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Many are kept busy either striving after other people’s wealth or complaining
about their own. Many who have no consistent goal in life are thrown from
one new design to another by a fickleness that is shifting, never settled and
ever dissatisfied with itself. Some have no goal at all toward which to steer

their course, but death takes them by surprise as they gape and yawn. I cannot
therefore doubt the truth of that seemingly oracular utterance of the greatest of

poets: "Scant is the part of life in which we live." All the rest of existence is
not living but merely time.

Lucius Annaeus Seneca





RESUMO

Arquiteturas de computadores modernas estão cada vez mais heterogêneas. Essa heterogenei-
dade dá a arquitetura a capacidade de aumentar seu desempenho geral ou controlar o consumo
energético. Esse controle energético no que lhe concerne se dá por técnicas como Dynamic
Voltage and Frequency Scaling (DVSF), que reduzem a voltagem e frequência do processador
baseada em certos requisitos. Com isso, algumas técnicas de Machine Learning estão sendo uti-
lizadas para otimização energética, em que utilizam informações providas pela arquitetura para
dar suporte a otimização. Este trabalho utiliza como base uma rede neural que utiliza infor-
mações obtidas em tempo de execução, como contadores de desempenho, sensores e variáveis
do sistema operacional para realização de otimizações energéticas no sistema. A rede neural
citada é testada em apenas uma plataforma, não possuindo resultados sobre o comportamento,
desempenho da rede neural e sobre as escolhas de contadores em outras plataformas, visto que
uma série de contadores de desempenho são dependentes da arquitetura. Neste contexto, este
trabalho se propõe a testar esta solução nas arquiteturas ARMv7 e ARMv8, avaliando o modelo
de rede neural e as escolha dos contadores de desempenho.

Palavras-chave: Sistemas Embarcados. Machine Learning. Otimização Energética. Arquite-
tura de Computadores. Contadores de Desempenho.





ABSTRACT

Modern computer architectures are becoming more heterogeneous. This heterogeneity gives
the architecture the capacity to increase the overall performance or control the energetic con-
sumption. This energetic control uses techniques like Dynamic Voltage and Frequency Scaling
(DVSF) that reduce the voltage and frequency of the processor based on some requisites. With
this, some Machine Learning techniques are being used for energy optimization, using infor-
mation provided by the architecture to give support to the optimization. This work uses as a
base an Artificial Neural Network (ANN) that uses information that is built at runtime out of
hardware performance counters, sensors, and OS variables to perform the energy optimization
on the system. However, the aforementioned ANN was only tested in one platform, not having
results on the behavior and performance of the Machine learning model and on the choices of
counters on other platforms, since some performance counters are architecture dependent. In
this context, the objective of this work is to test the ANN solution on the ARMv7 and ARMv8
architectures, evaluating the model and the chose of the hardware performance counters.

Keywords: Embedded Systems. Machine Learning. Energy-Aware. Computer Architecture.
Hardware Performance Counters.
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1 INTRODUCTION

Modern computer architectures are becoming more heterogeneous (ZAHRAM 2016)
[14]. This heterogeneity takes place through a wide variety of different processors inside the
same hardware, where they can differ from each other through the use, technology or energy
management techniques. This gives the architecture the capacity to increase the overall per-
formance, through the use of features like SIMD units and application-specific accelerators or
technologies like hyper-threading. All of this is usually connected by some network-on-chip
(ALI 2018) [4].

Along with the growth of the complexity of these systems, the power consumption
grows as well, making energy management an important topic to deal with. The architecture
can use some energy management techniques like Dynamic Voltage and Frequency Scaling
(DVFS) and Dynamic Power Management(DPM) to decrease the energy consumption of chips,
scaling down the voltage and frequency based on the targeted performance requirements of the
running application [2].

These techniques can be used to reduce the energy consumption in real-time based sys-
tems, where many of them are battery-operated embedded devices. Real-time based systems are
designed to execute applications and respond to events within a predictable time, and therefore,
using energy management techniques in these systems mean to reduce the energy consumption
as much as possible without interfere on the real-time system applications constraints [13].

To provide runtime energy optimization, some Machine Learning (ML) techniques are
being used. The ML use traces provided by the architecture and process them into useful in-
formation to support the optimization. However, ML-based optimization in runtime can have
problems dealing with real-time base systems because the ML-techniques could end up violat-
ing the performance and temporal constraints of the real-time applications.

(HOFFMANN 2021) [5] presents a non-intrusive, ANN-based runtime energy opti-
mizer that was designed and implemented considering the application’s constraints. The model
is able to predict the performance of tasks in lower frequency levels and safely optimize real-
time embedded systems’ power saving operations. This is done by taking execution traces that
are built at runtime out of hardware performance counters, sensors, and OS variables of indi-
vidual tasks as input to predict their performance in case the core where they are running is
subjected to DVFS.

While the aforementioned work predicts and safely optimizes power saving operations,
there is an assumption about the chosen hardware performance counters used as input by the
ANN. In [5], the performance counters were analyzed and selected through three different tech-
niques to filter and acquire only the more relevant counters that exist on the target platform,
that was a Cortex-A53 processor, running in an ARMv7 mode where there are in total of 54
available performance counters.

However, only the above-mentioned platform was used for testing and there is no guar-
antee that the chosen performance counters remain the most relevant option on other platforms
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nor that the feature selection methods manage to capture the best performance counters due to
the possible unpredictability that exists in the counters. In fact, not all hardware performance
counters remain consistent across multiple architectures. Some performance counters are archi-
tecture dependent and vary across different processor architectures and may also change with
processor enhancement (e.g. cache and TLB accesses) (SANJEEV 2019) [10].

Therefore, the objective of this work is to evaluate the performance of the (HOFF-
MANN 2021) [5] machine learning model running on other platforms and verify the reliability
of feature selection methods when tested on other architectures. This will be done on the archi-
tectures ARMv7 and ARMv8, mediated by the Embedded Parallel Operating System (EPOS -
https://epos.lisha.ufsc.br/).

1.1 OBJECTIVE

1.1.1 General Objective

Evaluate a machine learning model to predict the performance of energy-aware, real-
time, multicore embedded systems and verify the reliability of feature selection methods across
multiple architectures.

1.1.2 Specific Objectives

• Replicate the machine learning model on the original architecture.

• Identify the best performance counters on the additional target architectures through the
feature selection.

• Analyze the performance of the machine learning model on the additional target ma-
chines.

• Draw conclusions or locate interesting results from the data.

1.2 METHODOLOGY

With the objective of replicating and simulating the ML-model across multiple archi-
tectures, the execution of this work was as follows:

1. Study the ARMv8 architecture, as well the ARMv7 architecture used in the (HOFF-
MANN 2021)[5] paper.

2. Replicate the machine learning model on the ARMv7 architecture with the (HOFFMANN
2021)[5] selected performance counters.
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3. Implement the necessary code to run the machine learning model on the target architec-
tures.

4. Execute a feature selection on the target architectures to obtain the best performance
counters.

5. Execute the machine learning model on the target architectures using the performance
counters obtained on the feature selection.

6. Evaluate the performance of the machine learning model on the target architectures and
compare it with the ARMv7 replication.

1.3 ORGANIZATION OF THE WORK

The remainder of this work is organized as follows. In chapter 2 we present a back-
ground on real-time systems, performance monitor unit, computer architectures, machine learn-
ing and feature selection methods. In chapter 3 we discuss the principal related work. In chapter
4 we detail the experiment environment, the data collecting and the data analysis. In chapter
5 we detail the results of the experiments on each target architecture. Finally, in chapter 6 we
draw our conclusions and future works.
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2 BACKGROUND

This chapter introduces fundamentals concepts and terms that are used throughout this
work.

2.1 EPOS

Embedded Parallel Operating System [8], or simply EPOS, is an operating system
project developed at the Software/Hardware Integration Lab (LISHA) [9] and aims to automate
the development of embedded systems.

EPOS relies on the Application-Driven Embedded System Design (ADESD) [7] method
that use a strategy to systematically construct application-oriented operating systems as ar-
rangements of adaptable software components. This feature enables the development of soft-
ware/hardware components that can be automatically adapted to fulfill the requirements of par-
ticular applications.

Furthermore, EPOS has support for many architectures and platforms, being able to run
in both of the target architectures used through this work, ARMv7 and ARMv8. For each archi-
tecture supported, some architecture dependent components are available too, like the Memory
Management Unit and Performance Monitor Unit.

2.2 PERFORMANCE MONITOR UNIT

Performance Monitor Unit (PMU) is an architectural component available in the most
of the modern processors that allow the capture and record of events that occur in the processor.
The monitoring of these events can be used to evaluate how the code interacts with the hardware,
what resources they used and how many clock cycles the code took to execute, helping to
identify, for instance, performance bottlenecks and opportunities to speed up the application
[3].

Because of this detailed analysis of program execution, these events are used in many
researches areas and for a lot of purposes, such as Analysis of Profiling, Power analysis [3],
Security Analysis and due to the significant level of unpredictability during the execution of a
program and the nondeterminism introduced by the concurrent execution in modern processors,
the events counters can also be used for Random Number Generation [11].

Although the PMU is present in most of the modern processors, the number and the
type of events that can be monitored vary across different processor architectures and can also
vary within the same family of processors that have the same architecture set. Besides this, the
events can be classified into two major groups: Architectural and Micro-Architectural events.

