
FEDERAL UNIVERSITY OF SANTA CATARINA
DEPARTMENT OF AUTOMATION AND SYSTEMS ENGINEERING

AUTOMATION AND SYSTEMS ENGINEERING GRADUATE PROGRAM

BRUNO DO NASCIMENTO BESERRA

A VEHICLE COUNTER APPROACH FOR THE NIGHT PERIOD
OF THE DAY BASED IN NEURAL NETWORKS
A STUDY CASE USING YOLOV4 AND DEEPSORT

FLORIANÓPOLIS/SC
2023



BRUNO DO NASCIMENTO BESERRA

A VEHICLE COUNTER APPROACH FOR THE NIGHT PERIOD
OF THE DAY BASED IN NEURAL NETWORKS
A STUDY CASE USING YOLOV4 AND DEEPSORT

Dissertation presented to the Automation
and Systems Engineering Graduate Pro-
gram of the Universidade Federal de Santa
Catarina in partial fulfillment of the re-
quirements for the degree of Master in Au-
tomation and Systems Engineering.
Advisor: Prof. Marcelo Ricardo Stemmer,
Dr.
Co-advisor: Prof. Mauricio Edgar Sti-
vanello, Dr.

FLORIANÓPOLIS/SC
2023





Bruno do Nascimento Beserra

A VEHICLE COUNTER APPROACH FOR THE NIGHT PERIOD
OF THE DAY BASED IN NEURAL NETWORKS
A STUDY CASE USING YOLOV4 AND DEEPSORT

The present dissertation in the Master level was evaluated and approved by the
examining board composed of the following members:

Marcelo Ricardo Stemmer, Dr
Universidade Federal de Santa Catarina

Mario Lucio Roloff, Dr
Instituto Federal Catarinense

Eric Aislan Antonelo, Dr
Universidade Federal de Santa Catarina

This Dissertation is recommended in partial fulfillment of the requirements for
the degree of “Master in Automation and Systems Engineering”, which has been
approved in its present form by the Automation and Systems Engineering Graduate
Program Master in Automation and Systems Engineering.

Prof. Julio Elias Normey Rico, Dr.
Graduate Program Coordinator

Prof. Marcelo Ricardo Stemmer, Dr.
Advisor

Prof. Mauricio Edgar Stivanello, Dr.
Co-advisor

Florianópolis, 19 de Julho de 2023.



This thesis is dedicated to my mom, dad
and my late dog Yughi, without their sup-
port and love during my life, I would not
have become the person and I am now and
the completion of this project would not
have been possible. Thanks for making me
see this through the end. I love you.





Acknowledgements

I would like to begin by expressing my gratitude to God for granting me life and
providing me with the courage and strength to overcome the challenges encountered
during the completion of this project.

I would like to extend my gratitude to my parents João William Beserra Filho,
Ana Cristina Silva do Nascimento Beserra and my sister Williane do Nascimento
Beserra for their unwavering support, love, and guidance throughout all my deci-
sions, providing me with the security and support I needed to overcome challenges
and pursue my goals understanding that my path may not always align with their
own aspirations. I am today, and I am forever indebted to them.

I also want to extend my gratitude to my late dog Yughi, who was always by my
side during moments when no one else was around when he was alive. He provided
unwavering companionship, love, and support throughout his journey and though
Yughi is no longer physically present, his memory and the bond we shared will
forever remain in my heart.

I am grateful for the guidance and expertise provided by my advisor Dr. Marcelo
Ricardo Stemmer and co-advisor Dr. Mauŕıcio Edgar Stivanello. Their insightful
feedback and their willingness to assist me whenever needed have been immensely
helpful in shaping this research.

I would like to express my deepest gratitude to Jacqueline Ferreira Pedroso that
stood by my side, providing a listening ear, a comforting embrace, and words of
encouragement. I am grateful for the sacrifices she has made, the patience she has
shown, and the unwavering support she has provided. Your love and care have been
constant reminders of what truly matters. I love you.

I am also immensely grateful to the amazing friends Marcelo Faustino Viana Ju-
nior, Pedro Henrique Braga Moraes, Douglas Braz Maciel, Gustavo Henrique Farias
Bezerra, João William Bezerra Neto and Bruno de Souza Rodrigues who have been
by my side. I am grateful for the countless memories we have created together, from
the outgoings to eat and laughter-filled conversations to the philosophical discus-
sions we’ve engaged in about life. As I reflect on our shared journey, our friendship
has stood the test of time, and I am confident it will continue to thrive and evolve
in the years to come. Thank you for being there for celebrating my triumphs and
comforting me during my darkest moments. Your friendship is truly a gift that I
cherish with all my heart.

During times of crisis, everyone’s presence and willingness to lend a helping hand
have brought me solace and reassurance. Whether it was offering a listening ear,
providing practical advice, or simply being there for me, your support has been
invaluable. One more time, I would like to thank you all for everything.

With deepest gratitude to each one of you, Bruno do Nascimento Beserra





The only real failure in life is giving up. On looking back let it stand to
our credit in life’s balance sheet that at least we tried, and tried hard.

—A.G. Street





A VEHICLE COUNTER APPROACH FOR

THE NIGHT PERIOD OF THE DAY BASED

IN NEURAL NETWORKS

A STUDY CASE USING YOLOV4 AND DEEPSORT

Bruno do Nascimento Beserra

Abstract

There is no doubt that with our community, the number of cars in the streets
is growing lately and to prevent that to launch chaos in the streets affecting both
people and the economy of the cities, several companies and institutions are studying
new approaches to lessen this issue adverse. Hence, counting vehicles became a
trend topic around researchers of this field, since this data is highly valuable to
understand the situation of the roads. The advances of technology are another key
factor that helped to increase the number of Intelligent Transport Systems (ITS)
that use both hardware and software to develop new ways to learn and adapt to the
new situations we are facing in the traffic and many original strategies related to
object detection appeared in the literature lately. These strategies focus on day time
object detection on account of the higher performance of the cameras during this
period when compared to the night shift. Therefore, this work studies the viability
of implementing a ITS to detect and count vehicles at night time shift based on a
convolutional neural network (CNN) model and the possibility to use monitoring
cameras already installed in the cities to train our models for the process. To
accomplish these goals this project was divided into three stages, detection, tracking
and counting. The detection part is based on a YOLOv4 model and was trained with
a dataset composed of 25000 night images taken from surveillance cameras of five
different cities of the World. The tracking step was performed with the DeepSORT
technique and the counting step was made with the virtual line procedure.

Keywords: Traffic. Object Detection. Vehicle Counting. YOLOv4. ITS. Convo-
lutional Neural Networks. Smart Cities.





CONTADOR DE VEÍCULOS PARA O

PERÍODO NOTURNO DO DIA BASEADO EM

REDES NEURAIS

ESTUDO DE CASO UTILIZANDO-SE DE YOLOV4 E
DEEPSORT

Bruno do Nascimento Beserra

Resumo

Não há motivos para se duvidar de que junto da nossa sociedade, o número de
carros nas ruas tem crescido constantemente e para prevenir que o caos se instaure
nas ruas afetando tanto as pessoas quanto a economia das cidades, diversas em-
presas e instituições têm estudado novas formas de minimizar essa adversidade.
Consequentemente, a contagem de véıculos virou um tópico importante entre os
pesquisadores dessa área, já que esse dado é extremamente valioso para o entendi-
mento da situação das estradas. Os avanços da tecnologia é outro fator importante
que ajudou a crescer o número de Sistemas de Transporte Inteligentes (STI) que
usa tanto hardware quanto software para desenvolver novos métodos de aprendiza-
gem e ultimamente, diversas estratégias que se utilizam de detecção de objetos
estão surgindo na academia de forma a nos adaptar às novas situações que estamos
enfrentando. Essas soluções se baseiam na detecção de objetos durante o peŕıodo di-
urno por conta da melhor performance provinda pelas câmeras durante este peŕıodo
do dia. Portanto, este trabalho estuda a viabilidade de implementação de um SIT
para detectar e contar véıculos durante o peŕıodo noturno baseado em um modelo de
rede neural convolucional (CNN) e a possibilidade do uso de câmeras de monitora-
mento já instaladas em cidades para este propósito. Para atingir esse objetivo, esse
projeto foi dividido em três estágios, a detecção, o rastreio de objetos e a contagem.
A etapa de detecção é baseada num modelo YOLOv4 e foi treinada com um dataset
composto de 25000 imagens de véıculos noturnos provindos de câmeras de vigilância
de cinco diferentes cidades do planeta. A parte de rastreio foi realizada utilizando a
técnica de DeepSORT enquanto a parte de contagem foi realizada utilizando-se de
uma técnica envolvendo uma linha imaginária.

Palavras-chave: Transito. Detecção de Objetos. Contagem de Véıculos. YOLOv4.
ITS. Redes Neurais Convolucionais. Cidades Inteligentes.





CONTADOR DE VEÍCULOS PARA O

PERÍODO NOTURNO DO DIA BASEADO EM

REDES NEURAIS

ESTUDO DE CASO UTILIZANDO-SE DE YOLOV4 E
DEEPSORT

Bruno do Nascimento Beserra

Resumo Expandido

Introdução. Ultimamente, o ITS (Sistema de Transporte Inteligente) tem demon-
strado grande interesse em soluções de visão computacional. Com o aumento signi-
ficativo de acidentes de trânsito, congestionamento e poluição [54], diversas empre-
sas e instituições têm estudado novas formas de minimizar essas adversidades, onde
essa nova tecnologia vem se mostrando uma grande aliada. Entretanto, o número de
aplicações desenvolvidas voltadas ao peŕıodo noturno do dia ainda são escassas na
academia devido a melhor performance de câmeras durante o dia. Neste trabalho,
é explorado a viabilidade de uma abordagem para contagem de véıculos durante à
noite com base em YOLOv4 e DeepSORT, que são técnicas de ponta para fins de
detecção e rastreamento, respectivamente. Além disso, fornecemos uma análise da
eficácia das câmeras de vigilância para fornecer dados para o banco de dados, bem
como os resultados da contagem realizada sob a perspectiva delas durante a noite.

Objetivos. O principal objetivo desta dissertação é desenvolver uma aplicação
robusta para detectar e contar véıculos durante o peŕıodo noturno do dia, dessa
forma, poderemos criar um sistema de contagem que funcionaria continuamente pelo
peŕıodo de 24 horas seguidas ao longo do peŕıodo estipulado da contagem [3]. Além
do objetivo principal, este trabalho visa investigar a viabilidade de implementar este
sistema computacional com uma câmera como seus olhos para esse tipo de situação e
inspecionar a confiabilidade de bases de dados fornecidas pelas câmeras de vigilância
das cidades.

Contribuições e Resultados. Como mencionado anteriormente, este trabalho
contribui para o estado da arte ao desenvolver uma aplicação robusta para detec-
tar e contar véıculos durante o peŕıodo noturno do dia. Um modelo de detecção foi
treinado com base em imagens provindas de câmeras de vigilância durante o peŕıodo
noturno e analisado a confiabilidade de detecção deste modelo quando disposto a
v́ıdeos que ele desconhecia. Diante deste procedimento, se obteve um resultado
favorável de detecção de 91.23% mAP no treinamento do modelo. Também foi
adicionado ao modelo a técnica de rastreamento DeepSORT de forma a adquirir o
caminho percorrido por cada objeto detectado pelo sistema e um sistema de con-
tagem baseado em detecção de intersecção de retas de forma a obter a contagem
precisa dos objetos que passaram por determinado ponto previamente marcados nos
v́ıdeos.



Cosiderações Finais. O sistema desenvolvido obteve excelente desempenho de
detecção ao longo dos testes mesmo com a baixa iluminação presente nos locais. Já
o rastreador não teve resultados tão animadores quanto os da detecção, devido às
complexas formas de luzes e sombras presentes no ambiente. Felizmente, o baixo
desempenho do rastreador não afetou o resultado do contador, que atingiu resultados
superiores a 81% em todos os testes realizados, mostrando o grande potencial que
este sistema pode oferecer para aplicações futuras. Ao longo desta dissertação, estão
dispostos para consulta todos os passos tomados durante este estudo.

Palavras-chave: Transito. Detecção de Objetos. Contagem de Véıculos. YOLOv4.
ITS. Redes Neurais Convolucionais. Cidades Inteligentes.



