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ªWhy then didn’t you put my money on deposit,

so that when I came back,

I could have collected it with interest?º

(St. Luke XIX. 23)



ABSTRACT

This dissertation investigates models to predict the USA and Brazilian yield curves
with forward-looking and backward-looking macroeconomic factors and time-varying
parameters. Although the literature focuses on forecasting the yield curves’ level, which
is a difficult task, we also propose forecasts of the direction-of-change returns of the
yield curves. Lastly, we use real and nominal yield curves to forecast inflation. In all
four papers, the results suggest that the proposed models can outperform traditional
benchmarks in the literature.
Keywords: DNS model. Affine Term-Structure Models. Macroeconomic factors.



RESUMEN

Esta disertación investiga modelos para predecir las Curva cupón cero de EE. UU. y

Brasil con factores macroeconómicos prospectivos y retrospectivos y parámetros va-

riables en el tiempo. Si bien la literatura se enfoca en pronosticar el nivel de las curvas

de rendimiento, lo cual es una tarea difícil, también proponemos pronósticos de los

retornos de la dirección del cambio de las curvas de rendimiento. Por último, utiliza-

mos curvas de rendimiento real y nominal para pronosticar la inflación. En los cuatro

documentos, los resultados sugieren que los modelos propuestos pueden superar los

puntos de referencia tradicionales en la literatura.

Palabras clave: Modelo DNS. Modelos de estructura de términos afines. Factores

macroeconómicos. Prima a término



RESUMO EXPANDIDO

Introdução
A importância das previsões de indicadores econômicos e financeiros, como taxas
de juros, expectativas de inflação, atividade econômica e retornos de ativos, têm nor-
teado a tomada de decisão dos governos na condução da política monetária e dos
investidores na alocação de carteiras. Uma conhecida série temporal estudada por
acadêmicos, banqueiros centrais e investidores são as curvas de juros ou a estrutura
a termo das taxas de juros. A curva de juros é uma representação gráfica das taxas de
juros negociadas no mercado com diferentes vencimentos, ela indica quais seriam as
expectativas dos agentes de mercado sobre as taxas de juros de curto e longo prazo.
Esta tese utiliza extensões de modelos populares na literatura para prever as curvas de
juros dos EUA e do Brasil com fatores macroeconômicos observados e expectativas,
e parâmetros variantes no tempo. Embora a literatura se concentre em prever o nível
das curvas de juros, o que é uma tarefa difícil, também propomos previsões da direção
de retornos das curvas de juros. Por fim, usamos curvas de juros reais e nominais
para prever a inflação. Em todos os quatro capítulos, os resultados sugerem que os
modelos propostos podem superar os benchmarks tradicionais da literatura.

Objetivos
Dado o avanço dos modelos Nelson-Sigel (DNS) e Modelos Afim da Estrutura a Termo
AFTSM′s, suas interpretações, avanços e literatura macrofinanceira, nossa pesquisa
visa preencher lacunas no campo da previsibilidade. O primeiro objetivo é prever as
taxas de juros usando o modelo DNS e extensões com parâmetros variando no tempo
usando variáveis macroeconômicos, além de combinações de previsões. O segundo é
prever a direção das taxas de juros com o modelo DNS com volatilidade estocástica e
o último é prever inflação utilizando as curvas de juros nominais e reais e prêmio pelo
risco com o modelo ATSM.

Metodologia
Nossos avanços estão sustentados em quatro literaturas que chamamos de ªbases":
Koopman, Mallee, and Van der Wel (2010), Peter Christoffersen et al. (2006), Peter F
Christoffersen and Francis X Diebold (2006) e Michael Abrahams et al. (2016). Na
primeira base, adicionamos novas caracteríticas ao modelo DNS com parâmetros vari-
ando no tempo: segunda curvatura (modelo de Svensson), variáveis macroeconômicas
observadas e expectativas de mercado, e combinações de previsões, além de avaliar
as previsões do ponto de vista econômico. Utilizamos os modelos de volatidade esto-
cástica da primeira base com os modelos de previsão de direção da segunda e terceira
base. Por fim, utilizamos o modelo da quarta base para fazer estimação dos premios a
termo e previsão de inflação.

Resultados e Discussão
No primeiro artigo, analisamos o desempenho de previsão de vários modelos de fa-
tores para a curva de juros, com foco no papel do fator de decaimento variando no
tempo, da heterocedasticidade e do efeito de variáveis macroeconômicas. Usando
novos dados do Tesouro compostos continuamente no final do mês sobre títulos de
cupom zero dos EUA e estimativa freqüentista com base no filtro de Kalman esten-



dido, mostramos que a segunda curvatura não tem papel na obtenção de um melhor
desempenho de ajuste e previsão do modelo de fator. Além disso, mostramos que a
melhor especificação depende da maturidade e do horizonte de previsão quando se
olha para as previsões pontuais. Para vencimentos curtos, o melhor desempenho é
obtido em um modelo heterocedástico com fator de decaimento variando no tempo.
No entanto, se as variáveis macro adicionam informações, depende do horizonte de
previsão. No entanto, o modelo homocedástico mais simples com fator de decaimento
constante apresenta melhor desempenho para vencimentos longos. Neste caso, as
variáveis macro podem ter um papel em horizontes curtos de previsão. Esses resul-
tados sugerem que o modelo de fator deve incorporar algum tipo de não linearidade
dependendo da maturidade. No segundo artigo, investigamos a previsibilidade da taxa
de juros usando modelos de fatores dinâmicos com expectativas macroeconômicas e
volatilidade variável no tempo. Os resultados sugerem que a introdução de expectativas
macroeconômicas da pesquisa Focus dos participantes do mercado supera diferentes
modelos de referência em previsões fora da amostra, principalmente em vencimentos
curtos. Além disso, volatilidade variando no tempo melhora a relevância econômica
dessas previsões. No terceiro artigo, exploramos o desempenho de previsão bem do-
cumentado do modelo dinâmico de Nelson-Siegel (DNS) e mostramos como empregar
as previsões para seus dois primeiros momentos condicionais para obter previsões
de direção de mudança para a curva de juros, uma vez que tomadas de decisões na
política monetária ou na seleção de carteiras de renda fixa e/ou cobertura geralmente
requer estimativas da direção futura das taxas de juros. A incorporação de informa-
ções sobre a assimetria e a curtose da curva de juros leva a previsões direcionais que
superam o modelo de referência, principalmente para maturidades longas e previsões
de curto prazo. Por fim, no último artigo, usamos os modelos afins dinâmicos e livres
de arbitragem para a estrutura a termo das taxas de juros AFTSM′s para modelar as
taxas de juros nominais e reais conjuntamente. A abordagem permite decompor as
taxas de juros em expectativas de taxas de juros futuras e o prêmio de risco que os
investidores compensam ao comprar títulos de longo prazo. Além disso, analisamos
sua capacidade de capturar expectativas de inflação ajustadas ao risco usando-o para
previsão de inflação. Os resultados sugerem que os prêmios a prazo reais e nominais
são variantes no tempo e aumentam ao longo dos vencimentos. Além disso, as expec-
tativas de inflação ajustadas ao risco superam a pesquisa FOCUS em horizontes de
previsão longos.

Considerações Finais
Em todos os artigos, observamos que os melhores resultados dependem do horizonte
de previsão e dos vértices das curvas de juros. Para a curva brasileira, os modelos com
volatilidade estocástica apresentam resultados melhores que o Random Walk, mas a
maioria não são estatisticamente significativos. Além disso, usar variáveis macroeconô-
micas observadas ou expectativas de mercado pondem melhorar pontualmente as
previsões, mas os modelos ficam com muitos parâmentros. De todo modo, a aplicação
econômica sugere que os modelos com volatilidade estocástica tem utilidade para um
investidor de média-variância. Na previsão de ditreção, os modelos conseguem ter
bons desempenhos em maturidades curtas, isto é, conseguem apontar de forma mais
acertiva a probabilidade de retorno positivo das curvas de juros. Por fim, os resultados
do quarto artigo sugere que o prêmio de inflação é positivo na maior parte do tempo
para a economia brasileira. Além disso, pode-se extrair previsões competitivas para a



inflação usando a expectativa de inflação do mercado.

Palavras-chave: Modelo DNS. Fatores Macroeconômicos. Filtro de Kalman. Modelos
de estrutura de termo afim. Prêmio a termo.
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1 INTRODUCTION

Can we sharpen our ability to predict future yields and deliver value to investors?

To answer this question, let us start with the credit market. It comprises lenders, bor-

rowers, intermediaries, and remuneration for borrowed money. There are loans with dif-

ferent rates according to the terms and risks involved. Families, companies, and mainly

governments participate in this market to anticipate future consumption, investments,

and spending. The government, one of the principal borrowers, finances spending by

issuing sovereign bonds. These securities are known for being low-risk, highly liquid,

and have benchmark yields.

Fixed-income securities have several characteristics, such as different maturi-

ties, fixed or inflation-protected securities, and some with periodic interest payments

(coupons). The relationship between a zero-coupon bond’s yield and the time to ma-

turity of its cash flow is known as the term structure of the interest rate or (nominal)

yield curve. Also, real yield curves can be derived from inflation-protected securities

with some intermediate steps. The difference between nominal and real yields for a

given maturity, known as Breakeven inflation, reflects inflation expectations. Therefore,

the yield curve is a reference for pricing other fixed-income instruments and as input

for various models, for example, risk management, monetary policy, derivative pricing,

and portfolio allocation. It also sheds light on expected economic growth Fisher (1907),

on forecasting real economic activity Campbell R Harvey (1989), on predicting interest

rates, inflation, and real returns Fama (1990), and on information about future inflation

Mishkin (1990), Mishkin (1991). Therefore, practitioners and academics are interested

in interpreting its behavior and implications, modeling, and generating good yield curve

forecasts.

However, modeling the yield curve is a challenging task. It presents well-known

stylized facts such as various shapes, including upward-sloping, downward-sloping

(ªinverted"), humped, and inverted-humped. In general, the average yield curve is in-

creasing and concave along maturities. The literature presents theories to explain the

relation among the returns on bonds of various maturities, and we highlight the three

traditional ones. According to the Liquidity Preference theory, investors prefer most

liquidity bonds, that is, short-term bonds. Then they charge to buy long-term bonds, a

liquidity premium, see Keynes (1936). The Expectations Hypothesis theory, as formu-

lated by Fisher (1896) and restated by Hicks (1939) and Lutz (1940), suggests that the

long-term yields are the average of the expected short-term so that the risk premium

would be zero or constant over time. However, its weaker version states that there is a

risk premium, and it is time-varying. Lastly, the Market Segmentation theory suggests

that individual investors have a preferred range of bond maturity lengths. They are only

willing to buy bonds outside their maturity preference if a higher yield for other maturity
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ranges is available, see Modigliani and Sutch (1966).

With theoretical groundwork, many models were developed to model the yield

curve. They are theoretically rigorous or empirically successful, but not both, as said

by Francis X Diebold, Glenn D Rudebusch, et al. (2012). For instance, there are One-

Factor Short-Rate Models, Two-Factor Short-Rate Models, The Heath-Jarrow-Morton

Framework, Non-parametric Estimation Methods, and Parametric Estimation Methods.

See Brigo, Mercurio, et al. (2001) and Filipovic (2009) for a mathematically straightfor-

ward but rigorous development.

In this work, we focus on two classes of models well-documented in the literature:

Nelson and Siegel (1987) and Svensson (1994) families and affine term-structures

models. The Nelson-Siegel and Svensson models, which belong to the exponential-

polynomial functions inside the Parametric Estimation Methods, are models that most

central banks use for term-structure estimation according to BIS (1999). These models

and their dynamic version of Francis X Diebold and Li (2006) (DNS) have attractiveness

because of their parsimony and good empirical performance. Also, they can capture

most of the behavior of the term structure of interest rate using only three and four

factors, respectively. These frameworks help us to include additional factors in the

model and forecast the yields. See Francis X Diebold, Glenn D Rudebusch, et al.

(2012) for a practical approach. The second one is the affine term-structures models

(ATSM), from One-Factor Short-Rate Models, popularized by Duffie and Kan (1996),

which encompass the equilibrium models of Vasicek (1977), Cox, Ingersoll Jr, and

Ross (1985), Longstaff and Schwartz (1992), and others. This class is constructed

by assuming that the bond price function is a linear function of the underlying state

variables. It can be derived under several hypotheses about the risk premium, which

helps us to investigate whether investors are being compensated for bearing risk on

bonds and generate inflation forecasts based on market expected inflation.

Therefore, our next focus is to evaluate the Nelson-Siegel and affine term-

structures extensions on forecasting performance. To answer the question at the begin-

ning of this introduction, we investigate whether observed and expected macroeconomic

variables improve forecasting performance, whether time-varying volatility forecastings

point in the right direction, and whether breakeven decomposition predicts inflation. In

the first essay, we assess the forecastability of DNS with time-varying loading parameter

and time-varying volatility in the US economy. We also use backward-looking macroe-

conomic factors such as interest rate, economic activity, and inflation rate. Besides, we

assess the DNS-Svensson (DNSS) model’s extensions with time-varying volatility and

time-varying loading parameter. Lastly, we include four combinations of forecasts. In

the second essay, we evaluate the forecast performance of the DNS with time-varying

volatility with forward- and backward-looking macroeconomic variables to the Brazilian

economy. We include observed interest rate, economic activity, and inflation rate and
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its respectively expected series from a survey of market practitioners. Since generating

good magnitude yield forecasts is a tough job, we evaluate the direction of change

of returns in the third essay. Thereunto, we use yields and volatility returns as input

to calculate the probability of positive return in three models: the Logit function, the

Non-Parametric model, and the Extended model. Lastly, in the fourth essay, we use

nominal and real yield curves and ATSM to decompose the breakeven inflation in ex-

pected inflation and inflation risk premium for the Brazilian economy. Also, we use this

decomposition to predict the Extended National Consumer Price Index (IPCA).

In the first two assays, economic evaluation suggest that the forecasts can have

worth to an mean-variance investor. In the first, the extensions outperform the more

simple DNS model. In the second, the extensions outperform the Random Walk model

(RW). In the third assay, the results suggest that using time-varying volatility forecast-

ing using DNS model can outperform a naive strategy of direction-of-change returns

forecasts. Lastly, the results of decomposing the breakeven inflation suggest that its

possible to have better forecast to inflation that the FOCUS survey, mostly to long

horizons.
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2 FORECASTING THE YIELD CURVE: THE ROLE OF ADDITIONAL AND TIME-

VARYING DISCOUNTING, HETEROSCEDASTICITY, AND MACRO-ECONOMIC

FACTORS

Accurate forecasts of the term structure of interest rates are relevant for

bond portfolios, risk management, and pricing derivatives; see Hodges and Schaefer

(1977) and Ronn (1987) for early references. More recently, they have also become

important in the context of new tools of unconventional monetary policy as yield curve

control or forward guidance; see, for example, Kuttner (2018) and Bernanke (2020).

Consequently, many works have been devoted to developing alternative modeling and

forecasting methodologies for the term structure during the last two decades.

There are three main alternative approaches to modeling the term structure. First,

the models based on a no-arbitrage focus on fitting the term structure at a point in time

to ensure that no arbitrage possibilities exist. These models are usually estimated using

regression-based procedures; see the recent work by Goli Ânski and Spencer (2021) and

the references therein. Recently, Bauer (2018) also proposed a Bayesian estimator.

Many empirical studies suggest that imposing no-arbitrage conditions do not generally

lead to more accurate forecasts; for example, Joslin, Kenneth J Singleton, and Zhu

(2011). Alternatively, many authors estimate the term structure using affine models that

Duffie and Kan (1996) characterized originally. Affine models allow multiple state vari-

ables to drive interest rates, with bond yields being linear functions of these variables;

see Duffee and Stanton (2012) for a comparison of alternative estimators of affine mod-

els, including Kalman filter based estimation. Recently, estimations of affine models for

the term structure rely on Bayesian procedures, which are computationally demanding;

see, for example, Carriero, Clark, and Marcellino (2021) for a recent Bayesian estimator

of the canonical affine term structure model of Duffie and Kan (1996), in its equivalent

but computationally more stable representation of Joslin, Kenneth J Singleton, and Zhu

(2011).

Lastly, Francis X Diebold and Li (2006) propose modeling the dynamic evolution

of the yield curve using the three factor model proposed by Nelson and Siegel (1987).

These three factors represent the curve’s level, slope, and curvature; consequently,

the factor loadings are heavily parametrized depending on a single exponential decay

rate parameter; see Krippner et al. (2010) for arguments on the connection between

affine models and the factor model. Francis X Diebold and Li (2006) propose a simple

two-step estimation procedure assuming that the exponential decay rate is known and

constant over time. In the first step, the factors are estimated by Ordinary Least Squares

(OLS), while in the second step, AR(1) models are fitted to the estimated factors. This

approach has become a major workhorse among academics and practitioners and is

widely used in the financial community; see empirical applications by De Pooter (2007),

Francis X Diebold, Li, and Yue (2008), Yu and Salyards (2009), De Pooter, Ravazzolo,
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and Dick JC Van Dijk (2010), Jens HE Christensen, Francis X Diebold, and Glenn D

Rudebusch (2011), MÁrcio Poletti Laurini and Hotta (2014), João F. Caldeira, Guilherme

V. Moura, and André A. P. Santos (2016), and BIS (2005) and ECB (2018). However,

the Achilles’ heel of this methodology is that forecasts hardly beat those obtained by a

random walk model. Carriero, Clark, and Marcellino (2021) argue that one reason could

be that the model specification may not hold in the data, and Jungbacker, Koopman,

and Van Der Wel (2014), show that the Likelihood ratio test rejects the restrictions

imposed in the factor loadings.

In practice, there is a debate about forecasting the yield curve using either the

Kalman filter for the factor model or the affine model estimated by the Bayesian methods.

The first is computationally simpler but can hardly beat the random walk specification.

And the second is computationally intensive however has been shown to improve over

the random walk. Within this debate, the contribution of this paper is to analyze the

empirical performance of a very general and flexible specification of the three factor

model when fitted to forecast the yield curve based on a novel data set of end-of-month

continuously compounded Treasury yields on US zero-coupon bonds. In particular, we

consider three extensions of the original specification of the DNS in Francis X Diebold

and Li (2006), which would flexibility the model and mitigate the adverse effects of

potential misspecification.

First, early on Svensson (1994) propose a four-factor version of the Nelson and

Siegel (1987) model. As far as we know, the role of the fourth factor has yet to be

analyzed in the related literature so our results will be novel in this respect. Other

important extensions of the DNS model are due to Koopman, Mallee, and Van der

Wel (2010), who extend it in two directions. First, they propose allowing the discount

parameter time-varying; see Márcio Laurini and Hotta (2010) and Hevia et al. (2015)

for another proposal in which the discount parameter is allowed to change over time.

Second, the overall volatility is represented by a GARCH model1, allowing for the

evolution of volatility seems to be an essential characteristic of the yield curve. However,

it is important to note that this extension could be more relevant for density forecasts of

the yield curve than when obtaining point forecasts; see, for example, Carriero, Clark,

and Marcellino (2021) and Shin and Zhong (2017). Density forecasting of interest rates

is important for derivatives pricing and risk management. João F Caldeira, Márcio P

Laurini, and Portugal (2010) and Márcio P Laurini and João F Caldeira (2016) also allow

for time variation in the discounting parameter and volatilities. A final helpful extension

of the DNS model considered in this paper is the inclusion of macroeconomic variables

to explain the yield curve; see Gürkaynak and Wright (2012) and Morley (2016) for

surveys on the relationships between the yield curve and the macroeconomy.
1 There are many other extensions, which could also be of interest in empirical applications. For

example, Jungbacker, Koopman, and Van Der Wel (2014) propose a DFM with smooth loadings with
the smoothness conditions introduced via spline functions.
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Francis X Diebold, Glenn D Rudebusch, and Aruoba (2006) propose augmenting

the yield curve specification by adding macroeconomic variables to explain the evolution

of the level, slope, and curvature factors. In particular, they suggest writing the model

for the yield curve as a state space model in which the three elements (level, slope,

and curvature) depend on macroeconomic variables. The state-space model (SSM)

representation allows the estimation of all the parameters in the model (including the

decay rate) in just one step as compared with the two-step estimator proposed by

Francis X Diebold, Glenn D Rudebusch, and Aruoba (2006)2. They find strong evidence

of the effects of macroeconomic variables on the yield curve and evidence for a reverse

influence.

Our main objective is to assess the role of the four elements described above in

forecasting the yield curve, namely, the role of macroeconomic variables, time-varying

discounting, conditional heteroscedasticity, and the fourth factor. We will fit an encom-

passing model with all these four characteristics to the above data set. Estimation of the

general model is carried out using the Extended Kalman filter. We show that the second

discount rate has no role in obtaining a better fitting and forecasting performance of the

factor model. Furthermore, we show that the best specification depends on the maturity

and forecast horizon when looking at point forecasts. For short maturities, the best

performance is obtained in a heteroscedastic model with a time-varying discount. How-

ever, whether macro variables add information depends on the large forecast horizon.

However, the simplest homoscedastic model with constant discount performs better

for large maturities. In this case, macro variables may have a role at short forecast

horizons. These results suggest that the factor model should incorporate some sort of

non-linearity depending on the maturity.

The outline of the paper is as follows. Section 2 describes the general model

and its estimation. In section 3, the model is fitted to a data set of end-of-month contin-

uously compounded Treasury yields on US zero-coupon bonds. Section 4 deals with

out-of-sample point and density forecasting. Section 5 proposes further specifications

designed to enhance the performance of the DNS model beating the random walk

specification. Section 6 concludes.

2.1 DYNAMIC NELSON-SIEGEL-SVENSSON MODEL

The Nelson-Siegel model was extended to a more flexible form by Svensson

(1994) by the inclusion of an additional term in Equation (40) which allows the curve

to assume a double-humped shape. This so-called Dynamic-Nelson-Siegel-Svensson
2 Note that the SSM representation allows interpreting the model proposed by Francis X Diebold and

Li (2006) as a Dynamic factor model (DFM) with restrictions on the loadings.
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model has the form

yt (τi ) = β1,t + β2,t

(
1 ± e±λ1τi

λ1τi

)
+ β3,t

(
1 ± e±λ1τi

λ1τi
± e±λ1τi

)
+ β4,t

(
1 ± e±λ2τi

λ2τi
± e±λ2τi

)
.

(1)

The second curvature is governed by β4,t with decay parameter λ2. Both the Nelson and

Siegel and the Svensson models have been extensively adopted for pricing, hedging,

and monetary policy purposes Francis X. Diebold and Glenn D. Rudebusch (2013).

The DNS and DNSS framework can also be represented as a state space model

by treating βt = βj ,t , for j = 1, . . . , 4, as a latent vector. For these purpose, the general

specification of the dynamic factor model is given by:

yt = Λ(λt )βt + εt , εt ∼ N (0,Σε) , (2)

where Λ is a N × K matrix of factor loadings, βt is a K -dimensional stochastic process,

and εt is the N × 1 vector of measurement errors, whose covariance matrix given by Σε.

For any given, strictly positive and distinct, λ1 and λ2, the N × K factor loading matrix

Λ(λt ) is given by:

Λij (λk ) =





1, j = 1

ψi2 =
1 ± z1i

λ1τi
, j = 2

ψi3 =
1 ± z1i

λ1τi
± z1i , j = 3

ψi4 =
1 ± z2i

λ2τi
± z2i , j = 4,

where z1,i = exp(±λ1τi ) and ψ2,i = exp(±λ2τi ). The DNS model is obtained by eliminat-

ing the second curvature ψi4 of the DNSS specification.

The transition equation increase appropriately to include the DNSS extension.

Also details on factor-augmented DNS model, time-varying volatility, and estimation

procedure with Kalman filter are available in subsection 3.1.3, subsubsection 3.1.4.2,

and subsection 3.1.4 respectively.

2.1.1 Time-Varying Loading Parameter

In previous models, the decay parameters are time-invariant over the full sample

period, despite being freely estimated alongside the other parameters with the state

space approach. However, Koopman, Mallee, and Van der Wel (2010) argued that the

characteristics of the yield curve could vary over time, such that the factor loadings

associated with the slope and curvature also change over time. The introduction of

time-varying loading parameters results in non-linear models, which makes estimation

slightly more complicated.

We followed Koopman, Mallee, and Van der Wel (2010) and included the time-

varying loading parameters (λ1t and λ2t , the first for DNS and both DNSS models,
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respectively) in the set of factors, so they are considered latent factors. To prevent the

loading parameters from assuming negative values we use log(λt ) in the set of factors.

The new state vector is Bt =
[
β1t ,β2t ,β3t ,β4t , λt

]′, where λt =
[
log(λ1t ), log(λ2t )

]
. Mak-

ing β4t = log(λ2t ) = 0 we have the DNS model. The dynamic of the new state vector

Bt is again modeled by using VAR(1) processes described by Equation (16). In this

case, the new observation equation becomes non-linear and the resulting state space

representation is given by

yt = Λ (exp(λt )) βt + εt , εt ∼ N (0, Σε) (3)

Bt+1 = μD + ΦD
(

Bt ± μD
)

+ ηD
t , ηD

t ∼ N
(

0, ΣD
η

)
, (4)

where the dimension of ΦD, μD, ηD
t , e ΣD

η are adjusted as appropriate. We refer to this

model as the DNSS-TVL, and DNS-TVL when β4t = log(λ2t ) = 0. Since the loading

matrix are time-varying, due to the time-varying λt , the measurement equation is non-

linear and the estimation can no longer rely on the Kalman filter. To overcome this

problem, we perform the estimations using the extended Kalman filter (EKF), which we

describe in the next section.

