

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA

Daniel Barboza Capella

Habitat, morfologia e seleção sexual como motores de diversificação acústica em aves da família Pipridae

> Florianópolis 2023

Daniel Barboza Capella

Habitat, morfologia e seleção sexual como motores de diversificação acústica em aves da família Pipridae

Dissertação submetida ao Programa de Pós-Graduação em Ecologia da Universidade Federal de Santa Catarina como requisito parcial para a obtenção do título de Mestre em Ecologia

Orientador: Dr. Selvino Neckel de Oliveira Coorientador: Dr. Guilherme Renzo Rocha Brito

Florianópolis 2023

Capella, Daniel Barboza

Habitat, morfologia e seleção sexual como motores de diversificação acústica em aves da família Pipridae / Daniel Barboza Capella ; orientador, Selvino Neckel-Oliveira, coorientador, Guilherme Renzo Rocha Brito, 2023. 76 p.

Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Programa de Pós-Graduação em Ecologia, Florianópolis, 2023.

Inclui referências.

 Ecologia. 2. Bioacústica. 3. Evolução. I. Neckel-Oliveira, Selvino. II. Brito, Guilherme Renzo Rocha. III. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Ecologia. IV. Título. Daniel Barboza Capella

Habitat, morfologia e seleção sexual como motores de diversificação acústica em aves da família Pipridae

O presente trabalho em nível de Mestrado foi avaliado e aprovado, em 29 de agosto de 2023 pela banca examinadora composta pelos seguintes membros:

Prof. Selvino Neckel de Oliveira, Dr. Instituição UFSC

Prof. Carlos Barros de Araujo, Dr. Instituição Instituto de Biologia Subtropcal

Prof. Mauricio Neves Cantor Magnani, Dr. Instituição Oregon State University

Certificamos que esta é a versão original e final do trabalho de conclusão que foi julgado adequado para obtenção do título de Mestre em Ecologia

Insira neste espaço a assinatura digital

Coordenação do Programa de Pós-Graduação

Insira neste espaço a assinatura digital

Prof. Selvino Neckel de Oliveira, Dr.

Orientador

Florianópolis, 2023.

AGRADECIMENTOS

Primeiramente ao meu orientador/coorientador, Guilherme, que foi também um grande amigo nessa empreitada e embarcou nessa ideia desde o princípio, sempre muito disposto a ajudar e tranquilizar o trabalho.

Ao meu orientador, Selvino Neckel, que topou me acolher neste trabalho não herpetológico. Que também meu ajudou muito na escrita e formulação desta dissertação e abriu muitas portas para mim.

A toda minha família, especialmente minha mãe e meu pai, que sempre me apoiaram em todas as minhas escolhas e me deram todo suporte necessário.

A minha amiga e irmã de coração, Maria, que esteve ao meu lado em todo o período da pandemia, inclusive me apoiando quando tive a ideia de começar um mestrado em meio a todo esse caos.

A todas as minhas amizades do PPG, em especial as "ecoleguitas" Isis, Jéssica, Joana, Luiz, Luiza, Sofia e Thaís. A presença de vocês fez eu nem perceber esses dois anos passarem.

A todas as horas no banquinho e no mid com meus grandes amigos Kauan e João, e também o Tomás quando arranjava um tempo pra gente.

A todas as amizades de outros tempos e lugares, que infelizmente não tenho como colocar todas aqui. Mas dou um último destaque aquelas que mais estiveram presentes de alguma forma nesses dois anos: Leo, Duda, Theo, Buda, Fred, Backes, Matheus, e principalmente a Fabi, que é sempre a primeira a receber todas as atualizações da minha vida.

A todos meus colegas do LabOAC e do LEAR, pela parceria e ajuda.

A UFSC e ao departamento do ECZ, incluindo todos os professores, colegas, técnicos e demais servidores.

A CAPES, pela bolsa fornecida.

E por último, a mim mesmo, que apesar de tudo consegui fazer este trabalho a qual tenho muito orgulho de apresentar.

How fleeting are all human passions compared with the massive continuity of *ducks.* (Sayers, D. L.; 1935)

RESUMO

O objetivo deste estudo foi verificar a influência da morfologia, ambiente e seleção sexual na evolução de sinais acústicos na família Pipridae. Para isso, foram analisados os chamados de anúncio de 40 espécies da família. Foram obtidas 684 gravações a partir de repositórios digitais de ciência-cidadã, e extraídos os parâmetros acústicos a partir de espectrogramas padronizados. Esses parâmetros foram frequência máxima do harmônico fundamental, frequência mínima, frequência dominante, banda de frequência, duração, número de notas e andamento. Os possíveis motores de diversificação acústica considerados foram massa corporal. tamanho do bico, dados bioclimáticos, dicromatismo sexual e complexidade da exibição de acasalamento. Sendo os últimos dois utilizados como indicativos de seleção sexual. Foram medidas relações alométricas de freguência com tamanho do corpo através de análises de regressão do tipo RMA. Foram utilizados modelos filogenéticos de quadrados mínimos generalizados (PGLS) para testar a capacidade dos possíveis motores evolutivos de predizer a variação nos chamados entre as espécies. As análises de RMA não mostraram nenhuma relação alométrica. Os demais resultados mostraram que a complexidade das exibições, junto com a variação bioclimática, foi capaz de explicar grande parte da variação nas frequências mínima ($r^2 = 0.87$; p = 0.016), máxima ($r^2 = 0.82$; p = 0.034) e dominante ($r^2 = 0.82$; p = 0,033) no subgrupo de sete espécies para as quais havia os dados de exibição. Estes resultados indicam uma influência da seleção sexual nos chamados de anúncio. Porém não há como determinar se essa influência é direta ou devido a trocas em alocação de recursos entre diferentes caracteres. No grupo completo de 40 espécies, foram encontradas relações significativas nos modelos aditivos de tamanho do bico mais bioclima no andamento dos chamados ($r^2 = 0,16$; p =0,043), e de massa corporal mais bioclima na banda de frequência ($r^2 = 0,16$; p = 0,043). Também foram encontradas relações significativas entre massa corporal e duração dos chamados ($r^2 = 0,10$; p = 0,042), e entre variação bioclimática e frequência máxima ($r^2 = 0,10$; p = 0,049). A relação entre tamanho do bico e andamento eram esperadas devido a trocas biomecânicas entre força e velocidade. Os demais resultados indicam que as diferenças em disponibilidade energética entre espécies podem ser um fator importante nas diferenças acústicas.

Palavras-chave: Adaptação acústica; Trocas biomecânicas; Hipótese da transferência.

ABSTRACT

The aim of this study was to assess the influence of morphology. environment and sexual selection in the evolution of acoustic signals in the Pipridae. For this, the advertisement call of 40 species were analyzed. 684 recordings were obtained from online citizen-science databases, and acoustic parameters were extracted from standardized spectrograms. These parameters were Maximum frequency of the first harmonic, minimum frequency, peak frequency, frequency bandwidth, call duration, number of notes and pace. Likely drivers of acoustic diversification considered were body mass, beak size, bioclimatic data, sexual dichromatism and display. The latter two were used as proxy for sexual selection. Alometric relations between frequency and body mass were measured with RMA regressions. Phylogenetic generalized least square models were used to test the capacity of the likely evolutionary drivers to predict variation in the calls among species. The RMA analysis indicated no alometric relations. The remaining results showed that display complexity, along with bioclimatic variation, were able to explain a large amount of variation in minimum ($r^2 = 0.87$; p = 0.016), maximum ($r^2 = 0.82$; p= 0.034) and peak (r^2 = 0.82; p = 0.033) frequencies in the subgroup of seven species for which there was available display data. These results indicate influence of sexual selection in the advertisement calls. Although there is no way to determine with current data whether this is a direct influence or a tradeoff in resource allocation between different characters. In the complete group of 40 species, significant relations were found in the additive models of beak size plus bioclim in the pace of calls ($r^2 = 0.16$; p = 0.043), and of body mass plus bioclim in the frequency bandwidth $(r^2 = 0.16; p = 0.043)$. Significant relations were also found between body mass and call duration ($r^2 = 0.10$; p = 0.042), and between bioclimatic variation and maximum frequency ($r^2 = 0.10$; p = 0.49). The relation between beak size and pace were as expected by the biomechanical tradeoffs between force and velocity. Other results indicate that differences in energy availability between species can be an important factor in relation to acoustic differences.

Keywords: Acoustic adaptation; Biomechanical tradeoffs; Transference hypothesis.

LISTA DE FIGURAS

Figura 1. Relações filogenéticas, espectrogramas dos chamados de anúncio e padrões de coloração dos machos de uma espécie representante de cada um dos 15 gêneros de Pipridae presentes neste trabalho. Ilustrações feitas por Débora Malu Figura 2. Distribuição das amostras sonoras de piprídeos utilizadas no presente estudo......14 Figura 3. Espectrograma, oscilograma e espectro de frequência do chamado de anúncio de Antilophia galeata, destacando os parâmetros de frequência máxima do harmônico fundamental (FMax), frequência mínima (FMin), frequência dominante (FDom), duração (Dur) e notas.15 Figura 4. Regressões do tipo RMA demonstrando as constantes alométricas k para três atributos acústicos em relação a massa corporal de aves da família Pipridae. Figura 5. Relação de atributos de frequência das vocalizações com a complexidade de exibições de acasalamento em sete espécies de aves da família Pipridae. As linhas representam modelos PGLS ajustados para os dados. A, B e C são modelos aditivos da complexidade da exibição mais a variação bioclimática. D envolve apenas a exibição como variável explicativa......20 Figura 6. Relação de atributos de frequência das vocalizações com a complexidade de displays de acasalamento em sete espécies de aves da família Pipridae. As linhas representam modelos PGLS ajustados para os dados. A, B e C são modelos aditivos da complexidade do display mais a variação bioclimática. D envolve apenas o display como variável explicativa.21

LISTA DE TABELAS

SUMÁRIO

INTRODUÇÃO	8
SISTEMA DE ESTUDO	10
MATERIAIS E MÉTODOS	13
DADOS ACÚSTICOS	13
DADOS MORFOLÓGICOS	15
DADOS DE HABITAT	16
ATRIBUTOS DE SELEÇÃO SEXUAL	17
FILOGENIA E ANÁLISES ESTATÍSTICAS	17
RESULTADOS	
DISCUSSÃO	
CONSTANTES ALOMÉTRICAS	
SELEÇÃO SEXUAL	
MORFOLOGIA E AMBIENTE	24
CONCLUSÃO	26
REFERÊNCIAS	
ANEXO 1	35
ANEXO 2	52
ANEXO 3	54
ANEXO 4	56
	INTRODUÇÃO SISTEMA DE ESTUDO MATERIAIS E MÉTODOS DADOS ACÚSTICOS DADOS MORFOLÓGICOS DADOS DE HABITAT ATRIBUTOS DE SELEÇÃO SEXUAL FILOGENIA E ANÁLISES ESTATÍSTICAS RESULTADOS DISCUSSÃO CONSTANTES ALOMÉTRICAS SELEÇÃO SEXUAL MORFOLOGIA E AMBIENTE CONCLUSÃO REFERÊNCIAS ANEXO 1 ANEXO 2 ANEXO 3

CAPÍTULO ÚNICO

1 INTRODUÇÃO

A grande variedade de formas e comportamentos de organismos que observamos no mundo hoje são resultados de milhões de anos de processos evolutivos. O pensamento evolutivo como forma de entender as estreitas relações de organismos com o meio onde vivem ganhou força a partir da teoria da seleção natural (DARWIN'S, 1859), e foi reforçado através da nova síntese evolutiva (HUXLEY, 1942; MAYR, 1982). Nesta teoria, a evolução atua favorecendo fenótipos que resultem em um ganho de aptidão que será transmitido geneticamente para futuras gerações. Alguns anos após A Origem das Espécies, Darwin publicou outra teoria para explicar a origem de diversos fenótipos não adaptativos, a seleção sexual (DARWIN, 1872). Caracteres selecionados sexualmente seriam utilizados na escolha de parceiros ou na disputa de competidores do mesmo sexo, e costumam gerar fenótipos extremamente complexos. O pensamento evolutivo atual não trata mais os processos de seleção como as únicas forças evolutivas, mas consideram que os organismos são capazes de ativamente moldar diversos fenótipos comportamentais de acordo com o meio, e até mesmo modificar o meio para melhor se adaptarem, como visto na síntese evolutiva expandida (LALAND et al., 2015). Juntas essas teorias podem explicar desde simples diferenças morfológicas entre espécies até comportamentos mais complexos como os cantos das aves.

A comunicação acústica é uma forma de transmissão de informações amplamente utilizada em diversos grupos de animais, com destaque para aves, mamíferos, anfíbios e insetos (STEBBINS, 1983). Em aves este tipo de comunicação é particularmente importante sendo utilizada, por exemplo, em disputas de território, displays de acasalamento, reconhecimento individual, e para alertar a presença de predadores (CATCHPOLE; SLATER, 2008; VIELLIARD, 2004). Dessa forma a eficácia na transmissão dos sinais acústicos é essencial para a sobrevivência e sucesso reprodutivo das aves, e é esperado que a seleção natural e outros processos ativos de construção de nicho atuem neste contexto, aumentando aptidão do emissor (ARAÚJO et al., 2020; ENDLER, 1993; SLABBEKOORN; SMITH, 2002).

Diversos estudos foram feitos para tentar entender de que forma mecanismos de seleção atuam na diversificação dos sinais acústicos em diferentes grupos de aves (SLABBEKOORN; SMITH, 2002). Estes estudos avaliaram parâmetros acústicos de espécies viventes dentro de grupos monofiléticos, e

relacionaram estes parâmetros com possíveis motores (*drivers*) evolutivos (DERRYBERRY et al., 2018; SEDDON, 2005). Como resultado desses estudos, é possível observar uma gama de motores evolutivos capazes de direcionar a evolução dos sinais acústicos. Porém, a importância de cada motor evolutivo, e até mesmo a sua participação na evolução acústica, varia muito entre diferentes grupos de aves (e.g. BONCORAGLIO; SAINO, 2007; LAIOLO; ROLANDO, 2003; LIGON et al., 2018; MARCOLIN et al., 2022; PODOS, 1997), sendo os mais comuns: 1) o ambiente onde as espécies habitam, 2) as constrições morfológicas impostas na produção de sons e, 3) a seleção sexual.

Assim como atributos morfológicos, sinais acústicos podem mostrar adaptações ao ambiente físico onde o transmissor ocorre, de acordo com os princípios da hipótese de adaptação acústica (HAA) (CHAPUIS, 1971; MORTON, 1975). Essa hipótese sugere que a produção do sinal sonoro ocorrerá de forma a minimizar os efeitos de atenuação e degradação do som, que podem interferir na transmissão do sinal. Estes efeitos ocorrem com maior ou menor intensidade dependendo da faixa de frequência e de acordo com diversos fatores ambientais, como umidade, temperatura, densidade de vegetação, e posição da fonte do som em relação ao solo (BROWN; HANDFORD, 2000; ESCALONA SULBARÁN et al., 2019; LAROM et al., 1997; SNELL-ROOD, 2012). Os estudos que tem sido propostos para testar a HAA focam mais nas diferenças das freguências dos sinais acústicos de acordo com a estrutura do ambiente, comparando ambientes florestais com áreas abertas (BONCORAGLIO; SAINO, 2007). Porém há alguns estudos que relacionam parâmetros acústicos com variações na temperatura e umidade, apesar da dificuldade devido a essas relações serem não lineares e muito mais complexas (SNELL-ROOD, 2012).

Constrições morfológicas também podem influenciar os parâmetros acústicos, principalmente quando se leva em conta estruturas e órgãos ligados ao trato vocal (DERRYBERRY et al., 2018; FLETCHER, 2004; SEDDON, 2005; TORRES; LOPEZ; DE ARAÚJO, 2017). No trabalho de FLETCHER (2004) foi proposta uma regra geral para relações alométricas de parâmetros de frequência de vocalizações de tetrápodes com o tamanho do corpo do emissor. Isso porque o tamanho total do corpo do animal reflete na espessura de seu trato vocal, que por sua vez delimita o alcance inferior das frequências produzidas. Desse modo, FLETCHER (2004) observou três possíveis valores de relações alométricas inversas entre o tamanho do corpo e as frequências da vocalização produzida, e as explicou

como: 1) Hipótese da razão de sinal para ruído (*Signal to noise ratio hypothesis*), onde o sinal é selecionado com base no alcance máximo onde haja destaque em relação ao ruído; 2) Hipótese do limiar de estímulo (*Stimulus threshold hypothesis*), onde o sinal é selecionado com base no alcance máximo de uma intensidade mínima que seja representativa dos parâmetros acústicos e; 3) Hipótese do tamanho corporal (*Body size hypothesis*), onde apenas o tamanho do corpo influencia nas frequências da vocalização (TORRES; LOPEZ; DE ARAÚJO, 2017).

O tamanho do bico também pode influenciar diversos parâmetros acústicos (DERRYBERRY et al., 2018; SEDDON, 2005). Sendo o trecho final do trato vocal, a passagem de som pelo bico pode filtrar frequências e limitá-las de forma similar ao tamanho do corpo (PALACIOS; TUBARO, 2000). Além das frequências, é observado que o tamanho do bico influencia negativamente na taxa de repetição de notas (número de notas por segundo). Isso porque bicos maiores costumam possuir maior musculatura associada, e estão sujeitos a uma troca biomecânica entre a força e a velocidade de fechamento e abertura (HERREL et al., 2009).

Os sinais acústicos também são muito utilizados em contextos de acasalamento, e estão sujeitos a pressões de seleção sexual (SLABBEKOORN; SMITH, 2002). Além disso, quando mais de um caráter diferente é utilizado no contexto da seleção sexual, é possível observar que o aumento na alocação de recursos para um atributo pode causar a diminuição de recursos para outro (GILLIARD, 1959; SHUTLER, 2010). Esta proposta é conhecida como a hipótese de transferência, e em aves pode ocorrer como uma troca na complexidade entre sinais acústicos e sinais visuais, como coloração e exibições de acasalamento (GOMES et al., 2017; MARCOLIN et al., 2022).

1.1 SISTEMA DE ESTUDO

A família Pipridae consiste em um grupo neotropical de pequenas aves Suboscines majoritariamente frugívoras (KIRWAN; GREEN, 2011). São reconhecidas atualmente 55 espécies em 17 gêneros na família (GILL; DONSKER; RASMUSSEN, 2023), formando um bem estabelecido grupo monofilético (LEITE et al., 2021; MCKAY et al., 2010; OHLSON; FJELDSÅ; ERICSON, 2013; PRUM, 1997), e são particularmente conhecidos por suas vibrantes cores e elaborados displays de acasalamento em *leks*, muitas vezes envolvendo danças coordenadas entre vários machos. E apesar de serem Suboscines, possuem musculaturas siringeais bastante complexas e formam um grupo bastante vocal (PRUM, 1992). Este grupo se mostra um excelente modelo para estudar evolução acústica por diversos fatores. Possuem alta diversidade de sons, cores e exibições de acasalamento, e elevado dicromatismo sexual que está relacionado a seleção sexual (figura 1) (DOUCET; MENNILL; HILL, 2007; KIRWAN; GREEN, 2011; LINDSAY et al., 2015). As espécies do grupo são pouco móveis e tem alta especificidade de habitats, de modo que influências do ambiente devem afetar de forma parecida diferentes populações de uma mesma espécie (ANCIÃES; PETERSON, 2009; VILLEGAS et al., 2021). São bastante estudadas quanto a filogenia, história natural e comportamentos (KIRWAN; GREEN, 2011; LEITE et al., 2021; PRUM, 1992, 1997), proporcionando bases sólidas para o presente estudo.

Figura 1. Relações filogenéticas, espectrogramas dos chamados de anúncio e padrões de coloração dos machos de uma espécie representante de cada um dos 15 gêneros de Pipridae presentes neste trabalho. Ilustrações feitas por Débora Malu Marquato e filogenia extraída de LEITE et al. (2021).

Dentre os repertórios acústicos conhecidos para os piprídeos é estabelecido um chamado de anúncio, ou chamado de "marcar" (KIRWAN; GREEN, 2011; SICK, 1997), homólogo entre as espécies e presente na maioria destas, cujo a função é atração de fêmeas anterior a execução das exibições. Por conta da homologia deste chamado, permitindo a comparação entre espécies, e de seu contexto selecionado sexualmente, foram escolhidos para as análises deste estudo.

O objetivo deste estudo é identificar como possíveis motores de diversificação acústica influenciam na bioacústica de Pipridae. As hipóteses testadas são:

- Os parâmetros de frequência dos chamados devem apresentar uma relação alométrica negativa com o tamanho do corpo, de acordo com as hipóteses de FLETCHER (2004).
- 2) O tamanho do bico deve estar negativamente relacionado com a quantidade de notas emitidas por segundo nos sinais acústicos, devido a troca biomecânica de força por velocidade evidenciada por HERREL et al. (2009), e deve também influenciar negativamente as frequências dos sinais, mas em menor grau que o tamanho do corpo.
- 3) Os parâmetros acústicos devem ser influenciados pelo habitat, segundo os princípios da hipótese de adaptação acústica (MORTON, 1975). No caso dos piprídeos, que ocorrem todos em ambientes florestais, as principais influências serão a temperatura e umidade dos ambientes onde ocorrem as espécies. Porém não há uma previsão do sentido dessas relações devido à complexidade delas.
- 4) Os atributos selecionados sexualmente, dicromatismo sexual e complexidade das exibições de acasalamento, devem estar negativamente relacionados a parâmetros de complexidade vocal, como duração e banda de frequência, de acordo com a hipótese da transferência (GILLIARD, 1956).

2 MATERIAIS E MÉTODOS

2.1 DADOS ACÚSTICOS

Os chamados de anúncio de 40 espécies de piprídeos foram obtidos a partir dos repositórios online de ciência-cidadã Xeno-canto (<u>https://xeno-canto.org/</u>) e Wikiaves (<u>https://www.wikiaves.com.br/</u>). As espécies amostradas foram aquelas onde havia descrição do chamado de anúncio na literatura(ALONSON, 2000; CÁRDENAS-POSADA et al., 2018; CASTRO-ASTOR; ALVES; CAVALCANTI, 2004, 2007; DUVAL, 2007; GILLIARD, 1959; JONES; DUVAL; BOYLE, 2014; KIRWAN; GREEN, 2011; LANE; KRATTER; O'NEILL, 2017; LUKIANCHUK; DOUCET, 2014; MAYNARD et al., 2015; PRUM; JOHNSON, 1987; PRUM, 1986; PRUM; KAPLAN; PIERSON, 1996; ROBBINS, 1983; ROSSELLI; VASQUEZ; AYUB, 2002; SCHAEDLER et al., 2020; SICK, 1997; SNOW; SNOW, 1985; SNOW, 1961; TELLO, 2001; VILLEGAS et al., 2018; WHITNEY; PACHECO; PARRINI, 1995) e que possuíam gravações deste tipo de vocalização disponíveis nos repositórios. Para cada espécie buscou-se cobrir o máximo de sua distribuição geográfica na amostragem de modo a considerar quaisquer variações (figura 2). Para evitar pseudoréplicas, não mais do que uma gravação de um mesmo local em uma mesma data foi amostrada, e apenas um chamado foi extraído aleatoriamente de cada gravação com ajuda da função sample do programa R versão 4.2.1 (2021). Foram obtidos desta forma um total de 684 amostras, variando de apenas uma amostra para a espécie Corapipo leucorrhoa, até um máximo de 49 amostras para Antilophia galeata.

Figura 2. Distribuição das amostras sonoras de piprídeos utilizadas no presente estudo.

Previamente às análises espectrográficas, as gravações foram padronizadas (ZOLLINGER et al., 2012) com um filtro passa-altas de 140 Hz e uma normalização a 0 dB, e os chamados extraídos foram convertidos de MP3 para WAV. Essas edições foram feitas utilizando o programa Audacity versão 2.4.2 (2021), e após este processo foram gerados espectrogramas para análise com o programa Raven Pro versão 1.6.4 (2014). A partir da análise dos espectrogramas foram extraídos parâmetros acústicos (figura 3). Os parâmetros medidos foram frequência máxima do harmônico fundamental (FMax), frequência mínima do chamado (FMin), banda de frequência do harmônico fundamental (Ban = FMax – FMin), frequência dominante (FDom) que é a frequência onde há mais energia aplicada pelo indivíduo na vocalização em qualquer harmônico, duração do chamado (Dur), e número de notas (NNot). As duas últimas medidas foram obtidas apenas para calcular o parâmetro de andamento, que é uma média de número de notas produzidas por segundo (Pace = NNot/Dur). Todas as medidas foram extraídas por um mesmo pesquisador, para evitar diferenças por viés de observador. Para cada variável foi calculada uma média por espécie, desse modo cada espécie foi definida como uma unidade amostral. As variáveis espectrais e de duração foram transformadas em escala logarítmica base 10 para as análises (CARDOSO, 2013).

Figura 3. Espectrograma, oscilograma e espectro de frequência do chamado de anúncio de *Antilophia galeata*, destacando os parâmetros de frequência máxima do harmônico fundamental (FMax), frequência mínima (FMin), frequência dominante (FDom), duração (Dur) e notas.

2.2 DADOS MORFOLÓGICOS

Os atributos morfológicos de tamanho do corpo e do bico para cada espécie foram obtidos através da publicação de TOBIAS et al. (2022). O tamanho do corpo

foi inferido através da massa, e os valores foram transformados em escala logarítmica base 10 para as análises. Para o tamanho do bico foram utilizadas quatro medidas (comprimento do rostro ao crânio através do cúlmen, comprimento do rostro às narinas, altura na região das narinas e largura). As medidas de tamanho do bico foram reduzidas em um primeiro eixo de uma PCA filogenética (PPCA) seguindo a metodologia de SEDDON (2005). Este eixo foi responsável por explicar 65,57% da variação observada e está altamente relacionado de forma inversa com todos os quatro atributos, de modo que valores altos deste eixo indicam menores tamanhos de bico.

2.3 DADOS DE HABITAT

Dado que a maioria das espécies de piprídeos ocorrem em ambientes de mata densa (KIRWAN; GREEN, 2011), as análises da hipótese de adaptação acústica tradicionais, separando as espécies em tipos de ambiente com relação a densidade vegetal (CHAPUIS, 1971; MORTON, 1975), seriam dificultadas. Em vista disso optamos por utilizar a variação de habitat como uma variável contínua, com informações bioclimáticas obtidas do repositório Worldclim (HIJMANS et al., 2005), como em outros trabalhos (DERRYBERRY et al., 2018). Para isso foram obtidas as 19 variáveis bioclimáticas presentes no Worldclim para todas as coordenadas presentes nas amostras acústicas. Foram calculados coeficientes de correlação de Pearson para as variáveis de temperatura e precipitação separadamente.

Para as variáveis de temperatura foram então removidas todas que possuíram um coeficiente de correlação > 0.90 com a temperatura média anual (Bio01) para evitar redundância, de acordo com a metodologia utilizada por DERRYBERRY et al. (2018), e de mesmo modo foi feito um teste de correlação das variáveis de precipitação com a precipitação média anual (Bio12). Todas as 8 variáveis de precipitação foram mantidas, enquanto as de temperatura foram utilizadas 5 de 11: temperatura média anual (Bio01), amplitude média diária (Bio02), Isotermalidade (Bio03), Sazonalidade (Bio04) e amplitude anual (Bio07). Também seguindo a metodologia de DERRYBERRY et al. (2018), as variáveis mantidas foram reduzidas em um primeiro eixo de uma PCA. Este eixo explica 50,85% da variação encontrada e altos valores deste estão relacionados a maior estabilidade anual de temperatura e precipitação.

2.4 ATRIBUTOS DE SELEÇÃO SEXUAL

Os atributos de seleção sexual escolhidos para avaliar as possíveis trocas com os chamados de anúncio foram o dicromatismo sexual e a complexidade da exibição de acasalamento. As medidas de dicromatismo foram obtidas pela diferença no espaço cromático percebido entre faixas de plumagem homólogas de machos e fêmeas (DOUCET; MENNILL; HILL (2007), enquanto a complexidade da exibição de acasalamento foi atribuída como valores de tamanho do repertório, organização da arena da exibição e presença de cooperação entre machos (LINDSAY et al. 2015). Das 40 espécies do presente trabalho, 32 delas tiveram suas medidas de dicromatismo obtidas de DOUCET; MENNILL; HILL (2007). As medidas de complexidade da exibição são provenientes do estudo de LINDSAY et al. (2015), onde sete espécies do presente estudo estão avaliadas neste trabalho de referência.

2.5 FILOGENIA E ANÁLISES ESTATÍSTICAS

A filogenia e classificação taxonômica das espécies de piprídeos baseiam-se em LEITE et al. (2021), com uma única mudança na atualização da combinação *Dixiphia pipra* para *Pseudopipra pipra* (KIRWAN et al., 2016). A filogenia utilizada para calibrar as análises foi a de máxima verossimilhança inferida a partir das sequências particionadas de elementos ultra conservados para 95% do conjunto de dados (LEITE et al., 2021).

Para calcular as relações alométricas de atributos de frequência com tamanho corporal foram utilizados valores transformados em logaritmo base 10 de massa corporal e dos atributos FMax, FMin e FDom. Com esses atributos foram feitas regressões do tipo RMA, onde a inclinação estimada representa a constante alométrica k (TORRES; LOPEZ; DE ARAÚJO, 2017). As constantes calculadas foram depois comparadas com os valores teóricos propostos por FLETCHER (2004). Esses modelos foram feitos com o pacote Imodel2 (LEGENDRE; OKSANEN, 2018).

Para testar a capacidade de diferentes variáveis preditoras em explicar a variação dos parâmetros acústicos foram utilizados modelos filogenéticos de mínimos quadrados generalizados (PGLS). Foram feitos modelos utilizando par a par uma variável preditora e uma resposta, assim como modelos de interação entre bioclima e demais preditores. Também foram gerados modelos nulos para avaliar a distância filogenética como único preditor para cada parâmetro.