Contents

1 Introduction 6

1.1 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Study Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8

2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Convolutional Layer . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 ReLU Activation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Flatten Process . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 Fully Connected Layer . . . . . . . . . . . . . . . . . . . . . . 14

2.2.6 Softmax Activation . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 You Only Look Once (YOLO) . . . . . . . . . . . . . . . . . . 17

2.3.2 YOLOv4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Simple Online Real-time Tracker (SORT) . . . . . . . . . . . . 21

2.4.2 DeepSORT Tracker . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Object Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Cloud Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7.1 Google Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.2 Google Colab . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Car Detection 32

3.1 Project Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Result Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Training Results . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1



CONTENTS

4 Car Tracking and Counting 44
4.1 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Analysis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Vehicle Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Vehicle Counting . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Conclusion and Future Works 54

CONTENTS 2



List of Figures

1.1 Sketch of the Project’s Process . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Artificial Neural Network Structure. . . . . . . . . . . . . . . . . . . . 8

2.2 Artificial Neuron Anatomy. . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Convolutional Neural Network Architecture. . . . . . . . . . . . . . . 10

2.4 Convolutional Layer Process . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Convolutional Procedure for RGB Images. . . . . . . . . . . . . . . . 11

2.6 Operation example of distinct kinds of padding. . . . . . . . . . . . . 12

2.7 Diagram of the ReLU Function. . . . . . . . . . . . . . . . . . . . . . 13

2.8 Representation of both pooling options performance. . . . . . . . . . 13

2.9 Flattening conversion process. . . . . . . . . . . . . . . . . . . . . . . 14

2.10 FC Layer demonstration. . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.11 Diagram for the softmax activation function. . . . . . . . . . . . . . . 16

2.12 Milestone of Object Detection Models . . . . . . . . . . . . . . . . . . 17

2.13 YOLO layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.14 YOLO model detection workflow. . . . . . . . . . . . . . . . . . . . . 18

2.15 YOLOv4 performance comparison. . . . . . . . . . . . . . . . . . . . 19

2.16 Features considered in the study for the creation of YOLOv4. . . . . 19

2.17 Bag of freebies and Bag of special components present in YOLOv4. . 20

2.18 Object tracking Sample. . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.19 DeepSORT technique workflow. . . . . . . . . . . . . . . . . . . . . . 22

2.20 Virtual line counting approach example. . . . . . . . . . . . . . . . . 23

2.21 Example of the confusion matrix. . . . . . . . . . . . . . . . . . . . . 24

2.22 Different examples of IoU values. . . . . . . . . . . . . . . . . . . . . 27

2.23 Cloud computing portrayal. . . . . . . . . . . . . . . . . . . . . . . . 28

2.24 Google Drive homepage . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.25 Google Colaboratory homepage. . . . . . . . . . . . . . . . . . . . . . 29

3.1 Detection phase workflow. . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Samples of the Nighttime Vehicle Detection database (NVD). . . . . 34

3.3 NVD database with both annotation methods examples. . . . . . . . 34

3.4 Experiments’ detection results for California, Conneticut and Walnut
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Experiments’ detection results for Gelderland, Richmond and AllCi-
ties models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Interesting results that the California model presented during the tests. 41

3.7 Interesting results that the Connecticut model showed during the test
phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3



LIST OF FIGURES

3.8 Interesting results that the Gelderland Model demonstrated in the
course of the tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Intriguing results that the Richmond Model presented during the tests. 42
3.10 Interesting results that the Walnut Model manifested during the tests. 42
3.11 Captivating results that the AllCities model exhibited in the test phase. 43

4.1 Tracking and counting workflow . . . . . . . . . . . . . . . . . . . . . 45
4.2 Tracking samples of the Nighttime Vehicle Detection database (NVD). 46
4.3 Tracking error sample: Lost of bounding box. . . . . . . . . . . . . . 48
4.4 Tracking error sample: Same ID for two different vehicles. . . . . . . 49
4.5 Tracking error sample: Occlusion by objects . . . . . . . . . . . . . . 49
4.6 Virtual line places for each landscape. . . . . . . . . . . . . . . . . . . 50
4.7 Example of detection error during count tests. . . . . . . . . . . . . . 52
4.8 Example of vehicle occlusion caused by beam headlights of another

one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

LIST OF FIGURES 4



List of Tables

3.1 The NVD Database Summary . . . . . . . . . . . . . . . . . . . . . 33
3.2 Sequences numbers implemented on detection phase . . . . . . . . . . 35
3.3 Detection data overview. . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Validation results obtained for learning rate of 1e−3. . . . . . . . . . . 37
3.5 Validation results obtained for learning rate of 1e−5. . . . . . . . . . . 37
3.6 mAP and IoU metrics for a learning rate of 1e−3. . . . . . . . . . . . 38

4.1 Sequences number chose for tracking and counting test . . . . . . . . 46
4.2 California tracking results. . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Connecticut tracking results. . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Gelderland tracking results. . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Richmond tracking results. . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Walnut tracking results. . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7 Tracking results summary. . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8 California counting results. . . . . . . . . . . . . . . . . . . . . . . . . 50
4.9 Connecticut counting results. . . . . . . . . . . . . . . . . . . . . . . 51
4.10 Gelderland counting results. . . . . . . . . . . . . . . . . . . . . . . . 51
4.11 Richmond counting results. . . . . . . . . . . . . . . . . . . . . . . . 51
4.12 Walnut counting results. . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.13 Overall counting results. . . . . . . . . . . . . . . . . . . . . . . . . . 52

5



Chapter 1

Introduction

As humanity discovered the immeasurable power of computer’s technology, we
have been seeking to expand our horizons. With applications from the most basic
of calculators to awesome prediction machine learning algorithms, it is undeniable
that computers are pushing humanity’s development rhythm to another level.

Nowadays, challenging as it might be, we are training computers to see using
cameras as its eyes. The field called computer vision seeks to develop algorithms with
the goal to enable computers to understand pictures and videos and extract useful
information from it [11]. But give the sense of sight to a computer is not an easy
task, the process to make it happen can be really tough due to complex dependencies
among the objects in the scenes, that is why computer vision researchers often
focuses on one specific aspect of the problem, such as image segmentation, object
detection, or object tracking [11].

The ITS, Intelligent Transportation System, which was conceived to promote
studies, projects and debates concerning the significant increase in traffic accidents,
congestion and pollution [54][72], manifested considerable interest in computer vi-
sion and countless applications and studies showed up correlating these areas, such
as pedestrians or cars detectors, automatic license plate recognition, traffic light
detection and recognition, autonomous vehicles, and so on [84][65][74][30][33][39].

This work investigates a machine’s performance when detecting and counting
vehicles during the night phase of the day with the goal to study and develop a
robust application based on it. We are interested in designing a robust low-cost car
detector and counter with the aptitude to detect cars when no sunlight is available
in order to better analyze traffic situations in streets and highways.

1.1 Project Goals

• Develop a robust application for detecting and count vehicles during night
time.

• Investigate the viability of using a computational system with a camera as its
eyes for this kind of situation.

• Inspect the reliability of databases provided by surveillance cameras

6



CHAPTER 1. INTRODUCTION

1.2 Study Development

To accomplish our goals, first we trained a machine learning model based in
Yolov4 and as our dataset we made use of the NVD database from the Polytechnic
University of Madrid [70], a database of Nighttime Vehicle Detection built with
images from five different areas (California, Connecticut, Gelderland, Richmond
and Walnut).

After our detector was fully working, we resorted to the DeepSORT technique
to track the detected objects and implemented a virtual line technique in our video
to count every car that trespasses in whatever direction they are moving forward.
The figure 1.1 demonstrates well a brief picture of our project where each square
will be explained in detail in the following chapters of this dissertation.

Figure 1.1: Sketch of the Project’s Process

Source: Author

These workflow steps are similar to the counting system implemented in the
previous study [48], but with different techniques for tracking and counting. We
upgraded the previous tracking system to use the DeepSORT technique, and we
upgraded the virtual line procedure to count both directions of the street simulta-
neously.

Alongside the counting system, we tested our systems performance on videos
provided by surveillance cameras since NVD dataset is made after shots taken from
these equipment. At the end of this project, we explained our results and concluded
our study.

1.3 Dissertation Outline

This project is organized into five self-contained chapters. Each chapter addresses
some key point of our project.

First, chapter 2 shows a friendly background about several elements correlated to
the main goal of this project intending to give a brief introduction for the field that
we are going to embrace for a better understanding of the following chapters. Later,
chapter 3 describes every step taken regarding object detection and the results of
this process. Chapter 4 continues the project with the object tracking and counting
full process of this project and chapter 5 offers some thoughts and possible future
approaches for this scenario.

7 1.2. STUDY DEVELOPMENT



Chapter 2

Background

In this chapter we briefly explain important terms in the computer vision liter-
ature for a better understanding of this project’s procedures realized in this thesis.
Therefore, our goal is to provide the essential background for a good understanding
of the steps taken to accomplish our results. From Neural Networks until specific
object counting technique as well as an introduction to cloud computing features
that helped the development of this work are brought up in this chapter.

2.1 Artificial Neural Networks

An artificial neural network (ANN), figure 2.1, also known as a neural network,
is a concept that aims to perform the human brain’s behavior through artificial
neurons, enabling them to process complex information and recognize patterns [45].
It contains interconnected nodes or neurons in a layered structure to process input
data into a desired output, each neuron takes input from other neurons in the
previous layer, and then produces an output that is sent to other neurons in the
next layer. The weights on the connections between neurons determine how much
influence one neuron has on another [78].

Figure 2.1: Artificial Neural Network Structure.

Source: Author

8



CHAPTER 2. BACKGROUND

During the training of a neural network, every neuron, figure 2.2, computes
the sum of all its input weights and adds the result to its own bias. The result,
held by the node, is then sent to the next layer of the network [67]. This procedure
helps computers to make intelligent decisions with limited human assistance, since it
creates an adaptive system that learns from its mistakes and improves continuously
during the training process.

Figure 2.2: Artificial Neuron Anatomy.

Source: [21]

The training process of an ANN begins feeding it a large amount of data with
specific classes labeled in a process called supervised learning, where the system
learns from the ground truth provided by a supervisor [58]. With the right amount,
the network will slowly build knowledge from the data given and starts to guess the
right answer for problems that it has never processed before and tune the weights
of each node, then it decides the value it will send to the next layer based on the
results it obtained.

In 1957, the first trainable neural network was designed by Frank Rosenblatt. It
was called the Perceptron and was modeled to demonstrate how the human brain
processes visual data [2]. It had only one layer between the input and output
layers with adjustable weights and thresholds. Nowadays, technology has advanced
significantly, succeeding in numerous other applications with great accuracy. Some of
the most famous applications include pattern recognition problems, like handwriting
recognition for check processing, speech-to-text transcription, data analysis, weather
prediction, finance, and medical diagnosis [57].

2.2 Convolutional Neural Networks

Convolutional Neural Networks are a class of deep neural networks that have been
very effective in areas of image processing and analysis. Nowadays most modern
object detection algorithms are built with this technology due to its lower pre-
processing when compared with other detection algorithms [44].

It works taking in an input image and assigning importance to several aspects in
the image in order to differentiate one from the other, with enough training, these

9 2.2. CONVOLUTIONAL NEURAL NETWORKS



CHAPTER 2. BACKGROUND

so called ConvNets have the ability to learn these object characteristics and have
been showing to be very powerful, achieving higher accuracy and processing abilities
when being used in several parts of the industry. In other words, with enough data,
the CNN can be trained to understand the complexity of the image [34].

Concerning effectiveness while collecting data from images, CNNs take advantage
of two properties of images through the application of relevant filters, spatial locality
and translation invariance, which means that it can detect a group of neighboring
pixels showing it’s connectivity and showing this pattern wherever it appears in the
image [14].

Figure 2.3: Convolutional Neural Network Architecture.

Source: [81]

The architecture of a ConvNet receive an input data and transforms it through a
serie of convolutional and pooling layers. After this phase, it feeds the result into a
fully connected layer and in the end it gives an output list with values for each class
of it, figure 2.3 shows the details of the process. The fully connected layer is made of
a bunch of hidden layers, and each one of them is made up of a set of neurons, where
each one is fully connected to all neurons in the previous and following layers. There
are two phases inside a CNN, the processing phase composed of convolutional layers,
ReLU layers and pooling layers, and the classification phase, where the output from
the previous phase is flattened and used as the input for a fully-connected layers
that processes it through its hidden layers, and classify the result at the end [34].

2.2.1 Convolutional Layer

As its name proposes, Convolutional layers are the core blocks of a ConvNet and
it is where most of the computation complexity occurs. It extracts features from
the image by employing filters that move through the image’s receptive regions.
ConvNets are not limited to only one convolutional layer though, the first one is
responsible for catching the low-level features such as edges and colors, the other ones
adapts to check high-level features as well, giving the network more understanding
about the images in the dataset. The final output of a convolution process from the
input image and the filter is known as a feature map or activation map [44].

2.2. CONVOLUTIONAL NEURAL NETWORKS 10



CHAPTER 2. BACKGROUND

Figure 2.4: Convolutional Layer Process

Source: [50]

This operation works as shown in figure 2.4, as the kernel shifts around the image
with a certain stride value, the convolution between the kernel and the image values
where it overlaps occurs, performing a matrix multiplication operation between them
[34]. Since RGB images have multiple channels, the kernel will have the same depth
as the input image and the result of each depth multiplication will be summed as
well as a bias and give as result a one-depth output as displayed in figure 2.5.

Figure 2.5: Convolutional Procedure for RGB Images.

Source: [59]

When it comes to the convolution layer, there are a few parameters which can
affect the size of the output and are set before the training of the convolutional
neural network [44]:

• The Stride defines the number of pixels that the kernel will move after each
iteration with the input matrix. It is uncommon to raise its default value since
it can lead to loss of information, even though it reduces overlapping and gives
a smaller feature map.

• The number of filters, which affects the depth of the output, since each filter
will originate one feature map, e.g. three distinct filters (as if applied for a
RGB image) will create a depth of three feature maps.

11 2.2. CONVOLUTIONAL NEURAL NETWORKS



CHAPTER 2. BACKGROUND

• The Padding’s function is input zeros around the image’s border, which
means that it allow us to control the spatial size of the output that otherwise
would be shrunk according with the kernel and the stride of the convolution
operation, there are three types of padding:

Valid Padding
Same padding Full padding

Figure 2.6: Operation example of distinct kinds of padding.

Source: [17]

– Valid Padding: When the operation is performed without padding. In
this case, the output matches the size of the kernel, causing reduction in
the output dimensions if the kernel size does not correspond to the input
size.

– Same padding: This kind of padding ensures that the output matrix
will match the size of the input image.

– Full padding: This padding ensures that the kernel passes through every
pixel for the same number of times, producing an output exceeding its
input size.

2.2.2 ReLU Activation

The Rectified Linear Unit activation function, nowadays, is the most commonly
used activation function in deep learning models. It is responsible for transforming
the summed weighted input from the node into the activation of the node or output
for that input [20].

The function works by returning zero if it receives any negative input, and return-
ing the input value back otherwise. It is mathematically written as f(x) = max(0, x)
and graphically looks like the example in figure 2.7.

In order to use stochastic gradient descent with backpropagation of errors to
train deep neural networks, an activation function is needed and ReLU become
widely used as it is easier to train, often achieves better performance and alongside
with that, it also has computational simplicity since it only requires a max() function
to implement [38].

2.2. CONVOLUTIONAL NEURAL NETWORKS 12



CHAPTER 2. BACKGROUND

Figure 2.7: Diagram of the ReLU Function.

Source: [50]

2.2.3 Pooling Layer

Another common layer applied when it comes to convolutional neural networks
is the pooling layer. It usually comes between successive convolutional layers and
reduces the spatial size of the image decreasing the computational power needed
to process the data while extracting dominant features which are rotational and
positional invariant and improving efficiency, limiting the risk of overfitting.

