UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS COORDENADORIA ESPECIAL DE OCEANOGRAFIA CURSO DE OCEANOGRAFIA

Khauany Paola Poleza

CARACTERIZAÇÃO DAS *RIPPLED SCOUR DEPRESSIONS,* A PARTIR DE DADOS GEOACÚSTICOS, NA ANTEPRAIA DO SISTEMA PRAIAL DA BARRA DA LAGOA, MUNICÍPIO DE FLORIANÓPOLIS/SC.

> Florianópolis 2023

Khauany Paola Poleza

CARACTERIZAÇÃO DAS *RIPPLED SCOUR DEPRESSIONS*, A PARTIR DE DADOS GEOACÚSTICOS, NA ANTEPRAIA DO SISTEMA PRAIAL DA BARRA DA LAGOA, MUNICÍPIO DE FLORIANÓPOLIS/SC.

Trabalho de Conclusão de Curso submetido ao curso de Graduação em Oceanografia do Centro de Ciências Físicas e Matemáticas da Universidade Federal de Santa Catarina como requisito parcial para a obtenção do título de Bacharela em Oceanografia.

Orientador: Prof. Antonio Henrique da Fontoura Klein, Dr. Coorientador: Prof. Jarbas Bonetti Filho, Dr.

Florianópolis 2023

Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Poleza, Khauany Paola
Caracterização das Rippled Scour Depressions, a partir de dados geoacústicos, na antepraia do Sistema Praial da Barra da Lagoa, Município de Florianópolis/SC. / Khauany Paola Poleza ; orientador, Antonio Henrique da Fontoura Klein, coorientador, Jarbas Bonetti Filho, 2023.
76 p.
Trabalho de Conclusão de Curso (graduação) - Universidade Federal de Santa Catarina, Centro de Ciências Fisicas e Matemáticas, Graduação em Oceanografia, Florianópolis, 2023.
Inclui referências.
1. Oceanografia. 2. Oceanografia. 3. geofisica marinha.
Klein, Antonio Henrique da Fontoura . II. Filho, Jarbas Bonetti . III. Universidade Federal de Santa Catarina.
Graduação em Oceanografia. IV. Título.

Khauany Paola Poleza

ANÁLISE DA ORIGEM DAS *RIPPLED SCOUR DEPRESSIONS,* A PARTIR DE DADOS GEOACÚSTICOS, NA ANTEPRAIA DO SISTEMA PRAIAL DA BARRA DA LAGOA, MUNICÍPIO DE FLORIANÓPOLIS/SC.

Este Trabalho de Conclusão de Curso foi julgado adequado para obtenção do título de Bacharel em Oceanografia e aprovado em sua forma final pelo Curso de Oceanografia.

Florianópolis, 1 de novembro de 2023.

Insira neste espaço a assinatura

Prof.(a) Regina Rodrigues Rodrigues, Dr. Coordenadora do Curso

Banca examinadora

Insira neste espaço a assinatura

Prof. Antonio Henrique da Fontoura Klein, Dr. Orientador

> Insira neste espaço a assinatura

Jorge A. G. de Souza, Dr. Avaliador S Marine Geophysics & Hydrography

> Insira neste espaço a assinatura

Prof. Pedro de Souza Pereira, Dr. Avaliador Universidade Federal de Santa Catarina

Florianópolis, 2023.

Dedico este trabalho ao meu pai, minha mãe e minha irmã.

AGRADECIMENTOS

Primeiramente, gostaria de agradecer a Deus e aos Orixás, por me manterem firme nos momentos mais difíceis. Aos meus pais, Hudson e Cristiane, e à minha irmã, Khaynna, pelo apoio incondicional. E ao meu companheiro, Pedro, por não me deixar desistir.

Ao Denis, Dona Lisa, Seu Luiz e Ziê por todo o suporte.

Aos amigos que fiz durante a graduação: Hillary, Leticia, Wilson, Lucas, Renan, Henrique, Jasmin e aos que não mencionei aqui, mas que também moram no meu coração. Aos amigos de infância, Arthur, Isabelle e Paula. E aos meus colegas do Laboratório de Oceanografia Costeira.

A empresa Ambiens Sustentabilidade Integrada e todo o seu corpo técnico, pela oportunidade oferecida e a todos os ensinamentos passados.

Ao professor Klein e Professor Jarbas pela disponibilidade, aprendizado e por toda infraestrutura disponibilizada no Laboratório de Oceanografia Costeira durante a construção do presente trabalho. Agradeço ainda pelos dados disponibilizados por meio dos projetos MMA-RISCOS e *Application of Marine Geophysics to Continental Shelf Evolution: Control of Sediment Supply on Nearshore Stratigraphy.*

E por último, à Universidade Federal de Santa Catarina, por toda a vivência proporcionada.

RESUMO

Este trabalho descreve as Rippled Scour Depressions presentes na antepraia do sistema praial Barra da Lagoa – Mocambique. A partir da interpretação de dados sonográficos, batimétricos e de sísmica rasa buscou trazer informações sobre área de abrangência, profundidade de ocorrência, sentido de migração das feições e sua relação com as camadas sedimentares de sub-fundo. Os dados utilizados foram coletados com um interferômetro EdgeTech® 4600, sensor de movimento MRU-SMC-108, perfilador acústico Digibar S, DGPS/Heading modelo Novatel FlexPack6 e perfilador sísmico do tipo 100J C-Boom Boomer single channel. Os softwares utilizados para o processamento dos dados foram SonarWiz™ e ArcMap 10.8. Os resultados mostraram a presença de 26 Rippled Scour Depressions dispostas transversamente à linha de costa e concentradas no setor central e sul da área de estudo, com profundidade variando de 6 à 18 metros, largura de 22,1 à 579,8 metros e comprimento de 79,0 à 638,0 metros. Os dados sonográficos evidenciaram ainda a presença de marcas onduladas no interior das depressões, com migração em direção à linha de costa. A batimetria evidenciou que a área de estudo apresenta profundidade mínima de 3 metros, próximo à desembocadura do canal da Barra da Lagoa, e máxima de 24 metros, na região a nordeste, com isóbatas irregulares no interior das depressões. A partir dos perfis transversais, declividade e orientação das vertentes foi possível concluir que no entorno das RSD ocorrem superfícies predominantemente planas e com orientação das vertentes no sentido sudeste e o seu interior apresenta um lado mais íngreme com orientação no sentido leste. Os dados sísmicos mostraram duas unidades que podem estar associadas às Rippled Scour Depressions, os paleocanais e depósitos de sedimentos grossos.

Palavras-chave: *Rippled Scour Depressions*; geofísica marinha; dados geoacústicos.

ABSTRACT

This work describes the Rippled Scour Depressions present in the foreshore of the Barra da Lagoa-Moçambique beach system. Through the interpretation of sonographic, bathymetric, and shallow seismic data, it sought to provide information about the extent, depth of occurrence, migration direction of features, and their relationship with the sub-bottom sediment lavers. The data used were collected using an EdgeTech® 4600 interferometer, MRU-SMC-108 motion sensor, Digibar S acoustic profiler, DGPS/Heading Novatel FlexPack6 model, and a 100J C-Boom Boomer single-channel seismic profiler. The software used for data processing included SonarWiz[™] and ArcMap 10.8. The results revealed the presence of 26 Rippled Scour Depressions arranged transversely to the coastline and concentrated in the central and southern sectors of the study area, with depths ranging from 6 to 18 meters, widths from 22.1 to 579.8 meters, and lengths from 79.0 to 638.0 meters. Sonographic data also indicated the presence of ripple marks within the depressions, migrating toward the coastline. Bathymetry showed that the study area has a minimum depth of 3 meters near the mouth of the Barra da Lagoa channel and a maximum of 24 meters in the northeastern region, with irregular isobaths within the depressions. From the cross-sectional profiles, slope and slope orientation, it was possible to conclude that the surroundings of the RSDs have predominantly flat surfaces with a southeast-oriented slope, while their interiors have steeper sides with an eastward orientation. The seismic data revealed two units that may be associated with the Rippled Scour Depressions: paleochannels and coarse sediment deposits.

Keywords: Rippled Scour Depressions; marine geophysics; geoacoustic data.

LISTA DE FIGURAS

Figura 1- Localização da área de estudo16
Figura 2: Seção vertical indicando a composição bimodal do pós praia da área de
estudo17
Figura 3: Linhas sísmicas processadas24
Figura 4: Refletores e Rippled Scour depressions identificadas na área de estudo26
Figura 5: Aproximação para as marcas onduladas incidentes na área de estudo, ao
norte da plataforma continental interna da Barra da Lagoa
Figura 6: Marcas onduladas das feições mais ao norte da área de estudo, sem o
delimitação das cristas28
Figura 7: Sentido de migração das feições em relação ao norte e em relação à linha
de costa. Os números no mapa se remetem à numeração dada para cada feição
evidenciada. O diagrama indica para onde a feição migra
Figura 8: Gráfico do sentido de migração das marcas onduladas da área de estudo.
O diagrama indica para onde a feição migra31
Figura 9: Setorização do sentido de migração das marcas onduladas presentes na
área de estudo, com os gráficos indicando para onde a feição migra. As setas
indicam a direção de migração e as cores representam os setores da praia de
acordo com os gráficos á direita32
Figura 10: Batimetria da área de estudo, com ênfase na porção sul da plataforma
continental
Figura 11: Perfis batimétricos da área de estudo. O perfil "P" encontra-se
paralelo à linha de costa, e os perfis "T", transversais. 36
Figura 12: Declividade da área de estudo, com ênfase nas RSD
Figura 13: Orientação das vertentes da área de estudo, com ênfase nas RSD40
Figura 14: Perfil sísmico B-B'42
Figura 15: Perfil sísmico E-E'42
Figura 16: Linhas sísmicas sobrepostas às unidades mapeadas43

LISTA DE TABELAS

LISTA DE ABREVIATURAS E SIGLAS

- CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico
- DGPS Differential Global Positioning System
- DHN Diretoria de Hidrografia da Marinha
- RSD Rippled Scour Depressions
- SIG Sistema de Informações Geográficas
- SVL Sonar de Varredura Lateral

SUMÁRIO

1	INTRODUÇÃO1	3					
1.1	OBJETIVOS	5					
1.1.1	Objetivo Geral1	5					
1.1.2	Objetivos Específicos1	5					
2	MATERIAIS E MÉTODOS10	6					
2.1	ÁREA DE ESTUDO10	6					
2.2	AQUISIÇÃO DOS DADOS18	8					
2.2.1	Sonografia e Batimetria1	B					
2.2.2	Sísmica1	9					
2.3	PROCESSAMENTO DOS DADOS1	9					
2.3.1	Sonar de Varredura Lateral19	9					
2.3.2	Batimetria20	D					
2.3.3	Sísmica23	3					
3	RESULTADOS2	5					
3.1	SONAR DE VARREDURA LATERAL	5					
3.2	BATIMETRIA	3					
3.3	SÍSMICA4	1					
4	DISCUSSÃO44	4					
5	CONCLUSÃO4	7					
REFERI	ÊNCIAS4	B					
APÊND	ICE A – <i>SCRIPT</i> DA ROSA DE TRANSPORTE52	2					
APÊND	ICE B – DISTÂNCIA E ORIENTAÇÃO DAS CRISTAS DAS MARCAS	S					
ONDULADAS							
APÊNDICE C - RIPPLED SCOUR DEPRESSIONS E MARCAS ONDULADAS							
PRESENTES NA PORÇÃO INTERMEDIÁRIA DA ÁREA DE ESTUDO73							
APÊNDICE D – RIPPLED SCOUR DEPRESSIONS E MARCAS ONDULADAS							
PRESE	NTES NA PORÇÃO SUL DA ÁREA DE ESTUDO74	4					
APÊND	APÊNDICE E – PERFIS SÍSMICOS75						

1 INTRODUÇÃO

As zonas costeiras são influenciadas por agentes oceânicos, atmosféricos e continentais (CASTELLO; KRUG, 2017). O transporte de sedimentos e as características morfológicas do sistema praial estão relacionados a parâmetros físicos, denominados processos costeiros, que envolvem a ação de ondas, marés e ventos, além das correntes litorâneas geradas por esses fatores (SUGUIO, 2003).

