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RESUMO

A principal motivação deste trabalho se origina com o famoso e fundamental teorema de
Hawking sobre a topologia dos buracos negros. O teorema afirma que em um espaço-tempo
assintoticamente plano e estacionário de dimensão 4 contendo um buraco negro, e satisfazendo
a condição de energia dominante, as seções transversais espaciais do horizonte de eventos
são topologicamente esferas de dimensão 2. Neste trabalho, exploramos uma generalização
natural do teorema de Hawking para dimensões superiores, obtido por Galloway e Schoen, con-
tendo condições excepcionais, bem como versões posteriores desse resultado, que efetivamente
excluem essas condições excepcionais e recuperam o resultado de Hawking em dimensão 4.
Em certas dimensões superiores, somos capazes de mostrar que os horizontes de eventos, no
caso estacionário, e as outermost marginally outer trapped surfaces (MOTSs), no caso geral,
admitem uma métrica de curvatura escalar positiva. Essa condição impõe várias restrições
conhecidas sobre a topologia e é consistente com exemplos da literatura de espaços-tempos
de buraco negro estacionários de cinco dimensões com topologia de horizonte S2 × S1. A
prova desses resultados requer técnicas de geometria diferencial, análise e se tem inspiração na
teoria de superfícies mínimas. Portanto, este trabalho tem como objetivo examinar de perto
as complexidades do problema e servir como uma introdução amigável ao tópico para leitores
que possam não estar familiarizados com técnicas vindas da geometria semi-Riemanniana,
relatividade geral e análise geométrica.

Palavras-chave: Superfícies marginalmente aprisionadas exteriormente. Topologia de buracos
negros. Curvatura escalar positiva.



RESUMO EXPANDIDO

Introdução

Buracos negros em dimensões superiores têm despertado um interesse significativo nos últimos
anos, devido a necessidade de compreender a gravidade dentro do contexto da teoria das cordas.
Além disso, na teoria quantica de campos, foram estabelecidas conexões entre as propriedades
de buracos negros em dimensões maiores do que quatro (n > 4) e a teoria quântica de campos
em n− 1 dimensões, cuja conexão facilita uma série de cálculos e abre caminho para possíveis
avanços na teoria.

Inspirado por esses desenvolvimentos, a estrutura e a topologia de buracos negros em dimensões
superiores emergem como objetos intrigantes de investigação. Um ponto de partida seminal
para essa linha de pesquisa é o célebre Teorema de Hawking que, de forma geral, afirma que
em um espaço-tempo de quatro dimensões as seções transversais dos horizontes de eventos de
buracos negros são topologicamente esferas bidimensionais. No entanto, estender esse resultado
para espaços-tempo de dimensões superiores não é trivial, uma vez que a prova original se
baseia no Teorema de Gauss-Bonnet. A complexidade aumentou quando Emparan and Reall
(2002) descobriram um exemplo de um espaço-tempo de buraco negro de cinco dimensões
no qual as seções transversais têm topologia S2 × S1, demonstrando concretamente que a
topologia do horizonte não precisa ser esférica em dimensões maiores que quatro.

Mais recentemente, Galloway and Richard Schoen (2006) e Galloway (2008, 2018) conseguiram
fornecer uma ampla generalização em dimensões superiores do resultado de Hawking. Essa
extensão se refere a uma classe especial de variedades conhecidas como de tipo Yamabe
positivo, ou seja, variedades que admitem uma métrica de curvatura escalar positiva, o que é
consistente com o exemplo fornecido por Emparan and Reall (2002). A generalização desse
teorema envolve uma rica interação de técnicas da geometria diferencial, análise e relatividade
geral, sendo motivada por ideias e técnicas da teoria de superfícies mínimas.

Objetivos

O principal objetivo deste trabalho é investigar as restrições topológicas associadas aos
horizontes de eventos de buracos negros em dimensões superiores e, em particular, entender
sob quais condições esses horizontes podem ser topologicamente esféricos ou admitir métricas
de curvatura escalar positiva. Além disso, busca-se fornecer uma introdução acessível ao tema
para leitores não familiarizados com técnicas de geometria semi-Riemanniana, relatividade geral
e análise geométrica.

Metodologia

O trabalho inicia com uma breve revisão dos conceitos fundamentais em geometria semi-
Riemanniana e relatividade geral. Isso estabelece as bases necessárias para a compreensão das
estruturas e propriedades dos espaços-tempo em questão.

O próximo passo envolve uma exploração aprofundada das hipersuperfícies luminosas e das



superfícies marginalmente aprisionadas. Esses objetos desempenham um papel crucial na
descrição dos horizontes de eventos de buracos negros em dimensões superiores, e sua análise
é fundamental para o desenvolvimento deste trabalho.

Em seguida, prossegue-se com o desenvolvimento da teoria das superfícies marginalmente
aprisionadas. Isso inclui a investigação da estabilidade dessas superfícies, incluindo a análise
do operador de estabilidade associado. Esse passo é essencial para compreender a dinâmica e
as características dessas superfícies em contextos específicos.

Por fim, com base nas técnicas e conceitos estabelecidos nas etapas anteriores, o trabalho
investiga a generalização do Teorema de Hawking para dimensões superiores. Esse processo
relaciona-se diretamente à busca pela existência de métricas de curvatura escalar positiva em
buracos negros nesses espaços-tempo de dimensões superiores.

Resultados e Discussões

Os principais resultados deste trabalho engloba duas versões da generalização do Teorema
de Hawking, originalmente demonstradas por Galloway and Richard Schoen (2006) e pos-
teriormente refinadas por Galloway (2008, 2018), aplicadas a dimensões superiores. Essas
versões estabelecem que as seções transversais dos horizontes de eventos ou das superfícies
marginalmente aprisionadas podem admitir métricas de curvatura escalar positiva, impondo
assim restrições significativas à topologia dessas superfícies.

Uma fato relevante deste trabalho é a apresentação dos resultados através reformulação do teo-
rema por meio de um problema de valor inicial. Essa abordagem torna as técnicas de geometria
Riemanniana mais acessíveis e destaca a importância das superfícies marginalmente aprision-
adas como uma generalização das superfícies mínimas. Tais superfícies emergem como uma
ferramenta essencial na análise de horizontes de eventos em dimensões superiores, fornecendo
uma perspectiva valiosa para a compreensão desses objetos complexos.

Considerações Finais

De maneira geral, explorou-se a generalização do Teorema de Hawking para dimensões su-
periores, abordando questões fundamentais na interseção da geometria diferencial, análise e
relatividade geral. Foi demonstrado que as seções transversais dos horizontes de eventos e das
superfícies marginalmente aprisionadas podem admitir métricas de curvatura escalar positiva
em dimensões superiores, ampliando o entendimento de horizonte de eventos de buracos negros.
A teoria das superfícies marginalmente aprisionadas emerge como uma valiosa ferramenta de
análise nesse contexto. Este trabalho contribui significativamente para a compreensão dos
buracos negros em espaços-tempo de dimensões superiores, com implicações que transcendem
a matemática pura e alcançam a física teórica.

Palavras-chave: Superfícies marginalmente aprisionadas exteriormente. Topologia de buracos
negros. Curvatura escalar positiva.



ABSTRACT

The main motivation of this work stems from a celebrated and fundamental theorem of Hawking
on the topology of black holes. The theorem states that in a 4-dimensional asymptotically flat
stationary black hole spacetime satisfying the dominant energy condition, the spacelike cross
sections of the event horizon are topologically 2-spheres. In this work, we explore a natural
generalization of Hawking’s theorem to higher dimensions, obtained by Galloway and Schoen,
with exceptional conditions, as well as more recent versions of that result, which effectively
remove those exceptional conditions and recover Hawking’s result in dimension 4. In higher
dimensions, we are able to show that event horizons, in the stationary case, and outermost
marginally outer trapped surfaces (MOTSs), in the general case, admit a metric of positive
scalar curvature. This condition imposes several well-known restrictions on the topology, and it
is consistent with examples of five-dimensional stationary black hole spacetimes with horizon
topology S2 × S1. The proof of these results requires techniques from differential geometry,
analysis, and draws its motivation from minimal surface theory. Therefore, this work aims to
closely examine the intricacies of the problem and serve as a friendly introduction to the topic
for readers who may not be familiar with techniques of semi-Riemannian geometry, general
relativity and geometric analysis.

Keywords: Marginally outer trapped surfaces. Black hole topology. Positive Scalar Curvature.
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0 INTRODUCTION

The exploration of higher-dimensional black holes has garnered significant interest in
recent years, driven by the need to understand gravity within the framework of string theory
and the quest for a quantum theory of gravity. In this context, links have been established
between properties of black holes in dimensions greater than four (n > 4) and quantum field
theory in n− 1 dimensions, leading to potential sources of progress in the theory.

Inspired by these developments, the structure and topology of higher-dimensional black
holes have emerged as intriguing objects of investigation. A seminal springboard for this line
of research is the celebrated Hawking’s black hole topology theorem which, loosely speaking,
states that in a 4-dimensional spacetime, cross-sections of black hole event horizons are
topologically equivalent to 2-spheres. However, extending this result to higher-dimensional
spacetimes is not straightforward, as the original proof relies on the Gauss-Bonnet theorem.
The plot thickened when Emparan and Reall (2002) discovered an example of a five-dimensional
black hole spacetime where the cross-sections have horizon topology S2 × S1, thus concretely
showing that the horizon topology does not need to be spherical in dimensions larger than
four.

More recently, Galloway and Richard Schoen (2006) and Galloway (2008, 2018) were
able to provide an ample higher-dimensional generalization of Hawking’s result. This extension
concerns a special class of manifolds known as of positive Yamabe type, i.e., manifolds that
admit a metric of positive scalar curvature, which is consistent with the example provided
by Emparan and Reall (2002). The generalization of this theorem involves a rich interplay of
techniques from differential geometry, analysis, and general relativity, and it is motivated by
insights from minimal surface theory.

The objective of this work is to offer a thorough introduction to the topology and
rigidity results concerning black hole horizons. To accomplish this aim, we will assume some
basic knowledge of Riemannian geometry and our primary focus will be on developing a
detailed geometric context for the main results. Differential-geometric prerequisites are therefore
developed in great detail, while the analytical aspects will be either assumed or deferred to
the appendices. However, we strive to provide technical details whenever possible, addressing
intricacies that are often overlooked in the existing literature. Therefore, by reviewing the
techniques employed in this field, this work seeks to contribute to the understanding of the
subject as well as be a friendly introduction to this thriving theme.

In the Chapter 1, we provide a concise introduction to the prerequisites on semi-
Riemannian geometry. This serves to settle our notation and offers an overview for readers
who may be less familiar with this subject. At the end of this chapter, we introduce some key
notions on variations of a submanifold, aiming to establish connections between the ideas and
techniques presented in this work with the minimal surface theory.

The Chapter 2 serves as an introduction to a few very broad aspects of general relativity
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relevant to our discussion. We outline how we can reformulate the Einstein field equations (EFE)
as an initial value problem. We also present the best-known black hole spacetime solutions,
namely the Schwarzschild and Schwarzschild-Kruskal spacetimes, which provide quintessential
examples to illustrate most of the geometric concepts explored here.

In a Lorentzian manifold, hypersurfaces with everywhere-degenerate induced metrics
are called null hypersurfaces, and serve as models for black hole horizons. In Chapter 3, we
provide a detailed exposition of several aspects of the geometry of abstract null immersed
submanifolds. The importance of this discussion for us here is that one can always view a
MOTS as a spacelike cross section of suitable such immersions of codimension one, a fact
which motivates and justifies the use of MOTS as quasi-local surrogates of black hole horizons.
A result corresponding to the simplest version of the so-called black hole area theorem is
presented at the end of the chapter.

In Chapter 4, we delve deeper into the marginally outer trapped surfaces (MOTSs).
These surfaces naturally arise in black hole spacetimes and can also be seen as a generalization
of a minimal surface. We investigate the geometry of MOTSs in the context of a spacetime as
well as in terms of initial data. Additionally, we give conditions for spacelike cross-sections of a
null hypersurface to be a MOTS. Just as minimal surfaces, MOTSs admit a notion of stability
given by the MOTS stability operator, an analogue to the second variation for the volume in
the minimal surface theory. We exploit certain key analytical aspects of this operator to obtain
the desired topological and rigidity results.

Finally, in Chapter 5, the Galloway-Schoen generalization of Hawking’s black hole
topology theorem is obtained. The result states that, under special conditions, a MOTS admits
a metric of positive scalar curvature. We begin the chapter by presenting a short survey on
positive scalar curvature which motivates and introduces the topological obstructions associated
with the problem of obtaining a metric of positive scalar curvature on Riemannian Manifolds.
In the subsequent sections, we establish the main theorems; the detailed proofs involve certain
rigidity results that include a local foliation by MOTS and require several interesting ideas and
concepts from functional spaces and differential operators on compact manifolds.

This work includes two appendices. In Appendix A, we provide a detailed derivation, in
coordinates, of the MOTS stability operator. In Appendix B, a concise discussion regarding
differential operators on compact manifolds is presented.
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1 PRELIMINARIES

1.1 NOTATION AND REVIEW OF SEMI-RIEMANNIAN GEOMETRY

In this section, we will introduce the notation and terminology used throughout this
work. While we will briefly review some of the material on semi-Riemannian geometry commonly
covered in textbooks on this topic, it is important to note that this section should be considered
as a refresher rather than a comprehensive introduction to the topic. The definitions and results,
as well as those that are not explicitly mentioned, are precisely stated in our main resources on
semi-Riemannian geometry: (COSTA E SILVA, 2021) and (O’NEILL, 1983). In particular, we
shall assume the reader has previous knowledge of the underlying notions in manifold theory;
see, for instance, (LEE, J. M., 2012).

1.1.1 CONNECTION AND INDUCED CONNECTION

Let Mn be a smooth manifold of dimension n. For any open set U ⊂ M , we denote
as C∞(U) the space of smooth functions on U and as X(U) the C∞(U)-module of smooth
vector fields defined on U . Moreover, for each point p ∈ M , we denote by TpM the tangent
space of M at p, and by TM the tangent bundle of M .

Recall that a connection on the smooth manifold M is a map

∇ : (X, Y ) ∈ X(M) × X(M) → ∇XY ∈ X(M),

such that,
1. ∇ is R-bilinear;

2. ∇f ·XY = f · ∇XY , ∀X, Y ∈ X(M), ∀f ∈ C∞(M);

3. ∇X(f · Y ) = (Xf) · Y + f · ∇XY , ∀X, Y ∈ X(M), ∀f ∈ C∞(M).
A connection ∇ on M is said to be symmetric if satisfies

∇XY − ∇YX = [X, Y ],

where X, Y ∈ X(M) and [·, ·] denotes the Lie bracket. When local coordinates (x1, . . . , xn) are
chosen, the connection ∇ can be described by the Christoffel symbols Γijk, which are defined
by the formula1

∇∂k
∂j = Γijk∂i ∀j, k ∈ {1, . . . , n}.

We define the curvature tensor of a connection ∇ on M as follows2:

R∇(X, Y )Z := ∇X∇YZ − ∇Y ∇XZ − ∇[X,Y ]Z, (1)
1 Although the connection is defined on global vector fields, it follows from its properties that it can act on

locally defined vector fields.
2 There is no consensus in the literature regarding the sign convention for the curvature tensor. Additionally,

it is worth noting that the definition in this work is opposite to the one used in (O’NEILL, 1983).
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for all X, Y, Z ∈ X(M). The curvature tensor is clearly C∞(M)-trilinear.
We also introduce the notion of connection over maps. Let M and N be smooth

manifolds and let F : N → M be a smooth map. A vector field over F is a map V : N → TM

for which F = πM ◦V holds, where πM : TM → M is the standard projection. For any smooth
map F : N → M , we define X(F ) to be the set of smooth vector fields over F , which is
a C∞(N)-module with respect to pointwise operations. For instance, if F is a smooth map,
then given X ∈ X(M) and Y ∈ X(N), the maps X ◦ F and dF ◦ Y are smooth vector fields
over F where here (and hereafter) dF denotes the derivative of F .

At this point, the definition of connection can be extended to vector fields over maps
as follows: Let F : N → M be a smooth map, a connection on F is a map

D : (X, V ) ∈ X(N) × X(F ) 7→ DXV ∈ X(F ),

such that
1. D is R-bilinear;

2. Df ·XY = f ·DXY, ∀X ∈ X(N),∀V ∈ X(F ),∀f ∈ C∞(N);

3. DX(f · Y ) = (Xf) · Y + f ·DXY ∀X ∈ X(N),∀V ∈ X(F ),∀f ∈ C∞(N).
We can also define a curvature tensor for the connection D. The curvature tensor of a

connection D on the map F : N → M is given by

RD(X, Y )V := DXDY V −DYDXV −D[X,Y ]V

for all X, Y ∈ X(N) and V ∈ X(F ). This curvature tensor is C∞(N)-trilinear. The fol-
lowing results regarding the so-called induced connection will be constantly employed in our
calculations.

Theorem 1.1.1 (COSTA E SILVA, 2021). Let ∇ be a connection on the manifold M , let
N be any smooth manifold and F : N → M be a smooth map. Then, there exists a unique
connection D∇ on F such that

D∇
X(V ◦ F )(p) = ∇dFp(Xp)V (F (p)), ∀p ∈ N, ∀X ∈ X(N),∀V ∈ X(M).

D∇ is called the induced connection on F .

Proposition 1.1.2 (COSTA E SILVA, 2021). Let ∇ be a connection on the manifold M, let
N be any manifold and let F : N → M be a smooth map. Finally, let D = D∇ be the induced
connection on F . Then

RD
p (x, y)v = R∇

F (p)(dFp(x), dFp(y))v, (2)

for any p ∈ N and ∀x, y ∈ TpN,∀v ∈ TF (p)M. Moreover, if ∇ is symmetric, then

DX(dF ◦ Y ) −DY (dF ◦X) = dF ◦ [X, Y ].
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1.1.2 SEMI-RIEMANNIAN MANIFOLDS

The best-known class of symmetric connections on manifolds, and the only one relevant
for us here, is that of Levi-Civita connections on manifolds equipped with semi-Riemannian
metrics. To define the Levi-Civita connection, we first need to introduce certain requirements.

Definition 1.1.3 (Semi-Riemannian manifold). Given an integer 0 ≤ ν ≤ n, a (smooth)
semi-Riemannian metric tensor g of index ν on M is a (smooth) (0, 2)-tensor field such that
∀p ∈ M ,

gp : TpM × TpM → R

is a symmetric non-degenerate bilinear form on TpM with index ν. A semi-Riemannian manifold
of index ν is a pair (M, g), where M is a smooth manifold and g is a semi-Riemannian metric
g of index ν. If ν = 0 [resp. ν = 1 and n ≥ 2], then g is said to be a Riemannian (res.
Lorentzian) metric, and (M, g) is a Riemannian manifold (resp. Lorentzian manifold).

Example 1 (Semi-Euclidean Spaces). Consider Rn with the standard coordinate system
(x1, . . . , xn). We define the semi-Riemannian Euclidean metric ην of index ν as follows:

ην := −
ν∑
i=1

dxi ⊗ dxi +
n∑

j=ν+1

dxj ⊗ dxj.

We shall refer to Rnν := (Rn, ην) as the semi-Euclidean space of index ν. When ν = 0 and
n ≥ 1, this space is called the ( standard n-dimensional) Euclidean space, and we denote
δn := η0. If ν = 1 and n ≥ 2, Rn1 is commonly known as the Minkowski space, and we denote
η := η1.

Let (Mn, g) be a semi-Riemannian manifold. The following notation will be often
used: ⟨X, Y ⟩ := g(X, Y ) for any X, Y ∈ X(M) and ⟨x, y⟩ := gp(x, y) for any p ∈ M and
x, y ∈ TpM . In the latter case, we often drop the explicit reference to p if there is no risk of
confusion.

A local frame on (M, g) is a choice of smooth vector fields V1, . . . , Vn defined on
an open set U ⊂ M such that at each point p ∈ U , the vectors V1(p), . . . , Vn(p) form
a basis of the tangent space TpM . The most common local frames are either coordinate
frames or orthonormal frames. Given smooth coordinates (x1, . . . , xn) on U , the vector fields
∂
∂x1 , . . . ,

∂
∂xn form the so-called coordinate frame. An orthonormal frame is a local frame

{E1, . . . , En} defined on an open set U ⊂ M such that, at each point q ∈ U , the set
{E1(q), . . . , En(q)} is an orthonormal basis of the semi-Euclidean vector space (TqM, gq). In
this case, at any point

g(Ei, Ej) = εiδij,

where εi = ±1 for i ∈ {1, . . . , n} represents the signature of the vector space (TqM, gq)
and δij is the Kronecker delta. The frame is always ordered such that the negative-signed
vectors come first. In particular, it should be noted that orthonormal frames are not necessarily
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coordinate frames. However, it can be proven that an orthonormal frame exists around every
point on M by using a Gram-Schmidt argument.

Let V1, . . . , Vn be a local frame. The metric can be expressed by a symmetric matrix
of real functions as follows:

gij = ⟨Vi, Vj⟩, ∀i, j ∈ {1, . . . , n}.

Since g is non-degenerate everywhere, the matrix [gij]i,j={1,...,n} is invertible at every point.
We denote the (i, j)-entry of its inverse matrix by gij. The following proposition summarizes
several useful properties of orthonormal frames.

Lemma 1.1.4 (COSTA E SILVA, 2021). Let (Mn, g) be a semi-Riemannian manifold, X ∈
X(M) and let {E1, . . . , En} be a local orthonormal frame. Then, the following holds

1. X =
∑n

i=1 εi⟨X,Ei⟩Ei (everywhere on the open set where the frame is defined).

2. For any Y ∈ X(M),

⟨X, Y ⟩ =
n∑
i=1

εi⟨X,Ei⟩⟨Ei, Y ⟩.

3. Let (U, (x1, . . . , xn)) be a local chart defined on the same domain U of the E ′
is. If we

write Ei = Ek
i ∂k, for i ∈ {1, . . . , n}, where Ek

i denote change of basis matrix elements,
we have that

Ej
i = gjl⟨∂l, Ei⟩,
n∑
i=1

Ek
i E

l
i = gkl.

A well-known fact about smooth manifolds is that every smooth manifold admits a
Riemannian metric, but that is not the case for semi-Riemannian metrics of other indices.
However, given a semi-Riemannian metric g, we can build the so-called Levi-Civita connection
∇g as shown in the following key theorem (see, e.g., (COSTA E SILVA, 2021) for a proof).

Theorem 1.1.5 (The fundamental theorem of semi-Riemannian geometry). Given a semi-
Riemannian metric g on M, there exists a unique connection ∇g on M , called the Levi-Civita
connection of g (or (M, g)), such that

1. ∇g is symmetric;

2. ∇g is compatible with g, i.e.,

Z(g(X, Y )) = g(∇g
ZX, Y ) + g(X,∇g

ZY ), ∀X, Y, Z ∈ X(M).

Moreover, ∇g is uniquely characterized by the Koszul formula:

2g(∇g
XY, Z) = X(g(Y, Z)) + Y (g(X,Z)) − Z(g(X, Y ))

− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ]), ∀X, Y, Z ∈ X(M).
(3)
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Example 2 (Flat connection). Let M = Rn, and consider the standard coordinate system
(x1, . . . , xn). We define the connection ∇flat as follows: for any X, Y ∈ X(Rn), we write
X = X i∂i, Y = Y i∂i, where {∂i}ni=1 are the coordinate fields. Then,

∇flat
X Y := X(Y i)∂i.

It is straightforward to check that this indeed defines a connection on Rn, known as the
standard flat connection. Furthermore, one can observe that this connection is the Levi-Civita
connection of the semi-Euclidean space Rnν of index ν. Additionally, it is worth noting that the
curvature tensor of the connection ∇flat vanishes everywhere. This example serves to illustrate
that different semi-Riemannian manifolds can share the same Levi-Civita connection.

We shall often drop the superscript ”g” from the Levi-Civita connection if there is no
risk of confusion. Other basic but important geometric objects are the following.

Definition 1.1.6 (Differential operators). Let (Mn, g) be a semi-Riemannian manifold. Then
1. The gradient of a smooth function f ∈ C∞(M) is the vector field ∇f which is metrically

related to the differential df , expressed as

g(∇f,X) = df(X), ∀X ∈ X(M).

2. The divergence divX of a smooth vector field X ∈ X(M) is the map

divX :=
n∑
i=1

εig(∇Ei
X,Ei),

where {E1, . . . , En} is any g-orthonormal local frame.

3. The divergence divA of a symmetric (0, 2) tensor field on M is the one-form defined by

divA(Z) =
n∑
i=1

εi(∇Ei
A)(Ei, Z), ∀Z ∈ X(M),

where {E1, . . . , En} is any g-orthonormal local frame.

4. The Laplacian of a smooth function f ∈ C∞(M) is the divergence of its gradient:

∆f := div ∇f.

Note that each of the quantities in the previous definition are initially defined with
respect to an orthonormal local frame. It can be shown that they are well-defined and indepen-
dent of the frame chosen. An important result that involves these quantities is the divergence
theorem.

Theorem 1.1.7 (ANCIAUX, 2010). Let (M, g) be an oriented semi-Riemannian manifold
with boundary ∂M and let X ∈ X(M) be a smooth vector field on M with compact support.
Suppose that ∂M is a semi-Riemannian submanifold (see Section 1.1.3). Then∫

M

(divX)dV = ε

∫
∂M

⟨X, n⃗⟩dV,
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where n⃗ is the outward pointing unit normal of ∂M , which is equipped with the induced
metric, ε := g(n⃗, n⃗) and dV denotes the unique volume form associated with g and the given
orientation.

Instead of Equation (1), in the context of a semi-Riemannian metric and its Levi-Civita
connection on a smooth manifold Mn, it is often convenient to work with the so-called (0, 4)
Riemannian curvature tensor, given by

Rm(W,Z,X, Y ) := ⟨Rg(X, Y )Z,W ⟩, ∀X, Y, Z,W ∈ X(M), (4)

where the superscript g indicates that the curvature is that induced by the Levi-Civita connec-
tion. The tensor is antisymmetric in the first pair of indices, and the last pair of indices, and it
is symmetric when interchanging those pairs, as stated in the following theorem.

Theorem 1.1.8 (COSTA E SILVA, 2021). Let (M, g) be a semi-Riemannian manifold. For
all X, Y, Z,W ∈ X(M), the Riemannian curvature tensor Rm satisfies

1. Rm(W,Z,X, Y ) = − Rm(Z,W,X, Y ),

2. Rm(W,Z,X, Y ) = − Rm(W,Z, Y,X),

3. Rm(W,Z,X, Y ) = Rm(X, Y,W,Z),
and the curvature tensor R satisfies

4. R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0,

5. ∇XR(Y, Z) + ∇YR(Z,X) + ∇ZR(X, Y ) = 0.

The Ricci tensor is defined as the trace of the Riemannian curvature tensor over the
first and third components. More precisely, given {E1, . . . , En} as a g-orthonormal local frame,
the Ricci tensor is given by

Ricg(X, Y ) :=
n∑
i=1

εig(Rg(Ei, Y )X,Ei), ∀X, Y ∈ X(M). (5)

The trace of the Ricci tensor is called the scalar curvature of (M, g):

Sg :=
n∑
i=1

εiRicg(Ei, Ei). (6)

Again, one can easily show that these definitions do not depend on the chosen orthonormal
frame.

Let (M, g) be a semi-Riemannian manifold and p ∈ M . A two-dimensional subspace
Π of the tangent space TpM is called a tangent plane to M at p. For any tangent vectors
v, w ∈ TpM , we define

Q(v, w) = gp(v, v)gp(w,w) − gp(v, w)2.

By (O’NEILL, 1983, Lemma 2.19), a tangent plane Π is a nondegenerate subspace if and only
if Q(v, w) ̸= 0 for one, hence every, basis {v, w} of Π. Given a nondegenerate plane Π ⊂ TpM ,
the real number

K(Π) := gp(Rg(w, v)v, w)
Q(v, w) ,
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where {v, w} is a basis of Π, is called the sectional curvature of the nondegenerate plane Π.
By (O’NEILL, 1983, Lemma 3.39), we have that K(Π) is independent of the choice

of basis for Π, so the quantity is well defined. Thus, the sectional curvature K of M is a
real-valued function on the set of all nondegenerate tangent planes to M .

1.1.3 SEMI-RIEMANNIAN IMMERSIONS

Let (M, g) be a semi-Riemannian manifold. Given a smooth map F : N → M , the
pullback F ∗g defines a symmetric (0, 2)-type smooth tensor field on N , but it may not
necessarily be a semi-Riemannian metric. For instance, the index of F ∗g (i.e., the signature
of the metric) may fail to be constant or may even be degenerate everywhere, and indeed we
will see the latter phenomenon. If the index is constant and the induced metric F ∗g does not
degenerate anywhere, then (N,F ∗g) is a semi-Riemannian manifold and F is then said to be
a semi-Riemannian immersion.

In particular, an embedded submanifold N ⊂ M is referred to as a semi-Riemannian
submanifold if the inclusion map i : N ↪→ M (which is an embedding) is a semi-Riemannian
immersion. In the context of codimension one, when N is an embedded submanifold of M and
F is the inclusion, we refer to N as a semi-Riemannian hypersurface (see Definition 1.1.13
and Figure 1 for examples of semi-Riemannian hypersurfaces).

There is a particular type of immersion that will consistently appear in this work when
(M, g) is a Lorentzian manifold. Given F : N → M as a semi-Riemannian immersion, we say
that F is a spacelike immersion if, for all p ∈ N , dFp(TpN) is a spacelike subspace of the
Lorentz vector space (TpM, gp). Here, a spacelike subspace is a subspace that consists only
of vectors that are spacelike (i.e., gp is positive definite on dFp(TpN)) with respect to the
Lorentzian metric. Equivalently, F : N → M is spacelike if and only if F ∗g is a Riemannian
metric on N .

In the next part, we fix the following notation: Let F : N → M be a semi-Riemannian
immersion and denote gN := F ∗gM and gM as the semi-Riemannian metric on N and M ,
respectively. The geometric quantities on (N, gN) [resp. (M, gM)] are indicated by superscript
or subscript ”N” [resp. ”M”], e.g., ∇N [resp. ∇M ]. Finally, given any V,W ∈ X(F ), we define
the smooth real-valued function

≪ V,W ≫: p ∈ N 7→ (gM)F (p)(Vp,Wp) ∈ R. (7)

In the context of semi-Riemannian immersions, any vector can be decomposed into
two parts. For any p ∈ N and v ∈ TF (p)M , there exist unique vectors v⊤ ∈ dFp(TpN) and
v⊥ ∈ dFp(TpN)⊥, referred to as the tangent and normal parts of v, respectively, such that

v = v⊤ + v⊥.

We denote X⊤(F ) [resp. X⊥(F )] as the set of smooth vector fields over F in which each
vector is tangent [resp. normal]. The subsets X⊤(F ) and X⊥(F ) are C∞(N)-submodules of
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X(F ). If N is an embedded submanifold of M and F is the inclusion, we denote X⊥(F ) as
X⊥(N).

Proposition 1.1.9 (COSTA E SILVA, 2021). The map

dF : X ∈ X(N) 7→ dF ◦X ∈ X(F )

is a C∞(N)-module isomorphism.

Indeed, the tangent and normal decomposition can be applied to any smooth vector
field V ∈ X(F ), as stated in the following lemma.

Lemma 1.1.10 (COSTA E SILVA, 2021). Given V ∈ X(F ), there exists unique XV ∈ X(N)
and V ⊥ ∈ X⊥(F ) such that

V = dF ◦XV + V ⊥.

In other words, there is a C∞(N)-module isomorphism

X(F ) ≈ X(N) ⊕ X⊥(F ).

Furthermore, the subsequent two technical lemmas will prove to be highly valuable in
later discussions.

Lemma 1.1.11 (COSTA E SILVA, 2021). Let F : N → M be a smooth immersion into
the semi-Riemannian manifold (M, g). Given V ∈ X(F ) and p ∈ N , there exist an open set
U ⊂ N containing p and a vector field Ṽ ∈ X(M) on M such that

Ṽ ◦ F
∣∣
U = V

∣∣
U .

Lemma 1.1.12 (COSTA E SILVA, 2021). Let X ∈ X(N) and V , W ∈ X(F ), and fix p ∈ N .
In view of Lemma 1.1.11, let X̃, Ṽ , W̃ ∈ X(M) and U ∋ p open in N such that

Ṽ ◦ F
∣∣∣
U

= V |U , W̃ ◦ F
∣∣∣
U

= W |U and X̃ ◦ F
∣∣∣
U

= dF ◦X|U .