• Architectural events behave consistently within a processor’s family that has the same
architectural set architecture. Some examples of architectural events are the number of
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executed instructions and the number of exceptions that were taken.

• Micro-Architectural events are events that don’t behave consistently within a processor’s
family. Events captured by two different processors can differ even though they have the
same architecture set because this set of events captures information about, for instance,
cache hit and cache miss, which are influenced by the cache size and the cache size is a
micro-architectural decision.

Collecting accurate event data can be complex due to several reasons that can contam-
inate the PMU counters, like hardware interrupts that insert a source of non-determinism or
over-counting, leading to discrepancies in the counters. In addition, the collection of the event
data needs to take into consideration operational aspects, like context-switch monitoring, saving
the counters during context switches avoiding contamination from other processes [10].

These events are useful, but there is usually a hardware limitation in how many events
can be tracked at the same time. These events are monitored through counters, also called
channels, and the available number of these channels varies between architectures, but they are
limited and only a few events can be tracked at the same time. Due to the limit in the number
of channels, the available information at run-time is also limited and therefore is necessary to
select the most crucial events to be monitored.

2.3 SENSORS AND OS VARIABLES

Sensors and OS Variables are another sources of information available in modern hard-
ware and operating systems. The sensors collect information about the hardware, and therefore
collect information like Temperature and Energy Consumption.

SO Variables, on the other hand, collect information about the system, and therefore,
are dependent on the operating system that is used. The EPOS have several events of the system
that can be collect, some examples are CPU Execution Time, Deadline Misses and Running
Thread. These events can be used to understand, track back and to optimize the performance of
the system.

2.4 ARM ARCHITECTURE

ARM is a family of RISC architectures for computer processors. The ARM is designed
to be used in various environments, from portable, battery-powered devices to smartphones,
desktops and servers. This is possible due to their low costs, power consumption and heat
generation, when compared with their competitors. The two most major version of the ARM
family are ARMv7 and ARMv8.

• ARMv7 is a 32-bit architecture, with 32-bit wide registers.

• ARMv8 is a 64-bit architecture, with 64-bit wide registers.
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Although the ARMv8 is a 64-bit architecture, it has a backward compatibility with the
ARMv7 architecture. This is done by having two execution states: AArch64 and AArch32. The
AArch64 is a normal ARMv8 state that uses 64-bit registers. The AArch32 state uses 32-bit
registers, having compatibility with the ARMv7 architecture, and in addition supports some
features included in the AArch64 state.

Beside the version, the ARM is divided into three different profiles, each one having
its application niche. These profiles are M-type, directed for embedded applications, R-type for
real-time applications and A-type, a profile that targets high performance markets, such as PC
and mobile and is used for general applications.

2.5 FEATURE SELECTION

Feature selection is a process used to reduce the number of input variables in a model,
removing non-informative or redundant variables. This is done to reduce the computation cost,
improve the performance of the model and avoid the curse of Dimensionality.

The curse of dimensionality is a scenario where the quality of the data required for pro-
cessing by Machine Learning algorithms decreases due to the exponential increase of collected
data. The higher the dimension of data, the higher the prevalence of irrelevant and redundant
data [12].

In other cases the feature selection is used, in addition to reducing the redundant vari-
ables, to reduce the total number of features to a certain number due to some limitation, like a
feature selection of performance counters that are limited by the hardware.

The relevance of a feature is measured not based on its value but on the characteristics
of the data and the relationship with other features. This measure is done by feature selection
methods that are classified into three types, Filter, Wrapper and Embedded Methods[12].

• Filter method selects features based on statistical measures. Pearson’s Correlation and In-
formation Gain are examples of statistical measurements used to measure the importance
of the features.

• Wrapper method selects features based on learning algorithms, and the performance of
the feature selection depends on the classifier. It’s more expensive than Filter methods
but more accurate.

• Embedded Methods have the benefits of both the wrapper and filter methods, using en-
semble learning and hybrid learning methods. Lasso CV is an example of an embedded
method.
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Figure 1 – Overview of feature selection methods

Source: [12]

2.5.1 Pearson’s Correlation Coefficient

Pearson’s Correlation Coefficient (PCC) is a measure to detect a linear relation between
two continuous variables. In other words, PCC indicates the effect of change in one variable
when the other changes. The equation 2.1 calculate the PCC between an independent variable
x and a dependent variable y [12]:

ρ(x,y) =
∑i(xi − x)(yi − y)√
∑i(xi − x)2(yi − y)2

(2.1)

The coefficient value can range from -1 to +1 and gives information about the direction
and the magnitude of the relation.

The direction of the association is defined by the signal of the coefficient, being positive
or negative. A positive coefficient indicates that the variables are positively correlated and the
values increase or decrease together. A negative coefficient indicated the opposite, when a
variable increase, the other decrease.

The magnitude of the association is defined by the value of the coefficient and indicates
how strong is the relationship between the variables. The closest from -1 or +1 more strong is
the relationship. The value 0 in the coefficient indicates that there is no relationship between
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the variables.

2.5.2 Information Gain Ratio

Information Gain Ratio is a statistical measure based on the entropy of the data, which
indicates the uncertainty in the data. A low entropy indicates the data is uniform, and a high
entropy indicates the opposite.

The information gain ratio is calculated as the entropy of the data minus the conditional
data entropy, divided by the intrinsic value of the feature, to reduce the biases of features with
many distinct values.

2.5.3 Lasso CV

The Least Absolute Shrinkage and Selection Operator with Cross Validation is a lin-
ear regression method that performs L1 penalty. If two features are linearly correlated, their
presence will increase the value of the cost function and lasso regression will try to shrink the
coefficient of the less important feature to zero. With this, lasso regression will automatically
select the more useful features.
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3 RELATED WORK

In this chapter, we discuss previous research related to this work and compare them to
this work.

3.1 ONLINE MACHINE LEARNING FOR ENERGY-AWARE MULTICORE REAL-TIME
EMBEDDED SYSTEMS

HOFFMANN’s work [5] presents a non-intrusive, Artificial Neural Network (ANN)
based runtime energy optimizer that was designed and implemented considering the applica-
tion’s constraints. The model is able to predict the performance of tasks in lower frequency
levels and safely optimize real-time embedded systems’ power saving operations. This is done
by taking execution traces that are built at runtime out of hardware performance counters, sen-
sors, and OS variables of individual tasks as input to predict their performance in case the core
where they are running is subjected to DVFS. If it’s not, an algorithm is performed to deter-
mine if it is possible to realize a migration of the tasks between cores. The proposed solution
achieved energy-savings of 24.97% on average when compared to the run-to-end approach.
The performance counters used as input by the ANN are selected through 3 feature selection
methods after the collect of all the available performance counters on the Cortex-A53 running
on ARMv7 mode. The work only takes in consideration the proposed solution running on one
architecture. The main difference with our work is the demonstration of the proposed solution
when running on other architecture.
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4 EXPERIMENTS

This chapter gives information about the execution and environment of the experi-
ments. The experiments are executed running task-sets with distinct behaviors on platforms
with ARMv7 and ARMv8 architectures under the Embedded Parallel Operating System.

The experiments are divided into five major sections. First, Section 4.1 describes the
overall environment that the experiment was conducted, the operating system configuration,
what architectures and platforms are used and what task-sets are executed. Section 4.2 describes
how to execute the data capture, what events are collected and its implications. Section 4.3
discusses what methods are used to select the best features. Section 4.4 shows the configuration
and how the IA training was conducted. Lastly, Section 4.5 describes how the energy data was
collected and how to interpret the results of the collected data.

4.1 ENVIRONMENT

The execution of the experiment involves to collect performance data at run-time in a
real-time system. However, some characteristics in this collection need to be fulfilled by the
operating system. First, a non-intrusive data acquisition method is necessary in order to not
interfere with real-time applications constraints. Second, the data collection needs to be done
in a strict way to avoid inaccurate measurements and contamination due to events from other
processes. Lastly, besides the performance data that is provided by the Performance Monitor
Unit (PMU), is necessary a way to collect information about the use of the system (e.g. CPU
execution time, Thread execution time and Deadline misses) to distinguish tasks and be able
to make more accurate assumptions while having a guarantee that the system is working as
expected.

Therefore, the Embedded Parallel Operating System (EPOS) was chosen due to the
fact that it fulfill all the above-mentioned characteristics.

4.1.1 Operating System

Embedded Parallel Operating System (EPOS) is an operating system project developed
at the Software/Hardware Integration Lab (LISHA) [9] and aims to automate the development
of embedded systems.

EPOS implements a framework that provides non-intrusive mechanisms to collect run-
time data from sensors, counters, and SO variables while the system runs real task sets with real
workloads (HORSTMANN, HOFFMANN) [6]. To be able to collect performance counters
finer gradually without contaminating other threads counters, the data collection is done when
a context-switch is performed, saving the collected data and restoring when the task will be
running again.



32

Due to the limitation of the number of channels of PMU imposed by hardware plat-
forms, only a few performance counters can be monitored at the same time, leading to a neces-
sity to execute the same application several times to collect data from the full set of performance
counters.

4.1.2 Architectures and Platforms

The experiments are executed in two architectures, ARMv7 and ARMv8. The exper-
iment in ARMv7 was conducted to compare the results described in Hoffmann’s [5] work and
draw conclusions.

The architectures and platforms used are described below:

• ARMv7 architecture running on a Raspiberry Pi 3b+ with a ARMv8 Cortex-A53 proces-
sor, executing in ARMv7 compatibility mode.

