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RESUMO

Durante décadas, o projeto das redes de trafego seguiu um padrao convencional, com faixas de
trafego fixas, caminhos predefinidos dentro dos cruzamentos e sinalizacao/seméforos de trafego
controlando movimentos conflitantes. No entanto, o panorama dos transportes estd passando
por uma mudanca profunda com o advento dos veiculos conectados sob condu¢do automatizada
(CVAD). Esta tecnologia transformadora preparou o terreno para reimaginar a propria esséncia
da gestdo de trafego. Os pesquisadores buscam um futuro mais inteligente, seguro e eficiente,
investigando cruzamentos sem semaforos para remover a sinalizagcdo de trafego tradicional. Isto
aumenta a efici€ncia do trafego através de intervalos mais curtos entre veiculos e da eliminacao
do tempo perdido em interse¢Oes antes semaforizadas. No entanto, apesar de algumas melhorias
na flexibilidade, os veiculos ainda estdo vinculados a faixas e caminhos predeterminados,
restringindo a capacidade e o potencial vidrio. Para romper o paradigma predominante, esta tese
da um passo a frente ao propor o controle de interse¢ao sem semaforos e com caminhos livres
(Signal-free Path Free Intersection Control - SPIC). Trata-se de uma estratégia de coordenacao
de veiculos em intersecdes urbanas que oferece melhor aproveitamento do espago da intersecao
visando melhorar a eficiéncia e a seguranga do trafego. O SPIC libera os veiculos da necessidade
de seguir caminhos predefinidos nas interse¢des, permitindo que percorram trajetérias 6timas.
Introduzimos duas formulagdes de controle 6timo para resolver o problema SPIC em uma
intersecdo urbana. O SPIC € transformado em um problema de programacgdo ndo linear usando
séries finitas de Fourier ou curvas de Bézier, juntamente com nogoes de discretizagdo. Os
resultados numéricos revelam trajetérias quasi-6timas e sem colisdes, com o método Bézier
mostrando um desempenho ligeiramente melhor. No entanto, ambas as abordagens estao limitadas
a um conjunto existente de veiculos com estados iniciais e finais pré-definidos. Para resolver a
limitacdo destas primeiras abordagens, esta tese também apresenta uma abordagem de horizonte
deslizante baseada em otimizagdo que € formulada como um problema de controle de contorno
preditivo ndo linear baseado em modelo (Nonlinear Model Predictive Contouring Control -
NMPCC). Em particular, propomos o algoritmo SPIC. Este algoritmo estende o NMPCC padrao
(Extended Nonlinear Model Predictive Contouring Control - ENMPCC) para ser adaptado
para resolver o problema SPIC. Ele maximiza o progresso do veiculo no cruzamento, lidando
com chegadas continuas, combinando planejamento e seguimento do caminho e garantindo
prevencao explicita de colisdes para seguranca. No entanto, solugdes em tempo real podem ser
computacionalmente caras devido a nao linearidade e a ndo convexidade do problema. Para
melhorar o desempenho computacional, incorporamos um modelo linear varidvel no tempo
(Linear Time Varying - LTV), usado no NMPCC padrao, no problema ENMPCC, produzindo
o LTV-ENMPCC. O método proposto estd encapsulado no simulador SPIC (SPIC-Sim), uma
ferramenta de simulacao que permite a modelagem da plena utilizacao de uma intersec¢do urbana.
Os resultados da simulag@o apresentam trajetorias 6timas e livres de colisao para CVAD com
melhor utilizacdo do espago de intersecao, resultando em menor tempo de viagem necessdrio
para os veiculos atravessarem a intersecdo, € em seguranga.

Palavras-chave: Veiculos conectados sob conducdo automatizada. Interse¢des urbanas. Controle
de contorno preditivo baseado em modelo. Prevenc¢do de colisdes.



RESUMO EXPANDIDO

INTRODUCAO

Os Veiculos Conectados sob Condugao Automatizada (Connected Vehicles under Automated
Driving - CVAD) apresentam uma tecnologia transformadora com potencial para melhorar o fluxo
de trafego, a seguranca, a reducdo de poluentes, a sustentabilidade e a eficiéncia de combustivel.
Aproveitando recursos avangados de automagado, os CVAD oferecem beneficios como regulacao
de trafego, reducdo de fatalidades por erros humanos e maior acessibilidade. As intersecdes
urbanas, criticas para os sistemas de transporte, sofrem com perdas de eficiéncia, colisdes e
congestionamentos, representando ameacas a vida econdmica e social. Os métodos tradicionais de
controle de trafego tém limitacdes e, apesar dos avancos, o paradigma organizacional estabelecido
para a infra-estrutura rodovidria permanece praticamente inalterado. Para enfrentar estes desafios,
€ necessdria uma nova estratégia organizacional adaptada ao CVAD nas intersecdes urbanas.

OBJETIVOS

Esta tese visa priorizar o desenvolvimento de estratégias de controle eficientes para coordenar os
CVAD de forma eficaz e segura em interse¢des urbanas complexas. Para permitir que os veiculos
circulem com mais flexibilidade e também utilizem plenamente o espago de intersecdo, nesta
tese focamo-nos na situacao em que os veiculos nao estao vinculados a caminhos predefinidos
e faixas vidrias fixas, o que € referido como intersecao sem caminhos. Permite-se conduzir em
qualquer lugar da superficie bidimensional da interse¢do. Em geral, os beneficios das interse¢oes
sem caminhos sao um comportamento de condug@o mais suave, maior capacidade da intersecdo e
reducdo do congestionamento do trafego. Soma-se a isso o fato de semaforos com configuracdes
de sinalizacao inadequadas ou que nao estdo dinamicamente adaptados ao trafego em tempo
real, ndo s6 diminuem a eficiéncia e a seguranc¢a do trafego, mas podem até causar atrasos e
congestionamentos nas intersecdes. Nesta tese consideramos intersecoes livres de semaforos e
com caminhos livres.

Em particular, propomos um problema de controle de intersecao livre de semaforos e com
caminhos livres (Signal-fee Path-free Intersection Control - SPIC) para coordenar CVAD
em intersecdes urbanas. O SPIC permite movimentos suaves e seguros dos veiculos sem a
necessidade dos semdforos tradicionais ou caminhos predefinidos. Primeiro, um problema de
controle 6timo baseado na teoria das séries finitas de Fourier e curvas de Bézier € proposto para
resolver o problema que leva a resolucido de um problema de programacao nao linear (NonLinear
Programming - NLP). Além disso, um método de controle de contorno preditivo de modelo
nao linear estendido e adaptado (Nonlinear Model Predictive Contouring Control - NMPCC) é
introduzido para resolver a solu¢do do problema SPIC, ao qual nos referimos como NMPCC
estendido (Extended Nonlinear Model Predictive Contouring Control - ENMPCC). O método
ENMPCC gera trajetorias CVAD ideais e livres de colisdes com base em caminhos de referéncia
independentes do tempo e continuamente diferencidveis, com foco na maximizagao do progresso
ao longo dos caminhos. Para garantir a prevengao de colisdes, as dreas ocupadas pelos CVAD
s@o modeladas como conjuntos politépicos em que cada conjunto deve manter uma distancia
minima de seguranca dos demais conjuntos. Para aumentar a eficiéncia numérica, incorporamos
um modelo linear varidvel no tempo (Linear Time Varing - LTV), usado no NMPCC padrao, no
problema ENMPCC, produzindo LTV-ENMPCC.



METODOLOGIA

A metodologia desta tese gira em torno de abordar o problema SPIC através de métodos de
controle 6timo e também modelar métodos de controle de contorno preditivo:

O Capitulo 3 apresenta o Controle de Intersecao Sem Caminho e Sem Sinal, que € um problema
novo para o gerenciamento de intersecdes urbanas. O SPIC promove uma melhor utilizacao
do espaco de intersecao para melhorar a eficiéncia geral do trafego, aproveitando o potencial
dos CVAD para permitir a travessia sem caminhos numa interse¢ao sem sinal, que é referida
como plaza. No plaza, a intersecdo transforma-se num espaco delimitado, onde caminhos livres
sdo permitidos desde que as trajetorias resultantes ndo se cruzem. Na verdade, além de evitar
colisdes entre veiculos, as restri¢gdes para os limites do plaza devem ser projetadas para impedir
que os CVAD violem seus limites. Para este fim, restri¢des adicionais sdo impostas ao problema
SPIC para definir a geometria do plaza.

O Capitulo 4 introduz o problema de controle 6timo de trajetéria de intersecao (Intersection
Trajectory Optimal control Problem - ITOP) como um tipo especifico de problema SPIC. O
ITOP pode ser definido como a obtengdo de trajetdrias 6timas, sem caminhos pré definidos,
nas quais os veiculos partem de seus estados iniciais e, apds cruzarem uma intersecdo vidria,
chegam aos estados finais para minimizar um ou mais critérios e satisfazer os limites fisicos da
praca e as restri¢des para evitar colisdes. O ITOP permite o uso de uma estrutura juntamente
com dois métodos: um baseado nas séries finitas de Fourier (Finite Fourier Series - FES) e outro
utilizando curvas Bézier. Esses métodos sdo empregados para resolver o ITOP de forma eficaz.
De acordo com as informacdes recebidas sobre os estados do veiculo, e também a geometria
da intersecdo, os métodos FFS e curvas de Bézier podem gerar trajetdrias quase 6timas e livres
de colisdo dos CVAD, considerando a auséncia de seméforos e caminhos predeterminados. Em
particular, o uso dos métodos FFS e Bézier e nocdes de discretizagdo convertem o problema
ITOP em um problema de programacgdo ndo linear, com coeficientes de Fourier ou Bézier como
parametros desconhecidos.

O Capitulo 5 tem como objetivo apresentar uma nova formulacdo para o problema SPIC e
introduzir um novo método e algoritmo que ofereca uma solugao eficaz para resolver o problema
SPIC. Para fazer isso, propomos uma abordagem de horizonte deslizante baseada em otimizagado
que € formulada como um controle de contorno preditivo de modelo nao linear (NMPCC).
Em particular, estendemos e adaptamos o método NMPCC padrado para resolver o problema
SPIC, ao qual nos referimos como NMPCC estendido (ENMPCC). O método ENMPCC gera
trajetorias CVAD ideais e livres de colisdes com base em caminhos de referéncia independentes
do tempo e continuamente diferencidveis, concentrando-se em maximizar o progresso ao longo
dos caminhos e, a0 mesmo tempo, garantir a seguranga. Para garantir a prevengao de colisdes
entre CVAD, os veiculos sdo modelados como conjuntos politopicos, onde cada conjunto é
obrigado a manter uma distancia minima de seguran¢a dos demais conjuntos. A natureza nao
linear e ndo convexa do problema SPIC, decorrente do modelo do veiculo e das restricdes
de seguranca, apresenta desafios computacionais. Empregamos modelos lineares variantes no
tempo (LTV) obtidos através da linearizacao de fun¢des nao lineares. Além disso, aproveitamos
a teoria da dualidade para suavizar as restri¢des para evitar colisdes e permitir a utilizacao de
abordagens de solucdo eficientes.



CONSIDERACOES FINAIS

A tese conclui demonstrando a superioridade dos métodos propostos, nomeadamente ENMPCC
e LTV-ENMPCC, em termos de tempo total gasto, consumo de combustivel e tempo de célculo
em comparag¢do com a condugio convencional baseada em caminhos.

Palavras-chave: Veiculos conectados sob condugao automatizada. Intersecdes urbanas. Problema
de controle 6timo. Problema de controle de contorno preditivo baseado em modelo. Prevencao
de colisdes. Otimiza¢ao convexa.



ABSTRACT

For decades the design of traffic networks has followed a conventional pattern, with fixed traffic
lanes, predefined paths within intersections, and traffic signs/signals controlling conflicting
movements. However, the landscape of transportation is experiencing a profound shift with the
advent of connected vehicles under automated driving (CVAD). This transformative technology
has set the stage for reimagining the very essence of traffic management. Researchers aim for
a smarter, safer, and more efficient future by investigating signal-free intersections to remove
traditional traffic signs/signals. This boosts traffic efficiency through shorter headways and
elimination of lost time. However, despite some flexibility improvements, vehicles are still bound
to predetermined lanes and paths, restricting the capacity and potential of roads and intersections.
To disrupt the prevailing paradigm, this thesis takes a step forward by proposing signal-free path-
free intersection control (SPIC). It is a strategy for vehicle coordination at urban intersections
that offers better use of the intersection space targeting to improve traffic efficiency and safety.
SPIC liberates vehicles from predefined paths within intersections, empowering them to traverse
along optimal trajectories. We introduce two optimal control formulations to address the SPIC
problem at an urban intersection. The SPIC is transformed into a non-linear programming (NLP)
problem using either the finite Fourier series (FFS) or Bézier curves, along with discretization
notions. Numerical results reveal near-optimal collision-free trajectories, with the Bézier method
showing slightly better performance. However, both approaches are limited to an existing set of
vehicles with pre-defined initial and final states. To tackle the limitation of these first approaches,
this thesis also presents an optimization-based receding horizon approach that is formulated as
a nonlinear model predictive contouring control (NMPCC) problem. In particular, we propose
the SPIC algorithm. This algorithm extends the standard NMPCC (ENMPCC) to be tailored for
solving the SPIC problem. It maximizes vehicle progress at the intersection, handling continuous
arrivals, combining path planning and following, and ensuring explicit collision avoidance for
safety. However, real-time solutions can be computationally expensive due to non-linearity and
non-convexity. To enhance capabilities, we incorporate a linear time-varying (LTV) model,
used in standard NMPCC, into the ENMPCC problem, yielding LTV-ENMPCC. The proposed
method is encapsulated in the SPIC simulator (SPIC-Sim), a simulation tool that enables the
modeling of full utilization of an urban intersection. The simulation results present optimal and
collision-free trajectories for CVAD with improved intersection space utilization , resulting in
lower travel time required for vehicles to traverse the intersection, with guaranteed safety.

Keywords: Connected vehicles under automated driving. Urban intersections. Model predictive
contouring control. Collision avoidance.
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1 INTRODUCTION

Connected Vehicles under Automated Driving (CVAD) have emerged as a revolutionary
technology with the potential to improve the flow of traffic, safety, pollutant emissions reduction,
sustainability, and fuel efficiency. By leveraging advanced automation capabilities, these vehicles
offer numerous benefits, such as traffic regulation in congested cities, a reduction in fatalities
caused by human errors, and increased accessibility for the elderly and individuals with disabilities
(ANDERSON et al., 2014). Thanks to extensive efforts in both academia and industry over the
past few decades, a high level of automated driving has become a feasible option for future
transportation (BUEHLER; IAGNEMMA; SINGH, 2009).

Furthermore, CVAD have the capability to establish communication with each other and
the infrastructure, thereby enhancing the decision-making process. In addition, the integration
of automation and communication technologies empowers vehicles to collaborate and make
decisions that surpass the capabilities of human drivers. By fostering a connected, automated,
and cooperative vehicle environment, advanced strategies for intersection management can be
implemented, surpassing the effectiveness of existing technologies such as traffic lights (CHEN,
L.; ENGLUND, 2016). Hence, the deployment of CVAD has opened avenues for improving
vehicular traffic efficiency, especially in complex urban intersections.

Urban intersections are a crucial part of the transportation systems. Intersecting roadways
are necessary to connect people driving, walking, and bicycling from one route to another.
However, where roads intersect and paths cross, the resulting conflict points create circumstances
with efficiency loss and where crashes can occur. Traffic congestion at intersections is one
of the serious threats to the economic and social life of modern societies as well as to the
environment, which calls for serious and fundamental solutions. The congestion may cause
extreme travel delays and consequently increase pollution and fuel consumption, and decrease
traffic safety. In fact, each year roughly one—quarter of traffic fatalities and about one—half of all
traffic injuries in the United States are attributed to intersections (FHWA, 2021). Moreover, the
collision between vehicles at intersections accounts for anywhere between 25% and 45% of all
collisions (DRESNER; STONE, 2008).