As ondas são agentes dominantes na plataforma continental e antepraia (ROY *et al.*, 1994). Conforme as ondas se propagam de águas profundas para águas rasas, ocorre a diminuição do gradiente topográfico. Quando ela atinge o fundo, ocorre dissipação de uma parte da energia através da turbulência e a formação de correntes geradas por ondas, promovendo a ressuspensão de sedimentos, tornando-os passíveis ao transporte pelas correntes geradas por ondas (CASTELLO; KRUG, 2017).

Já as correntes geradas por marés são resultantes da subida e descida do nível do mar, formadas por alterações periódicas de curto prazo na superfície do oceano, decorrentes da combinação da força gravitacional da Lua e do Sol e dos movimentos da Terra. As correntes geradas por marés interferem na redistribuição de sedimentos em águas rasas, gerando correntes bidirecionais e rotacionais em águas rasas, transportando sedimentos (CASTELLO; KRUG, 2017 e GARRISON, 2010).

Além disto, o ambiente costeiro é resultado das variações do nível médio do mar (ROY *et al.*, 1994). As regressões e transgressões resultantes das variações do nível do mar deixam marcas nos registros geológicos. Durante episódios regressivos, quando o nível do mar estava mais baixo do que é atualmente, os sistemas de drenagem continental cortavam camadas da planície costeira e da plataforma continental. Com os eventos de transgressão marinha, os canais foram inundados e preenchidos primeiramente com sedimentos fluviais, depois estuarinos e costeiros (BROWDER; MCNINCH, 2006).

Esses sedimentos costeiros, integrados com a hidrodinâmica local, podem resultar na formação de feições de fundo, como as denominadas *Rippled Scour Depressions* (BROWDER; MCNINCH, 2006). De acordo com Cachione *et al.* (1984) estas são depressões, que variam de 0,2 a 1 m de profundidade, composta por areia mais grossa, em relação ao sedimento circundante.

A investigação geofísica indireta de áreas rasas pode ser dividida em dados de superfície e de subsuperfície. O primeiro refere-se a dados coletados com sonar de varredura lateral e batimetria, utilizados para realizar o mapeamento de fundo e a identificação de feições ou estruturas. O segundo refere-se aos dados de perfilagem sísmica, onde a espessura de camadas subsuperficiais se torna importante (SOUZA, 2008). Além destes, há a coleta de dados de forma direta, a qual possibilita que o pesquisador tenha contato direto (visual ou tátil) com o material que compõe a superfície de fundo, como por exemplo, amostragens, testemunhadores e fotografias a fim de validar os dados coletados de forma indireta.

A aquisição de tais dados esta fundamentada na impedância acústica do meio, que consiste na diferença de propagação dos pulsos sonoros emitidos pelas fontes acústicas decorrente dos diferentes contrastes de velocidade de propagação e das diferenças de densidade dos estratos sedimentares, resultado das propriedades físicas dos materiais/fluidos, como velocidade de propagação de ondas elásticas (SOUZA, 2006).

A impedância acústica (*I*) é matematicamente representada pela multiplicação da velocidade de propagação do som (V) pela densidade (ρ). Teoricamente, se os estratos forem homogêneos, não haverá reflexão das ondas acústicas. Quando a frente de onda encontra meios com diferentes contrastes de impedância acústica, parte da energia é refletida, retornando para os sensores presentes na superfície da coluna d'água (hidrofones) e outra parte da energia penetra nas camadas sedimentares (SOUZA, 2006).

Nesse contexto, o presente trabalho buscou detalhar as *Rippled Scour Depressions* presentes na plataforma continental interna do arco praial Barra da Lagoa – Moçambique, identificadas anteriormente por Porpilho (2015). E através do auxílio de dados sonográficos, batimétricos e sísmicos, trazer informações sobre área de abrangência, profundidade de ocorrência, sentido de migração das feições e sua relação com as camadas sedimentares de sub-fundo.

1.1 OBJETIVOS

1.1.1 Objetivo Geral

Descrever as *Rippled Scour Depressions* presentes na antepraia do Sistema Praial da Barra da Lagoa – Moçambique através da interpretação de dados batimétricos, sonográficos e sísmicos.

1.1.2 Objetivos Específicos

- Identificar e mensurar as *Rippled Scour Depressions* presentes na região através de dados sonográficos;
- Analisar o sentido de migração das *Rippled Scour Depressions* e das suas respectivas marcas onduladas;
- ✓ Identificar unidades estratigráficas que podem estar relacionadas com a presença das *Rippled Scour Depressions;*

2 MATERIAIS E MÉTODOS

2.1 ÁREA DE ESTUDO

A área de estudo encontra-se localizada entre 3 a 24 metros de profundidade, abrangendo a antepraia do sistema praial Barra da Lagoa - Moçambique, na porção leste da Ilha de Santa Catarina, município de Florianópolis, conforme pode ser observado na Figura 1.

Fonte: Elaborado pela autora em Projeção UTM, sistema de coordenadas geográficas SIRGAS 2000, FUSO 22S, com base na delimitação municipal e estadual fornecida pelo IBGE e *Basemap* disponibilizado pela *Esri* (2023).

A estratigrafia da antepraia é composta principalmente por uma espessa sequência (10 a 20 m) de sedimentos marinhos estratificados depositados sobre um embasamento rochoso irregular. Ao analisar os estratos, do mais recente para o mais antigo, Cooper *et. al.* (2018) observou a presença de sedimentos marinhos não consolidados formando o leito do mar atual (descrito pelo autor como unidade 5), seguido por uma unidade de sedimentos litorâneos depositados a um nível do mar de menos 50 metros (unidade 4), a unidade 3 corresponde ao preenchimento de antigos canais por sedimentos fluviais e estuarinos, seguida por uma camada de areia e lama (unidade 2) e por ultimo o embasamento rochoso, composto por rochas graníticas.

Do ponto de vista sedimentológico, a área de estudo é composta por areia fina a média de quartzo (média de 0,3 mm, σ = 0,14 mm), correspondendo a uma inclinação mais suave, com média de 4° (KLEIN *et al.*, 2016). Porpilho (2015) classifica a granulometria do pós-praia como bimodal, com sequência deposicional de areia fina, grossa e minerais pesados, visto de cima para baixo conforme seção vertical da Figura 2. A composição do leito marinho na antepraia também apresentoa composição bimodal sendo o interior das depressões caracterizadas por areia média a muito grossa e fragmentos carbonáticos e fora das depressões, areia muito fina a média.

Figura 2: Seção vertical indicando a composição bimodal do pós praia da área de estudo.

Fonte: Porpilho (2015).

A área de estudo se encontra exposta a incidência de ondas e classificada como intermediária com bancos múltiplos (KLEIN *et al.*, 2016). O regime de maré astronômica na região de estudo é caracterizado como de micromarés misto, com predominância semi-diurna (SCHETTINI, 2002), variando de 0,3 m na maré de quadratura e 1,2 m na maré de sizígia, podendo atingir até 1 m acima da maré prevista durante marés meteorológicas (TRUCOLLO, 1998 e TRUCOLLO *et al.*, 2006).

De acordo com Porpilho (2015), a partir de dados analisados no período de dezembro de 2013 a julho de 2014 com dados de ADCP Nortek-AWAC, no complexo praial Barra da Lagoa - Moçambique, ocorrem correntes bidirecionais, sendo que correntes para o sul (29,07%) prevaleceram sobre as que migram para o norte (27,06%), porém a magnitude de correntes norte se sobressaem próximas ao leito (0,6 m/s).

2.2 AQUISIÇÃO DOS DADOS

2.2.1 Sonografia e Batimetria

Os dados de geoacústica utilizados no presente projeto são oriundos do projeto "MMA-RISCOS", os quais consistem em dados de batimetria e sonar de varredura lateral.

Os dados foram aquisitados com um interferômetro EdgeTech ® 4600, com 540 kHz de frequência, durante expedições em 2014 e 2017, utilizando o programa *Hypack* 2013 (para batimetria) e o programa *Discover* (para dados sonográficos). Equipamentos auxiliares foram necessários para minimizar os erros durante a coleta, dentre eles, um sensor de movimentos - MRU-SMC-108, instalado no centro de massa da embarcação, um perfilador acústico Digibar S, e um *DGPS/Heading* modelo Novatel FlexPack6 com antenas dispostas a 1,5 m de distância.

Os dados de maré foram coletados utilizando um marégrafo *Tide Ohmex*, instalado ao sul da área de estudo, na praia de Naufragados, os quais foram necessários para corrigir a altura da coluna d'água em relação à batimetria local.

Antes de iniciar o levantamento hidrográfico foram medidos os off-sets, referenciando os equipamentos com relação ao centro de massa da embarcação

(onde o MRU foi instalado). Após isso, foi realizado o *patch test*, para corrigir os erros de montagem do ecobatímetro.

Com o interferômetro calibrado e referenciado de acordo com os *offsets*, foi iniciado o levantamento hidrográfico. O sistema de referência utilizado foi o Datum Horizontal SIRGAS 2000. De acordo com a NORMAN-25, o Levantamento Hidrográfico foi caracterizado como de ordem B, e apresentou espaçamento entre as linhas com 3 a 4 vezes a profundidade local.

2.2.2 Sísmica

Os dados de sísmica utilizados no presente estudo são oriundos do projeto "Application of Marine Geophysics to Continental Shelf Evolution: Control of Sediment Supply on Nearshore Stratigraphy", Conselho Nacional de Desenvolvimento Científico e Tecnológico - CPNq processo N° 205468/2014-4.

Para a aquisição dos dados foi utilizado um perfilador sísmico do tipo boomer (modelo 100J C-Boom), com frequência de 0,5- 2 kHz e resolução aproximada de 0,2 metros. Os dados foram coletados utilizando o programa Meridata, recobrindo 12,22 km.

2.3 PROCESSAMENTO DOS DADOS

2.3.1 Sonar de Varredura Lateral

Os dados brutos foram processados com o *software SonarWiz*[™]. O ponto de partida para o processamento dos dados foi a criação do projeto dentro do *software* e a importação dos dados em formato .JSF. Em seguida foi realizada a extração da coluna d'água (*Bottom track*) e exclusão das linhas espúrias. O ajuste do sinal foi realizado através da aplicação dos filtros *Time Variation Gain* (TVG) e *User Gain Control* (UGC), a fim de obter um mosaico homogêneo e com refletores evidentes. O mosaico foi exportado em formato .Geo-Tiff.

O sentido de migração das feições e das marcas onduladas foi obtido a partir da ferramenta "*Meansure On Map*" no SonarWiz™, onde o ângulo base (zero grau) aponta na direção norte . O sentido de migração das feições em relação à linha de costa foi obtido com o auxílio da carta náutica número 1902, intitulada "Proximidades da Ilha de Santa Catarina", de propriedade da Diretoria de Hidrografia da Marinha – DHN.

Em ambiente de Sistema de Informações Geográficas (SIG), através do software ArcMap[™], foi realizado o mapeamento das feições encontradas em escala 1:20, e elaborados os mapas em Datum Horizontal SIRGAS 2000 Fuso 22S.

As rosas de transporte foram geradas em código *Python* através da plataforma "*Google Colab*". Para identificação do sentido de migração das marcas onduladas foi utilizado N amostral de 1558 para toda a área de estudo e no mínimo 60 medições para cada feição. O *script* utilizado encontra-se no apêndice A e as distâncias e orientações das cristas das marcas onduladas encontram-se no apêndice B.

