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RESUMO

Sistemas vibro acústicos complexos contemplam grande parte dos designs de engenharia em
várias áreas de produção e transporte industriais e tecnológicas atualmente, e certamente
em atividades futuras que permearão nossa sociedade. Tais sistemas são compostos de
diversos componentes físicos com diferentes níveis de complexidade e geometria irregular.
Para compreender e controlar o ruído e vibração desses sistemas complexos, múltiplas
técnicas analíticas e numéricas foram desenvolvidas para simulá-las e analisá-las. Este
trabalho busca apresentar uma visão global com comparações e análises para alguns destes
procedimentos consagrados de modelagem e incrementa a discussão com uma técnica
numérica nova adicional para problemas de média e alta frequência, com o objetivo de
realçar competências e desvantagens específicas de cada método, orientando onde cada um
é mais indicado para uso. Os métodos consagrados apresentados são: Método de Elementos
Finitos (FEM), o qual é a referência principal da dissertação, Análise Estatística Energética
(SEA) para problemas de alta frequência, e o método Híbrido FE-SEA para interações de
média frequência. O método novo é uma estrutura genérica de fluxo de potência, baseado
na relação de reciprocidade de campo difuso, permitindo que os subsistemas estatísticos
sejam modelados diretamente de modelos de elementos finitos tradicionais ou periódicos.
Isto abre a oportunidade para analisar estruturas complexas como subsistemas estatísticos,
e apresenta um forte competidor para SEA e Híbrido FE-SEA para, respectivamente,
problemas de média e alta frequência. Os métodos e estruturas foram analisados em
alguns casos numéricos, nos quais, em cada caso, suas competências e robustez foram
exploradas. A abordagem de Monte Carlo com Método de Elementos Finitos foi utilizada
para representar a solução de referência. Resultados exibiram seus distintos custos de
processamento computacional e quantidade de informação considerada nas soluções. A
nova estrutura demonstrou quando flexibilidade e resultados robustos em comparação com
métodos consagrados de análise de sistemas vibro acústicos em ambos os problemas de
média e alta frequência, demonstrando grande potencial para futuras aplicações.

Keywords: Método de Elementos Finitos. Análise Estatística Energética. Método Híbrido
FE-SEA. Estrutura genérica de fluxo de potência. Custo computacional.



RESUMO EXPANDIDO

Introdução

Sistemas vibro acústicos em indústrias de engenharia (como por exemplo, automotiva,

aeroespacial e marinha) são analisadas através do uso de múltiplos método numéricos. A

aplicações a ser exploradas guia predominantemente a escolha do método a ser utilizado

para a análise. A configuração ou nível de complexidade do sistema são também aspectos

que conduzem o uso de um método específico ou uma combinação de múltiplos. Por mim,

apesar de um método específico ser capaz de ótimos resultados, o custo de processamento

requerido pelo método pode ser inviável para o contexto e, consequentemente, não ser

adequado para a tarefa.

Normalmente, estes aspectos mencionados são relacionados com o espectro de fre-

quência adotado para a aplicação: para análises em baixa frequência, menos modos são

representados, resultando em menos custo computacional e em uma deformação mais

espacialmente e estatisticamente coerente. Métodos como Elementos Finitos (MEF ou

FEM) para aplicações estruturais e Elementos de Contorno (MEC ou BEM) para acústicos

demonstram ótima performance, já que malhas menos densas são necessárias para essas

faixas de frequências. Esses métodos são também capazes de descrever o maior nível de

detalhamento para a configuração do sistema. Para os casos de análise em alta frequência,

a deformação altamente incoerente e maior concentração de modos demanda do modelo

um expressivo detalhamento do sistema. Abordagens como Análise Estatística Energética

(AEE ou SEA) se tornaram uma importante alternativa para esse tipo de cenário, já

que descrições de média espacial e conjunto feitas no método servem como uma aproxi-

mação adequada para o campo difuso incerto produzido na deformação do sistema. Além

disso, essas descrições são obtidas por formulações analíticas, resultando em um custo de

processamento reduzido.

Se problemas de média frequência são considerados (quando deformações com com-

primentos de ondas pequenos e grandes estão presentes ao mesmo tempo em diferentes

componentes do sistema), o método padrão que presenta uma ótima performance é o

método Híbrido FE-SEA, o qual conecta o equilíbrio dinâmico do sistema com um modelo

de fluxo de potência. Isto é elegantemente idealizado com o uso da relação de reciprocidade

entre a radiação do campo direto e o carregamento reverberante difuso, o qual permite



que o campo reverberante difuso dos components sejam diretamente calculados pela

impedância do campo direto no seu contorno. Além disso, a maioria das implementações

do método em softwares comerciais assumem que deformações em campo difuso sejam

consideradas de serem espacialmente e estatísticamente incoerentes, resultando em uma

redução computacional enorme, já que permite o modelo de fluxo de potência seja calculado

pelas formulações robustas e analíticas já consagradas de SEA.

Apesar dessas formulações provarem de serem aproximações excelentes para as de-

scrições do campo difuso, o raio de possíveis configurações de serem descritas é limitado

apenas no espectro de condições elementares. Isto é uma consequência dessas formulações

serem analíticas, as quais são incapazes de obter soluções conhecidas para deformações

consideravelmente complexas. Por este motivo, os componentes irregulares que se as-

sumem deformações com comprimento de onda pequeno no método Híbrido FE-SEA (e

em SEA também) são divididos em mútiplos subcomponentes/subsistemas elementares.

Normalmente, os softwares comerciais oferecem um conjunto de opções para possiveis

configurações de subsistemas: cavidade acústica, placas planas e curvadas são exemplos

comuns.

Geralmente, estes componentes irregulares não apenas divididos, mas também con-

sideravelmente simplificados para garantir uma mínima quantidade de modos em cada

subsistema. Esta simplificação pode implicar em perca de importantes informações so-

bre a deformação do subsistema e, consequentemente, uma descrição genérica para os

componentes do sistema se torma atrativa. Isso é obtivel com o uso de um modelo de

elementos finitos desses components. No caso de um modelo períodico de elementos finitos,

a impedância do campo direto pode ser obtida através das curvas de dispersão. Já se um

modelo comum de elementos finitos é utilizado, técnicas de média de conjunto podem ser

aplicadas para calcular a impedância do campo direto. Estas impedâncias são utilizadas

para modelar a troca de energia entre os componentes do sistema, porem a potência

dissipada por estes componentes se mantém sendo calculada analíticamente tanto no

método Híbrido FE-SEA quanto em SEA. Ideias e formulações iniciais para uma descrição

genérica e numérica para a potência dissipada já foram definidas e exploradas neste

trabalho. Estas formulações já foram anteriormente aplicadas e avaliadas em problemas de

alta frequência (neste contexto, esse novo método é denominado de "Numerical SEA") e

mostraram resultados robustos e encorajadores.

No caso de terem componentes no sistema vibrando em altos comprimentos de



onda, além dos vibrando em baixo comprimento de onda, uma formulação híbrida é

aplicada ao novo método (neste contexto, esse novo método é denominado de "Generalized

Hybrid FE-SEA" e o "Numerical SEA" acaba se tornando um subcaso deste híbrido). A

implementação necessária para o método híbrido também é apresentada neste trabalho e

possui a capacidade de estender a aplicabilidade dessas análises de sistemas vibroacústicos

por descrever mais precisamente os subsistemas e junções com configurações irregulares

em média e alta frequência com custo computacional competitivo.

Objetivos

Este trabalho tem como objetivo a avaliação da perfomance dos métodos consagrados

(FEM, SEA e Híbrido FE-SEA) em análise vibroacústica em cenários específicos, permeando

desde configurações elementares para irregulares, explorando suas capacidades e limitações.

Este trabalho também explora um novo método generalizado, o qual foi apenas aplicado

para problemas de alta frequência, e desenvolve além sua aplicabilidade para interações

de média frequência, apresentando a devida implementação numérica necessária para um

modelo eficiente e robusto.

Metodologia

A avaliação dos métodos consagrados e do método novo (tanto o híbrido e de alta

frequência) foi feita a partir da modelagem de alguns casos específicos, sendo estes: um caso

simples e clássico de média frequência, um caso mais complexo de média frequência (saindo

do escopo elementar das configurações do sistema), um caso simples de alta frequência

(fuselagem) e um caso de sistema com configuração irregular (parte inferior de um carro).

Deixando claro cada uma das características de cada método em cenários bem distintos.

Foi definido um método de referência para qualificar a performance dos métodos na

modelagem dos casos. Este método se baseia em combinar FEM com uma abordagem

estatística de conjunto, assim conseguindo abranger todos os possíveis casos com grande

acurácia, porem ao custo computacional excessivo (o que não é um problema se o método

é apenas uma referência). A abordagem utilizada neste método de referência é denominada

de FE Monte Carlo. A implementação dos métodos foi feita a partir do uso do software de

simulação VAOne. Os métodos FE Monte Carlo e o novo generalizado necessitaram de

pos-processamentos no software Matlab para a implementação do conjunto estatístico e



formulações definidas, respectivamente.

Resultados e Discussão

Para problemas de média frequência, um conjunto de amostras e uma malha densa são

requisitados para um definição robusta de componentes específicos do sistema. Para casos

que consistem exclusivamente de configurações elementares, como propriedades materiais

homogêneas e isotrópicas com geometria bem comportada, as formulações analíticas do

método Híbrido FE-SEA são capazes de calcular uma caracterização robusta do campo de

onda. Apesar do método generalizado também conseguir tal façanha, ele demanda um custo

computacional bem superior para um sistema tão simples. Já em casos mais complexos, as

descrições generalizadas do novo método se tornam necessárias para obter um resultado

robusto. Em relação aos casos de alta frequência, a mesma lógica de resultados é obtida:

para casos elementares, SEA com suas formulações analíticas é o método recomendado,

já para casos mais complexos, o método generalizedo com suas formulações numéricas se

torna necessário para uma modelagem robusta.

Considerações Finais

Em resumo, a ideia extraída na análise numérica feita neste trabalho foi que nenhum

método vibro acústico específico possui uma performance ótima para todo cenário possível.

Isto normalmente vai depender nas característias do sistema e no contexto da análise. A

dissertação conseguiu presentear algumas orientações relacionadas à escolha do método

mais adequado a ser utilizado em alguns casos específicos. Claramente, terão casos aonde

nenhum método apresentarão a performance desejada. Neste cenário, as vantagens e

desvantagens deles devem ser ponderadas. O método novo generalizado apresentou uma

ótima performance tanto em problemas de média como de alta frequências. Apesar disso,

ele só foi avaliado em sistemas estruturais, então um sistema que contém também cavidades

acústicas é de principal interesse para futuras análises. O que resta também é desenvolver

formulações que abranjam tais subsistemas e junções.

Palavras-chave: Método de Elementos Finitos; Análise Estatística Energética; Método

Híbrido FE-SEA; Estrutura genérica de fluxo de potência; Custo computacional.



ABSTRACT

Complex vibro-acoustic systems contemplate most of the engineering designs in several
important industrial and technological areas of production and transportation at present
days, and certainly will be on future activities permeating society. Such systems are
composed of diverse physical components with different degrees of dynamic complexity
and irregular geometries. To understand and control the noise and vibration from these
complex systems, multiple analytical and numerical frameworks were developed to model
and analyze them. The present work presents an overview with comparisons and evaluations
for some of these established modelling methods and increments the discussion with an
additional novel numerical framework to mid and high frequency problems, with the aim
of highlighting specific features and limitations for each method, clarifying where each
one is most suitable for use. The established frameworks and methods presented are:
Finite Element Method (FEM), which is the main reference result of the paper; Statistical
Energy Analysis (SEA) for high frequency problems; and the Hybrid FE-SEA Method
for mid frequency interactions. The novel procedure is a general power flow framework,
based on the diffuse field reciprocity relationship, allowing statistical subsystems being
modeled directly from either standard or periodic FE models. This opens the opportunity
to analyze complex structures at mid and high frequencies with increased precision and
lower computational expenses, and presents a powerful competitor to SEA and Hybrid
FE-SEA in, respectively, mid and high frequency problems. The methods and frameworks
were evaluated in multiple numerical examples, in which, in each case, their modelling
capabilities and reliability were explored. A FE Monte Carlo approach was used to represent
the reference solutions. Results exhibited their distinct computational processing costs and
detail amount considered on solutions. The novel framework showed great flexibility and
reliable results in comparison to the established Vibro-acoustic analysis procedures for
both mid and high frequency problems, exhibiting great potential for future applications.

Keywords: Finite Element Method. Statistical Energy Analysis. Hybrid FE-SEA Method.
General power-flow framework. Computational expense.



LIST OF FIGURES

Figure 1 – Applications to vibro-acoustic systems . . . . . . . . . . . . . . . . . . 28

Figure 2 – (a) Continuous and (b) discretized system. . . . . . . . . . . . . . . . . 33

Figure 3 – Beam components and wavefields . . . . . . . . . . . . . . . . . . . . . 36

Figure 4 – Degrees of freedom used to describe the (a) subsystem, the junction

between (b) and (c) subsystems, and the (1) excitation on the (c)

subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 5 – Power-flow balance for a statistical subsystem . . . . . . . . . . . . . . 42

Figure 6 – Representation to which FE nodes the respective degrees of freedom

are associated with. The jth and kth subsystems exhibited represent

connected subsystems to the ith one. . . . . . . . . . . . . . . . . . . . 48

Figure 7 – Plate on x-y plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 8 – Plate on arbitrary plane . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 9 – An in-plane mode of an arbitrary plate (colors related to out-of-plane

displacement) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 10 – An out-of-plane mode of an arbitrary plate (colors related to out-of-plane

displacement) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 11 – Relationship between methods and softwares . . . . . . . . . . . . . . . 76

Figure 12 – Novel method’s process flowchart . . . . . . . . . . . . . . . . . . . . . 77

Figure 13 – First case - Co-planar plates and a beam . . . . . . . . . . . . . . . . . 78

Figure 14 – Excited plate’s energy results in the first case . . . . . . . . . . . . . . 79

Figure 15 – Beam’s energy results in the first case . . . . . . . . . . . . . . . . . . . 80

Figure 16 – Receiver plate’s energy results in the first case . . . . . . . . . . . . . . 81

Figure 17 – Receiver plate’s energy results with lumped wavefields in the first case 82

Figure 18 – Processing time for each method in the first case . . . . . . . . . . . . 83

Figure 19 – Second case - Cube beam framework with side plates . . . . . . . . . . 84

Figure 20 – Second case - Boundary condition on detail . . . . . . . . . . . . . . . 85

Figure 21 – Excited front plate’s energy results in the second case . . . . . . . . . . 86

Figure 22 – Side plate’s energy results in the second case . . . . . . . . . . . . . . . 87

Figure 23 – Rear plate’s energy results in the second case . . . . . . . . . . . . . . 87

Figure 24 – Beam framework’s energy results in the second case . . . . . . . . . . . 88

Figure 25 – Processing time for each method in the second case . . . . . . . . . . . 88



Figure 26 – Third case - Fuselage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 27 – Excited plate’s energy results in the third case . . . . . . . . . . . . . . 90

Figure 28 – Receiver plate’s energy results in the third case . . . . . . . . . . . . . 91

Figure 29 – Processing time for each method in the third case . . . . . . . . . . . . 91

Figure 30 – Fourth case - Vehicle body structure’s section . . . . . . . . . . . . . . 92

Figure 31 – Excited plate’s energy results in the fourth case . . . . . . . . . . . . . 93

Figure 32 – Receiver plate’s energy results in the fourth case . . . . . . . . . . . . . 94

Figure 33 – Excited plate’s input power in the fourth case . . . . . . . . . . . . . . 94

Figure 34 – Processing time for each method in the fourth case . . . . . . . . . . . 95

Figure 35 – First example of a randomized FE Monte Carlo sample. . . . . . . . . . 103

Figure 36 – Second example of a randomized FE Monte Carlo sample. . . . . . . . 103

Figure 37 – Third example of a randomized FE Monte Carlo sample. . . . . . . . . 103



LIST OF TABLES

Table 1 – Aluminum and Steel material properties . . . . . . . . . . . . . . . . . . 77



LIST OF SYMBOLS

General

. H Hermitian

. T Transpose

∆ωi
1/3 Width of the ith one-third band

η Damping loss factor

⟨ . ⟩ Ensemble average

f Global force vector

I Identity matrix

p Global modal degrees of freedom

q Global nodal degrees of freedom

Im{ . } Imaginary part

Re{ . } Real part

Tr{ . } Trace operator

ω Frequency in Rad/s

ωn Natural mode

i Imaginary operator

ni Modal density of the ith statistical subsystem

Nω Number of one-third bands

Finite Element Method

Λ Modal stiffness matrix of a FE model

Dp(ω) Modal dynamic stiffness matrix of a FE model

D(ω) Dynamic stiffness matrix of a FE model



K Stiffness matrix of a FE model

M Mass matrix of a FE model

N Modal force of a FE model

U Modal shape matrix of a FE model

Statistical Energy Analysis

ηi Damping loss factor of ith subsystem

ηi,j Coupling loss factor from jth statistical subsystem to ith statistical subsystem