The shared road space in an intersection is subject to vehicles with different origins and
destinations, leading to conflicts. The conventional way of managing these conflicts is by defining
a limited set of allowed paths and associated traffic movements (ROESS, 2004). Right of way for
each movement or set of non-conflicting movements is granted sequentially by traffic signals. The
research on traffic control at intersections achieved expressive improvements in traffic efficiency
(PAPAGEORGIOU et al., 2003). However, the organization of traffic within intersections into
allowed paths/movements, the lost times due to traffic cycles, and the high headways kept by
human drivers are factors in conventional driving that limit the increase of traffic efficiency. With
the advent of CVAD, many methods for coordinating traffic at signal-free intersections have been

developed, aiming to improve traffic efficiency by enabling shorter headways and eliminating
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lost time (CHEN, L.; ENGLUND, 2016; RIOS-TORRES; MALIKOPOULOQOS, 2017).

The majority of these methods deal with how to allocate time windows of a scarce
resource, the intersection space, to different vehicles. However, since they preserve the notion of
vehicular movement and an associated number of allowed paths in the intersection, they do not
offer the greatest possible efficiency (AHMADI et al., 2021). Indeed, despite the higher capacity
obtained by the elimination of the traffic light cycle and by smaller headways between vehicles
enabled by CVAD, the capacity of the intersection ends up being limited by the relationship
between paths constrained to pre-established vehicular movements.

Some works sought to increase the use of intersection space by enabling a different
organization of traffic at intersections. Stevanovic and Mitrovic (2020) allowed the real-time
reversal of the direction of approaching and leaving lanes and corresponding paths. Although
the left- and right-turning movements traverse the intersection without any conflicts, the through
vehicles are still required to reserve time-space slots to avoid a collision. Another work proposed
to expand the number of allowed paths for some traffic movements (HE et al., 2018). Vehicles on
any lane were allowed to turn in any direction, at the cost of increasing the number of conflicts
inside the intersection. It was shown that the method outperformed conventional driving. However,
even in these latter approaches, the number of allowed paths remains restricted, constraining the
achievable capacity at the intersection.

As a matter of fact, despite these advances, the paradigm established decades ago for the
organization of road infrastructure remains roughly the same. To bridge this gap and advance
the current state of the art, it is crucial to develop a novel organizational strategy specifically
tailored for CVAD at urban intersections. Additionally, future research endeavors should focus
on the implementation of an efficient control strategy to effectively and safely coordinate the
movement of CVAD at intersections. This novel organization poses several challenges in terms
of coordinating vehicles, ensuring safety, and optimizing the performance of CVAD at complex

and unpredictable urban intersections.

1.1 MOTIVATION

Most of the aforementioned methods for intersection management rely on the concept
of vehicle movements at an intersection, restricting the possible or allowed paths, thus limiting
the use of intersection space, and (i) assume a predefined limited set of possible paths within
the intersection; (ii) assume that the CVAD speeds are set to be constant; (iii) consider the
intersection with the conflict regions or define vehicle prioritization to avoid collision between
vehicles; (iv) none of them took the collision between vehicles and intersection boundaries into
consideration; and (v) the majority of these methods are formulated as mixed-integer linear
programming (MILP) or mixed-integer non-linear programming (MINLP) problems, which have
high complexity due to the many integer variables included. This results in, particularly at peak
hours, a waste of scarce intersection space and a loss of efficiency. Consequently, CVAD mobility

at the urban intersections is far from being fully exploited. To ensure the high traffic efficiency
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and safety of CVADs, it is imperative to devise a novel approach for their coordination.

This thesis is devoted to addressing the intricate problem of coordinating connected
vehicles under automated driving within signal-free and path-free intersections. Its overarching
objective is to overcome existing limitations and challenge the longstanding paradigm of road
utilization, ultimately aiming to optimize traffic efficiency in urban intersections. By prioritizing
the principles of traffic safety, this study endeavors to pave the way for a paradigm shift in the
traditional approaches to road usage at intersections. The potential for enhancing the usage of
available intersection infrastructure arises when vehicles are granted the freedom to fully exploit
the intersection space through the optimization of their trajectories along all feasible and free
paths.

To enable vehicles to drive with more flexibility, and also fully utilize the intersection
space, in this thesis we focus on the situation in which vehicles are not bound to predefined
paths and fixed road lanes, which is referred to as path-free intersection. It enables driving
anywhere on the two-dimensional surface of the intersection. In general, the benefits of the
path-free intersection are smoother driving behavior, more intersection capacity, and reduced
traffic congestion. In addition, the fact that traffic lights with inappropriate signal settings or the
ones that are not dynamically adapted to real-time traffic, not only decrease traffic efficiency and
safety but may even cause delay and congestion at the intersections (CHEN, L.; ENGLUND,
2016), in this thesis we consider signal-free intersection. In summary, this research is founded
upon the following principles:

* The traffic signals are no longer used for the CVAD coordination at the intersection,

1.e., we have a signal-free intersection.

* The CVAD paths are no longer fixed and are not confined to the predefined limited
set of possible paths within the intersection, i.e., we have a path-free intersection.

* The speeds of CVAD are not restricted to specified patterns or they are no longer set

to be constant.
* Applicability to any intersection layout.
* Assurance of collision-free interaction between every pair of vehicles.
* Imposition of constraints on vehicles to remain within the intersection boundaries.
* All CVAD have exact knowledge of their surroundings.

* All CVAD have the capability to establish communication with one another.

1.2 GOALS AND CONTRIBUTIONS

This thesis puts forward a novel strategy for vehicular traffic that leads to free use
of the intersection space in the era of connected vehicles under automated driving (CVAD),
preserving the safety restrictions, so as to obtain its optimal utilization. To this end, we consider

an intersection as an empty space free of movement-related horizontal markings or structural
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restrictions, except for the intersection boundaries. We call this space a plaza, a signal-free and
path-free intersection. The objective is to propose a novel control strategy for the coordination of
CVAD at an intersection plaza, which is called Signal-free Path-free Intersection Control (SPIC).
SPIC coordinates CVAD by calculating a sequence of control inputs for each vehicle that allows
them to cross the intersection efficiently without colliding with each other and with the plaza’s
boundaries.

The difficulties of solving the SPIC problem potentially arise in the following main
aspects; (i) the non-linearity of the vehicle dynamics; (ii) handling both the static and dynamic
obstacles in a dynamic environment, the plaza; (iii) the non-convexity and high dimensionality of
the traffic safety and path constraints; and (iv) the lack of necessary flexibility of the traditional
simulation modeling tools to accurately model the full utilization of intersection space, posing a
significant barrier to the modeling of different traffic organizations in urban networks.

The main contributions of this thesis are summarized as follows:

* Modeling:

— Enable path-free traversing of connected vehicles under automated driving
at signal-free intersections, which is referred to as plaza, enhances the

efficient use of intersection space.

— Present and consider the real-world situations including the vehicle’s dy-
namic, different completion times for each connected vehicle under auto-
mated driving, and so on, in the SPIC problem formulation.

— Introduce effective strategies for collision avoidance constraints based on

safe distances between CVAD in any direction at all times.

— Design eflicient strategies to account for the geometry of the intersection
plaza in the SPIC problem and impose constraints to avoid collision between

vehicles and the plaza’s boundaries.

— Develop concrete and a well-posed nonlinear optimal control problem for
the SPIC problem.

¢ Solution method:

— Develop an efficient near-optimal method for the generation of feasible and
collision-free trajectories that utilizes the Finite Fourier Series (FFS) or

Bézier curves for solving SPIC problem.

— Develop an algorithm based on an extension of the standard nonlinear
model predictive contouring control, called ENMPCC, for solving SPIC
problem, which results in optimal and collision-free trajectory generation

of CVAD in an intersection plaza.

— Present linear time-varying (LTV) modeling framework, called LTV-
ENMPCC, to reduce computational effort needed to solve SPIC problem,

which leads to a more scalable solution strategy.
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¢ Simulation:

— Develop the SPIC simulator (SPIC-Sim), a simulation modeling tool that
allows for the modeling of flexible utilization of urban intersections. SPIC-
Sim enables the investigation of both conventional path-based (lane-based)

and path-free (lane-free) traffic control scenarios.

— Realistic simulation of traffic scenarios involving both straight and turning
movements and with the continuous arrival of vehicles from all possible

directions in the intersection plaza.

— Comparison of the SPIC problem with the conventional path-based (lane-

based) driving approach at the intersections.

1.3 TERMINOLOGY AND DELIMITATION

In the literature, there are a variety of names for the type of vehicle considered in this work;
autonomous vehicles, driverless vehicles, connected vehicles, cooperative vehicles, unmanned
vehicles, automated vehicles, connected and automated vehicles, and robotic vehicles, among
others. For a comprehensive discussion on this subject, we recommend referring to the work by
Shladover (2018).

With the aim of establishing consistent terminology and comprehension of automation
systems for on-road motor vehicles, SAE International, more recently with the participation
of ISO, has maintained since 2014 a document that establishes a taxonomy and definitions of
terms in this domain (INTERNATIONAL, 2021). All terms listed in the previous paragraph do
not meet the SAE International taxonomy and definitions. Any reference to automation must be
made to driving and not to the vehicle. For more detail, it is recommended to review Section
7.1 of the document prepared by International (2021). Nonetheless, the SAE International
publication still presents a gap that doesn’t align with the type of vehicle in this work. The
aspect of communication and cooperation between vehicles or with the infrastructure remains
unaddressed.

In this thesis, the vehicles are referred to as Connected under Automated Driving (CVAD).
The term "connected" explicitly indicates the potential or requirement for communication. The
term "automated driving" serves SAE International by linking automation to driving and not
to the vehicle. In this sense, for this work, according to the SAE International classification of
six levels (0 to 5) of driving automation, a driving automation system of level 4 or higher is
considered.

Moreover, in the literature, there are two names for the type of intersection considered
in this work; lane-free intersection (LI, B. et al., 2018; AMOUZADI; ORISATOKI; DIZQAH,
2022) and continuous free space (LI, B. et al., 2020). We suggest reading (SEKERAN et al.,
2022) for a discussion on the subject. In this thesis, as we focus on urban intersections, we adopt

the terminology path-free intersection, in which the intersection transforms into a boundary-
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constrained free space, where free paths are permitted on the condition that the resulting
trajectories do not collide.

While the proposed formulation of the SPIC problem is quite versatile and capable of
modeling any arbitrary road layouts, this thesis primarily focuses on an urban intersection as an
illustrative example in simulations.

The scope of the method can be broadened to encompass a network of intersections,
enabling its application beyond single intersections. The conceptualization of the connection
between two intersections as a lane-free traffic roadway, as proposed by Papageorgiou et al.
(2021) and Malekzadeh, Papamichail, and Papageorgiou (2021), offers a promising avenue for
further exploration.

Connected vehicles are considered capable of communicating with each other and also
the infrastructure. Communication is considered to be ideal. The time for collecting data from

all vehicles, processing, and calculating the control is considered instantaneous.

1.4 THESIS OUTLINE

The remainder of the thesis is laid out as follows. Chapter 2 briefly covers the main
background and the basic principles used throughout this thesis. In this chapter, concepts
of automated driving and connected vehicles are introduced, followed by a brief literature
review on CVAD coordination at intersections. The trajectory optimization problem is then
presented, along with explanations of optimal control and model predictive control techniques.
Important definitions and theoretical results from convex optimization are summarized. Finally,
the text discusses the collision avoidance problem. Chapter 3 introduces the Signal-free Path-free
Intersection Control (SPIC) problem which promotes better use of the intersection space to
improve overall traffic efficiency by leveraging the potential of the CVAD. Chapter 4 introduces
the intersection trajectory optimal control problem (ITOP), viewed as a specific instance of
the SPIC problem. The primary goal of the ITOP is to determine vehicle trajectories while
satisfying plaza boundaries and collision avoidance constraints. To achieve this, we present two
shape-based methods, relying on finite Fourier series (FFS) and Bézier curves. These techniques
convert ITOP into a nonlinear programming (NLP) problem that can be solved by an NLP solver.
Chapter 5 introduces a new formulation for the SPIC problem. We build on a model predictive
control (MPC) suitable for trajectory optimization/planning, known as nonlinear model predictive
contouring control (NMPCC). In fact, based on an extension of the standard NMPCC, which
refers to the ENMPCC method, a solution for solving the SPIC problem is proposed. Finally,
Chapter 6 concludes this thesis, with some final remarks and comments on future research.

We note that we benefited from the assistance of ChatGPT in revising the text of this
thesis. Around 5 percent of the text was revised using ChatGPT.
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2 BACKGROUND

This chapter provides a brief introduction to all the basic principles that will be used
throughout this thesis. Sections 2.1 and 2.2 present the concepts of automated driving and
connected vehicles, respectively. Section 2.3 is a brief literature review on CVAD coordination at
intersections. Section 2.4 presents the trajectory optimization problem. Section 2.5 and Section
2.8 explain the optimal control and model predictive control techniques, respectively. Section
2.9, summarizes several important definitions and theoretical results from convex optimization,
which plays a crucial role in optimization theory and methods. Finally, Section 2.10 discusses

the collision avoidance problem.

2.1 AUTOMATED DRIVING

Automated driving, refers to the operation of vehicles in which the driving tasks are
performed by an automated system or technology, rather than relying solely on human drivers.
In automated driving systems, a combination of sensors, cameras, radar, lidar, and advanced
algorithms are employed to perceive the vehicle’s surroundings, make decisions, and control the
vehicle’s movements. These systems can handle various aspects of driving, including acceleration,
braking, steering, and navigation, with limited or no human intervention. The goal of automated
driving is to enhance safety, efficiency, and convenience in transportation by reducing human
errors and enabling more efficient traffic flow.

The SAE International has defined six levels of automation for driving systems, commonly
known as the SAE levels of automation (INTERNATIONAL, 2021). These levels provide a
framework for categorizing the capabilities and responsibilities of automated driving systems.
Here is a brief overview of each level:

* Level 0 (No Automation): the driver is in complete control of all driving tasks. There

1S no automation present.

* Level 1 (Driver Assistance): certain driving tasks, such as steering or accelera-
tion/deceleration, can be automated by the vehicle. However, the driver remains
responsible for overall vehicle control and must actively monitor the driving environ-

ment.

* Level 2 (Partial Automation): the vehicle can simultaneously control multiple driving
tasks, such as steering and acceleration, under certain conditions. The driver is still
required to remain engaged and monitor the driving environment, ready to intervene
if needed.

* Level 3 (Conditional Automation): the vehicle is capable of managing most aspects
of the driving tasks under specific conditions. The driver is allowed to disengage from
actively monitoring the driving environment but must be ready to take control when

prompted by the system.
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* Level 4 (High Automation): the vehicle can perform all driving tasks under predefined
conditions and does not require driver intervention. However, the system’s operational

domain may be limited to specific geographic areas or road types.

* Level 5 (Full Automation): the vehicle is capable of performing all driving tasks
under any condition that a human driver could handle. No human intervention is

required or expected.

2.2 CONNECTED VEHICLES

Connected vehicles refer to vehicles that are equipped with advanced communication
technologies, allowing them to connect and exchange data with other vehicles, infrastructure, and
various external sources. These vehicles use wireless communication systems, such as Dedicated
Short-Range Communication (DSRC) or Cellular Vehicle-to-Everything (C-V2X), to establish
connectivity (SHLADOVER, 2018).

Connected vehicles encompass various communication paradigms, including Vehicle-to-
Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Everything (V2X) interactions
(SHLADOVER, 2018). These interactions leverage advanced wireless communication technolo-
gies to enable seamless data exchange between vehicles, roadside infrastructure, and other entities
(SIEGEL; ERB; SARMA, 2018). They can exchange information about their location, speed,
acceleration, and other relevant data. This communication enables the vehicles to share real-time
information, such as traffic conditions, road hazards, and other relevant updates, enhancing
situational awareness and safety. In the context of this thesis, vehicle connectivity refers to the
capability of automated vehicles to exchange with each other real-time information about their

current states (position and speed), and also the intersection geometry, in an asynchronous mode.