Para cada conjunto de variáveis foram feitos modelos utilizando três transformações de tamanhos de ramos na filogenia: evolução Browniana e

estimativas de máxima verossimilhança de lambda e delta (PAGEL, 1997, 1999). A melhor transformação para cada modelo foi escolhida através do critério de informação de Akaike corrigido para tamanho de amostra (AICc). Após a seleção, os modelos foram validados visualmente pela dispersão de resíduos e ajuste dos pontos em gráfico Q-Q plot. Os modelos foram gerados utilizando o pacote caper (ORME, 2013). As análises estatísticas foram feitas utilizando o programa R versão 4.2.1 (2021)

3 RESULTADOS

As análises de RMA não resultaram em relações alométricas significativas dos parâmetros de frequência com a massa corporal (tabela 1, figura 4). Frequência mínima não teve relação com a massa, enquanto as relações de frequência máxima e dominante foram fracas (baixos valores de r²) e na direção oposta da prevista. Além disso nenhuma dessas relações foram estatisticamente significativas.

Tabela 1: Constantes alométricas (k), e valores de p e r² associados extraídos de regressão do tipo RMA para valores transformados em log de frequências dominante (Fdom), máxima (Fmax), e mínima (Fmin) em relação a massa corporal de aves da família Pipridae.

	k	р	r ²
Fdom	0,34	0,12	0,02
Fmax	0,22	0,15	0,04
Fmin	-0,06	0,41	0,001

Figura 4. Regressões do tipo RMA demonstrando as constantes alométricas k para três atributos acústicos em relação a massa corporal de aves da família Pipridae. Nenhum dos modelos obteve relações significativas.

A tabela completa contendo todos os valores de AICc para cada transformação de tamanho do ramo nos modelos PGLS encontra-se no anexo. Para o conjunto de 7 espécies em que havia dados de complexidade da exibição de acasalamento, esta variável, em conjunto com o primeiro eixo da PCA bioclimática, foi responsável por explicar grande parte da variação nas frequências mínima ($r^2 = 0.87$; p = 0.016), dominante ($r^2 = 0.82$; p = 0.033) e máxima ($r^2 = 0.82$; p = 0.034). Frequência máxima também foi bem explicada pela complexidade da exibição mesmo sem considerar a variação bioclimática ($r^2 = 0.73$; p = 0.015) (tabela 2, figura 5). O dicromatismo sexual não explicou a variação de nenhum dos atributos acústicos nas 32 espécies para as quais havia esta informação.

No conjunto completo das 40 espécies amostradas, o tamanho do bico em conjunto com a variação bioclimática teve influência significativa no andamento da vocalização ($r^2 = 0,16$; p =0,043), enquanto a massa junto com a variação bioclimática teve influência significativa na banda de frequência ($r^2 = 0,16$; p = 0,043). Também foram encontradas relações significativas entre massa e duração das vocalizações ($r^2 = 0,10$; p = 0,042) e entre bioclima e frequência máxima ($r^2 = 0,10$; p = 0,049) (tabela 2, figura 6).

Parâmetro acústico	Variável explicativa	Inclinação	r2	Valor de p
Frequência mínima	Exibição + bioclima	-0,07	0,87	0,016
Frequência dominante	Exibição + bioclima	-0,14	0,82	0,033
Frequência máxima	Exibição + bioclima	-0,18	0,82	0,034
Frequência máxima	Exibição	-0,22	0,73	0,015
Andamento	Bico + bioclima	0,11	0,16	0,043
Banda de frequência	Massa + bioclima	0,74	0,16	0,043
Duração	Massa	0,73	0,1	0,042
Frequência máxima	Bioclima	0,18	0,1	0,049

Tabela 2: Modelos PGLS significativos para a variação em parâmetros acústicos de Pipridae. Os modelos que contém a variável explicativa de exibição foram feitos com um subconjunto de 7 espécies. Demais modelos foram feitos com o conjunto total do estudo envolvendo 40 espécies.

Figura 5. Relação de atributos de frequência das vocalizações com a complexidade de exibições de acasalamento em sete espécies de aves da família Pipridae. As linhas representam modelos PGLS ajustados para os dados. A, B e C são modelos aditivos da complexidade da exibição mais a variação bioclimática. D envolve apenas a exibição como variável explicativa.

Figura 6. Relação de atributos de frequência das vocalizações com a complexidade de displays de acasalamento em sete espécies de aves da família Pipridae. As linhas representam modelos PGLS ajustados para os dados. A, B e C são modelos aditivos da complexidade do display mais a variação bioclimática. D envolve apenas o display como variável explicativa.

4 DISCUSSÃO

Foram analisadas as constantes alométricas de frequência seguindo o modelo de FLETCHER (2004), e as influências de atributos morfológicos, ambientais e de seleção sexual em diversos parâmetros acústicos em espécies da família Pipridae. Não foi encontrado suporte para nenhuma das hipóteses de alometria acústica propostas por FLETCHER (2004). Os resultados mostram a existência de uma relação entre investimentos em diferentes atributos de seleção sexual, especificamente entre parâmetros acústicos de frequência e complexidade das exibições de acasalamento dentre as sete espécies com as quais foi feita esta análise. Também foram encontradas relações entre aspectos temporais e espectrais das vocalizações com variações morfológicas e com variações bioclimáticas dentre as 40 espécies estudadas.

4.1 CONSTANTES ALOMÉTRICAS

Nenhuma relação alométrica de frequência com tamanho do corpo foi observada nas espécies da família Pipridae. A ausência destas relações já foi documentada também em aves da família Turdidae (TORRES; LOPEZ; DE ARAÚJO, 2017). Tanto em Turdidae como em Pipridae há pouca variação total no tamanho corporal entre as espécies, se comparados a outros grupos de aves. Desse modo, as pressões alométricas podem ser mascaradas pela plasticidade vocal (PATEL; MULDER; CARDOSO, 2010) aliada a pressão de motores evolutivos distintos. A grande diversidade morfológica nas siringes de Pipridae (PRUM, 1992), que não está diretamente associada ao tamanho das espécies, é outro fator que explica a ausência de relações alométricas. Este último fator demonstra também a falta de universalidade na hipótese de FLETCHER (2004), visto que para explicar a alometria vocal o autor utilizou a proporcionalidade entre o tamanho do corpo e a espessura do trato vocal.

4.2 SELEÇÃO SEXUAL

A complexidade da exibição de acasalamento esteve negativamente relacionada com as frequências mínima, máxima e dominante. As informações transmitidas nestas variações de frequências podem ser difíceis de definir, visto que tanto o aumento como a diminuição de frequências podem exigir maior gasto energético (CARDOSO, 2011). Isso acontece conforme essas frequências se aproximam dos limites fisiológicos da produção sonora do emissor e, em aves,

ambas as direções evolutivas podem estar relacionadas a uma maior pressão de seleção sexual (CARDOSO, 2011). Ainda assim, em Passeriformes é mais comum a preferência das fêmeas por frequências mais altas (CARDOSO, 2011).

Quanto aos parâmetros acústicos relacionados à complexidade vocal (duração do canto e banda de frequência), nenhum deles esteve relacionado ao dicromatismo sexual ou complexidade na exibição de acasalamento. Resultados similares já foram observados no gênero *Oriolus* (MATYSIOKOVÁ et al., 2017), nas famílias Trogonidae e Thraupidae (MASON; SHULTZ; BURNS, 2014; ORNELAS; GONZÁLEZ; ESPINOSA DE LOS MONTEROS, 2009), e na família Estrildidae (GOMES et al., 2017), sendo que este último estudo incluiu também dados de exibição de acasalamento.

Estes resultados sugerem que a seleção sexual nas vocalizações de Pipridae acontece principalmente por escolhas nas frequências das vocalizações, ao invés da complexidade destas. Mais especificamente há um forte indício de que a hipótese da transferência atue nessas frequências conforme aumenta a complexidade da exibição nas espécies analisadas. Isso caso os piprídeos sigam o padrão mais comum nos passeriformes, onde a seleção sexual por frequências leva a um aumento destas.

Como alternativa à hipótese da transferência, a seleção sexual pode levar a um aumento concomitante na alocação de recursos em mais de um caráter. Isto pode ocorrer caso a seleção sexual por frequências no grupo seja na direção de frequências mais baixas, que costumam indicar maior tamanho do indivíduo (FLETCHER, 2004). Em análises interespecíficas, não apenas os custos, mas também os benefícios de alocação de recursos em diferentes atributos serão desiguais, e a ausência de trocas nas alocações se evidencia ainda mais quando a distribuição de recursos entre as espécies não segue uma curva normal (SHUTLER, 2010). Também é possível que a seleção sexual atue em múltiplos atributos de forma holística, como um único fenótipo de acasalamento, como já foi evidenciado em aves do paraíso (LIGON et al., 2018), um grupo que possui muitos paralelismos com Pipridae em suas exibições de acasalamento em *leks*. Por fim a seleção sexual pode atuar tanto reforçando padrões determinísticos de evolução, como por pressões fisiológicas ou ambientais, ou divergir para caminhos evolutivos menos previsíveis (FRIIS; DABELSTEEN; CARDOSO, 2021).

A relação da seleção sexual na escolha das frequências com pressões ambientais pode ocorrer nas espécies analisadas, visto que os modelos de

frequência mínima e dominante só foram ajustados quando se considerou a variação bioclimática junto. Mas essa relação pode não ser tão simples, pois nos modelos onde a variação bioclimática foi incluída, esta teve uma relação nas frequências em sentido oposto a complexidade da exibição, descartando assim a possibilidade de as fêmeas selecionarem frequências mais bem adaptadas ao ambiente. Vale ressaltar também que, apesar dos padrões de coloração nos piprídeos terem alto custo energético e estarem envolvidos em contextos de seleção sexual (DOUCET; MENNILL; HILL, 2007), não foram vistas relações destes com nenhum aspecto dos sinais acústicos estudados. Isso pode acontecer se período de muda, onde ocorre a aquisição da coloração dimórfica, ocorrer fora da estação reprodutiva das espécies. Porém os poucos estudos que contém essas informações mostram muitas vezes resultados contrastantes (KIRWAN; GREEN, 2011). Por exemplo, em *Pipra filicauda* foram observados períodos de muda anterior ao período reprodutivo (HEINDL, 2002). Já em *Chiroxiphia caudata* esses períodos foram observados ocorrendo simultaneamente (BUGONI et al., 2002).

4.3 MORFOLOGIA E AMBIENTE

A relação inversa entre tamanho do bico, representada aqui pelo primeiro eixo da PPCA, e o andamento das vocalizações foi encontrada como o previsto, e de acordo com o que já foi reportado para outros grupos (DERRYBERRY et al., 2018; MASON; BURNS, 2015; SEDDON, 2005). Essa relação era esperada devido a uma troca biomecânica entre a força e a velocidade do fechamento e abertura do bico (HERREL et al., 2009), impedindo bicos maiores de produzir mais notas diferentes em determinado intervalo de tempo. Considerando que os tamanhos dos bicos costumam sofrer pressões de seleção natural de acordo com preferências e disponibilidade de alimentos (GIBBS; GRANT, 1987), essas variações acústicas podem ser reflexo indireto destas adaptações, um processo denominado evolução por "atributos mágicos" (THIBERT-PLANTE; GAVRILETS, 2013).

O tamanho do corpo, apesar de não ter demonstrado relações alométricas com as frequências máxima, mínima e dominante, esteve positivamente relacionado a banda de frequência. Essa relação foi observada também em Psittacidae (MARCOLIN et al., 2022). A explicação proposta no estudo citado foi de que espécies menores possuem maior restrição de frequências para utilizar, visto que espécies maiores podem forçar os músculos da siringe para alcançar frequências mais altas, mas as espécies menores estão limitadas em suas frequências mais

baixas pelo seu tamanho. Estes resultados fornecem mais sustentação para essa afirmação, que ainda é discutida, visto que em alguns casos a relação observada é a oposta, com espécies maiores vocalizando em faixas mais estreitas de frequência (MASON; BURNS, 2015).

O tamanho do corpo também esteve positivamente relacionado com a duração do canto, resultado este que está de acordo com a hipótese de que a proporção de energia utilizada para a comunicação em relação a energia total disponível é constante entre as espécies (BROWN et al., 2004; GILLOOLY; OPHIR, 2010). Deste modo, espécies maiores, que consequentemente possuem maior reserva energética, utilizariam mais energia em valores absolutos para a comunicação acústica. Este maior gasto acaba refletido em amplitude sonora, que não foi possível medir neste estudo, e duração dos chamados. Vale considerar que esta hipótese energética pode estar relacionada também ao resultado discutido anteriormente, onde foi visto que espécies maiores tendem a vocalizar em mais larga banda de frequência. Isto pois a ampliação das frequências utilizadas exige um gasto maior de energia.

Por último, a estabilidade climática esteve diretamente relacionada com a frequência máxima das vocalizações. Como as propriedades de propagação de diferentes frequências de acordo com temperatura e umidade são extremamente complexas e não lineares, é extremamente difícil fazer previsões de como sinais acústicos se comportarão conforme os ambientes climáticos variam. De modo geral, frequências mais baixas possuem maior taxa de dissipação em temperaturas e umidades baixas, e frequências mais altas apresentam a relação inversa (SNELL-ROOD, 2012). Embora não saibamos a taxa de dissipação para as frequências específicas das vocalizações estudadas, sabemos que a faixa de frequência de 5kHz, próxima das frequências máximas de diversos piprídeos, enfrenta maiores dificuldades de transmissão em baixas umidades, especialmente quando estas ocorrem em conjunto com altas temperaturas (SNELL-ROOD, 2012). Os ambientes de alta estabilidade climática nas análises (altos valores da PC1) são referentes a regiões de florestas equatoriais da América do Sul e Central, onde a umidade e a temperatura são constantemente elevadas. A umidade então pode ser um fator determinante, visto que a época reprodutiva das espécies que ocorrem em ambientes menos estáveis acontece em períodos de temperaturas mais elevadas (KIRWAN; GREEN, 2011), possivelmente desfavorecendo altas frequências. Outra possibilidade pode envolver mais uma vez a questão energética, assim como os resultados anteriores. Isso pois a maior estabilidade climática, especialmente neste caso que ocorre em altas temperaturas, proporciona mais energia disponível para a vocalização (GILLOOLY; OPHIR, 2010). É importante evidenciar também que a variação climática muitas vezes ocorre ao longo de um dia, podendo resultar em uma adaptação ao horário de vocalização (LAROM et al., 1997), que não foi avaliada neste estudo.

A variação climática também teve influência nos modelos de andamento por tamanho do bico e de banda de frequência por tamanho do corpo. Em ambos os modelos o aumento da estabilidade climática influenciou na mesma direção que a outra variável explicativa analisada. Quanto a banda de frequência, este resultado vai de encontro a hipótese de que bandas mais estreitas seriam preferidas em ambientes mais estáveis, por concentrar a energia sonora em uma frequência mais detectável para o ambiente (HARTLEY, 1989; SNELL-ROOD, 2012). Porém pode mais uma vez estar relacionada a maior disponibilidade energética em climas estáveis e de alta temperatura (GILLOOLY; OPHIR, 2010). Já em relação ao andamento, já foi relatado que aves podem aumentar a detectabilidade de sinais acústicos em ambientes menos estáveis ao aumentar o número de sílabas por chamado (LENGAGNE et al., 1999).

5 CONCLUSÃO

Foram encontradas relações significativas de massa corporal, complexidade da exibição de acasalamento, tamanho do bico e variação bioclimática com ao menos um parâmetro acústico cada. A forte relação das frequências com a complexidade das exibições de acasalamento, mesmo que analisadas em um menor número de espécies, mostram que, dentre as espécies analisadas, estas vocalizações estão sob pressão de seleção sexual. Para determinar se essa influência é direta (evoluindo em conjunto com as exibições) ou indireta (fruto de uma troca energética entre exibição e sinal acústico), são necessários estudos comportamentais para identificar como se dá a escolha dos machos pelas fêmeas no grupo. A hipótese da troca biomecânica de força por velocidade das vocalizações em relação ao tamanho do bico foi corroborada. E as relações do tamanho do corpo com banda de frequência e duração mostram que a diversificação destes sinais pode ser direcionada principalmente por questões energéticas. Essa mesma questão energética pode também explicar os aumentos da banda e da frequência máxima em climas mais estáveis. Por fim, apesar destes fatores estarem influenciando nas vocalizações, eles ainda são responsáveis por explicar pouco das variações, com o restante podendo ser devido a processos estocásticos ou outros fatores não avaliados neste estudo.

REFERÊNCIAS

ALONSON, J. A. The breeding system of the Orange-Crowned Manakin. **The Condor**, v. 102, p. 181–186, 2000.

ANCIÃES, M.; PETERSON, A. T. Ecological niches and their evolution among neotropical manakins (Aves: Pipridae). **Journal of Avian Biology**, v. 40, p. 591–604, 2009.

ARAÚJO, C. B. DE et al. O Nicho Acústico: Integrando a Física, Ecologia E Teoria Da Comunicação. **Oecologia Australis**, v. 24, n. 04, p. 762–769, 2020.

BIOACOUSTICS RESEARCH PROGRAM; PROGRAM, B. R. Raven Pro: Interactive Sound Analysis Software. Ithaca, NY: The Cornell Lab of Ornithology.K. Lisa Yang Center for Conservation Bioacoustics at the Cornell Lab of Ornithology, , 2014. Disponível em: cpapers3://publication/uuid/DE0F17E7-8210-4F82-907B-B923E8F9AE7A%5Cnhttp://www.birds.cornell.edu/raven>

BONCORAGLIO, G.; SAINO, N. Habitat structure and the evolution of bird song: A meta-analysis of the evidence for the acoustic adaptation hypothesis. **Functional Ecology**, v. 21, n. 1, p. 134–142, 2007.

BROWN, J. H. et al. Toward a metabolic theory of ecology. **Ecology**, v. 85, n. 7, p. 1771–1789, jul. 2004.

BROWN, T. J.; HANDFORD, P. Sound Design for Vocalizations: Quality in the Woods, Consistency in the Fields. **The Condor**, v. 102, n. 1, p. 81–92, 2000.

BUGONI, L. et al. Biometry, molt and brood patch parameters of birds in southern Brazil. **Ararajuba**, v. 10, n. 1, p. 85–94, 2002.

CÁRDENAS-POSADA, G. et al. Display behaviour, social organization and vocal repertoire of Blue-backed Manakin Chiroxiphia pareola napensis in northwest Amazonia. **Ibis**, v. 160, n. 2, p. 269–282, 2018.

CARDOSO, G. C. Paradoxical calls: the opposite signaling role of sound frequency across bird species. **Behavioral Ecology**, v. 23, n. 2, p. 237–241, 20 nov. 2011.

CARDOSO, G. C. Using frequency ratios to study vocal communication. **Animal Behaviour**, v. 85, n. 6, p. 1529–1532, jun. 2013.

CASTRO-ASTOR, I. N.; ALVES, M. A. S.; CAVALCANTI, R. B. Display behavior and spatial distribution of the Red-headed Manakin in the Atlantic Forest of Brazil. **Condor**, v. 106, n. 2, p. 320–335, 2004.

CASTRO-ASTOR, I. N.; ALVES, M. A. S.; CAVALCANTI, R. B. Display behavior and spatial distribution of the White-Crowned Manakin in the Atlantic forest of Brazil. **The Condor**, v. 109, p. 155–166, 2007.

CATCHPOLE, C. K.; SLATER, P. J. B. **Bird Song: Biological Themes and Variations**. Cambridge: Cambridge University Press, 2008.

CHAPUIS, C. Un exemple de l'influence du milieu sur les émissions vocales des oiseaux : L'évolution des chants en forêt équatoriale. **Terre et Vie**, v. 25, p. 183–202, 1971.

DARWIN, C. The descent of man, and selection in relation to sex. New York: D. Appleton, 1872. v. 2

DARWIN'S, C. On the origin of species. Londres: [s.n.]. v. 24

DERRYBERRY, E. P. et al. Ecological drivers of song evolution in birds: Disentangling the effects of habitat and morphology. **Ecology and Evolution**, v. 8, n. 3, p. 1890–1905, 2018.

DOUCET, S. M.; MENNILL, D. J.; HILL, G. E. The evolution of signal design in manakin plumage ornaments. **The American Naturalist**, v. 169, n. S1, p. S62–S80, jan. 2007.

DUVAL, E. H. Cooperative display and lekking behavior of the Lance-Tailed Manakin (Chiroxiphia lanceolata). **The Auk**, v. 124, n. 4, p. 1168–1185, 2007.

ENDLER, J. A. Some general comments on the evolution and design of animal communication systemsPhilosophical Transactions: Biological Sciences. [s.l: s.n.]. Disponível em: ">https://about.jstor.org/terms>.

ESCALONA SULBARÁN, M. D. et al. Neotropical frogs and mating songs: The evolution of advertisement calls in glassfrogs. **Journal of Evolutionary Biology**, v. 32, n. 2, p. 163–176, 2019.

FLETCHER, N. H. A simple frequency-scaling rule for animal communication. **The Journal of the Acoustical Society of America**, v. 115, n. 5, p. 2334–2338, maio 2004.

FRIIS, J. I.; DABELSTEEN, T.; CARDOSO, G. C. Contingency and determinism in the evolution of bird song sound frequency. **Scientific Reports**, v. 11, n. 1, p. 11600, 2 jun. 2021.

GIBBS, H. L.; GRANT, P. R. Oscillating selection on Darwin's finches. **Nature**, v. 327, 1987.

GILL, F.; DONSKER, D.; RASMUSSEN, P. IOC world bird list (v13. 1). [s.l: s.n.].

GILLIARD, E. T. Notes on the courtship behavior of the Blue-backed Manakin (Chiroxiphia pareola). **American Museum Novitates**, v. 1942, p. 1–19, 1959.

GILLIARD, T. Bower ornamentarion versus plumage characters in Bower-birds. **Auk**, v. 73, n. 3, p. 450–451, 1956.

GILLOOLY, J. F.; OPHIR, A. G. The energetic basis of acoustic communication. **Proceedings of the Royal Society B: Biological Sciences**, v. 277, n. 1686, p. 1325–1331, 7 maio 2010.

GOMES, A. C. R. et al. Multimodal signalling in estrildid finches: song, dance and colour are associated with different ecological and life- history traits. **Journal of Evolutionary Biology**, v. 30, n. 7, p. 1336–1346, jul. 2017.

HARTLEY, D. J. The effect of atmospheric sound absorption on signal bandwidth and energy and some consequences for bat echolocation. **The Journal of the Acoustical Society of America**, v. 85, n. 3, p. 1338–1347, mar. 1989.

HEINDL, M. Social Organization on Leks of the Wire-Tailed Manakin in Southern Venezuela. **The Condor**, v. 104, n. 4, p. 772–779, 2002.

HERREL, A. et al. Force-velocity trade-off in Darwin's finch jaw function: a biomechanical basis for ecological speciation? **Functional Ecology**, v. 23, n. 1, p. 119–125, fev. 2009.

HIJMANS, R. J. et al. Very high resolution interpolated climate surfaces for global land areas. **International Journal of Climatology**, v. 25, n. 15, p. 1965–1978, 2005. HUXLEY, J. Evolution. The modern synthesis. **Evolution. The Modern Synthesis.**, 1942.

JONES, M. A.; DUVAL, E. H.; BOYLE, W. A. Individual and temporal variability in the courtship behavior of White-ruffed Manakins (Corapipo altera), a species with facultative cooperative displays. **The Auk**, v. 131, n. 4, p. 727–742, 2014.

KIRWAN, G. M. et al. The mistaken manakin: a new genus-group name for Parus pipra Linnaeus, 1758 (Aves: Passeriformes: Pipridae). **Zootaxa**, v. 4121, n. 1, p. 89–94, 7 jun. 2016.

KIRWAN, G. M.; GREEN, G. **Cotingas and manakins**. Princeton: Princeton University Press, 2011.

LAIOLO, P.; ROLANDO, A. The evolution of vocalisations in the genus Corvus: effects of phylogeny, morphology and habitat. **Evolutionary ecology**, v. 17, p. 111–123, 2003.

LALAND, K. N. et al. The extended evolutionary synthesis: its structure, assumptions and predictions. **Proceedings of the Royal Society B: Biological Sciences**, v. 282, n. 1813, p. 20151019, 2015.

LANE, D. F.; KRATTER, A. W.; O'NEILL, J. P. A new species of manakin (Aves: Pipridae; Machaeropterus) from Peru with a taxonomic reassessment of the Striped Manakin (M. regulus) complex. **Zootaxa**, v. 4320, n. 2, p. 379, 15 set. 2017.

LAROM, D. et al. The influence of surface atmospheric conditions on the range and area reached by animal vocalization. **Journal of Experimental Biology**, v. 200, n. 3, p. 421–431, 1997.

LEGENDRE, P.; OKSANEN, M. J. Package 'Imodel2'. See https://CRAN. R-project. org/package= Imodel2, 2018.

LEITE, R. N. et al. Phylogenomics of manakins (Aves: Pipridae) using alternative locus filtering strategies based on informativeness. **Molecular Phylogenetics and Evolution**, v. 155, 1 fev. 2021.

LENGAGNE, T. et al. How do king penguins (Aptenodytes patagonicus apply the mathematical theory of information to communicate in windy conditions? **Proceedings of the Royal Society of London. Series B: Biological Sciences**, v. 266, n. 1429, p. 1623–1628, 22 ago. 1999.

LIGON, R. A. et al. Evolution of correlated complexity in the radically different courtship signals of birds-of-paradise. **PLOS Biology**, v. 16, n. 11, p. e2006962, 20 nov. 2018.

LINDSAY, W. R. et al. Acrobatic courtship display coevolves with brain size in manakins (Pipridae). **Brain, Behavior and Evolution**, v. 85, n. 1, p. 29–36, 2015.

LUKIANCHUK, K. C.; DOUCET, S. M. Cooperative courtship display in Long-tailed Manakins Chiroxiphia linearis: Predictors of courtship success revealed through full characterization of display. **Journal of Ornithology**, v. 155, p. 729–743, 2014.

MARCOLIN, F. et al. Body size and sexual selection shaped the evolution of parrot calls. **Journal of Evolutionary Biology**, 25 fev. 2022.

MASON, N. A.; BURNS, K. J. The effect of habitat and body size on the evolution of vocal displays in Thraupidae (tanagers), the largest family of songbirds. **Biological Journal of the Linnean Society**, 2015.

MASON, N. A.; SHULTZ, A. J.; BURNS, K. J. Elaborate visual and acoustic signals evolve independently in a large, phenotypically diverse radiation of songbirds.

Proceedings of the Royal Society B: Biological Sciences, v. 281, n. 1788, p. 20140967, 7 ago. 2014.

MATYSIOKOVÁ, B. et al. The evolution of feather coloration and song in Old World orioles (genus *Oriolus*). **Journal of Avian Biology**, v. 48, n. 7, p. 1015–1024, jul. 2017.

MAYNARD, D. F. et al. Telemetric and video assessment of female response to male vocal performance in a lek-mating manakin. **Behavioral Ecology**, v. 26, n. 1, p. 65–74, 2015.

MAYR, E. The growth of biological thought: Diversity, evolution, and inheritance. Cambridge: Harvard University Press, 1982.

MCKAY, B. D. et al. A molecular phylogenetic hypothesis for the manakins (Aves: Pipridae). **Molecular Phylogenetics and Evolution**, v. 55, n. 2, p. 733–737, 2010.

MORTON, E. S. Ecological sources of selection on avian sounds. **The American Naturalist**, v. 109, n. 965, p. 17–34, 1975.

OHLSON, J. I.; FJELDSÅ, J.; ERICSON, P. G. P. Molecular phylogeny of the manakins (Aves: Passeriformes: Pipridae), with a new classification and the description of a new genus. **Molecular Phylogenetics and Evolution**, v. 69, n. 3, p. 796–804, 2013.

ORME, D. The Caper Package: Comparative Analysis of Phylogenetics and Evolution in R. jan. 2013.

ORNELAS, J. F.; GONZÁLEZ, C.; ESPINOSA DE LOS MONTEROS, A. Uncorrelated evolution between vocal and plumage coloration traits in the trogons: a comparative study. **Journal of Evolutionary Biology**, v. 22, n. 3, p. 471–484, mar. 2009.

PAGEL, M. Inferring evolutionary processes from phylogenies. **Zoologica Scripta**, v. 26, n. 4, p. 331–348, 1997.

PAGEL, M. Inferring the historical patterns of biological evolution. **Nature**, v. 401, n. 6756, p. 877–884, 1999.

PALACIOS, M. G.; TUBARO, P. L. Does Beak Size Affect Acoustic Frequencies in Woodcreepers? **The Condor**, v. 102, n. 3, p. 553, 2000.

PATEL, R.; MULDER, R. A.; CARDOSO, G. C. What makes vocalisation frequency an unreliable signal of body size in birds? A study on Black Swans. **Ethology**, v. 116, n. 6, p. 554–563, 16 mar. 2010.
PODOS, J. A performance constraint on the evolution of trilled vocalizations in a songbird family (Passeriformes: Emberizidae). **Evolution**, v. 51, n. 2, p. 537–551, abr. 1997.

PRUM, R. 0; JOHNSON, A. E. Display behavior, foraging ecology, and systematics of the Golden-winged Manakin (Masius chrysopterus). **Wilson Bulletin**, v. 99, n. 4, p. 521–539, 1987.

PRUM, R. O. The displays of the White-throated Manakin Corapipo gutturalis in Suriname. **IBIS**, v. 128, p. 91–102, 1986.

PRUM, R. O. Syringeal morphology, phylogeny, and evolution of the neotropical manakins (Aves: Pipridae). **American Museum Novitates**, v. 3043, 1992.

PRUM, R. O. Phylogenetic tests of alternative intersexual selection mechanisms: trait macroevolution in a polygynous clade (Aves: Pipridae). **The American Naturalist**, v. 149, n. 4, p. 668–692, 1997.

PRUM, R. O.; KAPLAN, J. D.; PIERSON, J. E. Display behavior and natural history of the Yellow-crowned Manakin (Heterocercus flavivertex: Pipridae). **The Condor**, v. 98, n. 4, p. 722–735, 1996.