2.3.2 Batimetria

O processamento batimétrico foi realizado através do *software Hysweep*® 2017. Inicialmente, foi executada a correção horária dos dados em relação à maré observada e aos perfis de velocidade do som e o *patch test*. Foram eliminados os erros obtidos durante a aquisição (*spikes*) e posteriormente exportados em formato XYZ, com X sendo a latitude, Y a longitude e Z a cota encontrada.

Em ambiente SIG, através do ArcMap[™], os dados foram convertidos para *shapefile* e reprojetados para Datum Horizontal SIRGAS 2000 Fuso 22S para assim, ser realizada a interpolação a partir da ferramenta "*Natural Neighbor*" e obter o mapa batimétrico.

A declividade da área de estudo foi alcançada a partir da ferramenta "Slope", utilizando o método planar. Esta ferramenta identifica a inclinação em cada célula de um *raster*, onde, quanto menor o valor da inclinação, mais plana é a área, e quanto maior o valor, mais íngreme.

De acordo com Ligas e Banasik (2011), Hofmann-Wellenhof *et al.* (2001) e Eberly (1999), este método calcula a inclinação da área com base na taxa de variação (delta) da superfície nas direções horizontal (dz/dx) e vertical (dz/dy) da célula central para cada célula adjacente. A equação 1 mostra algoritmo básico usado para calcular a inclinação.

slope_radians = ATAN (
$$\sqrt{([dz/dx]^2 + [dz/dy]^2)}$$
) (1)

A inclinação foi medida em unidades de graus (°), a partir do seguinte algoritmo, onde 57,29578 é o resultado de 180/pi (equação 2).

slope_degrees = ATAN (
$$\sqrt{([dz/dx]^2 + [dz/dy]^2)}$$
) * 57.29578 (2)

As taxas de variação nas direções X e Y, para cada célula foram calculadas a partir dos algoritmos ilustrados nas equações 3 e 4, respectivamente. Onde wght1, wght2, wght3 e wght4 são as contagens ponderadas horizontais e verticais de células válidas.

$$[dz/dx] = ((c + 2f + i)*4/wght1 - (a + 2d + g)*4/wght2) / (8 * x_cellsize)$$
(3)

$$[dz/dy] = ((g + 2h + i)*4/wght3 - (a + 2b + c)*4/wght4) / (8 * y_cellsize)$$
(4)

Já a orientação das vertentes foi obtida a partir da ferramenta "*Hillshade*", a qual define a posição para uma fonte de luz hipotética e calcula os valores de iluminação de cada célula em relação às adjacentes. Por padrão, sombra e luz são tons de cinza associados a números inteiros de 0 a 255 (aumentando do preto para o branco).

De acordo com Burrough e McDonell (1998), o calculo da orientação das vertentes gerado no ArcMap[™] é obtido pela equação 5, onde o ângulo zenital é gerado pela equação 6 e convertido para radianos pela equação 7; o ângulo azimutal é resultado da equação 8 e convertido em radianos pela equação 9; a inclinação da superfície (equação 12) é derivada da taxa de variação na direção horizontal em X e vertical em Y (equação 10 e 11, respetivamente).

Hillshade = 255.0 * ((cos(Zenith_rad) * cos(Slope_rad)) + (sin(Zenith_rad) * sin(Slope_rad) * cos(Azimuth_rad - Aspect_rad))) (5)

(7)

 $Zenith_deg = 90.0 - Altitude$ (6)

Zenith_rad = Zenith_deg * pi / 180

 $Azimuth_math = 360.0 - Azimuth + 90$

Azimuth_rad = Azimuth_math * pi / 180 (9)

$$[dz/dx] = ((c + 2f + i) - (a + 2d + g)) / (8 * cellsize) (10)$$

$$[dz/dy] = ((g + 2h + i) - (a + 2b + c)) / (8 * cellsize) (11)$$

Slope_rad = ATAN (z_factor *
$$\sqrt{([dz/dx]^2 + [dz/dy]^2)}$$
 (12)

O aspecto, denominado como "Aspect_rad" na equação 5, é definido como a direção voltada para a encosta mais íngreme. Em radianos, é definido pelo intervalo de 0 a 2pi, com 0 na direção leste. O aspecto é determinado pelas equações 13, 14, 15 e 16, a depender do valor de dz/dx e dz/dy.

Se [dz/dx] é diferente de zero: Aspect_rad = atan2 ([dz/dy], -[dz/dx])					
Se Aspect_rad < 0 então					
Aspect_rad = 2 * pi + Aspect_rad	(14)				
Se [dz/dx] é zero:					
Se [dz/dy] > 0 então					
Aspect_rad = pi / 2	(15)				
Se [dz/dy] < 0 então					
Aspect_rad = 2 * pi - pi / 2	(16)				

Os resultados foram obtidos com resolução de 10 metros e passaram pela correção dos dados espúrios através da funcionalidade "*fill*", a qual remove picos com maior elevação do que seria esperado dada a tendência da superfície circundante.

Finalmente, foram gerados os perfis paralelos e transversais à linha de costa, a partir da batimetria, utilizando o "*3D Analyst*".

(8)

2.3.3 Sísmica

Para realizar o processamento dos dados sísmicos foi utilizado o *software SonarWiz*[™], utilizando o mesmo projeto já existente, proveniente dos dados de Sonar de Varredura Lateral - SVL. Após a importação dos dados em formato .SGY e conversão automática para .CSf, foram aplicados filtros e ganhos.

Primeiramente, foi aplicado o filtro *swell*, com período de 8 segundos e posteriormente, o filtro passa banda, em janela de 500 a 2000 Hz. Em seguida, foram aplicados os filtros *Automatic Gain Control* (ACG) *e Time Variation Gain* (TVG). Ainda no *SonarWiz*[™] foram analisadas as profundidades dos talvegues identificados. Para a interpretação dos perfis sísmicos, o perfil A-A' foi exportado com compressão de 1 pixel e o perfil C-C' foi exportado com compressão de 1,5 pixel.

As linhas sísmicas foram exportadas ainda em formato *shapefile*, para elaboração dos mapas em ambiente SIG. A Figura 3 apresenta as linhas sísmicas analisadas no presente trabalho.

Fonte: Elaborado pela autora em Projeção UTM, sistema de coordenadas geográficas SIRGAS 2000, FUSO 22S, com *Basemap* disponibilizado pela *Esri* (2023).

3 RESULTADOS

3.1 SONAR DE VARREDURA LATERAL

Os dados provenientes do Sonar de Varredura Lateral recobriram uma área de 8,76 km² na antepraia do sistema praial Barra da Lagoa - Moçambique. A aquisição e processamento dos dados resultaram no mosaico ilustrado na Figura 4, o qual possibilitou a identificação de dois diferentes refletores. O *refletor I* com coloração mais clara e resposta acústica mais intensa e o *refletor II* com coloração mais escura, e resposta acústica menos intensa.

A partir do mapeamento do *refletor I*, foram identificadas 26 *Rippled Scour Depression* no setor centro-sul da área de estudo.

Na Figura 5 é possível observar a presença de marcas onduladas no interior das *Rippled Scour Depressions,* para a porção norte da área de estudo. A Figura 6, ilustra maior detalhamento de tais feições. O mapeamento realizado para a porção intermediária e sul encontram-se no apêndice C e D, respectivamente.

Figura 4: Refletores e Rippled Scour depressions identificadas na área de estudo.

Fonte: Elaborado pela autora em Projeção UTM, sistema de coordenadas geográficas SIRGAS 2000, FUSO 22S, com *Basemap* disponibilizado pela *Esri* (2023).

Figura 5: Aproximação para as marcas onduladas incidentes na área de estudo, ao norte da plataforma continental interna da Barra da Lagoa.

Fonte: Elaborado pela autora em Projeção UTM, sistema de coordenadas geográficas SIRGAS 2000, FUSO 22S, com *Basemap* disponibilizado pela *Esri* (2023).

Figura 6: Marcas onduladas das feições mais ao norte da área de estudo, sem o delimitação das cristas.

Fonte: Elaborado pela autora (2023)

A partir das *Rippled Scour Depressions* mapeadas foi identificado o ângulo da linha de costa em relação ao norte, os quais apresentaram valor mínimo de 2°, máximo de 352 ° e média de 41°, o ângulo das feições em relação ao norte com valor mínimo de 281°, máximo de 308° e média de 295°, e por ultimo o ângulo da feição em relação à linha de costa com valor mínimo de 204°, máximo de 298° e média de 275°, conforme apresentado na Tabela 1.

Com base nos dados obtidos, foi elaborado o diagrama roseta evidenciando o sentido de migração da feição em relação ao norte e em relação à linha de costa (Figura 7), a qual confirma que o sentido predominante de migração em relação ao norte é de noroeste enquanto o sentido predominante de migração das feições em relação à linha de costa é oeste.

Identificação	Largura (m)	Comprimento (m)	Ângulo da linha de costa relação ao	Ângulo da feição em relação ao	Ângulo da feição em relação à linha
Foição 1	22.1	0.00	norte ()	norte ()	
Feição 2	82.3	/13 7	24	308	281
Feição 3	53.0	254.0	24	299	278
Feição 4	221.3	216.3	21	292	278
Feição 5	92.2	257.3	23	302	279
Feição 6	186 7	547.9	23	302	275
Feição 7	221.4	629 3	23	297	275
Feição 8	112.7	116.4	19	297	278
Feição 9	48.1	93.8	18	296	278
Feição 10	67.0	492.5	18	294	276
Feicão 11	113.3	217.4	16	292	276
Feição 12	65,1	316,6	15	301	286
Feição 13	, 51,9	190,9	16	298	282
Feição 14	26,0	183,2	20	294	274
Feição 15	48,4	370,0	17	301	284
Feição 16	70,3	529,5	16	298	282
Feição 17	38,6	182,4	11	294	283
Feição 18	33,6	209,1	4	281	277
Feição 19	351,2	322,6	8	285	277
Feição 20	328,7	638,0	11	285	274
Feição 21	193,4	166,8	8	295	287
Feição 22	537,8	490,6	6	288	282
Feição 23	579,8	391,5	2	300	298
Feição 24	53,3	307,3	352	286	204
Feição 25	362,3	79,0	4	298	294
Feição 26	407,8	178,9	346	287	211

Tabela 1: Ângulo de cada feição em relação ao norte e à linha de costa.

Fonte: Elaborado pela autora (2023).

Figura 7: Sentido de migração das feições em relação ao norte e em relação à linha de costa. Os números no mapa se remetem à numeração dada para cada feição evidenciada. O diagrama indica para onde a feição migra.

Fonte: Elaborado pela autora. Mapa em Projeção UTM, sistema de coordenadas geográficas SIRGAS 2000, FUSO 22S, com *Basemap* disponibilizado pela *Esri* (2023).

Em relação ao sentido de migração das marcas onduladas presentes no interior das depressões considerando toda a área de estudo, observou-se que a orientação predominante é no sentido oeste, entretanto verifica-se que ocorre também migração no sentido noroeste e sudoeste (Figura 8).

Figura 8: Gráfico do sentido de migração das marcas onduladas da área de estudo. O diagrama indica para onde a feição migra.

Fonte: Elaborado pela autora (2023).

Ao setorizar a área de estudo, conforme consta na Figura 9, foi possível observar que no setor norte, o sentido predominante de migração das marcas onduladas foi de noroeste, oeste e norte, no setor central, oeste e no setor sul, oeste e sudoeste.

Figura 9: Setorização do sentido de migração das marcas onduladas presentes na área de estudo, com os gráficos indicando para onde a feição migra. As setas indicam a direção de migração e as cores representam os setores da praia de acordo com os gráficos á direita.

Fonte: Elaborado pela autora. Mapa em Projeção UTM, sistema de coordenadas geográficas SIRGAS 2000, FUSO 22S, com Basemap disponibilizado pela Esri (2023).