Then,
1. ≪ V,W ≫

∣∣
U =

(
gM(Ṽ , W̃ ) ◦ F

) ∣∣∣
U
,

2. DXV |U =
(

∇M
X̃
Ṽ
)

◦ F
∣∣∣
U
,

3. X ≪ V,W ≫=≪ DXV,W ≫ + ≪ V,DXW ≫.

In what follows, we will introduce the so-called hyperquadrics which not only serve as
illustrations of the concepts of semi-Riemannian immersions/embeddings, but will also give
rise to further important examples of semi-Riemannian manifolds. Let n ≥ 2 and consider
the semi-Euclidean space Rn+1

ν . We will use the standard global Cartesian coordinate system
(x1, . . . , xn), and the canonical basis {e1, . . . , en+1}, where εi := ην(ei, ei) are the signs.
Consider the quadratic form Q : Rn+1

ν → R given by

Q(x) = ⟨x, x⟩ν = −
ν∑
i=1

(xi)2 +
n+1∑
i=ν+1

(xi)2,
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and introduce the so-called position vector field

P(x) = xi
∂

∂xi

∣∣∣∣
x

.

A simple computation reveals that

∇Q(x) = 2xi
∂

∂xi

∣∣∣∣
x

= 2P(x),

and
ην(P ,P) ≡ Q.

Finally, we are now ready to define the so-called (central) hyperquadrics, which are a
very important class of submanifolds of Rn+1

ν .

Definition 1.1.13 (Hyperquadrics). The (central) hyperquadrics of radius r > 0 in Rn+1
ν are

the pseudospheres
Snν (r) := {x ∈ Rn+1

ν : Q(x) = r2},

and, provided ν ≥ 1, the pseudohyperboloids

Hn
ν−1(r) := {x ∈ Rn+1

ν : Q(x) = −r2}.

Figure 1 – Pseudosphere and pseudohyperboloid in R3
1

Source: (ESPINOZA, 2020)

An auxiliary proposition is necessary to analyze and understand these hypersurfaces,
which are obtained as the preimage of regular values.

Proposition 1.1.14 (Proposition 4.17 (O’NEILL, 1983)). Let (M, g) be a semi-Riemannian
manifold. Let c be a regular value of f ∈ C∞(M). Then N = f−1(c) is a semi-Riemannian
hypersurface of M if and only if g(∇f,∇f) is strictly positive or strictly negative on N . In
this case, U = ∇f/|∇f | is a unit normal vector field on N .

Notice that ⟨∇Q,∇Q⟩ν = 4⟨P ,P⟩ν = 4Q on Rn+1
ν . By Proposition 1.1.14, for a fixed

r > 0, the hypersurfaces Q−1(εr2) are semi-Riemannian manifolds with the unit vector field
U = P/r. Therefore, the hyperquadrics are semi-Riemannian hypersurfaces.
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Example 3 (The round sphere Sn). We define Sn := Sn0 (1) = {(x1, . . . , xn+1) ∈ Rn+1 :
x2

1 + . . .+ x2
n+1 = 1}, for n ≥ 2. If δn+1 is the standard n+ 1-dimensional Euclidean metric

and i : Sn ↪→ Rn+1 is the inclusion, then ωn := i∗δn+1 is the induced Riemannian metric on
Sn, and (Sn, ωn) is called the round n-sphere.

Example 4 (The hyperbolic space). The n-dimensional hyperbolic space, for n ≥ 2, is by
definition the ”upper” component of the hyperquadric Hn

0 (1) ⊂ Rn1 , given by

Hn
0 := {(x1, . . . , xn+1) ∈ Rn+1

1 : −x2
1 + x2

2 + . . .+ x2
n+1 = −1, x1 > 0},

endowed with the induced metric by the inclusion map i : Hn
0 (1) ↪→ Rn+1

1 into the n + 1-
dimensional Minkowski space.

Example 5 (De Sitter and anti-de Sitter). The n-dimensional de Sitter space, for n ≥ 2, is by
definition the pseudosphere Sn1 (1) ⊂ Rn+1

1 endowed with the induced metric by the inclusion
map i : Sn1 (1) ↪→ Rn+1

1 . The n-dimensional anti-de Sitter space is the pseudohyperboloid
Hn

1 (1) ⊂ Rn+1
2 endowed with the induced metric by the inclusion map i : Hn

1 (1) ↪→ Rn+1
2 . Both

are one-sheeted hyperboloids and hence connected n-dimension Lorentzian manifolds.

1.1.4 THE GAUSS-CODAZZI EQUATIONS

In this section, we fix the following notation. Let (Mn, g) be a semi-Riemannian manifold
and F : Nk → Mn be a semi-Riemannian immersion. The map F induces the connection D.
However, for any X, Y ∈ X(N), it is not guaranteed that DX(dF ◦ Y ) lies entirely within the
tangent space of dF (TN). Consequently, we may ask how to decompose DX(dF ◦ Y ) into
its tangent and normal parts.

Theorem 1.1.15 (COSTA E SILVA, 2021). For any X, Y ∈ X(N)

DX(dF ◦ Y ) = dF
(
∇N
XY
)

+ II(X, Y ),

where
II(X, Y ) := (DX(dF ◦ Y ))⊥ .

Moreover, the map II : X(N) × X(N) → X⊥(F ) thus defined is C∞(N)-bilinear and sym-
metric, and is called the second fundamental form tensor or shape tensor of F .

Given the second fundamental form tensor II of F : Nk → Mn and p ∈ N , we define
the mean curvature vector of F at p as

H⃗p :=
k∑
i=1

εiIIp (ei, ei),

where {e1, . . . , ek} ⊂ TpN represents an orthonormal basis at p ∈ N and εi = gN(ei, ei), for
any i ∈ {1, . . . , k}. It is evident that the mean curvature vectors form a smooth normal vector
field H⃗ ∈ X⊥(F ) which is the mean curvature vector field of F .
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We say that the semi-Riemannian immersion F : Nk → Mn is totally geodesic if its
second fundamental form vanishes identically; in particular, if N is an (embedded) submanifold
of M with F being the inclusion, and F is totally geodesic, then we say that N itself is a totally
geodesic submanifold of (M, gM). This has the usual geometric meaning that gN geodesics
are mapped via F into gM geodesics.

Before introducing the Gauss-Codazzi equations, define the following quantity: for any
X, Y, Z ∈ X(N),

(DXII)(Y, Z) := DX(II(Y, Z)) − II(∇N
XY, Z) − II(Y,∇N

XZ). (8)

We can easily show that the quantity (DXII)(Y, Z) is C∞(N)-trilinear in its variables.

Theorem 1.1.16 (COSTA E SILVA, 2021). Let (N, gN) and (M, gM) be semi-Riemannian
manifolds, and F : N → M be a semi-Riemannian immersion. Then, for any X, Y, Z,W ∈
X(N) and any V ∈ X⊥(F ),

1. (Gauss Equation)

≪ RD(X, Y )dF ◦ Z, dF ◦W ≫ = gN(RN(X, Y )Z,W )+ ≪ II(X,Z), II(Y,W ) ≫

− ≪ II(Y, Z), II(X,W ) ≫ .

2. (Codazzi Equation)

≪ RD(X, Y )dF ◦ Z, V ≫=≪ (DXII)(Y, Z) − (DY II)(X,Z), V ≫ .

If F : N → M is a codimension one semi-Riemannian immersion, it is sometimes
possible (and in that case, also very convenient) to choose a distinguished unit normal vector.
If there exists an everywhere-nonzero U ∈ X⊥(F ) we say that F is two-sided. This motivates
the following definition. Given a unit normal vector field U ∈ X⊥(F ),

1. The second fundamental form (associated with U) is the symmetric (0, 2)-tensor
on N given by

K(X, Y ) = KU(X, Y ) :=≪ II(X, Y ),−U ≫, ∀X, Y ∈ X(N)

where II is the shape tensor of F .

2. The Weingarten operator (or shape operator) (associated with U) is the (1, 1)-
tensor S = SU on N metrically associated with K, i.e., S : X(N) → X(N) is given
by

gN(S(X), Y ) = K(X, Y ), ∀X, Y ∈ X(N).

3. The mean curvature scalar (associated with U) is the real-valued function

H = HU =≪ H⃗,−U ≫= trN K = trN S.
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Remark 1 . The definitions of the second fundamental form and the Weingarten map with
−U may differ from the classical definition that uses U . We specifically choose this unit normal
for two main reasons:

1. In Euclidean space, for spheres, the second fundamental form K and the operator S
associated with the outward unit normal are positive definite (see Example 6). Thus, the
outward unit normal is the default choice for normal direction;

2. The definition of marginally outer trapped surfaces (see Chapter 4) relies on the sign of
the so-called null expansion θ and this choice is consistent with the literature.

The following concept is important for understanding the geometry of warped products,
which will be discussed in the next subsection.

Definition 1.1.17 (Totally umbilic submanifolds). Let (N, gN) and (M, gM) be semi-Riemannian
manifolds, and F : N → M be a semi-Riemannian immersion. A point p ∈ N is said to be
umbilic (with respect to F ) if there exists a normal vector z⃗ ∈ (dFp (TpN))⊥ for which

IIp(x, y) = (gN)p (x, y) · z⃗, ∀x, y ∈ TpN.

F is said to be totally umbilic if every point of N is umbilic. In particular, if N is an embedded
submanifold of M,F is the inclusion, and the latter is totally umbilic, then we say that N is a
totally umbilic submanifold.

(Note that if F is totally geodesic, then it is in particular totally umbilic.)

For semi-Riemannian immersions of codimension one, the Gauss-Codazzi equations
assume a special form.

Proposition 1.1.18 (COSTA E SILVA, 2021). Let (Nn, gN) and (Mn+1, gM) be semi-
Riemannian manifolds and let F : N → M be a semi-Riemannian codimension 1 immersion.
Given a unit normal vector field U ∈ X⊥(F ), then for any X, Y, Z ∈ X(N) the following
Gauss-Codazzi equations hold

1. For p ∈ N ,
dFp(Sp(v)) = DvU(p), ∀v ∈ TpN.

2. (Gauss Equation)

≪ RD(X, Y )dF ◦ Z, dF ◦W ≫ = gN(RN(X, Y )Z,W ) + εN [K(X,Z)K(Y,W )

− K(Y, Z)K(X,W )],

where εN :=≪ U,U ≫.

3. (Codazzi Equation)

≪ RD(X, Y )dF ◦ Z, V ≫= (∇N
Y K)(X,Z) − (∇N

XK)(Y, Z)

By Proposition 1.1.14 and item 1 of Proposition 1.1.18, for hyperquadrics, we obtain
that the Weingarten operator associated with the unit normal vector field U = P/r has the
expression SU = IX(N)/r, where IX(N) is the identity.
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Example 6 (Geometry of the hyperquadrics). In this example, we will compute several ge-
ometric quantities for the central hyperquadrics. Let n > 0 and 0 ≤ ν ≤ n. Consider the
hyperquadric N = Q−1(εr), where ε = ±1, and let r > 0 be fixed. Denote by U = P/r the
unit normal vector field on N , and let i : N ↪→ Rn+1

ν be the inclusion map of N into Rn+1
ν .

For any X, Y ∈ X(N), a straightforward computation using SU = IX(N)/r reveals that:

KU(X, Y ) = 1
r
gN(X, Y ),

and
HU = 1

r
.

Since H⃗ is a normal vector field, the codimension is one, and the unit normal vector field U
has sign ε, we can express H⃗ and the second fundamental form II as follows:

H⃗ = −ε1
r
U,

and
II(X, Y ) = −ε

r
gN(X, Y )U.

The information about the Weingarten map, together with (O’NEILL, 1983, Corol-
lary 4.20), enables us to determine the sectional curvature of the hyperquadrics.

Proposition 1.1.19 (Proposition 4.29 (O’NEILL, 1983)). Let n ≥ 2 and 0 ≤ ν ≤ n.
1. The pseudosphere Snν (r) is a semi-Riemannian manifold with constant positive sectional

curvature K = 1/r2.

2. The pseudohyperboloid Hn
ν−1(r) is a semi-Riemannian manifold of negative constant

sectional curvature K = −1/r2.

It worth noting that the round sphere and the de Sitter space have constant positive
sectional curvature, while the hyperbolic space and the anti-de Sitter space have negative
sectional curvature.

The following technical lemma elucidates the relationship between two distinct second
fundamental forms that arise when there is a composition of immersions. This lemma will be
employed in Chapter 4

Lemma 1.1.20 . Let (Mm, g) be a semi-Riemannian manifold. Let ϕ : Sn → Mm and
ψ : Σk → Sn be two semi-Riemannian immersions such that m > n > k > 0. For any p ∈ Σ,
we have

IIϕ◦ψ
p (v, w) = dϕψ(p)(IIψp (v, w)) + IIϕψ(p)(dψpv, dψpw), ∀v, w ∈ TpΣ.

Proof. Let p ∈ Σ and fix v, w ∈ TpΣ. Let V,W be smooth vector fields on Σ such that
V (p) = v and W (p) = w. By Lemma 1.1.11, there exists a smooth vector field W̃ ∈ X(M)
and an open set U ⊂ Σ containing p such that

W̃ ◦ (ϕ ◦ ψ)
∣∣∣
U

= d(ϕ ◦ ψ) ◦W
∣∣
U ,
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Denote by Dψ, Dϕ and Dϕ◦ψ the covariant derivatives induced by the maps ψ, ϕ and (ϕ ◦ ψ),
respectively. Hence, at p, we have

(Dϕ◦ψ
V d(ϕ ◦ ψ) ◦W )(p) = (Dϕ◦ψ

V W̃ ◦ (ϕ ◦ ψ))(p)

= (∇M
d(ϕ◦ψ)pvW̃ )(ϕ ◦ ψ(p))

= (Dϕ
dψpv

W̃ ◦ ϕ)ψ(p).

As ψ is an immersion, it is locally an embedding. Therefore, by restricting U if necessary, we
can assume that ψ(U) is an open set. Notice that W ◦ ϕ

∣∣
ψ(U) is a tangent vector field of

ψ(U) ⊂ S in M , by Lemma 1.1.10, there exists a smooth vector field Z̃ ∈ X(S) such that

dϕ ◦ Z̃
∣∣∣
ψ(U)

= W̃ ◦ ϕ
∣∣∣
ψ(U)

,

thus,

(Dϕ◦ψ
V d(ϕ ◦ ψ) ◦W )(p) = (Dϕ

dψpv
W̃ ◦ ϕ)(ψ(p))

= (Dϕ
dψpv

dϕ ◦ Z̃)(ψ(p))

= dϕ(∇S
dψpvZ̃)(ψ(p)) + IIϕ(dψpv, Z̃ψ(p))

= dϕψ(p)(Dψ
V Z̃ ◦ ψ)(p) + IIϕψ(p)(dψpv, Z̃ψ(p)).

Observe that, the vector field Z̃ ◦ ψ
∣∣∣
U

is a tangent vector field of U ⊂ Σ into S. Therefore,
there exists a smooth vector field Z ∈ X(Σ) such that

dψ ◦ Z
∣∣
U = Z̃ ◦ ψ

∣∣∣
U
,

moreover, notice that

dϕ ◦ Z̃ ◦ ψ(p) = W̃ ◦ ϕ ◦ ψ(p) = d(ϕ ◦ ψ) ◦W (p),

as dϕ is injective, Z̃ψ(p) = dψpw and, since dψpZp = Z̃ψ(p), holds that Zp = w. Decomposing
Dψ into tangent and normal parts, we have the following development

(Dϕ◦ψ
V d(ϕ ◦ ψ) ◦W )(p) = dϕψ(p)(Dψ

V Z̃ ◦ ψ)(p) + IIϕψ(p)(dψpw, dψpv)

= dϕψ(p)(Dψ
V dψ ◦ Z)(p) + IIϕψ(p)(dψpw, dψpv)

= dϕψ(p)
[
dψp ◦ (∇Σ

VZ)(p) + IIψp (v, w))
]

+ IIϕψ(p)(dψpw, dψpv)

taking the normal parts in both sides we have

IIϕ◦ψ
p (v, w) = dϕψ(p)II

ψ
p (v, w) + IIϕψ(p)(dψpw, dψpv).
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1.1.5 WARPED PRODUCTS

The fundamental examples of relativistic spacetimes often depend on a particular class of
manifolds obtained via the notion of warped product. Before delving into black hole spacetimes
in Section 2.3, it is important to establish the definition of warped products.

The warped product generalizes the semi-Riemannian product manifold M × N by
introducing a distortion, that is, each fiber of p × N is distorted homothetically in order to
get a new ”warped” metric tensor on the manifold on the manifold M × N . This technique
allows a richer class of metrics on the manifold M ×N .

Definition 1.1.21 (Warped products). Let (B, gB) and (F, gF ) be semi-Riemannian manifolds,
and let f > 0 be a smooth function on B. The warped product M = B ×f F with warping
function f is the product manifold B × F furnished with the metric tensor

g = π∗(gB) + (f ◦ π)2σ∗(gF ),

where π and σ are the natural projections from B × F to B and F , respectively.

In fact, g is a metric tensor. If f = 1, then B×f F is just the semi-Riemannian product
manifold. B is called the base of M = B×f F , and the F the fiber. The fibers p×F = π−1(p)
and the leaves B × q = σ−1(q) are semi-Riemannian submanifolds of M . These submanifolds
have particular geometric properties as one can see by the following result.

Corollary 1.1.22 [Corollary 7.36. (O’NEILL, 1983)] The leaves B × q of a warped product
are totally geodesic; the fibers p× F are totally umbilic.

In particular, by simple linear algebra, if (B, gB) is Lorentzian and (F, gF ) is Riemannian,
then B ×f F is Lorentzian. In what follows, we present some examples of warped products.

Example 7 (Riemannian cylinder). Let (B, gB) = (R, dt2) be the standard positive definite
metric on R, and (F, gF ) = (Sn, ωn) the n-sphere. The warped product (R × Sn, dt2 + ωn)
with the constant function f = 1 on R is the standard (Riemannian) cylinder.

Example 8 (Robertson-Walker spacetimes). Consider the negative definite metric on the open
interval ((a, b),−dt2). Let f : (a, b) → (0,+∞) be any positive smooth function, and (F, gF )
be an arbitrary Riemannian manifold. The Lorentzian warped product (a, b) ×f F is referred to
as a generalized Robertson-Walker spacetime. If (F, gF ) is chosen as either (Rn, η0), (Sn, ωn),
or Hn

0 , then the Lorentzian warped product is simply called a Robertson-Walker spacetime.

See Section 2.3 for the celebrated Schwarzschild and Schwarzschild-Kruskal spacetimes,
which are very important examples of warped products.

1.1.6 CAUSALITY THEORY

Let (Mn, g) be a semi-Riemannian manifold with index 0 < ν < n, n ≥ 2. Since the
metric g is indefinite, we can define the following classification of vectors, which are particularly
of interest in the Lorentzian case. Let p ∈ M , we say that v ∈ TpM is
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1. timelike, if gp(v,v) < 0,

2. spacelike, if gp(v,v) > 0 or v = 0,

3. lightlike (or null), if v ̸= 0 and gp(v,v),

4. causal, if v is either timelike or null.
These notions also extend naturally to other geometric objects. A vector fieldX ∈ X(M)

is said to be timelike [resp. null, spacelike or causal ] if, for all p ∈ M , we have that Xp is
timelike [resp. null, spacelike or causal]. Analogously, a smooth curve α : I ⊆ R → M is said
to be timelike [resp. null, spacelike or causal ], for all t ∈ I, if α′(t) is timelike [resp. null,
spacelike or causal].

To study the tangent spaces of a Lorentz manifold (M, g) in abstract terms, we define
a Lorentz vector space to be the a (V, g) where g is a scalar product space of index 1
and dim(V) ≥ 2. The notion of causal character of vectors has, in this context, a natural
generalization to vector subspaces.

Definition 1.1.23 . Let (V, g) be a Lorentz vector space, then a vector subspace W ⊂ V is
1. timelike, if g|W×W is nondegenerate and has index 1,

2. spacelike, if g
∣∣
W×W

is positive-definite,

3. lightlike (or null), if g|W×W is degenerate.

For any set X ⊂ V of a Lorentz vector space (V, g), we define the vector subspace

X⊥ := {v ∈ V : g(v,w) = 0, ∀w ∈ X}.

The following simple results are widely useful to understand the geometry of the Lorentz vector
spaces.

Lemma 1.1.24 (O’NEILL, 1983). Let (V, g) be a Lorentz vector space. If v ∈ V is a timelike
vector, then the subspace v⊥ is spacelike and V is the direct sum Rv ⊕ v⊥.

This argument demonstrates a more general result: a subspace W is timelike if and only
if W⊥ is spacelike. Since (W⊥)⊥ = W, the terms timelike and spacelike can be reversed in this
assertion. It follows then that W is lightlike if and only if W⊥ is lightlike.

Proposition 1.1.25 (COSTA E SILVA, 2021). Let (V, g) be a Lorentz vector space. Given a
vector subspace W ⊂ V, dim(W) ≥ 2, then the following statements are equivalent:

1. W is timelike;

2. W contains two linearly, independent lightlike vectors;

3. W contains a timelike vector.
Moreover, the following statements also are equivalent:

1. W is lightlike;

2. W contains a lightlike but not a timelike vector;

3. dim(W ∩ W⊥) = 1.
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Therefore, any nondegenerate subspace of a Lorentz vector space is either timelike or
spacelike. Let T be the set of all timelike vectors in a Lorentz vector space (V, g). Given any
timelike vector u ∈ T , we define the timecone of u as the set

C(u) = {v ∈ T : ⟨u, v⟩ < 0}

of V. The opposite timecone of u is

C(−u) = −C(u) = {v ∈ T : ⟨u, v⟩ > 0}.

Since u⊥ is spacelike, T is the disjoint union of these two timecones.

Lemma 1.1.26 (O’NEILL, 1983). Timelike vectors v and w in a Lorentz vector space (V, g)
are in the same timecone if and only if g(v,w) < 0.

Let again (Vn, g) be a Lorentz vector space. As any finite-dimensional real vector space,
V can be equipped with the natural topology of Rn. With respect to this topology, the set T
of timelike vectors in (V, g) is open, and has exactly two connected components, which are
precisely the two timecones (see Figure 2). A time-orientation on (V, g) is a choice of one of
these two timecones. (V, g) is said to be time-oriented if such a choice has been made. In
this case, the distinguished timecone is said to be the future timecone, often denoted as τ+,
while the opposite timecone is the past timecone, denoted by τ−. The future causal cone is
C+ = τ+ \ {0V} (where the overbar indicates topological closure), and the past causal cone
C− is defined analogously from the past timecone. It is easily shown that any causal vector
is in one of these two causal cones. Specifically, the null vectors are either in the future null
cone Λ+ := C+ \ τ+ or in the analogously defined past null cone. Noncollinear causal vectors
v, w ∈ V are in the same causal cone if and only if g(v, w) < 0.

Figure 2 – Cones in Minkowski R2
1.

Let (M, g) be a Lorentzian manifold. For each p ∈ M , we have that TpM is Lorentzian
vector space, and as such, it contains two timecones. We are interested in developing a notion
of time-orientability on each tangent space which is suitably continuous.
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Consider a function τ defined on a Lorentzian manifold (M, g) that associates to each
point p ∈ M a timecone τ+

p ⊂ TpM . We say that τ is smooth if, for every p ∈ M , there exists
a smooth vector field V defined on some neighborhood U of p such that Vq ∈ τ+

q , for all q ∈ U .
This smooth function is a time-orientation of (M, g). If (M, g) admits a time-orientation, we
say that it is time-orientable. A time-orientable Lorentzian manifold (M, g) is time-oriented if
a choice of a time-orientation thereon has been made.

Lemma 1.1.27 (O’NEILL, 1983). A Lorentzian manifold (M, g) is time-orientable if and only
if there exists a timelike vector field X ∈ X(M).

If there exists a vector field X ∈ X(M) as described in the lemma above, the time-
orientation defined by X is referred to as the induced time-orientation. It is worth noting
that, in the context of a Lorentzian manifold, orientability and time-orientability are logically
independent.

Definition 1.1.28 . Let (M, g) be a time-orientable Lorentzian manifold with induced time-
orientation by the timelike vector field X ∈ X(M). For p ∈ M , a causal vector v ∈ TpM is
future-directed [resp. past-directed] if gp(v,Xp) < 0 [res. gp(v,Xp) > 0]. Analogously, we say
that a causal curve α : I ⊆ R → M is future-directed [resp. past-directed] if, for all t ∈ I,
α′(t) is future-directed [resp. past-directed].

Definition 1.1.29 (Spacetime). A spacetime is a connected, time-oriented Lorentzian mani-
fold.

The time-orientability is not as restrictive as one might expect. For instance, for every
connected Lorentzian manifold it is possible to construct a double covering that is a connected,
time-orientable and Lorentzian manifold. Consequently, this manifold becomes a spacetime
locally isometric to M (see discussion in Beem, Ehrlich, and Easley (1996) after Definition
3.1).

Example 9 (Minkowski spacetime). Minkowski space Rn1 is time-orientable, with time-orientation
defined by the timecones containing the coordinate vector field ∂1 in the natural coordinates
(x1, . . . , xn). When endowed with this standard time-orientation, Rn1 is referred to as the
(n-dimensional) Minkowski spacetime.

Example 10 (De Sitter spacetime). The de Sitter spaces Sn1 (1) are time-orientable, because
if ∂1 is the (timelike) standard coordinate vector field of Rn+1

1 , then X := tan(∂1), i.e., the
tangent part of ∂1, is a timelike vector field on Sn1 (1). Therefore, Sn1 (1) endowed with this
time-orientation is known as the (n-dimensional) de Sitter spacetime.

Example 11 (Anti-de Sitter spacetime). The anti-de Sitter spaces Hn
1 (1) ⊂ Rn+1

2 are time-
orientable. In fact, since P = xi ∂

∂xi is normal to Hn
1 (1), it is possible to check that x2∂1 −x1∂2

is tangent to Hn
1 (1) and timelike. Therefore, Hn

1 (1) endowed with this time-orientation is known
as the (n-dimensional) anti-de Sitter spacetime.
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1.2 THE VARIATION FORMULA FOR THE VOLUME

This section will follow the approach outlined in the first chapter of (ANCIAUX, 2010).
We will now introduce the concept of a variation of a submanifold, which can be understood
as a ”curve of submanifolds”. Variations of a submanifold will provide the foundation for
understanding minimal surfaces, which in turn will serve both as a motivation for and a
means of interpreting certain results for the marginally trapped surfaces defined in Chapter 4.
Furthermore, these also provide a nice geometric interpretation to the mean curvature of
semi-Riemannian submanifolds.

1.2.1 VARIATION OF A SUBMANIFOLD

Let ϕ : Sn → Mm be an immersion where S has a (possibly empty) boundary ∂S,
and with 0 < n < m. A variation of ϕ is a smooth map Φ : S × (−t0, t0) → M with t0 > 0,
such that Φ(x, 0) = ϕ(x). The vector field V := ∂Φ

∂t
(x, 0) is called the variation vector field on

ϕ associated with the variation Φ. For later convenience, we shall also impose two technical
requirements on Φ: (i) the variation fixes the boundary ∂S, and (ii) it is compactly supported,
i.e., there exists a relatively compact open subset U of S such that U ∩ ∂S = ∅, and

Φ(x, t) = ϕ(x), ∀x ∈ S\U.

The assumption of compact support implies that the associated vector field V is compactly
supported and that V and all its derivatives vanish on ∂S.

It is possible to show that given a variation Φ : Sk × (−t0,t0) → Mn of an immersion
[resp. semi-Riemannian immersion of induced index ν] ϕ : S → M , each map ϕt : x ∈ S 7→
Φ(x, t) ∈ M is also an immersion [resp. semi-Riemannian immersion of index ν] for small
enough t. We shall, henceforth, implicitly assume that t0 > 0 has been chosen small enough so
that this occurs. If (M, g) is a semi-Riemannian manifold and ϕ : S → M is a semi-Riemannian
immersion, then we denote by St the manifold S endowed with the induced semi-Riemannian
metric gt := ϕ∗

tg. If S is oriented, then we shall denote by V olt the associated volume n-form
of St.

Definition 1.2.1 (Minimal submanifold). Let (M,g) be a semi-Riemannian manifold. A semi-
Riemannian immersion ϕ : S → M is said to be minimal if its mean curvature vector field
H⃗ ∈ X⊥(ϕ) vanishes identically.

If (M, g) is a semi-Riemannian manifold, then given an embedded submanifold S ⊂ M ,
we shall say that S is minimal if its inclusion is a minimal embedding. The word minimal
comes from Lagrange’s tradition and it could be particularly misleading: a minimal submanifold
does not necessarily minimize the induced volume, even in the Riemannian case. Indeed, in
some situations, the submanifold actually maximizes the volume. We shall see, however, that
given certain technical conditions, being minimal means that the submanifold manifold (or
immersion) is a critical point for the volume functional.
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1.2.2 THE FIRST VARIATION FORMULA

Theorem 1.2.2 (First Variation formula). Let Φ : Sn × (−t0, t0) → Mm be a variation
of a semi-Riemannian immersion ϕ : S → M of the compact oriented manifold S into the
semi-Riemannian manifold (M, g), where m > n > 0. Then we have

d

dt
V ol(St)

∣∣∣∣
t=0

=
∫
S

θdV, (9)

where θ = g(H⃗,−V ), the vector field V is the variation vector field on Φ and H⃗ is the mean
curvature vector of S.

Corollary 1.2.3 . Let (M, g) be a semi-Riemannian manifold, and let ϕ : S → M be a
semi-Riemannian immersion, with S compact and oriented. Then ϕ is minimal if and only if
with respect to any variation we have

d

dt
V ol(St)

∣∣∣∣
t=0

= 0.

Theorem 1.2.4 . A compact submanifold Sn of a semi-Euclidean space Rmν is not minimal.

Proof. Let ϕ : Sn → Rm be a parametrization of S and define

Φ : Sn × (−t0, t0) → Rm

(x, t) 7→ (1 + t) · ϕ(x).

The compactness assumption ensures that the variation Φ satisfies the required conditions (i)
and (ii). On the other hand, an easy computation shows that V ol(St) = (1 + t)nV ol(S), so
that

d

dt
V ol(St)

∣∣∣∣
t=0

= nV ol(S) ̸= 0.

It is worth noting that this corollary establishes a link between two distinct fields: the
calculus of variations (optimization of volume) and the field of differential geometry (geometric
quantities, mean curvature vector). The proof of Theorem 1.2.2 will follow from the two
subsequent lemmas.

Lemma 1.2.5 (Jacobi’s formula). Let t → A(t) be a smooth curve of n×n real (or complex)
invertible matrices, where t ∈ (−t0, t0). Then

d

dt
detA(t)

∣∣∣∣
t=0

= detA(0) · tr(A−1(0)A′(0)). (10)

Proof. Let A and B be invertible n × n real matrices, and let I denote the identity matrix.
We can differentiate the det function using the definition of a directional derivative. Then, we
have:

det′(I)(B) = lim
h→0

det(I + hB) − det(I)
h

,
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observing that det(I + hB) is a polynomial in h of order n with the constant term equal to 1,
while the linear term in h is trB, then

det′(I)(B) = trB.

Considering det as a function of X, we have the following:

det(X) = det(AA−1X) = det(A) det(A−1X),

then calculating the derivative in X and applying the chain rule at the point B yields

det′(X)(B) = det(A)det′(A−1X)(A−1B),

and evaluating it at X = A

det′(A)(B) = det(A)det′(A−1A)(A−1B) = det(A) tr(A−1B),

Finally, given a family of invertible matrices parameterized by t, denoted by A(t), we have

d

dt
detA(t)

∣∣∣∣
t=0

= det′(A0)(
dA

dt
) = detA(0) tr(A−1(0)A′(0)).

Lemma 1.2.6 . Let Φ : Sn× (−t0, t0) → Mm be a variation of a semi-Riemannian immersion
ϕ : S → M into the semi-Riemannian manifold (M, g), where m > n > 0. Then follows that

d

dt
gt(X, Y )

∣∣∣∣
t=0

= g(DXV, dϕ(Y )) + g(dϕ(X), DY V ), (11)

where V is the variation vector field of the variation and D is the induced connection on ϕ.
Moreover, if V is a normal vector field then holds that

d

dt
gt(X, Y )

∣∣∣∣
t=0

= 2g(II(X, Y ),−V ), (12)

where II is the second fundamental form tensor of ϕ.