2.3 CVAD COORDINATION AT INTERSECTIONS

CVAD coordination at signal-free intersections is a cutting-edge approach that leverages
advanced technologies and artificial intelligence to enhance the efficiency, sustainability, and
safety of road intersections. Traditional traffic control systems, such as traffic lights and stop
signs, often lead to congestion, delays, and accidents due to limited coordination and adaptation
capabilities. In contrast, CVAD coordination at intersections employs an appropriate framework
where CVAD communicate with each other and the infrastructure to make real-time decisions. By
dynamically adjusting their speed, trajectory, and timing, these vehicles can seamlessly navigate
intersections without the need for traditional traffic control mechanisms. The implementation of
CVAD coordination at signal-free intersections has shown promising results in reducing traffic
congestion, enhancing traffic flow, minimizing fuel consumption, sustainability, and improving
overall road safety (ZHANG, Y.; CASSANDRAS, 2019). Moreover, the integration of CVAD

coordination with smart city infrastructure and emerging technologies, such as V2V and V2I
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communication, has the potential to further optimize intersection management, leading to more
sustainable and efficient transportation systems (AHMED et al., 2022).
The proposed approaches for modeling intersections thus far can be summarized in four
categories (CHEN, L.; ENGLUND, 2016; MULLER, 2018):
* Cells: the intersection is discretized in space and time, being divided into cells while
time windows in each cell are allocated to vehicles so that there are no collisions.

Figure 1a shows an intersection divided into cells.

Dresner and Stone (2004) proposed a model based on space and time discretization.
The authors also extended this control scheme in Dresner and Stone (2008). They
divided the intersection in a cell grid and proposed a reservation-based mechanism
based on a first-come first-served (FCFES) policy. The FCFS enables the vehicles to
reserve in advance the required space-time so that once the reservation was fulfilled,
the vehicles kept the same speed to cross the intersection. In fact, the approaching
vehicles send requests to the intersection controller to reserve spaces and time slots
within the intersection area. Reservation requests can be accepted or rejected based on
their conflicts with previous reservations. Moreover, the booking agent is capable of
suggesting new, free routes for vehicles that have their requests denied, to avoid a large
number of requests. A similar approach was followed by Schepperle and Béhm (2009)
who proposed a valuation-aware traffic control system in which vehicles negotiate
their time slots with each other and then adapt their speed according to the time slot

obtained. In any case, the vehicles followed predefined paths.

* Path-based: a limited set of paths are allocated to vehicles in such a way that vehicles
on conflicting paths do not collide. In general, the paths are defined based on the
traffic engineering concept of vehicle movements. Figure 1b illustrates some possible

movements performed by vehicles in an intersection.

Lee and Byungkyu Park (2012) introduced an optimization problem that minimizes
the overlap of vehicles with potential transversal collisions between connected vehicles
at an intersection. The problem is solved in parallel using genetic algorithms and
solvers. Simulation results showed that the performance of the proposed method is
better than that of traffic lights. However, their solution approach offers no guarantee
of performance. Yu et al. (2019) proposed a mixed-integer linear program (MILP)
model to cooperatively optimize the trajectories of CVAD along a signal-free corridor.
They modeled the interactions of vehicle trajectories at the microscopic level, by
considering the coordination between vehicle trajectories. Nonetheless, the vehicle
paths are assumed fixed and they are not optimized. Moreover, at higher demand
levels the computational burden of the proposed method is heavy. As a conclusion,
considering the predefined paths inside an intersection simplifies the problem in such

a way that recognizing potential collisions is not a challenging task.
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A\

(a)

Figure 1 — Intersection modeling: (a) cells; (b) paths; and (c) collision regions/points (red circles)
(adapted from Lei Chen and Englund (2016))

* Conflicting regions/points: roughly a combination of the previous two, in which only
the points or regions where conflicts between paths occur are discretized, and time
windows are allocated to vehicles to pass through these points. Figure 1c illustrates

an intersection with highlighted conflict regions.

One example of this modeling approach is proposed by Feng Zhu and Ukkusuri (2015),
who formulated a linear programming problem with an integer solution so that traffic
flows pass safely through the conflict points of an isolated intersection. Mirheli et al.
(2019) presented a modeling strategy that prioritizes conflicting movements at a signal-
free intersection in a distributed manner. The method converges to a near-optimal
solution using an iterative framework, through solving a mixed-integer nonlinear
programming problem. The iterative process continues so that CVAD solve their
trajectory planning problem and update their solutions until they reach a consensus.
Another work for this strategy proposed by Levin and Rey (2017), in which the
intersection manager assigns optimal reservations to CVAD through solving a MILP.
The passing order and intersection entrance time are simultaneously derived for all the
CVAD. However, neither vehicle trajectory coordination nor lane-changing behaviors
were taken into consideration. Miiller, Carlson, and Kraus (2016) considered an
intersection with the conflict regions and proposed an optimal arrival time scheduling
(OATS) for the CVAD at a single intersection. OATS is modeled as a centralized
MILP problem that guaranteed minimum aggregate arrival time and the absence of
vehicle collisions. First, the location and speed of the CVAD in each time step are
gathered to provide the shortest and longest travel times to reach an intersection. Then,
the aggregated arrival time for all vehicles is minimized and the speed profiles are

assigned to vehicles to approach the intersection.

» Path-free: the vehicles are allowed to make full use of the intersection space via the
definition of their trajectories for any possible path as long as the resulting trajectories

do not conflict with each other. The research on this subject is rather limited. Bai Li
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et al. (2018) proposed a centralized optimal control problem (OCP) for a number
of CVAD crossing an intersection without using predefined paths, which is solved
using a two-stage strategy. The first stage is performed online and guides the CVAD
to a standard formation before they enter the intersection. In the second stage, the
CVAD in formation cross the intersection according to optimized trajectories that
were computed offline. To handle collision-free constraints, They assumed that each
CVAD and each street block of the intersection is rectangular. When they expected
two rectangles not to collide, all four edge points on one rectangle should remain
outside the other rectangular region. As the authors mentioned, the computation
complexity of this method is too high, so that for 24 CVAD, if 10000 computers work

simultaneously, 358.2 years would be needed to build a complete standard case.

Bai Li et al. (2020) simplified the collision-avoidance constraints, a couple of circles
are used to approximate the rectangular street block, and two equal-sized discs are
utilized to cover the rectangular CVAD. To solve the problem, a centralized OCP is
formulated and then solved numerically. They proposed an algorithm for providing
suitable trajectories as initial guesses for the nonlinear programming formulation,
speeding up the solution. These works evolved into a batch-processing framework for
autonomous intersection management that is an integration of planning and reserva-
tion methods (LI, B. et al., 2021). The former handles the batches macroscopically,
and the latter optimizes the cooperative trajectories in one batch microscopically.
A minimum-time nonlinear OCP formulation was also attempted (AMOUZADI;
ORISATOKI; DIZQAH, 2022). The non-convex collision avoidance constraints were
reformulated by the use of the dual problem theory. This approach reduced the in-
tersection crossing time, but the scale of collision avoidance constraints made the
method computationally expensive. These nonlinear OCP-based methods do not take
into account the continuous arrival of vehicles, are conducted offline, require prior
knowledge of the initial and final states of the CVAD, and impose the same travel
times on all CVAD.

A strikingly different approach was proposed by Roca et al. (2016, 2020), who relied
on emergent behaviors by modeling vehicle behavior based on a hierarchical set of
rules, similar to the ones used for modeling flocks. The simplicity of the approach
results in low computation complexity but also in high sensitivity to minor changes
in the rules. Finally, Neto and Joannis (2021) used formal methods to model the
behavior at intersections to obtain safe trajectories within the intersection space. The
nature of the formulation and employed methods leads, however, to a combinatorial

explosion of the states even for small instances.
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24 TRAJECTORY OPTIMIZATION

The term trajectory optimization for motion planning refers to a set of methods that are
used to find the best choice of trajectory, that respects the system’s dynamics between an initial
and a final state, taking into account a set of constraints (BETTS, 1998; KELLY, 2017). It is
a special type of optimization problem where the decision variables are functions, rather than
real numbers. In fact, this problem generates a set of collision-free and feasible trajectories and
selects an optimal trajectory from the set based on optimization of the objective function.

Trajectory optimization is sometimes referred to as motion planning and incorrectly as
path planning; trajectory optimization differs from path planning since it is parametrized by time
(KATRAKAZAS et al., 2015). Generally, path planning generates a sequence of configuration
states (way-points) in space taking into account safety, comfort, and accuracy. The path planner
does not answer how to move along the path based on the time, speed, and kinematics of vehicles
(GALCERAN; CARRERAS, 2013). On the other hand, trajectory optimization is a real-time
transition of a vehicle from one feasible state to the next feasible state taking into account
the vehicle’s kinematic constraints (speed constraint, acceleration constraint, etc.) and it must
produce safe, human-like, and human-aware trajectories in a wide range of driving scenarios
(SHARMA; SAHOO; PUHAN, 2021).

The trajectory optimization problem has been well studied in the field of robotics
(TAZAKI; MUROOKA, 2020), astrodynamics (SHIRAZI; CEBERIO; LOZANO, 2018), un-
manned aerial vehicles (LIU; BUCKNALL, 2018), and underwater vehicles (YOUAKIM;
RIDAO, 2018). Inspired by earlier studies on motion planning of robot vehicles in other con-
texts (KATRAKAZAS et al., 2015; SHARMA; SAHOO; PUHAN, 2021) and driven by rapid
implementations of communication technologies (MELSON; MA, 2021), studies on CVAD tra-
jectory optimization in the road traffic context have received attention. They mostly focus on the
non-intersecting roads and freeways for connected and non-connected vehicles (MAKANTASIS;
PAPAGEORGIOU, 2018; TYPALDOS; PAPAGEORGIOU; PAPAMICHAIL, 2021). We omit
the details of these works to maintain the focus of this chapter since we do not treat the same
problem as stated herein. On the other hand, intersection management strategies often involve
trajectory optimization to some degree. Trajectory optimization remains complex for vehicular
traffic at intersections, for instance, the risk of collision is increased at the intersections compared

to the motion of the CVAD along a freeway.

2.5 OPTIMAL CONTROL PROBLEMS

The trajectory optimization in road intersections calls for sophisticated approaches, such
as optimal control methods (LEWIS; VRABIE; SYRMOS, 2012; PADEN et al., 2016). Optimal
control theory formulations have the benefit of obtaining a control input that minimizes a given
cost function while satisfying the dynamic constraints of the vehicles explicitly. There are two

general techniques for solving trajectory optimization problems: direct and indirect methods
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(RAO, 2009). The indirect methods consider the dualized form of the equations including states
and co-states through the application of Pontryagin’s maximum principle (SAERENS; DIEHL,;
VAN DEN BULCK, 2010). Indirect methods depend strongly on the accuracy of the initial guess
and also double the size of the problem by introducing co-states that are not physically intuitive.
The direct methods, on the other hand, convert the continuous optimal control problem into an
NLP problem, considering different schemes of control and states parameterization (BETTS,
2010). Although direct methods are less accurate than indirect methods, they are usually preferred
due to the following reasons (CONWAY, 2012): (i) reduction of the problem sensitivity to initial
guesses, (i1) ease of the numerical implementation, (iii) larger domain of convergence, and (iv)
availability of efficient numerical packages and solvers.

One type of direct method is the one in which only the state variables are interpolated
and control variables are considered in the objective function. This method is sometimes
referred to as the shape-based (SB) method since it depends on the shape of the state variables
(PETROPOULOS, Anastassios E; LONGUSKI, 2004; GONDELACH; NOOMEN, 2015). The
SB methods assume the trajectory respects a certain shape (which can be fully described
analytically), and the parameters defining this shape are then computed to ensure the trajectory
satisfies some boundary conditions (states at departure and arrival, travel time, and so on). The
analytical formulation reduces the computational load significantly, which is a major advantage
of the SB methods over the traditional direct and indirect methods. Many kinds of SB methods
have been proposed by researchers (PETROPOULOS, Anastassios Evangelos, 2001; ZENG;
GENG; WU, 2017). Although there exist multiple SB methods proposed in the literature, the
Fourier series and Bézier curve are widely utilized within this kind of method (TAHERI;
ABDELKHALIK, 2012; CHOE, 2017; MINGYING et al., 2020), due to (i) fast computation
speeds, and (ii) they do not assume a specific shape for the trajectory; rather, it assumes an
approximation for the trajectory shape in terms of the FFS or Bézier expansion of the states. For
every different selection of the Fourier or Bézier coefficients, a different shape is obtained.

In the context of spacecraft trajectory generation, FFS and Bézier methods are among
the methods used for the rapid generation of feasible trajectories, introduced by Taheri and
Abdelkhalik (2012) and Fan et al. (2020). These methods provide approximated solutions to
the trajectory optimization problem of dynamical systems. In contrast to the spacecraft case,
in urban traffic systems, road vehicles require different considerations: (i) in the case of road
vehicles, the trajectories are limited to the geometry of the intersection while in the spacecraft the
trajectories are not necessarily limited to any predefined geometrys; (ii) the coordination system in
an intersection is two-dimensional (Cartesian) while spacecraft use a three-dimensional system
(Cylindrical or Spherical); (iii) in the case of intersection management, each vehicle has its own
completion time, while the flight time of the spacecraft trajectories are a fixed value; and (iv) it
is not reasonable to assume the initial and final speeds of vehicles in an intersection to be zero

which is valid for spacecraft.
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2.6 CONTOURING CONTROL

In contouring control, it is not necessary to track a time-parameterized reference trajectory
accurately, as long as the system follows the reference path (KOREN; LO, 1992). In such problems,
the contouring error is used to denote the error component orthogonal to the reference trajectory,
Contouring error is the deviation of the cutter position of a controlled object/tool from a reference
path while the tracking error is the difference between the predefined reference path and measured
system output. Figure 2 shows the difference between these errors. The point R shows the value
of the reference at the current time, while P is the actual object/tool position. Point A is the
point on the reference path closest to P. The contouring errors in the z and y axes, €, and ¢y,
are measured from point A, while the x and y components of the tracking error, e, and e, are
measured from the point R.

Cross-coupled control, introduced by Yoram Koren (1997), seeks to minimize contouring
errors instead of tracking errors. This is accomplished by estimating the contouring error of the
x and y axes, €; and ¢, based on the tracking error, e; and ey, using a contouring error model.
A feedback control law is designed to minimize these contouring errors, and the output of the
contouring error controller is added to the control inputs of the individual axes. Several other
control approaches aim to minimize the contouring error rather than only tracking error. McNab
and Tsao (2000) implements receding horizon linear quadratic control using a cost function
penalizing contouring error as well as tracking error and control effort. A similar approach
using model predictive control is proposed by El Khalick M. and Uchiyama (2011), where
separate weighting factors are applied to the errors orthogonal and tangential to the desired path.
Contouring error controllers attempt to address the path-following control problem indirectly
by placing more emphasis on deviation from the path rather than tracking error. However, these

approaches have no ability to affect the path evolution.