Πdiss,i Dissipated power of ith statistical subsystem

Πin,i Input power to ith statistical subsystem

Πcoup
in,i Power radiated in to ith statistical subsystem due coupling

Πext
in,i Power radiated in to ith statistical subsystem due external loads

Πext
in,i Power radiated out from jth statistical subsystem to ith statistical subsystem

Πout,i Output power from ith statistical subsystem

Ei Vibrational energy of ith statistical subsystem

Hybrid FE-SEA

Dd Global deterministic dynamic stiffness matrix

Ddir,i Direct field dynamic stiffness from ith statistical subsystem

Ddir Direct field dynamic stiffness

Dtot Total dynamic stiffness matrix

f ext Global force vector of external loads

fB Force vector to the deterministic boundary of a statistical subsystem

fd Global force vector to deterministic subsystems

fin,i Force force due to input loads to the ith statistical subsystem



frev,i Force vector from the ith statistical subsystem’s reverberant field

frev Force vector from the reverberant field

qB Global degrees of freedom from deterministic boundaries

qd Global nodal deterministic degrees of freedom

Sext
ff Cross-spectral force from external loads

Srev
qq,i Cross-spectral response from the ith statistical subsystem’s reverberant field

Sqq Cross-spectrum of the response

Sqq
ext Cross-spectrum response due to external loads

Md,i Damping coefficient from deterministic coupling to the ith statistical subsystem

Mi Dissipation coefficient of the ith statistical subsystem

Ci Diffuse amplitude of the ith statistical subsystem

hi,j Power-transfer coefficient from ith statistical subsystem to the jth statistical sub-

system

Generalized Hybrid Method

Bi Boolean matrix of the ith statistical subsystem to filter local coordinates from

global ones

DJ
i Junction dynamic stiffness of ith statistical subsystem

DL
dir,i Direct field dynamic stiffness of ith statistical subsystem in local coordinates

DBB
i Boundary dynamic stiffness matrix of the ith statistical subsystem

DBI
i Dynamic stiffness matrix of the ith statistical subsystem related to the internal

degrees of freedom and forces to the boundary

DIB
i Dynamic stiffness matrix of the ith statistical subsystem related to the boundary

degrees of freedom and forces to the internal domain

DII
i Internal dynamic stiffness matrix of the ith statistical subsystem



DII
dir,i Internal dynamic stiffness of the ith statistical subsystem due to loading from its

reverberant field

DII
dir,i Internal dynamic stiffness of the ith statistical subsystem

Di Dynamic stiffness matrix of the ith statistical subsystem

Ddir,i Direct field dynamic stiffness of the ith statistical subsystem in global coordinates

fB
i Force vector to the boundary of ith statistical subsystem

f I
i Force vector to the internal domain of ith statistical subsystem

f I
diss,i Internal dissipative force of the ith statistical subsystem

fi Force vector to the ith statistical subsystem

HII
i Internal receptance of the ith statistical subsystem in local coordinates

KII
i Internal stiffness matrix of the ith statistical subsystem

Ki Stiffness matrix of the ith statistical subsystem

MII
i Internal mass matrix of the ith statistical subsystem

Mi Mass matrix of the ith statistical subsystem

qB
i Boundary degrees of freedom to the ith statistical subsystem

qI
i Internal degrees of freedom to the ith statistical subsystem

qi Nodal degrees of freedom of the ith statistical subsystem

SqI
i qI

i
Cross-spectral response of the internal domain of the ith statistical subsystem

Numerical implementation - Modal projection (statistical subsystems)

K̃BI,p
i Partially modal stiffness matrix of the ith statistical subsystem related to the internal

modal degrees of freedom and forces to the boundary with internal dissipation

K̃IB,p
i Partially modal dynamic stiffness matrix of the ith statistical subsystem related

to the boundary degrees of freedom and modal forces to the interior domain with

internal dissipation



K̃II,p
i Internal modal stiffness matrix of the ith statistical subsystem with internal dissi-

pation

K̃res,i Residual flexibility matrix of the ith statistical subsystem

DBI,U
i Partially modal dynamic stiffness matrix of the ith statistical subsystem related to

the internal modal degrees of freedom and forces to the boundary

DIB,U
i Partially modal dynamic stiffness matrix of the ith statistical subsystem related to

the boundary degrees of freedom and modal forces to the interior domain

DII,p
i Modal dynamic stiffness matrix of the ith statistical subsystem

DJ,p
i Modal junction dynamic stiffness matrix of the ith statistical subsystem

HII,p
i Internal modal receptance matrix of the ith statistical subsystem

KBI,U
i Partially modal stiffness matrix of the ith statistical subsystem related to the

internal modal degrees of freedom and forces to the boundary

KBI
i Stiffness matrix of the ith statistical subsystem related to the internal degrees of

freedom and forces to the boundary

KII,p
i Internal modal stiffness matrix of the ith statistical subsystem

MBI,U
i Partially modal mass matrix of the ith statistical subsystem related to the internal

modal degrees of freedom and forces to the boundary

MBI
i Mass matrix of the ith statistical subsystem related to the internal degrees of

freedom and forces to the boundary

pI
i Internal modal degrees of freedom of the ith statistical subsystem

pI Internal modal degrees of freedom

qI Internal nodal degrees of freedom

Sf I
rev,i,f

I
rev,i

Cross-spectral modal response of the internal domain of the ith statistical

subsystem due to its reverberant field

SpI
i ,pI

i
Cross-spectral modal response of the internal domain of the ith statistical subsystem



UI
i Internal modal shape matrix of the ith statistical subsystem

Numerical implementation - Efficient matrix averaging

δR,i Non-parametric randomization universal parameter

γ Lorentzian weighting function’s shape parameter

γA Shape parameter defined according to the subsystems associated to A

γ1/3 Shape parameter defined according to one-third bandwidth

L(ω, γ) Lorentzian weighting function

nA Modal density of the subsystems associated to A

Nγ Integer related to γ

W (ω) Weighting function

Numerical implementation - Wavefield partition

îL
i First local coordinate’s vector of the ith statistical subsystem

î First global coordinate’s vector

ĵL
i Second local coordinate’s vector of the ith statistical subsystem

ĵ Second global coordinate’s vector

k̂L
i Third local coordinate’s vector of the ith statistical subsystem

k̂ Third global coordinate’s vector

v̂n Flat plate’s normal vector

DL
i Dynamic stiffness of the ith statistical subsystem in local coordinates

DL
in,i In-plane dynamic stiffness of the ith statistical subsystem in local coordinates

DL
out,i Out-of-plane dynamic stiffness of the ith statistical subsystem in local coordinates

DBI,U
in,i In-plane partially modal dynamic stiffness matrix of the ith statistical subsystem

related to the internal degrees of freedom and modal forces to the boundary



DIB,U
in,i In-plane partially modal dynamic stiffness matrix of the ith statistical subsystem

related to the boundary degrees of freedom and modal forces to the internal domain

DII,P
cor,i Modal internal dynamic stiffness matrix of the ith statistical subsystem that

represents the correlation between out-of-plane and in-plane wavefields

DII,P
in,i In-plane modal internal dynamic stiffness matrix of the ith statistical subsystem

DII,P
out,i Out-of-plane modal internal dynamic stiffness matrix of the ith statistical subsystem

DII
in,i In-plane internal dynamic stiffness matrix of the ith statistical subsystem

DII
out,i Out-of-plane internal dynamic stiffness matrix of the ith statistical subsystem

Din,dir,i In-plane direct field dynamic stiffness of the ith statistical subsystem

Din,i In-plane dynamic stiffness of the ith statistical subsystem

Dout,dir,i Out-of-plane direct field dynamic stiffness of the ith statistical subsystem

Dout,i Out-of-plane dynamic stiffness of the ith statistical subsystem

fL
i Force vector to the ith statistical subsystem in local coordinates

fin,i In-plane force vector to the ith statistical subsystem

fout,i Out-of-plane force vector to the ith statistical subsystem

HII,P
in,dir,i In-plane modal internal direct field receptance of the ith statistical subsystem

HII,P
in,i In-plane modal internal receptance of the ith statistical subsystem

HII,P
out,dir,i Out-of-plane modal internal direct field receptance of the ith statistical subsystem

HII,P
out,i Out-of-plane modal internal receptance of the ith statistical subsystem

KII,P
in,i In-plane modal internal stiffness matrix of the ith statistical subsystem

KII,P
out,i Out-of-plane modal internal stiffness matrix of the ith statistical subsystem

Kin,res,i In-plane residual flexibility of the ith statistical subsystem

Kout,res,i Out-of-plane residual flexibility of the ith statistical subsystem

qL
i Nodal degrees of freedom of the ith statistical subsystem in local coordinate



qB,L
i Boundary degrees of freedom of the ith statistical subsystem in local coordinates

qI,L
i Internal degrees of freedom of the ith statistical subsystem in local coordinates

TI
i Internal transformation matrix of the ith statistical subsystem from local to global

coordinates

Ti Nodal transformation matrix of the ith statistical subsystem from local to global

coordinates

UI
in,i In-plane internal mode shape matrix of the ith statistical subsystem

UI
out,i Out-of-plane internal mode shape matrix of the ith statistical subsystem

UI,L
in,i In-plane internal modal shape matrix of the ith statistical subsystem in local

coordinates

UI,L
out,i Out-of-plane internal modal shape matrix of the ith statistical subsystem in local

coordinates

θx Rotation degree of freedom in the x direction

θy Rotation degree of freedom in the y direction

θz Rotation degree of freedom in the z direction

ux Displacement degree of freedom in the x direction

uy Displacement degree of freedom in the y direction

uz Displacement degree of freedom in the z direction

Numerical implementation - Modal projection (deterministic subsystems)

Bd,i Boolean matrix of the ith deterministic subsystem to filter nodal degrees of freedom

from partially modal ones

Dh
d Deterministic dynamic stiffness in partially modal coordinates

Dh
dir,i Direct field dynamic stiffness of the ith statistical subsystem in partially modal

coordinates

Dh
tot Total dynamic stiffness in partially modal coordinates



Kh
d,i Stiffness matrix of the ith deterministic subsystem in partially modal coordinates

KII
d,i Internal stiffness matrix of the ith deterministic subsystem

KIB
d,i Stiffness matrix of the ith deterministic subsystem related to the boundary degrees

of freedom and modal forces to the internal domain

Kd,i Stiffness matrix of the ith deterministic subsystem

Mh
d,i Mass matrix of the ith deterministic subsystem in partially modal coordinates

MII
d,i Internal mass matrix of the ith deterministic subsystem

Md,i Mass matrix of the ith deterministic subsystem

pI
d,i Internal modal degrees of freedom of the ith deterministic subsystem

qh
d,i Partially modal degrees of freedom of the ith deterministic subsystem

qh Partially modal degrees of freedom

qB
d,i Boundary degrees of freedom of the ith deterministic subsystem

qI
d,i Internal degrees of freedom of the ith deterministic subsystem

qd,i Nodal degrees of freedom of the ith deterministic subsystem

Sext,h
ff Cross-spectral force due to external loads in partially modal coordinates

Sqhqh Cross-spectral response in partially modal coordinates

TU Transformation matrix from partially modal to nodal degrees of freedom

TU,i Transformation matrix from partially modal to nodal degrees of freedom of ith

deterministic subsystem

UI
d,i Internal modal shape of the ith deterministic subsystem

Ud,i Free modal shape of the ith deterministic subsystem

Xd,i Constrained modal shape of the ith deterministic subsystem

Nd Number of deterministic subsystems

Ed,i Vibrational energy of the ith deterministic subsystem



Kd,i Kinetic energy of the ith deterministic subsystem

Ud,i Strain energy of the ith deterministic subsystem
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1 INTRODUCTION

1.1 A BRIEF TALK ABOUT VIBROACOUSTICS

Understanding the behavior and interaction of vibrating solid elastic structures

and fluids is the goal of the field of study of steady-state vibroacoustics. Such physical

systems have been the subject of extensive research over the last decades, partly due

to the improvement of the computational capacity to model and analyze more complex

structures (HAMBRIC; SUNG; NEFSKE, 2017), but also due to the increased applications

and production regarding these systems in the industrial and daily environment. Some

examples of applications to these systems are (shown in fig. 1): the industrial machinery’s

maintenance, which analyzes the structural vibration and sound field from a particular

machine for the search to any possible faulty piece’s appearance, the vibration control of a

satellite during its launch to orbit, or simply the microphones and loudspeakers employed

in the routine of the majority of society. The range of applications for the vibroacoustic

field is vast and has yet a lot to be discovered, understood and applied.

There are several ways to model a vibroacoustic system (for now on, when vibroa-

coustic system is specified, it should be understood as one or more vibrating structure

and/or acoustic fluid coupled). Each modeling approach defined will differ in terms of

system’s detailing scope and its interaction’s idealization, which results in different types

of formulations, processing demands and information retained to the model (HAMBRIC;

SUNG; NEFSKE, 2017).

One common reference method for a vibro-acoustical numerical analysis is the Finite

Element Method (FEM) and, although it was first developed to model static interactions,

its versatility allows for any geometry or constrain to be described by the virtue of an

appropriate discretization of the system domain, denoted as FE mesh grid. Due to the

high computational processing expense required, the method is usually applied to low

frequency vibrations, where a deterministic motion is associated (MEIROVITCH, 2010).

Higher frequency’s analysis is constituted of smaller wavelengths deformations that

not only demand a denser mesh grid, resulting in increased computational expense, but

are also increasingly sensible to imperfections, leading to significant results variation

when affected by manufacturing uncertainties (LYON; DEJONG, 1995). Deterministic

approaches become then a misguiding alternative and statistical methods are pursued, e.g.
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(a) Machinery analysis

Source: indiaMART

(b) Satellite over vibration analysis

Source: NASA

Figure 1 – Applications to vibro-acoustic systems

FE Monte Carlo simulations.

The reliability associated to the FE Monte Carlo approach, which assumes a popula-

tion of systems, will mainly depend on the randomization techniques employed to each

sample. This process is responsible to insert manufacturing uncertainties into the system.

The approach, however, requires FE model to be solved multiple times in order to derive

an ensemble average, which still makes the procedure highly unfeasible for practical and

industrial applications at high frequencies (PAPADRAKAKIS; PAPADOPOULOS, 1996).

The established framework denoted as Statistical Energy Analysis (SEA) was de-

veloped to work as an alternative for these scenarios, where the uncertain mechanics

linked to these sensible systems can be approximated by simply elementary analytical

formulations (LE BOT, 2015). Essentially, SEA analyzes the energy storage and flow

that occurs inside of a complex vibro-acoustic system. This power-flow balance is defined

between the group of modes (or superposition of wavefields) of the physical components,

denoted as "subsystems". The definitions of these groups of modes or subsystems are

mainly done by the use of analytical formulations, which are only possible for physical

components with elementary configurations, e.g, flat and (singly and doubly) curved plates,

beams and cavities. Several other assumptions regarding damping, excitation and modal

density (or wave diffusivity) are also required to reach known analytical solutions to such

subsystem descriptions (HANSEN, 2018). Still, if all these configurations are met, the
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framework is able to model the system’s ensemble average response in reduced processing

time, when compared to a single FE model.

Although real-life physical components usually present configurations outside of the

elementary scope, in high frequencies, their complex wavefield motion tends to resemble of

an elementary one, due to diffusivity, and therefore may be considerably approximated by

the SEA analytical formulations (LYON; DEJONG, 1995). The SEA framework comes as

an important tool for practical applications that are composed of physical components

that reach high frequencies motions considerably fast in the frequency spectrum.

In case the system has, at the same time, physical components vibrating at dis-

tinct wavefield characteristics (some diffusive and others coherent), resulting either in

a impracticable processing expense for a single FE model or in a poorly reliable SEA

model, as the framework assumptions are clearly not met for every physical component,

a different scenario emerges and is denoted as mid frequency interaction/problem. A

method was then developed to handle such interaction and is denoted as Hybrid FE-SEA

(SHORTER; LANGLEY, 2005b), whereas both the SEA power-flow balance and FE

dynamic equilibrium are coupled and modelled to solve the system.

The Hybrid FE-SEA method idealizes the system as interaction between two different

types of subsystems. Components that hold low modal densities (or highly spatially coherent

wave-motions) and have configurations are denoted as the deterministic subsystems and

are modelled by FE models, allowing any complex configuration to be described. The

remaining components are defined as statistical subsystems and have their wave-motion

described by a random diffuse reverberant field. If a maximum entropy distribution is

assumed to the these subsystems’ properties statistics, their fields (and consequently them)

can be described by simply their direct field dynamic stiffness matrix Ddir and asymptotic

modal density n. Moreover, as opposed to the deterministic subsystems, the statistical ones

retain degrees of freedom only at their deterministic boundaries (junctions and excitation

points), greatly reducing the computational processing expense involved in the model.

The direct field dynamic stiffness matrix Ddir had been derived analytically for

some specific types of physical component’s connections. In the case of flat plates, point

(LANGLEY; SHORTER, 2003), interior line (CREMER; HECKL; PETERSSON, 2005)

and flat boundaries line (LANGLEY; HERON, 1990) junctions have known solution for

the parameter. It was also mentioned that Ddir could be indirectly derived by the use of

another established vibro-acoustic modelling procedure, the Boundary Element Method
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(SHORTER; LANGLEY, 2005b) (probably requiring a modification of the method to

include ensemble statistics).