2.1.2 Estimation of Nonlinear State Space Models

As earlier mentioned, with the introduction of the time-varying factor loading, the

observation equation becomes non-linear in the state vector. Because of the nonlinear-

ity in Equations Equation (3) and Equation (4), the linear Kalman filter can no longer

used. Hence, to circumvent this problem, we can proceed with the extended Kalman

filter. The extended Kalman filter is much the same as the Kalman filter discussed in

subsubsection 3.1.4.1, with the addition of first-order Taylor series terms to the transition

and observation equations to account for non-linearities. For each time t , the non-linear

dynamic and measurement equations are linearized locally around the current state

estimates, bt |t±1, using first-order Taylor series expansion. The measurement equation

is then rewritten as follow

yt = Ht (Bt ) + εt , (5)

where,

Ht (Bt ) = Λ (exp (λt )) (β1t ,β2t ,β3t ,β4t )
′ ,

= Λ1 (λ1t )β1t + Λ2 (λ1t )β2t + Λ3 (λ1t )β3t + Λ4 (λ2t )β4t , (6)

and Λi (exp (λt )) is the i-th column of Λ (λt ). Note that, in this case, the non-linearity of

the state space model is limited to the measurement equation. Jazwinski (1970) demon-

strated that EKF method is particularly effective in dealing with this type of non-linearity.

The measurement equation are then linearized around the state estimates by substi-

tuting Jacobian matrix Hit in place of Λt in Equation Equation (21) and Equation (22),
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with

Hit =
∂Ht (Bt )
∂Bt

∣∣∣∣
Bt=b̂t |t±1

, (7)

where the (i ,j) entry of Hit carries the partial derivative of the i-th measurement equation

with respect to the j-th latent variable, evaluated at b̂t+1|t . The resulting approximation

is given by

Ht (Bt ) ≈ Ht

(
b̂t |t±1

)
+ Ḣ

(
Bt ± b̂t |t±1

)
, (8)

where b̂t |t±1 is an estimate of the states Bt in time t based on the past observations up

to time t ± 1, with Jacobian matrix of the non-linear equation as follows

Ḣt =
∂Ht (Bt )
∂Bt

∣∣∣∣
β=βt |t±1

=


 ∂Ht

∂β1t

∣∣∣∣
β1t=b1t |t±1

, . . . ,
∂Ht

∂βjt

∣∣∣∣∣
βjt=bjt |t±1

,
∂Ht

∂ log(λkt )

∣∣∣∣
log(λkt )=log(λkt |t±1)


 ,

(9)

with referring to j = 3 and k = 1 for DNS-TVL, and j = 4 and k = 2 for DNSS-TVL1 and

DNSS-TVL2 models. The first j columns of Ḣt follow straightforward from differentiating

Equation (6) with respect to β1t , . . . ,βjt , with j = 3 or 4, for DNS and DNSS models,

respectively. For the columns j + 1 and j + 2 we need to make use of the chain-rule as

follows

∂H(Bt )
∂λkt

=
∂H(Bt )
∂ log(λkt )

·
∂ log(λ1t )

∂λkt
=

∂H(Bt )
∂ log(λkt )

·
1
λkt

,

∂H(Bt )
∂ log(λkt )

=
∂H(Bt )
∂λkt

· λkt . (10)

Applying the chain rule in Equation (10) results

∂H(Bt )
∂λ1t

=
β2t · exp(±τiλ1t )(τiλ1t ± exp(τiλ1t ) + 1)

τiλ
2
1t

+ . . .

+
β3t · exp(±τiλ1t )(τ

2
i λ

2
1t ) + τiλ1t ± exp(τiλ1t ) + 1)

τiλ
2
1t

, if k = 1,

∂H(Bt )
∂λ2t

=
β4t · exp(±τiλ2t )(τ

2
i λ

2
2t ) + τiλ2t ± exp(τiλ2t ) + 1)

τiλ
2
2,t

, if k = 2.

Therefore, the decay factors λkt are filtered in EKF recursions, where k = 1 implies that

we are filtering λ1t in DNS-TVL, DNS-GARCH-TVL, DNSS-TVL1, and DNSS-GARCH-

TVL1 specifications, and k = 2 implies that we are filtering λ2t in the DNSS-TVL2 and

DNSS-GARCH-TVL2 models. In general, this yields the following result

Ḣt =
[
ιN×1 Λ2 (exp(λkt )) . . . Λj

(
exp(λp,t )

) ∂H(Bt )
∂λkt

· λkt

]
, (11)
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where ιN×1 is a vector of ones of length N.

Last but not least, we consider the model specification with time-varying fac-

tor loadings and time-varying volatility, named DNS-GARCH-TVL. The measurement

equation of the DNS-GARCH-TVL models is given by

yt = Ht (Bt ) + ε
†
t ,

= Λ (exp(λt))
(
β1,t , . . . ,βjt

)′
+ Γεε

∗
t + ε

†
t , ε

†
t ∼ N (0,Σ†ε), (12)

where Bt = (β1t ,β2t ,β3t , log(λ1t ))
′ for the DNS-GARCH-TVL model, and where Bt

= (β1t ,β2t ,β3t ,β4t , . . . log(λ1t ), log(λ2t ))
′ the DNSS-GARCH-TVL1 or DNSS-GARCH-

TVL2 models. This equation has the additional component Γεε∗t and the state vector gets

additional variables, from witch only ε∗t is represented in the measurement equation.

The gradient matrix for Equation (12) is given by

Ḣt =
[
ιN×1 Λ2 (exp(λkt )) . . . Λj (exp(λkt ))

∂H(Bt )
∂λkt

· λkt Γε

]
. (13)

If we replace Equation (11) or Equation (13) in Equation (7) and then substitute Equa-

tion (7) in the in the measurement equation we obtain the linearized model. Since

we have at this point again a linear system, we can apply the usual recursions of

the Kalman filter. In the following Section, we explain the algorithm used in combined

forecasts models.

2.1.3 Combined Forecasts

An important result from the methodological literature on forecasting is that

a linear combination of two or more forecasts may yield more accurate predictions

than using only a single forecast, see Granger (1989), Newbold and David I Harvey

(2002), and Aiolfi and Timmermann (2006). Adaptive strategies for combining forecasts

might also mitigate structural breaks and model misspecification and thus lead to more

accurate forecasts, see Pesaran and Timmermann (2007) and Newbold and David

I Harvey (2002). In particular, there is evidence that combining forecasts of nested

models can significantly improve forecasting precision upon forecasts obtained from

single model specifications, see Clark and McCracken (2009).

Assuming we are combining forecasts from M different forecast models, a com-

bined forecast for a h-month horizon for the yield with maturity τi given by

ŷt+h|t (τi ) =
M∑

m=1

wt+h|t ,m (τi ) ŷt+h|t ,m (τi ) ,

where wt+h|t ,m(τi ) denotes the weight assigned to the time-t forecast from the mth

model, ŷt+h|t ,m(τi ). Most of the forecast combination schemes considered are adaptive,



Chapter 2. Forecasting the yield curve: the role of additional and time-varying discounting,

heteroscedasticity, and macro-economic factors 24

meaning that the forecasts included in M : ŷt+h|t ,m(τi ) and/or corresponding weights

mth are based on alternative selection criteria within a sub-sample of realized observa-

tions.

Note that since a forecaster would only have information available up to the

forecast origin ω, the sub-sample for forecast selection and computation of weights

must contain data on or before that period. Thus, we start by setting equal weights to

all forecasts until the selection of forecasts and weighting schemes could be based

on the evaluation of realized forecast errors. This procedure guarantees that we use

only information available up to a particular period ω to set weights of forecasts for

period ω + h. The following 5 alternative combination strategies M ={FC-EW, FC-OLS,

FC-RANK, FC-MSE, FC-RMSE}={1,2,. . . ,5} are considered:

1. Equally weighted forecasts (FC-EW): Various studies have demonstrated that

simple averaging of a multitude of forecasts works well in relation to more sophisticated

weighting schemes. Therefore, the first forecast combination method we consider as-

signs equal weights to the forecasts from all individual models, i.e. wt+h|t ,m(τi ) = 1
M

for m = 1, . . . ,M. We denote the resulting combined forecast as Forecast Combination

- Equally Weighted (FC-EW). As explained in Timmermann (2006), this approach is

likely to work well if forecast errors from different models have similar variances and are

highly correlated.

2. Thick modeling approach with OLS weights (FC-OLS): A study by Granger

and Jeon (2004) proposes the so-called thick modeling approach (TMA), which consists

of selecting the z-percent of the best forecasting models in the sub-sample period for

model evaluation, according to the root mean square error (RMSE) criterion. We use the

selection process of Granger and Jeon and subsequently compute weights by means

of OLS regressions along with the constraint that the weights are all positive and sum

up to one. The z-percent of top forecasts selected is set to 2 (i.e., about z = 40%).

3. Rank-weighted combinations (FC-RANK): The FC-RANK scheme, suggested

by Aiolfi and Timmermann (2006), consists of first computing the RMSE of all models

in the sub-sample period for evaluation. Defining RANK ±1
t+h|t ,m as the rank of the mth

model based on its historical RMSE performance up to time t for horizon h, the weight

for the mth forecast is then calculated as

ŵt+h|t ,m (τi ) = RANK ±1
t+h|t ,m/

M∑

m=1

RANK ±1
t+h|t ,m.

4. Thick modeling approach with MSE-Frequency weights (FC-MSE): This scheme

consists of selecting models employing the thick modeling approach and assigning to

each mth forecast a weight equal to a model’s empirical frequency of minimizing the

squared forecast error over-realized forecasts. The weight for model m is computed as
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ŵl+h|t ,m (τi ) =
1/MSEt+h|t ,m (τi )∑M

m=1 1/MSEt+h|t ,m (τi )
.

5. Thick modeling approach with RMSE-weights (FC-RMSE): This scheme con-

sists of selecting models by means of the thick modelling approach, then computing

the RMSE of all selected models m and setting:

ŵl+h|t ,m (τi ) =
1/RMSEt+h|t ,m (τi )∑M

m=1 1/RMSEt+h|t ,m (τi )
.

In the next section, we present the in-sample fit and out-of-sample results.

2.2 EMPIRICAL RESULTS

The empirical analysis is structured in the data summary, in-sample and out-of-

sample analysis. For in-sample examination, we used a database with monthly obser-

vations from January 1972 through December 2019, and for out-of-sample analysis,

we made forecasts from January 1994 through December 2019. In the following sub-

section, we presented the dataset and the respective in-sample discussion as well for

out-of-sample.

2.2.1 Data

The data set consists of end-of-month continuously compounded yields on U.S.

zero-coupon bonds. Specifically, we use the novel zero-coupon Treasury yield curve

data set constructed by Liu and Jing Cynthia Wu (2021) and is publicly available on

on the Journal of Financial Economics Data Archive, as part of their supplementary

material. The dataset covers the period from January 1972 through December 2019 for

maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months of

US securities, with 576 monthly observations. Also, we use backward-looking macroeco-

nomic variables such as manufacturing capacity utilization (CUt), the monthly average

of the federal funds rate (FFRt), and 12-month percent change in the price deflator

for personal consumption expenditures (INFLt). As Francis X Diebold, Glenn D Rude-

busch, and Aruoba (2006) suggest, these three variables represent, respectively, the

level of real economic activity relative to potential, the monetary policy instrument, and

the inflation rate, which are widely considered to be the minimum set of fundamentals

needed to capture basic macroeconomic dynamics.
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Figure 1 ± U.S. Treasury Bonds per Maturities.
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Source: Elaborated by the author.
Legend: U.S. Treasury Bonds per Maturities. The figure shows all seventeen time series
maturities for τ = 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months.
The figure also shows periods associated with the yield curve inversion, where short-term
rates are higher than long-term rates. The sample contains 576 monthly observations from
January 1972 through December 2019.

Table 1 ± Summary Statistics.

Maturities Mean Std.dev. Min. Max. ρ1 ρ6 ρ12 Skewness Kurtosis
3 4.722 3.522 0.020 16.170 0.988 0.928 0.865 0.610 3.210
6 4.873 3.561 0.040 16.210 0.989 0.934 0.874 0.569 3.073
9 4.985 3.567 0.070 16.180 0.990 0.937 0.880 0.524 2.946
12 5.072 3.559 0.100 16.030 0.990 0.940 0.886 0.483 2.844
15 5.147 3.550 0.130 15.950 0.991 0.943 0.890 0.455 2.781
18 5.216 3.544 0.160 15.960 0.991 0.945 0.895 0.441 2.754
21 5.274 3.530 0.180 15.900 0.991 0.947 0.898 0.429 2.729
24 5.321 3.501 0.200 15.660 0.991 0.948 0.900 0.410 2.685
30 5.415 3.448 0.240 15.510 0.991 0.950 0.905 0.383 2.629
36 5.518 3.411 0.320 15.550 0.992 0.952 0.907 0.387 2.643
48 5.699 3.329 0.470 15.420 0.992 0.953 0.910 0.388 2.627
60 5.834 3.237 0.640 15.010 0.992 0.953 0.912 0.384 2.600
72 5.971 3.183 0.820 14.990 0.992 0.955 0.913 0.413 2.619
84 6.070 3.116 1.000 14.960 0.992 0.954 0.911 0.433 2.663
96 6.157 3.061 1.210 14.900 0.992 0.955 0.913 0.445 2.677
108 6.229 3.008 1.410 14.810 0.993 0.955 0.913 0.459 2.705
120 (Level) 6.285 2.932 1.500 14.780 0.992 0.952 0.908 0.444 2.722
Slope 1.564 1.417 -4.280 4.340 0.942 0.713 0.476 -0.632 3.445
Curvature -0.365 0.969 -2.680 3.080 0.921 0.746 0.631 -0.250 2.931

Source: Elaborated by the author.
Legend: The table reports summary statistics for U.S. treasury yields from January 1972

through December 2019. Maturity is measured in months. For each maturity we show mean,

standard deviation (Std. dev.), minimum, maximum, and three autocorrelation coefficients,

1 month [ρ̂(1)], 6 months [ρ̂(6)], and 12 months [ρ̂(12)]. The proxies for level is the highest

maturity bond (120 months), for slope, the difference between the bond of 120 months and

the bond of 3 months, and for curvature, two times the bond of 24 months minus the sum

of bond of 3 months and bond of 120 months.

The yield curve shape is analyzed since it provides indications of future interest
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rates and economic activity. Figure 1 shows the term structure of the interest rate on a

three-dimensional surface as a function of maturity over time. The Figure reveals some

common stylized facts for the yield curve as the dynamics of levels and slopes.

In Table 1, we presented the dataset in some descriptive statistics for each

maturity, such as mean, standard deviation, skewness, and kurtosis. One can confirm

some well-known stylized facts of the yield curve, as autocorrelations close to one and

increase with maturity, that is, regardless of maturity, are persistent processes. Also,

volatility decreases through maturities, skewness, and excess kurtosis, suggesting no

normality in the presented sample.

The following section discusses the in-sample extension results regarding DNS

and DNSS reference models and and also analyzes the dynamics of Svensson exten-

sions with the inclusion of time-varying loading parameters time-varying volatility.

2.2.2 In-Sample Results

Our first set of extensions is the factor augmented Nelson-Siegel models with

time-varying loading parameter and volatility. We summarize in Panel (A) of Table 2 the

in-sample results as the root mean squared errors (RMSE), log-likelihood, and AIC of

Nelson-Siegel extensions. The result of DNS-Macro in terms of RMSE is similar to the

DNS model, which could be expected since Francis X Diebold, Glenn D Rudebusch, and

Aruoba (2006) findings suggest the same conclusions, see Table 1 - summary statistics

for measurement errors of yields - in Francis X Diebold, Glenn D Rudebusch, and

Aruoba (2006). For most maturities, the results in factor augmented model extensions

are approximated to the extant models. Otherwise, the results of 3-month and 6-month

maturities for all factor augmented extensions outperform the DNS benchmark model,

especially the DNS-GARCH-TVL-Macro model.

Figure Figure 2 presents the filtered level, slope, and first and second curvature

of all DNSS extension models. All filtered factors are quite similar throughout all exten-

sions, so we could infer the results in-sample should be similar. In fact, prior assumption

is verified in Table 2. The log-likelihood values in Table 2 also suggest the models with

time-varying volatility outperform the benchmark model. These values are used as a

basis of performance comparison for the other models, besides the Akaike Information

Criterion (AIC) and the Likelihood Ratio test (LR statistic).

We consider the DNS (DNSS) model a benchmark to DNS (DNSS) extensions

throughout our in-sample analysis. We start proposing extensions to the DNSS model.

We aim to improve the flexibility of curves and adjustments by allowing time-varying

volatility, so we have the DNSS-GARCH with 68 parameters. The RMSE results, in

Table 2, suggest the DNSS-GARCH and DNS-GARCH outperform their respective

benchmark model for almost all maturities, mainly for the first two and the last two

maturities, as well as the analog extension in the Nelson-Siegel. Overall the DNS(S)-
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GARCH model is better in terms of RMSE than the DNS (DNSS) model, however the

DNS(S)-GARCH model is more parameterized than the latter two.

The second and third extensions of the DNSS model refer to the models with

time-varying factor loadings, i.e., DNSS-TVL1 and DNSS-TVL2. In the DNS model,

Francis X Diebold and Li (2006) suggest setting λt at 0.0609 for every t , instead of

treating it as an unknown parameter for a dataset from January 1972 through December

2000. Otherwise, Francis X Diebold, Glenn D Rudebusch, and Aruoba (2006) is treated

as a parameter to be estimated, whose value after the estimation is 0.077, a result

similar to that found by Koopman, Mallee, and Van der Wel (2010), 0.0778. However,

Koopman, Mallee, and Van der Wel (2010) and Márcio Laurini and Hotta (2010) suggest

that λ is time-varying for each observed yield curve.

Our proposed models to λ is twofold, that is, the DNSS-TVL1 (DNSS-TVL2)

model with λ1t (λ2t ) time-varying while the parameter λ2 (λ1) is estimated. Figure 3

(Figure 4) shows the evolution of the factor loading in the DNSS-TVL1 (DNSS-TVL2)

model. The results suggest the US yield curve presented the highest value and volatility

of λ1t in the 1980s. On the other hand, λ2t values laying around below 0.06. In terms of

RMSE, these two models outperform the DNSS model only in maturity of 3 months, see

Table 2. Also, the log-likelihood gain for the DNSS-TVL1 and DNSS-TVL2 models are

not expressive against the DNSS model as the gain of the DNSS-GARCH model against

the DNS model. Despite gains in terms of RMSE, almost all Svensson extensions have

more estimated parameters, except for the DNSS-GARCH model so far.

The evolution of the ht over time is quite similar in the DNSS-GARCH and the

DNSS-GARCH-TVL1 models, see Figure 5. Koopman, Mallee, and Van der Wel (2010)

suggests the publication of the Nelson and Siegel (1987) paper, after the mid-1980s,

reduced the volatility in US bond rates, except around the financial crisis of 2008. The

previous period has more peaks and greater amplitude in the GARCH component. In

general, there are no major differences among the DNS-GARCH-TVL1, DNS-GARCH-

TVL2, and the DNSS-GARCH model, for instance, is in the amplitude of the peaks of

the ht .

The Svensson extension model with λ1,t (λ2,t ) and time-varying obtained the

lowest RMSE results in the first and second maturities against the DNSS model. Fig-

ure 5 presents the filtered estimates of the common volatility for the DNS-GARCH-TVL1

and DNS-GARCH-TVL2 models. In general, they have the same path over time. As in

Koopman, Mallee, and Van der Wel (2010), in all the analyzed models, the model with

the best performance in the analyzed criteria is the model with time-varying volatility. In

the following Section, the out-of-sample results of the developed models are presented.



Chapter 2. Forecasting the yield curve: the role of additional and time-varying discounting,

heteroscedasticity, and macro-economic factors 29

Figure 2 ± Level, Slope, Curvature 1, and Curvature 2.
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Source: Elaborated by the author.
Legend: This figure reports the level, slope, curvature 1, and curvature 2 obtained from
the baseline dynamic Svensson (DNSS) model, models with time-varying factor loadings
(DNSS-TVL1 and DNSS-TVL2), model with time-varying volatility (DNSS-GARCH), mod-
els with both time-varying factor loadings and volatility (DNSS-GARCH-TVL1 and DNSS-
GARCH-TVL2). Panels (A), (B), (C) and (D) present the level, slope, curvature 1, and
curvature 2 estimates, respectively.
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Table 2 ± RMSE In-sample, Log-likelihood, and AIC of Model Extensions.

Panel (A): Nelson-Siegel Extensions Panel (B): Svensson Extensions

Maturities DNS
DNS
-Macro

DNS
-TVL

DNS-TVL
-Macro

DNS
-GARCH

DNS-GARCH
-Macro

DNS-GARCH
-TVL

DNS-GARCH
-TVL-Macro

DNSS
DNSS
-TVL1

DNSS
-TVL2

DNSS
-GARCH

DNSS-GARCH
-TVL1

DNSS-GARCH
-TVL2

3 32.19 32.21 16.01 16.63 28.20 28.19 22.32 9.68 18.75 18.45 18.42 0.17 4.25 2.60
6 16.66 16.68 8.77 8.78 17.11 17.36 11.01 9.36 6.27 8.05 6.43 2.04 7.06 4.30
9 7.52 7.53 8.49 7.88 4.74 4.83 6.42 10.52 0.01 5.80 3.02 0.02 7.08 4.28

12 2.80 2.80 9.18 8.33 0.05 0.04 5.89 11.16 2.40 5.90 3.91 2.57 7.14 4.98
15 1.22 1.22 9.15 8.41 1.49 1.57 6.33 11.82 1.96 5.20 3.35 2.14 6.28 4.14
18 2.45 2.45 8.89 8.59 1.02 1.18 6.44 12.24 1.24 4.47 2.66 1.47 5.56 3.31
21 2.34 2.36 8.66 8.73 0.88 0.83 6.49 12.07 1.69 4.11 2.58 1.68 5.06 2.98
24 1.32 1.35 8.77 8.96 1.99 1.97 6.74 11.86 2.44 4.28 2.89 2.29 4.88 2.97
30 3.87 3.85 9.58 10.00 3.59 3.72 7.40 12.80 3.99 5.57 4.17 3.92 5.71 4.23
36 5.46 5.43 9.85 10.35 2.98 3.22 7.17 13.81 3.49 5.16 3.55 3.52 5.27 3.85
48 7.65 7.61 10.87 11.59 3.63 3.46 7.72 15.62 3.37 6.75 4.09 3.22 6.91 5.28
60 8.75 8.72 11.70 12.16 4.76 4.35 8.22 16.62 4.65 8.51 5.76 4.63 9.26 7.07
72 7.35 7.32 10.48 10.80 5.75 5.82 8.29 16.28 5.58 8.57 6.76 5.50 9.45 7.84
84 4.65 4.65 8.89 8.99 4.48 4.67 7.05 15.39 4.51 7.49 5.49 4.55 8.62 6.43
96 2.06 2.05 7.81 7.87 1.98 0.81 5.67 15.15 2.25 6.28 4.34 2.77 7.70 5.82
108 5.95 5.96 8.56 8.55 4.52 5.33 6.89 15.45 4.12 7.31 5.60 3.61 7.87 6.40
120 10.96 10.97 11.89 12.14 12.54 13.64 11.66 17.87 10.19 11.74 10.54 9.53 11.85 10.56

Log-likelihood 10188.9 10222.9 11557.4 11717.0 11953.6 11640.6 12175.4 12898.9 12254.8 12583.9 12580.2 13215.8 13215.8 13353.2
Parameters 36 81 47 101 55 100 66 120 49 63 63 68 82 82
AIC -20301.9 -20279.9 -23016.8 -23228.0 -23793.2 -23077.2 -24214.8 -25553.7 -24407.6 -25037.9 -25030.4 -26291.7 -26263.7 -26538.5
LR-statictic -22.0 2714.9 2926.1 3491.3 2775.3 3912.9 5251.8 630.3 622.8 1884.1 1856.1 2130.9

Source: Elaborated by the author.
Legend: We present the RMSE in-sample. Benchmark model is located in the first column and maturities by rows. The table presents the log-likelihood

results, the Akaike Information Criterion (AIC), the number of parameters for the different models, and the LR test. The DNS model in Panel (A)

and DNSS in Panel (B) correspond to Nelson-Siegel and Svensson latent factor models with constant loading parameter (λ) and constant volatility.

The models DNS-TVL, DNSS-TVL1 and DNSS-TLV2 correspond to models with time-varying λt . The DNS-GARCH and DNSS-GARCH models

correspond to models with a common GARCH component for time-varying volatility. The models DNS-TVL-GARCH, DNSS-GARCH-TVL1 and

DNSS-GARCH-TVL2 correspond to models with a factor loading and the common GARCH component for volatility time-varying. The models with

macroeconomic factors are followed by ª-Macro". We present in total seven Nelson-Siegel extensions in Panel A and the five Svensson extensions in

Panel B.
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Figure 3 ± Factor Loading λ1,t Svensson.
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TV Factor Loading: DNSS−GARCH−TVL1

Source: Elaborated by the author.
Legend: This figure shows the DNSS-TVL1 λ estimates (dots) with those obtained from
DNSS-GARCH-TVL1 (solid line) in the Svensson (cross-section) model.

Figure 4 ± Factor Loading λ2,t Svensson.
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TV Factor Loading: DNSS−TVL2

TV Factor Loading: DNSS−GARCH−TVL2

Source: Elaborated by the author.
Legend: This figure shows the DNSS-TVL2 λ estimates (dots) with those obtained from
DNSS-GARCH-TVL2 (solid line) in the Svensson (cross-section) model.
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Figure 5 ± Common Component h0.5
t Svensson.
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Volatility DNSS−GARCH−TVL2

Source: Elaborated by the author.
Legend: We compare the time-varying common GARCH volatility estimates of DNSS-
GARCH (solid line) with the DNSS-GARCH-TVL1 (dots) and DNSS-GARCH-TVL2
(dashed)

2.2.3 Out-of-Sample Results

The forecasting exercise is performed in pseudo real time, i.e., we never use

information which is not available at the time the forecast is made. The forecasting

experiment uses a rolling estimation window and relies on information up to period

t to compute interest rate forecasts for period t + h, where h = 1,3,6,12 is the fore-

cast horizon. We reestimate a given model at each time t and produce out-of-sample

forecasts for 1-month, 3-month, 6-month, and 12-month ahead. More specifically, we

divide our full sample into two parts (in- and out-of-sample): the first one over the period

1972:1 - 1993:12 with 264 monthly observations and the second over the period 1994:1

- 2019:12 with 312 monthly observations, and make predictions recursively extending

the sample by 1 month every period. We constructed a moving window with 264 obser-

vations so that month after month a data line was added to the end of the sample and

a line of data at the beginning of the sample was deleted to re-estimate parameters.

