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ABSTRACT

The receiving process in a warehouse serves as the initial step in fulfilling customer
orders, and any delay or lack of information has the potential to undermine the overall
company performance. This study examines a warehouse which reveals inefficiencies in
the receiving process, mainly a delay in the adequacy of the products that are received.
These issues are aggravated by a constant demand for consumption of the received
items, leading to a decline in service level, and as a result, an increase in the total
logistic cost. The main objective is to assess the performance of the receiving process
via simulation modelling and queuing theory, using scenarios to propose possible
implementations to reduce the overall receive time. The receiving process is mapped
via interviews with the operators, on-site observations and collecting data through the
WMS data base covering the each step of the process, from the arrival of the truck
carrying the goods, the adequacy of each product and its final disposal inside the
warehouse. Queuing theory enables the performance evaluation of each of the three
steps of the receiving system, measuring its workload, utilisation and service rate.
Additionally, queuing theory allows for the measurement of cost models for service
level, representing the trade off between the cost of operating the receiving process
and the waiting time for the products. As the receiving process itself and the queuing
theory analysis are complex, the system is modelled as a DT, a simulation model that
represents a real system, in a Discrete Event Simulation software called Plant Simula-
tion, converting the concepts and mathematical relationships in a computer executable
code to generate the output data. A methodology using statistical tools to calibrate
the model is conducted, utilising probability distributions and fitting tests to calibrate
the modelled simulation to the gathered and treated data from the WMS. The pro-
posed scenarios include an RFID implementation, the addition of another operator in
the receiving process, and a combination of these two. The results indicate that the
process still generates infinite queues, even the combined scenario is insufficient to
resolve the adequacy bottleneck, with a utilisation rate of 100.99%. Nevertheless, there
is a mean 31.34% gain in efficiency compared to the base model scenario, and a sig-
nificant mean 61.71% reduction in the Estimated Total Cost for the product arrival
process in the RFID implementation scenario.

Keywords: Receiving. Queuing Theory. Simulation. RFID.



RESUMO

O processo de recebimento em um armazém é o primeiro passo para atender uma
ordem de compra de um cliente, qualquer atraso ou falta de informação tem o potencial
de detrimir o desempenho geral da empresa. Este estudo examina um armazém
que revela ineficiências no processo de recebimento, principalmente um atraso na
adequação dos produtos que são recebidos. Esses problemas são agravados por
uma demanda constante pelo consumo dos itens recebidos, levando a uma queda no
nível de serviço e, como resultado, um aumento no custo logístico total. O principal
objetivo é avaliar o desempenho do processo de recebimento por meio de um modelo
de simulação e teoria das filas, usando cenários para propor possíveis implementações
para reduzir o tempo total de recebimento. O processo de recebimento é mapeado
por meio de entrevistas com os operadores, observações no local e coleta de dados
por meio do banco de dados do WMS, cobrindo cada etapa do processo, desde a
chegada do caminhão transportando as mercadorias, a adequação de cada produto
até sua disposição final dentro do armazém. Teoria de filas permite a avaliação de
desempenho de cada uma das três etapas do sistema de recebimento, medindo sua
carga de trabalho, utilização e taxa de serviço. Além disso, a teoria de filas permite a
medição de modelos de custo para o nível de serviço, representando o equilíbrio entre
o custo de operar o processo de recebimento e o tempo de espera pelos produtos.
Como o próprio processo de recebimento e a análise da teoria das filas são complexos,
o sistema é modelado como um DT em um software de DES chamado Plant Simulation,
convertendo os conceitos e relações matemáticas em um código executável para gerar
os dados de saída. Uma metodologia usando ferramentas estatísticas para calibrar o
modelo é conduzida, utilizando distribuições de probabilidade e testes de aderência
para calibrar a simulação modelada aos dados coletados e tratados do WMS. Os
cenários propostos incluem uma implementação de RFID, a adição de outro operador no
processo de recebimento e uma combinação destes ambos. Os resultados indicam
que o processo ainda gera filas infinitas, o cenário combinado ainda é insuficiente para
resolver o gargalo de adequação, com uma taxa de utilização de 100,99%. No entanto,
há um ganho de eficiência de 31,34% em comparação com o cenário do modelo base

e uma redução significativa de 61,71% no Custo Total Estimado para o processo de

chegada no cenário de implementação de RFID.

Palavras-chave: Recebimento. Teoria de Filas. Simulação. RFID.
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1 INTRODUCTION

Supply chains are very important to service providers, not only for providing
goods for the general population, but also for compiling valuable data on demand and
consumption (YADAV, 2015; GATTUSO; CASSONE; PELLICANÒ, 2014). Also, supply
chain success relies on effective coordination and integration of all involved entities,
as an example, vendors, distributors, inbound and outbound transportation, third-party
logistics companies, and information system providers (LENIN, 2014).

The receiving goods process is the first step for warehousing storage, starting
on the arrival of goods until the release for internal consumption, and so, the flow of
information and goods must be reliable and an effective coordination is indispensable for
satisfactory results. Lack of standardization, staff shortage and mistakes, like missing
information, may cause delays in every step of the process, forcing operators responsible
for goods conference to review the information on several packages out of specification
(BALLOU, 2006; MAGUIRE et al., 2010; SMITH; SRINIVAS, 2019).

Warehouses represent 15% to 20% of overall logistic costs for the company
(GATTUSO; CASSONE; PELLICANÒ, 2014), and a high service level will result in a high
logistic cost (BALLOU, 2006) and it has a direct relationship with the product waiting
time. A conflict between the cost of operating the service facility and the cost of awaiting
products is evident as an increase of one will automatically cause the reduction of the
other (TAHA, 2008; SHARMA, 2016).

In this sense, the analysis of the receiving process in a warehouse and the
implementation of better processes improves service level and overall logistics costs,
reducing the waiting time for the products final disposal for consumption. Understanding
the material handling dynamics involving the material arrival, adequacy and final storage
is necessary, as the complexity of the dynamic flow of the process involves several
entities and each step of the process has different impacts to the waiting time.

This case study examines the warehouse storage system of a company
experiencing delays in its receiving process, leading to logistical costs primarily
associated with the total waiting time from product arrival to disposal. The current
process involves manual and labour-intensive checklists and data logging due to the
complexity of the received products and procedures. While the implementation of
automated data interchange methods such as Radio Frequency Identification (RFID) and
Electronic Data Interchange (EDI) is considered as potential solutions, a comprehensive
analysis of the impact of these technologies has not been conducted thus far.

Since the analysis of such complex system is intractable due to the intricate
and large mathematical relationships with the physical structure (PETREAN, 1998;
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FISHMAN, 2001; FAWSETT; WALLER; FAWSETT, 2010) and receiving process
operators, a Digital Twin (DT) of the warehouse is modelled, allowing for a computer
executable code to simulate an over time representation of the receiving process
(FISHMAN, 2001; LAW, 2016). DT are integrated simulations of complex physical
models, generated using gathered data regarding the structure and processes inside a
system (AGALIANOS et al., 2020).

The statistical analysis for the calibration of the DT base model is conducted
gathering and fitting the frequencies of events to theoretical statistical probability
distributions in a systematic methodology, using the available statistical tools of the
chosen simulation software. As a performance measure of the inbound process a field
of Stochastic Processes called Queuing Theory will be used, it studies the behaviour of
queues with one or more service stations (KLEINROCK, 1975). Queuing theory also
allows for the analysis of awaiting time costs and queue length.

The performance measurements are developed using Queuing Theory in a
Discrete Event Simulation (DES) in a software that simulates the interactions between
the supply chain agents, transporters trucks arriving with goods, forklifts unloading
pallets and operators responsible for the arrival processes are examples of these agents.
The chosen software is Plant Simulation, developed by Siemens Product Lifecycle
Management Software Inc. Siemens PLM (2023), allowing for the simulation modelling,
data and statistical analysis.

