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RESUMO

Esta tese aborda problemas de otimização convexa distribuída que incorporam uma
restrição de esparsidade. Conhecido como Otimização Convexa Esparsa (SCO, na
sigla em inglês), esse problema é definido em uma rede de computadores, onde vários
agentes trabalham juntos para resolver o problema de otimização de forma colabo-
rativa. Devido à restrição de esparsidade ser uma combinação de um número finito
de subespaços, o problema SCO se enquadra na classe de otimização combinatória,
que geralmente é considerada NP-difícil. Esta tese desenvolveu algoritmos distribuídos
eficientes e ferramentas de software para resolver problemas SCO com dados descen-
tralizados. Os algoritmos foram projetados para funcionar em uma rede computacional
ponto a ponto, onde cada nó lida com uma parte específica do problema em paralelo,
colaborando com outros nós. Inspirada em avanços anteriores em otimização inteira
mista e computação de alto desempenho, esta tese introduz um framework de Progra-
mação Inteira Mista (MIP) distribuída para encontrar soluções exatas para problemas
SCO. O framework apresenta novos algoritmos e heurísticas distribuídos, que são im-
plementados em uma ferramenta de software chamada Conjunto de Ferramentas para
Otimização Convexa Esparsa (SCOT, na sigla em inglês), especificamente projetada
para resolver problemas SCO. Em particular, os algoritmos propostos estendem algo-
ritmos de Aproximação Externa de Múltiplas e Únicas Árvores (OA) incorporando um
algoritmo totalmente descentralizado chamado Método dos Multiplicadores de Direção
Alternada Híbrido Relaxado (RH-ADMM, na sigla em inglês). Isso leva ao desenvolvi-
mento de dois algoritmos distribuídos de programação não linear inteira mista: Aproxi-
mação Externa Primal Distribuída (DiPOA, na sigla em inglês) e Aproximação Externa
Híbrida Distribuída (DiHOA, na sigla em inglês). Além disso, várias técnicas de refor-
mulação e heurísticas são descritas e analisadas, visando aproveitar a separabilidade
de funções não lineares e melhorar o desempenho dos algoritmos.

Palavras-chave: Otimização convexa esparsa. programação não linear inteira mista.
otimização distribuída. kit de ferramentas de otimização convexa esparsa. aprendizado
de máquina



RESUMO EXPANDIDO

INTRODUÇÃO
Aplicações modernas do mundo real frequentemente envolvem problemas de controle
e Aprendizado de Máquina que se resumem a otimização matemática com restrição de
esparsidade, levando a problemas de Otimização Convexa Esparsa (SCO, do Inglês
Sparse Convex Optimization). O SCO encontra aplicações em diversos domínios, in-
cluindo regressão logística, análise de microarrays, análise estatística, aprendizado de
máquina, controle esparso, escalonamento de unidades de energia, design de redes
de sensores, otimização de portfólio e amostragem compressiva. A versatilidade do
SCO se estende ao processamento de sinais, análise de imagens, visão computa-
cional e processamento de linguagem natural. Apesar do alto desempenho, resolver
problemas de SCO pode ser desafiador devido à não-convexidade e descontinuidade,
frequentemente exigindo estratégias de aproximação.

OBJETIVOS
O objetivo da tese é abordar três limitações principais nos métodos exatos do estado
da arte para problemas de SCO. A primeira limitação diz respeito à natureza distribuída
das aplicações. Os métodos existentes são centralizados e não são adequados para
cenários envolvendo dados distribuídos ou preocupações com privacidade de dados.
A tese tem como objetivo explorar a otimização distribuída em redes para superar essa
limitação. A segunda limitação diz respeito à escalabilidade, uma vez que os méto-
dos exatos atuais baseados em solvers de programação inteira mista (MIP, do inglês
Mixed-Integer Programming) enfrentam dificuldades com o crescimento exponencial no
número de soluções possíveis à medida que o tamanho do problema e a esparsidade
aumentam. Esta tese desenvolveu heurísticas e algoritmos para problemas em larga
escala. A terceira limitação envolve o foco em funções objetivo lineares ou quadráti-
cas e restrições lineares, deixando o comportamento não linear em aberto. Esta tese
explora algoritmos específicos de programação não linear inteira mista (MINLP, do
inglês Mixed-Integer Non-Linear Programming) para lidar com problemas complexos
de otimização envolvendo variáveis contínuas e discretas no contexto do SCO.

METODOLOGIA
A metodologia desta tese gira em torno da abordagem de problemas de SCO por meio
de uma série de algoritmos distribuídos e o desenvolvimento de um framework de
software distribuído:

No Capítulo 3, o algoritmo DiGST é apresentado como uma abordagem inicial. Ele
adota uma metodologia completamente distribuída com iterações de baixo custo com-
putacional. O algoritmo divide o problema SCO em uma etapa de otimização con-
vexa irrestrita distribuída e uma etapa de projeção de esparsidade. O algoritmo de
rastreamento de gradiente é empregado para computação distribuída, garantindo a
privacidade dos dados por meio de computação e comunicação locais. No entanto,
a aplicabilidade do DiGST a cenários em larga escala é limitada devido a desafios
na sintonia do parâmetro de penalização e no tratamento de restrições lineares/não
lineares gerais.



Reconhecendo as limitações do DiGST, esta tese propõe um framework baseado em
MINLP e otimização convexa em larga escala. Esse framework é composto por vários
algoritmos distribuídos, heurísticas e um conjunto de ferramentas de software chamado
SCOT. Cada componente do framework é apresentado nos capítulos seguintes.

No Capítulo 4, o algoritmo RH-ADMM é introduzido como um componente fundamen-
tal do framework. O RH-ADMM é projetado para resolver eficientemente problemas
de otimização convexa em larga escala que envolvem restrições de acoplamento. O
desenvolvimento deste componente é crucial, pois algoritmos subsequentes dentro do
framework dependem fortemente do RH-ADMM para abordar subproblemas convexos
de maneira distribuída.

O Capítulo 5 estende a metodologia ao introduzir o algoritmo DiPOA, capaz de resolver
problemas SCO de forma distribuída. O DiPOA aproveita a arquitetura de vários nú-
cleos dos processadores modernos para lidar com problemas SCO em larga escala
com restrições lineares e não lineares. Para aprimorar o desempenho do DiPOA, o
algoritmo DiHOA é introduzido, baseado no DiPOA e em algoritmos LP/NLP BnB. O Di-
HOA constrói uma árvore BnB (do inglês, Branch-and-Bound) inicial com aproximações
externas de segunda ordem e introduz dinamicamente mais aproximações usando o
RH-ADMM de maneira distribuída. A estratégia de árvore única melhora significativa-
mente a eficiência do DiPOA, conforme demonstrado em benchmarks numéricos.

No Capítulo 6, o framework de software SCOT é introduzido. O SCOT é uma ferra-
menta pioneira capaz de lidar com problemas SCO em ambientes de computação
distribuída. Ele utiliza a tecnologia MPI, do inglês Message Passing Interface, para
facilitar computações paralelas e distribuídas. O SCOT é versátil, permitindo que os
usuários integrem seus próprios algoritmos e solvers de otimização distribuída, sendo
adequado para implantação em plataformas de computação de alto desempenho.

CONSIDERAÇÕES FINAIS
A tese conclui demonstrando a superioridade dos algoritmos distribuídos propostos,
nomeadamente DiPOA e DiHOA, em termos de qualidade de solução e escalabilidade
em comparação com os solvers MINLP centralizados existentes.
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ABSTRACT

This thesis addresses distributed convex optimization problems that incorporate a
sparsity constraint. Referred to as Sparse Convex Optimization (SCO), this problem
emerges from a network of computing nodes where various agents work together
to solve the optimization problem collaboratively. Due to the sparsity constraint be-
ing a combination of a finite number of subspaces, the SCO problem falls under the
class of combinatorial optimization, which is typically considered NP-hard. This thesis
develops efficient distributed algorithms and software tools to solve SCO problems
with decentralized data. The algorithms were designed to work on a peer-to-peer
computational network where each node handles a specific portion of the problem
in parallel while collaborating with other nodes. Inspired by previous advancements
in mixed-integer optimization and high-performance computing, this thesis introduces
a distributed Mixed-Integer Programming (MIP) framework to find exact solutions for
SCO problems. The framework presents novel distributed algorithms and heuristics,
which were implemented in a software tool called the Sparse Convex Optimization
Toolkit (SCOT), specifically designed to solve SCO problems. In particular, the pro-
posed algorithms extend multi- and single-tree Outer Approximation (OA) algorithms
by incorporating a fully decentralized algorithm called the Relaxed Hybrid Alternating
Direction Method of Multipliers (RH-ADMM). Such developments led to the design of
two distributed mixed-integer nonlinear programming algorithms: Distributed Primal
Outer Approximation (DiPOA) and Distributed Hybrid Outer Approximation (DiHOA).
Additionally, various reformulation and heuristic techniques were introduced to leverage
the separability of nonlinear functions and enhance performance.

Keywords: Sparse convex optimization. mixed-integer nonlinear programming. dis-
tributed optimization. sparse convex optimization toolkit. machine learning.
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1 INTRODUCTION

A broad class of modern real-world applications of control and Machine Learning
(ML) problems consists of mathematical optimization problems with a constraint that
allows only up to a certain number of variables to be nonzero. This form of constraint is
called a sparsity constraint and we refer to any convex optimization problem containing
a sparsity constraint as a Sparse Convex Optimization (SCO) problem (BIENSTOCK,
1996a; BERTSIMAS; MUNDRU, 2021a; BERTSIMAS; CORY-WRIGHT, 2022; SUN, X.;
ZHENG; LI, D., 2013; TILLMANN et al., 2021). Formally, we define the SCO problem
as a mathematical programming problem that consists of finding the κ-sparse optimal
solution of a convex optimization problem of the following form,

min
x∈Rn

f (x)

subject to x ∈ Ω

∥x∥0 ≤ κ

(SCO)

where x ∈ Rn is the vector of decision variables, f : Rn −→ is a continuously differ-
entiable convex function, and Ω is a closed convex set with no empty interior which
represents the general constraints for x. We use the ℓ0 norm (i.e., ∥x∥0 = |supp(x)| =
|{j : xj ̸= 0, j = 1, . . . ,n}|) to define the sparsity constraint, which imposes the number
of non-zero elements of x to be less than a given integer κ. The SCO problems have
numerous practical applications in various fields, including:

• Logistic (Linear) regression: In this application, the goal is to find a sparse
logistic (linear) regression model for binary classification problems, where
only a few variables are selected as predictors (BERTSIMAS; KING, 2017b).

• Block-wise linear regression: This involves fitting a linear regression model
where the variables are grouped into blocks, and only a small number of
variables from each block are selected as predictors (KIM, Yuwon; KIM, J.;
KIM, Yongdai, 2006).

• Microarray analysis: SCO is used to identify important genes from gene ex-
pression data, where only a small number of genes are relevant to a specific
disease or condition (MA, S.; SONG, X.; HUANG, 2007).

• Statistical analysis and machine learning: SCO is widely used in various sta-
tistical analysis and machine learning problems, such as best subset selec-
tion, feature selection, model regularization, factor analysis, sparse principal
component analysis, matrix and tensor completion, and sparsity-based clus-
tering (BERTSIMAS; MUNDRU, 2021a, 2021b; BERTSIMAS; KING; MAZUMDER,
2016; BERTSIMAS et al., 2022; BERTSIMAS; CORY-WRIGHT, 2022).
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• Sparse control : In this application, SCO is used to design controllers for
systems with sparse input or state variables, such as power systems and
chemical processes (AGUILERA et al., 2017).

• Unit commitment : This involves scheduling the operation of power generation
units in a power grid to meet the demand while minimizing the operating cost,
subject to various operational constraints. SCO is used to select the optimal
subset of units to operate at each time step (FRANGIONI; GENTILE, 2006;
FRANGIONI; GENTILE; LACALANDRA, 2008).

• Sensor network design: SCO is used to select a small number of sensors from
a large set of candidates to optimize the performance of a sensor network,
subject to various resource constraints (LEWIS, 2004).

• Portfolio optimization: This involves selecting a subset of assets from a large
set of candidates to optimize the performance of a portfolio, subject to various
risk and return constraints. SCO is used to identify the optimal subset of
assets to invest in (BERTSIMAS; CORY-WRIGHT, 2022).

• Compressed sensing: In this application, the goal is to reconstruct a sparse
signal from a small number of linear measurements. SCO is used to find
the sparsest solution that satisfies the measurement constraints (FOUCART;
RAUHUT, 2013).

While the applications mentioned here are diverse and important, they are by no means
exhaustive. There are numerous other fields where SCO has found valuable applica-
tions, such as signal processing, image analysis, computer vision, and natural language
processing. In signal processing, SCO has been used for speech recognition, channel
equalization, and audio signal processing. In image analysis and computer vision, SCO
has found applications in object recognition, feature selection, and image segmenta-
tion. In natural language processing, SCO has been used for sentiment analysis, text
classification, and named entity recognition. The versatility of SCO and its ability to
handle high-dimensional, sparse data make it an attractive tool for a wide range of
applications (TILLMANN et al., 2021).

Although sparse optimization is a powerful tool in many practical applications,
finding the optimal solution can be challenging due to the non-convexity and discontinu-
ity of the sparsity constraint (see Figure 1). This results in a combinatorial optimization
problem that is difficult to solve, especially for large instances of practical problems.
Various studies have shown that finding the optimal solution is generally considered an
NP-hard task (BAI, Y.; LIANG; YANG, Z., 2016a; BERTSIMAS; CORY-WRIGHT, 2022;
NATARAJAN, 1995). Due to the numerical challenges stemming from the sparsity con-
straint, many solution algorithms attempt to reformulate or approximate the original
problem to simplify its handling. In the following section, we review some common ap-



Chapter 1. Introduction 17

x1

x2

∥x∥0 ≤ 1

x1

x2

∥x∥1 ≤ 1

x1

x2

∥x∥2 ≤ 1

Figure 1 – Geometric interpretation of sparsity constraint in comparison with ℓ1 and ℓ2
norms

proaches that have been proposed in the literature for this purpose, along with their
advantages and limitations.

1.1 STATE-OF-THE-ART

In the realm of SCO problems, the majority of algorithmic solutions are often
categorized as either approximation or exact methods. The former seeks to provide a
good convex representation of the sparsity constraint and attains the desired sparsity
through solving a sequence of convex optimization problems. The exact methods, on
the other hand, try to view the SCO problem as a Mixed Integer Programming (MIP)
problem since it can be reformulated in such a way by introducing suitable binary vari-
ables (BERTSIMAS; KING; MAZUMDER, 2016; BERTSIMAS; CORY-WRIGHT, 2022;
BERTSIMAS; KING, 2017b; BERTSIMAS; MUNDRU, 2021a).

The ℓ1 convex relaxation method is a popular approximation technique as it ap-
proximates the sparsity constraint using the unit ℓ∞ norm. These methods are widely
applied in solving feature selection problems found in the statistical learning litera-
ture (TIBSHIRANI, 1996; BOYD, S. et al., 2011; TIAN; ZHANG, Yuqi, 2022). One of
the important reasons behind the popularity of ℓ1 based methods is their computational
efficiency and scalability to practical-sized problems. However, in spite of their favorable
computational properties, these methods can have some shortcomings which motivates
the development of exact methods. For example, they cannot guarantee that ℓ1 based
methods find the correct sparsity for general problems. Moreover, in some applications,
the desired sparsity structure is different from general sparsity and cannot be easily
obtained by a ℓ1 regularization. An example of such a sparse structure is group sparsity
in which a block or a group of independent variables are either all zero or all nonzero.
Some notable applications with group sparsity are block-wise linear regression (KIM,
Yuwon; KIM, J.; KIM, Yongdai, 2006), logistic regression (BERTSIMAS; KING, 2017a),
compressed sensing (ELDAR; KUTYNIOK, 2012), and microarray analysis (MA, S.;
SONG, X.; HUANG, 2007). Considering recent advances in mixed-integer optimization
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algorithms and technologies, the MIP problems can be solved efficiently by current
mixed-integer optimization solvers such as Gurobi (GUROBI OPTIMIZATION, 2020).
The resulting MIP formulation is flexible and can be adjusted based on the application’s
needs.

This thesis focuses on exact methods for solving optimization problems, with
a specific emphasis on MIP reformulations for SCO problems. We review the cur-
rent state-of-the-art and aim to contribute to the development of more efficient opti-
mization methods. As the first attempt, (BIENSTOCK, 1996b) proposed a Mixed Inte-
ger Quadratic Programming (MIQP) problem to reformulate the SCO problem with a
quadratic objective and linear constraints. The problem is then solved by employing a
tailored branch-and-cut algorithm. (BERTSIMAS; SHIODA, 2009) proposed a tailored
algorithm based on the branch-and-bound method to solve the SCO problem appearing
in sparse linear regression and portfolio selection problems. (AGUILERA et al., 2017)
provided a MIQP formulation for solving a sparsity constrained model predictive control
problem. Although the methodology works efficiently for the given application, it lacks
generalization to more realistic scenarios.

As another instance, (BERTSIMAS; CORY-WRIGHT, 2022) considered a scal-
able algorithm to solve cardinality constrained portfolio optimization problems. This
paper also proposed a MIQP framework along with multiple improvements and heuris-
tics such as high-quality warm-starts, a prepossessing technique, and so on. (AYTUG,
2015) proposed a MIQP based framework to solve a sparsity constrained support
vector machine problem. In this paper, the authors utilized the Generalized Benders
Decomposition (GBD) algorithm to select the best subset of features during the model
training. As another application, (BERTSIMAS; KING; MAZUMDER, 2016) proposed
an efficient algorithm to obtain an exact solution for the best subset selection problem
in linear regression. In this paper, the authors proposed a MIQP reformulation for the
resulting SCO problem. The resulting MIQP problem is then solved by a tailored branch
and bound algorithm. As another instance, a Mixed-Integer Nonlinear Programming
(MINLP) model to solve sparse classification problems is proposed by (BERTSIMAS;
KING, 2017b; BERTSIMAS; PAUPHILET; VAN PARYS, 2021). The resulting MINLP
model is then solved by utilizing the Outer Approximation (OA) algorithm (GROSS-
MANN, I., 2002; KRONQVIST et al., 2019). (KAMIYA; MIYASHIRO; TAKANO, 2019)
consider a feature subset selection problem for the multinomial logistic model with ℓ2
regularization. This problem is then transformed into a SCO problem which in turn is
solved with the OA algorithm. Additionally, (BERTSIMAS; MUNDRU, 2021a) provide a
MINLP formulation to solve a sparse convex regression problem. Besides the decompo-
sition methods (e.g., OA algorithm), some works focused on single-tree methods such
as branch-and-bound, branch-and-cut, and branch-and-price algorithms. For example,
(WANG, F.; CAO, 2020) used the branch-and-bound method, with domain cut and par-
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tition scheme, to solve a quadratic sparsity constrained problem that has application to
portfolio optimization.

As another approach, (SANT’ANNA et al., 2020) proposed an MINLP modeling
framework along with a SCO problem to model and solve the index tracking problem.
The problem is then solved by a variant of the branch-and-cut algorithm. There exist
relatively few works where a general convex MINLP model is used to reformulate the
SCO problem. For instance, instead of formulating the SCO problem for a particular
application, (BAI, Y.; LIANG; YANG, Z., 2016b) considered a general convex formulation
for the SCO problems. The authors proposed a splitting augmented Lagrangian method
to solve the resulting SCO problem. The efficiency of the proposed algorithm is then
tested on portfolio selection and compressed sensing problems.

1.2 MOTIVATION

Following our literature review in the previous section, we have identified three
primary categories of limitations in the current state-of-the-art exact methods. In the
subsequent sections, we will provide a detailed discussion of these categories.

Distributed Nature of Applications

The majority of the existing exact methods discussed in the previous section
focused on centralized solutions to SCO problems. This means that they require all of
the data to be available and processed by a central node or processor, which can lead
to significant communication overheads and limit the scalability of the method. However,
the applicability of such solutions may be limited in modern real-world scenarios where
data is either inherently distributed or available in large volumes (LIU et al., 2022). For
instance, in certain instances of regression and classification problems, the dataset is
distributed over a network, and data privacy policies do not allow the collection of the
entire dataset in a single point. Similar situations can also arise in applications such
as energy management of renewable power systems, distributed compressed sensing,
and so on, making a distributed solution imperative.

Due to these limitations, there has been a growing interest in distributed optimiza-
tion over networks in recent years, particularly with the emergence of Big Data (NO-
TARSTEFANO; NOTARNICOLA; CAMISA, et al., 2019; NOTARNICOLA et al., 2017).
Distributed optimization aims to solve an optimization problem over a network of com-
puting nodes, where each node performs local computations with access to only a
portion of the problem data. The nodes can also exchange information with other nodes
in the network. Several distributed optimization algorithms have been proposed in the
literature, and a comprehensive overview of these can be found in (NOTARSTEFANO;
NOTARNICOLA; CAMISA, et al., 2019). However, it is essential to note that the dis-
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tributed reformulation of the SCO problem can increase the complexity of the problem
due to the coupling behavior in either the objective function or constraints.

Scalability

The next limitation of current exact methods for ℓ0-based sparse optimization
problems is related to the scalability of these methods. In general, exact methods based
on MIP solvers have been shown to have poor scalability as the problem size grows.
This is due to the exponential increase in the number of possible solutions with respect
to the problem size. Specifically, the number of binary variables required to encode a
solution grows exponentially with the number of non-zero entries in the solution, which
is in turn an upper bound on the sparsity of the solution. This leads to a combinatorial
explosion in the number of possible solutions as the sparsity level increases, making
it computationally intractable to solve large-scale problems. Therefore it is essential
to develop various heuristics and algorithms that can be used for problems with large
amounts of data.

Tailored MINLP Algorithms

The last limitation of the current literature that we aim to address in this thesis is
that the existing exact methods have been primarily applied to problems with a linear or
quadratic objective function and linear constraints leading to MILP or MIQP problems.
Such a focus can be attributed to the relatively tractable nature of these problems,
which allows for the development of efficient algorithms and solutions. However, the
applicability of such solutions is limited in scenarios where the optimization problem ex-
hibits nonlinear behavior. In particular, there are only a few works that have considered
tailored MINLP algorithms in the context of SCO. MINLP problems involve optimization
problems that include both continuous and discrete variables and have a nonlinear
objective function or constraints. The use of MINLP models in SCO is of significant
interest, as it allows for the incorporation of various real-world constraints and objec-
tives that cannot be easily represented in a linear or quadratic optimization framework.
Notably, a recent work by Bai et al. (BAI, Y.; LIANG; YANG, Z., 2016b) proposes a
method for solving general convex MINLP problems in the context of SCO, providing a
framework for tackling complex optimization problems that include both continuous and
discrete variables. Despite the recent advances, further research is required to develop
more efficient and robust algorithms for solving general convex MINLP problems in the
context of SCO.
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1.3 APPLICATIONS

In this thesis, we examine two significant applications of SCO problems that have
broad applications in statistics and machine learning. Our attention is directed toward
the problems of Distributed Sparse Linear Regression (DSLinR) and Distributed Sparse
Logistic Regression (DSLogR), which we elaborate on below. The DSLinR problem
aims to find a sparse linear regression model in a decentralized network of agents.
Specifically, given the local dataset Xi and response vector bi of the i-th agent and a
regularization parameter λ, the objective is to minimize the sum of squared residuals
subject to a sparsity constraint that limits the non-zero coefficients in the solution vector
θθθ. The DSLinR problem is defined as,

min
θθθ

N∑︂
i=1

∥Xiθθθ – bi∥22 +
λ

2
∥θθθ∥22

subject to ∥θθθ∥0 ≤ κ

(DSLinR)

On the other hand, the DSLogR problem is a sparse logistic regression problem that
also operates in a decentralized network. The objective is to minimize the negative log-
likelihood of the logistic regression model subject to a sparsity constraint. The model
is defined by the solution vector θθθ and the local dataset Xi , and the corresponding
response vector ΓΓΓ i .

min
θθθ

N∑︂
i=1

[︂
log
(︂

1 + e–(θθθTXi )ΓΓΓ i
)︂]︂

+
λ

2
∥θθθ∥22

subject to ∥θθθ∥0 ≤ κ

(DSLogR)

In both DSLogR and DSLinR, the dataset is assumed to be distributed among
agents in a computational network, and the solution’s sparsity is of significance. Sparse
classification and regression problems are tightly connected to SCO problems as it is
often desired to identify a critical subset of features contributing to the response. Fur-
thermore, the sparse solution usually leads to more interpretable models and improves
prediction accuracy by eliminating unnecessary features.

1.4 CONTRIBUTIONS OF THE THESIS

The central contribution of this thesis is the development of a distributed opti-
mization framework that is capable of addressing SCO problems across computational
networks. This framework involves the development of several novel distributed algo-
rithms and heuristics, which are implemented within a dedicated software tool named
the Sparse Convex Optimization Toolkit (SCOT). To the author’s knowledge, SCOT
is the first tool that is specifically designed and implemented to solve SCO problems.
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The proposed distributed framework incorporates techniques from distributed convex
optimization and mixed-integer nonlinear programming. Each chapter builds on the
previous one, leading to several key contributions which include:

• The development of the Distributed Sparse Gradient Tracking (DiSGT) algo-
rithm, which solves SCO problems without linear and/or nonlinear constraints
using inexpensive computational steps and information exchange with neigh-
boring nodes.

• The development of the Relaxed-Hybrid Alternating Direction Method of Mul-
tiplier algorithm (RH-ADMM), a fully distributed algorithm that solves large-
scale convex optimization problems with coupling constraints. This algorithm
is used as a distributed numerical engine for subsequent algorithms.

• The design of the Distributed Primal Outer Approximation (DiPOA) algorithm,
which solves SCO problems with both linear and nonlinear constraints. This
algorithm extends the centralized multiple-tree Outer Approximation (OA)
algorithms for mixed-integer nonlinear programming problems to distributed
environments.

• The development of the Distributed Hybrid Outer Approximation (DiHOA)
algorithm, which improves DiPOA performance by utilizing lazy constraints
and single-tree OA strategy.

• The development of various heuristics, including a specialized feasibility
pump, event-triggered second-order cut generation, bound tightening, and
practical infeasibility detection, which enhance the performance and solution
quality of DiPOA and DiHOA algorithms.

• The development of SCOT, an open-source software tool that implements the
proposed distributed optimization framework and its algorithms.
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1.6 DISSERTATION ORGANIZATION

The structure of this thesis is as follows: Chapter 2 briefly covers the main math-
ematical background utilized in this thesis. Chapter 3 introduces the DiGST algorithm,
which is used for SCO problems. Chapter 4 discusses distributed convex optimization
using operator theory and fixed point iterations and introduces the RH-ADMM algorithm
for solving constrained-coupled convex optimization problems. Building on the ideas
presented in Chapter 4, Chapter 5 presents the DiPOA and DiHOA algorithms, as well
as several heuristics for improving their performance. Chapter 6 presents SCOT, includ-
ing its architecture, software components, design, and use cases. Finally, Chapter 7
provides some concluding remarks.
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2 MATHEMATICAL BACKGROUND

This section provides an overview of important concepts that are central to this
thesis. We will begin by discussing distributed optimization and its variants, followed by
exploring the relationship between operator theory and convex optimization. Lastly, we
will review key topics in mixed-integer linear and nonlinear optimization.

2.1 DISTRIBUTED COMPUTATION MODELS FOR OPTIMIZATION

This section serves as an introduction to the conceptual framework for distributed
optimization in peer-to-peer networks. For a more comprehensive survey, interested
readers may refer to (NOTARSTEFANO; NOTARNICOLA; CAMISA, et al., 2019). In a
distributed computing scenario, we work with a group of N units, known as agents or
processors, each with communication and computation capabilities. Communication
between agents is modeled using graph theory. Essentially, a graph G with N nodes,
each representing an agent, is constructed. An agent i can communicate with another
agent j if an edge exists between them in the graph G, i.e., if i and j are connected. In a
distributed algorithm, the agents initialize their local states and proceed with an iterative
process. During each iteration, computation and communication steps are performed
in a synchronized manner, with all the agents executing the same actions. The iterative
process continues until the algorithm reaches convergence or the desired result is
obtained.

2.1.1 Distributed Computation Model

Here, we define the communication model for distributed algorithms considered
in this thesis. We model a network as an undirected graph G = ({1, . . . ,N}, E), where
{1, . . . ,N} is the fixed set of agent identifiers and E ⊆ {1, . . . ,N}× {1, . . . ,N} is the set of
edges over the vertices {1, . . . ,N}, which represents the communication links. If there is
an edge (i , j) ∈ E , we say that i is the in-neighbor of j and j is the out-neighbor of i .

Definition 1. A graph G is said to be connected if for every pair of nodes (i ,j) there exist
a path of edges that goes from i to j.

Agents can run distributed algorithms according to several communication pro-
tocols on a given network topology. If the algorithm’s steps depend explicitly on a par-
ticular time, we call it a synchronous algorithm; otherwise, it is called an asynchronous
algorithm. synchronous otherwise it is called asynchronous. We use two commonly em-
ployed optimization setups, namely cost-coupled and constraint-coupled optimization,
in this thesis. These optimization problems are extensively used in various applications,
such as estimation, learning, decision-making, and control in smart networks. A dis-
tributed optimization algorithm for these problem classes comprises an iterative process
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based on the previously defined distributed computation model. The objective for the
agents is to achieve a solution to the problem under consideration. In each of the two
optimization setups, this objective leads to different expressions, which will be formally
defined below.

2.1.2 Cost-Coupled Optimization

The cost-coupled optimization setup expresses the cost function as the sum of
local contributions fi with a global optimization variable x and is defined as,

min
x∈Rn

N∑︂
i=1

fi (x)

subject to x ∈ X

(1)

where X ⊆ Rn. Each agent is assumed to know its own local contribution fi : Rn → R,
while the global constraint set X is known by all agents. In some cases, the constraint
set may be more structured, taking the form of X =

⋂︁N
i=1Xi , where each agent knows

only its own constraint set Xi . Let x∗ denote an optimal solution to problem (1). For
this optimization set-up, the goal is to design a distributed algorithm where each agent
updates a local estimate xk

i that converges (asymptotically or in finite time) to x∗ , by
means of local computation and limited communications.