Thus through the (extended) Kalman filter prediction step the forward predicted states

were used to construct forecasts of yield curves for h-months ahead.

The period under analysis covers two recession periods 2000-2001 and 2007-

2009. In these periods, there were reversal of the term structure of interest rate. First,

DNS confirmed to be a very competitive benchmark in forecasting the term structure of

bond yields, mainly for twelve-step-ahead forecast and longest maturities. The hypoth-

esis is the competing models would obtain expressive results against DNS model, in

periods with more volatility and different shapes in yield curve. In fact, the DNS-GARCH

and DNSS-GARCH had more statistically significant results in 1-month ahead than the

benchmark model, with lowest RMSPE in the set of best models according to Model

Confidence Set. One can note, however, all competing models outperform the DNS
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model in maturity of 3 months in 1-month forecast horizon, see Table 3. We observed

the same pattern in 3-month forecast horizon related to forecast to maturity of 3 months

see Table 4. In this horizon, the DNS-GARCH model had statistical significance over

all maturity, whereas the DNSS-GARCH-TVL2 model had more results inside the MCS

(17 maturities).

The results for 6-months and 12-months ahead models with time-varying volatility

outperform the benchmark in all maturities see Table 5 and see Table 6. Overall models

with time-varying loading factor had RMSPE lower than DNS model, nevertheless mod-

els with both time-varying parameters had statistical significance over most maturities

and only the DNSS-GARCH-TVL2 was considered the best model according to MCS.

We explore this last result in detail in Figure 8 and Figure 9, which show the cumulative

squared forecast errors (CSFE), relative to the DNS model, of selected maturities for

6 and 12 months forecast horizon. The model DNSS-GARCH-TVL2 have outperform

other models over forecasts and mainly outperform DNS model. One can also note this

consistency over recessions periods for instance 2000-2001 and 2007-2009.

In general, the DNS-GARCH model (dashed red line) and DNSS-GARCH-TVL2

outperform the DNS model and others in out-of-sample analysis, whereas the models

with the λ1,t were not so successful, for instance DNS-TVL and DNSS-TVL1. We also

note models with only time-varying loading factor had fall in performance in recession

periods, this can suggest it is difficult forecast λ over time. Overall recession periods

clearly sift the wheat from the chaff, for instance the DNS model outperform the DNSS

model, mainly after 2000’s.
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Table 3 ± Relative Root Mean Squared Forecast Errors: 1-month ahead

Models
3- 6- 9- 12- 18- 24- 30- 36- 48- 60 72- 84- 96- 108- 120-
Month Month Month Month Month Month Month Month Month Month Month Month Month Month Month

DNS 34.59 28.66 26.9 27.12 27.99 28.54 28.88 29 29.72 30.16 29.95 28.87 28.49 28.42 29.33
DNS ± Macro 0.661∗∗ 0.680∗∗ 0.751∗∗ 0.810∗∗ 0.887 0.955 1.015 1.059 1.115 1.144 1.150 1.163 1.154 1.128 1.095
DNS ± GARCH 0.952∗∗ 0.936∗∗ 0.934 0.944 0.974 1.003 1.024 1.036 1.060 1.074 1.081 1.074 1.066 1.051 1.027

DNS ± GARCH ± Macro 0.661∗∗ 0.680∗∗ 0.751∗∗ 0.810 0.887 0.956 1.016 1.060 1.116 1.146 1.153 1.166 1.157 1.132 1.100
DNS ± TVL 0.773 0.820 0.881 0.924 0.995 1.055 1.110 1.148 1.199 1.231 1.247 1.267 1.270 1.257 1.185
DNS ± TVL ± Macro 0.630∗∗ 0.720∗∗ 0.809∗∗ 0.859∗∗ 0.938 1.014 1.085 1.134 1.210 1.280 1.334 1.397 1.434 1.450 1.398
DNS ± GARCH ± TVL 0.696∗∗ 0.695∗∗ 0.733∗∗ 0.776∗∗ 0.857∗∗ 0.929 0.988 1.026 1.079 1.109 1.124 1.133 1.138 1.133 1.102
DNS ± GARCH ± TVL ± Macro 0.604∗∗ 0.658∗∗ 0.740∗∗ 0.801∗∗ 0.888∗∗ 0.963 1.024 1.061 1.111 1.153 1.188 1.238 1.26 1.261 1.226
DNSS 0.730∗∗ 0.772∗∗ 0.821∗∗ 0.852 0.904 0.949 0.974 0.984 1.003 1.025 1.064 1.093 1.120 1.127 1.088

DNSS ± GARCH 0.865∗∗ 0.956 1.024 1.053 1.088 1.110 1.116 1.105 1.093 1.100 1.132 1.151 1.167 1.166 1.117
DNSS ± TVL1 0.849∗∗ 0.983 1.088 1.141 1.200 1.233 1.245 1.239 1.216 1.193 1.200 1.209 1.233 1.235 1.178
DNSS ± TVL2 0.723∗∗ 0.828 0.928 0.975 1.009 1.026 1.038 1.042 1.064 1.102 1.155 1.206 1.240 1.254 1.208
DNSS ± GARCH ± TVL1 0.773∗∗ 0.911 1.031 1.090 1.139 1.148 1.150 1.152 1.152 1.162 1.202 1.252 1.292 1.313 1.270
DNSS ± GARCH ± TVL2 0.738∗∗ 0.890 1.014 1.062 1.077 1.076 1.078 1.077 1.081 1.108 1.156 1.210 1.246 1.268 1.224

FC ± EW 0.770∗∗ 0.832∗∗ 0.901 0.943 0.994 1.033 1.064 1.082 1.109 1.133 1.159 1.186 1.203 1.203 1.163
FC ± RANK 0.804 0.838 0.908 0.933 0.980 1.02 1.042 1.065 1.090 1.127 1.130 1.155 1.188 1.174 1.157
FC ± MSE 0.780 0.828 0.893 0.934 0.989 1.028 1.057 1.073 1.097 1.119 1.145 1.173 1.191 1.193 1.156
FC ± RMSE 0.784 0.837 0.901 0.941 0.992 1.029 1.057 1.073 1.097 1.12 1.146 1.174 1.191 1.194 1.156
FC ± OLS 0.645∗∗ 0.660∗∗ 0.716∗∗ 0.763 0.832 0.889 0.932 0.962 1.006 1.030 1.050 1.069 1.086 1.090 1.061

Source: Elaborated by the author.
Legend: The table reports relative root mean squared forecast errors (RMSFE) relative to the DNS model obtained by using individual yield models

and different forecast combination methods, for the 1-month, 3-month, 6-month, and 12-month forecast horizons. The evaluation sample is 1994:1

to 2019:12 (312 out-of-sample forecasts). The first line in each panel of the table reports the value of RMSFE (expressed in basis points) for the

DNS model, while all other lines reports statistics relative to the DNS. The following model abbreviations are used in the table: DNS for the dynamic

Nelson-Siegel model and DNSS for the dynamic Svensson model. Macro refers to macroeconomic factors, GARCH for time varying volatility, and TVL

refers to time varying factor loading. FC-EW, FC-OLS and FC-RANK stand for forecast combinations based on equal weights, OLS-based weights,

and rank-weighted combinations, respectively. FC-RMSE and FC-MRMSE refer to forecast combinations base on the thick modeling approach with

RMSE-weights and MSE-Frequency weights, respectively. Numbers smaller than one indicate that models outperform the DNS, whereas numbers

larger than one indicate underperformance. Numbers in bold indicate that model is on the model confident set at 25% level. Stars indicate the level at

which the Giacomini and White (2006) test rejects the null of equal forecasting accuracy (∗, and ∗∗ mean respectively rejection at 5%, and 1% level).
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Table 4 ± Relative Root Mean Squared Forecast Errors: 3-month ahead

Models
3- 6- 9- 12- 18- 24- 30- 36- 48- 60 72- 84- 96- 108- 120-
Month Month Month Month Month Month Month Month Month Month Month Month Month Month Month

DNS 61.47 59.69 59.48 59.86 60.25 60.35 59.92 58.98 58.06 57.4 55.81 53.67 52.3 51.14 50.34
DNS ± Macro 0.706∗ 0.741 0.782 0.820 0.887 0.950 1.007 1.054 1.127 1.183 1.224 1.268 1.292 1.306 1.308
DNS ± GARCH 0.958 0.972 0.989 1.006 1.038 1.063 1.082 1.096 1.120 1.133 1.142 1.144 1.143 1.140 1.127
DNS ± GARCH ± Macro 0.706∗ 0.741∗ 0.782 0.820 0.887 0.951 1.007 1.055 1.128 1.185 1.226 1.270 1.294 1.308 1.311
DNS ± TVL 0.805 0.828 0.853 0.881 0.941 1.000 1.057 1.106 1.184 1.237 1.274 1.303 1.320 1.327 1.300
DNS ± TVL ± Macro 0.688∗ 0.724 0.762 0.797 0.864 0.924 0.974 1.012 1.075 1.129 1.178 1.235 1.277 1.312 1.329
DNS ± GARCH ± TVL 0.694∗ 0.715∗ 0.747 0.782 0.850 0.909 0.959 0.998 1.064 1.113 1.151 1.186 1.212 1.235 1.241
DNS ± GARCH ± TVL ± Macro 0.668∗ 0.708∗ 0.749 0.786 0.850 0.907 0.955 0.993 1.054 1.107 1.154 1.209 1.248 1.278 1.296
DNSS 0.819 0.834 0.856 0.880 0.927 0.965 0.993 1.014 1.051 1.085 1.125 1.160 1.197 1.228 1.232
DNSS ± GARCH 0.955 0.983 1.006 1.025 1.063 1.088 1.104 1.113 1.134 1.156 1.189 1.214 1.244 1.268 1.264
DNSS ± TVL1 0.928 0.982 1.027 1.061 1.120 1.162 1.188 1.203 1.216 1.219 1.237 1.258 1.285 1.310 1.310
DNSS ± TVL2 0.793 0.858 0.918 0.960 1.003 1.019 1.029 1.038 1.075 1.124 1.187 1.246 1.300 1.345 1.358
DNSS ± GARCH ± TVL1 0.884 0.933 0.980 1.016 1.056 1.069 1.080 1.092 1.114 1.144 1.200 1.262 1.324 1.385 1.419
DNSS ± GARCH ± TVL2 0.851 0.934 0.997 1.034 1.066 1.076 1.082 1.090 1.122 1.173 1.243 1.316 1.384 1.446 1.473

FC ± EW 0.826 0.861 0.895 0.925 0.972 1.009 1.039 1.063 1.106 1.143 1.182 1.222 1.255 1.282 1.288
FC ± RANK 0.869 0.886 0.914 0.922 0.955 0.986 1.011 1.044 1.076 1.108 1.156 1.195 1.214 1.237 1.236
FC ± MSE 0.832 0.865 0.900 0.929 0.974 1.007 1.033 1.054 1.092 1.125 1.162 1.197 1.227 1.251 1.256
FC ± RMSE 0.838 0.871 0.904 0.932 0.976 1.009 1.035 1.056 1.093 1.127 1.164 1.199 1.230 1.255 1.260
FC ± OLS 0.617∗∗ 0.621∗ 0.639∗ 0.661∗ 0.706∗ 0.749∗ 0.784∗ 0.811∗ 0.863∗ 0.904 0.937 0.967 0.991 1.009 1.015

Source: Elaborated by the author.
Legend: The table reports relative root mean squared forecast errors (RMSFE) relative to the DNS model obtained by using individual yield models

and different forecast combination methods, for the 1-month, 3-month, 6-month, and 12-month forecast horizons. The evaluation sample is 1994:1

to 2019:12 (312 out-of-sample forecasts). The first line in each panel of the table reports the value of RMSFE (expressed in basis points) for the

DNS model, while all other lines reports statistics relative to the DNS. The following model abbreviations are used in the table: DNS for the dynamic

Nelson-Siegel model and DNSS for the dynamic Svensson model. Macro refers to macroeconomic factors, GARCH for time varying volatility, and TVL

refers to time varying factor loading. FC-EW, FC-OLS and FC-RANK stand for forecast combinations based on equal weights, OLS-based weights,

and rank-weighted combinations, respectively. FC-RMSE and FC-MRMSE refer to forecast combinations base on the thick modeling approach with

RMSE-weights and MSE-Frequency weights, respectively. Numbers smaller than one indicate that models outperform the DNS, whereas numbers

larger than one indicate underperformance. Numbers in bold indicate that model is on the model confident set at 25% level. Stars indicate the level at

which the Giacomini and White (2006) test rejects the null of equal forecasting accuracy (∗, and ∗∗ mean respectively rejection at 5%, and 1% level).
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Table 5 ± Relative Root Mean Squared Forecast Errors: 6-month ahead

Models
3- 6- 9- 12- 18- 24- 30- 36- 48- 60 72- 84- 96- 108- 120-
Month Month Month Month Month Month Month Month Month Month Month Month Month Month Month

DNS 95.11 94.97 95.33 95.75 95.62 94.95 93.69 91.88 89.71 88.22 85.65 82.61 80.49 78.48 76.44
DNS ± Macro 0.785 0.815 0.842 0.868 0.918 0.971 1.020 1.065 1.135 1.191 1.237 1.283 1.312 1.334 1.352
DNS ± GARCH 1.038 1.054 1.067 1.079 1.100 1.116 1.128 1.138 1.152 1.158 1.161 1.163 1.164 1.163 1.157
DNS ± GARCH ± Macro 0.785 0.815 0.842 0.867 0.917 0.97 1.020 1.064 1.134 1.191 1.237 1.283 1.312 1.335 1.353
DNS ± TVL 0.853 0.871 0.890 0.909 0.952 0.992 1.032 1.067 1.126 1.162 1.189 1.209 1.221 1.229 1.22
DNS ± TVL ± Macro 0.764 0.791 0.815 0.840 0.89 0.937 0.978 1.013 1.072 1.12 1.162 1.207 1.245 1.277 1.304
DNS ± GARCH ± TVL 0.742 0.763 0.785 0.809 0.855 0.897 0.936 0.970 1.027 1.073 1.112 1.147 1.176 1.203 1.223
DNS ± GARCH ± TVL ± Macro 0.75 0.778 0.803 0.826 0.872 0.916 0.956 0.991 1.051 1.102 1.146 1.194 1.23 1.261 1.289
DNSS 0.910 0.917 0.928 0.941 0.972 0.998 1.020 1.037 1.070 1.100 1.134 1.164 1.197 1.228 1.242
DNSS ± GARCH 1.015 1.033 1.049 1.065 1.096 1.117 1.131 1.140 1.158 1.173 1.195 1.212 1.233 1.254 1.258
DNSS ± TVL1 0.951 0.976 1.003 1.027 1.070 1.099 1.120 1.135 1.153 1.166 1.187 1.211 1.240 1.269 1.286
DNSS ± TVL2 0.878 0.934 0.980 1.009 1.040 1.051 1.058 1.066 1.095 1.128 1.171 1.212 1.252 1.291 1.310
DNSS ± GARCH ± TVL1 0.949 0.979 1.011 1.036 1.073 1.092 1.108 1.122 1.147 1.178 1.226 1.277 1.328 1.380 1.420
DNSS ± GARCH ± TVL2 0.942 0.999 1.037 1.060 1.079 1.084 1.089 1.097 1.133 1.179 1.24 1.301 1.359 1.414 1.450

FC ± EW 0.889 0.914 0.937 0.957 0.992 1.020 1.044 1.066 1.105 1.138 1.173 1.207 1.236 1.264 1.281
FC ± RANK 0.910 0.921 0.938 0.950 0.979 0.996 1.016 1.037 1.073 1.114 1.143 1.172 1.180 1.214 1.232
FC ± MSE 0.897 0.922 0.944 0.962 0.994 1.019 1.040 1.058 1.092 1.121 1.152 1.182 1.209 1.234 1.248
FC ± RMSE 0.900 0.924 0.946 0.964 0.995 1.020 1.042 1.06 1.094 1.124 1.155 1.185 1.213 1.238 1.253
FC ± OLS 0.673∗ 0.685∗ 0.700∗ 0.716∗ 0.745∗ 0.772∗ 0.796∗ 0.815∗ 0.851∗ 0.883∗ 0.911 0.935 0.955 0.972 0.982

Source: Elaborated by the author.
Legend: The table reports relative root mean squared forecast errors (RMSFE) relative to the DNS model obtained by using individual yield models

and different forecast combination methods, for the 1-month, 3-month, 6-month, and 12-month forecast horizons. The evaluation sample is 1994:1

to 2019:12 (312 out-of-sample forecasts). The first line in each panel of the table reports the value of RMSFE (expressed in basis points) for the

DNS model, while all other lines reports statistics relative to the DNS. The following model abbreviations are used in the table: DNS for the dynamic

Nelson-Siegel model and DNSS for the dynamic Svensson model. Macro refers to macroeconomic factors, GARCH for time varying volatility, and TVL

refers to time varying factor loading. FC-EW, FC-OLS and FC-RANK stand for forecast combinations based on equal weights, OLS-based weights,

and rank-weighted combinations, respectively. FC-RMSE and FC-MRMSE refer to forecast combinations base on the thick modeling approach with

RMSE-weights and MSE-Frequency weights, respectively. Numbers smaller than one indicate that models outperform the DNS, whereas numbers

larger than one indicate underperformance. Numbers in bold indicate that model is on the model confident set at 25% level. Stars indicate the level at

which the Giacomini and White (2006) test rejects the null of equal forecasting accuracy (∗, and ∗∗ mean respectively rejection at 5%, and 1% level).
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Table 6 ± Relative Root Mean Squared Forecast Errors: 12-month ahead

Models
3- 6- 9- 12- 18- 24- 30- 36- 48- 60 72- 84- 96- 108- 120-
Month Month Month Month Month Month Month Month Month Month Month Month Month Month Month

DNS 148.5 149.62 150.18 150.36 149.17 146.71 143.39 139.52 133.67 129.24 124.8 120.3 116.89 113.93 110.59
DNS ± Macro 0.910 0.922 0.933 0.945 0.977 1.016 1.058 1.098 1.165 1.224 1.270 1.313 1.341 1.364 1.385
DNS ± GARCH 1.067 1.074 1.080 1.085 1.094 1.103 1.110 1.117 1.126 1.130 1.134 1.137 1.138 1.138 1.136
DNS ± GARCH ± Macro 0.908 0.919 0.931 0.943 0.975 1.015 1.057 1.097 1.164 1.223 1.269 1.312 1.341 1.363 1.386
DNS ± TVL 0.898 0.902 0.908 0.915 0.934 0.958 0.985 1.012 1.058 1.093 1.117 1.136 1.145 1.150 1.149
DNS ± TVL ± Macro 0.887 0.896 0.906 0.917 0.943 0.973 1.004 1.034 1.084 1.131 1.172 1.214 1.246 1.274 1.301
DNS ± GARCH ± TVL 0.815 0.828 0.842 0.855 0.882 0.911 0.939 0.967 1.016 1.060 1.097 1.130 1.158 1.183 1.205
DNS ± GARCH ± TVL ± Macro 0.877 0.886 0.895 0.905 0.929 0.959 0.990 1.021 1.073 1.123 1.165 1.207 1.238 1.265 1.293
DNSS 0.982 0.990 1.000 1.009 1.028 1.045 1.060 1.073 1.098 1.120 1.143 1.166 1.188 1.209 1.222
DNSS ± GARCH 1.046 1.060 1.073 1.083 1.102 1.115 1.125 1.133 1.147 1.158 1.170 1.184 1.199 1.215 1.220
DNSS ± TVL1 1.020 1.041 1.062 1.079 1.104 1.119 1.128 1.134 1.141 1.147 1.161 1.178 1.198 1.219 1.235
DNSS ± TVL2 0.949 0.988 1.017 1.035 1.050 1.053 1.055 1.059 1.074 1.094 1.121 1.149 1.177 1.203 1.220
DNSS ± GARCH ± TVL1 1.005 1.021 1.038 1.054 1.080 1.102 1.121 1.139 1.173 1.206 1.244 1.279 1.315 1.349 1.378
DNSS ± GARCH ± TVL2 1.012 1.043 1.064 1.076 1.087 1.093 1.101 1.114 1.147 1.186 1.231 1.275 1.318 1.355 1.384

FC ± EW 0.958 0.972 0.985 0.996 1.016 1.035 1.054 1.073 1.106 1.137 1.166 1.194 1.218 1.239 1.256
FC ± RANK 0.952 0.974 0.980 0.994 1.001 1.003 1.018 1.040 1.082 1.112 1.130 1.154 1.178 1.190 1.207
FC ± MSE 0.963 0.974 0.984 0.994 1.011 1.028 1.045 1.062 1.091 1.118 1.144 1.169 1.191 1.210 1.225
FC ± RMSE 0.965 0.976 0.987 0.997 1.015 1.031 1.048 1.064 1.093 1.120 1.146 1.172 1.194 1.213 1.229
FC ± OLS 0.717∗∗ 0.725∗∗ 0.733∗∗ 0.741∗∗ 0.755∗∗ 0.771∗∗ 0.787∗ 0.803∗ 0.837∗ 0.870∗ 0.900 0.928 0.950 0.968 0.983

Source: Elaborated by the author.
Legend: The table reports relative root mean squared forecast errors (RMSFE) relative to the DNS model obtained by using individual yield models

and different forecast combination methods, for the 1-month, 3-month, 6-month, and 12-month forecast horizons. The evaluation sample is 1994:1

to 2019:12 (312 out-of-sample forecasts). The first line in each panel of the table reports the value of RMSFE (expressed in basis points) for the

DNS model, while all other lines reports statistics relative to the DNS. The following model abbreviations are used in the table: DNS for the dynamic

Nelson-Siegel model and DNSS for the dynamic Svensson model. Macro refers to macroeconomic factors, GARCH for time varying volatility, and TVL

refers to time varying factor loading. FC-EW, FC-OLS and FC-RANK stand for forecast combinations based on equal weights, OLS-based weights,

and rank-weighted combinations, respectively. FC-RMSE and FC-MRMSE refer to forecast combinations base on the thick modeling approach with

RMSE-weights and MSE-Frequency weights, respectively. Numbers smaller than one indicate that models outperform the DNS, whereas numbers

larger than one indicate underperformance. Numbers in bold indicate that model is on the model confident set at 25% level. Stars indicate the level at

which the Giacomini and White (2006) test rejects the null of equal forecasting accuracy (∗, and ∗∗ mean respectively rejection at 5%, and 1% level).
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Figure 6 ± Cumulative squared forecast errors (Nelson-Siegel Extensions)

(a) One-month ahead

(b) Three-month ahead

Source: Elaborated by the author.
Legend: Figures show the cumulative squared forecast errors (CSFE) of Nelson-Siegel Ex-
tensions relative to the DNS baseline model. Figure shows CSFEs for a 1- and 3-month fore-
cast horizon. The evaluation sample is from January 1994:01 through December 2019:12
(312 out-of-sample forecasts).



Chapter 2. Forecasting the yield curve: the role of additional and time-varying discounting,

heteroscedasticity, and macro-economic factors 39

Figure 7 ± Cumulative squared forecast errors (Nelson-Siegel Extensions)

(a) Six-month ahead

(b) Twelve-month ahead

Source: Elaborated by the author.
Legend: Figures show the cumulative squared forecast errors (CSFE) of Nelson-Siegel
Extensions relative to the DNS baseline model. Figure shows CSFEs for a 6- and 12-
month forecast horizon. The evaluation sample is from January 1994:01 through December
2019:12 (312 out-of-sample forecasts).



Chapter 2. Forecasting the yield curve: the role of additional and time-varying discounting,

heteroscedasticity, and macro-economic factors 40

Figure 8 ± Cumulative squared forecast errors (Svensson Extensions)

(a) One-month ahead

(b) Three-month ahead

Source: Elaborated by the author.
Legend: Figures show the cumulative squared forecast errors (CSFE) of Svensson Exten-
sions relative to the DNS baseline model. Figure shows CSFEs for a 1- and 3-month fore-
cast horizon. The evaluation sample is from January 1994:01 through December 2019:12
(312 out-of-sample forecasts).
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Figure 9 ± Cumulative squared forecast errors (Svensson Extensions)

(a) Six-month ahead

(b) Twelve-month ahead

Source: Elaborated by the author.
Legend: Figures show the cumulative squared forecast errors (CSFE) of Svensson Exten-
sions relative to the DNS baseline model. Figure shows CSFEs for a 1- and 3-month fore-
cast horizon. The evaluation sample is from January 1994:01 through December 2019:12
(312 out-of-sample forecasts).
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Figure 10 ± Cumulative squared forecast errors (Forecasting Combination)

(a) One-month ahead

(b) Three-month ahead

Source: Elaborated by the author.
Legend: Figures show the cumulative squared forecast errors (CSFE) of Svensson Exten-
sions relative to the DNS baseline model. Figure shows CSFEs for a 1- and 3-month fore-
cast horizon. The evaluation sample is from January 1994:01 through December 2019:12
(300 out-of-sample forecasts).
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Figure 11 ± Cumulative squared forecast errors (Forecasting Combination)

(a) Six-month ahead

(b) Twelve-month ahead

Source: Elaborated by the author.
Legend: Figures show the cumulative squared forecast errors (CSFE) of Svensson Exten-
sions relative to the DNS baseline model. Figure shows CSFEs for a 1- and 3-month fore-
cast horizon. The evaluation sample is from January 1994:01 through December 2019:12
(300 out-of-sample forecasts).
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2.2.3.1 Economic Evaluation Results

In the previous subsection, we showed that alternative specifications of individ-

ual prediction models and forecast combination schemes could deliver more accurate

forecasts concerning the benchmark when considering statistical criteria. We observe,

however, that in some instances, the improvement in forecasting performance (as in-

dicated by lower forecasting errors) is small in magnitude. Therefore, a question that

remains unanswered is whether or not this statistical gain is also economically mean-

ingful.