3.2 BATIMETRIA

Através do levantamento batimétrico, o qual abrangeu a mesma área observada na sonografia, foi possível observar que as isóbatas estão dispostas de forma paralela à linha de costa. Em relação à profundidade, a mínima observada foi de aproximadamente 3 metros, próximo à desembocadura do canal da Barra da Lagoa, e a máxima foi de 24 metros, na região a nordeste na plataforma continental interna da praia do Moçambique (Figura 10). Em relação à identificação das *Rippled Scour Depressions*, as mesmas se mostraram evidentes na batimetria de varredura, através das áreas mais profundas dispostas de forma transversal à linha de costa.

Figura 10: Batimetria da área de estudo, com ênfase na porção sul da plataforma continental.

Fonte: Elaborado pela autora em Projeção UTM, sistema de coordenadas geográficas SIRGAS 2000, FUSO 22S, com *Basemap* disponibilizado pela *Esri* (2023).

A Figura 11 apresenta os perfis batimétricos da área de estudo, dispostos de forma paralela à linha de costa (perfil "P") e transversais (perfis "T"). Os resultados mostraram que, além da evidência das feições ilustradas na batimetria de varredura, elas também encontraram-se aparentes nos perfis batimétricos, através da presença de desníveis, formando depressões.

Outro resultado foi a indicação de que as depressões evidenciadas de forma paralela à linha de costa são mais íngremes em comparação aos perfis transversais. Em contrapartida, observou-se que as depressões dos perfis paralelos apresentam um lado mais íngreme e profundo, mas não sendo regra.

Figura 11: Perfis batimétricos da área de estudo. O perfil "P" encontra-se paralelo à linha de costa, e os perfis "T", transversais.

Fonte: Elaborado pela autora. Mapa em Projeção UTM, sistema de coordenadas geográficas SIRGAS 2000, FUSO 22S, com Basemap disponibilizado pela Esri (2023).
A Figura 12 apresenta a declividade da área de estudo, ou seja, mostra a taxa de variação vertical do leito marinho em relação à horizontal. Os resultados apontaram que conforme diminui a profundidade, aumenta a declividade, variando de 2° a 3°. Outro resultado importante refere-se às áreas do entorno das feições, as quais se mostraram mais planas, com declividade entre 0° a 1°. Já o interior das feições, apresentaram maior variação de declividade, com inclinações variando de 2,5° a 3°.

As áreas mais íngremes observadas anteriormente (Figura 11) também podem ser observadas na Figura 12, ou seja, os resultados corroboraram a presença de um lado com declividade mais acentuada no interior das *Rippled Scour Depressions*.

Fonte: Elaborado pela autora em Projeção UTM, sistema de coordenadas geográficas SIRGAS 2000, FUSO 22S, com *Basemap* disponibilizado pela *Esri* (2023).

De modo geral, um mapa de orientação das vertentes mostra a orientação para a qual as inclinações de uma área apontam. Conforme foi observado na Figura 13, as áreas fora das *Rippled Scour Depressions* apresentaram direção predominante de sudeste. Nas áreas sobrepostas às feições, notou-se o aumento da frequência das vertentes na direção leste, e ainda, ao avançar no sentido sul, os dados evidenciaram uma maior desordem, indicando vertentes no sentido norte, nordeste e noroeste.

Figura 13: Orientação das vertentes da área de estudo, com ênfase nas RSD

Fonte: Elaborado pela autora em Projeção UTM, sistema de coordenadas geográficas SIRGAS 2000, FUSO 22S, com *Basemap* disponibilizado pela *Esri* (2023).

3.3 SÍSMICA

Os dados provenientes dos 8 registros sísmicos abrangeram 12,22 km da área de estudo e sua respectiva interpretação focou na identificação de unidades que pudessem estar relacionadas com a presença das *Rippled Scour Depressions*.

Os refletores acústicos mapeados consistiram no *fundo marinho*, caracterizado pela camada sedimentar mais recente e as áreas com *múltipla reflexão*, tidas como demarcações paralelas e simétricas ao leito marinho, resultado dos ruídos gerados no sinal acústico durante a aquisição dos dados. As duas unidades estratigráficas identificadas consistem na *Unidade I*, correpondente às feições mergulhantes em relação ao leito marinho bem demarcadas e a *Unidade II*, equivalente à feições subparalelas ao leito marinho localizadas geralmente em subsuperfície, com alta impedância acústica e sem continuidade lateral, caracterizadas por sedimentos grossos. Em relação ao tempo geológico, a *Unidade I* mostrou-se mais antiga em relação à *Unidade II*.

Os resultados mostraram ainda que penetração acústica atingiu em média 20 a 37 m de coluna sedimentar cujas reflexões se destacaram por uma forte diferença de impedância acústica e, continuidades laterais bem definidas.

A Figura 14 e Figura 15 apresentam a interpretação dos perfis sísmicos B-B' e E-E', os quais ilustram os refletores e unidades estratigráficas supracitadas. Os demais registros analisados encontram-se no Apêndice E.

Fonte: Elaborado pela autora (2023).

Figura 15: Perfil sísmico E-E'

Fonte: Elaborado pela autora (2023).

A Figura 16 apresenta a disposição das linhas sísmicas sondadas sobrepostas ao mosaico de sonografia e às unidades mapeadas. Conforme pode-se observar 70,13% dos registros sísmicos estavam sobrepostos à Unidade I (paleocanais) enquanto 2,36% estavam sobrepostos à Unidade II (sedimentos grossos).

Fonte: Elaborado pela autora em Projeção UTM, sistema de coordenadas geográficas SIRGAS 2000, FUSO 22S, com *Basemap* disponibilizado pela *Esri* (2023).

4 DISCUSSÃO

A combinação dos resultados obtidos a partir do sonar de varredura lateral e batimetria contribuíram para a identificação e caracterização das feições evidenciadas na antepraia do sistema praial da Barra da Lagoa-Moçambique. Os dois refletores identificados no mosaico da Figura 4, são provenientes da diferença no retorno do sinal acústico, onde as regiões com coloração mais clara apresentam um sinal acústico mais intenso, e consequentemente um sedimento mais grosso e com maior rugosidade, enquanto as áreas com coloração mais escura possuem uma resposta acústica menos intensa, sugerindo a presença de sedimentos mais finos (ARENDARTCHUK, 2018). Constituindo assim, uma composição bimodal no leito marinho da área de estudo e corroborando os resultados obtidos por Porpilho (2015).

Tais dados evidenciaram ainda a presença de marcas onduladas no interior das áreas com maior intensidade do sinal. Ao setorizar a região da área de estudo, onde há RSD, em norte, central e sul, observou-se que o sentido de migração das marcas onduladas é predominantemente em direção à linha de costa (Figura 9).

Ao associar os dados de batimetria com as áreas do mosaico proveniente do Sonar de Varredura Lateral, observou-se que as regiões com o retorno do sinal menos intenso apresentam isóbatas configuradas de forma paralela à linha de costa. No entanto, ao analisar no interior das áreas com maior retorno do sinal, há uma descontinuidade nas isóbatas, sugerindo maiores profundidades na região disposta de forma transversal à linha de costa.

Ainda, os resultados de propagação de onda propostos por Silva (2014) mostraram que os setores norte e central do arco praial Barra da Lagoa – Moçambique encontram-se abrigados em relação a ondas provenientes da direção nordeste. Ondas provenientes da direção leste expõe a área de estudo e ondulações de sul e sudeste são atenuadas nas porções sul e central. Podendo este, ser um dos fatores relacionados com a formação das feições na área de estudo e a orientação do sentido de migração das marcas onduladas.

Reimnitz *et al.* (1976), Cacchione *et al.* (1984), Murray e Thieler (2004), Ferrini e Flood (2005), Garnaud *et al.* (2004), Holland e Elmore (2008), Iacono e Guillen (2008), Bellec *et al.* (2010), Davis *et al.* (2013) e Arendartchuk (2018) descrevem as *Rippled scour depressions* como depressões alongadas, geralmente na ordem de 0,4 - 1,0 m, dispostas de forma transversal à linha de costa entre as profundidades de 5 m a 80 m, com largura variando de 10 a 100 metros e até 3 km de comprimento e granulação mais grossa (0,3 - 1,0 mm) em relação ao sedimento circundante.

Logo, pode-se concluir que ocorre no interior da área de estudo *Rippled Scour Depressions* com profundidade de 6 a 18 metros, largura de 22,1 à 579,8 metros e comprimento de 79,0 a 638,0 metros. Os dados sedimentológicos descritos por Porpilho (2015), mostraram que os sedimentos do interior da depressão apresentaram mediana de 1 mm, indicando a presença de areia média à grossa.

Aprofundando as averiguações a respeito das RSD presentes na área de estudo a partir de análises de geoprocessamento, verificou-se que a declividade no entorno das RSD são predominantemente planas e com orientação das vertentes no sentido sudeste e o seu interior apresenta um lado mais íngreme com sentido leste, conforme pode ser observado na Figura 12 e Figura 13. Essas áreas com declividade acentuada possuem ainda maiores profundidades (Figura 11, perfil P-P'). Murray e Thieler (2004) classificam esse padrão como "*wispy edge*", as quais possuem sedimentos mais finos e refletem a corrente predominante da região.

Os perfis transversais à linha de costa (Figura 11) se mostraram mais suaves em comparação com o perfil paralelo, refletindo o alongamento das depressões descritas por Davis *et al.* (2013), contudo permaneceram evidenciadas as depressões presentes na área de estudo.

As interfaces observadas nos perfis sísmicos são resultado dos contrates de impedância acústica proveniente das diferenças entre as propriedades físicas do meio, as quais aparecem nos registros sísmicos como refletores, correspondendo às camadas geológicas (AYRES NETO, 2000). Dentre as propriedades pode-se citar o tamanho dos grãos, morfologia e redondeza dos grãos, textura, porosidade, empacotamento e permeabilidade de toda a rocha (DEMARCO *et al.*, 2017). Isto é, sedimentos mais compactados, menos porosos e com menos água intersticial refletirão maior energia.

A partir disso, foram mapeadas duas unidades nos perfis sísmicos que podem estar associadas com as *Rippled Scour Depressions* da área de estudo. A primeira (*Unidade I*), correspondente aos paleocanais e caracterizada como feições mergulhantes com continuidades laterais bem demarcadas, configurados por preenchimento interno em *onlap* (perfis A-A', D-D' e E-E'), progradante (perfis B-B', C-C', E-E', G-G' e H-H'), Complexo (perfil C-C'), divergente (perfil F-F') e Montiforma (perfis G-G' e H-H') (RIBEIRO, 2001).

Segundo Demarco *et al.* (2017), a diferença de impedância acústica, refletida através da amplitude do sinal acústico, permite aferir a análise granulométrica do sedimento, onde os valores mais baixos representam granulação fina e altos valores, sedimentos grossos. Por conta disso, a Unidade II mapeada nos registros sísmicos correspondem aos *sedimentos grossos*, considerando a descontinuidade lateral e a intensidade do sinal na região.

De acordo com Cacchione *et al.* (1984) e Arendartchuk (2018), as RSD estão associadas a eventos de alta energia, a qual expõe os sedimentos grossos soterrados, e formam as feições. Murray e Thieler (2004) sugerem que ocorre autoorganização do leito marinho a partir de processos hidrodinâmicos. Já Schwab *et al.* (2000) especulam que as RSD são resultado o retrabalhamento de Depósitos Pleistoscenicos durante eventos de alta energia por processos ao longo da costa. Pilkey *et al.* (1993) e Komar (1998) apontam que as feições estão associadas à energia de onda e ao tamanho do grão. E Browder e McNinch (2006) sugerem que ocorre a exposição de material grosseiro proveniente de paleocanais e posterior processo de auto-organização.

A partir disso, e com base nos resultados apresentados observou-se que as RSD estudadas estavam, majoritariamente, sobrepostas à paleocanais com profundidades entre 2,76 a 16,97 metros, com exceção de duas regiões, a primeira no perfil D-D' e a segunda no perfil E-E'. E ainda, que não foram identificados afloramentos de sedimentos relíquias nos registros, sendo que as regiões contíguas às RSD sugerem a presença de depósitos sedimentares soterrados com maior granulometria.