• ARMv8 architecture running on a Raspiberry Pi 3b+ with a ARMv8 Cortex-A53 proces-
sor.

4.1.2.1 Raspberry Pi 3b+

The Raspberry Pi 3b+ uses an ARMv8 Cortex-A53 processor that has 54 performance
counters, and a full list of the counters can be founded in the processor manual [1]. The ARMv8
processor has an ARMv7 compatibility mode that allows it to execute ARMv7 assembly code
as if it were a ARMv7 processor.

The Cortex-A53 has 6 channels, allowing it to collect 6 performance counters at the
same time.

4.1.3 Task-Sets

To collect representative and meaningful data over the performance counters in a mul-
ticore real-time embedded system, we need tasks with distinct performance behaviors running
in parallel to simulate a real use of the system. To achieve this behavior, 3 types of tasks are
selected: a memory bound task that focus on memory access; a cpu bound task that focus on
mathematical operation and uses the ALU; and a disparity task that simulates a real workload
of embedded systems.

• Bandwidth is a memory-bound, performing constantly read and write operations on a
data structure with at least the size of the L2 Cache defined by the running platform. This
task can be also divided into four types, low use of memory, high use of memory, an
alternate between low and high use of memory and random use of memory.
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• CPU Hungry is a cpu-bound task that implements an Iterative Fibonacci how to execute
a loop with mathematical operations constantly using the ALU.

• Disparity map is a task that represents a real workload task of embedded systems.

To simulate resources sharing contention between the tasks, the tasks are combined to
run in parallel. Two combinations of parallel execution are defined in [5] and replicated here:
One composed of a Memory Bound, CPU Bound and Disparity and another composed of a
CPU Bound and 2 Disparity. Overall, the configuration of the task-set is presented in table 1.

This task-set is well-defined to have a heavy sharing contention and therefore is used
as a main task-set to collect performance data for feature selection.

Task-Set 1
Task Period/WCET (in ms) CPU ID
Bandwidth 500/100 1 1
CPU Hungry 500/100 2, 3 4, 5
Disparity 500/100 1, 2, 3 2, 3, 6

Table 1 – Task-Set 1 configuration

Besides the task-set 1, two task-sets are defined, and the configuration are described in
table 2 and table 3.

Task-Set 2
Task Period/WCET (in ms) CPU ID
Bandwidth 250/50 1 1
CPU Hungry 250/35, 125/20 2, 3 4, 5
Disparity 500/100, 1000/200, 250,100 1, 2, 3 2, 3, 6

Table 2 – Task-Set 2 configuration

Task-Set 3
Task Period/WCET (in ms) CPU ID
Bandwidth 100/10, 100/5, 1000/100 1, 2, 3 1, 2, 7
CPU Hungry 100/30, 250/60 3, 3 4, 6
Disparity 1000/400, 500/100 2, 3 3, 5

Table 3 – Task-Set 3 configuration

4.1.4 Equipament

To collect information about the energy consumption when running the task-sets, the
KCX-017 USB Power Meter was used.
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4.2 DATA CAPTURE

The first step of the experiment is to capture meaningful data that represents a heavy
use of the system and resource sharing contention between the tasks. To fulfill this objective,
task-set 1, described in table 1 was used.

In this step, all the performance counters and some SO events are collected. Due to
the hardware limitation on the number of channels of the PMU, the number of performance
counters that can be collected at the same time is limited. This implies running the application
several times to collect all necessary data. For example, on Raspiberry PI 3b+, it’s necessary
to collect data 9 times, because this platform has 54 performance counters but only 6 can be
collected at the same time.

Besides the performance counters, the SO events also need to be collected. In this
experiment, the SO events collected are CPU Usage, Thread Usage and Running Thread. They
are necessary to collect information about the running task at the moment that the collection was
done. This gives information about the cpu usage, thread usage and task id, used to know what
the data collected refer to. The capture of the data is done with the system on the maximum
frequency and for 180 seconds in each collection.

After the collection, all the logs of the system are filtered and cleared, removing all
unnecessary information and merging all the information collected in chronological order. Due
to the fact that the collected performance counters are done in a cumulative fashion way (i.e.
each collection use the previous one as a base), it’s necessary to subtract a current collection
from its previous corresponding collection to have the correct values.

4.3 FEATURE SELECTION

After the data capture, the next step is to select the most important features within all
the performance counters that the platform offers. The number of features that will be selected
depends on the limitation of the PMU channels of the processor.

To achieve this objective, 3 methods for feature selection are used: Pearson Correlation
Coefficient (PCC), Lasso CV and Info Gain Ratio. The mentioned feature selection methods
give distinct results over different features. With this, we used a combination of the methods
results to select the features.

The PCC is a measure to detect a linear relation between two continuous variables,
being the main methods used in the decision of the feature selection. The other 2 algorithms
will be used to give extra information and to decide in case there are some features with close
relation and if it’s necessary to select one of them.

As mentioned above, the PCC detects a relation between two variables, therefore, the
relation between all the performance counters will be calculated, but the relation between the
performance counters and the Thread usage will be our main concern. A feature that has a great
relationship with the thread usage indicated that the feature is a good indication and therefore,
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a good feature to be selected.
For instance, two features can be on the top of the best features list when compared

with the thread usage but when compared between each other, the two features can be highly
correlated, meaning that if we selected the two features, only one will give a meaningful value.
With this, we need to verify the correlation between the top features to eliminate the redundant
variables. The Lasso CV and Info Gain Ratio are used to decide what feature will be selected.

4.4 IA TRAINING

After the feature selection phase, we already know what are the best features to be
used to train the IA. The online artificial neural network model in this work is used to predict the
utilization of the task if the frequency is reduced. With this, we can predict the total utilization of
the cores and decide if it’s possible to scale the frequency of the CPU using Dynamic Voltage
and Frequency Scaling (DVFS), reducing the overall energy consumption of the chip. The
configuration of the ANN is the same used on (HOFFMANN 2021) [5]. The model uses a
learning rate of 0.35 and an average accuracy of 97% considering the validation data-set.

Even though the ANN used to run the experiments is trained online, offline training is
necessary beforehand to avoid cold start issues. This training is done using two datasets of data,
one for training and the other for validation. The training sample is got by running the task-set
1, described in the table 1 and collecting data of the selected performance counters under all
levels of frequency scaling. With this, we collect the behavior and performance counter of the
system under each frequency level. The training data is collected using task-set 2, described in
the table 2 under the same circumstances.

4.5 ENERGY ANALYSIS

The last step of the experiment is to measure the energy consumption of the system
when under the energy optimizer, which scale the frequency based on the use of the system.
Not only the DVFS is used, but also a balanced workload using migration of tasks, improving,
even more, the energy more the energy consumption.

To capture the energy consumption of the system, the task-set 1, task-set 2 and task-set
3 are executed, with and without the ANN prediction and DVFS actuation. The data is collected
by the equipment KCX-017 USB Power Meter. Besides this, each task-set has a Bandwidth
task, that can be divided into four types, low use of memory, high use of memory, an alternate
between low and high use of memory and random use of memory. The task-sets are executed
for each type of bandwidth task as well.

The first step is to capture how much energy the idle system consumes, running the
application without tasks, in the maximum frequency. Next, the consumption of all the task-
sets is collected, running on the maximum frequency. After that, the energy consumption of the
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task-sets with the ANN prediction is measured. With this, we subtract the energy consumption
of the idle system and compare the energy consumption.
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5 RESULTS

In this chapter, we present and discuss the results of the experiments.
Section 5.1 presents the results in the ARMv7 architecture and compares it with the

original work. Section 5.2 presents the results in the ARMv8 architecture and compares it with
the ARMv7 results.

5.1 ARMV7 ARCHITECTURE

5.1.1 Feature Selection

In the feature selection phase, the results of the most relevant features are described in
Figure 2. They are ordered by the results of the PCC method.

Figure 2 – Ranking results for the most relevant features on ARMv7.

The first feature, Bus Access for Memory Write will be selected for having the best
results in both PCC and Lasso CV methods. This feature also has a relation of 92% with the
feature Bus Access, which has a high result in PCC as well. Due to this, only the first one will
be selected. The performance trace of these features are shown in Figure 3 and Figure 4.
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Figure 3 – ARMv7 - Bus Access for Memory
Write Figure 4 – ARMv7 - Bus Access

Following the list, we have the feature Stalls due to Write Buffer Full. This feature has
a high relation with other three features, which are also in the list: Read Alloc Mode (94%),
Enter Read Alloc Mode (96%) and Interlock Cycle Write Stage Stall(96%). The performance
trace of these features are shown in figures 5, 6, 7 and 8. Between these features, only Stalls due
to Write Buffer Full will be selected for having a higher value on PCC and having significant
values on Lasso CV and Info Gain.

Figure 5 – ARMv7 - Stalls due to Write
Buffer Full Figure 6 – ARMv7 - Read Alloc Mode

Figure 7 – ARMv7 - Enter Read Alloc Mode
Figure 8 – ARMv7 - Interlock Cycle Write

Stage Stall

The next feature is Conditional Branchs. This feature has a high relation with the
features Predictable Branchs (99%), Immediate Branchs (99%), Commited Instructions (91%)
and L1I Cache Hit (91%). The performance trace of these features are shown in figures 9, 10, 11
and 13. With this, only the Conditional Branchs is selected for having the highest PCC among
the cited features.