R: A language and environment for statistical computing. Vienna, AustriaR Core team, , 2021.

ROBBINS, M. B. The display repertoire of the band-tailed manakin (*Pipra fasciicauda*). Wilson Bulletin, v. 95, n. 3, p. 321–504, 1983.

ROSSELLI, L.; VASQUEZ, P.; AYUB, I. The courtship displays and social system of the White-ruffed Manakin in Costa Rica. **Wilson Bull**, v. 114, n. 2, p. 165–178, 2002.

SCHAEDLER, L. M. et al. Acoustic signals and repertoire complexity in Swallowtailed Manakins (Chiroxiphia caudata, Aves: Pipridae). **Bioacoustics**, v. 29, n. 2, p. 182–196, 2020.

SEDDON, N. Ecological adaptation and species recognition drives vocal evolution in neotropical suboscine birds. **Evolution**, v. 59, n. 1, p. 200–215, 2005.

SHUTLER, D. Sexual selection: when to expect trade-offs. **Biology Letters**, v. 7, n. 1, p. 101–104, 21 jul. 2010.

SICK, H. Ornitologia Brasileira. Rio de Janeiro: Editora Nova Fronteira, 1997.

SLABBEKOORN, H.; SMITH, T. B. Bird song, ecology and speciation. **Philosophical transactions of the Royal Society of London. Series B, Biological sciences**, v. 357, n. 1420, p. 493–503, 2002.

SNELL-ROOD, E. C. The effect of climate on acoustic signals: Does atmospheric sound absorption matter for bird song and bat echolocation? **The Journal of the Acoustical Society of America**, v. 131, n. 2, p. 1650–1658, fev. 2012.

SNOW, B. K.; SNOW, D. W. Display and related behavior of male Pin-tailed Manakins. **The Wilson Bulletin**, v. 97, n. 3, p. 273–282, 1985.

SNOW, D. W. The display of the Orange-headed manakin. **The Condor**, v. 65, n. 1, p. 44–48, 1961.

STEBBINS, W. C. **The acoustic sense of animals**. [s.l.] Harvard University Press, 1983.

TELLO, J. G. Lekking behavior of the round-tailed manakin. **The Condor**, v. 103, n. 2, p. 298–321, 2001.

THIBERT-PLANTE, X.; GAVRILETS, S. Evolution of mate choice and the so-called magic traits in ecological speciation. **Ecology Letters**, v. 16, n. 8, p. 1004–1013, 2013.

TOBIAS, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. **Ecology Letters**, v. 25, n. 3, p. 581–597, 24 mar. 2022.

TORRES, I. M. D.; LOPEZ, L. C. S.; DE ARAÚJO, C. B. Allometric trends reveal distinct evolutionary trajectories for avian communication. **The Journal of the Acoustical Society of America**, v. 142, n. 4, p. 1879–1887, out. 2017.

VIELLIARD, J. M. E. A Diversidade De Sinais E Sistemas De Comunicação Sonora Na Fauna Brasileira. **I Seminário Música, Ciência e Tecnologia**, p. 145–152, 2004. VILLEGAS, M. et al. Vocal variation in Chiroxiphia boliviana (Aves; Pipridae) along an Andean elevational gradient. **Evolutionary Ecology**, p. 1–20, 2018.

VILLEGAS, M. et al. Ecological niche differentiation in Chiroxiphia and Antilophia manakins (Aves: Pipridae). **PLoS ONE**, v. 16, n. 1 January, p. 1–19, 2021.

WHITNEY, B. M.; PACHECO, J. F.; PARRINI, R. Two species of Neopelma in southeastern Brazil and diversification within the Neopelma/Tyranneutes complex: implications of the subspecies concept for conservation (Passeriformes: Tyrannidae). **Ararajuba**, v. 3, p. 43–53, 1995.

ZOLLINGER, S. A. et al. On the relationship between, and measurement of, amplitude and frequency in birdsong. **Animal Behaviour**, v. 84, n. 4, p. e1–e9, out. 2012.

Dados brutos dos parâmetros acústicos

Amostra	Espécie	Longitude	Latitude	fma x	fmin	ban	fdo m	dur	nno t	pace
XC451991	Antilophia_bokermanni	-39,4116	-7,3326	3549	1516	2033	2929	0,829	7	8,44390 8
XC427075	Antilophia_bokermanni	-39,47366	-7,230695	3583	1309	2274	3187	0,840	7	8,33432
XC427074	Antilophia_bokermanni	-39,411634	-7,33263	3824	1516	2308	3273	0,862	7	8,12253
XC415017	Antilophia_bokermanni	-39,4167	-7,3334	3618	1585	2033	2929	0,914	6	6,56598
XC321370	Antilophia_bokermanni	-39,4167	-7,3334	3790	1447	2343	2584	0,834	7	8,38926
XC29537	Antilophia_bokermanni	-39,4942	-7,2464	3618	1585	2033	3445	0,845	7	8,28010
XC5011	Antilophia_bokermanni	-39,4942	-7,2464	3652	1447	2205	3015	0,884	7	7,92124
XC4658	Antilophia_bokermanni	-39,1834	-7,4001	3652	1481	2171	3359	0,919	7	7,61531
XC542401	Antilophia_bokermanni	-39,4108	-7,3337	3721	1516	2205	3618	0,856	7	8,17470
XC442840	Antilophia_bokermanni	-39,464	-7,2677	3859	1413	2446	3187	0,824	7	8,50030 4
XC442385	Antilophia_bokermanni	-39,3291	-7,3662	3583	1516	2067	3187	0,852	7	8,21596
XC442277	Antilophia_bokermanni	-39,3606	-7,3819	3859	1481	2377	2584	0,856	7	8,17470
XC441973	Antilophia_bokermanni	-39,4113	-7,3351	3686	1309	2377	2929	1,103	9	8,16252
XC441960	Antilophia_bokermanni	-39,4024	-7,3243	3755	1516	2239	3101	0,848	7	8,25374
XC427073	Antilophia_bokermanni	-39,411634	-7,33263	3618	1550	2067	3531	0,878	7	7,97084
XC211919	Antilophia_bokermanni	-39,4125	-7,3329	3755	1550	2205	3187	1,135	9	7,92672
XC121939	Antilophia_bokermanni	-39,4942	-7,2464	3790	1723	2067	3618	0,936	7	7,48103
XC82144	Antilophia_bokermanni	-39,4167	-7,3334	3721	1585	2136	3273	0,881	7	7,94641
XC444905	Antilophia_bokermanni	-39,3186	-7,3675	3790	1826	1964	3618	0,873	7	8,02108
XC443031	Antilophia_bokermanni	-39,3983	-7,3136	3721	1550	2171	2584	0,919	7	7,61531
XC442839	Antilophia_bokermanni	-39,4585	-7,2705	3686	1654	2033	2756	0,843	7	8,30761 9
XC442842	Antilophia_bokermanni	-39,4716	-7,2589	3790	1481	2308	3618	0,873	7	8,02108
XC442742	Antilophia_bokermanni	-39,4736	-7,2214	3618	1723	1895	3187	0,848	7	8,25374
XC442402	Antilophia_bokermanni	-39,343	-7,3729	3790	1481	2308	3531	0,933	7	7,50348
XC442382	Antilophia_bokermanni	-39,3461	-7,3763	3755	1550	2205	3101	0,906	7	7,72968
XC442275	Antilophia_bokermanni	-39,3973	-7,3757	3824	1757	2067	2498	0,870	7	8,04597
XC164120	Antilophia_bokermanni	-39,4373	-7,2817	3652	1550	2102	3445	0,928	7	7,54717
XC421668	Antilophia_galeata	-51,703	-20,7882	3618	1516	2102	3445	0,9713	7	7,20683
XC336683	Antilophia_galeata	-43,6551	-19,7714	3652	1447	2205	3187	0,9607	7	7,28635
XC305327	Antilophia_galeata	-47,9277	-15,7359	3893	1585	2308	3790	0,8755	7	7,99543
XC173057	Antilophia_galeata	-45,5402	-20,2881	3721	1413	2308	3531	0,8801	7	7,95364
XC83332	Antilophia_galeata	-48,017	-15,6626	3997	1413	2584	3187	1,067	8	7,49695
XC37199	Antilophia_galeata	-52,874451	-18,098866	3824	1516	2308	2756	1,024	7	4 6,83794 1

XC705450	Antilophia_galeata	-51,7031	-20,7882	3824	1550	2274	3704	0,873	7	8,01557
XC599465	Antilophia_galeata	-47,9488	-15,9674	3721	1516	2205	3015	0,978	8	3 8,17912
XC599230	Antilophia_galeata	-47,9488	-15,9674	3755	1481	2274	3015	0,942	8	3 8,49527
XC570344	Antilophia_galeata	-41,3758	-12,6112	3755	1309	2446	3618	0,894	7	5 7,83173
XC530764	Antilophia_galeata	-41,4167	-12,5167	3824	1516	2308	3704	0,926	7	7,56184
XC521867	Antilophia_galeata	-48,1256	-22,28	3755	1447	2308	3445	0,974	7	7,18981
XC504562	Antilophia_galeata	-41,3667	-12,5501	4065	1585	2481	2756	0,819	7	8,55223
XC488979	Antilophia_galeata	-47,6525	-22,4576	3755	1344	2412	2756	0,980	7	7,13994
XC423622	Antilophia_galeata	-49,1559	-22,8758	3859	1929	1929	2670	0,923	7	7,58068
XC419986	Antilophia_galeata	-48,3503	-10,2246	3686	1516	2171	2498	0,846	6	7,09303
XC196406	Antilophia_galeata	-46,9512	-22,7319	3411	1481	1929	3015	0,668	5	, 7,48391
XC154503	Antilophia_galeata	-47,9114	-15,8219	3859	1447	2412	2498	1,060	7	6,60252 8
XC128570	Antilophia_galeata	-56,8764	-16,7581	3997	1447	2550	3876	0,9417	7	7,43336
XC100826	Antilophia_galeata	-55,852	-16,353	4134	1619	2515	3187	0,9462	7	7,39801
XC82145	Antilophia_galeata	-46,5234	-20,309	3549	1654	1895	3359	0,9143	7	3 7,65613
XC40001	Antilophia_galeata	-42,5406	-14,3073	3686	1413	2274	3187	0,9485	7	7,38007
XC9533	Antilophia_galeata	-56,8528	-16,7626	3755	1550	2205	3618	0,9052	7	4 7,73309
XC676995	Antilophia_galeata	-47,9488	-15,9674	3618	1481	2136	2929	0,8573	7	8 8,16517
XC407344	Antilophia_galeata	-43,6879	-19,1159	4065	1550	2515	3618	0,8824	7	7,93291
XC345352	Antilophia_galeata	-44,7438	-20,4571	3859	1516	2343	2756	0,9576	7	7,30994
XC282256	Antilophia_galeata	-46,6421	-20,211	3824	1413	2412	3445	0,9075	7	2 7,71349
XC123221	Antilophia_galeata	-48,2622	-18,9113	3721	2033	1688	2842	0,7638	6	9 7,85546
XC38106	Antilophia_galeata	-48,7444	-16,6265	3686	1585	2102	2842	0,9576	7	7,30994
XC75742	Antilophia_galeata	-54,817	-19,4345	3480	1378	2102	2842	0,9006	7	2 7,77259
XC55631	Antilophia_galeata	-55,1753	-24,1514	3962	1550	2412	2584	0,942	7	6 7,43336
WA3619761	Antilophia_galeata	-48,1	-22,2	3721	1550	2171	3531	0,935	7	5 7,48823
WA166542	Antilophia_galeata	-48,3	-22,1	3686	1481	2205	2929	0,898	7	3 7,79249
WA4810576	Antilophia galeata	-46,9	-22,7	3618	1378	2239	3531	0,643	5	7 7,77605
WA1623131	Antilophia_galeata	-49,4	-22	3755	1688	2067	3531	0,855	7	8,18713
WA3543899	Antilophia_galeata	-47,5	-22,4	3721	1619	2102	2929	0,955	7	5 7,32754
WA3423955	Antilophia galeata	-47,5	-22,4	3308	1413	1895	3015	0,796	5	1 6,28377
WA109649	Antilophia aaleata	-47.8	-22	3755	1447	2308	3101	1.003	8	5
WA4025671	Antilophia galeata	-45.9	-21.4	3824	1447	2377	3618	0.976	7	2
WA4025071	Antilophia_galoata	44.2	21,4	2610	1550	2067	2445	0,002	,	6
WA4757112	Anthophia_galeata	-44,2	-20,1	3018	1550	2067	3445	0,903	/	7,75279
WA980095	Antilophia_galeata	-45,2	-20,7	3618	1860	1/5/	3445	0,908	/	7,71349 9
WA2808600	Antilophia_galeata	-44,7	-20,4	3928	1654	2274	3618	0,960	7	7,29242 6
WA3808235	Antilophia_galeata	-44,3	-20,6	3514	1447	2067	3187	0,919	7	7,61780 4
WA1057587	Antilophia_galeata	-46,7	-21,3	4031	1585	2446	3790	0,905	7	7,73309 8
WA2283278	Antilophia_galeata	-47	-21	3790	1447	2343	3359	1,015	7	6,89927 1
WA411919	Antilophia_galeata	-46,9	-22,2	3859	2102	1757	3015	0,832	6	7,20980 5
WA1404507	Antilophia_galeata	-47,2	-19,3	3618	1550	2067	3015	0,969	7	7,22394
WA4575071	Antilophia_galeata	-46,6	-21,9	3755	1585	2171	3618	0,903	7	7,75279

WA2665448	Antilophia_galeata	-44,3	-21	3755	1585	2171	2756	1,003	7	6,97767
XC572601	Corapipo_altera	-83,75	9,78	8923	7063	1860	8527	0,1961	1	5,09943
XC386934	Corapipo_altera	-84,6559	10,4157	8165	6512	1654	7580	0,2072	1	9 4,82625
XC729824	Corapipo_altera	-84,0449	10,2818	8234	6374	1860	7450	0,2646	1	3,77928
XC271194	Corapipo_altera	-80,030998	8,646428	7855	6098	1757	7278	0,255	1	3,92156
XC65677	Corapipo_altera	-82,9645	8,7851	8510	6822	1688	7838	0,2837	1	3,52485
XC409931	Chiroxiphia_boliviana	-67,8	-16,2	3758	1522	2236	3316	0,2411	1	4,14765
XC298664	Chiroxiphia_boliviana	-63,599	-18,107	3075	1304	1770	2799	0,2231	1	4,48229
XC153931	Chiroxiphia_boliviana	-69,3831	-13,493	3323	1460	1863	2799	0,2833	1	3,52982
XC97042	Chiroxiphia_boliviana	-71,5001	-13,0998	3447	1553	1894	2799	0,2833	1	3,52982
XC4622	Chiroxiphia_boliviana	-63,8861	-19,60472	3012	1242	1770	2498	0,3617	1	2,76472
XC693074	Chiroxiphia_boliviana	-68,5883	-14,6536	3416	1149	2267	2929	0,2773	1	3,60620
XC680786	Chiroxiphia_boliviana	-69,224	-14,205	3323	1615	1708	2972	0,3195	1	3 3,12989
XC542841	Chiroxiphia_boliviana	-76,2996	-7,3984	3168	1056	2112	2326	0,2773	1	3,60620
XC297031	Chiroxiphia_boliviana	-76,2996	-7,3984	2950	807	2143	2326	0,3014	1	3 3,31785
XC155972	Chiroxiphia_boliviana	-65,759	-17,172	3075	1118	1957	2885	0,2833	1	3,52982
XC112533	Chiroxiphia_boliviana	-71,5451	-13,0546	3603	1863	1739	3445	0,1929	1	, 5,18403
XC45850	Chiroxiphia_boliviana	-69,2834	-14,2334	3603	1118	2485	3316	0,2773	1	3,60620
XC30214	Chiroxiphia_boliviana	-71,545115	-13,054467	3540	1398	2143	3273	0,1869	1	3 5,35045
XC22968	Chiroxiphia_boliviana	-70,8484	-13,3556	3571	1149	2422	3445	0,2532	1	5 3,94944
XC3593	Chiroxiphia_boliviana	-65,5834	-17,1667	3447	901	2547	2756	0,2532	1	7 3,94944
XC1546	Chiroxiphia_boliviana	-64,3334	-20,8334	3012	1273	1739	2929	0,1989	1	7 5,02765
XC706281	Chiroxiphia_boliviana	-63,5983	-18,1051	3075	1335	1739	2929	0,3316	1	2 3,01568
XC631876	Chiroxiphia_boliviana	-63,805	-18,1246	3168	1087	2081	2627	0,1989	1	2 5,02765
XC527366	Chiroxiphia_boliviana	-64,8607	-23,7195	3106	1398	1708	2972	0,3557	1	2 2,81135
XC220932	Chiroxiphia_boliviana	-71,583	-13,13	3603	1522	2081	2756	0,3376	1	8 2,96208
XC91035	Chiroxiphia_boliviana	-71,5564	-13,0501	3261	1398	1863	2972	0,2472	1	5 4,04530
XC82776	Chiroxiphia boliviana	-69,7528	-14,0484	3385	1304	2081	3230	0,217	1	7 4,60829
XC63279	Chiroxiphia boliviana	-71,5564	-13,0501	3478	1087	2391	3359	0,211	1	5 4,73933
XC43897	Chiroxiphia holiviana	-67 8762	-16 2223	3168	1460	1708	2713	0 3074	1	6
XC36128	Chiroxiphia boliviana	-71,545115	-13,054467	3354	1584	1770	3101	0,3074	1	3,25309
XC455	Chiroxiphia_boliviana	-67,915	-16,305	3177	1619	1557	2713	0,3195	1	3,12989
XC351107	Chiroxiphia_boliviana	-63,599	-18,107	3301	1464	1838	2713	0,3014	1	3,31785
XC150606	Chiroxiphia_boliviana	-76,2996	-7,3984	2990	872	2118	2412	0,3316	1	3,01568
XC147228	Chiroxiphia_boliviana	-65,759	-17,172	3239	1557	1682	2799	0,3255	1	2 3,07219
XC450679	Chiroxiphia_caudata	-55,7397	-26,5389	3238	1125	2113	3078	0,2542	1	7 3,93391
XC727734	Chiroxiphia_caudata	-40,5484	-19,9079	3438	1163	2275	2469	0,2653	1	3,76931
XC727683	Chiroxiphia_caudata	-41,3216	-20,3165	2750	1300	1450	2656	0,1382	1	8 7,23589
XC709220	Chiroxiphia_caudata	-48,5851	-26,2752	3000	963	2038	2813	0,2413	1	4,14421
XC676754	Chiroxiphia_caudata	-49,2738	-25,1954	3000	1038	1963	2344	0,2358	1	9 4,24088
XC636593	Chiroxiphia_caudata	-47,1886	-23,9652	3175	1000	2175	2203	0,2487	1	2 4,02090
XC609171	Chiroxiphia_caudata	-43,486	-22,5507	3263	988	2275	1859	0,2137	1	9 4,67945

XC590304	Chiroxiphia_caudata	-45,939	-23,07	3050	1075	1975	2266	0,2616	1	3,82263
XC573725	Chiroxiphia_caudata	-47,1745	-24,0355	2475	1200	1275	2172	0,175	1	5,71428
XC556213	Chiroxiphia_caudata	-43,49218	-20,10078	2688	1163	1525	1984	0,1658	1	6,03136
XC556212	Chiroxiphia_caudata	-39,57137	-15,38517	3013	975	2038	2641	0,2597	1	3,85059
XC546166	Chiroxiphia_caudata	-39,5709	-15,3851	2400	788	1613	1922	0,1787	1	, 5,59597
XC539185	Chiroxiphia_caudata	-45,939	-23,07	3038	925	2113	2797	0,1774	1	5,63697
XC440767	Chiroxiphia_caudata	-54,0418	-25,7598	3050	913	2138	2219	0,245	1	4,08163
XC427201	Chiroxiphia_caudata	-41,75925	-20,58007	3313	1038	2275	2406	0,2782	1	3,59453
XC426090	Chiroxiphia_caudata	-43,2824	-22,9548	2400	1125	1275	2047	0,1603	1	6,23830
XC402628	Chiroxiphia_caudata	-48,4442	-22,8842	3388	950	2438	2547	0,21	1	4,76190
XC389193	Chiroxiphia_caudata	-46,6425	-23,9349	3650	875	2775	2109	0,2119	1	4,71920
XC382487	Chiroxiphia_caudata	-43,4762	-22,5762	3338	1288	2050	2609	0,304	1	3,28947
XC349537	Chiroxiphia_caudata	-46,9153	-23,2692	3113	975	2138	2281	0,3408	1	2,93427
XC348398	Chiroxiphia_caudata	-47,8104	-24,0171	3138	963	2175	2781	0,2598	1	3,84911
XC348321	Chiroxiphia_caudata	-46,5463	-24,0299	3338	950	2388	2891	0,2174	1	4,59981
XC344288	Chiroxiphia_caudata	-45,6227	-22,803	2900	988	1913	2328	0,245	1	4,08163
XC499710	Chiroxiphia_caudata	-48,1558	-22,6613	2750	1113	1638	2625	0,2137	1	3 4,67945
XC133619	Chiroxiphia_caudata	-48,9592	-22,6736	2325	913	1413	2156	0,14	1	7 7,14285
XC145514	Chiroxiphia_caudata	-48,9393	-22,6728	3025	1238	1788	2438	0,2063	1	7 4,84731
XC30345	Chiroxiphia_caudata	-54,5	-24,13	3113	950	2163	2500	0,228	1	4,37828
WA4177047	Chiroxiphia_caudata	-47,6	-22,2	3063	938	2125	2594	0,245	1	4,08163
WA2579794	Chiroxiphia_caudata	-48,4	-22,4	2763	1363	1400	2625	0,1308	1	3 7,64526
WA1973098	Chiroxiphia_caudata	-46,6	-22,7	3213	1050	2163	2938	0,21	1	4,76190
WA848392	Chiroxiphia_caudata	-47,5	-22,4	3113	1050	2063	2891	0,1713	1	5,83771
WA2133320	Chiroxiphia_caudata	-47,5	-21,7	2775	1125	1650	2531	0,2192	1	4,56204
WA1456709	Chiroxiphia_caudata	-47,5	-23,9	3113	938	2175	1969	0,3703	1	2,70051
WA1130921	Chiroxiphia_caudata	-49,6	-23,2	3200	963	2238	2438	0,2598	1	3,84911
WA1495036	Chiroxiphia_caudata	-49,2	-22,8	3275	1025	2250	2500	0,3924	1	2,54842
WA2965075	Chiroxiphia_caudata	-46,7	-22,7	3163	950	2213	2359	0,2137	1	4,67945 7
WA2095894	Chiroxiphia_caudata	-47,1	-22,8	2775	1163	1613	1922	0,3758	1	2,66099
WA3980923	Chiroxiphia_caudata	-45,5	-21,1	3150	1238	1913	2484	0,2229	1	4,48631 7
WA4667920	Chiroxiphia_caudata	-44,2	-20,1	3450	888	2563	2406	0,2469	1	4,05022 3
WA59788	Chiroxiphia_caudata	-44,2	-20,1	3025	1050	1975	2000	0,42	1	2,38095
WA902649	Chiroxiphia_caudata	-45,2	-20,7	2989	951	2038	2188	0,2426	1	4,12201
WA3815203	Chiroxiphia_caudata	-43,9	-20	3413	1000	2413	1344	0,339	1	2,94985
WA1226779	Chiroxiphia_caudata	-43,9	-20	3188	975	2213	2125	0,374	1	2,67379
WA1981852	Chiroxiphia_caudata	-43,5	-20,3	2888	1013	1875	2422	0,2045	1	4,88997
WA2892542	Chiroxiphia_caudata	-45,9	-22,2	3013	963	2050	2328	0,2487	1	4,02090
WA721696	Chiroxiphia_caudata	-46,6	-21,9	3000	975	2025	2344	0,2653	1	3,76931
WA2280803	Chiroxiphia_caudata	-47	-20,9	2950	1238	1713	2875	0,175	1	8 5,71428
XC609930	Ceratopipra_chloromeros	-75,055	-10,5044	7462	2212	5250	6234	0,3033	2	6,59413 1

XC544891	Ceratopipra_chloromeros	-71,2333	-12,65	7238	1762	5475	5250	0,2958	2	6,76132 5
XC7070	Ceratopipra_chloromeros	-76,0926	-6,7084	6000	1762	4238	5344	0,2584	2	7,73993
XC457501	Ceratopipra_cornuta	-61,423	2,4498	5738	712	5025	5438	0,913	3	3,28587
XC202955	Ceratopipra_cornuta	-61,3917	5,9656	5475	1012	4462	5250	0,3111	2	6,42880
XC20084	Ceratopipra_cornuta	-61,3917	5,9656	5662	788	4875	5250	0,6808	3	4,40658
XC228208	Ceratopipra_cornuta	-61,4	5,97	5700	1050	4650	5297	0,8994	3	3,33555 7
XC303659	Ceratopipra_cornuta	-61,9272	1,6682	5662	1238	4425	3750	0,6582	3	4,55788
XC122739	Ceratopipra_cornuta	-61,4355	5,9132	5850	1275	4575	4969	0,6064	3	4,94723
XC506041	Corapipo_gutturalis	-52,3073	4,7216	7683	4789	2894	7537	0,5205	3	5,76368 9
XC403376	Corapipo_gutturalis	-52,3073	4,7216	7683	3273	4410	7407	0,5639	4	7,09345
XC395134	Corapipo_gutturalis	-59,84781	-2,4085	7580	2274	5306	7407	0,7529	4	5,31279 1
XC303102	Corapipo_gutturalis	-62,2446	1,4787	7786	3514	4272	6934	0,7963	6	7,53484
XC271814	Corapipo_gutturalis	-55,171752	4,94179	7855	2550	5306	7623	0,6135	5	8,14995
XC271812	Corapipo_gutturalis	-55,171752	4,94179	8028	4100	3928	7494	0,6414	6	9,35453
XC513055	Corapipo_gutturalis	-60,6173	5,0524	7201	3618	3583	6374	0,6228	4	6,42260
XC77149	Corapipo_gutturalis	-59,997	-2,028	8062	3618	4444	7881	0,7963	5	8 6,27904
XC65218	Corapipo_gutturalis	-52,1333	4,31667	8062	2653	5409	7795	0,4989	3	1 6,01322
XC75041	Corapipo_gutturalis	-55,2101	4,9301	7373	5409	1964	7192	0,6724	3	9 4,46163
XC266374	Chiroxiphia_lanceolata	-68,6532	10,2944	2241	1121	1121	2110	0,8617	3	3,48149
XC716758	Chiroxiphia_lanceolata	-74,9993	4,4378	1876	950	926	1680	0,6204	2	3,22372
XC716585	Chiroxiphia_lanceolata	-75,0191	4,402	1852	1048	804	1464	0,6041	2	, 3,31071
XC712743	Chiroxiphia_lanceolata	-82,8556	8,8777	1803	1145	658	1680	0,5932	2	3,37154
XC607101	Chiroxiphia_lanceolata	-75,0191	4,402	1998	1048	950	1723	0,5747	2	3,48007
XC480198	Chiroxiphia_lanceolata	-73,9111	11,2902	1705	877	828	1593	0,5699	2	3,50938
XC388398	Chiroxiphia_lanceolata	-73,9622	11,3204	1925	999	926	1507	0,6308	2	8,17057
XC359331	Chiroxiphia_lanceolata	-79,5823	8,8983	1730	1267	463	1593	0,3521	1	2,84010
XC202414	Chiroxiphia_lanceolata	-68,3128	10,8687	1949	926	1023	1680	0,5123	2	3,90396
XC57073	Chiroxiphia_lanceolata	-73,2	10,4	2241	926	1316	1593	0,9514	3	3 3,15324
XC630421	Chiroxiphia_lanceolata	-80,1251	8,6001	2436	1121	1316	2196	0,5206	3	8 5,76258
XC360407	Chiroxiphia_lanceolata	-75,3501	9,4997	1778	1291	487	1680	0,548	2	2 3,64963
XC220953	Chiroxiphia_lanceolata	-67,8	10,4	2022	1072	950	1852	0,4822	2	5 4,14765
XC220952	Chiroxiphia_lanceolata	-68,26	10,3	2509	1242	1267	1766	0,6987	2	7 2,86245
XC129159	Chiroxiphia_lanceolata	-82,213	8,2116	2412	926	1486	2283	0,9513	3	9 3,15357
XC112181	Chiroxiphia_lanceolata	-80,1167	8,6167	1852	1291	560	1766	0,4918	2	9 4,06669
XC73191	Chiroxiphia_lanceolata	-81,7224	7,4778	1754	950	804	1464	0,5767	2	4 3,46800
XC66047	Chiroxiphia lanceolata	-68,078	8,967	2314	1340	974	2196	0,8261	3	8 3,63152
XC64731	Chiroxiphia lanceolata	-73,9911	11,3248	1681	1121	560	1550	0,4849	2	2 4,12456
XC55147	Chiroxiphia lanceolata	-73	10.4	1778	950	828	1637	0.585	2	2
XC18108	Chiroxiphia lanceolata	-73.9	11 3	1803	1242	560	1680	0.5165	2	3.87221
XC12061	Chiroxiphia Janceolata	-67 633	10 /17	1803	1048	755	1593	0 5671	2	7
XC11222	Chiroviphia lanceolata	-67 7072	10,4121	1852	1040	804	1/6/	0.4695	2	5
AC11233	chiroxiphiu_iunceolutu	-07,7873	10,4181	1027	1048	604	1404	0,4085	2	4,20894