Proof. Let Φ : S × (−t0, t0) → M be the smooth map associated with the variation of the
immersion ϕ, and let ϕ(x) := Φ(x, 0) and Φt(x) := Φ(x, t). We define V ∈ X(ϕ) as the
variation vector field of the variation, i.e., V := ∂Φ

∂t
(x, 0). Let (U, xa) be a coordinate chart on

S and let (Ũ , ζ i) be a coordinate chart on M such that Φt(U) ⊂ Ũ for t small enough. From
now on, we denote the entries of coordinates charts S by alphabetical letters such as a, b, c, d,
and the entries of M by alphabetical letters such as i, j, k, l. Denoting (gt)cd = gt( ∂

∂xc ,
∂
∂xd ),

then
(gt)cd = g(dΦt(

∂

∂xc
), dΦt(

∂

∂xd
)) = (gij ◦ Φt)

∂Φi
t

∂xc
∂Φj

t

∂xd
,

d

dt
(gt)cd

∣∣∣∣
t=0

= (∂gij
∂ζk

◦ ϕ)V k ∂ϕ
i

∂xc
∂ϕj

∂xd
+ (gij ◦ ϕ)(∂V

i

∂xc
∂ϕj

∂xd
+ ∂ϕi

∂xc
∂V j

∂xd
),
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note that the first term in the previous equation can be written as

∂gij
∂ζk

◦ ϕ = (gilΓljk + gjlΓlik) ◦ ϕ, (13)

using Equation (13), changing the indexes and denoting by Dϕ the induced connection on ϕ,
we have

d

dt
(gt)cd

∣∣∣∣
t=0

= ((gilΓljk + gjlΓlik) ◦ ϕ)V k ∂ϕ
i

∂xc
∂ϕj

∂xd
+ (gij ◦ ϕ)(∂V

i

∂xc
∂ϕj

∂xd
+ ∂ϕi

∂xc
∂V j

∂xd
)

= (gij ◦ ϕ)
[
(Γjlk ◦ ϕ)V k ∂ϕ

l

∂xd
+ ∂V j

∂xd

]
∂ϕi

∂xc

+ (gij ◦ ϕ)
[
(Γilk ◦ ϕ)V k ∂ϕ

l

∂xc
+ ∂V i

∂xc

]
∂ϕj

∂xd

= g(dϕ( ∂

∂xc
), Dϕ

∂

∂xd

V ) + g(Dϕ
∂

∂xc
V, dϕ( ∂

∂xd
)),

so, for any X, Y ∈ X(S), follows the first assertion:

d

dt
gt(X, Y )

∣∣∣∣
t=0

= g(Dϕ
XV, dϕ(Y )) + g(dϕ(X), Dϕ

Y V ). (14)

If V ∈ X⊥(ϕ) follows that g(dϕ( ∂
∂xc ), V ) = 0 and applying the metric compatibility

with the induced connection

∂

∂xd
g(dϕ( ∂

∂xc
), V ) =g(Dϕ

∂

∂xd

(dϕ( ∂

∂xc
)), V ) + g(dϕ( ∂

∂xc
), Dϕ

∂

∂xd

V ) = 0,

which implies that

g(dϕ( ∂

∂xc
), Dϕ

∂

∂xd

V ) = −g(Dϕ
∂

∂xd

(dϕ( ∂

∂xc
)), V )

= −g(dϕ(∇S
∂

∂xc
( ∂

∂xd
)) + IIϕ( ∂

∂xc
,
∂

∂xd
), V )

= −g(IIϕ( ∂

∂xc
,
∂

∂xd
), V ),

where ∇S is the Levi-Civita connection on S, therefore,

d

dt
gt(X, Y )

∣∣∣∣
t=0

= 2g(IIϕ(X, Y ),−V ). (15)

Proof of Theorem 4. Let Φ : S × (−t0, t0) → M be the smooth map associated with the
variation of the immersion ϕ, and let ϕ(x) := Φ(x, 0) and Φt(x) := Φ(x, t). We define
V ∈ X(ϕ) as the variation vector field of the variation, i.e., V := ∂Φ

∂t
(x, 0). By the assumption

that V is compactly supported, there exists t0 such that ∀t, |t| < t0 the map ϕt(x) := Φ(x, t)
defines a immersion of S. As ϕt is a immersion of S, for each t, |t| < t0, we have a induced
metric on S denoted gt, and a volume form denoted dVt. The space of n-forms on a manifold
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of dimension n is one, therefore, they are proportional. Thus, there exists a map v(x, t) on
S × (−t0, t0) such that dVt = v(x, t)dV , and therefore

d

dt
V ol(St)

∣∣∣∣
t=0

=
∫
S

∂v

∂t
(x, 0)dV.

In order to calculate v(x, t), we introduce a local frame {E1, . . . , En} of S such that it is
orthonormal for the induced metric ϕ∗g0. We then introduce the matrix

M(t) := [gt(Ei, Ej)]1≤i,j≤n,

where gt(Ei, Ej) := g(dϕt ◦ Ei, dϕt ◦ Ej) and claim that v(x, t) = | detM(t)|1/2. In fact

dVt(E1, . . . , En) = | det [gt(Ei, Ej)]1≤i,j≤n |1/2

= | detM(t)|1/2

= | detM(t)|1/2 · dV (E1, . . . , En),

We are now in position to compute the first variation formula: by Lemma 1.2.5 and
using the formula d

dt
|u|1/2 = u′u

2|u|3/2 ,

∂v

∂t
(x, 0) = tr(M−1(0)M ′(0)) · detM(0)2

2| detM(0)|3/2 .

Since {E1, . . . , En} is orthonormal with respect to ϕ∗g0, M−1(0) = M(0) = diag(ε1, . . . , εn),
so that

∂v

∂t
(x, 0) = 1

2

n∑
i=1

εi
d

dt
gt(Ei, Ei)

∣∣
t=0,

It remains to compute d
dt
gt(Ei, Ei)

∣∣
t=0. From Lemma 1.2.6, we obtain that

d

dt
gt(Ei, Ei)

∣∣∣∣
t=0

= d

dt
g(dϕt ◦ Ei, dϕt ◦ Ei)

∣∣∣∣
t=0

= 2g(Dϕ
Ei
V, dϕ ◦ Ei)

= 2g(Dϕ
Ei
V ⊤, dϕ ◦ Ei) + 2g(Dϕ

Ei
V ⊥, dϕ ◦ Ei)

= 2g(Dϕ
Ei
V ⊤, dϕ ◦ Ei) − 2g(V ⊥, II(Ei, Ei)),

it follows that
∂v

∂t
(x, 0) =

n∑
i=1

εi

(
g(dϕ ◦ Ei, Dϕ

Ei
V ⊤) − g(V ⊥, II(Ei, Ei))

)
= div(V ⊤) + g(−V ⊥, H⃗).

To conclude, we can use the divergence theorem and the fact that V vanishes on ∂S
to obtain

d

dt
V ol(St)

∣∣∣∣
t=0

=
∫
S

div(V ⊤) + g(−V ⊥, H⃗)dV =
∫
S

g(−V, H⃗)dV.

Hence, the proof is complete.
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2 GENERAL RELATIVITY

2.1 EINSTEIN EQUATIONS

The theory of general relativity, first published by Einstein (1915), provides a geometric
description of the phenomenon of gravity. More precisely, this means that in general relativity
the portion of the universe one wishes to describe is modeled via a (4-dimensional) spacetime
(M,g), and gravity is a manifestation of its underlying geometry, rather then forces between
massive objects as in Newtonian mechanics. Therefore, general relativity can be understood
as a geometric theory of gravity.

The specific dynamical content of the theory is described by the Einstein Field Equations
(EFE). Once a coordinate system is chosen, the EFE become a set of second-order nonlinear
partial equations. These equations associate the geometry of spacetime to the distribution
of matter and energy in the universe. It is important to note that a distribution of matter
only makes sense in the context of a background spacetime, and therefore, the distribution
of matter and the geometry of spacetime must be solved simultaneously. This fact presents a
significant challenge when attempting to solve the EFE.

Setting the discussion in a more precise mathematical language, the universe is modeled
as a manifold M endowed with a Lorentzian metric g, which represents the gravitational field.
We assume that the pair (M, g) is a connected, time-oriented Lorentzian manifold, already
referred to as spacetime in this text. The gravitational field is described by the pair (M, g),
while the distribution of matter and energy is represented by a symmetric (0, 2)-tensor field
T , known as the stress-energy tensor, rather than a mass density function as in Newtonian
mechanics. Additionally, the model also incorporates a constant called cosmological constant
Λ ∈ R that represents a form of energy that is inherent to space itself. The relationship between
the spacetime (M, g), the tensor T and the constant Λ is established via the EFE, as defined
below.

Definition 2.1.1 (Einstein field equations). Let (M, g) be a spacetime and T be a symmetric
(0, 2)-tensor field on M . In this context, we say that (M, g) solves the Einstein field equations,
with stress-energy tensor T and cosmological constant Λ, if g satisfies

Ricg − 1
2Sg · g + Λ · g = T, (16)

where Ricg and Sg are the Ricci and scalar curvature, respectively. Alternatively, the equations
can be written as G = T − Λg, where G is the Einstein tensor of g defined by

G := Ricg − 1
2Sg · g.

Remark 2 . The EFE only acquire a physical meaning when we understand that T is actually
dependent on g and additional matter fields such as the electromagnetic field. The EFE
thus describe a specific dynamical coupling of gravity and matter fields. Additional dynamical
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equations for such matter fields must also be separately provided. Since our interest here
is purely geometric, we shall take the EFE as a mere definition of the stress-energy tensor
T = T (g,Λ) for a given spacetime (M,g) and cosmological constant Λ, which we shall often
take to be zero, so that T = G, i.e., the stress-energy is just the Einstein tensor.

Remark 3 . The Einstein tensor of g is divergence free, i.e., divG = 0, this fact is a
consequence of the identity 5 of the Theorem 1.1.8. Therefore, the stress-energy tensor T
must satisfy div T = 0. This means, intuitively, that the matter modeled by T does not have
any sources or sinks. In other words, matter does not spontaneously appear or disappear.

The simplest version of the EFE is the vacuum case, which is obtained when T is
identically zero and Λ = 0. In this scenario, the Minkowski space satisfies the EFE and it is
considered as a fundamental model of empty spacetime. Furthermore, the vacuum case also
includes other non-trivial solutions of interest, such as the Schwarzschild spacetime, which will
be discussed later. In particular, a spacetime (M,g) is a vacuum solution of the EFE if and
only if it is Ricci-flat, i.e., Ricg = 0.

2.2 THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY

It is natural to ask whether it is possible to formulate an initial value problem for
the EFE, i.e., specify an initial metric at some fixed time and a stress-energy tensor and use
the EFE to evolve the system forward in time. However, the issue here becomes much more
subtle than in usual PDE theory for the simple fact that the notion of ”time”, with respect to
which one might contemplate evolution, has no independent meaning in general relativity. The
notion of time only acquires some observer-dependent significance after fixing a spacetime,
which nevertheless is precisely the variable in the EFE! Amazingly, not only these issues can
be circumvented, but the approach of initial value formulation proves highly valuable for fields
such as numerical relativity, which aims to simulate the dynamics of strong gravitational fields
and various astrophysical phenomena.

In order to understand the initial value formulation of EFE, we need to first understand
the so-called constraint equations. To investigate the origins of the constraint equations, a
natural approach is to assume a spacetime solution and study the induced data on spacelike
hypersurfaces. Before proceeding, we start by defining two quantities: the energy density and
energy-momentum current.

Definition 2.2.1 (Energy density and energy-momentum current). Let (M, g) be a spacetime
and u ∈ TM be any unit future-directed timelike vector. We define the energy density
ρu := G(u, u) and the one-form energy-momentum current on the vector space u⊥ as Ju(·) :=
−G(u, ·) associated with u, where G denotes the Einstein tensor of g.

Particularly, if we are concerned about vacuum spacetimes, where the stress-energy
tensor T is identically zero and Λ = 0, then both the energy density ρu and the energy-
momentum current density Ju vanish identically for any timelike vector u.
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Theorem 2.2.2 (Constraint Equations on Spacelike Hypersurfaces). Let (Mn+1, g) be a
spacetime, and let Sn ⊂ M be an embedded spacelike hypersurface in (M,g) with induced
(Riemannian) metric h. Let K : X(S) × X(S) → C∞(S) be the second fundamental form
associated with the unique unit future-directed timelike vector field U ∈ X⊥(S) normal to S.
Therefore, the following constraint equations hold on S:

1. (Hamiltonian Constraint Equation)

Sh − |K|2h + (trh K)2 = 2ρU ,

2. (Momentum Constraint Equation)

divh K − d(trh K) = JU ,

where ρU and JU are the energy density and energy-momentum current density associated
with U , respectively.

Proof. See Section 2.2.1.

When considering a vacuum spacetime, it becomes possible to express both constraint
equations in a simplified form,

Sh − |K|2h + (trh K)2 = 0,

divh K − d(trh K) = 0.

The constraint equations above could be viewed as restrictions on abstract data
(S, h,K), where (S, h) is a Riemannian manifold and K is a symmetric (0, 2)-tensor field
on S. These conditions are necessary for the data to describe a spacelike hypersurface in a
vacuum spacetime. What is surprising is that these conditions are also sufficient: given the data
(S, h,K), there exists a vacuum spacetime (M, g) where the Riemannian manifold (S, h) is a
spacelike hypersurface of (M, g) endowed with the induced metric. This assertion was shown
by the seminal work of Y. Choquet-Bruhat, which is summarized in the following theorem.

Theorem 2.2.3 (FOURÈS-BRUHAT, 1952; CHOQUET-BRUHAT; GEROCH, 1969; LEE,
D. A., 2019). Let (Sn, h) be a Riemannian manifold and let K be a smooth symmetric
(0, 2)-tensor field on S. Suppose that the following equations hold:

Sh + (trh K)2 − |K|2h = 0,

(divh K − d trh K) = 0.

Then there exists a vacuum spacetime (Mn+1, g) such that (Sn, h) isometrically embeds into
(Mn+1, g) as a hypersurface with second fundamental form K. Furthermore, there is a unique
(up to isometry) maximal such solution in the sense that any other solution satisfying these
conditions can be isometrically embedded therein.
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The aforementioned theorem has two important points that deserve mention. First, the
second fundamental form K is associated with the unit future-directed timelike normal vector
field U normal to S, i.e., K = g(II,− U). Second, the uniqueness of the (maximal) solution
means that (Mn+1, g) does not lie inside any larger globally hyperbolic spacetime. Therefore,
(Mn+1, g) is referred to as the Cauchy (vacuum) development of the initial data (Sn, h,K).

Although in the Theorem 2.2.3 one wishes to find a vacuum spacetime, i.e. T , Λ are
identically zero, similar theorems can also be derived for the EFE with various matter fields.
For a comprehensive discussion on this topic, we refer to the book (CHOQUET-BRUHAT,
2008).

From now on, we will assume Λ = 0 for convenience. It is worth noting that the ρU and
JU can be expressed solely in terms of initial data, without referring to the unit future-directed
timelike vector field U , as can be observed in Theorem 2.2.2. Thus, we say that the pair (ρ, J)
constrains the pair (h,K), leading to a general definition of initial data.

Definition 2.2.4 (Initial Data Set). An initial data set is a triple (S, h,K) where (S, h) is
an n-dimensional Riemannian manifold and K is a symmetric (0, 2)-tensor field on S. Given
an initial data (S, h,K), we define a function ρ ∈ C∞(S) and a one-form J ∈ Ω1(S), called
respectively the energy density and energy-momentum current associated with the data by

ρ = 1
2
[
Sh − |K|2h + (trh K)2] ,

J = divh K − d(trh K).

If the tensor K vanishes identically, then the associated initial data is said to be
symmetric. Symmetric initial data sets are basically the same as Riemannian manifolds.

The non-vanishing case of the stress-energy tensor T can lead to various possible
solutions, including non-physical ones. In order to control the solutions, it is natural to impose
certain physically motivated constraints. One such constraint is the Dominant Energy Condition
(DEC), which is stated as follows.

Definition 2.2.5 . Let (M, g) be a spacetime and p ∈ M . We say that (M, g) satisfies the
dominant energy condition at p, if for any future-pointing unit timelike vector v ∈ TpM the
covector −G(v, ·) is either zero or future-pointing causal. If the DEC holds for each point
p ∈ M , then the spacetime (M, g) itself is said to satisfy the DEC.

The covector −G(v, ·) can be interpreted, in the context of the EFE, as the energy-
momentum density of the gravitational sources seen by an observer v with 4-velocity at p ∈ M

given by v ∈ TpM . The DEC ensures that the energy density should be non-negative and
that the energy does not flow faster than the speed of light as measured by any such observer
preserving, at least locally, the causality in transmission of energy and matter in the theory.

The DEC statement can be conveniently reformulated in order to be applied in initial
data sets. Let (Mn, g) be a spacetime and let v be any unit future-pointing timelike vector at
p ∈ M . Consider an orthonormal basis {v, e2, . . . , en} of TpM . Note that Jv = −G(v, ·) is the
associated energy-momentum density and ρv = G(v, v) is the energy density. For convenience,
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from now on we drop the subscript v. If XJ is the metrically related vector field to the one-form
J , we have ρ = −⟨XJ , v⟩, and we can decompose XJ as

XJ = X̃J + ρv,

where X̃J is the spacelike component of XJ . Supposing that the DEC holds at p, XJ is causal,
then

⟨XJ , XJ⟩ = ⟨X̃J , X̃J⟩ − ρ2 ≤ 0.

Since XJ and v are future-pointing, we have that ρ > 0 and conclude that

ρ ≥ |J |v⊥ ,

where |J |v⊥ :=
√

⟨X̃J , X̃J⟩ is the norm of the spacelike part of the one-form J . These
computations motivate an abstract definition of the DEC for initial data.

Definition 2.2.6 (Dominant energy condition in an initial data). Let (S, h,K) be an initial
data set, then we say that (S, h,K) satisfies the dominant energy condition if it holds that
ρ ≥ |J |h, where ρ and J are as in Definition 2.2.4:

ρ := 1
2
[
Sh − |K|2h + (trh K)2] ,

J := divh K − d(trh K).

Another constraint on the Einstein tensor is the Null Energy Condition (NEC), which
focuses on the sign of the Ricci tensor along null vectors. The NEC is employed in foundational
theorems, such as Proposition 3.1.9. In particular, the NEC is weaker than the DEC, as can
be seen from the definition below.

Definition 2.2.7 (Null energy condition). We say that a spacetime (M, g) satisfies the null
energy condition (NEC) if Ricg(v, v) ≥ 0 for all null vectors v ∈ TM , or equivalently, if for
all such vectors the Einstein tensor G satisfies G(v,v) ≥ 0.

2.2.1 CONSTRAINT EQUATIONS ON SPACELIKE HYPERSURFACES

In order to prove Theorem 2.2.2, some machinery from the theory of semi-Riemannian
submanifolds will be required. These include the induced curvature tensor and the Gauss-
Codazzi equations, which were already discussed in the previous chapter.

Proof. Let (Mn+1, g) be a spacetime, and let Sn ⊂ Mn+1 be an embedded spacelike hyper-
surface in (M,g) with induced (Riemannian) metric h and ϕ : S ↪→ M denoting its inclusion.
Since Sn is a spacelike hypersurface, let U ∈ X(M) be the unique unit future-directed timelike
vector field, and define the normal vector field V := U ◦ ϕ ∈ X⊥(ϕ).

We denote by D = D∇ : X(S) × X(ϕ) → X(ϕ) the unique induced connection on
ϕ. It is important to recall that given any vector field Z ∈ X(ϕ), it can be decomposed into
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tangent and normal parts, i.e., Z = dϕ ◦XZ +Z⊥, for some XZ ∈ X(S). Additionally, for any
X, Y ∈ X(S), there is a corresponding decomposition for the induced connection:

DX(dϕ ◦ Y ) = dϕ(∇M
X Y ) + II(X, Y ),

where ∇M is the Levi-Civita connection in the spacetime M and II(X, Y ) = (DX(dϕ◦Y ))⊥ ∈
X⊥(ϕ) is the normal part of the induced connection. With these notions in place, we can proceed
with the proof.

1. (Hamiltonian Constraint Equation)

Fix p ∈ S and let {E1, . . . , En} be a h-orthonormal frame defined in some open set U
containing p. Denote E∗

j := dϕ ◦Ej ∈ X(ϕ) for each j = 1, . . . , n. It is evident that the frame
{E∗

1(q), . . . , E∗
n(q), V (q)} forms a g-orthonormal basis on ϕ(q) for each q ∈ U . By applying

the Gauss equation, Proposition 1.1.18, and taking into account εS =≪ V, V ≫= −1, we
can conclude that

n∑
i,j=1

≪ RD(Ei, Ej)E∗
j , E

∗
i ≫ =

n∑
i,j=1

h(RS(Ei, Ej)Ej, Ei) − [K(Ei, Ej)K(Ei, Ej)

− K(Ej, Ej)K(Ei, Ei)]

= Sh − |K|2h + (trh K)2,

where K is the second fundamental form associated with V . By applying Proposition 1.1.2,
we have

≪ RD(Ei, Ej)E∗
j , E

∗
i ≫p= ⟨Rg

ϕ(p)(E
∗
i (p), E∗

j (p))E∗
j (p), E∗

i (p)⟩ϕ(p).

Now, omitting the evaluated point p and proceeding, we obtain
n∑

i,j=1

≪ RD(Ei, Ej)E∗
j , E

∗
i ≫ =

n∑
i,j=1

⟨Rg(E∗
i , E

∗
j )E∗

j , E
∗
i ⟩

=
n∑
j=1

Ricg(E∗
j , E

∗
j ) +

n∑
i=1

⟨Rg(E∗
i , V )V,E∗

i ⟩

=
n∑
j=1

Ricg(E∗
j , E

∗
j ) +Ricg(V, V )

= Sg + 2Ricg(V, V )

= 2(Ricg − 1
2Sg · g)(V, V )

= 2G(V, V )

= 2ρU ,

where ρU is the energy density associated with the unit future-directed timelike vector field U
(see Definition 2.2.1). Finally,

Sh + (trh K)2 − |K|2h = 2ρU . (17)
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2. (Momentum Constraint Equation)
Fixing p ∈ S, let X ∈ X(S) and consider a h-orthonormal frame {E1, . . . , En} in some

open set containing p. According to the Codazzi equation, Proposition 1.1.18, we have
n∑
i=1

≪ RD(Ei, X)E∗
i , V ≫ =

n∑
i=1

(∇S
XK)(Ei, Ei) − (∇S

Ei
K)(X,Ei).

Employing the definition of tensor derivation and the fact that divhA(Z) =
∑n

i=1(∇Ei
A)(Ei, Z)

for any (0, 2)-symmetric tensor field A on S and any vector field Z ∈ X(S) (see Defini-
tion 1.1.6), we can see that

n∑
i=1

(∇S
XK)(Ei, Ei) − (∇S

Ei
K)(X,Ei) =

n∑
i=1

[X(K(Ei, Ei)) − 2K(∇S
XEi, Ei)] − divh K(X)

= (d trh K − divh K)(X),

where the quantity K(∇S
XEi, Ei) vanishes identically. The proof of this fact is quite involved

and it is a consequence of the symmetry of the K and the anti-symmetry of h(∇S
XEi, Ej) =

−h(Ei,∇S
XEj). For each pair of integers i, j ∈ {1, . . . , n}, we denote the family of smooth

functions aij ∈ C∞(S) that satisfies ∇SEi = aijEj, then

h(∇S
XEi, Ej) = h(aikEk, Ej) = aij,

and,
aij = h(∇S

XEi, Ej) = −h(∇S
XEj, Ei) = −aji,

therefore aij = −aji. Additionally, with the symmetry of K, we have that
n∑
i=1

K(∇S
XEi, Ei) =

n∑
i,j=1

aijK(Ej, Ei)

= −
n∑

i,j=1

ajiK(Ej, Ei)

= −
n∑
i=1

K(Ei,∇S
XEi),

which implies that K(∇S
XEi, Ei) = 0. Returning to the curvature term, we show that this

quantity can be related with energy-momentum current JU , where U ∈ X(M) is a fixed unit
future-directed field. Omitting the evaluation at p and using the notation of part 1, we have

n∑
i=1

≪ RD(Ei, X)E∗
i , V ≫ = −

n∑
i=1

⟨Rg(E∗
i , dϕ ◦X)V,E∗

i ⟩

= −Ricg(dϕ ◦X, V ) − ⟨Rg(V, dϕ ◦X)V, V ⟩,

since the curvaturelike functions are antisymmetric the second term is zero. Employing that
g(dϕ ◦X, V ) = 0, because dϕ ◦X is tangent and V normal, we have

n∑
i=1

≪ RD(Ei, X)E∗
i , V ≫ = −Ricg(dϕ ◦X, V ) = −(Ricg − 1

2Sgg)(dϕ ◦X,V )

= −G(V, dϕ ◦X) = JU(dϕ ◦X).
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Finally, omitting the composition with dϕ, we arrive at our result:

(divh K − d trh K)(X) = J(X), (18)

for any X ∈ X(S).

2.3 BLACK HOLES

In this section, we will briefly introduce a special class of solutions to the EFE describing
black holes. We shall refer to these generally as black hole spacetimes, although the general
mathematical description of black holes is far more complicated, and outside of our scope
here. The main goal of our discussion is to give a physical context to the geometric ideas that
will be studied later on, such as marginally outer trapped surfaces (which will be discussed in
Chapter 4).

In sequence, we will cover two special black hole solutions to the EFE: the Schwarzschild
spacetime and the Kruskal spacetime. The Schwarzschild spacetime describes the interior
region and the exterior region of a black hole, while Kruskal spacetime allows us to connect
these regions of the Schwarzschild in a single spacetime. Through this joining process, we
can investigate the formation and properties of the event horizon, which will be a natural
motivation for the notion of MOTS.

2.3.1 SCHWARZSCHILD SPACETIME

The first black hole solution was discovered by the physicist and astronomer Karl
Schwarzschild in late 1915 when he was trying to describe the gravitational field outside a
static and perfectly spherical body, such as a star. At first, only half of the solution, i.e. the
exterior, seemed to have physical significance. However, further investigations utilized the
neglected half, i.e. the interior, with the exterior to elaborate the simplest model of a black
hole. The Schwarszchild spacetime emerges naturally when the star is assumed to be static
and spherically symmetric. Its mathematical formulation is constructed using warped products,
as discussed in Section 1.1.5.

Definition 2.3.1 (Schwarzschild spacetime). Given a number M > 0, let PI and PII be the
regions r > 2M and 0 < r < 2M in the tr-half-plane R × R+, each furnished with the line
element −V (r)dt2 + V (r)−1dr2, where V (r) = 1 − (2M/r). If S2 is the unit sphere, then the
warped product N = PI ×r S2 is called Schwarzschild exterior spacetime and B = PII ×r S2

the Schwarzschild black hole (or Schwarzschild interior spacetime), both of mass M .

Regarding the geometric properties of the warped products, see Figure 3 for a schemat-
ically description and notice that

1. For each (t, r) ∈ PI , the fiber π−1(t, r) is isometric to the 2-sphere S2(r) of radius
r > 2M , in the rest-space of Schwarzschild time t. By Corollary 1.1.22, this sphere
is totally umbilic in N , and σ maps the fiber homothetically onto S2.
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2. For each q ∈ S2, the leaf σ−1(q) = PI × q is, by Corollary 1.1.22, totally geodesic
in N . Moreover, the projection π an is isometry from the leaf to the Schwarzschild
half-plane PI .

3. The time-orientation on the spacetimes is defined as follows. Observe that lift ∂t
to N of the coordinate vector field ∂/∂t is timelike; we thus define it to be future-
directed on N . But on B it is the lift ∂r of ∂/∂r that becomes timelike. We then
define −∂r to be future-directed (The reason for the minus sign in the latter case
will be clear later on).

Figure 3 – Schwarzschild warped product structure (schematic).

These geometric remarks above continue to hold for the black hole B although some
physical interpretations will change.

It is worth noting that the metric provides a reasonable approximation for an isolated
spherical body. For instance, as r grows large the metric converges to the flat metric, which is
expected for a gravitationally isolated massive object.

The function V (r) in the Schwarzschild metric has two different singularities if one
attempts to define it everywhere, at r = 2M and r = 0, and these points carry a physical
meaning. The singularity r = 2M represents a null surface (which will be introduced in the
following section) called the event horizon of the black hole. But, at r = 0, there is a true
singularity since the curvature of spacetime becomes infinite. The region B within the event
horizon is one for which not even light can escape because of the strength of the gravitational
field.

2.3.2 KRUSKAL SPACETIME

The Schwarzschild spacetime consists of two distinct versions, namely N and B. On the
other hand, the Kruskal spacetime K is an alternative version which joins these components
and yields a connected Lorentzian manifold.
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Fix a number M > 0 and consider the smooth function

f : r ∈ (0,+ ∞) 7→ (r − 2M)e(r/2M)−1 ∈ R.

Since f ′ > 0 on R, f is a diffeomorphism onto its image (−2M/e,+∞). Now, define the
following set

Q := {(u, v) ∈ R2 | uv > −2M/e},

in other words, the region in the uv-plane given by uv > −2M/e (See Figure 4). If f−1 is the
inverse of f , then define the smooth positive function

r : (u, v) ∈ Q 7→ f−1(uv) ∈ (0,+ ∞),

which is characterized implicitly by the equation f(r) = uv. The rectangular hyperbolas
uv = constant give us the regular level curves of r in Q, except when the constant = 0, i.e.,
r equals 2M , in which case the coordinate axes are described. The value of function r(u, v)
approaches 0 at the boundary of the rectangular hyperbola uv = −2M/e, which lies outside
of Q.

Define the metric

gQ = F (u, v)(du⊗ dv + dv ⊗ du), where F (u, v) = (8M2/r(u, v))e1−(r(u,v)/2M)

on Q. The region Q in the uv-plane with this line element is called the Kruskal plane of mass
M .

Let QI , . . . , QIV denote the four open quadrants obtained by removing the coordinate
axes (see Figure 4)S. It can be shown that the even quadrants, as well as the odds quadrants,
are isometric. Furthermore, according to Proposition 13.24 (O’NEILL, 1983), QI ∪ QII is
isometric to the Schwarzschild strips PI ∪ PII . As a result, the essential problem of joining N
and B is solved, where they fit together naturally in Q along the positive v axis. In light of
this, we can provide the following definition of the Kruskal spacetime as an extension of the
Schwarzschild spacetime.

Definition 2.3.2 (Kruskal spacetime). Let Q be a Kruskal plane of mass M > 0, and let S2

be the unit 2-sphere. The Kruskal spacetime of mass M is the warped product K = Q×r S2,
where r is the function on Q characterized by f(r) = uv.

Bear in mind the following geometric information: In the natural coordinates u and v,
a null coordinate system arises on Q, because gQ(∂u, ∂u) = gQ(∂v, ∂v) = 0, and gQ(∂u, ∂v) =
F (r) > 0. From Lemma 13.23 (O’NEILL, 1983), it holds that ∇r = (1/4M)(u∂u + v∂v). The
Kruskal spacetime is time-orientable, since, for example ∂v − ∂u is a timelike vector field. In
particular, the null vector fields −∂u and ∂v are future-directed.

Let π and σ be the projections of K onto Q and S2, respectively. We can observe the
following properties:
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Figure 4 – The Kruskal plane Q.

1. For each (u, v) ∈ Q the fiber π−1(u, v) is the sphere S2(r(u, v)). According to
Corollary 1.1.22, this sphere is totally umbilic in K, and the projection σ maps the
fiber homothetically onto S2.

2. For each q ∈ S2 the leaf σ−1(q) = Q × q, is totally geodesic in K due to the
properties of warped products. Moreover, the projection π is an isometry from the
leaf to the Kruskal plane Q.

The spacetimeK contains a black hole event horizon. For each n ∈ N := {I, II, III, IV },
we define the open submanifold Kn := π−1(Qn) over the quadrant Qn of Q. The event horizon
H is defined as

H := K/
⋃
n∈N

Kn,

which consists of all points over the coordinate axes of Q. The event horizon H contains four
hypersurfaces which are diffeomorphic to R+ × S2 and these hypersurfaces can be obtained by
removing the central sphere π−1(0, 0) from H.

As discussed before, the open upper and lower regions of the Kruskal spacetime are
isometric. Therefore, it is convenient to focus on only one portion of this spacetime. We refer
to this region as the truncated Kruskal spacetime K ′, which is defined as the subset of K
where v > 0. Correspondingly, if Q′ denotes the region of Q such that v > 0, then we have

K ′ = π−1(Q′) = Q′ ×r S2.

The spacetime K ′ is composed of the Schwarzschild exterior KI ≈ N (r > 2M) and
the black hole KII ≈ B (r < 2M) connected along the horizon H′ = H ∩K ′ (r = 2M). In
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matter of fact, according to Proposition 13.30 (O’NEILL, 1983), any geodesic within the black
hole region KII ≈ B moves inward and eventually ending (on a finite parameter interval) at
the central singularity r = 0, if not before. Therefore, we have causal geodesic incompleteness
in this connected spacetime, and any geodesic crossing the event horizon H will inevitably
encounter a singularity.
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3 NULL HYPERSURFACES

In this section we will be interested in a special class of hypersurfaces in spacetime, the
so-called null (or lightlike) hypersurfaces, which are very important in applications. The study
of null hypersurfaces is a specialized topic, for more details, see (GALLOWAY, 2000).