2.7 PATH FOLLOWING CONTROL

In trajectory planning/tracking approaches, the reference path is converted to a time-
dependent reference trajectory using an appropriate trajectory planning technique. Trajectory
tracking controllers are then employed to track the reference trajectory. A general architecture
for these approaches is provided in Figure 3. In contrast, path-following controllers determine
the evolution of the reference path and the plant inputs simultaneously using available feedback.
Such controllers address the path-following control problem directly. A general architecture
for path-following approaches is shown in Figure 4. The distinction between tracking and
path-following is important to consider. Tracking requires each object or tool to follow a time-
parameterized reference trajectory governed by a trajectory planner or path governor (GILBERT;
KOLMANOVSKY, 2002; SUSANU; DUMUR, 2006) while minimizing tracking error. Path-
following, on the other hand, only requires an object or a tool to travel along a reference path,

which is not time-parameterized, without the need to track it precisely.
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Figure 2 — Difference between contour error and tracking error (KOREN, Yoram, 1997); ¢, and
¢y are the = and y components of the contouring error while e, and e, are the = and
y components of the tracking error.
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Figure 3 — Conventional architecture of the trajectory planning and tracking controller (LAM,
2012).
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Daci¢ and Kokotovi¢ (2006) introduced a path-following controller for linear non-
minimum phase systems where a feedback law is designed for the path parameter 6 to stabilize
the zero dynamics. Dacic, Nesic, and Kokotovic (2007) extended the approach to nonlinear
systems with unstable zero dynamics, where only practical convergence to the path is guaranteed.
Hauser and Hindman (1995) proposed a method to convert trajectory tracking controllers to
path-following controllers for linearizable feedback systems using an appropriate mapping from
the current state to the path parameter 6. Path-following control schemes also arise in wheeled
mobile robots (SAMSON, 1992), which rely on computing a projection of the robot onto the
reference path. These path-following control approaches discussed thus far do not consider
any constraints on the system. Kanjanawanishkul, Hofmeister, and Zell (2009) combined path-
following control with trajectory tracking control for mobile robots using non-linear model
predictive control. Moreover, Faulwasser, Kern, and Findeisen (2009) proposed model predictive
path-following control (MPFC) for general nonlinear continuous-time systems. Following a
model predictive control framework, a cost function is minimized, subject to constraints, at each
sample. In contrast to tracking MPC, The MPFC approach determines the plant inputs and path
parameter evolution simultaneously. As a receding horizon structure is used in MPFC, feedback

may be taken into account at each time step, while the cost function may be selected to reflect



Chapter 2. Background 36

Reference Path-following
path controller

!

Figure 4 — Conventional architecture of the path-following controller (LAM, 2012).
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desired control objectives such as minimizing traversal time or contouring error.

2.8 MODEL PREDICTIVE CONTROL

Conventional methods for trajectory optimization and motion planning, such as feedback
controllers (AGHA-MOHAMMADI et al., 2011) or iterative linear quadratic regulators (LQR)
(NAGARIYA; SARIPALLI, 2020), often involve decoupling lateral and longitudinal dynamics
and may not fully consider state and actuator constraints. In this regard, model predictive control
(MPC) is a viable alternative to these approaches (ROSSITER, 2018; SCHWENZER et al., 2021).
In MPC, the goal is to use a model of the system to predict the system’s output for a number of
time steps in the future while minimizing an objective function that defines the distance between
the predicted outputs and some given desired outputs. This problem is a reference tracking
problem since at each sampling time the outputs of the system are forced to track a reference
signal at a certain time. A key advantage of the MPC is that the constraints can be explicitly
considered in the optimization problem. By solving the corresponding optimization problem, a
sequence of control inputs is obtained over part or the whole time horizon. However, only the
first control input is applied to the system. In the next time step, the whole process is repeated for
the computation of the next control input with the horizon shifted one step ahead in time. Thus,
the system operates in a receding horizon fashion. The number of time steps ahead utilized for
prediction is called the prediction horizon.

Nonlinear model predictive contouring control (NMPCC) (LAM; MANZIE; GOOD,
2010) is a control strategy that combines the principles of path-following control (FAULWASSER;
KERN; FINDEISEN, 2009) with the concept of contouring control (KOREN; LO, 1992) and
model predictive control (ROSSITER, 2018). NMPCC contains an analytical description of the
reference paths, parameterized with a tailored path parameter instead of time. The objective
of NMPCC is to minimize the projected distance between the current position of a tool or
object and a reference path while maximizing its progress along the path. NMPCC offers the
advantage of combining both path planning and path tracking in a single nonlinear optimization
problem through the application of contouring control. In contrast to the state-of-the-art motion
planning techniques that involve a two-level optimization process, where an upper-level optimizer
generates time-dependent trajectories and a lower-level optimizer tracks the generated trajectory
accurately (GILBERT; KOLMANOVSKY, 2002; LI, N. et al., 2017), the NMPCC combines
these levels into a single optimal control problem. While NMPCC has been applied to drone
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racing (ROMERO et al., 2022), car racing (LINIGER; DOMAHIDI; MORARI, 2015), parallel
autonomy for self-driving cars (SCHWARTING et al., 2017), and winding roads (LEVY;
HADDAD, 2021, 2022), this work applies NMPCC to a complex driving scenario, signal-free
path-free urban intersection, which is expected to be more challenging.

2.9 CONVEX OPTIMIZATION AND DUALITY

In this section, the basic terminology of the convex optimization problem is discussed
(BOYD, S. P.; VANDENBERGHE, 2004; BERTSEKAS, 2009). The optimality conditions of

convex problems are also discussed. The general form of a convex optimization problem is:

minimize fj(x)
subject to g;(z) <0,Vi=1,...,0 (D

aZTx:bi,Wzl,...,p

where fj : R"™ — R is a convex function called the objective function, n is the dimension of
decision variables, g; : R — R,i = 1,...,0 define the inequality constraints which are all
convex functions, and finally aZ-T:L’ =b;,Vi = 1,... p define the equality constraints which are
affine functions (and therefore also convex). In summary, a convex optimization problem consists
of minimizing a convex function over a convex set. If the objective function is zero, then the
problem is called a feasibility problem. Regarding problem (1), some important definitions and

terminologies apply and are discussed in the following.

Definition 1 A point v € R" is called feasible if it satisfies all equality and inequality constraints.
A set of feasible points is called the feasible set. Accordingly, problem (1) is called feasible if the

feasible set is not empty.

Definition 2 A point ©* € R" is called the optimal point if it is feasible and minimizes the
objective function fo. An optimal point is called global if it is optimal in the entire feasible set

and it is called local if it is optimal in a feasible neighborhood of x*.
Definition 3 The optimal value, p*, of problem (1) is defined as

p" =min{f(x)|g;(z) <0,i = 1,...,0,@?

r="b,i=1,...p}

Proposition 1 For any convex problem in the form of (1) every local optimal point is also

global.

After discussing the general form of convex optimization problems, the next subsection will
introduce the duality theory pertaining to these problems.
The basic idea in Lagrangian duality is to take the constraints into account by augmenting

the objective function with a weighted sum of the constraint functions. Considering problem (1),
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the Lagrangian Function L : R™ x R? x RP — R is defined as:
m p
L(z,\ 8) = f(z) + Y Nigi(x) + Y si(aj © = b;) 2)
i=1 1=1

where, \;(s;) is the Lagrange multiplier associated with the i-th inequality (equality) constraint.

The vectors, A and s are called dual variables associated with problem (1).

Proposition 2 For any feasible point x € R", the Lagrangian function induces a lower bound

on the objective function if \; is a positive number.

In order to find the best lower bound, the Lagrangian dual function g : R"™ x RP — R is
constructed as follows:
g(\,s) = min L(z, A, 5) 3)

X

Proposition 3 The dual function q(\, s) is a concave function and hence, a global maximum

point exists.

Proposition 4 For any A > 0 the dual function yields a lower bound on the optimal value p* of
problem (1), i.e.,
q(A,s) <p*. 4)

The lower bound provided by the dual function is not necessarily the best dual bound. According
to the concavity property of the dual function, the best lower bound is obtained by maximizing
the dual function. This is another optimization problem, which is called the dual problem is
defined as:

maximize q(\,s) ®)

S

subject to : A > 0 (6)
The optimal value of the dual problem, d*, is the best lower bound on p*. In particular, we have
d* < p*.

The difference p* — d* is called the duality gap. In general and for general nonlinear problems
(not necessarily convex) the duality gap is usually nonzero. However, for convex problems and

under certain conditions, called Slater’s condition, the duality gap is zero, i.e.,
d* — p*

The former and the latter case are called weak and strong duality, respectively.
By using the concept of dual problem and strong duality, the necessary and sufficient
conditions (KKT conditions) of optimality for the convex problem can be stated in the following

proposition.
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Proposition 5 Consider the convex problem (1) and assume the strong duality holds. Then x©*

is the optimal point if the following conditions are satisfied:

In summary, for any optimization problem with differentiable objective and constraint functions
for which strong duality holds, any pair of primal and dual optimal points must satisfy the KKT

conditions.

2.10 COLLISION AVOIDANCE

Collision avoidance is an integral part of motion planning and trajectory optimization and
plays a crucial role in ensuring safety and mitigating potential risks in various domains. Whether
in transportation, robotics, or any autonomous system involving moving objects, collision
avoidance is of utmost importance (BERNTORP, 2017; HUANG; TEO; TAN, 2019; VAGALE
et al., 2021). By actively detecting and predicting potential collisions, and taking preventive
measures, collision avoidance systems can help prevent accidents, minimize damages, and save
lives. The ability to anticipate and avoid collisions not only enhances the safety of vehicles and
machinery but also improves overall operational efficiency. Collision avoidance in robotic motion
planning refers to the process of ensuring that a planned trajectory is safe and collision free
(MINGUEZ; LAMIRAUX; LAUMOND, 2016). This can include being free of collisions between
the controlled object and static obstacles in its environment, collisions between the controlled
object and other objects or dynamic obstacles in motion, as well as self collisions between
different parts of the controlled object itself. From CVAD navigating busy roads to industrial
robots working alongside humans, collision avoidance technology is a fundamental component
that enables safe and reliable operations. Emphasizing the development and implementation of
effective collision avoidance strategies is paramount to creating a safer and more sustainable
future (MINGUEZ; LAMIRAUX; LAUMOND, 2016).

Many effective methods exist to solve the problem of collision avoidance in path/trajectory
planning in the fields of unmanned aerial vehicles, robots, and CVAD vehicles. Earlier works
considered the obstacle avoidance problem in a continuous time framework using dynamic
optimization (SUNDAR; SHILLER, 1995; HAGENAARS; IMURA; NIJMEIJER, 2004). The
set of states that can be steered to a target set, while satisfying bound constraints and avoiding
obstacles, is a level set of the value function of the dynamic optimization problem, obtained
by solving a Hamilton-Jacobi—Bellman equation. Another approach is to include an additional

potential function for avoiding obstacles in the cost function, thus converting the collision
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avoidance problem into an unconstrained optimization problem allowing gradient-based solvers
(KIM; SHIM; SASTRY, 2002). However, the construction of potential functions in a general
framework is difficult. Other techniques include the A* method, the V'-graph method, and the
Rapidly-exploring Random Trees method (AGGARWAL; KUMAR, 2020; MAC et al., 2016).
These methods usually do not consider dynamic models, or convert the model and constraints
into simple geometric constraints, and then obtain geometric paths connecting the start and
terminal points, meeting obstacle avoidance constraints and other constraints through different
ideas.

Machine learning techniques can be used to learn collision avoidance policies from data.
This approach involves training a model on a dataset of collision-free trajectories and then
using the model to predict a safe trajectory for the robot (VIRDI, 2018). Deep learning-based
pure planning (HONG; SAPP; PHILBIN, 2019) or joint planning (EVERETT; CHEN, Y. F;
HOW, 2018) and prediction approaches learn typical distributions of interaction and motion
patterns and, hence, are supposed to yield collision-free and human-like trajectories. Like for
many problems, these learned approaches are arguably best in average solution quality even at
solution times required by automated driving. However, solutions that can guarantee feasible or
safe trajectories are still in their infancy (BROSOWSKY et al., 2021).

To address the issue of collision avoidance, an approach that can be adopted involves
the formulation of a trajectory optimization problem that incorporates a dynamic model, per-
formance index, and diverse constraints. This methodology takes into account the perspectives
of optimal control and collision avoidance concerns, and subsequently solves the optimization
problem using either analytical or numerical methods (SHIRAZI; CEBERIO; LOZANO, 2018).
Considering optimization-based collision avoidance, the design of a collision avoidance algo-
rithm is influenced by various factors. Ericson (2004) categorizes these factors into different
aspects, including the representation of the application domain, the types of queries, parameters
of the simulation environment, performance considerations, robustness, as well as ease of imple-
mentation, and use. To maintain conciseness and prioritize the ideas employed in this thesis, the
remainder of this section will focus on the first three factors.

The first factor, application domain representation, refers to the geometrical representation
used for the bodies of the controlled objects. It can be thought of as the process of choosing
which shape we want to use to model the area occupied by controlled objects. The chosen
geometric representations have a direct influence on the algorithms that have to be utilized for
solving the optimization problem. The second factor refers to the different types of queries and
the nature of the queries we aim to pose to the collision detection system. To illustrate, we
might seek to address whether multiple objects intersect or collide at a specific moment in time.
Alternatively, we may inquire about potential approaches to resolve a collision between two
objects. The objective of these inquiries is to determine whether there is any overlap between
two or more objects, taking into account their positions, velocities, and orientations relative to a

coordinate frame at a specific moment in time. The ability to address these questions forms the
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foundation of any collision avoidance algorithm. In the context of automated system trajectory
optimization/planning, our primary focus lies in ascertaining if two objects intersect and, if
so, devising a strategy to prevent them from colliding. Finally, the third factor refers to the
environment simulation parameters, i.e., to the several parameters in the simulation that have a
direct impact on the collision avoidance algorithm like the number of controlled objects, their
relative sizes, and positions.

Collision avoidance can be viewed in terms of a distance formulation since it implies
that the distance between every two controlled objects should be greater than the minimum safe
distance. In various studies, static/dynamic obstacles are modeled using circles, cylinders, spheres,
or cones (ZHAO; ZHOU, 2013; DAM, 2019; BROSSETTE; WIEBER, 2017). In this scenario, a
collision is deemed to occur if the Euclidean distance between the objects is less than a specified
minimum safe distance. Representing the problem in this manner transforms the optimization
problem into a non-convex NLP problem. Although NLP solvers offer flexibility, they can
be computationally demanding and challenging for solving collision avoidance problems. To
address these challenges, linearization, and convexification methods are often employed to reduce
the computational complexity of the problem (MORGAN, 2015; CHU, 2015; NAIR; TSENG;
BORRELLI, 2022). These techniques aim to approximate the non-convex problem as a convex
or linear one (D’ASPREMONT; BOYD, S., 2003). Alternatively, some studies have adopted a
polygonal representation for two-dimensional objects or a polyhedral representation for three-
dimensional objects to formulate collision avoidance constraints. In such cases, a mixed-integer
programming formulation is commonly used (KEVICZKY et al., 2008). Furthermore, some
research endeavors have explored leveraging strong duality (BOYD, S. P.; VANDENBERGHE,
2004; ZHANG, X.; LINIGER; BORRELLI, 2020), Farkas’ Lemma (GERDTS et al., 2011),
or polar set (PATEL; GOULART, 2011) representations to exactly reformulate the collision
avoidance constraints into expressions compatible with NLP solvers. However, these approaches

introduce additional variables and constraints to the problem.

2.11 CONCLUSION

This chapter briefly reviewed some of the important topics that are needed throughout this
thesis, such as the concept of automated driving, connected vehicles, and the notion of connected
vehicles under automated driving at signal-free intersections. In addition, basic fundamentals of
trajectory optimization, optimal control, model predictive control, and convex optimization were
presented. Lastly, we reviewed the theoretical concepts of collision avoidance constraints and
their applications in transportation and robotics. With the information presented in this chapter,

we are now ready to begin with the main contributions of this thesis.
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3 SIGNAL-FREE PATH-FREE INTERSECTION CONTROL PROBLEM

This chapter introduces the Signal-free Path-free Intersection Control (SPIC) which is a
novel problem for urban intersection management. SPIC promotes better use of the intersection
space to improve overall traffic efficiency by leveraging the potential of the CVAD to enable
path-free traversing at a signal-free intersection, which is referred to as plaza. In the plaza, the
intersection transforms into a boundary-constrained space, where free paths are permitted on the
condition that the resulting trajectories do not intersect. In fact, in addition to vehicle-to-vehicle
(V2V) collision avoidance, the constraints for the plaza’s boundaries must be designed to disallow
the CVAD from violating the limits of the plaza. To this end, additional constraints are imposed
on the SPIC problem to define the geometry of the plaza.