1.2 NOVEL DISCUSSIONS

The analytical descriptions of the statistical subsystems (Ddir and n) have only

known solutions for elementary configurations, falling into the same limitation that

SEA subsystems suffer. In a more recent publication (ALIMONTI et al., 2019), a novel

generalized power-flow framework was introduced, which may be regarded as a more

generic approach for the Hybrid FE-SEA method, as the statistical subsystems can be

numerically described, encompassing more complex configurations. This new framework

was then evaluated, in the reference, using periodic FE models to derive the statistical

subsystems parameters and analyze the system.

An example of numerical derivation for Ddir using standard FE models was then

formulated (DEVRIENDT et al., 2015). The approach assumes that ensemble average tech-

niques are applied to the subsystems’ FE matrices, which, if FE Monte Carlo simulations

are adopted to this end, unfeasible processing expenses come involved into the derivation.

Therefore, the paper also presented an average technique with reduced computational

cost and based on frequency averages in conjunction with a Lorentzian weighted function.

This function invokes a mathematical key feature enabling the ensemble average of FE

models to be analytically computed, eliminating an enormous amount of computational

processing time and allowing for the derivation to be applied into practical applications.

Parallel to this present thesis’s work, a deeper investigation using this numerical

description (with standard FE models) to the statistical subsystems was carried out

(HINZ, 2021). The author also presented a numerical derivation for the dissipated power

flow, which eliminated the need for a generic modal density definition, resulting in a full

description for the statistical subsystem’s power flow. Moreover, an alternative efficient

ensemble averaging technique from the random matrix theory was evaluated. The work

evaluated these generic descriptions into the novel generalized power-flow framework,

applying it solely into fully statistical systems (no deterministic components), representing

a direct comparison with SEA. In this context, the novel framework is denoted as numerical

SEA.

There are still investigations left to be made, specially regarding to systems that
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contains deterministic subsystems and how the novel generalized power-flow framework

compares to other established methods, when analyzing their computational costs and

versatility. The generalized power-flow framework, which is been denoted as "generalized

hybrid FE-SEA method" here, serves as a generic framework for multiple and distinct

vibroacoustic problems. It is a generalization of the Hybrid FE-SEA and, therefore, the

SEA. It has the capability of extending the applicability of such vibroacoustic analysis by

more accurately describing subsystems and junctions with irregular configurations in mid

and high frequency problem at competitive processing time.

1.3 DISSERTATION OBJECTIVES

This work aims to evaluate the performance of the established methods in vibroa-

coustic analysis in specific scenarios, ranging from elementary to irregular configurations,

exploring their features and limitations. The work also explores a novel generalized method,

which had only been applied to high frequency problems, and further develops its appli-

cability to mid frequency interactions, presenting the proper numerical implementation

required for a proper robust model.

1.4 CHAPTERS OVERVIEW

This document is structured as follows:

• Chapter 2: Theoretical review. This chapter describes and clarifies the established

numerical method and frameworks mentioned in the introduction: The Finite Element

Method, the Statistical Energy Analysis and the Hybrid FE-SEA Method. No specific

case scenario is investigated, just the main formulation and concept for each method

and framework are presented.

• Chapter 3: Generalized hybrid FE-SEA method. The novel framework concepts and

formulations are initially presented. The chapter then proceeds to discuss the fully

numerical descriptions of the statistical subsystems used in the framework.

• Chapter 4: Numerical implementation. This chapter mostly explores the procedures

and implementations applied to the novel method’s model to assure competitive

processing costs and a more robust definition of the subsystem’s wavefield.
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• Chapter 5: Numerical Examples. The three established methods and the novel

framework are evaluated over four cases, involving both mid and high frequency

problems. Features and limitations associated to each method or framework is

discussed and compared.

• Chapter 6: Conclusion. Wrapping up this evaluation of vibroacoustic methods. Future

works are suggested.
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2 THEORETICAL REVIEW

The present chapter is just a brief presentation of the discussed methods. For a

deeper and clearer understanding, the following references are suggested:

• Finite Element Method: (PETYT, 2019) and (FAHY; GARDONIO, 2007).

• Statistical Energy Analysis: (LYON; DEJONG, 1995) and (LE BOT, 2015).

• Hybrid FE-SEA Method: (SHORTER; LANGLEY, 2005b), (HAMBRIC; SUNG;

NEFSKE, 2017) and (MARCELLA, 2018).

2.1 FINITE ELEMENT METHOD

FEM describes the continuous system’s deformation as a superposition of local shape

functions, resulting in a discretization of the system’s domain into a finite set of smaller

continuous elements. Energies contributions associated to each element are described in

terms of generalized degrees of freedom q located at local specific points (usually at the

element’s vertices, but not only), denoted as nodes. Figure 2 illustrates a continuous

plate discretized in a set of elements (rectangles) and nodes (dots). Shared nodes (and

consequently degrees of freedom) between neighbor elements enforce compatibility into

local dynamic mechanisms assuring a coupled deformation for the whole system.

(a) (b)

Figure 2 – (a) Continuous and (b) discretized system.

Source: (FAHY; GARDONIO, 2007).

By representing the elementary energy expressions in quadratic forms, algebraic

relations between the local mechanisms and the generalized degrees of freedom are intro-

duced, which, if appropriate vetorization is defined, system’s global matrices are assembled.
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Assuming an internal damping η and harmonic motion ω, the system’s equation of motion

is defined as

[
−ω2M + (1 + iη)K

]
q = D(ω)q = f , (2.1)

where M, K are, respectively, the mass and rigidity matrices and represent the inertia’s

and restoration’s contributions of the forces exerted by the internal mechanisms of the

system. Moreover, the force vector f and structural damping matrix iηK are, respectively,

derived from non-conservative forces of externally applied sources and internal friction

mechanisms. Solving Eq. 2.1 simply involves the inversion of the dynamic stiffness matrix

D(ω) at every analyzed frequency. However, at higher frequencies, the number of degrees

of freedom required for appropriate wave deformation’s representations increases, resulting

in larger matrices and, as mentioned, unfeasible computational processing expense.

A diagonalization process is invoked to improve the method performance and obtain

a deeper understanding of the problem (SHABANA, 2010). A set of modal degrees of

freedom p and a transformation matrix U, i.e. q = Up, are defined and derived from

following the generalized eigenproblem of undamped free vibration

[
K − ω2

nM
]

u = 0, (2.2)

where U is obtained from the collection of all eigenvectors from above equation, i.e.

U = [u1, . . . , uN]. Due to the orthogonality property U has to both M and K matrices

(resulted form the eigenproblem above), by multiplying the left side of Eq. 2.1 by UT and

by applying a change of coordinates (q = Up), the subsequent decoupled equation of

motion is obtained

[
−ω2I + (1 + iη)Λ

]
p = Dp(ω)p = N, (2.3)

where the resulted modal mass I and modal stiffness Λ matrices are diagonal matrices

and, therefore, the above equation can easily solved by simply inverting each diagonal

element from the modal dynamic stiffness matrix Dp(ω). In the context of vibro-acoustics,

the columns of the transformation matrix U represent the nodal deformations (shape)

associated to each mode of the system, underlying essential information to the analysis.

Computational processing expense’s improvements obtained from computing the system’s

response in modal coordinates can be further increased if a truncation of eigenvalues
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retrieved from Eq. 2.2 is performed. Usually, the rule of thumb is to compute natural

frequencies that have values up to twice the highest frequency analyzed (PETYT, 2019).

Moreover, the vector N represents the modal force (N = UT f). After the modal coordinates

p are determined from Eq. 2.3, a change back to nodal coordinates is possible (q = Up)

to extract physical understanding from the system’s response.

The vibrational energy stored in each component of the system is then computed as

the superposition of each of their nodal degrees of freedom’s strain and kinetic energies

(MEIROVITCH, 2010). However, it’s possible to derive these same component’s energies

directly in modal coordinates through modally projected mass and stiffness matrices

(MACE; SHORTER, 2000).

As mentioned, high frequency analysis requires that the influence from manufacturing

imperfections be embedded into the FE model in order to derive reliable results. Statistical

approaches like FE Monte Carlo become intuitive options to simulate an appropriate

model, where, instead of a single deterministic system, the FE Monte Carlo defines a

population of similar systems, leading to ensemble average results.

2.2 STATISTICAL ENERGY ANALYSIS

In SEA, the system’s domain is sectioned in specific physical components of similar

wave properties, e.g., a set of plates, beams and/or cavities. The subsystems of these

components are idealized as energy containers that store, dissipate and exchange energy

between other subsystems. Usually, in the case of a beam component, its subsystems are

defined from the axial, the two bending and the rotational wavefields. Figure 3 illustrates

an example of two beam’s components coupled, displaying each of their four wavefields

("B" standing for bending, "L" for longitudinal and "T" for torsional).

The statistical framework assumes a population of nominally identical systems,

resulting in the following ensemble average power-flow balance for the ith subsystem

(considering only steady-state dynamics)

⟨Πdiss,i⟩ + ⟨Πout,i⟩ = ⟨Πin,i⟩, (2.4)

where ⟨Πdiss,i⟩, ⟨Πout,i⟩ and ⟨Πin,i⟩ are, respectively, the ensemble average dissipated, output

and input power of the ith subsystem. The ⟨.⟩ brackets are used here in this work to represent

the ensemble average estimation. In order to derive the response for these subsystems,
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Figure 3 – Beam components and wavefields

Source: (LYON; DEJONG, 1995)

relations between these power coefficients and their energy are defined. Initially, the input

power is composed of a coupling ⟨Πcoup
in,i ⟩ and an external source ⟨Πext

in,i⟩ contribution

⟨Πin,i⟩ = ⟨Πcoup
in,i ⟩ + ⟨Πext

in,i⟩ =
∑
j ̸=i

⟨Πj,i⟩ + ⟨Πext
in,i⟩, (2.5)

where ⟨Πj,i⟩ is the ensemble average power radiated from jth subsystem to the ith subsystem.

In SEA, the relationship between the radiated power and the radiator subsystem’s energy

is written as

⟨Πi,j⟩ = ωηi,j⟨Ei⟩. (2.6)

The SEA coefficient coupling loss factor ηi,j is related to the ensemble average impedance

of both subsystems at their connection. The output power is simply written as the

superposition of radiated power from the ith to all the other subsystems

⟨Πout,i⟩ =
∑
i ̸=j

⟨Πi,j⟩. (2.7)

The ensemble average power being dissipated by internal losses is proportional to the

kinetic energy and is derived using the definition of the ith subsystem’s damping loss

factor ηi (equivalent to the one from FEM) (LE BOT, 2015)

⟨Πdiss,i⟩ = ωηi⟨Ei⟩. (2.8)

The external input power ⟨Πext
in ⟩ is proportional to the ensemble average impedance

of the subsystem in the excited location, similar to the coupling loss factor derivation.

Furthermore, these ensemble average impedances actually converge to the impedances of

infinite extended subsystems, which have less tedious and time consuming derivations and
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are usually the standard approach used in commercial software routines to obtain such

parameters. Accordingly, by substituting Eq. 2.5 to 2.8 into Eq. 2.4, the ensemble average

power-balance equation is written as

ω

ηi⟨Ei⟩ +
∑
i ̸=j

(ηi,j⟨Ei⟩ − ηj,i⟨Ej⟩)
 = ⟨Πext

in,i⟩, (2.9)

which if written in matrix form

η1 + ∑
j ̸=1 ηj,1 −η1,2 . . . −η1,N

−η2,1 η2 + ∑
j ̸=2 ηj,2

... . . . ...

−ηN,1 . . . ηN + ∑
j ̸=N ηj,N





⟨E1⟩

⟨E2⟩
...

⟨EN⟩


= 1

ω



⟨Πext
in,1⟩

⟨Πext
in,2⟩
...

⟨Πext
in,N⟩


, (2.10)

where a simple inversion, per frequency, of the left matrix computes the ensemble average

vibrational energy from each subsystem. The computational processing time associated

in solving Eq. 2.10 is fairly short, due to the small number of energy degrees of freedom

defined (one per subsystem). Engineering units results (displacements for structures and

pressure for cavities) can be derived from simple kinetic relations applied to the obtained

vibrational energies.

2.3 HYBRID FE-SEA METHOD

The method initially describes the system’s physical components in accordance to

their wavefield characteristics. Components that have short wavelength’s deformations,

i.e. high sensibility to imperfections early on the frequency spectrum and require denser

FE mesh grids for a reliable representation, have their subsystems described statistically.

The rest of the components, which admit reasonably coherent deformations and demand

smaller computational processing expenses, are modelled as deterministic subsystems.

These deterministic subsystems are described using FE models and, therefore, have

their whole domain’s response described by a set of generalized degrees of freedom qd. In

the case of statistical subsystems, it’s assumed that their domains are subdivided into

two distinct characteristic regions. The first region is the deterministic boundary and

contains all connection regions to other subsystems or/and external loads (i.e. all regions

that admit flow of energy in or out of the subsystem). The second region, denoted as

random boundary/domain, represents the remaining of the subsystem’s domain. Due to the

intrinsic sensibility to manufacturing imperfections and high degree of complexity that the
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statistical subsystems possess, it’s not intended for this region to be known precisely, but

rather have an assumed statistical description across an ensemble. This shall be discussed

further in this chapter.

An additional set of degrees of freedom qB is then defined to describe displacement

field across the deterministic boundaries of the statistical subsystems. Figure 4 exhibits

these sets of generalized coordinates for an elementary system, where we can observe the

qd degrees of freedom defined for the (a) deterministic subsystem, and the qB degrees

of freedom describing the displacement field along the junction between (b) and (c)

statistical subsystems and the excitation point (1) at the (c) subsystem. A global set

of degrees of freedom q is then defined as the collection of both qd and qB generalized

coordinates, i.e. q = [qd
T qBT ]T . Nevertheless, it is important to point out that, under

specific conditions, the definition of the coordinate vector qB becomes unnecessary, as

the power-flow contributions on these regions could be directly calculated from analytical

formulations of SEA. This is discussed in the end of this section and is how the method is

usually implemented.

Figure 4 – Degrees of freedom used to describe the (a) subsystem, the junction between
(b) and (c) subsystems, and the (1) excitation on the (c) subsystem.

Source: (SHORTER; LANGLEY, 2005b) (Modified)
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2.3.1 Equations of motion

The uncoupled equation of motion that governs the deterministic subsystems is

written as

Dd(ω)q = fd, (2.11)

where Dd and fd represent, respectively, the dynamic stiffness matrix and external force

vector applied to the deterministic subsystems. These contributions are computed similarly

to Eq. 2.1. Regarding the statistical subsystems, their responses are defined from the

energetics of random reverberant wavefields (every statistical subsystem is assumed to

have, at least, one). Also, a direct field is generated from the prescribed displacement of the

deterministic boundary and represents the radiation of energy into the subsystem’s domain

(i.e. reverberant field) assuming no reflections from the random boundary/domain are

present. The dynamics of the deterministic boundary due to this direct field radiation/load

is controlled by the dynamic stiffness Ddir that depends on the respective boundaries’s

configurations.

In order to characterize the wavefield, the reflections that arise from the direct field

coming upon contact to the random boundary/domain are required to be considered and

are represented by the reverberant wavefield. The influence of this wave scattering over

the deterministic boundary is represented by the reverberant force frev. Moreover, the

uncoupled equation of motion of the statistical subsystem is defined as

Ddir(ω)q = fB + frev, (2.12)

where fB is the external load applied to the deterministic boundary. As mentioned,

defining an exact configuration for the random boundary/domain of statistical subsystems

is unfeasible, indicating that a more intuitive and practical definition for their influence is

to actually assume that their configuration is uncertain and adopt a statistical description

for them (SHORTER; LANGLEY, 2005a). For that reason, it is assumed that frev is

random.

The coupled equation of motion is then written as follows

Dtot(ω)q = fext +
∑

i

frev,i, (2.13)
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where the total dynamic stiffness is the superposition of all subsystem’s impedances

defined, i.e. Dtot = Dd + ∑
i Ddir,i. The ith subscript stands for ith statistical subsystem’s

contribution. Furthermore, the external force vector fext is the collection of all external

loads to the deterministic regions of the system. Due to the uncertain characteristic

associated to the reverberant fields, the reverberant force frev is random and, therefore,

the interest lies in ensemble average response of the system. The cross-spectrum of the

response (Sqq = ⟨qqH⟩) is written as

Sqq = D−1
tot(fextfext

H +
∑

i

f⟨frev,i⟩H +
∑

i

⟨frev,i⟩fH +
∑
i,j

⟨frev,ifrev,j
H⟩)D−H

tot . (2.14)

2.3.2 Diffuse reverberant field

Defining proper ensemble statistics for the reverberant fields is tricky, as we would

have to assume known information regarding the random boundary/domain. Moreover,

the ensemble response is directly related to the amount of uncertainty defined for these

regions, which should reach a limit when a maximum of entropy is considered. This results

in the reverberant fields, across an ensemble, assuming a "diffuse" characteristic, where

minimum information regarding the random boundaries/domains is defined (SHORTER;

LANGLEY, 2005b).

It was shown that a specific and powerful relation arises from a diffuse reverberant

field condition: the cross-spectral reverberant force can be fully described in terms of the

direct field dynamic stiffness (SHORTER; LANGLEY, 2005a). This relation is denoted

as "Reciprocity relationship between the diffuse reverberant field radiation and the direct

field loading", which not only enables Eq. 2.14 to be deterministic defined, but also greatly

simplifies it.