Table 7 to Table 9 reports annualized certainty equivalent (CER) for a mean-

variance investor with δ = 0.1,1, and 5, who allocates among τ periods to maturity risky

bonds and one-month T-bill that pays the risky free rate using forecasts based on com-

petitors models in place of dynamic Nelson-Siegel baseline model forecasts. Therefore,

positive entries indicate that the alternative models perform better than DNS baseline

model. For analyzed scenarios, the CER values generally decrease with the bond ma-

turity. The highest CER values are generally obtained for the DNS-GARCH-Macro and

DNSS-TLV1 models. These models are the only individual ones that generate posi-

tive CER values for all risk levels and maturities considered for time forecast horizons

of 1- and 3-months. With δ = 5, the DNSS-TVL1 model is best for roughly half the

models for longest maturities (τ = 3, 5,10 years), while the DNS-GARCH-Macro model

accomplishes a similar level of performance for τ = 1. In summary, when we consider

individual models, the DNS-GARCH-Macro performs better 21 out of 48 times, while

the DNSS-TVL1 outperforms all other competitors by 22 out of 48 times.

There is a vast empirical literature with strong evidence of statistical predictability

of the yield curve, but there is so scarce evidence that the predictability of the interest

rates could be translated into economic utility gains in real time by investors. Compar-

ing our results with other studies, our finds are quite different from these reported by

Thornton and Valente (2012) and Sarno, Paul Schneider, and Wagner (2016). Specifi-

cally, these studies test for out of sample forecasting of bond excess returns and find

that predictive models based on forward rates do not generate significant economic

value to investors. In other words, the statistical evidence of out-of-sample predictability

fails to translate into an ability for investors to use bond excess returns forecasts in a

way that generates higher out-of-sample certainty equivalent than forecasts from the

benchmark model. More recently, Gargano, Pettenuzzo, and Timmermann (2019) and

Daniele Bianchi et al. (2021) report that models having bond return predictors based

on macro variables, forward rates or yields can generate significant economic value to

investors. As a matter of fact, our setup is different from these as they consider excess

returns, not yields.

We conclude that there is strong statistical and economic evidence that the

returns on 1-10 years bonds can be exploited using dynamic factor models proposed
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in the literature. Moreover, the best performing models allow for time-varying decay

parameter volatility dynamics.

Table 7-Table 9 also reports annualized certainty equivalent CER for 5 forecast

combination schemes. We observe that in the vast majority of the instances, the mean-

variance allocations obtained with forecast combinations achieve statistically higher

CER in comparison to the mean-variance allocations obtained with the individual mod-

els. Moreover, this result is robust to the value of the risk aversion coefficient and to the

maturity spectrum. Interestingly, the forecast combination best performance seems to

be concentrated in shortest forecast horizon, with positive CER values for all considered

risk aversion level and maturities. Notably, whereas we find that CER values decrease

with maturity for one-month ahead forecasting, when we look at the longer forecasting

horizons the CER values increase for the longest bond maturity.

One of the most important lessons from the economic evaluation of forecasts

is that the differences in performance in terms of CER are much more pronounced

that those based on statistical measures. In this sense, it seems to be much easier to

distinguish between ªgoodº and ªbadº predictions when looking at economic criteria. As

we noted earlier, differences in statistical performance measures are usually small in

magnitude. In contrast, differences in CER’s tend to be much more evident. In particular,

we observe that in several cases the CER’s obtained by some forecast combination

schemes is twice as the ones obtained by some individual models.
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Table 7 ± Performance evaluation for an Investor with Mean Variance Utility.

Models
1-month ahead 3-month ahead

1-Year 3-Year 5-Year 10-Year 1-Year 3-Year 5-Year 10-Year

Individual Models

DNS ± Macro 45.17 2.799 ±0.592 ±0.402 6.744 ±0.658 ±1.037 0.485
DNS ± GARCH 91.32 11.40 3.882 1.055 10.24 0.463 0.436 0.634
DNS ± GARCH ± Macro 146.59 24.94 9.585 4.547 9.488 1.448 0.210 0.844
DNS ± TVL ±133.50 ±3.87 ±1.511 ±2.841 ±40.35 ±2.393 ±0.719 ±0.711
DNS ± TVL ± Macro ±133.49 ±3.916 ±1.603 ±2.933 ±40.36 ±2.487 ±0.937 ±0.874
DNS ± GARCH ± TVL ±133.46 ±3.882 ±1.541 ±2.886 ±40.34 ±2.414 ±0.821 ±0.920
DNS ± GARCH ± TVL ± Macro ±133.40 ±3.916 ±1.603 ±2.933 ±40.35 ±2.487 ±0.937 ±0.874
DNSS 25.286 6.171 1.265 ±1.434 5.485 2.280 0.894 0.290
DNSS ± GARCH ±133.41 ±3.868 ±1.508 ±2.889 ±40.35 ±2.394 ±0.742 ±0.788
DNSS ± TVL1 122.33 25.96 7.013 ±1.031 7.821 6.329 3.626 1.714
DNSS ± TVL2 34.69 9.278 1.895 ±2.012 6.503 3.734 1.077 ±0.016
DNSS ± GARCH ± TVL1 ±133.43 ±3.872 ±1.529 ±2.949 ±40.35 ±2.409 ±0.819 ±0.964
DNSS ± GARCH ± TVL2 ±133.48 ±3.863 ±1.51 ±2.931 ±40.34 ±2.388 ±0.764 ±0.874

Forecast Combination

FC ± EW 445.26 67.55 34.06 17.04 ±1.498 2.822 4.308 3.82
FC ± RANK 447.73 66.88 34.02 16.56 ±1.705 2.684 3.660 3.397
FC ± MSE 443.96 67.94 34.51 17.00 ±1.487 3.16 4.524 3.767
FC ± RMSE 443.42 67.93 34.49 17.07 ±1.636 3.163 4.535 3.828
FC ± OLS 443.69 56.75 26.37 7.827 0.889 1.207 2.984 2.920

6-month ahead 12-month ahead

Individual Models

DNS ± Macro 1.034 ±1.083 ±0.901 1.577 ±0.141 ±1.416 ±0.249 4.534
DNS ± GARCH 1.664 ±1.262 0.156 1.082 0.064 ±1.440 ±0.831 1.250
DNS ± GARCH ± Macro 0.435 0.258 0.882 2.214 ±0.136 0.275 4.407 9.118
DNS ± TVL ±17.24 ±1.432 ±0.285 ±0.214 ±7.344 0.179 0.700 0.452
DNS ± TVL ± Macro ±17.23 ±1.557 ±0.602 ±0.281 ±7.320 0.107 0.433 1.142
DNS ± GARCH ± TVL ±17.22 ±1.459 ±0.484 ±0.741 ±7.292 0.216 0.494 ±0.34
DNS ± GARCH ± TVL ± Macro ±17.25 ±1.557 ±0.602 ±0.281 ±7.320 0.107 0.433 1.142
DNSS 1.197 0.653 0.695 1.281 0.034 0.274 0.772 1.859
DNSS ± GARCH ±17.22 ±1.426 ±0.334 ±0.347 ±7.297 0.264 0.724 0.248
DNSS ± TVL1 1.220 2.889 1.96 2.097 0.101 1.224 1.453 1.838
DNSS ± TVL2 1.615 1.781 1.005 0.827 0.018 0.514 0.588 0.809
DNSS ± GARCH ± TVL1 ±17.23 ±1.451 ±0.44 ±0.548 ±7.315 0.230 0.637 0.177
DNSS ± GARCH ± TVL2 ±17.22 ±1.435 ±0.394 ±0.514 ±7.317 0.211 0.617 0.084

Forecast Combination

FC ± EW ±4.404 6.807 18.15 13.36 ±0.852 10.95 20.68 27.80
FC ± RANK ±3.717 5.632 19.38 10.75 ±0.904 10.30 17.32 23.87
FC ± MSE ±4.312 7.489 18.61 12.15 ±0.859 11.41 21.08 26.25
FC ± RMSE ±4.359 7.565 18.72 12.60 ±0.858 11.56 21.40 26.51
FC ± OLS ±4.262 7.106 16.68 5.970 ±0.823 10.29 19.30 20.02

Source: Elaborated by the author.
Legend: This table presents the average utility gain (Δ) in the portfolio management fee

(in annualized percent return) that an investor with mean-variance preferences and risk

aversion coefficient of δ = 0.1 would be willing to pay to have access to the DNS forecasts.
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Table 8 ± Performance evaluation for an Investor with Mean Variance Utility.

Models
1-month ahead 3-month ahead

1-Year 3-Year 5-Year 10-Year 1-Year 3-Year 5-Year 10-Year

Individual Models

DNS ± Macro 4.517 0.280 ±0.059 ±0.04 0.674 ±0.066 ±0.104 0.048
DNS ± GARCH 9.132 1.139 0.388 0.105 1.024 0.046 0.044 0.063
DNS ± GARCH ± Macro 14.66 2.494 0.958 0.455 0.949 0.145 0.021 0.084
DNS ± TVL ±13.35 ±0.387 ±0.151 ±0.284 ±4.035 ±0.239 ±0.072 ±0.071
DNS ± TVL ± Macro ±13.35 ±0.392 ±0.16 ±0.293 ±4.036 ±0.249 ±0.094 ±0.087
DNS ± GARCH ± TVL ±13.34 ±0.388 ±0.154 ±0.289 ±4.034 ±0.241 ±0.082 ±0.092
DNS ± GARCH ± TVL ± Macro ±13.35 ±0.392 ±0.160 ±0.293 ±4.036 ±0.249 ±0.094 ±0.087
DNSS 2.529 0.617 0.126 ±0.143 0.548 0.228 0.089 0.029
DNSS ± GARCH ±13.35 ±0.387 ±0.151 ±0.289 ±4.035 ±0.239 ±0.074 ±0.079
DNSS ± TVL1 12.23 2.596 0.701 ±0.103 0.782 0.633 0.363 0.171
DNSS ± TVL2 3.469 0.928 0.189 ±0.201 0.650 0.373 0.108 ±0.002
DNSS ± GARCH ± TVL1 ±13.35 ±0.387 ±0.153 ±0.295 ±4.035 ±0.241 ±0.082 ±0.096
DNSS ± GARCH ± TVL2 ±13.34 ±0.386 ±0.151 ±0.293 ±4.034 ±0.239 ±0.076 ±0.087

Foreacst Combination

FC ± EW 44.53 6.755 3.406 1.704 ±0.150 0.282 0.431 0.382
FC ± RANK 44.77 6.688 3.402 1.656 ±0.171 0.268 0.366 0.34
FC ± MSE 44.40 6.794 3.451 1.700 ±0.149 0.316 0.452 0.377
FC ± RMSE 44.34 6.793 3.450 1.707 ±0.164 0.316 0.453 0.383
FC ± OLS 44.37 5.675 2.637 0.783 0.089 0.121 0.298 0.292

6-month ahead 12-month ahead

Individual Models

DNS ± Macro 0.103 ±0.108 ±0.09 0.158 ±0.014 ±0.142 ±0.025 0.453
DNS ± GARCH 0.166 ±0.126 0.016 0.108 0.006 ±0.144 ±0.083 0.125
DNS ± GARCH ± Macro 0.044 0.026 0.088 0.221 ±0.014 0.027 0.441 0.912
DNS ± TVL ±1.724 ±0.143 ±0.028 ±0.021 ±0.734 0.018 0.070 0.045
DNS ± TVL ± Macro ±1.723 ±0.156 ±0.06 ±0.028 ±0.732 0.011 0.043 0.114
DNS ± GARCH ± TVL ±1.721 ±0.146 ±0.048 ±0.074 ±0.729 0.022 0.049 ±0.034
DNS ± GARCH ± TVL ± Macro ±1.723 ±0.156 ±0.06 ±0.028 ±0.732 0.011 0.043 0.114
DNSS 0.120 0.065 0.069 0.128 0.003 0.027 0.077 0.186
DNSS ± GARCH ±1.723 ±0.143 ±0.033 ±0.035 ±0.73 0.026 0.072 0.025
DNSS ± TVL1 0.122 0.289 0.196 0.210 0.010 0.122 0.145 0.184
DNSS ± TVL2 0.161 0.178 0.100 0.083 0.002 0.051 0.059 0.081
DNSS ± GARCH ± TVL1 ±1.723 ±0.145 ±0.044 ±0.055 ±0.731 0.023 0.064 0.018
DNSS ± GARCH ± TVL2 ±1.722 ±0.143 ±0.039 ±0.051 ±0.732 0.021 0.062 0.008

Foreacst Combination

FC ± EW ±0.44 0.681 1.815 1.336 ±0.085 1.095 2.067 2.780
FC ± RANK ±0.372 0.563 1.938 1.075 ±0.090 1.03 1.732 2.387
FC ± MSE ±0.431 0.749 1.861 1.215 ±0.086 1.141 2.108 2.625
FC ± RMSE ±0.436 0.757 1.872 1.260 ±0.086 1.156 2.140 2.651
FC ± OLS ±0.426 0.711 1.668 0.597 ±0.082 1.029 1.930 2.002

Source: Elaborated by the author.
Legend: This table presents the average utility gain (Δ) in the portfolio management fee

(in annualized percent return) that an investor with mean-variance preferences and risk

aversion coefficient of δ = 1 would be willing to pay to have access to the DNS forecasts.
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Table 9 ± Performance evaluation for an Investor with Mean Variance Utility.

Models
1-month ahead 3-month ahead

1-Year 3-Year 5-Year 10-Year 1-Year 3-Year 5-Year 10-Year

Individual Models

DNS ± Macro 0.903 0.056 ±0.012 ±0.008 0.135 ±0.013 ±0.021 0.01
DNS ± GARCH 1.826 0.228 0.078 0.021 0.205 0.009 0.009 0.013
DNS ± GARCH ± Macro 2.932 0.499 0.192 0.091 0.19 0.029 0.004 0.017
DNS ± TVL ±2.670 ±0.077 ±0.03 ±0.057 ±0.807 ±0.048 ±0.014 ±0.014
DNS ± TVL ± Macro ±2.670 ±0.078 ±0.032 ±0.059 ±0.807 ±0.05 ±0.019 ±0.017
DNS ± GARCH ± TVL ±2.670 ±0.078 ±0.031 ±0.058 ±0.807 ±0.048 ±0.016 ±0.018
DNS ± GARCH ± TVL ± Macro ±2.670 ±0.078 ±0.032 ±0.059 ±0.807 ±0.05 ±0.019 ±0.017
DNSS 0.506 0.123 0.025 ±0.029 0.110 0.046 0.018 0.006
DNSS ± GARCH ±2.670 ±0.077 ±0.03 ±0.058 ±0.807 ±0.048 ±0.015 ±0.016
DNSS ± TVL1 2.447 0.519 0.140 ±0.021 0.156 0.127 0.073 0.034
DNSS ± TVL2 0.694 0.186 0.038 ±0.040 0.130 0.075 0.022 0.000
DNSS ± GARCH ± TVL1 ±2.670 ±0.077 ±0.031 ±0.059 ±0.807 ±0.048 ±0.016 ±0.019
DNSS ± GARCH ± TVL2 ±2.670 ±0.077 ±0.03 ±0.059 ±0.807 ±0.048 ±0.015 ±0.017

Foreacst Combination

FC ± EW 8.905 1.351 0.681 0.341 ±0.03 0.056 0.086 0.076
FC ± RANK 8.955 1.338 0.68 0.331 ±0.034 0.054 0.073 0.068
FC ± MSE 8.879 1.359 0.69 0.340 ±0.03 0.063 0.09 0.075
FC ± RMSE 8.868 1.359 0.69 0.341 ±0.033 0.063 0.091 0.077
FC ± OLS 8.874 1.135 0.527 0.157 0.018 0.024 0.060 0.058

6-month ahead 12-month ahead

Individual Models

DNS ± Macro 0.021 ±0.022 ±0.018 0.032 ±0.003 ±0.028 ±0.005 0.091
DNS ± GARCH 0.033 ±0.025 0.003 0.022 0.001 ±0.029 ±0.017 0.025
DNS ± GARCH ± Macro 0.009 0.005 0.018 0.044 ±0.003 0.005 0.088 0.182
DNS ± TVL ±0.345 ±0.029 ±0.006 ±0.004 ±0.147 0.004 0.014 0.009
DNS ± TVL ± Macro ±0.345 ±0.031 ±0.012 ±0.006 ±0.146 0.002 0.009 0.023
DNS ± GARCH ± TVL ±0.344 ±0.029 ±0.01 ±0.015 ±0.146 0.004 0.010 ±0.007
DNS ± GARCH ± TVL ± Macro ±0.345 ±0.031 ±0.012 ±0.006 ±0.146 0.002 0.009 0.023
DNSS 0.024 0.013 0.014 0.026 0.001 0.005 0.015 0.037
DNSS ± GARCH ±0.345 ±0.029 ±0.007 ±0.007 ±0.146 0.005 0.014 0.005
DNSS ± TVL1 0.024 0.058 0.039 0.042 0.002 0.024 0.029 0.037
DNSS ± TVL2 0.032 0.036 0.020 0.017 0.000 0.010 0.012 0.016
DNSS ± GARCH ± TVL1 ±0.345 ±0.029 ±0.009 ±0.011 ±0.146 0.005 0.013 0.004
DNSS ± GARCH ± TVL2 ±0.344 ±0.029 ±0.008 ±0.010 ±0.146 0.004 0.012 0.002

Foreacst Combination

FC ± EW ±0.088 0.136 0.363 0.267 ±0.017 0.219 0.413 0.556
FC ± RANK ±0.074 0.113 0.388 0.215 ±0.018 0.206 0.346 0.477
FC ± MSE ±0.086 0.15 0.372 0.243 ±0.017 0.228 0.422 0.525
FC ± RMSE ±0.087 0.151 0.374 0.252 ±0.017 0.231 0.428 0.530
FC ± OLS ±0.085 0.142 0.334 0.119 ±0.016 0.206 0.386 0.400

Source: Elaborated by the author.
Legend: This table presents the average utility gain (Δ) in the portfolio management fee

(in annualized percent return) that an investor with mean-variance preferences and risk

aversion coefficient of δ = 5 would be willing to pay to have access to the DNS forecasts.
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2.3 CONCLUDING REMARKS

This section summarises the findings and contributions made. The study ana-

lyzed the fit and forecasting of DNSS model extensions with time-varying parameters

in linear and nonlinear environments using the Kalman filter and Extended Kalman

filter, respectively. The extensions incorporate the time-varying volatility (ht ) and the

time-varying loading parameter (λt ). Specifically, DNS-GARCH and DNSS-GARCH

are extensions only with time-varying volatility, DNS-TVL, DNSS-TVL1, and DNSS-

TVL2 are extensions only with time-varying loading parameter; and DNS-GARCH-TVL,

DNSS-GARCH-TVL1, and DNSS-GARCH-TVL2 are extensions with ht and λp,t vary-

ing over time. The DNS and DNSS models are considered base models, and the other

models are considered competitors.

The models with time-varying volatility had better in-sample fit against the DNS

model according to RMSE, especially in short maturities. Competing models have

satisfactory results, despite adding more parameters (19 and more 32, respectively).

The extensions with time-varying loading had not better fit in all maturities. These

results might be due to these series approximations used in the extended Kalman filter,

which could be poor representations of nonlinear equations and probability distributions

involved in the process, as discussed in Wan and Van Der Merwe (2000) and Doucet,

De Freitas, and Gordon (2001). Considering this, DNS and DNSS models have new

extensions with better performance in fit and forecast the yield curve. Therefore, the

analysis results found clear support for the inclusion of time-varying volatility and time-

varying loading parameters.

The fit with the DNSS-GARCH and DNS-GARCH models outperform the DNS

benchmark model in terms of RMSE, reached a similar conclusion Koopman, Mallee,

and Van der Wel (2010) for time-varying volatility. The DNS-TVL, DNS-TVL-Macro,

DNS-GARCH-TVL, DNS-GARCH-TVL-Macro, and FC-OLS models had statistically

significant out-of-sample results according to RMSPE, Giacomini and White test and

Model Confidence set. One can note that FC-OLS also outperforms the benchmark

model across most maturities and horizons forecasts. In general, almost all Svensson

extensions models outperform the benchmark model in the maturity of 3 months for

1-month ahead forecasts. We found similar conclusions to economic performance;

however, modeling volatility added value to the extensions.

The limitations of the present studies naturally include both loading parameters

varying overtime in the DNSS model. Further research, such as the inclusion of forward-

looking macroeconomic factors, as per Vieira et al. (2017) and Fernandes & Vieira

(2019), can be implemented in this context of time-varying parameters. Other models

for capturing volatility dynamics, such as the GJR-GARCH in Glosten, Jagannathan,

and Runkle (1993) can be added to the DNS and DNSS models to investigate whether

there are improvements in fit and forecast. The state equation configuration, as in
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De Pooter (2007), can be changed with autoregressive diagonal parameter matrix or

random walk with diagonal equal to 1, decreasing the number of parameters in the

estimation.

The fit forecasting may have more robust results with the Iterated Kalman filter,

in which successive iterations can improve the linearization in the Taylor approximation.

Moreover, the implementation of another Kalman filter for nonlinear models, such as

the Unscented Kalman filter (UKF) and Extended Kalman filter with Singular Value

Decomposition (EKF) (see Julier and Uhlmann (1997), Bierman (1977), and YM Zhang,

GZ Dai, HC Zhang, et al. (1996)), can be used since one of the problems of EKF is the

first-order approximation and the calculation of the gradients, in addition to Bayesian

inference using the Monte Carlo Markov Chain (MCMC) method to capture stochastic

volatility and time-varying loading parameters.
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3 FORECASTING THE YIELD CURVES USING MACROECONOMICS EXPECTA-

TIONS AND TIME-VARYING VOLATILITY

The macro-term structure literature in the last two decades has established a

stronger link between macroeconomic information and yield curve dynamics. The re-

lated literature includes several papers.1 That advances shed light on two prominent

dynamic and latent factor models: affine no-arbitrage term structure and the Nelson

and Siegel (1987) models (henceforth DNS). Ang and Piazzesi (2003) incorporated

macroeconomic variables under no-arbitrage restrictions and showed that models with

macro factors inflation and real activity from principal components outperform mod-

els with only unobservable factors. Despite not considering out-of-sample forecasting,

Francis X Diebold, Glenn D Rudebusch, and Aruoba (2006) (henceforth DRA) find evi-

dence that real activity, inflation, and the monetary policy instrument have a statistically

significant effect on yields. Several academic papers also explore surveys and broad

macroeconomic information to link them with interest rates.2 Altavilla, Giacomini, and

Ragusa (2017), for instance, use relative entropy to tilt the segments of the yield curve

forecasts from the term structure models to match survey expectations and find that

anchoring at three-month horizon improves the accuracy of entire yield curve forecasts.

Moench (2008) jointly modeled the dynamics of macroeconomic variables and

government bond yields in a dynamic factor model. He finds that information embedded

in the macro factors helps provide out-of-sample yield forecasts that outperform the

benchmark at intermediate and long horizons and for short and medium-term maturities.

De Pooter, Ravazzolo, and Dick JC Van Dijk (2010) compare the forecast performance

of several individual term structure models, they suggest that adding macroeconomic

information improves interest rate forecasts, especially in and around recession periods.

Fernandes and Vieira (2019) reveals that employing financial and macro information

to build factors based on high-frequency forward-looking series in a factor-augmented

DNS model can improve the predictive performance.

The gains obtained by including macroeconomic information depend on how

macro information is incorporated in the model, as argued by Exterkate et al. (2013).

Also, they suggest it is useful only for forecasting yields of medium-term maturities

(between 1 and 5 years) and that factor-augmented methods perform well in relatively

volatile periods, including the crisis period in 2008-2009 when simpler models do not
1 Fleming and Remolona (2001), Piazzesi (2001, 2005), Qiang Dai and Philippon (2005), Francis X

Diebold, Piazzesi, and Glenn D Rudebusch (2005), Gallmeyer, Hollifield, and Zin (2005), Hördahl,
Tristani, and Vestin (2006), Ang, Piazzesi, and Wei (2006), Duffee (2006), Dewachter and Lyrio
(2006), Dewachter, Lyrio, and Maes (2006), Glenn D Rudebusch and Tao Wu (2007, 2008), Bikbov
and Chernov (2010), Bekaert, Cho, and Moreno (2010), Duffee (2011), Gürkaynak and Wright (2012)
and Joslin, Priebsch, and Kenneth J Singleton (2014).

2 Ludvigson and Serena Ng (2009), Piazzesi, Martin Schneider, et al. (2009), Stark et al. (2010), Kim
and Orphanides (2012), Chernov and Mueller (2012), Orphanides and Wei (2012), Ehling et al. (2018),
Chun (2011), Favero, Niu, and Sala (2012), Chun (2012), Dick Van Dijk et al. (2014) and Altavilla,
Giacomini, and Costantini (2014).
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suffice. Koopman and Wel (2013) also extending the class of dynamic factor yield

curve models perform an out-of-sample forecasting study, and their results suggest that

macroeconomic variables can lead to more accurate yield curve forecasts.3

The evidence exploring the links between macroeconomic variables and yield

curve modeling for Brazil is not a novelty, notwithstanding the scarcity. Almeida and

Faria (2014), for instance, evaluates the term structure forecasting as per Moench

(2008) using common factors from macroeconomic series from January 2000 to May

2012. Their results suggest better predictive performance compared to the usual bench-

marks but presented deterioration of the results with increased maturity. Also, by elimi-

nating the no-arbitrage restrictions, they produced superior forecasting results. Vieira,

Fernandes, and Chague (2017) show that the inclusion of forward-looking data set prin-

cipal components improves the predictive ability of the factor-augmented VAR method-

ology with the Nelson-Siegel in out-of-sample analysis to the Brazilian term structure of

interest rates. Andrade Alves, Abraham, and Marcio Poletti Laurini (2023) investigates

whether Brazilian Central Bank communication helps to forecast the yield curve. They

include sentiment variables as additional factors in the dynamic Nelson-Siegel term

structure model and found that these sentiment variables contain predictive information

for yield curve forecasting.

Although the research cited above illustrated different approaches and shreds of

evidence, they have some common features and hypotheses. One of them is constant

volatility for all maturities throughout the sampling period. The second one, which may

justify the first, is that the absence of time-varying volatility would be acceptable in

estimation for advanced economies compared with emerging economies. The last is a

need to evaluate forecasting results applied to an investment strategy. So, our goal is to

explore these gaps to investigate whether modeling time-varying volatility in macro-term

structure models to an emerging market improves forecasting performance and whether

these forecasts are worth it for an investor who cares about mean and variance.