No entanto, salienta-se que não foi possível inferir sobre sua origem das *Rippled Scour Depressions* a partir dos resultados encontrados, sendo necessário, portanto, dados e análises complementares para tal conclusão.

5 CONCLUSÃO

A partir do recobrimento de 8,76 km² da antepraia do Sistema praial Barra da Lagoa - Moçambique foi possível identificar a presença de 26 *Rippled Scour Depressions*, concentradas na porção central e sul da área de estudo. Com migração das feições e suas respectivas marcas onduladas em direção à linha de costa, isto é, a oeste.

Concomitantemente, os dados sísmicos mostraram duas unidades que podem estar associadas às *Rippled Scour Depressions*, os paleocanais e depósitos sedimentares soterrados com maior granulometria. No entanto, sugere-se a coleta de testemunhos que possibilitem a análise estratigráfica sedimentar, a fim de confirmar a granulometria subsuperficial.

Ao relacionar os dados batimétricos, sonográficos e sísmicos, pode-se concluir que as feições encontradas possuem profundidade de 6 à 18 metros, largura de 22,1 à 579,8 metros e comprimento de 79,0 à 638,0 metros, com declividade mais acentuada predominantemente na face norte e com orientação da vertente no sentido leste.

De modo geral, os dados utilizados se mostraram satisfatórios para o objetivo do trabalho, e possibilitaram a descrição das *Rippled Scour Depressions* presentes na área de estudo. Para trabalhos futuros sugere-se que seja realizada a reconstrução da paleodrenagem da região e a identificação da origem das feições conforme as hipóteses propostas na literatura.

REFERÊNCIAS

ARENDARTCHUK, F. Caracterização Morfosedimentar da Plataforma Continental Interna ao Sul da Ilha de Santa Catarina. 2018. 124 f. Dissertação (Mestrado) - Curso de Oceanografia, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, 2018.

AYRES NETO, A. Uso da sísmica de reflexão de alta resolução e da sonografia na exploração mineral submarina. **Revista Brasileira de Geofísica**, [S.L.], v. 18, n. 3, p. 241-256, 2000. FapUNIFESP (SciELO). <u>http://dx.doi.org/10.1590/s0102-261x2000000300004</u>.

BELLEC, V. K.; BØE, R.; RISE, L.; SLAGSTAD, D.; LONGVA, O.; DOLAN, M. F.J.. Rippled scour depressions on continental shelf bank slopes off Nordland and Troms, Northern Norway. **Continental Shelf Research**, [S.L.], v. 30, n. 9, p. 1056-1069, maio 2010. Elsevier BV. http://dx.doi.org/10.1016/j.csr.2010.02.006.

BROWDER, A. G.; MCNINCH, J. E.. Linking framework geology and nearshore morphology: correlation of paleo-channels with shore-oblique sandbars and gravel outcrops. **Marine Geology**, [S.L.], v. 231, n. 1-4, p. 141-162, set. 2006. Elsevier BV. <u>http://dx.doi.org/10.1016/j.margeo.2006.06.006</u>.

BURROUGH, P. A.; MCDONNELL, R. A.. **Principles of Geographical Information Systems**. Oxford University Press, Oxford. 1998.

CACCHIONE, D. A. et al. Rippled scour depressions on the inner continental shelf off central California. **Journal of Sedimentary Petrology**, The Society of Economic Paleontologists and Mineralogists, v. 54, n. 4, p. 1280-1291, Dec. 1984.

CASTELLO, J. P.; KRUG, L. C. (org.). Introdução às Ciências do Mar. Pelotas: Editora Textos, 2017. 603 p.

CHESAPEAKE TECHNOLOGY. **SonarWiz 7.7** User Guide: revision 7.07.03. Califórnia, 1524p, 2021.

COOPER, J.A.G.; MEIRELES, R.P.; GREEN, A.N.; KLEIN, A.H.F.; TOLDO, E.e.. Late Quaternary stratigraphic evolution of the inner continental shelf in response to sea-level change, Santa Catarina, Brazil. **Marine Geology**, [S.L.], v. 397, p. 1-14, mar. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.margeo.2017.11.011.

DAVIS, A. C.D.; KVITEK, R. G.; MUELLER, C. B.A.; YOUNG, M. A.; STORLAZZI, C. D.; PHILLIPS, E. L.. Distribution and abundance of rippled scour depressions along the California coast. **Continental Shelf Research**, [S.L.], v. 69, p. 88-100, out. 2013. Elsevier BV. http://dx.doi.org/10.1016/j.csr.2013.09.010.

DEMARCO, L. F. W. *et al.* Marine substrate response from the analysis of seismic attributes in CHIRP sub-bottom profiles. **Brazilian Journal Of Oceanography**, [S.L.], v. 65, n. 3, p. 332-345, set. 2017. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1679-87592017124306503.

DIRETORIA DE HIDROGRAFIA E NAVEGAÇÃO. **NORMAM 25**: Normas da Autoridade Marítima para Levantamentos Hidrográficos. Brasil, 2020.

EBERLY, D. Least Squares Fitting of Data (Geometric Tools, LLC), pp. 3. 1999.

ESRI - Environmental Systems Research Institute. Software ArcGis Desktop, License Type ArcInfo, version 10. 2011.

FERRINI, V. L.; FLOOD, Roger D.. A comparison of Rippled Scour Depressions identified with multibeam sonar: evidence of sediment transport in inner shelf environments. **Continental Shelf Research**, [S.L.], v. 25, n. 16, p. 1979-1995, out. 2005. Elsevier BV. http://dx.doi.org/10.1016/j.csr.2005.07.002.

GARNAUD, S.; LESUEUR, P.; GARLAN, T. Origin of rippled scour depressions associated with cohesive sediments in a shoreface setting (eastern Bay of Seine, France). **Geo-Marine Letters**, [S.L.], v. 25, n. 1, p. 34-42, 3 dez. 2004. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s00367-004-0186-x.

GARRISON, T. Fundamentos de oceanografia. São Paulo: Cengage Learning, 2010. 526 p.

HOFMANN-WELLENHOF, B. *et al.* Global Positioning System - Theory and Practice. New York: Springer-Verlag Wien, 2001.

HOLLAND, K.T.; ELMORE, P.A.. A review of heterogeneous sediments in coastal environments. **Earth-Science Reviews**, [S.L.], v. 89, n. 3-4, p. 116-134, ago. 2008. Elsevier BV. http://dx.doi.org/10.1016/j.earscirev.2008.03.003.

KLEIN A. H. F., SHORT A. D., BONETTI J. **Santa Catarina beach systems**. In: Short A. D., Klein A. H. F. (eds) Brazilian Beach Systems. Chapter 17. Coastal Research Library 17. Springer, Switzerland, 465-506p, 2016.

KOMAR, P. D.. **Beach processes and sedimentation**. 2. ed. Upper Saddle River, New Jersey: Prentice Hall, 1998. 544 p.

LIGAS, M.; BANASIK, P. Conversion between Cartesian and geodetic coordinates on a rotational ellipsoid by solving a system of nonlinear equations. **Geodesy And Cartography**, [S.L.], v. 60, n. 2, p. 145-159, 1 jan. 2011. Polish Academy of Sciences Chancellery. http://dx.doi.org/10.2478/v10277-012-0013-x.

LO IACONO, C.; GUILLÉN, J. Environmental conditions for gravelly and pebbly dunes and sorted bedforms on a moderate-energy inner shelf (Marettimo Island, Italy, western Mediterranean). **Continental Shelf Research**, [S.L.], v. 28, n. 2, p. 245-256, fev. 2008. Elsevier BV. http://dx.doi.org/10.1016/j.csr.2007.08.005.

Manual Boomer C-Boom. Disponível em: < <u>https://www.gosubsea.no/wp-</u> <u>content/uploads/C_Boom_Specifications.pdf</u>>. Acesso em: 22 de fev. 2023.

Manual HYPACK 2013. Hydrographic Survey Software. 1784p.

Manual SonarWiz 7. Chesapeake Technology. 1524p.

MURRAY, A. B.; THIELER, E.Robert. A new hypothesis and exploratory model for the formation of large-scale inner-shelf sediment sorting and "rippled scour depressions". **Continental Shelf Research**, [S.L.], v. 24, n. 3, p. 295-315, fev. 2004. Elsevier BV. http://dx.doi.org/10.1016/j.csr.2003.11.001.

PILKEY, O. H. *et al.* The Concept of Shoreface Profile of Equilibrium: A Critical Review. **Journal Of Coastal Research.** Fort Lauderdale, Florida, p. 255-278. 1993.

PORPILHO, D. Padrão Morfológico e Sonográfico da Plataforma CONTINENTAL Interna Adjacente ao Setor Leste da Ilha de Santa Catarina. 2015. 142 f. Dissertação (Mestrado) - Curso de Geografia, Centro de Filosofia e Ciências Humanas, Universidade Federal de Santa Catarina, Florianópolis, 2015.

REIMNITZ, E. *et al.* Possible rip current origin for bottom ripple zones, to 30-m depth. **Geology**, [S.L.], v. 4, n. 7, p. 395, 1976. Geological Society of America. https://doi.org/10.1130/0091-7613(1976)4<395:PRCOFB>2.0.CO;2

RIBEIRO, H. J. P. S. (org.). Estratigrafia de Sequências Fundamentos e Aplicações. São Leopoldo: Unisinos, 2001.

ROY, P. S. *et al.* **Coastal evolution : Late Quaternary shoreline morphodynamics**: wave-dominated coasts. New York: New York : Cambridge University Press, 1994. 517 p.

SCHETTINI, C. Caracterização Física do Estuário do Rio Itajaí-açu, SC. **Revista Brasileira de Recursos Hídricos**, [S.L.], v. 7, n. 1, p. 123-142, 2002. FapUNIFESP (SciELO). http://dx.doi.org/10.21168/rbrh.v7n1.p123-142.

SILVA, P. G. Exposição à Inundação Costeira nas Praias dos Ingleses, Moçambique e Barra da Lagoa, Florianópolis, SC. 2014. 237 f. Dissertação (Mestrado) - Curso de Geografia, Centro de Filosofia e Ciências Humanas, Universidade Federal de Santa Catarina, Florianópolis, 2014.

SOUZA, L. A. P. **Revisão crítica da aplicabilidade dos métodos geofísicos na investigação de áreas submersas rasas**. 2006. 311 f. Tese (Doutorado) - Curso de Ocenografia, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, 2006.

SOUZA, L. A. P. A investigação sísmica de áreas submersas rasas: Parte 1fundamentos e Demandas. Boletim da SBGF, n. 2, p. 11 – 19. 2008

SCHWAB, W. C. *et al.* Influence of Inner-Continental Shelf Geologic Framework on the Evolution and Behavior of the Barrier-Island System between Fire Island Inlet and Shinnecock Inlet, Long Island, New York. **Journal Of Coastal Research.** Florida, p. 408-422. 2000.

SUGUIO, Kenitiro. Geologia sedimentar. São Paulo: Edgard Blucher, 2003. 400 p.

TRUCCOLO, E. C. Maré meteorológica e forçantes atmosféricas locais em São **Francisco do Sul – SC**. 1998. 116 f. Dissertação (Mestrado) - Curso de Engenharia Ambiental, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, Florianópolis, 1998.

TRUCCOLO, E. C.; FRANCO, D.; SCHETTINI, C. The low frequency sea level oscillations in the northern coast of Santa Catarina, Brazil. Journal of Coastal

Research, SI 39 (proceedings of the 8th International Coastal Simposium), 547 – 522. Itajaí, SC, Brazil, 2006. ISSN,0749-0208.