XC6070	Chiroxiphia_lanceolata	-66,9026	10,3417	1973	1169	804	1507	0,4466	2	4,47828
XC43155	Chiroxiphia_lanceolata	-67,7	10,4	1852	1023	828	1680	0,5315	2	3,76293
XC96372	Chiroxiphia_lanceolata	-74,8923	4,4395	1827	1145	682	1464	0,5219	2	3,83215
XC82101	Corapipo_leucorrhoa	-74,9159	5,4309	8362	1462	6900	7921	0,4352	4	9,19117
XC666012	Chiroxiphia_linearis	-84,8162	10,324	1894	1313	581	1500	0,7016	2	2,85062
XC334577	Chiroxiphia_linearis	-92,8492	15,5927	1894	1313	581	1781	0,7788	2	2,56805
XC334558	Chiroxiphia_linearis	-92,8046	15,6283	1969	1331	638	1828	0,7638	2	3 2,61848
XC274665	Chiroxiphia_linearis	-85,057	10,7089	1950	1256	694	1453	0,7837	2	2,55199
XC240732	Chiroxiphia_linearis	-86,251	11,9929	1894	1313	581	1781	0,6917	2	2,89142
XC197634	Chiroxiphia_linearis	-89,6117	13,6765	1838	1369	469	1688	0,8982	2	2,22667
XC147697	Chiroxiphia_linearis	-85,608	10,846	1988	844	1144	1734	0,7091	2	6 2,82047
XC107722	Chiroxiphia_linearis	-86,2434	12,053	1913	1238	675	1781	0,627	2	7 3,18979
XC76544	Chiroxiphia_linearis	-91,1667	14,5262	2063	1350	713	1828	0,841	2	3 2,37812
XC65697	Chiroxiphia_linearis	-84,8059	10,3006	2063	1350	713	1875	0,6693	2	1 2,98819
XC11084	Chiroxiphia_linearis	-86,2323	10,022	1819	1219	600	1734	0,729	2	7 2,74348
XC6806	Chiroxiphia_linearis	-85,5	10,67	2138	1238	900	1922	0,6455	2	4 3,09837
XC607917	Chiroxiphia_linearis	-84,9239	10,1564	1894	1350	544	1641	0,53	2	3 3,77358
XC543143	Chiroxiphia_linearis	-84,8123	10,3055	2006	1013	994	1875	0,6967	2	5 2,87067
XC332571	Chiroxiphia_linearis	-84,8153	10,3055	1913	1313	600	1453	0,6892	2	6 2,90191
XC297647	Chiroxiphia_linearis	-85,2809	10,7835	1913	1275	638	1734	0,739	2	5 2,70636
XC278645	Chiroxiphia_linearis	-84,8153	10,3055	1913	1219	694	1734	0,7041	2	2,84050
XC274898	Chiroxiphia_linearis	-87,061	13,242	1875	1331	544	1453	0,734	2	6 2,72479
XC154033	Chiroxiphia_linearis	-84,264752	9,914393	1988	1200	788	1828	0,6494	2	6 3,07976
XC125969	Chiroxiphia_linearis	-91,6098	14,6627	1950	1350	600	1781	0,7365	2	6 2,71554
XC100322	Chiroxiphia_linearis	-84,8059	10,3006	1950	1256	694	1734	0,6792	2	7 2,94464
XC39918	Chiroxiphia_linearis	-86,1814	11,9498	1819	1331	488	1453	0,7066	2	1 2,83045
XC332573	Chiroxiphia_linearis	-84,8123	10,3055	1894	1331	563	1453	0,6917	2	6 2,89142
XC124169	Chiroxiphia_linearis	-92,744	15,6	1894	1369	525	1734	0,7539	2	7 2,65287
XC393984	Chiroxiphia_napensis	-76,1765	0,295	2631	609	2022	2412	0,3202	2	2 6,24609
XC261002	Chiroxiphia_napensis	-76,179	-0,638	2875	633	2241	2455	0,3223	2	6 6,20539
XC259103	Chiroxiphia_napensis	-76,459	-0,472	2631	780	1852	2369	0,3662	2	9 5,46149
XC177795	Chiroxiphia napensis	-76,1498	-0,6381	2704	609	2095	2584	0,4541	2	6 4,40431
XC77002	Chiroxiphia napensis	-76,3978	-0,6742	3045	999	2046	2670	0,3704	2	6 5,39956
XC412906	Chiroxiphia napensis	-74.3059	0.255	2607	974	1632	2498	0.3704	2	8 5.39956
XC249558	Chiroxiphia napensis	-77.751	-1.542	2607	999	1608	2326	0.4332	2	8 4.61680
XC94658	Chiroxiphia napensis	-76.3528	-0.532	2826	901	1925	2412	0.3725	2	5.36912
XC249933	Chiroxiphia napensis	-77 9	-2 55	2753	1121	1632	2498	0 3208	2	6 23441
XC12890	Chiroxiphia_napensis	-76 0414	-0 5498	2582	731	1852	2067	0 2783	2	4 7 18648
WA31/11/80	Chiroxinhia pareola	-38 0	-1/ 2	2850	1350	1500	2531	0.0682	1	9
W/A15/0521	Chiroviphia pareola	-30,9	14,2	2000	1212	1/62	2062	0 11 / 0	1	£3,0027 6
WA1040531	Chiroxiphia para-la	-54,7	-2,4	2775	1313	1762	2003	0,1148	1	0,71080 1
WAT019219	chiroxipnia_pareola	-34,8	-7,9	3038	1275	1/03	2484	0,0939	T	10,6496 3

WA4851322	Chiroxiphia_pareola	-40,9	-3,8	2775	638	2138	2391	0,0939	1	10,6496
WA2545960	Chiroxiphia_pareola	-39,6	-14,1	2625	1163	1463	2250	0,0915	1	10,9289
WA1533367	Chiroxiphia_pareola	-41,1	-3,5	2775	1088	1688	2344	0,0946	1	10,5708
WA1453680	Chiroxiphia_pareola	-48,3	-10,7	2850	938	1913	1969	0,1062	1	9,41619
WA4825060	Chiroxiphia_pareola	-48,2	-1,9	2925	1050	1875	2531	0,0927	1	10,7874
WA4793191	Chiroxiphia_pareola	-40,9	-3,8	3000	788	2213	2109	0,0995	1	10,0502
WA4789140	Chiroxiphia_pareola	-49,8	-6,5	2925	750	2175	2250	0,0903	1	11,0742
WA4696618	Chiroxiphia_pareola	-35,9	-9,3	3188	1163	2025	2344	0,132	1	7,57575 8
WA4200165	Chiroxiphia_pareola	-36	-9,1	2663	900	1763	2203	0,1013	1	9,87166
WA3242510	Chiroxiphia_pareola	-38,3	-12,5	3150	1088	2063	2578	0,0958	1	10,4384 1
WA3098227	Chiroxiphia_pareola	-49,9	-9,2	2663	1088	1575	1875	0,2014	1	4,96524
WA2874178	Chiroxiphia_pareola	-52,2	-12,6	2813	863	1950	2344	0,1001	1	9,99001
WA2750297	Chiroxiphia_pareola	-43,4	-4,8	2963	825	2138	2391	0,1087	1	9,19963 2
WA2699370	Chiroxiphia_pareola	-36,3	-9,7	3188	1350	1838	2672	0,1584	1	6,31313 1
WA2063388	Chiroxiphia_pareola	-35,9	-9,3	2888	938	1950	2344	0,1418	1	7,05218
WA2058138	Chiroxiphia_pareola	-54,7	-2,4	2888	938	1950	2391	0,1001	1	9,99001
WA1533577	Chiroxiphia_pareola	-39,1	-15,2	3038	1013	2025	2203	0,1467	1	6,81663 3
WA1319253	Chiroxiphia_pareola	-40,9	-3,8	3075	1050	2025	2438	0,0933	1	10,7181
XC531242	Chiroxiphia_regina	-59,4749	-8,9443	2438	1238	1200	2156	0,4274	2	4,67945
XC282179	Chiroxiphia_regina	-59,5548	-4,4689	2475	638	1838	1781	0,2776	2	, 7,20461 1
XC200192	Chiroxiphia_regina	-72,7148	-8,9826	2775	1163	1613	2297	0,4001	2	4,99875
XC200191	Chiroxiphia_regina	-72,7148	-8,9826	2550	750	1800	2203	0,3675	2	5,44217 7
XC591983	Chiroxiphia_regina	-70,2948	-4,2889	2400	825	1575	2250	0,4029	2	4,96401
XC200188	Chiroxiphia_regina	-67,0834	-0,1334	2513	1238	1275	1641	0,4029	2	4,96401
XC13379	Chiroxiphia_regina	-70,7339	-12,3398	2813	713	2100	2250	0,4328	2	4,62107
XC505330	Chiroxiphia_regina	-60,1781	-3,2062	2438	1050	1388	2297	0,4137	2	4,83442
WA36581	Chiroxiphia_regina	-61,2	-5,8	2850	1238	1613	2344	0,4165	2	4,80192
WA753310	Chiroxiphia_regina	-60,6	-3,2	2888	1013	1875	2484	0,392	2	5,10204
WA1695183	Chiroxiphia_regina	-60,3	-3,8	2588	1163	1425	2250	0,4165	2	4,80192
WA3554807	Chiroxiphia_regina	-60,6	-3,2	2475	863	1613	2297	0,4355	2	4,59242
WA2911676	Chiroxiphia_regina	-60,6	-3,2	2588	1425	1163	1969	0,3321	2	6,02228
WA2885864	Chiroxiphia_regina	-60,6	-3,2	2550	1275	1275	2156	0,3647	2	5,48395
WA1565213	Chiroxiphia_regina	-60,1	-12,7	2438	1200	1238	2156	0,4355	2	4,59242
WA1504224	Chiroxiphia_regina	-61,2	-5,8	2400	1275	1125	2063	0,4083	2	4,89835
XC618924	Ceratopipra_rubrocapilla	-39,0933	-14,4791	6525	1538	4988	3797	0,4392	2	4,55373
XC589095	Ceratopipra_rubrocapilla	-35,8804	-9,2193	6488	1500	4988	3750	0,8375	2	4 2,38806
XC552351	Ceratopipra_rubrocapilla	-35,8681	-9,2093	6975	1538	5438	3797	0,6418	2	3,11623
XC512920	Ceratopipra_rubrocapilla	-35,8771	-9,2114	6375	1425	4950	5578	0,924	2	2,16450
XC409912	Ceratopipra_rubrocapilla	-34,8692	-7,9389	7012	2175	4838	4078	0,9376	2	2,13310
XC82341	Ceratopipra_rubrocapilla	-40,0645	-19,1456	5550	1425	4125	3703	0,4028	2	6 4,96524
XC82340	Ceratopipra_rubrocapilla	-35,9334	-9,3001	5138	2025	3112	3984	0,3459	2	3 5,78201 8

XC82339	Ceratopipra_rubrocapilla	-39,139481	-16,345838	6225	1800	4425	4828	0,8102	2	2,46852
XC16043	Ceratopipra_rubrocapilla	-39,9501	-19,1167	6488	1575	4912	4453	0,751	2	2,66311
XC679105	Ceratopipra_rubrocapilla	-50,5929	-5,8266	6750	1612	5138	4969	0,9399	2	2,12788
XC614771	Ceratopipra_rubrocapilla	-35,8804	-9,2193	6750	2025	4725	5203	0,8693	2	2,30070
XC597699	Ceratopipra_rubrocapilla	-50,3112	-6,0947	6338	2775	3562	3891	0,7942	2	2,51825
XC585164	Ceratopipra_rubrocapilla	-54,997	-2,754	6038	2662	3375	4312	1,0651	2	1,87775
XC446443	Ceratopipra_rubrocapilla	-55,9367	-9,5987	5888	1538	4350	5719	0,9831	2	2,03438
XC430513	Ceratopipra_rubrocapilla	-55,9325	-9,5975	6112	1838	4275	3562	0,8876	2	2,25326
XC377348	Ceratopipra_rubrocapilla	-57,7467	-15,1789	5400	1350	4050	4125	0,8352	2	2,39463
XC282151	Ceratopipra_rubrocapilla	-39,9501	-19,1167	6788	1612	5175	3891	0,9012	2	2,21926
XC228239	Ceratopipra_rubrocapilla	-35,9167	-9,667	6300	1912	4388	3750	0,644	2	3,10559
XC130073	Ceratopipra_rubrocapilla	-55,932	-9,5981	5700	1650	4050	3797	0,9809	2	2,03894 4
XC69154	Ceratopipra_rubrocapilla	-39,1	-14,9	6562	1125	5438	4875	0,8807	2	2,27092
XC228245	Ceratopipra_rubrocapilla	-55,9	-9,45	6262	1612	4650	5016	0,9649	2	2,07275
XC131027	Ceratopipra_rubrocapilla	-40,188	-19,4148	6825	1500	5325	3609	0,7123	2	2,80780
XC262979	Chloropipo_unicolor	-78,049	-2,432	2948	1171	1777	4177	0,3694	1	2,70709
XC86139	Chloropipo_unicolor	-78,6051	-3,9209	4678	1413	3265	4522	0,3072	1	3,25520 8
XC249846	Chloropipo_unicolor	-78,06	-2,42	2777	1550	1227	5168	0,2029	1	4,92853
XC270266	Chloropipo_unicolor	-77,7631	-5,6723	3289	1619	1670	5426	0,359	1	2,78551
XC62907	Chloropipo_unicolor	-72,0945	-12,2584	4312	1240	3072	6245	0,3712	1	2,69396
XC259114	Heterocercus_aurantiivertex	-76,041	-0,548	4775	2972	1803	4393	1,4354	22	15,3267
XC259113	Heterocercus_aurantiivertex	-76,373	-0,498	4751	2899	1852	4565	1,6295	27	4 16,5695
XC60771	Heterocercus_aurantiivertex	-76,1262	-0,3917	4897	3240	1657	3962	1,3841	19	13,7273 3
XC11987	Heterocercus_aurantiivertex	-73,49257	-3,880397	5481	2923	2558	4522	1,6323	25	15,3158 1
XC700360	Heterocercus_aurantiivertex	-76,3336	-0,4982	4970	2680	2290	4737	2,6654	37	13,8815
XC700359	Heterocercus_aurantiivertex	-76,3336	-0,4982	4824	2436	2387	4436	1,5553	23	14,7881 4
XC250988	Heterocercus_aurantiivertex	-76,373	-0,498	4312	2655	1657	3704	1,7322	24	13,8552
XC87600	Heterocercus_aurantiivertex	-73,2501	-3,8334	4848	2997	1852	4608	1,698	29	17,0789
XC16558	Heterocercus_aurantiivertex	-70,2948	-4,2889	4604	2753	1852	4091	2,0718	32	15,4455
XC12911	Heterocercus_aurantiivertex	-73,2501	-3,8334	4824	2899	1925	4608	1,7065	29	16,9938
XC693609	Heterocercus_flavivertex	-67,8813	3,8809	6762	2943	3818	5953	3,254	3	0,92194
XC407258	Heterocercus_flavivertex	-61,0109	1,483	6656	2493	4163	6141	2,7468	3	1,09218
XC80976	Heterocercus_flavivertex	-70,2367	1,2598	7637	1220	6417	6328	1,1305	3	2,65369 3
XC617668	Heterocercus_flavivertex	-60,7501	-2,6834	6735	2333	4402	6281	2,5533	3	1,17495
XC224223	Heterocercus_flavivertex	-66,383	5	7212	3792	3421	6469	2,7855	3	1,07700 6
XC210072	Heterocercus_flavivertex	-66,233	5,05	6682	3659	3023	5203	2,39	3	1,25523
XC124228	Heterocercus_flavivertex	-67,7137	6,1132	6815	2970	3845	6328	3,0219	3	0,99275 3
XC556354	Heterocercus_flavivertex	-59,90734	-2,01731	6284	4932	1352	5906	2,3212	3	1,29243 5
XC437017	Heterocercus_linteatus	-55,9325	-9,5975	4912	2212	2700	4172	0,9799	2	2,04102 5
XC224224	Heterocercus_linteatus	-55,9	-9,45	5212	2100	3112	4078	0,8008	2	2,49750 2
XC115728	Heterocercus_linteatus	-55,932	-9,5981	5400	1725	3675	4453	1,0361	2	1,93031

XC39465	Heterocercus_linteatus	-55,932	-9,5981	5662	1425	4238	5250	1,2713	2	1,57319 3
XC422938	llicura_militaris	-47,9947	-24,0557	7838	5475	2363	6422	3,3263	17	5,11078 4
XC422765	llicura_militaris	-39,9069	-16,3408	7350	5063	2288	6375	1,3172	5	3,79593 1
XC306386	llicura_militaris	-49,8118	-28,7049	6675	4838	1838	6094	1,035	4	3,86473 4
XC299476	llicura_militaris	-42,7379	-22,4179	7800	5400	2400	6188	1,439	7	4,86448 9
XC279538	llicura_militaris	-43,01	-22,448	6863	5325	1538	6703	0,8855	4	4,51722
XC707257	llicura_militaris	-43,032	-16,8521	7838	5550	2288	6891	1,2342	5	4,05120
XC705853	llicura_militaris	-47,9947	-24,0557	7238	4688	2550	6422	1,1955	4	, 3,34588
XC698105	llicura_militaris	-48,8816	-15,8355	7913	5513	2400	6844	1,1069	6	5,42054 4
XC667494	llicura_militaris	-42,9822	-22,3346	7088	4688	2400	6516	1,1346	4	3,52547 2
XC613773	llicura_militaris	-48,9001	-25,3334	7538	5625	1913	6516	1,2342	5	4,05120
XC566798	llicura_militaris	-45,4982	-23,5838	6900	4875	2025	6375	1,4667	5	3,40901 3
XC556369	llicura_militaris	-43,49218	-20,10078	7500	4988	2513	6516	1,1844	5	4,22154
XC556367	llicura_militaris	-48,407288	-24,260121	7313	5550	1763	6422	1,1623	4	, 3,44145 2
XC521418	llicura_militaris	-43,0104	-16,8632	7950	5738	2213	7031	0,9132	5	5,47525
XC469404	llicura_militaris	-48,829	-25,49	7599	5530	2069	6375	1,1733	6	5,11378
XC421723	llicura_militaris	-48,8222	-15,7773	8163	5680	2483	7266	1,2674	7	5,52311
XC415254	llicura_militaris	-40,1238	-14,4213	7373	5567	1806	6422	1,3726	5	8 3,64272
XC387607	llicura_militaris	-42,9829	-22,3337	7787	5567	2219	6750	1,3726	5	3,64272
XC371102	llicura_militaris	-49,6233	-28,8184	7636	5116	2520	6422	1,3062	4	3,06231
XC345042	llicura_militaris	-46,0328	-23,0401	7712	5379	2332	6375	1,5331	6	8 3,91363
XC331282	llicura_militaris	-40,1001	-14,3834	7147	4890	2257	6609	1,677	7	9 4,17412
XC247563	llicura_militaris	-49,5359	-28,5109	5944	4552	1392	5625	0,6199	3	4,83949
XC247557	llicura_militaris	-49,3418	-28,524	7335	5342	1994	6328	1,1623	6	5,16217 8
XC241808	llicura_militaris	-42,7379	-22,4179	7749	5567	2182	6703	1,0682	6	5,61692
XC224655	llicura_militaris	-40,0833	-14,5	7373	4966	2408	6000	1,0682	5	4,68077 1
XC172530	llicura_militaris	-48,2981	-25,182	7862	5718	2144	6469	0,9354	4	4,27624
XC43939	llicura_militaris	-43,8	-20,5	7937	5530	2408	7453	1,6659	9	5,40248
XC43696	llicura_militaris	-49,01	-27,5667	8013	5455	2558	7078	0,9907	5	5,04693 7
XC18301	llicura_militaris	-48,4181	-24,2759	7298	5605	1693	6281	1,1567	5	4,32264
XC15778	llicura_militaris	-42,7167	-22,5001	7524	5718	1806	6328	1,1014	6	5,44761
XC22911	Lepidothrix_coeruleocapilla	-70,8484	-13,3556	1723	724	999	2799	0,3455	2	5,78871
XC39047	Lepidothrix_coeruleocapilla	-71,5	-13,06	1550	1171	379	2885	0,3809	2	5,25072
XC20037	Lepidothrix_coeruleocapilla	-75,31056	-10,40417	1895	827	1068	2972	0,3425	2	5,83941
XC671087	Lepidothrix_iris	-50,5929	-5,8266	2400	1425	975	2062	0,3159	2	6,33111
XC345268	Lepidothrix_iris	-50,3445	-6,1657	2700	1238	1462	2062	0,2912	2	6,86813
XC212846	Lepidothrix_iris	-48,2959	-1,2011	3225	1650	1575	2906	0,2788	2	7,17360
XC499828	Lepidothrix_iris	-50,7132	-5,9718	2438	1312	1125	2016	0,2771	2	1 7,21761
XC345320	Lepidothrix_iris	-50,3445	-6,1657	2850	1312	1538	2109	0,3124	2	1 6,40204
XC323771	Lepidothrix_iris	-50,3445	-6,1657	2062	900	1162	1781	0,2365	2	9 8,45666
XC303300	Lepidothrix_iris	-50,5	-6	2588	1312	1275	2109	0,2771	2	7,21761

XC151924	Lepidothrix_iris	-56,0715	-5,3316	1988	900	1088	1734	0,2259	2	8,85347
XC84109	Lepidothrix_iris	-48,377	-3,8101	2550	1538	1012	2109	0,2435	2	8,21355
XC22374	Lepidothrix_iris	-50,3459	-6,1603	2850	1425	1425	2531	0,2735	2	7,31261
XC303154	Lepidothrix_isidorei	-76,7201	1,2117	2631	901	1730	2541	0,1818	1	4 5,50055
XC150872	Lepidothrix_isidorei	-76,2952	-7,3688	2558	706	1852	2369	0,165	1	6,06060
XC261000	Lepidothrix_isidorei	-77,741	-0,712	2119	804	1316	1981	0,1207	1	8,28500
XC251059	Lepidothrix_isidorei	-77,741	-0,715	2461	682	1778	2326	0,1482	1	4 6,74763
XC251054	Lepidothrix_isidorei	-77,567	-0,833	2314	609	1705	2196	0,1497	1	6,68002
XC249341	Lepidothrix_isidorei	-77,605	-0,693	3167	926	2241	2627	0,1467	1	/ 6,81663
XC228229	Lepidothrix_isidorei	-77,583	-0,75	2509	706	1803	2369	0,1482	1	3 6,74763
XC132022	Lepidothrix_isidorei	-77,8989	-0,9415	2558	1121	1437	2455	0,1681	1	8 5,94884
XC132021	Lepidothrix_isidorei	-77,8989	-0,9415	2631	950	1681	2498	0,2032	1	4,92126
XC609508	Lepidothrix_isidorei	-77,1051	0,7398	2729	926	1803	2455	0,1757	1	5,69152
XC518019	Lepidothrix_isidorei	-74,855	2,7975	2582	1194	1389	2455	0,1115	1	8,96861
XC322079	Lepidothrix_isidorei	-77,0935	0,6937	3191	926	2266	2842	0,1497	1	6,68002 7
XC276137	Lepidothrix_isidorei	-78,417	-2,95	2680	804	1876	2455	0,1299	1	7,69822
XC259099	Lepidothrix_isidorei	-77,741	-0,712	2412	731	1681	2283	0,1314	1	7,61035
XC251056	Lepidothrix_isidorei	-77,567	-0,833	2436	926	1510	2153	0,1192	1	8,38926
XC251052	Lepidothrix_isidorei	-77,567	-0,833	3849	1072	2777	3359	0,2093	1	4,77783
XC228230	Lepidothrix_isidorei	-77,583	-0,75	2582	901	1681	2369	0,1222	1	8,18330
XC40647	Lepidothrix_isidorei	-77,599182	-0,687316	3581	706	2875	3058	0,1329	1	6 7,52445
XC6617	Lepidothrix_isidorei	-77,7303	-0,6959	3070	755	2314	2326	0,1757	1	4 5,69152
XC157570	Lepidothrix_isidorei	-76,9912	-6,0921	3167	877	2290	2929	0,139	1	7,19424
XC556389	Lepidothrix_nattereri	-65,04485	-9,63575	2081	1106	975	1875	0,2261	2	8,84564
XC314994	Lepidothrix_nattereri	-56,3001	-4,5167	2644	1837	806	2156	0,2214	2	4 9,03342
XC47965	Lepidothrix_nattereri	-55,932	-9,5981	2756	1594	1162	2625	0,2532	2	4 7,89889
XC377318	Lepidothrix_nattereri	-57,7467	-15,1789	2081	956	1125	1641	0,293	2	4 6,82593
XC330550	Lepidothrix_nattereri	-55,6646	-11,8647	2719	1462	1256	1969	0,2341	2	9 8,54335
XC228231	Lepidothrix nattereri	-55,9	-9,45	2925	1575	1350	1969	0,2675	2	8 7,47663
XC200166	Lepidothrix nattereri	-56.3001	-4.5167	2906	1481	1425	2766	0.2835	2	6 7.05467
XC200164	lenidothrix nattereri	-59 5114	-4 6195	3169	1481	1687	2156	0 2516	2	4 7 94912
XC167311	Lenidothrix nattereri	-62 0836	-8 9244	2025	1162	862	1688	0 2452	2	6 8 15660
XC110E17		EE 2228	4 5770	2025	1725	1275	2521	0.2004	2	6,13000 7
XC119517		-50,3338	-4,5778	3000	1725	1275	2531	0,2994	2	0,08002 7
XC63596	Lepidotnrix_nattereri	-60,85	-14,33	2569	1350	1219	2203	0,2739	2	7,30193 5
XC63595	Lepidothrix_nattereri	-60,85	-14,33	2437	1594	844	2109	0,2994	2	6,68002 7
XC63594	Lepidothrix_nattereri	-60,85	-14,33	2287	1087	1200	1922	0,3137	2	6,37551 8
XC435852	Lepidothrix_nattereri	-55,9325	-9,5975	2494	1706	787	2297	0,2851	2	7,01508 2
XC343995	Lepidothrix_nattereri	-59,5934	-4,3882	3244	1894	1350	2297	0,3201	2	6,24804 7
XC171014	Lepidothrix_nattereri	-59,6606	-13,8174	2344	1237	1106	2250	0,2325	2	8,60215 1
XC88505	Lepidothrix_nattereri	-55,932	-9,5981	3037	1612	1425	1969	0,3488	2	5,73394
XC39939	Lepidothrix_nattereri	-55,932	-9,5981	2925	1556	1369	2625	0,2675	2	5 7,47663 6

XC5066	Lepidothrix_nattereri	-59,5114	-4,6195	3150	1875	1275	3047	0,2787	2	7,17617
XC538611	Lepidothrix_serena	-52,6698	5,1567	2436	1267	1169	2239	0,1669	1	5,99161
XC490062	Lepidothrix_serena	-52,3073	4,7216	2436	1827	609	2239	0,2983	1	3,35233
XC463690	Lepidothrix_serena	-55,181	4,9487	2363	1340	1023	2196	0,2493	1	4,01123
XC346016	Lepidothrix_serena	-60,0509	-1,9798	2193	1340	853	2024	0,2593	1	3,85653
XC271887	Lepidothrix_serena	-55,171752	4,94179	2461	1389	1072	2196	0,2682	1	, 3,72856 1
XC271885	Lepidothrix_serena	-55,171752	4,94179	2436	1486	950	2283	0,2404	1	4,15973
XC200126	Lepidothrix_serena	-52,056	0,8926	2314	1316	999	2110	0,2025	1	4,93827
XC65271	Lepidothrix_serena	-53,4	5,4	2314	1364	950	2067	0,2204	1	4,53720
XC64997	Lepidothrix_serena	-53,0667	3,01667	2607	1681	926	2455	0,2337	1	5 4,27899
XC56974	Lepidothrix_serena	-52,2	4,5	2631	1535	1096	2412	0,2448	1	4,08496 7
XC520032	Lepidothrix_serena	-55,1822	4,9539	2193	1535	658	1938	0,148	1	6,75675 7
XC286608	Lepidothrix_serena	-59,7523	-2,4512	2363	1389	974	2196	0,2949	1	3,39098
XC119161	Lepidothrix_serena	-60,0938	-2,5741	2290	1827	463	2067	0,2048	1	4,88281 3
XC114414	Lepidothrix_serena	-52,2793	4,6105	2290	1730	560	2110	0,2348	1	4,25894
XC114047	Lepidothrix_serena	-55,183	4,9459	2436	1632	804	2196	0,2115	1	4,72813
XC75191	Lepidothrix_serena	-55,2101	4,9301	2485	1486	999	2110	0,256	1	3,90625
XC168719	Lepidothrix_serena	-52,056	0,8926	2314	1486	828	2110	0,2771	1	3,60880 5
XC7577	Lepidothrix_serena	-56,17	3,92	2485	1584	901	2326	0,256	1	3,90625
XC20077	Lepidothrix_suavissima	-61,3917	5,9656	1357	857	500	2498	0,1264	1	7,91139 2
XC513064	Lepidothrix_suavissima	-60,6173	5,0524	1333	809	524	2412	0,1283	1	7,79423 2
XC119504	Lepidothrix_vilasboasi	-57,1152	-5,5887	2911	1395	1516	2067	0,2693	2	7,42666 2
XC119377	Lepidothrix_vilasboasi	-55,4834	-7,1501	2584	1550	1034	2326	0,3166	2	6,31711 9
XC24091	Lepidothrix_vilasboasi	-55,4834	-7,1501	3066	1533	1533	2627	0,3081	2	6,49139
XC44186	Lepidothrix_vilasboasi	-55,53	-7,206	2326	1585	741	2067	0,3591	2	5,56947
XC533989	Masius_chrysopterus	-75,1105	6,9875	2680	536	2144	2067	0,1784	1	5,60538
XC264761	Masius_chrysopterus	-77,9	1,117	2485	463	2022	1938	0,1784	1	5,60538
XC186721	Masius_chrysopterus	-78,9942	0,1228	2558	1145	1413	1938	0,1754	1	5,70125
XC21106	Masius_chrysopterus	-78,7864	0,3139	2485	585	1900	2024	0,1814	1	5,51267
XC51241	Masius_chrysopterus	-75,1251	6,9862	2655	682	1973	2153	0,1814	1	5,51267
XC3830	Masius_chrysopterus	-78,6776	0,01	2509	633	1876	1981	0,1573	1	6,35727
XC95951	Masius_chrysopterus	-75,8959	5,4828	2461	609	1852	1895	0,1512	1	9 6,61375
XC536748	Machaeropterus_pyrocephalus	-67,8809	-9,9491	3459	3118	341	3273	0,2995	1	7 3,33889
XC392046	Machaeropterus_pyrocephalus	-61,6872	-14,5325	3606	3216	390	3445	0,2952	1	8 3,38753
XC734445	Machaeropterus_pyrocephalus	-49,604	-16,0538	3532	3167	365	3316	0,1925	1	4 5,19480
XC728576	Machaeropterus_pyrocephalus	-50,4885	-9,7914	3800	3240	560	3575	0,2257	1	5 4,43066
XC469158	Machaeropterus_pyrocephalus	-50,2276	-6,0934	3654	3191	463	3359	0,2378	1	4,20521
XC427558	Machaeropterus_pyrocephalus	-50,087143	-6,032514	3581	3191	390	3402	0,246	1	4 4,06504
XC200128	Machaeropterus_pyrocephalus	-56,5834	-9,0501	3703	3070	633	3402	0,2075	1	1 4,81927
XC30318	Machaeropterus_pyrocephalus	-50,3459	-6,1603	3776	3167	609	3531	0,2353	1	7 4,24989
XC17588	Machaeropterus_pyrocephalus	-55,987	-9,2456	3825	2972	853	3359	0,2653	1	4 3,76931
										8