Our analysis builds on contributions from Francis X Diebold, Glenn D Rudebusch,

and Aruoba (2006) who use macroeconomic variables, and Koopman, Mallee, and

Van der Wel (2010) that use a factor volatility structure for the latent variables with a

specification based on GARCH models4, both based on the Nelson and Siegel (1987)

model of the term structure. In an application to Brazilian data, this paper provides

evidence that adding backward- and forward-looking macroeconomic information to the
3 Poncela (2013) comments that what helps to increase the forecasting accuracy of the US term

structure of interest rates is to restrict the transition matrix φ of the VAR(1) model proposed for
the common factors. The forecasting results for the smooth dynamic factor model (SDFM) with and
without macro variables are very similar, meaning that simpler models for the common factors (in the
form of uncoupled factors) are preferred for forecasting.

4 Some ways to overcome this issue were proposed by Francesco Bianchi, Mumtaz, and Surico (2009),
Márcio Laurini and Hotta (2010), João F Caldeira, Márcio P Laurini, and Portugal (2010) and Hautsch
and Yang (2012).
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dynamic factor models with time-varying volatility can produce more accurate forecasts

for forecasts of government bond yields. Following the recent literature emphasizing

the interaction between the yield curve and other economic variables, we present

forecast results from different model specifications, considering both with and without

macroeconomic variables and time-varying volatility.

Although our analysis focuses on statistical measures of predictive accuracy, it

is essential to evaluate the extent to which the apparent gains in predictive accuracy

can be used in real-time to improve investors’ economic utility, that is, translate into

better investment performance. Given that statistical significance does not necessarily

imply economic significance, we follow what was done in Thornton and Valente (2012),

Sarno, Paul Schneider, and Wagner (2016), João F. Caldeira, Guilherme V. Moura,

and André A. P. Santos (2016), and Gargano, Pettenuzzo, and Timmermann (2019),

among others, and assess the economic value of the predictive power of interest rates

by investigating the utility gains accrued to investors who exploit the predictability of

yield curve relative to the benchmark model. Our results confirm and extend results

found in previous literature that add macroeconomic information.

3.1 DYNAMIC FACTOR MODELS FOR THE YIELD CURVE

Dynamic factor models play a major role in econometrics since allowing the

explanation of a large set of time series in terms of a small number of unobserved

common factors, see Jungbacker, Koopman, and Wel (2014). Many specifications for

the yield curve can be viewed as dynamic factor models with restrictions imposed on

factor loadings Joslin, Le, and Kenneth J. Singleton (2013). This section discusses the

fourteen individual yield curve models beginning with the three-factor DNS model.

3.1.1 Dynamic Nelson-Siegel model

Francis X Diebold and Li (2006) proposed to study and estimate the term struc-

ture of interest rates using the model proposed by Nelson and Siegel (1987), assuming

that the parameters vary over time. The following equation would describe the dynamics

of the term structure

yi ,t (τi ) = β1,t + β2,t

(
1 ± e±λτi

λτi

)
+ β3,t

(
1 ± e±λτi

λτi
± e±λτi

)
, (14)

where yit denotes the yield at time t of a security with maturity τi , for t = 1, . . . ,T and

i = 1, . . . ,N, and λ is a decay parameter that can capture a variety of shapes of the

yield curve through time, such as upward and downward sloping, and inversely humped.

The β1t ,β2t , and β3t are time-varying parameters, or the state variables, that can be

interpreted as the level, slope, and curvature latent components of the yield curve.
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The DNS is our two starting point to model and forecast the yield curve. The

dynamic movements or evolution of the yield curve factors, β1t ,β2t , and β3t , are as-

sumed to follow a vector autoregressive process of first order, which allows for casting

the yield curve latent factor model in state-space.

3.1.2 DNS in State-Space Representation

Francis X Diebold, Glenn D Rudebusch, and Aruoba (2006) note that DNS

framework can be represented as a state space model by treating βt = βj ,t , for j =

1, . . . , 3, as a latent vector. For these purpose, the general specification of the dynamic

factor model is given by:

yt = Λ(λt )βt + εt , εt ∼ N (0,Σε) , (15)

where Λ is a N × K matrix of factor loadings, βt is a K -dimensional stochastic process,

and εt is the N × 1 vector of measurement errors, whose covariance matrix given by

Σε. For any given, strictly positive λ1, the N × K factor loading matrix Λ(λt ) is given by:

Λij (λk ) =





1, j = 1

ψi2 =
1 ± z1i

λ1τi
, j = 2

ψi3 =
1 ± z1i

λ1τi
± z1i , j = 3,

where ψ1,i = exp(±λ1τi ).

The state-space framework is achieved by assuming that the dynamic move-

ments or evolution of the yield curve factors βt are modeled by the following first-order

vector-autoregressive process:

βt+1 = μ + Φ
(
βt ± μ

)
+ ηt , ηt ∼ N

(
0,Ση

)
, (16)

where μ is a K × 1 vector of constants, Φ a K × K coefficient matrix, and Ση is the

covariance matrix of the disturbance vector ηt , which is independent of the vector of

residuals εt , ∀t .

The variance-covariance matrix of the innovations to the measurement system

Σε is assumed to be diagonal. This assumption implies that deviations of the observed

yields of various maturities from those implied by the fitted yield curve are uncorrelated.

While the matrix of variance-covariance of the innovations to the transition system Ση is

unrestricted so that shocks to the three yield-curve factors are correlated.

3.1.3 The Nelson-Siegel Model with Macro Variables

The first extension of the DNS is the inclusion of macro-finance indicators in the

model. In addition to the yield data, we have p factors available representing macroe-

conomic information at the monthly frequency, covering the same period as the yield
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data. We include these factors in the state vector such that it becomes (β1,t , β2,t , β3,t ,

f1,t , . . . , fp,t )
′ = βFA

t . With the extension of the state factor, the size of the coefficient

matrix ΦFA in the state equation increases from 3 × 3 to (3 + p) × (3 + p). The resulting

state-space form is then given by

yt =
[
Λ(λ) 0N×p

]
︸ ︷︷ ︸

Λ(λ)FA

[
βt

ft

]

︸ ︷︷ ︸
βFA

t

+εt , εt ∼ N (0,Σε), (17)

[
βt+1
ft+1

]

︸ ︷︷ ︸
βFA

t+1

= (I3+p ± ΦFA)

[
μ

0p×1

]
+ ΦFA

[
βt

ft

]

︸ ︷︷ ︸
βFA

t

+ηFA
t , ηFA

t ∼ N (03+p,ΣFA
η ) (18)

for t = 1, . . . , T , where the dimensions of Φ, ηt+1, and Ση are increased as appropriate.

The coefficient matrix structure implies that the macro-factors affect the individual yields

through the Nelson-Siegel factors and feedback from the yields to the macro-factors.

Therefore, we estimated the DNS-Macro in that framework. The following section ex-

plains the algorithm used in the estimation procedure.

3.1.4 Estimation Procedure

Estimating the loading parameters λ in the measurement matrix in Eq. (15) is

the key to calculating the state-space model. Keeping λ’s fixed over the whole sample

period, the equations (15) and (16) characterize a linear and Gaussian state-space

model; thus, the Kalman filter can be used to obtain the likelihood function via the

prediction error decomposition. The estimation procedures are discussed below.

3.1.4.1 Estimation of Linear State Space Models Based on the Kalman Filter

Assuming that the decay parameters are constant, the measurement equation

becomes linear. The DNS model is treated as linear Gaussian state-space model in

this case. Given the state-space formulation of the dynamic factor model presented

in (15) and (16), the Kalman filter can be used to obtain the likelihood function via

the prediction error decomposition. An optimization algorithm is used to maximize the

likelihood function estimated by the Kalman filter, an iterative process of calculating and

updating the measurement and transition equations until an optimal point is obtained. In

short, the filter computes the optimal yield forecasts and the corresponding forecasting

errors, after which the Gaussian likelihood function is evaluated using the prediction-

error decomposition of the likelihood function for the forecasts and the states. It updates

the measurement and transition equations sequentially until an optimal yield forecast is

achieved.
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Consider the general state-space representation in (15) and (16). This state-

space model is estimated using a Kalman filter, a recursive formula running forwards

through time to estimate latent factors from past observations. The Kalman filter evalu-

ates the conditional means and variances of the latent factors βt+1 conditional on the

information available up to and including time t , denoted as b̂t+1|t and Pt+1|t respec-

tively. Using the transition equation in (16), the optimal predicted estimates is then given

by

b̂t+1|t = μ + Φ
(
bt |t ± μ

)
, (19)

Pt+1|t = ΦPtΦ
′ + Ση, (20)

where Pt+1|t is mean square error (MSE), or covariance, matrix. Hence, the optimal

filtered estimates b̂t+1 and Pt+1 is given by

b̂t+1 = b̂t+1|t + Pt+1|tΛ
′F±1

t+1|tvt+1, (21)

Pt+1 = Pt+1|t ± Pt+1|tΛ
′F±1

t+1|tPt+1|t , (22)

where vt+1 = yt+1 ± Λb̂t+1|t is the prediction error, Ft+1|t = ΛPt+1|tΛ
′ + Σε is the measure-

ment prediction variance, and Pt+1|tΛ
′F±1

t+1|t is called the Kalman gain.

The Kalman filter iterative process is initialized by using the unconditional mean

and variance of βt . For this purpose, we carry out the 2-step procedure as described in

Francis X Diebold and Li (2006). Specifically, the unconditional mean and covariance

matrix of the state vector is started as follows

b1|0 = E
[
βt

]
= μ and P1|0 = E

[
βtβ

′
t

]
= Σβ,

where the unconditional covariance matrix of the state vector is the solution of Σβ ±

ΦΣβΦ = Ση, which we can solve using the properties of the vectorization operator vec,

see Bent Jesper Christensen and Wel (2019).

Let the vector θ collects all unknown coefficients in the in the VAR parameter

matrix Φ, variance matrices Σε and Ση, and Λ and μ. To estimate the parameters vector

θ, the likelihood function is constructed from the update step by assuming that the

forecasting errors vt are Gaussian. The Gaussian log-likelihood function is computed

as

ℓ (θ) = ±
NT

2
log 2π ±

1
2

T∑

t=1

log
∣∣Ft

∣∣ ±
1
2

T∑

t=1

v ′
t F

±1
t vt . (23)

As a result, ℓ (θ) can be evaluated by Kalman filter for a given value of θ. By maximizing

this log-likelihood function with respect to the parameters (collective represented as

a vector θ) using a quasi-Newton optimization method results in maximum likelihood

estimates of the parameters. The algorithm BFGS is used to maximize the log-likelihood

function specified in (23) to obtain the estimates of the parameters θ.
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Under this framework, we estimated the linear models. In the next sections,

we extend the DNS model by considering conditional heteroskedasticity in the yield

processes and treating the loading parameters as a stochastically time-varying latent

factor.

3.1.4.2 Time-Varying Volatility

In the DNS model, we assume volatility is constant over time, which may be a

restrictive assumption since yield curves are related to trading in the financial markets,

then changes in volatility may occur. In general, heteroscedasticity is a constant problem

in economics, especially finance. The Kalman filter can not handle this problem; the

filter works under the hypothesis that the variance matrices are constant or at least

known. Assuming the GARCH structure, the matrix Σε is time-varying.

To allow for conditional heteroscedasticity in the yield processes, we modify the

DNS model by following Koopman, Mallee, and Van der Wel (2010), who propose cap-

turing yield curve volatility allowing for a common variance component jointly affecting

all individual yields. The common variance component is modeled as a generalized

autoregressive conditional heteroscedasticity (GARCH) process. Andrew C Harvey,

Ruiz, and Sentana (1992) already provides an extensive framework for incorporating

this GARCH(1,1) model into unobserved component time series models and how to

deal with corresponding implications for estimation procedures. This factor can be inter-

preted as the volatility of an underlying bond market portfolio according to Engle and

Victor K Ng (1993). The error in the measurement equation (15) is decomposed as

εt = Γεε
∗
t + ε

†
t , t = 1, . . . ,T , (24)

where Zε and ε
†
t are N × 1 vectors of loadings and noise component respectively, and

ε∗t is a scalar representing the common disturbance term. The error components are

mutually independent of each other and are distributed as follows

ε
∗
t ∼ NID(0,ht ), and ε

†
t ∼ NID(0,Σ†ε), t = 1, . . .T , (25)

where Σ
†
ε is a diagonal matrix and ht is the variance specified as a GARCH process,

according to Bollerslev (1986). In this case, we have

ht+1 = γ0 + γ1ε
∗2
t + γ2ht , t = 1, . . . , T , (26)

and the estimated parameters have the constraints γ0 > 0, 0 < γ1 < 0, 0 < γ2 < 0, h1 =

γ0(1 ± γ1 ± γ2)±1, and (γ1 + γ2) < 1. The weights vector Γε can be normalized to avoid

identification problems, such that Γ ′
ε
Γε = 1, but we follow Koopman, Mallee, and Van

der Wel (2010) and fixed γ0 at 1 × 10±4. The resulting time-varying variance matrix for

εt is given by

Σε(ht ) = htΓεΓ
′
ε

+ Σ
†
ε, (27)
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where Σε(ht ) depends on a single factor described by the GARCH process in (47). The

(unconditional) time-varying variance matrix of yt is Λ(λ)ΣβΛ(λ)′ + Σε(ht ), where Σβ is

the solution of Σβ ± ΦΣβΦ
′ = Ση. The GARCH factor ε∗t is incorporated in the measure

equation (15), which is treated as a latent factor. Hence, we include ε∗t in the state

vector alongside the DNS factors.

The resulting observation and state equations of the DNS models with time-

varying volatility can be rewritten into the state-space formulation as

yt =
[
Λ(λ) Γε

] [βt

ε∗t

]
+ ε

†
t , ε

†
t ∼ N (0,Σ†ε), (28)

[
βt+1
ε∗t+1

]
=

[
(Ij ± Φj )μ

0

][
Φj 0j×1

01×j 0

][
βt

ε∗t

]
+

[
ηt

ε∗t+1

]
,

[
ηt

ε∗t+1

]
∼ N

([
0

0

]
,

[
Ση 0j×1

01×j ht+1

])
,

(29)

for t = 1,. . . , T . The addition of GARCH disturbances and extra parameters requires

applying certain adjustments to the estimation procedure.

Since ht+1 in (47) is a function of its past values and unobserved values of ε∗t , it

is not possible to calculate the values required for ht+1 at time t . Specifically, Andrew C

Harvey, Ruiz, and Sentana (1992) explains that, although the models are not condition-

ally Gaussian because knowledge of past observations does not imply knowledge of

past GARCH errors, we may treat the models as though they are conditionally Gaussian.

Because of that, in the presence of GARCH errors, the Kalman filter can be regarded

as a quasi-optimal filter instead of optimal. Andrew C Harvey, Ruiz, and Sentana (1992)

propose to take the expectation of the latent term in the volatility specification such that

we obtain an estimate for ht+1, given by

ĥt+1|t = γ0 + γ1E
[
ε
∗2
t |It

]
+ γ2ĥt |t±1, t = 1, . . . , T , (30)

where It denotes all information available up to and including time t . To calculate the

expectation term we note that

ε
∗
t = E

[
εt±1|It

]
+
(
ε
∗
t ± E

[
ε
∗
t |It

])
.

By squaring and taking conditional expectations we can shown that

E
[
ε
∗
t

2 |It

]
= E

[
ε
∗
t |It

]2 + E
[(
ε
∗
t ± E

[
ε
∗
t |It

])2] ,

= ε̂
∗
t |t

2 + Pε

t |t , (31)

where ε̂∗
t |t is the last element of the filtered state bt |t and Pε

∗

t |t is the last diagonal element

of the Pt |t , the filtered variance of ε̂∗
t |t . Then, we substitute the expression E

[
ε∗t

2 |It

]

into (30) to obtain a prediction for the volatility component ht+1. Lastly, we insert the
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predicted value ht+1 in the position (j ,j) of the variance matrix Ση, corresponding to the

location of ε∗t in the state vector. With this framework we estimated the DNS-GARCH

and extensions

3.2 OUT-OF-SAMPLE ANALYSIS

In order to forecasts h-months ahead, the steps below follow after the filtering

step and estimation of the optimal set of parameters θ throughout the sample, see

Durbin and Koopman (2012) for more details. Therefore, we have the following

yt+1 = Λ(λ)E(βt+1|Yt ),

ȳt+1 = Λ(λ)b̄t+1, (32)

where b̄t+1 is the state vector and B̄t+1 the variance matrix of the states calculated by

the Kalman filter in ((19)) and ((20)). For other forecasts, the filter can be rewritten to h

= 2, . . . , H, as follows

b̄t+h = μ + Φ(b̄t+1 ± μ), (33)

B̄t+h = ΦB̄t+1Φ̂
′
+ Ση, (34)

ȳt+h = Λ(λ)b̄t+h, (35)

where the states vector and the variance matrix of the previous estimation states are

used to calculate the predictions in the step h+1. With the time-varying loading parame-

ter, the difference for predictions lies in the loading matrix that multiplies the state vector,

that is, Zt (at |t±1) instead of Λ(λ) in ((32)) and ((35)).

The out-of-sample predictions are assessed by the relative sizes of the root

mean square error (RMSPE) of all considered models relative to those from the DNS

baseline model. The RMSPE is calculated as follows:

R(h,τ) =

√
1
n

∑

t

[ŷt+h|t (τ) ± yt+h(τ)]2, (36)

where n is the number of forecasts previously defined in 312. The drawback of using

RMSPE is that this is a single statistic summarizing individual forecasting errors over

an entire sample. Although often used, they do not give any insight as to where in the

sample a particular model makes its largest and smallest forecast errors. Therefore,

we also graphically analyze the cumulative squared forecast errors (CSFE) proposed

by Welch and Goyal (2008). These cumulative prediction errors series clearly depicts

when a model outperforms or underperforms a given benchmark and could motivate

the use of adaptive forecast combination schemes. The CSFE is given by:

CSFEm(h,τ) =
∑

t

[(
ŷt+h|t ,bench(τ) ± yt+h(τ)

)2 ±
(
ŷt+h|t ,m(τ) ± yt+h(τ)

)2] . (37)
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In the case a model outperforms the benchmark, the CSFEm(h,τ) will be an increasing

series. If the benchmark produces more accurate forecasts, then CSFEm(h,τ) will tend

to be decreasing.

We use the Giacomini and White (2006) test to assess whether the forecasts of

two competing models are statistically different. The Giacomini-White (GW) test is a test

of conditional forecasting ability and is constructed under the assumption that forecasts

are generated using a moving data window. This is a test of equal forecasting accuracy

and as such can handle forecasts based on both nested and non-nested models,

regardless from the estimation procedures used in the derivation of the forecasts.

Lastly, we implement the Model Confidence Set (MCS), approach developed by

Peter R. Hansen, Lunde, and James M. Nason (2011b), which consist on a sequence

of tests which permits to construct a set of ’superior’ models, where the null hypothesis

of Equal Predictive Ability (EPA) is not rejected at a certain confidence level. The EPA

statistic tests is calculated for an arbitrary loss function, in our case we test squared

errors of DNS model against competing models.

3.2.1 The Economic Value of the Yield Curve Predictability

Although our analysis is focused on statistical measures of predictive accuracy,

it is important to evaluate the extent to which the apparent gains in predictive accuracy

can be used in real time to improve investors’ economic utility, that is, translate into

better investment performance. Given that statistical significance does not necessarily

imply economic significance, see Thornton and Valente (2012), Sarno, Paul Schneider,

and Wagner (2016), João F. Caldeira, Guilherme V. Moura, and André A. P. Santos

(2016) and Gargano, Pettenuzzo, and Timmermann (2019), we assess the economic

value of the predictive power of interest rates by investigating the utility gains accrued

to investors who exploit the predictability of yield curve relative to a no-predictability

alternative associated with the random-walk model.

In this section, we explore the empirical evidence linking statistical forecasting

evaluation with economic utility. To this purpose, we consider a mean-variance investor

with quadratic utility and relative risk aversion γ who allocates her portfolio on a risky

bond with τ periods to maturity versus a one-month T-bill that pays the risky free rate,

see Rapach and Zhou (2013). At the end of t , the investor allocates the following share

of her portfolio to bond with maturity τi during t + 1:

wi ,t =
(

1
γ

)
 r̂

(τi )
t+h

σ̂
2,(τi )
t+h


 (38)

where r̂
(τi )
t+h

= τiy
τi

t ± (τi ± h)ŷτi±h
t+h

is a return forecast for the bond with maturity τi in time

t and σ̂2
i

5 is a forecast of the variance of bond returns. Over the forecast evaluation
5 We follow the strategy of Rapach and Zhou (2013) and estimate the variance of bond returns using
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period, the investor realizes the average utility,

ν̂i = μ̂i ± 0.5γσ̂2
i , (39)

where μ̂i

(
σ̂2

i

)
is the sample mean (variance) of the portfolio formed on the basis of

r̂
(τi )
t+h

and σ̂2
i over the forecast evaluation period. The resulting sequences of allocation

weights are next used to calculate realized utilities. For each model m, the realized

utility are converted into equivalent returns CER, i.e., the difference between utility (39)

with model m and the DNS represents the utility gain accruing to using the competitors

models forecast of the bond yields in place of the DNS benchmark forecast in the asset

allocation decision. This utility gain (certainty equivalent return) can be interpreted as

the portfolio management fee that an investor would be willing to pay to have access to

the information in the model forecast relative to the information in the benchmark DNS

model.

3.3 DATA AND RESULTS

3.3.1 Data

This paper’s data set consists of monthly closing prices observed for yields of

future DI contracts. Based on the observed rates for the available maturities, the data

were converted to fixed maturities of 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 42, 48,

and 60 months through interpolations using cubic splines. The database contains the

maturities with the highest liquidity for January 2003 through December 2019 (T =

204 observations) and represents the most liquid DI contracts negotiated during the

analyzed period. We assess the model’s performance by splitting the sample into two

parts: the first includes 132 observations used to estimate all models’ parameters.

The second part is used to analyze the performance out-of-sample of bond portfolios

obtained from the model, with 72 observations.

Table 10 displays the descriptive statistics for the Brazilian interest rate curve. For

each 14-time series, we report the average, standard deviation, minimum, maximum,

and the last three columns containing sample autocorrelations at displacements of 1, 6,

and 12 months. Descriptive statistics presented in Table 10 seem to confirm key stylized

facts about yield curves: the sample average curve is upward-sloping and concave,

volatility decreases with maturity, and autocorrelations are very high and increase with

maturity. Also, there is a high persistence in the yields: the first-order autocorrelation

for all maturities is above 0.87 for each maturity.

Figure 12 presents a three-dimensional plot of the data set and illustrates how

yield levels and spreads vary substantially throughout the sample. Although the yield

series change heavily over time for each of the maturities, a strong common pattern

the sample variance computed from a one-year (252-obs) rolling window of historical returns.
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in the 14 series over time is apparent. The sample contains 204 monthly observations

with maturities of τ = 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 39, 48, and 60 months.

Table 10 ± Descriptive statistics for the term structure of interest rates

Maturity Mean Std.dev. Min Max Skewness Kurtosis ρ̂1 ρ̂6 ρ̂12
M3 12.19 4.52 4.30 27.50 0.90 4.11 0.96 0.70 0.48
M6 12.20 4.47 4.30 28.30 0.90 4.24 0.96 0.69 0.48
M9 12.24 4.42 4.40 29.00 0.92 4.56 0.95 0.68 0.48
M12 12.30 4.39 4.50 29.60 0.98 4.93 0.94 0.67 0.47
M15 12.38 4.34 4.50 30.40 1.06 5.39 0.94 0.65 0.46
M18 12.48 4.31 4.60 31.30 1.16 5.95 0.93 0.64 0.45
M21 12.57 4.28 4.70 32.30 1.29 6.64 0.93 0.62 0.44
M24 12.65 4.27 4.90 33.40 1.43 7.41 0.92 0.61 0.43
M27 12.74 4.25 5.00 34.30 1.57 8.15 0.92 0.60 0.42
M30 12.80 4.26 5.10 35.10 1.69 8.86 0.91 0.59 0.41
M36 12.92 4.28 5.30 36.70 1.95 10.35 0.90 0.57 0.40
M42 13.02 4.34 5.60 38.40 2.20 11.93 0.90 0.55 0.38
M48 13.10 4.38 5.70 39.40 2.37 12.96 0.89 0.54 0.38
M60 (Level) 13.18 4.35 6.00 39.40 2.44 13.12 0.89 0.55 0.38
Slope 0.99 2.10 -3.90 11.90 0.75 6.77 0.84 0.35 0.01
Curvature -0.24 1.17 -3.00 3.10 0.18 2.86 0.87 0.40 0.08

Source: Elaborated by the author.
Legend: The table reports summary statistics for Brazil’s yield curve from 2003 to 2019.
We examine monthly data constructed using the spline method. For each maturity, we
show mean, standard deviation, skewness, kurtosis, minimum, maximum, and three auto-
correlations coefficients, ρ̂1, ρ̂6, ρ̂12. Also, the table reports proxy estimates for the level,
slope, and curvature of the yield curve. The proxies are defined as follows: for level, the
highest maturity bond (60 months); for slope, the difference between the bond of 60 months
and the bond of 3 months; and for curvature, two times the bond of 18 months minus the
sum of a bond of 3 months and bond of 60 months.
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Figure 12 ± 3D Brazilian yield curves.
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Legend: The figure plots the evolution of the term structure of interest rates (based on

DI-future contracts) for the time horizon of 2003:01-2019:12. The sample consisted of the

monthly yields for the maturities of 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 42, 48 and 60

months.

We use three macroeconomic factors: the Selic interest rate is the monetary

policy interest rate, i.e., the key tool used by the Central Bank of Brazil (BCB) in im-

plementing the monetary policy. The Selic rate, or ’over Selic’, is the Brazilian federal

funds rate. Selic rate is the weighted average interest rate of the overnight interbank

operations, collateralized by federal government securities, carried out at the Special

System for Settlement and Custody (Selic).

Under the inflation-targeting regime, the BCB’s Monetary Policy Committee

(Copom) regularly sets the target for the Selic rate. Within the relevant horizon for

the monetary policy, Copom aims to keep the Extended National Consumer Price Index

(IPCA inflation rate) around the target and anchor inflation expectations. Accordingly,

the BCB performs daily open market operations to keep the effective Selic rate at the

target set by Copom.