Bus Cycle is the next feature, having significant values on PCC and Lasso CV, and
therefore was selected. This feature has a high PCC relation with the feature CPU Cycles
(98%). The performance trace of these features are shown in figures 14 and 15. With this, only
the Bus Cycle is selected for having the highest PCC among the cited features.

External Memory Request also was selected for having a high value in PCC and Info
Gain Ratio. This feature doesn’t have a high PCC relation with other feature of the list and the
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performance trace of this feature is shown in Figure 16.
The last feature is L2D Writeback, having good results in all three methods. This

feature also doesn’t have a high PCC relation with other feature of the list, and the performance
trace of this feature is shown in Figure 17.

Figure 9 – ARMv7 - Conditional
Branchs

Figure 10 – ARMv7 - Predictable
Branchs

Figure 11 – ARMv7 - Immediate
Branchs

Figure 12 – ARMv7 - Committed Instruc-
tions Figure 13 – ARMv7 - L1I Cache Hits

With this, the selected features are: Bus Access for Memory Write, Stalls due to Write
Buffer Full, Conditional Branchs, Bus Cycle, External Memory Request and L2D Writeback.

Figure 14 – ARMv7 - Bus Cycles Figure 15 – ARMv7 - CPU Cycles

Figure 16 – ARMv7 - External Memory Re-
quest Figure 17 – ARMv7 - L2D Writeback



40

5.1.2 Energy Optimizer

After the feature selection phase, the execution of the task-sets 1, 2 and 3 described in
section 4.1 are performed with and without the ANN optimizer, collecting data about the energy
consumption of the tasks. Under the ANN, each performance counter has a weight associated.
After the offline training, each task-set is executed several times to perform online training to
find the best weights that the IA can use to predict more precisely the migrations, swaps and
frequency scaling of a specific task-set. After this, we use this weight to execute the task-sets
to collect information about energy consumption.

All the task-sets have Bandwidth tasks, which are divided into four types: heavy, light,
mixed and random. Each one has a different memory consumption, for a maximum to a mini-
mum use, making the simulation of a real use of the system more accurate. In this section, all
graphs are under heavy use of memory. In addition, all data collected of energy consumption
are done in executions of 180 seconds.

5.1.2.1 Task-set 1

The first task-set to be executed is described in table 1. The traces of the execution
of the task-set with the energy optimizer are described in graph 18. The lines on the graph
described the current utilization of the CPUs and the dots represent the prediction of the per-
formance if the CPU decreased the frequency. The bars described the current frequency of
the CPU. In this task-set, the frequency is decreased from 1,2GHz to 0,6GHz, the minimum
supported on the platform, without the necessity of migrations.

Figure 18 – ARMv7 - Task Set 1

The actuation of energy optimizer in this task-set resulted in a reduction on energy
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consumption of 23%. The graph of the consumption is described in graph 19. The graph shows
that the reduction in energy consumption was 37% when executed with a heavy use of memory.
On the other hand, with random use of the memory, the energy consumption didn’t change.

Figure 19 – ARMv7 - Task Set 1 Energy Consumption

5.1.2.2 Task-set 2

The second task-set to be executed is described in table 2. The traces of the execution
of the task-set with the energy optimizer is described in graph 43. The lines on the graph
described the current utilization of the CPUs and the points represent the prediction of the
performance if the CPU decreased the frequency. The bars described the current frequency of
the CPU.

Initially, this task-set has an imbalance in the use of the cores, decreasing the frequency
to a maximum of 0,7GHz where the CPU3 has a use of almost 100% while the CPU1 has a use
of nearly 60%. With this, the energy optimizer performs a migration of tasks from CPU3 to
CPU1, described on the graph, leading to a more balanced use of the platform, decreasing the
frequency to a minimum of 0,6GHz.

The energy consumption of this task-set results in a reduction of 10% on average. The
graph of the energy consumption is described in the graph 21. The graph shows that the energy
consumption was reduced by 15% and 18% with heavy and light bandwidth configuration,
respectively.

5.1.2.3 Task-set 3

The third task-set to be executed is described in table 3. The traces of the execution of
the task-set with the energy optimizer is described in graph 23. The lines on the graph described
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Figure 20 – ARMv7 - Task Set 2

Figure 21 – ARMv7 - Task Set 2 Energy Consumption
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the current utilization of the CPUs and the points represent the prediction of the performance if
the CPU decreased the frequency. The bars described the current frequency of the CPU.

This task-set is the most complex among the task-sets described in section 4.1 and
takes several executions to find weights to configure the ANN to converge to a frequency. The
graph 22 are shows the execution trace of the task-set 3 using default values for the weights of
the ANN. In this execution, the tasks didn’t accomplish a stability on the frequency, leading to
several migrations and swaps.

Figure 22 – ARMv7 - Task Set 3 - Default Weights

After several executions to find the migrations weights that fit the task-set, the execu-
tion trace of the task-set 3 with the weights defined is shown in graph 23. The graph shows that
the frequency was decreased and found stability on 0,9GHz after 5 migrations.

The energy consumption of this task-set results in a reduction of 10% on average.
The graph of the consumption is described in graph 24. The graph shows that the energy
consumption was reduced by 26% with heavy bandwidth configuration.

5.1.3 Energy Consumption

After considering all task-sets, the overall energy consumption reduction is shown in
graph 25. The graph shows the energy reduction of all task-sets when considering all bandwidth
task configurations.

The heavy configuration on the bandwidth task was the one that shows the best results,
with an average reduction of 26%. The next is the light configuration, which has a low use
of the memory, achieve an average reduction in the consumption of 18%. The next, mixed
configuration, has an average reduction of 13%. The last configuration, the random, which
makes random use of memory, doesn’t achieve a reduction in energy consumption on the tests.
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Figure 23 – ARMv7 - Task Set 3

Figure 24 – ARMv7 - Task Set 3 Energy Consumption
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Figure 25 – ARMv7 - Energy Consumption

On average, the reduction of energy consumption considering all the task-sets and all
the bandwidth task configurations was 19%.

5.1.4 Comparison with the original work

After executing the tests under the ARMv7 architecture, the results can be compared
with the results described in HOFFMANN’s [5] work.

The first step is to compare the results of the feature selection phase. The features
selected by HOFFMANN are Bus Access for Memory write operations, Stalls due to Write
Buffer Full, L2D Writeback, Immediate Branches, CPU Cycle Count, and L1 Cache Hits. Be-
tween the features, Bus Access for Memory write operations, Stalls due to Write Buffer Full and
L2D Writeback are selected in the feature selection phase of this work as well. The Immediate
Branch was changed to Conditional Branches, which has a correlation of 99% with Immediate
Branches in PCC. The CPU Cycle was changed to Bus Cycles, which has a correlation of 98%
in PCC. The last feature is different. This work selected the feature called External Memory
Request while HOFFMANN selected a feature L1 Cache Hits. While the features are different,
there are some relation between them. The first, External Memory Request, has a high relation
(92%) with another similar feature, L2 Cache Hits. Therefore, even if the feature is different,
there are semantically relations.

The next step is the execution of the tasks with the energy optimizer and collect data
about the energy consumption. The execution trace of the task-sets has a similar behavior to
the HOFFMANN’s work. The only difference was on task-set 3, where the energy optimizer
reduced the frequency to 0,8GHz, while in this work was only 0,9GHz. This made a difference
in the average energy consumption of the task-set 3 by 5%.

Considering the bandwidth task configuration, this work shows the best results in the
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heavy and low configurations, but a worse result in the mixed configuration. Comparing the
results, this work achieves a decrease of 2% more on the heavy configuration and 1% more on
the low configuration. On the other side, the difference in mixed configuration was 7%. The
overall decrease of energy consumption of HOFFMANN was 21.38% while this work achieve
an overall reduction of 19.30%.

5.2 ARMV8 ARCHITECTURE

5.2.1 Feature Selection

In the feature selection phase, the results of the most relevant features are described in
Figure 26. They are ordered by the results of the PCC method.

Figure 26 – Ranking results for the most relevant features on ARMv8.

The first feature, Bus Access for Memory Write will be selected for having the best
results in the three methods used to select the best features: PCC, Lasso CV and Info Gain
methods. This feature has a high relation with others features, being the most important the
Read Alloc Mode (96%), Bus Access (95%), Enter Read Alloc Mode (95%) and L2 Writeback
(91%). The performance trace of theses features are shown in figures 27, 28, 29, 30 and 31.
Between these features, only Bus Access for Memory Write will be selected for having the best
values over all the others features.

Following the list, we have the feature Interlock Cycle Write Stage Stall due to Store.
This feature has a high value in both PCC and Info Gain methods and has a high relation with
the feature Stalls due to Write Buffer Full (97%). The performance trace of these two features
are shown in figures 32 and 33. Between these two features, only the Interlock Cycle Write
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Figure 27 – ARMv8 - Bus Access for Mem-
ory Write Figure 28 – ARMv8 - Read Alloc Mode

Figure 29 – ARMv8 - Bus Access Figure 30 – ARMv8 - Enter Read Alloc Mode

Figure 31 – ARMv8 - L2D Writeback

Stage Stall due to Store will be selected for having a high value on PCC and Info Gain. This
feature also has a high relation with the others features discussed before, but it’s still selected
for having a high value on Info Gain and for being a complementary feature, that is, stalls when
writing.