APÊNDICE A – Script da Rosa de Transporte

```
diretorio =
'https://drive.google.com/drive/folders/1MOJF1KXSxyZQAUc2XkrO5d8Do8kEBR
bN?usp=sharing'
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
!apt-get -qq install -y libfluidsynth1
!apt-get -qq install -y graphviz && pip install pydot
import pydot
!pip install cartopy
import cartopy
!pip install windrose
from windrose import WindroseAxes
from google.colab import files
dados = pd.read csv('/content/sample data/dados A806 H 2023-04-28 2023-
07-24 Julho.csv', delimiter=';')
plt.rcParams["font.size"] = 20
ax = WindroseAxes.from ax()
ax.bar(dados.Dir, dados.Int,
       normed=True, bins=np.arange(0,10,2),
       opening=0.8, edgecolor='white')
lgd = ax.set legend(title='Vel. do Vento (m/s)', loc=(1.1, 0),
shadow=False)
plt.setp(lgd.get texts(), fontsize=18)
ax.set_yticks(np.arange(0, 20, step=4))
ax.set yticklabels(np.arange(0, 16, step=4), fontsize='14')
plt.title("Rosa dos ventos", y=1.08, fontsize='20')
plt.savefig('Windrose.png', bbox extra artists=(lgd,),
bbox inches='tight')
```

	ÁREA 1			AREA 2	
Crista	Distancia (m)	Orientação (°)	Crista	Distancia (m)	Orientação (°)
1	0,873	30	1	0,688	72
2	1,024	3	2	0,864	39
3	0,647	29	3	0,793	35
4	0,746	22	4	1,126	50
5	0,846	25	5	0,475	63
6	0,504	17	6	0,647	48
7	1,001	40	7	0,68	48
8	0,566	25	8	0,646	56
9	0,634	36	9	0,935	53
10	0,659	38	10	0,897	57
11	0,617	43	11	0,873	39
12	0,705	36	12	0,436	29
13	1,178	2	13	0,792	25
14	0,546	3	14	0,68	75
15	0,61	12	15	0,464	21
16	0,817	355	16	1,149	43
17	0,567	354	17	0,467	58
18	0,716	349	18	0,721	71
19	0,983	356	19	0,792	36
20	0,869	354	20	1,157	53
21	0,58	357	21	0,804	67
22	0,571	349	22	0,792	46
23	0,705	344	23	0,396	43
24	0,751	332	24	0,932	40
25	0,61	334	25	0,612	43
26	0,515	351	26	0,647	17
27	0,675	2	27	1,149	25
28	0,567	335	28	0,494	25
29	0,92	5	29	0,614	6
30	0,716	357	30	0,61	13
31	1,016	354	31	0,52	20
32	0,759	356	32	1,001	338
33	1,121	353	33	1,082	356
34	0,61	356	34	0,43	57
35	1,116	3	35	0,87	29
36	0,407	356	36	0,546	62
37	1,058	356	37	0,671	70
38	0,863	349	38	0,515	9
39	0,759	339	39	0,869	32
40	1,17	3	40	0,403	31
41	0,869	9	41	0,667	10
42	0,667	11	42	0,567	47
43	0,769	2	43	0,726	34

APÊNDICE B – Distância e orientação das cristas das marcas onduladas

44	0,794	19	44	0,78	14
45	0,67	27	45	0,623	10
46	0,846	354	46	0,408	33
47	0,623	3	47	0,84	30
48	0,762	20	48	0,87	32
49	0,317	29	49	0,614	19
50	0,493	22	50	0,794	27
51	0,813	22	51	0,58	14
52	0,716	10	52	0,831	64
53	0,61	15	53	0,689	62
54	0,571	38	54	0,727	56
55	0,716	352	55	0,464	67
56	0,614	32	56	0,688	68
57	0,567	12	57	0,612	66
58	0,813	35	58	0,719	48
59	0,567	1	59	0,552	27
60	0,925	348	60	0,826	29
Média	0,739	-	Média	0,714	-
Desvio Padrão	0,189	-	Desvio Padrão	0,197	-

	ÁREA 3		ÁREA 4		
Crista	Distancia (m)	Orientação (°)	Crista	Distancia (m)	Orientação (°)
1	0,649	54	1	1,138	50
2	0,709	43	2	0,751	46
3	0,775	50	3	0,887	43
4	0,872	62	4	0,84	43
5	0,905	64	5	1,059	57
6	0,715	46	6	0,869	48
7	0,694	45	7	1,09	18
8	0,709	51	8	1,068	10
9	0,876	37	9	0,953	3
10	0,949	55	10	0,668	9
11	0,681	48	11	0,915	7
12	0,515	54	12	0,569	8
13	0,719	54	13	0,654	356
14	0,84	41	14	0,779	356
15	1,088	43	15	1,11	3
16	0,886	40	16	0,952	23
17	0,709	33	17	0,822	32
18	0,621	41	18	0,863	43
19	0,596	49	19	0,822	55
20	0,775	38	20	0,689	65
21	0,775	41	21	0,835	40
22	0,763	43	22	0,735	35
23	0,842	51	23	0,734	54

24	0,551	46	24	0,538	43
25	0,486	46	25	0,689	58
26	0,678	60	26	0,835	51
27	0,586	62	27	0,875	36
28	0,901	73	28	0,751	32
29	0,899	23	29	0,716	21
30	0,665	37	30	0,821	31
31	0,431	64	31	0,842	14
32	0,622	60	32	0,982	36
33	0,461	39	33	0,981	41
34	0,794	55	34	0,908	37
35	0,819	62	35	0,908	60
36	0,848	40	36	0,821	46
37	0,734	32	37	0,84	60
38	0,821	41	38	0,935	54
39	1,232	41	39	0,725	43
40	0,484	50	40	0,542	52
41	0,848	23	41	0,918	53
42	0,652	48	42	0,906	14
43	0,777	28	43	1,025	20
44	0,692	34	44	1,242	27
45	0,829	23	45	1,09	60
46	0,799	29	46	0,685	67
47	0,862	47	47	0,508	64
48	0,924	46	48	0,763	60
49	0,614	41	49	0,524	59
50	0,721	60	50	0,847	68
51	0,521	47	51	0,524	62
52	0,904	40	52	0,524	69
53	0,456	36	53	0,835	74
54	0,635	35	54	1,011	69
55	0,884	53	55	0,707	51
56	0,872	59	56	0,593	56
57	0,904	41	57	0,664	60
58	0,842	52	58	0,972	55
59	0,814	55	59	0,793	43
60	0,969	34	60	0,867	50
Média	0,753	-	Média	0,825	-
Desvio Padrão	0,158	-	Desvio Padrão	0,170	-

	ÁREA 5			ÁREA 6	
Crista	Distancia (m)	Orientação (°)	Crista	Distancia (m)	Orientação (°)
1	0,741	29	1	1,435	21
2	0,721	32	2	0,915	29
3	0,992	17	3	0,838	23
4	0,861	22	4	0,795	26
5	0,721	27	5	0,872	23
6	0,789	38	6	0,655	32
7	0,946	25	7	0,971	20
8	0,82	25	8	0,951	23
9	0,943	41	9	0,838	26
10	0,457	43	10	0,902	17
11	0,498	40	11	0,602	14
12	0,789	37	12	0,519	22
13	0,741	27	13	0,755	19
14	0,968	31	14	0,872	22
15	0.899	25	15	0.915	25
16	0.603	25	16	0.795	33
17	0.707	33	17	0.954	27
18	0.82	29	18	0,998	36
19	0.902	33	19	1.47	30
20	0.635	23	20	0.841	28
21	0.524	40	21	0.971	29
22	0.864	39	22	0.902	28
23	0.789	35	23	0.872	28
24	0.673	36	24	0.947	16
25	0.741	29	25	0.829	25
26	0.689	22	26	0.872	19
27	0.689	35	27	1.014	23
28	0.575	13	28	1.07	30
29	0.575	17	29	0.824	25
30	0.778	17	30	1.011	5
31	0.696	25	31	0.824	22
32	0.778	20	32	0.747	14
33	0.8	23	33	0.951	15
34	0.673	29	34	0.747	15
35	0.673	39	35	0.747	19
36	0.721	27	36	0.824	9
37	0.76	14	37	0.875	14
38	0.575	18	38	0.875	11
39	0.61	25	39	0.824	15
40	0.76	35	40	0.813	10
41	0.591	14	41	0.696	2
42	0.85	10	42	1 197	356
43	1 022	25	42	0.96	355
44	0.864	28	44	0.933	357

45	0,786	19	45	0,959	348
46	0,641	25	46	1,159	23
47	0,847	20	47	0,78	10
48	0,946	17	48	0,98	23
49	0,652	3	49	0,93	16
50	1,07	12	50	1,009	12
51	0,951	3	51	1,152	18
52	0,617	5	52	1,058	25
53	0,717	51	53	1,058	17
54	0,817	48	54	1,099	25
55	0,616	36	55	0,755	18
56	0,853	48	56	1,077	2
57	0,779	55	57	0,838	23
58	0,929	55	58	0,915	25
-	-	-	59	0,971	18
-	-	-	60	1,216	17
Média	0,759	-	Média	0,920	-
Desvio			Desvio		
Padrão	0,137	-	Padrão	0,169	-

ÁREA 7		ÁREA 8			
Crista	Distancia (m)	Orientação (°)	Crista	Distancia (m)	Orientação (°)
1	0,734	18	1	0,668	20
2	0,757	21	2	0,716	21
3	0,734	18	3	0,676	3
4	0,676	27	4	0,842	23
5	0,819	17	5	0,66	29
6	0,635	25	6	0,735	23
7	0,579	29	7	0,751	356
8	0,758	27	8	0,724	12
9	0,841	35	9	0,88	14
10	0,861	32	10	0,953	23
11	0,841	32	11	1,084	29
12	0,802	30	12	1,002	15
13	0,704	39	13	0,915	11
14	0,841	36	14	0,612	9
15	0,721	35	15	0,676	39
16	0,88	30	16	0,804	47
17	0,828	30	17	0,688	55
18	1,072	37	18	0,636	53
19	0,786	20	19	0,713	29
20	0,843	9	20	0,713	351
21	1,13	17	21	0,759	350
22	0,802	17	22	0,688	3
23	0,704	28	23	0,75	14
24	0,861	34	24	0,566	37

25	0,88	17	25	0,799	48
26	0,899	15	26	0,847	40
27	0,861	15	27	0,763	43
28	0,76	12	28	0,799	40
29	1,087	18	29	0,66	27
30	0,899	20	30	0,849	34
31	0,943	20	31	0,654	32
32	0,88	25	32	0,635	23
33	0,721	12	33	0,849	25
34	0,635	18	34	0,593	21
35	0,704	25	35	0,932	25
36	0,41	22	36	0,932	22
37	0,556	25	37	0,849	18
38	0,758	17	38	0,779	29
39	0,841	25	39	1,11	5
40	0,8	21	40	1,026	19
41	0,88	13	41	0,953	8
42	0,8	29	42	0,668	3
43	0,931	25	43	0,664	17
44	0,843	14	44	0,828	6
45	0,902	27	45	0,88	356
46	1,026	27	46	0,935	8
47	0,902	47	47	1,026	14
48	0,357	39	48	1,128	17
49	0,741	34	49	0,728	8
50	0,931	32	50	0,857	15
51	0,816	25	51	0,735	10
52	0,588	36	52	0,622	14
53	0,845	30	53	0,716	356
54	0,914	40	54	1,211	4
55	0,992	25	55	0,067	8
56	0,746	39	56	1,229	4
57	0,98	35	57	0,972	12
58	0,68	39	58	0,676	11
59	0,622	23	59	0,935	17
60	0,986	27	60	0,564	12
Média	0,805	-	Média	0,795	-
Desvio Padrão	0,146	-	Desvio Padrão	0,185	-