2.1.3 Constraint-Coupled Optimization

Now, we present a different set-up which is called constraint-coupled where
agents in a network aim to minimize the sum of local cost functions, each one depending
only on a local vector satisfying local constraints. The decision vectors are then coupled
to each other by means of separable coupling constraints. This feature leads easily
to the so-called big-data problems having a highly dimensional decision variable that
grows with the network size. However, since agents are typically interested in computing
only their (small) portion of an optimal solution, novel tailored methods need to be
developed to address these challenges. Formally, the constraint-coupled optimization
problem is define as,

min
x1,...,xN

N∑︂
i=1

fi (xi )

subject to xi ∈ Xi
N∑︂

i=1

gi (xi ) ≤ 0

(2)

where fi and gi are known by agent i only. Notice that problem (2) is challenging because
of the coupling constraints

∑︁N
i=1 gi (xi ) ≤ 0. If there were no coupling constraints, the
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optimization would trivially split into N independent problems. Let (x∗1 . . . ,x
∗
N ) denote

an optimal solution of problem (2). The goal is to design a distributed algorithm where
each agent updates a local estimate xk

i that converges (asymptotically or in finite time)
to x∗i , the i-th portion of(x∗1 . . . ,x

∗
N ) by means of local computation and neighboring

communication only. A special instance of this set-up has been investigated in the
context of resource allocation, where the coupling constraint is linear, e.g.,

∑︁N
i=1 xi = b,

and there are no local constraints.

2.2 OPERATOR THEORY AND CONVEX OPTIMIZATION

In what follows, we provide an overview of the fundamentals of convex opti-
mization and operators and fixed point theory that are used throughout the research.
For more details see (BOYD, S.; BOYD, S. P.; VANDENBERGHE, 2004; BERTSEKAS,
2015; RYU; BOYD, S., 2016, text)

2.2.1 Convexity

Basic fundamentals of convex sets and convex functions are addressed here.
We first present the definition of convex sets.

Definition 2. A subset C of Rn is called convex if

αx + (1 – α)y ∈ C, ∀x ,y ∈ C,∀α ∈ [0,1]

Note that the empty set is by convention considered to be convex. We often
consider some special convex sets, which are defined in the following definitions.

Definition 3 (Hyperplane). A hyperplane is a set specified by a single linear equality,
i.e., a set of the following form

{x ∈ Rn | aT x = b, a ∈ Rn}.

Definition 4 (Halfspace). A halfspace is a set specified by a single linear inequality, i.e.,
a set of the following form

{x ∈ Rn | aT x ≤ b, a ∈ Rn}.

Definition 5 (Polyhedron). A polyhedron is a set specified by the intersection of a set
of halfspaces, i.e., a set of the following form

{x ∈ Rn | aT
i x ≤ bi , ai ∈ Rn, i = 1,...,m}.

A bounded polyhedron is called a polytope. It is clear that the defined special
sets are convex. Next, the basics of convex functions are presented.
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Definition 6. Let C be a convex subset of Rn. A function f : C → R is convex if

f (αx + (1 – α)y ) ≤ αf (x) + (1 – α)f (y ), ∀x ,y ∈ C,∀α ∈ [0,1] (3)

Moreover, a function f is called strictly convex if the inequality (3) is strict for all
x ,y ∈ C with x ̸= y and α ∈ (0,1). Note that, according to the definition, convexity of the
domain C is a prerequisite for convexity of the function f . For once or twice differentiable
functions, there are some additional criteria for verifying convexity, which are presented
in the following.

Proposition 1. Let C be a convex subset of Rn and let f : Rn → R be differentiable
over an open set that contains C. Then f is convex over C if and only if

f (z) ≥ f (x) +∇f (x)T (z – x), ∀x ,z ∈ C. (4)

Proposition 2. Let C be a convex subset of Rn and let f : Rn → R be continuously
twice differentiable over an open set that contains C. Then f is convex over C if and only
if

∇2f (x) ⪰ 0, ∀x ∈ C. (5)

In other words, for a twice differentiable function, convexity can be checked
through the sign of the Eigenvalues of the Hessian of f at point x . Below, the fundamen-
tals of convex optimization problems are discussed.

2.2.2 Convex Optimization

In this section, the basic terminology and optimality conditions of the convex
optimization problem are also discussed.

The general form of a convex optimization problem is written as follows

minimize f (x)

subject to gi (x) ≤ 0,∀i = 1,...,m (6)

aT
i x = bi ,∀i = 1,...,p

where f : Rn → R is called the objective function which is convex, gi : Rn → R, i =
1,...,m, define the inequality constrains which are all convex functions, and finally aT

i x =
bi , i = 1,...,p, define the equality constrains which are affine functions (and therefore
also convex). In summary, a convex optimization problem consists in minimizing a
convex function over a convex set. If the objective function is zero, then the problem is
called a feasibility problem. Regarding the problem (6), some important definitions and
terminologies are defined, which are discussed in the following.

Definition 7. A point x ∈ Rn is called feasible if it satisfies all equality and inequality
constraints. The set of all feasible points is called the feasible set. Accordingly, the
problem (6) is called feasible if the feasible set is not empty.
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Definition 8. A point x∗ ∈ Rn is called the optimal point if it is feasible and minimizes
the objective function f . An optimal point is called global if it is optimal in the entire
feasible set and it is called local if it is optimal in a feasible neighbor of x∗.

Definition 9. The optimal value, p∗, of the problem (6) is defined as

p∗ = min{f (x) | gi (x) ≤ 0, i = 1,...,m, aT
i x = bi , i = 1,...,p}.

Proposition 3. For any convex problem in the form of (6) every local optimal point is
also global.

Now that the general form of convex optimization problems are discussed, the
duality theory for this problem can be introduced in the next section.

2.2.3 Lagrangian Duality and KKT Conditions

Consider the problem (6). The basic idea in Lagrangian duality is to take the
constraints into account by augmenting the objective function with a weighted sum of
the constraint functions. Accordingly, the Lagrangian Function L : Rn ×Rm ×Rp → R
is defined as

L(x ,u,v ) = f (x) +
m∑︂

i=1

uigi (x) +
p∑︂

i=1

vi (a
T
i x – bi ) (7)

where, ui (vi ) is the Lagrange multiplier associated with the i-th inequality (equality)
constraint. The vectors, u and v are called dual variables associated with the problem
(6).

Proposition 4. For any feasible point x ∈ Rn, the Lagrangian function induces a lower
bound on the objective function if ui is a positive number.

In order to find the best lower bound, the Lagrangian dual function q : Rn×Rp →
R is constructed as follows.

q(u,v ) = min
x

L(x ,u,v ) (8)

Proposition 5. The dual function q(u,v ) is a concave function and hence, a global
maximum point exists.

Proposition 6. For any u ≥ 0 the dual function yields a lower bound on the optimal
value p∗ of the problem (6), i.e.,

q(u,v ) ≤ p∗. (9)

The lower bound provided by the dual function is not necessarily the best dual
bound. According to the concavity property of the dual function, the best lower bound is
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obtained by maximizing the dual function. This is another optimization problem, which
is called the dual problem being defined as

maximize
u,v

q(u,v ) (10)

subject to : u ≥ 0 (11)

The optimal value of the dual problem, d∗, is the best lower bound on p∗. In particular,
we have

d∗ ≤ p∗.

The difference p∗ – d∗ is called the duality gap. In general and for general nonlinear
problems (not necessarily convex) the duality gap is usually nonzero. However for
convex problems and under certain conditions, called Slater’s condition, the duality gap
is zero, .i.e.,

d∗ = p∗.

The former and the latter case are called weak and strong duality, respectively.
By using the concept of dual problem and strong duality, the necessary and

sufficient conditions (KKT conditions) of optimality for the convex problem can be stated
in the following proposition.

Proposition 7. Consider the convex problem (6) and assume the strong duality holds.
Then x∗ is the optimal point if the following conditions are satisfied:

gi (x
∗) ≤ 0, i = 1,...,m

aT
i x = bi , i = 1,...,p

u∗i ≥ 0, i = 1,...,m

u∗i gi (x
∗) = 0, i = 1,...,m

∇xL(x∗,u∗,v∗) = 0

In summary, for any optimization problem with differentiable objective and con-
straint functions for which strong duality holds, any pair of primal and dual optimal points
must satisfy the KKT conditions.

2.3 OPERATOR THEORY AND FIXED POINT ITERATIONS

Now, we review some fundamental results on operator theory, and we refer the
interested reader to (BAUSCHKE; COMBETTES, 2017; RYU; BOYD, S., 2016) for an
in-depth treatment.

2.3.1 Operator Theory and Fixed Point Algorithms

Definitions and basic properties are introduced below.
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Definition 10. An Operator (or mapping) T : Rn → Rn maps every point in Rn to a
point Tx ∈ Rn.

Definition 11 (Fixed points of an operator). Let T : Rn → Rn be an operator on Rn,
then the set of fixed points of T is defined as follows:

fix(T ) =
{︁

x ∈ Rn : Tx = x
}︁

. (12)

Definition 12 (Lipschitz mapping). Let T : Rn → Rn be an operator on Rn, then T is
L-Lipschitz continuous with L ≥ 0 if

∥Tx – Ty∥ ≤ L ∥x – y∥ (13)

holds for all x ∈ Rn and y ∈ Rn. The operator T is non-expansive if L = 1, and
contractive if L < 1 strictly.

Definition 13 (Averaged mapping). A mapping S : X → Y is α-averaged if there exists
a non-expansive mapping T : X → Y and α ∈ (0,1) such that

S = (1 – α)I + αT (14)

where I is the identity operator.

Definition 14 (Convex, Closed and Proper (CCP) functions). A convex function f :
Rn → R is said to be proper if it never attains –∞, while it is closed if it has bounded
epigraphs, that is for any a ∈ R the set {x | f (x) ≤ a} is closed.

Definition 15 (Proximal and reflective Operator). Assume f : Rn → R is a CCP function
and let ρ ≥ 0. The proximal operator of f with penalty parameter ρ is defined as follows:

proxρf (y) = arg min
x

{︃
f (x) +

1
2ρ
∥x – y∥22

}︃
, (15)

and the corresponding reflective operator is defined as:

reflρf = 2 proxρf –I. (16)

Remark 1. The reflective and proximal operators are non-expansive. The proof of this
result can be found in (BAUSCHKE; COMBETTES, 2017).

Definition 16 (Weak and strong convergence. (BAUSCHKE; COMBETTES, 2017)).
Let {x(k )}k∈N be a sequence of points in Rn. The sequence is said to converge weakly
to a point x∗ ∈ Rn if

⟨x(k ),y⟩ → ⟨x∗,y⟩ ∀y ∈ Rn (17)

for k that tends to infinity. Moreover, the sequence is said to converge strongly if

∥x(k ) – x∗∥ → 0. (18)

Strong and weak convergence in finite-dimensional spaces are equivalent.
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where ⟨.⟩ is the dot product of two arbitrary vectors.

Definition 17 (Banach-Picard Fixed-Point Iteration (BAUSCHKE; COMBETTES, 2017)).
The Banach-Picard iteration to find the fixed points of an operator T is defined as

x(k + 1) = Tx(k ). (19)

If T is a contractive operator, then the sequence of points generated by this iteration
converges to the fixed point of T .

Theorem 1 (Krasnosel’skiı̆-Mann iteration (BAUSCHKE; COMBETTES, 2017, Theo-
rem 5.14)). LetD be a nonempty closed and convex subset ofRn. Assume T : D → Rn

to be a non-expansive operator such that fix(T ) = ∅. Moreover, let α be a constant pa-
rameter in (0,1). The Krasnosel’skiı̆-Mann (KM) fixed point iteration is defined as

x(k + 1) = (1 – α)x(k ) + αTx(k ) (20)

with initial condition x(0) ∈ D.
The sequence of points generated by the Krasnosel’skiı̆-Mann iteration is such that
{Tx(k ) – x(k )} converges strongly to 0, i.e. ∥x(k ) – x∗∥ → 0.

Operator theory can be exploited to design convex optimization algorithms. The
underlying idea is to define a nonexpansive operator whose fixed points coincide with
the solutions to the convex problem of interest; then, we can apply fixed point methods
to solve this problem. In the following, we review some important definitions and results
of convex optimization theory, which can be found in (RYU; BOYD, S., 2016).

Definition 18 (m-Strongly Convex Function). A CCP C2 function f : Rn → R is m-
strongly convex if

f (x) ≥ f (y) + ⟨∇f (x),x – y⟩ +
m
2
∥x – y∥2 , ∀x ,y (21)

where m > 0.

Definition 19 (L-Strongly smooth Function). A CCP C2 function f : Rn → R is L-
strongly smooth if

f (x) ≤ f (y) + ⟨∇f (x),x – y⟩ +
L
2
∥x – y∥2 ∀x ,y (22)

where L > 0.

Proposition 8 ((GISELSSON; BOYD, S., 2014, Proposition 1)). Let f : Rn → R be a
CCP function. Then the following statements are equivalent.

• f is m-strongly convex
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• f ∗ is 1
m -smooth.

Remark 2. According to the Theorem 1 and KM iteration (20), it is possible to observe
that for any α ∈ (0,1), the KM algorithm converges. In a special case when the relaxation
parameter α = 1, the KM iteration is transformed to the Banach-Picard iteration, which
does not necessarily converge unless some additional assumption is considered on the
operator.

2.4 MIXED-INTEGER LINEAR PROGRAMMING

This section provides an overview of Mixed-Integer Linear Programming (MILP)
concepts that are utilized in this thesis. MILP is a class of optimization problems that
involves the incorporation of integer variables. These variables are used to represent
discrete quantities and distinct decisions. A MILP problem can be stated as follows:

min cT
1 x + cT

2 y

subject to A1x + A2y ≤ b

x ∈ Rn,y ∈ Zm

(MILP)

Optimization problems with industrial applications that can be formulated as MILP prob-
lems are, e.g., allocation problems, packing problems, process planning, scheduling,
and the famous traveling salesman problem. The main method for solving MILP prob-
lems is the branch-and-bound (BnB) algorithm. This algorithm solves a MILP problem
by relaxing the integer constraints and dividing the search space. The resulting lin-
ear programming (LP) relaxation, obtained by dropping the integer constraints, is then
solved. If the solution of the LP relaxation is not integer-valued, the algorithm divides
the search space into subproblems, each with a restricted set of feasible solutions. This
process is repeated recursively until a solution that satisfies all constraints is found, or
until it is proven that no such solution exists. By dropping the integer restrictions, the
resulting LP-relaxation is given by

min cT
1 x + cT

2 y

subject to A1x + A2y ≤ b

x ∈ Rn,y ∈ Rm

(R-MILP)

that can be easily solved. Nonetheless, the LP relaxation may not yield an integer
feasible solution, meaning that at least one of the integer variables may have a fractional
value. Nevertheless, the LP relaxation still provides a valid lower bound (LB) for the
original problem, as it relaxes the integer constraints.

2.4.1 Branch and Bound Algorithm

Suppose (x∗,y∗) is the minimizer of the relaxed problem (R-MILP), and that one
of the integer variables yi takes on a fractional value, i.e., round(y∗i ) ̸= y∗i . To find an



Chapter 2. Mathematical Background 33

integer solution of the problem, the search space is divided into two parts such that the
fractional solution is excluded from the search space but all feasible integer solutions
are still included in the search. Such a division of the search space is achieved by
generating two new sub-problems, and adding one of the constraints yi ≤ ⌊y∗i ⌋ and
yi ≥ ⌈y∗i ⌉ to each sub-problem. After solving the new sub-problems and updating the
lower bound, if one of the sub-problems returns a feasible integer solution, it is a valid
upper bound for the MILP problem in that region of the search space. However, if the
difference between the upper and lower bounds is still not within the desired tolerance,
the search continues by dividing the sub-problems with a non-integer solution into
two new sub-problems. This procedure of dividing the search space into sub-regions
is known as branching, and the variable on which the division is done is called the
branching variable.

Often there are several branching options, e.g., if several of the integer variables
take on fractional values. A branching variable is then chosen based on some criteria,
e.g., most infeasible branching, pseudo branching, or strong branching. The solution
procedure is often represented as a tree where the initial LP-relaxation corresponds
to the root node, and the sub-problems are represented by nodes branching out. In
case the optimal solution of one of the sub-problems (nodes) exceeds the current upper
bound, then the optimal solution cannot be within that specific part of the search space,
and there is no need to further explore the node. When the search is stopped along one
node, it is referred to as pruning the node. Some of the sub-problems may also become
infeasible, and such nodes can also be pruned from the search tree. A node that may
still contain the optimal solution is referred to as an open node, and several strategies
for determining the order in which to explore open nodes have been proposed.

2.4.2 Cutting-Plane Algorithm

The BnB algorithm was not the initial approach suggested for solving MILP
problems, as a cutting plane algorithm was proposed by Gomory in 1960. Gomory had
already presented a similar cutting plane algorithm for pure integer problems in 1958.
The basic concept is still to solve LP-relaxations, but instead of branching, the algorithm
obtains cuts that eliminate the non-integer solution of the LP-relaxation.To show how
such cuts can be generated, consider a problem with the following constraints in the
integer variables y

A2y ≤ b (23)

where a1, a2, . . . , an are the columns of A2 matrix. Here it is assumed that all the integer
variables y are restricted to non-negative integers. The individual constraints of (23)
can be combined into a single constraint according to

λ
TA2y ≤ λ

Tb (24)
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where λ is a non-negative scaling vector. Rounding down the coefficients on the left
hand side, given by λT ai , results in a valid relaxed constraint. Once the right-hand side
contains only integer coefficients, then an integer solution can only result in an integer
value on the right-hand side. The coefficient on the left-hand side can then be rounded
down to an integer value, thus strengthening the constraint and resulting in the following
Chvátal-Gomory cut [︂

⌊λT a1⌋ . . . ⌊λT an⌋
]︂
≤ ⌊λTb⌋ (25)

Chvátal-Gomory cuts will not cut off any feasible integer solution of the problem. How-
ever, they can cut off non-integer regions of the feasible set and strengthen the LP-
relaxation. There is no unique way of constructing Chvátal- Gomory cuts, and by choos-
ing different scaling vectors λ, an infinite number of cuts can be obtained. Gomory’s
cutting plane algorithm for integer problems uses an iterative procedure for generating
cuts according to (25) to iteratively improve the LP-relaxation, and to obtain an integer
solution.

Over the years, cutting planes have received considerable attention in the context
of MILP problems, and several types of cuts have been proposed, including mixed-
integer Gomory cuts, disjunctive cuts, lift-and-project cuts, intersection cuts, split cuts,
and cover cuts. The primary objective of using these cuts is to obtain a tighter LP-
relaxation by utilizing various properties of the MILP problems. However, using cutting
planes alone to solve MILP problems is often not efficient because of the potential
for an enormous number of cutting planes being required, and the cutting planes may
become almost parallel, leading to issues of LP sub-problems degeneracy. Nowadays,
most MILP solvers utilize the branch-and-cut technique, which employs cutting planes
to strengthen the LP-relaxations in the branch and bound algorithm.

MILP problems are considered NP-hard, making them difficult to solve. However,
the field of MILP has made significant progress in developing general-purpose solvers
for these problems. There are several solvers available for MILP problems, such as
CBC, CPLEX, Gurobi, SCIP, and XPRESS. Benchmark tests in (KOCH et al., 2011)
have shown that these solvers have even been able to solve some MILP problems with
more than 100,000 discrete variables. Solving MILP sub-problems is one of the key
components in several methods for convex MINLP, and the ability to efficiently solve
MILP problems is crucial for such methods. Convex MINLP methods utilizing MILP
relaxation will be described in detail later on.

2.5 MIXED-INTEGER CONVEX PROGRAMMING

This section presents the basic elements of MINLP methods and algorithms. For
more details see (GROSSMANN, I., 2002; KRONQVIST et al., 2019).

The most basic form of an MINLP problem when represented in algebraic form
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is as follows:

min
x,y

f (x,y) (26)a

s.t. gj (x,y) ≤ 0, j ∈ J (26)b

x ∈ X , y ∈ Y (26)c

where f : Rn → R and gj : Rn → R, j ∈ J, are convex, differentiable functions, J is the
index set of inequalities, and x and y are continuous and discrete variables, respectively.
The set X is commonly assumed to be a convex and compact set, and the discrete
set Y corresponds to a polyhedral set of integer points, which in most applications is
restricted to binary values. In most applications of interest the objective and constraint
functions f and g are linear in y: f (x,y) = cTy + r (x) and gj (x,y) = Bjy + hj (x).

Methods that addressed the solution of problem (26) include the branch-and-
bound method (BnB), Generalized Bender’s Decomposition (GBD), Outer Approxima-
tion (OA), Extended Cutting Plane (ECP), LP/NLP BnB, and Extended Supporting
Hyperplane (ESH). Since the algorithms developed in this thesis are derived based on
the OA and LP/NLP BnB methods, they are briefly discussed here.

2.5.1 Outer Approximation

The OA method was first presented by (DURAN; GROSSMANN, Ignacio E,
1986) and is a decomposition technique, which obtains the optimal solution of the origi-
nal problem by solving a sequence of Mixed Integer Linear Programming (MILP) and
Nonlinear Programming (NLP) subproblems. The OA constructs an iteratively improving
polyhedral outer approximation of the nonlinear functions. However, OA only uses the
polyhedral approximation for choosing the integer combination y, while the correspond-
ing continuous variables x are chosen by solving a convex NLP subproblem. In each
iteration, the polyhedral outer approximation is used to construct problem (MILP-k),
referred to as MILP master problem. A new integer combination yk is then obtained by
solving problem (MILP-k), which is defined as:

min
x,y,α

α (27)a

s.t. α ≥ f (xk ,yk ) +∇f (xk ,yk )T
[︄
x – xk

y – yk

]︄
(27)b

gj (x
k ,yk ) +∇gj (x

k ,yk )T
[︄
x – xk

y – yk

]︄
≤ 0, j ∈ Jk , k = 1,...,K (27)c

x ∈ X , y ∈ Y (27)d
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where Jk ⊆ J and K is the number of feasible points generated by the NLP subproblem.
Once the integer combination yk is obtained, the following NLP subproblem is formed

min
x

f (x,yk ) (28)a

s.t. gj (x,yk ) ≤ 0, j ∈ J (28)b

x ∈ X (28)c

If problem (28) is feasible, a valid upper bound can be obtained from the solution
(xk ,yk ), and the solution is used to improve the polyhedral approximation in the master’s
problem.

Problem (28) may also be infeasible at some iteration. If yk is an feasible integer
combination, the corresponding continuous variable can be obtained by solving the
following convex subproblem

min
x

u (29)a

s.t. gj (x,yk ) ≤ u, j ∈ J (29)b

x ∈ X (29)c

which minimizes the constraint violation with respect to the ℓ∞-norm. The solution to
problem (29) does not provide a lower bound. The OA algorithm is usually initiated by
solving a continuous relaxation of the MINLP problem, giving an initial lower bound and
a solution that can be used to construct polyhedral approximations. It is also possible
to use integer cuts to exclude specific integer combinations. Solving the MILP master
problems (27) provides a lower bound on the optimum, and the procedure is repeated
until the upper bound and lower bound is within a given tolerance.

2.5.2 LP/NLP-based branch-and-bound

When applying the OA algorithm to a convex MINLP problem, the majority of
the total solution time is, usually, spent on solving the MILP master problems. A new
approach to avoid solving multiple MILP sub-problems was presented by (QUESADA;
GROSSMANN, Ignacio E, 1992). The method, known as LP/NLP-based branch-and-
bound (LP/NLP-BnB), integrates OA within a branch-and-bound framework. Compared
to OA, only one branch-and-bound tree is generated by dynamically updating the MILP
master problem. The search is initialized by solving an integer relaxation of the MINLP
problem, and the solution is used to construct an initial polyhedral outer approximation.
The integer relaxation also provides a valid lower bound on the optimal objective value
of the MINLP problem. The polyhedral outer approximation is used to construct the
initial MILP master problem, which will be solved by a branch-and-bound procedure.

An LP relaxation is solved in each node of the branch-and-bound tree, and the
search is stopped once an integer solution is obtained in one of the nodes. The integer
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solution is treated as normal in OA, by solving an NLP problem with the integer variables
fixed. If it results in a feasible NLP problem, then it provides a valid upper bound, and
new linearizations can be generated. If the NLP problem is infeasible, it is possible to
add an integer cut to exclude the solution or solve the feasibility problem and generate
new linearizations. The new linear constraints are then added to all open nodes in the
branch-and-bound tree, and the LP relaxation is resolved for the node which resulted
in the integer combination. The search continues with the improved polyhedral outer
approximation, and the BnB procedure continues from the existing search tree.

As normally done in BnB, nodes can be pruned off in case the optimum of the LP
relaxation exceeds the upper bound. However, the search cannot be stopped once an
integer solution is obtained at a node; the search must continue until the LP relaxation
results in a feasible integer solution or until the node can be pruned off. By constructing
a single branch-and-bound tree, LP/NLP-BnB may end up exploring fewer nodes than
the total number of nodes explored in the multiple branch-and-bound trees in normal OA.
The LP/NLP-BnB can also be combined with cut-generating procedures for tightening
the integer relaxation. Generally, LP/NLP-BnB is considered one of the most efficient
techniques for convex MINLP, which is also supported by a recent benchmark test of
convex MINLP solvers in (KRONQVIST et al., 2019).

2.6 CONCLUSION

This chapter briefly reviewed some of the important topics that are needed
throughout this thesis, such as distributed computing models, operator theory, convex
optimization, mixed-integer linear and nonlinear optimization, and algorithms. With
the information presented in this chapter, we are now ready to begin with the main
contributions of this thesis.
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3 DISTRIBUTED SPARSE GRADIENT TRACKING ALGORITHM

3.1 INTRODUCTION

This chapter presents the Distributed Sparse Gradient Tracking (DiSGT) algo-
rithm, which addresses the SCO problem with a sparsity constraint and semi-continuous
variables similar to the cost-coupled setup (1) (OLAMA et al., 2023). To develop this
algorithm, we drew inspiration from the penalty decomposition method introduced in
(BAI, Y.; LIANG; YANG, Z., 2016a; LU; ZHANG, Yong, 2013) and the gradient tracking
algorithm described in (NOTARSTEFANO; NOTARNICOLA; CAMISA, et al., 2019). The
resulting DiSGT is a fully-distributed algorithm that solves the SCO problem through local
communication and computation. Essentially, the DiSGT approach divides the problem
into two subproblems by introducing appropriate auxiliary variables and applies the
Block Coordinate Descent (BCD) method (LU; ZHANG, Yong, 2013; BAI, Y.; LIANG;
YANG, Z., 2016a) in tandem with the gradient tracking algorithm to produce a novel fully-
distributed scheme. Finally, we confirm the effectiveness of our distributed algorithm by
performing some numerical simulations in a sparse logistic regression framework with
synthetic data sets and a real-world problem arising in the context of electrical smart
grids. It is worth noting that the DiGST algorithm is the initial method proposed in this
thesis for solving SCO problems by directly addressing the sparsity constraint. However,
DiGST is unable to handle linear and nonlinear constraints that may be present in the
problem formulation. In the subsequent chapter, we present the RH-ADMM algorithm,
which can efficiently solve constrained large-scale convex optimization problems and
be used to tackle the continuous portion of SCO problems. The RH-ADMM algorithm is
then integrated into the MINLP algorithms presented in Chapter 5.

The chapter is structured into the following sections: Section 3.2 introduces
the sparse optimization problem that is being considered in this work. Section 3.3
outlines the development of the DiGST algorithm, while Section 3.4 presents the results
of numerical experiments conducted on synthetic and real datasets to evaluate its
effectiveness. Finally, Section 3.5 provides some concluding remarks and summarizes
the main conclusions of the chapter.
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3.2 PROBLEM DESCRIPTION

We consider a network of N agents aiming to cooperatively solve the sparse
convex optimization problem with semi-continuous variables described by

min
x∈Rn

N∑︂
i=1

fi (x)

subject to xl ∈ {0} ∪ [al
min, al

max], l ∈ {1, . . . , n}

∥x∥0 ≤ κ,

(30)

where fi : Rn → R is the local convex objective function of agent i , and κ ∈ N is the
maximum number of non-zero elements of the decision variable x ∈ Rn with κ < n.
Moreover, a variable xl is referred to as a semi-continuous variable. According to the
desired distributed paradigm, each agent i can only access its local objective function
fi and exchange data with a subset of the entire agents set according to the commu-
nication graph associated with the network. Indeed, we assume that the agents of the
network communicate according to an undirected graph G = ({1, . . . ,N},E ,A), where
{1, . . . ,N} is the set of agents, E ⊆ V × V is the set of edges, and A ∈ RN×N is the
weighted adjacency matrix. Each agent i ∈ {1, . . . ,N} can receive data from agent j only
if (j ,i) ∈ E and, in this case, agent j is said to be a neighbor of agent i . Moreover, the
entries of the weighted adjacency matrix A match the graph structure, namely the (i ,j)
entry satisfies aij > 0 if (i ,j) ∈ E , and aij = 0 otherwise. The symbol Ni denotes the set
of neighbors of agent i and is defined as Ni := {j ∈ V | (i ,j) ∈ E}. The next section is
devoted to designing an iterative distributed algorithm to address problem (30).

3.3 DISGT DEVELOPMENT

We start by introducing an auxiliary variable y ∈ Rn which allows us to equiva-
lently rewrite problem (30) as

min
x∈Rn

N∑︂
i=1

fi (x)

subject to x = y

y ∈ C

(31)

where
C = {y ∈ Rn : yl ∈ {0} ∪ [al

min, al
max], ∥y∥0 ≤ κ}.