It works resembling the convolutional layer as the kernel slides through the input
image scanning a small region and doing some kind of operation, but instead of
having weights, the kernel goal is to aggregate the values of the receptive window
and fill the output matrix with the results. It requires two parameters in order to
work, the stride and the size of the window [34].

There are two main types of pooling operation, the Max pooling which selects
the larger value from the receptive window and includes it in the output and the
Average pooling where it calculates the average value from the receptive window
and fill the output with the result. The figure 2.8 shows how the process works [44].

Figure 2.8: Representation of both pooling options performance.

Source: [59]

13 2.2. CONVOLUTIONAL NEURAL NETWORKS



CHAPTER 2. BACKGROUND

Max pooling is often the choice to work with CNNs because it has better results
due to the fact that it also works as a noise suppressant, while average pooling
only executes dimensionality reduction. Hence, the most common setup for pooling
layers applied for CNNs is a max pooling filter of 2x2 size applied with a stride of
2, it operates independently on every depth of the input and usually does not use
padding in the input before walks through it [34].

2.2.4 Flatten Process

The main goal of this process, as its name implies, is to flatten the final output
of the processing phase, and feed it to the classification phase composed of a regular
Artificial Neural Network, as in figure 2.3, where it will be classified into one of the
classes the network supports [51].

Figure 2.9: Flattening conversion process.

Source: [36]

Moreover, it basically grabs the results of the matrix row by row, and fills them
into one long vector as shown in figure 2.9.

2.2.5 Fully Connected Layer

As the final layer of a convolutional neural network, the fully-connected layer, for
short FC Layer, is the layer that combine the features extracted by the convolutional
layers, and along with the softmax layer, it make a prediction about the input data
into one of the classes provided for the CNN [44].

The FC Layer is composed for a bunch of hidden layers where each node in the
previous hidden layer connects directly to all nodes in the following layer, figure
2.10. The training process involves forward and backward propagation leading to
many iterations and epochs.

2.2. CONVOLUTIONAL NEURAL NETWORKS 14



CHAPTER 2. BACKGROUND

Figure 2.10: FC Layer demonstration.

Source: Author

During the training process, the model verifies the accuracy of predictions and
uses a cross-entropy function to enhance network performance leading to better
generalization models. With this process, the network is able to learn non-linear
combinations of the high-level features of the objects and might learn a possibly
non-linear function for that space as well.

After a series of epochs, the model is able to distinguish between dominating
and certain low-level features in images and using the Softmax activation function,
classify inputs appropriately, producing a probability from 0 to 1 [34].

2.2.6 Softmax Activation

Softmax activation is another kind of function widely used in neural network
models, however, differently from the ReLU function, it is usually used as the activa-
tion function in the output layer of neural network models that predict a multi-class
probability distribution [53].

It operates taking in the output vector of the neural network and returns a vector
of probability scores with the same size as the input, where the probabilities of each
class are proportional to the relative value in the input vector, i.e it normalize the
CNNs’ output and gives each value of it a probability score in a range between 0
and 1. This allows very large values given as the weighted sum of the input to be
output as 1.0 and very small or negative values to be mapped to 0.0 [43].

It is mathematically written as the equation 2.1 [53] and graphically looks like
the example in figure 2.11.

s(x)i =
exi

N∑
j=1

exi

(2.1)

15 2.2. CONVOLUTIONAL NEURAL NETWORKS



CHAPTER 2. BACKGROUND

Figure 2.11: Diagram for the softmax activation function.

Source: [24]

2.3 Object Detection

As one of the most classical Computer Vision techniques, Object Detection is
a technique that combines both Image Classification and Object Location. i.e. it
identifies, locates and classifies objects accurately in an image or video labeling them
inside a bounding box and performing a bunch of different tasks [68]. It is one of the
fundamental problems of computer vision and is the basis of many other techniques,
as it solves two main tasks, to find an arbitrary number of objects and to classify
every single object and estimate its size with a bounding box [29].

Before the rise of deep learning methods, the named classical object detection
models were mainly sliced into three stages [37]:

• Informative Region Selection: The step where the scan of the whole image oc-
curs through a multi-scaling sliding window since different objects may appear
in any positions of the image and have different sizes.

• Feature extraction: The step to extract visual features that can provide a
semantic and robust representation.

• Classification: The last step, the classifier distinguishes each object from all
the other categories and makes the representations informative for visual recog-
nition.

Since the upgrade of computer vision with deep learning techniques, the so-
called modern computer vision has evolved and over the past 8 years many new
object detection models have been created. Those state-of-the-art methods can be
sorted into two groups: two-stage detectors and one-stage detectors [76].

The main difference between these two groups is that while the two-stage detec-
tors first proposes approximate object regions to after use this features for the clas-
sification as well as bounding box regression the one-stage detectors combines both
tasks into one step, achieving higher performance at the cost of accuracy [76]. In
Figure 2.12 is presented some of the most famous Object Detection Models through
time they were released.

In this thesis we will focus on a one-stage model from the YOLO family. The
main advantage of this kind of model is that those algorithms are faster and struc-
turally simpler than the two-stage detectors, even though they are not as good at

2.3. OBJECT DETECTION 16



CHAPTER 2. BACKGROUND

Figure 2.12: Milestone of Object Detection Models

Source: [88]

recognizing irregularly shaped objects or a group of small objects. The detector was
chosen because of its balance between performance and accuracy provided and it
will handle all steps regarding object detection in this project [48].

2.3.1 You Only Look Once (YOLO)

Unlike other approaches based in R-CNN from the time it was released which
use region proposal methods to first generate potential bounding boxes and after
run a classifier, YOLO (You Only Look Once) relabeled object detection as a single
regression problem. It accelerates the task of predicting and shows what objects are
present and where they are only looking once at the image[15].

Being a single convolutional network that simultaneously predicts multiple bound-
ing boxes and class probabilities, YOLO sees the entire image during training and
test steps in order to directly optimize its detection performance, unlike sliding
window and region proposal-based techniques, consequently it implicitly encodes
contextual information about classes as well as their appearance [15].

As said in its paper and is presented in the Figure 2.13, the model has 24 con-
volutional layers followed by 2 fully connected layers. It has alternating 1 X 1
convolutional layers to reduce the features space followed by 3 X 3 convolutional
layers for feature extraction.

Figure 2.13: YOLO layers.

Source: [15]

17 2.3. OBJECT DETECTION



CHAPTER 2. BACKGROUND

Figure 2.14: YOLO model detection workflow.

Source: [15]

The system operates dividing the image into an S X S grid, each cell will become
responsible for detecting an object as well as predict bounding boxes and confidence
scores for those boxes, these scores encode both the probability of that class ap-
pearing in the box and how well the predicted box fits the object. The figure 2.14
presents the Model’s workflow.

2.3.2 YOLOv4

The fourth version of the YOLO family, YOLOv4 performs significantly better
than its predecessors both in performance and speed as shown in figure 2.15. It
was designed to aim for a fast operating speed neural network and optimize it for
parallel computations [42].

To accomplish that, the team behind it chose a few different options for each of
the three parts that compose the object detector (Backbone, Neck and Head) and
shortlisted these candidates until they found the best choice as observed in figure
2.16.

First, the backbone, used for feature extraction, chosen was the CSPDarknet53,
since it had the higher number of parameters and speed between the options as well
as a good receptive field between the options [42].

Following, the neck which extract rich features that are used for accurate predic-
tions, the most important feature is the receptive field and the chosen one was Spatial
Pyramid Pooling that helped the backbone increase the receptive field and Modified
Path Aggregation Networks (PANet path-aggregation) for pyramidal structure.

For the Head, the detector itself, they used the latest YOLO version so far, the
YOLOv3 for loss calculations and predictions during the time of inference [55]. To
sum up, the YOLOv4 consists of:

• Backbone: CSPDarknet53;

• Neck: Spatial Pyramid Pooling additional module, PANet path-aggregation;

2.3. OBJECT DETECTION 18



CHAPTER 2. BACKGROUND

Figure 2.15: YOLOv4 performance comparison.

Source: [42]

Figure 2.16: Features considered in the study for the creation of YOLOv4.

Source: [55]

• Head: YOLOv3

That alone already increases the performance of YOLOv4 when compared with
its predecessor, but there is more to it. Another key point for the YOLOv4’s suc-
cess was the features they add to the architecture in order to optimize the process.
These features can be sorted into two groups, the Bag of Freebies that improves
the model’s training step, with features like data augmentation, cost function and
class imbalance that increase the accuracy of the model without any impact on the
inference cost, and the Bag of Specials that lightly increases the inference speed, but
can drastically improve the accuracy of the object detector, these plugins enhance
certain attributes in the model such as increasing the receptive field size, strength-
ening feature integration capability and others. The addition of these features to
YOLOv4 (shown in Figure 2.17) lead it to an efficiency enhanced by at least 12%
when compared with older versions [55].

19 2.3. OBJECT DETECTION



CHAPTER 2. BACKGROUND

Figure 2.17: Bag of freebies and Bag of special components present in YOLOv4.

Source: [55]

2.4 Object Tracking

Object tracking is a powerful computer vision technique that plays an essential
role in video understanding. It is a way to follow each object detected as they move
around in the frames of a video creating a unique identification for each one. It
performs detection per frame and formulates the object tracking as a data association
task. The figure 2.18 demonstrates how the technique works.

Figure 2.18: Object tracking Sample.

Source: [13]

Because of the high-performance of object detection models, methods of tracking-
by-detection have gained favor due to their excellent performance despite these meth-
ods usually requiring computationally expensive components, such as the detector
itself and an embedding model [79].

Since it can process real-time footage, object tracking is widely used in a bunch of

2.4. OBJECT TRACKING 20



CHAPTER 2. BACKGROUND

applications such as traffic monitoring, self-driving cars, surveillance, human activity
recognition and security and can perform at two different levels [75]:

• Single Object Tracking (SOT), which aims to track an object of a single class
instead of multiple objects. Someone first has to manually provide the first
bounding box to the tracker and the tracker should be able to track whatever
object they are given, even if the object has no available classification.

• Multiple Object Tracking (MOT), that refers to the approach where the track-
ing algorithm tracks every single object in the video. First, the tracking algo-
rithm determines the number of objects in each frame and then it keeps track
of each object’s identity from frame to frame until they leave the monitored
space.

While implementing an object tracking algorithm, there are some obstacles that
can decrease the models performance. The occlusion of objects in the image is one
of the most common ones, but background distractions also affect the accuracy of
the tracker as well as the variance of shape and size of the objects detected. Another
challenge usually faced when implementing an object tracker, is the training time
that takes a lot of time to train since the algorithm is mathematically complex and
the enhancement of the tracking speed in order to better fit real-time models [85].

Equally to Object Detection, there are several methods and ideas regarding
object tracking developed in the past 20 years in order to improve the accuracy and
performance of the models, some using classical machine learning like K-Nearest
Neighbors and some with Deep Learning such as the OpenCV Object Tracking
built-in methods like MIL, KCF and GOTURN [85].

In this thesis we will work with the DeepSORT method since it is an upgrade of a
popular object tracking algorithm called Simple Online Real-time Tracker (SORT).
In these following subsections we will review both versions for a better understanding
of this method.

2.4.1 Simple Online Real-time Tracker (SORT)

The SORT approach is composed of three steps. It first runs a detector, the
default is the Faster Region CNN, but it can be swapped to others architectures to
improve the detection performance as well, after the detection process, the method
estimates the target’s object future location making use of the Kalman Filter frame-
work, this prediction will posteriorly be corrected with the bounding box values of
the next detection. In case of occlusions the next location will be predicted without
the correction of its previous state, that way the method can avoid some occlusion
issues. After the prediction, the approach runs its data association, assigning de-
tections to existing targets using the intersection-over-union distance between each
detection and all predicted bounding boxes from the existing targets. This is solved
optimally using the Hungarian algorithm [16].

2.4.2 DeepSORT Tracker

The SORT method accomplishes good performance in terms of tracking precision
and accuracy, but it returns a high number of ID switches as well as a deficiency in
tracking through different viewpoints despite the effectiveness of Kalman filter.

21 2.4. OBJECT TRACKING



CHAPTER 2. BACKGROUND

To overcome these issues, the Appearance feature was added to the method
adding deep learning techniques to the tool. The Appearance feature allows the
DeepSORT to describe the features in the image allowing it to estimate object’s
location through longer periods of occlusions. It works using nearest neighbor queries
in the visual appearance to establish the measurement-to-track association, this
association determines the relation between a measurement and an existing track
using the Mahalanobis distance technique. These improvements allow DeepSORT
to handle difficult scenarios and reduces the number of ID switches by over 40% [26].
The procedure of the DeepSORT technique is shown in detail in the Figure 2.19.

Figure 2.19: DeepSORT technique workflow.

Source: [66]

2.5 Object Counting

Counting objects has always been an important task for our society and has
several fields that people make use of this tool. There is no need to say it has
become an extremely important mechanism for computer vision as well.

This task involves counting the number of objects in an image or video and
accomplish this goal can be a quite challenging problem since it requires not only
identifying the presence and location of objects, but also keeping track and count
them as they appear and disappear from the scene [64].

The applications of this technique can be applied from inventory management
to traffic monitoring and upgrading this technique has become an important matter
in academia since it can help in the automation of production workflows, reduction
of human errors and prevent business interruptions [82]. There are two main kinds
of Object Counting [63]:

• Detection-based Object Counting: Where we use a detector to identify the
target objects in the frame and count how many there are. It usually uses
a state-of-the-art object detection method like Faster RCNN or YOLO and
returns the count of the detected objects in the image.

• Regression-based Object Counting: Where it is a full built regression method
using CNNs. This method usually takes the input image and directly estimates
the object count using features extracted from the ground truth of the dataset,
providing the count result at the conclusion of the process.

2.5. OBJECT COUNTING 22



CHAPTER 2. BACKGROUND

Imaginary Line Counting Method

The Virtual Line is an approach for object counting. It is a line drawn across the
frame and counts every detected object that passes through it. The position and
orientation of the line are custom settled in order to better fit the project, letting it
perpendicular to the objects it is going to count [8]. The figure 2.20 is composed of
two images that show a glimpse of how this method works.