The structure of this study is demonstrated by Figure 1.
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Figure 1 – Study Structure Flowchart

Source: Author (2023).

1.1 OBJECTIVES

To simulate and suggest improvements to a warehouse receiving process are
proposed:

1.1.1 General Objective

Assess the receiving process performance of a warehouse using queuing theory
and DES, proposing scenarios for improving system efficiency and reducing costs.

1.1.2 Specific Objectives

• Model and calibrate a DT of the warehouse receiving process, using statistical
tools and gathered data;

• Design scenarios to improve the overall receiving performance, based on similar
warehouse simulation studies;

• Measure and compare the efficiency and the logistical cost of each process step;
• Propose an implementation that can improve the receiving process performance.
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2 THEORETICAL FRAMEWORK

In this chapter a theoretical framework is built that describes topics in queuing
theory and simulation concepts.

2.1 QUEUING THEORY

For improvements and performance measurement of the receiving process a
field of Stochastic Processes, the description of how a system behaves in a determined
time period, called Queuing Theory is used, where statistical functions and dynamic
processes are used to quantify the phenomenon of average queue length, awaiting
times and utilisation (TAHA, 2008; HILLIER; LIEBERMAN, 2010). These processes
can be built and analysed using different scenarios in a simulation model, and then
compared, to arrive at a solution.

Queuing Theory represents one of several other dynamic systems fields, called
flow systems, as described by KLEINROCK (1975), a flow system is where a object
flows, moves, or is transferred in one or more channels of finite capacity in order to go
from a point to another, like vehicles in a traffic network, the transfer of goods in a rail
terminal or the flow of water in a dam. The Figure 2 illustrates in a dynamic system the
flow of clients, represented by hollow circles, being pilled in a queue and then serviced.

Figure 2 – Flow System in with one Channel, one Queue and Infinite Population

Source: Adapted from TAHA (2008), HILLIER and LIEBERMAN
(2010).

Client arrival flow can be defined by various statistical distribution functions
(FILHO, 2008; ARENALES, 2015), Equation 1 describes the arrival rate per unit of
time of a client and, as described by Equation 2, the probability distribution between
arrivals describes the statistical function dependant of the arrival rate given in Equation
1. Arrivals of more than one client are not possible, if so desired, it must be considered
that the arrival is determined by batches, like the arrival of a couple in a restaurant
(ARENALES, 2015).
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λ =
1

time unit of arrival
(1)

A(λ) = P [Arrivals ≤ λ] (2)

Similarly to Equation 1, Equation 3 describes the service rate per unit of time
and Equation 4 describes the probability distribution for the service time between clients
(FILHO, 2008; ARENALES, 2015), as a function of the service rate given in Equation 3.
The same concept of batches, of the arrival distribution, must be applied to the service
time if the release of the clients occurs in groups, like an elevator that opens its doors
for several people to exit (ARENALES, 2015).

µ =
1

time unit of service
(3)

B(µ) = P [Service ≤ µ] (4)

Queuing Theory also states a stability condition (Equation 5) where the arrival
rate should never be higher than the service rate, if so causing an infinite queue:

λ < µ (5)

System parameters are queue buffering capacity K, in general considered as
infinite, the number of arrivals N and service channels m, with different A(λ) and B(µ)
if necessary, the queuing service discipline C, which can be First In First Out (FIFO),
Last In First Out (LIFO), Service In Random Order (SIRO), Shortest Processing
Time (STP ), with a set priority for each client or allocation algorithm (TAHA, 2008;
ARENALES, 2015).

After these parameters are defined, it is possible to measure the performance
of the system using the formulas in Table 1 for so called Steady-State systems, that is,
the system behaves in the same way in a long period of time, and invariably, the arrival
and service rates do not alter in the period of study (TAHA, 2008; ARENALES, 2015):
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Table 1 – Steady-State measures of performance

Description Formula

Ω workload in the system Ω = λ ∗ time unit of service

ρ utilisation rate ρ = λ
mµ

= λ∗Ω
m

Lq number of clients in queue Lq =
∑∞

N=C+1(N − C) ∗ p

Ls number of clients in the system Ls =
∑∞

N=1(N ∗ p)

Wq client wait time in queue Wq = Ws − 1
µ

Ws client wait time in the system Ws = Wq +
1
µ

c̄ number of busy servers c̄ = Ls − Lq

ρ utilisation rate can also be ρ = c̄
m

Source: Adapted from TAHA (2008) and ARENALES (2015).

2.1.1 Cost Model and Service Level

Queue systems have two conflicting costs, the cost of operation (EOC) and
the queuing cost (EWC), where its sum is the expected total cost (ETC) of the model
per time unit (TAHA, 2008; SHARMA, 2016). The EOC is proportional to the structure
available to offer the service to a client and the EWC represents the cost of clients
waiting for service, an increase in service facilities reduces client waiting times and the
decrease in the level of service results in longer queues (SHARMA, 2016), as shown in
Fugure 3.

Figure 3 – Trade off between Cost of Operation and Level of Service

Source: SHARMA (2016).

Equation 6 defines the ETC based on the EOC and the EWC described by
the Equations 7 and 8 respectively, where µ is the service rate, C1 is the marginal cost
per unit of m and C2 is the waiting time cost per awaiting client (both per time unit):
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ETC(µ) = EOC(µ) + EWC(µ) (6)

EOC(µ) = C1 ∗ ρ (7)

EWC(µ) = C2 ∗ Ls (8)

An optimum service level, the efficiency of the queuing system, is obtained by
determining an optimum level of service rate (µ∗), that is, an rate in which a certain
number of service stations m avoids an excessive delay in offering the service to its
clients. An optimum service rate µ∗ can be obtained using the Equation 9 (SHARMA,
2016).

µ∗ = λ+

√
λ ∗ C2

C1

(9)

2.1.2 Probability Distributions

In various queue systems, client arrival occurs in a random manner, that is, the
arrival of one client is not influenced by the time between the arrival of other client or
its service (ARENALES, 2015), in a pure birth system, that is the arrival process, a
time interval that follows an exponential distribution and the arrival rate is λ clients per
time unit, client arrivals can be described by the Poisson distribution, that is, if the time
between arrivals follows an exponential distribution with an 1

λ
mean, then the number

of arrivals in a time unit t follows a Poisson distribution with a λ ∗ t mean (TAHA, 2008;
SHARMA, 2016; ARENALES, 2015).

In a pure death system, that is the service or departure process, the system
starts with one client at time equals zero and new arrivals are denied, since the service
is provided following a rate of µ clients per unit of time t (TAHA, 2008; SHARMA, 2016).
According to ARENALES (2015), an example of a pure death system is the outbound
segment of a warehouse, were products are shipped but not replenished.

2.1.2.1 Continuous Distribution Functions

Continuous distribution functions are used to describe the probability of a
random variable in an interval, as an example, the chance of a number of defects
in a length of copper wire, or so the number of a determinate event in a set interval
(MONTGOMERY; RUNGER, 2009). These distributions can also be used to describe
stochastic events such as the probability of arrival of a client in a shop during a day,
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and in this study, they are set as parameter functions to fitting tests, describing various
stochastic events in a warehouse simulation model.

Some Continuous Distribution Functions are described below, on Frame 1:

Frame 1 – Continuous Distribution Functions

Distribution Formula Considerations

Uniform F (xi) = 1/(b− a) a ≤ x ≤ b

Normal √ 1
2πσ

e
−(x−µ)2

2σ2 None.