	ÁREA 9			ÁREA 10	
Crista	Distancia (m)	Orientação (°)	Crista	Distancia (m)	Orientação (°)
1	0,915	351	1	0,349	353
2	0,753	4	2	0,405	356
3	0,947	354	3	0,569	5
4	0,747	356	4	0,513	356
5	0,619	347	5	0,833	356
6	0,753	10	6	0,612	350
7	0,753	11	7	0,564	354
8	0,95	5	8	0,664	3
9	0,874	10	9	0,713	357
10	0,747	356	10	0,607	2
11	1,01	355	11	0,755	12
12	1,128	3	12	0,347	53
13	0,559	355	13	0,315	355
14	0,947	4	14	0,664	355
15	0,52	356	15	0,612	356
16	0,78	356	16	0,593	17
17	0,958	356	17	0,622	9
18	0,714	355	18	0,315	27
19	0,852	356	19	0,316	12
20	1,149	22	20	0,622	14
21	0,838	17	21	0,724	21
22	1,07	11	22	0,622	7
23	0,852	8	23	0,622	10
24	1,282	18	24	0,325	19
25	0,56	12	25	0,529	9
26	0,747	14	26	0,828	14
27	0,634	22	27	0,654	20
28	0,838	25	28	0,716	5
29	0,52	19	29	0,513	39
30	0,596	356	30	0,508	16
31	0,634	356	31	0,716	18
32	0,559	356	32	0,545	15
33	1,07	355	33	0,779	11
34	0,902	3	34	0,636	39
35	0,52	34	35	0,735	29
36	0,828	39	36	0,596	9
37	0,795	22	37	0,822	22
38	0,747	12	38	0,349	25
39	0,365	14	39	0,636	14
40	0,641	339	40	0,636	19
41	0,437	20	41	0,612	9
42	0,56	14	42	0,528	25
43	0,602	8	43	0,529	15
44	0,695	10	44	0,593	19

45	0,641	8	45	0,529	10
46	0,654	25	46	0,569	15
47	0,702	14	47	0,45	25
48	0,602	12	48	0,735	357
49	0,702	355	49	0,869	14
50	0,52	11	50	0,724	5
51	0,634	4	51	0,654	9
52	0,828	4	52	0,735	356
53	1,01	353	53	0,991	356
54	0,852	10	54	0,716	353
55	0,709	8	55	0,419	350
56	0,755	5	56	0,664	2
57	1,07	32	57	0,88	2
58	0,958	25	58	0,828	356
59	0,542	14	59	0,831	357
60	0,602	5	60	0,809	12
Média	0,762	-	Média	0,619	-
Desvio			Desvio		
Padrão	0,193	-	Padrão	0,157	-

	ÁREA 11			ÁREA 12	
Crista	Distancia (m)	Orientação (°)	Crista	Distancia (m)	Orientação (°)
1	0,937	14	1	0,913	22
2	0,426	15	2	0,935	17
3	0,565	14	3	0,809	354
4	0,643	357	4	0,809	353
5	0,634	356	5	0,822	22
6	0,536	12	6	0,685	10
7	0,715	20	7	0,981	31
8	0,803	8	8	0,849	25
9	1,141	351	9	0,87	31
10	0,769	11	10	0,849	15
11	0,715	23	11	0,685	12
12	0,73	357	12	0,685	14
13	1,049	20	13	0,716	17
14	0,907	7	14	0,781	10
15	0,913	353	15	0,791	19
16	0,565	20	16	0,952	6
17	0,567	17	17	0,734	23
18	1,053	355	18	0,75	19
19	0,907	351	19	0,676	19
20	1,049	357	20	0,518	17
21	1	356	21	0,569	356
22	0,987	347	22	0,75	8
23	0,836	29	23	0,869	8
24	0,836	17	24	0,566	14

25	0,907	12	25	0,689	352
26	1,049	8	26	0,734	354
27	0,836	32	27	0,476	15
28	1,062	15	28	0,505	346
29	0,634	17	29	0,952	31
30	0,868	13	30	1,436	356
31	1,202	15	31	0,735	357
32	1,053	27	32	0,713	350
33	0,442	11	33	1,12	342
34	0,927	356	34	0,809	12
35	1,375	12	35	0,654	356
36	0,987	14	36	0,569	354
37	0,567	357	37	0,713	37
38	1,093	25	38	1,2	29
39	1,25	25	39	1,161	25
40	0,375	19	40	0,863	19
41	0,577	25	41	1,187	27
42	0,595	22	42	1,088	10
43	0,643	19	43	1,48	353
44	1,033	10	44	0,821	14
45	0,952	19	45	0,93	20
46	0,715	356	46	1,273	43
47	0,516	357	47	2,052	2
48	0,354	349	48	1,049	10
49	0,769	354	49	1,001	7
50	0,634	357	50	0,963	9
51	0,567	29	51	0,795	5
52	0,821	25	52	1,694	11
53	0,983	4	53	1,692	28
54	0,997	7	54	1,049	25
55	0,792	2	55	1,12	30
56	0,885	353	56	1,09	15
57	0,885	356	57	0,952	10
58	0,792	348	58	0,875	31
59	0,792	4	59	0,888	5
60	0,836	351	60	0,806	17
Média	0,817	-	Média	0,912	-
Desvio Padrão	0,224	-	Desvio Padrão	0,298	-

	ÁREA 13			ÁREA 14	
Crista	Distancia (m)	Orientação (°)	Crista	Distancia (m)	Orientação (°)
1	0,559	335	1	0,674	7
2	0,456	352	2	0,753	3
3	0,733	6	3	0,524	13
4	0,559	5	4	0,534	354
5	0,618	355	5	0,849	14
6	0,798	349	6	0,547	11
7	0,688	3	7	0,591	6
8	0,558	14	8	0,618	10
9	0,733	5	9	0,689	27
10	0,728	5	10	0,83	4
11	0,618	5	11	0,674	27
12	0,513	354	12	0,473	10
13	0,728	461	13	0,534	353
14	0,618	5	14	0,479	355
15	0,809	356	15	0,618	8
16	0,513	8	16	0,761	12
17	0,913	9	17	0,666	5
18	0,456	356	18	0,57	3
19	0,618	355	19	0,841	355
20	0,618	353	20	0,689	10
21	0,688	6	21	0,551	18
22	0,513	4	22	0,937	354
23	0,558	355	23	0,666	354
24	0,456	355	24	0,841	355
25	0,713	5	25	0,618	11
26	0,717	10	26	0,499	10
27	0,888	354	27	1,189	354
28	0,716	355	28	0,818	3
29	0,612	15	29	0,663	4
30	0,612	5	30	0,717	355
31	0,43	5	31	0,717	355
32	0,513	9	32	0,674	23
33	0,493	15	33	0,705	11
34	0,414	12	34	0,632	353
35	0,518	5	35	0,689	338
36	0,759	355	36	0,674	355
37	0,564	355	37	0,739	3
38	0,88	354	38	0,717	8
39	0,716	354	39	0,663	11
40	0,716	6	40	0,739	354
41	1,157	355	41	0,632	353
42	0,759	19	42	0,57	32
43	0,607	14	43	0,796	28
44	0,903	355	44	0,967	11

45	0,809	355	45	0,57	354
46	1,015	343	46	0,605	11
47	0,664	347	47	0,591	22
48	0,664	334	48	0,823	355
49	0,713	332	49	0,462	25
50	0,513	349	50	0,716	356
51	0,664	354	51	0,536	10
52	0,713	346	52	0,501	12
53	1,023	352	53	0,967	356
54	0,809	352	54	0,642	10
55	0,857	340	55	0,542	18
56	0,809	347	56	0,613	9
57	0,857	351	57	0,6	4
58	1,057	353	58	0,823	4
59	0,564	329	59	0,33	354
60	0,664	347	60	0,535	356
Média	0,686	-	Média	0,670	-
Desvio			Desvio		
Padrão	0,163	-	Padrão	0,146	-

ÁREA 15		ÁREA 16			
Crista	Distancia (m)	Orientação (°)	Crista	Distancia (m)	Orientação (°)
1	0,4	351	1	0,716	355
2	0,503	3	2	0,668	2
3	0,334	3	3	0,564	355
4	0,371	354	4	0,607	355
5	0,454	5	5	0,872	355
6	0,499	12	6	0,564	8
7	0,433	17	7	0,612	4
8	0,51	13	8	0,781	356
9	0,574	4	9	0,513	356
10	0,667	5	10	0,668	3
11	0,624	4	11	0,564	6
12	0,467	355	12	0,569	7
13	0,547	12	13	0,513	4
14	0,702	6	14	0,716	4
15	0,57	353	15	0,668	6
16	0,663	11	16	0,564	4
17	0,557	19	17	0,713	3
18	0,591	4	18	0,667	6
19	0,295	10	19	0,622	7
20	0,4	355	20	0,716	10
21	0,287	355	21	0,755	7
22	0,503	337	22	0,579	356
23	0,454	347	23	0,513	6
24	0,454	350	24	0,755	356

25	0,574	353	25	0,513	15
26	0,667	11	26	0,668	356
27	0,571	355	27	0,406	2
28	0,705	353	28	0,636	10
29	0,4	355	29	0,581	4
30	0,5	353	30	0,624	4
31	0,789	344	31	0,718	10
32	0,476	351	32	0,581	9
33	0,538	355	33	0,37	8
34	0,571	344	34	0,449	7
35	0,571	355	35	0,458	3
36	0,741	355	36	0,276	3
37	0,706	353	37	0,4	4
38	0,718	356	38	0,499	5
39	0,746	1	39	0,4	2
40	0,499	4	40	0,51	355
41	0,574	356	41	0,629	355
42	0,571	3	42	0,454	4
43	0,571	9	43	0,467	5
44	0,52	356	44	0,799	5
45	0,762	330	45	0,711	356
46	0,711	5	46	0,68	354
47	0,591	3	47	0,718	354
48	0,705	6	48	0,672	3
49	0,741	8	49	0,538	10
50	0,621	4	50	0,648	354
51	0,547	8	51	0,407	356
52	0,4	352	52	0,4	4
53	0,833	355	53	0,541	355
54	0,833	3	54	0,66	10
55	0,571	3	55	0,4	5
56	0,454	10	56	0,541	5
57	0,499	355	57	0,705	355
58	0,458	8	58	0,833	355
59	0,571	355	59	0,856	10
60	0,793	355	60	0,624	4
Média	0,566	-	Média	0,598	-
Desvio Padrão	0,131	-	Desvio Padrão	0,130	-

	ÁREA 17			ÁREA 18	
Crista	Distancia (m)	Orientação (°)	Crista	Distancia (m)	Orientação (°)
1	0,854	356	1	0,969	357
2	0,802	353	2	0,969	18
3	0,802	347	3	0,907	354
4	0,802	354	4	0,974	17
5	0,623	346	5	0,841	12
6	0,733	355	6	0,695	15
7	0,623	351	7	1,048	356
8	0,865	344	8	0,633	10
9	1,084	346	9	0,708	14
10	0,914	355	10	0,768	8
11	0,52	355	11	0,907	22
12	0,801	355	12	0,652	19
13	0,728	355	13	0,633	21
14	1,073	5	14	0,774	17
15	0,961	354	15	0,974	9
16	0,841	357	16	0,708	25
17	0,688	344	17	0,708	11
18	0,846	329	18	0,565	10
19	0,846	332	19	0,768	357
20	0,688	334	20	1,048	25
21	0,733	356	21	1,117	18
22	1,026	356	22	0,506	5
23	0,688	6	23	0,633	15
24	0,618	356	24	0,768	11
25	0,789	4	25	0,708	9
26	0,728	6	26	0,969	2
27	1,025	350	27	0,835	354
28	0,728	344	28	0,708	352
29	0,798	355	29	0,879	348
30	0,728	353	30	0,841	349
31	0,973	356	31	0,972	357
32	0,973	356	32	0,728	2
33	0,797	343	33	0,768	356
34	0,801	348	34	0,64	358
35	0,797	351	35	0,652	3
36	0,733	341	36	0,907	3
37	1,075	19	37	0,835	357
38	0,973	8	38	0,633	2
39	0,564	10	39	0,708	353
40	0,382	10	40	0,841	352
41	0,558	350	41	0,565	342
42	0,913	3	42	0,708	356
43	0,841	4	43	0,633	3
44	0,841	5	44	0,426	356