In this condition of diffuse field, the ensemble average reverberant force converges to

zero, i.e. ⟨frev,i⟩ = 0, and the coupled cross-spectrum of diffuse reverberant force is given

by ∑
i,j

〈
frev,ifrev,j

H
〉

=
∑

i

4Ci Im {Ddir,i} . (2.15)

The constant Ci is denoted as the diffuse field’s amplitude and was proven to be directly

proportional to the ensemble average energy ⟨Ei⟩ associated to the population of reverberant

fields (SHORTER; LANGLEY, 2005a)
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Ci = ⟨Ei⟩
πωni

, (2.16)

where ni is the ith statistical subsystems modal density. The cross-spectral response of

the coupled system is then written as

Sqq = Sext
qq +

∑
i

Srev
qq,i = Dtot

−1
[
fextfH

ext +
∑

i

4⟨Ei⟩
πωni

Im {Ddir,i}
]

Dtot
−H . (2.17)

2.3.3 Power-flow model

In order to determine the energy contained in the diffuse reverberant fields and

obtain the response of the deterministic regions (Eq. 2.17), a power-flow model between the

statistical subsystems is idealized, similar to SEA. Figure 5 exhibits the power-flow balance

for a statistical subsystem, where the power flowing into the subsystem is generated by

the direct field radiation from the deterministic regions and is caused by either externally

applied loads or coupling interaction to other subsystems. The reverberant field, which arises

from the scattering of the direct field onto the random boundary/domain, is responsible

to internally dissipate the contained energy in the subsystem and to radiate it to other

subsystems through connection regions at the deterministic boundary. It is assumed that

the most of the statistical subsystem’s energy is contained at the reverberant field and,

therefore, determining the latter’s energy is enough to fully describe the energetics of the

subsystem.

Assuming a population of systems, the time and ensemble average input power is

expressed as (MACE; SHORTER, 2000)

⟨Πin,i⟩ = 1
2

〈
Re

{
iωfin,i

Hq
} 〉

. (2.18)

The force generating energy to the ensemble average container is then described in terms

of a direct field

⟨Πin,i⟩ = 1
2

〈
Re

{
iωqHDdir,i

Hq
} 〉

. (2.19)

As the real part of a complex number multiplied by the imaginary operator i is equal to

its imaginary part multiplied by -1, the equation can be rewritten as

⟨Πin,i⟩ = −1
2

〈
Im

{
ωqHDdir,i

Hq
} 〉

, (2.20)
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Figure 5 – Power-flow balance for a statistical subsystem

Source: (SHORTER; LANGLEY, 2005b) (Modified)

which if represented in index notation (conjugate operator on the dynamic stiffness is

cancelled by the minus sign outside braces)

⟨Πin,i⟩ = ω

2 Im
∑

k,j

D
(k,j)
dir,i

〈
q(j)q(k)∗〉 . (2.21)

As the direct field dynamic stiffness is not affected by the random reflections that arise

from the subsystem’s interior domain, i.e., is deterministic, it is not influenced by the

ensemble average operator. Moreover, by remembering that the expression inside the

brackets is the definition of a single element of the cross-spectrum matrix, the expression

is rewritten as

⟨Πin,i⟩ = ω

2
∑
k,j

Im
{
D

(k,j)
dir,i

}
S(k,j)

qq , (2.22)

where a real response is assumed to the system. Rewriting the expression using matrix

notation and the trace operator

⟨Πin,i⟩ = ω

2 Tr [Im {Ddir,i} Sqq] , (2.23)

and substituting Eq. 2.17 in above equation, the input power to the ith statistical subsystem

is given by

⟨Πin,i⟩ = ⟨Πext
in,i⟩ +

∑
j

hj,i
⟨Ej⟩
nj

, (2.24)
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where the externally applied load is given by (assuming deterministic excitation)

⟨Πext
in,i⟩ = ω

2 Tr
[
Im {Ddir,i} Dtot

−1Sext
ff Dtot

−H
]

. (2.25)

The input power applied from the jth to the ith statistical subsystem by coupling is

quantified by the power transfer coefficient hj,i, which is given by

hi,j = 2
π

Tr
[
Im {Ddir.i} Dtot

−1 Im {Ddir,j} Dtot
−H

]
= hj,i. (2.26)

The power being flown out of the ith statistical subsystem is completely composed of the

exchange of energy between the other subsystems. In this case, the force that introduces the

energy flow is generated by the ith statistical subsystem’s reverberant field’s displacement

Srev
qq,i in the boundary regions and is controlled by the total dynamic stiffness Dtot (as

we are assuming coupling to both deterministic and statistical subsystems). Similarly to

Eq. 2.23, the ensemble and time average output power leaving the ith is given by

⟨Πout,i⟩ = ω

2 Tr
[
Im {Dtot} Srev

qq,i

]
. (2.27)

By substituting reverberant term of Eq. 2.17 above, the expression can therefore also be

written as

⟨Πout,i⟩ =
Md,i +

∑
j

hi,j

 ⟨Ei⟩
ni

, (2.28)

where the damping coefficient Md,i quantifies the amount of power radiated by the ith

statistical subsystem that is dissipated by the deterministic subsystems in terms of modal

energy and is given by

Md,i = 2
π

Tr
[
Im {Dd,j} Dtot

−1 Im {Ddir,i} Dtot
−H

]
. (2.29)

Similar to SEA, the power being dissipated internally by intrinsic mechanisms is given

by Eq. 2.8. In the Hybrid FE-SEA method however, the diffuse reverberant fields of the

statistical subsystems are represented by the ratio of their ensemble average energy and

modal densities ⟨Ej⟩/nj (in (LYON; DEJONG, 1995), this ratio is denoted as modal power

potential). Hence a more appropriate expression is given by

⟨Πdiss,i⟩ = Mi
⟨Ei⟩
ni

, (2.30)

where the dissipation coefficient Mi of the ith statistical subsystem is equal to modal

overlap factor, i.e,
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Mi = ωηini, (2.31)

where ni is the ith statistical subsystem’s modal density. Finally, in order to derive the ratio

of the energy and modal density associated to the ith statistical subsystem, Equation 2.23,

2.28 and 2.30 are substituted in Eq. 2.4, resulting in the following power-flow balance

expression Mi + Md,i +
∑
i ̸=j

hi,j

 ⟨Ei⟩
ni

−

∑
i ̸=j

hj,i
⟨Ej⟩
nj

 = ⟨Πext
in,i⟩, (2.32)

which if written in matrix form
M1 + Md,1 + ∑

j ̸=1 hj,1 . . . −h1,N
... . . . ...

−hN,1 . . . MN + Md,N + ∑
j ̸=N hN,j




⟨E1⟩/n1

...

⟨EN⟩/nN

 =


⟨Πext

in,1⟩
...

⟨Πext
in,N⟩

 ,

(2.33)

an inversion of the left matrix per frequency derives the ratio of the ensemble average

energy and modal densities of every diffuse reverberant field involved in the system. If the

vibrational energy is desired, a simple multiplication with the respective modal density

computes the result (LE BOT, 2015).

2.3.4 Numerical implementation

Although Eq. 2.33 presents a proper power-flow balance between complex subsystems,

in Hybrid FE-SEA method, it is often obtained a simplified solution for the subsystems

due to implementation purposes. As a result from the small wavelength associated to

the statistical subsystem’s deformation, their coherence information between "distant"

connection regions (contained in the deterministic boundary) can be neglected (COTONI;

SHORTER; LANGLEY, 2007). This assumption reflects in energy flow coefficients (Πext
in,i,

hi,j and Md,i) that can actually be computed using local direct field’s information. Moreover,

if we further assume that junctions are referred as point, straight line and flat area

connections, then analytical formulations for the direct field dynamic stiffness Ddir of the

statistical subsystems become available:

• Point (LANGLEY; SHORTER, 2003).

• Line (LANGLEY; HERON, 1990).

• Area (WILLIAMS; MAYNARD, 1982) and (LANGLEY, 2007a)
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In case these local impedances are used, the external loads applied solely to statistical

subsystems derive external input powers that can be direct computed from asymptotic

expressions, similar to SEA. The same occurs to connection regions between solely statistical

subsystems: due to Eq. 2.5 and Eq. 2.24, the power transfer coefficient hi,j can be directly

computed from established coupling loss factor ηi,j and modal density ni expressions

hi,j = ωniηi,j. (2.34)

The degrees of freedom from these "statistical junctions" (not in contact with deterministic

subsystems) become then unnecessary for the analysis and can be discarded from the

model. The same can be applied to ones connected solely to external loads. Additionally, if

no deterministic subsystems are considered in the system, the hybrid framework becomes

equivalent to a wave-approach of SEA (SHORTER; LANGLEY, 2005b).

Although the analytical formulations greatly facilitate the definition of the power-flow

model, known solutions for these expressions are only available for elementary configurations

that may not accurately describe the energy flow of the system. Numerical descriptions

become then strong alternatives to characterize the direct field and could be obtained

through a modified version of the Boundary Element Method (SHORTER; LANGLEY,

2005b), however an analytical elementary dissipated power is still computed in Eq. 2.30.

Therefore, a more generic power-flow definition is required to analyze complex systems

that are outside of elementary configuration scope, and solid numerical alternatives for

the statistical subsystem’s descriptions have to be defined. Both topics are explored and

discussed in the next section, where the novel method is presented.
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3 GENERALIZED HYBRID FE-SEA METHOD

3.1 GENERALIZED POWER-FLOW BALANCE

It would be expected that the definition of a generic power-flow model should avoid

the restricted usage of elementary analytical formulations to compute the statistical

subsystem’s energy flow and dynamic equilibrium. Ideally, this more generic method would

be capable of handling numerical descriptions of the power-flow definition, expanding

the possibilities for complex configurations of subsystems and deriving a more robust

analysis. The method is denoted here as generalized hybrid FE-SEA method, or simply as

generalized hybrid method.

The method defines a similar cross-spectral response for the coupled system (Eq. 2.14)

and also ensures a diffuse characteristic to all reverberant fields (frev,i = 0 and Eq. 2.15).

However, the direct relation between diffuse amplitude and the ratio vibrational energy

and modal density (Eq. 2.16) is not considered as it would require a known modal density

to derive useful engineering units for the statistical subsystems. The cross-spectral response

of the Generalized Hybrid method is then written as

Sqq = Dtot
−1

[
fextfH

ext +
∑

i

Ci Im {Ddir,i}
]

Dtot
−H . (3.1)

The derivation of the power-flow balance is similar to the Hybrid FE-SEA Method.

Assuming conservation of energy (Eq. 2.4), the ensemble average input power to the ith

statistical subsystem is written as

⟨Πin,i⟩ = Πext
in,i + πω

∑
j

hj,iCj. (3.2)

The output power from the ith statistical subsystem is expressed as

⟨Πout,i⟩ = πωCi

Md,i +
∑

j

hi,j

 , (3.3)

and the dissipated power by the ith subsystem is written as

⟨Πdiss,i⟩ = πωMiCi. (3.4)

Notice that if we assume the relation from Eq. 2.16, the equation above converges to

Eq. 2.30. The computation of the dissipation coefficient Mi can be made analytically,

similar to what the Hybrid FE-SEA method does, however, for more complex configurations,
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it is suggested to be numerically computed. In the next section, a alternative numerical

derivation is discussed. Similar to Eq. 2.32, the power-flow balance equation for the

Generalized Hybrid framework is expressed as

πω

Mi + Md,i +
∑
i ̸=j

hi,j

 Ci −

∑
i ̸=j

hj,iCj

 = Πext
in,i, (3.5)

which if written in matrix form
M1 + Md,1 + ∑

j ̸=1 hj,1 . . . −h1,N
... . . . ...

−hN,1 . . . MN + Md,N + ∑
j ̸=N hN,j




C1
...

CN

 = 1
πω


Πext

in,1
...

Πext
in,N

 . (3.6)

Again, a simple inversion of the left matrix per frequency is required to compute the

diffuse amplitudes. The response of the deterministic degrees of freedom is then simply

obtained in Eq. 3.1. In order to derive the vibrational energy contained in the reverberant

wavefields, a simple equality between Eq. 2.8 and Eq. 3.4 is necessary to isolate the energy

and compute it

Ei = πMiCi

ηi

. (3.7)

The Generalized Hybrid Method presents a generic procedure to model and analyze a

complex vibro-acoustic system, specially to mid and high frequency problems, where

FEM struggles to derive a population of systems. The only consideration made to the

model is regarding the statistics of the reverberant fields ensemble, which is reasonably

acceptable for subsystems that perform low wavelength’s deformation. Therefore, no major

assumptions were made to the model regarding its geometry or configurations.

In order to fully describe the statistical subsystems in the model, two important

parameters are required: the direct field dynamic stiffness Ddir,i and the dissipation

coefficient Mi. In the next section, a numerical derivation for these the two parameters is

presented. It’s important to point out that if analytical formulations are used to compute

these two parameters, the generalized hybrid method becomes equivalent to the established

Hybrid FE-SEA method.

3.2 NUMERICAL DESCRIPTIONS FOR STATISTICAL SUBSYSTEMS

These parameters can be derived in combination with other established numerical

methods, e.g., standard FEM or periodic FEM. The choice of which approach to use in
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combination will depend on the configuration of system, e.g., if it is composed of a irregular

or a recurring cell structure. The standard/non-periodic case will be explored in more detail

here in this text, for another discussion in this respective approach, it is suggested the

reading of a different work that was conducted in the same research project of this present

text (HINZ, 2021). It’s important to point out that, although this standard/non-periodic

approach is ideal for irregular configurations, it could also be used to model elementary or

periodic structures, as it presents a generic formulation to characterize the subsystem.

In order to numerically describe the statistical subsystems, the standard/non-periodic

approach assumes that a standard FE model for the respective subsystem is available.

Prepossessing manipulations are performed to the statistical subsystem’s FE model in

order to derive the method’s parameters before coupling it to the rest of the system. As

discussed in the review section of FEM, a standard subsystem’s FE model contains nodal

degrees of freedom over its entire domain (figure 6a). However, two important sets of

degrees of freedom for the ith statistical subsystem are required to be defined and are

referred as: boundary degrees of freedom qB
i , similar to the ones from the Hybrid FE-SEA

method that describe the deformation in connections to external loads or other subsystems,

and the internal degrees of freedom qI
i that describe the deformation for the rest of the

statistical subsystem’s domain (figure 6b).

(a) Subsystem’s FE nodes (b) Boundary and internal nodes

Figure 6 – Representation to which FE nodes the respective degrees of freedom are as-
sociated with. The jth and kth subsystems exhibited represent connected
subsystems to the ith one.

Source: Modified from (SHORTER; LANGLEY, 2005b)
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3.2.1 Direct field dynamic stiffness

The equation of motion associated to the ith statistical subsystem is expressed as

(assuming harmonic motion and internal mechanic damping)
[
−ω2Mi + (1 + ηi)Ki

]
qi = Diqi = fi. (3.8)

If we expand the set of degrees of freedom (qi =
[
qB

i
T qI

i
T

]T
)

DBB
i DBI

i

DIB
i DII

i


qB

i

qI
i

 =

fB
i

f I
i

 , (3.9)

where fB
i and f I

i are the external loads applied to, respectively, the boundary and inter-

nal degrees of freedom. The dynamic stiffness Di’s submatrices describe contributions

associated to a specific set of forces (first superscript) and degrees of freedom (second

superscript), where "B" and "I" represent, respectively, the boundary and internal sets of

generalized coordinates.

A simple manipulation is then performed to reduce the set of degrees of freedom,

omitting the internal ones, however still retaining their influence over the subsystem’s

deformation. By performing the multiplication of the left side of Eq. 3.9, two equations

are derived

DBB
i qB

i + DBI
i qI

i = fB
i , (3.10)

and

DIB
i qB

i + DII
i qI

i = f I
i . (3.11)

By isolating the interior degrees of freedom in the second equation and substituting in the

first equation, we obtain the following expression

DBB
i qB

i + DBI
i (DII

i
−1f I

i − DII
i

−1DIB
i qB

i ) = fB
i . (3.12)

As mentioned, any degrees of freedom experiencing external loads is assumed to be part of

qB
i , i.e, f I

i = 0, hence

(DBB
i − DBI

i DII
i

−1DIB
i )qB

i = DJ
i qB

i = fB
i . (3.13)

The operation being performed in equation above is denoted Schur complement (more

specifically taking the Schur complement of DII
i to DBB

i ) (DEVRIENDT et al., 2015),

which derives the ith statistical subsystem’s equation of motion using solely the boundary
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degrees of freedom. By idealizing the subsystem’s response as a superposition of a direct

and reverberant field, the junction’s dynamic stiffness matrix DJ
i contains both wavefields

influences. The derivation of the direct field dynamic stiffness matrix in local coordinates

DL
dir,i can be seen as the removal of the influence of the reverberant wavefield from DJ

i ,

retaining only the desired infinite propagating contribution.