Exponential F (x) = λe−λx 0 ≤ x ≤ ∞

Gamma

Γ(r) =
∫∞
0
xr−1e−x

F (x) = λrxr−1e−λx

Γ(r)
r > 0

x > 0

Erlang
F (x) = λrxr−1e−λx

Γ(r)
r > 0, r is an integer

x > 0

Weibull F (x) = 1− e−(x
δ
)β 0 ≤ x ≤ ∞

Lognorm F (x) = 1
xω

√
2π
exp[− (lnx−θ)2

2ω2 ] θ = mean, ω2 = variance

Beta F (x) = Γ(a1+a2)
Γ(a1)Γ(a2)

xa1−1(x− 1)a2−1 0 ≤ x ≤ ∞

Cauchy F (x) = 1
2
+ 1

π
atanx−µ

θ
µ > 0, θ > 0

Frechét F (x) = exp(−(xθ)α) µ > 0, θ > 0

Gumbel F (x) = exp(−(exp(x−µ0

θ
))) µ > 0, θ > 0

Laplace F (x) = 1
2
exp(x−µ

β
) µ > 0, θ > 0

Logistic F (x) = 1
1+exp(−x−µ

β
)

µ > 0, θ > 0

LogLogistic F (x) = ( 1
1+x

a
)−β a > 0, β > 0

Triangular
2(x−a)

(c−a)(b−a)
a ≤ x ≤ c

2(x−a)
(c−a)(b−a)

c ≤ x ≤ b

Source: Adapted from MONTGOMERY and RUNGER (2009), Siemens PLM (2023).

2.2 FITTING TESTS

Fitting tests are used to verify if the collected data fits (or follows) a certain
theoretical distribution (FILHO, 2008), these kind of distributions represent the behaviour
of a certain event in function of its frequency (LEOTTI; BIRCK; RIBOLDI, 2005). From a
completely specified probability distribution, the probability of a random variable can
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be calculated assuming a given range (LEOTTI; BIRCK; RIBOLDI, 2012), and so it is
possible to analyse a set of data and using several distributions to find functions and
parameters that can represent a system, or one element of a system.

Analysing distributions that fits in a data set as a good description of an event is
done using several tests that can be parameterised and not parameterised (FILHO, 2008;
LEOTTI; BIRCK; RIBOLDI, 2005), parameterised tests such as Student t requires a
specific probabilistic distribution to its random variable, the Normal distribution, and other
parametric methods supports other probability distributions. Non-parametric methods
such as Mann-Whitney, Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling
and Shapiro-Wilk (LEOTTI; BIRCK; RIBOLDI, 2005) can be used on data sets that are
not normalised and do not presume a probability distribution to the data set (LEOTTI;
BIRCK; RIBOLDI, 2012; FILHO, 2008).

2.2.1 Pearson Chi-Square Test

The hypothesis that a sample of data O (O1, ..., On) has the distribution F (x), a
range of Oi samples is partitioned in a set (E1, ..., EM ), if a set of N (that is N1, ..., NM )
values are observed of Oj, then Ni has the binomial distribution with parameters n and,
Equation 10, when the null hypothesis is true (D’AGOSTINO; STEPHENS, 1986).

Pi = P (Xj falls in Ei) =

∫
Ei

dF (x) (10)

Pearson has set three stages:

• First: The quantities Ni − npi have in large samples approximately a multivariate
normal distribution, and this distribution is non singular if only M − 1 of the cells
are considered;

• Second: If Y = (Yi, ..., Yp)
′ has a non singular p-variate normal distribution

Np(ψ,
∑

), then the quadratic form (Y −ψ)′
∑ −1(Y −ψ) appearing in the exponent

of the density function has the χ2(p) distribution as a function of Y ;
• Third: Computation shows that if Y = (N1 −np1, ..., NM−1 −npM−1)‘, this quadratic

form is given by Equation 11, which therefore has approximately the χ2(M − 1)

null distribution in large samples:

χ2 =
M∑
i=1

(Ni − npi)
2

npi
(11)

Its use has been discouraged for continuous distributions, but has a good
advantage for dealing with parameter estimations (ROLKE; GONGORA, 2021). Rolke
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and Gonora (2021) also states that other methods have been developed over time,
Kolmogorov-Smirnov and Anderson-Darling are the most commonly used.

2.2.2 Kolmogorov-Smirnov Test

The Kolmogorov and Smirnov methods compares cumulative distribution
functions, letting Gt be a empirical, that is the collected data, and F (t) the theoretical
function, containing a Normal with a mean ι and variance σ2, the Kolmogorov–Smirnov
test statistic takes one of theses forms represented by Equations 12, 13 and 14,
(BERGER; ZHOU, 2014):

Dk = max|F (t)−Gn(t)|,min(x) ≤ t ≤ max(t) (12)

where the alternative hypothesis is that F (t) ̸= G(t),

D+
k = max|F (t)−Gn(t)|,min(x) ≤ t ≤ max(y) (13)

where the alternative hypothesis is that F (t) > G(t) for some value(s) of t, and

D−
k = max|Gn(t)− F (t)|,min(x) ≤ t ≤ max(x) (14)

where the alternative hypothesis is that F (t) < G(t) for some value(s) of t.
Berger and Zhou also states that the Kolmogorov–Smirnov test has an exact null
distribution for the two directional alternatives but the distribution must be approximated
for the non directional case. Regardless of the alternative, the test is less accurate if the
parameters of the theoretical distribution have been estimated from the sample.

2.2.3 Anderson-Darling Test

Anderson and Darling describes a goodness of fit method, Equation 15:

A2
m = m

∫ ∞

−∞

[Fm(x)− F0(x)]
2

F0(x)[1− F0(x)]
dF0(x) (15)

The Anderson-Darling method is a test which does not involve a subjective
grouping of the data, like the Pearsons χ2 method, it consists of comparing the empirical
cumulative distribution function with the hypothetical distribution function (ANDERSON;
DARLING, 1952). Let a sample of data O (O1, ..., On), with empirical distribution Fm(x),
with distribution function F (x) where F (x) = F0(x) for some completely specified
distribution function F0(x), where Fm(x) is defined as a proportion of sample O, which
is not greater than x (ANDERSON; DARLING, 1952; SCHOLZ; STHEPENS, 1986).

As described by Anderson and Darling, the test wishes to consider a convenient
measure of the discrepancy or "distance" between two distribution functions. The



22

authors also stated that this test is more appropriated for smaller data samples, for
which larger samples the Kolmogorov-Smirnov and Cramer-Von Misses should be
considered, reducing the problems to straight-foward considerations in the theory of
Gaussian stochastic processes.

The innovation of this method is that a weighting function, w(x), Equation 16,
which provides flexibility in the test (ANDERSON; DARLING, 1952).

w(x) = [F0(x)(1− F0(x))]
−1 (16)

2.3 SIMULATION OF PROCESSES

2.3.1 Discrete Event Simulation

Petrean (1998) concludes that the more complex the queuing systems get, the
mathematics involved becomes intractable, that happens because of the complexity of
the formulas involved in the analytical treatment of the system using queuing theory
models, so it is more convenient to apply simulation techniques.

Discrete Event Simulation (DES) is a collection of techniques that are used to
study a discrete-event dynamical system, FISHMAN (2001) describes these collections
as modelling concepts for abstracting the essential features of a system in a set of
precedence and mathematical relationships, the use of computer software to convert
these concepts into computer executable code to generate data, converting this data
into estimates of system performance and the use of methods for assessing how these
estimates approximate true, but unknown, system behaviour. LAW (2016) defines DES
as the modelling of a system as it evolves over time by a representation in which the
state variables change instantaneously at separate points in time.

2.3.1.1 Discrete Event Simulation Software

DES softwares are computer programs that allow the modelling of processes
in a virtual environment. Agalianos et al. (2020) describes that Digital Twins (DT)
as DES models that are used in real time to improve processes, including real-time
decision making, recognise trends and limitations in warehouses. These DT models are
integrated complex simulations of complex physical models, using data gathered from
sensors and other real-time acquiring data devices (AGALIANOS et al., 2020).

Some state-of-the-art DES Software are listed below on Frame 2:
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Frame 2 – Discrete Event Simulation Softwares

Software Distributor General Description

Anylogic

AnyLogic allows for DES,

The AnyLogic Agent-Based, and system dynamics

Company modelling, focusing in a visual

modelling language.