A null hypersurface is a hypersurface where the null cones are tangent to it at every
point (see Figure 5). These surfaces play a significant role in general relativity, particularly in
representing event horizons. For example, in Schwarzschild and Kerr1 spacetimes, which are
the most important solutions to the EFE describing black holes, the associated event horizons
are null hypersurfaces.

(a) Spacelike hypersurface (b) Null hypersurface

Figure 5 – Example of causal submanifolds.

Since a null hypersurface can represent event horizons, the main goal of this section is
to introduce the geometry of null hypersurfaces in a general setting by utilizing null immersions.
The theory will be developed to derive a generalized version of the Riccati equation that
establishes relationships between some geometric operators. This equation assumes a special
form along null geodesics, enabling us to prove a version of Hawking’s black hole area theorem.
Finally, the geometric interpretation of these operators will be provided.

3.1 CODIMENSION ONE NULL IMMERSIONS

Definition 3.1.1 (Null immersion and null embedding). Let (Mn, g) be a Lorentzian manifold.
For any integer 0 < k < n, a map ϕ : Σk → Mn is a null immersion [resp. null embedding] if
it satisfies the following properties.

1. ϕ is an immersion [resp. embedding];

2. For all p ∈ Σk, dϕp(TpΣ) is a degenerate subspace of (Tϕ(p)M, gϕ(p)).
In other words, the pullback ϕ∗g is degenerate everywhere. If a null immersion ϕ : Σ → M is
one-to-one, then the immersed submanifold Σ̃ := ϕ(Σ) is called a null immersed submanifold.
An embedded submanifold Σ ⊂ M is a null submanifold if the inclusion map i : Σ ↪→ M is a
null embedding. Finally, a null hypersurface is a null submanifold of codimension one.
1 In the case of Kerr spacetimes, which are not presented in this work, they represent rotating black holes, a

generalization of the non-rotating Schwarzschild black holes.
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Example 12 (Null hypersurface in Kruskal spacetime). Let K ′ = Q′ ×r S2 be the truncated
Kruskal spacetime, i.e., the region v > 0. Let H′ = H∩K ′ (r = 2M) be the black hole horizon
which is diffeomorphic to R+ ×S2. By the geometric properties of the Kruskal spacetime (refer
to the discussion after Definition 2.3.2), we have ∇r = (1/4M)(u∂u + v∂v). However, on
H′, we have u = 0 and gQ(∂v, ∂v) = 0, so the vector field ∇r = (1/4M)(v∂v) is null on H′.
Therefore, each subspace is a degenerate subspace in the induced metric, i.e., the null cone is
tangent to H′ at each point. As a result, H′ is a null hypersurface.

Let ϕ : Σk → Mn be a null immersion. For each p ∈ Σ, the bilinear product gϕ(p)(·, ·)
is degenerate on the subspace dϕp(TpΣ) of Tϕ(p)M , i.e., there exists a nonzero vector K̃p ∈
T̃pΣ := dϕp(TpΣ) ⊂ Tϕ(p)M such that

gϕ(p)(K̃p, X) = 0, ∀X ∈ T̃pΣ.

i.e. K̃p ∈ T̃pΣ ∩ T̃pΣ
⊥

. Clearly, K̃p is a null vector; moreover, since (M, g) is a Lorentzian
manifold, any null vector in TpM is orthogonal to K̃p if and only if it is parallel to the latter,
then dim(T̃pΣ ∩ T̃pΣ

⊥
) = 1 (see Proposition 1.1.25). In particular, if ϕ has codimension one,

then [K̃p]⊥ = T̃pΣ and K̃p can be chosen future-directed if (M, g) is time-oriented. From now
on, our focus will be on the study of null immersions of codimension one, which includes in
particular (embedded) null hypersurfaces.

Recall that any manifold admits a Riemannian metric. This fact has a nice consequence
for null immersions.

Proposition 3.1.2 . Let (Mn+1, g) be a time-oriented Lorentzian manifold, fix a background
Riemannian metric h0 on M , and let ϕ : Σn → Mn+1 be a codimension one null immersion.
Then, there exists a unique K ∈ X(Σ) such that, for all p ∈ Σ, the vector dϕp(Kp) is null,
future-directed and h0(dϕpKp, dϕpKp) = 1.

Proof. Fixing the point p ∈ Σ, since dim(T̃pΣ ∩ T̃pΣ
⊥

) = 1, there is a unique future-directed
null vector K̃p ∈ T̃pΣ ∩ T̃pΣ

⊥
such that h0(K̃p, K̃p) = 1. Since ϕ is an immersion, dϕp is

one-to-one, there exists a unique Kp ∈ TpΣ such that dϕp(Kp) = K̃p. Therefore, the map
K : p ∈ Σ 7→ Kp ∈ TpΣ defines a vector field on Σ, and we need to demonstrate that K is
smooth.

Let p ∈ Σ. Since ϕ is an immersion, there exists an open set U containing p such
that ϕ

∣∣
U

: U ⊂ Σ → M is an smooth embedding. By (LEE, J. M., 2012, Proposition 5.16),
there exists a neighborhood V ⊂ M of ϕ(p) such that V ∩ ϕ(U) is a level set of a smooth
function f : V ⊂ M → R. By (LEE, J. M., 2012, Proposition 5.38), we have that the tangent
space of V ∩ ϕ(U) is characterized by the kernel of df . Let W ⊂ Σ be an open set such that
ϕ(W ) ⊂ V . This implies that dfϕ(q)(dϕqv) =≪ ∇fϕ(q), dϕqv ≫= 0, for all q ∈ W and for all
v ∈ TqΣ. Thus, ∇fϕ(q) is a normal vector.

For q ∈ W , define Zϕ(q) = ∇fϕ(q)/
√
h0(∇fϕ(q),∇fϕ(q)). As a result, there exists

a(q) ∈ R such that Zϕ(q) = a(q)K̃q, since the codimension is one, it holds that T̃qΣ
⊥

= RK̃q.
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Assuming that Zϕ(q) is future-directed together with h0(Zϕ(q), Zϕ(q)) = 1, we obtain, necessarily,
that Zϕ(q) ≡ K̃q. Therefore, we obtained that Z ◦ ϕ

∣∣
W

is a normal smooth vector field and
Z ◦ ϕ

∣∣
W

(q) = K̃q, for any q ∈ W . Hence, the vector field K is smooth.

Although we used a background Riemannian metric to fix each Kp in the previous
proof, one can easily see that for the condition that K̃ is future-directed and null fixes K up
to rescaling by a positive function f ∈ C∞(Σ).

Definition 3.1.3 (Null section). Let ϕ : Σn → Mn+1 be a codimension one null immersion,
we say that an everywhere-nonzero vector field K ∈ X(Σ) is a null section for ϕ if, for all
p ∈ Σ, dϕp(Kp) is future-directed null.

Since a global null section K ∈ X(Σ) for a codimension one null immersion ϕ : Σ → M

is unique up to a positive rescaling, it defines a unique global foliation of Σ by immersed
submanifolds of dimension one. Then, given any integral curve α : I → Σ of a null section K
for ϕ, the curve ϕ◦α is actually a null pregeodesic in (M,g). This property will be fundamental
in further investigations. This fact follows from the results that will be presented next.

Proposition 3.1.4 . Let ϕ : Σn → Mn+1 be a codimension one null immersion. Given any
null section K ∈ X(Σ) for ϕ, then

DKdϕ ◦K = fKdϕ ◦K, (19)

for some fK ∈ C∞(Σ).

Proof. Let X ∈ X(Σ). The orthogonality between DKdϕ ◦ K and the tangent space of Σ
comes from

≪ DKdϕ ◦K, dϕ ◦X ≫ = − ≪ dϕ ◦K,DKdϕ ◦X ≫

= − ≪ dϕ ◦K,DXdϕ ◦K + dϕ ◦ [K,X] ≫

= −1
2X ≪ dϕ ◦K, dϕ ◦K ≫= 0.

where we employed Proposition 1.1.2 in the second line. Recall that in codimension one we
have T̃pΣ

⊥
= RK̃p for each p ∈ Σ, which implies that DKdϕ ◦ K = fKdϕ ◦ K for some

fK ∈ C∞(Σ).

Corollary 3.1.5 . Let ϕ : Σn → Mn+1 be a codimension one null immersion, and let
α : I ⊆ R → Σ denote an integral curve of a null section K ∈ X(Σ), i.e., α′ = K ◦ α. Then

(ϕ ◦ α)′′ = D

dt
(ϕ ◦ α)′ = (fK ◦ α)(ϕ ◦ α)′,

where fK ∈ C∞(Σ), so ϕ ◦ α is a null pregeodesic on (M, g). Therefore, given any maximal
integral curve α of K, the curve ϕ ◦ α can be reparametrized as a null geodesic, called a null
(geodesic) generator of ϕ
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Proof. Let t0 be a point in I and fix p = α(t0). Since dϕ◦K ∈ X(ϕ), by Lemma 1.1.11, there is
a vector field V ∈ X(M) and an open set U ⊂ Σ containing p such that V ◦ ϕ

∣∣
U = dϕ ◦K

∣∣
U .

Notice that, for t close enough to t0, we have

(ϕ ◦ α)′(t) = dϕα(t) ◦ α′(t) = dϕα(t) ◦Kα(t) = V ◦ (ϕ ◦ α)(t),

thus, (ϕ ◦ α)′(t) = V ◦ (ϕ ◦ α)(t) for all t ∈ U ⊂ I where U is an open set containing t0 and
such that α(U) ⊂ U . Let D/dt be the covariant derivative on the curve ϕ ◦ α and t any point
in U ⊂ I. Then

(ϕ ◦ α)′′(t) = D

dt
(ϕ ◦ α)′(t) = D

dt
V (ϕ ◦ α)(t)

=
(
∇M

(ϕ◦α)′(t)V
)

(ϕ ◦ α(t)) = (DKV ◦ ϕ)(α(t))

= (DKdϕ ◦K)(α(t)) = ((fK ◦ α)(ϕ ◦ α)′)(t),

as a consequence of Proposition 3.1.4. Then (ϕ ◦ α)′′ = (f ◦ α)(ϕ ◦ α)′ and, consequently, by
(O’NEILL, 1983, Exercise 3.19), ϕ ◦ α is a null pregeodesic on (M, g).

The existence of null sections K ∈ X(Σ) provides means to define more sophisticated
geometric structures in codimension one, even in the presence of the degenerate induced metric.
For the sake of clarity and consistency, we will adopt the following notation throughout our
discussion: Let ϕ : Σn → Mn+1 be a codimension one null immersion, K be any null section for
ϕ and fK denote the smooth function in Proposition 3.1.4. Define the map S̃ : X(Σ) → X(Σ)
as

S̃(X) := dϕ−1(DXdϕ ◦K) ∀X ∈ X(Σ).

The operator S̃ is well-defined because ϕ is an immersion and DX(dϕ ◦ K) is a tangent
vector field in the codimension one case, as demonstrated in the proof of Proposition 3.1.2.
Furthermore, S̃ is C∞(Σ)-linear, a fact that can be easily established using the properties of
the covariant derivative and the linearity of dϕ.

Since ϕ induces a degenerate metric, there is no induced Levi-Civita connection on Σ
associated with this metric. Nevertheless, the following notion of derivation can be established:
define the map ∇̃K : X(Σ) → X(Σ) as

∇̃K(X) := dϕ−1(DKdϕ ◦X), ∀X ∈ X(Σ),

which is well-defined since (DKdϕ ◦X)(p) is tangent for all p ∈ Σ. This is a consequence of
dϕ ◦K being orthogonal to dϕ ◦X and

≪ DKdϕ ◦X, dϕ ◦K ≫p= Kp ≪ dϕ ◦X, dϕ ◦K ≫= 0.

Moreover, the following property holds

∇̃K(fX) = KfX + f∇̃K(X), ∀X ∈ X(Σ),∀f ∈ C∞(Σ).
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Thus, ∇̃K is well-defined and satisfies Leibniz’s rule for smooth functions on Σ. These two
maps, S̃ and ∇̃K , are related by a Lie bracket. For any smooth vector field X on Σ, we can
compute their Lie bracket as follows:

S̃(X) − ∇̃K(X) = dϕ−1(DXdϕ ◦K −DKdϕ ◦X) = [X,K]. (20)

As ∇̃K is a derivation, it induces a tensor derivation of S̃ which is naturally defined by

(∇̃KS̃)(X) := ∇̃K(S̃(X)) − S̃(∇̃KX), ∀X ∈ X(Σ).

Finally, we can establish that these maps satisfy an important type of Riccati equation which
is described below.

Proposition 3.1.6 . Let ϕ : Σn → Mn+1 be a codimension one null immersion. Given any
null section K ∈ X(Σ) for ϕ and fK ∈ C∞(Σ), as defined in Proposition 3.1.4, the following
Riccati equation holds:

∇̃KS̃ + S̃2 + R̃K = dfK ⊗K + fKS̃, (21)

where the map R̃K : X(Σ) → X(Σ) is called curvature endomorphism and it is defined by
R̃K(X) := dϕ−1(R(X,K)dϕ ◦K), where R is the curvature tensor of the induced connection
on the map ϕ.

Proof. Let X be a smooth vector field on Σ, then

(∇̃KS̃)(X) = ∇̃K(S̃(X)) − S̃(∇̃KX)

= dϕ−1(DKdϕ ◦ S̃(X) −D∇̃KXdϕ ◦K)

= dϕ−1(DKDXdϕ ◦K −DS̃(X)−[X,K]dϕ ◦K)

= dϕ−1(DKDXdϕ ◦K +D[X,K]dϕ ◦K) − S̃2(X),

and some of these quantities are related by the curvature tensor,

R(X,K)dϕ ◦K = DXDKdϕ ◦K −DKDXdϕ ◦K −D[X,K]dϕ ◦K,

which is orthogonal to dϕ ◦K by the symmetries of the curvature (see Theorem 1.1.8), and
thus a tangent vector field. Together with Proposition 3.1.4, one computes

(∇̃KS̃)(X) = dϕ−1(DXDKdϕ ◦K −R(X,K)dϕ ◦K) − S̃2(X)

= dϕ−1(DXfKdϕ ◦K −R(X,K)dϕ ◦K) − S̃2(X)

= dϕ−1(XfK · dϕ ◦K + fKDXdϕ ◦K −R(X,K)dϕ ◦K) − S̃2(X)

= XfK ·K + fKS̃(X) − R̃K(X) − S̃2(X),

which directly implies Equation (21).

Let (Mn+1, g) be a spacetime and let ϕ : Σn → Mn+1 be a fixed codimension one null
immersion with associated null section K ∈ X(Σ).
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We introduce the following equivalence relation on tangent vectors: for x, y ∈ TpΣ,

x ∼ y ⇐⇒ x− y = λKp for some λ ∈ R.

The set of all equivalence classes induced by ∼ is denoted by TpΣ/K, and x denotes the
equivalence class of the tangent vector x. Similarly, we define the induced tangent bundle as

TΣ/K =
⋃
p∈Σ

TpΣ/K,

which is a smooth rank n− 1 vector bundle over Σ called the screen bundle over Σ induced by
ϕ. This vector bundle does not depend on the particular choice of the null section K and we
denote by X(Σ) the C∞(Σ)-module of smooth sections of the screen bundle and its elements
by X.

There is a positive definite fiber metric h on TΣ/K induced from the metric g. For
each point p ∈ Σ, we define the bilinear form hp : TpΣ/K × TpΣ/K −→ R by

hp(Xp, Yp) := (ϕ∗g)p(Xp, Yp) = gϕ(p)(dϕp ◦Xp, dϕp ◦ Yp) =≪ dϕ ◦X, dϕ ◦ Y ≫p, (22)

where X,Y ∈ X(Σ). This metric is well-defined: Let X,X ′ ∈ X, Y, Y ′ ∈ Y and λX , λX ∈
C∞(Σ) such that X ′ = X + λXK and Y ′ = Y + λXK then,

(ϕ∗g)p(X
′
,Y

′) = (ϕ∗g)p(X + λXK,Y + λXK)

= (ϕ∗g)p(X,Y ).

There are two remarkable maps induced by S̃ and ∇̃K over X(Σ). We define the null Weingarten
map of Σ associated with K by S : X(Σ) → X(Σ) such that

S(X) := S̃(X), (23)

and the map ∇K : X(Σ) → X(Σ) defined by

∇K(X) := ∇̃K(X).

We need to verify that these operations are well-defined. Let X ∈ X(Σ) and let X and X ′ ∈ X

be two equivalent vector fields, i.e., X −X ′ = λXK for some smooth function λX ∈ C∞(Σ).
Applying Proposition 3.1.4, we can show that S is well-defined:

S̃(X) = dϕ−1(DXdϕ ◦K)

= dϕ−1(DX′+λXKdϕ ◦K)

= dϕ−1(DX′dϕ ◦K) + λXdϕ
−1(DKdϕ ◦K)

= S̃(X ′) + λXfKK,

thus S̃(X) and S̃(X ′) lie in S̃(X). For ∇K the process is similar,

∇K(X) = ∇K(X ′ + λXK)

= ∇K(X ′) + (KλX)K + λX∇KK

= ∇K(X ′) + (KλX + λXfK)K,
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where fK ∈ C∞(Σ) is given by Proposition 3.1.4 and Leibnitz’s rule was applied. Additionally,
∇K induces a tensor derivation which is defined as

(∇KS)(X) := ∇K(S(X)) − S(∇K(X)). (24)

As dϕ ◦K is null, we can show that S is self-adjoint with respect to h and ∇K is compatible
with h.

Proposition 3.1.7 . Let ϕ : Σn → Mn+1 be a codimension one null immersion. Let K ∈ X(Σ)
be any null section for ϕ and let h be the induced metric on the vector bundle TΣ/K by the
metric g. Then the null Weingarten map S : X(Σ) → X(Σ) is self-adjoint with respect to h,
i.e.,

h(S(X), Y ) = h(X,S(Y )), ∀X,Y ∈ X(Σ),

and the map ∇K : X(Σ) → X(Σ) is compatible with the metric h, i.e.,

h(∇K(X), Y ) + h(X,∇K(Y )) = Kh(X,Y ), ∀X,Y ∈ X(Σ).

Proof. To show that S is self-adjoint, it is sufficient to follow these steps:

h(S(X), Y ) = g(dϕ ◦ S̃(X), dϕ ◦ Y ) = g(DXdϕ ◦K, dϕ ◦ Y )

= −g(dϕ ◦K,DXdϕ ◦ Y ) = −g(dϕ ◦K,DY dϕ ◦X + dϕ ◦ [X, Y ])

= g(DY dϕ ◦K, dϕ ◦X) = h(X,S(Y )),

and, in order to establish the compatibility, notice that

Kh(X,Y ) = Kg(dϕ ◦X, dϕ ◦ Y )

= g(DKdϕ ◦X, dϕ ◦ Y ) + g(dϕ ◦X,DKdϕ ◦ Y )

= h(∇K(X), Y ) + h(X,∇K(Y )).

(25)

Proposition 3.1.8 . Let ϕ : Σn → Mn+1 be a codimension one null immersion. Given any
null section K ∈ X(Σ) for ϕ and fK ∈ C∞(Σ), as defined in Proposition 3.1.4, then the
following equation holds

∇KS + S2 +RK = fKS, (26)

where the map RK : X(Σ) → X(Σ) is called the curvature endomorphism and it is defined by
RK(X) := R̃K(X) = dϕ−1(R(X,K)dϕ ◦K). Tracing the above expression with respect to
the metric h, we obtain

Kθ + σ2 + 1
n− 1θ

2 +Ricg(dϕ ◦K, dϕ ◦K) ◦ ϕ = fKθ, (27)

where θ = trh S is the null mean curvature (or null expansion), σ :=
√

(trh S̊)2 is the shear
scalar and S̊ := S − 1

n−1θ · 1X(Σ) is the trace free part of the Weingarten map S.
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Proof. In order to show Equation (26), let any smooth vector field X ∈ X(Σ). By Equa-
tions (21) and (24), we obtain

(∇KS)(X) = ∇K(S(X)) − S(∇K(X))

= ∇K(S̃(X)) − S(∇̃K(X))

= ∇̃K(S̃(X)) − S̃(∇̃K(X))

= (∇̃KS̃)(X)

= XfK ·K + fKS̃(X) − R̃K(X) − S̃2(X),

= fKS(X) −RK(X) − S2(X),

where RK(X) is the curvature endomorphism and it is well-defined. Let X and X ′ ∈ X be
smooth vector fields on Σ, i.e., X −X ′ = λK for some λ ∈ C∞(Σ). Thus

dϕ ◦ R̃K(X) = dϕ ◦ R̃K(X ′ + λK)

= R(X ′ + λK,K)dϕ ◦K = R(X ′, K)dϕ ◦K

= dϕ ◦ R̃K(X ′),

(28)

where the curvature antisymmetry on the first two entries was applied in the second line.
Rearranging the expression obtained above, we arrive at

(∇KS)(X) + S2(X) +RK(X) = fKS(X), ∀X ∈ X(Σ),

showing that the first equation holds. The second equation, which involves the trace, is more
involved. Let {E1, . . . , En−1} be an orthonormal frame in the induced metric h. Then

θ =
n−1∑
i=1

h(Ei,S(Ei)).

As a starting point, the contribution of ∇KS will be determined. Observe that

(∇KS)(X) = ∇K(S(X)) − S(∇K(X))

= ∇K((S̊ + 1
n− 1θ · 1X(Σ))(X)) − (S̊ + 1

n− 1θ · 1X(Σ))(∇K(X))

= ∇K(S̊(X)) − S̊(∇K(X)) + 1
n− 1(∇K(θ ·X) − θ · ∇K(X))

= (∇KS̊)(X) + 1
n− 1Kθ ·X,
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then (∇KS) = (∇KS̊) + 1
n−1Kθ · 1X(Σ). Taking the trace of ∇KS̊ we have

trh(∇KS̊) =
n−1∑
i=1

h(Ei, (∇KS̊)(Ei))

=
n−1∑
i=1

h(Ei,∇K(S̊(Ei))) − h(Ei, S̊(∇K(Ei)))

=
n−1∑
i=1

Kh(Ei, S̊(Ei)) − h(∇KEi, S̊(Ei)) − h(Ei, S̊(∇K(Ei)))

= −2
n−1∑
i=1

h(∇KEi, S̊(Ei)),

where we used the fact that S̊ is trace-free and self-adjoint, notice that it is the sum of two
self-adjoint operators. Now, we will show that the last quantity vanishes identically. Let i be an
integer, and, for each integer j ∈ {1, . . . , n− 1}, denote the smooth functions aij ∈ C∞(Σ)
which satisfies ∇KEi = aijEj, then

h(∇KEi, Ej) = h(aikEk, Ej) = aij,

and
aij = h(∇KEi, Ej) = −h(Ei,∇KEj) = −aji,

so we have aij = −aji. Employing that S̊ is self-adjoint, since is the sum of two self-adjoint
operators, we have

n−1∑
i=1

h(∇KEi, S̊(Ei)) =
n−1∑
i,j=1

aijh(Ej, S̊(Ei))

= −
n−1∑
i,j=1

ajih(S̊(Ej), Ei)

= −
n−1∑
i=1

h(∇KEi, S̊(Ei)),

consequently,

trh(∇KS̊) = −2
n−1∑
i=1

h(∇KEi, S̊(Ei)) = 0,

and we discover that (∇KS) has the following contribution

trh(∇KS) = Kθ. (29)

The trace of S2 can be obtained straightforwardly by using the trace-free decomposition,

trh(S2) = trh
(

(S̊ + 1
n− 1θ · 1X(Σ))2

)
= trh(S̊2) + 2

n− 1θ trh(S̊) + 1
(n− 1)2 θ

2 trh(1X(Σ))

= σ2 + 1
n− 1θ

2,

(30)
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notice that trh(S̊)2 is always non-negative,

trh(S̊)2 = h(Ei, S̊2(Ei)) = h(S̊(Ei), S̊(Ei)) ≥ 0.

In order to analyze the curvature endomorphism, we introduce the notation: Fix p ∈ Σ,
K̃ = dϕ ◦ K(p) and ei = dϕ ◦ Ei(p) where Ei lies in the equivalence class of Ei from the
orthonormal frame. Define Ñ ∈ Tϕ(p)M/dϕ(TpΣ) a lightlike vector such that gϕ(p)(K̃, Ñ) = −1
and orthogonal to {e1, . . . , en−1}, finally, introduce the orthonormal vectors

e0 = K̃ + Ñ√
2

, en = K̃ − Ñ√
2

,

as a result, the frame {e0, . . . , en} is an g-orthonormal frame in Mn+1 with

gϕ(p)(e0, e0) = −1, gϕ(p)(en, en) = 1, gϕ(p)(e0, en) = 0,

thus,

trhR(p)
K =

n−1∑
i=1

hp(Ei, RK(Ei))

=
n−1∑
i=1

gϕ(p)(ei, Rϕ(p)(ei, K̃)K̃)

= Ricϕ(p)
g (K̃, K̃) + gϕ(p)(e0, Rϕ(p)(e0, K̃)K̃) − gϕ(p)(en, Rϕ(p)(en, K̃)K̃),

the difference between the last two term is zero, since

gϕ(p)(K̃ ± Ñ , Rϕ(p)(K̃ ± Ñ , K̃)K̃) = gϕ(p)(K̃ ± Ñ , Rϕ(p)(±Ñ , K̃)K̃)

= gϕ(p)(±Ñ , Rϕ(p)(±Ñ , K̃)K̃)

= gϕ(p)(Ñ , Rϕ(p)(Ñ , K̃)K̃),

where the curvature antisymmetry was used above. As both terms yields the same quantity,
their difference is zero as expected and this implies that

trhRK = Ricg(dϕ ◦K, dϕ ◦K) ◦ ϕ, (31)

and with Equations (29) to (31) we have shown that

Kθ + σ2 + 1
n− 1θ

2 +Ricg(dϕ ◦K, dϕ ◦K) ◦ ϕ = fKθ.

Let α : I ⊆ R → Σ be a integral curve of K, i.e., α′(t) = Kα(t) for t ∈ I, and, by
Corollary 3.1.5, the smooth curve (ϕ ◦ α) is a pregeodesic on M . Therefore, there exists a
diffeomorphism h : J ⊆ R → I such that γ := (ϕ ◦ α ◦ h) is a geodesic on M . According to
Exercise 3.19 (O’NEILL, 1983), denoting β := (α ◦ h), the reparametrization h satisfies the
subsequent expression

h′′ + (fK ◦ β)(h′)2 = 0. (32)
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Let s be a point in the open interval J . Multiplying Equation (27) by h′(s)2 and evaluating at
the point β(s) ∈ Σ we obtain,

h′(s)2[Kθ(β(s)) + σ2(β(s)) + θ2(β(s))
n− 1 +Ricg(K̃, K̃) ◦ (ϕ ◦ β(s))] = h′(s)2(fKθ)(β(s)).

First, notice that

h′(s)(Kθ)(β(s)) = h′(s)(Kθ)(α ◦ h(s)) = h′(s)Kα◦h(s)θ

= h′(s)α′
h(s)θ = (α ◦ h)′

sθ

= β′
sθ = (θ ◦ β)′(s).

(33)

Second, denoting K̃ := dϕ ◦K, we have

(ϕ ◦ β)′(s) = (ϕ ◦ α ◦ h)′(s) = (ϕ ◦ α)′
h(s)h

′(s) = (dϕα◦h(s) ◦ α′
h(s))h′(s)

= (dϕα◦h(s) ◦Kα◦h(s))h′(s) = (dϕ ◦K)β(s)h
′(s)

= K̃β(s)h
′(s).

(34)

Applying Equations (32) to (34) and rearranging some terms yields the following expression

(h′(θ ◦ β)′)(s) + (σ ◦ β)2(s) + (h′θ ◦ β)2(s)
n− 1 +Ricg((ϕ ◦ β)′, (ϕ ◦ β)′)(s) = −h′′(s)θ(β(s)).

Moreover, employing the identity

(h′(θ ◦ β))′ = h′′(θ ◦ β) + h′(θ ◦ β)′,

and defining the quantities θ̂ := h′(θ ◦ β) and σ̂2 := (h′(σ ◦ β))2, we arrive at the following
equation

θ̂′(s) + σ̂2(s) + 1
n− 1 θ̂

2(s) +Ricg(γ′(s), γ′(s)) = 0. (35)

Equation (35) plays a fundamental role in general relativity, and it is called the Raychaud-
huri equation for null geodesics. This equation reveals the influence of the Ricci curvature of
spacetime into the null mean curvature of a null hypersurface. By employing the Raychaudhuri
equation, we are able to demonstrate the following remarkable proposition.

Proposition 3.1.9 (GALLOWAY, 2014). Let (Mn+1, g) be a spacetime which obeys the null
energy condition (NEC), Ric(v, v) ≥ 0 for all null vectors v, and let ϕ : Σn → Mn+1 be
a codimension one null immersion. If the null generators of ϕ in M are future geodesically
complete, then ϕ has nonnegative null expansion2, θ ≥ 0.

Proof. Suppose θ < 0 at p ∈ Σ. Let α : I ⊆ R → Σ be a maximal integral curve of some fixed
null section K ∈ X(Σ) for ϕ such that α(0) = p and let h : J ⊂ R → I be a diffeomorphism
such that (ϕ◦β) = (ϕ◦α◦h) is a future-directed null geodesic in M . Let θ̂(s) = (h′(θ◦β)) be
2 Although the expansion θ depends on the choice of some null section K, given any smooth positive function

f > 0 on Σ, we have θfK = fθK , so the statement of the nonnegativity of θ - or more generally any sign -
is actually independent of the choice of K.
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as in Equation (35) and by the invariance of sign under scaling and h′ > 0, one has θ̂(0) < 0.
Raychaudhuri’s equation and the NEC imply that θ̂(s) obeys the inequality,

θ̂′(s) ≤ − 1
n− 1 θ̂

2(s),

and hence θ̂ < 0 for all s > 0. Dividing through by −θ̂2 then gives

d

ds

(
1
θ̂

)
≥ 1
n− 1 ,

which implies 1/θ̂ → 0, i.e., θ̂ → −∞ in finite affine parameter time, contradicting the
smoothness of θ̂.

Therefore, by applying Proposition 3.1.9 and its assumptions to the case of an embedded
null hypersurface, we can conclude that as one moves towards the future, spacelike cross sections
of the null hypersurface are nondecreasing in area (see Theorem 1.2.2). This observation will
be further clarified in the next subsection. This statement is commonly referred to as the
simplest version of Hawking’s black hole area theorem (HAWKING; ELLIS, 1973).

3.2 GEOMETRIC INTERPRETATION

Let ϕ : Nk → Mn be a smooth immersion into a semi-Riemannian manifold, not
necessarily semi-Riemannian or degenerate everywhere. For each point p ∈ N , we define the
quotient subspace [Tϕ(p)M ] := Tϕ(p)M/dϕp(TpN). Observe that this defines a rank n − k

vector bundle ν(ϕ) over N whose fibers are these quotients. This is called the quotient normal
bundle of ϕ. If v ∈ Tϕ(p)M , we denote by [v] the equivalence class of vectors in [Tϕ(p)M ]
that contains v. With this, we can introduce a generalized notion of second fundamental
II : X(N) × X(N) → ν(ϕ) form as follows: For any X, Y ∈ X(N), we define the operator
II(X, Y ) := [DXdϕ ◦ Y ] and it holds that II is symmetric and C∞(N)-bilinear. Furthermore,
if II = 0, then there exists a map ∇̃N : X(N) × X(N) → X(N) on N defined by

∇̃N
XY := dϕ−1(DXdϕ ◦ Y ), ∀X, Y ∈ X(N).

Since II = 0, the covariant derivatives are tangent, and thus the map is well-defined. Moreover,
one can easily check that ∇̃N satisfies the properties of a connection, as stated in the beginning
of Chapter 1. Therefore, ∇̃N is, in fact, a connection on the smooth manifold N .

Let α : I ⊆ R → N be a smooth curve on N and denote by D̃/dt the unique connection
on α induced by the connection ∇̃N . Fixed t0 ∈ I, then, by (O’NEILL, 1983, Proposition 3.19),
given ṽ ∈ Tα(t0)N there exists a unique vector field Ṽ ∈ X(α) such that Ṽ (t0) = ṽ and

D̃

dt
Ṽ = 0.

Analogously, let ϕ ◦ α be a smooth curve on M and denote by D/dt the unique connection
on ϕ ◦ α induced by the connection ∇M . Given v = dϕα(t0)ṽ ∈ Tϕ◦α(t0)M , there is a unique
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vector field V ∈ X(ϕ ◦ α) such that Vt0 = v and

D

dt
V = 0.