This procedure is achieved by taking an ensemble average of the junction dynamic

stiffness DJ
i , i.e., DL

dir,i = ⟨DJ
i ⟩ (LANGLEY, 2007b). Moreover, as regions that allow

energy flow from external or coupling interactions are assumed to be known precisely, the

boundary dynamic stiffness DBB
i is interpreted as deterministic. The correlation matrices

DBI
i and DIB

i describe the coherence between the two sets of degrees of freedom. Therefore,

no specific interactions directly related to the internal domain’s uncertainty are regarded,

which can be interpreted as representation of deterministic matrices (HINZ, 2021).

The only matrix from Eq. 3.13 that inherently contains influence from the uncertain

interactions of the internal domain is the internal dynamic stiffness DII
i , therefore the

direct field dynamic stiffness in (local coordinates) can be written as (HINZ, 2021)

DL
dir,i = DBB

i − DBI
i ⟨HII

i ⟩DIB
i , (3.14)

where HII
i is the internal receptance (HII

i = DII
i

−1). This ensemble average to the internal

matrix can be derived experimentally (CLOT et al., 2020), numerically or, if certain

conditions are met, analytically (DEVRIENDT et al., 2015). This is discussed further in

the next chapter. Assuming all alternatives are capable of obtaining a robust convergence,

either one could be used to establish the required ensemble. Moreover, the direct field

dynamic stiffness in global deterministic coordinates q is written as

Ddir,i = Bi
T DL

dir,iBi, (3.15)

where the ith boolean matrix Bi translates the local deterministic coordinates to the

global ones (qB
i = Biq).

3.2.2 Dissipation coefficient

In order to numerically define the dissipation coefficient for the ith statistical sub-

system, a different derivation for the dissipated power is expressed (MACE; SHORTER,

2000)
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⟨Πdiss,i⟩ = 1
2⟨Re{iωf I

diss,i
HqI

i }⟩. (3.16)

Assuming only internal damping, the dissipated force can be expressed as

f I
diss,i = iηiKII

i qI
i , (3.17)

where KII
i is the static stiffness contribution of the internal dynamic stiffness (DII(ω) =

−ω2MII
i + (1 + iη)KII

i ), therefore

⟨Πdiss,i⟩ = −1
2ωηi⟨qI

i
HKII

i qI
i ⟩. (3.18)

Using the same procedure from Eq. 2.20, equation above can be expressed as

⟨Πdiss,i⟩ = −1
2ωηiTr

[
KII

i SqI
i qI

i

]
. (3.19)

The cross-spectral response from the internal degrees of freedom of the ith statistical

subsystem SqI
i qI

i
can be approximated to the displacement generated by the ensemble

average blocked loading from the respective subsystem’s domain. In order to derive these

forces, the deterministic boundary is assumed to be constrained (qB
i = 0), resulting in the

following equation of motion

DII
i qI

i = 0. (3.20)

The above expression was generated from Eq. 3.11, where it was also assumed that no

external loads are applied to internal degrees of freedom (f I
i = 0). Following the same

procedure adopted from Eq. 2.11 to Eq. 2.12, the internal forces can be represented by a

deterministic direct field and a random reverberant contribution

DII
dir,iqI

i = f I
rev,i. (3.21)

The cross-spectral internal response is then written as

SqI
i qI

i
= DII

dir,i
−1 Sf I

rev,if
I
rev,i

DII
dir,i

−H
, (3.22)

which by assuming a maximum entropy ensemble statistic to the internal domain of the

subsystem (⟨f I
rev,i⟩ = 0 and Sf I

rev,if
I
rev,i

= 4CiIm{DII
dir,i}), the ith subsystem’s cross-spectral

internal response can be expressed as

SqI
i qI

i
= 4Ci(DII

dir,i
−1 Im{DII

dir,i} DII
dir,i

−H). (3.23)
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Assuming the elegant mathematical relationship from (LANGLEY; CORDIOLI, 2009) to

greatly simply the expression

SqI
i qI

i
= 4CiIm{DII

dir,i
−1}. (3.24)

Substituting the above expression into Eq. 3.19, the ith statistical subsystem’s ensemble

average dissipated power can then be expressed as

⟨Πdiss,i⟩ = ωπMiCi, (3.25)

where the ith statistical subsystem’s dissipation coefficient Mi is written as

Mi = − 2
π

ηiTr
[
KII

i Im{DII
dir,i

−1}
]

. (3.26)

Using the same previous analogy, the internal direct field dynamic stiffness DII
dir,i is

computed simply by the ensemble average of the internal dynamic stiffness

DII
dir,i = ⟨DII

i ⟩. (3.27)

.
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4 NUMERICAL IMPLEMENTATION

Although the previous chapter presented formulation for the Generalized Hybrid

method, a deeper discussion regarding its implementation is required in order to achieve

competitive computational processing costs and reliable results.

4.1 INTERNAL MODAL BASIS - STATISTICAL SUBSYSTEMS

The greatest processing cost reduction for the Generalized Hybrid model is achieved

by projecting the internal nodal degrees of freedom from the statistical subsystems into

modal basis. The internal domain of these subsystems is constituted of regions that demand

the finest configuration definition, resulting in an unfeasible number of degrees of freedom.

If not projected/reduced, the computational cost can easily surpass the one of a full FE

model analysis, due to the high number of matrices manipulations made in the method.

The degrees of freedom from deterministic boundaries remain nodal in order to

enforce compatibility to connected subsystems. The relationship between the ith statistical

subsystem’s internal nodal qI and modal pI degrees of freedom is defined as

qI
i = UI

i pI
i , (4.1)

where UI
i is the eigenvectors matrix for the internal domain. This matrix is derived by

performing a modal analysis to the interior domain of the ith statistical subsystem, i.e.

[
KII

i − ω2MII
i

]
uI

i = 0, (4.2)

where UI
i is obtained from the collection of all eigenvectors from above equation, i.e.

UI
i = [uI

i,1, . . . , uI
i,N]. This internal modal basis affects the derivation of both the direct

field dynamic stiffness Ddir,i and the dissipation coefficient Mi. For the former parameter,

the substitution of Eq. 4.1 in Eq. 3.11 results in

DIB
i qB

i + DII
i UI

i pI
i = f I

i . (4.3)

By multiplying over left side of equation above by UI
i
T and eliminating the external loads

to internal domain (f I
i = 0), the expression becomes

UI
i
T DIB

i qB
i + DII,p

i pI
i = 0, (4.4)



54

where DII,p
i is the internal dynamic stiffness matrix projected over internal modal basis

(DII,p
i = UI

i
T DII

i UI
i ). By isolating the modal coordinates, we obtain

pI
i = −DII,p

i
−1UI

i
T DIB

i qB
i . (4.5)

If we also change the internal basis to modal basis over Eq. 3.10, we obtain

DBB
i qB

i + DBI
i UI

i pI
i = fB

i , (4.6)

which if we substitute Eq. 4.5 in Eq. 4.3 and put qB
i in common, we obtain the definition

of the junction dynamic stiffness with internal contribution projected over modal basis

DJ,p
i

(DBB
i − DBI

i UI
i D

II,p
i

−1UI
i
T DIB

i )qB
i = DJ,p

i qB
i = fB

i . (4.7)

The computational efficiency from above equation above is far superior from Eq. 3.13 as

lesser matrices manipulations are required per frequency. This is explained why in the

following arguments. By defining two partially modal dynamic stiffness (DBI,U
i = DBI

i UI
i

and DIB,U
i = UI

i
T DIB

i ) and by expanding one of them, we obtain

DBI,U
i = −ω2MBI,U

i + (1 + iη)KBI,U
i , (4.8)

where, although a internal eigenproblem is necessary for analysis, the mass (MBI,U
i =

MBI
i UI

i ) and stiffness (KBI,U
i = KBI

i UI
i ) matrices are evaluated just once and are far

smaller than their nodal counterparts (at Eq. 4.2). The derivation of DIB,U
i is similar

to the equation above, just exchanging the mass and stiffness matrices to the ones that

correspond correctly to the related degrees of freedom. Furthermore, the most important

computational aspect from Eq. 4.7 is the internal modal dynamic stiffness DII,p
i , which,

as this is a diagonalized matrix, can be easily inverted. Similar to Eq. 3.14, the ensemble

average of junction dynamic stiffness with internal modal basis (Eq. 4.7) is written as

⟨DJ,p
i ⟩ = DBB

i − DBI,U
i ⟨HII,p

i ⟩DIB,U
i , (4.9)

where HII,p
i = DII,p

i
−1. Due to the truncation of modes made in Eq. 4.2, the average

dynamic stiffness ⟨DJ,p
i ⟩ does not converge directly to the direct field dynamic stiffness

Ddir,i. A correction is then necessary to obtain equivalence. The proposed method to obtain

such correction uses a pseudostatic technique, which approximates strain contributions
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from the dropped modes by the use of a residual flexibility matrix K̃res,i (TOURNOUR;

ATALLA, 2000). In the paper, the authors discuss and prove that these contributions are

enough to correct structure-borne FE system’s analysis. The residual flexibility is then

computed as the difference between the pseudostatic contributions from DJ
i and DJ,p

i , i.e.

neglecting the inertial contribution (ω = 0), which writes as

K̃res,i = DJ
i (ω = 0) − DJ,p

i (ω = 0). (4.10)

The pseudostatic contribution from the dynamic stiffness consists essentially of the dissi-

pative and restoration forces resistances. For example, in the case of the internal dynamic

stiffness, its pseudostatic contribution is written as

DII
i (ω = 0) = (1 + iηi)KII

i = K̃II
i . (4.11)

All dynamic stiffness inside DJ
i (ω = 0) and DJ,p

i (ω = 0) represent a similar composition

as Eq. 4.11. Consequently, by substituting Eq. 3.14 and Eq. 4.7 into above equation, the

residual flexibility is computed as

K̃res,i = K̃BI
i (K̃II

i
−1 − UI

i K̃
II,p
i

−1UI
i
T )K̃IB

i , (4.12)

and, therefore, the direct field dynamic stiffness in local coordinates is obtained by

DL
dir,i = ⟨DJ,p

i ⟩ + K̃res,i. (4.13)

Although the computation of the residual flexibility (Eq. 4.12) consists of large complex

matrix manipulations, it’s only required to be evaluated once, as opposed to the dynamic

matrices. An important note to point out is that, when implementing Eq. 4.12 in a routine,

it’s more computationally efficient to compute all matrices multiplications and divisions

before computing the difference from the two terms on the right side of the expression.

Moreover, the direct field dynamic stiffness in global coordinates Ddir,i is derived similarly

to Eq. 3.15.

In the case of the internal dissipation, by substituting the modal basis transformation

(Eq. 4.1) into the dissipated power expression (Eq. 3.18)

⟨Πdiss,i⟩ = −1
2ωηi⟨pI

i
HUI

i
T KII

i UI
i qI

i ⟩ = −1
2ωηi⟨pI

i
HKII,p

i pI
i ⟩. (4.14)

By repeating the same process of Eq. 2.20, the dissipated power is then expressed as



56

⟨Πdiss,i⟩ = −1
2ωηiTr

[
KII,p

i SpI
i ,pI

i

]
. (4.15)

The derivation of the cross-spectrum of internal modal basis is performed by substituting

the modal basis transformation into Eq. 3.21 and multiplying by UI
i
T at left side of the

expression

DII,p
dir,ipI

i = UI
i
T f I

rev,i, (4.16)

where DII,p
dir,i = UI

i
T DII

dir,iUI
i . Therefore, by computing the cross-spectrum of internal modal

basis

SpI
i ,pI

i
= DII,p

dir,i
−1(UI

i
T Sf I

rev,i,f
I
rev,i

UI
i )D

II,p
dir,i

−H , (4.17)

and substituting the same cross-spectral of the internal reverberant force (Sf I
rev,if

I
rev,i

=

4CiIm{DII
dir,i}), used in Eq. 3.23, into above equation and following the same matrices

manipulations from Eq. 3.23, we obtain the following expression

SpI
i ,pI

i
= 4CiIm{DII,p

dir,i
−1}. (4.18)

The ith statistical subsystem’s dissipation coefficient Mi can then computed as

Mi = − 2
π

ηiTr
[
KII,p

i Im{DII,p
dir,i

−1}
]

, (4.19)

which represents a far more computational efficient approach to derive the dissipated

power from Eq. 3.25. The internal modal direct field dynamic stiffness DII,p
dir,i is derived

similarly to its nodal counterpart (Eq. 3.27)

DII,p
dir,i = ⟨DII,p

i ⟩. (4.20)

Although Eq. 4.13 and Eq. 4.19 are capable of fully describe the power flow from a

statistical subsystem (in combination with the power-flow coefficient’s expressions), a

proper and efficient approach to derive the ensemble average internal dynamic stiffness

⟨DII,p
i ⟩ is required for the analysis and is presented in the next section.

4.2 EFFICIENT AVERAGING METHODS - STATISTICAL SUBSYSTEMS

A direct approach to calculate the ensemble average of a FE dynamic stiffness is by

generating a collection of randomized nominally identical samples and computing their

frequency response function (FRF) mean, this is known as the FE Monte Carlo method.
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However, every sample realization requires an unique eigenproblem, eventually demanding

an impractical amount of processing time to derive a proper and converged ensemble

average, regardless of the randomization technique adopted to the samples.

Two efficient averaging methods were explored at a parallel work to this thesis

(HINZ, 2021), with each one presenting different attributes over their processing time and

robustness to their ensemble average’s results. The two methods are briefly presented in

the following, if a detailed discussion is sought, head into the parallel work’s reference.

Results for the direct field receptance (Eq. 4.13 inverted) and vibrational energy (Eq. 3.7),

using both averaging methods to derive ⟨DII,p
i ⟩, were compared to a solid FE Monte Carlo

model for evaluation.

4.2.1 Non-parametric random matrix averaging

The first method introduces the randomization of the FRF using techniques from

random matrix theory (RMT) in combination with a maximum entropy non-parametric

approach. Essentially, this approach allows for a randomization controlled by a single

universal intensity parameter δR,i, disregarding possible physical or conceptual parameters

that would require known information about the system’s configuration. This data is

usually not available due to the high level of uncertainty associated to the statistical

subsystem’s internal domain.

Assuming A as an arbitrary deterministic FRF matrix, the ith randomized sample

AR,i is defined as

AR,i = LA
T GiLA, (4.21)

where LA is the upper triangular matrix from a Cholesky factorization (A = LA
T LA).

Gi is a random matrix defined as the source of uncertainty to the FRF, which is derived

accordingly to the universal parameter δR,i. In order to derive LA from the factorization,

the original matrix A is required to be definitive positive, which applies for DII,p
i , as the

ith subsystem’s deterministic boundary is understood as constrained and, therefore, no

rigid modes are defined. For a fully deterministic sample, the random matrix Gi equals

identity (Gi = I).

The randomized FRFs conceptualize an ensemble of N samples, similar to FE

Monte Carlo, which an average is then computed (⟨A⟩ = 1/N
∑N

i AR,i). The major
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computational advantage of this method, in comparison the standard FE Monte Carlo, is

the possibility of the directly randomization of the modal matrices, neglecting the necessity

of an eigenproblem for every sample, resulting in huge processing cost reduction.

In (HINZ, 2021), results for a Numerical SEA analysis using the non-parametric

averaging method to derive ⟨DII
i ⟩ exhibited robustness at mid and high frequency regions,

due to the great convergence to the FE Monte Carlo result. However, at lower frequencies,

the non-parametric results showed a nominal deterministic behavior, implying in a lack of

randomization impact over these lower spectrum regions.

4.2.2 Lorentzian frequency averaging

The second method consists in assuming that the arbitrary deterministic FRF matrix

A(ω) displays a frequency-ensemble ergodicity property, implying an average of the matrix

over the frequency ω converges into the desired ensemble average. Furthermore, a weighted

frequency average of A(ω) is defined as

⟨A(ω)⟩W =
∫ +∞

−∞
W (ω)A(ω)dω, (4.22)

where W (ω) is denoted as weighting function. In general, this integral is computed

numerically over the spectrum domain, which, depending on the frequency resolution,

demands a considerable amount of processing cost. However, the weighting function that

is adopted here in this approach, the Lorentzian weighting function L(ω, γ), has a specific

distribution that invokes a powerful mathematical feature, allowing for the integral to be

analytically computed. Therefore, reducing considerably the amount of processing cost

required. The Lorentzian weighting function L(ω, γ) has a peculiar bell shaped distribution

and γ is the parameter that calibrates its bandwidth.

After some manipulations (DEVRIENDT et al., 2015), the analytical derivation for

the weighted frequency integral is defined as
∫ +∞

−∞
L(ω, γ)A(ω) = A(ω − iγ). (4.23)

In the case of A(ω) is defined as the dynamic stiffness with structural damping (our case

here), a causality issue must be concerned, as Eq. 4.23 is no longer an exact equivalence

to the ensemble average, but actually an reasonable approximation (HINZ, 2021)

⟨A(ω)⟩ ≈ A(ω − iγ). (4.24)
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In this approach, the shape of the Lorentzian weighting function, defined by γ, will

directly affect the randomization of the A(ω) matrix. For a small γ, the distribution will

be concentrated over a narrow region, resulting in lack of variability to the average. In

contrast, a large number will flatten the distribution and will most likely affect regions

out of local stationarity. Therefore, defining a optimal value for γ is critical for a proper

average.