Figure 2.20: Virtual line counting approach example.

Source: Author

It works creating a two-points line with the object’s centroid of both current and
previous frame, then it will check if this centroid’s line created intersects with any
segment of the counting line in that frame. If a segment of the line is cut by an
object, it will be counted by the program.

The virtual line counting can be used in a variety of applications, such as counting
the number of vehicles on a road or the number of people in a crowd and it is highly
recommended for its great performance yet simple design [83].

2.6 Metrics

As we train any machine learning model, we will desire to evaluate its perfor-
mance, these evaluations will help the person in charge to understand how well the
model has performed for the given data and improve the model’s performance by
tuning the hyper-parameters of the system. In this section, will be presented some
metrics usually used to measure object detection and spatial localization perfor-
mance.

23 2.6. METRICS



CHAPTER 2. BACKGROUND

Confusion Matrix

Confusion Matrix is not exactly a performance metric but a tabular visualization
of the model’s performance that shows us the training results relating the ground-
truth with the model’s predictions to the problem [90]. A priori, it is a matrix where
each row represents the predicted values and each column shows the actual values
of a class, figure 2.21, and it is often used as a basis on which other metrics evaluate
these results [73].

Figure 2.21: Example of the confusion matrix.

Source: Author

In figure 2.21, each cell in the matrix correspond to a different terminology, which
meaning are [31]:

• True Positive (TP): Represents how many cases were predicted as true and in
fact were true values.

• True Negative (TN): Stands for how many cases were predicted as false as well
as its actual value.

• False Positive (FP): States how many cases were predicted as true but in
reality they were false values.

• False Negative (FN): Indicates how many cases were predicted as false however
they were true values.

Whenever modeling a different project, we have to check whether it is the harm-
less wrong response for the machine to guess, since a perfect machine is not possible
most of the time. So, we need to tune our model to prioritize false positive or false
negative responses in order to achieve better results.

E.g. We don’t want visual systems to detect cancer cells as nevus since this
disease gets worse as time passes, otherwise is acceptable though as this result
would lead to other exams and would be checked if it was a mistake or not. On the

2.6. METRICS 24



CHAPTER 2. BACKGROUND

other hand, talking about criminal courts, if there aren’t enough proofs, it is better
to let a criminal free than convict an innocent person to the jail [91].

Accuracy

The accuracy is one of the main and most common classification metrics available
to measure a model’s performance. It calculates the proportion of the predictions
that were in fact correct and is demonstrated in the equation 2.2 [35].

Accuracy =
CorrectPredictions

TotalPredictions
=

(TP + TN)

TP + FP + TN + FN
(2.2)

Accuracy metric is very intuitive to understand as well as to implement but it is
very important to take note that the accuracy metric heavily relies on data specifics,
if the dataset isn’t approximately balanced, the result won’t be something you can
trust. It works well only if there are an equal number of samples belonging to each
class [90].

Precision

The precision determines the proportion of positive predictions that was actually
correct. It focuses on checking how well the system performs when you can avoid
False Negatives but can’t ignore False Positives. For example a spam detector, it is
acceptable to have a few spam letters in your inbox (False Negative) but tagging as
spam an important email and moving it from folders is a problem (False Positive)
[35].

Precision =
CorrectPositivePredictions

TotalPositivePredictions
=

(TP )

TP + FP
(2.3)

As in equation 2.3, it can be calculated as the predictions that are actually true
to the total of positive predictions. Precision usually is the best evaluation metric
to deal with imbalanced data unless you need to take into account false negatives
and true negatives [90].

Recall

The recall metric shows the proportion of correct positive predictions out of all
positive images in the training dataset. It can be evaluated by dividing the number
of true positives by the number of positive images in the training [90].

Both Recall and Precision metrics are similar, however, while precision checks
how the classifier performs when you can avoid False Negatives but can’t ignore
False Positives, the recall metric works the other way, i.e. it focuses on checking
how well the classifier perform when you can avoid False Positives but can’t ignore
False Negatives [35].

Recall =
CorrectPositivePredictions

TotalPositiveData
=

(TP )

TP + FN
(2.4)

25 2.6. METRICS



CHAPTER 2. BACKGROUND

As expressed in equation 2.4, a good recall value means that the classifier didn’t
miss any true positives, it does not mean the classifier does not have any false
positives though. So, if we maximize the precision metric, we will minimize the
false positive errors and if we maximize the recall metric, we will minimize the false
negative errors.

F1-Score

The F1 Score metric makes use of both precision and recall, it evaluates the
balance between them by calculating their harmonic mean. It usually is used if both
accuracy and recall are important for evaluation [40]. The equation 2.5 demonstrates
how we can obtain it.

F1Score = 2 ∗ precision ∗ recall
precision+ recall

=
2 ∗ TP

2 ∗ TP + FP + FN
(2.5)

It tells us how precise and robust our classifier is, as is a more intricate metric
that allows us to get results closer to reality on imbalanced classification problems
[31].

The greater the F1 Score, the better is the performance of the classifier, a low
F1 Score is not very informative though, it only tells you about the performance
at a threshold, but with that, you won’t discover whether it is a recall error or a
precision error [90].

Intersection Over Union (IoU)

As one of most common deep learning metrics, the Intersection Over Union met-
ric, it also can be named as Jaccard similarity coefficient in some papers, estimates
how well a predicted mask matches the ground truth data, i.e. it measures the
correctness of a prediction. It is calculated by dividing the overlap between the
predicted and ground truth annotation by the union of these and it is represented
in the equation 2.6. Its result can vary between 0 and 1 [92].

IoU =
Prediction ∩GroundTruth

Prediction ∪GroundTruth
(2.6)

Even though in a real situation, it is highly unlikely that the predicted coordi-
nates will exactly match the ground truth, we need a way to measure if our model’s
predictions are on spot, and this metric rewards the model whose predictions heavily
overlap the ground truth [18].

A good value for this metric can change according to the precision required for
the task, a standard value defined by literature for a correct detection is always
higher than 0.5 though [86].

In the example of the figure 2.22 is shown a picture of a bird, where the red
square signs the ground truth while the cyan square marks for the model prediction.
The first image of the example presents a great example of overlap between the
ground truth and the prediction, while the last image shows that even though the
prediction overlaps entirely the ground truth, it does not present a good IoU since

2.6. METRICS 26



CHAPTER 2. BACKGROUND

(a) IoU = 0.96 (b) IoU = 0.22 (c) IoU = 0.00

Figure 2.22: Different examples of IoU values.

Source: [86]

union operation value is far greater than the intersection operation value of these
two.

Mean Average Precision (mAP)

The Mean Average Precision (mAP), might be the most common evaluation
metric to analyze the performance of object detection and segmentation systems. A
lot of object detection models such as Fast R-CNN, YOLO and Mask R-CNN use
this metric to check its robustness that can change from 0 to 100 while trying to
strive for the best value possible [28].

For starters, the Average Precision (AP) is not the average of the precision
metric, we need the results of it as well as the other metrics previously explained in
this section to calculate that though.

The Average Precision is presented as the area under the precision-recall curve
and is calculated for each model’s class individually [56].

First, with the results of precision and recall of each object detected, we plot
a table where precision values are recorded across 11 equally spaced recall values
shifting from 0.0 to 1.0. Then, at each recall level, we save the higher precision value
of that level and calculate as express in the equation 2.7 [27] [87]:

AP =
1

11
∗

∑
Recalli

HigherPrecisionV alue ∗ (Recalli) (2.7)

The mAP is the average of AP, after calculating the AP of each class the average
value of it will result in the mAP [89]. Equation 2.8 demonstrates this calc.

mAP =
1

n
∗

k=n∑
k=1

APk (2.8)

It is worth mentioning that mAP metric depends on IoU metric as well since it
defines when a prediction is correct based on its value.

2.7 Cloud Services

As one of the most important developments in the history of the IT World
[47]. Cloud Computing Services has become extremely popular among everyone

27 2.7. CLOUD SERVICES



CHAPTER 2. BACKGROUND

who works with computing technology. Cloud Computing allows users to host ap-
plications and files on remote servers and computers, accessible via the internet [6].
It promises improved cost-efficiencies, faster innovation, faster time-to-market, and
the enhanced ability to scale applications on demand [25].

Figure 2.23: Cloud computing portrayal.

Source: Author

Numerous applications nowadays are utilizing cloud services, as shown in Figure
2.23. For this project, we will make use of two of them to accomplish our objectives,
as they offer superior computational processing capabilities.

2.7.1 Google Drive

The Google Drive (2.24), is the google ”Cloud-based” storage system and pro-
vides users with the ability to store, create and share files online [32]. In spite of
everything it also allows users to integrate files from other google services.

With 15GB free storage available for its users, Google Drive has become a great
tool for everyone who wants to store your files in a safe place. It also lets you view
different file formats without buying extra software and access your files from any
device [80].

The main role of Google Drive in this project will be pivotal. It will serve as the
primary storage for all files, including the dataset and algorithms used throughout
the project. We will also integrate our dataset with Colab to avoid the need to
upload it every time we use it.

2.7. CLOUD SERVICES 28



CHAPTER 2. BACKGROUND

Figure 2.24: Google Drive homepage

Source: Author

2.7.2 Google Colab

Google Colab (figure 2.25), is a free Cloud Computing service which allows users
to program Jupyter Notebooks and offers some advantages while performing this
task. It is hosted by Google itself which makes it work extremely fast due to Google’s
network speed. They also allow users to Access their GPU, a single 16GB NVIDIA
Tesla K80 [22], as well as their TPU, which are great for projects which require high
computer processing.

Additionally, Google Colab includes many popular libraries for deep learning,
machine learning, and data science, making it unnecessary to set up the environment
and it integrates with Google Drive, allowing users to store notebooks online, share
them with others, and avoid losing their files [52].

Figure 2.25: Google Colaboratory homepage.

Source: Author

This project will use Google Colab to handle all the computer processing phases,
such as training the algorithm for car detection, tracking and counting, and gener-

29 2.7. CLOUD SERVICES



CHAPTER 2. BACKGROUND

ating results for each step.

2.8 Related Works

There is no doubt that since our community is growing, the number of cars
in the streets have been increasing lately [60][61][77] but counterbalance to that,
the number of traffic jams and accidents are escalating as well [4][69][41] and these
complications have direct impact in the economy of the country [62]. As stated [7]
we can distinguish two ways that traffic jams affect the economy. The first is due
to the lost time a person spent on a roadblock that could be used in a productive
activity and the second is the delay of goods and the increase of fuel and pollution
that are caused by this disorder.

Added to that, traffic jams have significant influence on people’s health as well
[10][9], many doctors affirms that roadblocks cause chronic stress to the drivers,
who might feel scared, insecure, helplessness and anxious. This stress provokes the
adrenaline in the body, speeding up the heartbeats, raising the blood pressure and
sometimes elevating even the sugar rate in blood. Congestion also increases chances
of car accidents as well, according to data [46], pedestrian fatalities can raise up to
8.5 times in these circumstances.

Therefore, counting vehicles on a daily-basis aiming to learn about the local
traffic and the best way to handle it is the fast and economical way, to not say the
most important [1]. With a good understanding about the proportion of cars in the
roads and avenues we are studying [5], we can have a better analysis of it and decide
on a way to solve or at least mitigate the problem, solutions that can alter from
improving traffic lights or public transports to set up new roads [4][19].

Some of the first strategies used to identify vehicles [12] made use of approaches
to filter different features present in the image in order to detect the objects, the
most common was the background subtraction that detach moving objects from the
scenery to identify it, another technique detect the vehicle based on the shadow
created underneath it. While some of the first approaches for tracking were based
in the contour method, checking the boundaries of the vehicles and the pattern
method which uses the YCrCb color space to construct an initial background and
consequently find vehicles location and keep track it [12].

As the technology advanced, other work started an analysis about the topic [48],
he developed a study over some detection models based on CNN with the goal to
find the best model to detect vehicles. According to the outcomes of the study,
the researcher found that the Yolov4NCIoU performed the best among the different
options. The Yolov4NCIoU is a modified version of Yolov4, where the author made
some improvements to the loss function. When tested on the researcher’s dataset
that consists of pictures taken from the roads of Florianopolis during the daylight,
it showed a result of 88,2% mAP and 18 FPS of speed when tested in his dataset.

Another paper [49] did a similar analysis with four different detectors and four
different trackers to compare the best among the 16 combinations they implemented
would have a greater performance. The YOLOv4 detector combined with the deep-
SORT tracker turned out to be the best model for counting cars. According to their
findings, the counting results were approximately 107%. This calculation was made
by dividing the number of cars the model identified by the actual number of vehicles
in the test scenario. Their models sometimes incorrectly identified objects as cars

2.8. RELATED WORKS 30



CHAPTER 2. BACKGROUND

as well as double counted them, creating what we call ”false positives”. These false
positives caused the count to be higher than expected.

In this study, they developed a huge database with 98856 images of roads scenes
featuring vehicles at night. Additionally, they showcase a novel framework based
on a grid of foveal classifiers which handled unshaped light patterns. This method
presented greater accuracy results and faster operation time than the YOLOv3 and
R-CNN when the comparison was made.

Jhon’s paper [48], also developed the tracking and counting system. For the
tracker he used the deepSORT method and implemented a count system based on a
middle virtual line which detects and counts every detected vehicle that crosses it.
His work declares an average accuracy of 97.8% for this method [48].

In an effort to contribute to these presented projects, our work implemented a
system with the finest attributes highlighted in these previous studies. The main
objective of our system is to detect and count vehicles during the nocturnal phase
of the day since automatic counting systems are recommended to perform in the
course of 24 hours [3]. We aim to make this dissertation a complement study of
these previous ones and advance the capabilities of vehicle detection and counting
in low-light conditions.

We are also interested in evaluating datasets provided by surveillance cameras
in order to reduce hardware’s cost. If we have these cameras to do uninterrupted
work for us, we can gather an immeasurable amount of data which can lead us to
another level of expertise in respect to the increase of traffic.