Notice that dϕα(t0)(Ṽα(t0)) = dϕα(t0)ṽ = v = Vt0 . Since V is unique, we have that dϕα(t)(Ṽα(t)) =
Vt for all t ∈ I. To sum up, in the context of II = 0, we conclude that if a tangent vector
v ∈ TN is parallel translated along a curve α, then dϕ(v) is parallel transported along the
curve ϕ ◦ α. Consequently, if α is a geodesic on N , then ϕ ◦ α is a geodesic in M . Working
out these results, we have the following equivalent properties

1. II = 0;

2. If v ∈ TN is a tangent vector parallel translated along a curve α, then the vector
dϕ(v) is parallel transported along the curve ϕ ◦ α;

3. If α geodesic on N , then, ϕ ◦ α is a geodesic on M .
We shall say that the immersion ϕ is totally geodesic if one - and hence all - of these

properties holds. If ϕ is a semi-Riemannian immersion, then this notion of totally geodesic
agrees with the usual one and we are allowed to understand II as a second-fundamental form.

Returning to our main context, let ϕ : Σn → Mn+1 be a codimension one null immersion
in the spacetime (M, g). We can define the operator II similarly, as in the previous paragraph.
Since ϕ is a null immersion, there exists a null section K ∈ X(Σ) for ϕ and we introduce the
tensor K : X(Σ) × X(Σ) → C∞(Σ) such that

K(X, Y ) :=≪ II(X, Y ),−dϕ ◦K ≫=≪ DXdϕ ◦ Y,−dϕ ◦K ≫,

where DXdϕ ◦ Y is an element of the class [DXdϕ ◦ Y ]. This tensor is well-defined: Let
V ∈ X(ϕ), V is a tangent smooth vector field, then DXdϕ ◦ Y + V is contained in the
equivalence class [DXdϕ ◦ Y ] and

≪ DXdϕ ◦ Y + V,−dϕ ◦K ≫=≪ DXdϕ ◦ Y,−dϕ ◦K ≫ ,

since dϕ ◦K is orthogonal to any tangent vector field.
Surprisingly, the tensor K has a clear relation with the Riemannian metric h induced

by K ∈ X(Σ), which was defined by Equation (22). Let X, Y ∈ X(Σ) and let DXdϕ ◦ Y be
an element of the equivalence class of [DXdϕ ◦ Y ], then we have

K(X, Y ) =≪ II(X, Y ),−dϕ ◦K ≫

=≪ DXdϕ ◦ Y,−dϕ ◦K ≫

=≪ dϕ ◦ Y, dϕ ◦ S̃(X) ≫

= h(S(X), Y ),

to sum up, we arrived at

K(X, Y ) =≪ II(X, Y ),−dϕ ◦K ≫= h(S(X), Y ) ∀X, Y ∈ X(Σ). (36)
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Figure 6 – Intersection between ϕ and ψ in M which is transverse to K̃ in M .

Therefore, the tensor K can be interpreted as the second-fundamental form associated
with the normal vector field dϕ ◦ K. Consequently, the null Weingarten map S, previously
defined in Equation (23), is the Weingarten map associated with the normal vector field dϕ◦K.
Observe, in addition, that since the normal bundle of ϕ has rank 1, K gives all the extrinsic
geometric information in the second fundamental form tensor II apart from positive rescaling.

The null mean curvature (or null expansion scalar) of Σ with respect to K is a smooth
function θ ∈ C∞(Σ) and it can be written as

θ =
n−1∑
i=1

h(Ei,S(Ei)) = trh K.

Furthermore, θ has a natural geometric interpretation. Let ψ : Nn−1 → Σn be a codi-
mension one immersion into Σ such that the composition (ϕ◦ψ) is a spacelike immersion, then
N is transverse to the null section dϕ◦K on M . Let q ∈ N and {E1, . . . , En−1} be an orthonor-
mal local frame near q in the induced metric ((ϕ ◦ ψ)∗g). Then {dψ ◦ E1, . . . , dψ ◦ En−1}
is a h-orthonormal frame of Tψ(q)Σ/K. Let V ∈ X(M) be a smooth vector field such that
V ◦ ϕ = dϕ ◦K in an open set near ψ(q). Hence, at ψ(q),

θ = trh K =
n−1∑
i=1

h(S(dψ ◦ Ei), dψ ◦ Ei)

=
n−1∑
i=1

gϕ◦ψ((Dϕ
dψ◦Ei

dϕ ◦K) ◦ ψ, dϕ ◦ dψ ◦ Ei)

=
n−1∑
i=1

gϕ◦ψ((∇M
d(ϕ◦ψ)◦Ei

V )(ϕ ◦ ψ), d(ϕ ◦ ψ) ◦ Ei)

=
n−1∑
i=1

gϕ◦ψ(Dϕ◦ψ
Ei

(dϕ ◦K ◦ ψ), d(ϕ ◦ ψ) ◦ Ei)

= divÑ K̃,

where divÑ K̃ is the divergence of K̃ := dϕ ◦ K along Ñ := (ϕ ◦ ψ)(N). Thus, θ measures
the overall expansion of the null generators of ϕ towards the future (see Figure 6).
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If Kf = fK, f ∈ C∞(Σ), is any other null section for the null immersion, then
IIKf

= fIIK , and hence, θ̃ = fθ. Therefore, the null mean curvature inequalities θ ≥ 0,
θ ≤ 0, are invariant under positive rescaling of K.
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4 MARGINALLY OUTER TRAPPED SURFACES

This chapter introduces the concept of marginally outer trapped surface (MOTS) and
explores their relation with the geometry of null hypersurfaces. Furthermore, we present a
reformulation of this concept in terms of the initial data formulation of the Einstein field
equations. MOTSs naturally arise in black hole spacetime solutions, for instance, in spacetimes
where the black hole horizon H is a Killing horizon, that is, it is a null hypersurface and
there exists a Killing vector field X which becomes a null section upon restriction to H, then
spacelike surfaces on the event horizon H are MOTSs. Thus, by studying MOTSs, we gain
insights into the nature of black hole event horizons. Defining precisely the notion of event
horizon H, typically, requires global information of the spacetime. In contrast, MOTSs offer
an alternative ”quasi-local” approach to the study of black holes which is more amenable
to numerical simulations. Additionally, this chapter presents the stability operator for MOTS,
which can be viewed as a generalization of the so-called stability operator for minimal surfaces.
The properties of this operator play a crucial role in our later investigations regarding the
topology of black holes.

4.1 MOTS

In this section, we will investigate the geometric properties of certain spacelike subman-
ifolds of codimension two in a spacetime and introduce the concept of trapped surfaces and,
of course, marginally outer trapped surfaces. We will also discuss these surfaces solely in terms
of initial data, without reference to an underlying spacetime.

4.1.1 GEOMETRY OF CODIMENSION TWO SPACELIKE IMMERSIONS

Before proceeding with our study, let us introduce the notion of normal bundle of a semi-
Riemannian immersion. Let ϕ : Σk → Mn be a semi-Riemannian immersion of codimension
n − k > 0. For each p ∈ Σ, we define the fiber Nϕ(p) := dϕp(TpΣ)⊥ and the projection
πN : v ∈ Nϕ(p) → p ∈ Σ. Observe that this defines a vector bundle N(ϕ) of rank n− k over
Σ whose fiber are these subspaces Nϕ(p). This is called the normal bundle of ϕ, which is a
particular type of pullback bundle (see, e.g., (HUSEMOLLER, 1994), for more details on fiber
bundles). One can show that Γ(N(ϕ)) ≈ X⊥(ϕ), i.e., the sections of N(ϕ) are isomorphic to
the normal smooth vector fields over ϕ. Furthermore, since ϕ is a semi-Riemannian immersion,
one can shows that each fiber of the vector bundle N(ϕ) is isomorphic to the fibers of the
quotient normal bundle ν(ϕ). Consequently, the two notions of normal bundle essentially
agrees in this context. We say that the normal bundle of ϕ is trivial if it admits n− k normal
vector fields X1, . . . , Xn−k ∈ X⊥(ϕ) such that the vectors (X1(p), . . . , Xn−k(p)) are a linearly
independent tuple in Nϕ(p) and span the latter for each p ∈ Σ.
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In particular, we have a convenient criterion for a codimension two semi-Riemannian
immersion to have a trivial normal bundle.

Proposition 4.1.1 . Let ψ : Σn−1 → Mn+1 be a codimension two spacelike immersion. Then,
the normal bundle of ψ is trivial if and only if there exists ℓ ∈ X⊥(ψ) null future-directed
vector field.

Proof. ( ⇐= ) Suppose that there exists ℓ ∈ X⊥(ψ) null future-directed. For any p ∈ Σ, there
exists a unique Kp ∈ (Tψ(p)Σ)⊥ null such that gψ(p)(Kp, ℓp) = −1. The map K : p ∈ Σ 7→
Kp ∈ (Tψ(p)Σ)⊥ defines a normal vector field. It remains to show that K is smooth.

Let p ∈ Σ and let {E1, . . . , En−1} be an adapted orthonormal frame on an open
set U ⊂ M containing ψ(p) such that span{E1 ◦ ψ(q), E2 ◦ ψ(q)} = (Tψ(q)Σ)⊥, for all
q ∈ V := ψ−1(U) ⊂ Σ. We can assume that E1 is a timelike future-directed vector field and
E2 is a spacelike vector field. Let q ∈ V and let α± ∈ C∞(V ) be such that

ℓq = α+(q)E1 ◦ ψ(q) + α−(q)E2 ◦ ψ(q).

Since ℓ is null, we obtain the following restriction on these functions:

0 =≪ ℓq, ℓq ≫= −α+(q)2 + α−(q)2,

that is, α−(q)/α+(q) = ±1. Because ℓ is future-directed, thus, necessarily α+ > 0. Let β± be
functions on V , not necessarily smooth, and write the null vector Kq as

Kq = β+(q)E1 ◦ ψ(q) + β−(q)E2 ◦ ψ(q).

By the same arguments, β+ > 0 and again β−(q)/β+(q) = ±1. The condition gψ(p)(Kp, ℓp) =
−1 implies that

−α+β+ + α−β− = −1.

Rearranging the terms
β+ = 1 + α−β−

α+
,

and squaring the expression and using that β2
+ = β2

− yields

β2
− =

1 + 2α−β− + α2
−β

2
−

α2
+

.

Using that the ration between the α± and β± equals ±1, we find that β− = −1/2α−, i.e. β−

and β+ are smooth. Therefore, K is a smooth vector field.
( =⇒ ) Suppose that the normal bundle of ψ is trivial. Then, there existX1, X2 ∈ X⊥(ψ)

such that, {X1, X2} forms a basis of (Tψ(p)Σ)⊥, for all p ∈ Σ. Define the symmetric matrix

M :=
[

≪ X1, X1 ≫ ≪ X1, X2 ≫
≪ X1, X2 ≫ ≪ X2, X2 ≫

]
,
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and denote its entries by a := M11, b := M22 and c := M12 = M21. Since each of these
normal subspaces is a 2-dimensional Lorentzian vector space, the matrix is nondegenerate and
its determinant is strictly negative. Our goal is to find α, β ∈ C∞(Σ) such that the vector field

ℓ = αX1 + βX2

is null. Therefore, we require that

α2 ≪ X1, X1 ≫ +2αβ ≪ X1, X2 ≫ +β2 ≪ X2, X2 ≫= 0,

which is equivalent to

[
α β

]
·M ·

[
α

β

]
= 0. (37)

Since M is a symmetric invertible matrix, its eigenvalues are real and nonzero. The eigenvalues
of M can be determined by

(λ− a)(λ− b) − c2 = 0,

or equivalently,
λ2 − (a+ b)λ+ ab− c2 = 0.

Noting that ab− c2 = detM < 0, this second-order equation has two roots, which are given
by

λ± = a+ b

2 ±

√(
a+ b

2

)2

+ (− detM).

It is worth noting that λ+ > 0 and λ− < 0. Let Z+ = [Z1
+, Z

2
+] and Z− = [Z1

−, Z
2
−] be vectors,

where Z1
±, Z

2
± are functions on Σ, such that

MZ+ = λ+Z+,

MZ− = λ−Z−,

holding that ⟨Z+, Z+⟩ = ⟨Z−, Z−⟩, where ⟨·, ·⟩ denotes the usual Euclidean inner product, and
⟨Z+, Z−⟩ = 0. Finally, we define

Z := 1√
λ+
Z+ + 1√

−λ−
Z−,

then we apply the matrix M to obtain

MZ = λ+√
λ+
Z+ + λ−√

−λ−
Z−,

and, writing Equation (37) in a more compact form, we have

⟨Z,MZ⟩ = ⟨ 1√
λ+
Z+ + 1√

−λ−
Z−,

λ+√
λ+
Z+ + λ−√

−λ−
Z−⟩

= ⟨Z+, Z+⟩ − ⟨Z−, Z−⟩

= 0.
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Therefore, writing Z = [Z1, Z2] where Z1 and Z2 are functions on Σ, we find that ℓ =
Z1X1 + Z2X2 is a null vector field, as shown in the computation above. The smoothness
of Z1, Z2 can be assured by the systems MZ+ = λ+Z+ and MZ− = λ−Z−. Hence, since
Z1, Z2 are smooth, we obtain that ℓ is a null smooth vector field and it can be chosen
future-directed.

Corollary 4.1.2 . Let (Mn+1, g) be a spacetime and let ψ : Σn−1 −→ Mn+1 be a codimension
two spacelike immersion. Assume that the normal bundle of ψ is trivial. Then, there exist two
linearly independent future-directed null vector fields ℓ+, ℓ− ∈ X⊥(ψ) that can be chosen such
that ≪ ℓ+, ℓ− ≫= −1.

Proof. According to Proposition 4.1.1, there exists a future-directed null vector field ℓ ∈ X⊥(ψ).
In this proposition, we have constructed another future-directed null vector field K ∈ X⊥(ψ)
such that they are linearly independent and ≪ ℓ,K ≫= −1. Therefore, by defining ℓ+ := ℓ

and ℓ− := K, the result follows.

Definition 4.1.3 (Cross section). Let (Mn+1, g) be a spacetime and let ϕ : Hn → Mn+1 be
a null immersion. A codimension one immersion ψ : Σn−1 → Hn is a cross section of ϕ if
ϕ ◦ ψ is a spacelike immersion.

Corollary 4.1.4 . Let (Mn+1, g) be a spacetime. Given a codimension one null immersion
ϕ : Hn → Mn+1 and let ψ : Σn−1 → Hn be a cross section of ϕ. Then, the normal bundle of
ϕ ◦ ψ is trivial.

Proof. Consider any null section K ∈ X(H) for ϕ, and define the future-directed null vector
field ℓ+ := dϕ(K) ◦ ψ ∈ X⊥(ϕ ◦ ψ). According to Proposition 4.1.1, the normal bundle of
ϕ ◦ ψ is trivial.

Remark 4 . In all that follows, we shall fix a background Riemannian metric h0 on M .
Therefore, given any null immersion ϕ : Hn → Mn+1 and a cross section ψ : Σn−1 → Hn of
ϕ, we shall adopt K ∈ X(H) as the unique null section for ϕ established in Proposition 3.1.2,
and we always choose ℓ± ∈ X⊥(ϕ ◦ ψ) as constructed from K in Corollary 4.1.4.

In studying codimension two spacelike immersions, it is also convenient to introduce
certain geometric quantities related to its second fundamental form tensor.

Definition 4.1.5 (Null second fundamental forms). Let (Mn+1, g) be a spacetime and let
ψ : Σn−1 → Mn+1 be a spacelike immersion with trivial normal bundle. Fix the two null future-
directed vector fields ℓ± ∈ X(ψ) as in Corollary 4.1.2. We define the null second fundamental
forms χ± associated with ℓ± as

χ±(X, Y ) :=≪ DXℓ±, dψ ◦ Y ≫, ∀X, Y ∈ X(Σ). (38)

Additionally, we introduce the null mean curvatures (or null expansion scalars) θ± as

θ± := trh χ± = divh ℓ±, (39)
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where h is the induced Riemannian metric on Σ.

It is important to bear in mind that these quantities depend on the choices of ℓ±.
However, as previously discussed after Proposition 3.1.9, multiplying the null vectors by positive
functions is equivalent to multiplying the null second fundamental form and the null expansion
by the same function. As a result, the signs of these quantities have intrinsic geometric meaning,
in the sense that they remain unchanged upon rescaling of ℓ± by a positive function.

We will see in Proposition 4.1.7 that if we have Σn−1 ⊂ Mn+1 a compact embedded
submanifold where iΣ : Σ ↪→ M is a spacelike semi-Riemannian immersion with trivial normal
bundle, then we can always find two null hypersurfaces associated with Σ (see Figure 7). The
quantities χ± and θ± will be closely related to θ and K of the null hypersurfaces.

Lemma 4.1.6 . Let (Mn+1, g) be a spacetime, ϕ : Hn → Mn+1 be a null immersion and
ψ : Σn−1 → Hn be a cross section of ϕ. Fix ℓ+ ∈ X⊥(ϕ ◦ ψ) the future-directed null vector
field, as in Remark 4, then

χ+(v, w) = K(dψpv, dψpw), ∀v, w ∈ TpΣ, (40)

where K is the second-fundamental associated with the null section for ϕ (see Section 3.2).

Proof. By Remark 4, we have that ℓ+ = (dϕ ◦ K) ◦ ψ. Moreover, by Lemma 1.1.11, there
exists a smooth vector field V ∈ X(M) and an open set U ⊂ Σ containing p such that

V ◦ (ϕ ◦ ψ)
∣∣
U = ℓ+

∣∣
U = (dϕ ◦K) ◦ ψ

∣∣
U .

Since ψ is an immersion, it is locally an embedding. Therefore, by restricting U , if necessary,
we can assume that ψ(U) is an open set and

V ◦ ϕ
∣∣
ψ(U) = dϕ ◦K

∣∣
ψ(U),

where it should be noted that ψ is locally bijective onto its image. Let v, w ∈ TpΣ and denote
p̂ = ϕ ◦ ψ(p), so

≪ Dvℓ+(p), d(ϕ ◦ ψ)w ≫ = gp̂ ((DvV ◦ ϕ ◦ ψ)(p), d(ϕ ◦ ψ)pw)

= gp̂
(
(∇M

d(ϕ◦ψ)vV )(p̂), d(ϕ ◦ ψ)pw
)

= gp̂

(
(Dϕ

dψ(v)V ◦ ϕ) ◦ ψ(p), d(ϕ ◦ ψ)pw
)

= gp̂

(
(Dϕ

dψ(v)dϕ ◦K) ◦ ψ(p), d(ϕ ◦ ψ)pw
)
,

where we have employed the identities for each induced connection on a smooth map. Using
the definition of the null Weingarten map S and the positive definite fiber metric h induced
by the null immersion ϕ, we obtain the following

≪ Dvℓ+(p), d(ϕ ◦ ψ)w ≫ = gp̂

(
(Dϕ

dψ(v)dϕ ◦K) ◦ ψ(p), d(ϕ ◦ ψ)pw
)

= (ϕ∗g)ψ(p)

(
S̃(dψpv), dψpw

)
= hψ(p)

(
S(dψpv), dψpw

)
= K(dψpv, dψpw).
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where K is the second-fundamental associated with the null section K.

Proposition 4.1.7 . Let (Mn+1, g) be a spacetime and Σn−1 ⊂ Mn+1 be a compact embedded
submanifold. Assume that iΣ : Σ ↪→ M is a spacelike semi-Riemannian immersion and the
normal bundle of iΣ is trivial. Let ℓ± ∈ X⊥(iΣ) be the future-directed null vector fields as
in Corollary 4.1.2. Then, there exist Hn

± ⊂ Mn+1 null hypersurfaces containing Σn−1 and
associated null sections K± ∈ X(H±) such that for each p ∈ Σ we have

χ±(v, w) = KH±(v, w) ∀v, w ∈ TpΣ, (41)

where KH± is the second fundamental form associated with K±.

Proof. By Corollary 4.1.2, we can choose ℓ± ∈ X⊥(Σ) future-directed null vector fields. As
every semi-Riemannian embedded submanifold has a normal neighborhood in M , according
to (O’NEILL, 1983, Proposition 7.26), there exists O a normal neighborhood of Σ such that
O is the diffeomorphic image under exp⊥ of a neighborhood Z in NΣ. As Σ is compact,
for ε ∈ R small enough, we can define the map J± : (−ε, ε) × Σ → Z ⊂ NΣ such that
J±(t, p) = tℓ±(p), for all t ∈ (−ε, ε). Therefore, we define the following diffeomorphism under
its image by Ψ± : (−ε, ε) × Σn−1 → Mn+1 such that

Ψ±(t, p) := exp⊥ ◦J±(t, p).

The embedded hypersurface H± := Ψ±(Σ × (−t, t)) is a null hypersurface of M since the
null geodesic with velocity ℓ± in Σ remains in H±. Therefore, by Corollary 4.1.4, the result
follows.

Figure 7 – Null hypersurfaces H± associated with the spacelike compact embedded submani-
fold Σ and its future-directed null vector fields ℓ±.

Corollary 4.1.8 . Let ϕ : Hn → Mn+1 be a totally geodesic null immersion (in the sense
of Section 3.2) and let ψ : Σn−1 → Hn be a cross section of ϕ. Fix ℓ+ ∈ X⊥(ϕ ◦ ψ) the
future-directed null vector field as in Remark 4 (or any strictly positive rescale of ℓ+), then
χ+ = 0.

In sequence, we will see a criteria that asserts that a null immersion is totally geodesic.
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Definition 4.1.9 (Killing vector field). A Killing vector field on a semi-Riemannian manifold
is a vector field X for which the Lie derivative of the metric tensor vanishes: LXg = 0.

Definition 4.1.10 (Killing horizon). Let (Mn+1, g) be a spacetime. A map ϕ : Hn → Mn+1

is a Killing immersion if ϕ is a null immersion and there exists a Killing vector field X ∈ X(M)
such that X ◦ ϕ is a null section. An embedded submanifold H ⊂ M is a Killing horizon if the
inclusion map i : H ↪→ M is a Killing immersion.

There are several solutions to the Einstein field equations that admit a Killing horizon,
e.g. Schwarzschild and Kerr. Finally, we can relate the Killing immersions with totally geodesic
immersions.

Proposition 4.1.11 . Let (Mn+1, g) be a spacetime. If ϕ : Hn → Mn+1 is a Killing immersion,
then

1. ϕ is totally geodesic,

2. for any ψ : Σn−1 → Hn cross section of ϕ, the null second fundamental form χ+ vanishes
identically.

Proof. Let Y , Z ∈ X(H), K ∈ X(H) be any null section for ϕ, and X be a Killing vector
field on M . Invoking the definition of the tensor K : X(H) × X(H) → C∞(H) associated
with K and denoting by h the positive definite fiber metric induced by K, we have

K(Y, Z) = h(S(Y ), Z).

Applying the definition of the map S : X(H) → X(H) and the item 3 of Lemma 1.1.12, we
obtain

K(Y, Z) =≪ DY dϕ ◦K, dϕ ◦ Z ≫= − ≪ dϕ ◦K,DY dϕ ◦ Z ≫ .

Employing Proposition 1.1.2 and that X ◦ ϕ = λXdϕ ◦ K for some nonvanishing function
λX ∈ C∞(Σ), we proceed with the following computations:

K(Y, Z) = − ≪ dϕ ◦K,DZdϕ ◦ Y + dϕ ◦ [Y, Z] ≫= − ≪ dϕ ◦K,DZdϕ ◦ Y ≫

= − 1
λX

≪ X ◦ ϕ,DZdϕ ◦ Y ≫= 1
λX

≪ DZX ◦ ϕ, dϕ ◦ Y ≫ .

By (O’NEILL, 1983, Proposition 9.25), if X is a Killing vector field, then

≪ DZ(X ◦ ϕ), dϕ ◦ Y ≫ + ≪ DY (X ◦ ϕ), dϕ ◦ Z ≫= 0.

This proposition implies that

K(Y, Z) = − 1
λX

≪ DYX ◦ ϕ, dϕ ◦ Z ≫= − ≪ DY dϕ ◦K, dϕ ◦ Z ≫

= −h(S(Y ), Z) = −K(Y, Z).

Therefore, K ≡ 0, i.e., K vanishes identically and ϕ is totally geodesic. The item 2 is an
immediate consequence of Corollary 4.1.8.
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Example 13 (Killing horizon in Kruskal spacetime). We have already shown in Example 12
that the event horizon H′ of the Kruskal spacetime of mass M > 0 is a null hypersurface
with associated null section K = (1/4M)(v∂v), where v is the coordinate function and ∂v is
the coordinate null vector field of v. The result (O’NEILL, 1983, Corollary 13.27) establishes
that the Kruskal spacetime admits a Killing vector field X such that X

∣∣
H′ = (1/4M)(v∂v).

Consequently, by definition, H′ is a Killing horizon, and, by Proposition 4.1.11, the event
horizon H′ is totally geodesic. In particular, given any v0 ∈ R+, the cross section ψv0 : p ∈
S2 → ((0, v0), p) ∈ H′ is the round-sphere S2(2M) of radius 2M has vanishing null second
fundamental form.

4.1.2 TRAPPED SURFACES

Definition 4.1.12 (Trapped Surfaces). Let (Mn+1, g) be a spacetime. A map ψ : Σn−1 →
Mn+1 is said to be a trapped immersion1 if ψ is a spacelike immersion and the mean curvature
vector field H⃗ is past-directed timelike. An embedded submanifold Σ ⊂ M is a trapped surface
if i : Σ ↪→ M is a trapped immersion.

A trapped immersion ψ : Σn−1 → Mn+1 with trivial normal bundle can be interpreted
in terms of θ± when the normal bundle of ψ is trivial. In this sense, suppose that the normal
bundle of ψ is trivial. By Corollary 4.1.2, there exist linearly independent future-directed null
smooth vector fields ℓ± ∈ X⊥(ψ) such that ≪ ℓ+, ℓ− ≫= −1. The mean curvature vector
H⃗ ∈ X⊥(ψ) can be written as

H⃗ = aℓ+ + bℓ−,

where a, b ∈ C∞(Σ). Employing ≪ ℓ+, ℓ− ≫= −1 and the definition of the expansion scalars
θ± associated with ℓ±, respectively (see Definition 4.1.5), we can show that

H⃗ = θ−ℓ+ + θ+ℓ−.

Since H⃗ is timelike, we can obtain the following condition involving the null mean curvatures:

≪ H⃗, H⃗ ≫= −2θ+θ− < 0.

This condition implies that θ+θ− > 0, and, together with the condition that H⃗ is past-directed
and ℓ± are future-directed, we have that θ+ < 0 and θ− < 0. In particular, if ψ is an embedding,
then Σn−1 ⊂ Mn+1 is a trapped surface then θ± < 0. When this condition does not hold, we
say that Σ is an untrapped surface.

The signs of the quantities θ± have a clear meaning within our framework. Recall that,
from Theorem 1.2.2, θ± measure how the volume form on Σ changes when we consider a
variation in the ℓ± direction. This justifies why they are referred to as null expansions. The
null vectors ℓ± represent two normal directions that null geodesics (or, physically, light rays)
1 Technically, we are defining here what is known in the literature as a future-trapped immersion. However,

since we shall never deal with the so-called past-trapped immersions in this work, we omit the adjective
”future” throughout.
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can escape from Σ. For instance, if Σ ⊂ M is an embedded submanifold, ℓ+ can be thought
of as the outgoing (ℓ− the ingoing) light rays emanating from Σ.

Therefore, a trapped surface exhibits the property that any family of light rays emanating
from Σ ⊂ M decreases their volume (see Figure 8). Physically, this phenomenon is not expected
when light rays are shot outward, which is associated with θ+. The behavior of decreasing volume
indicates regions of spacetime where the gravitational field is intense enough to significantly
affect the propagation of light.

Figure 8 – Typically, the outgoing null geodesics (or, physically, light rays) from a null surface
exhibit a positive null expansion (θ+) that increases as they move away from the
surface, as exemplified by the surface Σ1. In contrast, a trapped surface, like Σ2,
demonstrates the opposite behavior with a negative and decreasing null expansion
(θ+). This phenomenon indicates the presence of a strong gravitational field that
causes the light rays to converge and results in a reduction in volume.

Example 14 (Untrapped surfaces in Minkowski). In R4
1, consider the spacelike sphere S2(1) :=

{(t, x, y, z) ∈ R4 : x2 + y2 + z2 = 1, t = t0} of radius 1 in R4
1 at t = t0 ∈ R. In the

standard coordinate system, we can define the normal future-directed null vector fields ℓ± =
(∂t ± x∂x ± y∂y ± z∂z)/

√
2. Let V = fx∂x + fy∂y + fx∂z be any tangent vector, where

fx, fy, fz ∈ C∞(S2(1)). Denote by ∇ the Levi-Civita connection on R4
1, which is the flat

connection (see Example 2). The covariant derivative of ℓ± with respect to any tangent vector
V is

∇V ℓ± = V (ℓi±)∂i = ±fx∂x ± fy∂y ± fx∂z = ± 1√
2
I(V ),

where I is the identity operator. Using an orthonormal frame and tracing null second funda-
mental forms χ± associated with the future-directed null vectors ℓ± we obtain that θ+ > 0
and θ− < 0. Therefore, codimension 2 spacelike spheres in Minkowski are untrapped surfaces.

Example 15 (Trapped surfaces in the black hole region). Let K be the Kruskal spacetime
of mass M > 0 (see Definition 2.3.2). According to (O’NEILL, 1983, Proposition 13.4), the
sphere S2(r) in the restspace t constant has mean curvature vector field H⃗ = −1/r∇r (This
result follows from the geometry of warped products, see (O’NEILL, 1983, Proposition 7.35)).
The time-orientation of the Kruskal spacetime is given by ∂v − ∂u, where −∂u and ∂v are
future-directed null vector fields and both are normal vector fields to S2(r). As a reminder, Q1

is the black hole region, i.e., 0 < r(u,v) < 2M with u < 0 and v > 0, and F (r) is a strictly
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positive function. Now, since ∇r = (1/4M)(u∂u + v∂v), we have

⟨∇r,∇r⟩ = 2uvF (r) < 0, on Q1,

and
⟨∇r, ∂v − ∂u⟩ = (1/4M)

r
(u− v)F (r)) < 0, on Q1.

Hence, ∇r is timelike future-pointing on Q1. Since r > 0, we obtain that H⃗ is timelike
past-directed. Therefore, S2(r) is a trapped surface for any 0 < r < 2M .

4.1.3 NULL EXPANSION - INITIAL DATA VERSION

As briefly discussed, the global structure of the spacetime must be known in order to
properly define a black hole and its event horizon. Instead of relying on the global geometry of
spacetime, MOTS provides an alternative method to study black holes through local geometry
from the perspective of the initial data setting. To investigate MOTS in initial data, some
terminologies are introduced. First, we show that we can describe the null expansion solely in
terms of spacelike immersions, or an initial data set, as stated in the following proposition.

Proposition 4.1.13 . Let (Mn+1, g) be a spacetime, ϕ : Sn → Mn+1 be a spacelike immersion
with u⃗ ∈ X⊥(ϕ) the unique unit future-directed timelike normal vector field and ψ : Σn−1 → Sn

a two-sided immersion with n⃗ ∈ X⊥(ψ) a unit normal. Defining the the future-directed null
vector fields as ℓ± := (u⃗ ◦ ψ ± dϕ ◦ n⃗)/

√
2 ∈ X⊥(ϕ ◦ ψ), it follows that ϕ ◦ ψ is a spacelike

immersion of codimension two with trivial normal bundle and the null expansion given by

θ± = trΣ K ◦ ψ ±H, (42)

where H is the mean curvature scalar of ψ with respect to the normal n⃗ and K is the second
fundamental form of ϕ with respect to the normal u⃗ and the partial trace is with respect to
the induced metric.

Proof. Let {E1, . . . , En−1} be an orthonormal frame on Σ in the induced metric (ϕ̃∗g), where
ϕ̃ := (ϕ ◦ ψ) is the immersion from Σ into M . Fixing p ∈ Σ, we have

θ±(p) = trΣχ±(p),

=
n−1∑
i=1

≪ DEi
ℓ±, dϕ̃ ◦ Ei ≫p,

=
n−1∑
i=1

≪ −ℓ±, DEi
dϕ̃ ◦ Ei ≫p,

=
n−1∑
i=1

≪ −u⃗ ◦ ψ, II ϕ̃(Ei, Ei) ≫p ± ≪ −dϕ ◦ n⃗, II ϕ̃(Ei, Ei) ≫p .
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Figure 9 – A spacelike surface Sn with a closed surface Σn−1 containing the two special vectors
n⃗ and u⃗.

For any i ∈ {1, . . . , n− 1}, we denote ei := Ei(p), then, by Lemma 1.1.20, we have

θ±(p) =
n−1∑
i=1

≪ −u⃗ ◦ ψ(p), IIϕψ(p)(dψpei, dψpei) ≫ ± ≪ −dϕψ(p)n⃗, dϕψ(p)(IIψp (ei, ei)) ≫

= trΣK ◦ ψ(p) ±H(p).

Remark 5 . Given a two-sided immersion ψ : Σn−1 → Sn in an initial data, by convention,
we always implicitly choose a unit normal vector field n⃗ ∈ X(ψ) and refer to it as the outward
pointing unit normal vector field (of ψ), and −n⃗ as the inward pointing unit normal vector
field (of ψ).