With this formulation at hand and given an arbitrary constant ρ > 0, we introduce an
Augmented Lagrangian function Lρ : Rn × Rn × Rn → R associated to problem (31)
which is defined as

Lρ(x,y, λ) =
N∑︂

i=1

fi (x) + λ
⊤(x – y) +

ρ

2
∥x – y∥22 . (32)
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The next section is devoted to describing the BCD method (BAI, Y.; LIANG; YANG, Z.,
2016a), namely, a centralized algorithm to find the saddle-points of Lρ (32).

3.3.1 Block Coordinate Descent

In order to find a saddle-point of Lρ satisfying the constraint y ∈ C, we could
apply the block coordinate descent method, which reads as

xt+1 = arg min
x

Lρ(x,yt , λt ) (33)a

yt+1 = arg min
y∈C

Lρ(xt+1
i ,y, λt ) (33)b

λ
t+1 = λ

t + ρ(xt+1 – yt+1) (33)c

However, iterations (33) cannot be implemented in a distributed fashion. Indeed, the
update (33)a requires the knowledge of all the local functions fi in each agent of the
network. In order to overcome this issue, we resort to the so-called gradient tracking
algorithm to replace (33)a. Specifically, at each iteration, t ∈ N, each agent i ∈ {1, . . . ,N}
locally maintains an estimate (xt

i , y
t
i , λ

t
i ) ∈ Rn × Rn × Rn about a saddle-point of Lρ

satisfying the desired constraint. Indeed, for all t ∈ N, the update (33)a consists in
solving the i-th optimization problem described by

min
x∈Rn

N∑︂
j=1

gj

(︂
x,yt

i ,λ
t
i

)︂
, (34)

where the objective function gj : Rn × Rn × Rn → R reads as

gj (x,yt
i ,λ

t
i ) = fj (x) +

1
N

(︃
(λt

i )
⊤(x – yt

i ) +
ρ

2

⃦⃦⃦
(x – yt

i )
⃦⃦⃦2

2
)
)︃

,

for all j ∈ {1, . . . ,N}. By taking advantage of the suitable structure of problem (34), we
replace the step (33)a with an inner implementation of the well-known gradient tracking
algorithm, i.e., a popular distributed mechanism to effectively solve consensus opti-
mization problems (SHI et al., 2015; NEDIĆ; OLSHEVSKY; SHI, 2017; DI LORENZO;
SCUTARI, 2016; XI; XIN; KHAN, 2017; SCUTARI; SUN, Y., 2019; CARNEVALE et al.,
2023; CARNEVALE; NOTARSTEFANO, 2022; DANESHMAND; SCUTARI; KUNGURT-
SEV, 2020; CARNEVALE et al., 2022). Specifically, at each iteration t ∈ N and for
each agent i ∈ {1, . . . ,N}, we introduce an inner iteration index k ∈ N and an estimate
xk ,t

i ∈ Rn of a solution x∗(yt
i ,λ

t
i ) of problem (34). Moreover, as customary in the im-

plementation of the gradient tracking algorithm, we also introduce an auxiliary variable
sk ,t
i ∈ Rn called tracker. Each tracker sk ,t

i exploits a perturbed consensus dynamics to
locally reconstruct the unavailable global gradient

∑︁N
j=1∇gj (x

k ,t
i ,yt

i ,λ
t
i ). In turn, such

a tracker is used to update the local solution estimate xk ,t
i mimicking the well-known

gradient descent method plus an averaging step, which aims to force consensus among
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the solution estimates xk ,t
i . Hence, the whole update from the perspective of agent i

reads as

xk+1,t
i =

∑︂
j∈Ni

aijx
k ,t
j – γsk ,t

i (35)a

sk+1,t
i =

∑︂
j∈Ni

aijs
k ,t
j +∇gi (x

k+1,t
i ,yt

i ,λ
t
i ) –∇gi (x

k ,t
i ,yt

i ,λ
t
i ), (35)b

where γ > 0 is a parameter called step-size and the weights aij are the entries of
the weighted adjacency matrix A associated to the graph G. As a necessary con-
dition for the algorithm effectiveness, we remark that these trackers must be initial-
ized according to s0,t

i = ∇gi (x
0,t
i ,ȳt ,λ̄t ) (SHI et al., 2015; NEDIĆ; OLSHEVSKY; SHI,

2017; DI LORENZO; SCUTARI, 2016; XI; XIN; KHAN, 2017; SCUTARI; SUN, Y., 2019;
CARNEVALE et al., 2023; CARNEVALE; NOTARSTEFANO, 2022; DANESHMAND;
SCUTARI; KUNGURTSEV, 2020; CARNEVALE et al., 2022).

Remark 3. We remark that if the consensus among all the variables yt
i and λt

i of the

network is enforced, i.e., it holds yt
i = ȳt and λt

i = λ̄
t for all i ∈ {1, . . . ,N} and some

ȳt , λ̄t ∈ Rn, then problem (34) turns out to be the same in each agent i of the network.
Specifically, it would read as

min
x∈Rn

N∑︂
i=1

gi

(︂
x,ȳt , λ̄t

)︂
. (36)

In turn, in (SHI et al., 2015; NEDIĆ; OLSHEVSKY; SHI, 2017; DI LORENZO; SCUTARI,
2016; XI; XIN; KHAN, 2017; SCUTARI; SUN, Y., 2019; CARNEVALE et al., 2023;
CARNEVALE; NOTARSTEFANO, 2022; DANESHMAND; SCUTARI; KUNGURTSEV,
2020; CARNEVALE et al., 2022) it is guaranteed that if regularity assumptions about
the local objective functions fi (e.g., convexity) and the graph G (connectivity, A doubly
stochastic) are enforced, then there exists γ̄ > 0 such that

lim
k→∞

⃦⃦⃦
xk ,t

i – x∗(ȳt ,λ̄t )
⃦⃦⃦

= 0,

for all i ∈ {1, . . . ,N}, where x∗(ȳt ,λ̄t ) ∈ Rn denotes a solution of the consensus opti-
mization problem (36).

As soon as the inner algorithm (35) converges to a steady-state col(xeq,t+1
1 ,

s
eq,t+1
1 , . . . ,xeq,t+1

N ,seq,t+1
N ) ∈ R2Nn 1 of (31), we set xt+1

i = x
eq,t
i for all i ∈ {1, . . . ,N} and

use it to update the variables yt
i and λt

i as follows

yt+1
i = arg min

y∈C
Lρ(xt+1

i ,y, λt
i ) (37)a

λ
t+1
i = λ

t
i + ρ(xt+1

i – yt+1
i ). (37)b

1 Given N vectors x1, . . . ,xN , their vertical stack is denoted by col(x1, . . . ,xN ).
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It is worth noting that (37) can be implemented in a fully-distributed fashion because it
only relies on local information.

Remark 4. In general, the steady-state configuration col(xeq,t+1
1 , . . . ,xeq,t+1

N ) does not
necessarily coincide with a consensus configuration because of the possible different
pairs (yt

1,λt
1), . . . , (yt

N ,λt
N ) leading to N different problems (34). However, a consensus

configuration yt
i = ȳ, λt

i = λ̄ for all i ∈ {1, . . . ,N} and some ȳt , λ̄t ∈ Rn leads to N equiva-
lent problems in the form of (36). Then, as argued in Remark 3, the inner algorithm (35)
provides, for all i ∈ {1, . . . ,N}, a consensual solution xt+1

i = x∗(ȳt ,λ̄t ) of the consensus
optimization problem (36). In turn, by inspecting the updates (37), one may verify that
consensus among the updated variables xt+1

i = x∗(ȳt ,λ̄t ) allows to preserve consensus
among the variables yt+1

i and λt+1
i . Therefore, for the arguments above, we conclude

that a suitable initialization y0
i = ȳ0, λ0

i = λ̄
0 for all i ∈ {1, . . . ,N} and some ȳ0, λ̄0 ∈ Rn

allows us to maintain the consensus conditions among the local variables for the whole
algorithm execution. In turn, such a suitable initialization allows the mechanisms (35)
and (37) to correctly mimic the centralized algorithm (33).

Among the possibilities, we choose the consensus initialization y0
i = λ0

i = 0 for
all i ∈ {1, . . . ,N} since it can be implemented in a fully distributed manner. Moreover, by
using a constant ε > 0, we include a mechanism to check that convergence of the inner
algorithm (35) has occurred.

Algorithm 1 Basic steps of DiSGT Algorithm

1: initialization y0
i = 0, λ0

i = 0,
2: for t = 0, 1, . . . do
3: initialization x0,t

i ∈ Rn, s0,t
i = ∇gi (x

0,t
i ,yt

i ,λ
t
i ), k ← 0

4: while
⃦⃦⃦
sk ,t
i

⃦⃦⃦
> ε do

5:

xk+1,t
i =

∑︂
j∈Ni

aijx
k ,t
j – γsk ,t

i (38)a

sk+1,t
i =

∑︂
j∈Ni

aijs
k ,t
j +∇gi (x

k+1,t
i ,yt

i ,λ
t
i ) –∇gi (x

k ,t
i ,yt

i ,λ
t
i ), (38)b

6: k ← k + 1
7: Set:

xt+1
i = xk+1,t

i (39)a

yt+1
i = arg min

y∈C
Lρ(xt+1

i ,y, λt
i ) (39)b

λ
t+1
i = λ

t
i + ρ(xt+1

i – yt+1
i ). (39)c
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3.4 COMPUTATIONAL EXPERIMENTS

In this section, we perform various numerical simulations to show the effective-
ness of Algorithm 1. First, we focus on a sparse classification problem with synthetic
data sets. Then, we consider a real-world data set to predict the stability properties of
electrical smart grids. All the numerical simulations are performed over a network of
agents communicating according to a communication graph that we randomly generate
setting the edge probability p = 20%. We performed all the experiments on a Linux
machine with an Intel Core i5 2.50 GHz processor, with four physical cores and 16 GB
of RAM. Algorithm 1 is entirely implemented in the Python 3.10 programming language
and relies on Numpy to carry out linear algebra operations.

3.4.1 Sparse Classification with Synthetic Data Sets

Sparse classification is a central problem in machine learning as it leads to
more interpretable models. Given the i-th node and local data {(x(ij), yij )}j=1,...,m with
yij ∈ {–1, 1} and x(ij) ∈ Rn distributed over a computational graph with N nodes, the goal
of distributed sparse classification is to compute an estimator (w, b) ∈ Rn × R which
minimizes a sum of local empirical loss functions ℓ1, . . . , ℓN satisfying a cardinality
constraint about the number of nonzero entries. Such a problem can be formalized as

min
w∈Rn,b∈R

N∑︂
i=1

m∑︂
j=1

ℓi

(︂
yij ,w

⊤x(ij) + b
)︂

subject to ∥w∥0 ≤ κ,

(40)

with κ ∈ N . The specific choice about the loss functions ℓi leads to different classifi-
cation models. In the next, we will see three different instances of problem (40). The
Distributed Sparse Logistic Regression (DSLR) model can be obtained by solving the
optimization problem defined as

min
w∈Rn,b∈R

N∑︂
i=1

m∑︂
j=1

log
(︂

1 + exp–yij (w⊤x(ij)+b)
)︂

subject to ∥w∥0 ≤ κ.

(41)

Similarly, Distributed Sparse 1-norm Support Vector Machine (DSSVM-1) is defined as

min
w∈Rn,b∈R

N∑︂
i=1

m∑︂
j=1

max
(︂

0,1 – yij (w
⊤x(ij) + b)

)︂
subject to ∥w∥0 ≤ κ.

(42)
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Figure 2 – Mean of the relative error and 1-standard deviation band obtained with 50
Monte Carlo trials.

Finally, Distributed Sparse 2-norm Support Vector Machine (DSSVM-2) is defined as

min
w∈Rn,b∈R

N∑︂
i=1

mi∑︂
j=1

max
(︂

0,1 – yij (w
⊤x(ij) + b)

)︂2

subject to ∥w∥0 ≤ κ.

(43)

In the next, we will provide numerical results obtained by testing Algorithm 1 over
instances of DSLR problem (41). In detail, we consider a network of N = 30 agents and,
for each agent, we generate random local data sets with zero mean and unit ℓ2 norm
for each column. The response vector yij is generated according to the logistic function
as follows

yij = round

(︄
1

1 + exp–(wTx(ij)+b)

)︄
. (44)

In the first scenario, we evaluate the convergence performance of the proposed algo-
rithm under different values of penalty parameter ρ. The main metric for the evaluation
is the relative error et

rel in the logarithmic scale defined as

et
rel = log

⃦⃦⃦
xt – x∗

⃦⃦⃦
∥x∗∥

,

where x∗ is the optimal solution computed through the centralized algorithm (33). Fig. 2
depicts the mean relative error for different values of the penalty parameter ρ which
is computed by performing 50 Monte Carlo trials that differ in the problem parameters
and datasets. In this scenario, we set n = 10 and κ = 3. Fig. 2 shows that the penalty
parameter considerably affects the convergence rate of the algorithm. In contrast to
the convex case, where an ℓ0 norm is approximated by ℓ1 norm, a sufficiently large
ρ is needed for the algorithm to converge. In the scenario depicted in Fig. 2, the best
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Figure 3 – Number of nonzero elements produced by Algorithm 1 with different penalty
parameters.

convergence result is given by ρ = 20. Fig. 3 illustrates the sparsity of xt produced by
the algorithm for different values of ρ and for a problem with n = 50 and κ = 7. As the
figure depicts, the desired convergence of

⃦⃦⃦
xt
⃦⃦⃦

0
to κ = 7 is achieved. In this experiment,

ρ = 9 leads to the best convergence results.

3.4.2 Smart Grid Stability Prediction

In this section, we test the proposed method in a real-world situation, namely
Algorithm 1 is used to solve a DSLR problem based on a smart grid stability data set.
Based on its features, the main goal is to predict whether or not an electrical smart
grid is stable or unstable and, thus, such a binary classification problem can be suitably
formulated into the DSLR framework.

Data is collected from the UCI Machine Learning Repository named as Electrical
Grid Stability Simulated Data and consists of 10000 observation points and 13 features.
The features consist of the reaction time of participants, elasticity of nominal power
consumed, and so on. For more details about the data set see (ARZAMASOV; BÖHM;
JOCHEM, 2018). As mentioned, the response vector consists of two classes, namely
stable and unstable. Before training the DSLR model we check the class balance
between stable and unstable classes. In particular, a balanced data set is a type of data
set where the distribution of labels across the data set is balanced, i.e. the distribution
is not biased or skewed. An imbalanced class may cause problems in the prediction
accuracy of the DSLR model because the majority class can dominate the minority
class and the classifier may only learn one concept instead of two distinct concepts. To
visualize the balance class, we count and plot the number of samples in each class of
the data set. The balance class is depicted in Figure 4. As the figure shows, the size
of the unstable category class is about 1.7 times the size of the stable class, which
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demonstrates that the class balance is acceptable.
The data set is split randomly into training and test, such that 70% of the data

points are considered for training the model and 30% of the samples are selected to
test and evaluate the prediction accuracy of the model. We train the DSLR model for
different values of κ and evaluate the prediction and training errors to select the true
κ for which the model has the best performance. Here we select the best model by
selecting the true number of nonzero variables, κ∗, and evaluating the training and the
prediction accuracy of the DSLR model over training and test data samples. In particular,
for each value of κ, we solve problem (41) and evaluate the model performance over
both training and test data. Fig. 5 shows the results of accuracy for the different values
of κ. According to the figure, the minimum value of κ which provides an acceptable
model performance over both training and test data is κ∗ = 9. In particular, there are
no advantages to using more than 9 features. In other words, the combination of 9
features out of 12 features can achieve acceptable performance for the model. In order
to evaluate the performance of the obtained model, we compare the DSLR model with
other classifiers such as Lasso logistic regression and sparse linear Support Vector
Machine (SVM). The SVM and the Lasso classifiers are tuned so that the same κ is
provided. The accuracy results are provided in Table 1. Here f-unstable and f-stable
are F1 Scores for both unstable and stable categories. The acc is the overall accuracy
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of the method and acu is the area under the Receiver Operating Characteristic (ROC)
curve. According to Table 1, the DSLR model outperforms the Lasso logistic regression
and the SVM classifiers. It can be noticed that the DSLR chooses a better combination
of features to improve its prediction accuracy.

Table 1 – Accuracy results

classifier κ∗ f-unstable f-stable acc auc

DSLR 9 0.88 0.74 0.83 0.80
Lasso 9 0.83 0.58 0.75 0.69
SVM 9 0.86 0.72 0.81 0.78

3.5 CONCLUSIONS

To summarize, the DISGT algorithm is a practical solution for the sparse op-
timization problem as it consists of computationally cheap steps and relies only on
exchanging information between neighboring nodes. However, there are some limita-
tions to the algorithm. One major drawback is that the convergence of the algorithm is
highly dependent on the penalty parameter ρ, which must be sufficiently large for the
algorithm to converge. If ρ is too small, the algorithm fails to converge, and finding an
appropriate value of ρ can be challenging in many cases. Additionally, the DISGT algo-
rithm cannot handle linear and/or nonlinear constraints other than sparsity constraints,
and the gradient tracking algorithm employed in DISGT relies on projections to satisfy
the constraints, which can be computationally expensive for complex sets. Given these
limitations, there is a need for more stable and easy-to-tune distributed optimization
algorithms that can be applied to a wide range of applications. To address these limi-
tations, the next chapters will explore the use of mixed-integer nonlinear programming
and distributed convex optimization frameworks. These approaches offer the potential
to overcome the limitations of DISGT and enable the development of more versatile and
efficient distributed optimization algorithms.
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4 RELAXED-HYBRID ALTERNATING DIRECTION METHOD OF MULTIPLIERS
ALGORITHM

This chapter addresses the solution of a distributed convex optimization prob-
lem with global coupling inequality constraints. The solution to this problem acts as
a numerical kernel to solve the distributed CCP problem. By using the Lagrangian
duality framework, the problem is transformed into a distributed consensus optimiza-
tion problem and then based on the Hybrid Alternating Direction Method of Multipliers
(H-ADMM), which merges distributed and centralized optimization concepts, a novel
distributed algorithm is developed. In particular, we offer a reformulation of the original
H-ADMM in an operator theoretical framework, which exploits the known relationship
between ADMM and Douglas-Rachford splitting. In addition, our formulation allows
us to generalize the H-ADMM by including a relaxation constant, not present in the
the original design of the algorithm. Moreover, an adaptive penalty parameter selec-
tion scheme that consistently improves the practical convergence properties of the
algorithm is proposed. Finally, the convergence results of the proposed algorithm are
discussed and moreover, in order to present the effectiveness and the major capabili-
ties of the proposed algorithm in off-line and on-line scenarios, Distributed Quadratic
Programming (DQP), and Distributed Model Predictive Control (DMPC) problems are
considered in the simulation section. This chapter is mainly written according to our
previously published paper (OLAMA et al., 2019).

4.1 INTRODUCTION

The solution of distributed optimization problems is becoming increasingly cen-
tral in many applications, such as control and power systems (NEDIĆ; LIU, 2018).
In particular, many problems of interest in these fields can be cast as the following
separable convex problem (BERTSEKAS, 2015):

(P) min
x

N∑︂
i=1

fi (xi )

subject to
N∑︂

i=1

cik (xi ) ≤ 0, k = 1,...,L

xi ∈ Xi ⊂ Rni , i = 1,...,N

where fi : Rni → R and cik : Rni → R are convex functions and Xi are closed convex
sets for all i = 1,...,N. The xi ∈ Rni are the optimization variables that need to be
computed and L is the number of inequality coupling constraints.

There are two different approaches to solve the problem (P): solving it directly,
for example employing the Augmented Lagrangian Methods (ALM) (HE; HOU; YUAN,
2015), Alternating Direction Method of Multipliers (ADMM) (CHANG, X. et al., 2018),
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Interior Point (IP) (NECOARA; SUYKENS, 2009) or Proximal Point Algorithms (PPA)
(BAI, J.; ZHANG, H.; LI, J., 2018); or using the Lagrangian duality framework (BERT-
SEKAS, 2015). Here we employ this second approach, which is briefly discussed in the
following.

Let λλλ ∈ RL be the Lagrange multiplier associated with the inequality coupling
constraint of (P). Then the Lagrangian function for problem (P) is defined as

L(x,λλλ) =
N∑︂

i=1

(fi (xi ) + ⟨λλλ,ci (xi )⟩) (46)

where x = [x1,...,xN ]T and ci (xi ) = [ci1(xi ),...,ciL(xi )]
⊤. Accordingly, the dual problem

can be expressed as follows:

max
λλλ≥0

min
x∈X
L(x,λλλ) ≡ max

λλλ≥0
– max
x∈X

–L(x,λλλ) ≡ min
λλλ≥0

max
x∈X

–L(x,λλλ) (47)

where X = X1 × · · · × XN . Therefore, the dual problem (D) is obtained as the following
convex problem:

min
λλλ≥0

N∑︂
i=1

qi (λλλ).

where,

qi (λλλ) = max
xi∈Xi

– (fi (xi ) + ⟨λλλ, ci (xi )⟩) (48)

The problem (D) is a separable problem in which each agent has the necessary in-
formation to compute qi (λλλ). The dual problem (D) requires to minimize the sum of N
convex functions in the unknown λλλ, and thus in order to exploit this separable structure,
this problem can be reformulated as a consensus optimization problem. In particular,
we introduce the local copies λλλi , i = 1, . . . , N, of the variable λλλ, and thus we can rewrite
problem (D) as:

(D) min
λλλi≥0

N∑︂
i=1

qi (λλλi )

subject to λλλ1 = λλλ2 = · · · = λλλN

where the constraint imposes the consistency of the local λλλi ’s. In this chapter, we seek
for the solution of (P) by solving the problem (D) using the proposed consensus opti-
mization algorithm named Relaxed Hybrid Alternating Direction Method of Multipliers
(RH-ADMM).

4.1.1 Literature Review

Consensus optimization problems arise in many engineering applications. Some
examples include Machine Learning (BOYD, S. et al., 2011; SLAVAKIS; GIANNAKIS,
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Georgios B; MATEOS, 2014), Smart Grids (DALL’ANESE; SIMONETTO, 2018; BOLOG-
NANI; CARLI; TODESCATO, 2014; YILDIRIM et al., 2017), Wireless Sensor Networks
(LEWIS, 2004; CARRON et al., 2014), Economic Power Dispatching (WANG, R. et al.,
2018) and Distributed Model Predictive Control (DMPC) (WANG, Z.; ONG, C. J., 2017).
During the past decades, various distributed numerical algorithms were proposed to
solve the consensus optimization problem (FARINA et al., 2019; CHANG, T.-H., 2016;
NOTARNICOLA et al., 2017; CHEN; YANG, Q., 2019; XIE et al., 2018). For instance,
(FARINA et al., 2019) presented a fully asynchronous and distributed approach for
dealing with the consensus optimization problems in which both the objective function
and the constraints may be non-convex. Proximal dual consensus ADMM method pro-
posed in (CHANG, T.-H., 2016) where the polyhedron constraints are transformed as
quadratic penalty terms in the local problems, rendering the local problems efficiently
solvable and consequently reducing the overall computational overhead of the agents.
The ADMM, first proposed in (GLOWINSKI; MARROCO, 1975; GABAY; MERCIER,
1975), is among the most widely used and efficient algorithms for solving this class
of distributed problems. As the name suggests, this algorithm is characterized by the
alternating solution of two optimization sub-problems, and an update of the Lagrange
multipliers. This division of the computational burden in two distinct steps makes the
ADMM a computationally efficient algorithm, particularly when applied in distributed sce-
narios characterized by agents with reduced capabilities. For a comprehensive study
of this algorithm we refer to (BOYD, S. et al., 2011) and (ECKSTEIN; YAO, 2015).

There are two classes of ADMM variants that have been proposed to solve the
dual problem (D), which can be distinguished by the underlying communication network.
A first category that hereafter will be referred to as master-slave is characterized by the
presence of a fusion center (FC – the master) and a set of N nodes (the slaves). The
nodes perform local minimization of the assigned cost functions qi ’s, sending the results
to the FC, which collates (averages) them, and then sends the result to all the nodes.
ADMM variants based on a master-slave architecture have been proposed for example
in (ZHANG, R.; KWOK, 2014; HONG, 2017). This choice of communication network
ensures a faster convergence rate, at the cost, however, of introducing a single point of
failure (the FC). Moreover, in many applications, it might be impractical to implement
such a network.

A different architecture that can be chosen is the fully distributed one, in which
the nodes collaborate only with their neighbors (i.e., other nodes to which they are con-
nected) without a global supervisor. In this framework, the nodes perform local computa-
tions and then share the results with their neighbors, which in turn send theirs, and each
node then collates the information that it has received. Alongside the above mentioned
(BOYD, S. et al., 2011), other implementations of a fully decentralized ADMM have
been proposed for instance in (MOTA et al., 2013; WEI; OZDAGLAR, 2013; IUTZELER
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et al., 2016; PENG et al., 2016).
Recently, a new formulation of the ADMM has been proposed in (MA, M.; NIKO-

LAKOPOULOS; GIANNAKIS, Georgios B., 2018), called the Hybrid ADMM (H-ADMM).
In particular, the algorithm introduces local fusion centers (LFC), that are tasked – much
as the master in the master-slave architecture – with collating the local information of a
subset of the agents collaborating to the solution of the problem. Differently from a fully
centralized architecture, however, employing local fusion centers makes it possible to
retain to a certain degree the flexibility of distributed algorithms, while at the same time
accelerating the convergence rate.

Different parameter selection schemes have been proposed in the literature
with the aim of accelerating, in practice, the convergence rate of the ADMM. For the
centralized ADMM, parameter selections schemes have been proposed for example in
(GHADIMI et al., 2015; GISELSSON; BOYD, S., 2017; XU et al., 2017a). However, these
methods cannot be implemented in a distributed fashion, since information from the
whole network would be required. Parameter selection algorithms specially designed for
decentralized scenarios have been proposed in (SONG, C.; YOON; PAVLOVIC, 2016)
for tuning the penalty parameter that characterizes the ADMM, and (XU et al., 2017b)
for the step-size.

Finally, a well-known result is the equivalence of the ADMM to the Douglas-
Rachford splitting (DRS) applied to the dual of the problem at hand (PENG et al.,
2016).

4.1.2 Contributions

In this work, we will exploit that result to propose a different and more efficient
formulation of the hybrid ADMM based on operator theory. For a survey on operator
theory we refer the reader to (RYU; BOYD, S., 2016) and the comprehensive book
(BAUSCHKE; COMBETTES, 2017), while the link between ADMM and DRS is high-
lighted for example in (PENG et al., 2016) and (DAVIS; YIN, 2017). The idea for using
operator theory to solve convex optimization problems is to define a suitable operator or
mapping T such that its fixed points, i.e. the points such that x̄ = Tx̄ , are the solutions
to the original problem. Therefore applying very powerful and widely studied fixed-point
algorithms we can solve the optimization problem. The aim of this chapter is to propose
an efficient, decentralized algorithm for solving the problem (P) based on H-ADMM. The
contribution of this work is two-fold.

1. First, we use operator theory to develop a generalized version of the H-ADMM
algorithm, namely the Relaxed H-ADMM algorithm, that we show to have
better practical convergence rates than H-ADMM in a host of representative
numerical problems, by suitably tuning the relaxation parameter α.

2. Second, a generalization of the adaptive selection strategy (SONG, C.; YOON;
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PAVLOVIC, 2016) for the penalty parameter ρ of the centralized ADMM to
work in a fully decentralized manner. In this context, each agent can compute
its penalty parameter based solely on local information, and in particular on
the primal and dual residuals the local problem.

4.2 BACKGROUND

4.2.1 Original H-ADMM

In this section, the basics of H-ADMM proposed in (MA, M.; NIKOLAKOPOULOS;
GIANNAKIS, Georgios B., 2018) are discussed. Consider an undirected and connected
graph G = (V,E), with V = {1, . . . ,N} being the set of nodes and E , the set of edges.
In particular, the original H-ADMM algorithm was used to solve the following convex
optimization problem, which is a particular form of dual problem (D) without the non-
negativity constraint on the decision variable γγγ

min
γγγ

N∑︂
i=1

hi (γγγ) (49)

where hi : Rn → R∪ {+∞} are CCP functions, each available only to the corresponding
node i . In the literature two main approaches have been employed to solve this class of
optimization problems. The first is the centralized approach1 in which a fusion center
(FC) collects and collates information computed by the nodes using the local information
hi . Formally, this approach modifies (49) into problem

min
γγγi , i∈V

N∑︂
i=1

hi (γγγi ) (50)

s.t. z = γγγi ∀i ∈ V (51)

where γγγi is a local copy of γγγ stored and updated by node i , and z is the variable,
computed by the FC, that collates the information sent from all nodes. In particular,
according to (49), each agent has enough information to construct its corresponding
function hi . However, the variable γγγ is shared between all agents which prevents the
problems from being solved in a fully decentralized fashion. Therefore we introduce
the auxiliary variable z, and a local copy of γγγi is assigned to the i-th agent. By this
reformulation, after termination of the algorithm, all γγγi variables will reach the same
value, which is the solution of the problem (49).
The second is the fully distributed approach, in which the nodes solve the problem using
local information and information received from the neighboring nodes. Fully distributed
algorithms usually apply a consensus procedure to ensure that all nodes converge
1 Sometimes referred to as master-slave.
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to the same solution. In particular, the problem (49) is reformulated as a consensus
optimization problem

min
γγγi i∈V

N∑︂
i=1

hi (γγγi ) (52)

s.t. γγγi = γγγj ∀(i ,j) ∈ E , (53)

where only node-to-node constraints are enforced.
A third way has been very recently proposed in (MA, M.; NIKOLAKOPOULOS;

GIANNAKIS, Georgios B., 2018), which merges the centralized and distributed ap-
proaches in a new framework called hybrid distributed optimization. The main idea is to
introduce a set of M local fusion centers (LFC), each of which connects only a subset
of the N nodes and has the task of collating the information computed by these nodes
only.