Figure 32 – ARMv8 - Interlock Cycle Write
Stage Stall due to Store

Figure 33 – ARMv8 - Stalls due to Write
Buffer Full

The next feature is Interlock Cycle Write Stage Stall due to Miss, having a high value
on PCC and Info Gain, being therefore, selected. This feature doesn’t have a high PCC relation
with otehrs features of the list. The performance trace of this feature is shown in Figure 34.

Bus Access for Memory Load is the next feature and also was selected. This feature
has a high value in both PCC and Lasso CV. This feature doesn’t have a high PCC relation with
others features of the list, and the performance trace of this feature is shown in Figure 35.
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Figure 34 – ARMv8 - Interlock Cycle Write
Stage Stall due to Miss

Figure 35 – ARMv8 - Bus Access for Mem-
ory Load

Following the list, we have the feature L2 Cache Misses, who also has a high value in
PCC and Lasso CV. This feature doesn’t have a high PCC relation with others features of the
list, and the performance trace of this feature is shown in Figure 36.

Figure 36 – ARMv8 - L2 Cache Miss

The last feature is Conditional Branchs. This feature has a high relation with the
features Immediate Branchs (98%), Predictable Branchs (98%) and L1I Cache Hit (93%). The
performance trace of these features are shown in figures 37, 38, 39 and 40. With this, only the
Conditional Branchs is selected for having the highest PCC among the cited features.

With this, the selected features are: Bus Access for Memory Write, Interlock Cycle
Write Stage Stall due to Store, Interlock Cycle Write Stage Stall due to Miss, Bus Access for
Memory Load, L2 Cache Misses and Conditional Branchs.

5.2.2 Energy Optimizer

After the feature selection phase, the execution of the task-sets 1, 2 and 3 described in
section 4.1 are performed with and without the ANN optimizer, collecting data about the energy
consumption of the tasks. After the offline training, each task-set is executed several times to
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Figure 37 – ARMv8 - Conditional
Branchs

Figure 38 – ARMv8 - Immediate
Branchs

Figure 39 – ARMv8 - Predictable
Branchs

Figure 40 – ARMv8 - L1I Cache Hits

find the best migrations weights to predict more precisely the migrations and swaps. After this,
we use this weight to execute the task-sets to collect information about energy consumption.

All the task-sets have Bandwidth tasks, with are divided into four types: heavy, light,
mixed and random. Each one has a different memory consumption, for a maximum to a mini-
mum use, making the simulation of a real use of the system more accurate. In this section, all
graphs are under heavy use of memory. In addition, all data collected of energy consumption
are done in executions of 180 seconds.

5.2.2.1 Task-set 1

The first task-set to be executed is described in table 1. The traces of the execution of
the task-set with the energy optimizer is described in graph 41. The lines on the graph described
the current utilization of the CPUs and the points represent the prediction of the performance
if the CPU decreased the frequency. The bars described the current frequency of the CPU. In
this task-set, the frequency is decreased from 1,2GHz to 0,6GHz, the minimum supported on
the platform, without the necessity of migrations.

The energy consumption of this task-set results in a reduction of 23% on average. The
graph of the consumption is described in graph 42. The graph shows that the reduction in energy
consumption was 33% when executed with a heavy use of memory. On the other hand, with
random use of the memory, the energy consumption didn’t change.

5.2.2.2 Task-set 2

The second task-set to be executed is described in table 2. The traces of the execution
of the task-set with the energy optimizer is described in graph 43. The lines on the graph
described the current utilization of the CPUs and the points represent the prediction of the
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Figure 41 – ARMv8 - Task Set 1

Figure 42 – ARMv8 - Task Set 1 Energy Consumption
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performance if the CPU decreased the frequency. The bars described the current frequency of
the CPU.

Initially, this task-set has an imbalance in the use of the cores, decreasing the frequency
to a maximum of 0,7GHz where the CPU3 has a use of almost 100% while the CPU1 has a use
of nearly 60%. With this, the energy optimizer performs a migration of tasks from CPU3 to
CPU1, described on the graph, leading to a more balanced use of the platform, decreasing the
frequency to a minimum of 0,6GHz.

Figure 43 – ARMv8 - Task Set 2

The energy consumption of this task-set results in a reduction of 8% on average. The
graph of the consumption is described in the graph 44. The graph shows that the energy con-
sumption was reduced by 11% in both heavy and light bandwidth configuration.

5.2.2.3 Task-set 3

The third task-set to be executed is described in table 3. The traces of the execution of
the task-set 3 is described in graph 45. The lines on the graph described the current utilization
of the CPUs and the points represent the prediction of the performance if the CPU decreased
the frequency. The bars described the current frequency of the CPU.

This task-set is the most complex among the task-sets described in section 4.1. The
graph shown that this task set starts with a high difference on the current use and prediction of
the use of the CPU3. On the first try, there is a discrepancy on the use of the CPU 3 compared
to the others CPUs, therefore, a migration is performed, sending one task from CPU3 to CPU1.
Even with this migration, the prediction of the CPU3 is still very high, therefore, the frequency
is not decreased. This problem occurs on the way the offline and online learning is performed.
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Figure 44 – ARMv8 - Task Set 2 Energy Consumption

The offline training is performed to have a warm-up start, allowing bypass an initial
stage of online training. This training is done with information of the Task Set 1 and not
the current task set. This happens because the Task Set 1 have a configuration for different
scenarios, where we have different tasks running in parallel. Even though the task set 3 run the
same tasks, there are some differences on the number of tasks and what tasks are running in
parallel, therefore, not every scenario can be covered.

To complement this offline training, an online training is also performed, to make sure
the current task set configuration is being predicted correctly, and this training is executed when
we have a variation on the frequency.

This lead the problem on the task set 3. In this scenario, the offline training is not
enough to predict correctly the configuration of the task set 3, leading to a bad warm-up. Even
though migration was performed, this doesn’t solve the problem. The online training also was
never performed because we never decreased the frequency, making the frequency stuck on the
1,2GHz.

5.2.3 Energy Consumption

After considering all task-sets, the overall energy reduction is shown in graph 46. The
graph shows the energy reduction of the task-sets 1 and 2 when considering all bandwidth task
configurations. The Task Set 3 was not included due to the problem where the frequency was
not decreased.

The heavy configuration on the bandwidth task was the one that shows the best results,
with an average reduction of 21%. The next is the light configuration, which has a low use
of the memory, achieve an average reduction in the consumption of 16%. The next, mixed
configuration, has an average reduction of 17%. The last configuration, the random, which



53

Figure 45 – ARMv8 - Task Set 3 - Default Weights

Figure 46 – ARMv8 - Energy Consumption
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makes random use of memory, doesn’t achieve a reduction in energy consumption on the tests.
On average, the reduction of energy consumption considering all the task-sets and all

the bandwidth task configurations was 13%.

5.2.4 Comparison with the ARMv7

After executing the tests under the ARMv8 architecture, the results can be compared
with the ARMv7 results.

The first step is to compare the results of the feature selection phase. The best features
on ARMv7 are Bus Access for Memory Write, Stalls due to Write Buffer Full, Conditional
Branchs, Bus Cycle, External Memory Request and L2D Writeback.

Two features are also selected on ARMv8, Bus Access for Memory Write and Condi-
tional Branchs. Between these features, the first to reach the first place of importance in both
architectures. Looking to the others features, it can be noted that some of the others features also
appear as the best features of ARMv8, but are not selected because they have a huge correlation
with others features. Stalls due to Write Buffer Full was not selected because Interlock Cycle
Write Stage Stall due to Miss was selected instead, with a 90% of relation. L2D Writeback was
not selected for having a relation of 90% with Bus Access for Memory Write. The Bus Cycle
and External Memory Request doesn’t appear on the ARMv8 list.

On the other hand, comparing the ARMv8 features with ARMv7. The best feature
on ARMv8 are Bus Access for Memory Write, Interlock Cycle Write Stage Stall due to Store,
Interlock Cycle Write Stage Stall due to Miss, Bus Access for Memory Load, L2 Cache Misses
and Conditional Branchs. It’s important to note that the difference in feature on ARMv8 is
mainly because of memory access for load. This lead to more misses, stalls, L2D Cache Misses
and Prefetch Linefill on cache, as showning on the feature selection phase.

There are some things that could cause this features to appear. First one is the differ-
ence on the size of the variable, and therefore, is necessary to load more times. Looking at the
tasks source code, this is not true to this experiment.

Another problem that could cause this is a difference in the cache configuration. Both
of the experiments, armv7 and armv8, are done in the same board, therefore the cache size is
the same. Looking at the EPOS code for armv7 and armv8, the way the cache is configured is
the same to both architectures, therefore a cache configuration is not the cause.

With this, the problem that cause this phenomenon was not explicit found, and we can
infer that architectures are complex, and some problems couldn’t be explained in a simple and
easy way.

The next step is to compare the execution of the tasks. The execution trace of the task-
sets 1 and 2 have a similar behavior to the ARMv7 results. The only difference was on task-set
3, where the ARMv8 couldn’t decrease the frequency due to a problem with a bad warm-up,
who lead the prediction to be overestimated.

