositionsAngle.put(0, angle);

144 while (tempIndex < numberOfPositions) {

145 int pause_time_multiplier = 3;

146 this.mobilityPositionsPauseTime.put(tempIndex, r.

nextDouble() * pause_time_multiplier);

147 tempIndex++;

148

149 }

150 this.mobilityPositions.put(0, tempPositions.get(0));

151 JSONObject obj = new JSONObject();

152 obj.put("index", 0);

153 obj.put("positionX", positionX);

154 obj.put("positionY", positionY);

155

156 this.mobilitySpecJSON.add(obj);

157 while (index < numberOfPositions) {

158 if (this.directionFlag == false || mobilityModel ==

References.random_walk_mobility_model) {

159 this.angle = getRandomNumberInRange(0, 259);

160 this.directionFlag = true;

161 }

162 double mobilitySpeed = (double) (

getRandomNumberInRange((int) References.

MinMobilitySpeed * 100,

163 (int) References.MaxMobilitySpeed * 100)) /

1000;

164 tempPositions.add(new ArrayList<Double>());

165

166 double tempPositionX = positionX;

167 double tempPositionY = positionY;

168 positionX = positionX + (double) (Math.cos(Math.

toRadians(this.angle)) * mobilitySpeed) / 10000;

169 positionY = positionY + (double) (Math.sin(Math.

toRadians(this.angle)) * mobilitySpeed) / 10000;

170

171 if (positionX < -References.environmentLimit) {

172 positionX = -References.environmentLimit;

173 this.directionFlag = false;

174 continue;

175 } else if (positionX > References.environmentLimit) {

176 positionX = References.environmentLimit;
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177 this.directionFlag = false;

178 continue;

179 }

180

181 if (positionY < -References.environmentLimit) {

182 positionY = -References.environmentLimit;

183 this.directionFlag = false;

184 continue;

185 } else if (positionY > References.environmentLimit) {

186 positionY = References.environmentLimit;

187 this.directionFlag = false;

188 continue;

189 }

190

191 if (!positionInRangeCheck((float) positionX, (float)

positionY)) {

192 System.out.println("positionX: " + positionX + "

positionY: " + positionY

193 + " are out of environment bound....going

to fix it");

194 positionX = tempPositionX;

195 positionY = tempPositionY;

196 }

197

198 tempPositions.get(index).add(positionX);

199 tempPositions.get(index).add(positionY);

200 this.mobilityPositions.put(index, tempPositions.get(

index));

201 this.mobilityPositionsAngle.put(index, this.angle);

202 this.mobilityPositionsSpeed.put(index, mobilitySpeed)

;

203 JSONObject obj1 = new JSONObject();

204 obj1.put("index", index);

205 obj1.put("positionX", positionX);

206 obj1.put("positionY", positionY);

207 this.mobilitySpecJSON.add(obj1);

208

209 index++;

210 }

211

212 System.out.println("Starting Writing Mobile User

Information ...");
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213

214 try (PrintWriter writer = new PrintWriter(new File(

References.dataset_random + user_index + ".csv"))) {

215 StringBuilder sb = new StringBuilder();

216 sb.append("Latitude");

217 sb.append(’,’);

218 sb.append("Longitude");

219 sb.append(’\n’);

220 writer.write(sb.toString());

221 sb.setLength(0);

222 for (int i = 0; i < this.mobilityPositions.size(); i

++) {

223 sb.append(this.mobilityPositions.get(i).get(0));

224 sb.append(’,’);

225 sb.append(this.mobilityPositions.get(i).get(1));

226 sb.append(’\n’);

227 writer.write(sb.toString());

228 sb.setLength(0);

229 }

230

231 writer.close();

232 System.out.println("done!");

233

234 } catch (FileNotFoundException e) {

235 System.out.println(e.getMessage());

236 }

237

238 System.out.println("Finished Writing Mobile User

Information ...");

239

240 }

241

242 }

243

244 }
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APPENDIX B – CLUSTER FORMATION ALGORITHM
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Algorithm 4: Proposed cluster formation algorithm
Input :Array containing fog coordinates
Output :Array containing fog coordinates and regions

metersPerNode← AREA/nodes;
range← AREA/metersPerNode;
maxNodesPerCluster ← nodes/metersPerNode;
clusters ← null ;
{FORMATION}
for node in nodes do

if clusters.size() is null then
adds node to clusters and sets responsible as 0

else
if responsible is null then

tries to get responsible for node and breaks
end if
if responsible is still null then

adds node to clusters
sets responsible as clusters.size() - 1
adds node to added array

end if
end if
for node in nodes do

if nextNode is equal to current then
continue;

end if
if added contains current then

continue;
end if
if the size of clusters[responsible] is less or equal to the maxNodesPerCluster
then

if distance between current and nextNode is within range then
adds nextNode to clusters[responsible]
adds nextNode to added array

end if
else

if distance between current and nextNode is within range then
adds node and nextNode to clusters with node as responsible
adds node and nextNode to added array

end if
end if

end for
end for
{OPTIMIZATION}
for responsible in clusters do

if the size of clusters[responsible] has more than one node then
adds group to selected array

end if
end for
return selected
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ANNEX A – DEFAULT RANDOM WAYPOINT ALGORITHM MOBILITY MODEL
FOR OPS FROM THE SIMULATOR

246

247 package org.fog.mobilitydata;

248

249 import org.json.simple.JSONArray;

250 import org.json.simple.JSONObject;

251 import org.json.simple.parser.JSONParser;

252 import org.json.simple.parser.ParseException;

253

254 //import java.awt.geom.