Arena

Arena allows for DES, Flow

Rockwell and Agent-Based modelling methods,

Automation to create a DT using historical

data to to analyse system results.

Flexsim

FlexSim Software that enables the simulation

Software and optimisation of production

Products, Inc. systems and processes.

Siemens Plant Simulation

Using object-oriented architecture and

Siemens PLM the support of multiple interfaces

Software and integration to model and

assess system performance.

Source: Author (2023).

2.3.2 Other Warehouse Simulations

In a study Smith and Srinivas (2019) used a simulation-based evaluation for
improving inbound logistics operations and reducing truck detention fees in one of the
major costumer goods in the United States, proposing different check-in policies such
as staging areas, dynamic dispatching rules and automation. The main key performance
indicators are the processing time, truck awaiting time and queue length, the main
bottlenecks are delays generated by traffic congestion at the facility entrance, mainly
during peak hours when the arrival rate succeeds the service rate.

The methodology used to tackle the issue is defined in five stages: Define,
Measure, Analyse, Improve and Control (DMAIC), being composed mainly of: Process
mapping and the creation of flow charts, collection of historical data, the fitting of
the analysed data into statistical distributions and baseline model development. For
data analysis for use in the simulation models, nine weeks where extracted from the
Warehouse Management System (WMS) (SMITH; SRINIVAS, 2019).

Defining the sequence of events enabled an easier understanding of the check-
in process, resulting in a flowchart containing the unique characteristics of the flow of
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material and trucks. Such characteristics includes that different types of trucks enter
thought entrances, one of them has an RFID (Radio-Frequency Identification) technology
for automatic and faster check-in processing, but has only one server and queue. In
case a RFID check-in fails, the truck has to re-route to the main entrance and redo its
identification manually.

Smith and Srinivas (2019) then uses the collected data to determine the
arrival and service rates for use in the simulation model, after outlier treatments, a
Kruskal–Wallis (K-W) test was conducted to to assess the homogeneity of the arrival
rates of the three busiest days, the test resulted in a combined data sheet for these
days. After the K-W test, a Persons χ2 test was used for the fitting test, resulting that a
Poisson distribution with a time-varying arrival rate to be a good fit for modelling truck
arrivals.

To simulate a warehouses modular conveyor system Ashrafian (2019) used a
three dimensional DES model and other statistical models to capture the randomness
and the complexity of the whole system. The focus of the study is to show how a DES
can help the design and optimisation of warehouse systems, using a Digital Twin as a
tool for decision making and optimisation.

Data of various time-dependant operations regarding one week of operation
amounting near 500000 products was collected. A Statistical analysis was used to
model statistical distributions for the inputs, such as supplier feeding rates, storage
feeding rates, processing times at pickup stations and decision points that distributes
the products (ASHRAFIAN, 2019).

The outcomes of the suggested solution scenarios reveal that implementing
a new loop parallel to the conveyor highway effectively enhances the availability of
products at pickup stations. This, in turn, reduces the average product quantity on the
highway, thereby preventing congestion. The overall product quantity within the system
decreased by 8%, and the number of products passing through decision points saw a
28% reduction. These metrics represent the most significant Key Performance Indicators
(KPIs) for this particular scenario(ASHRAFIAN, 2019).

In other study Gattuso, Cassone and Pellicanò (2014) simulates the receiving
process of a logistics centre warehouse for food and household goods distribution
using the software Witness, generating models for the treatment and handling of goods
utilising Intelligent Transportation Systems (ITS), Radio Frequency Identification (RFID)
implementations and automation. The main objective is to reduce the time costs of
receiving goods using a DES implementation.

Gattuso, Cassone and Pellicanò (2014) points out that RFID technologies,
together with a Electronic Data Interchange (EDI) communicating the relevant
documentation data reducing the human interaction, grants a 15% to 20% reduction to
the checking phase of the unloading of cargo, leading also to saving time on the following
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phases of storing, picking and shipping. This resulting data regarding the reduction
of time in the receiving process is also shown in a study done by Sooksaksun and
Sudesertsin (2014), where a similar warehouse context regarding the implementation,
but in this case an actual implementation, has reduced the receiving process in 28,79%
using RFID.

Other advantages are for the usage of RFID technology is its use in inventory
management, location of products in real time, routing inside the warehouse (optimising
travel time) and product backtracking. The main disadvantages are its cost for
implementation, consisting in the tags for each product, the antennas for receiving
the radio signal, software needed to transform the relayed data (EDI) and adaptations to
the existing system inside the warehouse (GATTUSO; CASSONE; PELLICANò, 2014;
SOOKSAKSUN; SUDSERTSIN, 2014).

Leveraging the established theoretical framework on measuring the
performance and costs of queuing systems, understanding the utilisation of probability
distributions in determining process arrival intervals, discerning how to statistically fit
probability distribution functions to collected data, and recognising how DES simplifies
the analytical complexity of queuing system analysis, this case study will now proceed
to demonstrate and discuss its construction and analysis. The following chapters will
detail the mapping of the receiving process, the collection of data, the construction
and calibration of the DT model, the configuration of simulation parameters, and the
development of proposed improvement scenarios, involving modifications to a base
model.
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3 METHODOLOGY

In this chapter the method in which the main bulk of the study is described,
using a methodology as stated by Smith and Srinivas (2019), Define, Measure, Analyse,
Improve and Control (DMAIC). The Define step consists of the process mapping and the
construction of the DT model of the warehouse inside Plant Simulation, the chosen DES
software for this study, the Measure step comprises the data collection regarding the
define processes and also establishes the baseline values for evaluation, then Analyse
involves the data fitting for the distribution functions and the calibration of the base
model scenario.

Once the base model scenario is calibrated, the resulting simulation replicates
dynamic behaviours observed in historical data, enabling the modelling of potential
Improvements and scenarios (XIE; ZHANG; ZHANG, 2017). The proposed changes can
be clearly defined, measured, and analysed in comparison to the base model scenario,
facilitating the identification of potential improvements. These proposed improvements
can then be Implemented and Controlled in subsequent iterations.

3.1 OBJECT OF STUDY

This study focuses on a warehouse belonging to a company in southern Brazil,
this company imports products for two main purposes: direct resale and assembly within
this facility. The choice to locate the warehouse here is strategic, benefiting from its
proximity to sea cargo ports, major national highways and capital cities.

The company also procures products from domestic suppliers, using them for
both resale and internal consumption within its assembly processes. These items are
stored and subsequently sold alongside the primary product.

As these are healthcare materials, ANVISA (Agência Nacional de Vigilância
Sanitária), the Brazilian Health Regulatory Agency, imposes numerous procedures
and restrictions to ensure compliance (ANVISA, 2021). Furthermore, some of these
products are intricate, consisting of a primary volume along with various accessories
or complementary volumes, which necessitate the assembly of multiple components
to create the final product, and some of these products are only assembled inside the
clients site.

The central issue associated with the receiving process is the delay between
the arrival of products and their disposal, that is the availability for consumption in the
assembly process or direct sale. This delay is particularly attributed to the process of
labelling and documentation logging. Currently, crucial information is solely obtained
from product invoices and import documentation, involving the use of spreadsheets and
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manual data logging into the WMS.
As the information used on this study is highly sensible to the company, all data

shown is camouflaged by multiplying all values by a constant X.

3.2 PROCESS MAPPING AND MODEL CONSTRUCTION

The process mapping was conducted via interviews with the warehouse
operators, internal processes procedure documentation and on-site observations. Figure
4 illustrates a flowchart detailing the Receiving Process of the warehouse, covering the
entire process from the arrival of the truck carrying the goods to their disposal.

Figure 4 – Mapped Receiving Process

Source: Author (2023).

The first procedure to be enrolled is to inspect the vehicle in which the products
have been transported, if the product is imported, that is, the vendor is from a foreign
country, a procedure following the Authorised Economic Operator (AEO), an European
Union program of internationally recognised standards (EC, 2023), must be conducted,
if the product has a national vendor origin the vehicle inspection procedure is skipped.

