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RESUMO

Runtime Verification (RV) é uma técnica leve e dinamica que verifica a execugao atual do
sistema por meio de estruturas chamadas monitores e produz um veredicto sobre se essa
execucao satisfaz ou nao uma propriedade especifica de correcao do sistema. Atualmente,
hé alguns trabalhos que fornecem bibliotecas para suporte & RV. No entanto, uma carac-
teristica comum ¢ o suporte apenas a sistemas POSIX, e muitos Real-Time Operating
Systems (RTOS) nao possuem suporte a POSIX, como, por exemplo, o FreeRTOS. Neste
trabalho, foi desenvolvida uma biblioteca de suporte ao RunTime Monitoring (RM), que
sao os monitores para suporte a RunTime Verification com suporte a sistemas nao-POSIX.
Um dos requisitos era o desenvolvimento de uma biblioteca altamente desacoplada da ar-
quitetura do Real-Time Operating System (RTOS), com suporte ao monitoramento dos
Deadlines e Execution Time das Tasks e suporte as Tasks Periodicas e Nao Periddicas.
O trabalho também possui dois modos de operacao: um modo de operagao online e um
modo de operacao offline. O modo de operacao offline é mais simples e leve, buscando
impactar menos o sistema sendo monitorado, enquanto o modo de operacao online faz
todas as verificacoes dos monitores no sistema em execucao e também possui suporte a
alguns recursos adicionais. Foi desenvolvida uma aplicagao exemplo para demonstrar o
funcionamento da biblioteca, a partir de um modelo proveniente do Projeto ProVANT. A
biblioteca deu suporte ao monitoramento e validagao do modelo proveniente do ProVANT
e também demonstrou como utilizar a biblioteca e todos os recursos que ela suporta.

Palavras-chaves: Sist. Operacionais de Tempo Real. Verificagao em Tempo de Execucao.
VANT.






RESUMO EXPANDIDO

INTRODUCAO

Muitas abordagens verificam a precisio do sistema e as propriedades de seguranga em sistemas
criticos. No entanto, a técnica de verificacdo de modelos é normalmente utilizada, destacando
sua eficiéncia no processo de verificacdo formal. No caso de abordagens dinamicas, o Runtime
Verification (RV) é considerado relevante devido a pesquisas e estudos recentes que o apontam
como complementar a andlise estdtica, além de tratar diretamente da aplicacdo principal, que
cobre lacunas como a dificuldade de modelar o sistema de destino.

O trabalho em (PEDRO et al., 2018) mostra que as técnicas para impor o isolamento do tempo
sao geralmente delegadas as capacidades do Real Time Operating Systems (RTOS) (MEIER;
HONEGGER; POLLEFEYS, 2015), verificados nao formalmente. Autores afirmam que o RV
pode aumentar a confiabilidade desses sistemas, principalmente quando associado a métodos de
verificacdo estaticos. O RV pode aumentar a cobertura geral do sistema, garantindo a corre¢ao
do tempo de execugdo em partes onde as abordagens estdticas falham em fornecer cobertura
global.

Ele apresenta uma estrutura para executar RV em Real Time Systems (RTS) para resolver tais
problemas. A estrutura consiste na ferramenta rmtld3synthcpp para sintetizar automaticamente
monitores de destino C++11, a ferramenta rmtld3synthocaml para Ocaml e a biblioteca de tem-
po de execucdo RTMLib para oferecer suporte a monitores de acoplamento em placas de metal
simples.

A estrutura proposta pode lidar com tempo e duracdes explicitos, dois conceitos essenciais pa-
ra deteccdo de anomalias em sistemas de tempo real rigidos. No entanto, uma limitacdo do
RTMLib desenvolvido € que ele segue estritamente o padrao Portable Operating System Interfa-
ce (POSIX), como por exemplo sistemas Linux. Sistemas POSIX (Portable Operating System
Interface) sdo um conjunto de padrdes e especificagdes para sistemas operacionais que visam
fornecer compatibilidade e interoperabilidade entre diferentes sistemas UNIX.

No entanto, nos estudos feitos por (PEDRO et al., 2018), ele é executado usando o NuttX, pois
€ um RTOS que segue o padrao POSIX. No entanto, muitos aplicativos de sistema embarcado
bare-metal em tempo real ndo oferecem suporte a essa arquitetura, como aqueles que usam o
FreeRTOS. O trabalho aqui proposto tenta resolver o fato de que o RTMLib é exclusivo para
uso em sistemas que seguem o padrao POSIX.

OBJETIVOS

O principal objetivo desta dissertacdo de MSc. € desenvolver uma Biblioteca de Suporte ao
Monitoramento em Tempo de Execugdo para o FreeRTOS que estd implementando um projeto
similar ao RTMLib.

METODOLOGIA
Como sub-objetivos, é possivel destacar o seguinte:

1. Biblioteca de monitoramento em tempo de execugdo para FreeRTOS.

2. Modos de Operacao Online e Offline, para ter um modo de operagcdo mais completo e um
modo mais leve.



3. Desacoplar implementacdes RTOS especificas.

4. Suporte a Tarefas Periddicas e Aperiddicas, Suporte ao monitoramento de Deadline, Su-
porte ao monitoramento Worst Case Execution Time (WCET), em Tarefas Nao Preempti-
vas.

RESULTADOS E DISCUSSOES

E apresentada uma modelagem de escalonamento de tempo real proveniente do Projeto Pro-
VANT, que demonstra o diagrama de blocos das comunicagdes das tarefas e seu comportamento
esperado no sistema, bem como seus periodos e o tempo maximo de execu¢do conhecido como
WCET.

Foi desenvolvido um projeto de exemplo para testar a utilizacdo da biblioteca desenvolvida,
que utiliza como base um modelo de escalonamento apresentado, e valida em um hardware
embarcado, verificando o modelo de escalonamento por meio do suporte da biblioteca no mo-
nitoramento do projeto.

Sao testados trés cendrios diferentes no exemplo, buscando extrapolar e estressar o modelo de
escalonamento apresentado, a fim de buscar eventuais falhas e também explorar os recursos
disponiveis na biblioteca para o monitoramento em tempo real deste modelo em execugdo.

CONSIDERACOES FINAIS

Um projeto de exemplo foi desenvolvido para validar o funcionamento e comportamento da
biblioteca em uso prético. A validacdo foi realizada considerando um cenério real do projeto
ProVANT.

Os resultados foram analisados para avaliar satisfatoriamente o comportamento do modelo de
escala proposto no projeto ProVANT, implementado no projeto exemplo. Foi possivel obser-
var as facilidades e recursos que a biblioteca pode agregar no processo de desenvolvimento e
monitoramento de projetos de software embarcado em tempo real.

A biblioteca Runtime Monitoring (RM) desenvolvida é capaz de coletar eventos de interesse e
analisé-los. No entanto, o monitor desenvolvido € atualmente limitado, pois s pode raciocinar
sobre prazos perdidos e cumprimento do WCET. Conforme discutido em Pedro et al. (2018),
torna-lo mais genérico fica para trabalho futuro.

Uma caracteristica importante para futuras implementacdes € o desenvolvimento de suporte a
System Hooks para identificar algumas operagdes do RTOS, como inserir a tarefa na fila de tare-
fas disponiveis para execu¢do e preemptar tarefas para agendamento. A implementacao dessas
novas funcionalidades tornard a coleta de informagdes mais "precisa"e suportard a monitoriza-
cdo de tarefas ndo periddicas e preemptivas para a biblioteca RM.

No entanto, essa implementacdo estd altamente ligada a arquitetura do RTOS, portanto seria
necessario implementar o suporte da biblioteca RM para esses recursos e também implementar
Hooks com o FreeRTOS para validar os recursos da biblioteca e do RM no exemplo do projeto.

Outro recurso importante para o ciclo completo de RV € a sintese dos monitores para integrar
a biblioteca RM com sistemas de verificacdo que, a partir de modelos de entrada, sintetizam
automaticamente os monitores a serem verificados em RunTime.

Palavras-chaves: Sist. Operacionais de Tempo Real. Verificacio em Tempo de Execug¢do. VANT.



ABSTRACT

Runtime Verification (RV) is a lightweight and dynamic technique that checks the current
running of the system through structures called monitors and produces a verdict on
whether or not this run satisfies a specific property of system correctness. Currently there
are some works that provide libraries to support RV, however a common feature is the
support only for POSIX systems like Linux, and many Real Time Operating Systems
(RTOS) do not support POSIX, such as FreeRTOS. In this work, a support library for
Runtime Monitoring (RM) is developed, which are the monitors to support RunTime
Verification with support for FreeRTOS. One of the requirements was the development
of a library highly decoupled from the RTOS architecture, with support for monitoring
Deadlines and Execution Time of Tasks and support for Periodic and Non-Periodic Tasks.
There are also two operation modes, an online operation mode and an offline operation
mode, the offline operation mode is simpler and lighter, seeking to impact less the system
being monitored, the online operation mode does all the checks of the monitors on the
running system and also supports some additional features. An example application was
developed to demonstrate how the library works, based on a model from the ProVANT
Project. The library supported the monitoring and validation of the model from ProVANT
and also demonstrated how to use the library and all the features it supports.

Keywords: Real-Time Operating System. Runtime Verification. UAV.
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1 INTRODUCTION

Recent advances in various technologies have enabled the creation of systems in
which computer programs embedded in the most diverse devices combined with sensors
and actuators, act on the physical environment. Systems with this characteristic are often
referred to in the literature as Cyber Physical Systems (CPS) (RAJKUMAR et al., 2010).

CPS can be complex, bringing together a large number of devices that act in an
interconnected way (BROY; CENGARLE; GEISBERGER, 2012). Examples of this type
of system are smart grids, autonomous vehicles, intelligent transport systems, and smart
cities (STOJMENOVIC, 2014). These systems can be considered the intersection of Real
Time Operating Systems (RTOS), embedded systems, and distributed sensing and control
systems (RAJKUMAR et al., 2010).

The day-to-day modern society is dependent on small programmable electronic
systems that are commonly unknown to their users. They are present in automobiles,
planes, toys, and hospitals, among others, and guarantee our comfort, safety, leisure,
food, and supplies. They are called embedded systems and consist of devices that perform
specific functions (BARR, 1999). Because it is highly specialized, an embedded system is
optimized for power, code size, execution time, weight, and dimensions.

There is an important class of embedded systems, which must function without
errors, otherwise, it may result in loss of life, significant property damage or environmental
damage, they are called Safety-Critical Systems (SCS) (KNIGHT, 2002). Security critical
applications require deterministic behavior during their operation. To deal with them, two
important features must be explored: reliability and temporal determinism.

A Real Time Systems (RTS) of a computer system that must respond to a stimulus
correctly and before a given time constraint, otherwise undesirable consequences may
occur (STANKOVIC, 1988). The most important feature of this system is the required
temporal determinism and, according to the consequence of its failure, it can be classified
into two types of systems: hard real-time and soft real-time. The first ones can cause
injuries, deaths, and property/environmental damages, while the second ones can generate
a maximum loss of application performance.

In a multitasking operating system, a real-time scheduler is responsible for coor-
dinating processor access to ensure that all real-time tasks in the system do their work
on time. In real-time scheduling theory, tasks are described by mathematical variables,
which are used in analytical models to prove the scalability of the system (OLIVEIRA
et al., 2020).

Rigorous verification strategies are especially vital in the realm of security-critical
embedded real-time systems, where systems often need not only to meet a set of functional
requirements but also - equally important - strict time constraints. The correct behavior
of these systems is defined by the sequence of data they produce, either internally or in
their physical outputs, complemented by their temporal behavior.

Formal Verification (FV) is the act of proving or disproving the correctness of a
system about a given specification or formal property, where the possible behavior of the
system is verified against the desired behavior, this consists of a static analysis of the
set of possible scenarios represented by an abstract mathematical model and providing
a formal proof based on the pre-defined requirements (ONEM; GURDAG; CAGLAYAN;
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2008).

The key idea behind FV techniques such as model verification is to exhaustively
verify all implementations of a framework that are related to an implementation and
its environment against given requirements. Exhaustive program analysis, however, often
suffers from practical infeasibility (due to state space explosion) and/or theoretical im-

possibility (due to undecidability results) (REINBACHER; FUGGER; BRAUER, 2014).

Runtime Verification (RV) is a lightweight and dynamic technique that checks the
current execution of the system through structures called monitors and produces a verdict
on whether or not this execution satisfies a specific property of the system correction
(FALCONE; HAVELUND; REGER, 2013). It has its origins in model checking. The main
difference between the two techniques, in addition to their static and dynamic nature, is
that model checking deals with infinite traces, i.e., all possible runs of a given system. RV
deals with finite traces, i.e., the current execution status of a target system (LEUCKER;
SCHALLHART, 2009).

In RV, observers are synthesized to automatically evaluate the current execution
of a system under test, usually from a formal specification into a logic suitable for cov-
ering certain forms of specification of the system in the real world. The instantaneous
nature of the runtime check can be associated with some overhead mitigated by reducing
instrumentation points (REINBACHER; FUGGER; BRAUER, 2014). To evaluate the
specifications, RV depends on observations of the system’s state under analysis. These
observations are called events and serve as input to the observer. However, the state of
the system is usually not directly observable.

A classically adopted approach to obtain observations toward performing RV is
instrumenting the source code. This technique has proven viable for many high-level im-
plementation languages such as C and C++. Instrumentation can be done manually or
automatically by examining programs for assignments and function calls at the implemen-

tation language level and then inserting connection functions that emit relevant events to
an observer (REINBACHER; FUGGER; BRAUER, 2014).

Another problem faced by developers of real-time embedded systems is the overload
of tasks (MIZOTANI et al., 2015). This problem is commonly addressed through fault-
tolerant mechanisms, which can be used to recover degraded systems in order to ensure
liveliness. These mechanisms are not formally verified due to their inherent complexity
and concurrency restrictions. Coupling synthesized monitors automatically and together
with the target application allows transient overloads to be checked.

1.1 MOTIVATION

Many approaches verify system accuracy and security properties on critical sys-
tems. However, the model verification technique is usually used, highlighting its efficiency
in the formal verification process. A method for the design of CPS was developed within
the research group that the present author is part of (see (GONCALVES, 2018)). Such
a method uses Model-Driven Engineering (MDE) techniques. It deals with the design
of models in an automated way, ensuring the maintenance of application characteris-
tics throughout the development process for CPS, especially for Unmanned Aerial Vehi-
cles (UAVs), allowing the integration of related models and helping in the validation of
system properties.

It supports analyzing the system under design in the functional and architectural
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modeling phases. Regarding the architectural model, the proposal uses the Model Checking
(MC) technique as a formal verification approach to verify the desired properties of the
system. To support the evaluation of MC, the system’s behavior was extracted from a
model in the Architecture Analysis and Description Language (AADL) (FEILER; GLUCH;
HUDAK, 2006) and transformed into a set of timed automata.

The work from (MISSON et al., 2019) extends the previous one ((GONCALVES,
2018)), proposing a verification process that provides means to confront the developed
system model, which represents the system’s functionalities and characteristics about the
specifications and project requirements.

In the case of dynamic approaches, RV is considered relevant due to recent research
and studies that point to it as complementary to static analysis, in addition to dealing
directly with the main application, which covers gaps such as the difficulty of faithfully
modeling the target system.

The work in (PEDRO et al., 2018) shows that the techniques to enforce isolation of
time are generally delegated to the capabilities of the non-formally verified RTOS (MEIER;
HONEGGER; POLLEFEYS, 2015). Authors state that RV can increase these systems’
reliability, mainly when associated with static verification methods. RV can increase over-
all system coverage by ensuring runtime correction in parts where static approaches fail
to provide global coverage.