XC615543	Machaeropterus_pyrocephalus	-50,4483	-16,9481	3508	3216	292	3359	0,2332	1	4,28816
XC493327	Machaeropterus_pyrocephalus	-49,2648	-16,6869	3727	3118	609	3402	0,2439	1	4,10004
XC483127	Machaeropterus_pyrocephalus	-55,8315	-9,28	3776	3289	487	3488	0,1904	1	5,25210
XC456287	Machaeropterus_pyrocephalus	-61,4464	3,3821	4020	3459	560	3704	0,2139	1	4,67508
XC453558	Machaeropterus_pyrocephalus	-70,0928	-12,5687	3289	3045	244	3187	0,2032	1	4,92126
XC438665	Machaeropterus_pyrocephalus	-55,9325	-9,5975	3727	3240	487	3445	0,2332	1	4,28816
XC424943	Machaeropterus_pyrocephalus	-63,8898	-8,315	3922	3216	706	3531	0,3166	1	3,15856
XC342745	Machaeropterus_pyrocephalus	-48,4106	-8,6204	3849	3143	706	3488	0,2375	1	4,21052 6
XC200172	Machaeropterus_pyrocephalus	-55,932	-9,5981	3606	3143	463	3316	0,2674	1	3,73971
XC180621	Machaeropterus_pyrocephalus	-76,3179	-6,4159	3606	3191	414	3402	0,2696	1	3,70919 9
XC170555	Machaeropterus_pyrocephalus	-60,7141	-12,2417	3703	3265	439	3488	0,2546	1	3,92773
XC157954	Machaeropterus_pyrocephalus	-76,9912	-6,0921	3679	3118	560	3359	0,323	1	3,09597 5
XC152495	Machaeropterus_pyrocephalus	-73,8638	-10,6987	3703	3167	536	3445	0,246	1	4,06504
XC118925	Machaeropterus_pyrocephalus	-50,1801	-5,9794	3508	3070	439	3273	0,2118	1	4,72143
XC68605	Machaeropterus_pyrocephalus	-71,24	-12,66	3484	2923	560	3187	0,2781	1	3,59582
XC39765	Machaeropterus_pyrocephalus	-70,6226	-13,1814	3752	3338	414	3488	0,2546	1	3,92773
XC29750	Machaeropterus_pyrocephalus	-71,367	-12,866	3459	3167	292	3316	0,2161	1	4,62748
XC14922	Machaeropterus_pyrocephalus	-55,987	-9,2456	3874	3240	633	3575	0,2503	1	3,99520
XC13875	Machaeropterus_pyrocephalus	-71,367	-12,866	3581	3216	365	3402	0,231	1	4,32900
XC427557	Machaeropterus_pyrocephalus	-50,087143	-6,032514	3703	3167	536	3488	0,231	1	4,32900
XC171177	Machaeropterus_pyrocephalus	-58,8885	-15,2102	3752	3167	585	3402	0,2075	1	4,81927
XC87857	Machaeropterus_pyrocephalus	-70,7262	-12,335	3630	2948	682	3273	0,3508	1	2,85062
XC75281	Machaeropterus_pyrocephalus	-70,702	-12,3992	3606	3094	512	3359	0,3765	1	/ 2,65604
XC582715	Machaeropterus_regulus	-39,5497	-15,3809	901	655	246	4177	0,1976	1	2 5,06072
XC419440	Machaeropterus_regulus	-39,1848	-16,3162	901	620	281	3488	0,2238	1	9 4,46827
XC289089	Machaeropterus_regulus	-39,3963	-14,1426	828	620	208	3273	0,1754	1	5 5,70125
XC236348	Machaeropterus_regulus	-43,4347	-22,5939	2607	2205	402	3230	0,1109	1	4 9,01713
XC83165	Machaeropterus_regulus	-39,1	-13,5	877	655	222	3316	0,1694	1	3 5,90318
XC82253	Machaeropterus_regulus	-42,7167	-22,5001	901	620	281	3230	0,246	1	8 4,06504
XC46311	Machaeropterus_regulus	-39,2409	-13,8367	877	620	257	4048	0,1734	1	1 5,76701
XC12825	Machaeropterus regulus	-42,7167	-22,5001	804	551	253	3359	0,2097	1	3 4,76871
XC9664	Machaeropterus reaulus	-42.7167	-22.5001	828	551	277	3359	0.1815	1	7 5,50964
XC7923	Machaeropterus reaulus	-42.7167	-22.5001	877	655	222	3316	0.1775	1	2 5.63380
XC495916	Machaeronterus reaulus	-39 0897	-15 2798	901	551	350	4134	0 1835	1	3
XC/27559	Machaeropterus_regulus	-39 56/259	-15 391521	878	586	242	3618	0 1936	1	5 16528
VC162705	Machaeropterus_regulus	20 4625	16 7010	000	680	242	2402	0,1040	1	9
XC103795	Machaeropterus_regulus	-39,4025	-10,/213	999	689	310	3402	0,1049	1	9,53288
XC82252	wacnaeropterus_regulus	-39,1834	-14,01	901	689	212	3402	0,1835	1	5,44959
XC26128	wacnaeropterus_regulus	-42,/167	-22,5001	8//	620	257	3402	0,1/34	1	5,76701
XC259112	Machaeropterus_striolatus	-76,457	-0,507	4996	896	4100	4221	0,3136	3	9,56632
XC66621	Machaeropterus_striolatus	-72,7148	-8,9826	5140	901	4239	4048	0,2891	3	10,3770 3
XC401550	Machaeropterus_striolatus	-70,1188	1,1317	4799	1023	3776	3962	0,2975	3	10,0840 3

XC308104	Machaeropterus_striolatus	-72,7148	-8,9826	4872	1048	3825	4091	0,3256	3	9,21375 9
XC251071	Machaeropterus_striolatus	-77,567	-0,833	5019	1072	3947	4048	0,2807	3	10,6875 7
XC170139	Machaeropterus_striolatus	-72,4933	-3,4696	5189	1048	4142	4780	0,3087	3	9,71817
XC170138	Machaeropterus_striolatus	-76,2834	-5,3167	5092	1169	3922	4350	0,2722	3	11,0213 1
XC22437	Machaeropterus_striolatus	-78,9637	-4,1139	5019	1827	3191	4780	0,2975	3	10,0840
XC251072	Machaeropterus_striolatus	-77,567	-0,833	5408	1778	3630	3876	0,2975	3	10,0840
XC249962	Machaeropterus_striolatus	-77,9	-2,55	5433	1121	4312	4565	0,2947	3	10,1798 4
XC248821	Machaeropterus_striolatus	-76,392	-0,524	5408	1169	4239	4177	0,2638	3	11,3722
XC66415	Machaeropterus_striolatus	-61,4026	4,6084	5871	999	4872	4953	0,3817	3	7,85957
XC525205	Neopelma_chrysocephalum	-72,423	0,2175	5134	655	4479	2799	1,4004	5	3,57040 8
XC272533	Neopelma_chrysocephalum	-55,19	5,45	4686	999	3686	3058	1,416	5	3,53107 3
XC270865	Neopelma_chrysocephalum	-73,4387	-3,9654	4548	792	3755	3187	1,2283	5	4,07066
XC41926	Neopelma_chrysocephalum	-73,2501	-3,8334	5202	551	4651	2929	1,4473	5	3,45470
XC524011	Neopelma_chrysocephalum	-72,9227	0,2702	5857	792	5065	3445	1,2517	5	3,99456 7
XC272535	Neopelma_chrysocephalum	-55,19	5,45	4479	792	3686	2756	1,3378	4	2,98998
XC113202	Neopelma_chrysocephalum	-70,2367	1,2598	4238	655	3583	3015	1,549	6	4 3,87346 7
XC28121	Neopelma_chrysocephalum	-73,2501	-3,8334	4065	551	3514	3187	1,283	4	3,11769
XC14450	Neopelma_chrysocephalum	-73,2501	-3,8334	5065	620	4444	2326	1,463	6	4,10116
XC5057	Neopelma_chrysocephalum	-60,0306	-2,5909	3583	586	2997	3101	1,0874	6	5,51774
XC188639	Neopelma_chrysocephalum	-60,008	-2,5844	5306	861	4444	2283	1,0718	4	9 3,73204
XC6033	Neopelma_chrysocephalum	-67,0606	1,9201	3686	792	2894	2455	1,3534	5	3,69439 9
XC556448	Neopelma_chrysocephalum	-59,90734	-2,01731	4203	792	3411	3144	1,2283	4	3,25653 3
XC470835	Neopelma_chrysolophum	-42,9866	-22,3691	3580	1246	2334	5297	0,9528	5	5,24769 1
XC337302	Neopelma_chrysolophum	-48,4181	-24,2759	3553	1140	2413	6281	0,8609	4	4,6463
XC295833	Neopelma_chrysolophum	-44,7334	-22,3667	2811	1485	1326	3000	1,5144	5	3,30163 8
XC688732	Neopelma_chrysolophum	-44,1226	-21,0695	3845	1432	2413	3141	1,1522	4	3,47162
XC351037	Neopelma_chrysolophum	-45,1329	-23,3248	4057	1289	2768	5625	1,3701	4	2,91949 5
XC279489	Neopelma_chrysolophum	-42,5869	-22,3459	4243	1158	3085	3516	1,4252	4	2,80662 4
XC270535	Neopelma_chrysolophum	-42,9326	-22,435	4110	1316	2794	3750	0,8714	3	3,44273 6
XC189514	Neopelma_chrysolophum	-43,6659	-20,1427	3818	1289	2529	3234	1,1129	4	3,59421 3
XC165556	Neopelma_chrysolophum	-48,4167	-24,2667	3633	1763	1870	3281	1,105	4	3,61991
XC164662	Neopelma_chrysolophum	-44,6334	-22,4334	3129	1184	1945	2859	1,1916	6	5,03524 7
XC120211	Neopelma_chrysolophum	-45,4964	-22,7008	4508	1263	3245	3516	1,4987	6	4,00347
XC15932	Neopelma_chrysolophum	-44,63	-22,38	3788	1631	2157	3047	2,6142	8	3,06021
XC1314	Neopelma_chrysolophum	-45,8667	-23,6334	4012	1421	2591	5578	0,8819	3	3,40174 6
XC621733	Neopelma_chrysolophum	-44,3751	-22,7922	3488	1131	2357	2484	1,3412	4	2,98240 4
XC556443	Neopelma_chrysolophum	-48,4072	-24,2601	3600	1289	2311	3188	1,6824	4	2,37755 6
XC344492	Neopelma_chrysolophum	-45,1648	-23,3178	3712	1210	2502	2906	2,0919	4	1,91213 7
XC118508	Neopelma_chrysolophum	-45,1566	-23,3309	3938	1789	2149	3516	1,3281	4	3,01182 1
XC82303	Neopelma_chrysolophum	-48,3834	-24,2667	4612	1263	3349	2906	1,5748	4	2,54000
XC351059	Neopelma_chrysolophum	-45,1329	-23,3248	3862	1947	1915	2719	1,357	5	3,68459 8

XC435513	Neopelma_chrysolophum	-48,4073	-24,2601	3488	1316	2172	2578	0,8845	5	5,65291 1
XC34596	Neopelma_chrysolophum	-44,6	-22,3	3825	1631	2194	4031	1,231	3	2,43704
XC593317	Neopelma_pallescens	-46,9925	-18,9439	3376	517	2860	2842	0,9188	4	4,35350
XC441805	Neopelma_pallescens	-53,0046	-17,739	3583	345	3239	2541	0,909	4	4,40044
XC255993	Neopelma_pallescens	-49,562	-18,8758	3549	792	2756	2713	0,9351	4	4,27761 7
XC171179	Neopelma_pallescens	-58,8885	-15,2102	3893	207	3686	2369	1,0013	4	3,99480 7
XC4685	Neopelma_pallescens	-39,8534	-7,2501	3790	310	3480	2239	0,8764	3	3,42309 4
XC299069	Neopelma_pallescens	-52,8782	-20,442	3342	724	2618	2584	0,7233	3	4,14765
XC268551	Neopelma_pallescens	-36,4083	-9,2326	2963	792	2171	2326	0,6646	3	4,51399 3
XC118872	Neopelma_pallescens	-50,0151	-9,9826	2997	551	2446	2412	0,922	3	3,25379
XC11580	Neopelma_pallescens	-39,5834	-7,2501	3170	724	2446	2498	0,8373	3	3,58294
XC13387	Neopelma_pallescens	-34,9171	-7,8521	3066	724	2343	2239	0,9057	3	3,31235
XC9547	Neopelma_pallescens	-56,7501	-10,7501	3445	482	2963	1852	0,8341	3	3,59669 1
XC606099	Neopelma_sulphureiventer	-62,0084	-13,3807	3412	600	2812	2531	0,5461	2	3,66233
XC30498	Neopelma_sulphureiventer	-65,9167	-10,8709	3638	675	2962	2953	0,6003	2	3,33166 7
XC446	Neopelma_sulphureiventer	-65,974	-10,933	4312	675	3638	2719	0,5687	2	, 3,51679 3
XC602776	Neopelma_sulphureiventer	-61,0984	-13,493	3038	525	2512	2672	0,5032	2	3,97456 3
XC537849	Neopelma_sulphureiventer	-67,8809	-9,9491	4012	900	3112	2859	0,4423	2	4,52181
XC431925	Neopelma_sulphureiventer	-68,2054	-9,9963	3112	638	2475	2672	0,5664	2	3,53107
XC306528	Neopelma_sulphureiventer	-73,9445	-5,4107	3938	562	3375	2484	0,51	2	3,92156
XC226677	Neopelma_sulphureiventer	-76,426	-6,666	3150	600	2550	984	0,5168	2	3,86996
XC151880	Neopelma_sulphureiventer	-68,3446	-9,9147	3000	825	2175	2484	0,4446	2	4,49842
XC87245	Neopelma_sulphureiventer	-72,9	-4,6	4088	638	3450	2766	0,5258	2	3,80372
XC39786	Neopelma_sulphureiventer	-69,6759	-12,0478	4762	562	4200	2531	0,6048	2	3,30687
XC38966	Neopelma_sulphureiventer	-76,4181	-6,7281	2812	675	2138	2438	0,4784	2	4,18060
XC306852	Neopelma_sulphureiventer	-74,8154	-6,4803	4425	638	3788	1125	0,6138	2	3,25839
XC91676	Neopelma_sulphureiventer	-69,519	-11,476	2775	675	2100	1969	0,4626	2	4,32339
XC417790	Pipra_aureola	-58,9924	-3,2279	2280	1326	954	3750	0,5478	1	1,82548 4
XC387598	Pipra_aureola	-52,2632	4,8831	2519	1432	1087	3797	0,4658	1	2,14684 4
XC272421	Pipra_aureola	-55,13	5,78	2652	1352	1300	4359	0,4248	1	2,35404 9
XC213883	Pipra_aureola	-53,8918	5,7286	2678	1299	1379	3516	0,4621	1	2,16403 4
XC202219	Pipra_aureola	-62,9422	9,8915	2705	1246	1459	3281	0,4658	1	2,14684 4
XC246964	Pipra_aureola	-63,1796	10,5308	2731	1432	1299	4500	0,4583	1	2,18197 7
XC228204	Pipra_aureola	-63	10,5	2811	1405	1406	3750	0,4062	1	2,46184 1
XC228201	Pipra_aureola	-62,917	9,917	2837	1352	1485	4312	0,3764	1	2,65674 8
XC228200	Pipra_aureola	-62,17	9,917	2917	1405	1512	4125	0,4285	1	2,33372 2
XC42950	Pipra_aureola	-63,1	10,5	2917	1591	1326	3516	0,436	1	2,29357 8
XC7664	Pipra_aureola	-54,1131	-2,0375	2943	1352	1591	3656	0,4956	1	2,01775 6
XC450514	Pipra_aureola	-52,4577	2,214192	2943	1458	1485	3703	0,3689	1	2,71076 2
XC307920	Pipra_aureola	-51,0215	0,2143	3023	1379	1644	3797	0,4174	1	2,39578 3
XC743985	Pipra_fasciicauda	-49,1572	-16,5456	2680	1240	1440	2799	0,3533	1	2,83045 6