Brazil has several price indexes that differ significantly in scope, depending on

their particular purposes. A price index can be designed to reflect the cost of living for

a specific group of households, but each household will have its price index based on

its consumer basket. In this sense, there can be different inflation perceptions between

what the citizen notices as inflation and what the variation of several price indexes

shows. The inflation index adopted is the IPCA, the reference for the Brazilian inflation-

targeting system. The BCB ensures that the IPCA’s annual inflation is centered at the
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inflation target set by the National Monetary Council (CMN). The IPCA is also the price

index of the National Treasury’s Notes Series B (NTN-B) (see Figure 13).

Figure 13 ± Interest and inflation rates and economic activity Index.
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Legend: This figure shows the SELIC interest rate, the Extended National Consumer Price

Index (IPCA), and the Index of Economic Activity of the Central Bank (IBC-Br) in solid lines

and his expectations (GDP for IBC-Br) of one year in dashed lines, respectively. The sample

contains 194 monthly observations from January 2003 through December 2019 for realized

series and from 2002 through 2018 for expectations.

The IBC-Br is an indicator of the monthly periodicity, which incorporates the path-

way of the variables considered as proxies to the development of the economic sectors

such as Agriculture and livestock, Industry, and Services. The well-known adherence of

the trajectory of the IBC-Br to the GDP behavior confirms the importance of monitoring

the indicator to understand better and anticipate the activity analysis.

We use market expectations factors from the BCB’s Market Expectations Sys-

tem, which monitors market expectations regarding the main macroeconomic variables,

providing important inputs for the monetary policy decision-making process.
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The BCB carries out the ªFocus Surveyº, compiling forecasts of about 140 banks,

asset managers, and other institutions (real sector companies, brokers, consultancies,

etc.). The Survey daily monitors the market expectations for several inflation indices,

the GDP and industrial production growth, the exchange rate, the Selic rate, fiscal indi-

cators, and external sector variables. Based on this Survey, the BCB compiles daily ±

and releases weekly ± the Focus Market Readout, which summarizes the statistics cal-

culated over the information collected. We use the IPCA inflation accumulated median

percent change, Over-Selic Target median percent p.y., and total GDP median percent

change over the next 12 months.

3.4 RESULTS

We use a rolling estimation window of 72 monthly observations (i.e., six years)

for computing our results. We produce forecasts for 1-month, 3-month, 6-month, and

12-month-ahead. We calculate the root mean square forecast error (RMSFE) to com-

pare the performance of out-of-sample forecasts. Moreover, the Giacomini and White

(2006) test (GW-test) assesses whether each model outperforms the DNS. Table 14

reports statistical measures of the out-of-sample forecasting performance at various

horizons. The first row of entries in each panel of the tables reports the value of RMSFE

(expressed in basis points) for the DNS model, while all other rows report statistics

relative to the DNS.

The statistical results for the out-of-sample forecasts in terms of RMSPE are

displayed in Table 14. This table is divided into four panels, each corresponding to a dif-

ferent forecast horizon (1, 3, 6, and 12 steps ahead). The first row in each panel contains

the RMSPE of the RW baseline forecasts, whereas the remaining rows report RMSPE

of a given model relative to those of the benchmark. Therefore any number below one

indicates outperformance relative to the benchmark, whereas any number larger than

one indicates underperformance. Asterisks to the right of entries suggest that, at the

10% level of significance, the null hypothesis of the GW test is not rejected. Bold type

indicates that the model belongs to M̂∗
0.75, the set of superior models containing the

best models with probability no less than 75%.
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Table 11 ± Relative Root Mean Squared Forecast Errors

Maturity
Model

M3 M6 M9 M12 M15 M18 M21 M24 M27 M30 M36 M42 M48 M60

Panel A: 1-month ahead forecasts

RW 41.26 39.69 42.97 47.79 51.04 54.47 56.47 57.74 58.80 60.69 61.63 63.07 64.53 66.56
DNS 0.933 0.992 0.999 0.995 0.982 0.972 0.971 0.963 0.960 0.959 0.967 0.966 0.972 0.971
DNS ± Macro 0.940 1.010 0.989 0.976 0.970 0.971 0.977 0.976 0.978 0.978 0.992 0.991 0.996 0.995

DNS ± MacroE1 0.881 0.892∗ 0.978 1.009 1.010 1.009 1.018 1.016 1.020 1.019 1.033 1.034 1.049 1.063
DNS ± GARCH 0.964 0.978 1.040 1.056 1.055 1.044 1.050 1.048 1.048 1.042 1.045 1.044 1.047 1.045
DNS ± GARCH ± Macro 0.940 1.010 0.989 0.976 0.970 0.971 0.976 0.976 0.978 0.978 0.992 0.991 0.996 0.995

DNS ± GARCH ± MacroE1 0.881 0.892∗ 0.979 1.009 1.010 1.009 1.018 1.016 1.020 1.019 1.034 1.034 1.049 1.063

Panel B: 3-months ahead forecasts

RW 90.21 90.41 94.52 99.69 103.88 108.63 111.44 112.61 114.64 117.00 120.34 121.97 124.01 125.32

DNS 0.824 0.892 0.934 0.959 0.953 0.941 0.932 0.925 0.914 0.905 0.887∗ 0.880∗ 0.878∗ 0.878∗

DNS ± Macro 0.795 0.877 0.913 0.938 0.937 0.935 0.936 0.936 0.932 0.928 0.920∗ 0.920∗ 0.922∗ 0.929∗

DNS ± MacroE1 0.668 0.800 0.877 0.93 0.942 0.945 0.953 0.955 0.951 0.947 0.934 0.935 0.939 0.952
DNS ± GARCH 0.818 0.929 0.977 0.997 0.999 0.993 0.992 0.996 0.992 0.985 0.972 0.974 0.974 0.981

DNS ± GARCH ± Macro 0.795 0.877 0.913 0.938 0.937 0.935 0.936 0.936 0.932 0.928 0.920∗ 0.920∗ 0.922∗ 0.929∗

DNS ± GARCH ± MacroE1 0.668 0.800∗ 0.877 0.930 0.942 0.945 0.953 0.956 0.951 0.947 0.934 0.935 0.939 0.952

Panel C: 6-months ahead forecasts

RW 168.06 166.53 167,34 169.92 172.07 174.62 176.65 177.09 178.23 180.37 184.08 186.97 187.46 188.79

DNS 0.760 0.835 0.892 0.922 0.926 0.919 0.907 0.896 0.884 0.868 0.834 0.815 0.806 0.790
DNS ± Macro 0.722 0.819 0.886 0.925 0.936 0.939 0.935 0.930 0.924 0.914 0.889 0.877 0.873 0.864
DNS ± MacroE1 0.669 0.782 0.858 0.906 0.922 0.928 0.929 0.926 0.923 0.914 0.885 0.873 0.867 0.86
DNS ± GARCH 0.849 0.916 0.949 0.966 0.97 0.965 0.958 0.956 0.948 0.936 0.911 0.903 0.899 0.895
DNS ± GARCH ± Macro 0.722 0.819 0.886 0.925 0.936 0.939 0.935 0.930 0.924 0.914 0.889 0.877 0.873 0.864
DNS ± GARCH ± MacroE1 0.669 0.782 0.858 0.906 0.923 0.928 0.929 0.926 0.923 0.914 0.885 0.873 0.867 0.860

Panel D: 12-months ahead forecasts

RW 296.67 294.33 290.84 286.67 281.94 277.09 272.77 269.43 267.11 265.25 264.99 263.29 262.12 260.45
DNS 0.823 0.875 0.914 0.940 0.951 0.954 0.951 0.941 0.929 0.918 0.884 0.861 0.844 0.819
DNS ± Macro 0.830 0.924 0.991 1.036 1.059 1.072 1.073 1.068 1.057 1,0479 1.014 0.990 0.973 0.944
DNS ± MacroE1 0.869 0.944 0.996 1.031 1.044 1.047 1.045 1.034 1.019 1.006 0.966 0.937 0.917 0.885
DNS ± GARCH 0.894 0.923 0.951 0.969 0.976 0.982 0.977 0.970 0.959 0.951 0.924 0.909 0.899 0.886
DNS ± GARCH ± Macro 0.830 0.924 0.991 1.036 1.059 1.072 1.074 1.068 1.057 1.048 1.014 0.990 0.973 0.944
DNS ± GARCH ± MacroE1 0.869 0.944 0.996 1.031 1.044 1.048 1.045 1.034 1.019 1.006 0.966 0.938 0.917 0.885

Source: Elaborated by the author.
Legend: The Table reports the relative root mean squared forecast errors (RMSFE) relative to the Random-Walk (RW) model for the 1-month,
3-months, 6-months, and 12-months forecast horizons. The evaluation sample is 2014:1 to 2019:12 (73 out-of-sample forecasts). The first line in
each panel of the Table reports the value of RMSFE (expressed in basis points) for the RW model, while all other lines report statistics relative to
the RW. The following model abbreviations are used in the Table: DNS-Macro model for realized macroeconomic factors, DNS-MacroE1 model for
market expectations of macroeconomic factors, and the last three models have time-varying volatility (-GARCH). Numbers smaller than one indicate
that models outperform the RW, whereas larger numbers indicate underperformance. The ∗ on the right of the cell entries indicates the level at which
the Giacomini and White (2006) test rejects the null of equal forecasting accuracy at least 10% level. Shaded values indicate that the model belongs
to Model Confidence Set (MCS) Peter R Hansen, Lunde, and James M Nason (2011a).
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To analyze the accuracy of the forecasts in different time intervals, we calculate

the difference in cumulative square forecast errors between each of the prediction

models and the RW along the out-of-sample evaluation period, see Figure 14 and

Figure 15.

Figure 14 ± Cumulative squared forecast errors (1- and 3-month ahead)
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(b) Six-month ahead
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Source: Elaborated by the author.

Legend: Figures show the cumulative squared forecast errors (CSFE) of Nelson-Siegel

Extensions relative to RW. Figure shows CSFEs for a 1- and 6-month forecast horizon.

The evaluation sample is from January 2014 through December 2019 (73 out-of-sample

forecasts).
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Figure 15 ± Cumulative squared forecast errors (6- and 12-month ahead)

(a) Twelve-month ahead
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(b) Six-month ahead
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Source: Elaborated by the author.

Legend: Figures show the cumulative squared forecast errors (CSFE) of Nelson-Siegel

Extensions relative to RW. Figure shows CSFEs for a 1- and 6-month forecast horizon.

The evaluation sample is from January 2014 through December 2019 (73 out-of-sample

forecasts).
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3.4.1 Economic Evaluation Results

Table 12 reports certainty equivalent (average utility gains in annualized percent

return) for a mean- variance investor with γ = {0.1, 0.5, 1, 5} who allocates among 1 to

5 years bonds and risk-free rate using forecasts based on competitors models in place

of DNS forecasts.

The performance of economic evaluation is evaluated in terms of average utility

gain (δ) excess return relative to the risk-free rate, and we consider the risk free rate to

be the interbank rate CDI.



C
h

a
p

te
r

3
.

F
o

re
c
a

s
tin

g
T

h
e

Y
ie

ld
C

u
rve

s
U

s
in

g
M

a
c
ro

e
c
o

n
o

m
ic

s
E

x
p

e
c
ta

tio
n

s
a

n
d

T
im

e
-V

a
ry

in
g

V
o

la
tility

70

Table 12 ± Out-of-sample economic evaluation of the yield curve forecasting

Model
γ = 0.1 γ = 0.5 γ = 1 γ = 5

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

horizon = 1-month ahead

DNS 197.70 2.403 ±0.279 ±0.901 ±0.643 50.16 1.843 0.516 0.138 0.072 31.72 1.773 0.615 0.268 0.161 16.97 1.717 0.695 0.372 0.233
DNS ± Macro 226.09 7.118 1.431 ±0.296 ±0.504 54.65 2.587 0.786 0.234 0.094 33.22 2.021 0.705 0.300 0.169 16.07 1.568 0.641 0.353 0.229
DNS ± MacroE1 213.77 8.047 3.377 1.657 1.286 52.70 2.734 1.093 0.542 0.377 32.57 2.07 0.808 0.403 0.263 16.46 1.538 0.579 0.291 0.172
DNS ± GARCH 449.44 34.41 12.92 6.247 3.711 89.91 6.896 2.600 1.267 0.760 44.97 3.457 1.31 0.644 0.391 9.019 0.706 0.278 0.146 0.095
DNS ± GARCH ± Macro 449.54 34.48 12.98 6.272 3.701 89.93 6.907 2.609 1.271 0.758 44.98 3.461 1.313 0.646 0.39 9.016 0.704 0.276 0.145 0.096
DNS ± GARCH ± MacroE1 449.41 34.40 12.92 6.258 3.726 89.91 6.895 2.601 1.268 0.762 44.97 3.457 1.310 0.645 0.391 9.020 0.706 0.278 0.146 0.095

horizon = 3-month ahead

DNS 38.21 7.202 4.000 2.762 2.271 13.71 2.135 1.054 0.673 0.512 10.65 1.501 0.685 0.412 0.292 8.204 0.995 0.391 0.203 0.116
DNS ± Macro 54.28 10.606 5.521 3.529 2.668 16.25 2.672 1.294 0.794 0.574 11.50 1.680 0.765 0.452 0.313 7.697 0.887 0.343 0.179 0.103
DNS ± MacroE1 47.23 10.08 5.635 3.899 3.122 15.14 2.590 1.312 0.852 0.646 11.13 1.653 0.771 0.472 0.337 7.919 0.904 0.339 0.167 0.089
DNS ± GARCH 181.10 23.13 9.533 5.22 3.377 36.28 4.649 1.927 1.061 0.686 18.17 2.34 0.977 0.541 0.350 3.692 0.492 0.216 0.125 0.081
DNS ± GARCH ± Macro 181.30 23.25 9.65 5.309 3.423 36.31 4.668 1.946 1.075 0.694 18.18 2.346 0.983 0.546 0.353 3.685 0.488 0.212 0.122 0.080
DNS ± GARCH ± MacroE1 181.04 23.17 9.609 5.326 3.497 36.27 4.656 1.939 1.078 0.705 18.17 2.342 0.981 0.547 0.356 3.694 0.490 0.214 0.122 0.077

horizon = 6-month ahead

DNS 12.64 14.251 8.698 6.667 5.362 5.676 2.809 1.637 1.218 0.953 4.806 1.379 0.754 0.537 0.402 4.110 0.235 0.048 ±0.008 ±0.039
DNS ± Macro 20.07 15.762 9.355 6.940 5.422 6.850 3.048 1.741 1.261 0.963 5.197 1.459 0.789 0.551 0.405 3.875 0.187 0.028 ±0.017 ±0.041
DNS ± MacroE1 17.61 15.845 9.206 6.741 5.257 6.461 3.061 1.717 1.23 0.937 5.067 1.463 0.781 0.541 0.397 3.952 0.185 0.032 ±0.010 ±0.036
DNS ± GARCH 85.76 13.442 6.843 4.953 4.096 17.22 2.682 1.344 0.947 0.753 8.654 1.337 0.657 0.447 0.335 1.800 0.261 0.107 0.046 0.001
DNS ± GARCH ± Macro 85.96 13.50 6.872 4.954 4.031 17.25 2.691 1.349 0.947 0.743 8.665 1.34 0.658 0.447 0.332 1.794 0.259 0.106 0.046 0.003
DNS ± GARCH ± MacroE1 85.69 13.576 7.027 5.190 4.380 17.21 2.703 1.373 0.985 0.798 8.650 1.344 0.666 0.459 0.350 1.803 0.256 0.101 0.039 ±0.008

horizon = 12-month ahead

DNS 120.24 55.49 21.874 13.88 10.21 23.99 9.131 3.294 2.034 1.480 11.969 3.337 0.972 0.553 0.388 2.344 ±1.298 ±0.886 ±0.632 ±0.485
DNS ± Macro 120.84 53.57 19.94 12.146 8.716 24.09 8.829 2.989 1.76 1.244 12.00 3.237 0.870 0.462 0.310 2.326 ±1.238 ±0.825 ±0.577 ±0.437
DNS ± MacroE1 120.72 54.56 20.53 12.469 8.892 24.07 8.985 3.081 1.811 1.272 11.99 3.288 0.901 0.479 0.319 2.329 ±1.269 ±0.844 ±0.587 ±0.443
DNS ± GARCH 118.88 14.42 3.330 4.670 6.527 23.78 2.648 0.366 0.579 0.898 11.89 1.176 ±0.004 0.068 0.195 2.387 ±0.001 ±0.301 ±0.341 ±0.368
DNS ± GARCH ± Macro 119.27 14.72 3.402 4.635 6.398 23.85 2.695 0.377 0.574 0.878 11.92 1.192 ±0.001 0.066 0.188 2.375 ±0.011 ±0.303 ±0.340 ±0.364
DNS ± GARCH ± MacroE1 118.99 15.36 4.483 6.039 8.130 23.80 2.796 0.548 0.796 1.151 11.90 1.225 0.056 0.140 0.279 2.384 ±0.031 ±0.337 ±0.384 ±0.419

Source: Elaborated by the author.
Legend: This table reports the average utility gain (δ) of the portfolio management fee (in annualized percent return) that an investor with mean-
variance preferences and risk aversion coefficient of 0.1 to 5 would be willing to pay to have access to the forecasting method relative to the DNS
benchmark forecast. The following model abbreviations are used in the table: DNS-Macro model for realized macroeconomic factors, DNS-MacroE1
model for market expectations of macroeconomic factors, and the last three models have time-varying volatility (-GARCH). The sample started on
January 2003, and the evaluation period is from January 2013 to December 2019.
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3.5 CONCLUDING REMARKS

This research aims to explore forward-looking macroeconomic data in the factor-

augmented DNS model to evaluate forecastability performance. Also, we include time-

varying volatility to evaluate the out-of-sample performance. We assess the forecasta-

bility of the DNS with time-varying volatility and forward-looking macroeconomic factors.

Our first goal was to run the DNS with observed macroeconomic factors such as inter-

est rate, economic activity, and inflation rate. Also, evaluate the DNS-GARCH model in

the same manner. Our second goal was to run the initial framework, including forward-

looking macroeconomic factors, then examine out-of-sample results against the DNS

benchmark model.

The results in statistical analysis suggest the DNS with macroeconomics expec-

tations outperforms the benchmark model in short maturities and the first three horizons

of forecasts(1 month, 3 months, and 6 months). The DNS with macroeconomic expec-

tations and time-varying volatility also had similar results. The economic evaluations

s, on the other hand, indicate that time-varying volatility improved the results. In other

words, the volatility aggregates value to an investor, even in high-risk aversion.
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4 THE TREND IS YOUR FRIEND: DIRECTIONAL INTEREST RATE FORECASTS

WITH THE DNS MODEL

Interest rate forecasts are a fundamental ingredient to guide monetary policy

decision-making and support investors in fixed-income portfolio allocation and pricing

derivatives. In this context, the dynamic version of the Nelson and Siegel (1987) three-

factor model (hereafter DNS) proposed in Francis X Diebold and Li (2006) and revisited

in Koopman, Mallee, and Van der Wel (2010) has become a major workhorse and a

widely used tool in the financial community as it can deliver good in-sample fit and

accurate out-of-sample forecasts, see BIS (2005) and ECB (2018). However, the liter-

ature has mainly focused on using the DNS model’s variants to obtain point forecasts,

see De Pooter (2007), Francis X Diebold, Li, and Yue (2008), Yu and Salyards (2009),

De Pooter, Ravazzolo, and Dick JC Van Dijk (2010), Jens HE Christensen, Francis X

Diebold, and Glenn D Rudebusch (2011), Márcio Laurini and Hotta (2010) and João F

Caldeira, Guilherme V Moura, and André AP Santos (2016), therefore neglecting the

ability of this specification to generate direction-of-change forecasts.

In this paper, we use the directional forecasting framework developed by Peter F

Christoffersen and Francis X Diebold (2006) and Peter Christoffersen et al. (2006) to

show how to employ the conditional moments extracted from a heteroskedastic DNS

model to obtain directional interest rate forecasts. We find that the directional forecasts

obtained for a large panel of interest rates outperform those obtained with a baseline

non-parametric specification and a logistic model when information about the skewness

and kurtosis of the term structure is taken into account.

During the last two decades, many works have been devoted to developing

alternative modeling and forecasting methodologies for the term structure. One of the

most prominent methods consists of modeling the dynamic evolution of the yield curve

using the three-factor model proposed by Nelson and Siegel (1987), according to which

the factors represent the level, slope, and curvature of the curve and depend on a

single exponential decay rate parameter. Assuming that the exponential decay rate

is known and constant over time, Francis X Diebold and Li (2006) propose a simple

two-step estimation procedure. Koopman, Mallee, and Van der Wel (2010) extend it in

two directions. First, they suggest allowing the discount parameter to evolve over time;

see Márcio Laurini and Hotta (2010) and Hevia et al. (2015) for another proposal in

which the discount parameter is allowed to change over time. Second, they specify a

common volatility factor that a GARCH model represents. A common denominator to

these studies is that allowing for time-varying parameters and time-varying volatilities

leads to improved performance regarding in-sample fit and out-of-sample forecasts.

The accuracy of yield curve forecasts, not only of magnitude but specifically of the

direction of change in financial assets, emerges as a research source in the prediction

field. Mark Greer (2003), for instance, after conducting tests on the directional accuracy
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of long-term interest rates forecasts published on The Wall Street Journal, suggests

these predictions, in general, could be performed with the same precision as flipping a

coin, even if there was a combination of the best predictions, see Mark R Greer (2005).

On the other hand, authors such as Peter F Christoffersen and Francis X Diebold

(2006) found that stock returns’ volatility forecasts generated a significant forecastabil-

ity of positive return probability. In other words, volatility predictability produces pre-

dictability in the direction of stock returns. They also suggest it would be more likely

to find forecastability in intermediate return horizons such as monthly frequency. The

authors argued the results are significant to academic studies and by market practi-

tioners, who usually use timing strategies linked to volatility movements, see Rattray

and Balasubramanian (2003). Peter F Christoffersen and Francis X Diebold (2006) and

Peter Christoffersen et al. (2006) were the first to thoroughly investigate the conditional

volatility dynamics and the positive return probability in financial assets forecasts.

We aim to explore the literature gap on forecasting the yield curves using condi-

tional means and conditional volatility forecasts as inputs to predict the return direction

in the fixed income. The results suggest that incorporating information about the skew-

ness and kurtosis of yield curve returns leads to directional forecasts that outperform

the benchmark model, mainly for long maturities and short-term forecasts. The ingre-

dients for this research are the results presented in the first and second sections. The

following section introduces the method.

4.1 THE DYNAMIC NELSON-SIEGEL MODEL

The factors model for the yield curve can represent the forms usually associated

with the yield curve, that is, monotonic, curved, and S. Francis X Diebold and Li (2006)

modified the Nelson and Siegel (1987) model by incorporating time-varying factors in

the following way1

yi ,t (τi ) = β1,t + β2,t

(
1 ± e±λτi

λτi

)
+ β3,t

(
1 ± e±λτi

λτi
± e±λτi

)
, (40)

where yt denotes the yields at time t and τi the maturity of the bond to {t}Ti=1 and {i}Ni=1,

respectively. The parameter λ determines the exponential decay rate, i.e., small λ values

results in slow decay and can better fit the curve for longer maturities; on the other hand,

large λ values produce rapid decay and can better fit the curve for shorter maturities.

In the Francis X Diebold and Li (2006) model, λ is kept fixed while parameters

β1,t , β2,t , β3,t are estimated by ordinary least squares for each period. Cross-section

estimates can be obtained whenever there are sufficient interest rates for different
1 The Equation (40) corresponds to equation (2) in the paper of Nelson and Siegel (1987). According

to Francis X Diebold, Glenn D Rudebusch, and Aruoba (2006), the following notations are adopted: τ
for maturity instead of m, and the loading parameter λ equal to 1

τ .
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maturities in time. In Francis X Diebold, Glenn D Rudebusch, and Aruoba (2006), on

the other hand, λ is estimated. In the following Section, I presented the models through

the state-space representation.

4.1.1 The Dynamics of the Latent Factors

Francis X Diebold, Glenn D Rudebusch, and Aruoba (2006) advanced by propos-

ing that the NS model framework can be represented as a state-space model by treating

vector βt = (β1,t ,β2,t ,β3,t )
′ as a latent vector. The model equation can be written as fol-

lows:



yt (τ1)
...

yt (τN )


 =




1 x1,2 x1,3
...

...
...

1 xN,2 xN,3







β1,t

β2,t

β3,t


 +




εt (τ1)
...

εt (τN )


 , (41)

where

xi ,2 =
1 ± zi

λτi
, xi ,3 =

1 ± zi

λτi
± zi ,

zi = exp(±λτi ).

The observation equation in Equation (41) relates the observed interest rates of the

i = 1, . . . ,N maturities with the latent factors βt .

The vector autoregressive of order 1 of the factors that govern the dynamics of

the state equation is defined as follows:




β1,t+1

β2,t+1

β3,t+1


 =




μ1

μ2

μ3


 +




φ1,1 φ1,2 φ1,3

φ2,1 φ2,2 φ2,3

φ3,1 φ3,2 φ3,3







β1,t ± μ1

β2,t ± μ2

β3,t ± μ3


 +




η1,t

η2,t

η3,t


 , (42)

in matrix notation, the Equation (41) and Equation (42) can be rewritten as follows

yt = Λ(λ)βt + εt , (43)

βt+1 = μ + Φ(βt ± μ) + ηt , (44)

where yt is a vector N × 1, Λ(λ) is a loading matrix N × 3, Φ is a VAR(1) parameters

matrix 3 × 1, βt and μ are vectors 3 × 1. We assumed that ηt and εt are orthogonal to

each other.

The variance matrix of the observation errors Σε is diagonal. This assumption

implies that interest rate deviations for different maturities are not correlated, which

facilitates model estimation by reducing the number of parameters. On the other hand,

the assumption that the state errors variance matrix Ση is unrestricted allows the shocks

in the three factors to be correlated.