In order to formalize the hybrid consensus approach, let us define the hypergraph
H = (V,Ē) which has the same set of nodes as G but instead of the set of edges E has
a set of hyperedges Ē = {Ē j }Mj=1 each containing a subset of V.

The problem (49) then becomes

min
γγγi , i∈V

N∑︂
i=1

hi (γγγi )

s.t. yj = γγγi , ∀i ∈ Ē j , Ē j ∈ Ē

(54)

where yj is the variable updated by the j-th LFC.

Remark 5. Clearly, the centralized approach is a particular case of hybrid consensus in
which a single hyperedge containing all nodes is present, while the distributed approach
is characterized by one hyperedge for each edge.

4.3 RELAXED HYBRID ADMM ALGORITHM

By making use of operator theory, we propose the RH-ADMM algorithm for solving
the dual problem (D). Based on the LFC framework, the dual problem (D) can be recast
as

min
N∑︂

i=1

qi (λλλi )

s.t. λλλi ≥ 0

λλλi = yj , ∀i ∈ Ej , ∀Ej ∈ E .

(55)
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Requiring that λλλi ≥ 0 is equivalent to requiring that λλλi lies in the cone Rn
+. Therefore,

the problem (55) is equivalent to

min
N∑︂

i=1

qi (λλλ) + ιRn
+
(λλλ)

λλλi = yj ,∀i ∈ Ej , ∀Ej ∈ E

(56)

and the indicator function ιRn
+
(λλλ) is 0 if λλλ ≥ 0, and +∞ otherwise. Letting Te be the

number of equality (consistency) constraints and recalling that L is the number of
inequality constraints, we define λλλe = [λλλ1 · · ·λλλN ]⊤ ∈ RNL, y = [y1 · · ·yM ]⊤ ∈ RML, and∑︁N

i=1 qi (λλλi ) = q(λλλ) , and then the consensus problem (56) can be reformulated as

min
λλλe,y

q(λλλe) + ιRn
+
(y)

s.t. Aλλλe + By = 0
(57)

for suitable matrices A ∈ RTe×NL and B ∈ RTe×ML. Notice that the t-th rows of A and
B relative to constraint λλλi = yj are, respectively,

[A]t = [0 · · · · · · 0⏞ ⏟⏟ ⏞
i–1 times

–1 0 · · · · · · 0⏞ ⏟⏟ ⏞
N–i times

]

[B]t = [ 0 · · · 0⏞ ⏟⏟ ⏞
j–1 times

1 0 · · · 0⏞ ⏟⏟ ⏞
M–j times

]
(58)

The goal is now to employ the Krasnosel’skiı̆-Mann iteration and the DR operator to
reformulate this problem as a fixed-point problem. In particular, we consider the Fenchel
dual of problem (57) which is defined as

min
w

dq(w) + dg(w) (59)

where w is the vector of dual variables and

dq(w) = q∗(A⊤w)

dg(w) = ι
∗
Rn

+
(B⊤w)

Notice that the primal problem is convex with linear constraints and hence satisfies
Slater’s conditions for strong duality. In order to solve the dual problem (59), let us recall
the Douglas-Rachford operator, which is defined as follows.

Definition 20 (Douglas-Rachford (DR) Operator). The DR operator is defined as

TDR = reflρdq
◦ reflρdg

, (60)

which is non-expansive.
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Clearly, the dual problem is unconstrained and depends on a single variable,
therefore we can define the DR operator for problem (59) and apply the Krasnosel’skiı̆-
Mann iteration to find its fixed points

z(k + 1) = (1 – α)z(k ) + α reflρdq
(reflρdg

(z(k ))). (61)

The optimum of the problem (59) can be derived from the fixed points of the DR oper-
ator through the proximal operator proxρdq

. By substituting the definition of reflective
operator (61), we obtain,

z(k + 1) = z(k ) + 2α(ζζζ –ψψψ) (62)

where

ψψψ = proxρdg
(z(k )) (63)

ζζζ = proxρdq
(2 proxρdg

(z(k )) – z(k ) = proxρdq
(2ψψψ – z(k )) (64)

Remark 6. By choosing the relaxation parameter α = 0.5, the fixed-point iterations
(62)-(64) yield the well-known Douglas-Rachford (DR) splitting algorithm (PENG et al.,
2016), which in turn correspond to the H-ADMM when applied to the dual of problem
(59). However, we show that, in practice, the possibility of choosing α in the interval
(0,1) can yield better convergence rates.

Remark 7. The RH-ADMM algorithm can be applied to any general distributed problem in
the form (49), but in this chapter we are interested in solving distributed problems with
coupling constraints employing the dual framework.

The following proposition presents the derivation of the RH-ADMM based on the
fixed-point iterations (62)-(64).

Proposition 9. The general form of RH-ADMM algorithm based on the fixed-point itera-
tions (62)-(64) is represented by the following iterations

y(k ) = arg min
y

{︂
g(y) – ⟨B⊤z(k ),y⟩ +

ρ

2
∥By∥2

}︂
(65)

ψψψ(k ) = z(k ) – ρBy(k ) (66)

λλλe(k ) = arg min
λλλe

{︂
q(λλλe) – ⟨2ψψψ(k ) – z(k ),Aλλλe⟩ +

ρ

2
∥Aλλλe∥2

}︂
(67)

ξξξ(k ) = 2ψψψ(k ) – z(k ) – ρAλλλe(k ) (68)

z(k + 1) = z(k ) + 2α(ξξξ(k ) –ψψψ(k )). (69)
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Proof. Consider the equation (63), by the definition of proximal operator and of the dual
function dg , it is necessary to find the argument of the following minimization problem

min
s

{︃
dg(s) +

1
2ρ
∥s – z∥22

}︃
=

min
s

{︃
max
u

{︂
sT Bu – g(u)

}︂
+

1
2ρ
∥s – z∥22

}︃
=

max
u

{︃
min
s

{︃
sTBu +

1
2ρ
∥s – z∥22

}︃
– g(u)

}︃
(70)

By imposing the first-order optimality condition (BERTSEKAS, 2015), the solution of
the inner minimization problem is obtained as s∗ = z – ρBu and hence,

min
s

{︃
sTBu +

1
2ρ
∥s – z∥22

}︃
= zTBu –

ρ

2
∥Bu∥22 (71)

Therefore,

max
u

{︃
min
s

{︃
sTBu +

1
2ρ
∥s – z∥22

}︃
– g(u)

}︃
= – min

u

{︂
g(u) – zTBu +

ρ

2
∥Bu∥22

}︂
(72)

This problem can now be solved applying the method of multipliers (BOYD, S. et al.,
2011) which gives the desired result

y(k ) = arg min
y

{︂
g(y) – ⟨B⊤z(k ),y⟩ +

ρ

2
∥By∥2

}︂
(73)

ψψψ(k ) = z(k ) – ρBy(k ), (74)

and that proves (65) and (66). The same procedure can be applied for equations (67)
and (68).

We exploit now the particular structure of the problem at hand to simplify the up-
date equations that characterize the RH-ADMM algorithm. First of all, using the definition
of indicator function we see that equation (65) can be equivalently written as

y(k ) = arg min
y≥0

{︂
–⟨B⊤z(k ),y⟩ +

ρ

2
∥By∥2

}︂
(75)

which has the following solution

y(k ) =
1
ρ

max
{︂
E–1B⊤z(k ), 0

}︂
(76)

where the fact that
B⊤B = diag{ej } =: E

was used, and ej is the cardinality of j-th hyperedge. It should be noted that the max is
taken component-wise. As a consequence, from (66) it holds

ψψψ(k ) =
(︂

ITe
– max

{︂
E–1B⊤z(k ), 0

}︂)︂
z(k ) (77)
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and from (68)

xixixi (k ) =
(︂

ITe
– 2 max

{︂
E–1B⊤z(k ), 0

}︂)︂
z(k ) – ρAλλλe(k ). (78)

Moreover, it follows from (69) that

z(k + 1) =
(︂
I – 2αmax

{︂
E–1B⊤z(k ), 0

}︂)︂
z(k ) – 2αρAλλλe(k ). (79)

Notice that (79) depends only on the vectors z and λλλ at time k . We assume that the
constraints are ordered according to the index of the corresponding hyperedges, that is,
first those of E1, then E2 up to EM . In this case, the matrix B has the following structure

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
...

...
...

...
1 0 · · · 0

...

0 0 · · · 1
...

...
...

...
0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (80)

Therefore, it is possible to see that

BE–1B⊤ = diag

{︄
1
ej

1ej

⃓⃓⃓
j = 1, . . . ,M

}︄
(81)

where ej = |Ej |. Using the definitions of B and E, it follows that

ψψψ(k ) = z(k ) –

⎡⎢⎢⎢⎣
...

max
{︂

1
ej

max
{︂∑︁

l∈Ej
zj ,l (k ), 0

}︂
, 0
}︂

...

⎤⎥⎥⎥⎦ . (82)

Using the results above we have that the row of 2ψψψ(k) – z(k) relative to the constraint
between hyperedge j and node i is given by

[︁
2ψψψ(k ) – z(k )

]︁
j ,i = zj ,i (k ) –

2
ej

max

⎧⎨⎩∑︂
l∈Ej

zj ,l (k ), 0

⎫⎬⎭ (83)

where the notation zj ,i indicates first the hyperedge’s index and then the node’s index.
Consider now (67), using the definition of q we can rewrite it as

λλλe(k ) = arg min
λλλe

⎧⎨⎩
N∑︂

i=1

qi (λλλi ) – ⟨2ψψψ(k ) – z(k ),Aλλλe⟩ +
ρ

2

N∑︂
i=1

di ∥λλλi∥
2

⎫⎬⎭ (84)
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where the fact that
A⊤A = diag{di } =: D

was used. Moreover, it is clear that the element of Aλλλe corresponding to the j ,i-th
constraint is –λλλi , therefore it is possible to derive

(2ψψψ(k ) – z(k ))⊤Aλλλe = –
N∑︂

i=1

∑︂
j∈E s.t. i∈Ej

⎛⎝zj ,i (k ) –
2
ej

max

⎧⎨⎩∑︂
l∈Ej

zj ,l (k ), 0

⎫⎬⎭
⎞⎠⊤ λλλi . (85)

Then, clearly (84) is a separable minimization problem, and the primal variable of each
node can be computed as follows:

λλλi (k ) = arg min
λλλi

{︄
qi (λλλi ) +

ρdi
2
∥λλλi∥

2 +

+
∑︂

j∈E s.t. i∈Ej

⎛⎝zj ,i (k ) –
2
ej

max

⎧⎨⎩∑︂
l∈Ej

zj ,l (k ), 0

⎫⎬⎭
⎞⎠⊤ λλλe

}︄
. (86)

Note that update (86) depends on information that the node receives from all the
hyperedges it is connected to. In particular, it needs to receive the sum of all the
auxiliary variables of the hyperedge, and separately also the variable zj ,i . According to
definition of qi , the minimization problem (86) can be stated as finding the optimal point
of the following problem:

min
λλλi

max
xi∈Xi

φ(xi ,λλλi ) (87)

where,

φ(xi ,λλλi ) =

{︄
– (fi (xi ) + ⟨λ, cik (xi )⟩) +

ρdi
2
∥λλλi∥

2

+
∑︂

j∈E s.t. i∈Ej

⎛⎝zj ,i (k ) –
2
ej

max

⎧⎨⎩∑︂
l∈Ej

zj ,l (k ), 0

⎫⎬⎭
⎞⎠⊤ λλλi

}︄
.

Since, φ(xi ,λλλe) has a saddle point, (87) can be rewritten as follows:

min
λλλi

max
xi∈Xi

φ(xi ,λλλi ) = max
xi∈Xi

min
λλλi

φ(xi ,λλλi ) (88)

The inner minimization problem is a convex unconstrained problem, whose minimum
can easily be obtained as follows:

λλλi (k + 1) =
1
ρdi

⎛⎝c(xi ) –
∑︂

j∈E , s.t. i∈Ej

⎛⎝zj ,i (k ) –
2
ej

max

⎧⎨⎩∑︂
l∈Ej

zj ,l (k ), 0

⎫⎬⎭
⎞⎠⎞⎠ . (89)
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By substituting λλλi (k + 1) into φ(xi ,λλλi ), a local convex programming problem (L) with
respect to xi is obtained as

(L) min
xi

– φ(xi ,λλλi (k + 1))

subject to xi ∈ Xi ,

which can be solved easily using standard convex optimization algorithms. In the case
of some particular applications such as MPC, usually, this problem can be stated as
a boxed constrained concave Quadratic Programming (QP) problem, which can be
solved explicitly using the projection methods (BERTSEKAS, 2015). Finally, the auxiliary
variable relative to the j ,i-th constraint can be updated using

zj ,i (k + 1) = zj ,i (k ) –
2α
ej

max

⎧⎨⎩∑︂
l∈Ej

zj ,l (k ), 0

⎫⎬⎭ + 2αρλλλi (k ) (90)

which the j-th LFC can compute with local information – the other zj ,l variables – and
the state λλλ that it receives from the i-th node. Therefore the RH-ADMM for consensus
optimization is fully characterized by the two update equations (89) and (90). The
iteration (89), is performed by each node, and (90), is performed by each LFC. Moreover,
the following theorem presents the convergence result of the proposed algorithm:

Theorem 2. The proposed RH-ADMM converges to the solution of problem (D) for any
choice of α ∈ (0,1) and ρ > 0, such that

∥λλλ(k ) – λλλ
∗∥ → 0

as k →∞ where λλλ∗ is the optimal solution of the problem.

Proof. According to (61) and Theorem 1, it can be noticed that the fixed-point iteration
strongly converges,to the fixed point of the DR operator in the sense of Definition 16
as it is the average of a non-expansive operator. Since q is CCP, then so is its convex
conjugate (BAUSCHKE; COMBETTES, 2017); therefore the DR applied to the dual of
the problem (P) converges (BAUSCHKE; COMBETTES, 2017). Since Slater’s condition
holds then there is strong duality and the optimal solution to the primal is reached.

Remark 8. Theorem 2 states that the proposed RH-ADMM algorithm converges to the
optimal point of the problem (D) for any ρ > 0 and α ∈ (0,1). However, the rate of con-
vergence depends on the structure of the objective functions. For instance, in the case
of strong convexity and strong smoothness of the local objective functions, the RH-ADMM

algorithm can converge linearly (WEI; OZDAGLAR, 2013; MA, M.; NIKOLAKOPOU-
LOS; GIANNAKIS, Georgios B., 2018). Moreover, it is worth mentioning that making
these assumptions for the local objective function qi is relatively restrictive as the dual
objective functions of the local problems cannot be convex in most cases.
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4.3.1 Adaptive Penalty Parameter Selection

In the current section we present an adaptive penalty parameter selection scheme,
based on (SONG, C.; YOON; PAVLOVIC, 2016). First of all, we define the primal and
dual residuals of the H-ADMM as

r(k ) = Aλλλe(k ) + By(k ) (91)

s(k ) = ρA⊤B(y(k ) – y(k – 1)) (92)

which will be used to select the penalty parameter for the next iteration. Recalling that
y(k ) = E–1B⊤z(k )/ρ, it is possible to compute the i-th coordinate of s as

si (k ) = –
∑︂

j∈E , s.t. i∈Ej

⎛⎝ 1
ej

∑︂
l∈Ej

(︂
zj ,l (k ) – zj ,l (k – 1)

)︂⎞⎠ . (93)

On the other hand r ∈ RLTe and the t-th block of coordinates can be written as

rt (k ) = –λλλi (k ) +
1
ρej

max

⎧⎨⎩∑︂
l∈Ej

zj ,l (k ), 0

⎫⎬⎭ .

Consider then all the coordinates of r that depend on λλλi , stacking them up gives

ri (k ) = –I|Ni |λλλi (k ) +
1
ρ

⎡⎢⎢⎢⎢⎢⎣
...

1
ej

max

{︄∑︁
l∈Ej

zj ,l (k ), 0

}︄
...

⎤⎥⎥⎥⎥⎥⎦ (94)

with Ni = {j ∈ E s.t. i ∈ Ej }. The penalty selection is now carried out by each node with
the following criterion (proposed in (SONG, C.; YOON; PAVLOVIC, 2016))

ρi (k + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρi (k )(1 + τ(k )) IF ∥ri (k )∥ > μ ∥si (k )∥

ρi (k )(1 + τ(k ))–1 IF ∥si (k )∥ > μ ∥ri (k )∥

ρi (k ) otherwise,

(95)

with μ > 0 and τ(k) > 0 for each k ∈ N and
∑︁

k τ(k) < ∞. This last condition is for
instance satisfied if the penalty selection is applied only for a finite number of iterations,
in which case the algorithm still converges with the usual properties after a transitory
period (BOYD, S. et al., 2011).

Notice that i receives from the LFCs the quantities

(1/ej ) max

⎧⎨⎩∑︂
l∈Ej

zj ,l (k ), 0

⎫⎬⎭ ,
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hence it has all the necessary information to compute the residuals. Moreover, the LFC
need the quantity ρλλλ(k) to update the corresponding zj ,i variable, so it is sufficient to
send ρi (k )λλλ(k ) (instead of only λλλ(k )) to each of the LFC connected to i to communicate
the penalty selected as well as the updated local state. The final RH-ADMM algorithm
along with the adaptive step-size scheme is provided in Algorithm 2. Clearly, the nodes

Algorithm 2 Basic steps of RH-ADMM Algorithm
1: Specify accepted optimality tolerances εp and εd.
2: Input:α, τ, μ, ρi (0), zi ,j (0), yi (0)
3: Output: Optimal solution x∗i , i = 1,...N
4: while ∥si∥ ≤ εd and ∥ri∥ ≤ εrhadmm do
5: Compute ρi according to (95)
6: Update λλλi according to (89)
7: Update xi by solving problem (L)
8: Update zi ,j according to (90)

return x∗i , i = 1,...,N

need only information from the LFCs they are connected to, while the LFC receive and
aggregate the information from the nodes in their corresponding hyperedge only.

4.4 NUMERICAL EXPERIMENTS

In what follows, the proposed RH-ADMM is tested on the well-known Distributed
Quadratic Programming (DQP) problem. In the first example, the practical convergence
of the algorithm with respect to different relaxation and penalty parameters (namely α

and ρ) is evaluated and, in the second example, the algorithm capabilities for solving
dynamic optimization problems is investigated. The RH-ADMM algorithm has been imple-
mented in SCOT software framework and the parallel computation is done by means of
a message passage interface.

4.4.1 Distributed Quadratic Programming

The convergence rate of the proposed algorithm is evaluated in an applica-
tion to Distributed Quadratic Programming (DQP) in the same form of problem (D),
and then compared with the Distributed Gradient Descent Method (DGDM) (NEDIĆ;
OLSHEVSKY, 2015) and the original H-ADMM (MA, M.; NIKOLAKOPOULOS; GIAN-
NAKIS, Georgios B., 2018). In this problem, a ring graph with N = 100 nodes is consid-
ered. The local problems includes 50 decision variables. It is worth mentioning that all
of the parameters of DGDM and the original H-ADMM algorithm are selected according
to the indications included in the respective references. Moreover, the effectiveness of
the proposed algorithm under different values of the tuning parameters, such as ρ, α
and M, is discussed. The metric for the evaluation of the proposed algorithms is the
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Figure 6 – Relative error results for different α (fixed ρ).

relative error. The relative error in the logarithmic scale at k -th iteration is defined as

log

N∑︁
i=1
∥λλλ(k ) – λ∗∥
√

N ∥λλλ∗∥
. (96)

The convergence results are depicted in Figures 6-9. Figures 6 and 7 depict the
relative error for different values of the relaxation parameter α, with a fixed penalty and
an adaptive penalty selection scheme, respectively. For the adaptive penalty, the initial
value is equal to ρ0 = 1. As the figures show, in both cases, tuning the parameter α can
improve the speed of convergence of the algorithm.

Recalling that α = 0.5 characterizes the H-ADMM, we can see that for values
α > 0.5 the RH-ADMM obtains better performances than the H-ADMM, hence justifying
the use of the slightly more complex RH-ADMM. Moreover, the RH-ADMM with values
of α > 0.5 outperforms the DGDM, while the H-ADMM not always does. It is worth
mentioning since both primal and dual residuals tend to zero after some iteration, the
adaptive penalty scheme converges. Figure 8 shows the performance of the proposed
algorithm for different values of the fixed penalty parameter ρ, and with relaxation
parameter α = 0.9. As can be seen, the penalty parameter can considerably affect the
convergence rate of the algorithm and this fact is indeed exploited when we apply the
adaptive penalty selection. As depicted in the figure, the best result is given by ρ = 2,
which is very close to the value of 1.5 to which ρ(k ) in the adaptive scheme converges.

Finally, we evaluate how the number of LFCs, M, affects the convergence of
the proposed algorithm. Figure 9 depicts the relative error for different values of M,
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and it is clear that the best performance is obtained by a centralized architecture – as
observed also in (WEI; OZDAGLAR, 2013). However, we need to keep in mind that
a larger number of LFCs guarantees better resilience of the network by removing the
single central point of failure. Therefore there is a trade-off between the convergence
rate and the resilience of the agents’ network.

4.4.2 Distributed Model Predictive Control (DMPC) With Coupling Inequality Con-
straints

The implementation of the RH-ADMM algorithm and its application to DMPC
problems is discussed below. In the context of distributed MPC, one interesting problem
is to compute the control when the agents are dynamically coupled. Most of distributed
MPC approaches are developed for this type of problems. However, these distributed
strategies are not suitable when the coupling arises from the constraints. To the best
of our knowledge, DMPC algorithms for the distributed problems with global inequal-
ity constraints are somewhat limited (SCHERER, H. et al., 2015; CAMPONOGARA;
SCHERER, H. F., 2011). Therefore, it seems to be crucial to develop efficient and reli-
able fully decentralized algorithms to deal with such a complex problem. Following by
this explanation, in this section, the RH-ADMM algorithm is implemented and tested
to solve DMPC problems with coupling inequality constraints. In order to do this, the
proposed RH-ADMM algorithm was implemented for a multi-tank benchmark problem
to show the effectiveness of the RH-ADMM algorithm for a dynamic implementation.
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Consider the problem of controlling N discrete-time Linear Time-Invariant (LTI)
systems using the Model Predictive Control (MPC). Hereafter we refer to this problem as
the Distributed MPC (DMPC). The dynamic of each system is defined as the following
state-space equations

xi (t + 1) = Aixi (t) + Biui (t) (97)

xi (t) ∈ Xi , ui (t) ∈ Ui (98)

where, xi (t) ∈ Rn
i and ui (t)∈Rm

i are the vectors of states and inputs, respectively.
Xi and Ui are suitable polytopes which define local constraints of each system. The
systems have to collectively satisfy the coupled constraint

N∑︂
i=1

Hixi (t) + Giui (t) ≤ b (99)

with matrices Hi and Gi of suitable dimensions. Accordingly, the DMPC problem is
defined as the following separable convex optimization problem.

min
Ui

N∑︂
i=1

Ji (xi (t),Ui ) (100)

subject to
N∑︂

i=1

Hix
j
i + Giu

j
i ≤ b, ∀j = 0,1...,T – 1 (101)

Ui ∈ Ki . (102)

Ji (xi (t),Ui ) are the local cost functions of each agent and defined as

Ji (xi (t),Ui ) =
T∑︂

j=1

⃦⃦⃦
x

j
i – x̄i

⃦⃦⃦2

Qi
+
⃦⃦⃦
u

j
i – ūi

⃦⃦⃦2

Ri
(103)

and x
j
i and u

j
i are the states and inputs of agent i predicted j steps from t , respectively.

x̄i and ūi are the desired values of states and inputs of the i-th agent. The parameter
T is the prediction horizon, and Qi and Ri are suitable positive definite matrices, which
define the local cost function. Ui is the vector of predicted inputs along the prediction
horizon. Finally, the convex set Ki includes the local constraints, and is defined as

Ki =
{︂
Ui |xj+1

i = Aix
j
i + Biu

j
i x

j
i ∈ Xi , u

j
i ∈ Ui

}︂
. (104)

The defined DMPC problem can be considered as a particular form of problem (P)
with a linear coupling constraint and quadratic objective function. In particular, we are
interested in controlling the multi-tank system depicted in Figure 10. As depicted in
Figure 10, qi is the input flow and hi

1 and hi
2 are the water levels for system i , which are
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Figure 10 – The multi-tank system (WANG, Z.; ONG, C.-J., 2018).

considered as the states of the system. Accordingly, the system dynamics are obtained
as follows:

xi (t + 1) =

(︄
0.8750 0.1250
0.1250 0.8047

)︄
xi (t) +

(︄
0.3
0

)︄
ui (t) (105)

Xi =
{︂
xi ∈ R2| 0 ≤ x1

i ≤ 2, 0 ≤ x2
i ≤ 1.28

}︂
(106)

Ui =
{︂

ui ∈ R1| 0 ≤ ui ≤ 0.6
}︂

(107)

The control objective is to regulate the liquid of each tank to the global time-varying
desired given reference while satisfying the global coupling constraint on the total input
flow rate, which is defined as

∑︁N
i=1 qi ≤ 8.5. The system was run for 500 seconds

and the corresponding optimization problem was solved with the RH-ADMM. In order
to assess the RH-ADMM algorithm on the dynamic and real-time implementation, the
worst-execution time is measured with respect to prediction horizon T , for different
values of the relaxation parameter α and applying the adaptive penalty parameter
selection strategy. Moreover, the results were compared with the original H-ADMM.

The results are depicted in Figure 11. As it can be seen in the figure and ex-
plained in the last section, increasing the relaxation parameter α to its maximum value
will improve the convergence time of the RH-ADMM algorithm. It is worth mentioning
that it will be relatively simple to tune the RH-ADMM algorithm for any problem at hand.
The simulation results of the closed-loop system have been provided in Figures 12-13.
Fig. 12 depicts the tanks levels. As it can be seen in the figure, the levels of all tanks
are successfully regulated on the desired value. The input flows of all tanks and the
total input flow are shown in Figure 13. Notice that the constraint on the total input flow
is satisfied by the solution that the RH-ADMM computes.

4.4.3 Economic Power Dispatching Problem

The IEEE 118 Bus System has 54 generator units and total power demand equal
to 4600 MW (XIA et al., 2018). Each generator has a cost function, which is denoted
by gi (pi ), where pi is the output power of i-th generator unit. It is assumed that the cost
functions are convex quadratic and they have the following structure:

gi (pi ) = aip
2
i + bipi + cik (108)
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where ai , bi , and gi are cost function parameters and they are constant. Thus the EPD
problem with demand and production capacity constraints can be expressed as follows:

min
pi

N∑︂
i=1

gi (pi ) (109)

s.t
N∑︂

i=1

pi =
N∑︂

i=1

pli = D (110)

pi ∈ Pi (111)

where D is total demand request, pli is the load of bus i and the convex set Pi ={︂
pi : pi

min ≤ pi ≤ pi
max

}︂
indicates the power generation capacity of each unit in which

pi
min and pi

max are the minimum and maximum production capacity of the generator i ,
respectively. Moreover, It is assumed that D satisfies

∑︁N
i=1 pi

min ≤ D ≤
∑︁N

i=1 pi
max con-

straint. In order to solve the EPD problem (109)-(111) in a fully decentralized fashion,
we employ the duality framework that is explained above.
In order to verify the effectiveness of the proposed algorithm, the simulation is per-
formed under three different scenarios. In the first scenario, it is assumed that the
power demand is constant and no failure happens during the power grid operation. The
second scenario includes time-varying demand and in the last case, the failure of some
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Figure 14 – Simulation results for the first scenario.

generation units is investigated.

Scenario I:

In this case the Algorithm 2 along with adaptive penalty parameter scheme (95)
is considered. The relaxation parameter has been selected equal to α = 0.75. As in the
other scenarios, the number of LFCs is considered equal to 10 and the hypergraphs are
generated randomly. Moreover, the adaptive penalty parameters τ and μ are selected
equal to 2.5 and 10, respectively. The simulation results of this scenario are shown in
Fig. 14. As it is clear from the figure, the algorithm converges after 18 iterations and
the generated powers converge to their optimal values. Moreover, the dual variables λλλs
successfully reach the consensus.

Scenario II:

In most situations, the demand request is not constant during the power grid
operation. For this reason, in this scenario, Algorithm 2 is tested under time-varying
demand. It is assumed that at iteration 50, the demand request increases to 6000 MW
and at iteration 100 decreases to 3000 MW. Fig. 15, depicts the simulation results in this
scenario. It is clear in the figure that the proposed algorithm can handle the time-varying
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Figure 15 – Simulation results for the second scenario.

demand properly and without any modification.

4.4.3.1 Scenario III: Time-varying power demand and failure in generation units

in this case, the algorithm is tested when the failure of some power generation
units occurs. Moreover, the demand request is still assumed to be time-varying. In this
scenario, it is assumed that the power generators 1, 52 and 23 and then 9, 33 and 46
shut down at iteration 25 and 80, respectively. The simulation results of this scenario
are provided in Fig. 16. According to Fig. 16, in the case of time-varying demand and
failure of some power generators, the proposed method can provide a suitable solution.

To conclude, the simulation results presented in this section show that the pro-
posed RH-ADMM is an efficient algorithm for solving distributed problems with coupling
constraints and that it outperforms both the distributed gradient descent and the original
hybrid ADMM. Moreover, we showed that by applying the proposed penalty selection
scheme we are able to effectively speed up the convergence rate of the algorithm. Fi-
nally, although a centralized architecture obtains the best performance, we observed
that a small number of local fusion centers yields good performances while at the same
time increasing the resilience of the network to agents’ failures.
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Figure 16 – Simulation results for the third scenario.