31 2.8. RELATED WORKS



Chapter 3

Car Detection

This chapter presents every information related to the object detection process
done in the project of this thesis. We start with the overview of our object detection
approach in the first section and the dataset generation process is presented in the
second section. In the third section we show our results and do an analysis about
the models we tested and finish this chapter with some notes about all the activity
done so far in the fourth and last section.

3.1 Project Overview

The first step of this project is the car detection procedure. To accomplish that,
this thesis will focus on training a YOLOv4 based solution which presents good
detection results as well as good speed for real time applications according to the
literature [42], [48]. We decided to use this version since the newer ones available in
the beginning of this study, like YOLOv5 and YOLOv6 were not developed by the
official authors and presented equivalent performance as YOLOv4. In the middle
of 2022, the official authors released the official YOLOv7 which presented a good
upgrade in performance [93], but since we were near the end of the study we decided
to stick with the fourth version.

To achieve a good detector we prepared a database, which will be explained in
the section 3.2, and compounded several models under individual conditions and
different datasets to accomplish our goal.

The workflow displayed in the figure 3.1 indicates the procedures implemented in
our detection process including the YOLOv4 training part. Our detector will work
reading the input video, it will detach each frame and detect any object available,
every detection made will be pointed and drawn in the image as well as written and
saved inside a reference list that can be used for tracking purposes (which will be
explained later on into the next chapter).

Training Outline

The training processes were executed in the Google Colaboratory, see section
2.7, using its pro version to handle powerful operations faster than its free version.

The algorithm code used to train the dataset was based on the main article
published by the original author [42], adapting the code to run the specific situation
present in this thesis which is detecting vehicles.

32



CHAPTER 3. CAR DETECTION

Figure 3.1: Detection phase workflow.

Source: Author

A few different batch sizes and learning rates were chosen in the training process
to contrast the effectiveness of these choices in the final result taking into account
some discoveries of previous studies [48] [23]. With this range of variables we can
obtain a review of whether they interfere in the model generalization or if there’s a
combination which could give us better results.

3.2 Data Collection

This project’s data collection process was created after a free publicly avail-
able dataset labeled Nighttime Vehicle Detection database (NVD Dataset). This
database was created by a research group, called Image Processing group, focused
on applications of Digital Images and Video Processing based on the Madrid Poly-
technic University [71].

Scenario Resolution Number of Sequences Number of Frames Frames per Second
Richmond 450 × 800 11 10279 2
Walnut 480 × 640 29 28910 8

California 480 × 640 20 19998 13
Connecticut 480 × 704 21 20699 5
Gelderland 720 × 1280 15 14970 25

Table 3.1: The NVD Database Summary

Source: [70]

The NVD Dataset is composed of 96 sequences consisting of 94856 images of real
traffic surveillance cameras from five different locations on highways and details can
be found in table 3.1 [70]. The cities addressed in this database are Richmond, Wal-

33 3.2. DATA COLLECTION



CHAPTER 3. CAR DETECTION

nut, California, Connecticut and Gelderland and all images gathered were recorded
in monochrome video at night as it is displayed in Figure 3.2.

Figure 3.2: Samples of the Nighttime Vehicle Detection database (NVD).

Source: [70]

As shown in the examples, this dataset has dissimilarities between figures res-
olutions as well as complex illumination patterns manifested by the vehicles which
amplify the detection process complexity.

The ground-truth information was provided along with this database for every
object of all images. The method used to accomplish that was the point-based
annotation technique, which consists of annotating the central point of each object.
They also provided conversion algorithms to convert the ground-truth information
to other formats. Using that, we gathered the ground-truth in COCO format and
simply reshaped it into YOLO format to work on our project. Below in the figure 3.3
we label the previous samples and show the difference between both the annotation’s
types we mentioned, the red squares representing the bounding boxes annotation
and the yellow dots showing the point-based annotation.

Figure 3.3: NVD database with both annotation methods examples.

Source: Author

3.2. DATA COLLECTION 34



CHAPTER 3. CAR DETECTION

Due to hardware processing limitations, we opted to restrict the number of im-
ages utilized in the training phase rather than training every single image within
this database. The selection was made according to the number of vehicles detected
across the whole sequence, aiming to gather an appropriate set of training objects.
The chosen ones are presented on the table 3.2 as well as some important numbers
from this training procedure in the table 3.3. It is important to note that the se-
quences shown in the table for the test and validation sets were split randomly, with
the goal of having the validation set contain 65% of the images and the test set
containing the remaining 35%.

City Training Test and Validation
California seq43 seq44 seq50 seq56 seq42 seq58
Connecticut seq104 seq107 seq113 seq118 seq102
Gelderland seq122 seq126 seq132 seq135 seq123
Richmond seq2 seq4 seq6 seq9 seq10
Walnut seq13 seq18 seq24 seq33 seq34

Table 3.2: Sequences numbers implemented on detection phase

Source: Author

Parameter Dataset
Total Image Number 26000

Training 20000
Validation 3900

Test 2100
Total Number of labelled vehicles 54100

Table 3.3: Detection data overview.

Source: Author

In our analysis, we split each line of the table 3.2 as one different model and
along with these five models we added another one named AllCities model, which is
a composition of all the sequences appearing in this table. These six distinct datasets
will enhance our study to define a good detector that aligns with our requirements.
In order to evaluate our trained approaches, we are going to use the unused sequences
from the NVD Database, which were not utilized in the training of our network.

3.3 Results

In this section we find every knowledge we learned about the detection process
and seeking for a better way to handle the information we decide to tear it up into
some subsections, first we are going to talk about the output files that the YOLOv4
provide us in this procedure, after we are going to discuss about the results obtained
in the training process and end talking about the results of our detection experiments
in the videos of the roads of the NVD Database.

3.3.1 Result Files

The YOLOv4 detector provides two files after the process of detection. The first
one is the video itself with the bounding boxes drawn around the objects detected.

35 3.3. RESULTS



CHAPTER 3. CAR DETECTION

The second one is a text file that shows two informations, the FPS speed of the
detection for each frame that will not be our main focus since it is not vital for our
project to work on a real time environment even though it is a good option for the
future and a vector with detection and location values of each object detected in
the frame like the example 3.1:

Data = [Class, Confidence, left x, top y, width, height] (3.1)

This data vector presents six arguments to each object detected in the frame,
the first gives us the machine class’ prediction while the second one gives the level
of conviction it has about the class. These two first variables give us the machine’s
classification information while the last four shows the location coordinates of the
object in the image, presenting the x and y coordinates in the image as well as its
width and height.

With the classification and localization of each object in the image, we can
enhance our system and implement a huge variety of applications and that is why
the detection process of a computer vision feature, which provides this information,
is so important.

3.3.2 Training Results

To bring out a better analysis of the results acquired in the training process, we
first need to know what our goal is and determine the best way to achieve it with
the best results possible.

First things first, this thesis’ chapter focuses on identifying vehicles, while in the
night shift of the day where the main goal is to count them. In order to accomplish
that, we need our model to correctly identify all the vehicles present in the video
tests. That is not an easy task though, since there is no thing as a perfect system
which classifies every object correctly.

A good way to deal with that case, is by minimizing the False Negative index
as low as possible, i.e. maximize our Recall metric. That way we might have more
vehicles identified in the video than there really are, but since our main goal is to
count them when traveling across a virtual line instead of only detecting them, it
is acceptable to deal with some false positives as light poles or light reflections that
might occur in the process.

Both tables 3.4 and 3.5 presents the metric results obtained after the training
process of our six different datasets, considering a learning rate of 1e−3 and 1e−5,
respectively, and two different batch sizes for each one. Each dataset had at least 32
epochs while training and that value was enough to converge the accuracy results
through this course. At first, it is notable when comparing the two tables that the
one with better performance regarding the F1-Score (see section 2.6) is the table 3.4
with results up to 98%, while the table where the learning rate is lower, the better
F1 Score was around 90%. Another comparison observed is that the models with
32 batch size tend to have a better performance when compared with the 16 batch
size version.

In order to cut down our approaches list and since the models with a higher
learning rate showed better results so far, we are going to continue our analysis and
check the mAP and IoU metrics of only these models to find if there is a model that

3.3. RESULTS 36



CHAPTER 3. CAR DETECTION

Learning Rate = 10−3

Training Dataset Batch Size TP FP FN Precision Recall F1-Score

California
16 3239 105 109 0.97 0.97 0.97
32 3242 93 106 0.97 0.97 0.97

Connecticut
16 1906 66 127 0.97 0.94 0.95
32 1910 49 123 0.97 0.94 0.96

Gelderland
16 787 33 22 0.96 0.97 0.97
32 795 21 14 0.97 0.98 0.98

Richmond
16 3755 1607 375 0.70 0.91 0.79
32 3772 1527 358 0.71 0.91 0.80

Walnut
16 1317 119 68 0.92 0.95 0.93
32 1316 137 69 0.91 0.95 0.93

AllCities Model
16 9041 2410 676 0.79 0.93 0.85
32 9058 2142 659 0.81 0.93 0.87

Table 3.4: Validation results obtained for learning rate of 1e−3.

Source: Author

Learning Rate = 10−5

Training Dataset Batch Size TP FP FN Precision Recall F1-Score

California
16 3046 607 302 0.83 0.91 0.87
32 3098 475 250 0.87 0.93 0.90

Connecticut
16 1770 383 263 0.82 0.87 0.85
32 1799 359 234 0.83 0.88 0.86

Gelderland
16 746 240 63 0.76 0.92 0.83
32 742 191 67 0.80 0.92 0.85

Richmond
16 3584 2491 546 0.59 0.87 0.70
32 3579 2417 551 0.60 0.87 0.71

Walnut
16 1267 336 118 0.79 0.91 0.85
32 1270 298 115 0.81 0.92 0.86

AllCities Model
16 8486 3283 1231 0.72 0.87 0.79
32 8654 3260 1063 0.73 0.89 0.80

Table 3.5: Validation results obtained for learning rate of 1e−5.

Source: Author

won’t be a good fit for our project. The table 3.6 presents the mAP and IoU metrics
of these models.

With mAP values from around 97.6% until around 80% all of these candidates
seem to fit our project well even though the models with 32 batch size value show
slightly better results in comparison with its 16 batch size. Some of them might
have presented a poor IoU metric but it is worth highlighting that it is due to the
conversion process of the point-based annotation technique, the figure 3.3 shows
a good example of this fact. So even though the predictions and labels might be
on point for a human perspective, the ground truth might be in a different way
than the prediction, that way the union value becomes higher than the intersection,
decreasing the IoU metric of these models. (check section 2.6).

37 3.3. RESULTS



CHAPTER 3. CAR DETECTION

Learning Rate = 10−3

Training Dataset Batch Size IoU (%) mAP (%)

California
16 80.56 % 97.62 %
32 80.90 % 97.64 %

Connecticut
16 82.30 % 94.83 %
32 83.10 % 94.65 %

Gelderland
16 83.27 % 93.70 %
32 85.73 % 94.51 %

Richmond
16 52.08 % 80.35 %
32 53.16 % 81.27 %

Walnut
16 77.91 % 95.65 %
32 77.32 % 95.71 %

AllCities Model
16 63.47 % 90.50 %
32 65.52 % 91.23 %

Table 3.6: mAP and IoU metrics for a learning rate of 1e−3.

Source: Author

3.3.3 Experiment Results

From this section we will only continue our comparison with the models with
learning rate of 0.001 and batch size of 32 which were the ones with better results
so far. In the figures 3.4 and 3.5, we tried on our detectors in the five landscapes
already mentioned in this thesis, these frames from the videos show how well our
models performed in the simulation in the streets using videos that weren’t present
in the training phase.

At first sight, in the figure 3.4, the models trained after the datasets of California,
Connectituc and Walnut seem to have greater bounding boxes than the vehicles
expect, being the Connecticut dataset the worse one in comparison. Looking back
to the table 3.6 it explains why the IoU metric of the others seems to be low in
contrast and that was anticipated as well as the reason besides this fact.

Following the figure 3.5, the second point worth mentioning is how poorly the
Gelderland model performed in the other environments besides its own. The reason
that leads to this behavior is because of the lack of true positive samples in the
training phase. The roads of the Gelderland dataset seem to not be very used
during night time and that lead to a lack of true positive cars fed into our model of
this city, leading it to a lack of generalization and not being able to detect cars in
the other roads consistently.

The Richmond model gave better results when compared with the previous mod-
els mentioned, presenting only some false negatives and some misplaced bounding
boxes as demonstrated in the image 3.5, but overall the best model was, the already
expected, AllCities detector since it was fed up with more images than any other
detector enhancing its generalization, even though this fact was not present in the
training results. The AllCities Model did great in all of the scenarios tested, showing
good results as well as a better confidence value when compared to the others.

3.3. RESULTS 38



CHAPTER 3. CAR DETECTION

California Model Conneticut Model Walnut Model

D
at
as
et

C
al
if
or
n
ia

D
at
as
et

C
on

n
et
ic
u
t

D
at
as
et

G
el
d
er
la
n
d

D
at
as
et

R
ic
h
m
on

d
D
at
as
et

W
al
n
u
t

Figure 3.4: Experiments’ detection results for California, Conneticut and Walnut
models.

Source: Author

39 3.3. RESULTS



CHAPTER 3. CAR DETECTION

Gelderland Richmond AllCities

D
at
as
et

C
al
if
or
n
ia

D
at
as
et

C
on

n
et
ic
u
t

D
at
as
et

G
el
d
er
la
n
d

D
at
as
et

R
ic
h
m
on

d
D
at
as
et

W
al
n
u
t

Figure 3.5: Experiments’ detection results for Gelderland, Richmond and AllCities
models.

Source: Author

3.3. RESULTS 40



CHAPTER 3. CAR DETECTION

In the figures 3.4 and 3.5, we show a result comparison between the models we
trained, but from this point we are going to add up other interesting results that
appeared while we were doing our analysis. These following images focus on the
mistakes made by the models during the tests of the detection phase but show some
good results as well.