255 import org.fog.mobilitydata.Polygon2D;

256

257 import java.io.*;

258 import java.util.*;

259

260 /**

261 * @author Mohammad Goudarzi

262 */

263 public class RandomMobilityGenerator {

264 protected Map<Integer, List<Double>> mobilityPositions;

265 protected Map<Integer, Double> mobilityPositionsPauseTime;

266 protected Map<Integer, Double> mobilityPositionsAngle;

267 protected Map<Integer, Double> mobilityPositionsSpeed;

268 double speed;

269 double angle;

270 double pauseTime;

271 boolean directionFlag;

272 JSONArray mobilitySpecJSON;

273

274 public RandomMobilityGenerator() {

275 mobilityPositions = new HashMap<>(); // the list of integer

contatins the X and Y of one node.

276 mobilityPositionsPauseTime = new HashMap<>(); // it shows the

pause time of mobile user in each geographical point

277 mobilityPositionsAngle = new HashMap<>(); //it shows the

direction of the move for the next period of the time

278 mobilityPositionsSpeed = new HashMap<>(); //it shows the

speed of the move for the next period of the time

279 mobilitySpecJSON = new JSONArray();

280 }
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281

282 private static int getRandomNumberInRange(int min, int max) {

283

284 if (min >= max) {

285 throw new IllegalArgumentException("max must be greater

than min");

286 }

287

288 Random r = new Random();

289 return r.nextInt((max - min) + 1) + min;

290 }

291

292 private static boolean positionInRangeCheck(float x, float y) {

293 float topLeftXEnv = -37.813046f;

294 float topLeftYEnv = 144.951380f;

295

296 float downLeftXEnv = -37.821229f;

297 float downLeftYEnv = 144.955039f;

298

299

300 float topRightXEnv = -37.807397f;

301 float topRightYEnv = 144.971062f;

302

303 float downRightXEnv = -37.815136f;

304 float downRightYEnv = 144.975044f;

305

306 final Polygon2D polygon = new Polygon2D();

307 polygon.addPoint(topLeftXEnv, topLeftYEnv);

308 polygon.addPoint(downLeftXEnv, downLeftYEnv);

309 polygon.addPoint(topRightXEnv, topRightYEnv);

310 polygon.addPoint(downRightXEnv, downRightYEnv);

311

312 if (polygon.contains(x, y)) {

313 return true;

314 } else {

315 return false;

316 }

317

318

319 }

320
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321 public void createRandomData(int mobilityModel, int user_index,

String datasetReference, boolean renewDataset) throws

IOException, ParseException {

322 // To check different mobility models, if you applied other

mobility models, they can be customized here

323 String fileName = References.dataset_random + user_index + ".

csv";

324 File tmpDir = new File(fileName);

325 boolean exists = tmpDir.exists();

326 if (exists && renewDataset) {

327 System.out.println("The dataset: " + fileName + " is

being overwritten.");

328 if (mobilityModel == References.

random_walk_mobility_model) {

329 MobilityPositionInitiator(References.

random_walk_mobility_model, 100, user_index);

330 } else if (mobilityModel == References.

random_waypoint_mobility_model) {

331 MobilityPositionInitiator(References.

random_waypoint_mobility_model, 100, user_index);

332 }

333 } else if (!exists) {

334 System.out.println("The dataset: " + fileName + " is

going to be created for the first time.");

335 if (mobilityModel == References.

random_walk_mobility_model) {

336 MobilityPositionInitiator(References.

random_walk_mobility_model, 100, user_index);

337 } else if (mobilityModel == References.

random_waypoint_mobility_model) {

338 MobilityPositionInitiator(References.

random_waypoint_mobility_model, 100, user_index);

339 }

340 } else {

341 System.out.println("The dataset: " + fileName + " exists

already.");

342 // DO NOTHING

343 }

344

345

346 }

347
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348 public void MobilityPositionInitiator(int mobilityModel, int

numberOfPositions, int user_index) throws IOException,

349 ParseException, org.json.simple.parser.ParseException {

350 this.mobilityPositions.clear();

351 this.mobilityPositionsPauseTime.clear();

352 this.mobilityPositionsAngle.clear();

353 this.mobilityPositionsSpeed.clear();

354 this.mobilitySpecJSON.clear();

355 Random r = new Random();

356

357 boolean file = false;