The proposed definition for the shape parameter is written as (DEVRIENDT et al.,

2015)

γA = Nγ

nA
, (4.25)

where Nγ is an integer that quantify how many modes the weighting function covers around

its peak. For (DEVRIENDT et al., 2015), the nominator is usually set as a constant, e.g.

for flat plates the optimal value of 3 was suggested. However, for (HINZ, 2021), the integer

as a function of frequency Nγ(ω) is used. The denominator nA(ω) is the modal density

related to the subsystem associated to A, which can be analytically calculated, however,

due to generalization, it is more appropriated to be numerically computed by the number

of modes obtained in the eigenproblem (Eq. 4.2) divided by the respective band-widths.

Another possibility for γ is to relate it directly to the band-width of analysis. In the

case of a 1/3 octave frequency band, the shape parameter can be written as

γ1/3 =
[
∆ω1

1/3 ∆ω2
1/3 . . . ∆ωNω

1/3

]
, (4.26)

where ∆ωi
1/3 is the band-width of the ith one-third octave band of analysis and Nω is

the number of frequency bands. This approach is employed when no modal density is

available, either when no known analytical formulations are known or no modes were

numerically obtained at lower frequency bands (this is usually not the case here, as we are

dealing with the interior domains of statistical subsystems that are highly populated with

resonant modes, however, in the next section, there is a scenario where Eq. 4.26 becomes

necessary). Both the first approach, using a numerically derived modal density, and the

second approach assume a broad-band frequency resolution, however it is possible to derive

a γ over a narrow-band one if interpolation is used between the bands’ center frequencies.

In (HINZ, 2021), a Numerical SEA model using the Lorentzian averaging method

was also evaluated, similar to the evaluation made for the non-parametric averaging
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method. The results using this method were able to achieve convergence to the FE Monte

Carlo curves over the entire frequency region, exhibiting superior robustness against the

previously discussed method.

4.3 WAVEFIELD’S PARTITION - STATISTICAL SUBSYSTEMS

Until now, every subsystem was associated to a single direct field dynamic stiffness

Ddir,i and a single dissipation coefficient Mi, meaning that each is linked to a single

lumped wavefield. This type of wavefield concentrates all dynamics and internal forces

of a subsystem into a single energy container. However, as mentioned, in SEA or Hybrid

FE-SEA method, the subsystems are actually portioned into a set of wavefields, e.g., in

the case of plates: flexure, extensional and shear wavefields are usually defined.

In general, defining groups of wavefields per subsystem, instead of a single lumped

one, is mostly motivated by: limitations of analytical formulations to cover complex

mechanisms, therefore splitting it into simpler physics to be able to fully describe the

subsystem, and due to the disparity of energy influence from different wavefields to the

system’s power-flow framework, as, e.g., the in-plane wavefields dissipate far less energy

than the out-of-plane ones (otherwise, in some situations, the lumped wavefield would

impose a misguiding equipartition of energy around the wavefields). This separation of

wavefields is not a universal approach, as only some elementary configurations present

manners of splitting their physical mechanism without lost of generality.

The necessity of wavefield’s partition is also not obvious, as depending on the

structure’s configuration, different types of wavefields could be intrinsically mixed and,

therefore, impossible to be partitioned. Moreover, this intrinsic blend end up supporting a

more even distribution of energy influence over the wavefields, disregarding the need of

their partition. In general, a irregular configuration tends to support more even distributed

wavefields, as a result of the wave scattering that arise from its discontinuities, whereas a

elementary configuration tends in defining a clear distinction between different wavefield’s

energy influence.

Apart from the subsystem’s configuration, the wavefield’s definition will also be

affected by the method used to model the subsystem. As mentioned, analytical formula-

tions require wavefield partitions to derive proper solutions. If however, the subsystem’s

configuration obeys a cycle of repetition, it could be modelled by a Wave FE method,
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which defines the set of wavefields based on the dispersion curves. In this approach, a

greater number of wavefields could be obtained. Nonetheless, a standard FE method could

be used to model the subsystem and is the case discussed here in the thesis. Although a

lumped wavefield is generally obtained from defining a subsystem from a standard FE

model, post-processing manipulations could be performed to partition this respective

wavefield. This is what is discussed in the following.

It is possible that the post-processing to partition the lumped wavefield could be

a generalized procedure, applying to every sort of configuration. However, the presented

formulation here will only be concerned with the elementary configuration of flat plates,

which is a clear representation of a subsystem with two or more decoupled wavefields. A

set of direct field dynamic stiffness Ddir,i and dissipation coefficient Mi is then derived

for each wavefield. Consequently, additional energy containers Ci are defined, increasing

the number of energy paths in the power-flow framework. This results in also increased

number of coefficients (hi,j, Md,i and, as mentioned, Mi) and size of Eq. 3.6.

For the case of flat plates, the out-of-plane and in-plane contributions were selected

to derive the partitioned wavefields. These wavefields represent, respectively, transverse

and parallel wave contributions relative to the flat plate’s plane. The process consists in

separating these contributions directly from the subsystem’s FE matrices, compute the

framework’s power flow coefficients for each wavefield and solve the system to determine

the energy containers (Eq. 3.6). Consider a first scenario of a flat plate’s FE model with

its normal vector v̂n parallel to the k̂ vector of the global coordinate system (̂i, ĵ, k̂), like

the one exhibited in Fig. 7.

Assuming six degrees of freedom per node (three displacements ux, uy, uz and three

rotations θx, θy, θz), the out-of-plane and in-plane contributions can be easy separated

from the FE matrices by a simply separation of degrees of freedom. In this case, the

out-of-plane is solely associated to normal displacement uz and to the orthogonal vector’s

rotations θx and θy, whereas the in-plane is associated to rest of degrees of freedom ux, uy

and θz. This easy separation is also possible when the plate’s normal is parallel to either î

or ĵ vectors, the only difference would be the set of degrees of freedom each wavefield is

associated.

Consider now a second scenario of a plate that has the normal vector v̂n with arbitrary

direction in the global coordinate system and, therefore, probably with out-of-plane and

in-plane contributions mixed over the sets of six degrees of freedom per node. In order
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Figure 7 – Plate on x-y plane

Source: Matlab

to separate the ith subsystem matrices in this general case, a local coordinate system

(̂iL
i , ĵL

i , k̂L
i ) is defined, where it is assumed that the plate’s normal vector v̂n is parallel

to any of the three local coordinate system’s vectors. Just for clarification reasons, the

k̂L
i is chosen here. The other two vectors directions are arbitrary, as long as they remain

orthogonal to the plate’s normal and to each other. This second scenario is illustrated at

Fig. 8. The values defined for ĵL
i and k̂L

i are arbitrary.

The process then consists in projecting the ith subsystem ’s FE matrices from global

coordinates qi (second scenario) to local coordinates qL
i (similar to the first scenario),

where out-of-plane and in-plane set of the degrees of freedom are decoupled, and, therefore,

allowing for easy contribution’s separation from the FE matrices. Thereafter, the separated

matrices are projected back to global coordinate system to enforce compatibility to neighbor

subsystems. The formulation of the process in presented in the following.

The projection from local coordinates to global ones is expressed as

qi = TiqL
i , (4.27)

where the ith subsystem’s transformation matrix Ti is derived from the inner products

between the global and local coordinate system of ith subsystem. Although all FE elements

of a flat plate assume the same normal vector v̂n, the other two orthogonal basis have
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Figure 8 – Plate on arbitrary plane

Source: Matlab

distinct vector directions. Nonetheless, assuming the same local coordinate system’s vectors

(in this case, arbitrary and orthogonal) for every element is not a problem as it is intended

to return to global coordinate system at the end, reverting any possible dubious and

erroneous projection. The ith subsystem’s transformation matrix Ti is then constructed

as a diagonal concatenation of several identical nodal transformation matrices Tnodal,i

Ti =


Tnodal,1

. . .

Tnodal,Ni

 , (4.28)

where Ni is the total number of nodes inside the ith subsystem and the nodal transformation

matrices Tnodal,i is written as (SHABANA, 2010)

Tnodal,i =


î · îL

i î · ĵL
i î · k̂L

i

ĵ · îL
i ĵ · ĵL

i ĵ · k̂L
i

k̂ · îL
i k̂ · ĵL

i k̂ · k̂L
i

 , (4.29)

where ⟨·⟩ symbolizes the inner product operator. By substituting Eq. 4.27 in Eq. 3.8

and also multiplying by the left side the latter by Ti
T , the subsystem’s FE matrices are

projected over local coordinates, resulting in the following equation of motion

DL
i qL

i = fL
i . (4.30)
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where the dynamic stiffness (DL
i = Ti

T DiTi) matrix and the force (fL
i = Ti

T fi) vector

admit decoupled out-of-plane and in-plane contributions. The partitioned matrices are

then generated by simply separating the contributions from the decoupled degrees of

freedom associated to each wavefield into different matrices

DL
i = DL

in,i + DL
out,i. (4.31)

The in-plane fin,i and out-of-plane fout,i force vectors follow the same principle from above.

Consequently, the decoupled equation of motion for the in-plane is written as

DL
in,iqL

i = fL
in,i, (4.32)

and for the out-of-plane as

DL
out,iqL

i = fL
out,i. (4.33)

Moreover, due to the orthogonality from the transformation matrix (Ti
T Ti = I (SHA-

BANA, 2010) and, therefore, qL
i = Ti

T qi), the decoupled equations of motion in global

coordinates can be derived by simply multiplying by the left side of Eq. 4.32 and Eq. 4.33

by T, which are then expressed as

Din,iqi = fin,i, (4.34)

and

Dout,iqi = fout,i, (4.35)

where Din,i = TiDL
in,iTi

T and fin,i = TifL
in,i. The out-of-plane matrices follow the same

logic of derivation. In the global coordinate system, the matrices and vectors probably

have contributions populating all six types of degrees of freedom, however is not a problem

anymore, as the in-plane and out-of-plane contributions are already separated. The force

vectors fin,i and fout,i are then used in Eq. 3.2 to derive external input power Πext
in,i to each

partitioned wavefield.

The previous two expressions concentrate all the dynamics involved for each parti-

tioned wavefield in the isolated ith subsystem. They have enough information to follow the

derivation steps from Eq. 3.8 and Eq. 3.16, and derive separately the remaining framework

parameters for each wavefield. Therefore, the direct field dynamic stiffness for the in-plane

wavefield Din,dir,i is written as
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Din,dir,i = DBB
in,i − DBI,U

in,i ⟨HII,P
in,i ⟩DIB,U

in,i + Kin,res,i, (4.36)

where the partially modal dynamic stiffness matrices are derived as DBI,U
in,i = DBI

in,iUI
in,i

and DIB,U
in,i = UI

in,i
T DIB

in,i. All the boundary B and internal I nodal matrices are derived

from the same analogy of Eq. 3.9 to the in-plane equation of motion (Eq. 4.34), as they

both assume the same generalized coordinates vector qi. The same logic of above is applied

to derive Dout,dir,i. Although the formulation for nodal dynamic stiffness matrices was

already defined, due to numerical characteristics of Din,i and Dout,i, the derivations for the

modal internal receptances (HII,P
in,i and HII,P

out,i), modal internal shapes (UI
in,i and UII

out,i)

and residual flexibility (Kin,res,i and Kout,res,i) require further discussions to be defined.

Perhaps the most intuitive approach to derive the modal internal receptance and

shape matrices would be performing an eigenproblem to the respective internal nodal

matrices (DII
in,i and DII

out,i). However, the process of projecting them into local coordinates,

separating the contributions and then reverting back to global coordinates unwittingly

inserts numerical errors into the partitioned matrices, resulting in inaccurate modes’

derivations. In general, these partitioned nodal matrices are slightly non-symmetrical,

resulting in complex eigenvalues and eigenvectors. Even if symmetry is enforced for

linear analysis, erroneous results are still obtained. Therefore, the solution to derive the

modal matrices relies on partitioning the contributions only after the lumped wavefield’s

eigenproblem is performed.

Remembering that the internal equation of motion (obtained when the deterministic

boundary is constrained Eq. 3.20) is written as

DII
i qI

i = 0,

which by performing a projection over modal internal basis (Eq. 4.1) and multiplying by

the left side of the equation by UI
i
T , the modal internal equation of motion is obtained

UI
i
T DII

i UI
i pI

i = 0. (4.37)

The separation of the wavefield’s contribution is actually made directly to the modal

internal shape matrices in local coordinates, similar to the process made for the dynamic

stiffness matrices. The internal projection from local coordinates qI,L
i is then defined as

qI
i = TI

i q
I,L
i , (4.38)
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where TI
i is similar to the transformation matrix derived in Eq. 4.28, however with Ni equal

to the number of nodes outside of the ith subsystem’s deterministic boundary. In order to

properly project the modal shape matrices in local coordinates, the orthogonality properties

from the transformation matrices is used in our favor (TI
i TT

i
T = I). Consequently, by

inserting TI
i TI

i
T between the dynamic stiffness and the modal shape functions in Eq. 4.37,

the following expression is obtained

UI
i
T (TI

i TI
i
T )DII

i (TI
i TI

i
T )UI,L

i pI
i = 0, (4.39)

or after manipulating it

UI,L
i

T DII,L
i UI,L

i pI
i = 0, (4.40)

where UI,L
i = TI

i
T UI

i and DII,L
i = TI

i
T DII

i TI
i . Similar to Eq. 4.31, the local modal internal

shape matrix can be separated into two distinct matrices based on the selected sets of

degrees of freedom (UI,L
i = UI,L

in,i + UI,L
out,i). The projection of the internal dynamic stiffness

matrix in modal basis is then expressed as

UI,L
i

T DII,L
i UI,L

i = DII,P
in,i + DII,P

out,i + DII,P
cor,i. (4.41)

The in-plane (DII,P
in,i = UI,L

in,i
T DII

in,iU
I,L
in,i) and out-of-plane (DII,P

out,i = UI,L
out,i

T DII,L
i UI,L

out,i)

modal internal dynamic stiffness are then defined and decoupled, as the correlation matrix

(DII,P
cor,i = UI,L

in,i
T DII,L

i UI,L
out,i + UI,L

in,i
T DII,L

i UI,L
in,i) is negligible, due to the orthogonality

between different modes of the same subsystem, resulting in a matrix consisting of solely

numerical errors. The robustness regarding the choice of the local coordinate system

(̂iL
i , ĵL

i , k̂L
i ) for the flat plate is evaluated here in the partitioned modal internal matrices, as

the matrices should be accurately diagonalized and decoupled, i.e., if the lumped internal

modal shape matrix was mass normalized, there should be zeros values (or numerical

errors) on diagonal elements that represent in-plane modes in the out-of-plane matrix, and

vice versa.

The identification of these modes could be easy visualized by plotting the partitioned

internal modal shapes. Figure 9 and Fig. 10, respectively, exhibit a clear representation of

a specific in-plane mode in UI,L
in,i and out-of-plane mode in UI,L

out,i. If by any means, the

opposite partitioned internal modal shape matrix was plotted for the respective mode,

a static mode is exhibited, as negligible contribution is present. Moreover, in order to

compute the modal internal receptance HII,P
in,i used in Eq. 4.36, an inversion of DII,P

in,i is
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required. However, as this matrix present specific columns and rows fully populated with

zero values (due to decoupling), matrix singularity becomes a concern. The solution is then

to remove these columns and rows from the matrix (consequently from the partitioned

internal modal shape matrix UI,L
in,i columns as well), when used in Eq. 4.36, retaining only

contributions associated to the respective wavefield. This same analogy is also applied to

derive the direct field dynamic stiffness of the out-of-plane wavefield.

Figure 9 – An in-plane mode of an arbitrary plate (colors related to out-of-plane displace-
ment)

Source: Matlab

Although deriving the average internal receptance ⟨HII,P
out,i⟩ by the use of the frequency

Lorentzian averaging technique (Eq. 4.23) (assuming the shape parameter as a function

of modal density (Eq. 4.25)) being a simple task, in the case of the in-plane receptance

⟨HII,P
in,i ⟩, it is not. This is issue is mostly caused by the lack of modes numerically obtained

from the modal analysis, therefore obtaining a zero valued modal density. Determining

the shape parameter as a function of the band-width (Eq. 4.26) is then suggested. The

use of the non-parametric average is not advised for this scenario as an alternative, due to

the inefficient influence of the technique over lower frequency regions (which is where the

lack of modes issue is addressed).

Regarding the definition of Kin,res,i and Kout,res,i, their derivation using partitioned

matrices is not possible due to the inversion of a nodal matrix on Eq. 4.12, as the
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Figure 10 – An out-of-plane mode of an arbitrary plate (colors related to out-of-plane
displacement)

Source: Matlab

partitioned matrices present bad matrix conditioning and, consequently, singular matrix

inversions. The solution to derive the in-plane and out-of-plane residual flexibility matrices

is then made by directly partitioning the respective lumped matrix Kres,i. This process is

performed similarly to the approach presented in Eq. 4.31, where the residual flexibility is

projected into local boundary coordinates qB,L
i (as it is associated to the deterministic

boundary), separated based on the set of degrees of freedom associated to the respective

wavefield and then retrieved back to the original global coordinate system to enforce

compatibility along the neighbor subsystems. The projections of the boundary coordinates

over local coordinates systems is obtained similarly to Eq. 4.38, respectively, the difference

is in the size of the transformation matrix, as here it considers only nodes inside the

deterministic boundary.