4.5 CONCLUSIONS

In this chapter, we proposed the RH-ADMM algorithm for solving distributed con-
vex problems with global coupling inequality constraints. By using the advantages of the
Krasnosel’skiı̆-Mann iteration along with the DR operator, a generalized version of the
H-ADMM algorithm proposed in (MA, M.; NIKOLAKOPOULOS; GIANNAKIS, Georgios
B., 2018) was developed. According to the results obtained in simulated experiments,
the RH-ADMM algorithm leads to better practical convergence properties depending
on the relaxation parameter α. Moreover, in order to further improve the convergence
of the algorithm and to obtain a unified framework for choosing the penalty parameter
ρ, we proposed an adaptive parameter selection scheme that can be implemented in a
fully decentralized fashion.

Finally, we tested the proposed algorithm by applying it to two problems: Quadratic
Programming and the control of a set of networked LTI systems with global coupling
constraints using the distributed MPC law.

Future directions of our research will focus on improving the convergence rate, for
example through Nesterov’s acceleration scheme and preconditioning, and on extend-
ing the convergence guarantees in case of asynchronous updates and communication



Chapter 4. Relaxed-Hybrid Alternating Direction Method of Multipliers Algorithm 72

losses. Moreover, developing optimal frameworks to achieve the optimal α and ρ with
guaranteeing the linear convergence may be considered.
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5 DISTRIBUTED OUTER APPROXIMATION FOR SPARSE OPTIMIZATION

5.1 INTRODUCTION

This chapter introduces two distributed algorithms, namely the Distributed Pri-
mal Outer Approximation (DiPOA) (OLAMA; CAMPONOGARA; MENDES, 2021) and
the Distributed Hybrid Outer Approximation (DiHOA) (OLAMA; CAMPONOGARA; KRO-
NQVIST, 2022), which are designed to tackle separable structured SCO problems. The
development of the DiPOA algorithm involves the integration of the proposed RH-ADMM

algorithm (as described in Chapter 4) into the Outer Approximation (OA) algorithm. This
integration is carried out in a manner that allows for distributed handling of the NLP sub-
problems. Essentially, the RH-ADMM algorithm serves as a distributed numerical engine
within the DiPOA algorithm, thereby enabling it to leverage the multi-core architecture of
modern processors for faster numerical computations. One of the primary motivations
for solving the NLP problem in a distributed manner is that, in practical applications, a
significant portion of the solution time is often consumed by solving these subproblems.
For instance, in Table 1 of (KRONQVIST; BERNAL; GROSSMANN, Ignacio E., 2020),
it is evident that more than 150 seconds are required by OA to solve NLP problems
when solving a convex MINLP of moderate size. Additionally, for inherently distributed
problems where the data is dispersed over a large computational network, solving a
single NLP in a traditional centralized manner can be challenging or even impossible. In
such scenarios, a distributed algorithm can provide significant computational benefits.

Although DiPOA solves the SCO problem in a distributed manner, the key com-
ponents of the algorithm are built upon a multiple-tree OA algorithm, which involves
constructing a BnB tree from scratch at every iteration. Consequently, a significant
portion of the total solution time of DiPOA is typically consumed by solving MIP sub-
problems. To address these limitations, the DiHOA algorithm is developed. Unlike DiPOA,
DiHOA gradually constructs a single BnB tree to avoid the need for constructing and solv-
ing multiple similar MILP problems from scratch. The DiHOA algorithm aims to solve a
given SCO problem by dynamically updating the MIP subproblem based on the concept
of lazy constraints. This approach is inspired by the LP/NLP-BnB method proposed
by (QUESADA; GROSSMANN, Ignacio E, 1992). At the beginning of the algorithm,
DiHOA employs the multiple-tree search strategy. When an event is triggered, DiHOA
switches to a single-tree search strategy that builds a BnB tree by introducing multiple
cuts initially to the root node to improve the initial formulation. The single BnB tree then
tightens the integer relaxations by dynamically introducing more linear approximations
(cuts) to the MIP problem. The multiple-tree search strategy is only applied in the initial
iterations since the MIP problems are usually easier to solve, and the nonlinear con-
straints are only roughly represented through a few constraints. Furthermore, starting
the BnB search with a tighter approximation of the nonlinear constraints results in a
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smaller BnB tree since a smaller infeasible region of the continuously relaxed search
space is explored. Without these initial cuts, the nonlinear constraints would be com-
pletely ignored until an integer solution is found, and the nonlinear constraints would be
poorly approximated until a few integer solutions are explored in the BnB tree.

Additionally, we introduce two algorithmic enhancements for DiPOA and DiHOA

in the form of a specialized feasibility pump and an event-triggered second-order cut
generation methods. These methods are designed to control both the quality and the
number of cutting planes that approximate nonlinear functions. The main contributions
of this chapter are summarized as follows:

• Equivalent distributed MINLP models for large-scale SCO problems. This
is achieved by utilizing the hybrid architecture for the CN architecture and
consensus optimization concepts.

• Algorithms DiPOA and DiHOA designed to solve SCO problems using a multiple-
tree and a single-tree MINLP approach, respectively.

• A specialized distributed feasibility pump method to accelerate the conver-
gence of the algorithms.

• A practical distributed method for the RH-ADMM algorithm to detect problem
infeasibility before performing the main computational steps.

• A distributed second-order cut and an event-triggered cut generation scheme
to improve performance and computational efficiency.

• A performance analysis of DiPOA and DiHOA regarding their applications to
solve Distributed Sparse Logistic Regression (DSLogR), Distributed Sparse
Linear Regression (DSLinR), and Distributed Sparse Quadratically Constrained
Quadratic Programming (DSQCQP) problems over a computational network.

The organization of this chapter is as follows: In Section 5.2, we present the for-
mulation of the SCO problem and modeling techniques to reformulate it into a suitable
MINLP formulation. Section 5.3 introduces the two main subproblems used by both the
DiPOA and DiHOA algorithms. Sections 5.4 and 5.5 present the DiPOA and DiHOA algo-
rithms, respectively. In Section 5.6, we present the special feasibility pump method used
to warm-start the algorithms. Finally, Section 5.7 introduces the practical infeasibility
detection, and Section 5.8 provides the numerical experiments.

5.2 DISTRIBUTED SPARSE CONVEX OPTIMIZATION

In this chapter, we consider the SCO problem as a mathematical programming
problem that consists of finding the κ-sparse optimal solution of a convex optimization
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Figure 17 – Problem reformulations performed by SCOT

problem with a separable structure defined as,

zSCO = min
x∈Rn

N∑︂
i=1

fi (x)

subject to x ∈ L ∩Ng ∩ Cκ

(112)

where

L = {x ∈ Rn : Ax – b ≤ 0} (113)

Ng = {x ∈ Rn : gh(x) ≤ 0,∀h = 1, . . . ,m2} (114)

Cκ = {x ∈ Rn : ∥x∥0 ≤ κ}. (115)

Here N is the number of nodes of the computation network, x ∈ Rn is the vector of
decision variables, and fi : Rn −→ R is a convex function assumed to be continuously dif-
ferentiable and only known by node i , for all i ∈ {1, . . . , N}. The set L and Ng are closed
convex sets with no empty interior which represents the general linear and nonlinear
constraints, respectively in which gh : Rn −→ R is a continuously differentiable convex
function and the matrix A ∈ Rm1×n and the vector b ∈ Rm1 define the set of given
linear constraints assumed to be known by all nodes. Various modeling techniques are
used by SCOT to find an equivalent problem of (112) for which distributed algorithms
can be developed. The techques used by SCOT are depicted in Figure 17 which will be
discussed below.

First, SCOT transforms problem (112) into a consensus optimization problem and
then multiple modeling techniques are used to handle the sparsity constraint.

5.2.1 Consensus Optimization Modeling

In problem (112), the decision variables are shared among the nodes, with each
node having access only to information needed to construct its own objective func-
tion. Local problem data is kept private from other nodes. The distributed setting in
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Figure 18 – Schematic of a hypergraph with 5 nodes and 3 hyperedges

(112) is a common approach used in many important learning and control applications.
For example, in distributed machine learning, a practical solution to handling large
volumes of data involves distributing the data across a network (NOTARSTEFANO;
NOTARNICOLA; CAMISA, et al., 2019; NEDIĆ; LIU, 2018). This approach enables
significant reductions in memory requirements for computation while maintaining the
same unknown model parameters. To decompose (112), we adhere to the concept of
hypergraphs introduced in Chapter 4, which is a generalization of a regular graph in
which an edge can join an arbitrary number of vertices (see figure 18). We consider
a hypergraph H = (V,E) defined as follows: V = {1,2, ...,N} is the set of nodes such
that node i decides upon the values of vector variable xi ; E = {Ek ⊂ V : k = 1, . . . ,K }
is the set of hyperedges, where a hyperedge Ek connects all nodes i ∈ Ek and K is
the number of hyperedges. Now we introduce the concept of path in a hypergraph: a
path p(i ,j) = ⟨E ′1,..., E ′k ⟩ connects nodes i and j if i ∈ E ′1, j ∈ E ′k , and E ′l ∩ E

′
l+1 ̸= ∅ for

l = 1, . . . ,k – 1, and E ′l ∈ E for all l . Put another way, through the hyperedges, a path
p(i ,j) establishes a communication channel between nodes i and j .

We assume that the hypergraph H is connected, meaning that for all (i ,j) ∈ V
there exists a path p(i ,j) connecting i and j . By using the hypergraph structure, the
equivalent formulation for (112) is obtained as follows,

zSCO = min
x1,...,xN
y1,...,yK

N∑︂
i=1

fi (xi )

subject to xi = yj , ∀i ∈ Ej , ∀Ej ∈ E

xi ∈ L ∩Ng

yj ∈ Cκ, ∀j = 1, . . . ,K

(116)

where xi ∈ Rn is the vectors of decision variables associated with the i-th node and
yj ∈ Rn is the vector of auxiliary decision variables associated with the j-th LFC, which
are represented by the hyperedges.
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5.2.2 MIP Reformulation of Cκ

In this section, we introduce three methods utilized by SCOT to represent the
non-convex set Cκ in problem (112): the Big-M method, the Specially Ordered Set of
Type I (SOS-1) method, and a hybrid approach.

5.2.2.1 Big-M Method

The Big-M method is arguably the simplest technique for modeling the sparsity
constraint. This method incorporates a binary variable and an estimated upper bound
into the model for each continuous variable appearing in the sparsity constraint. By
using the Big-M method, we can represent the sparsity constraints by the following set
of mixed-integer linear inequalities,

– Mjδjk ≤ yjk ≤ Mjδjk , ∀k = 1, . . . ,n, ∀j = 1, . . . ,K
n∑︂

k=1

δjk ≤ κ, ∀j = 1, . . . ,K

δj ∈ {0, 1}n, ∀j = 1, . . . ,K

(117)

where yjk is the k-th element of yj , δj , ∀j = 1, . . . ,K , is a vector of binary variables
whose k -th element is denoted by δjk , and Mj is a constant assumed to be a valid upper

bound for
⃦⃦⃦
yj

⃦⃦⃦
∞

. In this case, if δjk = 0 then yjk = 0 and yjk = 1 otherwise. Thus,
inequalities (117) impose the maximum κ number of nonzero variables in yj . Therefore
for any yj and δj , the set Cκ can be replaced by the following mixed-integer set

CMIPκ = {(y,δ) ∈ Rn × Bn : A1y + A2δ ≤ b1}. (118)

where A1 and A2 are appropriate matrices and B ⊂ Z is the set of binary numbers.

5.2.2.2 Specially Ordered Set of Type I (SOS-1) Method

This section discusses the sparsity constraint reformulation using the SOS-1
constraint. Any feasible solution to problem (116) satisfies the following complementary
constraints,

(1 – δjk )yjk = 0, ∀j = 1, . . . ,K , ∀k = 1, . . . ,n (119)

which is equivalent to the first constraint in (117). In order for constraint (119) to be
satisfied, either (1–δjk ) or yjk must be zero. Such constraints can be modeled via integer
optimization software using Specially Ordered Sets of Type I (SOS-1) (BERTSIMAS;
WEISMANTEL, 2005) as follows,(︂

yjk , 1 – δjk

)︂
: SOS-1, ∀j = 1, . . . ,K , ∀k = 1, . . . ,n. (120)
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Therefore, the sparsity constraint can be modeled by the following constraints(︂
yjk , 1 – δjk

)︂
: SOS-1, ∀j = 1, . . . ,K , ∀k = 1, . . . ,n.

n∑︂
k=1

δjk ≤ κ, ∀j = 1, . . . ,K

δjk ∈ {0, 1}, ∀j = 1, . . . ,K , ∀k = 1, . . . ,n

(121)

In summary, selecting a suitable value for Mj is crucial in the big-M formulation, as a
value that is too small can lead to the exclusion of valid solutions, whereas an exces-
sively large value can result in numerical difficulties. Hence, a good choice of Mj affects
the strength of the formulation, being critical for MIP algorithms to obtain high-quality
bounds. However, in machine learning, power systems, and control applications, the
big-M value Mj can typically be computed from data in statistical learning tasks (BERT-
SIMAS; PAUPHILET; VAN PARYS, 2021) and from the physical bounds in control ap-
plications (AGUILERA et al., 2017). Alternatively, SOS-1 constraints do not depend on
a problem-specific constant and thus avoid these issues. In general, when a relatively
small Mj is required, big-M modeling may be appropriate, while the SOS-1 approach
may be preferable in other situations. The SCOT preprocessing module provides the func-
tionality to determine the most suitable method based on the application and problem
data.

5.2.3 Mixed Integer Nonlinear Optimization Reformulation

This section covers the main problem formulation addressed by the DiPOA and
DiHOA algorithms. By utilizing Big-M and SOS-1 constraints to model sparsity con-
straints, the primary optimization problem that SCOT strives to solve can be expressed
as follows:

zSCO = min
γ

x1,...,xN
y1,...,yK

γ

subject to xi ∈ L ∩N , ∀i = 1,...,N

xi = yj , ∀i ∈ Ej , ∀Ej ∈ E

(yj , δj ) ∈ CMIPκ , ∀j = 1, . . . ,K(︂
yj , 1 – δj

)︂
: SOS-1, ∀j = 1, . . . ,K

(122)

where the equivalent epigraph reformulation is used and N = Ng ∩ Nf with Nf =
{
∑︁N

i=1 fi (xi ) – γ ≤ 0}, is the set of all nonlinear constraints. The advantage of using
both SOS-1 and Big-M constraints is that it might be possible to determine better Mj
coefficients than the MIP solver is able to derive. In that way, SCOT provides more
information to the MIP solver by including these constraint. Problem (122) is an MINLP
problem with a separable structure, where the objective function is linear and γ ∈ R is
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an auxiliary variable. In the following sections, we introduce a distributed formulation
and algorithm that SCOT implements to solve problem (122).

5.3 PRIMAL AND DUAL PROBLEMS

In this section, we will introduce the primal and dual problems of SCOT and dis-
cuss two algorithms that SCOT utilizes. SCOT is a decomposition-based MINLP solver,
which breaks down problem (122) into two main sub-problems: the primal problem and
the dual problem. As described in (KRONQVIST; BERNAL; GROSSMANN, Ignacio
E., 2020; LUNDELL; KRONQVIST, 2019), we refer to the optimal solution and objec-
tive value of the primal problem as the primal solution and primal bound, respectively.
Likewise, we use the terms dual solution and dual bound for the dual problem.

The primal solution of problem (122) is expected to satisfy all linear, nonlinear,
and consensus constraints up to a given tolerance. The best-known primal solution
obtained by either DiPOA or DiHOA algorithms is referred to as the incumbent solution,
and its objective value represents the best primal bound. The incumbent solution is
updated when SCOT algorithms discover a primal solution with a lower objective value.
Although the primal problem in the standard OA algorithm is a convex NLP problem,
the primal problem in SCOT is a distributed convex NLP problem due to the distributed
nature of problem (122). We will discuss this distributed primal problem later.

A dual solution is a solution point whose objective value serves as a valid lower
bound for the optimal solution of problem (112), but does not necessarily satisfy all
nonlinear constraints. Like the standard OA algorithm, SCOT obtains dual solutions by
solving relaxed problems that approximate the nonlinear constraints with outer approx-
imations. Depending on the type of outer approximations used, the dual problem can
be a MILP, MIQP, or MIQCL(Q)P problem. The dual bound represents the best possible
objective value of the dual problem. The primal and dual sub-problems are then itera-
tively solved by proper algorithms. The SCOT algorithms are distinguished depending
on how the sub-problems are constructed, solved, and coordinated. Regardless of the
solution algorithms adopted by SCOT, the dual and primal sub-problems are two primary
components of DiPOA and DiHOA.

5.3.1 Lifted Formulation

By default, SCOT focuses on solving problem (122), which enforces both Big-
M and SOS-1 constraints and utilizes epigraph reformulation. The separability of the
nonlinear functions in Nf in problem (122) enables SCOT to use an alternative formula-
tion known as the lifted formulation (KRONQVIST; LUNDELL; WESTERLUND, 2018).
SCOT employs the lifted formulation for fi resulting in tighter outer approximations when
approximating nonlinear functions (KRONQVIST; LUNDELL; WESTERLUND, 2018;
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HIJAZI; BONAMI; OUOROU, 2014; TAWARMALANI; SAHINIDIS, 2005). In this case,
the problem (122) is rewritten as,

zSCO = min
x1,...,xN
y1,...,yK
γ1,...,γN

N∑︂
i=1

γi

subject to xi ∈ L ∩Ni , ∀i = 1,...,N

xi = yj , ∀i ∈ Ej , ∀Ej ∈ E

(yj , δj ) ∈ CMIPκ , ∀j = 1, . . . ,K(︂
yj , 1 – δj

)︂
: SOS-1, ∀j = 1, . . . ,K

(123)

where Ni = Ng ∩ Nfi with Nfi = {x ∈ Rn : fi (x) – γi ≤ 0} and γi ∈ R, i = {1,...,N}, are
new auxiliary decision variables.

5.3.2 Dual Problem

In this section, we derive the dual subproblem of the MINLP problem (123).
Given a set of k feasible points of problem (123) from the perspective of the i-th agent
Sk

i = {xq
i : ∀q = 1, . . . ,k }, an outer approximation of the set Ni can be constructed as,

˜︁N k
i = {xi ∈ Rn : ˜︁gxq

i
(xi ) ≤ 0, ˜︁fixq

i
(xi ) – γi ≤ 0, q = 1, . . . ,k } (124)

where ˜︁gxq
i
(xi ) and ˜︁fixq

i
(xi ) are outer approximations of g(xi ) and fi (x

q
i ) around x

q
i ,

respectively. Therefore, for the i-th agent we observe that

Ni ⊆ ˜︂Ni
k ⊆ ˜︂Ni

k–1 ⊆ · · · ⊆ ˜︂Ni
1

(125)

which follows from the convexity of g(xi ) and fi (x
q
i ). Considering the outer approximation

set ˜︁N k
i for each agent, we define the dual problem of (123), at iteration k , as the

following mixed-integer optimization problem

zk
MIP = min

x1,...,xN
y1,...,yK
γ1,...,γN

N∑︂
i=1

γi

subject to xi ∈ L ∩ ˜︁N k
i , ∀i = 1,...,N

xi = yj , ∀i ∈ Ej , Ej ∈ E

(yj , δj ) ∈ CMIPκ , ∀j = 1, . . . ,K(︂
yj , 1 – δj

)︂
: SOS-1, ∀j = 1, . . . ,K

(126)

Hence,
zSOC ≥ zMIPk ≥ zMIPk–1 · · · ≥ zMIP1. (127)

The quality of outer approximations generated by the set ˜︁N k
i directly impacts the conver-

gence of the DiPOA and DiHOA algorithms. Hence, SCOT provides first- and second-order
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outer approximations and an event-triggered scheme that controls the effectiveness of
the approximations. According to first-order Taylor series and convexity of fi (xi ) and
g(xi ) functions, we can express ˜︁gxq

i
(xi ) and ˜︁fixq

i
(xi ) as,

˜︁fixq
i
(xi ) = fi (x

q
i ) +∇fi (x

q
i )T (xi – x

q
i )

˜︁gxq
i
(xi ) = g(xq

i ) +∇g(xq
i )T (xi – x

q
i )

(128)

which are polyhedral approximations. In case the nonlinear functions, fi (xi ) and g(xi ),
are strongly convex functions, SCOT utilizes the following second-order outer approxi-
mation functions,

˜︁fixq
i
(xi ) = fi (x

q
i ) +∇fi (x

q
i )T (xi – x

q
i ) +

mf
i

2

⃦⃦⃦
(xi – x

q
i )
⃦⃦⃦2

2˜︁gxq
i
(xi ) = g(xq

i ) +∇g(xq
i )T (xi – x

q
i ) +

mg

2

⃦⃦⃦
(xi – x

q
i )
⃦⃦⃦2

2

(129)

where mf
i > 0 and mg > 0 are strong convexity constants. With strong convexity

constants, it is clear that the cut given by (129) is stronger than the cut given by (128).
However, the second-order approximations (129) tend to result in more challenging
sub-problems in BnB. Therefore, there can still be a computational advantage of the
linear cuts.

Remark 9. For general strongly convex functions, mq
i is not obtained easily. However,

in some practical problems found in statistical learning and control, the computation of
mq

i is feasible. For example, the objective function in sparse Model Predictive Control (s-
MPC) problems (which is a subclass of the SCO problem) is typically a convex quadratic
function. For convex quadratic functions, mq

i is the smallest Eigenvalue of the Hessian
matrix. In machine learning problems the objective function usually consists of a convex
function and a strongly convex regularization term. In this case, mq

i can be computed
from the regularization term.

5.3.3 Primal Problem

A crucial step to forming the outer approximation set is the computation of the
set Sk

i . To compute Sk
i similar to standard OA algorithm, we fix the local binary decision

variables of problem (123), δj = δ
q
j , and solve the resulting distributed convex optimiza-

tion problem. In this case, a distributed convex NLP problem is solved, and its optimal
solution provides a primal solution to the original MINLP problem (123). Given the set
of fixed feasible binary variables, then Sk

i can be computed by solving the following set
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of problems for q = 1, . . . ,k

zq
Feasb = min

x1,...,xN
y1,...,yK
γ1,...,γN

N∑︂
i=1

γi

subject to xi ∈ L ∩N , ∀i = 1,...,N

xi = yj , ∀i ∈ Ej , ∀Ej ∈ E

(yj , δ
q
j ) ∈ CMIPκ , ∀j = 1, . . . ,K

(130)

Since the solution of (130) is feasible and not necessarily optimal, zq
Feasb provides an

upper bound on zSCO which reads as,

zq
Feasb ≥ zSOC ≥ zMIPk ≥ zMIPk–1 · · · ≥ zMIP1 . (131)

Therefore, one can observe that

Pk
b ≥ zSCO ≥ Dk

b (132)

where

Pk
b = min

q∈{1,...k }
zq
Feasb (133)

Dk
b = zMIPk (134)

are the tightest primal bound and dual bound on zSCO at step k . Problem (130) is
a distributed convex NLP problem and its solution has the advantage of generating
linearizations about points closer to the feasible region. Therefore, primal solutions and
primal bounds are obtained by iteratively solving problem (130).

In the case that the primal problem is a centralized NLP, a feasible point that
satisfies all linear and nonlinear constraints is considered to be the primal solution can-
didate. However, when the primal problem has to be solved distributedly, as in problem
(130), some numerical considerations have to be taken into account. Particularly, in
this case, in addition to all linear and nonlinear constraints, the consensus constraints
have to be satisfied which is more challenging to deal with since all computational
nodes have to agree on a consensus solution. In case the primal solution does not
satisfy the consensus constraints within an acceptable numerical tolerance, poor outer
approximations are generated and added to the dual problem. Therefore a larger num-
ber of iterations are required by the distributed NLP solver, especially when a large
computational network is considered. Another challenge in solving the primal problem
distributedly is the communication burden between the nodes of the network and the
LFCs.
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Figure 19 – DiPOA distributed architecture

5.4 DISTRIBUTED PRIMAL OUTER APPROXIMATION

In this section, we present the DiPOA algorithm for solving problem (123), which is
essentially the equivalent of the SCO problem (112). Moreover, various techniques and
heuristics are introduced to enhance the efficiency of the algorithm. The DiPOA algorithm
consists of multiple stages and follows a standard approach for implementing outer-
approximation-based algorithms, which involves solving several individual instances
of the dual (126) and primal (130) problems at each iteration. This approach requires
solving a distributed convex optimization problem and a mixed-integer programming
(MIP) problem at each iteration of the DiPOA algorithm. This implementation strategy
offers a high degree of flexibility as it does not require extensive interaction with the
MIP solver.

A basic implementation of DiPOA can simply construct the MIP dual problem and
pass it to the MIP solver for an optimal solution. The obtained solution can then be
read back into the main loop of the DiPOA algorithm, where outer approximations based
on supporting hyperplanes or second-order approximations are generated and added
to the dual problem before it is solved again. This process is repeated until a certain
termination tolerance is reached, indicating that the final solution to problem (112) has
been found. The distributed architecture of the DiPOA is depicted in Figure 19.

This approach is referred to as a multi-tree outer approximation because a new
BnB tree is created at each invocation of the MIP solver. In the subsequent sections,
we provide a detailed discussion of each step involved in the DiPOA algorithm.
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5.4.1 The Primal Step

The primal step in DiPOA is primarily responsible for generating feasible points
x

q
i around which the local nonlinear functions fi (xi ) and g(xi ) are approximated using

either the (128) or (129) equations. This step specifically handles the NLP portion
of problem (123) and is composed of two steps, each of which is responsible for a
specific computational task. To solve the primal problem (130), similar to what we
proposed in Chapter 4, we decompose the main computational parts into two steps
that distributedly communicate over the network. In the first step, each agent of the
network solves a local convex NLP in parallel, in a fully decentralized fashion. In the
next step, the local agents then synchronously communicate local solutions to LFCs
where solutions of a series of unconstrained NLP problems are computed. In some
practical cases, LFC level computations are related to computing the projection operator,
which guarantees the problem feasibility (MA, M.; NIKOLAKOPOULOS; GIANNAKIS,
Georgios B., 2018; OLAMA et al., 2019). As before, the computations in the LFC level
are performed in parallel. In many real-world applications, due to the structure of the
problem to be solved, the computations at the LFC level are translated into numerical
linear algebra operations. In synthesis, the primal step aims to obtain the solutions to
different nonlinear optimization problems1 for which the computations are performed in
parallel, using a fully decentralized approach.

5.4.2 The Dual Step

The dual step of the DiPOA algorithm corresponds to solving the dual mixed-
integer programming (MIP) approximation problem (126). This problem is based on the
outer approximation generated around x

q
i , q ∈ {1, . . . ,k }, which is provided by the primal

step of the algorithm. Therefore at each iteration k the dual step iteratively enhances the
approximation of nonlinear terms by tightening the linear (or quadratic) approximation of
the nonlinear functions of problem (123). Thus, as the number of outer approximations
increases, the dual bound generated by the dual problem (126) is improved as it can
be seen in (127). This iterative improvement process allows the DiPOA algorithm to
converge to the optimal solution of the original MINLP when a sufficiently large number
of outer approximations are added to the dual problem.

Example 1. To demonstrate how DiPOA constructs the set of outer approximations ˜︁N ,
1 The problems are different in the sense that the problem data are not necessarily the same.
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(a) (b)

(c) (d)

(e) (f)

Figure 20 – First iterations of DiPOA Algorithms; the dark purple region represents the
feasible region defined by the nonlinear constraints, the light purple areas
represent the outer approximations, and the dashed lines show contours
of the objective functions. The circular dots represent the solution of the
dual problem, wand the squared dots represent the solution of the primal
problem. the objective contours.
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we present a numerical example using the following SOC problem:

min
x

8x + 2y

subject to (x + 2)2 + y2 – 20 ≤ 0

x2 + (–1 – y )2 – 36 ≤ 0

(2 – x)2 + y2 – 36 ≤ 0

– 5 ≤ x ≤ 3

– 5 ≤ y ≤ 3

∥(x ,y )∥0 ≤ 1

(135)

Figure 20 displays the initial iterations of the algorithm. To start, the dual problem (126)
is constructed by disregarding the nonlinear constraints and solving the remaining
mixed-integer linear programming (MILP) relaxation of the problem, illustrated in Figure
20a. Note that in this figure, we have included the nonlinear feasible region to provide a
visual representation of how outer approximations are used to approximate this region.
The binary variables obtained from the MILP relaxation are then utilized to construct
and solve the first primal problem, as depicted in Figure 20b. The solution of the primal
problem provides vital information for generating the first outer approximation to approx-
imate nonlinear functions, only for active constraints, as illustrated in Figure 20c. Next,
the dual MILP problem is solved, and its solution provides the next binary variables to
be utilized in the primal problem. The solution of the dual problem is shown in Figure
20d. This iterative process continues until an acceptable linear approximation of the
nonlinear functions around the optimal point is obtained.

5.4.3 Event-Triggered and Multi-Cut Generation

This section presents an event-triggered technique utilized by the DiPOA algo-
rithm to improve the quality of the outer approximations while also controlling the com-
plexity of the resulting dual problem (126). At the outset of every iteration of the DiPOA

algorithm, a linear outer approximation (128) is generated and incorporated into the
dual problem resulting in an MILP approximation of the original MINLP problem. By
enforcing the linear approximations at the subsequent iterations and resolving the MILP
dual problem, a tighter representation of nonlinear terms is achieved as the algorithm
iterates.

Nonetheless, in certain scenarios (e.g., when highly nonlinear functions are in-
tegrated into the optimization problem), the linear approximations may prove to be
ineffective, leading to insufficient improvement in the lower bound. In such instances,
the lower bound that is computed from solving the MILP dual problem may be improved
gradually, necessitating a significant number of iterations. The DiPOA algorithm imple-
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ments event-triggered and multi-cut generation techniques to enhance the quality of the
outer approximation and corresponding lower bounds produced by the dual problem.