45	0,728	20	45	0,506	3
46	0,688	5	46	0,506	357
47	0,878	20	47	0,708	12
48	0,797	356	48	0,768	19
49	1,073	353	49	0,768	19
50	0,558	355	50	1,191	356
51	0,956	18	51	0,768	5
52	0,728	25	52	0,695	5
53	0,841	355	53	0,982	356
54	0,618	4	54	0,768	12
55	0,844	356	55	0,695	25
56	0,797	354	56	0,975	17
57	0,618	356	57	0,774	25
58	0,513	357	58	0,708	8
59	0,957	357	59	0,974	25
60	0,618	4	60	0,633	5
Média	0,790	-	Média	0,777	-
Desvio			Desvio		
Padrão	0,155	-	Padrão	0,161	-

ÁREA 19		ÁREA 20			
Crista	Distancia (m)	Orientação (°)	Crista	Distancia (m)	Orientação (°)
1	0,785	27	1	0,987	11
2	1,086	40	2	1,211	27
3	1,007	18	3	1,048	2
4	1,156	342	4	1,324	356
5	1,238	12	5	1,048	3
6	1,013	19	6	0,907	357
7	0,929	340	7	0,565	340
8	0,852	332	8	1,395	2
9	1,007	329	9	1,117	357
10	1,086	346	10	1,051	357
11	1,322	4	11	0,774	5
12	0,929	353	12	1,336	341
13	0,929	15	13	0,923	358
14	0,929	15	14	1,468	356
15	0,852	358	15	1,269	353
16	0,778	332	16	0,974	344
17	0,778	340	17	0,985	352
18	0,778	337	18	1,222	354
19	0,852	321	19	0,923	349
20	0,852	329	20	0,985	337
21	0,979	341	21	1,962	343
22	0,859	350	22	1,26	334
23	1,156	336	23	0,695	3
24	1,093	347	24	1,193	337

25	0,7778	348	25	1,268	338
26	0,947	3	26	0,571	6
27	1,156	9	27	0,505	2
28	1,007	357	28	0,767	337
29	0,852	350	29	0,571	344
30	0,929	342	30	0,695	357
31	0,929	354	31	0,652	354
32	1,007	357	32	0,974	352
33	1,156	5	33	0,354	356
34	1,007	357	34	1,123	346
35	1,086	357	35	0,567	350
36	1,322	358	36	0,86	332
37	1,086	345	37	0,565	348
38	0,929	351	38	0,565	353
39	1,086	351	39	0,591	350
40	1,093	344	40	0,786	340
41	0,779	357	41	0,707	353
42	0,929	352	42	1,065	342
43	0,853	334	43	1,018	323
44	0,929	357	44	0,852	326
45	0,929	11	45	0,947	326
46	0,935	5	46	1,083	308
47	0,696	356	47	1,065	322
48	0,778	357	48	1,193	332
49	1,007	356	49	1,134	337
50	0,929	12	50	1,269	329
51	0,778	357	51	0,868	325
52	1,156	348	52	1,083	320
53	1,238	342	53	1,134	340
54	1,086	345	54	1,206	342
55	0,962	353	55	1,348	344
56	0,929	357	56	1,051	332
57	0,859	358	57	1,134	337
58	0,859	342	58	1,19	325
59	1,007	15	59	1,195	321
60	1,007	343	60	1,395	329
Média	0,971	-	Média	1,000	-
Desvio			Desvio	0.000	
Padrao	0,142	-	Padrao	0,293	-

	ÁREA 21			ÁREA 22	
Crista	Distancia (m)	Orientação (°)	Crista	Distancia (m)	Orientação (°)
1	0,779	12	1	0,688	4
2	1,489	5	2	0,75	10
3	1,38	22	3	0,716	15
4	1,054	23	4	0,479	6
5	1,359	40	5	0,271	12
6	1,302	18	6	0,569	19
7	1,644	11	7	0,667	19
8	1,359	40	8	0,675	8
9	1,147	43	9	0,791	17
10	1,529	39	10	0,667	18
11	1,151	31	11	0,735	6
12	1,401	27	12	0,75	7
13	1,226	31	13	0,808	12
14	1,258	21	14	0,82	4
15	1,286	25	15	0,716	10
16	1,502	14	16	0,675	11
17	1,104	10	17	0,772	355
18	1,19	29	18	0,723	357
19	1,126	27	19	0,479	25
20	1,169	29	20	0,612	14
21	0,935	25	21	0,827	18
22	1,064	21	22	0,899	11
23	0,952	34	23	0,991	22
24	0,936	27	24	0,735	3
25	1,064	21	25	0,716	14
26	1,032	22	26	0,841	4
27	0,91	27	27	1,029	5
28	0,708	12	28	1,131	345
29	0,868	17	29	1,137	356
30	0,868	14	30	0,772	356
31	0,791	22	31	0,688	357
32	0,936	11	32	0,667	3
33	0,506	15	33	0,513	2
34	0,536	14	34	0,606	11
35	0,357	9	35	0,663	8
36	0,643	10	36	0,823	23
37	0,576	10	37	0,791	3
38	0,803	14	38	0,612	12
39	0,506	23	39	0,791	14
40	0,506	356	40	0,716	18
41	0,566	12	41	0,991	14
42	0,643	356	42	0,735	15
43	0,842	354	43	0,607	20
44	0,634	338	44	0,854	3

45	0,803	340	45	0,933	6
46	0,715	357	46	0,612	11
47	0,707	4	47	0,569	355
48	0,708	344	48	0,667	14
49	0,926	355	49	0,675	18
50	0,708	340	50	0,483	12
51	0,634	349	51	0,663	17
52	0,505	352	52	0,621	8
53	0,982	346	53	0,612	14
54	0,769	357	54	0,492	18
55	0,982	351	55	0,578	21
56	0,769	351	56	0,723	14
57	0,707	357	57	1,228	17
58	0,707	356	58	0,593	18
59	0,907	338	59	0,612	9
60	0,768	342	60	0,735	13
Média	0,932	-	Média	0,722	-
Desvio			Desvio		
Padrão	0,303	-	Padrão	0,169	-

ÁREA 23		ÁREA 24			
Crista	Distancia (m)	Orientação (°)	Crista	Distancia (m)	Orientação (°)
1	0,995	332	1	0,882	356
2	0,684	326	2	0,822	351
3	0,649	334	3	0,845	348
4	0,959	338	4	0,732	356
5	0,694	345	5	0,841	349
6	1,043	355	6	0,754	353
7	0,854	357	7	0,728	347
8	0,777	357	8	1,254	355
9	0,959	346	9	0,96	356
10	0,876	338	10	1,015	355
11	0,596	342	11	1,128	355
12	0,762	349	12	0,841	355
13	0,664	343	13	0,622	347
14	0,562	343	14	0,512	354
15	0,596	344	15	0,558	356
16	0,876	346	16	0,682	353
17	0,732	350	17	0,845	5
18	0,854	350	18	0,517	356
19	1,192	350	19	0,728	356
20	0,777	342	20	1,015	343
21	0,918	352	21	0,853	332
22	0,854	342	22	0,808	355
23	1,296	340	23	0,632	10
24	0,936	348	24	0,853	355

25	0,777	347	25	0,909	356
26	0,995	356	26	0,46	351
27	0,758	348	27	0,512	12
28	0,995	354	28	0,808	6
29	1,133	335	29	0,797	10
30	0,902	357	30	0,617	354
31	0,514	351	31	0,687	356
32	0,732	354	32	1,015	5
33	0,796	353	33	1,128	334
34	0,419	347	34	0,732	355
35	0,684	347	35	0,617	355
36	0,777	351	36	0,558	352
37	0,514	342	37	0,622	332
38	0,732	340	38	0,455	356
39	0,711	346	39	0,455	354
40	0,796	344	40	0,46	356
41	0,796	340	41	0,728	6
42	0,649	350	42	0,687	355
43	0,758	356	43	0,728	3
44	0,481	357	44	0,853	355
45	0,577	353	45	0,909	356
46	0,684	340	46	0,797	356
47	0,564	349	47	0,455	17
48	0,762	339	48	0,527	5
49	0,711	357	49	0,797	356
50	0,954	356	50	0,617	355
51	0,836	356	51	0,517	354
52	0,649	346	52	0,563	354
53	0,732	17	53	0,845	332
54	0,71	332	54	0,956	356
55	0,762	342	55	0,732	356
56	0,746	356	56	0,382	355
57	0,481	5	57	0,682	344
58	0,732	356	58	0,324	342
59	0,796	326	59	0,517	336
60	0,975	356	60	0,909	338
Média	0,778	-	Média	0,730	-
Desvio Padrão	0,174	-	Desvio Padrão	0,197	-

ÁREA 25			ÁREA 26			
Crista	Distancia (m)	Orientação (°)	Crista	Distancia (m)	Orientação (°)	
1	0,876	326	1	0,947	342	
2	0,646	323	2	0,868	332	
3	0,79	332	3	0,937	350	
4	1,074	334	4	1,134	350	
5	1,065	342	5	1,053	349	
6	0,611	337	6	1,131	350	
7	0,563	325	7	0,923	355	
8	0,516	332	8	1,05	350	
9	0,575	342	9	0,912	355	
10	0,611	342	10	1,05	340	
11	0,568	346	11	0,912	349	
12	0,568	337	12	0,984	353	
13	0,808	342	13	1,053	355	
14	0,712	332	14	0,852	356	
15	0,772	348	15	0,633	356	
16	0,772	344	16	0,633	350	
17	0,812	350	17	0,835	332	
18	0,776	342	18	0,923	338	
19	0,606	342	19	0,841	335	
20	0,667	342	20	0,923	327	
21	0,663	347	21	1,053	356	
22	0,716	337	22	1,336	356	
23	0,516	342	23	1,047	356	
24	0,606	349	24	0,984	354	
25	0,808	350	25	1,05	352	
26	0,512	350	26	0,923	348	
27	0,606	351	27	0,774	354	
28	0,606	351	28	0,841	346	
29	0,606	335	29	1,05	344	
30	0,563	346	30	1,122	340	
31	0,568	342	31	1,05	347	
32	0,568	340	32	0,923	337	
33	0,606	349	33	1,047	344	
34	0,404	346	34	0,768	356	
35	0,712	347	35	0,505	355	
36	0,808	344	36	0,708	352	
37	1,014	353	37	0,565	352	
38	0,873	347	38	0,984	346	
39	0,405	350	39	0,907	346	
40	0,512	355	40	1,05	355	
41	0,667	355	41	1,053	338	
42	0,479	355	42	1,206	347	
43	0,667	355	43	1,05	350	
44	0,772	354	44	1,053	349	

45	0,772	355	45	0,907	342
46	0,663	354	46	1,26	356
47	0,606	354	47	1,065	342
48	0,563	355	48	0,912	346
49	0,606	5	49	1,065	357
50	0,479	11	50	0,984	332
51	0,808	8	51	0,841	344
52	0,564	17	52	1,083	344
53	0,563	355	53	0,923	332
54	0,479	355	54	0,707	356
55	0,563	354	55	0,633	2
56	0,563	354	56	0,768	2
57	0,512	347	57	0,774	9
58	0,563	18	58	1,255	332
59	0,663	28	59	1,193	347
60	0,663	355	60	0,785	353
Média	0,655	-	Média	0,947	-
Desvio Padrão	0,144	-	Desvio Padrão	0,172	-

APÊNDICE C – *Rippled Scour Depressions* e marcas onduladas presentes na porção intermediária da área de estudo.

APÊNDICE D – *Rippled Scour Depressions* e marcas onduladas presentes na porção sul da área de estudo.

A

APÊNDICE E – Perfis Sísmicos