It presents a framework for performing RV of bare-metal (LAL, 2013) RTS to
tackle such problems. The framework consists of the rmtld3synthcpp tool for automatic
synthesizing of C++11 targeted monitors, the rmtld3synthocaml tool for Ocaml, and the
RTMLib runtime library to support docking monitors on bare metal boards.

The proposed framework can handle explicit time and durations, two essential
concepts for anomaly detection in hard real-time systems. However, a limitation of the
developed RTMLib is that it strictly follows the Portable Operating System Interface
(POSIX) standard. However, in the studies carried out by (PEDRO et al., 2018) it is
executed using NuttX, as it is an RTOS that follows the POSIX standard. However, many
real-time bare-metal embedded system applications do not support this architecture, such
as those using FreeRTOS. The work proposed here tries to solve the fact that RTMLib is
exclusive for use in systems that follow the POSIX standard.

1.2 GOALS

The main goal of this MSc. Thesis is to develop a Library to Support Runtime
Monitoring for the FreeRTOS that is implementing a project similar to RTMLib.

As specific goals, it is possible to highlight the following:

1. Runtime Monitoring Library for FreeRTOS.

2. Online and Offline Operation Modes, to have a more complete operation mode and
a lighter mode.

3. Decouple specific RTOS implementations.

4. Support Tasks Periodics and Aperiodics, Support to monitoring Deadline, Support
to monitoring WCET, in Tasks Non Preemptives.
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1.3 THESIS OUTCOMES

So far this M.Sc. Thesis has produced two important outcomes, as follows:

1. An open source Non Posix Runtime Monitoring Library, which available at https:
//github.com/EltonBroering/RMLib

2. A full paper in the SBESC 2022 conference (BROERING; BECKER, 2022).

1.4 DOCUMENT ORGANIZATION

The parts of this work are organized as follows. Chapter 2 provides technical back-
ground for what is discussed in this work and also includes a literature review; Chapter 3
describes the project, some design aspects, and implementation details; Chapter 4 details
the conducted experimentation; finally, Chapter 5 outlines the conclusions and the future
works directions.


https://github.com/EltonBroering/RMLib
https://github.com/EltonBroering/RMLib

2 RELATED TECHNOLOGIES AND LITERATURE REVIEW

This chapter reviews the main concepts addressed in this work, which includes
Embedded Systems, Real Time Systems (RTS), Formal Verification (FV), and Runtime
Verification (RV). The chapter also presents the related research project, ProVANT, and
finishes addressing relevant related works.

2.1 EMBEDDED SYSTEMS

A Cyber Physical Systems (CPS) is an integration of computation with physical
processes whose behavior is defined by both cyber and physical parts of the system. Em-
bedded computers and networks monitor and control the physical processes, usually with
feedback loops where physical processes affect computations and vice versa. They are sys-
tems that combine computational and physical elements, such as sensors and actuators,
to create intelligent systems that can sense and control the physical world. This field is
growing rapidly, with new applications being developed in areas such as transportation,
healthcare, and manufacturing (LEE; SESHIA, 2016). The field of embedded systems is
also closely related to the field of CPS.

Embedded systems are information processing systems embedded into enclosing
products, are computer systems that are integrated into other devices or products to per-
form specific functions. These systems can be found in a wide range of devices, such as
smartphones, cars, medical equipment, and industrial machines. The key characteristic
of embedded systems is that they are designed to perform specific tasks, as opposed to
general-purpose computers, which are designed to perform a wide range of tasks (MAR-
WEDEL, 2021).

In recent years, there has been a growing interest in the use of open-source software
in embedded systems. The use of open-source software can help to reduce the costs asso-
ciated with the development of embedded systems, as well as increase the flexibility and
adaptability of the systems. There are a number of open-source software platforms and
tools that are commonly used in the development of embedded systems, such as Linux,
Arduino, and Raspberry Pi for example.

One of the key concepts in the theoretical foundation of embedded systems is real-
time computing. This refers to the ability of an embedded system to respond to external
events within a specific time frame. Real-time computing is essential for embedded systems
that operate in safety-critical or time-sensitive environments, such as aviation or medical
equipment (TAKADA, 2001).

Important concept is embedded systems architecture. This refers to the way in
which different components of an embedded system are organized and interact with each
other. There are several common architectures used in embedded systems, including Von
Neumann, Harvard, and RISC (Reduced Instruction Set Computing). Embedded systems
often have limited resources, such as memory, processing power, and power consumption,
these are a resource constraints. This means that the design of embedded systems must

take these constraints into account in order to ensure that the system can perform its
intended function (LEE; SESHIA, 2016).

A key aspect of embedded systems design is the use of micro-controllers or mi-
croprocessors. These are small, low-power computer systems that can be integrated into



30 Chapter 2. Related Technologies and Literature Review

embedded systems to control various aspects of their operation. Micro-controllers are of-
ten used in conjunction with sensors and actuators to create closed-loop control systems
that can respond to external inputs and adjust system behavior accordingly. Are also
heavily dependent on the availability of sensors and actuators. Sensors are devices that
can detect changes in the environment and provide input to the system. Actuators are
devices that can perform actions based on the input received from the sensors. These
devices must be carefully selected and integrated into the system to ensure that they can
provide the required level of accuracy and reliability (SICILIANO; KHATIB; KROGER,
2008).

The design of embedded systems is a complex task that requires a deep understand-
ing of both hardware and software. On the hardware side, embedded systems designers
must consider issues such as power consumption, signal processing, and communication
protocols. On the software side, they must consider issues such as real-time constraints,
memory management, and software architecture (MARWEDEL, 2021). A key challenge in
the field of embedded systems is the design and development of software for these systems.
The software must be designed to make efficient use of the limited resources available and
must also be reliable and robust. There are a number of approaches to the design and
development of software for embedded systems, including the use of real-time operating
systems and the use of formal methods for the verification of the software. Often use
specific programming languages and development tools that are optimized for the specific
requirements of embedded systems. Examples of common programming languages used
in embedded systems include C, C++, and Python (S TANENBAUM; BOS, 2015).

The use of communication protocols is also crucial for embedded systems. These
protocols allow different components of an embedded system to communicate with each
other and with external devices. Common communication protocols used in embedded sys-
tems include Serial Peripheral Interface (SPI), Inter-Integrated Circuit (12C), Universal
Serial Bus (USB) and wireless protocols like Wifi, 802.15.4 and LoRa (ZURAWSKI, 2018).

Another important aspect of embedded systems is power management. Embedded
systems often operate in battery-powered or energy-constrained environments, and there-
fore, power management is essential to ensure that the system can operate for as long as
possible without needing to be recharged or replaced. This includes techniques such as
power gating and dynamic voltage and frequency scaling (MARWEDEL, 2021).

One of the most important considerations in the design of embedded systems is se-
curity. Embedded systems are often connected to networks and the Internet, and therefore,
they are vulnerable to cyber-attacks. This includes techniques such as encryption and au-
thentication to ensure that only authorized individuals can access the system (KOCHER
et al., 2004).

In recent years, the field of embedded systems has seen significant advancements
in the use of Artificial Intelligence (Al) and Machine Learning (ML) techniques. These
techniques allow embedded systems to make more accurate predictions and decisions based
on data inputs. This is particularly useful in applications such as predictive maintenance
and self-driving cars (HAIGH et al., 2015).

One of the key challenges facing embedded systems is the issue of scalability. As
embedded systems become more complex and interconnected, it becomes increasingly
difficult to manage and maintain them. Embedded systems design is the need to ensure
that the system is reliable and robust, they are often used in critical applications, such as
medical devices or industrial automation, where a failure could have serious consequences.
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This requires a thorough understanding of the system architecture, as well as the use of
robust software development practices and testing methods (LEE; SESHIA, 2016).

2.2 REAL-TIME SYSTEMS

Real Time Systems (RTS) refer to systems that are constrained by both timing
and resource limitations, which means that their accuracy depends on both functional
and temporal considerations, with resource constraints being a potential factor. Burns and
Wellings distinguish RT'S from other types of systems by their ability to avoid negative con-
sequences resulting from delayed or absent responses to stimuli (DAVIS; BURNS, 2011).
According to Mall, RTS are characterized by their ability to respond quickly (MALL,
2009), although the significance of this attribute may vary among different authors.

Numerous definitions of RTS exist, with each author presenting a distinct one.
However, a critical interpretation in real-time computing is that its accuracy depends not
just on the logical outcome of its computation, but also on the timing of the results it
generates (STANKOVIC, 1988).

RTS are often classified into two categories, namely soft real-time systems and
hard real-time systems. In soft real-time systems, missing a deadline could impact the
system’s performance to some extent, but it may not result in catastrophic consequences.
For example, in an online gaming system, a delay in the response time could result in
reduced user experience, but it may not necessarily cause the game to crash.

On the other hand, in hard RTS, meeting deadlines is critical and cannot be
compromised under any circumstances. For instance, in a pacemaker device, missing a
deadline could be life-threatening for the patient. Similarly, in an autonomous driving
system, a delay in processing information could lead to an accident, resulting in serious
harm to people’s lives. In such cases, meeting the deadline is of utmost importance, and
even the slightest delay could have severe consequences (MARWEDEL, 2021).

RTS cover a broad spectrum of applications, including process control systems,
manufacturing systems, embedded systems, and even multimedia systems (such as a sys-
tem for streaming video). They differentiate from general-purpose systems in the following
aspects:

e Time constraints are essential to meet deadlines, ensure timely execution, and pre-
vent delays. For example, deadlines specify the moment by which a process must be
completed.

e The correctness criterion applies to both real-time and non-real-time systems, but it
has a different meaning in the context of RTS. In such systems, correctness encom-
passes both functional and temporal correctness, and a result that meets functional
requirements but is delivered after the deadline is still considered incorrect.

e Numerical computation support is necessary for hybrid systems that combine control
activities, such as power plant management systems. RT'S are typically dynamic and
require timing constraints at discrete points in time, while their behavior is a mixture
of discrete and continuous dynamics.

e Safety-criticality refers to the combination of safety and reliability requirements in a
system. In non-real-time systems, safety and reliability are often treated separately.
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A system is considered safe if it does not cause harm even in case of failure, while
reliability refers to the ability of a system to operate without failures over a long
period of time.

e Large and complex systems pose significant challenges compared to small programs,
which are often simpler in nature and do not encounter the same issues.

RTS face a significant challenge in managing multiple interacting activities, also
known as tasks, while ensuring that their timing constraints are met. This challenge is
known as real-time scheduling and is an area of ongoing research. Tasks can be conceptu-
alized as abstract entities that represent code components with specific execution require-
ments. They are triggered by events, such as pressing a power off button or detecting and
avoiding a hazardous situation by a kitchen robot. These timing constraints impose limits
on the execution of code. The subsequent paragraphs will provide a classification of tasks
and timing constraints.

Multiple instances of a task are commonly referred to as jobs. Real-time jobs can
have relative or absolute deadlines, such as being based on the arrival of a stimulus event
or the system’s execution start time. The response time of a job is the duration between
when it is released and when the task completes its execution. Scheduling algorithms are
designed for uni-processor, multiprocessor, and distributed systems, which have significant
differences in terms of delays and spatial positioning. The transition between uni-processor
and multiprocessor systems to distributed systems involves several major abstractions.

The following passage will highlight the main terms and characteristics of real-time
systems below, to briefly facilitate their understanding (OLIVEIRA, 2020).

e Task: The term task is used more specifically for the execution of a code segment
that has some of its temporal attributes or restriction, such as a period or a deadline.

e Task Periodicity: Tasks are executed periodically at predetermined intervals to
achieve a specific timing requirement, the period of a task is the amount of time that
elapses between two consecutive instances of the task’s execution. The periodicity of
tasks is critical in real-time systems, where tasks must be completed within specific
deadlines, where different tasks are scheduled and executed based on their priority
and periodicity.

— Periodic Tasks: Periodic tasks are those that execute at regular intervals of
time. These tasks are typically used for repetitive and time-critical operations.

— Aperiodic Tasks: Aperiodic tasks are those that do not have a fixed periodicity.
These tasks are triggered by external events, such as user input or sensor data,
and require immediate attention.

— Sporadic Tasks: Sporadic tasks are similar to aperiodic tasks in that they do
not have a fixed periodicity. However, sporadic tasks are less frequent and less
critical than aperiodic tasks.

— Idle Tasks: Idle tasks are those that execute when no other tasks are ready to
run. These tasks are typically used to perform low-priority operations.

e Task Period: Interval time for periodic tasks, those that run at regular time intervals.
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e Deadline: Deadline for the execution of the task, and it can have no relative deadline,
when it is defined in relation to the arrival of the task, or absolute deadline, when
it is defined in relation to UTC time.

e Execution Time: Execution time is defined as the time that the task needs a given
resource to execute, most of the time of the resource in question is the processor.

e Worst Case Execution Time (WCET): It is the maximum execution time that can
be observed for a task on a computer, this time is usually estimated based on the
tasks project.

e Task Preemption: task preemption refers to the ability of the operating system to
temporarily suspend the execution of a running task in order to allow a higher-
priority task to run.

e Task Release: is the moment in which the task is included in the capable queue and
starts to be considered for execution by the operating system kernel.

e Response Time: the time interval between the arrival of the task and its completion.
Within the response time, there are several other times, such as the execution time
of the task, the execution time of other tasks that execute while the task waits, and
the release jitter.

e Arrival Time: The arrival time corresponds to the initial time from which the task
could be executed. From this moment on, the task can be executed. For periodic
tasks, the beginning of each period is considered as the arrival time. For aperiodic
tasks, arrival is caused by the event that triggers task execution.

2.3 FORMAL VERIFICATION

Formal Verification (FV) is the process of using mathematical techniques to prove
the correctness of software and hardware systems. It has been widely adopted in the
field of computer science and engineering as a way to ensure the reliability and safety of
complex systems. The theoretical foundation of formal verification can be traced back to
the work of Alan Turing and Alonzo Church in the 1930s, who laid the foundations for
the theory of computability (BJESSE, 2005).

The theoretical foundation of formal verification is rooted in mathematical logic
and automata theory. F'V methods are based on the use of formal languages, such as
predicate logic and temporal logic, to express the properties of a system. These properties
are then verified using automated proof systems, such as model checkers and theorem
provers. One of the key concepts in formal verification is that of a formal system, which
is a set of axioms, inference rules, and a set of theorems that can be derived from the
axioms using the inference rules. A formal proof is a sequence of deductions, each of which

is made using the inference rules, that shows that a theorem is a logical consequence of
the axioms (DRECHSLER et al., 2004).

The most widely used formality in computer science is the first-order logic, which
is a type of predicate logic that is used to express the properties of software and hardware
systems. First-order logic allows for the definition of predicates and functions, as well as
the use of quantifiers to express properties of sets of objects.

MC is a technique that is used in formal verification to automatically check the
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validity of a system against a set of properties. The properties are typically specified in
temporal logic, such as Linear Temporal Logic (LTL) or Computation Tree Logic (CTL).
The model checker then constructs a finite state model of the system, and uses algorithms
such as BDDs or SAT solvers to check whether the properties hold for all possible states
of the system (CORTES; ELES; PENG, 2003).

Another important technique in formal verification is theorem proving, which is
the process of constructing a formal proof of the correctness of a system. Theorem provers
use a formal proof system, such as natural deduction or resolution, to construct the proof.

One of the most widely used theorem provers is the Boyer-Moore theorem prover,
which is based on the resolution principle and is able to automatically generate proofs for
a wide range of problems. Other popular theorem provers include the Coq system, which
is based on type theory and the Isabelle system, which is based on higher-order logic.