In this chapter, we provide a detailed explanation of the SPIC problem. The notion of
the plaza is introduced in Section 3.1, followed by the presentation of the vehicle model in
Section 3.2. Furthermore, Sections 3.3 and 3.4 introduce the safety constraints, while Section
3.5 presents the concept of the objective function. Lastly, the overall formulation of the SPIC

problem is outlined in Section 3.6, with a concluding summary provided in Section 3.7.

3.1 PLAZA MODELING

We consider a schematic example of the plaza in Figure 5 to clarify this idea in more
detail. Figure 5a depicts a plaza P within which, as an example, two vehicles with trajectories 77
and 75 can travel between any two points, e.g., approaching and departing roads. These vehicles
are free to adjust their trajectories without being bound to pre-specified paths or movements.
The plaza P can have varied layouts, concerning the number of intersecting roads and shapes, to
enable the modeling of various intersections. Figures 5b and 5¢ show the vehicles’ coordinates in
time. Figure 5d shows that as long as the trajectories of the two vehicles do not cross at the same
time and at the same location, there is no collision. Analogously, this means that at all times a
minimum safe distance, dg, is maintained between every two vehicles as shown in Figure 5d.

According to the concept of the plaza, there is no need to continue with path-based roads
and intersections and mimic path-based driving tasks. This enables increasing the intersection
space utilization, thus allowing for higher flow and capacity. Therefore, in contrast to the
conventional path-based (lane-based) urban roads and intersections, this flexibility offers more
benefits under the scenario with heavy traffic flow, especially, with heavy left-turn movements
(PARK, S.; RAKHA, 2010). The objective is to find the optimal trajectories of CVAD, without
predefined paths, that should be followed by the vehicles so as to minimize one or more criteria,
such as the intersection delay, fuel consumption, emissions, and passenger comfort, while strictly
avoiding vehicle collision.

It should be noted that SPIC must include both static and dynamic obstacles which makes
the problem more difficult because of the time-varying nature of vehicle positions in the plaza. In

fact, in addition to preserving collision avoidance between the trajectories of every two vehicles,
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Figure 5 — (a) Plaza P and trajectories 77 and 75 of two CVAD in the Cartesian coordinate
system; (b) vertical coordinate of the trajectories; (c) horizontal coordinate of the
trajectories; and (d) distance between two vehicles and minimum safe distance dg.

SPIC must produce trajectories that do not collide with the boundaries of the plaza, as long as
CVAD are inside the plaza. To do so, at all times a minimum safe distance is maintained in any
direction between every two vehicles as well as with intersection boundaries. To clarify this, we
consider the following example for a typical four-leg intersection as a plaza which is shown in
Figure 6.

We consider the case in which two CVAD streams are approaching a plaza from north
and west, respectively. Figure 6a and Figure 6b show, respectively, the trajectories of these two
CVAD and the relative distance between them in a case where no constraints were defined to
avoid collision. Subsequently, as can be seen from the figure, these two traffic streams potentially
collide with each other, i.e., they cannot keep a safe distance. Now, suppose the case we impose
traffic safety constraints into the SPIC problem. In this case, the trajectories of the two CVAD
and the relative distance between them are shown in Figure 6¢ and Figure 6d, respectively.
As depicted in Figure 6c, the trajectories of both CVAD deviate to the right-hand side of the
intersection in order to avoid a possible collision. Although the continuous trajectories of the two
CVAD are in fact intersecting, as shown in Figure 6d, the trajectories do not cross at the same

time and the same location. Thus the relative distance between them remains above a minimum



Chapter 3. Signal-Free Path-Free Intersection Control Problem 44

Distance [m]

\ 4

Time [s]

(a) (b)

Distance [m]

ds

\ 4

Time [s]
(© (d)
Figure 6 — Evaluation of the traffic safety constraint; (a) trajectories of the two CVAD and (b)
the relative distance between them before applying collision avoidance constraints;
(c) trajectories of the two CVAD and (d) the relative distance between them after

applying collision avoidance constraints. When the constraint is active, the distance
between two CVAD remains above the minimum safe distance dj.

safe distance, and therefore there will be no collision.

3.2 DYNAMIC MODEL

A dynamical model is a mathematical representation used to describe the time-dependent
behavior of a system (BRIN; STUCK, 2002). One of the most common forms of dynamical
models is expressed through ordinary differential equations (ODEs). The general form of an

ODE-based dynamical model to be controlled is described as:

X(t> = f(X(t>? u(t))v (7
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In this equation, x(¢) represents the state variables of the system, u(t) is the vector of control
inputs, and ¢ denotes time. The function f(-) describes a nonlinear function that defines the
dynamic of the system. The continuous-time dynamical model (7) can be discretized to simulate
the system’s behavior over discrete time steps. This discretization is often achieved using
numerical integration methods like the Euler method. The discretized equations with sampling

time At can be expressed as:

Xp+1 = X + At f(xg, ug), (8)

with £ the discrete time index and ¢t = kAt, x;. is the state variables vector at time k, and u,
is the control inputs vector at time k. Discretized dynamical models are essential in numerical
simulations and numerical solutions of differential equations, enabling us to understand and

predict complex system dynamics.

3.3 VEHICLE-TO-VEHICLE COLLISION AVOIDANCE CONSTRAINTS

Vehicle-to-vehicle (V2V) collision avoidance constraints present unique challenges for
coordinating vehicles at the plaza. Two vehicles may end up occupying the same space at the
same time, leading to a potential collision if they both maintain their current speed. In such cases,
at least one of the vehicles needs to adjust its speed and/or change course to avert the collision,
allowing the other vehicle to pass through safely. While collision-free trajectory optimization
is well-established for single vehicles to avoid known obstacles, the complexity increases when
multiple vehicles interact in scenarios like urban intersections or highways. Navigating through
urban environments demands heightened safety measures due to the increased need for obstacle
avoidance, contrasting with the relatively straightforward maneuvers often encountered on
highways with minimal obstacle avoidance.

In essence, the interactions between vehicles at the plaza necessitate the introduction
of constraints to generate collision-free trajectories for the vehicles. Unlike existing strategies
for vehicular traffic safety, we are concerned with the position of vehicles and minimum safe
distances between them in any direction and not with a following or lateral headway. This is
because the paths of vehicles are not predefined. To ensure strict collision avoidance, a minimum

safety distance, denoted as dg, must be maintained in all directions between every pair of vehicles.

3.4 PLAZA BOUNDARIES CONSTRAINTS

In addition to V2V collision avoidance, for a signal-free path-free intersection plaza, it is
crucial to ensure the prevention of collisions between vehicles and intersection plaza boundaries.
Without traditional traffic signals and with path-free movements, the reliance on the geometric
layout becomes even more critical to facilitate the safe movement of vehicles. By incorporating

constraints that define the geometry and boundaries of the plaza, boundary-aware trajectories
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can be generated which ensure the vehicles remain within the plaza boundaries while navigating

through it.

3.5 OBIJECTIVE FUNCTION

The objective function is essential in an optimization problem as it quantifies the perfor-
mance of solutions and provides a well-defined target for achieving optimal results. By converting
real-world problems into mathematical representations, the objective function enables systematic
search algorithms to identify the most favorable solutions while considering trade-offs between
competing objectives. In vehicle coordination at intersections, common objective functions
include minimizing total travel time or delay, maximizing intersection throughput, and ensuring
safety by reducing collision risk and promoting compliance with traffic regulations. These

objectives aim to optimize traffic flow and enhance overall efficiency and safety at intersections.

3.6 OVERALL FORMULATION OF THE SPIC PROBLEM

The SPIC problem formulation can be written as follows:

min  Objective function,
S.t.
Vehicle’s model,
Vehicle’s kinematic constraints, 9
Vehicle’s initial and final constraints,
Vehicle-to-vehicle collision avoidance constraints,

Plaza boundaries constraints.

3.7 CONCLUSION

In conclusion, designing a controller or motion planner plays a critical role in the
navigation of the CVAD through the plaza in the SPIC problem. Its ability to bridge the gap
between environmental perception and vehicle response is essential to guide the vehicle’s actions
and ensure vehicles remain on the boundaries of the plaza while avoiding collisions. The
successful implementation of an effective controller significantly contributes to the overall safety
and performance of vehicles’ coordination.

In the next chapters, this thesis presents novel methods to address the SPIC problem using
optimal control and model predictive control techniques. The proposed approaches leverage the
theory of finite Fourier series (FFS) and Bézier curves, as well as nonlinear model predictive
contouring control (NMPCC) to effectively address the collision-free trajectory optimal control
problem outlined in (9). These innovative methods hold significant promise in enhancing path-

following capabilities while ensuring collision avoidance in complex scenarios.
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4 AN OPTIMAL CONTROL APPROACH FOR THE SPIC PROBLEM

The problem of signal-free path-free intersection control (SPIC) for the coordination of
connected vehicles under automated driving (CVAD) at the intersection plaza was presented
in Chapter 3. In this chapter, we introduce the intersection trajectory optimal control problem
(ITOP) as a specific type of the SPIC problem. ITOP can be stated as finding optimal trajectories,
without predefined paths, in which the vehicles depart from their initial states and, after crossing
a road intersection, arrive at final states so as to minimize one or more criteria and satisfy the
plaza physical limits and collision avoidance constraints. The optimality is measured concerning
minimum travel time and/or minimum total acceleration.

ITOP enables using a framework along with two shape-based methods; one based on
the finite Fourier series (FFS) and another using Bézier curves. These methods are employed
to solve the ITOP effectively. It should be noted that other direct methods for solving optimal
control problems can be employed to provide a solution for ITOP. According to the receiving
information about vehicle states, and also intersection geometry, the FFS and Bézier curves
methods can generate near-optimal and collision-free trajectories of the CVAD, considering
the absence of signals and predetermined paths. In particular, the use of the FFS and Bézier
methods and discretization notions convert the ITOP problem to a nonlinear programming (NLP)
problem, with Fourier or Bézier coefficients as the unknown parameters.

In Section 4.1 the ITOP is further detailed, encompassing intersection plaza modeling,
vehicle state equations, performance criteria, and constraints. Section 4.2 introduces intersection
trajectory optimization methods, leveraging FFS and Bézier approaches for state representation
and NLP transcriptions. Section 4.3 showcases numerical outcomes, drawing comparisons
between FFS and Bézier methods. Lastly, Section 4.4 offers conclusion and preliminary ideas

for the next chapter.

4.1 ITOP FORMULATION

In this section, we model the environment of the intersection plaza and the vehicles.
Each vehicle is described by two simple state equations. Subsequently, we give mathematical
formulations of the set of constraints that have to be satisfied for the desired trajectories to be
feasible. The set of constraints includes vehicle dynamic constraints and traffic safety constraints,
which consist of V2V collision avoidance constraints and plaza boundary constraints. Finally, an

objective function is presented.

4.1.1 Plaza modeling

A four-leg intersection is shown in Figure 7 as a plaza. In the figure, two vehicles are
shown with example trajectories 77 and 75. The X and Y axes represent the central lines of the

intersection on the Cartesian coordinate system (CCS). This intersection is modeled simply by its
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B3>,

Figure 7 — A typical four-leg intersection as a plaza (yellow area) with approximated boundaries
(dashed lines), and example trajectories 77 and 75 of two CVAD.

four intersection boundaries (IB) shown by the dashed lines in Figure 7. Each 1B, h = 1,... 4,

is modeled by an exponential function given by:

yn = Fn(z(1)), (10)

where,
Fu(a(8)) = rop + 11 - €2 @OFT50) (11)

with parameters r( 5, 71 p, T2, and 73 p shape the function according to the intersection
geometry and h being the number of IB utilized for defining the plaza boundaries constraints.
4.1.2 Vehicle’s equations of motion

A simplified equation of motion (EoM) is used that models vehicles as particles as follows

(although other models can be used):
(12)

with az; and ay, the acceleration of vehicle j in coordinates « and y in the CCS, respectively,

and ¢ the continuous time. The total (absolute) acceleration of vehicle j is given by:

aj(t) = \Ja3, (1) + a3, (). (13)

Given Ny vehicles at the plaza, the total speed increment is defined as:

Av(t) = Avy(t) + ...+ Avy, (1), (14)

with Av;(t) the speed increment of the j-th vehicle:

T;
Al)j(t) = /0 aj(t)dt,j = 1, ce ,NV7 (15)

in which 7} stands for the completion time, i.e., the time taken by the vehicles to cross the plaza.
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4.1.3 Vehicle’s kinematic constraints

To guarantee that the speeds and accelerations of the vehicles are within admissible

values, the following constraints are imposed for CVAD j:

a; (t) < Gmax;

0< Uj(t) < Umax,

(16)

with a; the total acceleration of vehicle 7, vj the speed of vehicle j, and apyax and vyax the
maximum total acceleration and maximum speed, respectively.
4.1.4 Initial and final constraints

In addition to vehicles’ kinematic constraints, initial and final constraints are defined for

the trajectory of each CVAD as follows,

) =250, zj(t =T¢) =2zt

) = ij,Ov zj(t - Tf) - ij,f?

(17)

where z(t) = [z;(t) y; (t)] " with ;(t) and y;(t) the position of vehicle j in each coordinate =
and y, respectively, z; o and z; ¢ the given initial and final position state variables, respectively,

and z; o and z; ¢ are the given initial and final speed state variables of each vehicle j, respectively.

4.1.5 V2V collision avoidance constraints

In order to strictly avoid collisions, a minimum safe distance, dg, must be kept in any

direction between every two vehicles:

dij(t) > ds, (18)

in which d;;(t) is the distance between vehicles i and j, i = 1,..., Ny, j =1,..., Ny, with Ny
the number of vehicles in the plaza, and 7 < j.

4.1.6 Plaza boundaries constraints

In addition to V2V collision avoidance, constraints must be enforced to disallow the
CVAD from violating the boundaries of the plaza. Then, the intersection’s geometric constraints,

based on (10), that ensure there are no collisions of CVAD with the boundaries, are:

yj(t) < falx;(t), ifh=1,2
yi(t) > frz;(t)), if h =34

Vi, Vt. (19)

with f, is defined in (11).
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4.1.7 Performance index

The performance index is chosen as a weighted sum of Av and 7} that should be
minimized:

J =wy - Av+ wy - T, (20)

with wy > 0and wg > 0 weighting parameters. Minimizing Av and 7} are conflicting objectives

that have a direct effect on fuel consumption and comfort versus speed and completion time.

4.1.8 Overall ITOP Formulation

Given the EoM, constraints, and performance index, the ITOP can be written as follows:

minimize J in (20),

S.t.

Vehicle’s kinematic model (12),

Vehicle’s kinematic constraints (16), (21)
Initial and final constraints (17),

V2V collision avoidance constraints (18)

Plaza boundaries constraints (10) and (19).

The states are the position and speed of each vehicle j in each coordinate  and y (z;(t),
y;(t), vz, (t), and vy, (t)), and the control variables are ay;(t), ay,(t), and T;. Moreover, the
resulting collision-free trajectory optimization problem is non-linear and non-convex duo to the

objective function and also V2V collision avoidance constraints.

4.2 INTERSECTION TRAJECTORY OPTIMIZATION METHOD

In this section, the FFS and Bézier curves methods are proposed to solve the ITOP
for coordinating the CVAD at the intersection plaza. In these methods, the state variables, i.e.,
positions and speeds, are interpolated, and control variables, i.e., accelerations and completion
time, are considered in the objective function. Then, the FFS or Bézier representations of state
variables are imposed on the dynamics, and the required acceleration to realize the resulting
trajectories are evaluated. Finally, the ITOP is reduced to a system of algebraic equations in
the Fourier series or Bézier coeflicients, and a collision-free trajectory optimization problem is

formulated.

4.2.1 FINITE FOURIER SERIES

Inspired by the flexibility of the Fourier series to approximate any continuous function,
in this work, we propose to customize the FFS method to solve the ITOP and generate feasible
trajectories of the CVAD, based on the works by Taheri and Abdelkhalik (2016) and Mingying
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et al. (2020) applied to spacecraft. The trajectories of the CVAD can be defined, by a given

parameterized FFS whose coeflicients must be optimized.