Chapter 4. The trend is your friend: Directional interest rate forecasts with the DNS model 75

We have the representation of the DNS model in the state-space form. In this

study, we used the Kalman filter. This algorithm is a recursive procedure to calculate

the optimal estimator of the state vector t , based on the available information at time t ,

and make forecasts for the state vector at t + 1 based on t . In the following sections, we

introduced the time-varying volatility extension.

4.1.2 Time-Varying Volatility

In the DNS model, we assume that volatility is constant, which may be a flexible

assumption since yield curves are related to trading in the financial markets. Thus,

volatility in these markets may change over time; in general, heteroscedasticity is a

constant problem in economics, especially in finance. On the other hand, the Kalman

filter can not solve this problem; that is, the filter works under the hypothesis that the

variance and covariance matrix is constant or at least known. Assuming the GARCH

structure, the array is unknown; in other words, it is time-varying.

Therefore, this section presents how to modify the Kalman filter to incorporate

the GARCH approach to perform parameter and volatility estimations in a single step.

Therefore, the DNS model class has a common volatility component modeled by a

univariate GARCH process according to Andrew C Harvey, Ruiz, and Sentana (1992)

and Koopman, Mallee, and Van der Wel (2010). The error vector, in the Equation (43),

is decomposed as follows:

εt = Γεε
⋆

t + ε
+
t , (45)

where Γε and ε
+
t are defined as a vector of weights and an error vector of dimensions

N×1, respectively, and ε⋆t a scalar error factor. The error components are independent

of each other as follows

ε
⋆

t ∼ N (0,ht ), ε
+
t ∼ N (0,Σ+

ε
), t = 1, ...T , (46)

where Σ+
ε

is a diagonal matrix and ht is the variance specified as a GARCH process,

according to Bollerslev (1986). In this case, I have the following

ht+1 = γ0 + γ1ε
⋆2
t + γ2ht , t = 1, ..., T , (47)

and the estimated parameters have the constraints γ0 > 0, 0 < γ1 < 0, 0 < γ2 < 0,

h1 = γ0(1 ± γ1 ± γ2)±1 and (γ1 + γ2) < 1. The vector of weights Γε can be normalized

to avoid identification problems, such that Γ ′
ε
Γε = 1, however, this restriction can be

replaced by γ0 fixed at 1 ×10±4. This last restriction, therefore, I used in estimation.

The variance matrix of εt in Equation (47) is time-varying as follows

Σε(ht ) = htΓεΓ
′
ε

+ Σ+
ε
, (48)
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where it depends on a single factor described by the GARCH process in Equation (47).

The unknown parameters in the GARCH specification, γ = (γ1, γ2, Γ ′
ε
), are grouped in

the parameter vector θ.

The state in Equation (44) has one more unobservable component, i.e., ε⋆t is

now calculated as a latent state. The state-space representation of the observation

Equation (43) and the state Equation (44) have some modifications as follows

yt =
[
Λ(λ) Γε

]
︸ ︷︷ ︸

Λ⋆(λ)

[
βt

ε⋆t

]

︸ ︷︷ ︸
β⋆

t

+ε+
t , ε

+
t ∼ N (0,Σ+

ε
), (49)

[
βt+1
ε⋆t+1

]

︸ ︷︷ ︸
β⋆

t+1

=

[
(Ij ± Φj )μ

0

]

︸ ︷︷ ︸
μ⋆

[
Φj 0j×1

01×j 0

]

︸ ︷︷ ︸
Φ⋆

[
βt

ε⋆t

]

︸ ︷︷ ︸
β⋆

t

+

[
ηt

ε⋆t+1

]

︸ ︷︷ ︸
η⋆

t

, (50)

[
ηt

ε⋆t+1

]

︸ ︷︷ ︸
η⋆

t

∼ N

([
0

0

]
,

[
Ση 0j×1

01×j ht+1

]

︸ ︷︷ ︸
Σ⋆

η

)
, (51)

to t = 1, ..., T e j = 1, 2, 3 refer to the DNS-GARCH model. Since ht+1 in Equation (47) is

a function to its past values and unobserved values of ε⋆t , it is not possible to calculate

the values required for ht+1 in time t. Andrew C Harvey, Ruiz, and Sentana (1992)

propose to replace the square of the error term in Equation (47) by their expected value.

Therefore, ht+1 can be replaced by its estimate based on observations y1, ..., yt as

follows

ĥt+1|t = γ0 + γ1E[ε⋆2
t |Yt ] + γ2ĥt |t±1, t = 1, ..., T , (52)

in which the expected value can be calculated by the recursions of the Kalman filter

using the increased state vector with ε⋆t filtered in the last element of vector bt |t , in the

Equation (56). The expected value follows

E[ε⋆2
t |Yt ] = ε̂

⋆2
t |t + Bε

t |t , (53)

where ε̂t |t is the filtered estimate of εt , and Bε

t |t is the variance of εt , which are computed

for all states during recursions of the Kalman filter, given the observations until period

t. Because of the substitution of ĥt |t±1 in ht+1 in the Equation (51), which in the filter

is inserted into the (j , j) element of the Σ⋆

η matrix in the Equation (57), the filter and

likelihood estimates are sub-optimal, see Andrew C Harvey, Ruiz, and Sentana (1992)

for more details.

Therefore the (unconditional) time-varying variance matrix of yt is Λ⋆(λ)Σ⋆

βΛ⋆(λ)′+

Σ⋆

ε
(ht ), where Σ⋆

β is the solution of Σ⋆

β ± Φ⋆Σ⋆

βΦ⋆′ = Σ⋆

η. To estimate the DNS-GARCH-

Macro model, the Equation (49), Equation (50), and Equation (51) are increased as

appropriate. In the following Section, we presented the procedure for the estimation.
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4.2 ESTIMATION BASED ON THE KALMAN FILTER

The model equations of the Equation (43) and Equation (44) is linear and Gaus-

sian. The estimation is therefore based on the Kalman filter. This recursive algorithm

uses the data information at time t to construct state estimates at time t + 1. The

proposed estimation method combines the filter with the Maximum Likelihood (ML)

estimation.

The procedure for calculating latent values and unknown parameters is recursive;

we started the process by making an initial assumption about the unknown parameters

θ1 to execute the algorithm. The prediction error vector is calculated, vt , and the predic-

tion error matrix, Ft , in the Equation (54) and Equation (55), respectively, to analyze the

log-likelihood in Equation (60). Updating the state vector bt |t and the variance matrix

Bt |t , in the Equation (56) and Equation (57), is done in the filtering step in t given the

set of information up to t . Therefore, consider the model defined in Equation (43) and

Equation (44), and define bt |s as minimum mean squared error linear estimators of βt

given yt , ..., ys to s = t ± 1, t in the following recursion:

vt = yt ± Λ(λ)bt |t±1, (54)

Ft = Λ(λ)Bt |t±1Λ(λ)′ + Σε, (55)

bt |t = bt |t±1 + Bt |t±1Λ(λ)′F±1
t vt , (56)

Bt |t = Bt |t±1 ± Bt |t±1Λ(λ)′F±1
t Λ(λ)Bt |t±1, (57)

bt+1|t = μ + Φ(bt |t ± μ), (58)

Bt+1|t = ΦBt |tΦ
′ + Ση, (59)

where the parameters in the coefficient matrix of the VAR, Φ, the matrices of variances

Σε and Ση, the mean vector μ and the parameter λ are treated as unknown coefficients

and grouped into the parameter vector θ, as previously mentioned. The forecast of

bt+1|t and Bt+1|t , that is, a step forward is calculated in the filter prediction step in

Equation (58) and Equation (59). The results of the prediction error vector, vt , and the

prediction error matrix, Ft , are again used as inputs into the log-likelihood function so

that the estimate can be conducted to obtain new estimates of the unknown parameters

θ2. These steps are then iterated until the parameter values of the θMV are found, for

which the log-likelihood function is maximized.

The estimation of θ is based on the numerical maximization of the log-likelihood

function via the prediction error decomposition, see Andrew C Harvey (1989). Therefore,

log-likelihood follows by form:

log L(Yn) = ±
NT

2
log 2π ±

1
2

T∑

t=1

(log |Ft | + v′tF
±1
t vt ), (60)

where vt and Ft are calculated recursively by the Kalman filter Equation (54) to Equa-

tion (59) for a given set of θ, such that log L(Yn) is computed using the filter result.
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The calculations required for implementation were made through the R language main-

tained by the R Core Team (2018), and the minimization of the log-likelihood function

was obtained by the nlminb optimization function.

The initial parameters were calculated in the estimation in two steps according

to Francis X Diebold and Li (2006), namely, μ, Σε diagonal matrices, Ση upper triangular

matrix, and Φ VAR parameters matrix. According to Koopman, Mallee, and Van der Wel

(2010) and Bent Jesper Christensen, Wel, et al. (2010), b1|0 and Σβ of the model can

be calculated as follows, according to the distribution of βj ,1, given by

β1 ∼ N (μ,Σβ), (61)

in which the unconditional covariance matrix of the state vector, Σβ, can be started as

follows

Σβ ± ΦΣβΦ′ = Ση,

vec(Σβ) ± vec(ΦΣβΦ′) = vec(Ση),

Ij2 · vec(Σβ) ± (Φ ⊗ Φ) · vec(Σβ) = vec(Ση),

[Ij2 ± (Φ ⊗ Φ)] · vec(Σβ) = vec(Ση),

vec(Σβ) = [Ij2 ± (Φ ⊗ Φ)]±1 · vec(Ση), (62)

then, under the assumption of a stationary process, the initial value of the state vector

is equal to the unconditional mean, β1 = μ, and the initial value of the unconditional

covariance matrix Σβ is equal to Equation (62).

The DNS-GARCH model generates forecasts of yields and their volatilities. Thus,

to map interest rates returns, we calculate r̂
(τi )
t+h

= τiy
τi

t ± (τi ± h)ŷτi±h
t+h

where is a return

forecast for the bond with maturity τi in time t and σ̂2
i is a forecast of the variance

of bond returns2 of bond returns to models with constant volatility and Σrt |t±1 = τ′τ ⊗

[Λ(λ)ΣβΛ(λ)′ + Σε (ht )] to time-varying volatility.

4.3 DIRECTION-OF-CHANGE MODELS

Let Rt be a series of returns and Ωt be the information set available at time t .

Pr [Rt > 0] is the probability of a positive return at time t . The conditional mean and

variance are denoted, respectively, as μt+1|t = E
[
Rt+1 | Ωt

]
and σ2

t+1|t = Var
[
Rt+1 | Ωt

]
.

The return series is said to display conditional mean predictability if μt+1|t varies with Ωt ;

conditional variance predictability is defined similarly. If Pr [Rt > 0] exhibits conditional

dependence, i.e., Pr
[
Rt+1 > 0 | Ωt

]
varies with Ωt , then we say the return series is sign

predictable (or the price series is direction-of-change predictable).
2 We follow the strategy of Rapach and Zhou (2013) and estimate the variance of bond returns using

the sample variance computed from a one-year (252-obs) rolling window of historical returns.
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Suppose μt+1|t = μ for all t and σ2
t+1|t varies with t in a predictable manner.

Denoting D(μ,σ2) as a generic distribution dependent only on its mean μ and variance

σ2, assume

Rt+1 | Ωt ∼ D
(
μ,σ2

t+1|t

)
.

Then the conditional probability of a positive return is

Pr (Rt+1 > 0 | Ωt ) = 1 ± Pr (Rt+1 ≤ 0 | Ωt ) ,

= 1 ± Pr
(

Rt+1 ± μ

σt+1|t
≤

±μ
σt+1|t

)
,

= 1 ± F

(
±μ

σt+1|t

)
, (63)

where F is the distribution function of the ªstandardized" return (Rt+1|t ± μ)/σt+1|t ). If

the conditional volatility is predictable, then the sign of the return is predictable even if

the conditional mean is unpredictable, provided μ ̸= 0. Note Also, if the distribution is

asymmetric, the sign can be predictable even if the mean is zero: time-varying skewness

can be driving sign prediction in this case.

Interaction between volatility and higher-ordered conditional moments can simi-

larly affect the potency of conditional volatility as a predictor of return signs. We follow

Peter F Christoffersen and Francis X Diebold (2006) and use

Pr (Rt+1 > 0 | Ωt ) = 1 ± F

(
±μt+1|t
σt+1|t

)
(64)

to explore the sign predictability of one-, -two, three-, and six-month returns in yield

curves3. We also use an extended version of Equation (64) that explicitly considers the

interaction between volatility and higher-ordered conditional moments.

4.3.1 Baseline model

As Peter Christoffersen et al. (2006), we evaluate the forecasting performance of

two sets of forecasts and compare them against forecasts from a baseline model. Our

baseline forecasts are generated using the empirical cumulative distribution function

(cdf) of the Rt using data from the beginning of our sample period right up to the time

the forecast is made, i.e., at period k , we compute

P̂r
(
Rk+1|k > 0

)
=

1
k

k∑

t=1

I (Rt > 0) , (65)

where I(·) is the indicator function.
3 where μ̂(τi )

t+h = τiy
τi

t ± (τi ± h) ŷ τi ±h
t+h is a return forecast for the bond with maturity τi in time t and Σμ̂t+h

=
τ′τ ⊗ Σyt+h

is their conditional covariance matrix.
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4.3.2 Logistic model

A key idea of binary response models is that the return is transformed into a

binary sign return indicator It that is used as the dependent variable. Let Rt+1:t+h be

the h-day return, and define the ªpositive returnº indicator as It+h = 1 if Rt+1:t+h > 0

and It+h = 0 otherwise. We want to forecast It+h, and Peter Christoffersen et al. (2006)

suggests using a model of the form,

It+h = F

(
μ

σt

)
+ et+h, (66)

where F (·) is a monotone function with a left limit of zero and a right limit of one, μ is

the h-day expected return, and σt is a forecast of h-day return volatility. In the logistic

regression model, the relationship between x and the probability of the event of interest

is described by:

F (x) =
exp(x)

1 + exp(x)
. (67)

4.3.3 Non-parametric model

Our first forecasting model makes direct use of Equation (65). Using all available

data at time k , we first regress Rt on a constant, log (σ̂t ), and [log (σ̂t )]
2, and compute

μ̂t = β̂0 + β̂1 log (σ̂t ) + β̂2 [log (σ̂t )]
2 , t = 1, . . . , k (68)

where σ̂t is the square root of (actual, not forecasted) realized volatility. The period k + 1

forecast is then generated by

P̂r
(
Rk+1|k > 0

)
= 1 ± F̂

(
±
μ̂k+1|k
σ̂k+1|k

)
,

= 1 ±
1
k

k∑

t=1

I

(
Rt ± μ̂t

σ̂t
≤

μ̂k+1|k
σ̂k+1|k

)
,

(69)

i.e., F̂ is the empirical cdf of (Rt ± μ̂t ) /σ̂t . The forecasts of conditional mean μ̂k+1|k and

conditional variance σ̂k+1|k are from all DNS models and extensions.

4.3.4 Extended model

The second model is an extension of Equation (64) and explicitly considers

the interaction between volatility, skewness, and kurtosis. We use the Gram-Charlier

expansion:
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1 ± F

(
±μt+1|t
σt+1|t

)
≈ 1 ± Φ

(
±μt+1|t
σt+1|t

)
+ Φ

(
±μt+1|t
σt+1|t

)[
γ3,t+1|t

3!

(
μ2

t+1|t

σ2
t+1|t

± 1
)

+
γ4,t+1|t

4!

(
μ3

t+1|t

σ3
t+1|t

+
3μt+1|t
σt+1|t

)]
,

where Φ(.) is the distribution function of a standard normal, and γ3 and γ4 are, respec-

tively, the skewness and excess kurtosis, with the usual notation for conditioning on Ωt .

This equation can be rewritten as

1 ± F (±μt+1|txt+1) ≈ 1 ± Φ(±μt+1|t )(β0t + β1txt+1 + β2tx
2
t+1 + β3tx

3
t+1),

with β0t=1+γ3,t±1|t /6, β1t=-γ4,t+1|tμt+1|t /8, β2t=-γ3,t+1|tμ
2
t+1|t /6 e β3t=γ4,t+1|tμ

3
t+1|t /24,

where for notational convenience, we denote xt+1=1/σt+1|t .

Whether μt+1|t is small, as in the case of short investment horizons, then β2t and

β3t cac be safely be ignored, resulting in

1 ± F (±μt+1|txt+1) ≈ 1 ± Φ(±μt+1|t )(β0t + β1txt+1).

Thus, conditional skewness affects sign predictability through β0t , and condi-

tional kurtosis affects sign predictability through β1t . When there are no conditional

dynamics in skewness and kurtosis, the above equation is reduced to

1 ± F (±μt+1|txt+1) ≈ 1 ± Φ(±μt+1|txt+1)(β + βxt+1), (70)

for some time-invariant quantities β0 and β1.

We use Equation (70) as our second model for sign prediction, i.e., we generate

forecasts of the probability of positive returns as

P̂r (Rt+1|t > 0 = xt+1) ≈ 1 ± Φ(±μ̂t+1|t x̂t+1)(β̂0 + β̂1x̂t+1), (71)

where x̂t+1|t = 1/σ̂t+1|t , and where μ̂t+1|t and σ̂t=t+1|t are as defined earlier. We refer to

these as forecasts from the ªextended" model. The parameters β0 and β1 are estimated

by regressing 1 ± I (Rt > 0) on Φ
(
±μ̂t x̂t

)
and Φ

(
±μ̂t x̂t

)
x̂t for t = 1, . . . , k. Although we

have not explicitly placed any constraints on this model to require Φ
(
±μ̂t x̂t

) (
β̂0 + β̂1x̂t

)

to lie between 0 and 1, we ensure it by applying the logistic function in extended model

results to forecasts lie between 0 and 1.
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4.4 FORECAST EVALUATION

We perform out-of-sample comparison of the forecast performance of Equa-

tion (69), Equation (71), and the logistic function4 for the sign of return. Both are

compared against baseline forecasts [ Equation (64)]. This is done for one-, -three,

six-month, and twelve-month returns. We assess the performance of the forecasting

models using Brier scores:

Brier(Sq) =
1

T ± k

T∑

t=k

2
(

P̂r
(
Rt+1|t > 0

)
± zt+1

)2
,

Brier(Abs) =
1

T ± k

T∑

t=k

∣∣∣P̂r
(
Rt+1|t > 0

)
± zt+1

∣∣∣ ,

where zt+1 = I(Rt+1 > 0). The latter is the traditional Brier score for evaluating the

performance of probability forecasts and is analogous to the usual RMSFE. A score of

0 for Brier(Sq) occurs when perfect forecasts are made: where at each period, correct

probability forecasts of 0 or 1 are made. The worst score is 1 and occurs if at each

period probability forecasts of 0 or 1 are made but turn out to be wrong each time.

Note that if we follow the usual convention where a correct probability forecast of

I(Rt+1 > 0) is 1 that is greater than 0.5, then accurate forecasts will have an individual

Brier(Sq) score between 0 and 0.5. In contrast, incorrect predictions have individual

scores between 0.5 and 1. We only consider a modified version of the Brier score, which

we call Brier(Abs). In the following sections, we introduced the data set and empirical

findings.

4.5 DATA AND RESULTS

The data set consists of monthly closing prices observed for yields of future

DI contracts. Based on the observed rates for the available maturities, the data were

converted to fixed maturities of 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 48, and 60 months

through interpolations using cubic splines. The database contains the maturities with

the highest liquidity for January 2004 through December 2021 (T = 216 observations)

and represents the most liquid DI contracts negotiated during the analyzed period. We

assess the model’s performance by splitting the sample into two parts: the first includes

108 observations used to estimate the parameters. The second part is used to analyze

the performance out-of-sample of bond portfolios obtained from the model, with 108

observations.
4 We also add the logistic function as Peter F Christoffersen and Francis X Diebold (2006) did: F (x) =

exp(x)
1+exp(x) where x = ˆμt+1|t

σ̂t+1|t
.
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The Table 13 reports summary statistics for Brazil’s yield curve. We exam-

ine monthly data constructed using the spline method. For each maturity, we show

mean, standard deviation, skewness, raw kurtosis, minimum, maximum, and three

auto-correlations coefficients, ρ̂1, ρ̂6, ρ̂12. Also, the table reports proxy estimates for

the level, slope, and curvature of the yield curve. The proxies are defined as follows:

for level, the highest maturity bond (60 months); for slope, the difference between the

bond of 60 months and the bond of 3 months; and for curvature, two times the bond of

18 months minus the sum of a bond of 3 months and bond of 60 months.

Also, Figure 16 presents a plot of the data set and illustrates how yield levels

evolve throughout the sample. Although the yield series change heavily over time for

each maturity, a robust common pattern in the 14 series is apparent.

Table 13 ± Descriptive statistics for the term structure of interest rates

Maturity Mean Std.dev. Min Max Skewness Kurtosis ρ̂1 ρ̂6 ρ̂12
M3 12.19 4.52 4.30 27.50 0.90 4.11 0.96 0.70 0.48
M6 12.20 4.47 4.30 28.30 0.90 4.24 0.96 0.69 0.48
M9 12.24 4.42 4.40 29.00 0.92 4.56 0.95 0.68 0.48
M12 12.30 4.39 4.50 29.60 0.98 4.93 0.94 0.67 0.47
M15 12.38 4.34 4.50 30.40 1.06 5.39 0.94 0.65 0.46
M18 12.48 4.31 4.60 31.30 1.16 5.95 0.93 0.64 0.45
M21 12.57 4.28 4.70 32.30 1.29 6.64 0.93 0.62 0.44
M24 12.65 4.27 4.90 33.40 1.43 7.41 0.92 0.61 0.43
M27 12.74 4.25 5.00 34.30 1.57 8.15 0.92 0.60 0.42
M30 12.80 4.26 5.10 35.10 1.69 8.86 0.91 0.59 0.41
M36 12.92 4.28 5.30 36.70 1.95 10.35 0.90 0.57 0.40
M42 13.02 4.34 5.60 38.40 2.20 11.93 0.90 0.55 0.38
M48 13.10 4.38 5.70 39.40 2.37 12.96 0.89 0.54 0.38
M60 (Level) 13.18 4.35 6.00 39.40 2.44 13.12 0.89 0.55 0.38
Slope 0.99 2.10 -3.90 11.90 0.75 6.77 0.84 0.35 0.01
Curvature -0.24 1.17 -3.00 3.10 0.18 2.86 0.87 0.40 0.08

Source: Elaborated by the author.

Legend: The table reports summary statistics for Brazil yield curve over the period 2004-

2021. We examine monthly data, constructed using the spline method. For each maturity

we show mean, standard deviation, skewness, raw kurtosis, minimum, maximum, and three

auto-correlations coefficients, ρ̂1, ρ̂6, ρ̂12. Also the table reports proxy estimates for level,

slope, and curvature of the yield curve. The proxies are defined as follows: for level, the

highest maturity bond (60 months); for slope, the difference between the bond of 60 months

and the bond of 3 months; and for curvature, two times the bond of 18 months minus the

sum of bond of 3 months and bond of 60 months.
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Figure 16 ± Brazilian yield curves

Source: Elaborated by the author.
Legend: Monthly Brazil yield curves from January 2004 through December 2022.

We also present the absolute Brier score results and the cumulative Brier score.

Table 14 shows the out-of-sample comparison of the forecast performance of Equa-

tion (69), Equation (71), and the logistic function for the sign of return. We assess the

performance of the forecasting models using Brier scores. The worst score is 1. Correct

forecasts have individual scores between 0 and 0.5, whereas incorrect forecasts carry

scores between 0.5 and 1. The Logistic, Non-parametric, and Extended are relative to

Baseline, so values below 1 outperform the benchmark model. The results suggest that

models with information of skewness and kurtosis of returns outperform the benchmark

model, mainly in long maturities and short horizons of forecasts.

Figure 17, Figure 18, Figure 19,Figure 20, and Figure 21 present the cumulative

absolute brier score relative to the benchmark model to uncover the path of all models

throughout the out-of-sample period. Hence, the competitor model outperforms the

benchmark for values above zero. In all month’s horizons forecasts, the results suggest

the extended model outperforms the benchmark model when the Selic rate rises. How-

ever, it is not a rule. The results of the extended model are consistent for short horizons

and become better for long horizons.
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Table 14 ± Absolute Brier score results

Maturity
Model

M12 M18 M24 M30 M36 M42 M48 M60

Panel A: 1-month ahead forecasts

Baseline 0.460 0.475 0.480 0.458 0.466 0.462 0.471 0.484
Logistic 0.499 0.499 0.499 0.499 0.499 0.499 0.500 0.500
Non ± parametric 0.518 0.502 0.504 0.496 0.489 0.482 0.484 0.489
Extended 0.364 0.393 0.421 0.397 0.408 0.406 0.431 0.457

Panel B: 2-months ahead forecasts

Baseline 0.476 0.491 0.492 0.492 0.489 0.488 0.481 0.481
Logistic 0.498 0.498 0.499 0.499 0.500 0.500 0.500 0.500
Non ± parametric 0.519 0.518 0.518 0.512 0.503 0.500 0.500 0.492
Extended 0.364 0.405 0.414 0.410 0.418 0.429 0.425 0.441

Panel C: 3-months ahead forecasts

Baseline 0.501 0.496 0.493 0.498 0.498 0.498 0.499 0.489
Logistic 0.498 0.498 0.498 0.498 0.498 0.498 0.499 0.499
Non ± parametric 0.505 0.503 0.505 0.509 0.513 0.504 0.500 0.493
Extended 0.399 0.397 0.403 0.408 0.401 0.409 0.432 0.429

Panel D: 6-months ahead forecasts

Baseline 0.485 0.497 0.499 0.502 0.507 0.510 0.504 0.503
Logistic 0.498 0.498 0.498 0.498 0.498 0.500 0.500 0.500
Non ± parametric 0.530 0.516 0.515 0.504 0.502 0.499 0.497 0.496
Extended 0.522 0.414 0.381 0.385 0.379 0.375 0.375 0.376

Panel D: 12-months ahead forecasts

Baseline 0.537 0.533 0.535 0.527 0.516 0.520 0.516 0.496
Logistic 0.497 0.497 0.497 0.497 0.498 0.498 0.498 0.499
Non ± parametric 0.538 0.530 0.532 0.525 0.522 0.519 0.520 0.513
Extended 0.560 0.537 0.493 0.448 0.433 0.428 0.428 0.449

Source: Elaborated by the author.