(a) (b) (c)

Figure 3.6: Interesting results that the California model presented during the tests.

Source: Author

Beginning with the California Model in the Figure 3.6, it showed inconsistency
during detection, missing a lot of objects when they were far from the camera and
occluded by some nearby vehicles, it also presented some shifted bounding boxes
during the tests. The Connecticut model had huge bounding boxes in comparison
to the vehicles as already said as well as some false positives in light poles and
misplaced bounding boxes in some cases as shown in figure 3.7.

(a) (b) (c)

Figure 3.7: Interesting results that the Connecticut model showed during the test
phase.

Source: Author

(a) (b) (c)

Figure 3.8: Interesting results that the Gelderland Model demonstrated in the course
of the tests.

Source: Author

41 3.3. RESULTS



CHAPTER 3. CAR DETECTION

The Gelderland Model was, without a doubt, the worst detector around the
models. It does detect some vehicles in the others scenarios though as well as track
them for a couple of frames, despite not being enough to be considered as an useful
detector. As it shows in the figure 3.8, it only detects one vehicle when this event
happens.

(a) (b) (c)

Figure 3.9: Intriguing results that the Richmond Model presented during the tests.

Source: Author

The Richmond model handled multi-object detection well, but presented low
accuracy or didn’t detect objects that moved far away from the viewpoint, in some
cases it also created a new bounding box between two different vehicles. The figure
3.9 shows in the details these results.

(a) (b) (c)

Figure 3.10: Interesting results that the Walnut Model manifested during the tests.

Source: Author

Like some other models, the Walnut model presented bounding boxes shifted
from the real object as well as occlusions from near vehicles or light poles, as we can
take a glimpse in figure 3.10. It also showed double bounding boxes for the same
vehicle when it was a big size one.

Lastly, The AllCities model showed a few false positives in some cases when cars
were approaching each other in the roads for a couple of frames as demonstrated in
the figure 3.11, but it handled well the multi object detection task, even though lose
track of far vehicles sooner than when they show up one at each time, that occurred
because of the different kinds of illumination conditions presented when more cars
are in the image. It also detected objects that were traveling in the side road for a
short time despite weren’t enough to track them.

3.3. RESULTS 42



CHAPTER 3. CAR DETECTION

(a) (b) (c)

Figure 3.11: Captivating results that the AllCities model exhibited in the test phase.

Source: Author

3.4 Final Thoughts

In the course of this chapter we showed the dataset gathering process and tried
to implement it in different ways regarding vehicle detection at night time.

Our results expressed before revealed some object detection classic issues as oc-
clusions between the objects or with the scenery and different illumination patterns
interfering in the detection. It also exhibited some shifted bounding boxes in the
process due to the conversion process from the point based annotation to the YOLO
supported version, that happened because the point label marks weren’t always in
the same spot of the vehicle and were placed in the front of the vehicles whenever a
new one entered the sight view.

After this detailed analysis of the criteria, we chose to use the named AllCities
Model, with a learning rate of 10−3, and a batch size of 32 in the next steps, as it
proved to be the design that best met our expectations among the options presented
in this thesis, with a mAP value of 91.23%.

This outcome is slightly better when compared with the results of other studies,
such as the one presented by Andrés [70] and Jhon [48]. It is valid to highlight that
even though we used the same database as Andrés, we did not use the same training
and test sets. His study also used the predecessor model of ours, the YOLOv3. As
for Jhon, he achieved an 87% mAP performance and used the same detection and
tracking tools as our study.

The AllCities Model might have shown some detection errors around the process
but in the following chapter we will analyze and check if these issues will have a
great impact on our results.

43 3.4. FINAL THOUGHTS



Chapter 4

Car Tracking and Counting

Now that we have our detector, we are going to focus on the last two features we
need to finish our project, the tracking and counting steps. Even though they are
different techniques, the counting technique heavily relies on the tracking algorithm
and that is why they are explained in the same chapter.

In this chapter we show all details regarding the object tracking and object
counting steps of our project, we start by presenting the way we are going to embrace
these steps in the first section and talking about the method we will use to analyze
our approach in the second one. After in the third section we present the results we
got during the process of both tracking and counting steps and finalize with some
thoughts about the chapter in the fifth section.

4.1 Proposed Solution

To achieve our goal, we need to complement our detector with both tracker and
counter techniques. Our detector already identifies the presence and location of the
objects in the image and with the text file that our algorithm provides us, we handle
this data to track these detected objects around the frame.

To do this track, we decided to make use of the DeepSORT feature. In a loop, it
first runs the detector to find the objects, after we have them defined, the framework
estimates these object’s centroid future location making use of the kalman filter.
Next, the tracker will make a data association between the two following frames
using a threshold value to do it. This threshold will decide if these centroids of both
frames are from the same object or not. More material of this tracker can be found
in the section 2.4.2 where we comment on it in more details.

For the counting step procedure of this project, we choose to use the virtual line
counting technique. In order for it to work, at the start of the process, a line will
be set across the road. As the video goes on and the algorithm keeps track of the
vehicles, whenever a detected object moves through any section of the line it will be
counted and sum up to the total, giving the full amount of vehicles that went north
and the ones which moved south at the end. Check 2.5 for more details about this
counting method.

The figure 4.1 demonstrates the workflow of the system proposed for this chapter.
Starting from the output of the detector until the result video after all the track
and count procedure.

44



CHAPTER 4. CAR TRACKING AND COUNTING

Figure 4.1: Tracking and counting workflow

Source: Author

4.2 Analysis Overview

In this chapter, we decided to make our analysis for both track and count tech-
niques with the sequences from the NVD Dataset [71] that were not used previously
in this thesis in an effort to represent real deal videos where the model has never
faced before. In the table 4.1 we show the sequences we generated the videos.

The data study we developed consists of two parts, the tracking and the counting
steps. In the first one, we are interested in discovering if the tracker can handle the
vehicles at night checking if it can keep up with the objects without losing track of
it, to accomplish that we are going to check if it keeps the same object ID as the
vehicle moves through the video. In the second part we test the counting algorithm,
to investigate if the system shows a good counting performance and if there were
problems that we faced along this process.

For all the comparisons with the algorithm results, we manually counted all
vehicles presented in each video to have a ground truth metric and this data will be
shown in the result tables of the next section as well as the machine results.

45 4.2. ANALYSIS OVERVIEW



CHAPTER 4. CAR TRACKING AND COUNTING

Scenario Video Samples
California seq41 seq46 seq48 seq52 seq54
Connecticut seq100 seq106 seq109 seq110 seq115
Gelderland seq125 seq128 seq129 seq130 seq134
Richmond seq1 seq3 seq7 seq8 seq11
Walnut seq12 seq20 seq22 seq26 seq27

Table 4.1: Sequences number chose for tracking and counting test

Source: Author

4.3 Results

4.3.1 Vehicle Tracking

After implementing the DeepSORT technique and running it through our videos,
we obtain our output files with our detected objects and each of them receive a
different ID. The figure 4.2 gives us some examples of the results.

California Connecticut Walnut

Richmond Gelderland

Figure 4.2: Tracking samples of the Nighttime Vehicle Detection database (NVD).

Source: Author

The following table shows the ID assignments that the DeepSORT technique
made on the objects that appeared in the videos for each landscape. The first five
tables show the results for each one of the five landscapes we are working on and the
last one shows a summary of the results for each city. Each video is named after the
sequence that generated it, we also included to the table the ground truth provided
by a manually count by a person.

4.3. RESULTS 46



CHAPTER 4. CAR TRACKING AND COUNTING

California Sequences Ground Truth ID Numbers Tracked Accuracy (%)
seq41 6 6 100%
seq46 9 10 90%
seq48 6 8 75%
seq52 5 5 100%
seq54 9 16 56,25%
Total 35 45 77,78%

Table 4.2: California tracking results.

Source: Author

Connecticut Sequences Ground Truth ID Numbers Tracked Accuracy (%)
seq100 15 23 65,21%
seq106 12 23 52,17%
seq109 14 23 60,87%
seq110 11 18 61,11%
seq115 10 11 90,90%
Total 62 98 63,26%

Table 4.3: Connecticut tracking results.

Source: Author

Gelderland Sequences Ground Truth ID Numbers Tracked Accuracy (%)
seq125 3 4 75%
seq128 5 7 71,43%
seq129 5 5 100%
seq130 2 2 100%
seq134 2 2 100%
Total 17 20 85%

Table 4.4: Gelderland tracking results.

Source: Author

Richmond Sequences Ground Truth ID Numbers Tracked Accuracy (%)
seq1 123 237 51,90%
seq3 119 248 47,98%
seq7 254 469 54,15%
seq8 299 487 61,39%
seq11 106 236 44,91%
Total 901 1677 53,72%

Table 4.5: Richmond tracking results.

Source: Author

47 4.3. RESULTS



CHAPTER 4. CAR TRACKING AND COUNTING

Walnut Sequences Ground Truth ID Numbers Tracked Accuracy (%)
seq12 25 53 47,17%
seq20 15 32 46,87%
seq22 13 36 36,11%
seq26 21 69 30,43%
seq27 13 39 33,33%
Total 87 229 37,99%

Table 4.6: Walnut tracking results.

Source: Author

Overall Results Ground Truth ID Numbers Tracked Accuracy (%)
California 35 45 77,78%
Connecticut 62 98 63%
Gelderland 17 20 85%
Richmond 901 1677 53,73%
Walnut 87 229 37,99%

Table 4.7: Tracking results summary.

Source: Author

We can see from the tables above that the landscapes where our tracker most
struggled working on were the ones that had more traffic on it while in the other
places it showed a great performance keeping the same ID for most of the vehicles,
but as stated we faced some issues during this process. In the following images we
exhibit the track problems that we experienced during our tests.

Starting with the figure 4.3, it display a change of ID after our detector loses
the track of the vehicle with ID 2 for a period of time due to the light patterns that
it experienced, when the detector recognize the object again it gave another ID for
the same object.

Figure 4.3: Tracking error sample: Lost of bounding box.

Source: Author

In the figure 4.4, we expose an issue caused by the occlusion of two vehicles. As
the first vehicle was going north, when it went across the second vehicle and left the
image, the tracker thought of the second vehicle as the first one, assigning the same
ID value to it.

4.3. RESULTS 48



CHAPTER 4. CAR TRACKING AND COUNTING

Figure 4.4: Tracking error sample: Same ID for two different vehicles.

Source: Author

The last type of issue we found during our tests was caused by occlusion from
another object, like other vehicles or even the watermark from the video, like demon-
strated in the figure 4.5, when it happened the algorithm usually assigned another
ID for the object right after the occlusion.

Figure 4.5: Tracking error sample: Occlusion by objects

Source: Author

4.3.2 Vehicle Counting

There are several ways to implement a virtual line, in this project we decided
to use the line segment intersection method. Two lines intersect if and only if the
extremities of each are separated for the other’s segment and that happens when the
orientation of the three ordered points created in the plane has different orientations.

To find the orientation of an ordered triplet of points we calculate the slope of
them using the formula 4.1:

slope = (yb − ya) ∗ (xc − xb)− (yc − yb) ∗ (xb − xa) (4.1)

Depending on the outcome of this expression, we have different kinds of orienta-
tion that can vary as below:

• If the outcome is zero, then θ = φ. Hence the orientation is collinear.

49 4.3. RESULTS



CHAPTER 4. CAR TRACKING AND COUNTING

• If the outcome is negative, then θ < φ. Hence the orientation is anti-clockwise.

• If the outcome is positive, then θ > φ. Hence the orientation is clockwise.

With these orientations known, we discover if these endpoints intersect, if so, the
counter will sum up one, to the final count.

Another matter that has to be settled before the process is to define the place
where the line will be settled. In the figure 4.6 we present our landscapes and show
the places where we set the virtual line for each of them. These places were chosen
in a way that helps the object count for both directions.

California Connecticut Walnut

Richmond Gelderland

Figure 4.6: Virtual line places for each landscape.

Source: Author

The following five tables present the counting results obtained during our project
for each one of the cities. The sixth one will summarize the results from all the cities
present in this work that will be used to end our discussion. The counting was done
by car’s direction and we are going to compared this data as well.

California
Sequences

Vehicles going North Vehicles going South Total
A.C. G.T. ACC (%) A.C. G.T. ACC (%) AC/GT ACC (%)

seq41 5 5 100% 1 1 100% (6/6) 100%
seq46 5 5 100% 1 1 100% (6/6) 100%
seq48 1 1 100% 2 2 100% (3/3) 100%
seq52 2 1 50% 4 3 75% (6/4) 66,7%
seq54 1 1 100% 4 6 75% (5/7) 77,77%
Total 14 13 92,85% 12 13 84,21% (26/26) 86,66%

Table 4.8: California counting results.

Source: Author

4.3. RESULTS 50



CHAPTER 4. CAR TRACKING AND COUNTING

Connecticut
Sequences

Vehicles going North Vehicles going South Total
A.C. G.T. ACC (%) A.C. G.T. ACC (%) AC/GT ACC (%)

seq100 12 12 100% 5 1 20% (17/13) 76,47%
seq106 4 3 75% 8 8 100% (12/11) 91,67%
seq109 10 10 100% 6 2 33,33% (16/12) 75%
seq110 8 8 100% 5 3 60% (13/11) 84,61%
seq115 3 3 100% 7 7 100% (10/10) 100%
Total 37 36 97,3% 31 21 67,74% (68/57) 83,82%

Table 4.9: Connecticut counting results.

Source: Author

Gelderland
Sequences

Vehicles going North Vehicles going South Total
A.C. G.T. ACC (%) A.C. G.T. ACC (%) AC/GT ACC (%)

seq125 1 1 100% 2 2 100% (3/3) 100%
seq128 3 3 100% 1 1 100% (4/4) 100%
seq129 3 3 100% 2 2 100% (5/5) 100%
seq130 2 2 100% 0 0 100% (2/2) 100%
seq134 1 1 100% 1 1 100% (2/2) 100%
Total 10 10 100% 6 6 100% (16/16) 100%

Table 4.10: Gelderland counting results.