The last step is to compare the data about the energy consumption. The ARMv7 show
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the best results compared to ARMv8. Considering the bandwidth task configuration, ARMv8
achieved an average reduction of 21% on the heavy configuration, while the ARMv7 achieved
a reduction of 26%. In the low configuration, ARMv8 reduced by 16% and ARMv7 by 18%.
In the mixed configuration, on the other hand, the ARMv8 shows the best results than ARMv8,
with an average reduction of 17% compared to the 13% of ARMv7. Lastly, the random config-
uration, both architectures don’t achieved any reduction in energy consumption on the tests.
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6 CONCLUSION AND FUTURE WORK

Modern computer architectures are becoming more heterogeneous. This heterogeneity
gives the architecture the capacity to increase the overall performance or control the energetic
consumption. This energetic control uses techniques like Dynamic Voltage and Frequency Scal-
ing (DVSF) that reduce the voltage and frequency of the processor based on some requisites.
With this, some Machine Learning techniques are being used for energy optimization, using
information provided by the architecture to give support to the optimization. This work uses
as a base a non-intrusive Artificial Neural Network (ANN) that uses information that is built at
runtime out of hardware performance counters, sensors, and OS variables to perform the energy
optimization on the system. However, the aforementioned ANN was only tested in one plat-
form, not having results on the behavior and performance of the Machine learning model and
on the choices of counters on other platforms, since some performance counters are architecture
dependent. This work provided an execution on ARMv7 and ARMv8 architectures, selecting
features, executing task-sets, collecting data about the energy consumption and comparing the
results.

The results on ARMv7 shows that the feature selection phase can lead to some differ-
ent features compared to the HOFFMANN [5] work without interfering in the overall energy
consumption. The execution trace of the tasks-sets described, as expected, the migrations and
swaps of the tasks, converging to a scenario where the frequency is decreased. The tests show
an overall reduction of energy consumption of 19.30%, with a maximum reduction of 26.32%.

The results on ARMv8 shows a different set of features on the feature selection phase
when comparing to the ARMv7. The difference is mainly on features related to access for load,
leading to cache misses and stalls. Even with these features, some others remain the same. The
best feature in ARMv7 is also the best feature on ARMv8, and some others features also appear
in both feature selection.

The execution trace of the tasks-sets 1 and 2 on ARMv8 shows the same scenario com-
pared to ARMv7, performing migrations and swaps, and therefore, decreasing the frequency.
The task-set 3, on the other hand, shows a scenario where the frequency couldn’t be decreased
due to a bad warm-up start of the ANN. This occurs when the offline training is not enough,
leading to the prediction of the ANN be overestimated, and with this, the frequency is not de-
creased. The online training don’t solve this problem because this training is only performed
when the frequency is decreased.

Lastly, the energy consumption on ARMv8 shows an overall reduction of 13,37%, with
a maximum reduction of 20,88%.
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Abstract. Modern computer architectures are becoming more heterogeneous
and increasing the energy consumption. This work uses as a base an Artifi-
cial Neural Network (ANN) that uses information that is built at runtime out of
hardware performance counters, sensors, and OS variables to perform the en-
ergy optimization on the system. However, the aforementioned ANN was only
tested in one platform, not having results on the behavior and performance of the
Machine learning model and on the choices of counters on other platforms. In
this context, the objective of this work is to test the ANN solution on the ARMv7
and ARMv8 architectures, evaluating the model and the chose of the hardware
performance counters.

1. Introduction
Modern computer architectures are becoming more heterogeneous [ZAHRAN 2016].
This heterogeneity takes place through a wide variety of different processors inside the
same hardware, where they can differ from each other through the use, technology or
energy management techniques. This gives the architecture the capacity to increase the
overall performance, through the use of features like SIMD units and application-specific
accelerators or technologies like hyper-threading. All of this is usually connected by some
network-on-chip [HAIDER 2018].

Along with the growth of the complexity of these systems, the power consump-
tion grows as well, making energy management an important topic to deal with. The
architecture can use some energy management techniques like Dynamic Voltage and Fre-
quency Scaling (DVFS) and Dynamic Power Management(DPM) to decrease the energy
consumption of chips, scaling down the voltage and frequency based on the targeted per-
formance requirements of the running application [Engineering 2022].

These techniques can be used to reduce the energy consumption in real-time based
systems, where many of them are battery-operated embedded devices. Real-time based
systems are designed to execute applications and respond to events within a predictable
time, and therefore, using energy management techniques in these systems mean to reduce
the energy consumption as much as possible without interfere on the real-time system
applications constraints [Xu and Mossé 2007].

To provide runtime energy optimization, some Machine Learning (ML) tech-
niques are being used. The ML use traces provided by the architecture and process
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them into useful information to support the optimization. However, ML-based optimiza-
tion in runtime can have problems dealing with real-time base systems because the ML-
techniques could end up violating the performance and temporal constraints of the real-
time applications.

[HOFFMANN 2021] presents a non-intrusive, ANN-based runtime energy opti-
mizer that was designed and implemented considering the application’s constraints. The
model is able to predict the performance of tasks in lower frequency levels and safely
optimize real-time embedded systems’ power saving operations. This is done by taking
execution traces that are built at runtime out of hardware performance counters, sensors,
and OS variables of individual tasks as input to predict their performance in case the core
where they are running is subjected to DVFS.

While the aforementioned work predicts and safely optimizes power saving oper-
ations, there is an assumption about the chosen hardware performance counters used as
input by the ANN. In [HOFFMANN 2021], the performance counters were analyzed and
selected through three different techniques to filter and acquire only the more relevant
counters that exist on the target platform, that was a Cortex-A53 processor, running in an
ARMv7 mode where there are in total of 54 available performance counters.

However, only the above-mentioned platform was used for testing and there is
no guarantee that the chosen performance counters remain the most relevant option on
other platforms nor that the feature selection methods manage to capture the best perfor-
mance counters due to the possible unpredictability that exists in the counters. In fact,
not all hardware performance counters remain consistent across multiple architectures.
Some performance counters are architecture dependent and vary across different proces-
sor architectures and may also change with processor enhancement (e.g. cache and TLB
accesses) [SANJEEV 2019].

Therefore, the objective of this work is to evaluate the performance of the
[HOFFMANN 2021] machine learning model running on other platforms and verify the
reliability of feature selection methods when tested on other architectures. This will be
done on the architectures ARMv7 and ARMv8, mediated by the Embedded Parallel Op-
erating System (EPOS - https://epos.lisha.ufsc.br/).

2. EPOS
Embedded Parallel Operating System [Lab 2022b], or simply EPOS, is an operating sys-
tem project developed at the Software/Hardware Integration Lab (LISHA) [Lab 2022c]
and aims to automate the development of embedded systems.

EPOS relies on the Application-Driven Embedded System Design (ADESD)
[Lab 2022a] method that use a strategy to systematically construct application-oriented
operating systems as arrangements of adaptable software components. This feature
enables the development of software/hardware components that can be automatically
adapted to fulfill the requirements of particular applications.

Furthermore, EPOS has support for many architectures and platforms, being able
to run in both of the target architectures used through this work, ARMv7 and ARMv8.
For each architecture supported, some architecture dependent components are available
too, like the Memory Management Unit and Performance Monitor Unit.
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3. Performance Monitor Unit

Performance Monitor Unit (PMU) is an architectural component available in the most
of the modern processors that allow the capture and record of events that occur in the
processor. The monitoring of these events can be used to evaluate how the code interacts
with the hardware, what resources they used and how many clock cycles the code took
to execute, helping to identify, for instance, performance bottlenecks and opportunities to
speed up the application [Goel 2011].

These events are useful, but there is usually a hardware limitation in how many
events can be tracked at the same time. These events are monitored through counters, also
called channels, and the available number of these channels varies between architectures,
but they are limited and only a few events can be tracked at the same time. Due to the
limit in the number of channels, the available information at run-time is also limited and
therefore is necessary to select the most crucial events to be monitored.

4. Sensors and OS Variables

Sensors and OS Variables are another sources of information available in modern hard-
ware and operating systems. The sensors collect information about the hardware, and
therefore collect information like Temperature and Energy Consumption.

SO Variables, on the other hand, collect information about the system, and there-
fore, are dependent on the operating system that is used. The EPOS have several events of
the system that can be collect, some examples are CPU Execution Time, Deadline Misses
and Running Thread. These events can be used to understand, track back and to optimize
the performance of the system.

5. ARM Architecture

ARM is a family of RISC architectures for computer processors. The ARM is designed to
be used in various environments, from portable, battery-powered devices to smartphones,
desktops and servers. This is possible due to their low costs, power consumption and heat
generation, when compared with their competitors. The two most major version of the
ARM family are ARMv7 and ARMv8.

• ARMv7 is a 32-bit architecture, with 32-bit wide registers.
• ARMv8 is a 64-bit architecture, with 64-bit wide registers.

Although the ARMv8 is a 64-bit architecture, it has a backward compatibility
with the ARMv7 architecture. This is done by having two execution states: AArch64
and AArch32. The AArch64 is a normal ARMv8 state that uses 64-bit registers. The
AArch32 state uses 32-bit registers, having compatibility with the ARMv7 architecture,
and in addition supports some features included in the AArch64 state.

6. Feature Selection

Feature selection is a process used to reduce the number of input variables in a model,
removing non-informative or redundant variables. This is done to reduce the computation
cost, improve the performance of the model, reduce the redundant variables and avoid the
curse of Dimensionality.
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The relevance of a feature is measured not based on its value but on the charac-
teristics of the data and the relationship with other features. This measure is done by
feature selection methods that are classified into three types, Filter, Wrapper and Embed-
ded Methods[Venkatesh and Anuradha 2019].