Subsequently, a visual quality inspection is carried out to check for any signs of
damage and to verify whether any tilt or shock sensors have been activated. A checklist
is completed, including details such as the quantity of volumes received, the presence of
a purchase order reference on the invoice, the type of material, any observed damage
or triggered sensors, and the products suitability for acceptance. Once the checklist
is completed, the invoice (or receipt) is signed, and the product is then placed in the
receiving area.
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This first set of actions are represented in the simulation with a buffer block,
representing the warehouse unloading dock, named "Receiving Buffer", with a triangular
distribution with parameters a = 1 minute, b = 20 minutes and c = 5 minutes for
the unloading time on the workplace, then two store blocks called "Store National
received"and "Store Import received", with triangular distributions with parameters a = 1
minute and 15 seconds, b = 1 minute and c = 1 minute and 30 seconds.

After storing the material in the receiving area, its adequacy phase begins with
the upload of the invoice reference and arrival data to the WMS and the office operators
are notified, so that the product can then be labelled following the procedures and
internal documentation. A random location on one of the racks is determined by the
WMS software, and then the product can be stored at that location and is available for
use upon notification of the office operation.

Then for the removal from the receiving areas and storage of the product in
its final warehouse position, the workplaces for the storage blocks have a triangular
distribution with parameters a = 5 minutes, b = 3 minutes and c = 10 minutes for the
unloading and, depending on the final position of the product in the storage rack, the
equation 17 is used to set the time for storage in the rack, where i is the horizontal
position and j is the vertical position on the rack:

Time to storage on rack = i ∗ 1.33 + j ∗ j ∗ 10 (17)

The processes of transfer and expedition of products was not mapped as they
are not the focus of this study, only its impact regarding the availability of the rack
positions was considered using a simple logic to delete the material and clear the rack
position. The data regarding the quantities and timings where considered, as to emulate
the internal dynamic of position availability.

After the process mapping the flow system for analysis using Queuing Theory
can be established, Figure 5:

Figure 5 – Flow System of the Receiving Process

Source: Author (2023).

The DT is modelled using the layout blueprints for the warehouse, comprising
all measurements of the physical structure (including rack sizes, locations, available
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stocking positions, receiving, transfer and expedition areas, office spaces, entrances,
etc). These objects are then modelled to a one-to-one scale, allowing the simulated
workers to route inside the warehouse.

In this study, the chosen time span for modelling the receiving process spans
two weeks, and two months of data were used to generate the fitted distributions.
This time frame was selected because a larger span would undermine the data set
by high variability, giving poor statistical results for the fitting tests, particularly given
the inconsistency in the demand for products and receiving quantities. The two weeks
of simulation time is set as the mean time of completion of the receiving process is
three days, giving enough time to several products to be processed and the output data
collected.

3.3 COLLECTION OF HISTORICAL DATA

Data spanning two months was collected from reports provided by the
warehouse operator manager, and its accuracy was verified using the internal
Warehouse Management System (WMS). This data encompasses information on the
enrolled times and quantities related to the receiving, transfer, and expedition processes,
totalling 8,751 rows of data. The specific data elements included are outlined in Frame
3:
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Frame 3 – Collected Data

Process Data Data Quantity

Receiving

Date and Time of Arrival

Date and Time of Notification

Internal Material Reference 2504

Material Serial Number

Quantity of Volumes

Internal Transfer

Date and Time of the Order

Internal Material Reference

Material Serial Number 4073

Date and Time of delivery

Quantity of Volumes

Expedition

Date and Time of the Order

Internal Material Reference

Material Serial Number

Date and Time of Picking 2174

Date and Time of Packing

Date and Time of Expedition

Quantity of Volumes

Source: Author (2023).

3.4 BASE MODEL CALIBRATION

For the calibration of the proposed DES some literature was reviewed regarding
the impacts of the number of runs, warm up time, transient and steady state and also
the statistical analysis for the collected data.

3.4.1 Simulation Parameters

For a simplified simulation model Xie, Zhang and Zhang (2017) utilises the
service rates µ of a queue where the arrival times ate exponentially distributed with
an average of 1

λ
, and service times are exponentially distributed as an average of 1

µ
,

representing a bottleneck at workstations, with the output of the dynamic behaviours
being the order cycle times, adjusting the variables so the output samples match with
the historical data under the same conditions.
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On the study done by Gattuso, Cassone and Pellicanò (2014) the calibration
is conducted by first identifying the theoretical probability distribution that represents
the phenomena using the minimum square, or the maximum likelihood, methods then
verifying its statistical tests via the Pearson χ2 and Kolmogorov-Smirnov tests. The
authors then demonstrates how the fitted data adheres to the historical data using
graphical representations and also describes the fitting test results and the parameters
for the fitted distributions.

Both of the studies (by Xie, Zhang and Zhang (2017) and Gattuso, Cassone
and Pellicanò (2014)) do not consider any warm up times and number of runs. Borges
et al. (2014) defines the importance of warm up times as the transient stage, the time
of initialisation of the simulation that is not steady, generates values that should not be
considered in the output analysis. Borges et al. (2014) also states that one method to
overcome this phase in the simulation run time for DES is to ignore the data generated,
and so the resulting treated data is statistically reliable.

The steady stage of the simulation is defined by the immediate end of the
transient stage of the simulation (BORGES et al., 2014). Borges et al. (2014) suggest a
heuristic for determining the steady state of a simulation, using a linear regression of
the range of results of the simulation, where the coefficient is near zero for the specified
range of observations. If the specific data has a incline represented by the R2 value of
the linear regression, the simulation run time is still in its transient state, as represented
by Figure 6:

Figure 6 – Transient and Steady State

Source: Adapted from Borges et al. (2014).

For the model that is constructed in this study, a warm up time of 2 days is
considered, using the heuristic proposed by Borges et al. (2014). For analysing this
behaviour of the simulation, a one hour interval pooling of data from the receiving area
stock is collected the analysed its linear regression R2 values, as the stock quantity is



32

not defined directly by the modeller.
The R2 value for the linear regression considering an entire run is 0,024 with a

ramp in its initial values. The steady state is reached at the third simulated day, with an
R2 value of 0,0025, from this point the simulation is then considered at the steady state.

Figure 7 – Pooled data for an entire simulation run with the R2 value

Source: Author (2023).

Figure 8 – Pooled data without the warm up time for a simulation run with the R2 value

Source: Author (2023).

For the number of runs, a study done by Ritter et al. (2011) on simulating tasks
where humans are involved, or Human-on-the-Loop simulations, describes that these
simulations should not be sampled, but run enough times to provide reliable results.
Ritter et al. (2011) then describes the modellers dilemma of how many simulations
should be run for comparing experimental and gathered historical data, citing that other
researchers use a range of methods, from one run up to 1000 simulation runs.
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Figure 9 – Performance Distribution

Source: Adapted from Ritter et al. (2011).

Ritter et al. (2011) proposes a heuristic for determining the number of runs if
the simulations are easy to obtain, that is, the simulation time and resources used are
not a problem for the modeller, using a simple criterion: the Standard Error of the Mean
(SEM), representing the error in predicting the mean of the distribution of results. The
equation 18 represents the SEM, where κ is the number of runs:

SEM = V ariance/κ = Standard Deviation/
√
κ (18)

As an example, Ritter et al. (2011) demonstrates that for a simulation with a
confidence of 95% and a standard error of 0,5, the SEM value is 0, 5/1, 96, or 0,255,
for a 95% confidence limit, where the 1.96 value is the approximate value for the 97.5
percentile point of the normal distribution. If the standard deviation is 3.6 then using
Equation 18, it is solved the value of κ as 199 runs.