Formal verification also plays a crucial role in the design and implementation of
hardware systems, as it allows for the automatic checking of the correctness of digital
circuits. The most widely used formal system for hardware verification is temporal logic,
such as LTL and CTL, which can be used to specify properties of hardware systems
(DRECHSLER et al., 2004).

One of the main challenges in hardware verification is the state explosion problem,
which is caused by the large number of possible states that a hardware system can be in.
This can be addressed by using techniques such as symbolic model checking, which uses
Boolean satisfiability solvers to check the properties of a system.

In recent years, there has been a growing interest in the application of formal
verification to CPS. These systems are typically subject to strict safety and reliability
requirements, and formal verification can be used to ensure that they meet these require-
ments (LEE; SESHIA, 2016).

FV has also been used in the field of embedded systems, which are systems that
include both hardware and software components. In embedded systems, FV is used to
ensure that the interactions between the hardware and software components are correct.
Overall, FV is a powerful method for ensuring the correctness of systems, and it has
been widely used in a variety of fields. It is based on a solid theoretical foundation in
mathematical logic and automata theory, and it has been successfully applied to a wide
range of systems (ALUR, 2011).

2.4 RUNTIME VERIFICATION

As Real Time Systems (RTS) continue to increase in magnitude and complexity,
they are no longer small, standalone applications. Instead, they are often embedded in a
larger context with multiple interacting components and systems. This interconnectedness
makes these systems more susceptible to errors, which can grow exponentially with the
number of system components. Concurrency and non-determinism, which are essential to
modeling RTS, are particularly challenging to manage using standard techniques (BAIER;
KATOEN, 2008).

In this section it is focused on model-based verification, particularly using timed
temporal logic, which is well-suited for modeling RTS. This is because RTS are complex
and dependent on temporal constraints, making many static approaches unfeasible. Reach-
ability becomes undecidable due to the time clock operations in these systems, such as
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addition and subtraction by a constant. As a result, there is a growing need for reliable and
safe development alternatives to static approaches, especially for hard real-time systems.
While research on dynamic approaches has been increasing for soft real-time systems, it
has been slower for hard real-time systems, with a greater emphasis on functional aspects
(PEDRO et al., 2018).

The technique of RV is used to monitor the behavior of a system to ensure that
it adheres to a desired set of logical properties. It should be noted that much of the RV
literature focuses on event-triggered solutions, which can introduce significant overhead
and unpredictability to the system being monitored.

Runtime monitoring, also known as monitoring at execution time, involves auto-
matically synthesizing monitors (dedicated blocks of source code) from formal specifica-
tions. This technique can be used offline for debugging or online for dynamic checking of
properties during execution. Offline monitoring involves collecting a program trace, which
is then analyzed to determine compliance with the specification. This technique can be
used to capture operations such as system calls, interrupts, context switches, and state
variables, and is useful for replay and analysis of the scheduling process.

Online monitoring, on the other hand, involves checking properties during execu-
tion. For example, inline monitoring involves inserting monitoring as annotations (e.g.,
assertions) into the execution code, while outline monitoring involves executing the mon-
itor as a separate concurrent process. Outline monitors can be implemented in hardware,
synthesized from high-level formal specifications, and executed on FPGAs to result in zero
runtime overhead on the system’s Central Processing Unit (CPU). However, RV often in-
curs a significant time penalty during system execution, so some authors recommend using
multi-processor systems when a hardware monitoring approach is not used. This allows
the monitoring process to be performed concurrently on a different processor, without
delays to the system under monitoring (GOODLOE; PIKE, 2010).

A runtime monitor is defined as a process that examines a Past Finite Execution
Trace (PFET) and produces a verdict during runtime. The verdict represents a truth value
from a truth domain that can range from simple true and false, to a three-valued true,
false, and unknown, or even a probabilistic interval within the range of 0 to 1.

In essence, the mathematical problem of RV can be boiled down to solving the word
problem, which is essentially the problem of determining whether a given word belongs to
a particular language. Denoting the set of valid executions that satisfy a certain property
® as JO K, then the word inclusion problem becomes checking whether the execution w is a
member of JP K. However, the language inclusion problem is generally more complicated
and undecidable, as is the case with classical timed automata (ALUR; DILL, 1992).

Dealing with the complexity of modern software systems is a major challenge in
RV. Many of these systems are distributed and concurrent, making it difficult to ensure
their correctness. Moreover, changing requirements and environments further complicate
the task of creating accurate specifications.

Another significant challenge in RV is coping with uncertainty. Programs are fre-
quently executed in environments that are not fully known or understood, making it hard
to anticipate their behavior. Additionally, changes or updates to programs can impact
their behavior. To overcome these challenges, a range of techniques has been developed to
handle uncertainty, including probabilistic methods, fuzzy logic, and Bayesian networks.

In addition to uncertainty, scalability is also a crucial aspect of RV when deal-
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ing with software systems. As systems become larger and more intricate, verifying their
correctness becomes increasingly challenging. To tackle this challenge, researchers have de-
vised various techniques for scaling RV, such as using distributed and parallel algorithms
and specialized hardware (HAMLET, 2010).

To address these challenges, researchers have developed a variety of techniques for
RV, including dynamic analysis, formal methods, and machine learning. Dynamic analysis
techniques, such as profiling and tracing, are used to observe the program’s execution and
gather information about its behavior. Formal methods, such as model checking, are used
to formally verify that a program conforms to a set of specifications. Machine learning
techniques are used to learn properties of the program’s execution and use this knowledge
to improve the accuracy of RV.

In recent years, there has been a growing interest in the use of RV for the veri-
fication of autonomous systems, such as self-driving cars and drones. These systems are
subject to a wide range of safety and reliability constraints, which makes RV a critical
component of their development. Additionally, as the use of autonomous systems is ex-
pected to increase in the future, there is a growing need for techniques that can ensure
their safety and reliability.

2.5 RELATED WORKS

The ProVant ! project, whose objective concerns the design of autonomous UAVs,
was created in 2012 by the Federal University of Santa Catarina (UFSC) in partnership
with the Federal University of Minas Gerais (UFMG). Since its inception, different studies
and research have been done, covering different phases of UAVs design, such as the design
of complex control systems, long-distance communication, artificial intelligence, and the
design of complex embedded systems.

About the design of embedded systems, especially UAVs projects, a design method
was created to guide the different design teams during the construction of the (GONCALVES;
RAFFO; BECKER, 2016) project. This method is composed of a set of phases and ac-
tivities and aims to adequately cover the representation of the required characteristics
of the UAVs. It is based on MDE and provides for the construction of complementary
representations to map the application characteristics.

To this end, tools were developed within the scope of the project to support the
integration of stages throughout the life cycle, such as model transformation tools that
aim to automate the generation of new representations from their input data.

Regarding method activities, system verification and validation is defined as an
activity that aims to ensure the evaluation and validation of system requirements. Thus,
studies have been carried out to evaluate the recommended approach to be applied in this
process. There are three very interesting works for the context of this project, "Project Of
The Embedded Software Architecture Of An Unmanned Aerial Vehicle" (GONCALVES et
al., 2014), "Applying formal verification techniques in Embedded Software in the design
of a UAV" (MISSON et al., 2019) and " Dynamic contracts for checking and applying
properties in real-time systems" (MATOS PEDRO, 2018).

Many different approaches are used to verify system correctness and security prop-
erties on critical systems. However, the model verification technique is normally used,

L http://provant.paginas.ufsc.br



2.5. Related Works 37

highlighting its efficiency in the formal verification process.

A method for CPS design was developed within the present research group, this
method is proposed by (GONCALVES, 2018). The proposed method is based on DEM
and deals with the design of models in an automated way, ensuring the maintenance
of application characteristics throughout the development process for CPS, especially for
UAVs, allowing the integration of related models and helping in the validation of properties
of the system.

For this, important phases are contemplated from the definition of requirements,
modeling of the dynamics of the aircraft in the functional model, modeling of the system
architecture, and transformation process that generates a suitable model for static verifi-
cation. In addition, it seeks to integrate all these processes, contributing to the design of
the embedded system, as well as the interface with the set of sensors and actuators.

The main contributions of the thesis improve the development process of CPS, in
which the tools for transforming related models stand out, allowing the analysis of the
system in the functional and architectural modeling phases.

Regarding the architectural model, the proposal uses the MC technique as a formal
verification approach to verify the desired properties of the system. To support the MC
evaluation, the system behavior was extracted from the AADL model and transformed
into a set of timed automata. MC is a static, automatic, and exhaustive FV technique,
where the abstract model of the system is checked against properties written in a formal
language (CLARKE; EMERSON, 1981).

To support the evaluation process, two distinct phases were adopted, so that the
properties are properly represented and allow the validation of the system characteristics.
The first phase describes the analysis of isolated tasks coupled to the set of devices that
interface with them. This phase aims to investigate possible failures in related devices.

The second phase evaluates the system’s set of threads according to a defined
scheduling policy and also considers possible system failure conditions. This was done as
an initial programming approach, where timing information such as running time was
estimated.

The proposed method provided an integrated solution for the phases and activities
of the UAVs design process, in which the use of MC was designed as a formal verification
technique. As the treated system is considered critical and its design is complex, it is
recommended to use more than one method to verify the accuracy of the system.

The work "Applying formal verification techniques in Embedded Software in the
design of a UAV" (MISSON et al., 2019) proposes a verification process that provides
means to confront the developed system model, which represents the functionalities and
characteristics of the system about the specifications and project requirements.

Some verification approaches are known and widely applied, such as static verifica-
tion, which does not require the existence of executable code, this is a model verification
technique. Static verification is based on an abstract system model, while the desired
properties are written in formal language. A verification tool is used to apply algorithms
and output verdicts of satisfaction or non-satisfaction of the specified properties against
the model (GRUMBERG; CLARKE; PELED, 1999).

Although it is a widely used technique, it has some limitations, such as state space
explosion, which in many cases makes it impossible for the model verifier to perform the
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verification. This occurs when the model is not very simplistic so that the possible com-
binations of its execution grow exponentially (infinite traces). However, other approaches
and methods can be used as a complement to guarantee the correctness of the system.

The proposed verification process aims to fill the gaps with unsatisfied or unde-
fined properties, in addition to the state explosion found in previous project approaches,
associated with the challenge of modeling the application in a way that portrays its ex-
ecution closer to the real one. The Flow involves dynamic, static, and tracing analysis,
restricted to steps 1 to 4 (red rectangles), highlighted in figure 2.1.

In step 1, static verification (1st round) is performed, and model verification is
performed as a first verification approach. It uses an abstract model of systems that can
be represented, for example, as Finite State Machines, Petri Nets, or Timed Automata.
In the end, the model check tool checks the model against the specifications.

In step 2 the analysis of tracing is done, once the code is generated, the tracing
tools can be used to perform a complete analysis of the actual execution of the application.
This is very important to allow an understanding of software behavior, as well as to obtain
more accurate timing information of system tasks, including preemption times, mutexes,

and CPU usage.

In step 3, static verification is carried out (2nd round), this step suggests carrying
out another static verification, representing a refinement and update of the verification
performed in the first step. Overall, it has the same goal, which is to automatically and
exhaustively check the model against formal properties.

Step 4 is Dynamic Verification, the dynamic verification step deals with the run-
time execution of the actual application code observed and verified by an entity called a
monitor.

The relationship between this step and the previous one is closely linked because
if the model designed in the previous approach does not satisfy an important property
or even if this property cannot be verified, due to the limitations of the formal static
verification technique, the guarantee of correctness and System reliability can be done
using the dynamic method.

In the case of the dynamic approach, the run-time verification technique was con-
sidered due to recent research and studies that point to it as a complement to static
analysis, in addition to dealing directly with the main application, which covers gaps such
as the difficulty of faithfully modeling the target system.

The work in (PEDRO et al., 2018) shows that even when formal methods of syn-
thesis and verification are used, the techniques to impose isolation are generally discarded
and delegated to the capabilities of non-formally verified RTOS (MEIER; HONEGGER,;
POLLEFEYS, 2015). Ideally, RV whould be used in collaboration with static verification
methods. Together, these techniques can increase overall system coverage by ensuring
runtime correctness in those parts where static approaches fail to give overall coverage.
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Figure 2.1 — Proposed design process flow (MISSON et al., 2019).

There is yet another problem faced by developers of real-time embedded systems,
task overload in RTOS. This problem is commonly handled through fault-tolerant mech-
anisms, which can be used to recover degraded systems to guarantee liveliness. Most of
these mechanisms are not formally verified, due to their inherent complexity and concur-
rency constraints. Coupling automatically synthesized monitors together with the target
application allows transient overloads to be checked for (MIZOTANI et al., 2015) safety.

A framework for performing RV of bare-metal embedded systems of RTS is pre-
sented in (PEDRO et al., 2018). The framework consists of the rmt 1d3synthcpp tool
for automatically synthesizing monitors targeting C++11, the rmt 1d3synthocaml tool
for Ocaml, and the RTMLib runtime library for supporting docking monitors on bare-
metal boards. This RV framework is capable of dealing with explicit time and durations,
two of the essential concepts for detecting anomalies in hard real-time systems.

2.6 FINAL REMARKS

The RV framework developed for Andre Pedro is capable of dealing with explicit
time and durations, two of the essential concepts for detecting anomalies in hard real-time
systems. However, a limitation of this tool is that it follows the POSIX standard.

POSIX systems are a set of standards and specifications for operating systems that
aim to provide compatibility and interoperability among different UNIX-like systems. The
idea behind POSIX is to create a common interface that allows applications written for
one POSIX operating system to run on any other POSIX operating system without the
need for significant modification.
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The tool has a dependency on using PThread, for example, and in the studies
carried out by (PEDRO et al., 2018), it is executed using NuttX, as it is an RTOS that
follows the POSIX standard. However, many real-time bare-metal embedded systems
applications do not support this architecture, such as those using FreeRTOS.

The present work aims to complement the analysis previously developed by imple-
menting the dynamic analysis proposed in the work developed by (MISSON et al., 2019).
This implementation will use the modeling developed in steps 1 to 3, deepen the study and
implementation of step 4, and compare it with the results obtained in the other verifica-
tion approaches carried out. The objective is to work on the Runtime Verification process,
adapting the work proposed by (PEDRO et al., 2018) for use in non-POSIX RTOS, such
as the FreeRTOS used in this work.

We also explored several other RunTime Verification libraries, but their RunTime
Monitoring support had restrictions when it comes to using FreeRTOS, as well as RTM-
Lib. Feather-Trace is a minimal event tracing toolkit primarily designed for tracing the
Linux Kernel, and the Kernel Runtime Verification Subsystem provides support for Kernel
Runtime verification (THE LINUX KERNEL ORGANIZATION, 2023). However, neither
of these options is compatible with FreeRTOS. Another library, R2U2 (ROZIER; SCHU-
MANN, 2017), operates by monitoring a system trace and "filtering messages". However,
in more constrained systems that utilize FreeRTOS (EDITION, n.d.), implementing a
file system or managing memory through an Memory Management Unit (MMU) is not
supported.



3 RUNTIME MONITORING LIBRARY

The aim of this project is to develop a Runtime Monitoring (RM) library that
supports the FreeRTOS operating system, with a focus on being architecture-independent
and compatible with multiple platforms. The goal is to provide a lightweight and non-
intrusive solution for implementing RM in systems, while also allowing for customization
based on specific architecture characteristics.

The initial implementation of the library focuses on the essential functions and
minimal storage structures required for RM. The intention is to provide a generic interface
for system-specific implementations, enabling designers to adapt the code to their target
architecture. The current implementation primarily focuses on instrumenting the code for
RM but does not include automated monitor generation.