The remaining coefficient to be defined is the dissipation coefficient for the partitioned

wavefields (Min,i and Mout,i). The coefficients are eventually obtained by following the

steps of Eq. 4.16 using the dynamics represented in Eq. 4.40. The dissipation coefficient

for the in-plane wavefield is then written as
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Min,i = − 2
π

ηiTr
[
KII,P

in,i Im{HII,P
in,dir,i}

]
, (4.42)

and for the out-of-plane as

Mout,i = − 2
π

ηiTr
[
KII,P

out,iIm{HII,P
out,dir,i}

]
. (4.43)

where the KII,P
in,i and KII,P

out,i are the stiffness matrices contained in the dynamic stiffness

matrices DII,P
in,i and DII,P

out,i, respectively.

4.4 MODAL BASIS - DETERMINISTIC SUBSYSTEMS

One more model reduction is possible in order to achieve competitive processing

costs, which is by projecting the deterministic subsystem’s degrees of freedom into their

modal basis. These deterministic components tend to admit fewer modes, resulting in

a change of basis that greatly reduces the number of generalized coordinates. This is

reflected on the reduced size of the framework matrices (Dd, Ddir,i and Dtot) that require

fewer matrix manipulation for processing.

The modes used for projection could be arbitrary determined, still, in this work, only

the free and specific clamped modes of the deterministic subsystems were explored. Both

modal projection approaches affect the system’s analysis differently and are discussed

separately in the following subsections. Anyhow, this projection over the deterministic

subsystem’s degrees of freedom develops a new set of global generalized coordinates qh

that is related to the nodal global one q as

q = TUqh. (4.44)

where TU is the transformation matrix responsible for projection of the generalized

coordinates and it will be explained shortly. Remembering the system’s deterministic

degrees of freedom were defined as q = [qd
T qBT ]T (discussed above Fig. 4) and assuming

the qd vector is expressed as

qd =
[
qd,i

T . . . qd,Nd
T

]T

, (4.45)

where qd,i is the ith deterministic subsystem’s nodal degrees of freedom and Nd is the

number of deterministic subsystems. The new set of coordinates qh is constituted of

groups of projected degrees of freedom qh
d,i that represent each ith decoupled deterministic
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subsystem’s modal or partially modal coordinates (depending on the approach used for

projection) and a sole group of nodal degrees of freedom qB, which are the generalized

coordinates that remained as nodal from q (they are related to nodes that do not interact to

any selected modal shape). Therefore, if expanded, the new coordinate vector is expressed

as

qh =
[
qh

d,i
T

. . . qh
d,Nd

T qBT
]T

. (4.46)

As qh comprises both modal and nodal degrees of freedom, it is considered to be a partially

modal coordinate vector and should be smaller than its fully nodal counterpart q, justifying

the process discussed here. The global transformation matrix TU is then derived according

to the definition of q and qh, and is written as

TU =



TU,i
. . .

TU,Nd

Ib


, (4.47)

where Ib is the identity matrix that retains specific coordinates into nodal basis. Therefore,

its size should be defined according to the length of qB. The local transformation matrix

TU,i is related directly to the ith deterministic subsystem (qd,i = TU,iqh
d,i) and is derived

accordingly to the basis used for projection. Their derivations are discussed in the following

subsections.

Having the global transformation matrix TU properly derived, the next step is

to project the framework’s matrices into these more efficient bases. In the case of the

deterministic subsystem’s dynamic stiffness Dd, its representation in partially modal global

coordinates qh is obtained similarly to Eq. 3.15, and written as

Dh
d = TU

T DdTU. (4.48)

The total dynamic stiffness Dh
tot, ith statistical subsystem’s direct field dynamic stiffness

Dh
dir,i and the cross-spectral external force Sext,h

ff in partially modal global coordinates are

obtained similarly to the equation above. This results in the partially modal deterministic

response
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Sqhqh = Dh
tot

−1
(
Sext,h

ff +
N∑
i

4CiIm{Dh
dir,i}

)
Dh

tot
−H . (4.49)

All power-flow framework’s coefficients (hi,j , Md,i and Πext
i ) are then computed using these

projected matrices (except for the dissipation coefficient Mi, which is computed using

the previous discussed expressions for lumped nodal Eq. 3.26, lumped modal Eq. 4.19

or partitioned modal Eq. 4.42-4.43 scenarios). The power-flow coefficients can then be

more efficiently derived with following expressions. For the external input power to the

ith statistical subsystem

Πext
in,i = ω

2 Tr
[
Im

{
Dh

dir,i

}
Dh

tot
−1Sext,h

ff Dh
tot

−H
]

, (4.50)

for the power transfer coefficient from the ith to the jth statistical subsystem

hi,j = 2
π

Tr
[
Im

{
Dh

dir,i

}
Dh

tot
−1 Im

{
Dh

dir,j

}
Dh

tot
−H

]
= hj,i. (4.51)

and for the deterministic damping coefficient

Md,i = 2
π

Tr
[
Im

{
Dh

d

}
Dh

tot
−1 Im

{
Dh

dir,i

}
Dh

tot
−H

]
. (4.52)

The discussion regarding each of the two approaches (using either free or clamped modes)

to properly define TU,i and qh
d,i are discussed next.

4.4.1 Clamped modes

Assuming the ith deterministic subsystem’s nodal basis could be defined simply as

qd,i =
[
qI

d,i qB
d,i

]
, the first approach projects the deterministic subsystem based on a

fixed interface configuration (MACE; SHORTER, 2000), where the degrees of freedom

related to nodes contained in junctions to other subsystems or external excitations qB
d,i

are retained in nodal coordinates. The rest of the ith deterministic subsystem’s nodal

coordinates qI
d,i are projected to modal bases pI

d,i (all the interior domain is projected).

This change of coordinates is expressed as

qI
d,i = UI

d,ipI
d,i. (4.53)

The ith deterministic subsystem’s internal modal shape matrix UI
d,i is generated from the

respective internal eigenproblem
[
KII

d,i − ω2MII
d,i

]
uI

d,i = 0, (4.54)
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where UI
d,i is obtained from the collection of all eigenvectors from above equation, i.e.

UI
d,i = [uI

d,i,1, . . . , uI
d,i,N]. This approach is denoted as clamped modes because the modal

shape obtained from the above eigenproblem represents the deformation that the ith

deterministic subsystem would have if the boundary was constrained. The ith deterministic

subsystem’s stiffness and mass matrix (KII
d,i and MII

d,i, respectively) are simply derived by

separating the subsystem’s coordinates into boundary and internal degrees of freedom in

the respective subsystem’s matrices Kd,i and Md,i, similar to what was applied in Eq. 3.9.

After projection, the ith deterministic subsystem’s degrees of freedom are expressed as

qh
d,i =

[
pI

d,i
T qB

d,i
T

]T

, (4.55)

which, in order to satisfy the relation between qd,i and above expression, its local transfor-

mation matrix should be defined as

TU,i =

UI
d,i Xd,i

0 Id,i

 (4.56)

where Id,i is the identity matrix that retains the junction node’s coordinates of the ith

deterministic subsystem into nodal basis, its size is defined according to the number of

degrees of freedom contained in the junctions. The constrained modal shape Xd,i was

defined in order to apply the internal forces from the junction boundary to the interior

modes. Otherwise, the projected internal degrees of freedom would interpret the junction

nodes as constrained, which is unintended. The constrained modal shape is then written as

Xd,i = −KII
d,i

−1KIB
d,i, (4.57)

where KIB,i
d,i was also obtained by expanding the subsystem’s coordinates in Kd,i. Notice

that, as this approach only changes nodal bases that are contained in the interior domain

of deterministic subsystems, the coordinates in the boundary of connected statistical

subsystems remain as nodal basis, resulting in a projection over direct field dynamic

stiffness matrices that only rearranges their respective nodal matrices in the newly defined

set of partially modal degrees of freedom.

4.4.2 Free modes

The second approach presents a simpler projection, where the entire domain of the

ith deterministic subsystem is projected into free modal basis pd,i. The projection is then
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expressed as

qd,i = Ud,ipd,i, (4.58)

where Ud,i is the free modal shape matrix obtained from the following eigenproblem

[
Kd,i − ω2Md,i

]
Ud,i = 0. (4.59)

After projection, the ith deterministic subsystem’s partially modal degrees of freedom are

expressed as

qh
d,i = pd,i, (4.60)

resulting in the following local transformation matrix

TU,i = Ud,i. (4.61)

As the free eigenproblem covers the projection of the entire ith deterministic subsystem’s

domain, nodal degrees of freedom from statistical subsystems that are connected to

deterministic subsystems are also projected into the respective connected deterministic

subsystem’s modal basis. For this reason, the global partially modal coordinate vector qh

becomes considerable smaller, when compared to the first approach, as several nodal degrees

of freedom vanish, resulting in also smaller matrices and higher computational efficiency.

These two projection approaches do not need to be applied to all deterministic subsystems,

only to those intended for model reduction. Moreover, the same modal projection approach

does not need to be applied to every selected deterministic subsystems, a mix of approaches

could be applied.

4.5 VIBRATIONAL ENERGY - DETERMINISTIC SUBSYSTEMS

This section presents a derivation for the deterministic subsystem’s vibrational

energies, which are composed as a superposition of a kinetic and strain contributions, using

the newly presented partially modal degrees of freedom. As Kd,i and Md,i were defined

according to the deterministic subsystem’s degrees of freedom qd,i, an additional boolean

matrix Bd,i is defined to arrange the subsystem’s matrices into global nodal degrees of

freedom q. This arrangement is expressed as

qd,i = Bd,iq. (4.62)
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Therefore, in combination with Eq. 4.44, the ith deterministic subsystem’s mass matrix in

global partially modal coordinates qh can be expressed as

Mh
i = TU

T Bd,i
T Md,iBd,iTU, (4.63)

resulting in the following ith deterministic subsystem’s kinetic energy expression

Kd,i = 1
4 q̇hHMh

d,iq̇h. (4.64)

By assuming a harmonic motion (q̇h
i = iωqh

i ), the expression could be rewritten as

Kd,i = ω2

4 qhHMh
d,iqh, (4.65)

or in index notation representation

Kd,i = ω2

4
∑
k,m

Mh,(k,m)qh,(k)qh,(m)∗
. (4.66)

The above expressions only considers deterministic results, neglecting the random behavior

from statistical subsystems. In order to derive ensemble average contributions, the same

steps from Eq. 2.21 to 2.23 could be performed, resulting in the expression written as

⟨Kd,i⟩ = ω2

4 Tr
{
Mh

d,iSqhqh

}
. (4.67)

As for the ith deterministic subsystem’s strain energy, it obtained by the following

expression

Ud,i = 1
4qhHKh

d,iqh, (4.68)

where the ith deterministic subsystem’s stiffness matrix in global partially modal coordi-

nates is expressed as (exacly the same process used for the mass matrix)

Kh
i = TU

T Bd,i
T Kd,iBd,iTU, (4.69)

By following the same steps above, the ensemble average strain energy is given by

⟨Ud,i⟩ = 1
4 Tr

{
Kh

d,iSqhqh

}
. (4.70)

The ensemble average vibrational energy of the ith deterministic subsystem is then

computed as

⟨Ed,i⟩ = ⟨Kd,i⟩ + ⟨Ud,i⟩. (4.71)
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5 NUMERICAL EXAMPLES

To evaluate the performance of the discussed vibro-acoustic methods, including the

novel generalized hybrid method, four cases were selected to explore different aspects

of each methods: two mid-frequency and two high-frequency problems. Low-frequency

cases were disregarded from analysis, as the Finite Element Method is the most suggested

and used method, when compared to other ones in this frequency region (HAMBRIC;

SUNG; NEFSKE, 2017). For the rest, the choice of method for analysis will depend on the

characteristics of the system, as they may directly influence on the performance of each

method differently. The analysis performed here in this chapter could serve as a guideline

for this concern.

The evaluation will mainly concern the robustness of the results and the computa-

tional expense demanded to derive the results. A FE Monte Carlo model was defined as

reference for comparison. The methods that presented better convergence to the FE Monte

Carlo’s results were considered the ones with better performance on representing the

system results. The FE Monte Carlo ensemble was derived using standard FE models in

combination with random constrains applied into the domain of the statistical subsystems

in each sample. Additionally, for the subsystems excited by a transverse point force, the

latter is applied at random positions on the excited subsystem in each sample. This whole

process is discussed in more detail on Appendix. A convergence analysis was performed

in order to determine the ensemble’s size for each problem. As for the computational

performance’s evaluation, the processing time demanded from each method to derive their

results were used for comparison.

The results for the established methods (SEA and Hybrid FE-SEA) were derived

from the commercial software VAOne (ESI GROUP, 2019). The same software generated

the FE Matrices used for the FE Monte Carlo and Generalized Hybrid Method, which were

extracted and post-processed in Matlab scripting routines (MATHWORKS, 2020). Figure

11 display the relationship of the four methods’ derivation with the mentioned softwares.

The novel method’s results were derived according to the implementation chart displayed

on Fig. 12. As it can be seen, modal projection is performed to both statistical subsystems’

interior domains and deterministic subsystems. In the latter case, free mode shapes were

assumed, due to smaller nodes retained after projection. Regarding the averaging technique

used to derive the direct field dynamic stiffness Ddir,i, the Lorentzian frequency approach
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was adopted, due to its superior result convergence and computational performance. Lastly,

if any subsystem assumes a flat plate geometry, its lumped wavefield is partitioned into

in-plane and out-of-plane before introducing it to the power-flow framework, otherwise

lumped wavefield is assumed.

Figure 11 – Relationship between methods and softwares

The analysis’s frequency spectrum was limited from 50Hz to 4000Hz with a 10Hz step

frequency (∆f = 10Hz), which was enough to enforce low and high wavelength motion to

(some or all) components from the selected cases. In order to guarantee robustness for the

FE models, the modal extraction performed extracted modes with natural frequencies up

to twice the maximum analyzed frequency (8kHz) and the FE meshes admitted, at least,

six elements per wavelength. Moreover, the FE Meshes were generated with triangular

elements (CTRIA3) with simply 3 nodes with 6 degrees of freedom per each.

All the components presented in the following cases will be constituted by either

steel or aluminum with a 1% (0.01) damping loss factor ηi, their material properties are

presented in Tab. 1. Each case presented a single excitation to a particular subsystem,

represented by a 1N rms transverse point force (in the following figures exhibiting the 3d

visualization of the systems, the excitations are pictured as purple arrows).
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Figure 12 – Novel method’s process flowchart

Table 1 – Aluminum and Steel material properties

Properties Aluminum Steel
Density ρ [kg/m3] 2700 7800

Young’s Modulus E [GPa] 71 210
Shear Modulus G 26.7 80
Poisson’s Ratio ν 0.3296 0.3125
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5.1 CO-PLANAR FLAT PLATES COUPLED BY A BEAM

The first case consists of a mid-frequency problem (shown in Fig. 13), involving two

aluminum co-planar plates coupled at four specific points (two for each plate) to a stiff

steel beam with rectangular cross section. These connections are exhibited in the figure as

dark yellow circles (one is hidden behind the beam). Regarding their geometry, both plates

have an area of 0.723m2 with the excited and the receiver plate admitting, respectively, a

thickness of 1mm and 2mm. The beam of 1.1m length has a cross section shape of 0.1m x

0.08m with 10mm thickness.

The thin plates are ideally identified as statistical subsystems in both standard and

generalized Hybrid FE-SEA method, due to their diffuse motion and high modal density

associated to their wavefield. In contrast, the beam admits a stiff and coherent behavior,

resulting in an efficient and reliable deterministic definition. In SEA, the beam had to be

defined as statistical subsystem due to the assumptions made be the framework, therefore,

in order to properly couple it to the plates, offsets were defined on connections.

Figure 13 – First case - Co-planar plates and a beam
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Results for the excited plate, beam and receiver plate are exhibited, respectively,

in Fig. 14, Fig. 15 and Fig. 16. In combination with the FE Monte Carlo’s ensemble

mean results (in black), the curves from all samples (in gray) are exhibited, in order

to have clearer understanding of the samples’ randomization and ensemble convergence.

Nonetheless, when a FE Monte Carlo result is mentioned, it is the ensemble mean result

being referred to. For the excited plate’s results, where the response is predominantly

influenced by the external loads and the respective subsystem properties, a simple decay

over frequency is obtained from all methods, resulted from the highly overlapped modal

behavior of the flat plate. Moreover, the analytical formulations, used in SEA and Hybrid

FE-SEA method, were capable of deriving a proper description for the wavefields, as can

be observed by the convergence of these methods to the more generalized ones, i.e. the

Generalized Hybrid method and FE Monte Carlo, which used standard FE models to

describe the wavefields.