Finally, we can define the null expansion in terms of the initial data set.

Definition 4.1.14 (Null expansion - Initial data version). Let (Sn, h,K) be an initial data set
and ψ : Σn−1 → Sn be a two-sided immersion with n⃗ ∈ X⊥(ψ) as the outward pointing unit
normal vector field of ψ. The outward null expansion θ+ [resp. inward null expansion θ−] of Σ
is defined as

θ± := trΣ K ◦ ψ ±H, (43)

where H is the mean curvature scalar of ψ with respect to the normal n⃗ and the partial trace
is respect to the induced metric.

The signs of θ± will be used in our discussion, therefore, they require a proper definition
for each case in terms of initial data.

Definition 4.1.15 . Let (Sn, h,K) be an initial data set and ψ : Σn−1 → Sn be a two-sided
immersion with n⃗ ∈ X⊥(ψ) as the outward pointing unit normal vector field of ψ. We say that
Σ is

outer trapped, if θ+ < 0,
weakly outer trapped, if θ+ ≤ 0,
marginally outer trapped, if θ+ = 0,

Example 16 (MOTS in Kruskal Spacetime). Example 13 shows that the round spheres S2

on the event horizon are MOTS, since its second fundamental form vanishes identically.
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Definition 4.1.16 (Homologous Surfaces). Let (Sn, h,K) be an initial data. A pair of codi-
mension one surfaces Σ and Σ′ in S are said to be homologous if there exists a smooth map
Φ : (a, b) × Σ → S satisfying

1. [0, 1] ⊂ (a, b),

2. for each t ∈ (a, b), the map ϕt : x ∈ Σ 7→ Φ(t, x) ∈ S is an embedding,

3. ϕ0 = idΣ and ϕ1(Σ) = Σ′.
We say that Σ and Σ′ are outward homologous if the variation vector field V := ∂Φ

∂t

∣∣
t=0 is

equals to V = f · n⃗, where n⃗ the outward pointing unit normal vector field of ϕ0, for some
strictly positive function f ∈ C∞(Σ).

Definition 4.1.17 (Outermost MOTS). Let Σ be a MOTS in an initial data set (S, h,K)
with n⃗ an outward pointing unit normal vector field of Σ in S.

1. We say that Σ is outermost MOTS in S if there are no outer trapped (θ+ < 0) or
marginally outer trapped (θ+ = 0) surfaces outward homologous to Σ.

2. We say that Σ is a weakly outermost MOTS in S provided there are no outer trapped
surfaces (θ+ < 0) outward homologous to Σ.

Figure 10 illustrates the idea of outermost and weakly outermost MOTS.

Figure 10 – Let Σ1 and Σ2 be homologous surfaces with unit normal outward pointing n⃗1 and
n⃗2, respectively. If only homologous surfaces with θ+ = 0 lie in the region between
Σ1 and Σ2, then Σ1 is a weakly outermost MOTS. If there are no marginally outer
trapped surfaces outside of Σ2, then is Σ2 outermost MOTS.

4.2 MOTS STABILITY OPERATOR

MOTS can be seen as a generalization of minimal surfaces. For a MOTS (θ+ = 0)
in a time-symmetric initial data set (K = 0), from Equation (43), the mean curvature H
vanishes identically, then, in this particular case, a MOTS is a minimal surface. Minimal
surfaces and MOTS share several similarities; however, while minimal surfaces can be described
via a variational formulation, no such description is known for MOTS. A powerful tool for
studying minimal surfaces is the notion of stability, which comes from the sign of the second
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variation of the volume measure; this concept of stability can be generalized to the setting of
MOTS through the linearization of the null expansion θ+.

The notion of stability is grounded in the variations of the null expansion, which were
introduced and discussed in (ANDERSSON; MARS; SIMON, 2008). The expression that
defines the linearization of θ+ is quite involved and challenging to obtain. Therefore, in this
context, we briefly introduce the normal variation of a MOTS in the initial data set and defer
the complete proof to Appendix A.

For the sake of notational simplicity, we shall assume from now on that all submanifolds
we consider are embedded. Let (Mn+1, g) be a spacetime and let Σn−1 ⊂ M be a smooth
closed (i.e., compact without boundary) codimension two spacelike submanifold with trivial
normal bundle. We shall fix, as per Corollary 4.1.2, two future-directed normal null vector fields
ℓ± such that ≪ ℓ+, ℓ− ≫= −1. We shall assume that Σ is a MOTS with respect to ℓ+, i.e.,
θ+ = divΣ ℓ+ = 0. For convenience, we also define on Σ the normal unit timelike vector field
u⃗ := ℓ++ℓ−√

2 and normal unit spacelike vector field n⃗ := ℓ+−ℓ−√
2 . Finally, let Φ : (−t0, t0)×Σ → M

be a smooth variation of Σ in M with a normal variation vector field V . As a result, the normal
vector field V can be decomposed into

V = ∂Φ
∂t

∣∣∣∣
t=0

= ϕℓ+ + ψn⃗, ϕ, ψ ∈ C∞(Σ).

We shall in addition assume that a smooth choice was made on each Σt := ϕt(Σ) of
future-directed null normal vector fields ℓ±(t) so that ℓ±(0) = ℓ±, and ≪ ℓ+(t), ℓ−(t) ≫= −1.
Thus, denote by θ+(t) the null expansion with respect to ℓ+. With this convention, we compute
the linearization of the null expansion θ+.

Proposition 4.2.1 . Let Σn−1 be a MOTS within a spacetime (Mn+1, g). Let Φ : (−t0, t0) ×
Σ → M be a variation with normal variation vector field V = ϕℓ+ + ψn⃗ with the conventions
described above. Then, the variation of the null expansion scalar θ+(t) on Σ in the direction
of the variation vector field V is given by

θ′
+(0) = −(∥χ+∥2 +Ricg(ℓ+, ℓ+)) · ϕ+ L(ψ), (44)

where
L(ψ) = −∆ψ + 2⟨X,∇ψ⟩ + (Q+ divX − ∥X∥2)ψ, (45)

Q := 1
2SΣ − [J(n⃗) + ρ] − 1

2∥χ+∥2. (46)

In these expressions, ∆,∇ and div are the Laplacian, gradient and divergence operators,
respectively, on Σ, while SΣ is the scalar curvature of Σ all computed with respect to the
induced metric ⟨, ⟩ on Σ, X is the vector field on Σ metrically dual - also with the induced
metric - to the one-form Ku⃗(n⃗, ·)|TΣ and where ρ and J are defined as in Definition 2.2.1
associated with the timelike vector field u⃗.

Proof. See Appendix A.
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The Proposition 4.2.1 allows us to define a linear second-order elliptic differential
operator L, called the MOTS stability operator. Furthermore, although we have considered a
MOTS in a spacetime, we can give a purely initial-data description via the following simple
key observation. Suppose that, in addition to the conventions leading to Proposition 4.2.1, we
have Σn−1 ⊂ Sn, where is a S spacelike hypersurface in the spacetime (Mn+1, g), with the
unique unit normal future-directed timelike normal vector field U , induced metric h and second
fundamental form K with respect to U . Assume also that an h-unit normal vector field N⃗ is
chosen on Σ, so that ℓ± = U |Σ±N√

2 . Then u⃗ ≡ U |Σ and n⃗ ≡ N⃗ and noting that χ+ = Kn⃗ + Ku⃗,
where Kn⃗ is the second-fundamental form of Σ associated with the normal vector field n⃗. We
motivate thus the following definition.

Definition 4.2.2 (MOTS Stability Operator - Initial Data Version). Let Σn−1 be a closed
MOTS (compact without boundary) within an initial data (Sn, h,K). We define the MOTS
stability operator L : C∞(Σ) → C∞(Σ) to be

L(ψ) := −∆ψ + 2⟨X,∇ψ⟩ + (Q+ divX − ∥X∥2)ψ, (47)

Q := 1
2SΣ − [J(n⃗) + ρ] − 1

2∥Kn⃗ + K∥2, (48)

where the geometric quantities are defined on Σ, n⃗ is the outward pointing unit normal vector
field on Σ, X is the vector field dual to the one-form K(n⃗, ·) along Σ and where ρ and J are
defined as in Definition 2.2.4.

Remark 6 . One may be interested in evaluating θ′
+(t) for t ̸= 0, but the previous proof would

fail, since there is no guarantee that the others hypersurfaces Σt in the foliation will be MOTS
(this fact was explicitly used in Equations (85) and (86)). However, a similar expression can
be obtained. First, notice that the null vector fields ℓ±(t) are still null and orthogonal to each
other. Therefore, with a analogous proof, without assuming θ+ = 0, we obtain the expression

θ′
+(t) = −(∥χ+(t)∥2

t +Ricg(ℓ+, ℓ+)) · vt + LΣt(ψt), (49)

Qt := 1
2St − [Jt(n⃗t) + ρt] − 1

2∥χ+(t)∥2
t , (50)

where Qt and Lt are defined as

LΣt(ψt) := −∆tψt + 2⟨Xt,∇tψt⟩t + (Qt + 1
2θ+(t)[θ−(t) + 2Ku⃗(n⃗, n⃗)] + divtXt − ∥Xt∥2

t )ψt.
(51)

It is important to note that each quantity depends on t since each sheet Σt has its own induced
metric and vector fields, which are functions of t. Moreover, two new geometric quantities
appeared in the expression.

It is worth mentioning that the MOTS stability operator can be derived from normal
variations in the initial data. In the case of time-symmetric initial data (K = 0), the operator
L reduces to the self-adjoint, classic stability (or Jacobi) operator of the minimal surface
theory, which consists of the second variation of the volume. Although the operator L is not
self-adjoint in general, the operator possesses crucial properties as stated below.
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Lemma 4.2.3 (GALLOWAY, 2018; ANDERSSON; MARS; SIMON, 2008). Let Σn−1 be a
closed MOTS (compact without boundary) within an initial data set (Sn, h,K). The following
statements hold for the MOTS stability operator L.

1. There is a real eigenvalue λ1 = λ1(L), called the principal eigenvalue of L, such that
for any other eigenvalue µ, Re(µ) ≥ λ1. The associated eigenfunction ϕ ∈ C∞(Σ),
Lϕ = λ1ϕ, is unique up to a multiplicative constant, and can be chosen to be strictly
positive.

2. λ1 ≥ 0 (resp., λ1 > 0) if only if there exist some ψ ∈ C∞(Σ), ψ > 0, such that
L(ψ) ≥ 0 (resp., L(ψ) > 0).

An eigenvalue λ is called simple if its algebraic multiplicity is equal to one, i.e., the
associated eigenfunction is unique up to a multiplicative constant. The principal eigenvalue
allows us to define the notion of stability of a MOTS.

Definition 4.2.4 (Stability of MOTS). We say that a closed MOTS is stable provided that
the principal eigenvalue λ1(L) is nonnegative.

Indeed, weakly outermost MOTS are necessarily stable. If the principal eigenvalue λ1(L)
of the MOTS stability operator L is negative, and ϕ is a positive eigenfunction associated
with λ1(L), then the outward deformation of Σ using the function ϕ, or in other words,
using a normal variation with variation vector field ϕn⃗, where n⃗ is the outward pointing unit
normal vector field on Σ inside the initial data, would result in an outer trapped surface. This
contradicts the definition of a weakly outermost MOTS (see Definition 4.1.17). More generally,
the negativity of λ1(L) implies that Σ can be deformed outward to an outer trapped surface.

We will be interested in comparing L with the so-called symmetrized operator stability
operator L0 : C∞(Σ) → C∞(Σ), obtained by setting X = 0,

L0(ψ) = −∆ψ +Qψ,

where Q is defined as before. The operator L0 share some properties with L, such as the
fact that Lemma 4.2.3 holds for L0, allowing us to study its principal eigenvalue λ1(L0). The
following lemma shows that if λ1(L) ≥ 0 then λ1(L0) ≥ 0.

Lemma 4.2.5 (GALLOWAY, 2008). Let Σn−1 be a closed MOTS (compact without boundary)
in an initial data set (Sn, h,K). The principal eigenvalues λ1(L) and λ1(L0) satisfy λ1(L0) ≥
λ1(L). In particular, if Σ is stable, then for any ϕ ∈ C∞(Σ) it holds that

⟨L0(ϕ), ϕ⟩ =
∫

Σ
|∇ϕ|2 +Qϕ2 ≥ 0.

Proof. Let λ1 be the principal eigenvalue of L and ψ ∈ C∞(Σ) its respective positive eigen-
function. Then, given that L(ψ) = λ1ψ, we have

−∆ψ + 2⟨X,∇ψ⟩ + (Q+ divX − |X|2)ψ = λ1ψ.
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Employing the identities ∇ lnψ = 1
ψ

∇ψ and |X − ∇ lnψ|2 = |X|2 − 2⟨X,∇ lnψ⟩ + |∇ lnψ|2

it follows that
−∆ψ + (Q+ divX − |X|2 + 2⟨X,∇ lnψ⟩)ψ = λ1ψ,

−∆ψ + (Q+ divX + |∇ lnψ|2 − |X − ∇ lnψ|2)ψ = λ1ψ,

− 1
ψ

∆ψ +Q+ divX + |∇ lnψ|2 − |X − ∇ lnψ|2 = λ1.

Notice that ∆ lnψ = 1
ψ

∆ψ − | ln ∇ψ|2; thus, setting u = lnψ, we obtain

−∆u+Q+ divX − |X − ∇u|2 = λ1,

div(X − ∇u) +Q− |X − ∇u|2 = λ1.

Denoting Y = X − ∇u, we arrive at the equality,

div(Y ) +Q− |Y |2 = λ1.

Given any ϕ ∈ C∞(Σ) and multiplying through by ϕ2 the previous equation we derive

λ1ϕ
2 −Qϕ2 + |Y |2ϕ2 = div(Y )ϕ2,

and observing that

|(|∇ϕ| − |ϕ||Y |)|2 = |∇ϕ|2 − 2|ϕ||Y ||∇ϕ| + |ϕ|2|Y |2 ≥ 0,

and div(ϕ2Y ) = ϕ2 div Y + 2ϕ⟨∇ϕ, Y ⟩, it follows that

λ1ϕ
2 −Qϕ2 + |Y |2ϕ2 = div(ϕ2Y ) − 2ϕ⟨∇ϕ, Y ⟩,

λ1ϕ
2 −Qϕ2 + |Y |2ϕ2 ≤ div(ϕ2Y ) + 2|ϕ||∇ϕ||Y |,

λ1ϕ
2 −Qϕ2 ≤ div(ϕ2Y ) + |∇ϕ|2,

Integrating the last inequality yields∫
Σ

|∇ϕ|2 +Qϕ2 ≥
∫

Σ
λ1ϕ

2,

and using that div(ϕ∇ϕ) = ϕ∆ϕ+ |∇ϕ|2, we have

⟨L0(ϕ), ϕ⟩ ≥
∫

Σ
λ1ϕ

2, for all ϕ ∈ C∞(Σ), (52)

because Σ is closed, i.e., the term with the divergence drops out by the divergence theorem.
Taking ϕ ∈ C∞(Σ) as the positive eigenfunction associated with the principal eigenvalue

µ1 of L0 in Equation (52) and multiplying by a appropriate constant we obtain that µ1 ≥ λ1,
in other words, λ1(L0) ≥ λ1(L).
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5 TOPOLOGY OF BLACK HOLES

A fundamental result in the theory of black holes was given by Hawking in his celebrated
theorem, known as Hawking’s black hole topology theorem (see Theorem 5.0.1). This result
provides important restrictions on the possible shapes of black hole horizons predicted by
general relativity, which can be then tested in actual astrophysical context.

Theorem 5.0.1 (HAWKING; ELLIS, 1973). Suppose (M, g) is a (3 + 1)-dimensional asymp-
totically flat stationary black hole spacetime obeying the dominant energy condition. Then
cross sections of the event horizon are topologically 2-spheres.

In other words, if a 4-dimensional spacetime contains an approximately isolated black
hole, such as in the case of Kruskal spacetime or Kerr spacetime, under reasonable extra
conditions on the matter content, then, the 2-dimensional spacelike hypersurfaces of the event
horizon are necessarily spherical. This result is proved using a variational argument that leads
to the existence of an outer trapped surface outside of the event horizon, which is forbidden
by a well-known result (see Proposition 9.2.8 (HAWKING; ELLIS, 1973)).

The question then arises: Is there a similar version of the Hawking’s black hole topology
theorem in higher dimensions? The proof of Theorem 5.0.1 relies on the Gauss-Bonnet Theorem
(see Theorem 5.1.2), as a result, it cannot be directly extended to higher dimensions. The
problem becomes more intricate in higher dimensions, as will be evidenced by the discussion
of scalar curvature and its relation to topology in Section 5.1.2. As previously discussed by
(EMPARAN; REALL, 2008), there has been a growing interest in classical general relativity
in higher dimensions in recent years. There are several reasons for this interest, particularly
in solutions of the EFE such as higher-dimensional black holes. Some of the key motivations
include:

1. String theory incorporates gravity and demands more than four dimensions. For
instance, calculations involving five-dimensional black holes in string theory appeared
on Strominger and Vafa (1996). This example provided a validation of the theory,
and the study of higher dimensional black holes can contribute to the development
of a quantum theory of gravity.

2. The AdS/CFT correspondence (AHARONY et al., 2000) relates properties of black
holes in n > 4 dimensions to quantum field theory in n − 1 dimensions. This
provides a more straightforward approach to compute certain field theory quantities
compared to conventional techniques.

3. There is the possibility of producing tiny higher-dimensional black holes at colliders
(CAVAGLIÀ, 2003; KANTI, 2004)

Due to the significance of these potential higher-dimensional black holes, it is natural to
inquire which of their properties remain in higher-dimensions. Therefore, an possible extension
of Hawking’s theorem on the topology of black holes to higher dimensions becomes a natural
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logical step in this direction. Furthermore, although it is true the above-listed motivations
remain largely speculative from a physical point of view, this problem nevertheless has a
definite geometric significance. Indeed, for the purposes of the rest of this work we adopt the
”conceptual equation” black hole horizon = closed MOTS. But one regards MOTS as natural
spacetime generalizations of minimal hypersurfaces. The obtained results, when reinterpreted
in this light, place in particular definite restriction on the possible topologies of minimal
hypersurfaces under suitable restriction on the scalar curvature.

Emparan and Reall (2002) discovered a remarkable example of a 4+1 asymptotically
flat stationary vacuum black hole spacetime with a horizon topology S2 ×S1, known as a black
ring. This finding demonstrated that the horizon topology is not necessarily spherical in higher
dimensions. As a result, there is a need to investigate an analogue of Hawking’s theorem that
might conceivably restrict the allowable topologies for higher dimensional black holes.

We shall see that the black ring falls into a special class of manifolds, those that admit
a metric of positive scalar curvature, as in Theorem 5.1.5, the same class of the spherical case.
Therefore, a natural version of Hawking’s theorem in higher-dimensions is that each spacelike
cross section of the event horizon (or MOTS) is of positive Yamabe type, i.e., admits a metric
of positive scalar curvature.

The previous statement in higher dimensions holds under certain physical restrictions,
such as outermost MOTS. We provide the proof in two distinct versions: the more restrictive
version, Theorem 5.2.4, and the initial data version without exceptional cases, Theorem 5.3.4.
Before delving into our main results, we will offer a concise introduction to the relationship
between positive scalar curvature and topology in the upcoming section.

5.1 POSITIVE SCALAR CURVATURE

This initial section of the chapter is devoted to briefly discuss the topological obstruc-
tions to defining a metric of positive scalar curvature on Riemannian manifolds. These will serve
to give context to the main results. We will begin by introducing the problem for compact
two-dimensional manifolds using the Gauss-Bonnet theorem. Subsequently, we will present
the compact n-dimensional case with n ≥ 3, through the Kazdan and Warner’s classification
theorem, which serves as an essential tool in our subsequent results in Chapter 5.

5.1.1 GAUSSIAN CURVATURE

A fundamental problem in Riemannian geometry is to understand which kind of topolog-
ical restrictions arise due to certain features of the curvature. In the case of a two-dimensional
manifold, there exists only one notion of curvature, as demonstrated by the following result.

Proposition 5.1.1 (COSTA E SILVA, 2021). If (M, g) is a two-dimensional semi-Riemannian
manifold, then there exist a (unique) smooth function K ∈ C∞(M) for which the curvature
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has the form

R(X, Y )Z = K · [g(Y, Z)X − g(X,Z)Y ], ∀X, Y, Z ∈ X(M). (53)

The function K is called Gaussian curvature of the (M, g).

In other words, in dimension two, the whole information about the curvature is com-
pletely captured by the scalar curvature Sg or Gaussian curvature K since Equation (53) implies
that Ricg = K ·g, resulting in Sg = 2K. Consequently, our problem becomes that of describing
the set of Gaussian curvature functions. The most notable condition on curvature for compact
two-dimensional manifolds is the global condition given by the Gauss-Bonnet theorem.

Theorem 5.1.2 (Gauss-Bonnet). Let (M, g) be a compact oriented two-dimensional Rieman-
nian manifold and let K be the Gaussian curvature of M . Then∫

M

KdAg = 2πχ(M), (54)

where dAg is the element of area with respect to g and the underlying orientation, and χ(M)
is the Euler characteristic of M .

The theorem clearly imposes sign conditions on K depending on χ(M) which can be
stated as:

1. χ(M) > 0 : K is positive somewhere,

2. χ(M) = 0 : K changes sign (unless K=0),

3. χ(M) < 0 : K is negative somewhere.

(55)

Hence, the only two-dimensional oriented compact1 manifolds that can possess metrics
with positive scalar curvature are those with a positive Euler characteristic. For example, the
sphere S2 with χ(S2) = 2, and the real projective plane RP 2 with χ(RP 2) = 1. Furthermore,
these surfaces do not admit metrics with K ≤ 0. On the other hand, the 2-torus T2 with
χ(T2) = 0 does not have any metric with positive scalar curvature. Therefore, in this context,
there are topological restrictions on the existence of a metric with positive scalar curvature.

This situation naturally leads to the following question, which can be regarded as a
converse to the Gauss-Bonnet theorem: Do the sign conditions given in Equation (55) serve as
sufficient conditions for some K ∈ C∞(M) on a two-dimensional manifold to be the Gaussian
curvature of some Riemannian metric g on M? Jerry L. Kazdan and Warner (1974) successfully
answered this question with the following theorem.

Theorem 5.1.3 (KAZDAN, Jerry L.; WARNER, 1974). On a compact M2, a function K ∈
C∞(M) is the Gaussian curvature of some Riemannian metric g if and only if K satisfies the
obvious Gauss-Bonnet sign condition in Equation (55).
1 The result still holds for the non-orientable case via orientable coverings. manifolds that can possess metrics

with positive scalar curvature are those with a positive Euler characteristic
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The aforementioned theorem solved a problem known as the Prescribed Gaussian
Curvature for a compact two-dimensional manifold, i.e., given a function K, find a metric g
whose Gaussian curvature is K. Additionally, this theorem offers a description regarding the
set of curvatures and topological obstructions for the two-dimensional case.

5.1.2 SCALAR CURVATURE

On a Riemannian manifold (Mn, g) with n ≥ 3, the Proposition 5.1.1 does not hold
as stated. For example, any odd-dimensional round sphere S2n−1 has zero Euler characteristic,
but its standard metric has constant positive curvature. In this higher-dimensional setting, the
simplest measure of curvature on M is the scalar curvature Sg.

We saw above how obstructions to the sign of the scalar curvature were obtained in
two dimensions via Gauss-Bonnet theorem when Gaussian curvature was prescribed. However,
the scalar curvature is a weak geometric invariant (it is obtained as a double average of the
full sectional curvature), so it is not clear that any similar obstructions exist if the dimension
is n ≥ 3.

Employing the theory of minimal surfaces R. Schoen and Yau (1979) showed that
several three-dimensional manifolds, including 3-torus T3, do not have metrics with positive
scalar curvature. Thereafter, Gromov and Lawson (1980), with another approach, proved that
for all n, Tn has no metric with Sg > 0. Furthermore, there are manifolds which do not carry
any metric with zero scalar curvature either, cf. Jerry L. Kazdan and Warner (1975b).

However, these results do not provide obstructions to negative scalar curvature, only
for non-negative scalar curvature. In fact, Jerry L. Kazdan and Warner (1975c) proved that
every compact manifold M admits a metric whose scalar curvature is negative somewhere on
M . By combining these restrictions with existence theorems for metrics with constant scalar
curvature, Jerry L. Kazdan and Warner (1975a) obtained the following classification theorem,
which was later improved by Bérard Bergery (1981).

Theorem 5.1.4 (BESSE, 2007). Compact manifolds of dimension n ≥ 3 can be divided into
three classes:

(A) Any function on M is the scalar curvature of some metric;

(B) A function on M is the scalar curvature of some metric if and only if either it is identically
zero or negative somewhere; furthermore, any metric with vanishing scalar curvature on
M is Ricci-flat;

(C) A function on M is a scalar curvature if only if it is negative somewhere.

For instance, in the context of the classification theorem mentioned, the n-dimensional
sphere Sn belongs to class (A), the n-dimensional torus Tn falls into class (B), while the
connected sum of two n-dimensional tori Tn#Tn is in class (C) (BÉRARD BERGERY, 1981).

Consequently, we have topological obstructions for the existence of metrics with positive
scalar curvature in higher dimensions, and a result with several important applications. For
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instance, the positive mass problem in general relativity (SCHOEN, Richard; YAU, 1979) is
intimately related to the question of the existence of a metric with positive scalar curvature,
which was resolved using minimal surfaces (KAZDAN, Jerry L, 1985). Furthermore, compact
orientable 3-manifolds that admit a metric with positive scalar curvature can be classified into
three distinct classes, as demonstrated in the following result:

Theorem 5.1.5 (GALLOWAY, 2012; GROMOV; LAWSON, 1983). If M is a compact ori-
entable 3-manifold and admits a metric of positive scalar curvature then M must be diffeo-
morphic to:

1. a spherical space (i.e. a quotient of the 3-sphere by a discrete group of isometries).

2. S1 × S2, or

3. a connected sum of the previous two types.

5.2 MOTS TOPOLOGY: A FIRST THEOREM

Some analytical preliminaries are necessary to establish the main theorems of this section.
We will see that the eigenfunction of a certain version of the stability operator for MOTS can
be used to conformally rescale a metric to a metric of positive scalar curvature under certain
conditions. To explore this topic, a generalized stability operator and its properties will be
introduced.

Definition 5.2.1 (Generalized Stability Operator). Let (Σ, γ) be a compact Riemannian
manifold. Given any Q ∈ C∞(Σ) and any a smooth vector field X on Σ, the generalized
stability operator L : C∞(Σ) → C∞(Σ) has the form

L(ψ) := −∆ψ + 2⟨X,∇ψ⟩ + (Q + divX − ∥X∥2)ψ, (56)

where ⟨·, ·⟩ = γ.

The reason to introduce this more abstract concept is that the operators L and L0,
introduced in the previous section, become simply specific cases of the operator L, and one
can show that the principal eigenvalue properties (Lemma 4.2.3) still holding for this the
generalized”version. This abstract approach has been championed by Galloway (2008).

Lemma 5.2.2 (GALLOWAY, 2008). Let (Σn−1, γ) be a compact Riemannian manifold, n ≥ 4.
Consider the generalized stability operator L with Q ∈ C∞(Σ) such that

Q = 1
2Sγ − P, (57)

where Sγ is the scalar curvature of Σ and P ≥ 0. If λ1(L) ≥ 0, then Σ admits a metric of
positive scalar curvature, unless λ1(L) = 0, P = 0 and (Σ, γ) is Ricci-flat.

Proof. The proof starts by observing that it is possible to conformally rescale the metric using
the positive eigenfunction such that the scalar curvature of the conformally rescaled metric is
non-negative.
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Indeed, consider the symmetrized generalized stability operator L0 = −∆+Q, obtained
by taking X = 0. Let f ∈ C∞(Σ) be a positive eigenfunction associated to the eigenvalue
µ1 = µ1(L0). The scalar curvature Sγ̂ of Σn−1 in the conformally rescaled metric γ̂ = f 2/(n−2)γ

is given by:
Sγ̂ = Ω−2[Sγ − 2(n− 2)∆ϕ− (n− 2)(n− 3)|∇ϕ|2], (58)

where Ω = f 1/(n−2) and ϕ = ln Ω. We can express Sγ̂ in a more practical form by noting that

∆ϕ = ∆ ln f 1/(n−2) = div(∇ ln f 1/(n−2)),

= 1
n− 2 div(∇f

f
),

= 1
n− 2( 1

f
∆f − 1

f 2 |∇f |2).

Now, using ∇ϕ = 1
n−2

∇f
f

, the previous identity and substituting into Equation (58) it follows
that

Sγ̂ = f−2/(n−2)
[
Sγ − 2( 1

f
∆f − 1

f 2 |∇f |2) − (n− 3)
(n− 2)

1
f 2 |∇f |2

]
,

finally,

Sγ̂ = f−2/(n−2)
[
Sγ − 2∆f

f
+ (n− 1)

(n− 2)
|∇f |2

f 2

]
. (59)

As f is the positive eigenfunction associated to the eigenvalue µ1, we have

L0(f) = −∆f + Qf = µ1f, (60)

and, substituting Equation (57) into Equation (59), we arrive at the equality,

Sγ̂ = f−2/(n−2)
[
2µ1 + 2P + (n− 1)

(n− 2)
|∇f |2

f 2

]
. (61)

Notice the following fact: Lemma 4.2.5 is independent of Q ∈ C∞(M), consequently, that
lemma holds for the generalized version L. Therefore, we can conclude that µ1 ≥ λ1 ≥ 0.

Since all terms in the brackets above are non-negative, Equation (61) implies that
Sγ̂ ≥ 0. According to Theorem 5.1.4, if Sγ̂ > 0 at some point, then Σ belongs to class (A),
and as a result, Σ carries a metric of strictly positive scalar curvature.

On the other hand, if Sγ̂ vanishes identically, then by Equation (61) we infer that
µ1 ≡ 0, P ≡ 0, and f is a positive constant. Furthermore, the inequality µ1 ≥ λ1 ≥ 0 implies
that λ1 = 0. From these facts and Equation (60), we find that Q vanishes identically. Moreover,
as P ≡ 0 we have

Q = 1
2Sγ − P = 1

2Sγ,

so Sγ vanishes identically. Then, Σ admits a metric whose scalar curvature is vanishes identically.
By Theorem 5.1.4, we conclude that Σ falls into either class (A) or (B). If (Σ, γ) is not Ricci-
flat, then Σ is in class (A) and admits a metric of positive scalar curvature. However, if (Σ, γ)
is Ricci-flat, it falls into class (B). From this, the statement is proven.



Chapter 5. Topology of Black Holes 86

Corollary 5.2.3 . Lemma 5.2.2 is applicable for the stability operator L, as in Definition 4.2.2,
with Q given by Equation (48).

First, let us recall some definitions. Let Σn−1 be a closed MOTS (compact without
boundary) in an initial data set (Sn, h,K). We say that an initial data set obeys the DEC if
holds that ρ ≥ |J |h, as defined on Definition 2.2.6. Let n⃗ denote the outward pointing unit
normal vector field of Σ in S. In this context, the null expansion θ+ is explicitly defined by
Equation (42). For convenience, we will henceforth omit the positive sign in the notation. With
these definitions in place, we are now prepared to state our first theorem.

Theorem 5.2.4 (GALLOWAY; SCHOEN, Richard, 2006; GALLOWAY, 2018). Let (Sn, h,K),
n ≥ 3, be an initial data obeying the DEC. If Σn−1 is a weakly outermost closed MOTS in
Sn then Σ is of positive Yamabe type, unless Σ is Ricci-flat (flat if n = 3, 4) in the induced
metric, (J(n⃗) + ρ) vanishes identically on Σ and λ1(L) = 0.

Proof. Let n⃗ be the outward pointing unit normal vector field of Σ in S, and let i : Σn−1 ↪→ Sn

be the inclusion map of Σ into S. Let ψ ∈ C∞(Σ), and define the normal variation of i by the
smooth map Φ(x, t) : Σ × (−t0, t0) → S, where t0 > 0, given by Φ(x, t) = exp⊥

x (tψ(x)n⃗x).
As Σ is compact, there is a tubular neighborhood containing Σ and the map is well-defined
for t0 small enough. In particular, the normal variation vector field of Φ is given by V = ψn⃗.