One of the key features of the proposed RM library is the support for two operation
modes: online verification and offline verification. In offline verification mode, the moni-
tors run concurrently with the application code, collecting timestamps at specific points
of interest. These timestamps are then stored for later exportation and evaluation of mon-
itored constraints using external software. Offline verification is less intrusive and imposes
less overhead on the system, but it offers fewer features for data analysis. In Figure 3.1,
it’s possible to observe the use case of the Offline Mode of the proposed library.

RM Libary Offline Mode - Communication Diagram

1: Configure Variables

>

2: Initialize Library

' RM Library

3: Call TimeStamps

e

4: Call Export Data Functions

a

System Using Library
Tasks

5: Export Data to External Tool

RM Library External Tool

Figure 3.1 — RM Library Offline Mode Communication Diagram.

On the other hand, online verification mode operates similarly to offline verifica-
tion in terms of monitoring and timestamp collection. However, the verification of system
restrictions occurs online within the target system being monitored, and only the verifi-
cation results are exported. Online verification is independent of external tools and can
be used as a debugging tool. It offers additional features such as timestamp analysis, ex-
porting only cases of Real Time (RT) violations, and exporting system information when
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violations occur. However, it imposes higher overhead on the system and can significantly
impact system performance. In Figure 3.2, it’s possible to observe the use case of the
Online Mode of the proposed library.

RM Libary Online Mode - Communication Diagram

1: Configure Variables

2: Initialize Library

3: Call TimeStamps RM Library

ey

4: Call Export Data Functions

System Using Library >
Tasks

Figure 3.2 — RM Library Online Mode Communication Diagram.

In the online mode, more resources are available to provide a comprehensive anal-
ysis of the system. The flag EXPORT_ONLY_RTOS_ERRORS optimizes data storage by
exporting only cases with RT violations, making it easier to analyze these cases. Another
feature is the EXPORT_DUMP_STATUS_TASKS flag, which allows for exporting the status
of tasks by calling a specific function. When RT violations occur, the data export function
is provided by the library user, as it is specific to each system.

The complete library project can be accessed on the author’s GitHub page (BROER-
ING, 2022).

3.1 OFFLINE MODE

The following diagram of use 3.3 seeks to demonstrate in a simple way the mode of
use proposed for using the library. The objective of the diagram is to present a sequence
of operations to use the Library.

The diagram shows the necessary initialization of the system, timers of the system
and RM Library, the creation of the tasks, and the execution sequence of the tasks using
the library. The process of tasks using the library basically involves calling the library at
the beginning and end of the task execution. Additionally, there are communication tasks
that must export the data to be analyzed by the external tool of the RM Library.
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RM Library Offline Mode - Diagram of Use

System Initialization

Task 1 Task 2 Task Communication

Init Timers of System

TlmeStamp Init Executlon TlmeStamp Init Execution TlmeStamp Init Executlon

Task Execution Task Execution Task Execution

Export TlmeStamps to External Tool

Init Library

Create Tasks

TlmeStamp End Execution TlmeStamp End EXECUUOH

Start Scheduler

| TimeStamp End Execution |

Figure 3.3 — RM Library Offline Mode Sequence Diagram.

The implemented library is based on the work by Pedro et al. (2018) (PEDRO
et al., 2018). Its fundamental component is the Fvent structure, which is responsible for
storing the individual data of each event. The structure includes the following elements:

TimeStamp: Represents the timestamp of the event, indicating when it occurred.

Counter Task: Identifies the execution cycle of a task, allowing for proper event
ordering.

Task Identifier: Provides a unique identifier for the task associated with the event.

Task State: Indicates whether the event represents the start or end of a task.

The structure is designed to respect 32-bit multiples to ensure proper memory
alignment on architectures that require it. You can refer to Listing 3.1 to see the structure’s
representation.

For a more detailed understanding of the implementation, you can consult Listing
A.1 in the library, which provides the corresponding code.

1 32 bits TimeStamp

2 25 bits Counter Task

35 bits Identifier of Task
4 2 bits State of Task

Listing 3.1 — Data Structure used to store events in Offline Mode.

In order to configure the RunTime Monitoring library, it is necessary to define the
parameter NUMBER TASKS RUNTIME MONITORING, which determines the number
of tasks to be monitored by the library. This configuration is present in the library’s
header file. You can see the configuration definition in Listing 3.2.

To further understand the implementation of this concept, you can refer to Listing
A.2 in the library, which provides the corresponding code.

1 NUMBER TASKS RUNTIME MONITORING X

Listing 3.2 — Definition of Number Tasks of RM library in Offline Mode.
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The initialization of the library in Offline Mode involves initializing the circular
queue structures used to store the system’s events. The size of the storage queue is defined
in the library header, and the memory areas for storing these structures are statically allo-
cated, which is a recommended practice for embedded systems to avoid dynamic allocation.
The initialization process is demonstrated in Listing 3.3.

For a closer look at the implementation of this concept, you can refer to Listing
A.3 in the library, which provides the corresponding code.

| SIZE RUN TIME BUFFER QUEUE X
> QueueEventsBuffer [SIZE RUN_TIME BUFFER_QUEUE]
&

t rmlib init

5 init queue

Listing 3.3 — Initialization function of the RM library in Offline Mode.

The proposed library includes a function to read the system time in milliseconds,
which is crucial for registering the time (TimeStamps) of the system’s events. The function
definition is presented in Listing 3.4. It’s important to note that the implementation of
this function needs to be provided by the user of the library since it is closely tied to the
specific system where the library is utilized.

To gain a better understanding of how this function can be implemented, you can
refer to Listing A.4 in the library, which showcases the code for this particular concept.

1 32 bits ReadCounterMiliSeconds

Listing 3.4 — Definition of ReadCounter Function in MilliSeconds.

The TimeStamp function is responsible for registering events and takes two inputs:
the Task Identifier and the Task State, which indicates whether it’s a task start or end
monitoring point. In offline mode, the function reads the system milliseconds and stores
the Task’s Event, as illustrated in the pseudocode presented in Listing 3.5.

For a more detailed understanding of the implementation, you can refer to Listing
A.5 in the library, which demonstrates the actual code for this concept.

I timestamp runtime (task identifier , task state)
2 store parameter in variable Event
3 ReadCounterMiliSeconds

1 store Event

Listing 3.5 — Function to collect TimeStamps in RunTime while in Offline Mode.

The data export function in the library removes events from the events queue
(using the "pop" action) and provides a way to convert the collected events into a text
format that can be interpreted by the offline checker. Both functions are shown in Listing
3.6.

The exported data format for the offline checker is a string in JSON format, con-
taining the fields present in the Event structure. The function demonstrates the imple-
mentation of COMPACT EXPORT DATA, which offers a more compressed solution for
data export, reducing the utilization of system resources. In Offline Working Mode, this
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is crucial due to the large amount of data exported for analysis using the external tool.
The external tool supports both data export formats.

Please note that the specific details of the implementation can be observed in
Listing A.6 in the library.

I rmlib export data (event rmlib)

2 pop(event rmlib)

3

i rmlib export data string (event rmlib)
5 IF compact export data

6 export data compact string

7 ELSE

8 export data string

Listing 3.6 — Functions to export Events while in Offline Mode.

The offline analysis tool, which checks the exported data and monitors events in
offline mode, collects the events, verifies the input and output timestamps of tasks, and
checks if they comply with the defined time requirements. It then presents a verdict for
each task. The algorithm developed for this purpose in the example scenario is shown
in Listing 3.7. Additionally, in Listing A.6, you can observe the implementation of this
concept in the library.

| ANALYZE_DATA (DATA) :

> ANALYZE STATE OF TIMESTAMP

5 GROUPING MESSAGES USING TASK IDENTIFIER

i IF NUMBER_OF TIMESTAMPS TASK IDENTIFIER > 1:
ANALYZE_TASK_TIMESTAMPS

6 IF DELTA TIMESTAMP <— TIME RESTRICTIONS:
7 TASK CONDITION: OK

8 ELSE:

9 TASK CONDITION: NOK
10  ELSE:
11 STORE TIMESTAMP
12 WHILE:

13 DATA — RECEIVE_MESSAGES_EVENTS
14 ANALYZE DATA (DATA)

Listing 3.7 — Pseudo code from their RM Offline Analyzer.

To use the RunTime Monitoring (RM) offline analysis tool, you need to config-
ure certain fields in the ReaderSerial tool. These fields include the deadline, periods, and
WCET vectors, which are reference parameters passed for analyzing the received data.
Additionally, the serial interface needs to be defined to specify the communication in-
terface through which the tool will receive the data. These configurations are shown in
Listing 3.8. Currently, the tool is limited to receiving data through the serial interface.
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I vector deadlines = [X...Y]
2 vector_period = [X...Y]
3 vector _wcet = [X...Y]
| serial interface = intarface name

Listing 3.8 — RM Offline Analyzer configurations.

For a better understanding of how to use the RMLib library in Offline Mode,
we will present a pseudo-code that demonstrates the step-by-step process of initialization,
configuration, and usage. This simplified guide will show the necessary steps to get started.

First, in the initialization process, the system timer is initialized. Then, the library
itself is initialized with the appropriate parameters. After that, the system tasks are
created, and finally, the system scheduler is initialized. The code snippet in Listing 3.9
illustrates this initialization process.

The tasks implemented in the system have the following characteristics: at the
beginning of each execution cycle, the task executes the timestamp function with the
starting identifier, and at the end of the execution cycle, the timestamp function is exe-
cuted with the ending identifier. This ensures that the events are properly registered. The
code snippet in Listing 3.9 demonstrates this implementation.

When using the RMLib library in offline mode, an important feature is the export
of timestamps for verification by an external tool for later analysis. This allows for in-
depth analysis of the collected data. The code snippet in Listing 3.9 showcases this export
functionality.

| system initilization:

2 init timer of system
3 init library
A create tasks

5 start scheduler

7 task 1:

8 task loop execution:

9 timestamp runtime (taskl,init of taks)
10 taks execution

11 timestamp runtime (taskl ,end of taks)

12 task 2:

13 task loop execution:

14 timestamp runtime (task2,init of taks)
15 taks execution

16 timestamp runtime (task2 ,end of taks)

18 task communication:

19 task loop execution:

20 timestamp runtime (task3 ,init of taks)
21 taks execution

22 export timestamps to Extern Tool
23 timestamp runtime (task3 ,end of taks)

Listing 3.9 — Pseudo code Example Case of Offline Mode.
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3.2 ONLINE MODE

The following sequence diagram 3.4 seeks to demonstrate in a simple way the
proposed mode of use for the library.

The diagram illustrates the necessary system initialization, timers of the system
and library, tasks with their parameters for verification, creation of tasks, and the execu-
tion of tasks utilizing the library. The process of tasks using the library basically involves
calling the library at the beginning and end of task execution. Additionally, it includes
communication tasks that export the verdicts of the RM Library system.

RM Library Online Mode - Diagram of Use

System Initialization
Task 1 Task 2 Task Communication

Init Timers of System |
‘L ‘ TimeStamp Init Execution

Task Execution Task Execution

| TimeStamp End Execution |

‘ TimeStamp Init Execution

‘ TimeStamp Init Execution

Init Library with Tasks Parameters

Task Execution

Create Tasks

| TimeStamp End Execution Export Verdicts

Start Scheduler
| TimeStamp End Execution

Figure 3.4 — RM Library Online Mode Sequence Diagram.

For the online operation mode, in addition to the basic event structure shown in
Listing 3.1, where events that have not yet been processed are stored due to the task’s
execution cycle not ending, the data structure called TimeStamp Verdict is also created.
It serves as the fundamental system structure for storing the verdicts of each execution
cycle of the tasks after processing in the online operation mode. This structure is shown
in Listing 3.10. Additionally, in Listing B.1, you can observe the implementation of this
concept in the library.

The TimeStampVerdict structure consists of the following elements: TimeStamp
(which stores the initial timestamp of this verdict), CounterTask (task execution cycle
counter), ExecutionTime (task cycle execution time), Identifier of Task, Status of WCET
Task (indicates the status of the task’s worst-case execution time (WCET) in the task
execution cycle, indicating whether the WCET constraint was fulfilled correctly or not),
and Status of Deadline Task (indicates if the task’s deadline status fulfilled the task
execution cycle deadline constraint).

1 16 bits TimeStamp

2 16 bits Counter Task

3 16 bits Execution Time

15 bits Identifier of Task

5 1 bit Status of WCET Task

6 1 bit Status of DeadLine Task
79 bits Reserved Bits

Listing 3.10 — Data Structure used to store TimeStamp Veredicts.
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One of the requirements for the RunTime Monitoring library is the definition of
NUMBER TASKS RUNTIME MONITORING, which configures the number of Tasks to
be monitored by the library, this library configuration definition is present in the library
header file. This configuration can be observed in Listing 3.11. Additionally, in Listing
B.2, it is possible to observe the implementation of this concept in the Library.

1 NUMBER TASKS RUNTIME MONITORING X

Listing 3.11 — Definition of Number Tasks of RM library in Online Mode.

Initializing the library for Online Verification is similar to Initializing the library in
Offline mode showed in Listing 3.1, conceptually initializing the queues is the same. How-
ever, TimeStampVeredicts queues are initialized and at initialization, vectors are also
passed with the parameters to be verified according to RT restrictions, such as TaskI-
dentifiers, DeadLines, Period and WCET of the Tasks. Its initialization is presented in
Listing 3.12. Additionally, in Listing B.3, it is possible to observe the implementation of
this concept in the Library.

1 SIZE RUN TIME BUFFER QUEUE X

2 QueueEventsBuffer [SIZE RUN TIME BUFFER_ QUEUE]
3
+ rmlib init (RT_paratemeters verification)

5 init queue

6 init variables with RT paratemeters verification

Listing 3.12 — Initialization function of the RV library in Online Mode.

The proposed library requires a function to read the system time (in milliseconds).
This basic function is needed to register the time (TimeStamps) of the system’s events.
The function definition is presented in Listing 3.13. In this case the function definition is
the same used in Offline Mode Operation. Additionally, in Listing B.4, it is possible to
observe the implementation of this concept in the Library.

1 32 bits ReadCounterMiliSeconds

Listing 3.13 — Definition of Function ReadCounter in MilliSeconds.

The TimeStamp function implements the registration of the events. Its input is
the Task Identifier and the Task State (task start or end monitoring point). In the on-
line mode the function reads the system milliseconds and stores the Task’s Event, but
if the TaskState entry in function is TASK END EXECUTION, the function make the
processing of Task Cycle, and verify RT Constraints to make a verdict, and then save this
verdict, this resources is presented and explained in Chapter 3. It’s possible to observe
some implementations of extra resources, how EXPORT ONLY RTOS ERRORS and
EXPORT DUMP _ STATUS TASKS. As shown in the source code presented in List-
ing 3.14. Additionally, in Listing B.5, it is possible to observe the implementation of this
concept in the Library.

1 timestamp runtime (task identifier , task state)
2 store parameter in variable Event

3 ReadCounterMiliSeconds

4 IF TASK END EXECUTION
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5 analyze Events and store Results in Verdict
6 store Verdict
7 ELSE

8 save Event

Listing 3.14 — Function to collect TimeStamps in RunTime while in Onine Mode.

The function that exports the data in the online mode removes the TimeStam-
pVerdicts (pop action) from the TimeStampVerdicts’ queue. The library also implements
a function to convert the set of events collected to the text format to export, to turn
easier to integrate data exported to others, this data is exported in JavaScript Object No-
tation (JSON) format. Both functions are shown in Listing 3.15. In this function is possible
to observe the COMPACT EXPORT DATA implementation, this additional resource im-
plements a better solution to export data more compressed and using minor resources of
the system. Additionally, in Listing B.6, it is possible to observe the implementation of
this concept in the Library.