5.4.3.1 Event-Triggered Second-Order Cut Generation

In various practical applications of the SCO problem, such as machine learning
and control, the nonlinear functions are often both convex and strongly convex. By
leveraging the strong convexity assumption, we can specialize the method proposed
in (SU et al., 2018) to achieve a distributed global underestimator without requiring
online tuning. This approach enables us to obtain the tightest possible global quadratic
approximation of the local nonlinear functions. To further enhance the quality of the
outer approximations and corresponding lower bounds generated by the dual problem,
we introduce an event-triggered scheme called the Event-Triggered Second-Order Cut
(ET-SoCut) method. This technique involves generating and adding second-order infor-
mation provided in (129) to the dual problem at some specific iterations, which can lead
to significant improvements in the lower bounds.

In order to demonstrate the effectiveness of utilizing second-order information in
the approximation process, we first present the following illustrative example.

Example 2. Consider a convex function f : R2 → R defined as,

f (x) = x2 + 3y2 + 0.5xy + 1. (136)

By computing the Hessian matrix we have:

∇2f (x ,y ) =

[︄
1 0.25

0.25 3

]︄
.

Since f is quadratic and the Hessian is constant, the strong convexity parameter, m,
can be easily obtained. In this case m is the minimum Eigenvalue of ∇2f (x ,y ), which is
computed as m = 0.969. Figure 21 shows the obtained approximations for both linear
and quadratic underestimators. The approximations are performed around two points
(x1,y1) = (–2,4) and (x2,y2) = (2, –4). As depicted in the Figure 21a, the quadratic under-
estimators provide a better lower bound for the function f . The lower bound provided by
the quadratic approximation is Db = –22.552 while the linear underestimators provide a
lower bound around Db = –47.88. Although quadratic underestimators provide a better
lower bound for strongly convex functions, they increase the complexity of the DIPOA
dual problem.

For general strongly convex functions, it is more challenging to compute m effi-
ciently. However, in practical problems of learning and control, the computation of m can
be straightforward. For example, in many instances of sparse Model Predictive Control
(s-MPC) problems (which is a subclass of the SCO problem) the objective function
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(a) (b)

Figure 21 – Comparison between linear and quadratic underestimators. a) quadratic
underestimators. b) linear underestimators

is a convex quadratic function. In s-MPC, the goal is to control a process employing
a reduced number of inputs, which can improve the operation of the control system
(AGUILERA et al., 2017). For convex quadratic functions, m is the smallest Eigenvalue
of the Hessian matrix. In machine learning problems the objective function usually con-
sists of a convex function and a strongly convex regularization term. In this case, m can
be computed from the regularization term.

More details about implementing SoCuts are discussed later. In summary, based
on (129), we generate quadratic cuts for the nonlinear convex functions of the SCO
problem (112) to accelerate the convergence of the DiPOA algorithm. Traditionally, solv-
ing MIQCP problems is more challenging and time-consuming than MILPs due to their
complexity. However, modern MIP solvers like CPLEX and GUROBI have made signifi-
cant progress in solving MIQCPs. In particular, for convex MIQCPs with dense Hessian
matrices, MIP solvers can handle problems with constraints in the form of (129) that
approximate the Hessian with a quadratic diagonal matrix. These constraints use the
minimum Eigenvalue of the Hessian as their elements. This feature is advantageous
for SoCuts (129) since they can simplify the MIQCP dual problem, making it easier to
solve.

However, despite the effectiveness of modern solvers, it is still crucial to keep
the dual problem simple and easily solvable to ensure the efficiency of the DiPOA al-
gorithm. To keep the dual problem as simple as possible, and also benefit from better
approximations (SoCuts), we propose the ET-SoCut generation strategy in which the
SoCuts are generated whenever necessary. To do so, we define an event that is based
on the relative optimality gap, Grel of the DiPOA algorithm. The relative optimality gap
at each DiPOA iteration k is defined as,

Gk
rel =

Pk
b – Dk

b

max{Pk
b , 10–10}

× 100 (137)
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Based on the relative gap (137), at each iteration k , we define

ek
soc =

Gk–1
rel – Gk

rel

Gk–1
rel

(138)

as an event for the dual problem. At each iteration k , ek
soc measures the difference

between two consecutive relative gaps. This event is triggered, whenever,

ek
soc ≤ εsoc (139)

where εsoc > 0 is a small number which determines the iteration from which SOC cuts
are generated. Therefore, using the ET-SoCut strategy, at each iteration of the DiPOA

algorithm, the relative increment error is computed and if it is smaller than a threshold,
a SoCut is generated for the master’s problem. In other words, to avoid generating the
SoCuts at each iteration, we just add SoCuts whenever the relative gap starts to flatten
out. Otherwise, the linear approximations are generated as usual. By using ET-SoCut,
a small number of SoCuts are generated to help the MIP solver for solving the problem
efficiently. More details about the ET-SoCut strategy are provided in the implementation
section.

5.4.3.2 Multi-Cut Generation

The multi-cut generation techniqe of DiPOA is based on the lifted problem for-
mulation (123). The lifted formulation (123) provides several benefits, one of which
is particularly relevant to this discussion: it enables each agent in the network to lo-
cally generate outer approximations for local nonlinear functions, as demonstrated in
Equations (128) and (129). This approach facilitates parallel cut generation in DiPOA,
allowing multiple outer approximations to be generated simultaneously at each iteration.
By leveraging this technique, the quality of the lower bounds generated by the dual
problem is improved, as more approximations are introduced into the problem.

5.4.4 Algorithmic details and pseudo-code

This section presents implementation details and the pseudo-code of the DiPOA

algorithm which is summarized in Algorithm 3. The algorithm starts by specifying the
accepted optimality tolerances, denoted as εabs, εrel, and εsoc. These tolerances deter-
mine the accuracy of the optimal solution and generated second order event. Afterwards,
several parameters are initialized by DiPOA. These include the iteration index k , as well
as the relative and absolute optimality gaps denoted by Grel and Gabs, respectively.
Furthermore, the algorithm sets up the primal and dual bounds, denoted by Pb and
Db, respectively. DiPOA also initializes Pcut, which is a set of outer approximations,
and ESOC, which indicates whether a second-order cut event has been emitted or not.
Note that some technical implementation details including the computation of Grel
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Algorithm 3 Basic steps of DiPOA Algorithm
1: Specify accepted optimality tolerances εabs, εrel, and εsoc.
2: Initialize: k ← 0, G0

rel ← ∞, G0
abs ← ∞, P0

b ← ∞, D0
b ← –∞, P0

cut ← ∅,
ESOC ← 0.

3: (xr, zr)← NLPRelaxation() ▷ NLP Rexalation of Problem (123)
4: if IsFeasible(xr) then ▷ xr ∈ L ∩Ni , ∀i = 1,...,N
5: return x∗ ← xr, z∗SOC ← zr
6: Pcut← ˜︁N 0

i .
7: while Gk

rel > εrel or Gk
abs > εabs do

8: k ← k + 1
9: (δk , Dk

b )← MILPRelaxation(Pk–1
cut ) ▷ Dual Problem (126)

10: (xk, Pk)← DistNLP(δk ) ▷ Primal Problem (130), Distributed Update
11: (xP, Pk

b )← CurrentIncumbent(xk, Pk)
12: ESOC ← SOCEvent(Dk

b , Dk–1
b ) ▷ Eq. (138)

13: for i = 1, . . . ,N do ▷ Parallel Update
14: if ESOC then
15: ( ˜︁N k

i , Pk
cut)← GenerateQuadraticOA(xk) ▷ Eq. (129)

16: else
17: ( ˜︁N k

i , Pk
cut)← GenerateLinearOA(xk) ▷ Eq. (128)

18: (Gk
rel, Gk

abs)← CalculateOptimalityGap(Pk
b , Dk

b )
19: return x∗ ← xP, z∗SOC ← Pk

b

and Gabs, distributed and parallel updates and communications between agent will be
explained in detail in the next chapter.

In step (3), DiPOA attempts to solve the NLP relaxation of the MINLP problem
(123) using the procedure NLPRelaxation. This step is performed by RH-ADMM algorithm
since it is a distributed convex optimization problem whose structure is suitable for
RH-ADMM. In case, the solution of the NLP relaxation, xr is feasible with respect to
the origninal MINLP problem, DiPOA returns it as the optimal solution. Otherwise, the
algorithm generates the initial set of outer approximations for the nonlinear constraints
using ˜︁N 0

i and construct the dual problem (126).
Afterwards, the main loop of the algorithm begins, and it continues until the

relative and absolute optimality gaps converge to specified tolerances. In each iteration,
the algorithm solves the dual problem using the procedure MILPRelaxation and obtains
the optimal solution. The algorithm then solves the primal problem using the procedure
DistNLP, which is a distributed optimization problem, and generates the incumbent
solution using the procedure CurrentIncumbent.

Next, the algorithm checks whether a second-order cut generation event is
triggered, which is determined by the procedure SOCEvent. If there the event is trig-
gered, the algorithm generates quadratic outer approximations using the procedure
GenerateQuadraticOA, and if there is no event, the algorithm generates linear outer
approximations using the function GenerateLinearOA.
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After generating the outer approximations, the DiPOA calculates the optimality
gaps using the procedure CalculateOptimalityGap and updates the iteration index.
The algorithm continues with the next iteration until either the optimality gaps are less
than or equal to the specified tolerances.

Finally, the algorithm returns the optimal solution and the optimal value of the
SOC, denoted as x∗ and zSOC, respectively. We present a numerical example to demon-
strate the application of DiPOA to a given problem.

Example 3. We consider the DSLinR problem (DSLinR) with N = 2 agents, 10 samples
for each agent, 3 features, and 2 allowed non-zero elements as follows,

min
θθθ

2∑︂
i=1

∥Xiθθθ – bi∥22 +
λ

2
∥θθθ∥22

subject to ∥θθθ∥0 ≤ κ

(DSLinR)

where,

X1 =

⎡⎢⎣0.26 –1.38 0.18 0.37 –1.18 –0.21 –0.01 –0.29 –0.37 –0.51
0.37 –0.25 –0.78 –0.17 –0.11 0.58 –0.15 –0.28 0.94 –0.18
0.21 0.58 1.91 0.80 0.81 1.16 0.45 0.47 –1.81 0.57

⎤⎥⎦
T

,

b1 =
[︂
1.50 –0.03 –1.50 0.01 –1.87 –1.48 –1.22 –0.48 0.35 0.25

]︂T
,

X2 =

⎡⎢⎣ 0.32 0.90 1.18 0.85 –0.59 1.16 0.04 0.89 –0.86 1.23
–0.89 –1.01 –0.16 0.82 –0.88 –2.41 1.16 0.40 1.18 1.97
–1.23 0.73 0.62 –0.92 2.06 0.22 –0.60 0.77 0.59 0.44

⎤⎥⎦
T

,

b2 =
[︂
0.47 0.45 1.48 –1.15 0.64 2.13 0.25 0.99 0.99 1.27

]︂T
.

Algorithm 3 utilizes the RH-ADMM algorithm to solve the NLP relaxation of the original
problem in a distributed manner. The solution of the NLP relaxation problem yields xr

and δr , with values of
[︂
0.628 –0.075 –0.073

]︂T
and

[︂
0.704 0.722 0.281

]︂T
, respec-

tively.
After approximating nonlinear objective functions using (128), we construct the

first dual MILP problem with the lifted-formulation (123). Solving this problem yields

the first set of feasible binary variables, δ1 =
[︂
0 1 1

]︂T
, which we use to solve the

primal problem (130). As a result of the first iteration of DiPOA, we obtain the next point

around which outer approximations are generated: x1 =
[︂
0 –0.123 –0.119

]︂T
. The

primal and dual bounds generated by the algorithm at this iteration are Pb1 = 12.068
and D1b = 9.7562, respectively.

In the second iteration, a new set of outer approximations is generated by each
agent and a new dual problem is constructed and solved. The binary combination
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obtained in this iteration is δ2 =
[︂
1 0 1

]︂T
, which yields a feasible solution x2 =[︂

0.63 0 –0.05
]︂T

. The primal and dual bounds are then updated as Pb2 = 9.8044 and

D2b = 9.7563, respectively. This is the best primal bound found by the algorithm so far,
as Pb2 < Pb1, and therefore the incumbent solution is updated as xincumbent = x2.

The process is repeated until a sufficiently large dual bound is obtained, which
occurs at iteration k = 4. At this point, the incumbent solution is not updated since
the primal bound is not decreasing. The algorithm is then terminated by reporting
x∗ = x2 as the optimal solution and f ∗ = 9.8044 as the optimal objective value. Table 2
presents a summary of the first 4 iterations of the DiPOA algorithm. The table shows the
contributions of the first and second agents, denoted by fi , i = 1,2, to the computation
of primal and dual bounds, denoted by Pb and Db, respectively. Additionally, the table
lists the number of outer approximations introduced at each iteration, denoted by Nc.

Table 2 – Four iterations of DiPOA

k f1 f2 γ1 γ2 Pb Db Grel Gabs Nc

1 5.4546 6.6134 0.9289 8.8272 12.068 9.7562 0.2305 2.9238 2
2 4.8863 4.9181 –0.6099 10.3662 9.8044 9.7563 0.0049 0.0481 4
3 5.3122 4.4941 6.8105 2.9461 9.8062 9.7566 0.0051 0.0496 6
4 4.8863 4.9181 4.4673 5.337 9.8044 9.8043 1e–5 0.0001 8

5.5 DISTRIBUTED HYBRID OUTER APPROXIMATION

In this section, we introduce the Distributed Hybrid Outer Approximation (DiHOA)
algorithm that computes a solution to problem (122). The DiHOA algorithm is built on
top of the LP/NLP-based BnB algorithm (also known as single-tree outer approximation
algorithm), which was originally proposed in (QUESADA; GROSSMANN, Ignacio E,
1992). Unlike the multiple-tree algorithms, which construct a new BnB tree at each
iteration, the original LP/NLP-based BnB algorithm creates a single BnB tree. In this
method, outer approximations of nonlinear functions are added lazily through callbacks
to eliminate integer-feasible solutions that violate the nonlinear constraints in the original
MINLP problem. Callbacks are methods provided by the MIP solver that are activated
at specific points during the solution process, such as when a new integer feasible
solution is found or a new node is created in the branching tree. This approach allows
the user to implement customized strategies that affect the behavior of the MIP solver in
a way that is not possible through a normal solver call. It is also possible to manipulate
node generation in the MIP solver using callbacks. Overall, this approach offers greater
flexibility to the user to customize and optimize the solution process.
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Algorithm 4 Basic steps of DiPHOA Algorithm
1: Specify accepted optimality tolerances εabs, εrel, and εsoc.
2: Initialization
3: k ← 0, G0

rel ←∞, G0
abs ←∞, P0

b ←∞, D0
b ← –∞, P0

cut ← ∅, ESOC ← 0. P ← ∅
4: (xr, zr)← NLPRelaxation() ▷ NLP Relaxation of Problem (123)
5: if IsFeasible(xr) then ▷ xr ∈ L ∩Ni , ∀i = 1,...,N
6: return x∗ ← xr, z∗SOC ← zr
7: Pcut← ˜︁N 0

i . ▷ Cunstruct dual problem (126)
8: MultipleTreeSearch
9: while not SOCEvent(Dk

b , Dk–1
b ) do

10: k ← k + 1
11: (δk , Dk

b )← MILPRelaxation(Pk–1
cut ) ▷ Dual Problem (126)

12: (xk, Pk)← DistNLP(δk ) ▷ Primal Problem (130), Distributed Update
13: (xP, Pk

b )← CurrentIncumbent(xk, Pk)
14: ESOC ← SOCEvent(Dk

b , Dk–1
b ) ▷ Eq. (138)

15: for i = 1, . . . ,N do ▷ Parallel Update
16: ( ˜︁N k

i , Pk
cut)← GenerateQuadraticOA(xk)

SingleTreeSearch
17: P0 ← BnBRootInit(Pk

cut) ▷ initialize BnB Root with SOC cuts
18: P ← P ∪ P0

19: while Gk
rel > εrel or Gk

abs > εsbs do
20: Pk ← SelectNode(P) ▷ Select and Remove Node
21: (xk, δk )← QCLPRelaxation(Pk ) ▷ Process Node
22: if IsIntegerFeasible(δk ) then
23: Dk

b ← UpdateDualBound()
24: (xk, Pk)← DistNLP(δk ) ▷ Primal Problem (130), Distributed Update
25: LazyCutGeneration(xk) ▷ Dual Problem Lazy Update
26: NodesUpdate(xk,P) ▷ Update All Open Nodes
27: (xk, δk )← ResolveQCLPRelaxation(Nk) ▷ Resolve QCLP relaxation
28: (xP, Pk

b )← CurrentIncumbent(xk, Pk)
29: (Gk

rel, Gk
abs)← CalculateOptimalityGap(Pk

b , Dk
b )

30: else
31: (Pk

1 ,Pk
2 )← Branch(Pk )

32: P ← P ∪ Pk
1 ∪ P

k
2

33: k ← k + 1
34: return x∗ ← xP, z∗SOC ← Pk

b
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Based on DiPOA and LP/NLP-based BnB, we develop the DiHOA algorithm to
avoid constructing many similar MIP BnB trees. The main idea of DiHOA is to iteratively
build a single BnB tree whereby the primal problem is solved distributedly, while dynam-
ically updating the dual problem (126) without reconstructing the BnB tree. However,
the single-tree OA algorithm may lead to a large BnB tree and weaker approximations.
To avoid that, DiHOA introduces several second-order outer approximations of the non-
linear functions to the root of the BnB tree through an event-triggered scheme, which
leads to a tighter problem representation and a BnB tree with a fewer number of nodes.
This procedure constructs the first MIP dual problem and initiates the BnB algorithm.
During the BnB search, as soon as a new integer-feasible solution is found, the primal
problem (130) is distributedly solved to determine whether a lazy constraint removing
this integer-feasible point should be generated. By lazy constraints, we mean cutting
planes that are lazily added to the MIP model whenever an integer feasible solution is
found. At this point, the RH-ADMM algorithm is applied, and the new primal information
is distributed to the computational nodes of the network. Then the generated lazy con-
straint is added to the current node, and all open nodes of the BnB tree and the search
continues. Therefore, it is not required to reconstruct the BnB tree as in multiple-tree
algorithms and the same BnB tree can be used after adding new linearizations as lazy
constraints. Finally, the algorithm is terminated until the MIP integer relaxation results
in a feasible integer solution to the MINLP problem (122).

A detailed description of the DiHOA algorithm is summarized in Algorithm 4. It
can be observed in Algorithm 4 that DiHOA consists of three primary computational
phases, namely, Initialization, MultipleTreeSearch, and SingleTreeSearch steps.
In a manner similar to the approach taken by DiPOA, the feasibility of the NLP relaxation
of problem (123) is the first aspect that DiHOA considers. In case the solution of the NLP
relaxation problem is integer-feasible with respect to the original MINLP problem, DiPOA
terminates. After the algorithm is successfully initialized, DiHOA starts a multiple-tree
strategy with a second-order outer approximation cut generation strategy and continues
the computations until either the solution is found or poor lower bound improvement is
achieved.

In the former case, the algorithm is terminated and the optimal solution is re-
turned. In the latter case, however, DiHOA accumulates all the outer approximations
obtained until iteration k in the root of the latest BnB tree and, then, it starts a single-
tree search strategy whereby approximations are added dynamically. As the name of
the algorithm suggests, DiHOA is a hybrid algorithm that combines both single-tree
and multiple-tree strategies by introducing an event-triggered scheme that determines
the switching iteration, kswitch, at which a single-tree search strategy is started. In the
following, we describe each computational step in detail.
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5.5.1 Initialization Step

To begin the initialization step, the first task is to solve the NLP relaxation of the
original problem (123). This step involves disregarding the integrality constraint from
the binary variables, resulting in a distributed nonlinear programming problem with both
linear and nonlinear constraints. This problem can be solved using the RH-ADMM algorith
through the NLPRelaxation method. If the relaxation step obtains a feasible solution
with respect to problem (122), then the optimization process is terminated with the
optimal solution achieved.

On the other hand, if the relaxation step does not obtain an integer-feasible
solution, then we proceed to generate N first-order outer approximations using the local
information available in each agent of the network. Based on these approximations, we
construct the first MIP dual problem as per (126). During this process, the IsFeasible

method is used to check whether the solution obtained from the NLPRelaxation method
is feasible with respect to the original MINLP problem. This step ensures that the
solution obtained is valid and satisfies all the constraints of the original problem.

5.5.2 Multiple Tree Search Step

The multiple-tree search step of the DiHOA algorithm is a crucial step that di-
rectly affects the DiHOA performance. In the cases that kswitch is a large number, a pure
multiple-tree algorithm with second-order outer approximations is obtained. Otherwise,
the resulting algorithm becomes a pure single-tree algorithm. Therefore, kswitch should
be determined in such a way that maximizes the DiHOA performance. To do so, we
introduce an event-triggered scheme that selects kswitch based on the difference be-
tween two consecutive lower bounds. In particular, during the solution procedure, DiHOA
checks if the generated lower bounds by the dual problem start to flatten out within
a given tolerance εSIC > 0 and triggers a switching event, ESOC, if Dk

b – Dk–1
b ≤ ε. As

soon as ESOC is triggered, DiHOA switches to the single-tree strategy by performing the
BnB algorithm on the latest dual problem, which was obtained during the multiple-tree
strategy.

5.5.3 Single Tree Search Step

The single-tree search step is activated for k > kswitch after the ESOC event is trig-
gered. kswitch is the iteration step at which the single-tree search is activated. In this step,
DiHOA accumulates all the outer approximations obtained during the MultipleTreeSearch

phase in the root of the latest BnB tree and then starts the single-tree BnB procedure.
The BnB search is initialized by solving an integer relaxation of the dual problem (126).
In each node of the BnB tree, a (Quadratically Constrained Linear Programming) QCLP
relaxation is solved and the search is stopped once an integer solution is obtained in
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one of the nodes. The integer solution is then used to solve the primal problem (130)
with integer variables fixed. The primal solution provides a valid upper bound and new
approximations can be generated. The new approximations are then added to all open
nodes in the BnB tree and the QCLP relaxation is resolved for the node which resulted
in the integer combination. The BB procedure continues from the existing search tree
with the improved polyhedral outer approximation.

As in the standard BnB, nodes can be pruned off in case the optimum of the
QCLP relaxation exceeds the upper bound. However, the search cannot be stopped
once an integer solution is obtained at a node, which must continue until the QCLP
relaxation results in a feasible integer solution for problem (123) or until the node can
be pruned off.

Finally, since all variables in problem (112) are bounded, then the assump-
tions A1–A3 in (FLETCHER; LEY, 1996) and assumptions in (KRONQVIST; BERNAL;
GROSSMANN, Ignacio E., 2020) are valid and Slater’s constraint qualification holds for
problem (122) when the binary variables are fixed. Hence, the convergence of Algorithm
4 follows the converge proof of the centralized case.

Example 4. In this example, we solve the problem provided in Example 3 by applying
the DiHOA algorithm. The BnB tree with respect to this problem is depicted in Figure
22 where CPi

is the callback of the node Pi . To simplify the process, we omit second-
order outer approximations in the root of the BnB and use Breath-First Search (BFS) to
traverse the BnB tree. The DiHOA algorithm, similar to DiPOA, constructs the first dual
problem (126) by solving the NLP relaxation of the original problem. Once the dual
problem is constructed, the BnB tree is initialized, and an LP relaxation for the dual
problem is solved at node P1. Solving the first LP relaxation problem in the root of the

BnB tree yields an integer-feasible solution of δ1 =
[︂
0 1 1

]︂T
with Db = 9.7562. Since

δ1 is integer-feasible with respect to the MILP dual problem, we can introduce a lazy
outer approximation for each agent. To do this, we solve the primal problem (130) in
a distributed manner using the callback introduced in node 1 (i.e. CP1

). In this case,

we obtain x1 =
[︂
0 –0.1239 –0.1196

]︂T
, around which local objective functions are

linearized. The point x1 is feasible with respect to the original problem and serves as
the first incumbent solution, denoted by xincumbent = x1, with primal bound Pb1 =
12.0680.

In the following step, lazy outer approximations are introduced to the node P1
and the LP relaxation is resolved (denoted by P1,r ), resulting in a fractional solution

δ =
[︂
0.3723 0.6277 1

]︂T
. Thus, P1,r is divided into two sub-problems, P2 and P3,

based on one of the fractional variables. In this case, we choose δ2 to split the problem.
Upon solving the LP relaxation of P2, an integer-feasible solution is obtained as

δ2 =
[︂
1 0 1

]︂T
, with Db = 9.7563. Next, the next callback is called, and we solve an
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instance of the primal problem with new fixed binary variables. By solving the primal

problem, we obtain a new feasible solution x2 =
[︂
0.6370 0 –0.0545

]︂T
with P2

b =

9.8044. Therefore, xincumbent = x2, and P2
b is the best primal bound found by the

algorithm so far.
In the next step, we generate and introduce lazy outer approximations to P2 and

P3 and resolve the LP relaxation of P2,r . However, upon solving the LP relaxation of
P2, we obtain the same integer-feasible solution, indicating that further exploration of
this node will not improve the solution. Hence, we can prune P2,r .

The algorithm proceeds to consider the node P3, where the solution to the

LP relaxation is fractional, specifically δ =
[︂
0.3481 1 0.6519

]︂T
. In this case, the

branching is based on δ1, and P3 is divided into two sub-problems, P4 and P5.
When solving P4, a feasible integer solution is obtained with Db = 12.067. As

Db > P2
b, P4 is fathomed.
Finally, the LP relaxation of the dual problem is solved for P5, resulting in an

integer-feasible solution δ2 =
[︂
1 1 0

]︂T
and L2

b = 9.7566. Using callbacks, the primal

problem is solved, and a feasible solution x3 =
[︂
0.6371 –0.0552 0

]︂T
with Pb =

9.8062 is obtained. However, since P3
b > P2

b, the incumbent solution remains unchanged.
The same set of binary variables is obtained by generating new outer approximations
and resolving P5, so P5 is fathomed.

Therefore, the optimal solution is provided by P2,r . Tables 3 and 4 show the
details of each iteration of the DiHOA.

Table 3 – Branch and Bound Nodes Information

node γ1 γ2 Db Nc status branch

P1 0.9289 8.8273 9.7561 2 integral no
P1,r 0.355 9.4012 9.7562 4 fractional yes
P2 –0.6099 10.366 9.7563 4 integral no
P2,r 4.4672 5.3370 9.8043 6 pruned no
P3 –0.6099 10.366 9.7563 6 fractional yes
P4 13.7451 –1.6773 12.0670 6 pruned no
P5 6.810 2.9461 9.7566 6 integer no
P5,r 5.6984 4.1076 9.8061 8 pruned no

Table 4 – Lazy Callbacks Information

callback f1 f2 Pb Grel Gabs status

CP1
5.4546 6.6133 12.0680 0.1915 2.3118 feasible

CP2
04.8862 4.9180 9.8044 0.0049 0.0481 feasible

CP5
5.3121 4.4940 9.8062 0.0050 0.0496 feasible
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P1
Db = 9.7562

Db = 9.7562
P1,r

CP1
⇒ Pb = 12.0680

δ2 = 0
Db = 9.7563

P2

pruned

CP2
⇒ Pb = 9.8044

P2,r
Db = 9.8043

P3

δ2 = 1

Db = 9.7563

δ1 = 0 δ1 = 1

Db = 12.067
P4

pruned

P5

pruned

Db = 9.7566
CP5

⇒ Pb = 9.8062

P5,r
Db = 9.8061

Figure 22 – Branch and bound tree

In summary, both DiPOA and DiHOA algorithms provide a distributed solution
for SCO problems in which different strategies are used. Table 5 reports the main
differences between these two algorithms.

DiPOA DiHOA

BnB strategy multiple-tree multiple-tree-single-tree
Cut generation Problem reconstruction Lazy constraints
Event scheme FOC cuts to SOC cuts multiple-tree to single-tree
Subproblems Distributed NLP – MI(QC)LP Distributed NLP / (QC)LP

Table 5 – Key differences of DiPOA and DiHOA algorithms.

5.6 SPECIALIZED FEASIBILITY PUMP

Feasibility Pump (FP) methods refer to a set of algorithms and techniques de-
signed to efficiently find initial feasible solutions of MIP problems (see (BERTHOLD;
LODI; SALVAGNIN, 2019) and references therein). The FP algorithms are fundamen-
tally based on the idea of generating two sequences of points that aim to converge
toward a feasible solution for a given MIP problem. One sequence consists of the points
that are feasible for continuous relaxation but possibly integer infeasible. The other
sequence consists of points that are integral but might violate some of the imposed
constraints. The next point of one sequence is always generated by minimizing the
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distance to the last point of the other sequence, using different distance measures in
either case (e.g., the ℓ1 or the ℓ2 norm).

In this section, we propose a Specialized Feasibility Pump (SFP) method tailored
for SCO problem (112) which aims to provide a good feasible sparse solution. The
SFP method consists of three main steps, namely, relaxation, sparse projection, and
alternating projection steps which are discussed in the following subsections.

5.6.1 Relaxation Step

The main goal of the relaxation step is to find an initial point x0
R such that x0

R ∈
L ∩ N however the sparsity constraint x0

R ∈ Cκ might not be satisfied. To compute
x0
R, the simplest method is to solve a convex feasibility problem that disregards the

sparsity constraint and the objective function in (112) which we refer to as the feasibility-
based SFP method. However, this approach may produce a poor a feasible solution
whose upper bound is far from the optimal value. To address this, we incorporate the
objective function into the optimization and use the ℓ1 norm as an approximation for the
ℓ0 norm. This method is referred to as the optimality-based SFP method and results in
a distributed convex optimization problem, defined as follows:

zR = min
x∈Rn

N∑︂
i=1

fi (x)

subject to x ∈ L ∩Ng ∩ ˜︁Cκ
(140)

where ˜︁Cκ = {x ∈ Rn : ∥x∥1 ≤ κ}. Therefore it is easy to observe that zR ≤ zSOC.