For any t ∈ (−t0, t0), we denote Σt := Φt(Σ) and let θ(t) denote the null expansion
of the hypersurface Σt, i.e., θ(t) := HΣt + trΣt K, where HΣt is the mean curvature of Σt in
S associated with the outward pointing unit normal vector field n⃗t(x) = 1

ψ
∂Φ
∂t

(x, t) of Σt and
trΣt K is the trace of K on Σt in the induced metric (Φ∗

th). As Proposition 4.2.1 shows, we
have

∂θ

∂t

∣∣∣∣
t=0

= L(ψ) = −∆ψ + 2⟨X,∇ψ⟩ + (Q+ divX − |X|2)ψ, (62)

Q = 1
2SΣ − (ρ+ J(n⃗)) − 1

2∥Kn⃗ + K∥2, (63)

where ∂
∂t

∣∣
t=0 := V , SΣ is the scalar curvature of Σ, Kn⃗ is the second-fundamental form of Σ

associated with n⃗, X is a specific vector field on Σ and ⟨·, ·⟩ denotes the induced metric on Σ.
Let λ1 be the principal eigenvalue of L as in Lemma 4.2.3, which recall, is real. We

can choose the function ψ above to be a strictly positive principal eigenfunction. Using such
an eigenfunction ψ to define our variation, we have from Equation (62),

∂θ

∂t

∣∣∣∣
t=0

= L(ψ) = λ1ψ. (64)

The eigenvalue λ1 cannot be negative; otherwise, Equation (64) would imply ∂θ
∂t
< 0 on Σ.

Since we have θ = 0 on Σ, this would mean that, for t > 0 sufficiently small, Σt would
be outer trapped and homologous to Σ, contrary to our assumptions of Σ being a weakly
outermost MOTS (see Definition 4.1.17). Hence, λ1 ≥ 0, and, consequently, Σ is stable (see
Definition 4.2.4). By applying Lemma 5.2.2 to L with

P = (ρ+ J(n⃗)) + 1
2∥Kn⃗ + K∥2 ≥ 0,
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which is greater than zero by the DEC hypothesis, we show that Σ admits a metric of positive
scalar curvatures unless ρ + J(n⃗) = 0, λ1 = 0 on Σ and Σ is Ricci-flat in the induced
metric.

As one may observe, under special conditions in four-dimensional spacetimes, the above
theorem still permits the existence of a toroidal topology for Σ2. In other words, Σ may
fall into class (B) as defined in Theorem 5.1.4, and consequently, it may possess toroidal
topology. Typically, one would like to rule out the existence of black hole spacetimes with
toroidal topology in dimension four, which suggests that improvements to the theorem may
be desirable.

5.3 MOTS TOPOLOGY: SECOND THEOREM

In this section, we will study the consequences of λ1(L) = 0, eliminate the exceptional
circumstance of the Theorem 5.2.4 and reformulate it assuming that DEC holds only on the
initial data. The key element for the proof of the initial version in Theorem 5.3.4 below is the
splitting Lemma 5.3.2 together with the following analytical result.

Lemma 5.3.1 . Let Σ be a MOTS within an initial data set (Sn, h,K). If λ1(L) = 0,
then the adjoint operator L∗ (with respect to the L2 product) also has a simple eigenvalue
λ1(L∗) = 0. Furthermore, there exists a smooth positive eigenfunction ϕ∗ of L∗ associated
with this eigenvalue.

Before we proceed with the proof, let us recall some important concepts. A bounded
linear operator T : X → Y between Banach space is called Fredholm if it has closed range
and both its kernel and cokernel (defined as coker(T ) := Y/ Im(T )) are finite-dimensional.
The index of a Fredholm operator is defined as the difference between the dimensions of its
kernel and cokernel, denoted as

indT := dim kerT − dim cokerT.

Proof of Lemma 5.3.1. Firstly, we redefine the MOTS stability operator in the context of
Hilbert spaces, viewing it as a bounded linear map L : W 2,2(M) → L2(M) (see (HEBEY,
2000) or (AUBIN, 1998) for the definition of functional spaces on manifolds).

From (LEE, D. A., 2019, Corollary A.9), it follows that the operator L : W 2,2(M) →
L2(M) is a Fredholm operator with index 0. By the definition of index, we have dim(kerL) =
dim coker(L). In the case of Hilbert spaces, we can show that coker(L) ≈ Im(L)⊥ and it is
straightforward to see that Im(L)⊥ = kerL∗. Therefore,

dim ker(L) = dim coker(L) = dim Im(L)⊥ = dim ker(L∗).

Since λ1(L) = 0 is a simple eigenvalue, we conclude that dim ker(L∗) = 1. As a result,
there exists a eigenfunction ϕ∗ ∈ ker(L∗), unique up to multiplication by a constant, associated
with the eigenvalue λ1(L∗) = 0. Furthermore, L∗ is also a elliptic operator, by the elliptic
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regularity (LEE, D. A., 2019, Theorem A.4), as L∗ϕ∗ = 0 and L has smooth coefficients, then
ϕ∗ is smooth.

To show that we can choose the eigenfunction ϕ∗ to be positive, we write ϕ∗ = ϕ∗
+ −ϕ∗

−,
where ϕ∗

± ≥ 0 denote the positive and negative parts of ϕ∗, respectively. Next, we choose a
large enough constant C > 0 such that the strong maximum principle can be applied to the
operator L∗ −C (see (GILBARG; TRUDINGER, 2001, Theorem 3.5) for the classical version or
(LEE, D. A., 2019, Theorem A.2) for the Riemannian version). Since (L∗−C)ϕ∗

± = −Cϕ∗
± ≤ 0,

the strong maximum principle implies that if ϕ∗
+ attains a nonpositive minimum2 on Σ, then

ϕ∗
+ must be constant on all Σ. Consequently, either ϕ∗

+ > 0 on Σ or ϕ∗
+ ≡ 0 on Σ. Similar

arguments and consequences apply to ϕ∗
−. However, it is not possible for both ϕ∗

+ and ϕ∗
− to

be positive simultaneously. Therefore, we can choose ϕ∗ > 0 as the positive eigenfunction.

Lemma 5.3.2 (GALLOWAY, 2008). Let (Σ, γ) be a MOTS within an initial data set
(Sn, h,K). If λ1(L) = 0, where L is the MOTS stability operator, then up to isometry,
there exists a neighborhood W of Σ such that:

1. W = (−t0, t0) × Σ and h
∣∣
W

has the orthogonal decomposition,

h
∣∣
W

= ϕ2dt2 + γt

where ϕ = ϕ(t, x) and γt is the induced metric on Σt = {t} × Σ.

2. The outward null expansion θ(t) of each Σt is constant, with respect to n⃗t, where
n⃗t = 1

ϕ
∂
∂t

is the outward pointing unit normal vector field on Σt.

Proof. Let n⃗ be the outward pointing unit normal vector field on Σ in S. For each smooth
function u ∈ C∞(Σ), we denote by Σ[u] the image of map Fu(x) = exp⊥

x (u(x)n⃗x), for all
x ∈ Σ such that |u(x)| is small enough throughout Σ. The map is well-defined and Fu : Σ → S

describes an embedding such that the hypersurface Σ[u] = Fu(Σ) is a hypersurface close to
Σ = Σ[0].

In the same sense of the Proof of Theorem 5.2.4, denote by θ(u) the null expansion
of the hypersurface Σ[u] with respect to the (suitably normalized) outward pointing unit
normal vector field of Σ[u]. For a small ball U ⊂ C∞(Σ) × R, we introduce the operator
Θ : U ⊂ C∞(Σ) × R → C∞(Σ) × R, such that

Θ(u, k) =
(
θ(u) − k,

∫
Σ
u

)
, (u, k) ∈ U . (65)

First, we calculate the directional derivative of Θ at (0, 0) using the definitions regarding
analysis in Banach Spaces (see Appendix B.1). Let (u, k) ∈ U , then

δΘ((0, 0); (u,k)) =
(
∂

∂t

∣∣∣∣
t=0
θ(tu) − k,

∫
Σ
u

)
.

2 Remember that, for a smooth function u, if we replace the usual assumption Lu ≥ 0 by Lu ≤ 0, then the
theorem still holds, with the ”nonnegative maximum” replaced by ”nonpositive minimum”.
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In particular, the variation of the family of smooth functions θ(tu) can be obtained by the
variation Φ : (−t0, t0) × Σ → S, t0 > 0 small enough, such that Φ(x,t) := exp⊥

x (tu(x)n⃗x)
which has the variation vector field V = un⃗. We already have determined the variation of this
family a one parameter of the null expansion by Proposition 4.2.1, therefore, its linearization
at (0, 0) is

δΘ((0, 0); (u,k)) =
(
L(u) − k,

∫
Σ
u

)
. (66)

In order to construct the desired neighborhood, our goal is to apply the inverse function
theorem to the function Θ. However, before doing so, we need to address the regularity of this
operator and ensure that the appropriate Banach spaces are being considered.

At this point, it is important to note that θ(u), in a coordinate frame, gives rise to
a quasi-linear second-order differential operator. This operator can be extended globally to a
differential operator θ : u ∈ C∞(Σ) 7→ θ(u) ∈ C∞(Σ). By the discussion in Appendix B.4,
we can redefine the domain and codomain to Hölder spaces on manifolds, specifically θ :
C2,α(Σ) → C0,α(Σ), where α ∈ (0, 1]. We can then conclude that the operator θ and
Θ : U ⊂ C2,α(Σ) ×R → C0,α(Σ) ×R has regularity C1, as explained in the appendix, where U
is an appropriate open set. Additionally, it is worth noting that the Fréchet derivative coincides
with the directional derivative. Henceforth, we will work with the redefined version of Θ on
suitable Hölder spaces.

The kernel of θ′(0) = L consists only of constant multiples of the eigenfunction ϕ

associated with the principal eigenvalue λ1(L), because, by hypothesis, λ1(L) = 0, and the
eigenfunction is unique up to a multiplicative constant, as stated in Lemma 4.2.3.

From Lemma 5.3.1, let ϕ∗ be the smooth eigenfunction of the adjoint operator L∗

associated with the simple eigenvalue λ(L∗) = 0. As the kernel of L and L∗ has dimension one,
we can use the following standard result known as solvability criterion: the equation Lu = f is
solvable if and only if

∫
fϕ∗ = 0 (AUBIN, 1998, p. 126). From these facts, it will follow that

Θ has an invertible derivative at (0, 0).
Injectivity: Let (u, k) ∈ U such that (L(u) − k,

∫
Σ u) = (0, 0). By the solvability criterion, we

have
∫

Σ kϕ
∗ = 0, where ϕ∗ > 0 is the positive eigenfunction of L∗ associated with λ1(L∗) = 0.

Thus, k = 0 since k is a constant and ϕ∗ > 0. As a consequence, u ∈ kerL because Lu = 0.
Furthermore, since λ1(L) = 0 is a simple eigenvalue, there exists some constant c ∈ R such
that u = cϕ, where ϕ is the eigenfunction associated with λ1(L). However, since

∫
Σ u = 0

and ϕ > 0, it follows that c = 0. Therefore, we conclude that (u, k) = (0, 0).
Surjectivity: Given (f, s) ∈ C0,α(Σ) × R, our goal is to find (u, k) ∈ U ⊂ C2,α(Σ) × R such
that (L(u) − k,

∫
Σ u) = (f, s). We choose the constant k ∈ R as

k := −
∫

Σ fϕ
∗∫

Σ ϕ
∗ ,

noting that
∫

Σ(f + k)ϕ∗ = 0. From the solvability condition, there exists u0 ∈ C2,α(Σ) such
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that
L(u0) = f + k ⇐⇒

∫
Σ
(f + k)ϕ∗ = 0.

We define the solution u := u0 + cϕ where

c =
(s−

∫
Σ u0)∫

Σ ϕ
.

It is important to observe that
∫

Σ u = s and L(u) = L(u0) = f + k, since ϕ ∈ kerL and L
are linear. Therefore, with the chosen pair (u, k), the surjectivity of the operator is established.

Since Θ it is a map between Banach spaces, it is a linear homeomorphism by the open
mapping theorem, we are thus allowed to apply the inverse function theorem as desired (see
Theorem B.1.4). Therefore, combining that Θ′(0, 0) is invertible and Θ has regularity C1, the
inverse function theorem guarantees that Θ is local diffeomorphism. Consequently, there exists
ε > 0 and a smooth map (u, k) : (−ε, ε) → C2,α(Σ) × R such that

Θ(u(t), k(t)) =
(
θ(u(t)) − k(t),

∫
Σ
u(t)

)
= (0, t) ∀t ∈ (−ε, ε) (67)

The equation Θ(u(t), k(t)) = (0, t) implies that each surface Σt := Σ[u(t)] has constant null
expansion. Applying the chain rule, we have (θ ◦ u(t))′(0) = θ′(0)(u′(0)) = L(u′(0)) = k′(0).
By the solvability condition, k′(0) is orthogonal to ϕ∗ which implies that k′(0) = 0. Furthermore,
u′(0) ∈ ker θ′(0) = kerL and from

∫
Σ u(t) = t, follows that

∫
Σ u

′(0) = 1. Hence, we conclude
that u′(0) = const · ϕ > 0, and, in particular, u(t) must be a smooth family of functions for t
small enough.

This means that, for t sufficiently small, the hypersurfaces Σt form a smooth foliation
of a neighborhood of Σ in Sn by hypersurfaces of constant null expansion. In particular, by
taking ε sufficiently small, we can identify a tubular neighborhood of Σ in Sn with Σ × (−ε, ε),
via the map Ψ : Σ × (−ε, ε) → Sn defined by Ψ(x, t) = Fu(t)(x).

Under the diffeomorphism Ψ, one can introduce coordinates (t, xi) in a neighborhood
W of Σ in S, such that, with respect to these coordinates, W = (−t0, t0) × Σ, and for each
t ∈ (−t0, t0), the t-slice Σt has constant null expansion θ(t) with respect to n⃗t, where n⃗t is
the outward pointing unit normal vector field to each Σt in S. In addition, the coordinates
(t, xi) can be chosen so that ∂

∂t
= ϕn⃗t, for some positive function ϕ = ϕ(t, xi) on W .

The lemma above does not provide information about the sign of each θ(t), but it
remains constant on each leaf. However, assuming that the initial data set satisfies the DEC
and that Σ is weakly outermost MOTS, we can achieve a stronger version, where each slice
Σt has identically vanishing constant expansion, i.e., each Σt is a MOTS, and immediately
implies Theorem 5.3.4.

Theorem 5.3.3 . (GALLOWAY, 2018) Let (Sn, h,K), n ≥ 3, be an initial data set satisfying
the DEC, ρ ≥ |J |h. Suppose Σ is a weakly outermost MOTS in Sn that does not admit a
metric of positive scalar curvature. Then, there exists an outer neighborhood U ≈ [0, ε) × Σ
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of Σ such that each slice Σt = {t} × Σ, t ∈ [0, ε) is a MOTS. In fact, each such slice has
vanishing outward null second fundamental form, and is Ricci-flat.

Proof. Since Σ is a weakly outermost MOTS in Sn, Σ is stable (see proof of Theorem 5.2.4)
and then λ1(L) ≥ 0. Given the hypothesis that Σ does not admit a metric of positive scalar
curvature and applying Lemma 5.2.2 to L, with P = (ρ + J(n⃗)) + 1

2∥Kn⃗ + K∥2, leads to
λ1 = 0. Therefore, there exists a neighborhood W = (−t0, t0) × Σ of Σ with the properties
specified in Lemma 5.3.2. For all values of t in the interval (−t0, t0), the outward null expansion
θ+ = θ+(t) of the surface Σt has constant value. By Remark 6, the null expansion θ+ = θ+(t)
of the foliation can be expressed by

∂θ+

∂t
(t) = LΣt(ψt) = −∆ψt+2⟨X,∇ψt⟩+(Q+ 1

2θ+[θ− +2K(n⃗, n⃗)]+divX−|X|2)ψt, (68)

where it is to be understood that, for each t, the above terms are defined on Σt. For example,
∆ = ∆t is the Laplacian on Σt, Q = Qt is now defined on Σt, and so on.

The constancy of each θ+(t), together with the assumption that Σ is weakly outermost,
implies that θ+(t) ≥ 0 for all t ∈ [0, t0). Let ε ∈ (0, t0), we aim to demonstrate that θ+(t) = 0
for all t ∈ [0, ε). For this purpose, we will rewrite the Equation (68) as follows,

LΣt(ψt) − 1
2θ+[θ− + 2K(n⃗, n⃗)]ψt = L0

Σt
(ψt), (69)

where
L0

Σt
(ψt) = −∆ψt + 2⟨X,∇ψt⟩ + (Q+ divX − |X|2)ψt. (70)

Now, on [0, ε] × Σ, we choose a constant C such that 1
2 [θ− + 2K(n⃗, n⃗)]ψt ≤ C. Therefore,

combining Equation (69) and the nonnegativity of θ+, we obtain that

L0
Σt

(ψt) ≥ LΣt(ψt) − Cθ+ = eCt
∂

∂t
F (t), for all t ∈ [0, ε), (71)

where F (t) = e−Ctθ+(t). We have that F (0) = 0 and F (t) ≥ 0 on [0, ε). In order to
demonstrate that F (t) = 0 on [0, ε), we need to show that F ′(t) ≤ 0 for all t ∈ [0, ε).

Firstly, suppose there exists t ∈ [0, ε), such that F ′(t) > 0. Then, the Equation (71)
implies that L0

Σt
(ψt) is greater than zero, consequently, by Lemma 4.2.3, λ1(L0

Σt
) > 0. Applying

Lemma 5.2.2 to the operator L0
Σt

, where, in this case, P = Pt = ρt+J(n⃗t)+ 1
2∥Kn⃗t +K∥2

t ≥ 0,
Σt carries a metric of positive scalar curvature. Note that Σ and Σt are diffeomorphic and
denote by Ψ : Σ → Σt the diffeomorphism. Let γ̃t be the metric of positive scalar curvature
in Σt, then the semi-Riemannian manifolds (Σt, γ̃t) and (Σ,Ψ∗γ̃t) are isometric, as a result,
(Σ,Ψ∗γ̃t) admits a metric of positive scalar curvature, which contradicts the hypothesis.

Therefore, we have that F (t) = 0, and hence, θ+(t) = 0 for all t ∈ [0, ε), i.e., each Σt

is a MOTS and does not admits a metric of positive scalar curvature. Since, by Equation (69),
L0

Σt
(ψt) = 0, Lemma 4.2.3 implies λ1(L0

Σt
) ≥ 0 for each t ∈ [0, ε). Finally, by Lemma 5.2.2,

we obtain that for each t ∈ [0, ε), χt := (Kn⃗t + K) = 0 and Σt is Ricci-flat.
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Theorem 5.3.4 . Let (Sn, h,K), n ≥ 3 be an initial data set satisfying the DEC. If Σn−1 is
an outermost MOTS in (Sn, h,K) then Σ admits a metric of positive scalar curvature.

Proof. Suppose that Σ does not admit a metric of positive scalar curvature. In this case,
Theorem 5.3.3 holds and there exists an outer neighborhood of Σ in S such that each leaf is
a MOTS. However, this contradicts the fact that Σ is an outermost MOTS.
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APPENDIX A – STABILITY OPERATOR

Proof of Proposition 4.2.1. Let ϕ : Σn−1 → Mn+1 be a smooth spacelike immersion in the
spacetime (M,g) with trivial normal bundle1. Then there exist K+, K− ∈ X⊥(ϕ) which are
future directed null and we can choose g(K+, K−) = −2. Furthermore, the outward null
expansion scalar is defined as θ = −(n− 1)g(K+, H

ϕ) where Hϕ is the mean curvature vector
field of Σ and we shall assume that θ = 0.

We now consider a variation of ϕ in M . Let Φ : (−δ, δ) × Σ −→ M be a variation where
Φ(0, x) = ϕ(x), denote Φt(x) := Φ(t, x) and take V as the associated normal variation vector
field.

As discussed in Theorem 1.2.2, suppose that Φt is a spacelike immersion ∀t ∈ (−δ, δ)
and ∃ lt ∈ X⊥(Φt) which is null future-pointing and l0 = K+. Analogously, define θ(t) :=
−(n− 1)g(lt, HΦt) for each Σt.

Figure A.1 – Variation Σt of a MOTS.

Fix x ∈ Σ, (U, xa) chart on Σ and (Ũ , ζ i) chart on M such that Φt(U) ⊂ Ũ and
let p := Φt(x). In coordinates, it holds that lt = li(t) ∂

∂ζi ◦ Φt and h = ϕ∗g is the induced
Riemannian metric on Σ and ht = Φ∗

tg is the induced metric on Σt. Therefore, writing θ(t) in
coordinates:

θ(t) = −(n− 1)gp(lt, HΦt),

= −(n− 1)gp(li(t)
∂

∂ζ i
◦ Φt,

1
n− 1h

ab
t II

Φt( ∂

∂xa
,
∂

∂xb
)),

= −gp(li(t)
∂

∂ζ i
◦ Φt, h

ab
t D

Φt
∂

∂xa
(dΦt(

∂

∂xb
))),

1 What follows is a very long calculation. We carry it out for the more general case of immersions, but to avoid
notational conflict with earlier versions of the text, for simplicity we have changed here our conventions
regarding the normal null fields and normalization of the mean value curvature vector. Namely, comparing
with the main text we take here K± :=

√
2ℓ± and Hϕ := H⃗ϕ

n−1 , where the right-hand side of these equations
are the quantities as defined in the main text, while the left-hand side are the versions we adopt in this
appendix.
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since lt ∈ X⊥(Φt). Now, writing the covariant derivative in theses coordinates:

DΦt
∂

∂xb

(dΦt(
∂

∂xb
)) = ( ∂2Φj

t

∂xa∂xb
+ Γjlk ◦ Φt

∂Φl
t

∂xa
∂Φk

t

∂xb
) ∂

∂ζj
◦ Φt,

and working on the coordinate expression of θ(t) again we arrive at

θ(t) = −habt (gij ◦ Φt)li(t) · ( ∂2Φj
t

∂xa∂xb
+ Γjlk ◦ Φt

∂Φl
t

∂xa
∂Φk

t

∂xb
).

Define Ajab(t) := ( ∂2Φj
t

∂xa∂xb + Γjlk ◦ Φt
∂Φl

t

∂xa

∂Φk
t

∂xb ), taking the derivative of the previous
equation and applying the Leibniz’s rule:

θ′(0) = − ∂habt
∂t

∣∣∣∣
t=0

(gij ◦ Φt)li(0) · Ajab(0)

− habt
∂(gij ◦ Φt)

∂t

∣∣∣∣
t=0

li(0) · Ajab(0)

− habt (gij ◦ Φt)
∂li
∂t

∣∣∣∣
t=0

· Ajab(0)

− habt (gij ◦ Φt)li(0) · ∂A
j
ab

∂t

∣∣∣∣∣
t=0

,

from previous definitions and the chain-rule the following holds:

θ′(0) = − ∂habt
∂t

∣∣∣∣
t=0
gϕ(x)(K+, II

ϕ( ∂

∂xa
,
∂

∂xb
))

− hab
(
∂gij
∂ζk

◦ ϕ
)
V kli(0) ·

(
Dϕ

∂
∂xa

(dϕ( ∂

∂xb
))
)j

− hab(gij ◦ ϕ)∂li
∂t

∣∣∣∣
t=0

·
(
Dϕ

∂
∂xa

(dϕ( ∂

∂xb
))
)j

− hab(gij ◦ ϕ)Ki
+ · ∂A

j
ab

∂t

∣∣∣∣∣
t=0

.

There are some more involved terms that will be worked out one by one. Differentiation
of Ajab(t) at t = 0 is easily handled using the definition of the variation vector field of Φt and
that Φ(x, 0) = ϕ(x) yielding

∂Ajab
∂t

∣∣∣∣∣
t=0

= ∂2V j

∂xa∂xb
+ (∂Γjlk

∂ζm
◦ ϕ)V m∂ϕ

k

∂xa
∂ϕl

∂xb
+ (Γjlk ◦ ϕ)

(
∂V l

∂xa
∂ϕk

∂xb
+ ∂ϕl

∂xa
∂V k

∂xb

)
. (72)

Proceeding with ∂hab
t

∂t

∣∣∣
t=0

, notice that given an invertible matrix M(t), i.e.M(t)M−1(t) =
In−1, we have dM−1

dt
= −M−1 dM

dt
M−1, then

−∂habt
∂t

∣∣∣∣
t=0

= hac
∂(ht)cd
∂t

∣∣∣∣
t=0
hdb,

noticing that V ∈ X⊥(ϕ) and taking the coordinate version of Lemma 1.2.6 then
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∂(ht)cd
∂t

∣∣∣∣
t=0

= −2g(IIϕ( ∂

∂xc
,
∂

∂xd
), V )

and,
−∂habt

∂t

∣∣∣∣
t=0

= −2hachdbg(IIϕ( ∂

∂xc
,
∂

∂xd
), V )

The normal bundle of ϕ has rank two, then K± is a basis for each tangent space.
Applying this fact and g(K+, K−) = −2 to the second fundamental form

IIϕ(X, Y ) = −1
2g(II

ϕ(X, Y ), K−)K+ − 1
2g(II

ϕ(X, Y ), K+)K− ∀X, Y ∈ X(Σ), (73)

and let χ±(X, Y ) = −g(K±, II
ϕ(X, Y )) ∀X, Y ∈ X(Σ) the second fundamental form associ-

ated with K± then

−∂habt
∂t

∣∣∣∣
t=0

= −hachdb
(
χ+( ∂

∂xc
,
∂

∂xd
)g(K−, V ) + χ−( ∂

∂xc
,
∂

∂xd
)g(K+, V )

)
,

with (73), note that

−∂habt
∂t

∣∣∣∣
t=0
g(K+, II

ϕ( ∂

∂xa
,
∂

∂xb
)) = ∂habt

∂t

∣∣∣∣
t=0
χ+( ∂

∂xa
,
∂

∂xb
).

Define the following two quantities

(χ+, χ−)h = habhcdχ+( ∂

∂xa
,
∂

∂xb
)χ−( ∂

∂xc
,
∂

∂xd
), (74)

∥χ±∥2
h = habhcdχ±( ∂

∂xa
,
∂

∂xb
)χ±( ∂

∂xc
,
∂

∂xd
), (75)

then

−∂habt
∂t

∣∣∣∣
t=0
g(K+, II

ϕ( ∂

∂xa
,
∂

∂xb
)) = ∥χ+∥2

h · g(K−, V ) + (χ+, χ−)h · g(K+, V ), (76)

finally, with (13), (76) and ∂gij

∂ζk ◦ ϕ = (gimΓmjk + gjmΓmik) ◦ ϕ we arrive at

θ′(0) =∥χ+∥2
h · g(K−, V ) + (χ+, χ−)h · g(K+, V )

− hab(gimΓmjk + gjmΓmik) ◦ ϕ · V kli(0) ·
(
Dϕ

∂
∂xa

(dϕ( ∂

∂xb
))
)j

− hab(gij ◦ ϕ)∂li
∂t

∣∣∣∣
t=0

·
(
Dϕ

∂
∂xa

(dϕ( ∂

∂xb
))
)j

− hab(gij ◦ ϕ)Ki
+ · ∂A

j
ab

∂t

∣∣∣∣∣
t=0

.
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We now work out the other terms. First, we change some indexes and separate terms in a
convenient way

θ′(0) =∥χ+∥2
h · g(K−, V ) + (χ+, χ−)h · g(K+, V )

− hab(gij ◦ ϕ)∂li
∂t

∣∣∣∣
t=0

·
(
Dϕ

∂
∂xa

(dϕ( ∂

∂xb
))
)j

− hab(gij ◦ ϕ)(Γimk ◦ ϕ) · V klm(0) ·
(
Dϕ

∂
∂xa

(dϕ( ∂

∂xb
))
)j

− hab(gij ◦ ϕ)(Γjmk ◦ ϕ)V kKi
+ ·
(
Dϕ

∂
∂xa

(dϕ( ∂

∂xb
))
)m

− hab(gij ◦ ϕ)Ki
+ · ∂A

j
ab

∂t

∣∣∣∣∣
t=0

,

and, in coordinates, the covariant derivative components from Φ has the following expression

DΦ
∂
∂t

(l)
∣∣∣
t=0

=
[
∂li

∂t
(0) + (Γimk ◦ Φ)(0)∂Φk

∂t
(0)lm(0)

]
∂

∂ζ i
◦ Φ(0),

=
[
∂li

∂t
(0) + (Γimk ◦ ϕ)V klm(0)

]
∂

∂ζ i
◦ ϕ,

then, we re-express θ′(0) as

θ′(0) =∥χ+∥2
h · g(K−, V ) + (χ+, χ−)h · g(K+, V )

− habg(DΦ
∂
∂t

l
∣∣∣
t=0
, Dϕ

∂
∂xa
dϕ( ∂

∂xb
))

− hab(gij ◦ ϕ)(Γjmk ◦ ϕ)V kKi
+ ·
(
Dϕ

∂
∂xa

(dϕ( ∂

∂xb
))
)m

− hab(gij ◦ ϕ)Ki
+ · ∂A

j
ab

∂t

∣∣∣∣∣
t=0

.

Developing the covariant derivative of ϕ, we can relate the previous equation with the curvature
tensor, ∂Aj

ab

∂t

∣∣∣
t=0

and some other terms, but we need some massaging first. Notice that

Dϕ
∂

∂xa
Dϕ

∂

∂xb

V = Dϕ
∂

∂xa

[
∂V j

∂xb
+ (Γjlk ◦ ϕ)V l∂ϕ

k

∂xb

]
∂

∂ζj
◦ ϕ,

=
[
∂2V j

∂xa∂xb
+ (Γjlk ◦ ϕ) ∂ϕ

l

∂xa
∂V k

∂xb

]
∂

∂ζj
◦ ϕ

+
[

(∂Γjlm
∂ζk

◦ ϕ)∂ϕ
k

∂xa
∂ϕl

∂xb
V m + (Γjlk ◦ ϕ)∂V

l

∂xa
∂ϕk

∂xb
+ (Γjnm ◦ ϕ)V m ∂2ϕn

∂xa∂xb

]
∂

∂ζj
◦ ϕ

+
[
(Γjnm ◦ ϕ)(Γnlk ◦ ϕ)V k ∂ϕ

l

∂xb
∂ϕm

∂xa

]
∂

∂ζj
◦ ϕ,
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combining Equation (72) with the previous equation, and changing some indices, we obtain

Dϕ
∂

∂xa
Dϕ

∂

∂xb

V =
[
∂Ajab
∂t

∣∣∣∣∣
t=0

− (∂Γjlk
∂ζm

◦ ϕ)∂ϕ
k

∂xa
∂ϕl

∂xb
V m

]
∂

∂ζj
◦ ϕ

+
[

(∂Γjlm
∂ζk

◦ ϕ)∂ϕ
k

∂xa
∂ϕl

∂xb
V m + (Γjnm ◦ ϕ)V m ∂2ϕn

∂xa∂xb

]
∂

∂ζj
◦ ϕ

+
[
(Γnlm ◦ ϕ)(Γjnk ◦ ϕ)∂ϕ

k

∂xa
∂ϕl

∂xb
V m

]
∂

∂ζj
◦ ϕ.

Now, remember that,

Rj
lkm∂j = R(∂k, ∂m)∂l, and Rj

lkm = ∂Γjlm
∂ζk

− ∂Γjlk
∂ζm

+ ΓnlmΓjnk − ΓnlkΓjnm, (77)

the curvature in coordinates into the second covariant derivative term yields:

Dϕ
∂

∂xa
Dϕ

∂

∂xb

V =
[
∂Ajab
∂t

∣∣∣∣∣
t=0

+ (Γjnm ◦ ϕ)V m ∂2ϕn

∂xa∂xb

]
∂

∂ζj
◦ ϕ

+
[(
Rj
lkm + (Γnlk ◦ ϕ)(Γjnm ◦ ϕ)

) ∂ϕk
∂xa

∂ϕl

∂xb
V m

]
∂

∂ζj
◦ ϕ,

=
[
∂Ajab
∂t

∣∣∣∣∣
t=0

+ V m(Γjnm ◦ ϕ)
(
Dϕ

∂
∂xa
dϕ( ∂

∂xb
)
)n]

∂

∂ζj
◦ ϕ

+
[
R(dϕ( ∂

∂xa
), V )dϕ( ∂

∂xb
)
]
∂

∂ζj
◦ ϕ,

that becomes, after rearranging and changing indices,

Dϕ
∂

∂xa
Dϕ

∂

∂xb

V+R(V, dϕ( ∂

∂xa
))dϕ( ∂

∂xb
) =

[
∂Ajab
∂t

∣∣∣∣∣
t=0

+ V k(Γjmk ◦ ϕ)
(
Dϕ

∂
∂xa
dϕ( ∂

∂xb
)
)m]

∂

∂ζj
◦ϕ.

Therefore, we end up with the more concise expression

θ′(0) =∥χ+∥2
h · g(K−, V ) + (χ+, χ−)h · g(K+, V )

− habg(DΦ
∂
∂t

l
∣∣∣
t=0
, Dϕ

∂
∂xa
dϕ( ∂

∂xb
))

− habg(Dϕ
∂

∂xa
Dϕ

∂

∂xb

V +R(V, dϕ( ∂

∂xa
))dϕ( ∂

∂xb
), K+).