4.2.1.1 Fourier approximations

Each position state variable of each vehicle j in each coordinate x and y (x; and y;) is

approximated by a FFS as:

Z NZ
z(T) = 50 + Z (b% cos (mnT) + ¢& sin (wnT)) , (22)
n=1
with N, the number of Fourier terms used for approximating position state variable z, and b%;

b% and c% the corresponding coefficients to be determined, and 7 the scaled time such that:

t

0<r<1 = —,
>7x> 1L 7 T;

(23)

The speed state variables of each vehicle j in each coordinate = and y (vz; and vy;) are the
first derivatives of (22) with respect to the scaled time, 7. The corresponding first and second
derivatives with respect to the scaled time can be readily obtained, For further details, please refer
to the Appendix A. Afterward, this representation of state variables is imposed to the dynamics

and the required acceleration to realize the resulting trajectories are evaluated.

4.2.1.2 Boundary conditions

For each vehicle, we know the boundary conditions (BCs), i.e., the initial and final
positions and speeds in the coordinate system. The BCs with respect to scaled time for each
vehicle are:

2(0) =21, 2'(0) = Tyzy, o)
z2(1) =zp, 2'(1) = Tyzp
and the labels I and F refer to ‘initial’ and ‘final’, respectively, while the prime denotes the
derivative with respect to the scaled time and the dot the derivative with respect to the conventional

time. These relations are obtained through the chain rule resulting in:
d 1d
dt  Tpdr
The previous relation is also needed to obtain the time derivative of the states and the following

relation is needed to obtain the time second derivative of the states:

2 1 d
dt2  T2dr?’
The advantage of using the BCs is that they are physically meaningful quantities in contrast

with the Fourier coefficients. The direct estimation of Fourier coefficients is not straightforward

because the sum of a series of unique sin and cos terms is not known prior. Therefore, it is easier
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and more physically meaningful to extract some of the unknown Fourier coefficients in terms of
the physical values to reduce the total number of design variables. Another advantage of the BCs
for solving some of the Fourier parameters is that we avoid the introduction of extra equality

constraints.

4.2.1.3 Using the BCs for expressing some coefficients

Some of the coeflicients can be expressed in terms of the BCs and the other coefficients.
This reduces the number of unknown Fourier coefficients. Next, the expressions of the first four
coefficients are derived.

By manipulating algebraically (22), its first derivative, and (24), and solving a linear

system of equations, it is straightforward to derive the first four coeflicients of (22) as:

b = ZI_ZF Zb for n odd,
b5 = Zirzr + ZF Z b%4:  forn even,
(25)

1
= By (z1 — zp) Z nck;  forn odd,

1 1 B
5= E(zl +zp) — 5 Z nch; for n even,

n=4

The derivation of (25) from (22) and (24) is provided in the Appendix A.l.

4.2.1.4 Evaluation Points

In order to solve for the unknown Fourier coefficients, the EoM are evaluated at m points,
called discretization points (DPs). We consider m DPs with equal time intervals within the scaled
time:

M=0<m< - <Tm_1<mm = 1.

All the proposed constraints in Section 4.1 are satisfied only at each DP. Thus, to avoid
violations between DPs, we must choose a large enough safety distance and/or sufficiently
dense DPs. This special set of DPs can be used to evaluate the integral efficiently by using a
reduced set of points. Moreover, selecting a suitable number of discretization points is often
problem-dependent and is found after a few trials, much like selecting the number of Fourier

terms; too few will cause inaccurate results and too many will slow down the solution algorithm.

4.2.1.5 Compact matrix form representation

Since the EoM are evaluated at the DPs, a compact matrix form representation for the

position state variables and its derivatives (speed state variables and accelerations) already
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incorporating the coefficients from the BCs can be used. Considering bracket [-] as vector

representation, we can write the positions state variables at the m DPs as vectors of its values:

2] 1 = [Azlmx 2N, —3)[Xzl 2N, —3)x1 + [Fzlmx1, (26)

with [A] a matrix of coefficients depending on N, and on the DPs, [X] the vector of unknown
Fourier coefficients to be determined, and [F3] a vector of terms obtained from the BCs. The
values of [Az| and [F3] are computed offline and the only unknowns are the FFS coefficients.
The definition of these matrices and the representation of the compact matrix form of the first
and second derivatives of (26) are both derived in Appendix A.2.

The total acceleration of vehicle j along the trajectory can be represented in the matrix

compact form as well by replacing (26) and its derivatives in (12) and (13):

[aj}mxl = Z[az]gnxl < [amax]mxl- (27)
Vz

Note that a,, = z, therefore we need the relations between 7z and z” (see Section 4.2.1.2).

4.2.1.6 Nonlinear programming formulation

Given the compact matrix form (26) and corresponding derivatives, the ITOP described

in (21) is transcribed as the following nonlinear programming problem:

min wy - Av(t) +wsy - Tt

(X, ]V2Vj T
S.t.
[a] (t)} < [Gmax]a
0< [u;(6)] < [vma]; 28
[d;j(t)] > [ds],
ly; ()] < [fn(x;(t))], if h=1,2
ly; (O] = [fnlz;(#)], if h = 3,4
wherei =1,...k, 7 =1,...,k, i < 7; w1 and w9 are weighting positive parameters, which

assign priority to each term of the objective function.

We note that (26) and its derivatives are embedded in (28) through the substitution
in (12)—(15). The vector of decision variables is the completion time, 7¢, and the remaining
unknown Fourier coefficients after enforcing the BCs, [X;]. Therefore, the number of decision
variables is Ny (2N, —9) + 1.

4.2.1.7 Initialization of Decision Variables

Due to the NLP formulation, the efficiency of the solvers is sensitive to the initial guess of

decision variables. Hence, obtaining a good initial guess is expected to decrease the computation
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time considerably. The initialization of the unknown coefficients can be expressed in compact

form as:
-1
[XZ](2NZ—3)><1 - ([Az]nax(QNz—B)) ([Za]naxl - [FZ]naX1> ) (29)

with n, the number of discretization points for the approximation and [z,) the approximated
position state variables. Then, cubic polynomials can be used to approximate the position state
variables at the DPs, and more detail can be found in Appendix A.3.

The initialization of the completion time can be approximated by arbitrarily selecting
the time taken by a vehicle to cross in a straight direction from its origin to its destination with

maximum total acceleration:

7= -2 (30)

Amax

where S is the distance between the origin and destination of the selected vehicle.

4.2.2 Bézier Curves

In the previous section, we explored the FFS method for the generation of trajectories. In
this section, we incorporate the Bézier curves method (LATTARULO et al., 2018; SCHWUNG;
LUNZE, 2021; FAN et al., 2020) and discretization concepts to transform the ITOP into an
NLP, where the unknown parameters are the Bézier coeflicients. Additionally, we present a
novel compact representation of the Bézier curve method, which further reduces the number of

decision variables compared to the work by Fan et al. (2020).

4.2.2.1 Bézier Approximations

The Bézier curves (FAROUKI, 2008) have several properties for trajectory optimization
that are appropriate for the purpose of this work; (i) the starting and ending points of the curve
correspond to the first and final Bézier coeflicients, respectively; (ii) the curve completely lies
within the convex hull formed by all Bézier coefficients; and (iii) the curves have the advantage of
simplicity and curvature continuity. In this part, a Bézier curve is employed to approximate each

position state variable of each vehicle j in each coordinate of the CCS (z; and y;) as follows:
Ny
2(7) =) Byi(T)Pyy. (31)
=0

with z = [7;(7) yj(T)]T, 0 < 7 =t/T; <1 the scaled time, n, the number of Bézier terms
(order of the Bézier curve), P, ; the unknown Bézier coefficients to be determined, and B, ;(7)

the Bernstein basis polynomials given by:

By (1) = (an)Tl(l — T)nz_l, 1€{0,1,...,ng}. (32)

Accordingly, the first and second derivatives of (31) with respect to the scaled time, 7,

can be easily obtained. For more detailed information, please refer to the Appendix B.
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4.2.2.2 Boundary conditions

Similar to the FFS method, the BCs, i.e., the initial and final positions and speeds with

respect to scaled time for each vehicle are:

2(0) = z1, z(1) =zp, 2(0) = Tyz1, 2'(1) = Tyzp. (33)
The labels ‘I’ and ‘F’ refer to ‘initial’ and ‘final’, respectively, the prime denotes the derivative
with respect to the scaled time, and the dot the derivative with respect to the continuous time.
4.2.2.3 Using the BCs for expressing some coefficients

By manipulating algebraically (31) and (32) and using the BCs (33), it is straightforward

to derive four Bézier coeflicients of (31) as a function of given BCs as follows:

Tyzy
PZ,O:ZIJ PZ,IZZI+n )
. z (34)
Tyzp
Pz7nz—1 =Zr — e szz = 7y,
z

reducing the number of unknown Bézier coefficients, thus speeding up the optimization. The
derivation of (34) from (31) and (33) is provided in the Appendix B.1. Then, substituting these

coefficients in (31) and organizing the resulting expression gives:

Ng—2
2(r)=F,+ Y _ B, (1)Pyy, (35)
=2
with
Fy = BZ,OPZ,O + Bz,lpz,l + Bz,nz—lpz,nz—l + Bz,nsz,nz- (36)

The corresponding first and second derivatives with respect to the scaled time, z’(7) and z” (7),
can be readily obtained.
4.2.2.4 Evaluation points

In order to solve for the unknown Bézier coefficients, similar to the FFS method, the
EoM are evaluated at . DPs with equal time intervals within the scaled time (7; — 7,1 =
1/(m—=1),i=2,...,m):

M=0<m< - <Tp1<Tm =1, 37

The constraints in Section 4.1 are satisfied only at each DP.

4.2.2.5 Compact matrix form representation

The compact matrix form representation of the position state variables and its derivatives

can be written as vectors of its values at the m DPs as follows:

(2] 151 = [Balimx (n,—3)[Xal(n,—3)x1 + [Falmx1, (38)
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with [F3] a constant vector depending on 7, and on the BCs obtained using (36), [Bz] a matrix

of coefficients given by:

(Bl (n,—3) = [Ba2 Bas - Banm,—2), (39)

and [X]| the vector of unknown Bézier coefficients:

(Xa)(n,—3)x1 = [Pa2 Pa3 - Pan,—2]'- (40)

Matrices [Bz| and [F3] are computed offline and [ X ;] results from the optimization. The compact
forms of the first and second derivatives of (38) have a similar structure. Further detail is provided
in Appendix B.2.

4.2.2.6 Nonlinear Programming Formulation

Given the compact matrix form (38) and corresponding derivatives, we can formulate a
NLP with the unknown Bézier coefficients [ X ] and the completion time T} as decision variables:
min

[XZ]VZVj,Tf

[
0 < [v;(t)] < [vmax], (41)

withi=1,... )k, 7 =1,...,k and i < 5. We note that (38) and its derivatives are embedded
in formulation (41) through the substitution in (12)—(15).
4.2.2.7 Initialization of Decision Variables

The initialization of the unknown Bézier coefficients can be expressed in a compact form

as follows:

X, 51 = (Balnxtn)) (Il — Pl ) “42)

with ny the number of DPs for the approximation and [z,] the approximated position state
variables. A cubic Bézier curve can be used to approximate [z,] using the BCs. The initialization

of the completion time 7 can be approximated using (30).

4.3 NUMERICAL RESULTS

This section presents an evaluation of the ITOP solution using the FFS and Bézier curve

methods. The evaluation is carried out on a machine with an Intel Core i5-8265U CPU and
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Table 1 — Settings for vehicles and intersection.

Parameter Description Value
N, Number of CVAD 3
Amax Maximum acceleration (m/s?) 2
Vmax Maximum speed (m/s) 15
ds Safe distance (m) 1
Wy Road width (m) 11
L, Road length (m) 90

Table 2 — Scaling parameters.

Parameter 1B; 1By, 1B3 1By

70 11 1 -11 -11
i 1 1 -1 -1
T2 -1 1 1 -1
T3 —11 11 11 -11

16 GB of memory in MATLAB 2018b. The NLP problems (28) and (41) are solved using
the fmincon solver of the optimization toolbox. To compute each Av;(t) in (15), we perform
numerical integration of the corresponding total acceleration over time 7% utilizing the built-in
function trapz. Furthermore, we compare the results obtained with the FFS method to those

obtained using the method based on the Bézier curve.

4.3.1 Scenario setup

We investigate a simple scenario with three CVAD at the intersection plaza each of which
with different initial and final positions and speeds. The goal is to show that the proposed FFS and
Bézier methods are able to generate near-optimal and collision-free trajectories for these three
vehicles. CVAD; travels from north to east, CVAD; travels from south to west, and CVAD3 goes
straight from east to west. The center of the plaza is the origin of the CCS. The initial positions
(215, 9i,j) of the three CVAD are (—2,40) m, (2, —40) m, and (43, 8) m, respectively, and the
final positions (¢ j, yr ;) are, respectively, (45, —4) m, (—45,1) m, and (—45, 8) m. The initial
speeds (vi g, viy,) are (1, —5) m/s, (—1,5) m/s, and (—7,0) m/s, respectively, and the final
speeds (vf ., vt .) are, respectively, (6, —2) m/s, (—6,2) m/s, and (—8,0) m/s. The required
parameters for the formulation and numerical simulations are summarized in Tables 1, 2, and 3.

In order to determine appropriate values for the weighting parameters m, wy, wo, N4, and
ngz we undertake the resolution of the NLP problems (28) and (41) with various settings. After
thorough experimentation, we select wy; = 4, wg = 2, m = 30, N; = 8, and n; = 8 as they
achieve a reasonable trade-off between approximation accuracy and computational complexity
for future problem instances. Further elaboration on the chosen numerical results can be found

in Appendix A.4.
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Table 3 — Experiment setup for three CVAD.
CVAD  Initial position Final position Initial speed Final speed Direction
(m) (m) (m/s) (m/s)
1 (—2,40) (45, —4) (0,—3) (4,0) NE
2 (2, —40) (—45,1) (0,2) (-4,0)  SW
3 (43,8) (—45,8) (—3,0) (—5,0) E-W
100 T T T T
16 — == =CVAD 1 and2
— 80 — = ==CVAD 1and3 ///_
E S - = ==CVAD2and3 Pl
12 3 N Safe distance .7
— ZE 60F Lo’
E () ‘[7; ~ = ~ P 77
: 8 E s - N - d P4 ’
=2 40r ~3~o P
Initial 4 2 5l N Sy
position NN L T~
' ' 0 0 - —
20 40 0 2 4 6 8 10 12 14 16 18
Time [s]
(b)
Figure 8 — SC1: FFS method; (a) trajectories of three CVAD and (b) safe distance between them

with dg = 1 m.

4.3.2 Scenario 1 (SC1): Analysis of the trajectories obtained by the FFS method

The optimized trajectories generated by the solution of the NLP problem based on the
FFS method are illustrated in Figure 8a. The labels CVAD{—CVADg3 identify the trajectories,
colored disks indicate DPs and time, and the gray squares are the initial positions for each
CVAD. The solid thick black lines show the boundary of each IB whose approximations are
presented by black dashed lines. For this particular scenario, the trajectories deviate from what
would be expected in a path-based method and it is clear that the CVAD follow free trajectories.
Noteworthy, the followed paths seem to approach the paths of minimum distance. Figure 8b shows
that the distances between every two vehicles remain above the safe distance by a large margin
for this scenario. It means that the trajectories of every two CVAD do not cross simultaneously
and at the same location and ensure collision avoidance. Although the continuous trajectories of
CVAD; and CVAD3 are in fact intersecting, as shown in Figure 8b the relative distance between
them (the green dash-line) is above a safe distance (solid pink line), and therefore there will be
no collision between them. The solution of the NLP problem (28) for wy = 4, w9 = 2, m = 30
and N, = 8 resulted in a completion time, 7} = 18.3 s, a total speed increment, Av = 14.6 m/s,
and an objective function value of 95.3. The computation time for generating the trajectories by
using the FFS is 8.5 s.