X724442 Ppr_fracticoude 496,60 160.58 215 126 219 0.400 1 23331 XC55543 Ppr_fracticoude 49,200 166,001 214 172 86.1 230 0.205 1 1.3728 XC51544 Ppr_fracticoude 474,105 6.331 235 1371 127 86.1 230 0.343 1 2.3515 XC41216 Ppr_fracticoude 434,110 2.5566 2.63 1371 133 361 0.348 1 2.3735 XC42136 Ppr_fracticoude 3.839443 4.26683 2.01 130 2.37 0.331 1 2.3735 XC42136 Ppr_fracticoude 5.137477 2.888 2.51 120 125 2.73 0.378 1 0.328 1 0.328 1 0.328 0.318 1 0.328 1 0.328 1 0.328 1 0.328 1 0.328 1 0.328 1 0.328 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>											
X650430 Phys. forcincuolo -04.280 -156.003 284 173 61.0 2200 0.2351 1 0.2378 X615548 Phys. fosciccuolo -04.048 -15.048 2758 178 178 129 0.353 1 2.2303 XC03562 Phys. fosciccuolo -04.047 2.256.07 101 134 140 2.75 0.337 0.13 0.348 1 0.2375 XC03767 Phys. fosciccuolo -38.934243 -4.0683 200 120 133 0.347 0.337 0.1 2.23756 XC0376 Phys. fosciccuolo -38.934243 -2.6663 200 120 213 0.337 1 2.23756 XC0376 Phys. fosciccuolo -38.934243 -2.6663 210 120 220 0.337 1 2.23756 XC0376 Phys. fosciccuolo -3.51679877 -4.238 230 210 210 230 230 210 230 230 230 230 230	XC73444	2 Pipra_fasciicauda	-49,604	-16,0538	2636	1275	1361	2929	0,3409	1	2,93341 2
XE615548 Pine fascicuude -90,4483 -16,941 778 17	XC65043	80 Pipra_fasciicauda	-49,2802	-16,6003	2584	1723	861	3230	0,2965	1	3,37268 1
XC639802 Pipen_facticuado -47,108 -63,761 242 178 446 272 0,359 1 2,8010 XC471244 Pipen_facticuado -34,1197 125,2144 2001 134 125 339 0,320 1 0,3777 XC47217 Pipen_facticuado -38,31424 -4,26836 200 105 135 0,31 0,332 1 0,2037 XC47217 Pipen_facticuado -38,31424 -4,26836 200 105 135 213 0,337 1 2,2537 XC47317 Pipen_facticuado -38,3127 -23,85387 215 126 1275 0,317 1 1,26,327 XC602876 Pipen_facticuado -36,1237 -4,2344 2507 1275 275 0,178 1 1,2779 XC632876 Pipen_facticuado -36,1237 -4,2344 2507 128 0,337 1 1,2779 XC632876 Pipen_facticuado -36,139 1648 2617 133 039 0,337 1 1 2,2679 XC433973 <	XC61554	48 Pipra_fasciicauda	-50,4483	-16,9481	2756	1378	1378	2929	0,3533	1	2,83045 6
XCA47134 Pyrra fractikauda -54,4167 -25,6667 2653 1378 1275 4931 0,348 1 2,8735 XCA22376 Pyrra fractikauda -38,934/43 -4,266836 2001 1121 1344 257 359 0,249 1 2,3735 XCA27816 Pyrra fractikauda -38,934/43 -4,266836 2001 1206 1395 273 0,332 1 2,3837 XC13970 Pyrra fractikauda -31,6797 -22,3858 2501 1275 1275 0,3178 1 3,0342 1 1,02727 XC19478 Pyrra fractikauda -31,6797 -23,8583 2501 1275 1275 0,3178 1 1,03727 XC47313 Pyrra fractikauda -55,124 -15,4774 2601 1206 1395 2131 0,318 1 2,0175 XC55918 Pyrra fractikauda -51,5195 18,4874 463 1171 142 2492 0,316 1 3,0165 XC47337 Pyrra fractikauda -51,5195 148,472 2100 144 466 <td>XC49360</td> <td>)2 Pipra_fasciicauda</td> <td>-47,1085</td> <td>-6,3761</td> <td>2842</td> <td>1378</td> <td>1464</td> <td>2972</td> <td>0,3569</td> <td>1</td> <td>2,80190</td>	XC49360)2 Pipra_fasciicauda	-47,1085	-6,3761	2842	1378	1464	2972	0,3569	1	2,80190
XA23276 Pyrag fascikaudo 51,1947 15,2144 2001 1344 127 359 0,3249 1 0,0787 XA127817 Pinag fascikaudo -38,934443 -4,266836 200 112 1534 366 0,484 1 2,3858 XC133670 Pinag fascikaudo -38,93443 -24,86858 2567 121 136 739 0,377 1 3,0289 XC133670 Pinag fascikaudo -51,6796 -24,868587 2515 125 1275 0,739 0,385 1 2,0857 XC1738 Pinag fascikaudo -55,6124 15,4774 2001 120 135 0,385 1 2,0755 XC555918 Pinag fascikaudo -55,6124 15,4774 2001 120 129 0,316 1 2,8567 XC445367 Pinag fascikaudo -55,6124 14,877 2001 120 129 0,315 1 2,0463 XC447381 Pinag fascikaudo -55,943 9,599 280 127 133 729 0,317 1 2,0463 1	XC44719	94 Pipra_fasciicauda	-54,4167	-25,6667	2653	1378	1275	4091	0,348	1	2,87356
K1227817 Pprof_focclicuado -18,934243 -4,26686 P001 120 135 Z13 0,61 0,48 1 2,8735 K1237816 Pprof_focclicuado -38,93424 -4,26686 P001 1206 1395 Z13 0,327 1 0,2020 K133870 Pprof_focclicuado -38,91474 -4,26686 P001 1206 1275 273 0,337 1 2,5837 K147731 Pprof_focclicuado -38,9167 -4,233 2567 1271 1276 273 0,3178 1 2,60752 KC47731 Pprof_focclicuado -55,6143 -15,4774 2611 1206 1201 2323 0,438 1 2,6735 KC453673 Pprof_focclicuado -55,9443 9,599 208 1275 133 709 331 1 3,6602 KC453673 Pprof_focclicuado -36,94243 9,599 208 1275 133 0,429 1 2,6735 KC44537 Pprof_focclicuado -70,1001 -12,592 2756 130 140 3661 0,33	XC43237	76 Pipra_fasciicauda	-51,1947	-15,2144	2601	1344	1257	3359	0,3249	1	3,07787
XC27816 Aprof_fockloada -38,934243 -4,26683 2001 1206 1395 2713 0,312 1 3,0128 XC13670 Aprof_fockloada -51,0797 -23,858 257 1717 1396 2799 0,37 1 2,5337 XC109478 Aprof_fockloada -51,0796 -23,85837 2515 1240 1275 2756 0,3178 1 3,1463 XC60287 Aprof_fockloada -70,4738 -4,858 1210 1206 1387 0,355 1 1,79375 XC535176 Aprof_fockloada -70,4738 -9,4859 2601 1206 1341 360 0,321 1 1,79375 XC445367 Aprof_fockloada -51,5195 1-8,4874 2463 171 1292 2929 0,316 1 2,0756 XC445367 Aprof_fockloada -55,944 9,559 206 1340 3623 1 2,0762 XC42826 Aprof_fockloada -70,1001 -12,5692 755 1306 1344 267 3,234 1 2,8787	XC42781	.7 Pipra_fasciicauda	-38,934243	-4,266836	2705	1171	1534	3661	0,348	1	2,87356 3
XC138670 Mprog.frac.ikc.oudu -51.6779 -23.8858 2567 1171 1396 2799 0,387 1 2.53.879 XC109478 Mprog.frac.ikc.oudu -3.89.167 -2.88.8537 2515 1240 1275 273 0,379 1 2.62.87 XC4773 Mprog.frac.ikc.oudu -55.6124 -15.4774 2601 1006 1395 2713 0,3835 1 2.67575 XC555918 Mprog.frac.ikc.oudu -50.2968 -6.1802 2567 1240 1327 3618 0,348 1 2.87555 XC453673 Mprog.frac.ikc.oudu -51.5195 18.8474 2463 1171 122 2929 0,316 1 2.87495 XC472544 Mprog.frac.ikc.oudu -51.5195 1.84874 2463 1206 1344 364 0.3231 1 2.00762 XC47254 Mprog.frac.ikc.oudu -50.9434 -9.5992 1206 1344 105 2.0324 1 2.54892 XC47254 Mprog.frac.ikc.oudu -50.151 -9.452 7279 1303 1430 2842 <td>XC42781</td> <td>16 Pipra_fasciicauda</td> <td>-38,934243</td> <td>-4,266836</td> <td>2601</td> <td>1206</td> <td>1395</td> <td>2713</td> <td>0,332</td> <td>1</td> <td>3,01204 8</td>	XC42781	16 Pipra_fasciicauda	-38,934243	-4,266836	2601	1206	1395	2713	0,332	1	3,01204 8
K109478 Ppra_facticauda 23,88537 2515 1240 1275 2713 0,3799 1 2,62373 KC773 Ppra_facticauda -38,9167 -4,2334 250 1275 1275 275 0,318 1 3,1663 KC602876 Ppra_facticauda -55,6124 -15,4774 2601 1206 1397 0,318 1 2,8755 KC555918 Ppra_facticauda -50,2568 6.1802 2567 120 1327 61.8 0,348 1 2,8755 KC435673 Ppra_facticauda -55,9443 -4,2669 2066 1344 1661 0,321 1 2,6649 KC43781 Ppra_facticauda -55,9443 -4,2669 2056 150 0,31 1 2,6449 KC44941 Ppra_facticauda -70,103 120 120 0,342 1 2,6449 KC44941 Ppra_facticauda -70,103 130 140 0,342 1 2,54482 KC404914 <td< td=""><td>XC13367</td><td>10 Pipra_fasciicauda</td><td>-51,6797</td><td>-23,8858</td><td>2567</td><td>1171</td><td>1396</td><td>2799</td><td>0,387</td><td>1</td><td>2,58397 9</td></td<>	XC13367	10 Pipra_fasciicauda	-51,6797	-23,8858	2567	1171	1396	2799	0,387	1	2,58397 9
XC4773 Pipra_faxciicauda 38,957 4,2334 2550 1275 1276 0,3178 1 3,14683 XC602876 Pipra_faxciicauda -55,6124 -15,4774 2601 1206 1395 2713 0,3835 1 2,60756 XC555018 Pipra_faxciicauda -70,4738 -9,4859 2618 1171 1447 3187 0,5575 1 1 7,7972 XC53176 Pipra_fasciicauda -50,2568 -6,1802 2567 1200 1327 5138 0,348 1 2,8756 XC435673 Pipra_fasciicauda -55,943 -9,599 2808 1275 134 660 0,3211 1 2,0764 XC42825 Pipra_fasciicauda -50,0125 -9,45 2739 1309 140 2,822 0,324 1 2,0764 XC128285 Pipra_fasciicauda -50,0125 -3,847 141 1273 7323 143 12,8474 XC128285 Pipra_fasciicauda -56,912	XC10947	78 Pipra_fasciicauda	-	-23,885837	2515	1240	1275	2713	0,3799	1	2,63227
XK502876 Pipra_foscilcauda -55,6124 -15,4774 2601 1206 1395 2713 0,3835 1 2,6075 XK555918 Pipra_foscilcauda -70,4738 9,4859 2618 1171 1447 3187 0,5575 1 1,79372 XK53573 Pipra_foscilcauda -50,2968 -6,1802 2567 1240 1327 9618 0,348 1 2,87356 XK453673 Pipra_foscilcauda -51,5195 18,4874 2463 1171 1292 2929 0,315 1 3,16455 XK44537 Pipra_foscilcauda -55,9443 -9,5999 208 1205 133 2799 0,3711 1 2,66469 XK44537 Pipra_foscilcauda -55,99 -9,45 2739 1309 1420 2,842 1 2,0762 XK22826 Pipra_foscilcauda -55,91 -9,45 2739 1309 1434 1507 273 0,432 1 2,3764 XK122093 Pipra_foscilcauda -50,051 -9,945 2739 1309 1344 0480	XC4773	Pipra_fasciicauda	-38,9167	-4,2334	2550	1275	1275	2756	0,3178	1	3,14663
XC55918 Pipra fascikauda -70,4738 9,4859 2618 1171 1447 3187 0,5575 1 1,7377 XC531176 Pipra fascikauda -50,2968 -6,1802 2567 1240 1327 3618 0,348 1 2,87356 XC453673 Pipra fascikauda -51,5195 -18,4874 2463 1171 1292 2929 0,316 1 3,16455 XC445377 Pipra fascikauda -55,9443 -9,5999 2808 1275 1533 2799 0,3711 1 2,69469 XC427814 Pipra fascikauda -70,1001 12,5692 2756 1206 1344 3661 0,3231 1 2,0962 XC228226 Pipra fascikauda -50,7125 -3,847 2911 1344 1480 0,448 1 2,3943 XC12089 Pipra fascikauda -50,0151 -9,922 653 1309 1344 4048 0,448 1 2,37642 XC12089 Pipra fascikauda -56,932 -9,581 1739 1207 1464 3704 0,4228 <	XC60287	76 Pipra_fasciicauda	-55,6124	-15,4774	2601	1206	1395	2713	0,3835	1	2,60756
XCS31176 Pipra fascikauda -50.2968 -6.1802 2567 1240 1327 3618 0,348 1 2,87353 XC435673 Pipra fascikauda -51,5195 -18,4874 2463 1171 1292 2929 0,316 1 3,14455 XC445377 Pipra fascikauda -55,9443 -4,266836 2550 1206 1344 361 0,2311 1 2,69489 XC427814 Pipra fascikauda -70,1001 -12,5692 2756 1206 1344 3661 0,231 1 2,0702 XC228226 Pipra fascikauda -70,1001 -12,5692 2756 1301 144 1567 272 0,3249 1 2,07082 XC228226 Pipra fascikauda -50,7125 -3,477 2601 1344 1468 0,4488 1 2,8587 XC123033 Pipra fascikauda -50,0151 -9,9826 2653 1309 1344 0,408 1 2,8787 XC183767 Pipra fascikauda -55,932 -9,5981 2739 1275 146 3704 0,4208	XC55591	8 Pipra_fasciicauda	-70,4738	-9,4859	2618	1171	1447	3187	0,5575	1	1,79372
XC453673 Pipra_fasciicauda -51,5195 -18,4874 2463 1171 1292 2929 0,316 1 3,1645 XC445377 Pipra_fasciicauda -38,934243 -4,266836 2550 1206 1344 3661 0.3231 1 3,0651 XC404914 Pipra_fasciicauda -70,1001 -12,5692 2766 1206 1550 3273 0,4829 1 2,56842 XC228226 Pipra_fasciicauda -50,7125 -3,447 2911 1344 1567 2972 0,3249 1 2,56842 XC123093 Pipra_fasciicauda -50,7125 -3,447 2911 1344 1408 0,3498 1 2,58842 XC13093 Pipra_fasciicauda -50,0151 -9,9826 2653 1309 1344 4048 0,3498 1 2,3876 XC138767 Pipra_fasciicauda -55,992 -9,5981 2739 1433 878 3144 0,488 0,3196 1 2,37642 XC18767 Pipra_fasciicauda -55,597 -27,2532 2653 1444 1309 <td< td=""><td>XC53117</td><td>76 Pipra_fasciicauda</td><td>-50,2968</td><td>-6,1802</td><td>2567</td><td>1240</td><td>1327</td><td>3618</td><td>0,348</td><td>1</td><td>2,87356</td></td<>	XC53117	76 Pipra_fasciicauda	-50,2968	-6,1802	2567	1240	1327	3618	0,348	1	2,87356
XC444537 Pipra_fasciicauda -55,9443 -9,599 2808 1275 1533 2799 0,3711 1 2,66446 XC427814 Pipra_fasciicauda -38,934243 -42,66836 2550 1206 1344 3661 0,3231 1 3,0950 XC404914 Pipra_fasciicauda -70,1001 -12,5692 2756 1206 1550 3273 0,4829 1 2,67482 XC22826 Pipra_fasciicauda -55,99 -9,45 2739 1309 1430 2842 0,3924 1 2,50842 XC12895 Pipra_fasciicauda -50,715 -3,847 2911 1344 1567 2772 0,3349 1 2,80870 XC13080 Pipra_fasciicauda -50,0151 -9,9826 2653 1309 1344 4048 0,3498 1 2,80870 XC61714 Pipra_fasciicauda -55,932 -9,5981 2739 1433 878 3144 0,3356 1 2,81870 XC61714 Pipra_fasciicauda -56,937 -27,2532 2653 1444 1309 3488 </td <td>XC45367</td> <td>73 Pipra_fasciicauda</td> <td>-51,5195</td> <td>-18,4874</td> <td>2463</td> <td>1171</td> <td>1292</td> <td>2929</td> <td>0,316</td> <td>1</td> <td>3,16455</td>	XC45367	73 Pipra_fasciicauda	-51,5195	-18,4874	2463	1171	1292	2929	0,316	1	3,16455
XC427814 Pipra_fasciicauda -38,934243 -4,266836 2550 1206 1344 3661 0,3231 1 3,09501 XC404914 Pipra_fasciicauda -70,1001 -12,5692 2756 1206 1550 3273 0,4829 1 2,07082 XC228226 Pipra_fasciicauda -55,9 -9,45 2739 1309 1430 2842 0,3924 1 2,54842 XC12985 Pipra_fasciicauda -50,7125 -3,447 2911 1344 1567 2972 0,3432 1 2,3040 XC118876 Pipra_fasciicauda -50,0151 -9,9826 2653 1309 1344 4048 0,3498 1 2,8787 XC50294 Pipra_fasciicauda -55,952 -9,5981 2739 1275 1464 3704 0,4208 1 2,37642 XC61714 Pipra_fasciicauda -64,947 -14,706 2291 1413 878 3144 0,3586 1 2,7882 XC137867 Pipra_fasciicauda -64,947 -14,706 2326 1068 1255 0,429 </td <td>XC44453</td> <td>87 Pipra_fasciicauda</td> <td>-55,9443</td> <td>-9,5999</td> <td>2808</td> <td>1275</td> <td>1533</td> <td>2799</td> <td>0,3711</td> <td>1</td> <td>2,69469</td>	XC44453	87 Pipra_fasciicauda	-55,9443	-9,5999	2808	1275	1533	2799	0,3711	1	2,69469
XC404914 Pipra_fasciicauda -70,1001 +12,5692 275 1206 1550 3273 0,4829 1 2,7782 XC228226 Pipra_fasciicauda -55,9 9,451 2391 1309 1430 2842 0,3924 1 2,54842 XC12895 Pipra_fasciicauda -50,7125 -3,847 2911 1344 1567 272 0,3239 1 2,30840 XC118876 Pipra_fasciicauda -50,0151 -9,9826 2653 1309 1344 4048 0,3498 1 2,35877 XC118876 Pipra_fasciicauda -55,932 -9,5981 2739 1275 1464 3704 0,4208 1 2,37642 XC36200 Pipra_fasciicauda -54,0724 -25,589 2618 1309 1309 3790 0,3515 1 2,48485 XC706280 Pipra_fasciicauda -54,0724 -27,532 2653 1344 1039 3488 0,316 1 3,128911 1 XC1999	XC42781	4 Pipra_fasciicauda	-38,934243	-4,266836	2550	1206	1344	3661	0,3231	1	1 3,09501
XC228226 Pipra_fasciicauda -55.9 9.48 Z139 1430 2842 0.3924 1 2.54842 XC212955 Pipra_fasciicauda -50.7125 -3.847 2911 1344 1567 2972 0.3249 1 3.07787 XC123093 Pipra_fasciicauda -71,3979 -12.7942 2601 1344 1257 3273 0.4332 1 2.30840 3 XC118876 Pipra_fasciicauda -55,932 -9.5981 2739 1275 1464 3704 0.4208 1 2.37642 XC32944 Pipra_fasciicauda -55,932 -9.5981 2739 1275 1464 3704 0.4208 1 2.37642 XC3766280 Pipra_fasciicauda -54,0724 -25,589 2618 1309 3488 0.3196 1 3.12811 XC199903 Pipra_fasciicauda -64,947 -14,706 2291 1413 878 3144 0.3586 1 2,78862 XC337867 Pipra_fasciicauda	XC40491	.4 Pipra_fasciicauda	-70,1001	-12,5692	2756	1206	1550	3273	0,4829	1	7 2,07082
XC212985 Pipra_fasciicauda -50,7125 -3,847 2911 1344 1567 2972 0,3249 1 3,07787 XC123093 Pipra_fasciicauda -71,3979 -12,7945 2601 1344 1257 3273 0,4332 1 2,30840 3 XC118876 Pipra_fasciicauda -50,0151 -9,9826 2653 1309 1344 4048 0,3498 1 2,37642 XC92944 Pipra_fasciicauda -55,932 -9,5981 2739 1275 1464 3704 0,4208 1 2,37642 XC61714 Pipra_fasciicauda -54,0724 -25,589 2618 1309 1309 3790 0,3515 1 2,48495 XC706280 Pipra_fasciicauda -64,947 -14,7306 2291 1413 878 3,144 0,3586 1 2,78262 XC37867 Pipra_fasciicauda -55,5697 -27,2532 2653 1344 1309 3488 0,3102 1 3,02846 XC50077 Pipra_fasciicauda -71,3667 -11,8667 2326 1068 12	XC22822	26 Pipra_fasciicauda	-55,9	-9,45	2739	1309	1430	2842	0,3924	1	2 2,54842
XC123093 Pipra_fasciicauda -71,3979 -12,7945 2601 1344 1257 3273 0,4332 1 2,30840 XC118876 Pipra_fasciicauda -50,0151 -9,9826 2653 1309 1344 4048 0,3498 1 2,375 XC92944 Pipra_fasciicauda -55,932 -9,5981 2739 1275 1464 3704 0,4208 1 2,37642 XC61714 Pipra_fasciicauda -54,0724 -25,589 2618 1309 1309 3790 0,3515 1 2,84495 XC706280 Pipra_fasciicauda -64,947 -14,7306 2291 1413 878 3144 0,3586 1 2,7862 XC337867 Pipra_fasciicauda -55,5697 -27,2532 2653 1344 1309 348 0,3196 1 3,0286 1 2,07862 XC50907 Pipra_fasciicauda -71,3667 -11,8667 2326 1068 1258 2455 0,4829 1 2,07862 XC50077 Pipra_fasciicauda -70,2948 -4,2889 2831 1458	XC21298	35 Pipra_fasciicauda	-50,7125	-3,847	2911	1344	1567	2972	0,3249	1	3,07787
XC118876 Pipra_fasciicauda -50,0151 -9,9826 2653 1309 1344 4048 0,3498 1 2,8597 XC32944 Pipra_fasciicauda -55,932 -9,5981 2739 1275 1464 3704 0,4208 1 2,37642 XC61714 Pipra_fasciicauda -54,0724 -25,589 2618 1309 1309 3790 0,3515 1 2,84495 XC61714 Pipra_fasciicauda -64,947 -14,7306 2291 1413 878 3144 0,3566 1 2,78862 XC337867 Pipra_fasciicauda -55,5697 -27,2532 2653 1344 1309 3488 0,3196 1 3,12891 XC199903 Pipra_fasciicauda -38,9167 -4,2334 2653 1206 1447 2713 0,302 1 3,02246 8 XC50907 Pipra_fasciicauda -71,3667 -11,8667 2326 1068 1258 2455 0,4829 1 2,07622 XC50077 Pipra_filicauda -70,2948 -4,2889 2831 1458 1373 <td>XC12309</td> <td>93 Pipra_fasciicauda</td> <td>-71,3979</td> <td>-12,7945</td> <td>2601</td> <td>1344</td> <td>1257</td> <td>3273</td> <td>0,4332</td> <td>1</td> <td>2,30840</td>	XC12309	93 Pipra_fasciicauda	-71,3979	-12,7945	2601	1344	1257	3273	0,4332	1	2,30840
XC92944 Pipra_fasciicauda -55,932 -9,5981 2739 1275 1464 3704 0,4208 1 2,3764 XC61714 Pipra_fasciicauda -54,0724 -25,589 2618 1309 1309 3790 0,3515 1 2,84495 XC706280 Pipra_fasciicauda -64,947 -14,7306 2291 1413 878 3144 0,3566 1 2,78662 2 XC337867 Pipra_fasciicauda -55,5697 -27,2532 2653 1344 1309 3488 0,3196 1 3,12891 1 XC199903 Pipra_fasciicauda -38,9167 -4,2334 2653 1206 1447 2713 0,3302 1 3,0286 1 2,07082 XC63901 Pipra_fasciicauda -71,3667 -11,8667 2326 1068 1258 2455 0,4829 1 2,87356 XC50077 Pipra_filicauda -70,2948 -4,2889 2831 1458 1373 3422 0,6725 1 1,4869 9 XC27860 Pipra_filicauda -72,2492	XC11887	6 Pipra_fasciicauda	-50,0151	-9,9826	2653	1309	1344	4048	0,3498	1	2,85877
XC61714 Pipra_fasciicauda -54,0724 -25,589 2618 1309 1309 3790 0,3515 1 2,84862 XC706280 Pipra_fasciicauda -64,947 -14,7306 2291 1413 878 3144 0,3586 1 2,78862 XC337867 Pipra_fasciicauda -55,5697 -27,2532 2653 1344 1309 3488 0,3196 1 3,12891 XC199903 Pipra_fasciicauda -38,9167 -4,2334 2653 1206 1447 2713 0,3302 1 3,02846 XC63901 Pipra_fasciicauda -71,3667 -11,8667 2326 1068 1258 2455 0,4829 1 2,07082 XC50077 Pipra_fasciicauda -70,2948 -42,289 2831 1458 1373 3422 0,6725 1 1,48698 XC575507 Pipra_filicauda -77,7314 -0,952 2775 1564 1211 3562 0,469 1 1,47297 1 1 4	XC92944	Pipra_fasciicauda	-55,932	-9,5981	2739	1275	1464	3704	0,4208	1	2,37642
XC706280 Pipra_fasciicauda -64,947 -14,7306 2291 1413 878 3144 0,3586 1 2,7862 XC337867 Pipra_fasciicauda -55,5697 -27,2532 2653 1344 1309 3488 0,3196 1 3,12831 XC199903 Pipra_fasciicauda -38,9167 -4,2334 2653 1206 1447 2713 0,3302 1 3,02846 XC63901 Pipra_fasciicauda -71,3667 -11,8667 2326 1068 1258 2455 0,4829 1 2,07082 XC50077 Pipra_fasciicauda -54,4145 -25,7167 2584 1275 1309 3575 0,348 1 2,87356 XC595507 Pipra_filicauda -70,2948 -4,2889 2831 1458 1373 3422 0,6725 1 1,4869 9 XC27860 Pipra_filicauda -77,7314 -0,952 2775 1564 1211 3562 0,459 1 1,47297 XC693769 Pipra_filicauda -67,9688 3,8627 3019 1962 1057	XC61714	Pipra_fasciicauda	-54,0724	-25,589	2618	1309	1309	3790	0,3515	1	2,84495
XC337867 Pipra_fasciicauda -55,5697 -27,2532 2653 1344 1309 3488 0,3196 1 3,12891 XC199903 Pipra_fasciicauda -38,9167 -4,2334 2653 1206 1447 2713 0,3302 1 3,02846 XC63901 Pipra_fasciicauda -71,3667 -11,8667 2326 1068 1258 2455 0,4829 1 2,07082 XC50077 Pipra_fasciicauda -54,4145 -25,7167 2584 1275 1309 3575 0,348 1 2,87356 XC595507 Pipra_filicauda -70,2948 -4,2889 2831 1458 1373 3422 0,6725 1 1,48698 XC77594 Pipra_filicauda -77,7314 -0,952 2775 1564 1211 3562 0,459 1 2,17864 XC6393769 Pipra_filicauda -70,2948 -4,2889 2719 1458 1261 3281 0,5992 1 1,47297 XC6393769 Pipra_filicauda -61,2446 1,4838 2475 1591 884 3562 <td>XC70628</td> <td>80 Pipra_fasciicauda</td> <td>-64,947</td> <td>-14,7306</td> <td>2291</td> <td>1413</td> <td>878</td> <td>3144</td> <td>0,3586</td> <td>1</td> <td>2,78862</td>	XC70628	80 Pipra_fasciicauda	-64,947	-14,7306	2291	1413	878	3144	0,3586	1	2,78862
XC199903 Pipra_fasciicauda -38,9167 -4,2334 2653 1206 1447 2713 0,3302 1 3,0284 8 XC63901 Pipra_fasciicauda -71,3667 -11,8667 2326 1068 1258 2455 0,4829 1 2,07082 XC50077 Pipra_fasciicauda -54,4145 -25,7167 2584 1275 1309 3575 0,348 1 2,87356 3 XC590507 Pipra_filicauda -70,2948 -4,2889 2831 1458 1373 3422 0,6725 1 1,4869 9 XC77594 Pipra_filicauda -77,7314 -0,952 2775 1564 1211 3562 0,459 1 2,17864 XC27860 Pipra_filicauda -72,2492 -3,6228 2756 1432 1324 3234 0,6789 1 1,47297 1 XC593769 Pipra_filicauda -67,9688 3,8627 3019 1962 1057 4406 0,2709 1 3,69139 XC138911 Pipra_filicauda -61,2446 1,4838 2475 <td>XC33786</td> <td>57 Pipra_fasciicauda</td> <td>-55,5697</td> <td>-27,2532</td> <td>2653</td> <td>1344</td> <td>1309</td> <td>3488</td> <td>0,3196</td> <td>1</td> <td>3,12891</td>	XC33786	57 Pipra_fasciicauda	-55,5697	-27,2532	2653	1344	1309	3488	0,3196	1	3,12891
XC63901 Pipra_fasciicauda -71,3667 -11,8667 2326 1068 1258 2455 0,4829 1 2,07082 XC50077 Pipra_fasciicauda -54,4145 -25,7167 2584 1275 1309 3575 0,348 1 2,87356 XC595507 Pipra_filicauda -70,2948 -4,2889 2831 1458 1373 3422 0,6725 1 1,48698 9 XC77594 Pipra_filicauda -77,7314 -0,952 2775 1564 1211 3562 0,459 1 2,17864 XC27860 Pipra_filicauda -72,2492 -3,6228 2756 1432 1324 3234 0,6789 1 1,47297 XC693769 Pipra_filicauda -67,9688 3,8627 3019 1962 1057 4406 0,2709 1 3,68139 9 XC138911 Pipra_filicauda -61,2446 1,4838 2475 1591 884 3562 0,4621 1 2,16403 XC138911 Pipra_filicauda -61,2446 1,4838 2475 1591 884	XC19990	03 Pipra_fasciicauda	-38,9167	-4,2334	2653	1206	1447	2713	0,3302	1	3,02846
XC50077 Pipra_fasciicauda -54,4145 -25,7167 2584 1275 1309 3575 0,348 1 2,87356 XC595507 Pipra_filicauda -70,2948 -4,2889 2831 1458 1373 3422 0,6725 1 1,46698 9 XC77594 Pipra_filicauda -77,7314 -0,952 2775 1564 1211 3562 0,459 1 2,17864 XC693769 Pipra_filicauda -67,9688 3,8627 3019 1962 1057 4406 0,2709 1 1,66918 2,16403 XC138911 Pipra_filicauda -61,2446 1,4838 2475 1591 884 3562 0,4621 1 2,16403 XC118469 Pipra_filicauda -67,2864 -5,4387 2925 1538 1387 3703 0,5514 1 1,81356 XC10516 Pipra_filicauda -76,2791 -0,4382 2794 1511 1283 4031 0,3251 1 3,875 XC10516 Pipra_filicauda -76,2791 -0,4383 2794 1511 1	XC63901	Pipra_fasciicauda	-71,3667	-11,8667	2326	1068	1258	2455	0,4829	1	2,07082
XC595507 Pipra_filicauda -70,2948 -4,2889 2831 1458 1373 3422 0,6725 1 1,4669 9 XC77594 Pipra_filicauda -77,7314 -0,952 2775 1564 1211 3562 0,459 1 2,17864 9 XC27860 Pipra_filicauda -77,2492 -3,6228 2756 1432 1324 3234 0,6789 1 1,47297 1 XC693769 Pipra_filicauda -67,9688 3,8627 3019 1962 1057 4406 0,2709 1 3,69139 9 XC138911 Pipra_filicauda -67,2948 -4,2889 2719 1458 1261 3281 0,5992 1 1,66889 2 XC138911 Pipra_filicauda -61,2446 1,4838 2475 1591 884 3562 0,4621 1 2,16403 4 XC118469 Pipra_filicauda -60,9374 -2,625 2400 1485 915 3375 0,5386 1 1,85666 5 XC88038 Pipra_filicauda -67,264 -5,4387 2925 1538 1387 3703	XC50077	Pipra_fasciicauda	-54,4145	-25,7167	2584	1275	1309	3575	0,348	1	2,87356
XC77594Pipra_filicauda-77,7314-0,95227751564121135620,45912,17864XC27860Pipra_filicauda-72,2492-3,622827561432132432340,678911,47297XC693769Pipra_filicauda-67,96883,862730191962105744060,270913,69139XC593931Pipra_filicauda-70,2948-4,288927191458126132810,599211,66889XC138911Pipra_filicauda-61,24461,48382475159188435620,462112,16403XC118469Pipra_filicauda-67,2864-5,438729251538138737030,551411,81356XC88038Pipra_filicauda-76,2791-0,438327941511128340310,325113,07597XC476026Pipra_filicauda-76,2791-0,438326621591107135620,462112,16403XC27905Pipra_filicauda-76,373-0,49826441618102636560,427112,34137	XC59550)7 Pipra_filicauda	-70,2948	-4,2889	2831	1458	1373	3422	0,6725	1	1,48698
XC27860Pipra filicauda-72,2492-3,622827561432132432340,678911,47297XC693769Pipra filicauda-67,96883,862730191962105744060,270913,69139YC593931Pipra filicauda-70,2948-4,288927191458126132810,599211,66889XC138911Pipra filicauda-61,24461,48382475159188435620,462112,16403XC118469Pipra filicauda-60,9374-2,6252400148591533750,538611,85166XC88038Pipra filicauda-67,2864-5,438729251538138737030,551411,81356XC10516Pipra filicauda-76,2791-0,438327941511128340310,325113,07597XC476026Pipra filicauda-76,2791-0,438326621591107135620,462112,16403XC259095Pipra filicauda-76,773-0,49826441618102636560,427112,34137	XC77594	Pipra_filicauda	-77,7314	-0,952	2775	1564	1211	3562	0,459	1	2,17864
XC693769Pipra filicauda-67,96883,862730191962105744060,270913,9139XC593931Pipra filicauda-70,2948-4,288927191458126132810,599211,66889XC138911Pipra filicauda-61,24461,48382475159188435620,462112,16403XC118469Pipra filicauda-60,9374-2,6252400148591533750,538611,85666XC88038Pipra filicauda-67,2864-5,438729251538138737030,551411,81356XC10516Pipra filicauda-76,1973-0,438227941511128340310,325113,07597XC479516Pipra filicauda-76,2791-0,438326621591107135620,462112,16403XC259095Pipra filicauda-76,373-0,49826441618102636560,427112,34137	XC27860) Pipra_filicauda	-72,2492	-3,6228	2756	1432	1324	3234	0,6789	1	9 1,47297
XC593931Pipra_filicauda-70,2948-4,288927191458126132810,599211,66822XC138911Pipra_filicauda-61,24461,48382475159188435620,462112,16403XC118469Pipra_filicauda-60,9374-2,6252400148591533750,538611,85666XC88038Pipra_filicauda-67,2864-5,438729251538138737030,551411,851366XC10516Pipra_filicauda-76,1973-0,434226441644100043120,414312,41371XC479516Pipra_filicauda-76,2791-0,438327941511128340310,325113,07597XC476026Pipra_filicauda-76,2791-0,438326621591107135620,462112,16403XC259095Pipra_filicauda-76,373-0,49826441618102636560,427112,34137	XC69376	59 Pipra_filicauda	-67,9688	3,8627	3019	1962	1057	4406	0,2709	1	3,69139
XC138911 Pipra_filicauda -61,2446 1,4838 2475 1591 884 3562 0,4621 1 2,1404 XC118469 Pipra_filicauda -60,9374 -2,625 2400 1485 915 3375 0,5386 1 1,85666 XC88038 Pipra_filicauda -67,2864 -5,4387 2925 1538 1387 3703 0,5514 1 1,81356 XC10516 Pipra_filicauda -76,1973 -0,4342 2644 1644 1000 4312 0,4143 1 2,41371 XC479516 Pipra_filicauda -76,2791 -0,4383 2794 1511 1283 4031 0,3251 1 3,07597 XC476026 Pipra_filicauda -76,2791 -0,4383 2662 1591 1071 3562 0,4621 1 2,16403 XC259095 Pipra_filicauda -76,373 -0,498 2644 1618 1026 3656 0,4271 1 2,34137	XC59393	31 Pipra_filicauda	-70,2948	-4,2889	2719	1458	1261	3281	0,5992	1	9 1,66889
XC118469 Pipra_filicauda -60,9374 -2,625 2400 1485 915 3375 0,5386 1 1,85666 XC88038 Pipra_filicauda -67,2864 -5,4387 2925 1538 1387 3703 0,5514 1 1,85666 5 XC10516 Pipra_filicauda -76,1973 -0,4342 2644 1644 1000 4312 0,4143 1 2,41371 XC479516 Pipra_filicauda -76,2791 -0,4383 2794 1511 1283 4031 0,3251 1 3,07597 XC476026 Pipra_filicauda -76,2791 -0,4383 2662 1591 1071 3562 0,4621 1 2,16403 XC259095 Pipra_filicauda -76,373 -0,498 2644 1618 1026 3656 0,4271 1 2,34137	XC13891	1 Pipra_filicauda	-61,2446	1,4838	2475	1591	884	3562	0,4621	1	2 2,16403
XC88038 Pipra_filicauda -67,2864 -5,4387 2925 1538 1387 3703 0,5514 1 1,81356 5 XC10516 Pipra_filicauda -76,1973 -0,4342 2644 1644 1000 4312 0,4143 1 2,41371 XC479516 Pipra_filicauda -76,2791 -0,4383 2794 1511 1283 4031 0,3251 1 3,07597 XC476026 Pipra_filicauda -76,2791 -0,4383 2662 1591 1071 3562 0,4621 1 2,16403 XC259095 Pipra_filicauda -76,373 -0,498 2644 1618 1026 3656 0,4271 1 2,34137	XC11846	59 Pipra_filicauda	-60,9374	-2,625	2400	1485	915	3375	0,5386	1	4 1,85666
XC10516 Pipra_filicauda -76,1973 -0,4342 2644 1644 1000 4312 0,4143 1 2,41371 XC479516 Pipra_filicauda -76,2791 -0,4383 2794 1511 1283 4031 0,3251 1 3,07597 XC476026 Pipra_filicauda -76,2791 -0,4383 2662 1591 1071 3562 0,4621 1 2,16403 XC259095 Pipra_filicauda -76,373 -0,498 2644 1618 1026 3656 0,4271 1 2,34137	XC88038	B Pipra_filicauda	-67,2864	-5,4387	2925	1538	1387	3703	0,5514	1	5 1,81356
XC479516 Pipra_filicauda -76,2791 -0,4383 2794 1511 1283 4031 0,3251 1 3,07597 XC476026 Pipra_filicauda -76,2791 -0,4383 2662 1591 1071 3562 0,4621 1 2,16403 XC259095 Pipra_filicauda -76,373 -0,498 2644 1618 1026 3656 0,4271 1 2,34137	XC10516	5 Pipra_filicauda	-76,1973	-0,4342	2644	1644	1000	4312	0,4143	1	5 2,41371
XC476026 Pipra_filicauda -76,2791 -0,4383 2662 1591 1071 3562 0,4621 1 2,16403 XC259095 Pipra_filicauda -76,373 -0,498 2644 1618 1026 3656 0,4271 1 2,34137	XC47951	.6 Pipra_filicauda	-76,2791	-0,4383	2794	1511	1283	4031	0,3251	1	3,07597
XC259095 Pipra_filicauda -76,373 -0,498 2644 1618 1026 3656 0,4271 1 2,34137	XC47602	26 Pipra_filicauda	-76,2791	-0,4383	2662	1591	1071	3562	0,4621	1	7 2,16403
	XC25909	95 Pipra_filicauda	-76,373	-0,498	2644	1618	1026	3656	0,4271	1	4 2,34137