Source: Author

Richmond
Sequences

Vehicles going North Vehicles going South Total
A.C. G.T. ACC (%) A.C. G.T. ACC (%) AC/GT ACC (%)

seq1 80 85 94,44% 18 35 67,3% (98/120) 84,5%
seq3 70 80 88,89% 20 37 68,52% (90/117) 81,25%
seq7 180 209 87,81% 21 48 64% (201/257) 82,11%
seq8 188 228 85,07% 44 71 72,45% (232/299) 81,69%
seq11 57 72 82,76% 11 30 61,22% (68/102) 75%
Total 575 674 87,19% 114 221 67,38% (689/895) 81,29%

Table 4.11: Richmond counting results.

Source: Author

Walnut
Sequences

Vehicles going North Vehicles going South Total
A.C. G.T. ACC (%) A.C. G.T. ACC (%) AC/GT ACC (%)

seq12 6 6 100% 9 11 84,61% (15/17) 89,47%
seq20 8 6 75% 10 9 90% (18/15) 83,33%
seq22 5 4 80% 3 3 100% (8/7) 87,5%
seq26 14 13 92,86% 5 5 100% (19/18) 94,73%
seq27 9 10 90,9% 5 4 80% (14/14) 87,5%
Total 42 39 88,63% 32 32 88,89% (74/71) 88,75%

Table 4.12: Walnut counting results.

Source: Author

51 4.3. RESULTS



CHAPTER 4. CAR TRACKING AND COUNTING

Overall
Results

Vehicles going North Vehicles going South Total
A.C. G.T. ACC (%) A.C. G.T. ACC (%) AC/GT ACC (%)

California 14 13 92,85% 12 13 84,21% (26/26) 86,66%
Connecticut 37 36 97,3% 31 21 67,74% (68/57) 83,82%
Gelderland 10 10 100% 6 6 100% (16/16) 100%
Richmond 575 674 87,19% 114 221 67,38% (689/895) 81,29%
Walnut 42 39 88,63% 32 32 88,89% (74/71) 88,75%

Table 4.13: Overall counting results.

Source: Author

As presented in the tables, for all cities of this work, the counter had an overall
result over 81%, even reaching 100% in Gelderland. These results were a satisfactory
outcome but it is noteworthy that we encountered some mistakes during our analysis
as well. Most of them were because of detection irregularities that prevented the
tracker from following the object trace, i.e. losing the data it produced. An example
of this situation is demonstrated in the figure 4.7 where the car next to the bus was
not detected, hence, it was not count.

(a) (b)

Figure 4.7: Example of detection error during count tests.

Source: Author

We also faced some issues with full beam headlights in some cases, that the
highlight occluded other vehicles nearby preventing the detector from finding them.
It resulted in the line missing them and not counting these affected objects as they
passed through it. The figure 4.8 shows an example of this situation.

(a) (b) (c)

Figure 4.8: Example of vehicle occlusion caused by beam headlights of another one.

Source: Author

4.3. RESULTS 52



CHAPTER 4. CAR TRACKING AND COUNTING

4.4 Final Thoughts

Through the course of this chapter we presented every step taken regarding the
tracking and counting parts as we said in the beginning.

Our tracker faced difficulties to follow the objects because of the lack of descrip-
tors for our appearance vector caused by the low illumination of the places and the
complex light and shadows patterns caused by the headlights of the vehicles.

On that account, we decided to not limit our counter by ID, fearing that this
could lead to missing counts. Our decision gave us a few errors, but not enough to
regret the decision, because considering this case scenario, we rather have a false
positive than a false negative.

It is worth mentioning that we removed from the ground truth, cars that did not
cross the line during the video as it was not an algorithm’s fault.

With that in mind, the virtual line counter did great overall. In the scenarios
with a more stable detection, as Gelderland and California it got even results with
100% accuracy in some sequences, for the landscapes with more instability by the
tracker, like Connecticut and Walnut, it was required to place our line in a good
spot where the tracker seemed to be more reliable to follow, in the end, it performed
great as well, showing 100% accuracy in some cases.

For the city of Richmond, since it was the city with most traffic as well as most
unreliability from the detector, it did not performed good at first, because there was
not a spot good enough to check both sides of the road, so the line for this city was
splitted up for each orientation of the venue. With that upgrade, the counter did
better and the results were around 81% as well.

If we use other related studies as references [48] [49], we discover that our out-
comes were indeed satisfactory. We can see that our model’s performance aligns
well within the expected range of results. Although our approach slightly under-
performed in comparison to their methodology due to the reduced lighting conditions
in our terrain, which affected the reliability of our detector, the consistent results
across various scenarios provides validation for the effectiveness of our approach.

53 4.4. FINAL THOUGHTS



Chapter 5

Conclusion and Future Works

The aim of this project was to develop a vehicle counter approach that works
in the night period of the day. This system was developed in three different com-
ponents: detector, tracker and counter. For the detector, this project used the
YOLOv4, a neural network based technique, for the tracker, it applied the deep-
SORT approach and as the counter, it was developed a virtual line method. This
research achieves the goal to count vehicles during the night time of the day of five
different cities around the world.

Another key point that is worth mentioning in this project was the use of images
from surveillance cameras in all steps of it, in order to evaluate the possibility of
future implementation in these systems that are all over the world nowadays.

During the tests, after a broad analysis considering different databases and sev-
eral parameters, the YOLOv4 detector chosen for our model has 32-batch size and
10−3 learning rate, the model achieved an overall performance of 91.23% mean Av-
erage Precision (mAP) and a recall value of 89% on the validation set using the
trained dataset. While conducting the counting process, the model also demon-
strated reliable detection capabilities in the utilized videos.

The tracker did not perform as well as the detector though. To measure it, this
thesis used the IDs generated by the tracker and compared these results with the
manual counting provided by a human being, the tracker results ranged from 38%
until 85%, showing a high rate of IDs being changed in the midst of the object’s
way. The deepSORT technique has the appearance vector to help the tracker in the
process but it was not effective because of the low illumination present in the videos,
making it challenging for the tracker to differentiate a vehicle from another.

The poor results of the tracker did interfere, but was not the main factor for
the results of the counter technique, which achieved an overall success rate over
81%, reaching 100% on some occasions. It was implemented to count every object
which passes through the line, that way, even if the object’s ID changes, they will
be counted if they cross the line.

All the steps of this project were realized using cloud features, such as Google
Colab for all the code processing making use of its video cards and Google drive for
storage and easy access of files. They proved their reliability and were extremely
important for the realization of this project.

54



CHAPTER 5. CONCLUSION AND FUTURE WORKS

Despite the good outcome, there were some limitations to achieving better and
more reliable results, so there are some upgrades that have to be done before imple-
menting this application in a complete computer vision system.

The key feature that requires enhancement is the image database used for the
detector. The efficiency and accuracy of both the tracking and counting procedures
are linked to the detector, given that these processes deeply rely on the data ex-
tracted from detections to carry out their respective functions. Furthermore, many
images have poor focus and the places where the cameras were set presented defi-
cient illumination, resulting in some identification errors by the detector. Also, it is
important to note that the annotation initially provided from the ground truth was
in point-based format, and upon realizing the conversion process of this annotation,
it might have had an impact on the overall dataset reliability. Lastly, even though
the deepSORT had features like the appearance vector and the kalman filter it had
issues following the objects.

These following recommendations for future works concerns the limitations listed
above:

• More data from other cities and different vehicles perspectives should be gath-
ered to enhance the detector generalization and success rate.

• Even though YOLO already performs data augmentation during the dataset
training, more advanced data augmentation techniques should be implemented
to enhance the the existing provided dataset.

• So far, the system only detects if there is a vehicle in the image. We did not
implement the classification feature because of the lack of available images
from other classes such as trucks and motorcycles. These increases would be
great for the system and add more data for precise analysis.

• Substituting the YOLO detector with an alternative that utilizes point-based
annotations as ground truth during the training phase might present an op-
timal choice and is highly recommended to unlock the full potential of the
provided database.

• The deepSORT handled the task, but presented some issues in the process,
mostly because of occlusions and we suggest the viability study of another
tracker’s adoption, we suggest the BYTE method since it has different associ-
ation methods.

55



Bibliography

[1] Joe Fletcher. BASICS OF TRAFFIC COUNTING PROCEDURES. Acessado
em: 18 ago. 2021. Highway Extension, Research Project for Indiana Counties,
and Cities (HERPICC), 1992. url: https://docs.lib.purdue.edu/cgi/
viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&

article=3614&context=roadschool.

[2] Alexx Kay. How-To Artificial Neural Networks. 2001. url: https://www.
computerworld.com/article/2591759/artificial- neural- networks.

html/.

[3] BOWLING GREEN KENTUCKY. TRAFFIC DATA COLLECTION PRO-
CEDURES. Acessado em: 18 ago. 2021. The City of Bowling Green Public
Works Department, 2002. url: https://www.bgky.org/files/hSLFx00I.
pdf.

[4] Anthony Downs. Traffic: Why It’s Getting Worse, What Government Can Do.
Acessado em: 18 ago. 2021. Brookings, 2004. url: https://www.brookings.
edu/research/traffic-why-its-getting-worse-what-government-can-

do/.

[5] DNIT. MANUAL DE ESTUDOS DE TRÁFEGO. Acessado em: 18 ago. 2021.
DNIT, 2006. url: https : / / edisciplinas . usp . br / pluginfile . php /

5068343/mod_resource/content/0/DNIT%5C%202006_manual_estudos_

trafego.pdf/.

[6] Shivaji P. Mirashe and N. V. Kalyankar. “Cloud Computing”. In: CoRR
abs/1003.4074 (2010). arXiv: 1003.4074. url: http://arxiv.org/abs/
1003.4074.

[7] Mobilize. Os custos do congestionamento na cidade de S.Paulo. Acessado em:
18 ago. 2021. Mobilize, 2010. url: https://www.mobilize.org.br/midias/
pesquisas/custos-do-congestionamento-em-sp.pdf.

[8] Zhe Liu and Renaud Marlet. “Virtual Line Descriptor and Semi-Local Match-
ing Method for Reliable Feature Correspondence”. In: British Machine Vision
Conference 2012. United Kingdom, Sept. 2012, pp. 16.1–16.11. url: https:
//hal.science/hal-00743323.

[9] Tiago Dantas. Perigos do trânsito para a saúde. Acessado em: 18 ago. 2021.
Uol, 2013. url: https://mundoeducacao.uol.com.br/saude-bem-estar/
perigos-transito-para-saude.htm.

56



BIBLIOGRAPHY

[10] São Paulo G1. Congestionamento provoca estresse e pode ocasionar crises de
ansiedade. Acessado em: 18 ago. 2021. G1, 2013. url: http://g1.globo.
com/sao-paulo/anda-sp/noticia/2013/07/congestionamento-provoca-

estresse-e-pode-ocasionar-crises-de-ansiedade.html.

[11] Jason Chang. Sampling in computer vision and Bayesian nonparametric mix-
tures. 2014.

[12] Raad Ahmed Hadi, Ghazali Sulong, and Loay Edwar George. “Vehicle Detec-
tion and Tracking Techniques : A Concise Review”. In: Signal &amp Image
Processing : An International Journal 5.1 (Feb. 2014), pp. 1–12. doi: 10.5121/
sipij.2014.5101. url: https://doi.org/10.5121%2Fsipij.2014.5101.

[13] Laura Leal-Taixé. Multiple object tracking with context awareness. 2014. doi:
10.48550/ARXIV.1411.7935. url: https://arxiv.org/abs/1411.7935.

[14] CS231n Course Materials. CS231n: Convolutional Neural Networks for Vi-
sual Recognition. 2015. url: https://cs231n.github.io/convolutional-
networks/.

[15] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object De-
tection”. In: CoRR abs/1506.02640 (2015). arXiv: 1506.02640. url: http:
//arxiv.org/abs/1506.02640.

[16] Alex Bewley et al. “Simple online and realtime tracking”. In: 2016 IEEE In-
ternational Conference on Image Processing (ICIP). IEEE, Sept. 2016. doi:
10.1109/icip.2016.7533003. url: https://doi.org/10.1109%5C%
2Ficip.2016.7533003.

[17] Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic
for deep learning”. In: ArXiv e-prints (Mar. 2016). eprint: 1603.07285.

[18] Adrian Rosebrock. Intersection over Union (IoU) for object detection. 2016.
url: https://pyimagesearch.com/2016/11/07/intersection- over-
union-iou-for-object-detection/.

[19] Smarter Cambridge Transport. Reducing Traffic Congestion and Pollution in
Urban Areas. Acessado em: 18 ago. 2021. smartertransport, 2016. url: https:
//www.smartertransport.uk/smarter- cambridge- transport- urban-

congestion-enquiry/.

[20] Dan Becker. Rectified Linear Units (ReLU) in Deep Learning. 2017. url:
https://www.kaggle.com/code/dansbecker/rectified-linear-units-

relu-in-deep-learning/notebook.

[21] Rodrigo De Oliveira et al. “A System Based on Artificial Neural Networks
for Automatic Classification of Hydro-generator Stator Windings Partial Dis-
charges”. In: Journal of Microwaves, Optoelectronics and Electromagnetic Ap-
plications 16 (Sept. 2017), pp. 628–645. doi: 10.1590/2179-10742017v16i3854.

[22] Google. Colaboratory Frequently Asked Questions. 2017. url: https://research.
google.com/colaboratory/faq.html.

[23] Priya Goyal et al. “Accurate, Large Minibatch SGD: Training ImageNet in
1 Hour”. In: CoRR abs/1706.02677 (2017). arXiv: 1706.02677. url: http:
//arxiv.org/abs/1706.02677.

57 BIBLIOGRAPHY



BIBLIOGRAPHY

[24] Shivlu Jain. When To Use Softmax Activation Algorithm In Deep Learning.
2017. url: http://www.mplsvpn.info/2017/12/when-to-use-softmax-
activation.html.

[25] Jaydip Sen et al. “Cloud Computing - Architecture and Applications”. In:
CoRR abs/1707.09488 (2017). arXiv: 1707.09488. url: http://arxiv.org/
abs/1707.09488.