6.1. Pearson’s Correlation Coefficient
Pearson’s Correlation Coefficient (PCC) is a measure to detect a linear relation between
two continuous variables. In other words, PCC indicates the effect of change in one vari-
able when the other changes. The equation ?? calculate the PCC between an independent
variable x and a dependent variable y [Venkatesh and Anuradha 2019]:

6.2. Information Gain Ratio
Information Gain Ratio is a statistical measure based on the entropy of the data, which
indicates the uncertainty in the data. A low entropy indicates the data is uniform, and a
high entropy indicates the opposite.

The information gain ratio is calculated as the entropy of the data minus the con-
ditional data entropy, divided by the intrinsic value of the feature, to reduce the biases of
features with many distinct values.

6.3. Lasso CV
The Least Absolute Shrinkage and Selection Operator with Cross Validation is a linear
regression method that performs L1 penalty. If two features are linearly correlated, their
presence will increase the value of the cost function and lasso regression will try to shrink
the coefficient of the less important feature to zero. With this, lasso regression will auto-
matically select the more useful features.

7. Environment
The execution of the experiment involves to collect performance data at run-time in a
real-time system. However, some characteristics in this collection need to be fulfilled by
the operating system. First, a non-intrusive data acquisition method is necessary in order
to not interfere with real-time applications constraints. Second, the data collection needs
to be done in a strict way to avoid inaccurate measurements and contamination due to
events from other processes. Lastly, besides the performance data that is provided by the
Performance Monitor Unit (PMU), is necessary a way to collect information about the use
of the system (e.g. CPU execution time, Thread execution time and Deadline misses) to
distinguish tasks and be able to make more accurate assumptions while having a guarantee
that the system is working as expected.

Therefore, the Embedded Parallel Operating System (EPOS) was chosen due to
the fact that it fulfill all the above-mentioned characteristics.

7.1. Architectures and Platforms
The experiments are executed in two architectures, ARMv7 and ARMv8. The experiment
in ARMv7 was conducted to compare the results described in [HOFFMANN 2021] work
and draw conclusions.

The architectures and platforms used are described below:
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• ARMv7 architecture running on a Raspiberry Pi 3b+ with a ARMv8 Cortex-A53
processor, executing in ARMv7 compatibility mode.

• ARMv8 architecture running on a Raspiberry Pi 3b+ with a ARMv8 Cortex-A53
processor.

The Cortex-A53 has 6 channels, allowing it to collect 6 performance counters at
the same time.

7.2. Task-Sets

To collect representative and meaningful data over the performance counters in a mul-
ticore real-time embedded system, we need tasks with distinct performance behaviors
running in parallel to simulate a real use of the system. To achieve this behavior, 3 types
of tasks are selected: a memory bound task that focus on memory access; a cpu bound
task that focus on mathematical operation and uses the ALU; and a disparity task that
simulates a real workload of embedded systems.

• Bandwidth is a memory-bound, performing constantly read and write operations
on a data structure with at least the size of the L2 Cache defined by the running
platform. This task can be also divided into four types, low use of memory, high
use of memory, an alternate between low and high use of memory and random use
of memory.

• CPU Hungry is a cpu-bound task that implements an Iterative Fibonacci how to
execute a loop with mathematical operations constantly using the ALU.

• Disparity map is a task that represents a real workload task of embedded systems.

To simulate resources sharing contention between the tasks, the tasks are com-
bined to run in parallel. Two combinations of parallel execution are defined in
[HOFFMANN 2021] and replicated here: One composed of a Memory Bound, CPU
Bound and Disparity and another composed of a CPU Bound and 2 Disparity. Overall,
the configuration of the task-set is presented in table 1.

This task-set is well-defined to have a heavy sharing contention and therefore is
used as a main task-set to collect performance data for feature selection.

Table 1. Task-Set 1 configuration
Task-Set 1

Task Period/WCET (in ms) CPU ID
Bandwidth 500/100 1 1
CPU Hungry 500/100 2, 3 4, 5
Disparity 500/100 1, 2, 3 2, 3, 6

Besides the task-set 1, two task-sets are defined, and the configuration are de-
scribed in table 2 and table 3.

7.3. Equipament

To collect information about the energy consumption when running the task-sets, the
KCX-017 USB Power Meter was used.
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Table 2. Task-Set 2 configuration
Task-Set 2

Task Period/WCET (in ms) CPU ID
Bandwidth 250/50 1 1
CPU Hungry 250/35, 125/20 2, 3 4, 5
Disparity 500/100, 1000/200, 250,100 1, 2, 3 2, 3, 6

Table 3. Task-Set 3 configuration
Task-Set 3

Task Period/WCET (in ms) CPU ID
Bandwidth 100/10, 100/5, 1000/100 1, 2, 3 1, 2, 7
CPU Hungry 100/30, 250/60 3, 3 4, 6
Disparity 1000/400, 500/100 2, 3 3, 5

8. Data Capture
The first step of the experiment is to capture meaningful data that represents a heavy use
of the system and resource sharing contention between the tasks. To fulfill this objective,
task-set 1, described in table 1 was used.

In this step, all the performance counters and some SO events are collected. Due
to the hardware limitation on the number of channels of the PMU, the number of perfor-
mance counters that can be collected at the same time is limited. This implies running
the application several times to collect all necessary data. For example, on Raspiberry
PI 3b+, it’s necessary to collect data 9 times, because this platform has 54 performance
counters but only 6 can be collected at the same time.

Besides the performance counters, the SO events also need to be collected. In this
experiment, the SO events collected are CPU Usage, Thread Usage and Running Thread.
They are necessary to collect information about the running task at the moment that the
collection was done. This gives information about the cpu usage, thread usage and task
id, used to know what the data collected refer to. The capture of the data is done with the
system on the maximum frequency and for 180 seconds in each collection.

After the collection, all the logs of the system are filtered and cleared, removing
all unnecessary information and merging all the information collected in chronological
order.

9. Feature Selection
After the data capture, the next step is to select the most important features within all
the performance counters that the platform offers. The number of features that will be
selected depends on the limitation of the PMU channels of the processor.

To achieve this objective, 3 methods for feature selection are used: Pearson Corre-
lation Coefficient (PCC), Lasso CV and Info Gain Ratio. The mentioned feature selection
methods give distinct results over different features. With this, we used a combination of
the methods results to select the features.

The PCC is a measure to detect a linear relation between two continuous variables,
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being the main methods used in the decision of the feature selection. The other 2 algo-
rithms will be used to give extra information and to decide in case there are some features
with close relation and if it’s necessary to select one of them.

As mentioned above, the PCC detects a relation between two variables, there-
fore, the relation between all the performance counters will be calculated, but the relation
between the performance counters and the Thread usage will be our main concern. A
feature that has a great relationship with the thread usage indicated that the feature is a
good indication and therefore, a good feature to be selected.

For instance, two features can be on the top of the best features list when com-
pared with the thread usage but when compared between each other, the two features can
be highly correlated, meaning that if we selected the two features, only one will give a
meaningful value. With this, we need to verify the correlation between the top features to
eliminate the redundant variables. The Lasso CV and Info Gain Ratio are used to decide
what feature will be selected.

10. IA Training
After the feature selection phase, we already know what are the best features to be used
to train the IA. The online artificial neural network model in this work is used to predict
the utilization of the task if the frequency is reduced. With this, we can predict the total
utilization of the cores and decide if it’s possible to scale the frequency of the CPU using
Dynamic Voltage and Frequency Scaling (DVFS), reducing the overall energy consump-
tion of the chip. The configuration of the ANN is the same used on [HOFFMANN 2021].
The model uses a learning rate of 0.35 and an average accuracy of 97% considering the
validation data-set.

Even though the ANN used to run the experiments is trained online, offline train-
ing is necessary beforehand to avoid cold start issues. This training is done using two
datasets of data, one for training and the other for validation. The training sample is got
by running the task-set 1, described in the table 1 and collecting data of the selected per-
formance counters under all levels of frequency scaling. With this, we collect the behavior
and performance counter of the system under each frequency level. The training data is
collected using task-set 2, described in the table 2 under the same circumstances.

11. Energy Analysis
The last step of the experiment is to measure the energy consumption of the system when
under the energy optimizer, which scale the frequency based on the use of the system. Not
only the DVFS is used, but also a balanced workload using migration of tasks, improving,
even more, the energy more the energy consumption.

To capture the energy consumption of the system, the task-set 1, task-set 2 and
task-set 3 are executed, with and without the ANN prediction and DVFS actuation. The
data is collected by the equipment KCX-017 USB Power Meter. Besides this, each task-
set has a Bandwidth task, that can be divided into four types, low use of memory, high
use of memory, an alternate between low and high use of memory and random use of
memory. The task-sets are executed for each type of bandwidth task as well.

The first step is to capture how much energy the idle system consumes, running
the application without tasks, in the maximum frequency. Next, the consumption of all
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The last feature is L2D Writeback, having good results in all three methods. This
feature also doesn’t have a high PCC relation with other feature of the list.

With this, the selected features are: Bus Access for Memory Write, Stalls due to
Write Buffer Full, Conditional Branchs, Bus Cycle, External Memory Request and L2D
Writeback.

12.2. Energy Optimizer

After the feature selection phase, the execution of the task-sets 1, 2 and 3 described in
section 7 are performed with and without the ANN optimizer, collecting data about the
energy consumption of the tasks. Under the ANN, each performance counter has a weight
associated. After the offline training, each task-set is executed several times to perform
online training to find the best weights that the IA can use to predict more precisely the
migrations, swaps and frequency scaling of a specific task-set. After this, we use this
weight to execute the task-sets to collect information about energy consumption.