For this study, the number of runs is determined by using an 85% confidence
interval with value 1,282 (MONTGOMERY; RUNGER, 2009), the standard error for the
receiving area stock (which represents the number of clients in the queue) is 11,83 and
its variation is 140,04. Solving the value κ, with a SEM value of 9,22, the number of
runs is set as 231 runs.

3.4.2 Fitting of the Analysed Data

For the data fitting tests the following methodology was established:

1. Gather the desired data subject from the database;
2. Removal of outliers using the data visualiser, inside Plant Simulation;

a) Where considered outliers any data that has an abnormal distance from the
other values;

3. Input the treated data in the DataFit block;
a) Set the data input type as Continuous or Discrete;
b) Set the recommended number of classes for the χ2 test;
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c) Set the distributions to be evaluated;
d) Visualise the fitted data and the results of the fitting tests;

4. Set the four most fitted distribution and its defined parameters into the subjects
process block;

5. Run 231 simulations using the ExperimentManager block, with random seeds
(SIEMENS PLM, 2023);

6. Get the average value for the the desired data subject;
7. Compare and set the best distribution (that has the lower error percentage

compared to the actual data) for the subject.

Following Figure 5, the distributions used to describe the various flow items
are now described. As an example, starting with the frequency of truck arrivals, it is
assumed that a Poisson distribution should be a good distribution to define this arrival
process, but the analysed data and the fit results shows an unsatisfactory result as in
Figure 10:

Figure 10 – Observed data versus Poisson distribution for truck arrivals (in hours)

Source: Author (2023).

The average number of arrivals for the simulated time frame is 35 trucks per
week, the resulting λ value output from the DataFit block is 3.1416 with a χ2 statistic of
582.9027 (better if lower), giving a total of 15 arrivals and a 43.86% error. Considering
other distributions and the methodology proposed, Frames 4 and 5 describes the new
fitted distributions for this step of the receiving process:
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Frame 4 – KS test for distributions for the Truck Arrivals and its corresponding error

Distribution KS Statistic KS test Arrivals Error

Weibull 0.8998 true 33 5.7%

Lognorm 0.9862 true 25.3 28.57%

Erlang 0.9962 true 25.4 28.57%

Gamma 1.0160 true 23.7 34.28%

Source: Author (2023).

Frame 5 – AD test for distributions for the Truck Arrivals and its corresponding error

Distribution AD Statistic AD test Arrivals Error

Weibull 0.5967 true 33 5.7%

Gamma 0.9215 false 23.7 34.28%

Erlang 1.4013 false 25.4 28.57%

Lognorm 1.5801 false 25.3 28.57%

Source: Author (2023).

The truck Arrivals, resulting in a Weibull distribution with parameters α = 1.05378
and β = 5599.55361 (seconds) fitted considering the AD test, graphed in Figure 11:

Figure 11 – Fitted Weibull Distribution for Truck Arrivals (in seconds)

Source: Author (2023).

The next distribution to be calibrated is the quantity of products in the trucks
containing products from national origin. On average, the number of volumes received
is 107 per week, the DataFit block provides the following results for the fitting tests in
Frames 6 and 7:
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Frame 6 – KS results for National Product Quantity Arrival in Trucks and its
corresponding error

Distribution KS Statistic KS test Quantity Error

Weibull 3.2208 false 88.5 17.76%

Pareto 3.3350 false 102.7 4.09%

Gumbel 3.4568 false 96.3 10%

Lognorm 3.6574 false 68.9 36.45%

Source: Author (2023).

Frame 7 – AD results for National Product Quantity Arrival in Trucks and its
corresponding error

Distribution AD Statistic AD test Quantity Error

Pareto 11.0339 false 102.7 4.09%

Weibull 13.6404 false 88.5 17.76%

Lognorm 14.1633 false 68.9 36.45%

Gumbel 15.1805 false 96.3 10%

Source: Author (2023).

Quantity of volumes for national products fitting results in a Pareto distribution
with parameters α = 0.86060 and β = 0.64106, graphed in Figure 12:

Figure 12 – Fitted Pareto Distribution for National Product Quantity Arrival in Trucks

Source: Author (2023).

The quantity of products in the trucks containing products from foreign origin is
now calibrated. The average number of volumes per truck received is 68, the DataFit
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block outputs the following results for the tests and proposed distributions in Frames 8
and 9:
Frame 8 – KS results for Foreign Product Quantity Arrival in Trucks and its corresponding

error

Distribution KS Statistic KS test Quantity Error

Normal 1.5824 false 90.2 32.72%

Gamma 1.5590 false 83.2 22.35%

Weibull 1.5684 false 75.2 10.59%

Gumbel 1.6239 false 91.6 34.78%

Source: Author (2023).

Frame 9 – AD results for Foreign Product Quantity Arrival in Trucks and its
corresponding error

Distribution AD Statistic AD test Quantity Error

Normal 3.4364 false 90.2 32.72%

Gamma 3.4987 false 83.2 22.35%

Weibull 3.5815 false 75.2 10.59%

Gumbel 3.9397 false 91.6 34.78%

Source: Author (2023).

Quantity of volumes for imported products fitting results in a Weibull distribution
with parameters α = 1.13321 and β = 6.84269, graphed in Figure 13:

Figure 13 – Fitted Pareto Distribution for Imported Product Quantity Arrival in Trucks

Source: Author (2023).

As for the times between the product placement at the adequacy area and
the final disposal notification, for national products, the mean time lost awaiting is 69
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hours and 32 minutes. And so the fitted distribution for the release of the products in the
receiving area is given by the following Frames 10 and 11:

Frame 10 – KS results for National Product Adequacy time and its corresponding error

Distribution KS Statistic KS test Average Time Error

Lognorm 1.7702 false 66:40 4,32%

Gamma 2.0606 false 84:23 17,66%

Erlang 2.2686 false 95:56 27,50%

Weibull 2.3805 false 88:49 21.69%

Source: Author (2023).

Frame 11 – AD results for National Product Adequacy time and its corresponding error

Distribution AD Statistic AD test Average Time Error

Gamma 2.6116 false 84:23 17,66%

Erlang 2.7770 false 95:56 27,50%

Lognorm 3.0282 false 66:40 4,32%

Weibull 3.0652 false 88:49 21.69%

Source: Author (2023).

For the time enrolled between the product placement at the adequacy area and
the final disposal notification, for national products, the fitted distribution with best error
is a Lognorm distribution with parameters µ = 2:14:40:04 and σ = 1:20:33:38, graphed
in figure 14:

Figure 14 – Fitted Lognorm Distribution for National Product Enrolled Time

Source: Author (2023).
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As for the times between the product placement at the adequacy area and
the final disposal notification, for foreign products, the mean time lost awaiting is 111
hours and 43 minutes. And so the fitted distribution for the release of the products in the
receiving area is given by the following Frames 12 and 13:

Frame 12 – KS results for Foreign Product Adequacy time and its corresponding error

Distribution KS Statistic KS test Average Time Error

Normal 3.7603 false 137:50 18,94%

Weibull 4.2436 false 142:27 21,57%

Gamma 5.0176 false 131:09 14,81%

Gumbel 5.0282 false 143:06 21.92%

Source: Author (2023).

Frame 13 – AD results for Foreign Product Adequacy time and its corresponding error

Distribution AD Statistic AD test Average Time Error

Normal 15.4390 false 137:50 18,94%

Weibull 21.9323 false 142:27 21,57%

Gamma 26.9111 false 131:09 14,81%

Lognorm 32.4728 false 128:20 12.94%

Source: Author (2023).

For the time enrolled between the product placement at the adequacy area and
the final disposal notification, for imported products, the fitted distribution with best error
is a Lognorm distribution with parameters µ = 5:00:40:05.44 and σ = 3:21:39:12.97,
graphed in figure 15:
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Figure 15 – Fitted Lognorm Distribution for Imported Product Enrolled Time

Source: Author (2023).