358

359

360 if (file == false) {

361 List<ArrayList<Double>> tempPositions = new ArrayList<

ArrayList<Double>>();

362 tempPositions.add(new ArrayList<Double>());

363 double positionX = References.lat_reference;

364 double positionY = References.long_reference;

365 tempPositions.get(0).add(positionX);

366 tempPositions.get(0).add(positionY);

367

368 this.angle = getRandomNumberInRange(0, 259);

369 directionFlag = true;

370 int index = 1;

371 int tempIndex = 0;

372

373 this.mobilityPositionsPauseTime.put(0, 0.0);

374 this.mobilityPositionsAngle.put(0, angle);

375 while (tempIndex < numberOfPositions) {

376 int pause_time_multiplier = 3;

377 this.mobilityPositionsPauseTime.put(tempIndex, r.

nextDouble() * pause_time_multiplier);

378 tempIndex++;

379

380 }

381 this.mobilityPositions.put(0, tempPositions.get(0));

382 JSONObject obj = new JSONObject();

383 obj.put("index", 0);

384 obj.put("positionX", positionX);

385 obj.put("positionY", positionY);

386
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387 this.mobilitySpecJSON.add(obj);

388 while (index < numberOfPositions) {

389 if (this.directionFlag == false || mobilityModel ==

References.random_walk_mobility_model) {

390 this.angle = getRandomNumberInRange(0, 259); //

Random direction.

391 this.directionFlag = true;

392 }

393 double mobilitySpeed = (double) (

getRandomNumberInRange((int) References.

MinMobilitySpeed * 100,

394 (int) References.MaxMobilitySpeed * 100)) /

100; // meter/seconds

395 tempPositions.add(new ArrayList<Double>());

396

397 //positionX = positionX + (double) (Math.cos(Math.

toRadians(angle)) * speed) * (time -

mobilityPositionsPauseTime.get(index - 1));

398 //positionY = positionY + (double) (Math.sin(Math.

toRadians(angle)) * speed) * (time -

mobilityPositionsPauseTime.get(index - 1));

399 double tempPositionX = positionX;

400 double tempPositionY = positionY;

401 positionX = positionX + (double) (Math.cos(Math.

toRadians(this.angle)) * mobilitySpeed) / 1000; //

divided by 1000 to change the values to KM

402 positionY = positionY + (double) (Math.sin(Math.

toRadians(this.angle)) * mobilitySpeed) / 1000; //

divided by 1000 to change the values to KM

403

404 if (positionX < -References.environmentLimit) {

405 positionX = -References.environmentLimit;

406 this.directionFlag = false;

407 continue;

408 } else if (positionX > References.environmentLimit) {

409 positionX = References.environmentLimit;

410 this.directionFlag = false;

411 continue;

412 }

413

414 if (positionY < -References.environmentLimit) {

415 positionY = -References.environmentLimit;
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416 this.directionFlag = false;

417 continue;

418 } else if (positionY > References.environmentLimit) {

419 positionY = References.environmentLimit;

420 this.directionFlag = false;

421 continue;

422 }

423

424 if (!positionInRangeCheck((float) positionX, (float)

positionY)) {

425 System.out.println("positionX: " + positionX + "

positionY: " + positionX + " are out of

environment bound....going to fix it");

426 positionX = tempPositionX;

427 positionY = tempPositionY;

428 }

429

430

431 tempPositions.get(index).add(positionX);

432 tempPositions.get(index).add(positionY);

433 this.mobilityPositions.put(index, tempPositions.get(

index));

434 this.mobilityPositionsAngle.put(index, this.angle);

435 this.mobilityPositionsSpeed.put(index, mobilitySpeed)

;

436 JSONObject obj1 = new JSONObject();

437 obj1.put("index", index);

438 obj1.put("positionX", positionX);

439 obj1.put("positionY", positionY);

440 this.mobilitySpecJSON.add(obj1);

441

442 index++;

443 }

444

445 // File input path

446 System.out.println("Starting Writing Mobile User

Information ...");

447

448 try (PrintWriter writer = new PrintWriter(new File(

References.dataset_random + user_index + ".csv"))) {

449 StringBuilder sb = new StringBuilder();

450 sb.append("Latitude");
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451 sb.append(’,’);

452 sb.append("Longitude");

453 sb.append(’\n’);

454 writer.write(sb.toString());

455 sb.setLength(0); // clear stringbuilder

456 for (int i = 0; i < this.mobilityPositions.size(); i

++) {

457 sb.append(this.mobilityPositions.get(i).get(0));

458 sb.append(’,’);

459 sb.append(this.mobilityPositions.get(i).get(1));

460 sb.append(’\n’);

461 writer.write(sb.toString());

462 sb.setLength(0); // clear stringbuilder

463 }

464

465 writer.close();

466 System.out.println("done!");

467

468 } catch (FileNotFoundException e) {

469 System.out.println(e.getMessage());

470 }

471

472 System.out.println("Finished Writing Mobile User

Information ...");

473

474 }

475

476

477 }

478

479 }
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