I rmlib export data (verdict rmlib)

2 pop(verdict rmlib)

3

. rmlib export data string (verdict rmlib)
5 IF compact export data

6 export data compact string

7 ELSE

8 export data string

Listing 3.15 — Functions to export Events Online Mode.

For a better understanding of the use of the library, we will present pseudo code to
demonstrate how to use the library RMLib in Offline Mode in a simplified way, showing
the step-by-step guide for initialization, configuration, and use. First, in the initialization
process, the System Timer is initialized, the library is initialized, the System Tasks are
created, and finally, the system scheduler is initialized, as can be seen in Listing 3.16.

The implementation of Tasks has the following characteristics: at the beginning of
the execution cycle, the Task must execute the timestamp function with the beginning
identifier, and at the end of the execution cycle, the timestamp function must be executed
with the identifier of the end of the execution cycle, as shown in Listing 3.16.

When using the RMLib library in offline mode, an important feature is the export
of TimeStamps for verification by an external tool for later analysis, as shown in Listing
3.16.
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| system initilization :

2 init timer of system
3 init library with Tasks Parameters
A create tasks

5 start scheduler

7 task 1:

8 task loop execution:

9 timestamp runtime (taskl,init of taks)
10 taks execution

11 timestamp runtime (taskl ,end of taks)

12 task 2:

13 task loop execution:

14 timestamp runtime (task2 ,init of taks)
15 taks execution

16 timestamp runtime (task2 ,end of taks)

18 task communication:

19 task loop execution:

20 timestamp runtime (task3 ,init of taks)
21 taks execution

22 export Verdicts

23 timestamp runtime (task3 ,end of taks)

Listing 3.16 — Pseudo code Example Case of Offline Mode.

3.3 CONCLUDING REMARKS

In this chapter the implementation of the RM library was presented, initially the
basic concepts of the library and its resources, and in detail the two implementations, the
operation mode with Online Verification and the operation mode with Offline Verification.
In the next Chapter 4, an example implementation of the library will be presented, seeking
to demonstrate how to use it, through the example and how to monitor the system, using
the resources of the developed library.



4 EVALUATION

This chapter describes the application of the developed Runtime Monitoring (RM)
library within the context of the ProVant project, presented in Chapter 2.5, which aims
to develop Unmanned Aerial Vehicles (UAVs). This study intends to demonstrate the
usage of the developed RM library to support the design of a safe continuous-control
architecture, as further detailed.

The experiments will be conducted on top of a UAV control scenario, exploring
situations in which the time constraints are not met, aiming to observe how the system will
behave. This also allows us to explore some additional features of the developed library
to facilitate fault detection and analysis of these cases.

In order to identify anomalies, the feature of exporting only the faulty situations
(temporal faults) is used. This facilitates the identification of faults and the use of Dump-
TaskStatus to improve the analysis of the causes of these faults, as well as to properly
observe the remaining system threads when faults/violations occur.

4.1 ENVIRONMENT SETUP

To perform the proposed experimentation, all implementations are carried out
using a 32-bit Advanced RISC Machine (ARM) Cortex-M4 Reduced Instruction Set Com-
puter (RISC) processor platform, specifically on the SAM4E Xplained Pro development
kit (MICROCHIP, 2022). Atmel Studio was used as the development environment, and
the operating system is FreeRTOS version 10.0.0. The implementation of this study is
available for download at (BROERING, 2022).

The first step in performing experiments using RMLib in our experiment is the
initialization of the chosen hardware for the example. Initially, the initialization of all
pins and peripherals that will be used in the system must be performed, along with the
initialization of the USB driver to serve as serial communication, allowing the system to
export the collected data. Finally, the initialization of the Timer Counter hardware must
be performed, using the Timer Counter peripheral of the ARM processor to accurately
and correctly measure time. Additionally, there is the configuration of a hardware button
for use in the experiment, which will be used in one of the experiments to manually call
a Non-Periodic Task. This initialization can be observed in Listing 4.1, located in the
main() function of the main.c file.

1 /% main(): Initialize the SAM system x
2 sysclk init () ;

3 board init () ;

1 stdio _usb _init () ;

5 Timer init () ;

6 #ifdef ASYNCHRONOUS TASK

configure button () ;

~

8 #endif

9 ...

Listing 4.1 — Function main() in main.c: board and peripherals initialization.
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It must be highlighted that the library must implement a ReadCounterMs func-
tion, which should return the number of milliseconds of the system. To do so, the System
Time Counter peripheral is used. The peripheral is initialized, and the time interruption
intervals are defined according to the defined time scale, which in this case is 1 ms. The
configured interrupt Handler function is implemented, along with the ReadCounterMs
function, which returns the number of milliseconds since the peripheral initialization.
These implementations are shown in Listing4.2, located in the file Timings.c.

I void Timer init () {

2 uint32 _t ul_ sysclk = sysclk get cpu_ hz();

3 pmc__enable periph clk (ID_TCO) ;

1 tc¢_find mck divisor (SYSTEM TIMER COUNT SCALE, ul sysclk, &ul div
, &ul tcclks, ul sysclk);

5 tc_init (TCO, 0, ul tcclks | TC CMR CPCIRG) ;

6 tc_write rc(TCO, 0, (ul sysclk / ul div) /
SYSTEM_TIMER_COUNT_SCALE) ;

7 NVIC EnableIRQ ((IRQn_Type) ID TCO) ;

8 tc_enable interrupt (TCO0, 0, TC IER CPCS);

9 tc_start (TCO, 0);

10 }

11 void TCO_Handler(void){

12 ul dummy = tc_get status(TCO, 0);

13 g ul ms ticks++;

14 }

15 uint32 _t ReadCounterMiliSeconds(void){

16 return g _ul ms ticks;
17 }

Listing 4.2 — Auxiliary functions for retrieving timming information (file Timings.c).

After initializing the RMLib according to the Online Verification or Offline -
Verification usage mode, initializing the library according to the proper operation mode
requires changing some parameters as explained earlier in Chapter 3. In this case, when
initializing the RM library, vectors are passed with the parameters of the system’s Tasks,
such as the Tasks identifier Vector (the number that identifies the Tasks), the Tasks Dead-
lines vector, the Periods of the Tasks, and the WCET vector of the Tasks to be monitored.
All of them should be in the same order as the Tasks identifiers. These parameters are
being configured according to the information present in Table 4.1, which includes infor-
mation from the project’s Tasks and serves as an example of using the library.

After this stage, still in the main() function of main.c, the creation of system tasks and
the initialization of the task scheduler must be done, as shown in Listing 4.3.
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#ifdef ONLINE VERIFICATION
init _buffer tasks runtime verification online ();
rmlib_init(&Identifiers Tasks ,&Vector Deadline Tasks,&
Vector Period Tasks,&Vector WCET Tasks) ;
#endif
#ifdef OFFLINE VERIFICATION
rmlib _init () ;
#endif
if (xTaskCreate (task controller , "Controller",
TASK CONTROLLER STACK SIZE, NULL, TASK CONTROLLER PRIORITY,&
TaskHandle Controller) != pdPASS){
printf("Failed to create Controller task\r\n");

}

if (xTaskCreate (task communication, "Communication",
TASK COMMUNICATION STACK SIZE, NULL,
TASK COMMUNICATION PRIORITY,& TaskHandle Communication) !=
pdPASS){
printf("Failed to create coomunication task\r\n");
}
if (xTaskCreate (task led hlc, "Led", TASK LED HLC STACK SIZE,
NULL, TASK LED HLC PRIORITY, &TaskHandle LedHLC) != pdPASS){
printf("Failed to create led task\r\n");
}
if (xTaskCreate (task dummy sensing, "Dummy Sensing",
TASK DUMMY SENSING STACK SIZE, NULL,
TASK DUMMY SENSING PRIORITY, &TaskHandle DummySensing) !=
pdPASS) {
printf("Failed to create dummy task\r\n");
}
if (xTaskCreate (task dummy actuation, "Dummy Actuation",
TASK DUMMY ACTUATION STACK SIZE, NULL,
TASK DUMMY ACTUATION PRIORITY, &TaskHandle DummyActuation) !=
pdPASS) {

printf("Failed to create dummy task\r\n");

}
#ifdet ASYNCHRONOUS TASK
if (xTaskCreate (task asynchronous, "Asynchronous",
TASK ASYNCHRONOUS STACK SIZE, NULL,TASK ASYNCHRONOUS PRIORITY
, &TaskHandle Asynchronous) != pdPASS){
printf("Failed to create asynchronous task\r\n");
3 #endif

/* Start the scheduler. =/
vTaskStartScheduler () ;

Listing 4.3 — Code of initialization of RMLib and Tasks of System.
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4.2 EXPERIMENTAL WORKLOAD DESCRIPTION

The analyzed continuous-control architecture consists of five concurrent process-
es/threads, as illustrated in Figure 4.1. The High-Level Control (High-Level Command
(HLC)) is a non-preemptive thread responsible for interfacing with higher-level control
entities, such as a separate cognitive agent deployed on separate hardware. The HLC task
is critical because it must execute before the control thread within the control cycle to
provide input data for the control algorithm. The Sensing thread is a non-preemptive
thread responsible for interfacing with the sensors, collecting data, and performing pre-
processing to prepare the data for use as input by the control algorithm. The Control
thread is a non-preemptive thread responsible for executing the continuous-control algo-
rithm. It utilizes input sensor data generated by the Sensing thread and commands from
the HLC thread. The output of the Control thread consists of actuation values that need
to be sent to the Actuation thread. The Actuation thread is a non-preemptive thread re-
sponsible for interfacing with the actuation components, such as the two Electronic Speed
Controllers (FElectronic Speed Controllers (ESC)) connected to the brushless motors.

User Data Actuation Data

HLC Actuation

Control

Sensing Telemetry
Sensing Data Telemetry Data

Figure 4.1 — Model of the UAV continuous-control architecture.

Given that the Electronic Speed Controllers (ESC) require periodic commands,
the Actuation thread becomes critical as its slack time needs to be very small (close to
zero). On the other hand, the Telemetry thread is a preemptive thread responsible for
transmitting monitoring data to a remote base station. The amount of data transmitted
by this thread is determined and configured by the UAV’s operation team, which can
result in high execution times. In this thesis, the highest possible execution time for
this thread was established to ensure that the overall CPU utilization approaches 100%.
Table 4.1 provides a summary of the timing and scheduling properties of the adopted
continuous-control thread architecture.

Task Period | Deadline | WCET | Utilization | Priority | Preemptive
T1-Actuation 12 12 2 0.166 5 NO
T2-Sensing 12 12 3 0.250 4 NO
T3-Control 12 12 4 0.333 2 NO
T4-HLC 120 120 4 0.033 3 NO
T5-Telemetry | 600 600 130 0.216 1 YES

Table 4.1 — Thread-set of the proposed continuous-control architecture.

The defined WCET takes into account the maximum possible execution time of
each task, considering the restrictions imposed by the task period, rather than estimating
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the actual WCET values. Therefore, the WCET is considered as the maximum time
constraint for each task, defined by its period. This model is proposed by Misson in
(MISSON et al., 2019).

The scheduling model that will be used is based on a priority-based scheduling
system with both preemptive and non-preemptive tasks.

Regardless of the Telemetry thread’s execution time and the resulting CPU uti-
lization factor, the CPU is fully utilized during the "critical instant." In this study, the
critical instant lasts 12ms and occurs every 120ms, as illustrated in the Gantt diagram
in Fig. 4.2. Please note that the threads in the diagram are presented in the same order
as in Table 4.1, with T1 (Actuation) at the top and T5 (Telemetry) at the bottom. In
this model, the critical instant occurs every 120ms, i.e., whenever the HLC (T4) thread
is ready for execution, so it must be executed before the Control (T3) thread. It is impor-
tant to pay attention to the 12ms timing windows immediately before (starting at 108ms)
and immediately after (starting at 132ms) the critical instant. These windows are used
to execute the Telemetry thread, which is the only preemptable thread. Finally, it should
be noted that the Actuation thread should consistently execute without jitter, i.e., with
a slack time close to zero.

Typical UAVs missions take several minutes or even hours to complete. However,
the current experiment aims to validate the developed RM infrastructure rather than
prove the success of a specific mission. Therefore, the focus has been on a minimal time
window of approximately 120ms. This hyper-period corresponds to the task set presented
in Table 4.1.
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Figure 4.2 — Gantt diagram of the adoped thread-set execution, with the critical instant in the center (120ms
- 132ms).

Another important aspect to highlight is that the execution loops of the five tasks
comprising the continuous-control architecture are not executing the actual application
source code. Instead, they are executing synthetic code that has equivalent execution
times. In other words, the execution time in this case represents the WCET of the respec-
tive tasks.

Regarding the behavior of the Control Task, during its initialization, it sets up
the control function to use the Float Point Unit (FPU). Upon entering the cyclic exe-
cution loop, it first utilizes a function to define an atomic region where preemption is
disabled. Then, it calls the TimeStamp function with the task identifier and the state
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TASK INIT EXECUTION. Subsequently, it invokes the Control LQR, Controller func-
tion (DONADEL et al., 2015), which represents the control algorithm modeled in the
ProVANT project. Finally, it records the end of task execution timestamp and introduces
a delay to ensure compliance with its execution period. You can refer to Listing 4.4 for
the implementation of the Task Controller function.

1 static void task controller (void xpvParameters){

2 ¢_control lqrArthur init();

3 while (true){

4 vTaskSuspendAll () ;

5 timestamp runtime (TASK IDENTIFIER CONTROLLER,
TASK_INIT EXECUTION) ;

6 c_control lqr controller(&controller input ,&controller ouput
) ;

7 timestamp runtime (TASK IDENTIFIER CONTROLLER,
TASK _END EXECUTION) ;

8 counter tasks runtime [TASK IDENTIFIER CONTROLLER-1]|++;
9 uint32 t MileSecondsTask = ReadCounterMiliSeconds () ;
10 uint32 t ValueTaskDelay;

11 if ((TASK_CONTROLLER, PERIODxcounter tasks runtime |
TASK IDENTIFIER CONTROLLER—1]|) > MileSecondsTask){

12 ValueTaskDelay = (TASK CONTROLLER PERIOD:x
counter tasks runtime [TASK IDENTIFIER, CONTROLLER—-1] —
MileSecondsTask) ;

13 }

14 else{

15 ValueTaskDelay = 0;

16 }

17 vTaskDelay (ValueTaskDelay) ;

18 xTaskResumeAll () ;

19 }}

Listing 4.4 — Function Task Controller.

The Sensing and Actuation tasks indeed share a similar implementation. They do
not have a specific initialization step, and in their main execution loop, they are non-
preemptive. They utilize signals to indicate the start and end of the task to the RM
library, and an idle execution period occurs between these signals, ensuring adherence to
their respective WCET and the period between executions. You can refer to Listing 4.5
for the implementation of the Task Actuation function. The Sensing task follows the
same structure, with the only difference being the values of WCET, task period, and task
identifier passed to the TimeStamp function.
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I static void task dummy actuation(void xpvParameters){

while (true){

3 vTaskSuspendAll () ;

4 timestamp runtime (TASK IDENTIFIER DUMMY ACTUATION,
TASK INIT EXECUTION) ;

5 uint32 t count tmp = 0;

6 while (count tmp < (TASK DUMMY ACTUATION WORST CASEx
MS COUNTS DUMMY) ) {

7 count tmp-+-+;

s}

9 timestamp runtime (TASK IDENTIFIER DUMMY ACTUATION,
TASK END EXECUTION) ;

[\V]

10 counter tasks runtime [TASK IDENTIFIER DUMMY ACTUATION—1]|++;
11 uint32 t MileSecondsTask = ReadCounterMiliSeconds () ;
12 uint32 t ValueTaskDelay;

13 if (TASK DUMMY ACTUATION PERIOD#counter tasks runtime |
TASK IDENTIFIER_ DUMMY ACTUATION—1] > MileSecondsTask){

14 ValueTaskDelay = (TASK DUMMY ACTUATION PERIODx
counter tasks runtime [TASK IDENTIFIER DUMMY ACTUATION-1| —
MileSecondsTask) ;

15 }

16 else{

17 ValueTaskDelay = 0;

18 }

19 vTaskDelay (ValueTaskDelay ) ;
20 xTaskResumeAll () ;

21 })

Listing 4.5 — Function Task Actuation.