5.6.2 Sparsity Projection Step

The point x0
R computed from (140) does not necessarily satisfy the original spar-

sity constraint (i.e.,
⃦⃦⃦
x0
R

⃦⃦⃦
0
≥ κ). The sparsity projection step is responsible to find an

initial sparse solution x0
S that satisfies the sparsity constraint which can be done by

projecting x0
R to the set of ℓ0 norm, Cκ. Before discussing the sparsity projection step,

we define the projection on a set A.

Definition 21. The projection of a point y ∈ Rn onto a closed set A ⊆ Rn is denoted
by y∗ and defined as:

y∗ = ΠA(y) = arg min
y∈A
∥y0 – y∥ (141)

In some special cases, the projection of a point on a set is unique. For instance,
if A is a closed and convex set and the norm is strongly convex, then the projection is
unique (BOYD, S.; BOYD, S. P.; VANDENBERGHE, 2004). However, for non-convex
sets, the projection is not unique and can be difficult to achieve. However, for some
specific cases, it is not too difficult to compute the projection on a non-convex set. In
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the case of the set Cκ in which the ℓ0 norm is incorporated, we can define the sparsity
projection as follows:

Definition 22. The projection ΠCκ(y) of a point y ∈ Rn onto the set Cκ keeps the κ

largest (in absolute value) elements and zeros out the remaining, breaking ties in the
lexicographic order.

Therefore we can compute x0
S = ΠCκ(x

0
R) which satisfies the sparsity constraints.

In case x0
S also satisfies the linear and nonlinear constraints the SFP is terminated and

a valid upped bound zS on zSCO is obtained. Therefore it is easy to write,

zR ≤ zSOC ≤ zS (142)

where zS is the objective value of (112) computed at x0
S.

Example 5. Consider y ∈ R5 to be defined as y =
[︂
5.7 1.4 –3.2 –2.3 2.3

]︂T
and

κ = 3. The sparsity projection is obtained as follows:

y∗ = ΠCκ(y) =
[︂
5.7 0 –3.2 –2.3 0

]︂T
Based on y∗ we can generate a binary vector z ∈ {0, 1}5, such as z =

[︂
1 0 1 1 0

]︂T
in the example, that can be used to initialize the DiPOA and DiHOA algorithms. The
tie between –2.3 and 2.3 is resolved by selecting the element that comes first in the
lexicographic order.

As in standard FP methods, point x0
S ∈ Cκ might violate some of linear and

nonlinear constraints. In such a scenario, we perform the alternating projection step
which is discussed in the next section.

5.6.3 Alternating Projection Step

In the context of convex optimization, alternating projections is a simple algorithm
for computing a point in the intersection of some convex sets, using a a sequence
of projections onto the sets (BOYD, S. et al., 2011). The alternation projection step
in SFP consists of generating two sequences of points that hopefully converge to
the intersection of sparsity, linear and nonlinear constraints. The algorithm starts with
x0
S ∈ Cκ obtained from the sparsity projection step and then alternatively projects onto
Ng and Cκ:

xk+1
R = ΠN∩L(xk

S ), xk+1
S = ΠCκ(x

k+1
R ) , k = 0,1, . . . . (143)

This generates a sequence of points xk
R ∈ N ∩ L and xk

S ∈ Cκ. While the alternating
projection algorithm is guaranteed to converge when the sets involved are convex,
convergence is not guaranteed in the case where a non-convex set is involved. However,
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even though the convergence of the method is not guaranteed when one of the sets
involves ℓ0 norm constraints, it can still be effective and useful in practice. This is
especially true when the method is started with a good initial point. A high-level overview
of SFP utilized in SCOT is presented in Algorithm 5.

Algorithm 5 Basic steps of SFP Algorithm
1: Specify accepted optimality tolerance εsfp.
2: x0R ← NLPRelaxation() ▷ NLP Problem (140)
3: x0S ← SparsityProject(x0R) ▷ Sparsity Projection
4: if IsFeasible(x0S) then ▷ xr ∈ L ∩Ni , ∀i = 1,...,N
5: return xfeasb ← x0S
6: k ← 0
7: while

⃦⃦⃦
xk
S – xk

R

⃦⃦⃦
≥ εsfp do

8: xk+1
R = ConvexProject(xk

S).
9: xk+1

S = SparsityProject(xk+1
R ).

10: k ← k + 1
return xfeasb ← xkS

Example 6. This example demonstrates the effectiveness of the SFP method for solv-
ing a Distributed, Sparse Quadratic Programming (DSQP) problem using randomized
data. In this example, only 1 variable can be non-zero and both the feasibility and opti-
mality relaxation steps are used. The feasible region of the problem and the iterations
of the algorithm are depicted in Figure 23. Figure 23a illustrates the performance of
Algorithm 5 with a feasibility-based relaxation step. The algorithm converges in a single
iteration, where each agent in the network solves a centralized convex feasibility prob-
lem. The SFP method generates a feasible point xfeasb = [0, 0.08]T , while the optimal
point is xopt = [0, –0.026]T with f ∗ = –0.0820. In this case, the SFP algorithm produces
a feasible solution with logarithmic relative error of –12.47, with the objective value
value of 0.2775. Figure 23b illustrates the behaviour of the SFP algorithm when incor-
porating an optimality-based relaxation step. In this case, all agents within the network
collaboratively obtain the initial solution xR, which requires the application of RH-ADMM.
Although the computational complexity associated with the optimality-based relaxation
step is higher than that of the feasibility-based method, the degree of suboptimality of
the generated feasible point is smaller. Specifically, the SFP algorithm terminates in 16
iterations, producing a feasible solution xfeasb = [0, –0.029]T with a logarithmic relative
error of –43.12 and an objective value of –0.0529. These results demonstrate that the
SFP algorithm, leveraging the information provided by each agent, can generate a good
starting point that is suitable for use in both DiHOA and DiPOA algorithms.
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(a) (b)

Figure 23 – Behavior of Algorithm 5 for a random DSQP problem; the circular point illus-
trates the optimal solution of the problem and the square points illustrates
the sequence of points generated by the SFP method. a) Feasibility based
SFP. b) Optimality based SFP

5.7 INFEASIBILITY DETECTION AND FEASIBILITY CUTS

This section presents an algorithm designed to detect the nonlinear infeasibility
of the primal problem (130) before attempting to solve it. Although problem (130) is
capable of generating reliable feasible points for generating linear and quadratic approx-
imations, certain combinations of fixed binary variables have the potential to render the
nonlinear constraint N infeasible. Consequently, it is essential to identify an infeasible
point prior to attempting to solve the problem.

The practical infeasibility detection technique provides an effective means of
detecting such infeasibilities and is a tool for improving the the efficiency of the solution
process. In such a situation, one approach is to introduce a constraint, commonly re-
ferred to as a feasibility cut, that excludes the infeasible point from the feasible region
(FLETCHER; LEY, 1996). Feasibility cuts are typically obtained by minimizing the ℓ1 or
ℓ∞ norm of the infeasible nonlinear constraints. Therefore, it is crucial to distinguish be-
tween feasible and infeasible nonlinear constraints, a responsibility that is left to the NLP
solver by the original OA algorithm. However, the DiPOA and DiHOA algorithms do not
inherently support infeasibility detection. To address this issue and detect infeasibilities
in nonlinear constraints, we formulate the following optimization problem:

min
x1,...,xN
y1,...,yK

N∑︂
i=1

m∑︂
h=1

gh(xi )

s.t . xi = yj , ∀i ∈ Ej , Ej ∈ E

xi ∈ L, ∀i = 1,..., N

– Mjδ
k
j ≤ yj ≤ Mjδ

k
j , ∀j = 1,..., K

(144)

This problem which incorporates the nonlinear constraints of the original problem into
the objective function is a consensus convex optimization problem with linear constraints
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which can be solved using RH-ADMM. Moreover, since L is a polytope and the Big-M
constraints cannot be empty, problem (144) is always feasible. If the optimal solution of
(144) yields a positive objective function, then this solution serves a certificate that the
corresponding distributed NLP problem (130) is infeasible. In this case, the next step
is to detect the indices of the infeasible nonlinear constraints which is detected to be
infeasible. Considering x̄ = x̄i , i = 1,..., N, as the optimal solution of (144), we can easily
detect the nonlinear constraints by computing gh(x̄), h = 1,...,m. Finally, we generate
and introduce outer approximations either in the first-order (128) or the second-order
(129) form around the point x̄. These outer approximations are then used to update
the dual problem represented by (126). According to (FLETCHER; LEY, 1996), if the
problem (130) is infeasible, given δk

j and x̄, then the outer approximations (128) or (129)

effectively remove δk
j from the feasible region.

5.8 COMPUTATIONAL EXPERIMENTS AND ALGORITHM EVALUATION

In this section, the accuracy and performance of two algorithms, DiPOA and
DiHOA, in solving three problem instances of the SCO problem, specifically the DSLogR,
DSLinR, and DSQCQP problems, are evaluated. To validate the optimality of the algo-
rithms, the results of a comparison with state-of-the-art MINLP solvers are presented.
We considered SHOT and BONMIN as decomposition-based and KNITRO as nonlinear BnB
solvers. The comparison is first performed for DiPOA, with a detailed analysis provided
against other MINLP solvers. Subsequently, the comparison is extended to include
DiHOA, and solution profiles are presented to assess the overall performance of the al-
gorithms. Both DiPOA and DiHOA algorithms are implemented within the SCOT framework
which will be discussed in the next chapter.

5.8.1 Implementation Details and Set-up

All the experiments were performed on a Linux machine with an Intel Core i5 2.50
GHz processor, with four physical cores and 16 GB of RAM. To perform linear algebra
operations required by the distributed NLP solver, SCOT uses Eigen 3.4 library. Moreover,
the MIP solver employed in SCOT is GUROBI 9.5.2 with an academic license. As for the
comparison with other MINLP solvers, GAMS 36.2 was selected as the optimization
platform. It should also be noted that to achieve a meaningful comparison, GUROBI is
selected as the primary MIP solver for all MINLP solvers considered in the benchmarks.
The absolute and relative gap for all algorithms and solvers are chosen to be ε = 1×10–5.
For the MINLP solvers included in GAMS, we chose optCA and optCR to have the same
value as ε.
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5.8.2 Numerical Evaluation of DiPOA

To evaluate DiPOA for the DSLogr problem, we generate N random local datasets
which are standardized to have zero mean and unit ℓ2 norm. The response vector Γ is
generated according to the logistic function as follows,

ΓΓΓ i ,ℓ = round

(︄
1

1 + exp(–θTxi ,ℓ)

)︄
, ∀ℓ = 0, . . . ,p,

We evaluate the DiPOA based on five main scenarios with different problem settings
and parameters. Each scenario consists of solving multiple instances of the DSLogR
problem. In the first scenario, SC-I, we consider a different number of total sample points
and evaluate DiPOA for the case where only SFP is available and also for the case where
both SFP and SoCut features are activated. In the second scenario, SC-II, we fix the
total number of sample points and change the number of decision variables. Finally,
in the last three scenarios, SC-III and SC-V, we compare fully-featured DiPOA with
MINLP solvers for relatively small, medium, and large problem instances. Each scenario
consists of different settings which are provided in Table 6. In this table, total-samples
refers to the number of data points, num-var and num-nodes denote the number of
variables and nodes, respectively.

Table 6 – Scenario settings

scenario total-samples num-var sparsity [%] num-nodes

SC-I [2k . . 50k ] 20 25 10
SC-II 50k 40 – 200 25 10

SC-III 10k 20 [10 . . 90] 10
SC-IV 100k 200 [10 . . 90] 10
SC-V 300k 300 [10 . . 90] 10

The numerical results from SC-I appear in Table 7. In this case, DiPOA is evalu-
ated according to two different settings. In the first setting (dipoa-sfp column), DiPOA
only generates linear cuts, and only SFP is activated, whereas, in the second setting
(dipoa-soc column), SoCuts can be generated. It can be seen in Table 7 that second-
order cuts can drastically improve the algorithm convergence in terms of wall-clock time
and the number of cuts. Moreover, we observe that as the number of all samples in-
creases, the number of FOC cuts and therefore the wall-clock time decreases. In other
words, a large number of sample points often lead to a smaller number of iterations,
however, with more computational complexity per iteration. Considering the centralized
architecture, although the number of iterations can be small, the computational burden
is larger than the distributed case since the entire dataset is used in the evaluation of
the objective function. This behavior can be seen in Figure 24 where the scalability of
the DiPOA is evaluated. This figure compares the wall-clock time between DiPOA and
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Table 7 – Numerical Results for SC-I (Varying Number of Samples)

dipoa-sfp dipoa-soc

m time nfoc mip nlp time nsoc mip nlp

2k 600 1510 439.39 160.60 0.947 20 0.79 0.14
6k 600 780 439.39 160.60 1.326 10 1.10 0.21

10k 336.141 430 246.16 89.97 1.591 10 1.32 0.26
14k 268.325 361 196.49 71.82 1.585 10 1.32 0.26
18k 186.343 270 136.464 49.87 1.681 10 1.40 0.27
22k 152.284 200 111.52 40.761 1.775 10 1.48 0.29
26k 147.808 180 108.23 39.56 1.814 10 1.51 0.29
30k 122.878 170 88.75 34.12 1.918 10 1.60 0.31
34k 120.662 160 87.15 33.50 1.886 10 1.57 0.31
38k 118.914 150 85.88 33.02 2.046 10 1.70 0.33
42k 86.67 110 62.60 24.06 1.874 10 1.56 0.30
46k 11.041 30 11.04 3.06 2.286 10 1.90 0.37
50k 11.413 30 8.24 3.16 2.598 10 2.17 0.42

Figure 24 – Comparison between DiPOA, BONMIN, KNITRO, and DICOPT

BONMIN, KNITRO, and DICOPT which are centralized MINLP solvers. Compared to
the centralized solvers, for the problem instances with a relatively small number of data
points (p ≤ 6k), DiPOA needs more time to provide the solution. In contrast, as we
increase the size of the dataset, DiPOA behaves more robustly and needs a smaller ex-
ecution time. Hence, DiPOA can scale well for problem instances with much larger data
sets. We also note that SHOT was able to successfully solve only the first instances (2k ,
6k , and 10k ) of problem SC-I, while for larger instances and other scenarios it reaches
the cut-off time of 600 seconds. For the first and second instances (where numbers
of total samples are 2k and 6k) the solution time is 57.86 and 286.63 seconds. For
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the third case with 10k as the number of total samples, SHOT converged in 536.10
seconds. Since SHOT failed to solve the larger problem instances within the considered
cut-off time, we omit its results in the figures and tables.

Table 8 provides the numerical results for SC-II. In this case, the number of
data points is fixed to be 50k and DiPOA is evaluated concerning a varying number of
variables, which runs with both SFP and SoCuts activated. These results show that
DiPOA is robust to the increase of variables.

The numerical results of SC-III are presented in Table 9. The experiment aims
to analyze the sensitivity of DiPOA for the number of non-zero elements in the solution
(bound κ). Since the problem size is small, the centralized solvers outperform DiPOA in
terms of execution time.

Finally, Table 10 presents the numerical results for medium and large-scale
scenarios (i.e., SC-IV and SC-V). In these scenarios, the centralized solvers were not
capable of providing a solution for the problem instances. The properties of the problem
instances are defined in Table 6 for each scenario.

Additionally, we investigate the impact of SoCuts and their event-triggered scheme
on the solution of the master’s problem. Figure 25 illustrates the impact on the upper
and the lower bounds in the context of the DSLogR problem. In particular, we allow

Figure 25 – The impact of the SoCuts and the event-triggered scheme.

DiPOA to perform 10 iterations for a small instance of the DSLinR problem with κ = 5,
θ = 10, and p = 2000. In Figure 25, purple circles indicate the lower bound and the
black squares show the upper bound generated by DiPOA. The red circle is the point
at which quadratic cuts are generated. As the figure depicts, the SoCuts improve the
convergence of the algorithm by inducing a higher lower bound. Moreover, the event-
triggered scheme prevents the algorithm from generating a high number of SoCuts. For
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Table 8 – Numerical Results for SC-II (Varying Number of Variables)
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example, in this problem instance, only one SoCut is generated, preventing the master’s
problem from becoming overly complex with the quadratic constraints. Although this
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Table 9 – Numerical Results for SC-III (Varying Number of Non-Zeros)
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procedure provides a better lower bound while controlling the complexity of the master’s
problem, it remains an unknown function of the problem data.

Finally, numerical results comparing DiPOA to the Centralized Outer Approx-
imation (COA) of (BERTSIMAS; KING, 2017b) are provided in Table 11. The same
settings from (BERTSIMAS; KING, 2017b) are adopted. As the table shows, the DiPOA
algorithm outperforms the centralized architecture and solves the problem instances in
significantly less computational time.
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Table 10 – Numerical Results for SC-IV and SC-V (Medium and Large Scenarios)

(a) SC-IV

κ time[sec] gap[%]

20 6.608 0.11
40 6.787 0.16
60 6.945 0.14
80 6.550 0.17
100 7.078 0.20
120 6.595 0.10
160 6.601 0.11
180 5.586 0.22

(b) SC-V

κ time[sec] gap[%]

20 18.699 0.03
60 18.424 0.05

100 18.598 0.06
140 18.402 0.11
180 17.618 0.092
220 18.785 0.097
240 18.582 0.095
260 18.201 0.093

Table 11 – Numerical Results Comparing DiPOA with Centralized OA for κ = 5.

total-samples num-var num-nodes DiPOA-time [sec] COA-time [sec]

100 10 4 0.077 < 1
1k 100 4 2.581 15
2k 200 4 3.298 16

5.8.2.1 Sparse Quadratically Constrained Quadratic Programming Problem

In this section, we provide numerical evaluation results for the SQCQP problem,
which is a SCO problem with quadratic objective and constraint functions, namely:

min
x∈Rn

N∑︂
i=1

(︃
1
2
xT Qix + qT

i x + di

)︃
(145)a

s.t .
1
2
xT Phx + cT

h x + rh ≤ 0, ∀h = 1,...,m (145)b

x ∈ Ω (145)c

∥x∥0 ≤ κ (145)d

In this experiment, two main scenarios with different problem sizes are considered. The
first scenario has n = 100 variables while the second has n = 200. In both scenarios, we
evaluate DiPOA according to a different number of nonzero elements κ. The numerical
results of the first scenario appear in Table 12. It can be noticed that, by decreasing
the degree of the solution sparsity, the optimal objective value also decreases. This
behavior is expected since, by reducing the sparsity of the solution, more variables
can appear in the solution and therefore the optimal objective approaches the value
of the dens problem (i.e., problem (112) without sparsity constraint). The number of
cuts and hence the execution time also changes depending on the sparsity of the
solution. In particular, as the number of nonzero variables κ increases, more iterations
are needed by the DiPOA algorithm to converge. However, this phenomenon occurs
until κ = κmax, where κmax is the largest number of nonzero variables for which the
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Table 12 – Numerical Results for SQCP with n = 100 Variables

κ objective-value rel-gap[$\%$] total-cuts time[sec]

5 10.994 0.131 30 4.64
7 8.601 0.143 80 14.96
8 7.457 0.142 180 45.388
9 6.378 0.146 200 57.519
10 5.141 0.146 270 94.68
20 –5.759 0.139 250 81.962
30 –15.411 0.144 90 21.986
40 –23.576 0.127 50 6.604
50 –29.733 0.144 50 9.554
60 –34.529 0.101 40 9.462
70 –37.885 0.122 30 8.921
80 –39.208 0.060 30 8.712
90 –39.595 0.054 30 8.699

Figure 26 – Objective value and wall-clock time for different values of κ for n = 100; the left axis shows
the behavior of the optimal objective value and the right axis represents the execution
time.

highest number of iterations is needed. For κ > κmax the complexity of the problem
decreases. The behavior of the objective value and also the solution time is illustrated
in Figure 26, according to the sparsity of the solution. For this problem instance, the
figure shows that κmax = 10, at which sparsity-level the wall-clock time is 94.68 s and
the total number of cuts is 270. Finally, the numerical results of the second scenario
are provided in Table 13. As mentioned before, in this case, we scale the problem and
set n = 200. The behavior of the objective value and the wall-clock time is illustrated
in Figure 27. As expected, a similar behavior emerges from the application of DiPOA,
however, a large computational time is needed in some instances.

We also compared DiPOA against Gurobi for solving the convex SQCQP. In
most problem instances, Gurobi (GUROBI OPTIMIZATION, 2020) achieved better per-
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Table 13 – Numerical Results for SQCQP with n = 200

κ objective-value rel-gap[$\%$] total-cuts time[sec]

5 11.001 0.14 240 104.768
10 4.816 1.34 810 600
20 –7.427 1.27 880 600
30 –19.397 0.11 740 543.268
40 –30.802 0.14 80 27.133
60 –50.985 0.14 20 8.021

100 –81.291 0.12 40 12.498
140 –97.308 0.05 50 26.952

Figure 27 – Objective value and wall-clock time for different values of κ for n = 200; the left axis shows
the behavior of the optimal objective value and the right axis represents the execution
time.

formance for the centralized case in terms of wall clock time, which is expected consid-
ering the communication and computing overhead of DiPOA. Regarding the distributed
setup, Gurobi like other centralized solvers cannot be directly applied because the
objective-defining data is private to each node and spread over the CN.

In this section, we evaluated the performance of DiPOA for DSLinR and SQCQP
problems. We considered 70 problem instances under different scenarios and settings.
According to the numerical experiments, DiPOA performance and efficiency were ac-
ceptable for both problems in most situations. The numerical results and comparison
with state-of-the-art MINLP solvers also showed that, for the conditions when distributed
computations are inevitable, DiPOA provides a reliable and optimal solution.

As a general conclusion, the separability of the optimization problem can be used
by distributed algorithms to speed up the computation by splitting the computational
burden among several processors. Essentially, each processor would be responsible
to solve a portion of the problem independent of other processors and in parallel. For
small-scale problems, however, a distributed algorithm might not necessarily outperform
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Table 14 – MINLP Solver Settings

Settings

solver algorithm name MIP solver NLP solver

SCOT DiPOA SCOT-MT GUROBI RHADMM
SCOT DiPOA SCOT-ST GUROBI RHADMM
SHOT ESH multiple-tree SHOT-MT GUROBI IPOPT
SHOT ESH single-tree SHOT-ST GUROBI IPOPT
BONMIN B-OA BONMIN-MT GUROBI IPOPT
BONMIN B-QG BONMIN-ST GUROBI IPOPT
KNITRO BnB KNITRO – KNITRO

centralized algorithms taking into account process synchronization and inter-process
communication. A distributed algorithm can be a suitable choice in scenarios where
either the problem is inherently distributed or large-scale. The former case refers to the
problems where the data is spread over a large network and data privacy matters. In this
case, because of the data privacy and the size of the network, it is not usually practical
to process the problem data in a central node. In the latter case, due to hardware
limitations, it is difficult (if not impossible) to process the entire problem data in a single
computational node and a distributed algorithm over multiple nodes can be useful.

5.8.3 Numerical Evaluation of DiHOA

This section presents the numerical evaluation of the DiHOA algorithm compared
to state of the art MINLP solvers as well as the DiPOA algorithm. We generate N random
local datasets for both DSLogR and DSLinR problems with zero mean and unit ℓ2 norm
for each column. We perform the numerical benchmarks based on different solver
settings by means of solution profiles to compare SCOT with several MINLP solvers with
different settings. Default settings were adopted for KNITRO as an NLP BnB solver. The
chosen settings for SCOT, SHOT, and BONMIN are reported in Table 14.

5.8.3.1 Benchmark Results

We considered seven benchmark scenarios containing 20 different problem
instances with different properties and settings. In each scenario, we generate 15
DSLogR and 5 DSLinR random problem instances with a different number of features
and sample points within a given range. Therefore the benchmark set consists of a
total of 140 problem instances. Moreover, each algorithm appearing in Table 14 is ap-
plied to solve all problem instances with 30 different maximum execution times limits,
starting from 0.5 to 50 seconds. Therefore, the total number of algorithm runs for each
scenario is 600, leading to 4200 algorithm executions for all scenarios. Table 15 repre-
sents settings for each benchmark scenario where nmin and nmax are the minimum and



Chapter 5. Distributed Outer Approximation for Sparse Optimization 113

Table 15 – Benchmark Settings for solution profiles

Scenario settings

scenario nmin nmax pmin pmax N np ptot

1 20 30 1000 2500 2 20 5000
2 20 30 1000 5000 2 20 10000
3 25 50 1000 5000 2 20 10000
4 25 100 1000 10000 4 20 40000
5 25 100 1000 20000 4 20 80000
6 25 100 1000 50000 4 20 200000
7 25 200 1000 50000 6 20 300000
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Figure 28 – Benchmark results for scenario 1.

the maximum number of features, pmin and pmax are the minimum and the maximum
number of data points for each computational node, np is the total number of problems,
and ptot is the total number of data points considering all computational nodes. We
assumed 80% and 90% sparsity for each scenario presented in Table 15. However,
since the number of variables is generated randomly for each problem instance, the
value of κ may vary. Nonetheless, to ensure the reproducibility of the numerical re-
sults, we fixed the random seed for each scenario. Figures 28-34 compare the solvers
SCOT, BONMIN, SHOT, and KNITRO with both single-tree and multiple-tree algorithms. The
comparison results for each scenario are shown as solution profiles consisting of two
different sparsity levels of the solution.

The benchmark results of the first three scenarios are depicted in Figures 28-
30 where small to medium size problem instances are considered. In both sparsity
levels, the DiPOA and DiHOA algorithms show better performance compared to other
MINLP solvers. It can be observed in Figure 30 that for larger problem instances the
performance gap between SCOT and other MINLP solvers increases.

Figures 31-34 depict the solution profiles for the scenarios 4-7 in which medium
to large problem instances are taken into account. In these scenarios, all MINLP solvers
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Figure 29 – Benchmark results for scenario 2.
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Figure 30 – Benchmark results for scenario 3.
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Figure 31 – Benchmark results for scenario 4.
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Figure 32 – Benchmark results for scenario 5.
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Figure 33 – Benchmark results for scenario 6.
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Figure 34 – Benchmark results for scenario 7.
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Table 16 – Computational results with different sparsity modeling strategies

Strategy CPU Time (s)

n Big-M SOS-1 Hybrid

40 0.0943 0.0993 0.0923
80 0.2741 1.6421 0.2399
120 0.5374 7.6315 0.6458
160 0.9063 21.688 0.9484
200 2.7449 44.673 2.9086

failed to solve the problem with the considered maximum execution time limit. Therefore,
we only provide solution profiles of DiPOA and DiHOA algorithms. According to the
solution profiles, the DiHOA algorithm is more efficient compared to DiPOA as the
performance gap between them is increasing for large problem instances. For example,
in scenario 7 with 80% of sparsity, DiHOA was able to solve 19 problem instances within
the given maximum execution time limit, whereas DiPOA only solved 10 instances.
According to the numerical experiments and solution profiles, the DiHOA algorithm
achieves better performance and efficiency in all problem instances. However, one
should keep in mind that SCOT is tailored for SCO problems which is not the case
for general-purpose solvers. The results also showed that for large and distributed
problems a distributed solver can provide an efficient and reliable solution.

5.8.4 Evaluation of Sparsity Modeling Strategies

We assessed the efficacy of the DiHOA algorithm by implementing methodologies
to model the sparsity constraint. We investigate three distinct strategies that were
previously presented: Big-M, SOS-1, and the hybrid approach, across a varying number
of features denoted by n and a fixed number of rows ptot = 10000, while limiting
the number of non-zero elements to κ = ⌊n

2⌋. The average computational time for
100 randomly generated DSLogR problems for distinct n appears in Table 16. The
table shows that as the problem size n increases, the computational time required to
solve the problems increases for all three strategies. However, the Big-M and hybrid
approaches require less computational time than the SOS-1 approach for all problem
sizes. Specifically, the Big-M approach has the shortest computational time across all
problem sizes, followed by the hybrid approach. These results suggest that for solving
the problem set considered in this chapter, the Big-M and hybrid sparsity modeling
strategies are more efficient than the SOS-1 strategy. However, the choice of strategy
may depend on the specific problem characteristics. For example, the SOS-1 strategy
may be more appropriate for problems with unknown Big-M values. If both SOS-1 and
Big-M constraints are present in the optimization problem, then a sophisticated MIP
solver, such as GUROBI, will avoid forming redundant constraints in preprocessing
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Table 17 – Computational time comparison of DiHOA and DiPOA with state-of-the-art
MINLP solvers to train a DSLogR model with the simulated electrical grid
stability data.

SCOT (s) MINLP Solvers (s)

κ DiHOA DiPOA SHOT-ST SHOT-MT BONMIN-
ST

BONMIN-
MT

KNITRO

2 3.591 6.236 17.83 16.13 2.064 12.67 17.01
4 3.031 7.415 71.69 47.96 5.211 51.37 61.74
6 9.940 14.22 95.06 43.21 20.77 32.09 46.71
8 20.86 36.97 67.53 34.71 13.13 21.63 11.04
10 3.922 9.256 39.89 32.07 11.25 4.743 7.851

while maintaining a tight bound in the optimization problem.

5.8.5 Real-world Dataset

This section evaluates the performance of SCOT algorithms in a real-world sce-
nario using a smart grid stability dataset to train a DSLogR model for binary classifi-
cation aimed at predicting the grid stability status. The dataset used here is obtained
from the UCI Machine Learning Repository (DUA; GRAFF, 2017) and is referred to as
the Electrical Grid Stability Simulated Data. The dataset contains 10000 observations
and 13 features, including variables such as the reaction time of participants, nominal
power consumed, and price elasticity. We refer the reader to (ARZAMASOV; BÖHM;
JOCHEM, 2018) for a more comprehensive dataset description. To leverage the bene-
fits of distributed machine learning, we adopted a partitioning strategy to distribute the
dataset over a network of four nodes, each containing 2500 observations. This data
distribution allows us to utilize the SCOT algorithm for training the DSLogR model.