Henceforth, geometric quantities will be identified and rewritten looking for dependen-
cies on the metric h. Let u⃗, n⃗ be vector fields defined as u⃗ := K++K−

2 and n⃗ := K+−K−
2 .

Clearly, u⃗ is timelike, g(u⃗, u⃗) = −1, and n⃗ spacelike, g(n⃗, n⃗) = 1, even more, u⃗ and n⃗ are
orthogonal. Let {Ei} a h-orthornomal frame and Ea

i ∈ C∞(Σ) such that hab =
∑n−1

i=1 E
a
i E

b
i ,
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the curvature term can be identified as Ricci, actually giving the Ricci tensor, since

habg(R(V, dϕ( ∂

∂xa
))dϕ( ∂

∂xb
), K+) =

n−1∑
i=1

g(R(V, dϕ( ∂

∂xa
))dϕ( ∂

∂xb
), K+)

=
n−1∑
i=1

Ea
i E

b
i g(R(V, dϕ(Ei))dϕ(Ei), K+)

= Ric(V,K+) + g(R(V, u⃗)u⃗, K+) − g(R(V, n⃗)n⃗,K+)

= Ric(V,K+) − 1
2g(R(V,K+)K+, K−)

so,

θ′(0) =∥χ+∥2
h · g(K−, V ) + (χ+, χ−)h · g(K+, V )

− habg(DΦ
∂
∂t

l
∣∣∣
t=0
, Dϕ

∂
∂xa
dϕ( ∂

∂xb
))

− habg(Dϕ
∂

∂xa
Dϕ

∂

∂xb

V,K+)

−Ric(V,K+) + 1
2g(R(V,K+)K+, K−).

Decomposing the covariant derivative of ϕ into tangent and normal parts with (73) yields

Dϕ
∂

∂xa
dϕ( ∂

∂xb
) = dϕ

(
∇Σ

∂
∂xa

∂

∂xb

)
+ 1

2χ+( ∂

∂xa
,
∂

∂xb
)K− + 1

2χ−( ∂

∂xa
,
∂

∂xb
)K+,

= dϕ

(
(ΓΣ)cab

∂

∂xc

)
+ 1

2χ+( ∂

∂xa
,
∂

∂xb
)K− + 1

2χ−( ∂

∂xa
,
∂

∂xb
)K+,

and focusing on the covariant derivative of Φ and on the tangent quantity, since l ∈ X⊥(Φ),
then

g(DΦ
∂
∂t

l
∣∣∣
t=0
, dϕ( ∂

∂xc
)) = g(DΦ

∂
∂t

l, dΦ( ∂

∂xc
))
∣∣∣∣
t=0
,

= −g(l, DΦ
∂
∂t

dΦ( ∂

∂xc
))
∣∣∣∣
t=0
,

= −g(l, II( ∂

∂xc
,
∂

∂t
))
∣∣∣∣
t=0

= −g(l, DΦ
∂

∂xc
dΦ( ∂

∂t
))
∣∣∣∣
t=0
,

= −g(K+, D
Φ

∂
∂xc
V ),

and in order to see that the normal components do not give any contribution let λ+, λ− ∈
C∞(M) and denote χ±( ∂

∂xa ,
∂
∂xb ) = (χ±)ab, so

g(DΦ
∂
∂t

l
∣∣∣
t=0
, K−) = g(λ+K+, K−) = −2λ+,

g(DΦ
∂
∂t

l
∣∣∣
t=0
, K+) = g(λ−K−, K+) = −2λ−,
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thus,

g(DΦ
∂
∂t

l
∣∣∣
t=0
,
1
2(χ+)abK− + 1

2(χ−)abK+) = g(λ−K− + λ+K+,
1
2(χ+)abK− + 1

2(χ−)abK+)

= −λ+(χ+)ab − λ−(χ−)ab

= −g(DΦ
∂
∂t

l
∣∣∣
t=0
,
1
2(χ+)abK− + 1

2(χ−)abK+)

which implies that
g(DΦ

∂
∂t

l
∣∣∣
t=0
,
1
2(χ+)abK− + 1

2(χ−)abK+) = 0.

Employing the lasts three developments into the second line of θ′(0), then

θ′(0) =∥χ+∥2
h · g(K−, V ) + (χ+, χ−)h · g(K+, V )

+ hab(ΓΣ)cabg(K+, D
ϕ

∂
∂xc
V )

− habg(Dϕ
∂

∂xa
Dϕ

∂

∂xb

V,K+)

−Ric(V,K+) + 1
2g(R(V,K+)K+, K−),

(78)

The next step is to obtain a more convenient expression for g(Dϕ
∂

∂xa
Dϕ

∂

∂xb

V,K+). In order to
reach this goal, define ψ± ∈ C∞(Σ) and ω ∈ Ω1(Σ) by

V = ψ+K+ + ψ−K−,

ω(X) := −1
2g(K+, D

ϕ
XK−), ∀X ∈ X(Σ),

first, compute the following quantity with the new expression for V :

g(K+, D
ϕ
XV ) = g(K+, [X(ψ+)K+ + ψ+D

ϕ
XK+] + [X(ψ−)K− + ψ−D

ϕ
XK−]),

= −2X(ψ−) − 2ψ−ω(X) + ψ+g(K+, D
ϕ
XK+),

= −2X(ψ−) − 2ψ−ω(X),

(79)

second, we develop the following expression:

g(K+, D
ϕ
XD

ϕ
Y V ) = g(K+, D

ϕ
X

[
Y (ψ+)K+ + ψ+D

ϕ
YK+ + Y (ψ−)K− + ψ−D

ϕ
YK−

]
),

= g(K+, [XY (ψ+)K+ + Y (ψ+)Dϕ
XK+] + [X(ψ+)Dϕ

YK+ + ψ+D
ϕ
XD

ϕ
YK+]

+ [XY (ψ−)K− + Y (ψ−)Dϕ
XK−] + [X(ψ−)Dϕ

YK− + ψ−D
ϕ
XD

ϕ
YK−]),

= g(K+, ψ+D
ϕ
XD

ϕ
YK+

+ [XY (ψ−)K− + Y (ψ−)Dϕ
XK−] + [X(ψ−)Dϕ

YK− + ψ−D
ϕ
XD

ϕ
YK−],

= −2XY (ψ−) − 2Y (ψ−)ω(X) − 2X(ψ−)ω(Y )

+ ψ+g(K+, D
ϕ
XD

ϕ
YK+) + ψ−g(K+, D

ϕ
XD

ϕ
YK−),

then, with the metric compatibility in the last line we have

g(K+, D
ϕ
XD

ϕ
Y V ) = −2XY (ψ−) − 2Y (ψ−)ω(X) − 2X(ψ−)ω(Y )

− ψ+g(Dϕ
XK+, D

ϕ
YK+) + ψ−(2X(ω(Y )) + g(Dϕ

XK+, DYK−)),
(80)
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taking {dϕ( ∂
∂xa ), K+, K−} with a = 1, . . . , n−1 as a basis for Dϕ

XK±, with Aa± as coefficients
in the tangent terms, then,

Dϕ
XK± = Aa±(X)dϕ( ∂

∂xa
) − 1

2g(K+, D
ϕ
XK±)K− − 1

2g(K−, D
ϕ
XK±)K+,

= Aa±(X)dϕ( ∂

∂xa
) ∓ ω(X)K±,

looking closely at the coefficients Aa±(X), we observe that

g(dϕ( ∂

∂xa
), Dϕ

XK±) = −g(Dϕ
Xdϕ( ∂

∂xa
), K±),

= −g(dϕ(∇Σ
X

∂

∂xa
) + II(X, ∂

∂xa
), K±),

= −g(II(X, ∂

∂xa
), K±),

= −1
2g(χ−(X, ∂

∂xa
)K+ + χ+(X, ∂

∂xa
)K−, K±),

= −1
2χ+(X, ∂

∂xa
)g(K∓, K±),

= χ±(X, ∂

∂xa
),

then,
g(dϕ( ∂

∂xb
), Dϕ

XK±) = g(dϕ( ∂

∂xb
), Aa±(X)dϕ( ∂

∂xa
)) = Aa±(X)hab,

=⇒ Aa±(X) = habχ±(X, ∂

∂xb
),

Dϕ
XK± = habχ±(X, ∂

∂xb
)dϕ( ∂

∂xa
) ∓ ω(X)K±,

and notice that

g(Dϕ
XK+, D

ϕ
YK+) = hefhlmhelχ+(X, ∂

∂xf
)χ+(Y, ∂

∂xm
),

g(Dϕ
XK+, D

ϕ
YK−) = hefhlmhelχ+(X, ∂

∂xf
)χ−(Y, ∂

∂xm
) + 2ω(X)ω(Y ).

Now, returning to Equation (80), and changing the vector fields X and Y by ∂
∂xa and ∂

∂xb and
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contracting hab:

habg(K+, D
ϕ

∂
∂xa
Dϕ

∂

∂xb

V ) = hab
[
−2 ∂2ψ−

∂xa∂xb
− 2∂ψ−

∂xb
ωa − 2∂ψ−

∂xa
ωb − 2ψ−

∂ωb
∂xa

−ψ+g(Dϕ
∂

∂xa
K+, D

ϕ
∂

∂xb

K+) − ψ−g(Dϕ
∂

∂xa
K+, D ∂

∂xb
K−)

]
,

= hab
[
−2 ∂2ψ−

∂xa∂xb
− 2∂ψ−

∂xb
ωa − 2∂ψ−

∂xa
ωb − 2ψ−

∂ωb
∂xa

− ψ+

(
hefhlmhelχ+( ∂

∂xa
,
∂

∂xf
)χ+( ∂

∂xb
,
∂

∂xm
)
)

−ψ−

(
hefhlmhelχ+( ∂

∂xa
,
∂

∂xf
)χ−( ∂

∂xb
,
∂

∂xm
) + 2ωaωb

)]
,

= −2hab ∂
2ψ−

∂xa∂xb
− 4hab∂ψ−

∂xa
ωb − 2habψ−

∂ωb
∂xa

− ψ+∥χ+∥2
h − ψ−(χ+, χ−)h − 2ψ−∥ω∥2

h.

(81)

Next, insert Equations (79) and (81) and V = ψ+K+ + ψ−K− in Equation (78):

θ′(0) = − ψ+∥χ+∥2
h − ψ−(χ+, χ−)h

− 2hab(ΓΣ)cab
∂ψ−

∂xc
− 2hab(ΓΣ)cabψ−ωc

+ 2hab ∂
2ψ−

∂xa∂xb
+ 4hab∂ψ−

∂xa
ωb + 2habψ−

∂ωb
∂xa

+ 2ψ−∥ω∥2
h

− ψ+Ric(K+, K+) − ψ−Ric(K−, K+) + ψ−
1
2g(R(K−, K+)K+, K−).

Recall that
ω(∇Σf) = ω(hab ∂f

∂xb
∂

∂xa
) = habωa

∂f

∂xb
, (82)

divhω = hab(∂ωa
∂xb

− (ΓΣ)cabωc), (83)

∆Σf = habHessΣf( ∂

∂xa
,
∂

∂xb
) = hab

(
∂2f

∂xa∂xb
− (ΓS)cab

∂f

∂xc

)
, (84)

and applying the previous definitions leads to

θ′(0) = − ψ+∥χ+∥2
h · −ψ−(χ+, χ−)h

+ 2∆Σψ− + 2divhω · ψ− + 4ω(∇Σψ−)+2ψ−∥ω∥2
h

− ψ+Ric(K+, K+) − ψ−Ric(K−, K+) + ψ−
1
2g(R(K−, K+)K+, K−).

From now on, our goal is to develop the Ricci and curvature quantities in θ′(0). The Gauss
Equation in Theorem 1.1.16 establishes the relationship between curvature on M and on
Σ:



APPENDIX A. Stability Operator 107

g(RM(dϕ(X), dϕ(Y ))dϕ(Z), dϕ(W )) = h(RΣ(X, Y )Z,W )

+ g(IIϕ(X,Z), IIϕ(Y,W )) − g(IIϕ(Y, Z), IIϕ(X,W )),

for all X, Y X(Σ), and with (73),

g(RM(dϕ(X), dϕ(Y ))dϕ(Z), dϕ(W )) = h(RΣ(X, Y )Z,W )

− 1
2χ+(X,Z)χ−(Y,W ) − 1

2χ−(X,Z)χ+(Y,W )

+ 1
2χ+(Y, Z)χ−(X,W ) + 1

2χ−(Y, Z)χ+(X,W ),

take {E1, . . . , En−1} local h-orthonormal frame, then,
n−1∑
i=1

g(RM(dϕ(Ei), dϕ(Y ))dϕ(Z), dϕ(Ei)) = RicΣ(Y, Z)

− 1
2

n−1∑
i=1

(χ+(Ei, Z)χ−(Y,Ei) + χ−(Ei, Z)χ+(Y,Ei))

+ 1
2

n−1∑
i=1

(χ+(Y, Z)χ−(Ei, Ei) + χ−(Y, Z)χ+(Ei, Ei)) ,

= RicΣ(Y, Z) + 1
2θ−χ+(Y, Z) + 1

2 χ−(Y, Z)θ+

− 1
2

n−1∑
i=1

(χ+(Ei, Z)χ−(Y,Ei) + χ−(Ei, Z)χ+(Y,Ei)) ,

remember that θ± = trhχ±. Now, reintroduce the vectors

u⃗ := K+ +K−

2 ,

n⃗ := K+ −K−

2 ,

and, consequently, {u⃗, n⃗, dϕ(E1), . . . , dϕ(En−1)} g-orthonormal basis which allow us to restate
RicM as

RicM(dϕ(Y ), dϕ(Z)) = −g(RM(u⃗, dϕ(Y ))dϕ(Z), u⃗) + g(RM(n⃗, dϕ(Y ))dϕ(Z), n⃗)

+RicΣ(Y, Z) + 1
2θ−χ+(Y, Z) + 1

2 χ−(Y, Z)θ+

− 1
2

n−1∑
i=1

(χ+(Ei, Z)χ−(Y,Ei) + χ−(Ei, Z)χ+(Y,Ei)) .

(85)

Turning now to contracting the previous equation and using curvature scalar definition and
the curvature properties, we have

Sg = −2RicM(u⃗, u⃗) + 2RicM(n⃗, n⃗) + 2g(RM(u⃗, n⃗)n⃗, u⃗)

+ Sh + θ−θ+

− 1
2

n−1∑
i,j=1

(χ+(Ei, Ej)χ−(Ej, Ei) + χ−(Ei, Ej)χ+(Ej, Ei)) ,
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since Σ is a MOTS, i.e. θ+ = 0, and from the (χ+, χ−)h definition, the scalar curvature of the
metric g is expressed as

Sg = −2RicM(u⃗, u⃗) + 2RicM(n⃗, n⃗) + 2g(RM(u⃗, n⃗)n⃗, u⃗) + Sh − (χ+, χ−)h, (86)

writing again with K+ and K− we arrive at

(χ+, χ−)h = −2Ric(K+, K−) + 1
2g(RM(K−, K+)K+, K−) + Sh − Sg.

Finally, substituting last equation into θ′(0) we get

θ′(0) = − ψ+(∥χ+∥2
h +Ric(K+, K+))

+ ψ−[Ric(K+, K−) + Sg − Sh] + 2∆Sψ−

+ 2divhω · ψ− + 4ω(∇Sψ−)+2ψ−∥ω∥2
h.

The energy dominant condition, Definition 2.2.6, gives us a useful way to relate scalar curvature
and Ricci curvature. Define the following quantities: J(n⃗) := G(u⃗, n⃗) and ρ := G(u⃗, u⃗), then,

J(n⃗) + ρ = G(u⃗, K+) = 1
2 (RicM(K+, K+) +RicM(K+, K−) + Sg) , (87)

writing v := ψ+ + ψ− and ψ := −2ψ−, which implies that V = vK+ + ψn⃗. Therefore,

θ′(0) = − (v + ψ

2 )(∥χ+∥2
h +Ric(K+, K+))

− ψ

2 [Ric(K+, K−) + Sg − Sh] − ∆Σψ

− divhω · ψ − 2ω(∇Σψ) − ψ∥ω∥2
h

θ′(0) = − v(∥χ+∥2
h +Ric(K+, K+))

− ψ

[
J(n⃗) + ρ− 1

2Sh + 1
2∥χ+∥2

h

]
− ∆Σψ

− divhω · ψ − 2ω(∇Σψ) − ψ∥ω∥2
h

Defining Z ∈ X(Σ) such that ω(X) = −h(X,Z) for all X ∈ X(Σ) and noticing that
∥ω∥2

h = ∥Z∥2
h and divhω = −divhZ, thus

θ′(0) = − v(∥χ+∥2
h +Ric(K+, K+))

− ψ[J(n⃗) + ρ− 1
2Sh + 1

2∥χ+∥2
h] − ∆Σψ

+ divhZ · ψ + 2h(Z,∇Σψ) − ψ∥Z∥2
h.

After rearranging terms we arrive at

θ′(0) = − (∥χ+∥2
h +Ric(K+, K+)) · v

− ∆Σψ + 2h(Z,∇Σψ) + ([12Sh − J(n⃗) − ρ− 1
2∥χ+∥2

h] + divhZ − ∥Z∥2
h)ψ,
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and defining the quantities

Q := 1
2Sh − [J(n⃗) + ρ] − 1

2∥χ+∥2
h, (88)

L(ψ) = −∆Σψ + 2h(Z,∇Σψ) + (Q+ divhZ − ∥Z∥2
h)ψ, (89)

we finally get
θ′(0) = −(∥χ+∥2

h +Ric(K+, K+)) · v + L(ψ). (90)
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APPENDIX B – REGULARITY OF THE NULL
EXPANSION OPERATOR

B.1 ANALYSIS IN BANACH SPACES

This subsection is devoted to briefly presenting notations related to analysis in Banach
spaces and stating the inverse function theorem in this context. For a comprehensive treatment,
we recommend (DRÁBEK; MILOTA, 2013), which inspired this subsection.

In infinite-dimensional, it is often the case that no natural basis exists, consequently
there is no way of a straightforward generalization of partial derivatives. In this context, we
define the directional derivative as an alternative approach.

Definition B.1.1 (Directional derivative). Let X, Y be normed spaces and let f : X → Y .
If for a, h ∈ X the limit (in the norm of Y )

lim
t→0

f(a+ th) − f(a)
t

exists, then its value is called the derivative of f at the point a and in the direction of h (or
directional derivative or Gâteaux variation) and is denoted by δf(a;h).

If δf(a;h) exists for all h ∈ X and the mapping Df(a) : h 7→ δf(a;h) is linear and
continuous, then Df(a) is called the Gâteaux derivative of f at the point a.

For the most interesting results, a stronger notion of differentiability is required. There-
fore, a generalization of the differential of a function of two variables is given as follows.

Definition B.1.2 (Fréchet derivative). Let X, Y be normed spaces. A mapping f : X → Y

is said to be Fréchet differentiable at a point a ∈ X if there exists a linear and continuous
operator A : X → Y such that

lim
h→0X

∥f(a+ h) − f(a) − Ah∥Y
∥h∥X

In this case, A is called Fréchet derivative of f at the point a and is denoted by f ′(a).

Remark 7 . Given a ∈ X, if we have that f ′(a) exists, then also Df(a) exists and f ′(a)h =
Df(a)h, for all h ∈ X. Moreover, it is easy to see that if f is Fréchet differentiable, then f is
continuous.

Theorem B.1.3 (Chain rule). Let X, Y, Z be normed linear spaces and suppose that there
exist δg(a;h) : X → Y . If g(a) = b and for f : Y → Z the Fréchet derivative f ′(b) exists,
then

δ(f ◦ g)(a;h) = f ′(b)[δ(g(a;h)]

Proof. See (DRÁBEK; MILOTA, 2013, Theorem 3.2.12)

Remark 8 . A similar result holds if Dg(a) exists or if g′.
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After these preliminary considerations, we finally state the main theorem of this subsec-
tion. Notice that we need to formulate it for general Banach spaces instead of normed linear
spaces.

Theorem B.1.4 (Inverse Function Theorem). Let X, Y be Banach spaces, U an open set in
X, f : U ⊂ X → Y of class C1. Let the derivative f ′(a) be an isomorphism of X onto Y for
a ∈ U . Then there exist neighborhoods U of a, V of f(a) such that

1. V = f(U), and

2. The restriction f
∣∣
U : U → V is a bijection with continuously differentiable inverse.

Proof. See (DRÁBEK; MILOTA, 2013, Theorem 4.1.1).

B.2 SECOND-ORDER DIFFERENTIAL OPERATORS

In this section, we will be interested in discussing the Fréchet differentiability of second-
order differential operators on open sets in Rn. A general second-order equation, on a domain
Ω ⊆ Rn can be written in the form,

PF [u] = F (x, u,Du,D2u), (91)

where F is a real function on the set Γ = Ω × R × Rn × Rn×n, where Rn×n denotes the
n(n + 1)/2 dimensional space of real symmetric n × n matrices. Points in Γ are typically
denoted by γ = (x, z, p, r) where x ∈ Ω, z ∈ R, p ∈ Rn and r ∈ Rn×n. If F is differentiable
with respect to the r variables, its partial derivatives are denoted by

Fij(γ) = ∂F

∂rij
(γ), i,j = 1, . . . ,n,

and the notation is similar for the variables p and z.
Before proceeding, we need to define a Banach space of interest. Let k be a nonnegative

integer, α ∈ (0, 1] and Ω ⊂ R be an open set. The Hölder space Ck,α(Ω) is the space of
functions f : Ω ⊂ Rn → R of class Ck such that the norm

∥f∥Ck,α = ∥f∥Ck + max
|β|=k

|Dβf |Cα

is finite, where β ∈ Z+ are multi-indices and

∥f∥Ck = max
|β|≤k

sup
x∈Ω

∣∣Dβf(x)
∣∣ ,

and
|f |Cα = sup

x,y∈Ω,x ̸=y

|f(x) − f(y)|
∥x− y∥α

.

If Ω is open and bounded, then Ck,α(Ω) is a Banach space with respect to the norm ∥ · ∥Ck,α .

In particular, there is an obvious inclusion map between Hölder spaces:

i : C0,β(Ω) ↪→ C0,α(Ω),
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which is continuous and compact, as long as 0 < α < β ≤ 1. Moreover, for domains of interest,
i.e., bounded convex, we have that the following inclusion

i : Ck+1,α(Ω) ↪→ Ck,α(Ω), (92)

is also continuous and compact. The same result holds under a condition weaker than convexity,
as described in (DRÁBEK; MILOTA, 2013, Definition 8.3.3). In particular, for a bounded convex
set, the mean value theorem guarantees that the following map

i : Ck+1(Ω) ↪→ Ck,α(Ω) (93)

is continuous. Finally, we can state the main lemma of this subsection.

Lemma B.2.1 (GILBARG; TRUDINGER, 2001). The operator PF given by (91) is Fréchet
differentiable as a mapping from C2,α(Ω) into C0,α(Ω), for any α ∈ (0,1], if the function
F ∈ C2,α(Γ). Furthermore, let u, h ∈ C2,α(Ω), then the Fréchet derivative Fu is expressed as
follows

Lu[h] = PF
′(u)[h] = Fij(x)Dijh+ bi(x)Dih+ c(x)h, (94)

where
Fij(x) = Fij(x, u,Du,D2u),

bi(x) = Fpi
(x, u,Du,D2u),

c(x) = Fz(x, u,Du,D2u).

Idea of the Proof. We make the assumption that the open set Ω is bounded and convex, which
guarantees that the map stated in Equation (92) is continuous. Firstly, recall that for any
α ∈ (0,1], the inequality ∥fg∥C0,α ≤ ∥f∥C0,α∥g∥C0,α holds. Now, we apply the Taylor formula
to the function F and observe that, in this context, the Hessian of F is a continuous bilinear
operator. Applying the norm definitions to the expression ∥PF [u + h] − PF [u] − Lu[h]∥C0,α ,
substituting the Taylor formula of F and employing the continuity and bilinearity of the Hessian
of F , thus, together with the inequality and the continuity of the map i : Ck+1,α(Ω) ↪→ Ck,α(Ω),
we can see that the expression has order ∥h∥2

C2,α , which proves the assertion.

B.3 DIFFERENTIAL OPERATOR

The main objective of this subsection is to provide a criterion for demonstrating the
Fréchet differentiability of a global differential operator P : C∞(Σ) → C∞(Σ) on a compact
Riemannian manifold which is defined locally by a family of suitable differential operators.

Consider a finite covering family of coordinate charts (Uα, ϕα)α=1,...,N for Σ. Let Vα :=
ϕα(Uα) be the corresponding open sets, and for any u ∈ C∞(Σ), denote the coordinate
expression of u by uα = u ◦ϕ−1

α . Now, suppose we have a family of operators Pα : C∞(Vα) →
C∞(Vα) defined on each Vα. Furthermore, for any u ∈ C∞(Σ) and α, β ∈ {1, . . . ,N}, the
family of operators satisfy the following condition
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Pα[uα](ϕα(x)) = Pβ[uβ](ϕβ(x)), ∀x ∈ Uα ∩ Uβ.

Let (ηα)α=1,...,N be a smooth partition of unity subordinate to the covering (Uα)α=1,...,N .
We define the global operator P : C∞(Σ) → C∞(Σ) by

P [u] :=
N∑
α=1

Tα(ηαPα[uα] ◦ ϕα), ∀u ∈ C∞(Σ). (95)

Here, the operator Tα should be understood as the extension operator, which allow us to
extend functions to the full domain, more precisely,

Tα(ηαPα[uα] ◦ ϕα) =

ηαPα[uα] ◦ ϕα on supp ηα ⊆ Uα,

0 on Σ\ supp ηα,

where supp ηα is the support of the bump functions ηα.
By restricting the operators Pα : X → Y to suitable normed linear spaces X and

Y , we can investigate whether the global operator P is Fréchet-differentiable. Suppose that
each Pα : X → Y is Fréchet differentiable, for a given u ∈ X, each term in the sum of
Equation (95) can be written as

Tα(Bηα ·Rϕα ◦ Pα ◦Rϕ−1
α

)[u]

where Rϕα and Rϕ−1
α

denote the composition on the right by the subscript function, and Bηα

represents the multiplication by the bump function ηα. All these three mentioned operators
are linear and continuous on X and are of class C∞. Similarly, the extension operator Tα is
linear and continuous, so is also smooth. Consequently, the smoothness of P depends solely
on the family Pα. If each Pα is Fréchet-differentiable, then P is also Fréchet-differentiable.

B.4 NULL EXPANSION

This section is dedicated to studying the null expansion operator and demonstrating
its Fréchet differentiability. Furthermore, the discussion will involve the definition of Hölder
spaces on compact Riemannian manifolds. For a detailed discussion on this topic, we refer to
(AUBIN, 1998) or (HEBEY, 2000).

Let (Mn, g,K) be an initial data set, and Σn−1 be a compact embedded hypersurface
in Mn with a global unit normal vector field n⃗. Using the normal exponential map, we can
obtain a neighborhood U of Σ in M such that U = Σ × (−ε, ε), ε > 0. Let x ∈ Σ, within this
neighborhood U , we can choose a coordinate system (x1, . . . , xn−1, t), where (x1, . . . , xn−1)
are coordinates in Σ centered at x. In this coordinate system, the metric has the following
coordinate expression

g = (dt)2 +
n−1∑
i,j=1

gij(x1, . . . ,xn−1,t)dxidxj.
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Hypersurfaces close enough to Σ can be parametrized by smooth functions. Let u be a function
near the origin in Rn−1 and define the map Fu such that

Fu(x1, . . . , xn−1) = (x1, . . . ,xn−1, u(x1, . . . , xn−1)).

This function parametrizes a smooth hypersurface Σu in Σ× (−ε, ε). Denote by G the induced
metric on Σu, then G has the form

Gij(x) = ∂u

∂xi
(x) ∂u

∂xj
(x) + gij(x, u(x)).

Moreover, we have that
Xi := ∂

∂xi
+ ∂iu

∂

∂t

is a basis for the tangent space of Σu, for i ∈ {1, . . . , n − 1}. The normal unit vector n⃗u of
Σu is defined as

n⃗u := 1
W

(
∂

∂t
+

n−1∑
ij

gij∂iu
∂

∂xj

)
, W :=

(
1 +

n−1∑
i,j=1

gij∂iu∂ju

)1/2

.

where ∂ui = ∂u
∂xi . First, we will proceed computing the mean curvature H(u) of Σu in

coordinates. To begin with, notice that

H(u) = divg n⃗u = divg

(
∇gu√

1 + |∇gu|2

)
,

where, in coordinates, ∇gu = gij∂ju
∂
∂xi and |∇gu|2 = g(∇gu,∇gu). Computing the divergence

in coordinates, we have

H(u) =
n−1∑
i=1

∂

∂xi

(
1
W
gij∂ju

)
+

n−1∑
i,j=1

Γiij
(

1
W
gjk∂ku

)
,

and following the computation, we obtain the following expression

H(u) =
n−1∑
i,j=1

= aij(x, u, ∂u)∂iju+ b(x, u, ∂u),

where ∂u = (∂u1, . . . , ∂un−1), ∂iju = ∂2u
∂xixj and aij(x, u, ∂u) is given by

aij(x, u, ∂u) = 1
W

(
gij − 1

W 2 (∇gu)i(∇gu)j
)
, (96)

while b(x, u, ∂u) is a polynomial expression in ∂iu, Γiij, ∂kgij and W . From the form is this
operator, H(u) is a second order quasi-linear operator. The second part of θ(u) involves the
trace of the tensor K, so we have that

trΣu K =
n−1∑
i,j=1

GijK(Xi, Xj)
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where Gij denotes the inverse of the metric Gij. Clearly, it is a polynomial expression on ∂iu,
Gij, and the smooth function Kij and Kit. We now introduce the following quantity

b1(x, u, ∂u) = b(x, u, ∂u) +
n−1∑
i,j=1

GijK(Xi, Xj). (97)

Therefore, θ(u) = H(u) + trΣu K can be written as

θ(u) =
n−1∑
i,j=1

= aij(x, u, ∂u)∂iju+ b1(x, u, ∂u),

where aij and b1 are as in (96) and (97). Therefore, θ(u) is a second order quasi-linear operator.
Finally, we can see the null expansion as a differential operator θ : C∞(Σ) → C∞(Σ).

Let (Uk, ϕk)k=1,...,N be finite covering family of coordinate charts for Σ and let Vk := ϕk(Uk)
be the corresponding open sets. In coordinates, we define the local operator θ̃k : C∞(Uk) →
C∞(Uk) as

θ̃k[u] =
n−1∑
i,j=1

= aij(x, u, ∂u)∂iju+ b1(x, u, ∂u), ∀u ∈ C∞(Uk),

where aij and b1 are as in (96) and (97). This operator induces a version defined on function
on Vk. We define the operator θk : C∞(Vk) → C∞(Vk) as follows

θk[v] := Rϕ−1
k

◦ θ̃k ◦Rϕk
(v), ∀v ∈ C∞(Vk).

For any u ∈ C∞(Σ) and any k ∈ {1, . . . , N}, denote by uk := u◦ϕ−1
k the coordinate expression

of u. Since θ(u) does not depend on the coordinate expression, for each u ∈ C∞(Σ), and any
k,m ∈ {1, . . . ,N} we have

θk[uk](ϕk(x)) = θm[um](ϕm(x)), ∀x ∈ Uk ∩ Um.

The operator θk can be written in the form of Equation (91), that is, θk[u] =
Fk(x, u, ∂u, ∂2u) where is a real function on the set Γk = Vk × R× Rn−1 × Rn−1×n−1 and ∂2u

is the symmetric matrix of [∂iju]i,j=1,...,n−1.
Without loss of generality, we can choose a covering family such that each Uk is a

regular coordinate ball, thus Vk is a ball in the Euclidean space. Recall that the functions
aij(x, u, ∂u) ∈ C∞(Uk) and b1(x, u, ∂u) ∈ C∞(Uk). Furthermore, in coordinates, as discussed
before Equation (93), for any α ∈ (0, 1], these functions, in coordinates, are in C2,α(Vk) and
they can be extended to C2,α(Vk). In coordinates, since aij and b1 are polynomial expressions of
smooth functions on x ∈ Vk and ∂iu, consequently, we have that Fk ∈ C2,α(Γk). Furthermore,
by Lemma B.2.1, each θk : C2,α(Vk) → C0,α(Vk) is Fréchet differentiable. Therefore, θ :
C2,α(Σ) → C0,α(Σ) is Fréchet differentiable, as discussed at the end of Appendix B.3.

We actually have even higher regularity. Due to the smoothness of the functions, we
can conclude that Fk ∈ C l,α(Γk) for any l nonnegative integer. As a result, the C1 (or C l)
regularity can be established through a bootstrap argument employing the Lemma B.2.1,
because we can apply a similar argument for the linearization of Fk, as given in Equation (94),
it is Fréchet differentiable, and hence continuous.
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