[26] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. “Simple Online and Real-
time Tracking with a Deep Association Metric”. In: CoRR abs/1703.07402
(2017). arXiv: 1703.07402. url: http://arxiv.org/abs/1703.07402.

[27] Jonathan Hui. mAP (mean Average Precision) for Object Detection. 2018.
url: https://jonathan-hui.medium.com/map-mean-average-precision-
for-object-detection-45c121a31173.

[28] Lars Hulstaert. A Beginner’s Guide to Object Detection. 2018. url: https:
//www.datacamp.com/tutorial/object-detection-guide.

[29] Jeremy Jordan. An overview of object detection: one-stage methods. 2018. url:
https://www.jeremyjordan.me/object-detection-one-stage/.

[30] Rayson Laroca et al. “A Robust Real-Time Automatic License Plate Recogni-
tion based on the YOLO Detector”. In: CoRR abs/1802.09567 (2018). arXiv:
1802.09567. url: http://arxiv.org/abs/1802.09567.

[31] Aditya Mishra. Metrics to Evaluate your Machine Learning Algorithm. 2018.
url: https://towardsdatascience.com/metrics-to-evaluate-your-
machine-learning-algorithm-f10ba6e38234.

[32] Erica Mixon. Google Drive. 2018. url: https :/ / www . techtarget. com /
searchmobilecomputing/definition/Google-Drive.

[33] Julian Müller and Klaus Dietmayer. “Detecting Traffic Lights by Single Shot
Detection”. In: CoRR abs/1805.02523 (2018). arXiv: 1805.02523. url: http:
//arxiv.org/abs/1805.02523.

[34] Sumit Saha. A Comprehensive Guide to Convolutional Neural Networks — the
ELI5 way. 2018. url: https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[35] Java T Point Team. Performance Metrics in Machine Learning. 2018. url:
https : / / www . javatpoint . com / performance - metrics - in - machine -

learning.

[36] SuperDataScience Team. The Ultimate Guide to Convolutional Neural Net-
works (CNN). 2018. url: https://www.superdatascience.com/blogs/the-
ultimate-guide-to-convolutional-neural-networks-cnn.

[37] Zhong-Qiu Zhao et al. “Object Detection with Deep Learning: A Review”. In:
CoRR abs/1807.05511 (2018). arXiv: 1807.05511. url: http://arxiv.org/
abs/1807.05511.

[38] Jason Brownlee. A Gentle Introduction to the Rectified Linear Unit (ReLU).
2019. url: https://machinelearningmastery.com/rectified-linear-
activation-function-for-deep-learning-neural-networks/.

BIBLIOGRAPHY 58



BIBLIOGRAPHY

[39] Lucas C. Possatti et al. “Traffic Light Recognition Using Deep Learning and
Prior Maps for Autonomous Cars”. In: CoRR abs/1906.11886 (2019). arXiv:
1906.11886. url: http://arxiv.org/abs/1906.11886.

[40] Tavish Srivastava. 11 Important Model Evaluation Metrics for Machine Learn-
ing Everyone should know. 2019. url: https://www.analyticsvidhya.com/
blog/2019/08/11-important-model-evaluation-error-metrics/.

[41] Tina Bellon. As global traffic jams mount, cities try new ways to ease con-
gestion: study. 2020. url: https://www.reuters.com/article/us-autos-
congestion-idUSKBN20W18E.

[42] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4:
Optimal Speed and Accuracy of Object Detection”. In: CoRR abs/2004.10934
(2020). arXiv: 2004.10934. url: https://arxiv.org/abs/2004.10934.

[43] Jason Brownlee. Softmax Activation Function with Python. 2020. url: https:
//machinelearningmastery.com/softmax-activation-function-with-

python/.

[44] IBM Cloud Education. Convolutional Neural Networks. 2020. url: https:
//www.ibm.com/cloud/learn/convolutional-neural-networks#toc-

types-of-c-yL2bT7qZ.

[45] IBM Cloud Education. Neural Networks. 2020. url: https://www.ibm.com/
cloud/learn/neural-networks.

[46] Redação Garagem360. Acidentes de trânsito aumentam quando há conges-
tionamento. Acessado em: 18 ago. 2021. Garagem360, 2020. url: https :

//garagem360.com.br/acidente-de-transito/.

[47] Amin Keshavarzi, Abolfazl Toroghi Haghighat, and Mahdi Bohlouli. “Research
Challenges and Prospective Business Impacts of Cloud Computing: A Survey”.
In: CoRR abs/2005.01475 (2020). arXiv: 2005.01475. url: https://arxiv.
org/abs/2005.01475.

[48] Jhon Majin. DESENVOLVIMENTO DE UM SISTEMA DE CONTAGEM E
CLASSIFICAÇÃO DE VEÍCULOS UTILIZANDO REDES NEURAIS CON-
VOLUCIONAIS. Universidade Federal de Santa Catarina, 2020.

[49] Vishal Mandal and Yaw Adu-Gyamfi. “Object Detection and Tracking Algo-
rithms for Vehicle Counting: A Comparative Analysis”. In: CoRR abs/2007.16198
(2020). arXiv: 2007.16198. url: https://arxiv.org/abs/2007.16198.

[50] Shriyashish Mishra. Object Detection. 2020. url: https : / / github . com /
shriyashish/objectdetection.

[51] Shriyashish Mishra. Object Localization. 2020. url: https://github.com/
shriyashish/objectdetection.

[52] Tutorials Point.Google Colab Tutorial. 2020. url: https://www.tutorialspoint.
com/google_colab/google_colab_introduction.htm.

[53] Bala Priya. Softmax Activation Function: Everything You Need to Know. 2020.
url: https://www.pinecone.io/learn/softmax-activation/.

[54] Sistemas Inteligentes de Trasporte Brasil. A ITSB. 2020. url: https://www.
itsb.org.br/a-itsb.

59 BIBLIOGRAPHY



BIBLIOGRAPHY

[55] Shreejal Trivedi. YOLOv4 — Version 0: Introduction. 2020. url: https://
medium.com/visionwizard/yolov4-version-0-introduction-90514b413ccf.

[56] Shivy Yohanandan. mAP (mean Average Precision) might confuse you! 2020.
url: https://towardsdatascience.com/map-mean-average-precision-
might-confuse-you-5956f1bfa9e2.

[57] Deep AI. Neural Network. 2021. url: https : / / deepai . org / machine -

learning-glossary-and-terms/neural-network.

[58] Ed Burns. What is a neural network? Explanation and examples. 2021. url:
https://www.techtarget.com/searchenterpriseai/definition/neural-

network.

[59] Leiyu Chen et al. “Review of Image Classification Algorithms Based on Con-
volutional Neural Networks”. In: Remote Sensing 13.22 (2021). doi: 10.3390/
rs13224712. url: https://www.mdpi.com/2072-4292/13/22/4712.

[60] Guilherme Fontana. Produção de véıculos no Brasil cai 31,6% em 2020 e tem
pior resultado desde 2003. Acessado em: 17 ago. 2021. G1, 2021. url: https:
//g1.globo.com/economia/noticia/2021/01/08/producao-de-veiculos-

no-brasil-cai-316percent-em-2020-diz-anfavea.ghtml.

[61] Bernardo Gonzaga. Produção de véıculos cresce 57,5% no 1º semestre... Aces-
sado em: 17 ago. 2021. poder360, 2021. url: https://www.poder360.com.
br/economia/producao-de-veiculos-cresce-575-no-1o-semestre/.

[62] Nizar Hamadeh et al. Intelligent Transportation Systems to Mitigate Road
Traffic Congestion. 2021. doi: 10.48550/ARXIV.2106.02315. url: https:
//arxiv.org/abs/2106.02315.

[63] Yash Khandelwal. Crowd Counting using Deep Learning. 2021. url: https:
//www.analyticsvidhya.com/blog/2021/06/crowd-counting-using-

deep-learning/#:~:text=It%5C%20is%5C%20one%5C%20of%5C%20the,

counting%5C%2C%5C%20and%5C%20traffic%5C%20flow%5C%20monitoring.

[64] Hui Lin, Xiaopeng Hong, and Yabin Wang. “Object Counting: You Only Need
to Look at One”. In: CoRR abs/2112.05993 (2021). arXiv: 2112.05993. url:
https://arxiv.org/abs/2112.05993.

[65] Zebin Lin et al. “Pedestrian Detection by Exemplar-Guided Contrastive Learn-
ing”. In: CoRR abs/2111.08974 (2021). arXiv: 2111 . 08974. url: https :
//arxiv.org/abs/2111.08974.

[66] Addie Ira Parico and Tofael Ahamed. “Real Time Pear Fruit Detection and
Counting Using YOLOv4 Models and Deep SORT”. In: Sensors 21 (July
2021), p. 4803. doi: 10.3390/s21144803.

[67] AWS Team. What is a Neural Network? 2021. url: https://aws.amazon.
com/what-is/neural-network/.

[68] Fritzs Team. Object Detection Guide: Almost everything you need to know
about how object detection works. 2021. url: https : / / www . fritz . ai /

object-detection/.

[69] TomTom. TomTom Traffic Index Ranking 2021. 2021. url: https://www.
tomtom.com/en_gb/traffic-index/ranking/.

BIBLIOGRAPHY 60



BIBLIOGRAPHY

[70] Grupo de Tratamiento de Imágenes. “A Novel System for Nighttime Vehi-
cle Detection Based on Foveal Classifiers with Real-Time Performance”. In:
IEEE Trans. Intelligent Transportation Systems xx.x (2021), pp. xxx–xxx.
doi: https://doi.org/10.1109/TITS.2021.3053863.

[71] Grupo de Tratamiento de Imágenes. Nighttime Vehicle Detection database
(NVD). 2021. url: https://www.gti.ssr.upm.es/data/NVD_database.

[72] Wen-Kai Tsai and Hung-Ju Chen. “High-accuracy vehicle lamp detection for
real-time night-time traffic surveillance”. In: IET Intelligent Transport Systems
14 (Jan. 2021). doi: 10.1049/iet-its.2020.0063.

[73] Aayush Bajaj. Performance Metrics in Machine Learning [Complete Guide].
2022. url: https://neptune.ai/blog/performance-metrics-in-machine-
learning-complete-guide.

[74] Abhishek Balasubramaniam and Sudeep Pasricha. “Object Detection in Au-
tonomous Vehicles: Status and Open Challenges”. In: CoRR abs/2201.07706
(2022). arXiv: 2201.07706. url: https://arxiv.org/abs/2201.07706.

[75] Nilesh Barla. The Complete Guide to Object Tracking [+V7 Tutorial]. 2022.
url: https://www.v7labs.com/blog/object-tracking-guide.

[76] Gaudenz Boesch. Object Detection in 2022: The Definitive Guide. 2022. url:
https://viso.ai/deep-learning/object-detection/.

[77] Best Selling Cars. 2021 (Full Year) International: Worldwide Car Sales. 2022.
url: https://www.best-selling-cars.com/international/2021-full-
year-international-worldwide-car-sales/.

[78] James Chen.What Is a Neural Network? 2022. url: https://www.investopedia.
com/terms/n/neuralnetwork.asp.

[79] Yunhao Du et al. StrongSORT: Make DeepSORT Great Again. 2022. doi:
10.48550/ARXIV.2202.13514. url: https://arxiv.org/abs/2202.13514.

[80] Google. Google Drive training and help. 2022. url: https : / / support .

google.com/a/users/answer/9282958?hl=en.

[81] Chirag Goyal. 20 Questions to Test your Skills on CNN (Convolutional Neural
Networks). 2022. url: https://www.analyticsvidhya.com/blog/2021/05/
20-questions-to-test-your-skills-on-cnn-convolutional-neural-

networks/.

[82] Viso AI Group. Object counting. 2022. url: https://viso.ai/application/
object-counting/.

[83] Tao Han et al. DR.VIC: Decomposition and Reasoning for Video Individual
Counting. 2022. doi: 10.48550/ARXIV.2203.12335. url: https://arxiv.
org/abs/2203.12335.

[84] Irtiza Hasan et al. “Pedestrian Detection: Domain Generalization, CNNs,
Transformers and Beyond”. In: CoRR abs/2201.03176 (2022). arXiv: 2201.
03176. url: https://arxiv.org/abs/2201.03176.

[85] Nico Klingler. Object Tracking in Computer Vision (Complete Guide). 2022.
url: https://viso.ai/deep-learning/object-tracking/.

61 BIBLIOGRAPHY



BIBLIOGRAPHY

[86] Kukil. Intersection over Union (IoU) in Object Detection and Segmentation.
2022. url: https://learnopencv.com/intersection-over-union-iou-
in-object-detection-and-segmentation/.

[87] Kukil.Mean Average Precision (mAP) in Object Detection. 2022. url: https:
//learnopencv.com/mean-average-precision-map-object-detection-

model-evaluation-metric/.

[88] Bharat Mahaur and K. Mishra. “Road object detection: a comparative study
of deep learning-based algorithms”. In: Multimedia Tools and Applications 81
(Apr. 2022). doi: 10.1007/s11042-022-12447-5.

[89] Deval Shah. Mean Average Precision (mAP) Explained: Everything You Need
to Know. 2022. url: https://www.v7labs.com/blog/mean- average-
precision.

[90] AltexSoft Team. Machine Learning Metrics: How to Measure the Performance
of a Machine Learning Model. 2022. url: https://www.altexsoft.com/
blog/machine-learning-metrics/.

[91] Exploring Our Fluid Earth Team. Practices of Science: False Positives and
False Negatives. 2022. url: https : / / neptune . ai / blog / performance -
metrics-in-machine-learning-complete-guide.

[92] Hasty Team. Intersection over Union (IoU). 2022. url: https://hasty.ai/
docs/mp-wiki/metrics/iou-intersection-over-union.

[93] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.
2022. doi: 10.48550/ARXIV.2207.02696. url: https://arxiv.org/abs/
2207.02696.

BIBLIOGRAPHY 62


		2023-10-17T12:37:16-0300


		2023-10-17T13:27:59-0300


		2023-10-17T15:39:02-0300