XC259094	Pipra_filicauda	-76,373	-0,498	2662	1618	1044	3797	0,3825	1	2,61437
XC365319	Pipra_filicauda	-71,3681	5,3131	2644	1432	1212	3234	0,6852	1	9 1,45942
XC618864	Pseudopipra_pipra	-39,0933	-14,4791	5625	525	5100	2766	0,9264	2	8 2,15889
XC69153	Pseudopipra_pipra	-39,3	-15,2	5662	1162	4500	3422	0,7081	2	2,82446
XC494763	Pseudopipra_pipra	-39,0922	-15,2641	5512	1125	4388	2859	0,8397	2	2,38180
XC421302	Pseudopipra_pipra	-39,1395	-16,3458	6075	1500	4575	3750	0,7697	2	2,59841
XC524956	Pseudopipra_pipra	-39,1705	-16,362	4725	1275	3450	1781	0,8285	2	2,41400
XC419584	Pseudopipra_pipra	-39,2554	-16,4525	4875	1162	3712	3281	0,7781	2	2,57036
XC419429	Pseudopipra_pipra	-39,2554	-16,4525	4950	938	4012	3703	0,7893	2	2,53389
XC122414	Pseudopipra_pipra	-40,2739	-19,8189	4238	1425	2812	3188	0,7305	2	2,73785
XC525702	Tyranneutes_stolzmanni	-72,4438	0,2275	4169	1516	2653	2455	0,3166	2	6,31711
XC748472	Tyranneutes_stolzmanni	-55,987	-9,2456	4272	1309	2963	2670	0,2961	2	6,75447
XC730110	Tyranneutes_stolzmanni	-76,0414	-0,5489	3721	1516	2205	2283	0,2553	2	7,83392
XC674742	Tyranneutes_stolzmanni	-65,8466	-11,0474	4169	1585	2584	2885	0,2936	2	6,81198
XC556658	Tyranneutes_stolzmanni	-62,13487	-8,92439	4686	1516	3170	2670	0,3523	2	9 5,67698
XC456456	Tyranneutes_stolzmanni	-61,4465	3,3821	3997	1481	2515	2110	0,2808	2	7,12250
XC449178	Tyranneutes_stolzmanni	-77,0739	0,6513	5237	1481	3755	2670	0,2936	2	, 6,81198
XC428126	Tyranneutes_stolzmanni	-61,216846	-12,265252	4858	1378	3480	2455	0,3498	2	5,71755
XC346171	Tyranneutes_stolzmanni	-51,4556	-1,7375	3893	1757	2136	2670	0,3574	2	5,59597
XC308328	Tyranneutes_stolzmanni	-72,7148	-8,9826	4548	1413	3135	2584	0,3319	2	6,02591
XC296606	Tyranneutes_stolzmanni	-73,2867	-4,3025	4651	1447	3204	3144	0,3191	2	6,26762
XC259118	Tyranneutes_stolzmanni	-76,459	-0,472	3997	1481	2515	2369	0,291	2	ہ 6,87285
XC259117	Tyranneutes_stolzmanni	-76,041	-0,548	4582	1516	3066	3058	0,2936	2	6,81198
XC249175	Tyranneutes_stolzmanni	-76,461	-0,641	3893	1378	2515	2196	0,3012	2	6,64010
XC216623	Tyranneutes_stolzmanni	-77,8326	-1,7874	3411	1585	1826	2369	0,2885	2	6,93240
XC198317	Tyranneutes_stolzmanni	-55,9	-9,6	4686	1413	3273	2799	0,3268	2	6,11995
XC198315	Tyranneutes_stolzmanni	-70,2948	-4,2889	4238	1378	2860	2627	0,3344	2	5,98086
XC124106	Tyranneutes_stolzmanni	-66,6757	-16,0582	3514	1516	1998	2756	0,3166	2	6,31711
XC121167	Tyranneutes_stolzmanni	-56,7554	-5,1894	4410	1792	2618	3230	0,3012	2	9 6,64010
XC120704	Tyranneutes_stolzmanni	-70,228	1,227	4169	1723	2446	2799	0,263	2	7,60456
XC77013	Tyranneutes_stolzmanni	-76,3978	-0,6742	4100	1344	2756	2455	0,2732	2	3 7,32064
XC60776	Tyranneutes_stolzmanni	-76,1262	-0,3917	3618	1447	2171	3058	0,3217	2	4 6,21697
XC17283	Tyranneutes_stolzmanni	-76,3978	-0,6742	4376	1550	2825	2584	0,2808	2	2 7,12250
XC538	Tyranneutes_stolzmanni	-69,294548	-12,838554	4410	1929	2481	2842	0,3038	2	7 6,58327
XC746000	Tyranneutes_stolzmanni	-76,1465	-0,0114	3686	1688	1998	2326	0,2936	2	8 6,81198
XC745488	Tyranneutes_stolzmanni	-69,9369	-4,0959	3549	1516	2033	2455	0,2885	2	9 6,93240
XC536777	Tyranneutes_stolzmanni	-76,3432	1,0447	3686	1516	2171	2239	0,2757	2	9 7,25426
XC524127	Tyranneutes_stolzmanni	-72,9227	0,2702	3997	1688	2308	2584	0,3012	2	2 6,64010
XC524126	Tyranneutes_stolzmanni	-72,4513	0,07416	4238	1688	2550	3058	0,2757	2	6 7,25426
XC519360	Tyranneutes_stolzmanni	-72,623	0,1797	4238	1378	2860	2584	0,2834	2	2 7,05716
XC510979	Tyranneutes_stolzmanni	-46,8045	-3,8141	3135	1688	1447	2326	0,3906	2	3 5,12032 8

XC505036	Tyranneutes_stolzmanni	-60,1781	-3,2062	4100	1344	2756	2498	0,2936	2	6,81198 9
XC453555	Tyranneutes_stolzmanni	-70,0928	-12,5687	3997	1550	2446	2627	0,3242	2	6,16903 1
XC448158	Tyranneutes_stolzmanni	-77,0739	0,6513	3755	1688	2067	2670	0,2936	2	6,81198
XC431287	Tyranneutes_stolzmanni	-70,02948	-4,2889	4169	1309	2860	2455	0,3523	2	5,67698
XC403448	Tyranneutes_stolzmanni	-55,7072	-11,7505	3480	1860	1619	2627	0,3753	2	5,32907
XC377361	Tyranneutes_stolzmanni	-57,7467	-15,1789	2929	1792	1137	2283	0,4723	2	4,23459 7
XC338691	Tyranneutes_stolzmanni	-70,2948	-4,2889	4100	1723	2377	2842	0,2961	2	6,75447
XC303465	Tyranneutes_stolzmanni	-62,2446	1,4787	3893	1757	2136	2627	0,291	2	6,87285
XC249996	Tyranneutes_stolzmanni	-77,9	-2,55	4755	1964	2791	3101	0,3012	2	6,64010
XC503937	Tyranneutes_virescens	-58,9055	4,2454	3686	2274	1413	3531	0,5928	3	5,06072
XC272399	Tyranneutes_virescens	-56,78	4,85	3411	2314	1096	2799	0,6019	3	4,98421
XC203242	Tyranneutes_virescens	-61,3149	6,2854	3386	2144	1242	3273	0,6155	3	4,87408
XC44177	Tyranneutes_virescens	-52,7	4	3947	2046	1900	3833	0,5428	3	5,52689
XC3439	Tyranneutes_virescens	-61,6714	8,1101	3265	2144	1121	3144	0,5973	3	5,02260
XC450516	Tyranneutes_virescens	-52,3958	4,6294	3386	2363	1023	3273	0,6314	3	4,75134
XC386327	Tyranneutes_virescens	-60,0344	-2,0118	3776	2217	1559	3273	0,6655	3	4,50788
XC286612	Tyranneutes_virescens	-59,7523	-2,4512	3191	2095	1096	2756	0,6314	3	4,75134
XC272398	Tyranneutes_virescens	-56,78	4,85	3411	2266	1145	3273	0,6927	3	4,33087
XC199899	Tyranneutes_virescens	-60,0167	-2,2334	3191	2144	1048	3058	0,7268	3	4,12768
XC114302	Tyranneutes_virescens	-53,2088	3,6217	3606	2436	1169	3144	0,5451	3	5,50357
XC74902	Tyranneutes_virescens	-56,206	4,725	3435	2387	1048	3230	0,6723	3	4,46229
XC6170	Tyranneutes_virescens	-61,6714	8,1101	3484	2266	1218	3316	0,5724	3	5,24109
XC617235	Tyranneutes_virescens	-60,0318	-2,0351	3411	2095	1316	3273	0,6132	3	4,89236
XC441690	Tyranneutes_virescens	-59,8919	-2,4081	3313	2217	1096	3187	0,5565	3	5,39083
XC401393	Tyranneutes_virescens	-55,4179	4,6359	3338	2217	1121	3230	0,5724	3	5,24109
XC325808	Tyranneutes_virescens	-58,6862	-2,8107	3338	2095	1242	2799	0,6746	3	4,44708
XC188661	Tyranneutes_virescens	-59,9378	-2,9948	3654	2046	1608	3531	0,7336	3	4,08942 2
XC119316	Tyranneutes_virescens	-59,6667	-1,8097	3362	2217	1145	3058	0,7154	3	4,19345
XC46071	Tyranneutes_virescens	-58,7	4,7	3143	2290	853	2799	0,6587	3	4,55442
XC5462	Tyranneutes_virescens	-60,3998	-3,0151	3581	2071	1510	3402	0,5837	3	5,13962 7
XC247163	Xenopipo_uniformis	-61,4304	5,9507	6017	2802	3216	5728	1,0638	1	0,94002
XC221015	Xenopipo_uniformis	-61,4	5,67	5944	3240	2704	5556	1,0473	1	0,95483
XC20075	Xenopipo_uniformis	-61,3917	5,9656	5165	3118	2046	4651	0,9217	1	1,08495
XC513115	Xenopipo_uniformis	-60,6173	5,0524	6261	3265	2997	5556	0,5517	1	1,81257 9

Tabela de dados utilizada nas análises

Espécie	FMAX	FMIN	BAN	FDOM	DUR	NNOT	PACE	Beak.Length_Culmen		Beak.Width			Dicromatismo	Display.Complex
									Beak.Length_Nares		Beak.Depth	Mass		
Antilophia_bokermanni	3713,28	1541,46	2171,82	3158,2 0	0,892	7,11	7,98	11,9	6,8	4	5,2	19,8	NA	NA
Antilophia_galeata	3758,91	1542,66	2216,25	3206,2 5	0,916	6,90	7,55	13,7	6,8	4	4,4	21,48	14,05	NA
Ceratopipra_chloromeros	6900	1912	4987,67	5609,3	0,286	2	7,03	12,8	7,3	4	3,9	16,5	10,5	NA
Ceratopipra_cornuta	5681,17	1012,5	4668,67	4992,3	0,678	2,83	4,49	13,6	7,2	4,1	4,3	25,3	16,73	17
Ceratopipra_rubrocapilla	6294,95	1736,91	4558,05	4303,9	0,798	2	2,74	10,4	6	3,8	4,1	12	NA	NA
Chiroxiphia_boliviana	3297,49	1317,75	1979,74	2900,3	0,276	1	3,76	11,9	6	3,7	4	17,13	13,13	NA
Chiroxiphia_caudata	3039,93	1038,85	2001,08	2391,9	0,243	1	4,43	13,8	7,3	4	4,6	25,6	19,64	NA
Chiroxiphia_lanceolata	1960,21	1087,86	872,35	1707,7	0,596	2,15	3,67	12,2	6,6	4,1	4,2	18,5	16,89	21
Chiroxiphia_linearis	1934,37	1269,53	664,84	1699,2	0,715	2	2,83	11,7	6,4	4,2	4,5	17,44	15,08	NA
Chiroxiphia_napensis	2726,11	835,62	1890,49	2428,9	0,361	2	5,65	11,4	6,5	4,4	4,9	16,84	17,62	19
Chiroxiphia_pareola	2907,14	1026,79	1880,36	2319,2	0,111	1	9,54	11,4	6,5	4,4	4,9	16,84	17,62	19
Chiroxiphia_regina	2573,44	1066,41	1507,03	2162,1	0,395	2	5,13	11,4	6,5	4,4	4,9	16,84	17,62	19
Chloropipo_unicolor	3600,8	1398,6	2202,2	5107,6	0,322	1	3,27	13,6	6,7	3,7	3,6	15,5	7,38	NA
Corapipo_altera	8337,66	6573,66	1764	7734,7 3	0,241	1	4,23	9,7	5,6	3,5	3,6	11,7	NA	15
Corapipo_gutturalis	7731,28	3579,68	4151,60	7364,3	0,648	4,3	6,64	9,9	5,9	3,1	3,2	8,2	12,44	14
Corapipo_leucorrhoa	8362	1462	6900	7921	0,435	4	9,19	10,2	5,6	3,2	3,5	11,7	11,6	NA
Heterocercus_aurantiivertex	4828,6	2845,4	1983,3	4362,6	1,751	26,7	15,3 0	14,1	8,4	5	4,5	21,5	NA	NA
Heterocercus_flavivertex	6847,88	3042,75	3805,13	6076,1 3	2,525	3	1,31	14,7	9,4	4,4	4,3	21,3	5,49	NA
Heterocercus_linteatus	5296,5	1865,5	3431,25	4488,2	1,022	2	2,01	14,6	8,8	4,7	4,4	21,2	8,54	NA
llicura_militaris	7475,05	5316,48	2158,57	6526,5	1,270	5,63	4,43	9,4	5,2	2,8	3,1	12,7	13,83	NA
Lepidothrix_coeruleocapilla	1722,67	907,33	815,33	2885,3	0,356	2	5,63	10,4	5,6	3,4	3,1	9,7	11,99	NA
Lepidothrix_iris	2565,1	1301,2	1263,7	2141,9	0,273	2	7,40	11,2	6,9	4,6	4,2	8	4,28	NA
Lepidothrix_isidorei	2761,35	861,15	1900,25	2502,3	0,151	1	6,81	10,3	5,2	3,3	3,2	7,8	11,63	NA

Lepidothrix_nattereri	2673,32	1488,95	1184,11	2215,5 3	0,273	2	7,42	9,4	6,4	3,7	3,6	8,4	5,38	NA	
Lepidothrix_serena	2391,5	1511,89	879,67	2181,8 9	0,237	1	4,35	11,4	6,2	3,7	4,2	11,4	NA	NA	
Lepidothrix_suavissima	1345	833	512	1227,5	0,127	1	7,85	11	6,5	3,8	3,6	8,5	9,63		19
Lepidothrix_vilasboasi	2721,75	1515,75	1206	2271,7 5	0,313	2	6,45	10,6	6	3,9	3,7	8,4	NA	NA	
Machaeropterus_pyrocephalus	3668,75	3164,75	503,91	3407,4 7	0,251	1	4,09	10,1	5,6	3,5	3,1	9,5	10,36	NA	
Machaeropterus_regulus	993,8	725,8	268	3516,9 3	0,180	1	5,82	9,9	5,6	3,3	3,1	9,3	7,18	NA	
Machaeropterus_striolatus	5187,17	1170,92	4016,25	4320,9 2	0,302	3	10,0 2	9,7	5	3,4	3	9,3	NA	NA	
Masius_chrysopterus	2547,57	664,74	1882,84	1999,5 1	0,172	1	5,84	10,3	5,2	3,8	3,6	11,5	8,11	NA	
Neopelma_chrysocephalum	4619,38	726	3893	2898,8 5	1,317	4,92	3,76	14,6	9,4	4,9	4,1	15,5	1,96	NA	
Neopelma_chrysolophum	3791,05	1390,14	2400,90	3640,6 2	1,335	4,43	3,48	11,2	6,3	4,2	3,4	14,2	NA	NA	
Neopelma_pallescens	3379,45	560,73	2818,91	2419,5 5	0,866	3,36	3,90	14,2	8,6	4,6	4,7	18,2	4,06	NA	
Neopelma_sulphureiventer	3605,29	656,29	2949,07	2370,5	0,527	2	3,84	14,8	8,3	4,6	4	15,7	2,5	NA	
Pipra_aureola	2765,85	1386,85	1379	3850,9 2	0,443	1	2,28	12,9	7,3	3,9	3,9	16,1	15,69	NA	
Pipra_fasciicauda	2627,37	1281,67	1345,7	3171,1 7	0,368	1	2,77	14	7,3	4,1	4	15,9	15,94	NA	
Pipra_filicauda	2710,71	1564,43	1146,29	3652,6 4	0,495	1	2,17	12,4	7,6	4,3	4,1	15,4	15,44	NA	
Pseudopipra_pipra	5207,75	1139	4068,63	3093,7 5	0,796	2	2,53	12	6,6	4,4	4,1	11,1	6,57		14
Tyranneutes_stolzmanni	4082,8	1565	2517,65	2626	0,311	2	6,51	10,3	6,2	3,7	3,1	7,2	0,95	NA	
Tyranneutes_virescens	3443,57	2206,86	1236,62	3199,1 4	0,628	3	4,81	11,2	7,4	3,9	3,4	7,2	1,81	NA	
Xenopipo_uniformis	5846,75	3106,25	2740,75	5372,7	0,896	1	1,20	14,5	7,2	4,8	4,2	17,9	1,56	NA	

Valores de AICc dos modelos análisados

vec_resp	vec_exp	AICc_brown	AICc_lambda	AICc_delta
Fmin	exibição + bioclima	20,9408809029235	14,9395766100685	18,1328989957841
Fdom	exibição + bioclima	19,2460730495347	16,2912414320139	17,0435594731665
Fmax	exibição + bioclima	18,3626229201478	16,1979365312616	16,7127069585932
Fmax	exibição	13,2998490057016	11,94782924295	12,1287362001636
Ban	exibição + bioclima	26,9812273485346	24,8120286353411	25,2165622847908
Ban	exibição	20,0202320301047	17,9968228067303	18,2502893925334
Fdom	exibição	15,8786077284688	14,75322019197	14,7124086649717
Pace	bioclima	80,9254928013609	67,0435351162658	73,8567151930484
Pace	exibição + bioclima	22,7579450848768	17,9406974864058	20,2895710621193
Fmin	exibição	18,1738277867497	18,1734468388615	17,7203396347293
Dur	exibição + bioclima	27,8062617625059	25,6400206330913	26,7129295755736
Pace	bico + bioclima	82,8747307825417	64,263965503822	75,1475790737887
Ban	massa + bioclima	95,835019244228	83,7849667356435	85,2069103220257
Nnot	exibição + bioclima	38,9442287691627	33,8258246926796	36,3213542574345
Nnot	exibição	32,5274322394586	26,826814395606	29,432373078639
Fdom	massa + bioclima	27,2196451243392	27,2196451243392	26,2857915758004
Fmax	massa + bioclima	55,4088915568765	51,919991142301	47,6946255055521
Dur	exibição	23,572168982211	19,8142138972931	21,3193901976913
Nnot	massa + bioclima	251,798400728468	229,001634081609	244,518432314633
Pace	massa + bioclima	82,3480168556672	65,3116828832916	74,6556839427372
Nnot	bico + bioclima	251,721644692989	229,81080283758	244,590946715249
Dur	massa + bioclima	80,3783433923291	79,0985733650561	75,4021811263708
Dur	massa	78,3965916765172	76,760682815199	73,248690213297
Fmax	bico + bioclima	56,9190516551203	53,2480279247692	49,5113146526809
Fmax	bioclima	54,6547194812086	51,2041149761266	47,3106501000997
Dur	bico + bioclima	81,795254860702	79,2477601758022	76,1780499411749
Dur	bico	79,6715329564406	77,1729759661023	73,8751347586276
Pace	exibição	17,5289498148823	12,9078645169931	15,1288225551217
Ban	bico + bioclima	97,2553327536008	85,9515592194145	87,0006285443766
Ban	massa	99,0152494974765	83,857531278194	86,7646837143502
Nnot	bico	252,726855031199	229,364976327623	245,503170644389
Ban	bioclima	95,138422432944	85,971956464959	85,4142012960201
Nnot	massa	252,985253821288	229,7345466325	245,786035837882
Fdom	bico + bioclima	30,9054591011978	30,7461673270979	29,73229248237
Fdom	massa	28,5263988798353	28,365846429736	27,3765804660976
Fdom	bioclima	28,6668350712316	28,5337952093796	27,5143176535323
Ban	bico	99,925079716444	85,0686699244843	87,7781620894908
Pace	massa	82,2024090275527	63,3373164064265	74,1402289221325
Pace	bico	82,8987292940144	62,9242408989902	75,0305729799473
Fmin	bico + bioclima	75,5046953141929	68,7892958725811	68,1172826735233
Fmax	dicromatismo + bioclima	47,6981862599358	47,6981862599358	43,1680979610646
Ban	dicromatismo + bioclima	67,0809490561734	67,0809490561734	64,4646495954248

Dur	dicromatismo + bioclima	72,3122680570518	72,1492799316268	68,1569517130015
Dur	dicromatismo	69,885728526836	69,7928087249752	65,81450285575
Fdom	dicromatismo + bioclima	33,4853922944257	33,4853922944257	32,6632159045505
Fmin	massa + bioclima	75,5684444280381	69,1037639044263	68,5499607113739
Fmin	bioclima	73,2263699085053	66,913547836578	66,2156873093832
Nnot	bioclima	250,127716292993	231,551980185943	243,433381557193
Fmax	massa	59,7572987748967	52,3946953638225	50,4161041956962
Pace	dicromatismo	41,2130906818727	41,2130906818727	40,9338514291167
Pace	dicromatismo + bioclima	43,6434001054048	43,6434001054048	43,3758935662826
Fmin	bico	73,9528922699278	66,7316165878335	66,7752658649627
Nnot	dicromatismo + bioclima	124,312535985545	120,97218368154	118,839842858713
Fmin	dicromatismo + bioclima	58,080051909702	56,8872236794371	54,9678539269711
Fmax	dicromatismo	46,4998226928401	46,4985724305079	41,6661595855371
Fmin	massa	74,0115426612092	66,9757220280185	67,2077794732494
Ban	dicromatismo	65,9631838416708	65,9631838416708	62,941108630293
Fdom	bico	31,5121822430029	30,5498341284749	29,8725039712313
Fmin	dicromatismo	55,7783768773577	54,4498513846078	52,7332906669735
Fmax	bico	60,6963595273979	53,1125095520306	51,3703356366837
Nnot	dicromatismo	122,146481940256	118,768585249082	116,714052148053
Fdom	dicromatismo	31,9343723483918	31,9343723483918	31,1060954441905
Dur	bioclima	81,2824623465568	80,9853921108303	77,6177571008907
Nnot	nulo	251,213241734706	230,354696363956	244,227304899463
Fmin	nulo	71,7941367512577	65,0218942735512	65,0450547343599
Fdom	nulo	29,3837020582127	28,4939363208325	27,8035192453365
Dur	nulo	79,2791709668329	78,7703864977324	75,410134677812
Ban	nulo	97,915950106247	84,8959573411679	86,1409278153671
Fmax	nulo	58,5513437029739	51,1374701079976	49,2245943840888
Pace	nulo	81,0400873650104	66,5284028579986	73,937928411431

Código das análises no programa R

PACOTES E DIRETÓRIO

library(phytools) library(phylosignal) library(geiger) library(nlme) library(vegan) library(raster) library(geodata) library(ggmap) library(ggplot2) library(maptools) library(Imodel2) library(MuMIn) library(sjPlot) library(caper) library(tibble) library(phylobase)

IMPORTAR DADOS

##importar arvóre filogenética
Pipridae.Tree <- read.tree("mafft-edge-uce-95-raxml-pfinder.bipartitions.tre")</pre>

##corrigir nomes das spp

Pipridae.Tree\$tip.label <- gsub('(.*)_\\w+', '\\1', Pipridae.Tree\$tip.label) Pipridae.Tree\$tip.label[Pipridae.Tree\$tip.label == "Dixiphia_pipra"] <- "Pseudopipra_pipra" Pipridae.Tree\$tip.label[Pipridae.Tree\$tip.label == "Illicura_militaris"] <- "Ilicura_militaris"

###para objetos multi.phylo

for(i in 1:length(Pipridae.Tree)) {
 Pipridae.Tree[[i]]\$tip.label <- gsub('(.*)_\\w+', '\\1', Pipridae.Tree[[i]]\$tip.label)
 Pipridae.Tree[[i]]\$tip.label[Pipridae.Tree[[i]]\$tip.label == "Dixiphia_pipra"] <- "Pseudopipra_pipra"</pre>

}

consensus.pipridae <- consensus(Pipridae.Tree)</pre>

enraizar árvore com grupo externo

Pipridae.Tree <- root(Pipridae.Tree, 1:3, resolve.root = T)

##////IMPORTAR DATAFRAME\\\\\##
Pipridae.Traits <- read.csv2("Pipridae.csv", stringsAsFactors = T)</pre>

#cortar arvore
pruned.tree<-drop.tip(Pipridae.Tree, setdiff(Pipridae.Tree\$tip.label, Pipridae.Traits\$especie))
pruned.tree\$node.label <- NULL
#plot.phylo(pruned.tree)
#is.rooted(pruned.tree)</pre>

```
##////IMPORTAR DATA FRAME COM MÉDIAS////##
Traits.mean <- read.csv2("Pipridae_mean.csv", stringsAsFactors = T, row.names = 1)</pre>
```

OBTENÇÃO DE DADOS DO WORLDCLIM E INCORPORAÇÃO DESTES NO DATAFRAME###### bioclim <- getData("worldclim",var="bio",res=10)

coords <- data.frame(x=Pipridae.Traits\$longitude,y=Pipridae.Traits\$latitude)

points <- SpatialPoints(coords, proj4string = bioclim@crs)</pre>

values <- extract(bioclim,points)

df <- cbind.data.frame(coordinates(points),values) Pipridae.Traits <- cbind.data.frame(Pipridae.Traits, df)

matriz de correlação das variaveis bioclimaticas de temperatura cor(Pipridae.Traits[,44:54], method = "pearson", use = "complete.obs")

matriz de correlação das variaveis bioclimaticas de precipitação cor(Pipridae.Traits[,55:62], method = "pearson", use = "complete.obs")

remover variaveis bioclimaticas correlacionadas (de temperatura com bio01 e de precipitação com bio12)

Pipridae.Traits <- Pipridae.Traits[,-c(48, 49, 51, 52, 53, 54)]

##fazer o mapa

mapa <- borders("world", regions = c("Brazil", "Uruguay", "Argentina", "French Guiana", "Suriname", "Colombia", "Venezuela",

"Bolivia", "Ecuador", "Chile", "Paraguay", "Peru", "Guyana", "Panama", "Costa

Rica",

"Nicaragua", "Honduras", "El Salvador", "Belize", "Guatemala", "Mexico",

"Trinidad and Tobago",

"Caribe", "Puerto Rico", "Dominican Republic", "Haiti", "Jamaica", "Cuba",

"Bahamas", "Antiles",

"Dominica", "Saba"), fill = "grey70", colour = "black")

mapa.plot <- ggplot() + mapa + theme_bw() + xlab("") + ylab("") +
 theme(panel.border = element_blank(), panel.grid.major = element_line(colour = "grey80"),
panel.grid.minor = element_blank())</pre>

```
mapa.plot +
  geom_point(data = Pipridae.Traits, aes(x = x, y = y),col="red", size=1)+
  theme_bw()
```

```
##médias das variáveis bioclimáticas com detour pra remover NAs
bioclim.mean <- Pipridae.Traits[-214, c(2, 44:56)]
bioclim.mean <- aggregate(bioclim.mean[,2:14], list(bioclim.mean$especie), FUN=mean)</pre>
```

```
##Padronização dos dados bioclimaticos
bioclim.std <- decostand(bioclim.mean[2:14], method="standardize")
```

##PCA das variáveis bioclimaticas

bioclim.pca <- rda(bioclim.std, scale=T)
#summary(bioclim.pca)</pre>

##Percentual de explicação dos eixos da PPCA
#explic.bioclim <- (bioclim.pca\$CA\$eig)/(sum(bioclim.pca\$CA\$eig))*100
#explic.bioclim</pre>

##scores da pca bioclimátca
bioclim.score <- scores(bioclim.pca, display="wa", choices=1:2)
bioclim.score <- as.data.frame(bioclim.score)
#bioclim.score</pre>

##juntar as scores no dataframe
Pipridae.stats <- cbind(Traits.mean, bioclim.score)</pre>

#(Pipridae.stats)[1:6] <- c("SongPC1", "SongPC2", "SongPC3", "SongPC4", "SongPC5", "SongPC6")
colnames(Pipridae.stats)[21:22] <- c("BioclimPC1", "BioclimPC2")</pre>

PPCA SONOGRÁFICA

##Separar atributos sonográficos em um dataframe Song.mean <- Traits.mean[,2:7]</pre>

##Padronização dos dados sonográficos
Song.std <- decostand(Song.mean, method="standardize")</pre>

##PPCA das variáveis sonograficas utlizando modelo de evolução Browniana Song.ppca <- phyl.pca(Pipridae.Tree, Song.std, method = "BM", mode = "cov") Song.ppca\$Eval

##Percentual de explicação dos eixos da PPCA
explic.song <- (Song.ppca\$Eval)/(sum(Song.ppca\$Eval))*100
explic.song</pre>

##Scores da PPCA
song.scores.ppca <- Song.ppca\$S
song.scores.ppca
song.scores.ppca <- as.data.frame(scores.ppca)</pre>

Tarsus.vec <- Traits[,c("especie","Tarsus.Length")]</pre>

FDOM.vec <- Traits[,c("especie","FDOM")]

name.check(Pipridae.Tree, Traits.mean)
name.check(scores.ppca, Traits.mean)

##Juntar escores da ppca no dataframe para analise
Pipridae.stats <- cbind(song.scores.ppca, Traits.mean)</pre>

ADICIONAR COLUNAS COM VALORES EM LOG######
Pipridae.stats\$logFmin <- log(Pipridae.stats\$FMIN)
Pipridae.stats\$logFdom <- log(Pipridae.stats\$FDOM)
Pipridae.stats\$logMass <- log(Pipridae.stats\$Mass)
Pipridae.stats\$logDur <- log(Pipridae.stats\$DUR)
Pipridae.stats\$logBan <- log(Pipridae.stats\$BAN)</pre>

Pipridae.stats\$logFmax <- log(Pipridae.stats\$FMAX) Pipridae.stats\$logPace <- log(Pipridae.stats\$Pace)

matriz de correlação das variaveis de tamanho do bico cor(Traits.mean[,8:11], method = "pearson", use = "complete.obs")

##Separar atributos de tamanho do bico em um dataframe Beak.mean <- Traits.mean[,8:11]</pre>

##Padronização dos dados do bico Beak.std <- decostand(Beak.mean, method="standardize")

##PPCA das variáveis de bico utilzando modelo de evolução Browniana Beak.ppca <- phyl.pca(pruned.tree, Beak.std, method = "BM", mode = "cov") #Beak.ppca

##Percentual de explicação dos eixos da PPCA
#explic.beak <- (Beak.ppca\$Eval)/(sum(Beak.ppca\$Eval))*100
#explic.beak</pre>

##Scores da PPCA
Beak.scores.ppca <- Beak.ppca\$S
#Beak.scores.ppca
Beak.scores.ppca <- as.data.frame(Beak.scores.ppca)</pre>

#name.check(Pipridae.Tree, Traits.mean)
#name.check(scores.ppca, Traits.mean)

##Juntar escores da ppca no dataframe para analise Pipridae.stats\$BeakPC1 <- Beak.scores.ppca\$PC1

Pipridae.stats\$BeakPC1.cor <- Pipridae.stats\$BeakPC1 * -1

CONSTRUÇÃO DOS MODELOS

juntar filogenia e data frame para analises de pgls
Pipridae.stats <- rownames_to_column(Pipridae.stats, "species")</pre>