The HLC task has a slight difference in that it includes a request to blink an LED.
This serves as a watchdog, indicating to the developer that the system is still running.
You can refer to the implementation of the Task Actuation function in Listing 4.5 for a
reference on how this is implemented.

The last task is the system communication task, which is solely responsible for
system telemetry and is the only task in the system that can be preempted. It also
has a much longer execution period and the lowest priority among the tasks. In this
example scenario, it is used to export data from the RM library to the offline verifier. It’s
worth noting that the RM library also monitors this task. In other words, the RM library
includes RM monitors at the beginning and end of the task execution. You can see the
implementation of the Task Communication function in Listing 4.6.
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I static void task communication(void xpvParameters){

2 while (true)

3

if (ReadCounterMiliSeconds () < MS INIT USB MILISECOND) {

continue ;

I

ot

6 }

7 timestamp runtime (TASK IDENTIFIER_ COMMUNICATION,
TASK_INIT EXECUTION) ;

8 while (rmlib_export data(&QueueTimeStampsBufferDumped) =—

COMMAND OK) {
9 rmlib _export data string(&QueueTimeStampsBufferDumped) ;
10 }
11 #ifdef EXPORT DUMP_STATUS TASKS
12 char * token = strtok (szList, "\n");
13 while (token != NULL)({
14 printf("%s\n", token); printing each token
15 token = strtok (NULL, "\n");
16 }

17 memset(&szList [0] ,0,size buffer export);
18 #endif
19 timestamp runtime (TASK IDENTIFIER COMMUNICATION,
TASK END EXECUTION) ;
20 counter tasks runtime [TASK IDENTIFIER, COMMUNICATION—1]|++;
21 #ifdef TASK COMMUNCATION PERIODIC
22 uint32 t MileSecondsTask = ReadCounterMiliSeconds () ;
23 uint32 t ValueTaskDelay ;
24 1f (TASK COMMUNICATION PERIOD#counter tasks runtime |
TASK IDENTIFIER, COMMUNICATION—1] > MileSecondsTask) {

25 ValueTaskDelay = ((TASK COMMUNICATION PERIOD:x
counter tasks runtime [TASK IDENTIFIER COMMUNICATION—1]) —
MileSecondsTask) ;

26 }

27 else

28 ValueTaskDelay = 0;

29 }

30 vTaskDelay (ValueTaskDelay) ;

31 #else

32 vTaskDelay (10) ;
33 #endif

34 }+}

Listing 4.6 — Function Task Communication.

In the experiment, two different execution configurations were used for the Commu-
nication Task. In one configuration, it executes periodically like the other tasks, allowing
idle time for the processor. In the other configuration, it runs continuously in a preempt-
able manner, utilizing all the free time of the highest priority non-preemptive tasks for
the Communication Task.

The aim of this experiment was to explore the system’s behavior in scenarios where
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there is time slack for execution and scenarios where the Communication Task occupies
all the free time as a preemptive task. By analyzing these scenarios, it was possible to
observe how the system’s priority tasks are affected when the Communication Task does
not meet its deadline.

Furthermore, another experiment was conducted to introduce a new non-periodic
task into the system. This task is triggered by pressing a button on the board and has
a higher priority than the existing tasks in the system. This task represents a potential
emergency or error situation that may occur during system execution, and it needs to be
executed immediately. This experiment provided an opportunity to investigate the usage
and monitoring of non-periodic tasks using the developed library.

The experiments conducted aimed to address the following issues:

1. Ensure that all tasks in the system are executed without missing their deadlines.
This is important to assess the real-time performance of the system and validate
the scheduling and timing properties.

2. Measure and analyze the execution times of the tasks. This helps in identifying any
potential bottlenecks or performance issues and provides insights into the system’s
timing behavior.

3. Validate the two execution modes of the library: Online and Offline modes. This
ensures that the library functions correctly and produces accurate results in both
modes of operation.

4. Validate the scaling model of the system by examining the behavior of the Com-
munication Task in periodic or continuous operation modes. This allows for the
evaluation of the impact of different execution configurations on the system’s over-
all performance and responsiveness.

5. Validate the system’s behavior in the presence of an additional asynchronous task,
which serves as a "disturbance" to the system. By using the library to analyze this
scenario, it becomes possible to assess the system’s robustness and its ability to
handle unexpected events or task interactions.

By addressing these issues through the experiments, a comprehensive evaluation
of the system’s performance, timing properties, and response to various scenarios can be
achieved.

4.3 RESULTS AND DISCUSSION

4.3.1 OfHline Mode - Continuous Task Communication

In Appendix C.1, the monitors’ analysis and related events with TimeStamps are
presented for the critical instants that occur approximately every 120 ms.

The analysis involves examining the system events and checking the TimeStamps
of task executions. The tasks are validated to ensure that they were executed within their
WCET and deadline restrictions.

The verdict is determined based on the following criteria:
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e If the difference (Delta) between Task Finish and Task Release Time is less than or
equal to the Deadline, the verdict is True (T).

e If Delta exceeds the Deadline, the verdict is False (F).

Another Delta is calculated as the difference between task start and end times. If
it is less than or equal to the WCET, the verdict is True (T). If it exceeds the WCET,
the verdict is False (F).

In the experiment, the RM Offline Analysis tool receives the events through the
serial interface and groups them based on Taskldentifier. The events are stored in tuples
of start and end TaskState events. Once both events are present, the verdict for that time
interval is determined. The analysis involves evaluating the TimeStamps of the received
events to measure the WCET and analyze the deadline.

In the offline verification mode, these calculations are performed externally to the
system being analyzed. This is done to reduce the overhead of RM in the analyzed system,
as searching for event couplings and performing calculations, even though seemingly sim-
ple, can consume significant processor execution time and system memory. For example,
a complete cycle time window in the evaluation scenario generated approximately 200
verdicts, requiring around 400 events to be recorded.

In offline verification, the analysis of verdicts is performed later, and in the mon-
itored system, only the storage of events takes place. This approach minimizes the addi-
tional execution time impact due to the use of the RM library. Tests were conducted to run
a complete scheduling window of the system’s time and verify the library’s functionality
and proper system scaling. Additionally, some tests were conducted to intentionally repro-
duce scenarios with adverse verdicts to validate the library’s behavior under challenging
conditions.

In the experiment, the Communication Task was executed in continuous mode,
meaning it runs whenever other higher-priority and non-preemptive tasks are not ex-
ecuting. The Reporting Task is used in this case to utilize all of the processor’s free
time without affecting the proper functioning of higher-priority tasks. In cases where the
Communication Task exceeds its WCET real-time constraints, it does not impact the
higher-priority tasks.

Using the offline operation mode in this way is advantageous because it reduces
the utilization of processors and memory for storing events. This mode handles the large
amount of data generated by the extensive message export in a more efficient manner.

4.3.2 Online Mode - Task Communication Periodic

In Appendix D.1, the monitors’ analysis and related events with TimeStamp Ver-
dicts are presented for the critical instants that occur approximately every 120 ms.

The verdicts are determined by analyzing the system events and checking the
TimeStamps of task executions. The tasks are validated to ensure that they were executed
within their WCET and deadline restrictions.

The verdict is determined based on the following criteria:

e If the difference (Delta) between Task Finish and Task Release Time is less than or
equal to the Deadline, the verdict is True (T).
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e If Delta exceeds the Deadline, the verdict is False (F).

Another Delta is calculated as the difference between task start and end times. If
it is less than or equal to the WCET, the verdict is True (T). If it exceeds the WCET,
the verdict is False (F).

In this experiment using the RMLib Online, events are stored using TaskIdentifier
in pairs of events (start and end TaskState events). Once both events are present, the
verdict for that time interval is determined and stored in the verdicts queue. The analysis
involves evaluating the TimeStamps of the events to measure the WCET and analyze the
deadline.

Tests were conducted to run a complete scheduling window of the system’s time to
verify the library’s functionality and proper system scaling. Additionally, some tests were
conducted to intentionally reproduce scenarios with adverse verdicts for library validation.

In the experiment, the Communication Task was executed in periodic mode, where
the task executed up to its WCET and started at intervals corresponding to its period.
This execution model, introduced in the ProVANT project, has proven to be highly effec-
tive for the Online Verification Mode. In this mode, only a minimal amount of data needs
to be exported, with the reports being the only exported data in this case.

The schedule modeling proposed in this project works well, and within a cycle,
there are no violations of time constraints.

It is observed that the proposed scheduling model works correctly with the Com-
munication Task being executed continuously or periodically. Due to its preemption con-
figuration, the fact that this task is preemptive does not significantly affect the operation
of the most critical tasks with high priorities in the system.

An interesting point of analysis is the Actuation Task, given the demand for pe-
riodic receipt of a command by the ESC. This task is critical because its time off must
be very small (close to zero). By monitoring the system and analyzing the TimeStamps
of the beginning and end of the task’s execution in each execution cycle within its period
(every 12 ms in the analysis interval of 120 ms), it can be determined if the characteristic
of low time off for processing is respected. By analyzing Appendix D, it is observed that
in most cases, the task is executed exactly at its release time due to its highest priority.
In the worst case, there is a maximum blocking time of 3 ms, allowing the task to execute
comfortably while respecting its WCET and deadline.

4.3.3 Online Mode Task Non-Periodic

In the test scenario being described, the goal is to thoroughly examine the op-
eration of the proposed scaling model and assess its performance when faced with dis-
turbances. The authors aim to create scenarios where temporal violations occur in the
tasks modeled in the system due to an unforeseen and higher priority non-periodic task
manually triggered by the user.

To achieve this, an extra non-periodic task is added to the system with a higher
priority than all other tasks. This task has a Taskldentifier of 6, a WCET of 8 ms, and
a Deadline of 15 ms. It is executed periodically whenever a critical external event occurs,
serving as a safeguard to prevent system crashes.

This test scenario serves multiple purposes. Firstly, it validates the monitoring of



62 Chapter 4. FEvaluation

non-periodic tasks, which was not initially included in the proposed scheduling model.
Secondly, it helps validate additional features developed in the RM library, such as the
Online Verification feature of exporting only cases with RT constraints and the ability to
export the status of tasks from the system.

In the provided Listing 4.7, the system output for the asynchronous task can
be observed, despite the violation of temporal restrictions. The implementation includes
the use of the ExportTaskStatus function, which utilizes the dumpTaskGetSystemState
function of FreeRTOS ! . This function populates a TaskStatus structure for each task in
the system, containing information such as the task handle, task name, task priority, task
state, and the total amount of run time consumed by the task.

By analyzing the output, it becomes apparent that the asynchronous task executed
despite the temporal violation. This highlights the ability of the RM library to capture
and analyze such cases.

1 {"TaskIdentifier":1,"TimeStamp":41442,"ExecutionTime":9 "
CounterTask":8916 ,"StatusWCET":0," StatusDeadline":1}

Dummy Actuation R 4 223 5

3 Asynchronous Dummy Sensing R 4 223 4

N

1+ IDLE R 0 237 7
5 Led B 3 223 3
6 Communication B 1 220 2
7 Controller B 2 223 1

8§ {"TaskIdentifier":1,"TimeStamp":55317,"ExecutionTime":7,"
CounterTask":15535, "StatusWCET":0," StatusDeadline":1}
9 Asynchronous IDLE RO 237 7

10 Dummy Sensing B 4 223 4
11 Dummy Actuation B 4 223 5
12 Led B 3 223 3
13 Communication B 1 166 2
14 Controller B2 83 1

Listing 4.7 — Data Exported in Temporal Restrictions Violation

b https://www.freertos.org/uxTaskGetSystemState.html



5 CONCLUSIONS

The main objective of this thesis was to develop a Library to Support Runtime
Monitoring for the FreeRTOS, this work implemented this library seeking to have some
characteristics that were considered important, as follows:

1. Runtime Monitoring Library for FreeRTOS.

2. Online and Offline Operation Modes, to have a more complete operation mode and
a lighter mode.

3. Decouple specific RTOS implementations.

4. Support Tasks Periodics and Aperiodics, Support to monitoring Deadline, Support
to monitoring WCET, in Tasks Non Preemptives.

It was also developed an example project to validate the operation and behavior
of the library in practical use. The validation was carried out considering a real example
scenario from the ProVANT project.

Analyzing the results, it was possible to satisfactorily evaluate the behavior of the
scaling model proposed in the ProVANT project that was implemented in the example
project. It was also possible to observe the facilities and resources that the library can
add in the process of developing and monitoring embedded software projects real-time.

5.1 FUTURE WORKS

The developed Runtime Monitoring library was able to collect events of interest
and analyze them. However, currently, the developed monitor is limited as it can only
reason about missed deadlines and WCET compliance. As discussed in (PEDRO et al.,
2018), making it more generic is for future work.

An important feature for future implementations is the development of support for
System Hooks, to identify some RTOS operations, such as inserting the task in the queue
of available tasks for execution and preempting tasks for scheduling. The implementation
of these new functions will make the collection of information more “accurate” and will
support adding the monitoring of non-periodic and preemptive tasks to the RM library.

However, this implementation is highly linked to the RTOS architecture, so it
would be necessary to implement the RM library’s support for these features and also
to implement Hooks, with FreeRTOS, to validate the library’s features and RM in the
example of the project.

Another important resource for the complete RV cycle is the monitors’ synthesis, to
integrate the RM library with verification systems, which from input models automatically
synthesized the monitors to be verified in runtime.
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APPENDIX A - OFFLINE MODE - IMPLEMENTATION OF RMLIB

typedef struct PACKED
{

uint32 t TimeStamp ;

uint32 t CounterTask : 25;

uint8 t Identifier of Task : 5;
uint8 t State _of Task : 2;

7 } EventTimeStamp t;

Listing A.1 — Data Structure used to store events in Offline Mode.

#define NUMBER TASKS RUNTIME MONITORING 5

Listing A.2 — Definition of Number Tasks of RM library in Offline Mode.