Figures 9(a)—(c) show the acceleration in both axes (a;; and ay,), the total (absolute)
acceleration (a j), and the acceleration (&j) for each of the three CVAD, with 5 = 1, 2, 3. Figures
9(d)—(f) show the speed in both axis (v, ; and vy), and the total speed (v;) for the same three
vehicles. As shown in the figures, the total acceleration profile and also speed profile of each
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Figure 9 — SC1: FFS method; (a)—(c) acceleration profiles and (d)—(f) speed profiles of CVAD j,

where j takes values 1, 2, and 3.
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Figure 10 — SC1: FFS method; (a) trajectories of three CVAD and (b) safe distance between
them with dg = 7 m.

vehicle are far below the maximum total acceleration and maximum speed values, respectively,
which satisfies the existing constraints at the plaza. In addition, the profiles are smooth, as
expected due to the minimization of Av. The lower weight on 7} and the low initial and final
speeds contribute to the low speeds observed.

To evaluate the effectiveness of the collision avoidance constraint, we present in Figure 10
the numerical results of three CVAD based on a value of dg that differ from the one in Figure 8.
We select a relatively large value of ds = 7 m to emphasize the impact of dg on the results. In
this case, the completion time is obtained as 7y = 21.3 s. We observe in Figure 10a a slightly

different behaviour of CVAD3. In particular, CVADj3 is not allowed to travel through a straight
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Figure 11 — SC2: Bézier method; (a) trajectories of three CVAD and (b) safe distance between
them with dg = 1 m.

path (compare to Figure 8a). It can also be seen in Figure 10b that the collision avoidance
constraint avoild CVAD; and CVADj to collide in the time interval [9, 10.8] seconds, and
subsequently, the distance between the vehicles (green dashed line) does not go below the safe
distance line (solid purple line). We conclude that the smaller dg leads to faster trips while in

contrast, a large ds can lead to a conservative solution.

4.3.3 Scenario 2 (SC2): Analysis of the trajectories obtained by the Bézier method

The optimized trajectories generated by the solution of the NLP problem based on the
Bézier method are illustrated in Figure 11a. Figure 11b shows the distances between every two
CVAD. It can be observed that, at all times, a minimum safe distance is maintained between all
CVAD, accordingly, the vehicles distances remain above dg by a large margin for this scenario.
The solution of the NLP problem (41) for w1 = 4, w9 = 2, m = 30 and n, = 8 resulted in a
completion time, 7y = 14.5 s, a total speed increment, Av = 13.4 m/s, and an objective function
value of 90.8. The computation time for generating the trajectories by using the Bézier method
is4.5s.

We experimented with different combinations of values for m, w1, wo and ny. Varying
the values of w; and w9 had more influence on the total speed increment than the completion
time. When the number of DPs (1) is increased there is an expected increase in computation time.
Despite the corresponding increase in total speed increment, completion times also increase,
suggesting that worse local minima are found for higher values of m, i.e., trajectories in
longer paths result. Finally, increasing n, also increases the computation time without sensible
improvements in the other measures. Small values of m and n, may result in better values of Awv,
T}, and computation time. However, the trajectories might not be smooth and may also lead to
infeasible instances of the NLP problem. Similar results to those obtained with the FFS method,
as shown in Appendix A.4, were observed.

To evaluate the efficacy of the collision avoidance constraint, we present in Figure 12 the

numerical results of three CVAD based on a larger value of safe distance, ds = 7 m. We observe
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Figure 12 — SC2: Bézier method; (a) trajectories of three CVAD using Bézier method; and (b)
distance between them with ds = 7 m.

in Figure 12a a slightly different behavior of CVAD{, which keeps more distance from the corner
of the IB (compared to Figure 11a) due to the activation of collision avoidance constraints. It can
also be seen in Figure 12b that the collision avoidance constraint avoids the collision between
CVAD;| and CVADj at around ¢ = 5 s, and subsequently, the distance between the vehicles

(green dashed line) does not go below the safe distance line (solid purple line).

4.3.4 Scenario 3 (SC3): Comparative Analysis; FFS vs. Bézier Methods

In this section, a comparison is made between the results obtained using the FFS and
Bézier curve methods. The optimized trajectories generated by the solution of the NLP based
on the Bézier and FFS methods are illustrated in Figure 13. The colored disks corresponding
to the cool colormap indicate DPs and time of the Bézier method (7g), and the colored disks
corresponding to the warm colormap indicates DPs and time of the FFS method (7). The gray
squares are the initial positions for each CVAD. The solid thick black lines show the boundary of

each IB whose approximations are presented by black dashed lines. For this particular scenario,

40t 10
10
20+ 8 —
& [ Eof 6 &
~ [}
S 5 = g
g 4
a -20f — 3
Initial
position 12
40}t : —
0 20 40 0

Figure 13 — SC3: FFS vs. Bézier; trajectories of three CVAD using Bézier method (73) and FFS
method (Ty) with dg = 1 m.
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Figure 14 — SC3: FFS vs. Bézier; (a)—(c) acceleration profiles and (d)—(f) speed profiles of CVAD
7, where j takes values 1, 2, and 3.

the trajectories of both methods deviate from what would be expected in a path-based method
and it is clear that the CVAD follow free trajectories. Noteworthy, the followed paths of the
Bézier method seem to approach the paths of minimum distance compared to the FFS method.

Figures 14(a), (b), and (c) show the total (absolute) acceleration (a;), and the acceleration
(a;) for each of the three CVAD, with j = 1,2, 3, for both Bézier and FFS methods. Figures
14(d), (e), and (f) show the speed (v;) for the same three vehicles. The total acceleration and
speed profiles of each vehicle are far below the maximum total acceleration and maximum
speed values, respectively, which satisfies the existing constraints at the plaza. In addition, the
profiles of both methods are smooth, as expected due to the minimization of Av. However,
the acceleration and speed profiles of the trajectories generated with the FFS method exhibit
more variation compared to the ones with the Bézier method. Accordingly, we can conclude
that the Bézier method is capable of providing more comfortable vehicle movement with less
computation time.

The numerical results derived from the solution of the NLP problem (28) for the FFS
method and NLP problem (41) for the Bézier method is presented in Table 4. The table compares
the total speed increment (Av), completion time (7}), objective function (7), and computation
time (1) of three CVAD. Notably, the completion time is defined as the duration required for all
CVAD to cross the intersection plaza and reach their respective destinations. As seen in Table 4,
the computation time of the Bézier method is lower than with the FFS method due to the smaller
number of decision variables in the first method. Moreover, smaller total speed increment and

completion time were obtained with the Bézier method.
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Table 4 — SC3: numerical results of Bézier and FFS methods.

Method Awv (m/s) Tt (s) J Te ()
Bézier 14.1 11.5 93.5 4.3
FFS 18.2 12.3 97.4 7.9

44 CONCLUSION

The ITOP has been addressed using the FFS and Bézier representations along with
discretization strategies. These methods offer notable benefits such as fast computation speed
and efficient generation of feasible trajectories, but, they are not fast enough for real-time
applications. Although the solutions obtained from these methods serve as excellent initial
estimates for direct optimal control techniques, they are considered to be near-optimal due to
their sole parameterization of the states and not the states and control signals.

In the forthcoming chapter, our objective is to address the limitations of the proposed
methodologies and effectively solve the SPIC problem with improved efficiency and reliability.
To achieve this, we present an enhanced formulation of the SPIC problem that, in contrast to the
ITOP formulation, incorporates various real-world considerations, including:

* Vehicle dynamics: incorporate a kinematic bicycle model to emulate the actual

behavior of vehicles with the flexibility to accommodate other vehicle models.

¢ Continuous arrival of vehicles: take into account a continuous flow of the CVAD

approaching the intersection plaza.

» Separated travel time: adapt the SPIC problem formulation to assign individual travel

times to each vehicle.

* Initial and final states: take the current states for initial conditions, while leaving the

final conditions free.

* Improve safety and plaza boundary constraints: develop sufficiently accurate mathe-

matical constraints to prevent potential collisions.

* Solution methodology: devise a problem-specific algorithm based on model predictive

control as a solution methodology for the SPIC problem.
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5 A MODEL PREDICTIVE APPROACH FOR THE SPIC PROBLEM

The aim of this chapter is to present a new formulation for the signal-free path-free
intersection control (SPIC) problem and introduce a novel method and algorithm that offer an
effective solution for addressing the SPIC problem. As explored in Chapter 4, the ITOP employed
multiple exponential functions as algebraic equations to model the intersection plaza geometry.
However, this constraint modeling approach is not efficient enough due to some difficulties such
as differentiability at the origin, nonlinearity, and so on. Furthermore, the dynamics of a particle
used to represent vehicle dynamics in the previous formulation are not entirely realistic for real-
world scenarios. In light of these limitations, this chapter presents a novel formulation for the
SPIC problem that addresses these difficulties and incorporates various real-world considerations.

In addition to the aforementioned modeling limitations, the FFS and Bézier curve methods
used to convert the ITOP into a finite dimension NLP problem also have some limitations. As
discussed in Chapter 4, although these methods provide fast and collision-free solutions for the
ITOP, their solutions are near-optimal and are conducted offline. A common ground of these
methods is that their applications are limited to an existing set of vehicles with predefined initial
and final states. Furthermore, the requirement for CVAD to have identical completion times
and the absence of continuous vehicle arrival render these methods impractical in real-world
scenarios. Additionally, the non-convex nature of the FFS and Bézier curve methods poses
challenges in convexifying them, and also their computational demand increase exponentially
with the number of vehicles, resulting in prolonged computation times. Consequently, it is crucial
to develop a solution strategy for the new formulation of the SPIC problem that overcomes the
limitations of the methods presented in Chapter 4.

To do so, we propose an optimization-based receding horizon approach that is formulated
as a nonlinear model predictive contouring control (NMPCC) (LAM; MANZIE; GOOD, 2010;
LINIGER; DOMAHIDI; MORARLI, 2015; SCHWARTING et al., 2018). In particular, we extend
and tailor the standard NMPCC method (LAM; MANZIE; GOOD, 2010) to address the solution
of the SPIC problem, which we refer to as extended NMPCC (ENMPCC). The ENMPCC
method generates collision-free and optimal CVAD trajectories based on time-independent and
continuously differentiable reference paths, with a focus on maximizing progress along the paths.
To guarantee V2V collision avoidance, the vehicles are modeled as polytopic sets, where each set
is required to maintain a minimum safe distance from the other sets. The nonlinear and non-convex
nature of the SPIC problem, arising from the vehicle model and safety constraints, presents
computational challenges. We employ linear time-varying (LTV) models obtained through the
linearization of nonlinear functions. Additionally, we leverage duality theory (BOYD, S. P.;
VANDENBERGHE, 2004) for smoothing the collision avoidance constraints and enabling the
utilization of efficient solution approaches.

In Section 5.1, we describe the modeling techniques employed to characterize the

intersection plaza, vehicle dynamics, reference paths, and safety constraints. Section 5.2 provides
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Figure 15 — A four-leg signal-free intersection as a plaza (yellow area) with one CVAD traversing
on a path-free; the solid black lines mark the plaza boundaries and the dashed lines
are the different reference paths.

an overview of the SPIC problem formulation and introduces the ENMPCC and LTV-ENMPCC
methods. In 5.3 the SPIC simulator (SPIC-Sim), which serves as a software tool to implement the
proposed methods is introduced. In Section 5.4, we present the results of numerical simulations

conducted across various scenarios. Lastly Section 5.5 concludes this chapter.

5.1 PROBLEM MODELING

In this section, we present a new formulation of the SPIC problem that takes into account
several real-world considerations, distinguishing it from the ITOP formulation. The SPIC problem
introduces a revised model for the intersection plaza boundaries and adopts the kinematic bicycle
model as the vehicle model, but, with the flexibility to include other vehicle models. Additionally,
the SPIC problem incorporates additional reference paths, employs a polytopic representation for
each vehicle, and formulates V2V collision avoidance constraints as a dual optimization problem.
Moreover, the SPIC problem models the plaza’s boundaries and the vehicle’s dimensions as

exact sizes with no approximation or enlargement.

5.1.1 Intersection Plaza Model

In Figure 15, the plaza is depicted as a yellow area with boundaries delimited by black
lines, representing a four-leg intersection. However, different geometries can be considered for
representing the plaza. The X and Y axes denote the central lines of the plaza. In the figure, a
vehicle is traversing from its initial position toward its destination. Within the plaza, the vehicle
is free to adjust its trajectory, shown by the solid red line, without being bound to predetermined

paths or traffic lanes.
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5.1.2 Vehicle Model

There are various models to describe a vehicle’s dynamics, from the simple unicycle
model (SICILIANO; KHATIB; KROGER, 2008) to sophisticated vehicle models (ULSOY;
PENG; CAKMAKCI, 2012). We model each vehicle within the plaza by using a nonlinear
kinematic bicycle model. The bicycle model is a widely used model for simplifying the dynamics
of vehicle motion by reducing the number of wheels involved. It lumps the left and right wheels
into a pair of single wheels in the middle of the vehicle’s axles (RAJAMANI, 2011).

In this work, two configurations of the bicycle model are employed as vehicle models; (i) a
kinematic bicycle model which has rear-wheel driving, see Figure 16, and (i1) a kinematic bicycle
model which has a center of gravity (CG) driving, see Figure 17. By using Euler discretization,
both models are discretized with the discrete-time index k£ and the time step At¢. Furthermore,
each vehicle is identified by its index i € V = {1,2,... Ny} with Ny the number of vehicles.

5.1.2.1 Kinematic bicycle model with rear-wheel driving

The discretized equations of motion described by five state equations are as follows
(RAJAMANTI, 2011):
T 1 = T ), + At v g cos(; 1),

Yi k1 = Yi  + At v psin(y; 1),
v; 1, tan(6; 1)
Vi1 = i + At ————

43

7 , (43)
1

Vi k1 = Vi + At gy,

0j k+1 = Oj p + At u%,k’

where the i-th vehicle state vector is denoted by x; . = [; ., Vi k» Vi k> Vi k> s, k]T, in which x; 1.
(m) and y; ;. (m) are the longitudinal and lateral position of each CVAD in the CCS, respectively,
1; 1 is the orientation angle (rad), 9; 1. is the steering angle (rad), and v; j, (m/s) is the speed of the
vehicle. The control input vector is denoted by u; j, = [ui I u% k]T, in which u@lj = ik (m/s?)
and u% k= 52-7 i (rad/s) are the acceleration and steering angle rates of the vehicle, respectively.
The vehicle’s wheelbase distance, the distance between the front and rear wheels, is represented
as L (m).

The bicycle model (43) is sensitive to large lateral accelerations, thus minimum and

maximum values are imposed:
—0.5lyp1g < v7y tan(d; ) < 0.5y g, (44)

with [y the vehicle length, p the friction coefficient, and g the gravitational acceleration. Some

of the system states and both inputs are bounded to minimum and maximum values:

Umin < Vj kg < Umax,
5min S 5i,k S 5max; (45)

Upin < W; 1 < Unax.
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Figure 16 — Kinematic bicycle model with rear-wheel driving; the left and right wheels lumped
into single wheels in the middle of the vehicle’s axles; z and y the longitudinal and
lateral position of each CVAD, 1 the orientation, v the speed, ¢ the front wheel
steering angle, and L is the vehicle’s wheelbase distance.

where vYmin, Ymax> Omins Omax> Umins and umax are the lower and upper boundaries of speed,

steering angle, and control inputs, respectively.

5.1.2.2 Kinematic bicycle model with a center of gravity driving

The discretized bicycle model of a vehicle is given by (KONG et al., 2015; POLACK
etal., 2017):
Tj 1 = Tk + Atv; g cos(Y  + Bi k),
Yik+1 = Yik + Atv; psin(v; p + B ),

V; 1. sIn(S;
Gipet = i + AL Vi Sin(B; 1)

Y

by i (46)
Vi k41 = Vi + At a; g,
l .
-1 r,i
o=tan L | — 5 tan(s 1) | |
/B’L,k (lf’l + lr7i ( ’L,k’))

where the i-th vehicle state vector is X; . = [2; 1, Yi k» Vi k> Vi k] T, in which ; , (m) and y; ;. (m)
are the longitudinal and lateral position of each CVAD, respectively, v; ;. (rad) is the orientation
angle, and v; 1, (m/s) and f3; ;. (rad) are the speed and the slip angle at the CG of the vehicle. The
i-th vehicle control vector is u; , = [a; 1, 0; k]T, in which a; 1, (m/s?) is the acceleration and
d; . (rad) is the front wheel steering angle of the vehicle. The distances from the front and rear
axles to the CG of the i-th vehicle are lf’Z‘ (m) and [;. ; (m), respectively.