Pipridae.caper <- comparative.data(phy = pruned.tree, data = Pipridae.stats, names.col = species, vcv = TRUE, na.omit = FALSE, warn.dropped = TRUE)

```
## calcular todos AICCs e juntar em um dataframe
AICC_brown <- numeric()
AICC_lambda <- numeric()
AICC_delta <- numeric()
vec_resp <- factor(c("NNOT","NNOT","NNOT", "NNOT", "Fmin","Fmin","Fmin",
"Fmin",
"Fdom","Fdom","Fdom","Fdom", "Fdom","Dur", "Dur",
"Dur","Dur","Dur", "Ban","Ban","Ban","Ban", "Ban", "Fmax",
"Fmax","Fmax", "Fmax", "Fmax", "Pace", "Pace", "Pace", "Pace"))
vec_exp <- factor(rep(c("dicromatismo", "display", "bioclim", "mass", "beak"), 7))</pre>
```

```
for (i in c(6, 23, 24, 26:29)) {
  for (j in c(19:21, 25, 30)) {
    x <- pgls(Pipridae.caper[[2]][,i] ~ Pipridae.caper[[2]][,j], data = Pipridae.caper)
    AICC_brown <- c(AICC_brown, x$aicc)
    y <- pgls(Pipridae.caper[[2]][,i] ~ Pipridae.caper[[2]][,j], data = Pipridae.caper, lambda = "ML")
    AICC_lambda <- c(AICC_lambda, y$aicc)
    z <- pgls(Pipridae.caper[[2]][,i] ~ Pipridae.caper[[2]][,j], data = Pipridae.caper, delta = "ML")
    AICC_delta <- c(AICC_delta, z$aicc)
    }
}
AICC_df <- data.frame(vec_resp, vec_exp, AICC_brown, AICC_lambda, AICC_delta)
write.csv2(AICC_df, "tabela_AICC.csv", row.names = F)</pre>
```

##pgls - FDOM x CLIMA

modelo maximum likelihood delta
pglsModel_FDom_bioclim <- pgls(logFdom ~ BioclimPC1, data = Pipridae.caper, delta = "ML")
#summary(pglsModel_FDom_bioclim)
par(mfrow = c(2,2))
#plot.pgls(pglsModel_FDom_bioclim)</pre>

##pgls FMIN x CLIMA

delta

pglsModel_FMin_bioclim <- pgls(logFmin ~ BioclimPC1, data = Pipridae.caper, delta= "ML")
#summary(pglsModel_FMin_bioclim)
#plot.pgls(pglsModel_FMin_bioclim)</pre>

pgls FMAX x CLIMA

delta

pglsModel_FMax_bioclim <- pgls(logFmax ~ BioclimPC1, data = Pipridae.caper, delta = "ML")
#summary(pglsModel_FMax_bioclim)
plot.pgls(pglsModel_FMax_bioclim)</pre>

pgls BAN x CLIMA

delta
pglsModel_Ban_bioclim <- pgls(logBan ~ BioclimPC1, data = Pipridae.caper, delta = "ML")
#summary(pglsModel_Ban_bioclim)
#plot.pgls(pglsModel_Ban_bioclim)</pre>

##pgls - DUR x CLIMA

delta
pglsModel_Dur_bioclim <- pgls(logDur ~ BioclimPC1, data = Pipridae.caper, delta = "ML")
#summary(pglsModel_Dur_bioclim)
#plot.pgls(pglsModel_Dur_bioclim)</pre>

pgls NNOT x CLIMA

lambda
pglsModel_Not_bioclim <- pgls(NNOT ~ BioclimPC1, data = Pipridae.caper, lambda = "ML")
#summary(pglsModel_Not_bioclim)
#plot.pgls(pglsModel_Not_bioclim)</pre>

pgls PACE x CLIMA

lambda pglsModel_Pace_bioclim<- pgls(logPace~ BioclimPC1, data = Pipridae.caper, lambda = "ML") #summary(pglsModel_Pace_bioclim) #plot.pgls(pglsModel_Pace_bioclim)

pgls FMIN x DICROMATISMO

delta

pglsModel_Fmin_dicrom <- pgls(logFmin ~ Dicromatismo, data = Pipridae.caper, delta = "ML")
#summary(pglsModel_Fmin_dicrom)
#plot.pgls(pglsModel_Fmin_dicrom)</pre>

pgls FDOM x DICROMATISMO

delta

pglsModel_Fdom_dicrom <- pgls(logFdom ~ Dicromatismo, data = Pipridae.caper, delta = "ML") #summary(pglsModel_Fdom_dicrom) #plot.pgls(pglsModel_Fdom_dicrom)

pgls FMAX x DICROMATISMO

delta

pglsModel_Fmax_dicrom <- pgls(logFmax ~ Dicromatismo, data = Pipridae.caper, delta = "ML") #summary(pglsModel_Fmax_dicrom) #plot.pgls(pglsModel_Fmax_dicrom)

##pgls DUR x DICROMATISMO

delta

pglsModel_Dur_dicrom <- pgls(logDur ~ Dicromatismo, data = Pipridae.caper, delta = "ML") #summary(pglsModel_Dur_dicrom) #plot.pgls(pglsModel_Dur_dicrom)

pgls NNOT x DICROMATISMO

delta
pglsModel_nnot_dicrom <- pgls(NNOT ~ Dicromatismo, data = Pipridae.caper, delta = "ML")
#summary(pglsModel_nnot_dicrom)
#plot.pgls(pglsModel_nnot_dicrom)</pre>

pgls BAN x DICROMATISMO

delta

pglsModel_Ban_dicrom <- pgls(logBan ~ Dicromatismo, data = Pipridae.caper, delta = "ML")
#summary(pglsModel_Ban_dicrom)
#plot.pgls(pglsModel_Ban_dicrom)</pre>

pgls PACE x DICROMATISMO

delta

pglsModel_Pace_dicrom <- pgls(logPace ~ Dicromatismo, data = Pipridae.caper, delta = "ML")
#summary(pglsModel_Pace_dicrom)
#plot.pgls(pglsModel_Pace_dicrom)</pre>

##pgls FMIN X DISPLAY

delta

pglsModel_Fmin_display <- pgls(logFmin ~ Display.Complex, data = Pipridae.caper, delta = "ML") #summary(pglsModel_Fmin_display) #plot.pgls(pglsModel_Fmin_display)

##pgls FDOM X DISPLAY

delta

pglsModel_Fdom_display <- pgls(logFdom ~ Display.Complex, data = Pipridae.caper, delta = "ML") #summary(pglsModel_Fdom_display) #plot.pgls(pglsModel_Fdom_display)

##pgls FMAX X DISPLAY

lambda

pglsModel_Fmax_display <- pgls(logFmax ~ Display.Complex, data = Pipridae.caper, lambda = "ML")
#summary(pglsModel_Fmax_display)
#plot.pgls(pglsModel_Fmax_display)</pre>

##pgls DUR X DISPLAY

lambda

pglsModel_Dur_display <- pgls(logDur ~ Display.Complex, data = Pipridae.caper, lambda = "ML")
#summary(pglsModel_Dur_display)
#plot.pgls(pglsModel_Dur_display)</pre>

pgls BAN x DISPLAY

lambda
pglsModel_Ban_display <- pgls(logBan ~ Display.Complex, data = Pipridae.caper, lambda = "ML")
#summary(pglsModel_Ban_display)
#plot.pgls(pglsModel_Ban_display)</pre>

pgls PACE x DISPLAY

lambda
pglsModel_Pace_display_lambda <- pgls(logPace ~ Display.Complex, data = Pipridae.caper, lambda =</pre>

"ML")

#summary(pglsModel_Pace_display_lambda)
#plot.pgls(pglsModel_Pace_display_lambda)

pgls NNOT x DISPLAY

lambda

pglsModel_Nnot_display <- pgls(NNOT ~ Display.Complex, data = Pipridae.caper, lambda = "ML") #summary(pglsModel_Nnot_display) #plot.pgls(pglsModel_Nnot_display)

pgls NNOT x MASSA

lambda
pglsModel_Nnot_mass <- pgls(NNOT ~ logMass, data = Pipridae.caper, lambda = "ML")
#summary(pglsModel_Nnot_mass)
#plot.pgls(pglsModel_Nnot_mass)</pre>

pgls FMIN x MASSA

lambda
pglsModel_Fmin_mass <- pgls(logFmin ~ logMass, data = Pipridae.caper, lambda = "ML")
#summary(pglsModel_Fmin_mass)
#plot.pgls(pglsModel_Fmin_mass)</pre>

pgls FDOM x MASSA

delta pglsModel_Fdom_mass <- pgls(logFdom ~ logMass, data = Pipridae.caper, delta = "ML") #summary(pglsModel_Fdom_mass) #plot.pgls(pglsModel_Fdom_mass)

pgls DUR x MASSA

delta
pglsModel_Dur_mass <- pgls(logDur ~ logMass, data = Pipridae.caper, delta = "ML")
#summary(pglsModel_Dur_mass)
#plot.pgls(pglsModel_Dur_mass)</pre>

pgls BAN x MASSA

lambda
pglsModel_Ban_mass <- pgls(logBan ~ logMass, data = Pipridae.caper, lambda = "ML")
#summary(pglsModel_Ban_mass)
#plot.pgls(pglsModel_Ban_mass)</pre>

pgls FMAX x MASSA

delta

pglsModel_Fmax_mass <- pgls(logFmax ~ logMass, data = Pipridae.caper, delta = "ML")
#summary(pglsModel_Fmax_mass)
#plot.pgls(pglsModel_Fmax_mass)</pre>

pgls PACE x MASSA

lambda
pglsModel_Pace_mass <- pgls(Pace ~ logMass, data = Pipridae.caper, lambda = "ML")
#summary(pglsModel_Pace_mass)
#plot.pgls(pglsModel_Pace_mass)</pre>

pgls NNOT x BICO

lambda
pglsModel_Nnot_beak <- pgls(NNOT ~ BeakPC1, data = Pipridae.caper, lambda = "ML")
summary(pglsModel_Nnot_beak)
#plot.pgls(pglsModel_Nnot_beak)</pre>

pgls FMIN x BICO

lambda
pglsModel_Fmin_beak <- pgls(logFmin ~ BeakPC1, data = Pipridae.caper, lambda = "ML")
summary(pglsModel_Fmin_beak)
#plot.pgls(pglsModel_Fmin_beak)</pre>

pgls FDOM x BICO

delta

pglsModel_Fdom_beak <- pgls(logFdom ~ BeakPC1, data = Pipridae.caper, delta = "ML")
summary(pglsModel_Fdom_beak)
#plot.pgls(pglsModel_Fdom_beak)</pre>

pgls DUR x BICO

delta
pglsModel_Dur_beak <- pgls(logDur ~ BeakPC1, data = Pipridae.caper, delta = "ML")
summary(pglsModel_Dur_beak)
#plot.pgls(pglsModel_Dur_beak)</pre>

pgls BAN x BICO

lambda
pglsModel_Ban_beak <- pgls(logBan ~ BeakPC1, data = Pipridae.caper, lambda = "ML")
summary(pglsModel_Ban_beak)
#plot.pgls(pglsModel_Ban_beak)</pre>

```
## pgls FMAX x BICO
```

```
pglsModel_Fmax_beak <- pgls(logFmax ~ BeakPC1, data = Pipridae.caper, delta = "ML")
summary(pglsModel_Fmax_beak)
#plot.pgls(pglsModel_Fmax_beak)
par(mfrow=c(2,2))
plot.pgls(pglsModel_Pace_null)</pre>
```

pgls PACE x BICO

```
# lambda
                      pglsModel_Pace_beak <- pgls(Pace ~ BeakPC1, data = Pipridae.caper, lambda = "ML")
                      summary(pglsModel_Pace_beak)
                      #plot.pgls(pglsModel_Pace_beak)
                      pglsModel_Pace_null <- pgls(Pace ~ 1, data = Pipridae.caper)
                      summary(pglsModel_Pace_null)
                      ###### MODELOS ADITIVOS ######
                      ## calcular todos AICCs e juntar em um dataframe
                      AICC_brown <- numeric()
                      AICC_lambda <- numeric()
                      AICC_delta <- numeric()
                      vec_resp <- factor(c("NNOT","NNOT","NNOT", "Fmin", "Fm
                                                 "Fdom","Fdom","Fdom","Dur", "Dur",
                                                 "Dur", "Dur", "Ban", "Ban", "Ban", "Fmax",
                                                 "Fmax", "Fmax", "Pace", "Pace", "Pace", "Pace"))
                      vec_exp <- factor(rep(c("dicromatismo", "display", "mass", "beak"), 7))</pre>
                      for (i in c(6, 23, 24, 26:29)) {
                         for (j in c(19:20, 25, 30)) {
                           x <- pgls(Pipridae.caper[[2]][,i] ~ Pipridae.caper[[2]][,j] + Pipridae.caper[[2]][,21], data =
Pipridae.caper)
                            AICC_brown <- c(AICC_brown, x$aicc)
                            y <- pgls(Pipridae.caper[[2]][,i] ~ Pipridae.caper[[2]][,j] + Pipridae.caper[[2]][,21], data =
Pipridae.caper, lambda = "ML")
                           AICC_lambda <- c(AICC_lambda, y$aicc)
                            z <- pgls(Pipridae.caper[[2]][,i] ~ Pipridae.caper[[2]][,j] + Pipridae.caper[[2]][,21], data =
Pipridae.caper, delta = "ML")
                            AICC_delta <- c(AICC_delta, z$aicc)
                         }
                      }
                      AICC_df_add <- data.frame(vec_resp, vec_exp, AICC_brown, AICC_lambda, AICC_delta)
                      write.csv2(AICC_df_add, "tabela_AICC_add.csv", row.names = F)
                      ## matriz de correlação das variaveis explicativas
                      cor(Pipridae.stats[,c(20:22, 26, 31)], method = "pearson", use = "complete.obs")
```

pglsModel_Nnot_dicrom_bioclim <- pgls(NNOT ~ Dicromatismo + BioclimPC1, data = Pipridae.caper, delta= "ML") #summary(pglsModel_Nnot_dicrom_bioclim) #plot.pgls(pglsModel_Nnot_dicrom_bioclim)

##pgls NNOT x DISPLAY + CLIMA

lambda

pglsModel_Nnot_display_bioclim <- pgls(NNOT ~ Display.Complex + BioclimPC1, data = Pipridae.caper, lambda= "ML")

#summary(pglsModel_Nnot_display_bioclim)
#plot.pgls(pglsModel_Nnot_display_bioclim)

##pgls NNOT x MASSA + CLIMA

lambda

pglsModel_Nnot_mass_bioclim <- pgls(NNOT ~ logMass + BioclimPC1, data = Pipridae.caper, lambda= "ML")

#summary(pglsModel_Nnot_mass_bioclim)
#plot.pgls(pglsModel_Nnot_mass_bioclim)

##pgls NNOT x BICO + CLIMA

lambda

pglsModel_Nnot_beak_bioclim <- pgls(NNOT ~ BeakPC1 + BioclimPC1, data = Pipridae.caper, ML")

lambda= "ML")

#summary(pglsModel_Nnot_beak_bioclim)
#plot.pgls(pglsModel_Nnot_beak_bioclim)

##pgls FMIN x DICROMATISMO + CLIMA

delta

pglsModel_Fmin_dicrom_bioclim <- pgls(logFmin ~ Dicromatismo + BioclimPC1, data = Pipridae.caper, delta= "ML") #summary(pglsModel_Fmin_dicrom_bioclim)

#plot.pgls(pglsModel_Fmin_dicrom_bioclim)

##pgls FMIN x DISPLAY + CLIMA

lambda

pglsModel_Fmin_display_bioclim <- pgls(logFmin ~ Display.Complex + BioclimPC1, data = Pipridae.caper, lambda= "ML")

#summary(pglsModel_Fmin_display_bioclim)
#plot.pgls(pglsModel_Fmin_display_bioclim)

##pgls FMIN x MASSA + CLIMA

delta

pglsModel_Fmin_mass_bioclim <- pgls(logFmin ~ logMass + BioclimPC1, data = Pipridae.caper, delta= "ML")

#summary(pglsModel_Fmin_mass_bioclim)
#plot.pgls(pglsModel_Fmin_mass_bioclim)

```
##pgls FMIN x BICO + CLIMA
```

pglsModel_Fmin_beak_bioclim <- pgls(logFmin ~ BeakPC1 + BioclimPC1, data = Pipridae.caper, MI ")

delta= "ML")

#summary(pglsModel_Fmin_beak_bioclim)
#plot.pgls(pglsModel_Fmin_beak_bioclim)

##pgls FDOM x DICROMATISMO + CLIMA

delta

pglsModel_Fdom_dicrom_bioclim <- pgls(logFdom ~ Dicromatismo + BioclimPC1, data = Pipridae.caper, delta= "ML") #summary(pglsModel_Fdom_dicrom_bioclim) #plot.pgls(pglsModel_Fdom_dicrom_bioclim)

##pgls FDOM x DISPLAY + CLIMA

lambda

pglsModel_Fdom_display_bioclim <- pgls(logFdom ~ Display.Complex + BioclimPC1, data = Pipridae.caper, lambda= "ML")

#summary(pglsModel_Fdom_display_bioclim)
#plot.pgls(pglsModel_Fdom_display_bioclim)

##pgls FDOM x MASSA + CLIMA

delta

pglsModel_Fdom_mass_bioclim <- pgls(logFdom ~ logMass + BioclimPC1, data = Pipridae.caper,

delta= "ML")

#summary(pglsModel_Fdom_mass_bioclim)
#plot.pgls(pglsModel_Fdom_mass_bioclim)

##pgls FDOM x BICO + CLIMA

delta

pglsModel_Fdom_beak_bioclim <- pgls(logFdom ~ BeakPC1 + BioclimPC1, data = Pipridae.caper,

delta= "ML")

#summary(pglsModel_Fdom_beak_bioclim)
#plot.pgls(pglsModel_Fdom_beak_bioclim)

##pgls DUR x DICROMATISMO + CLIMA

delta

pglsModel_Dur_dicrom_bioclim <- pgls(logDur ~ Dicromatismo + BioclimPC1, data = Pipridae.caper, delta= "ML")

#summary(pglsModel_Dur_dicrom_bioclim)
#plot.pgls(pglsModel_Dur_dicrom_bioclim)

##pgls DUR x DISPLAY + CLIMA

lambda

pglsModel_Dur_display_bioclim <- pgls(logDur ~ Display.Complex + BioclimPC1, data = Pipridae.caper, lambda= "ML") #summary(pglsModel_Dur_display_bioclim) #plot.pgls(pglsModel_Dur_display_bioclim)

pglsModel_Dur_mass_bioclim <- pgls(logDur ~ logMass + BioclimPC1, data = Pipridae.caper, delta=

"ML")

#summary(pglsModel_Dur_mass_bioclim)
#plot.pgls(pglsModel_Dur_mass_bioclim)

##pgls DUR x BICO + CLIMA

delta

pglsModel_Dur_beak_bioclim <- pgls(logDur ~ BeakPC1 + BioclimPC1, data = Pipridae.caper, delta=

"ML")

#summary(pglsModel_Dur_beak_bioclim)
#plot.pgls(pglsModel_Dur_beak_bioclim)

##pgls BAN x DICROMATISMO + CLIMA

delta

pglsModel_Ban_dicrom_bioclim <- pgls(logBan ~ Dicromatismo + BioclimPC1, data = Pipridae.caper, delta= "ML")

#summary

#summary(pglsModel_Ban_dicrom_bioclim)
#plot.pgls(pglsModel_Ban_dicrom_bioclim)

##pgls BAN x DISPLAY + CLIMA

lambda

pglsModel_Ban_display_bioclim <- pgls(logBan ~ Display.Complex + BioclimPC1, data = Pipridae.caper, lambda= "ML") #summary(pglsModel_Ban_display_bioclim) #plot.pgls(pglsModel_Ban_display_bioclim)

##pgls BAN x MASSA + CLIMA

lambda

pglsModel_Ban_mass_bioclim <- pgls(logBan ~ logMass + BioclimPC1, data = Pipridae.caper, lambda= "ML") #summary(pglsModel Ban mass bioclim)

#plot.pgls(pglsModel_Ban_mass_bioclim)

##pgls BAN x BICO + CLIMA

lambda

pglsModel_Ban_beak_bioclim <- pgls(logBan ~ BeakPC1 + BioclimPC1, data = Pipridae.caper, lambda= "ML")

#summary(pglsModel_Ban_beak_bioclim)
#plot.pgls(pglsModel_Ban_beak_bioclim)

##pgls FMAX x DICROMATISMO + CLIMA

delta
 pglsModel_Fmax_dicrom_bioclim <- pgls(logFmax ~ Dicromatismo + BioclimPC1, data =
Pipridae.caper, delta= "ML")
 #summary(pglsModel_Fmax_dicrom_bioclim)
 #plot.pgls(pglsModel_Fmax_dicrom_bioclim)</pre>
##pgls FMAX x DISPLAY + CLIMA

lambda

pglsModel_Fmax_display_bioclim <- pgls(logFmax ~ Display.Complex + BioclimPC1, data = Pipridae.caper, lambda= "ML")

#summary(pglsModel_Fmax_display_bioclim)
#plot.pgls(pglsModel_Fmax_display_bioclim)

##pgls FMAX x MASSA + CLIMA

delta

pglsModel_Fmax_mass_bioclim <- pgls(logFmax ~ logMass + BioclimPC1, data = Pipridae.caper, delta= "ML")

#summary/ng

#summary(pglsModel_Fmax_mass_bioclim)
#plot.pgls(pglsModel_Fmax_mass_bioclim)

##pgls FMAX x BICO + CLIMA

delta

pglsModel_Fmax_beak_bioclim <- pgls(logFmax ~ BeakPC1 + BioclimPC1, data = Pipridae.caper, delta= "ML")

#summary(pglsModel_Fmax_beak_bioclim)
#plot.pgls(pglsModel_Fmax_beak_bioclim)

##pgls PACE x DICROMATISMO + CLIMA

delta

pglsModel_Pace_dicrom_bioclim <- pgls(logPace ~ Dicromatismo + BioclimPC1, data = Pipridae.caper, delta= "ML") #summary(pglsModel_Pace_dicrom_bioclim) #plot.pgls(pglsModel_Pace_dicrom_bioclim)

##pgls PACE x DISPLAY + CLIMA

lambda

pglsModel_Pace_display_bioclim <- pgls(logPace ~ Display.Complex + BioclimPC1, data = Pipridae.caper, lambda= "ML") #summary(pglsModel_Pace_display_bioclim)

#plot.pgls(pglsModel_Pace_display_bioclim

##pgls PACE x MASSA + CLIMA

lambda

pglsModel_Pace_mass_bioclim <- pgls(logPace ~ logMass + BioclimPC1, data = Pipridae.caper, lambda= "ML")

#summary(pglsModel_Pace_mass_bioclim)
#plot.pgls(pglsModel_Pace_mass_bioclim)

##pgls PACE x BICO + CLIMA

lambda

pglsModel_Pace_beak_bioclim <- pgls(logPace ~ BeakPC1 + BioclimPC1, data = Pipridae.caper, lambda= "ML")

#summary(pglsModel_Pace_beak_bioclim)
#plot.pgls(pglsModel_Pace_beak_bioclim)

lambda

pglsModel_Pace_beak_bioclim_corrected <- pgls(logPace ~ BeakPC1.cor + BioclimPC1, data = Pipridae.caper, lambda= "ML")

MODELOS NULOS

```
## calcular todos AICCs e juntar em um dataframe
AICC_brown <- numeric()
AICC_lambda <- numeric()
AICC_delta <- numeric()
vec_resp <- factor(c("NNOT","Fmin","Fdom","Dur","Ban","Fmax","Pace"))
for (i in c(6, 23, 24, 26:29)) {
    x <- pgls(Pipridae.caper[[2]][,i] ~ 1, data = Pipridae.caper)
    AICC_brown <- c(AICC_brown, x$aicc)
    y <- pgls(Pipridae.caper[[2]][,i] ~ 1, data = Pipridae.caper, lambda = "ML")
    AICC_lambda <- c(AICC_lambda, y$aicc)
    z <- pgls(Pipridae.caper[[2]][,i] ~ 1, data = Pipridae.caper, delta = "ML")
    AICC_delta <- c(AICC_delta, z$aicc)
    }
AICC_df_null <- data.frame(vec_resp, AICC_brown, AICC_lambda, AICC_delta)</pre>
```

```
write.csv2(AICC_df_null, "tabela_AICC_null.csv", row.names = F)
```

pgls NNOT NULO

```
# lambda
```

```
pglsModel_NNot_null <- pgls(NNOT ~ 1, data = Pipridae.caper, lambda = "ML")
#summary(pglsModel_NNot_null)
#plot.pgls(pglsModel_NNot_null)</pre>
```

pgls FMIN NULO

```
# lambda
pglsModel_Fmin_null <- pgls(logFmin ~ 1, data = Pipridae.caper, lambda = "ML")
#summary(pglsModel_Fmin_null)
#plot.pgls(pglsModel_Fmin_null)</pre>
```

pgls FDOM NULO

```
# delta
pglsModel_Fdom_null <- pgls(logFdom ~ 1, data = Pipridae.caper, delta = "ML")
#summary(pglsModel_Fdom_null)
#plot.pgls(pglsModel_Fdom_null)</pre>
```

pgls DUR NULO

```
# delta
pglsModel_Dur_null <- pgls(logDur ~ 1, data = Pipridae.caper, delta = "ML")
#summary(pglsModel_Dur_null)
#plot.pgls(pglsModel_Dur_null)</pre>
```

pgls BAN NULO

lambda
pglsModel_Ban_null <- pgls(logBan ~ 1, data = Pipridae.caper, lambda = "ML")
#summary(pglsModel_Ban_null)
#plot.pgls(pglsModel_Ban_null)</pre>

pgls FMAX NULO

delta
pglsModel_Fmax_null <- pgls(logFmax ~ 1, data = Pipridae.caper, delta = "ML")
#summary(pglsModel_Fmax_null)
#plot.pgls(pglsModel_Fmax_null)</pre>

pgls PACE NULO

```
# lambda
pglsModel_Pace_null <- pgls(logPace ~ 1, data = Pipridae.caper, lambda = "ML")
#summary(pglsModel_Pace_null)
#plot.pgls(pglsModel_Pace_null)</pre>
```

RMA - Constantes alométricas

windows() par(mfrow = c(1,3))

```
#RMA_fmin_mass <- Imodel2(logFmin ~ logMass, data = Pipridae.stats, "relative", "relative", 100)
#RMA_fmin_mass
plot(RMA_fmin_mass, "RMA", pch = 19, cex = 1.2, ylab = "log Fmin", xlab = "log Mass")</pre>
```

```
#RMA_fdom_mass <- Imodel2(logFdom ~ logMass, data = Pipridae.stats, "relative", "relative", 100)
#RMA_fdom_mass
plot(RMA_fdom_mass, "RMA", pch = 19, cex = 1.2, ylab = "log Fdom", xlab = "log Mass")</pre>
```

```
#RMA_fmax_mass <- Imodel2(logFmax ~ logMass, data= Pipridae.stats, "relative", "relative", 100)
#RMA_fmax_mass
plot(RMA_fmax_mass, "RMA", pch = 19, cex = 1.2, ylab = "log Fmax", xlab = "log Mass")</pre>
```

PLOTAR GRÁFICOS

windows()
par(mfrow = c(2,2))

Fmin ~ display + bioclim ($r^2 = 0,874$)

```
plot(logFmin ~ Display.Complex, data = Pipridae.stats, pch = 19, cex = 1.2)
abline(pglsModel_Fmin_display_bioclim, col = "gray70", lwd = 3)
#summary(pglsModel_Fmin_display_bioclim)
```

```
## Fdom ~ display + bioclim (r^2 = 0.818)
```

```
plot(logFdom ~ Display.Complex, data = Pipridae.stats, pch = 19, cex = 1.2)
abline(pglsModel Fdom display bioclim, col = "gray70", lwd = 3)
#summary(pglsModel Fdom display bioclim)
## Fmax ~ display + bioclim (r<sup>2</sup> = 0,818)
plot(logFmax ~ Display.Complex, data = Pipridae.stats, pch = 19, cex = 1.2)
abline(pglsModel_Fmax_display_bioclim, col = "gray70", lwd = 3)
#summary(pglsModel_Fmax_display_bioclim)
## Fmax ~ display (r<sup>2</sup> = 0,727)
plot(logFmax ~ Display.Complex, data = Pipridae.stats, pch = 19, cex = 1.2)
abline(pglsModel_Fmax_display, col = "gray70", lwd = 3)
#summary(pglsModel_Fmax_display)
windows()
par(mfrow = c(2,2))
## Pace \sim beak + bioclim (r<sup>2</sup> = 0,157)
plot(logPace ~ BeakPC1.cor, data = Pipridae.stats, pch = 19, cex = 1.2)
abline(pglsModel_Pace_beak_bioclim_corrected, col = "gray70", lwd = 3)
#summary(pglsModel_Pace_beak_bioclim)
## Ban ~ mass + bioclim (r<sup>2</sup> = 0,156)
plot(logBan ~ logMass, data = Pipridae.stats, pch = 19, cex = 1.2)
abline(pglsModel_Ban_mass_bioclim, col = "gray70", lwd = 3)
#summary(pglsModel Ban mass bioclim)
## Dur ~ massa (r<sup>2</sup> = 0,104)
plot(logDur ~ logMass, data = Pipridae.stats, pch = 19, cex = 1.2)
abline(pglsModel_Dur_mass, col = "gray70", lwd = 3)
#summary(pglsModel_Dur_mass)
## FMax ~ Bioclim (r<sup>2</sup> = 0,098)
plot(logFmax ~ BioclimPC1, data = Pipridae.stats, pch = 19, cex = 1.2)
abline(pglsModel FMax bioclim, col = "gray70", lwd = 3)
#summary(pglsModel FMax bioclim)
### Construção do espectrograma para a figura dos parâmetros acústicos
library(tuneR)
library(seewave)
library(viridis)
song <- readWave("A_gal_10_cut.wav")</pre>
spectro(song, osc = T, flim = c(0, 10), wn="blackman", wl = 1024, ovlp = 90, palette = turbo)
spec(song, wl = 1024, flim = c(0, 10), plot = 2)
```