All the task-sets have Bandwidth tasks, which are divided into four types: heavy,
light, mixed and random. Each one has a different memory consumption, for a maximum
to a minimum use, making the simulation of a real use of the system more accurate. In
this section, all graphs are under heavy use of memory. In addition, all data collected of
energy consumption are done in executions of 180 seconds.

12.2.1. Task-set 1

The first task-set to be executed is described in table 1. In this task-set, the frequency is
decreased from 1,2GHz to 0,6GHz, the minimum supported on the platform, without the
necessity of migrations.

The actuation of energy optimizer in this task-set resulted in a reduction on energy
consumption of 23%. The reduction in energy consumption was 37% when executed with
a heavy use of memory. On the other hand, with random use of the memory, the energy
consumption didn’t change.

12.2.2. Task-set 2

The second task-set to be executed is described in table 2. Initially, this task-set has an
imbalance in the use of the cores, decreasing the frequency to a maximum of 0,7GHz
where the CPU3 has a use of almost 100% while the CPU1 has a use of nearly 60%. With
this, the energy optimizer performs a migration of tasks from CPU3 to CPU1, described
on the graph, leading to a more balanced use of the platform, decreasing the frequency to
a minimum of 0,6GHz.

The energy consumption of this task-set results in a reduction of 10% on average.
The energy consumption was reduced by 15% and 18% with heavy and light bandwidth
configuration, respectively.
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the feature Stalls due to Write Buffer Full (97%). Between these two features, only the
Interlock Cycle Write Stage Stall will be selected for having a high value on PCC and
Info Gain. This feature also has a high relation with the others features discussed before,
but it’s still selected for having a high value on Info Gain and for being a complementary
feature, that is, stalls when writing.

The next feature is Interlock Cycle Write Stage Stall due to Miss, having a high
value on PCC and Info Gain, being therefore, selected. This feature doesn’t have a high
PCC relation with otehrs features of the list.

Bus Access for Memory Load is the next feature and also was selected. This
feature has a high value in both PCC and Lasso CV. This feature doesn’t have a high PCC
relation with others features of the list.

Following the list, we have the feature L2 Cache Misses, who also has a high value
in PCC and Lasso CV. This feature doesn’t have a high PCC relation with others features
of the list.

The last feature is Conditional Branchs. This feature has a high relation with the
features Immediate Branchs (98%), Predictable Branchs (98%) and L1I Cache Hit (93%).
With this, only the Conditional Branchs is selected for having the highest PCC among the
cited features.

With this, the selected features are: Bus Access for Memory Write due to Store,
Interlock Cycle Write Stage Stall, Interlock Cycle Write Stage Stall due to Miss, Bus
Access for Memory Load, L2 Cache Misses and Conditional Branchs.

13.2. Energy Optimizer

After the feature selection phase, the execution of the task-sets 1, 2 and 3 described in
section 7 are performed with and without the ANN optimizer, collecting data about the
energy consumption of the tasks. After the offline training, each task-set is executed
several times to find the best migrations weights to predict more precisely the migrations
and swaps. After this, we use this weight to execute the task-sets to collect information
about energy consumption.

All the task-sets have Bandwidth tasks, with are divided into four types: heavy,
light, mixed and random. Each one has a different memory consumption, for a maximum
to a minimum use, making the simulation of a real use of the system more accurate. In
this section, all graphs are under heavy use of memory. In addition, all data collected of
energy consumption are done in executions of 180 seconds.

13.2.1. Task-set 1

The first task-set to be executed is described in table 1. In this task-set, the frequency is
decreased from 1,2GHz to 0,6GHz, the minimum supported on the platform, without the
necessity of migrations.

The energy consumption of this task-set results in a reduction of 23% on average.
The reduction in energy consumption was 33% when executed with a heavy use of mem-
ory. On the other hand, with random use of the memory, the energy consumption didn’t
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change.

13.2.2. Task-set 2

The second task-set to be executed is described in table 2. Initially, this task-set has an
imbalance in the use of the cores, decreasing the frequency to a maximum of 0,7GHz
where the CPU3 has a use of almost 100% while the CPU1 has a use of nearly 60%. With
this, the energy optimizer performs a migration of tasks from CPU3 to CPU1, described
on the graph, leading to a more balanced use of the platform, decreasing the frequency to
a minimum of 0,6GHz.

The energy consumption of this task-set results in a reduction of 8% on average.
The energy consumption was reduced by 11% in both heavy and light bandwidth config-
uration.

13.2.3. Task-set 3

The third task-set to be executed is described in table 3. This task-set is the most complex
among the task-sets described in section 7. On the first try, there is a discrepancy on
the use of the CPU 3 compared to the others CPUs, therefore, a migration is performed,
sending one task from CPU3 to CPU1. Even with this migration, the prediction of the
CPU3 is still very high, therefore, the frequency is not decreased. This problem occurs
on the way the offline and online learning is performed.

The offline training is performed to have a warm-up start, allowing bypass an
initial stage of online training. This training is done with information of the Task Set 1
and not the current task set. This happens because the Task Set 1 have a configuration for
different scenarios, where we have different tasks running in parallel. Even though the
task set 3 run the same tasks, there are some differences on the number of tasks and what
tasks are running in parallel, therefore, not every scenario can be covered.

To complement this offline training, an online training is also performed, to make
sure the current task set configuration is being predicted correctly, and this training is
executed when we have a variation on the frequency.

This lead the problem on the task set 3. In this scenario, the offline training is
not enough to predict correctly the configuration of the task set 3, leading to a bad warm-
up. Even though migration was performed, this doesn’t solve the problem. The online
training also was never performed because we never decreased the frequency, making the
frequency stuck on the 1,2GHz.

13.3. Energy Consumption
After considering all task-sets, the overall energy reduction is shown in Figure 4. The
figure shows the energy reduction of the task-sets 1 and 2 when considering all band-
width task configurations. The Task Set 3 was not included due to the problem where the
frequency was not decreased.

The heavy configuration on the bandwidth task was the one that shows the best
results, with an average reduction of 21%. The next is the light configuration, which

74





Another problem that could cause this is a difference in the cache configuration.
Both of the experiments, armv7 and armv8, are done in the same board, therefore the
cache size is the same. Looking at the EPOS code for armv7 and armv8, the way the
cache is configured is the same to both architectures, therefore a cache configuration is
not the cause.

With this, the problem that cause this phenomenon was not explicit found, and we
can infer that architectures are complex, and some problems couldn’t be explained in a
simple and easy way.

The next step is to compare the execution of the tasks. The execution trace of the
task-sets 1 and 2 have a similar behavior to the ARMv7 results. The only difference was
on task-set 3, where the ARMv8 couldn’t decrease the frequency due to a problem with a
bad warm-up, who lead the prediction to be overestimated.

The last step is to compare the data about the energy consumption. The ARMv7
show the best results compared to ARMv8. Considering the bandwidth task configuration,
ARMv8 achieved an average reduction of 21% on the heavy configuration, while the
ARMv7 achieved a reduction of 26%. In the low configuration, ARMv8 reduced by
16% and ARMv7 by 18%. In the mixed configuration, on the other hand, the ARMv8
shows the best results than ARMv8, with an average reduction of 17% compared to the
13% of ARMv7. Lastly, the random configuration, both architectures don’t achieved any
reduction in energy consumption on the tests.

14. Conclusion
Modern computer architectures are becoming more heterogeneous and increasing the en-
ergy consumption. This work uses as a base an Artificial Neural Network (ANN) that uses
information that is built at runtime out of hardware performance counters, sensors, and OS
variables to perform the energy optimization on the system. However, the aforementioned
ANN was only tested in one platform, not having results on the behavior and performance
of the Machine learning model and on the choices of counters on other platforms. In this
context, the objective of this work is to test the ANN solution on the ARMv7 and ARMv8
architectures, evaluating the model and the chose of the hardware performance counters.

The results on ARMv7 shows that the feature selection phase can lead to some dif-
ferent features compared to the HOFFMANN [HOFFMANN 2021] work without inter-
fering in the overall energy consumption. The execution trace of the tasks-sets described,
as expected, the migrations and swaps of the tasks, converging to a scenario where the
frequency is decreased. The tests show an overall reduction of energy consumption of
19.30%, with a maximum reduction of 26.32%.

The results on ARMv8 shows a different set of features on the feature selection
phase when comparing to the ARMv7. The difference is mainly on features related to
access for load, leading to cache misses and stalls. Even with these features, some others
remain the same. The best feature in ARMv7 is also the best feature on ARMv8, and
some others features also appear in both feature selection.

The execution trace of the tasks-sets 1 and 2 on ARMv8 shows the same sce-
nario compared to ARMv7, performing migrations and swaps, and therefore, decreasing
the frequency. The task-set 3, on the other hand, shows a scenario where the frequency
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couldn’t be decreased due to a bad warm-up start of the ANN. This occurs when the of-
fline training is not enough, leading to the prediction of the ANN be overestimated, and
with this, the frequency is not decreased. The online training don’t solve this problem
because this training is only performed when the frequency is decreased.

Lastly, the energy consumption on ARMv8 shows an overall reduction of 13,37%,
with a maximum reduction of 20,88%.
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