The final mean time values for the arrival process, from the unloading of the
truck up to the storage and notification, for national products is 87 hours and 47 minutes,
and for products from foreign origin 125 hours and 55 minutes, resulting in a mean
error of 15,4% and 6,4% respectively. The following figures illustrates the generated
frequencies for the sets of products, for 231 runs, starting with national products in
figures 16 and 17:

Figure 16 – Distribution of frequencies for collected data on national products

Source: Author (2023).
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Figure 17 – Resulting distribution of frequencies for simulated data on national products

Source: Author (2023).

And for products that are imported, figures 16 and 17:

Figure 18 – Distribution of frequencies for collected data on imported products

Source: Author (2023).

Figure 19 – Resulting distribution of frequencies for simulated data on imported products

Source: Author (2023).
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3.5 PROPOSED SCENARIOS

Following the studies of Gattuso, Cassone and Pellicanò (2014) and
Sooksaksun and Sudsertsin (2014) the first proposed scenario to be compared to
the base model scenario is the implementation of a RFID capability to the process, as
stated by the authors, this technology promotes gains in efficiency for the receiving
process with a theoretical range of 15% up to 20%, but with an real example of an
28,79% reduction on the receiving time. Due to the characteristics of the operation
inside the warehouse that is the object of this study, only the imported products will
receive the RFID capability, as all imported products are from an internal supplier.

With the implementation of RFID and EDI, enabling automated data transfer,
the internal WMS gains the capability to automatically transmit relevant data. Each
imported product, equipped with an RFID tag, facilitates the seamless transfer of
information, encompassing details such as the product invoice (and its signing), as well
as the checklist containing quantities, purchase order, type of material, internal material
identification, and other pertinent data.

This significantly impacts the primary bottleneck in the process, namely the
labelling and internal documentation logging. With automation at this stage, the product
can be directly allocated to its predetermined final position, complete with automated
position verification and routing.

The actual data regarding the receiving process for the imported goods is
then reduced by 20%, as a proposed gain in efficiency with the RFID technology. A
new fit test to the data is conducted, giving a new probability distribution for the time
enrolled between the product placement at the adequacy area and the final disposal
notification: a triangular distribution with parameters c = 4:21:24:20.18, a = 2:28:48 and
b = 7:23:32:48. The maximum time for the distribution of the "Receiving Buffer"is also
reduced by 20%, with a new value for c of 16 minutes.

Figure 20 illustrates the applied RFID capability to the receiving process:



43

Figure 20 – RFID capable receiving process

Source: Author (2023).

The second scenario is to increase the number of operator available to receive
products (from one to two operators). This model will be useful to compare the impact
of a greater workforce versus the RFID implementation, being that the implementation
of the technology is expensive, time consuming and needs the training of the staff. At
last, a third scenario combining both the RFID and the additional staff is proposed.
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4 RESULT ANALYSIS

The result analysis compares the results of the performance measures for the
steady state of a queuing system (Table 1) and the cost model and service level trade
offs (Figure 3). The C1 and C2 values found in equations 7 and 8 where considered as
C1 = 1 monetary unit and C2 = 3 monetary units, to hide the true values considered by
the company.

First, the receiving buffer that represents the product arrival in the mapped
receiving process (Figure 4) has its results described in Frame 14 for the Base Model
Scenario and Frame 15 for the proposed alternative scenarios:

Frame 14 – Results for the Base Model Scenario for Product Arrival

Measurement Value Unit

Utilisation Rate 75,10% None

Busy Servers 100% None

Mean time between arrivals 0:49:48 hours

Mean client waiting time 0:37:24 hours

Workload 1,2048 None

Service Rate 1,6043 Clients per hour

Arrival Rate 1,2048 Clients per hour

EOC 0,7510 Monetary unit

EWC 9,0480 Monetary unit

ETC 9,7990 Monetary unit

Optimum Service Rate 3.1060 Clients per hour

Source: Author (2023).
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Frame 15 – Results for the Proposed Scenarios for Product Arrival

Measurement RFID Two Operators Combined Unit

Utilisation Rate 51,87% 64,24% 74,85% None

Busy Servers 100% 100% 100% None

Mean time between arrivals 0:58:38 0:58:13 0:57:46 hours

Mean client waiting time 0:30:25 0:37:24 0:43:14 hours

Workload 1,0233 1,0306 1,0387 None

Service Rate 1,9726 1,6042 1,3878 Clients per hour

Arrival Rate 1,0233 1,0306 1,0387 Clients per hour

EOC 0,5187 0,6424 0,7485 Monetary unit

EWC 3,2331 5,3892 8,9283 Monetary unit

ETC 3,7518 6,0316 9,6768 Monetary unit

Source: Author (2023).

In Frame 16 the comparison is displayed:

Frame 16 – Comparison of the Results with the Base Model Scenario for Product Arrival

Measurement RFID Two Operators Combined

Utilisation Rate 69,07% 85,54% 99,97%

Busy Servers 100% 100% 100%

Mean time between arrivals 117,74% 116,90% 116%

Mean client waiting time 81,32% 100% 115,58%

Workload 84,94% 85,54% 86,62%

Service Rate 122,96% 100% 86,50%

Arrival Rate 84,94% 85,54% 86,62%

EOC 69,07% 85,54% 99,97%

EWC 35,73% 59,56% 98,68%

ETC 38,29% 61,55% 99,75%

Source: Author (2023).

As indicated by the results, introducing an extra operator to the Product Arrival
step and incorporating RFID capabilities to imported products simultaneously does
not necessarily ensure a higher Service Rate for the initial stage of the process. The
noteworthy outcome is that the RFID implementation is solely enough to improve the
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effectiveness of this phase of the process, with an significant decrease in the ETC for
the operation, as a reflex of the reduction in the client waiting time.

An improvement in the efficiency of the system was expected for the Combined
Scenario, where both the implementation of the RFID technology and the addition of
another staff member are implemented, but the results show a undermined waiting time
and a comparable running cost. This happens as the Lq and Ls are similar to the Base
Model Scenario, as for the scenario considering only the implementation of the RFID
capability has significantly lower values, as shown by Frame 17:

Frame 17 – Comparison of the Results for Queue Length for Product Arrival

Measurement Base RFID Two Operators Combined

Lq 2,265 0,559 1,1540 2,2276

Ls 3,016 1,0777 1,7964 2,9761

Source: Author (2023).

These results show that a implementation of the RFID capability can increase
the efficiency of the first step of the receiving process, before the product adequacy. A
mean reduction of 18,68% in Utilisation Rate could be reached with a 61,71% reduction
in the ETC for this step of the process.

As for the following step, Product Adequacy, the Base Model Scenario and
two of the proposed scenarios show a violation of the stability condition 5, with an
Arrival Rate superior to the Service Rate, generating infinite queues. Even with the
considerable reduction of 20% to the first step of the receiving process on the RFID
capable Scenario or the increase of available staff, the Service Rates for the base,
additional staff and the RFID Capable Scenario show no significant reduction in the
client waiting time, as shown by Frames 18, 20 and 19:

Frame 18 – Results for the Base Model Scenario Product Adequacy

Measurement Value Unit

Utilisation Rate 156,12% None

Busy Servers 100% None

Mean time between arrivals 36:55:11 hours

Mean client waiting time 57:43:25 hours

Service Rate 0,0173 Clients per hour

Arrival Rate 0,0270 Clients per hour

Source: Author (2023).
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Frame 19 – Results for the RFID Capable Scenario Product Adequacy

Measurement Value Unit

Utilisation Rate 136,23% None

Busy Servers 100% None

Mean time between arrivals 39:06:52 hours

Mean client waiting time 53:15:00 hours

Service Rate 0,0187 Clients per hour

Arrival Rate 0,0256 Clients per hour

Source: Author (2023).