We trained the DSLogR model using a range of values for κ. Subsequently, we
assessed the computational time of DiHOA and DiPOA against the MINLP solvers
mentioned in the preceding sections. The results are summarized in Table 17, which
presents the computational time of each algorithm measured in seconds. The results
provide evidence of the effectiveness of the DiHOA algorithm in handling real-world data.
It is evident that DiHOA outperforms general-purpose MINLP solvers, especially when
κ is large. However, it is noteworthy that general-purpose solvers perform relatively
well, especially when κ is small. This observation can be attributed to the fact that the
dataset used in this study is not as large as the synthetic dataset used in previous
sections. Additionally, we note that utilizing a distributed algorithm may not always
provide significant benefits, particularly when dealing with relatively small datasets.
However, a distributed algorithm may still be suggested if the dataset is inherently
distributed across multiple nodes.
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6 SPARSE CONVEX OPTIMIZATION TOOLKIT (SCOT)

In this chapter, we introduce Sparse Convex Optimization Toolkit (SCOT) and
its technical details. These details will include the architecture and design, main com-
ponents, implementation details, basic syntax, and usage of the toolkit. SCOT is an
open-source distributed optimization solver 1 that is designed to solve Sparse Convex
Optimization (SCO) problems over computational networks. It adopts a mixed-integer
approach that enables the identification of exact solutions to SCO problems. The SCOT

framework is designed to be modular and task-oriented, with most functionalities en-
capsulated in specific tasks. These tasks are executed in a sequence defined by the
algorithms, but the order of execution can also be modified at runtime. This approach
makes it easy to modify or expand the behavior of the solver by defining solution strate-
gies that include a list of specific tasks to be performed in either sequential or parallel
order. The algorithms proposed in this thesis are all implemented using a task-based
strategy, which is discussed in this chapter.

6.1 INTERNAL ALGORITHMS AND EXTERNAL DEPENDECSIES

SCOT is mainly designed based on the primal/dual strategy for solving convex
MINLP problem presented in the previous chapter. However, it also provides convenient
interfaces to access RH-ADMM and DiSGT algorithms introduced in Chapter 4 and 3 re-
spectively. A full list of algorithms implemented in SCOT is provided in Table 18. SCOT core
module is entirely written in C++17 and uses a variety of external dependencies that are
provided in Tabel 19. The first four libraries listed are optimization solvers which SCOT

interfaces. IPOPT is an interior point optimizer used to solve local nonlinear program-
ming problems, while Cbc is an open-source MILP solver. Gurobi, on the other hand,
is a commercial optimization solver that supports linear programming, mixed-integer
programming, and quadratic programming. OSQP is an operator splitting quadratic
program solver for convex optimization. The last three libraries listed are supporting
libraries for logging, formatting, and argument handling. spdlog is a fast C++ logging
library, fmt is a modern C++ formatting library, and Argh is a C++ header-only argument
handler library.

6.2 ARCHITECTURE

A high-level overview of SCOT architecture, its main layers, and components are
shown in Figure 35. As observed in the figure, the primary layers of the framework
are SCOTPY, SMCLI, SCOT Solver, and Computing Network, each of which consists of
different tools and components to build and solve the optimization problem. The layered
1 https://github.com/Alirezalm/scot

https://github.com/Alirezalm/scot
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Table 18 – SCOT Algorithms

Algorithm Description

DiPOA Multiple-tree algorithm for solving SCO problems.
DiHOA Hybrid multi-single tree algorithm for solving SCO problems.
RH-ADMM Distributed solver for solving convex sub-problems.
DiSGT Consensus augmented Langrangian method solve problem (30).
TN Truncated Newton’s Method for solving unconstrained local NLPs.

Table 19 – External Libraries Used in SCOT

Name Description

IPOPT Interior point optimizer to solve local NLPs.
CBC Open-source MILP solver
Gurobi Commercial MIP Solver
OSQP Operator Splitting Quadratic solver.
MPI Message Passing Interface for parallel computing

spdlog C++ logging library
fmt Modern C++ formatting library
Argh C++ argument handler library

architecture of SCOT leads to a highly modular framework that can be easily extended
by new features and algorithms. In the following, we describe each layer of SCOT and its
components.

6.2.1 SCOTPY

SCOTPY is the main API written in Python 3.8, which provides various modules
and classes to define the optimization problem and solver settings. This layer consists
of four components, namely, Problem Reformulation, Problem Parser, Solver Setting,
and Input/Output File generators. In principle, SCOTPY receives the problem input and
algorithm settings from the application code layer and, after parsing the input data and
settings, writes the optimization problem and settings in JSON format with a specific
naming convention. Moreover, according to the number of nodes given by the user, N
objective functions with different problem data are created and stored on the file system
as different JSON files.

Therefore, the resulting computation of this layer is to express the optimization
problem and solver settings in various JSON files that can be read by the subsequent
layers. Representing the optimization problem using files provides more flexibility since it
decouples the optimization model from the optimization solver. Therefore, it is possible
to write the optimization model in any language of choice and call the optimization
solver from a different programming language or framework. Coupling the optimization
model and the optimization solver through file formats is well-known in the optimization
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Figure 35 – SCOT Architecture

software industry and has been widely used for decades. We refer the interested reader
to (LEGAT et al., 2021) for more details.

6.2.2 SMCLI

SCOT MPI Command Line Interface (SMCLI) is the main layer utilized to directly
execute SCOT Solver according to different input and setting files. SMCLI can be used
directly without SCOTPY interface, however the problem definition using SCOTPY is more
appropriate. The Problem Validation component of SMCLI is responsible for validating
the problem input and settings files, providing suitable data structures containing the
optimization problem data for the SCOT Solver. Additionally, initializing computational
nodes and various software libraries used in SCOT Solver are among the responsibili-
ties of SMCLI layer.

6.2.3 SCOT Solver

At its core, the SCOT framework consists ofSCOT Solver layer which is responsible
to solve the optimization problem using a proper algorithm and settings. The main
components of this layer are MINLP Algorithms, NLP Algorithms, Optimization Models,
and Utilities which are discussed in this section.
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The NLP Algorithms component consists of various modules and classes to dis-
tributedly solve the primal problem (130) and deliver the primal solution to the MINLP
algorithms. Owing to its flexible and modular implementation, the NLP Algorithms com-
ponent can be easily extended by introducing user-defined and custom-distributed
convex optimization algorithms and solvers. In principle, this component requires the
solution of local NLP problems for which multiple open-source and commercial solvers
are available. At its core, NLP Algorithms consists of a sub-module, that provides a
flexible interface to third-party solvers that can solve local optimization problems. The
supported solvers are OSQP, IPOPT, and Gurobi. As a final note, the NLP Algorithms
component is called by all internal algorithms of SCOT and handles most of MPI communi-
cations and collective operations. More importantly, the quality of outer approximations
depends on this component since it provides feasible points around which nonlinear
functions are approximated.

One of the most critical components of SCOT Solver is the MINLP algorithms
component that implements Algorithm 4 and DiPOA. The MINLP algorithms com-
ponent consists of two main modules, namely dipoa, and dihoa, which are respon-
sible for implementing their corresponding algorithm. Because all the implemented
algorithms must manage and monitor outer approximations, the MINLP algorithms
component also includes an Cut Managers module. This module implements several
classes to support the necessary data structures that generate and store both first-
and second-order outer approximations. Moreover, the Cut Managers module imple-
ments the event-triggered schemes to improve the outer approximations’ quality and
switch from MultipleTreeSearch to SingleTreeSearch strategy. Among all classes,
the Cut Managers module consists of two important classes, namely CutStorage and
CutGeneration. CutStorage provides a simple way to validate and store the linear and
quadratic outer approximations. The primary responsibility of the CutGeneration class
is to generate necessary outer approximations from the information received from the
NLP Algorithms component. The MINLP Algorithm module also provides a flexible func-
tionality to interface third-party MIP solvers such as Gurobi and Cplex for solving the
MIP dual problem (126).

The model component’s primary responsibility is to generate a concrete internal
reformulation of the optimization problem to be used by algorithms. This component
consists of various classes to present different types of nonlinear objective functions
and linear and sparsity constraints. By accessing the model component, the algorithm

will be able to access the optimization problem data whenever necessary during the
computations.

Finally, the utilities module implements classes and functions to provide com-
monly required functionalities, such as low-level parsing, measuring the CPU time,
writing logs, constant parameters, exceptions, and file handling functions.
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6.2.4 Computing Network

This layer is responsible for presenting and managing the computational net-
work using a graph data structure and Message Passing Interface (MPI) library. The
computing network layer is in tight communication with the SCOT Solver layer since
all distributed algorithms use MPI for performing distributed computations and inter-
process communications.

6.3 DISTRIBUTED PROGRAMMING AND MESSAGE PASSING INTERFACE (MPI)

Taking into account the computer hardware structure available today, there ex-
ist three levels of parallelism that can be utilized. The lowest level of the hierarchy of
parallelism regards vectorization which supports the single instruction multiple data
programming style. In this case, a limited number of instructions can be performed per
CPU cycle in parallel. Most of the compilers of the high-performance programming lan-
guages such as C/C++ and FORTRAN support vectorization inherently. The next level of
parallelism consists of multi-threading, which allows the programmer to perform shared
memory parallel computations using different threads on a single machine. Finally, on
the highest level of the parallelism hierarchy, the Message Passing Interface (MPI) is
implemented (GROPP; LUSK; SKJELLUM, 1999) to allow distributed computations on
a distributed memory machine, such as high-performance computer clusters. As the
main benefit, MPI supports data-passing between various computing nodes, where
the local computations are performed. Considering that each computing node in MPI
can perform multi-threaded computations, it is possible to use MPI and multi-threaded
programming at the same time. This style of programming related to distributed com-
putation is called the hybrid programming paradigm. In this chapter, we implement the
DiPOA algorithm according to the hybrid programming style to take advantage of both
parallel computation styles. The parallel implementation is one of the most important
features of the RH-ADMM algorithm, which is used to solve the D-NLP sub-problems of
the DiPOA algorithm. It means that RH-ADMM renders the solution of the D-NLP prob-
lem fully decentralized for which modern CPU architectures can be utilized. In general,
based on the communication topology of the RH-ADMM algorithm, it is convenient to
think of RH-ADMM as a message-passing algorithm on a hypergraph, where each node
corresponds to a subsystem and hyperedges correspond to shared variables. As men-
tioned, a well-known protocol for implementing this form of communication structure
for parallel algorithms is the MPI. This section provides an overview of MPI and its
important operations. MPI is a message-passing library that supports parallel and dis-
tributed computations. For being independent of any programming language, MPI is
arguably the most widely used platform for high-performance distributed computing
nowadays. MPI is a software library for which various interfaces exist from various
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Figure 36 – MPI broadcast and scatter communication patterns.

programming languages, including C/C++ and Python. MPI adopts the Single Program,
Multiple Data (SPMD) programming paradigm to provide an efficient way to perform
distributed computing. Using the SPMD paradigm, each node of the computing network
runs the same program code, but it works with its own set of local variables and a
separate subset of the data. To perform efficient distributed computing, MPI provides
point-to-point and collective communications between the nodes of the computing net-
work. Point-to-point communications refer to sending and receiving data between two
different nodes, whereas collective communication is primarily performed among a set
of nodes. In the following, we review some of the standard collective operations.

6.3.1 MPI Broadcast

A broadcast is one of the basic collective communication strategies where one
process sends the same data to all processes. Figure 36(a) illustrates the broadcast
communication pattern.

6.3.2 MPI Scatter

A scatter is a collective routine that involves a designated root process sending
data to all other processes. The main difference between MPI scatter and broadcast is
that while the MPI broadcast sends the same piece of data to all other processes, the
MPI scatter sends chunks of an array to different processes, as shown in Figure 36(b).

6.3.2.1 MPI Gather and AllGather

In principle, the MPI gather is the inverse of the MPI scatter. Instead of distribut-
ing elements from one process to many processes, MPI gather takes elements from
many processes and brings them together in one single process. The MPI Allgather col-
lects all of the elements and then distributes them to all the processes. In the most basic
scenario, MPI allgather is an MPI gather followed by an MPI broadcast. For example,
Figure 37 illustrates the communication pattern in MPI gather and allgather.
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Figure 37 – MPI Gather and Allgather communication patterns
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Figure 38 – MPI Reduce and Allreduce Communication Patterns.

6.3.3 MPI Reduce and Allreduce

MPI reduce involves reducing a set of elements into a small set of elements via
a function. The MPI reduce takes an array of input elements from each process and
returns an array of output elements to the root process. In a complementary style of MPI
allgather to MPI gather, MPI allreduce will reduce the values and distribute the results
to all processes. MPI reduce and allreduce communication patterns are depicted in
Figure 38.

6.4 TASK-BASED PROGRAMMING AND IMPLEMENTATION DETAILS

In this section, we discuss task-based paradigm algorithm implementation that
SCOT uses to implement algorithm provided in Table 18. Task-based programming is
a programming paradigm that focuses on creating software components that can be
executed independently and concurrently. In the context of optimization solvers, this
means decomposing the underlying optimization algorithm into a series of small tasks
that can be executed in squentially or in parallel to solve the optimization problem.
The SCOT framework is designed to support task-based programming for algorithm
implementation. The framework is composed of several task classes, each of which
is responsible for a specific task in the optimization process. These classes include
tasks such as solving primal and dual problems, algorithm termination, timing and so
on. Some of the important tasks implemented in SCOT is provided in Table 20.
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Table 20 – Some of SCOT Task Classes and Descriptions

Task Class Name Task Description

TaskAddDualSolution Adds a dual solution
TaskAddLinearOuterApproximation Adds a linear outer approximation

to the dual problem
TaskAddQuadraticOuterApproximation Adds a quadratic outer approxima-

tion to the dual problem
TaskCheckDuration Checks if the algorithm has

reached its maximum time limit
TaskCheckHybridEvent Checks if a hybrid event has oc-

curred
TaskCheckSocEvent Checks if a second-order cone

(SOC) event has occurred
TaskCheckTerminationGap Checks if the optimality gap has

fallen below a specified threshold
TaskCreateMultipleTreeDualProblem Creates a multiple-tree dual prob-

lem
TaskDistributedNlpSolution Solves the primal problem
TaskInitializeMultipleTreeDualSolver Initializes the solver for the multiple-

tree dual problem
TaskInitializeNewIteration Initializes a new iteration of the

solver
TaskInitializeSingleTreeDualSolver Initializes the solver for the single-

tree dual problem
TaskSolveDualProblem Solves the dual problem
TaskSolveSingleTreeDualProblem Solves the single-tree dual prob-

lem

Each task class inherits from the TaskBase base class, which includes four meth-
ods: activate, deactivate, initialize, and execute. These methods enable SCOT to
activate, deactivate, initialize, and execute any task as needed. This approach results
in a more modular and flexible algorithm implementation, as tasks can be manipulated
at runtime. Thus, by utilizing various combinations of task classes, SCOT can implement
a range of algorithms. In order to achieve this, SCOT defines a task queue for each algo-
rithm, which specifies the sequence of tasks to be executed. The main algorithm loop
functions as a task-scheduler, responsible for managing and executing the tasks, while
ensuring that the dependencies between them are satisfied. This modular approach
not only facilitates algorithm customization, but also enables efficient parallelization
of the optimization process, potentially leading to significant speedups. Furthermore,
the SCOT framework provides an easy way to customize the optimization process by
allowing users to define their own tasks or modify existing ones. This flexibility allows
users to tailor the optimization process to their specific needs, such as incorporating
problem-specific knowledge (e.g. user-cuts) or implementing new optimization algo-
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rithms. Moreover, SCOT implements various classes to control the execution of the
algorithms. These classes are accessible by the tasks classes and provide necessary
information about the progress of SCOT algorithms. Table table:commons represents the
common classes used by SCOT tasks and their description.

Table 21 – Some of SCOT Task Classes and Descriptions

Common Classes Description

Environment Solver Container
Results Holds information of optimization progress
Report Reports algorithm data
Timer Controls the execution time of differet com-

ponents
PrimalProblem Holds data structures of primal problem.
DualProblem Holds data structures of dual problem.
Model Represents optimization problem (112)
MessagePassingInterface Performs MPI operations

The Envorinmet class is a container for a collection of SCOT objects that share
common settings. By using Envorinmet class, SCOT allows for more flexibility in terms of
changing solver settings for different parts of a program or for different threads running
in parallel. It also enables more efficient use of system resources by allowing multiple
models to share the same environment. Each task in SCOT can utilize the shared
classes and objects provided by the Environment class to perform the necessary com-
putations. This allows for a more efficient and organized way of solving optimization
problems, as each task can access and modify the necessary data structures without
the need for redundant computations or data duplication. By sharing the environment
among different tasks, SCOT can significantly reduce the memory footprint and compu-
tational time required for optimization.

6.5 PROBLEM REPRESENTATION AND SOLVER OPTIONS

SCOT has its own parser which enables it to read problems in JSON format. This
file contains essential information about the problem class that SCOT needs to solve. It
specifies the dataset names and their addresses where they are stored, as well as the
objective function, constraints, and variables.

The solver options are essential to customize the solving process in SCOT. These
options are provided in a text-based pair-value format, where each option is specified
in the form of option=value. The options are organized into different categories based
on their functionalities, such as Algorithms, TerminationCriteria, and Logging. For
example, the option Algorithms.SingleTree belongs to the Algorithms category and
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determines whether the SingleTree algorithm should be used during the solving pro-
cess.

Apart from Boolean options like Algorithms.SingleTree, there are other option
types such as string, float, and integer-valued options. These options allow the user
to specify various aspects of the solving process, such as the maximum number of
iterations, the search strategy to be used, and the log file name. The solver options
and their corresponding values are documented in a configuration file with a *.cfg

extension. This file is used to provide default values for the solver options, which can
be overridden by command-line arguments or environment variables. The configuration
file makes it easy for users to modify the default settings and experiment with different
options without changing the solver code.

6.6 FEASIBILITY PUMP AND INFEASIBILITY DETECTION

By default, SCOT does not utilize the SFP algorithm. However, it can be enabled
by setting the Algorithms.SFP.Level option to a value of 1 or 2. The Algorithms.SFP

option has three levels that can be configured. A value of 0 indicates that the SFP
algorithm will not be utilized at all. A value of 1 means that a centralized SFP algo-
rithm will be employed, where the objective function in the SFP relaxation problem
(140) is ignored. On the other hand, a value of 2 indicates that a distributed SFP al-
gorithm will be utilized to solve the mixed-integer linear programming problem. If an
optimization problem involves nonlinear constraints, the SFP method described in Al-
gorithm 5 may encounter difficulties in converging. To address this issue, SCOT offers
the Algorithms.SFP.MaxTimeLimit option, which allows users to set a maximum time
limit for the SFP algorithm to run. By setting this option, SCOT will continue running the
SFP algorithm for the specified time which can be particularly useful in cases where
the optimization problem is complex and may require more time to converge due to the
presence of nonlinear constraints.

Moreover, SCOT utilizes infeasibility detection when solving an optimization prob-
lem. However, if the problem only involves the sparsity constraint, this feature can be
disregarded. To disable infeasibility detection in such cases, the Algorithms.Primal.

InfeasibilityDetection option can be set to a value of 0. By disabling infeasibility
detection, SCOT can potentially achieve faster computation times in scenarios where
the sparsity constraint is the only constraint present.

6.7 MIP AND DISTRIBUTED SUB-SOLVERS

SCOT extensively depends on subsolvers in its primary algorithms, with the ma-
jority of the workload being handled by MIP and distributed NLP solvers. To solve the
MIP subproblems, SCOT relies on third-party solvers such as GUROBI and Cbc. On
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the other hand, the distributed NLP solver, which is based on the RH-ADMM algorithm,
is implemented as a separate module within the framework. SCOT offers interfaces for
both MIP and distributed NLP solvers, which are discussed in this section.

6.7.1 MIP Solver

Currently, SCOT is capable of interfacing with two solvers: the commercial solver
GUROBI, and the open-source solver Cbc. The MIP solver can be selected by setting
the Dual.Solver option. However, it is important to note that Cbc does not support
quadratic terms in the constraints. As a result, linear outer approximations are the
approximations that are used in the algorithms. Furthermore, the interface to Cbc does
not support callbacks. Therefore, if Cbc is selected as the default MIP solver, the single
tree search strategy is disabled by default. SCOT automatically passes on some relevant
algorithmic options to the mixed-integer linear programming (MIP) solvers, including
the number of threads, absolute and relative gap, and time limits. Additionally, users
can specify a range of solver-specific parameters, which are documented in the SCOT
manual.

6.7.2 Distributed NLP Solver

SCOT provides users with easy access to the RH-ADMM module, which is
specifically designed to solve distributed nonlinear programming (NLP) problems. This
module is fully integrated into the SCOT framework and can be accessed through the
Primal.Solver category. Users can customize the RH-ADMM algorithm by specify-
ing various options, such as the local NLP solver to be used. For example, if a user
wants to use IPOPT as the local NLP solver, they can set the value of Primal.Solver.
LocalSolver to "ipopt".

6.8 TERMINATION

By default, SCOT is terminated based on the relative and absolute objective gaps,
which are calculated as follows:

Gabs = Pb – Db

Grel =
Pb – Db

|Pb| + 10–8

(146)

Here, Pb represents the best primal objective value found so far, while Db represents the
best dual bound provided by the dual problem. The termination criteria can be modified
by changing the values of Termination.RelativeGap and Termination.AbsoluteGap

options. These options control the relative and absolute optimality gap values, respec-
tively. Additionally, SCOT offers options for termination based on maximum iteration and
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time limits, which can be set using Termination.TimeLimit and Termination.IterLimit.
The behavior of the iteration limit differs depending on whether the single or multiple
tree algorithms are used. In the case of multiple tree algorithms, the iteration limit is
counted as the number of iterations that the MIP solver is called. On the other hand,
in the single tree case, an iteration is considered as whenever the lazy callback is acti-
vated, indicating that a new integer feasible solution has been found. It is worth noting
that for the same problem, the number of iterations is often much higher in the single
tree case, but the solution time per iteration is often shorter since NLP subproblems
are not solved at each node of the BnB tree.

6.9 RESULTS AND OUTPUT

After the solution process, the results and statistics are provided in a JSON format.
For debugging purposes, SCOT offers an option called Output.Debug.Enable, which
allows the user to specify a directory for storing intermediate files. These files can
provide valuable insights into the solution process and help identify any issues that may
arise during computation. Alternatively, the user can choose to store these files in a
default temporary directory. To further enhance user control, SCOT allows customization
of the amount of output displayed on the screen or written to the log file during the
solution process. This feature enables the user to focus on relevant information, such
as errors or warnings, and avoid cluttering the display with excessive data. By providing
these options, SCOT ensures that users have the flexibility and transparency necessary
to optimize their workflows and achieve optimal results.

6.10 BASIC SYNTAX AND USAGE

In this section, we present an illustrative example to show how SCOT Python API,
SCOTPY, is used to solve a distributed sparse logistic regression problem with random
data. To do so, we first import the required classes from SCOTPY as the following code
snippet shows,

from scotpy import (AlgorithmType , ProblemType , ScotModel , ScotPy ,
ScotSettings

)

Listing 6.1 – Import statement of SCOT Python API

Here ScotPy is the main class that executes SCOT for a given problem and set-
tings defined by ScotModel and ScotSettings, respectively. The AlgorithmType and
ProblemType classes determine what problem class is solved and which algorithm will
be used. In order to create the optimization problem and SCOT settings, the following
code snippet can be used,
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# Create a classification dataset with 1000 rows and 20 columns dataset ,
res = make_classification(n_samples = 1000, n_features = 20)
scp = ScotModel(problem_name = "logistic_regression", rank = 0, kappa =

5, ptype
= ProblemType.CLASSIFICATION)

# Set problem data with normalization
scp.set_data(dataset , res , normalized_data = True)

# Create corresponding files that represent the optimization problem.
scp.create ()

scot_settings = ScotSettings( relative_gap = 1e-5, time_limit = 100,
verbose = True , algorithm = AlgorithmType.DIHOA)

Listing 6.2 – Problem definition and settings

where make_classification function, imported from Python scikit-learn library, is
used to generate a random classification dataset. The ScotModel object is then created
by a given problem name, MPI rank, number of nonzeros, and problem type. The solver
settings can be defined by creating an object from ScotSettings class. We note that
by executing MPI, the above code snippets are simultaneously executed by each node
of the network. Hence, each node can use its own problem data. Finally, we solve the
optimization problem by using the following code,

solver = ScotPy(problem , scot_settings)
status_code = solver.run()

Listing 6.3 – SCOT Execution

where ScotPy class is responsible for creating a solver object for a given problem
and settings. By executing the run method of ScotPy, MPI execution with N nodes is
started.

6.11 CONCOLUSION

In conclusion, this chapter has provided an overview of the SCOT solver and
its technical details, including its architecture, basic syntax, and features. The modular
design of SCOT allows for easy modification of existing algorithms and implementation
of user-defined algorithms to solve SCO problems. Furthermore, the use of MPI as the
main library allows for efficient distributed and parallel computation, which is essential
in solving distributed optimization problems. Overall, the SCOT solver is a optimization
tool that can be used across a wide range of applications.
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7 FINAL REMARKS

This thesis proposed a distributed optimization framework and dedicated soft-
ware tools designed to solve SCO problems across a network of computational agents.
Within this setting, each agent is only aware of a portion of the optimization problem,
while sharing the same decision vector with other agents. The following sections sum-
marize the main accomplishments and findings from each chapter in the thesis and
some future research directions.

7.1 CONCLUSIONS

Chapter 3 introduced DiGST as an initial algorithm. DiGST is a fully distributed
approach with inexpensive computational iterations that splits the SCO problem into
a distributed unconstrained convex optimization and a sparsity projection step. The
sparsity projection step directly addresses the sparsity constraint and the distributed
computation is performed by means of the gradient tracking algorithm. As a result,
the DiGST only relies on local computation and communication and respects the data
privacy in the network. However, despite these strengths, DiGST is not well-suited for
large-scale applications due to difficult penalty parameter tuning and an inability to
handle general linear and/or nonlinear constraints.

Motivated by the limitations of DiGST, we proposed a framework built upon
MINLP and large-scale convex optimization. This framework consists of different dis-
tributed algorithms, heuristics, and software tools (SCOT), each of which was intro-
duced in a dedicated chapter. Chapter 4 introduced the RH-ADMM algorithm as the
first component of the framework. RH-ADMM is a distributed algorithm that can effi-
ciently solve large-scale convex optimization problems with coupling constraints. Its
development was crucial because the subsequent algorithms in the framework rely
heavily on RH-ADMM to solve convex subproblems in a distributed manner.

Built upon RH-ADMM and the multiple-tree OA algorithm, Chapter 5 first intro-
duced the DiPOA algorithm which is capable of solving solves SCO problems distribut-
edly. DiPOA was the first algorithm that handle large-scale SCO problems with both
linear and nonlinear constraints by taking advantage of the multi-core architecture of
modern processors. To improve DiPOA performance, we introduced the DiHOA al-
gorithm that is built upon DiPOA and LP/NLP BnB algorithms. The DiHOA algorithm
constructs an initial BnB tree with a sufficient number of second-order outer approxi-
mations introduced in the root of the tree and lazily introduces outer approximations
by interrupting the BnB tree when a feasible-integer dual solution is found. The lazy
outer approximations are distributedly generated by using the RH-ADMM algorithm
through callbacks. The single-tree strategy leads to a significant improvement in the
DiPOA algorithm as the numerical benchmarks showed. In addition to the algorithms,
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the SFP algorithm was introduced to warm-start the DiPOA and DiHOA algorithms,
and an event-triggered cut-generation scheme and practical infeasibility detection were
proposed to improve solution quality and reduce the number of iterations. Based on the
numerical benchmarks provided in Chapter 5, we found that the distributed algorithms
proposed in this thesis, namely DiPOA and DiHOA, outperform existing centralized
MINLP solvers in terms of solution quality and scalability.

In Chapter 6, we presented SCOT, a novel distributed software framework that
implements the distributed optimization framework proposed in this thesis. To the au-
thor’s knowledge, SCOT is the first software tool capable of handling SCO problems
in distributed computing environments. SCOT utilizes MPI technology to facilitate par-
allel and distributed computations and can be used in high-performance computing
platforms. SCOT implementation is highly adaptable and modular, allowing users to
incorporate their own custom-distributed optimization algorithms and solvers.

7.2 FUTURE WORKS

The results presented in this thesis demonstrate the potential of SCOT and its
algorithms to solve SCO problems that were previously considered unsolvable due to
their size or distributed nature. Future research in sparse optimization has significant po-
tential to be continued, particularly in SCO applications where distributed solutions are
essential. In this section, we provide an overview of several crucial research directions
in SCO.

• Development of more efficient algorithms: While SCOT algorithms enabled
solving previously intractable problems, they can still be computationally in-
tensive. Future research can focus on the development of more efficient
distributed optimization algorithms.

• Asynchronous parallel updates: SCOT algorithms use synchronous updates
to perform some certain iterations such as lazy callback updates. Future
research can explore how the SCOT algorithms can be used by means of
asynchronous updates.

• Theoretical analysis of the DiSGT algorithm to derive a closed-form formula
for calculating the penalty parameter ρ that ensures convergence.

• Extend large-scale mixed-integer linear optimization methods, like branch
and price algorithms, to the distributed setting to enhance the scalability of
DiPOA and DiHOA algorithms.

• The design and development of problem-specific lazy cutting planes to tighten
the problem formulation and reduce the number of nodes in the DiHOA algo-
rithm.
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• Investigation of MINLP primal heuristics and their applications in SCO prob-
lems.

• The investigation of alternative sparsity constraint modeling techniques such
as perspective formulation. This technique involves the reformulation of spar-
sity constraint by means of perspective functions that incorporate. The result-
ing optimization problem can then be formulated as a convex MINLP problem
whose distributed solution can be studied.

In conclusion, this thesis highlights the potential of distributed SCO problems, and
its implications for future research are vast and diverse. The ongoing exploration of
this area has the potential to address fundamental challenges in various fields, from
statistics and machine learning to control engineering and power systems, and beyond.
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