102 103

Frequency [Hz]

10-5

10-4

10-3

10-2

10-1

100

E
 [

J
]

Energy - Excited plate

FE Monte Carlo - Samples

FE Monte Carlo - Mean

Generalized Hybrid Method

Hybrid FESEA Method

SEA

Figure 14 – Excited plate’s energy results in the first case

Regarding the beam’s results, a different curve’s shape is presented for most of the

methods. This is a consequence of the predominant influence of the beam’s dynamics in

the derivation. Moreover, as the beam possess a low modal density behavior, the results

presented a strong influence to specific modes with reasonable small modal overlapping.
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This is observed from the reference result (FE Monte Carlo) and also on both hybrid

method results, as they modeled the highly coherent beam with a standard FE model,

allowing for a proper definition of the its wavefield. By contrast, in order to fulfill the

framework’s analytical formulation’s requirements, the SEA assumes the beam’s wavefields

are fully diffusive, thus underestimating the beam’s response. Nevertheless, the SEA’s result

is still capable of giving useful information about the system’s response. The framework’s

curve presents the average decay tendency of the response and could give an estimation of

a maximum response’s amplitude for an analyzed real-life system to, for example, avoid a

possible fatigue.
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Figure 15 – Beam’s energy results in the first case

An analogous conclusion could be obtained from the receiver plate’s results, as the

energy that flows into the subsystem comes from the beam’s point junctions and, therefore,

is also influenced by the beam’s modal behavior. Regarding the novel hybrid method, it

was only possible to derive such robust results due to the use of partitioned wavefields, i.e.

enforcing a power-flow definition for the in-plane and out-of-plane contributions separately.

Figure 17 exhibits the receiver’s plate energy results if each plate’s wavefield was modeled

as a single lumped wavefield, compressing all power flow’s contributions into unique

coefficients per subsystems. A similar deviant curve is obtained for the beam’s energy
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Figure 16 – Receiver plate’s energy results in the first case

results. Only the reference and the hybrids curves were plotted for comparison.

This difference is caused by the overestimation of the in-plane’s response, as the

in-plane wavefield stores significantly less energy than its out-of-plane pair and the lumped

wavefield assumes equipartition of energy between both. The overestimation is only

presented to subsystems that have their in-plane wavefield excited, consequently the

excited plate’s results are not affected, as the transverse force applied to this plate only

excites the out-of-plane wavefield (the excited plate results with a lumped wavefield is

analogous to the one exhibited in Fig. 14). The in-plane wavefield’s contributions start to

become relevant after the power-flow interacts to discontinuities, which are presented at

the beam’s junctions and edges. For this reason, this overestimation becomes present only

to the beam and receiver plate’s subsystems.

The processing time required by each method to derive their results is exhibited in

Fig 18. As expected, the method that used the larger quantity of detail in the model (FE

Monte Carlo) demanded, at large scale, the most processing time just for a single sample,

when compared to the other methods. The novel hybrid method was able to derive results

in far lesser time, although presenting, simultaneous, very similar curves to the Monte

Carlo Method. In the case of the Hybrid FE-SEA and SEA, both had minimal processing
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Figure 17 – Receiver plate’s energy results with lumped wavefields in the first case

time, resulted from the efficient use of analytical formulations. Their difference in duration

is due to the beam’s FE model used in the Hybrid FE-SEA, which increased the size of

information contained in the model by a considerable scale. Furthermore, as the SEA was

unable to provide a proper definition for all subsystems and the Hybrid FE-SEA exhibited

robust performance regarding both processing time and result’s curves, the established

Hybrid method is inferred as the selected method with optimal performance along the

ones discussed here in the work to this specific case’s analysis.
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Figure 18 – Processing time for each method in the first case
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5.2 CUBE BEAM FRAMEWORK

The second case is, again, a mid-frequency problem (shown in Fig. 19) that consist

of four flat plates (green) connected by their edges to a single beam framework (brown),

resulting into a similar cube shaped system (with its top and bottom sides open). It is

assumed that these plates have their whole edges connected to the framework and one of

them is excited. The beam framework has a hollow structure with a squared cross section

of 2.52cm side, 3mm of thickness and is made of steel. As for the plates, they are identical,

having a squared area of 0.4724m2, thickness of 2mm and are made of aluminum. Moreover,

in this second case, a clamped boundary condition (all translational and rotational degrees

of freedom of the respective nodes are set to zero) is applied to two bottom outer edges of

the beam framework, as shown in Fig. 20. The white circles represent the clamped nodes.

Figure 19 – Second case - Cube beam framework with side plates
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Figure 20 – Second case - Boundary condition on detail

By a similar manner of the previous numerical example, the flat plates are modeled

as statistical subsystems and the beam framework as deterministic. No SEA results were

derived for this case, as the same conclusion of the last numerical example would be

obtained. Moreover, no acoustic cavity is considered. Results for the excited front plate,

side plate and rear side plate are exhibited, respectively, in Fig. 21, Fig. 22 and Fig. 23. The

other side plate’s results derive a similar conclusion of the considered side one, therefore it

is not necessary to be shown here. The beam framework’s result is shown in Fig. 24. Again,

the excited subsystem’s response is predominantly controlled by the external load and its

internal dynamics. Here, all methods were capable of converging to the same energy decay

over frequency.

In the case of the side plate’s results, the curve’s shape was considerably altered due

to the more prevalent influence from the beam framework’s modal behavior. It can be

observed that the Generalized Hybrid Method was capable of deriving a similar curve to the

FE Monte Carlo’s one, showing robust definition of the system’s energy flow. In contrast,

the Hybrid FE-SEA method exhibits an underestimated curve at high frequency regions.

This is mostly due to the simplified junction definition that the method assumes, where,

in order to support analytical derivations, the method interprets the square junction as

either four incoherent straight line junctions or a single big straight line junction, resulting

in loss of energy flow characterization. Due to the general junction definition supported by

the FE models in the Generalized Hybrid method, this coherence information is extracted
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Figure 21 – Excited front plate’s energy results in the second case

in the derivation, therefore obtaining a more robust characterization for the model’s power

flow. The same underestimation is experienced in the plate’s results from the rear side

and in the beam framework’s results, although the latter in a less intense manner.

Figure 25 shows each method’s processing time required to derive the results. Again

as expected, the FE Monte Carlo sample demands the larger amount of time. In the case

of the Generalized Hybrid method, a smaller processing time was necessary for derivation

when compared to the established Hybrid one, even though the latter one uses analytical

formulations. This is probably caused by definition of the four straight junctions’ per plate

(this definition is not confirmed), in comparison to the single generic junction per plate in

the Generalized method, demanding more processing costs. It is important to point out

that this difference between the novel generalized and established hybrid methods could be

accentuated if more irregular configurations was adopted to the junctions and/or plates.
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Figure 22 – Side plate’s energy results in the second case
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Figure 23 – Rear plate’s energy results in the second case
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Figure 24 – Beam framework’s energy results in the second case
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Figure 25 – Processing time for each method in the second case
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5.3 FUSELAGE

The third case is a classical representation of a high frequency problem (exhibited in

Fig. 26), frequently employed in the aerospace and space areas. The system consists two

curved plates connected at their straight edge, portraying a fuselage structure. Both plates

assume the same area, are made of aluminum and have 1m radius curve. Their difference

is defined at their thickness, where the excited plate has 1mm and the receiver one has

2mm.

Figure 26 – Third case - Fuselage

Although the plates are curved, which increases their stiffness over frequency regions

before the ring frequency, they are modeled as statistical subsystem, as their model

densities are considerably high and support the SEA framework requirements. The ring

frequency is a critical transition point where curved plates start to behave similarly to

flat plates, this frequency is mainly a function of the plates’ radius curve. No Hybrid

FE-SEA results were derived, as no deterministic subsystems were defined, which, in

this scenario, the method becomes equivalent to SEA. In the case of the novel method,

due to its generalized formulation, a proper description of a high frequency problem is



90

also capable to be derived. As mentioned, in this context, the method is more commonly

denoted as Numerical SEA (HINZ, 2021). The partition of the plate’s wavefields was not

adopted in this case, as no appropriate approach had been defined for curved plates.

Results for the excited and receiver plate are exhibited, respectively, in Fig. 27 and

Fig. 28. Here, both plates’ results assume a characteristic peak, which is a consequence of

the subsystem’s curvature and takes place at the ring frequency. SEA and Numerical SEA

were capable of converging to FE Monte Carlo’s results, demonstrating a robust derivation

of the system’s power flow. This is expected as the plate’s configuration is fairly simple to

be modeled with both analytical and numerical formulations.
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Figure 27 – Excited plate’s energy results in the third case

When analyzing the processing time demanded for each method (Figure. 29), their

difference becomes clear, as the analytical formulations from SEA allow for a seamlessly

processing cost, surpassing by far the efficiency of the two numerical methods. This is

a huge benefit for the method and is why it is vastly used in the industries. It can be

observed from Fig. 26, more specifically from really dense mesh, that most of the amount

of processing time from the numerical methods came from the huge amount of nodes

required to match the desired element size (when compared to the minimum analyzed

wavelength).
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Figure 28 – Receiver plate’s energy results in the third case
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Figure 29 – Processing time for each method in the third case
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5.4 VEHICLE BODY’S STRUCTURE

The last and fourth case was extracted from a real-life vehicle model, more specifically

the outer structure from it floor structure. Figure 30 shows the system, which is divided in

a top excited plate and a lower receiver plate, both admitting a very irregular configuration.

The junction also possess an irregular geometry. Both the excited and receiver plates are

made of aluminum and have, respectively, 1.2mm and 2.4mm of thickness, and 0.1928 m2

and 0.2061 m2 of area.

Figure 30 – Fourth case - Vehicle body structure’s section

Similarly to the last presented case, both plates were modeled as statistical subsystems

due to their high modal density. Although the fully numerical methods have no problem in

describing the subsystems’ configurations of this specific case, SEA needs to approximate

their wavefields from a selection of possible elementary configurations. In this specific case,

a singly curved configuration was observed to best model both subsystems. The VAOne

software approximated the excited and receiver plates’ radius by, respectively, 3.466 m

and 0.156 m. Again, no Hybrid FE-SEA model was derived and a Numerical SEA model

was used for the Generalized hybrid method. Lumped wavefield definition was used for

each both plates.

Figure 31 and Fig. 32 exhibit the results, respectively, for the excited and receiver
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plates. Here, the novel method was capable of smoothly converging to the FE Monte

Carlo’s curve, which is expected as the methods uses standard FE models. However, it is

clear that the analytical formulations from SEA were not capable of deriving such robust

wavefield definitions for the subsystems. As such, in the excited subsystem’s results, there

is an overall overestimation, when compared to the reference FE Monte Carlo curve. This

is a consequence from the erroneous derivation of the input power to the subsystem (shown

in Fig. 33).
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Figure 31 – Excited plate’s energy results in the fourth case

In the processing cost’s point of view, shown in Fig. 34, the expected times demanded

from each method were obtained: the FE Monte Carlo’s sample requiring the most of them

to derive a single sample result, SEA requiring seamlessly costs and the Generalized Hybrid

in mid-way. However, while the order was anticipated, the novel method was capable of

requiring solely a fifth of the FE sample cost, exhibiting competitive efficiency for systems

with irregular configurations. Furthermore, as SEA did not met a reliable result, its short

processing time was meaningless. The novel method would be then the optimal method to

model such irregular system in high frequency regions.
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Figure 32 – Receiver plate’s energy results in the fourth case
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Figure 33 – Excited plate’s input power in the fourth case
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Figure 34 – Processing time for each method in the fourth case
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6 CONCLUSION AND FUTURE WORKS

The thesis was planned to present, in both theory and results, the performance

of established and novel vibroacoustic methods when applied to complex vibro-acoustic

systems. The most employed methods used for structural vibrations were selected, ranging

from the ones recommended low-frequency problems, to the ones associated to mid and

high frequency problems. The novel generalized method was introduced, given by its

formulation derivation and, after, by its implementation processes required for optimal

efficiency. A set of mid and high-frequency problems were then selected to evaluate the

methods’ performance.

For complex structural systems associated purely to low frequency motions, the Finite

Element Method (FEM) has the optimal performance of all methods, as it has the greatest

capacity of modeling details from the system’s configuration. Also, at this frequency range,

the system’s wavelength is considerably large, demanding only coarse mesh to properly

characterize the subsystem’s wavefields. This limits the necessary computational processing

cost to a lower level. Lastly, the system is mostly deterministic, and therefore, statistical

ensembles becomes unnecessary, resulting in additional processing cost saving to the model.

In the case of mid-frequency problems, an ensemble of samples and a dense mesh

are demanded for a proper definition of specific components of the system, which mostly

discourages the use of FEM for practical applications. This thesis’s first and second

examples explored such scenario. For cases consisting entirely of elementary configurations,

such as homogeneous and isotropic properties with well behaved geometry and point/flat

junctions, the analytical formulations used in the Hybrid FE-SEA Method are capable of

deriving a robust wavefield characterization. This is case of the first numerical example,

where the optimal performance is achieved by the established hybrid method. Although

the generalized method was also capable creating a proper wavefield definition, the

computational effort became excessive for such a simple system.

For mid-frequency problem’s systems that surpass the elementary scope to their

components configurations, a numerical derivation becomes necessary to avoid loss of

generality, which is addressed in the second numerical example. The flow of energy

between the subsystems is the contribution that is underestimated when derived through

analytical formulations, as to the closed squared junction definition assumes an additional

coherence contribution that is neglected by the straight approximation. Moreover, in order
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to approximate the complex junctions of the system, the established hybrid had to split

them into several simpler connections, which made the demanded processing cost for the

method surpass the one from the generalized method that defines a single generalized

junction per subsystems. This presented a simple example where the generalized hybrid

method can outperforms the established hybrid method in both robustness of model and

computational efficiency aspects.

In the high-frequency problem scenario, diffuse wavefields are assumed for every

subsystems in the system, this condition makes the Hybrid FE-SEA method and the

generalized hybrid method equivalent to, respectively, the SEA and the Numerical SEA.

This scenario was explored in the third and fourth numerical examples. For these two

cases, the same analogy made in the mid-frequency problems could be applied to derive a

conclusion from their results: for the case consisting of solely elementary configurations,

the method that uses analytical formulations (SEA) is likely to be choice for analysis,

wheres, when more complex configurations are assumed, the generalized one (Numerical

SEA) tends to be the choice.

Similarly to the second case, where the fully numerical method (Generalized hybrid)

and the one that supports analytical formulations (Hybrid FE-SEA) were compared, the

fourth case explores a system with much more irregular configurations, which then, as

expected, resulted in a lot more divergence between the two methods (SEA and Numerical

SEA), as the wavefield became very difficult to be approximated by analytical formulations.

In contrast to the second case, here the novel method had a much larger processing cost

when compared to the one from the established method. This mostly due to the fact the

no projection over modal basis were possible to be performed in the junction’s degrees

of freedom. This aspect should be taken with care, as with the increasing number of

statistical subsystems, the number of junctions with no possible modal projections can

make the method unfeasible for practical analysis.

In short, the idea extracted in the thesis’s numerical analysis was that no single

vibro-acoustic method has a optimal performance for every possible scenario. It will mainly

depend on the system’s characteristics and on the context of the analysis. The thesis

managed to present some guidelines regarding the choice for the most suitable method to

be used in some specific case scenarios. Clearly, there will be cases where neither method

presents the desired performance. In this scenario, their features should be weighted.

The novel method presented solid and promising results for mid-frequency problems,
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as well as it was able to reaffirm its robustness to model high-frequency cases. Nevertheless,

a deeper evaluation of the framework’s contributions could be performed, such as analyzing

deeper the partitioned wavefield’s contributions and results. Moreover, this partition process

was necessary for modeling the power-flow of flat plate’s wavefields, which are ideally

uncorrelated. A generalization of this process or a derivation of partitioned wavefields

for more complex configurations is of great interest. Lastly, although the novel method

is intended for vibro-acoustics analysis, it was only evaluated, here in the thesis, with

structural vibrations, thus the performance of the method in modeling a system containing

both acoustic cavities and area junctions remains as intended. More generic formulations

and implementation procedures would be required to be defined, in order to derive a solid

and efficient representation for these different components.
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APPENDIX

The FE Monte Carlo model was used as reference for the evaluation of the numerical

methods in this work. It generated an ensemble average response from a collection

of nominal identical samples, which each was randomized to simulate the effects of

manufacturing imperfection in the vibro-acoustic system. This is vital for high frequency

problems as deformations at this frequency range are very sensible to imperfections, hence

they should be considered in the model. The randomization process applied to each sample

is essentially directed to dynamics of the system (dynamic stiffness matrix) and external

loads (force vector). The former is randomized by the application of (clamped or pinned)

constrains at random groups of nodes on the statistical subsystems (the ones sensitive

to imperfections). Figure 35, Fig. 36 and Fig. 37 present examples of these constrains

(white nodes for clamped and green for pinned) applied to samples. Here, the beam was

understood was deterministic, therefore no constrains were applied to it. Only the plates

were defined as statistical subsystems.

These constrained nodes were elected from all possible nodes positioned at a maximum

distance from (randomly) selected locations. Care was taken to make sure the systems were

not extensively clamped, which would inadequately impact the statistics and energetics of

the system. Therefore, a maximum size for constrained regions and minimum distances

between different constrained regions were defined and manually calibrated for each

different system. In the case of the randomly applied transverse force, care was taken

only to ensure that the excitation was not applied near discontinuities (junctions, holes

or constrains) to avoid coupling of the in-plane and out-of-plane wavefields to the input

power. Examples of external forces locations applied to samples are exhibited on Fig. 35,

Fig. 36 and Fig. 37 as well.
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Figure 35 – First example of a randomized FE Monte Carlo sample.

Figure 36 – Second example of a randomized FE Monte Carlo sample.

Figure 37 – Third example of a randomized FE Monte Carlo sample.
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