The only significant result for the Product Adequacy phase, in the isolated
scenarios, is presented by the Additional Staff Scenario (Figure 20), where the utilisation
Rate is decreased by 31,34%. This means that the additional staff has increased the
efficiency of the process, but not enough to suffice the Arrival Rate and still generating
an infinite queue, as shown by Frame 20:

Frame 20 – Results for the Additional Staff Scenario for Product Adequacy

Measurement Value Unit

Utilisation Rate 124,78% None

Busy Servers 100% None

Mean time between arrivals 41:58:10 hours

Mean client waiting time 52:22:57 hours

Service Rate 0,01909 Clients per hour

Arrival Rate 0,02382 Clients per hour

Source: Author (2023).

The final simulation result for the Product Adequacy step of the process, the
Combined Scenario, also demonstrates a great decrease in utilisation rate, as shown by
Frame 21, but just not enough to solve the bottleneck at the process:
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Frame 21 – Results for the Combined Additional Staff and RFID Capable Scenario
Product Adequacy

Measurement Value Unit

Utilisation Rate 100,99% None

Busy Servers 100% None

Mean time between arrivals 45:36:02 hours

Mean client waiting time 46:01:19 hours

Service Rate 0,0217 Clients per hour

Arrival Rate 0,0219 Clients per hour

Source: Author (2023).

As this is the main bottleneck reported by the company, the ideal Service Rate
shown by the Equation 9 should be reached at this step to severely reduce the ETC of
the process and decrease the number of products awaiting in queue for its adequacy
and final placement inside the warehouse. As the condition p is still violated, the ETC
cannot be calculated and is considered infinite also.

The optimum Service Rate for this step of the process is 0,3116, an increase
of 14,36 times of the Service Rate presented by the Combined Scenario should be
reached to optimise the ETC and the service level for this step of the process. The ETC
if considered the optimal Service Rate is 0,2271 Monetary Units.

As for the final step of the receiving process, the Product Disposal at the final
position and notification for the office operators, the Frame 22 shows the results for the
Base Model Scenario:

Frame 22 – Results for the Base Model Scenario for Product Disposal

Measurement Value Unit

Utilisation Rate 101,17% None

Busy Servers 100% None

Mean time between arrivals 57:43:25 hours

Mean client waiting time 58:19:00 hours

Service Rate 0,0171 Clients per hour

Arrival Rate 0,0173 Clients per hour

Source: Author (2023).

A similar occurrence for the Combined simulated Scenario for the Product
Adequacy is presented, as the Service and Arrival Rates are practically the same,
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resulting again in an infinite queue, as the utilisation rate is is still higher than 100%.
As for the proposed scenario, the scenario with the RFID implementation, the

additional staff and the combined scenarios has its results in Frame 23:

Frame 23 – Results for the Proposed Scenario for Product Disposal

Measurement RFID Two Operators Combined Unit

Utilisation Rate 101,17% 101,63% 100,05% None

Busy Servers 100% 100% 100% None

Mean time between arrivals 53:15:00 52:22:57 46:01:19 hours

Mean client waiting time 58:19:00 54:17:27 46:17:07 hours

Service Rate 0,0171 0,0187 0,0216 Clients per hour

Arrival Rate 0,0173 0,0184 0,0217 Clients per hour

Source: Author (2023).

As demonstrated by the Combined Scenario for the Product adequacy and all
the scenarios on Product Disposal, the current and proposed processes solutions were
not sufficient for attending all the Arrival Rates of the process steps, generating infinite
queues. This aligns with on-site observations at the company warehouse during the
time frame of the collected data. The consequence is the incurring of additional costs
for extra staff, external storage, and an operation running on overtime to mitigate the
impacts of the demand.

As the overtime work and external storage was not considered for the scenarios,
the simulations where spectated to show infinite queues on some scenarios, but as
demonstrated by the results, all the measures implemented do not attend the Arrival
Rates. Since the best results where attributed to the Combined Scenario, it is assumed
that the implementation of the RFID technology, along with the addition of one employee
as another operator dedicated to the receiving process, and considering some overtime
working hours, the company should reduce the costs related to the client waiting times
and ETC.



50

5 FINAL CONSIDERATIONS

This case study, along with the cited articles, demonstrates the widespread
applicability of simulations for warehouse processes and their significant potential
for implementation across various stages of the product supply chain. The primary
challenge lies in the process mapping and the creation of a model capable of accurately
replicating the real process within a software environment.

Once the base model is constructed and calibrated, the modeller can then
introduce modifications, creating various scenarios to test, validate, and explore
hypotheses. This approach opens up a vast array of possibilities, and if the implemented
modifications to the base model prove to be reasonable and effective, the actual process
can be adjusted based on what has been simulated, with an anticipated outcome.

Each step involved in modelling a simulation must be thoroughly researched,
discussed, and implemented. Rushing or cutting corners in any of these steps can
compromise the validity of the final simulation, potentially leading to the accumulation
of errors. A dilemma arises as the modeller aims to incorporate the maximum level of
detail and fidelity into the simulation, this is because limitations in software, available
data, human and computational resources can impede the desired outcome or extend
the development time. Balancing these considerations becomes crucial for achieving a
meaningful and practical simulation as some premises have to be considered.

The applied heuristics for finding the steady state and run quantity have proven
to be an effective tool for setting the simulation parameters considering the statistical
significance of the output data, giving an 85% confidence that the 231 runs considering
at the steady state will result in a reliable data source for the analysis for the performance
of the scenarios. As stated by Ritter et al. (2011), the number of runs should maximise
the results and not waste resources, then a heuristic based on a statistical method to
determine the population (number of runs) of a sample (output) has solved this part
of the modellers dilemma for this case study, and if a higher statistical confidence is
needed then it should reapply Equation 18 for the desired confidence limit.

The fitting tests for the enrolled time between placement in the adequacy
area for imported products (Figure 15) exhibited the most significant error in the fitted
distributions compared to the actual data collected, amounting to 12.94%, and a final
mean error of 15,4% for the whole process involving imported products. This discrepancy
is attributed to the considerable variability associated with the type of product being
received. As a limitation in this case study arises from the aggregation of different
product subgroups, the combined gathered data shuffles values, making it challenging
to fit the theoretical distribution to a specific frequency distribution accurately.
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Another limitation is that the queuing theory is more adequate for exponentially
distributed statistical distributions and for some of the fitted, and the overall simulation
models, do not follow the frequency behaviour of these distributions. But at the same
time, as Petrean (1998) pointed out, if only considered the strict queuing theory
exponentially distributed statistical distributions the complexity of the analytical treatment
of the system will become intractable.

For the DT construction and data collection, the surveys only indicated
the perceived experience of the operators, if the warehouse had automated data
collection mechanisms, such as EDI directly with vendors or an existing RFID
implementation, relevant data concerning human interactions would have been
systematically documented in a structured data set and would be easily extracted
and analysed in real time by the WMS manager and any party. A reasonable
future improvement to the process is the implementation of an EDI capability, not
necessarily using RFID, but a system that can at least reduce the manual labour of
referencing, labelling, and structuring the data relevant to the receiving process and its
communication.

The simulation results reveal that the proposed scenarios are insufficient to
meet the Arrival Rates within the specified time frame. However, if overtime hours,
dynamically allocated staff, and external storage were taken into consideration in the
proposed scenarios, it might be possible to achieve a practical solution using the
methodology outlined in this case study. Further investigation is necessary to gather
the relevant data regarding the overtime hours, how the dynamically allocated staff
works and which criteria is used to send products for external storage, as these impact
severely in the overall cost of operation for the warehouse.

Finally, as a recommendation to future studies, the collection of data must follow
a well structured methodology and consider a time window much greater than the desired
to the simulation model. Data sets that are already well documented in WMS data bases
are extremely useful but must be validated, and any type of data collected regarding
human interactions should be considered with uttermost care and consideration. As
for the simulation model and scenarios, understanding the limitations of the modeller
and the software are essential, the emphasis on research and calibration should also
treated with care, as any premises, mistakes and overlooks can be catastrophic to the
final simulation results.
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