#define SIZE RUN TIME BUFFER QUEUE 1000
Event t QueueEventsBuffer [SIZE RUN TIME BUFFER_QUEUE] ;
void rmlib_init ()
{
cb _init(&QueueEvents,& QueueEventsBuffer [0] ,(size t)
SIZE_ RUN TIME BUFFER_QUEUE, ( size t)sizeof (Event t));

Listing A.3 — Initialization function of the RM library in Offline Mode.

extern uint32 t ReadCounterMiliSeconds(void);

Listing A.4 — Definition of ReadCounter Function in MilliSeconds.

int8 t timestamp runtime(uint32 t task identifier ,uintl6 t
task state)

EventInsert.Identifier of Task = task identifier;
EventInsert.State of Task = task state;
EventInsert.TimeStamp = ReadCounterMiliSeconds () ;
return cb_push back(&QueueEvents,& Eventlnsert) ;

Listing A.5 — Function to collect TimeStamps in RunTime while in Offline Mode.
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I int8 t rmlib_export data(Event t * buffer rmlib)
2 {
3 return cb_pop front(&QueueEvents, buffer rmlib);
4}
5 const char rmlib export data string(EventTimeStamp t x
buffer rmlib)
6 {
7 #ifdef OCOMPACT EXPORT DATA
g8 printf ("I%d—S%d—T%d—C%d\n" ,buffer rmlib—>Identifier of Task,
buffer rmlib—>State of Task, buffer rmlib—TimeStamp,
buffer rmlib—>CounterTask) ;
9 Helse
10 printf("{\" TaskIdentifier\" : %d,\" TaskState\" : %d,\"
TimeStamp\" : %d,\" TaskCounter\" : %d}\n",buffer rmlib—>
Identifier of Task ,buffer rmlib—>State of Task, buffer rmlib—>
TimeStamp , buffer rmlib-—>CounterTask) ;
11 Hendif
12 return;
13 }
Listing A.6 — Functions to export Events while in Offline Mode.
I import serial
2 import json
3 import time
5 while True:
6 try:
7 ser = serial.Serial(serial interface ,576000,timeout=30,rtscts=1)
# open serial port
8 print ("Interface Serial : " + ser.name) # check which
port was really used
9 break
10 except :
11 print ("Error in open serial')
12 time . sleep (0.01)
13
14 vector deadlines = [12,12,12,120,600]
15 vector period = [12,12,12,120,600]
16 vector _wcet = [2,3,4,4,135]
17 vector itens analyzed = {}
18 serial interface = '/dev/ttyACMO ' ;
19
20 def analyze data(item):
21 if item ["TaskState"] — 1:
22 if item["TaskIdentifier"| in vector itens analyzed:
23 vector itens analyzed[item[" TaskIdentifier"]].append (item)
24 else:
25 vector itens analyzed[item |" TaskIdentifier"]|] = [item]
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38
34

36

37

38
39

40
41

42

43
44

49

if item|["TaskIdentifier"] in vector itens analyzed:
if len(vector itens analyzed[item[" TaskIdentifier"]]) = 2:
it = vector itens analyzed.pop(item|[" TaskIdentifier"]
if(len(it) > 1):
print (it)
if (it [1]["TimeStamp"] — it [0]["TimeStamp"]) <= vector_ wcet[it
[0]["TaskIdentifier"] —1]:
print ("Task " + str (it [0][" TaskIdentifier"]) + " Condition
WCET: T — WCET Time: " + str((it [1]["TimeStamp"] — it [0]["TimeStamp"
1))
else:
print ("Task " + str (it [0][" TaskIdentifier"]) + " Condition
WCET: F — WCET Time: " + str ((it[1]["TimeStamp"| — it [0]["TimeStamp"
1))
if (vector period[it [0][" TaskIdentifier"|—1] = 0):
if ((vector wcet[it [1][" TaskIdentifier"]—1]) >= it [1]["
TimeStamp"|) :
print ("Task " + str (it [0][" TaskIdentifier"]) + " Condition
DeadLine: T")
else:
print ("Task " + str (it [0][" TaskIdentifier"]) + " Condition
DeadLine: F")
else:
if ((it[1]["TaskCounter"]|«vector period[it[1][" TaskIdentifier"
|—1]) >= it [1]["TimeStamp"|) :
print ("Task " + str (it [0][" TaskIdentifier"]) + " Condition
DeadLine: T")
else:
print ("Task " 4+ str (it [0][" TaskIdentifier"]) + " Condition
DeadLine: F")
print ("Task " + str(it [0][" TaskIdentifier"]) + " TimeStamp: " +
str(it [1]["TimeStamp"]) + " DeadLine: " + str (it [1]["TaskCounter"|x
vector deadlines[it [1][" TaskIdentifier"]—1]))

def process compact data(item):
dict _tmp = {}
items = item.strip ().split("—")
dict _tmp[" TaskIdentifier"] = int(items[0].split("I")[1])
dict tmp|[" TaskState"] = int (items [1].split ("S")[1])
int (items [2].split ("T")[1])
int (items [3].split ("C")[1])

dict tmp["TimeStamp" |
dict tmp|["TaskCounter" |

return dict tmp

def process data(item):
if (item [0] = "I"):
return process compact data(item)
else:

return json.loads (item)




74

APPENDIX A. Offline Mode - Implementation of RMLib

63
64
65
66

67

68

62 while True:

try:

line = str(ser.readline(),"ISO—-8859-1")

item = process data(line)

analyze data(item)

except json.decoder.JSONDecodeError:

print ("Error in json decode —> " + str(line))

Listing A.7 — RV Offline Analyzer
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1 //TimeStamp Veredict of system RunTime Verification
2 typedef struct PACKED {

3 uintl6 _t TimeStamp ;

4 uintl6 _t CounterTask;

5 uintl6 ¢t ExecutionTime;

6 uint8 ¢t Identifier of Task : 5;

7 uint8 t Status of WCET Task : 2;

8§ uint8 t Status_of DeadLine Task : 2;

9 uint8 t ReservedBits : 7;

10 } TimeStampVeredict t;

Listing B.1 — Data Structure used to store TimeStamp Veredicts.

I #define NUMBER TASKS RUNTIME MONITORING 5

Listing B.2 — Definition of Number Tasks of RM library in Online Mode.

| #define SIZE RUN TIME BUFFER QUEUE 1000

2 TimeStampVeredict t QueueTimeStampVerdictsBuffer |
SIZE RUN_ TIME BUFFER QUEUE] ;

3 void rmlib_init(uint32 t % tasks identifiers ,uint32 t =x
deadlines service ,uint32 t x period service ,uint32 t x
wcet service){

1 cb_init(&QueueTimeStamps,& QueueTimeStampVerdictsBuffer [0] , (
size t)SIZE RUN TIME BUFFER QUEUE, ( size t)sizeof (
TimeStampVeredict t));

memset(&counter tasks runtime verification ,0x00, sizeof (
uint16 _t)+«NUMBER_TASKS RUNTIME VERIFICATION) ;

6  memcpy(&Identifiers Tasks ,tasks identifiers

NUMBER,_ TASKS RUNTIME VERIFICATION % sizeof (uint32 t));

7 memcpy(&Vector WCET Tasks, wcet service ,

NUMBER TASKS RUNTIME VERIFICATION % sizeof (uint32 t));

¢ memcpy(&Vector Deadline Tasks,deadlines service ,
NUMBER,_ TASKS RUNTIME VERIFICATION % sizeof (uint32 t));

9  memcpy(&Vector Period Tasks, period service,
NUMBER,_TASKS RUNTIME VERIFICATION % sizeof (uint32 t));

ot

10 }

Listing B.3 — Initialization function of the RV library in Online Mode.

I extern uint32 t ReadCounterMiliSeconds (void);

Listing B.4 — Definition of Function ReadCounter in MilliSeconds.

1 int8 t timestamp runtime(uint32 t task identifier ,uintl6_t task state) {
2 uint8 t task index = O0;

3 for(uint8 t number task = 0; number task <
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NUMBER, TASKS RUNTIME VERIFICATION; number task++) {

if (Identifiers Tasks [number task| = task identifier) {
task index = number task;
break ;

}

TimeStampsBufferProcessing [task index|[task state].Identifier of Task
= task identifier;

TimeStampsBufferProcessing [task index|[task state].State of Task =
task state;

TimeStampsBufferProcessing [task index|[task state].TimeStamp =
ReadCounterMiliSeconds () ;

if (task state — TASK END EXECUTION) {
counter tasks runtime verification |[task index|++;

}

TimeStampsBufferProcessing [task index|[task state].CounterTask =
counter tasks runtime verification[task index];

if (task state =— TASK END EXECUTION) {

TimeStamplInsert. TimeStamp = TimeStampsBufferProcessing [task index ||
TASK_INIT EXECUTION| . TimeStamp ;
TimeStamplInsert . ExecutionTime = (TimeStampsBufferProcessing |

task index |[TASK END EXECUTION]|. TimeStamp —
TimeStampsBufferProcessing [task index |[TASK INIT EXECUTION]|. TimeStamp
)5
TimeStampInsert.CounterTask = TimeStampsBufferProcessing [task index
] [TASK_END EXECUTION]|. CounterTask ;
TimeStamplInsert.Identifier of Task = Identifiers Tasks[task index]|;
if (TimeStamplInsert. ExecutionTime <= Vector WCET Tasks|[task index]) {
TimeStamplInsert .Status of WCET Task = true;
}
TimeStamplInsert .Status _of WCET Task = false;
}
if (Vector Period Tasks[task index] = 0){
if ((TimeStamplInsert. ExecutionTime + TimeStamplInsert.TimeStamp) <=
Vector Deadline Tasks[task index]) {
TimeStamplInsert.Status of DeadLine Task = true;
}
else{
TimeStamplInsert.Status of DeadLine Task = false;

}

else{
if ((TimeStamplInsert. ExecutionTime + TimeStampInsert.TimeStamp) <=
(Vector Period Tasks[task index] * TimeStamplnsert.CounterTask)){
TimeStamplnsert.Status of DeadLine Task = true;

}

else{
TimeStamplInsert.Status of DeadLine Task = false;




}
#itdef EXPORT ONLY RTOS ERRORS
if (! TimeStamplInsert.Status of DeadLine Task || !TimeStampInsert.
Status_of WCET _ Task) {
#ifdef EXPORT DUMP_ STATUS TASKS
DumpStatusTasks () ;
#endif
return cb_push back(&QueueTimeStamps,& TimeStamplnsert ) ;
}
else {
return COMMAND OK;
}
#else
return cb_push back(&QueueTimeStamps,& TimeStamplnsert ) ;
#endif
}
else {

return COMMAND OKj;

Listing B.5 — Function to collect TimeStamps in RunTime while in Onine Mode.

I int8 t rmlib_export data(TimeStampVeredict t * buffer rmlib) {

2 return cb_pop front(&QueueTimeStamps, buffer rmlib);

3}

4 const char rmlib export data string(TimeStampVeredict t x
buffer rmlib) {

5 #ifdef COMPACT EXPORT DATA

6  printf ("IT%dTS%d—ET/%d-CI/%d—-SWed—SD%d\n" , buffer rmlib—
Identifier of Task, buffer rmlib—>TimeStamp, buffer rmlib-—>
ExecutionTime , buffer rmlib—>CounterTask, buffer rmlib—
Status_of WCET Task, buffer rmlib—>Status of DeadLine Task);

Helse

8 printf ("{\" TaskIdentifier\":%d,\ " TimeStamp\":%d ,\ "
ExecutionTime\":%d,\ " CounterTask\":%d,\ " StatusWCET\":%d ,\ "
StatusDeadline\":%d}\n", buffer rmlib—Identifier of Task,
buffer rmlib—TimeStamp, buffer rmlib—ExecutionTime,
buffer rmlib—>CounterTask, buffer rmlib—>Status of WCET Task,

buffer rmlib—>Status of DeadLine Task);

9 #endif

10 return ;

11 }

Listing B.6 — Functions to export Events Online Mode.






APPENDIX C - OUTPUT DATA RTMLIB OFFLINE MODE TASK
COMMUNICATION CONTINUOUSLY

11
12

18
19
20
21

22
23
24

26
27

28

[{'TaskIdentifier': 1, 'TaskState': 0, 'TimeStamp': 0, 'TaskCounter':
0}, {' TaskIdentifier': 1, 'TaskState': 1, 'TimeStamp': 1, '
TaskCounter ': 1}]

Task 1 Condition WCEI: T — WCET Time: 1

Task 1 Condition DeadLine: T

Task 1 TimeStamp: 1 DeadLine: 12

[{ ' TaskIdentifier': 2, 'TaskState': 0, 'TimeStamp': 1, 'TaskCounter':
0}, {' TaskIdentifier': 2, 'TaskState': 1, 'TimeStamp': 4, '
TaskCounter ': 1}]

Task 2 Condition WCEL: T — WCET Time: 3

Task 2 Condition DeadLine: T

Task 2 TimeStamp: 4 DeadLine: 12

[{'TaskIdentifier': 4, 'TaskState': 0, 'TimeStamp': 4, 'TaskCounter':
0}, {' TaskIdentifier': 4, 'TaskState': 1, 'TimeStamp': 7, '
TaskCounter': 1}]

) Task 4 Condition WCET: T — WCET Time: 3

Task 4 Condition DeadLine: T

Task 4 TimeStamp: 7 DeadLine: 120

[{' TaskIdentifier': 3, 'TaskState': 0, 'TimeStamp': 7, 'TaskCounter':
0}, {' TaskIdentifier': 3, 'TaskState': 1, 'TimeStamp': 11, '
TaskCounter': 1}]

Task 3 Condition WCEL: T — WCETL Time: 4

Task 3 Condition DeadLine: T

Task 3 TimeStamp: 11 DeadLine: 12

[{'TaskIdentifier': 2, 'TaskState': 0, 'TimeStamp': 11, 'TaskCounter':
1}, {'TaskIdentifier': 2, 'TaskState': 1, 'TimeStamp': 13, '
TaskCounter': 2}]

Task 2 Condition WCEL: T — WCET Time: 2

Task 2 Condition DeadLine: T

Task 2 TimeStamp: 13 DeadLine: 24

[{'TaskIdentifier': 1, 'TaskState': 0, 'TimeStamp': 13, 'TaskCounter':
1}, {'TaskIdentifier': 1, 'TaskState': 1, 'TimeStamp': 15, '
TaskCounter ': 2}]

Task 1 Condition WCET: T — WCET Time: 2

Task 1 Condition DeadLine: T

Task 1 TimeStamp: 15 DeadLine: 24

[{'TaskIdentifier': 3, 'TaskState': 0, 'TimeStamp': 15, 'TaskCounter':
1}, {'TasklIdentifier': 3, 'TaskState': 1, 'TimeStamp': 18, '
TaskCounter': 2}]

Task 3 Condition WCET: T — WCET Time: 3

Task 3 Condition DeadLine: T

Task 3 TimeStamp: 18 DeadLine: 24

[{'TaskIdentifier': 3, 'TaskState': 0, 'TimeStamp': 20, 'TaskCounter':
2}, {'TaskIdentifier': 3, 'TaskState': 1, 'TimeStamp': 23, '
TaskCounter ': 3}]
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30 Task 3 Condition WCEIL: T — WCET Time: 3

31 Task 3 Condition DeadLine: T

32 Task 3 TimeStamp: 23 DeadLine: 36

33 [{'TaskIdentifier': 2, 'TaskState': 0, 'TimeStamp': 23, 'TaskCounter':
2}, {'TaskIdentifier': 2, 'TaskState': 1, 'TimeStamp': 26, '
TaskCounter': 3}]

34 Task 2 Condition WCEIL: T — WCET Time: 3

35 Task 2 Condition DeadLine: T

36 Task 2 TimeStamp: 26 DeadLine: 36

37 [{'TaskIdentifier': 1, 'TaskState': 0, 'TimeStamp': 26, 'TaskCounter':
2}, {'TaskIdentifier': 1, 'TaskState': 1, 'TimeStamp': 27, '
TaskCounter': 3}]

38 Task 1 Condition WCET: T — WCET Time: 1

39 Task 1 Condition DeadLine: T

40 Task 1 TimeStamp: 27 DeadLine: 36

41 [{'TaskIdentifier': 2, 'TaskState': 0, 'TimeStamp': 33, 'TaskCounter':
3}, {'TaskIdentifier': 2, 'TaskState': 1, 'TimeStamp': 35, '
TaskCounter': 4}]

42 Task 2 Condition WCEIL: T — WCET Time: 2

43 Task 2 Condition DeadLine: T

44 Task 2 TimeStamp: 35 DeadLine: 48

45 [{'TaskIdentifier': 1, 'TaskState': 0, 'TimeStamp': 35, 'TaskCounter':
3}, {'Taskldentifier': 1, 'TaskState': 1, 'TimeStamp': 37, '
TaskCounter': 4}]