Legend: We perform an out-of-sample comparison of the forecast performance of equa-

tions Equation (69), Equation (71), and the logistic function for the sign of return. Both

are compared against baseline forecasts [Equation (64)]. We assess the performance of

the forecasting models using Brier scores. The worst score is 1. Correct forecasts have

individual scores between 0 and 0.5, whereas incorrect forecasts carry scores between

0.5 and 1. The Logistic, Non-parametric, and Extended are relative to Baseline, so values

below 1 outperform the benchmark model.
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Figure 17 ± Absolute Brier score results
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Source: Elaborated by the author.

Legend: This figure reports the cumulative brier score relative to the baseline model at one,

two, three, six, and twelve months ahead of maturities between 12 and 60 months.
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Figure 18 ± Cumulative Absolute Brier Scores: 1-month ahead
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Legend: We use the cumulative absolute brier score relative to the benchmark model to

uncover the path of all models throughout the out-of-sample period. Hence, the competitor

model outperforms the benchmark for values above zero. The top left chart presents results

of maturity of 18 months, the top right present results of maturity of 24 months, the bottom

left presents results of maturity of 36 months, bottom right presents results of maturity of

60 months.
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Figure 19 ± Cumulative Absolute Brier Scores: 3-months ahead
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Legend: We use the cumulative absolute brier score relative to the benchmark model to

uncover the path of all models throughout the out-of-sample period. Hence, the competitor

model outperforms the benchmark for values above zero. The top left chart presents results

of maturity of 18 months, the top right present results of maturity of 24 months, the bottom

left presents results of maturity of 36 months, bottom right presents results of maturity of

60 months.
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Figure 20 ± Cumulative Absolute Brier Scores: 6-months ahead
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Legend: We use the cumulative absolute brier score relative to the benchmark model to

uncover the path of all models throughout the out-of-sample period. Hence, the competitor

model outperforms the benchmark for values above zero. The top left chart presents results

of maturity of 18 months, the top right present results of maturity of 24 months, the bottom

left presents results of maturity of 36 months, bottom right presents results of maturity of

60 months.
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Figure 21 ± Cumulative Absolute Brier Scores: 12-months ahead
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Legend: We use the cumulative absolute brier score relative to the benchmark model to

uncover the path of all models throughout the out-of-sample period. Hence, the competitor

model outperforms the benchmark for values above zero. The top left chart presents results

of maturity of 18 months, the top right present results of maturity of 24 months, the bottom

left presents results of maturity of 36 months, bottom right presents results of maturity of

60 months.

4.6 CONCLUDING REMARKS

The accuracy of yield curve forecasts, not only of magnitude but specifically

of the direction of change in financial assets, emerges as a research source in the

prediction field. We aim to explore the literature gap on forecasting the yield curves

using conditional means and conditional volatility forecasts as inputs to predict the

return direction in the fixed income.

This paper assesses the direction-of-change forecasts based on conditional

variance from the Dynamic Nelson-Siegel model. Although the literature focuses on

forecasting the level of yield curves, which is a difficult task, we propose forecasts for

the direction-of-change of the yield curve returns. The results suggest that models

with information of skewness and kurtosis of returns outperform the benchmark model,

mainly in long maturities and short forecast horizons. Also, In all month’s horizons fore-

casts, the results suggest all models have stable performance against the benchmark

model when the Selic rate rises; however, it is not a rule.
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5 DOES THE DECOMPOSITION OF THE BREAKEVEN INFLATION HELP US TO

FORECASTING INFLATION? EVIDENCE OF EXPECTED INFLATION AND IN-

FLATION RISK PREMIUM IN THE BRAZILIAN ECONOMY

The estimation of the inflation risk premium has proved to be a challenging prob-

lem, see Breach, D’Amico, and Orphanides (2020). Models with different specifications

or analyzing different periods have found different results. For instance, with data before

the 2008 financial crisis, estimations involving structural models obtained results with a

high magnitude of inflation risk premium, see Ang, Bekaert, and Wei (2008), Bekaert

and Wang (2010) and Chernov and Mueller (2012). On the other hand, studies using

more recent data suggest premiums for the risk of inflation of smaller magnitude and

sometimes even negative, see Grishchenko and Huang (2013), Michael Abrahams

et al. (2016) and Breach, D’Amico, and Orphanides (2020). Since the relation of yield

curves and the macroeconomics, see Litterman and Scheinkman (1991), Cochrane

and Piazzesi (2005), Ang, Piazzesi, and Wei (2006), Cochrane and Piazzesi (2009),

Cieslak and Povala (2011), Crump, Eusepi, and Moench (2018) and Bernanke (1990),

it is essential to understand of the movements the term structure to improve forecasting,

derivatives pricing, hedging, and fiscal and monetary policy.

In this paper, we use an arbitrage-free affine Gaussian model for the term struc-

ture (ATSM) to jointly model nominal and real interest rates, decompose the breakeven

inflation, analyze the term premium dynamics, and forecast inflation. For model es-

timation, we use the recent approach for asset pricing based on linear regressions

proposed by Adrian, Crump, and Moench (2015) and Michael Abrahams et al. (2016).

They present a method that allows computational gains in estimating factor models

for the term structure while allowing the term premium to vary over time and serial de-

pendence on the factors. Several other studies that estimated ATSM-class models for

other economies used maximum likelihood, see Joyce, Lildholdt, and Sorensen (2010),

Kaminska (2013) and d’Amico, Kim, and Wei (2018), which involves high-dimensional

nonlinear optimization over a maximum likelihood function that can have many max-

ima locations, see Hamilton and Jing Cynthia Wu (2012). The approach proposed by

Michael Abrahams et al. (2016) considerably reduces these difficulties in estimating

models of this class. To our knowledge, no study uses this procedure to address this

question in the Brazilian economy.

The literature on the Brazilian economy suggests that the risk premium varies

over time; see Lima and Issler (2003), Benjamin Miranda Tabak and Andrade (2003),

Marçal and Pereira (2007) and Benjamin Tabak (2009) for early references. Vicente and

Graminho (2015) and João F Caldeira (2020), for instance, suggest that the inflation risk

premium is time-varying. However, Vicente and Graminho (2015) does not find evidence

of a liquidity premium in Brazil. Also, They suggest that the inflation risk premium is

small for short horizons and is time-varying for long horizons, and inflation expectations
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are the main component of breakeven inflation. Surveys of expected inflation naturally

emerge as a predictor of future inflation. See, among other Ang, Bekaert, and Wei

(2007) and Chun (2012). The FOCUS survey, conducted by the Central Bank of Brazil,

emerges as the main competitor to forecasting inflation in our research, see Carvalho,

Minella, et al. (2009). Also, breakeven inflation is naturally a competitor; see Vicente

and Guillen (2013) and João F Caldeira and Furlani (2013).

Our innovation is in the method used for the estimation, which lies in the ap-

proach of Michael Abrahams et al. (2016). Our main findings can be summarized as

follows. First, we disentangle the influence of term premiums on nominal and real rates.

Then, we show the decomposition of the BEIR in expected inflation and inflation risk

premium. Lastly, we use the derivation of the expected inflation to predict the IPCA.

Following the literature, the results suggest that the premiums are time-varying and

increase along maturities. The inflation risk premium is also time-varying, with negative

values in specific periods. The expected inflation and the Focus survey outperform the

RW forecasts; however, the Focus approach is a major workhorse. The second section

introduces the Michael Abrahams et al. (2016) AFNS model estimation following this

introductory section. In the third section, we present in-sample results, term premium

results, and out-of-sample inflation forecasts. In the fourth section, we conclude.

5.1 AFFINE GAUSSIAN MODELS FOR TERM STRUCTURE

Affine term structure models (ATSMs), since Duffee (2002), are the most com-

monly used class of models in the literature for decomposing interest rates on govern-

ment bonds. More recently, the approach developed by Adrian, Crump, and Moench

(2015) has been widely used to decompose interest rates into their components: ex-

pectation and forward premium. This section presents an ATMS model specification

following the exposition of M. Abrahams et al. (2015) and Michael Abrahams et al.

(2016).

The price, at time t , of a zero-coupon bond with maturity n is denoted by P
(n)
t .

As is common in Gaussian models for the term structure, it is assumed that the vector

of state variables is governed by an autoregressive process of the type VAR(1):

Xt+1 ± μX = Φ (Xt ± μX ) + νt+1, νt+1 ∼ N (0,Σ) (72)

where the shocks νt+1 are conditionally Gaussian, homoscedastic and independent

over time. A single pricing mechanism is introduced to enforce the absence of arbitrage

which governs all traded assets:

P
(n)
t = E

{
Mt+1P

(n±1)
t+1

}
. (73)

The stochastic discount factor Mt (pricing kernel) is a function of the short-term interest

rate and the risk perceived by the market:



Chapter 5. Does the Decomposition of the Breakeven Inflation Help us to Forecasting Inflation?

Evidence of Expected Inflation and Inflation Risk Premium in the Brazilian Economy 93

Mt+1 = exp
(

±rt ±
1
2
λ′tλt ± λ′tΣ

±1/2νt+1

)
, (74)

where rt = ln P
(n)
t denotes the risk-free interest rate that is continuously compounded.

In Gaussian ATSMs the log price, P
(n)
t , of a risk-free discount bond with remaining time

to maturity n follows log P
(n)
t = An + B

prime
n Xt which implies that:

rt = δ0 + δ′1Xt . (75)

The risk market price vector, λt , is an essentially affine function of the factors, as in

Duffee (2002):

λt = Σ±1/2 (λ0 + λ1Xt ) , (76)

where λ0 and λ1 have dimensions K × 1 and K × K , respectively. Further defines:

μ̃ = (IK ± Φ) μX ± λ0, (77)

Φ̃ = Φ ± λ1. (78)

These parameters govern the dynamics of the pricing factors under the risk-neutral and

feature prominently in the recursive pricing relationships derived below.

Given the above assumptions, it can be shown that interest rates on zero-coupon

bonds are affine functions of the factors, see Ang and Piazzesi (2003):

y
(n)
t = ±

1
n

(
An + B′

nXt

)
, (79)

where the coefficients An and Bn follow the recursive equations:

An = An±1 + B′
n±1μ̃ +

1
2

B′
n±1ΣBn±1 ± δ0, A0 = 0 (80)

B′
n = B′

n±1Φ̃ ± δ′1, B0 = 0K×1. (81)

Recently, there has been a growing interest in the literature in recovering expec-

tations about future inflation rates from the nominal and real term structure of interest

rates, see Michael Abrahams et al. (2016) and Breach, D’Amico, and Orphanides

(2020). Let Qt be a time price index t and let P
(n)
t ,R be the price in t of an inflation-

indexed bond with face value 1, which pays the amount Qt+n

Qt
at maturity, t + n. The price

of such a title satisfies the following:

P
(n)
t ,R = Et

{
exp (±rt ± . . . ± rt+n±1)

Qt+n

Qt

}
. (82)

Denote the log-inflation for one period by πt = ln
(

Qt

Qt±1

)
, therefore:

Qt+n

Qt
= exp

(
n∑

i=1

πt+i

)
. (83)
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As in the case of nominal bonds, the prices of inflation-indexed bonds are exponentially

affine in terms of pricing factors:

log P
(n)
t ,R = An,R + B′

n,RXt . (84)

Thus, one-period inflation is also a linear function of the state variables:

πt = π0 + π′
1Xt ,

where π0 is a scalar and π1 is a vector of dimension (K × 1). According to Michael

Abrahams et al. (2016), it is possible to derive recursions for the prices of inflation-linked

bonds by rewriting the equation (82) in terms of the price of another inflation-linked bond

traded one period ahead:

PR
t ,n = Et

{
exp (±rt + πt+1) P

(n±1)
t+1,R

}
. (85)

Solving this equation and combining the coefficients, we arrive at the coefficients of

Equation (84), which are determined by the following system of equations in differences:

An,R = An±1,R + Bπ′
n±1,R μ̃ +

1
2

Bπ′
n±1,RΣBπ

n±1,R ± δ0,R , A0,R = 0 (86)

B′
n,R = Bπ′

n±1,RΦ̃ ± δ′1, B0,R = 0K×1. (87)

where δ0,R = δ0 ± π0 and Bπ
n,R = (Bn,R + π1) ∀n. Making the parameters referring to

the risk market price, λ0 and λ1, equal to zero in the systems of equations (80)-(81)

and ??-(87), we obtain the risk-adjusted pricing parameters (makes the mapping of the

risk-neutral measure, Q, to the physical measure, P ).

5.2 ESTIMATION

5.2.1 Nominal bonds returns

Recall that log excess one-period holding returns are defined as

rx
(n±1)
t+1 = log P

(n±1)
t+1 ± log P

(n)
t ± rt . (88)

Plugging Equation (84) we obtain

rx
(n±1)
t+1 = (An±1 ± An ± δ0) ±

(
B′

n + δ′1
)

Xt + B′
n±1Xt+1 (89)

Thus, imposing the recursive equations yields Equation (80) and Equation (81)

rx
(n±1)
t+1 = αn±1 ± B′

n±1Φ̃Xt + B′
n±1Xt+1, (90)

where

αn±1 = ±
(

B′
n±1μ̃ +

1
2

B′
n±1ΣBn±1

)
. (91)
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5.2.2 Inflation-indexed bonds returns

Log excess one period holding returns on inflation indexed securities are then

given by

rx
(n±1)
t+1,R = log P

(n±1)
t+1,R ± log P

(n)
t ,R ± rt . (92)

Thus, imposing the recursive equations yields Equation (86) and Equation (87)

rx
(n±1)
t+1,R = αn±1,R ±

(
Bn±1,R + π1

)′
Φ̃Xt + B′

n±1,RXt+1, (93)

where

αn±1,R = ±
(
π0 +

(
Bn±1,R + π1

)′
μ̃ +

1
2

(
Bn±1,R + π1

)′
Σ
(
Bn±1,R + π1

))
. (94)

5.2.3 Initial Conditions

To obtain initial conditions note that adding inflation to both sides of equation

Equation (92) and combining with equations Equation (86), and Equation (87), we

obtain

rx
(n±1)
t+1,R + πt+1 = απn±1,R ±

(
Bn±1,R + π1

)′
Φ̃Xt +

(
Bn±1,R + π1

)′
Xt+1, (95)

where

απn±1,R = ±
((

Bn±1,R + π1
)′
μ̃ +

1
2

(
Bn±1,R + π1

)′
Σ
(
Bn±1,R + π1

))
. (96)

Stacking log excess holding period returns on nominal bonds from equation Equa-

tion (90) and on inflation-indexed bonds from equation Equation (95) into the vector Rπ,

we thus obtain

Rπ
t+1 = α ± BΦ̃Xt + BXt+1, (97)

where

α = ±
(

Bμ̃ +
1
2
γ

)
, (98)

B =
(
B1, . . . , BNN

, B1,R + π1, . . . , BNR ,R + π1
)′ , (99)

γ =
(

B′
1ΣB1, . . . , B′

NN
ΣBNN

,
(
B1,R + π1

)′
Σ
(
B1,R + π1

)
, . . . ,

(
BNR ,R + π1

)′
Σ
(
BNR ,R + π1

))′
.

(100)

For initial conditions we use an approach similar to Adrian, Crump, and Moench (2015).

To provide initial estimates of our parameters we stack the observed return data as

Rπ = απι′T ± BΦ̃X± + BX + E (101)



Chapter 5. Does the Decomposition of the Breakeven Inflation Help us to Forecasting Inflation?

Evidence of Expected Inflation and Inflation Risk Premium in the Brazilian Economy 96

where Rπ is N × T , X±and X are K × T matrices of the stacked Xt±1 ’s and Xt ’s,

respectively, and ιT is a T × 1 vector of ones. Using the estimated residuals, Êols, from

this regression we obtain Σ̂e = T ±1 · ÊolsÊ ′
ols. Our initial value for Φ̃ is

ˆ̃Φgls = ±
(

B̂′
olsΣ̂

±1
e B̂ols

)±1
B̂′

olsΣ̂
±1
e B̂Φ̃ols (102)

We then run an additional SUR on ιT and
(

± ˆ̃ΦglsX± + X
)

to obtain initial values for α

and B which we label α̂gls and B̂gls . Finally, we produce an initial value for μ̃ as

ˆ̃μgls = ±
(

B̂′
glsΣ̂

±1
e B̂gls

)±1
B̂′

glsΣ̂
±1
e

(
α̂gls +

1
2
γ̂gls

)
, (103)

where γ̂gls is formed using B̂gls and Σ̂ (see equation Equation (100)). We also need

initial values for the parameters
(
δ0, δ′1

)
governing the nominal short rate. Since the

nominal short rate is directly observed, this is simply achieved by performing an OLS

regression of the short rate onto a constant and the vector of pricing factors as in Adrian,

Crump, and Moench (2015).

The parameters μ̃ and Φ̃ are related to the market price of risk parameters λ0

and λ1 via the relationships μ̃ = (IK ± Φ) μX ±λ0 and Φ̃ = Φ±λ1. Since the pricing factors

X are observed and follow the joint vector autoregression given by Equation (72), the

OLS estimator of μX is simply given by the sample mean of the factors X and the

OLS estimator of Φ is obtained by regressing the demeaned observations of X on

their one period lags equation by equation. We stack the estimated innovations into the

matrix V̂ and construct an estimator of the state variable variance-covariance matrix

Σ̂ = T ±1 · V̂ V̂ ′. Given estimates μ̂X and Φ̂, we then obtain estimates of the market price

of risk parameters via

λ̂0 =
(

IK ± Φ̂
)
μ̂X ± ˆ̃μgls,

λ̂1 = Φ̂ ± ˆ̃Φgls.
(104)

In our empirical application we skip the estimation of parameters via numerical

maximization of the likelihood as per Michael Abrahams et al. (2016) and use the

values of OLS initial conditions estimation. Also we use the sum of squared real return

fitting errors as the criterion function to estimate π0 and π1 as per M. Abrahams et al.

(2015). We provide explicit expressions for real yields as linear-quadratic functions of

π0 and π1 (given estimates for ˆ̃Φgls, ˆ̃μgls, δ̂0,ols, δ̂1,ols) which may be used for numerical

optimization. We then solve for the estimated π0 and π1 with the initial conditions via,

(
π̂0, π̂′

1
)′ = arg min

π0,π1

NR∑

i=1

T∑

t=1

(
rx

(n±1)
t+1,R ± g

(
π0,π1;

ˆ̃
Φ̃gls, ˆ̃μgls, δ̂0,ols, δ̂1,ols, ni , t

))2

(105)

where g(·) can be found by using the recursive equations Equation (86) and Equa-

tion (87). Next section presents the dataset and results.
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5.3 DATA AND RESULTS

We use end-of-month values from 2006:01 to 2022:04 for a total of T = 196

monthly observations. In the estimation, a cross-section of NN = 11 one-month excess

holding period returns for nominal rates with maturities n = 6,12,24, . . . ,120 months

and NR = 9 excess returns on NTNB′s with maturities n = 24, . . . ,120 months is used.

The SELIC rate is used as the nominal risk-free rate. The price index Qt used to

calculate NTNB′s payouts is IPCA index, which is available from the IBGE site. See

Table Table 15 for statistics of interest rates.

Table 15 ± Descriptive Statistics

n = 12 n = 24 n = 36 n = 60 n = 120

Nominal Interest Rates
Avg. 0,103 0,107 0,110 0,114 0,117
Std. Dev. 0,034 0,030 0,027 0,024 0,022
Skewness ±0,514 ±0,485 ±0,404 ±0,237 ±0,052
kurtosis 2,484 2,671 2,828 3,053 3,205
ρ(1) 0,977 0,970 0,961 0,948 0,935
ρ(6) 0,775 0,767 0,751 0,713 0,649

Real Interest Rates
Avg. 0,048 0,053 0,055 0,057 0,058
Std. Dev. 0,027 0,024 0,022 0,018 0,014
Skewness ±0,097 0,019 0,064 0,108 0,076
kurtosis 2,783 2,791 2,899 2,950 2,839
ρ(1) 0,962 0,964 0,964 0,966 0,962
ρ(6) 0,732 0,773 0,778 0,774 0,758

Source: Elaborated by the author.

Legend: The table reports summary statistics for Brazil yield curve over the period 2006-

2022 to real and nominal yield curves. For each maturity we show mean, standard deviation,

skewness, raw kurtosis, and two auto-correlations coefficients, ρ̂1 and ρ̂6.

Following Michael Abrahams et al. (2016) and various other authors, see Adrian,

Crump, and Moench (2015), Joslin, Kenneth J Singleton, and Zhu (2011) and Wright

(2011), we calculate principal components from yields and used as pricing factors in the

model. Specifically, two sets of principal components are used. First, KN = 3 principal

components are extracted from nominal yields of maturities n = 6,12,24, . . . ,120 months.

Then additional factors are obtained as the first KN = 2 principal components from

the residuals of regressions of NTNB′s yields of maturities n = 24, . . . ,120 months

on the KN nominal principal components. This orthogonalization step reduces the

unconditional collinearity among the pricing factors. In sum, K = KN + KR = 5 model

factors. See Figure 22.
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Figure 22 ± Pricing factors: observed time series
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Legend: This figure plots the time series of the factors of our model. These are the first
three principal components extracted from the cross-section of end-of-month observations
of nominal yields of maturities n = 6,12,24, . . . ,120 months. The fourth and fifth factors are
the first two principal components extracted from the cross-section of orthogonalized real
yields of maturities n = 24, . . . ,120, the residuals from regressing real yields on the first
three principal components of the nominal yield curve.

We show the in-sample results in Figure 23 and Figure 24 and Figure 25 . In

general, the model fits better to long maturities. The BEIR decomposition suggests that

the real and nominal term premiums increase along maturities. Also, the same happens

with inflation risk premiums, which account for the most movements of the BEIR in

long maturities. Thus the expected inflation is quite flat for long maturities and is highly

correlated to BEIR in short maturities. See Figure 26, Figure 27, and Figure 28.

In Inflation forecasting, we use the model-implied inflation expectations as a

predictor, representing breakeven inflation rates adjusted for risk premia. For instance,

we use the six-month maturity to predict inflation 6-months ahead, and so on. The

same is done to unadjusted NTNB breakevens, which is a predictor of future inflation
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as well. The third is a simple random walk forecast, which takes the average realized

inflation over the prior n months as a prediction of average inflation over the next n

months. Forecasts are performed over horizons from 6 to 36 months, and forecasting

errors are computed using overlapping observations. The panel reports out-of-sample

results, using an eleven-year ªlearning periodº over the period 2006:01±2016:06 and

forecasting over the period 20016:07±2022:04. So, 6-months ahead has 70 forecasts,

12-months ahead has 64 forecasts, 24 months ahead has 52 forecasts, and 24-months

ahead has 40 forecasts. See Figure 29 and Figure 30. The results suggest it is difficult

to outperform the Focus survey; however, the model-implied forecast follows closely.

The next section presents concluding remarks.

Figure 23 ± In-Sample results

Source: Elaborated by the author.

Legend: This table compares the root mean squared error and mean absolute error of
nominal and real yield curves at one-year, three-year, five-year, and ten-year maturities.
The first panel reports in-sample results for the entire sample from 2006:01 to 2022:04.
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Figure 24 ± Observed and nominal model-implied time series
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Legend: This figure provides time series plots of observed and model-implied nominal
yields at one-year, three-year, five-year, and ten-year maturities. The observed yields are
plotted by solid blue lines, whereas dashed green lines correspond to model-implied yields.
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Figure 25 ± Observed and real model-implied time series
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Legend: This figure provides time series plots of observed and model-implied real yields at
one-year, three-year, five-year, and ten-year maturities. The observed yields are plotted by
solid blue lines, whereas dashed green lines correspond to model-implied yields.
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Figure 26 ± Nominal term premium
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Legend: This figure provides time series plots of the decomposition of the observed nominal
yield curves in risk-neutral yield and yield term premium at one-year, three-year, five-year,
and ten-year maturities.
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Figure 27 ± Real term premium
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Legend: This figure provides time series plots of the decomposition of the observed nominal
yield curves in risk-neutral yield and yield term premium at one-year, three-year, five-year,
and ten-year maturities.
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Figure 28 ± BEIR Decomposition
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Legend: This figure shows the decomposition of breakeven inflation rates into the model-
implied expected inflation and the inflation risk premium. The panels show this decomposi-
tion at one-year, three-year, five-year, and ten-year maturities.
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Figure 29 ± Inflation Forecasting

Source: Elaborated by the author.

Legend: This table compares three models’ root mean squared error for predicting future
inflation (IPCA). The first uses the model-implied inflation expectations derived in Section
2. These represent breakeven inflation rates adjusted for risk premia. The second method
takes unadjusted breakevens as a predictor of future inflation. The third is a simple random
walk forecast, i.e., it takes the average realized inflation over the prior n months as a pre-
diction of average inflation over the next n months. Forecasts are performed over horizons
from 6 to 36 months, and forecasting errors are computed using overlapping observations.
The panel reports out-of-sample results, utilizing an eleven-year ªlearning periodº over the
period 2006:01±2016:06 and forecasting over the period 20016:07±2022:04. So, 6-months
ahead has 70 forecasts, 12-months ahead has 64 forecasts, 24-months ahead has 52
forecasts, and 24-months ahead has 40 forecasts. Bold values are statistically significant
by at least 5%, according to (GIACOMINI; WHITE, 2006) test.
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Figure 30 ± Cumulative Squared Prediction Error
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Legend: This figure shows the cumulative squared prediction error of Random Walk, Focus,
Model-Implied Expected Inflation, and BEIR forecasts at one-year, three-year, five-year,
and ten-year maturities.

5.4 CONCLUDING REMARKS

We estimate an arbitrage-free Gaussian model for the term structure of the yield

curve that allows joint modeling of nominal and real interest rates. The model enables

the decomposition of BEIR into expectations for inflation and risk premium. In-sample

results suggest that the term premiums are time-varying and increase along maturi-

ties, which include negative values. The risk-adjusted inflation expectations outweigh

unadjusted BEIRs and a Random Walk in the out-of-sample inflation forecast. The

Focus survey is a benchmark challenging to outperform. However, the model-implied

predictions have better results in long horizons.
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