46 Task 1 Condition WCEI: T — WCET Time: 2

47 Task 1 Condition DeadLine: T

48 Task 1 TimeStamp: 37 DeadLine: 48

49 [{'TaskIdentifier': 3, 'TaskState': 0, 'TimeStamp': 37, 'TaskCounter':
3}, {'Taskldentifier': 3, 'TaskState': 1, 'TimeStamp': 40, '
TaskCounter': 4}]

50 Task 3 Condition WCET: T — WCET Time: 3

51 Task 3 Condition DeadLine: T

52 Task 3 TimeStamp: 40 DeadLine: 48

53 [{'TaskIdentifier': 3, 'TaskState': 0, 'TimeStamp': 45, 'TaskCounter':
4}, {'TasklIdentifier': 3, 'TaskState': 1, 'TimeStamp': 48, '
TaskCounter': 5}]

54 Task 3 Condition WCEI: T — WCET Time: 3

55 Task 3 Condition DeadLine: T

56 Task 3 TimeStamp: 48 DeadLine: 60

57 [{ ' TaskIdentifier': 2, 'TaskState': 0, 'TimeStamp': 48, 'TaskCounter':
4}, {'Taskldentifier': 2, 'TaskState': 1, 'TimeStamp': 51, '
TaskCounter': 5}]

58 Task 2 Condition WCEI: T — WCET Time: 3

59 Task 2 Condition DeadLine: T

60 Task 2 TimeStamp: 51 DeadLine: 60

61 [{'TaskIdentifier': 1, 'TaskState': 0, 'TimeStamp': 51, 'TaskCounter':
4}, {'TasklIdentifier': 1, 'TaskState': 1, 'TimeStamp': 52, '
TaskCounter': 5}]

62 Task 1 Condition WCEL: T — WCET Time: 1
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86

38
89

3 Task 1 Condition DeadLine: T
4 Task 1 TimeStamp: 52 DeadLine: 60

[{'TaskIdentifier': 2, 'TaskState': 0, 'TimeStamp': 57,
5}, {'TaskIdentifier': 2, 'TaskState': 1, 'TimeStamp
TaskCounter': 6}]

Task 2 Condition WCEIL: T — WCET Time: 2

;7 Task 2 Condition DeadLine: T

Task 2 TimeStamp: 59 DeadLine: 72

[{'TaskIdentifier': 1, 'TaskState': 0, 'TimeStamp': 59,
5}, {'TaskIdentifier': 1, 'TaskState': 1, 'TimeStamp
TaskCounter': 6}]

Task 1 Condition WCEI: T — WCET Time: 2

Task 1 Condition DeadLine: T

Task 1 TimeStamp: 61 DeadLine: 72

[{'TaskIdentifier': 3, 'TaskState': 0, 'TimeStamp': 61,
5}, {'TaskIdentifier': 3, 'TaskState': 1, 'TimeStamp
TaskCounter': 6}]

Task 3 Condition WCEIL: T — WCET Time: 3

Task 3 Condition DeadLine: T

Task 3 TimeStamp: 64 DeadLine: 72

" [{' TaskIdentifier': 3, 'TaskState': 0, 'TimeStamp': 69,

6}, {' TaskIdentifier': 3, 'TaskState': 1, 'TimeStamp
TaskCounter': 7}]

Task 3 Condition WCET: T — WCET Time: 3

Task 3 Condition DeadLine: T

Task 3 TimeStamp: 72 DeadLine: 84

[{'TaskIdentifier': 2, 'TaskState': 0, 'TimeStamp': 72,
6}, {' TaskIdentifier': 2, 'TaskState': 1, 'TimeStamp
TaskCounter': 7}]

Task 2 Condition WCET: T — WCET Time: 3

Task 2 Condition DeadLine: T

Task 2 TimeStamp: 75 DeadLine: 84

[{'TaskIdentifier': 1, 'TaskState': 0, 'TimeStamp': 75,
6}, {' TaskIdentifier': 1, 'TaskState': 1, 'TimeStamp
TaskCounter ': 7}]

Task 1 Condition WCEIL: T — WCET Time: 1

7 Task 1 Condition DeadLine: T

Task 1 TimeStamp: 76 DeadLine: 84

[{'TaskIdentifier': 2, 'TaskState': 0, 'TimeStamp': 81,
7}, {'Taskldentifier': 2, 'TaskState': 1, 'TimeStamp
TaskCounter ': 8}]

Task 2 Condition WCEIL: T — WCET Time: 2

Task 2 Condition DeadLine: T

Task 2 TimeStamp: 83 DeadLine: 96

[{'TaskIdentifier': 1, 'TaskState': 0, 'TimeStamp': 83,
7}, {'Taskldentifier': 1, 'TaskState': 1, 'TimeStamp
TaskCounter ': 8}]

Task 1 Condition WCEIL: T — WCET Time: 2

5 Task 1 Condition DeadLine: T

'"TaskCounter ':

": 59, !

'"TaskCounter ':

": 61, !

'"TaskCounter ':

" 64, !

'"TaskCounter ':

ooT72, !

'"TaskCounter ':

too75, !

'"TaskCounter ':

76, !

'"TaskCounter ':

" 83, !

'"TaskCounter ':

": 85, !
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96

97

98
99
100
101

118
119
120

122
123

126
127

128

Task 1 TimeStamp: 85 DeadLine: 96
[{ ' TaskIdentifier': 3, 'TaskState': 0, 'TimeStamp': 85,

7}, {'TaskIdentifier': 3, 'TaskState': 1, 'TimeStamp'

TaskCounter': 8}]
Task 3 Condition WCETL: T — WCET Time: 3
Task 3 Condition DeadLine: T
Task 3 TimeStamp: 88 DeadLine: 96
[{ ' TaskIdentifier': 3, 'TaskState': 0, 'TimeStamp': 93,

8}, {'TaskIdentifier': 3, 'TaskState': 1, 'TimeStamp'

TaskCounter': 9}]
Task 3 Condition WCET: T — WCET Time: 3
Task 3 Condition DeadLine: T
Task 3 TimeStamp: 96 DeadLine: 108
[{ ' TaskIdentifier': 2, 'TaskState': 0, 'TimeStamp': 96,

8}, {'TaskIdentifier': 2, 'TaskState': 1, 'TimeStamp '

TaskCounter': 9}]

5 Task 2 Condition WCEL: T — WCET Time: 3

Task 2 Condition DeadLine: T
Task 2 TimeStamp: 99 DeadLine: 108
[{ ' TaskIdentifier': 1, 'TaskState': 0, 'TimeStamp': 99,

8}, {'TaskIdentifier': 1, 'TaskState': 1, 'TimeStamp'

TaskCounter': 9}]

) Task 1 Condition WCET: T — WCET Time: 1

Task 1 Condition DeadLine: T

2 Task 1 TimeStamp: 100 DeadLine: 108

[{ ' TaskIdentifier': 2, 'TaskState': 0, 'TimeStamp': 105,

9}, {'TaskIdentifier': 2, 'TaskState': 1, 'TimeStamp '

TaskCounter': 10}]

1 Task 2 Condition WCEL: T — WCET Time: 2

Task 2 Condition DeadLine: T
Task 2 TimeStamp: 107 DeadLine: 120

7 [{ ' TaskIdentifier': 1, 'TaskState': 0, 'TimeStamp': 107,
9}, {'TaskIdentifier': 1, 'TaskState': 1, 'TimeStamp '

TaskCounter': 10}]
Task 1 Condition WCEIL: T — WCET Time: 2
Task 1 Condition DeadLine: T
Task 1 TimeStamp: 109 DeadLine: 120
[{ ' TaskIdentifier': 3, 'TaskState': 0, 'TimeStamp': 109,

9}, {'TaskIdentifier': 3, 'TaskState': 1, 'TimeStamp'

TaskCounter': 10}]
Task 3 Condition WCET: T — WCET Time: 3
Task 3 Condition DeadLine: T
Task 3 TimeStamp: 112 DeadLine: 120
[{'TaskIdentifier': 4, 'TaskState': 0, 'TimeStamp': 117,

1}, {'TaskIdentifier': 4, 'TaskState': 1, 'TimeStamp'

TaskCounter': 2}]
Task 4 Condition WCET: T — WCET Time: 3
Task 4 Condition DeadLine: T
Task 4 TimeStamp: 120 DeadLine: 240

'"TaskCounter ':
: 88, !

'"TaskCounter ':
: 96,

'"TaskCounter ':
: 99, !

'"TaskCounter ':

. 100,

'"TaskCounter ':
: 107, !

'"TaskCounter ':
: 109, '

'"TaskCounter ':
:112, !

'"TaskCounter ':
: 120, '
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129

134
135
136

[{'TaskIdentifier': 2, 'TaskState': 0, 'TimeStamp': 120, 'TaskCounter'

10}, {'TaskIdentifier': 2, 'TaskState': 1, 'TimeStamp': 123, '
TaskCounter ': 11}]

Task 2 Condition WCEI: T — WCET Time: 3

Task 2 Condition DeadLine: T

Task 2 TimeStamp: 123 DeadLine: 132

[{'TaskIdentifier': 1, 'TaskState': 0, 'TimeStamp': 123, 'TaskCounter'

10}, {'TasklIdentifier': 1, 'TaskState': 1, 'TimeStamp': 124, '
TaskCounter ': 11}]

Task 1 Condition WCEI: T — WCET Time: 1

Task 1 Condition DeadLine: T

Task 1 TimeStamp: 124 DeadLine: 132

Listing C.1 — Monitor with Events critical moment and end of minimal time-window
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[\

3

S~

wt

o

6

-

©

=)

20

21

22

{"TaskIdentifier":
StatusWCET" : 1 ,
{"TaskIdentifier":
StatusWCET" : 1 ,
{"TaskIdentifier":
StatusWCET" : 1 ,
{"TaskIdentifier":
StatusWCET" : 1,
{"TaskIdentifier":
StatusWCET" : 1 ,
{"TaskIdentifier":
StatusWCET" : 1 ,
{"TaskIdentifier":
StatusWCET" : 1,
{"TaskIdentifier":
StatusWCET" : 1 ,
{"TasklIdentifier":
StatusWCET" : 1 ,
{"TaskIdentifier":
StatusWCET" : 1,
{"TaskIdentifier":
StatusWCET" : 1 ,
{"TaskIdentifier":
StatusWCET" : 1 ,
{"TaskIdentifier":
StatusWCET" : 1 ,

4 {"TaskIdentifier":

StatusWCET" : 1 ,
{"TaskIdentifier":
StatusWCET" : 1 ,
{"TaskIdentifier":
StatusWCET" : 1 ,
{"TaskIdentifier":
StatusWCET" : 1 ,
{"TaskIdentifier":
StatusWCET" : 1,
{"TaskIdentifier":
StatusWCET" : 1 ,
{"TasklIdentifier":
StatusWCET" : 1 ,
{"TaskIdentifier":
StatusWCET" : 1,
{"TaskIdentifier":
StatusWCET" : 1 ,

1,"TimeStamp":0,"ExecutionTime" :
"StatusDeadline":1}

2, "TimeStamp":1,"ExecutionTime" :
"StatusDeadline":1}

4, "TimeStamp" :4 ,"ExecutionTime" :
"StatusDeadline":1}

3, "TimeStamp" :7 ,"ExecutionTime"
"StatusDeadline":1}

2, "TimeStamp":11,"ExecutionTime"
"StatusDeadline":1}
1,"TimeStamp":13," ExecutionTime"
"StatusDeadline":1}

3 ,"TimeStamp":15,"ExecutionTime" :

"StatusDeadline":1}

3, "TimeStamp":20 ,"ExecutionTime" :

"StatusDeadline":1}

2, "TimeStamp" :23 ,"ExecutionTime" :

"StatusDeadline":1}

1,"TimeStamp":26 ,"ExecutionTime" :

"StatusDeadline":1}

2, "TimeStamp" :33 ,"ExecutionTime" :

"StatusDeadline":1}

1,"TimeStamp":35,"ExecutionTime" :

"StatusDeadline":1}

3, "TimeStamp":37,"ExecutionTime" :

"StatusDeadline":1}

3, "TimeStamp" :45 , "ExecutionTime" :

"StatusDeadline":1}

2 ,"TimeStamp" :48 , "ExecutionTime" :

"StatusDeadline":1}

1,"TimeStamp":51 ,"ExecutionTime":

"StatusDeadline":1}

2, "TimeStamp" :57 , "ExecutionTime" :

"StatusDeadline":1}

1,"TimeStamp":59 ,"ExecutionTime" :

"StatusDeadline":1}

3, "TimeStamp":61 ,"ExecutionTime" :

"StatusDeadline":1}

3, "TimeStamp":69 , "ExecutionTime" :

"StatusDeadline":1}

2, "TimeStamp":72 ,"ExecutionTime" :

"StatusDeadline":1}
1,"TimeStamp":75 ," ExecutionTime"
"StatusDeadline":1}

1,"CounterTask":

3,"CounterTask":

14

3,"CounterTask":1,"

,"CounterTask":

:2,"CounterTask":2,"

:2,"CounterTask":2,"
3,"CounterTask":2,"
3,"CounterTask":3,"
3,"CounterTask":3,"
1,"CounterTask":3,"
2 ,"CounterTask":4,"
2,"CounterTask":4,"
3,"CounterTask":4,"
3,"CounterTask":5,"
3,"CounterTask":5,"
1,"CounterTask":5,"
2,"CounterTask":6 ,"
2 ,"CounterTask":6,"
3,"CounterTask":6,"
3,"CounterTask":7,"
3,"CounterTask":7,"

:1,"CounterTask":7,"
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23 {"TaskIdentifier":2,"TimeStamp":81,"ExecutionTime":2," CounterTask":8,"
StatusWCET" :1,"StatusDeadline":1}

24 {"TaskIdentifier":1,"TimeStamp":83,"ExecutionTime":2," CounterTask":8,"
StatusWCET":1,"StatusDeadline":1}

25 {"TaskIdentifier":3,"TimeStamp":85,"ExecutionTime":3," CounterTask":8,"
StatusWCET" :1, " StatusDeadline":1}

26 {"TaskIdentifier":3,"TimeStamp":93 ,"ExecutionTime":3,"CounterTask":9 "
StatusWCET" :1,"StatusDeadline":1}

27 {"TaskIdentifier":2,"TimeStamp":96 ,"ExecutionTime":3 ," CounterTask":9 ,"
StatusWCET":1,"StatusDeadline":1}

28 {"TaskIdentifier":1,"TimeStamp":99,"ExecutionTime":1," CounterTask":9,"
StatusWCET" :1,"StatusDeadline":1}

29 {"TaskIdentifier":2,"TimeStamp":105," ExecutionTime":2 ," CounterTask":10,"
StatusWCET" :1,"StatusDeadline":1}

30 {"TaskIdentifier":1,"TimeStamp":107,"ExecutionTime":2," CounterTask":10,"
StatusWCET" :1,"StatusDeadline":1}

31 {"TaskIdentifier":3,"TimeStamp":109,"ExecutionTime":3," CounterTask":10,"
StatusWCET" :1,"StatusDeadline":1}

32 {"TaskIdentifier":4,"TimeStamp":117,"ExecutionTime":3," CounterTask":2,"
StatusWCET":1,"StatusDeadline":1}

33 {"TaskIdentifier":2,"TimeStamp":120,"ExecutionTime":3," CounterTask":11,"
StatusWCET":1,"StatusDeadline":1}

34 {"TaskIdentifier":1,"TimeStamp":123,"ExecutionTime":1," CounterTask":11,"
StatusWCET" :1,"StatusDeadline":1}

Listing D.1 — Monitor with Events critical moment and end of minimal time-window
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