To ensure compliance with the dynamic limitations of the vehicles, the following con-

straints are enforced for each CVAD:

Umin < Vi k < Vmax,

5min < 52‘7]@ < 5maX7 47)

amin < @ ) < Gmax;
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Y

X

Figure 17 — Kinematic bicycle model with a center of gravity (CG) driving; the left and right
wheels lumped into single wheels in the middle of the vehicle’s axles; v the
orientation, v the speed, and (3 the slip angle at the CG, given by z and y, respectively,
the longitudinal and lateral position of each CVAD; ¢ the front wheel steering angle;
and the distances from the front and rear axles to the CG are /¢ and ;.

where Umin, Ymax> Omin» O9maxs @min» and amax are the lower and upper boundaries of speed,
steering angle, and acceleration.

The kinematic bicycle models, as presented in (43) and (46), are a suitable choice for our
plaza application; these models can be implemented in low-speed vehicles commonly found at
intersections, allow for designing controllers for stop-and-go scenarios frequently encountered
in urban driving, and are less computationally demanding than methods that employ vehicle
tire models (KONG et al., 2015). However, it should be noted that model (43), with rear-wheel
drive, may pose safety concerns regarding potential collisions between vehicles. This issue will

be further examined and discussed in the subsequent simulation.

5.1.3 Reference Path Model

We use the road center lines as reference paths. Six different paths cover all possible
movements at the intersection plaza in Figure 15. Each reference path is then followed by the
vehicles according to their traversal intention at the intersection. As an example, the light blue
dashed line shows the turning reference path for the vehicle approaching the plaza from the
west intended to make a left turn. The other reference paths follow a similar description for
the remaining directions. Note that we utilize the reference paths for computing the vehicles’
progress and path error measures.

The goal is to control the motion of the CVAD along reference paths while minimizing
the distance between the current position of the CVAD and the reference path, which is known as
the contouring control problem (CCP) (KOREN, Yoram; LO, 1991). In the following, we review
some concepts of the CCP, including the parameterization of the reference path and the definition

of the path error measures based on two orthogonal components, the lateral (contouring) and
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Figure 18 — A reference path corresponding to the center line of a road used for computing the
vehicles’ progress; lateral error (Eg) and longitudinal error (E}g), shown in solid red

lines and their approximation Eg and E}f shown in dashed red lines. If EAlli, is zero,
then E}g is also zero and therefore ék is equal to 6;..

longitudinal (lag) errors (LAM; MANZIE; GOOD, 2010).

5.1.3.1 Reference Path Parameterization

Each CVAD at position p;, = (z}., y;.) follows a continuously differentiable and time-
independent reference path p*et(0) = (2" (0), y™°f(0)), parameterized by the path parameter 6.
It is assumed that the parameterization of the path satisfies ds/df = 1, where s (m) determines
the traveled distance by each CVAD along the path which allows us to compute the progress of
each vehicle along the path. The parameterization of curves by arc length is nontrivial. However,
methods like splines (WANG; KEARNEY; ATKINSON, 2002) or Bézier curves (ZHU, Y.;
HAN, X.; HAN, J., et al., 2012) can approximate the arc length properly.

5.1.3.2 Lateral and Longitudinal Errors

Contouring accuracy is measured by the lateral error, that is the shortest distance of the
actual position of the vehicle p;, from the reference path, pref(é), see Figure 18. The value of
the path parameter for which the distance between p;. and pfef(e) 1s minimal can be obtained by
the following projection:

min_|pg — " (0) 2, (48)

where the minimizer at time step k is 6. as shown in Figure 18. The lateral error is then given by
(KOREN, Yoram; LO, 1991; LAM; MANZIE; GOOD, 2010):

ES = sin(6(05)) (2 — 27 (05)) — cos(6(01,)) (yi — v (61,)), (49)

where ¢(6;.) is the tangent angle to the reference path with respect to the x axis and given as:

Yy (6r)
¢(9k> = arctan (W) s (50)
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with

vy (6)) = dy'l(0)/do| . Va"l(B) = da"(0)/d6|

=VEk —Vk
However, given that (48) is an optimization problem itself, this formulation of lateral

error is not appropriate for use in an online optimization problem. Then, an approximation ék
of ;. was introduced with dynamics (PATRIKALAKIS; MAEKAWA, 2002; LAM; MANZIE;
GOOD, 2010):

01 = 0, + At vy, v € [0, Vmax), Vmax > 0, (51)

where § & 1s the approximated value of the path parameter at time k that can be interpreted as the
vehicle progress along the reference path, v, is a virtual input that controls the evolution of ék,
and vy ax 1S @ maximum value for the virtual input.

The optimal path parameter ;. and its approximation ék are linked by introducing the
longitudinal error E}C — ||6; — 03| The longitudinal error is also approximated since 6, is
not known at the optimization time. Consequently, the approximated lateral error (£7) and

approximated longitudinal error (E,lg) are defined as follows:
Ef. = sin(¢(0p)) (g, — 2" (6r)) — cos(6(0k)) (v — v™" (), (52)

Ej, = — cos(¢(0p)) (z), — 2" (B1,) — sin(@(0r)) (i, — v™" (Op)), (53)
where ¢(-) is defined in (50). It can be seen in Figure 18 that 0), ~ 0, if E’}ﬂ ~ 0.

5.1.4 V2V Collision Avoidance Constraints

Ensuring the safety of the CVAD remains a critical concern while traveling through
urban roads, especially in complex intersections. Hence, the modeling of collision avoidance
constraints plays a pivotal role in cooperative trajectory optimization, as they determine the
resultant collision-free trajectories of the CVAD. In this context, we examine two potential
approaches that are based on the geometrical representation of vehicles; one employing circular
definitions (see Figure 19) and the other employing rectangular polytopes (see Figure 20). The
choice of geometric representation directly impacts the algorithms that have to be utilized for

solving the problem.

5.1.4.1 Circular Representation of the road region occupied by each CVAD

When using a circular approximation, the road region occupied by each CVAD is modeled
as a circle of appropriate radius. Figure 19 depicts two vehicles on the road and the parameters
related to collision avoidance. The thick black curves are the left and right boundaries of the
road and the dashed gray curve is a reference path. The schematic of constraint on the collision
between two vehicles ¢ and j based on the kinematic bicycle models (43) and (46) is shown in
Figure 19(a) and Figure 19(b), respectively. The solid circle in Figure 19(a) and Figure 19(b)
shows the area for which the constraint should be satisfied. If the coordinate of vehicle ¢ or any

other vehicle enters the solid circle, the constraint would be violated.
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ref , ref ref , ref
(2, y*) (2", y*)

Figure 19 — Schematic of a road with two vehicles and parameters related to collision avoidance,
(a) based on the bicycle model with rear-wheel driving, (43), and (b) based on the
bicycle model with a center of gravity driving, (46); the dashed circle around point
(a:ref, yref) shows the area within which the vehicle satisfies the boundary constraint;
the solid circle shows the area for which the V2V collision avoidance constraints

should be satisfied.

For two circles that belong to different vehicles with center positions p; = [; 1., ¥;. il

and p; = [z ks Yi, k]T, the collision avoidance constraint reads as:
dist(p;, p;j) > ds + Iy, (54)

with 7,7 € V, 1 < 7, ds being the minimum safe distance between vehicles, [, being the vehicle

length, and dist(p;, pj) is the Euclidean distance between vehicles ¢ and j and defined as:

Ip; —pjll2 = \/(%k - %’,k)z + (i — ijg)?- (55)

The constraint (54) is nonlinear and non-convex and defines the collision-free region
outside of a circle with the center at the j-th vehicle as shown in Figure 19. When opting for a
larger number of smaller circles, a more precise representation of the vehicle can be achieved.
However, this approach introduces additional constraints and increases the complexity of the

problem.

5.1.4.2 Polytopic Representation of the road region occupied by each CVAD

When using a rectangular approximation, the road region occupied by each CVAD is
modeled as a polytopic set P, which is a bounded intersection of a finite number of half-spaces.
This representation uses dual optimization to formulate the collision avoidance constraints. For
two polytopic sets P; and P; that belong to different vehicles the collision avoidance constraint

reads:
dist(P;, Pj) > ds. (56)
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Y

Figure 20 — Schematic of a road; the thick black curves are the left and right boundaries of the
road and the dashed gray curve is a reference path; the dashed circle around point
pref = [27¢f) y™*f] T shows the area within which the vehicle satisfies the boundary
constraint that forces the vehicle to remain within the road boundaries. P is the
polytopic representation of the vehicle and its transformation from P to P with Ve

as the vehicle orientation.

The initial pose of each CVAD can be mathematically described by a two-dimensional
rectangular polytope P; as shown in Figure 20 (ZHANG, X.; LINIGER; BORRELLI, 2020):

Pi = {p; € R*|A;p; <b;}, (57)

where

.
Ai:[I2><2 —szz] , 58

with [ being the length and wy the width of the CVAD. As each CVAD ¢ moves along the
road, polytope P; undergoes affine transformations including rotation and translation. Hence,

the transformed polytope P; is a function of the states and defined as:

Pi(xi ) = {pi € R? | Ay(x; 1) Pi < bi(x; 1)}, (59)

where

Ai(xir) = A

cos(Vi ) — Sin(%’,k)]
sin(4; 1) cos(V; 1) ’
bi(Xi,k) = BZ + Ai(xi,k) Pi-

This representation is time-varying and is a function of the vehicle states. For clarity and

(60)

)

simplicity, in the following, we consider P; = P;(x; 1.), A; = A;(x; 1), and b; = b;(x; ).

To prevent collisions, the intersection of the polytopic sets of vehicles 7,7 € V, and i < j,
should be avoided, that is, P; N P; = () with P; and P; being the i-th and j-th CVAD polytopes,
respectively. This results in a non-convex problem that is difficult to solve. In the remaining of
this subsection, we address this issue by reformulating P; N'P; = () to a smooth and differentiable
optimization problem (ZHANG, X.; LINIGER; BORRELLI, 2020).
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This optimization problem is defined as the distance between the sets P; and P; and is
written as the following primal problem (BOYD, S. P.; VANDENBERGHE, 2004):

dist(P;, Pj) = Igf,lilgl}{llpi —pjll2|Aip; <bj,Ajp;j < bj}, (61)
i Pj

with
Pi = {p; € R?*| A;p; < b;},

Pj = {pj € RQ ’ Ajpj < bj}.

To guarantee collision avoidance, not only the intersection of these sets should be empty, but also a

(62)

minimum safe distance, ds, must be kept in any direction between them, that is, dist(P;, Pj) > ds.
The optimization problem (61) cannot be directly applied in the general form of the optimal
control problem. The reason is that an optimization problem would act as a constraint for another
optimization problem. To solve this problem, the duality theory is employed as suggested in
(BOYD, S. P; VANDENBERGHE, 2004; ZHANG, X.; LINIGER; BORRELLI, 2020).

Given problem (61), where P; and P; are nonempty sets, the following dual problem

can be solved instead of primal problem (61) (ZHANG, X.; LINIGER; BORRELLI, 2020):
: _ Ty, . Ty ..
dist(P;, P;) = Ai,j{&?};si,j —b; Aij —bj A
s.t. Az—'rAi,j -+ Sij = 0, A;'r)‘j,i —8ij = 0, (63)
[sijlle <1, =Ai; <0,-A;; <0,

with A

constraints and equality constraints, respectively. The derivation of (63) from (61) is provided in

i.j» Njiands; ; = s; ; being the Lagrange multiplier vectors associated with the inequality

Appendix C. Furthermore, problem (63) can be reformulated as the following feasibility problem
{3-Xij<0,-Xji <0,5;5: =b X j=bIXj; > ds, Al A j+sij =0, AT Nj;—s;j =
0, |[s; jll2 < 1}, using the intuition that the optimal value of the dual problem, which represents
the distance between P; and P;, is constrained to be greater than ds.

This approach provides an exact reformulation of non-differentiable collision avoidance
constraints (56) into smooth, differentiable constraints by leveraging the strong duality of
convex optimization. This approach offers several advantages over alternative methods. Firstly,
it avoids the need to solve a mixed integer linear/quadratic programming problem, which can
be computationally expensive. Additionally, it eliminates the requirement for linearization,
which can restrict the solution space by imposing limitations on collision-avoidance constraints.
Furthermore, this method enables the specification of a safe distance between vehicles, rather

than relying on separating hyperplanes.

5.1.5 Plaza Boundary Constraints

The SPIC problem must satisfy constraints to prevent the i-th CVAD from violating
the intersection boundaries. This section introduces constraints that are distinct from the plaza

boundary constraints IB1 to IB4 discussed in section 4.1.6. These constraints can be expressed by
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denoting O, as a polytope set occupied by the r-th intersection boundary, where r € {1,2,... h},
and h is the number of intersection boundaries. The constraints require that P; and O, do not
intersect, i.e., P; N O, = (. A similar reformulation of V2V collision avoidance constraints
discussed in Section 5.1.4.2 can be derived for the intersection plaza boundary constraints.
However, it would preserve non-convexity and increase complexity by adding more decision
variables and constraints to the optimization problem.

Hence, this section presents a new set of constraints to ensure that vehicles stay within
the intersection plaza boundaries. Each vehicle is constrained to travel only within a well-defined
circle with the center point moving along the reference path p*ef = [xref(éi’ k), yref(éL )] T with
a diameter of the road width, w;, minus the vehicle width, wy, (LEVY; HADDAD, 2021). In

ref shows the

Figure 19(a), Figure 19(b), and Figure 20, the dashed circle surrounding the point p
region within which the vehicle satisfies the boundary constraint, even though, by definition, the
vehicle is on a line on the diameter of the circle perpendicular to the reference path. The plaza
boundaries constraints are then defined as the following convex constraints:
wI‘ - wV

(64)

with dist(p;, pmf) is the Euclidean distance between the current position of the i-th vehicle and

the point p* °f So, constraint (64) is defined as:

Wy — Wy

V@B 1) — )2 + (00 ) — )2 < (65)

with w; being the road width.

5.2 SPIC PROBLEM FORMULATION

Based on the models and constraints introduced in Section 5.1, in this section, we introduce
the SPIC problem formulation. Then, we build on a nonlinear MPC formulation suitable for
solving SPIC problem, known as nonlinear model predictive contouring control (NMPCC) (LAM;
MANZIE; GOOD, 2010; LINIGER; DOMAHIDI; MORARI, 2015). NMPCC, in comparison
to standard nonlinear MPC, incorporates an analytical representation of a reference path that
is not time-parameterized but rather based on a tailored path parameter (parameterization).
The use of the lateral and longitudinal errors in the cost function of the controller is what
differentiates the NMPCC controller from the standard nonlinear MPC. In particular, we propose
a practical extension of the standard NMPCC (LAM; MANZIE; GOOD, 2010), denoted as
extended NMPCC (ENMPCC), to address the solution of the SPIC problem.

5.2.1 SPIC in General Form

The multi-vehicle interaction at the intersection plaza can be considered as a signal-

free path-free intersection control problem. we introduce the SPIC problem formulation as the
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following optimization problem that computes optimal and collision-free trajectories for all the

CVAD in the intersection plaza:

Nv k+Nh
min Y Y Jia(xig uig), (66)a
A R
st X ek — £ gk 0 48) = 0, (66)b
Oi 41k = Oi ke + AtV 415 (66)c
Xiolk — Xik = 0, éi,0|k —0; =0, (66)d
Xtk € X5 Wiy €U, Vg € [0, Vmax], (66)e
P(xi k) NP (xj45) =0, (66)f

Wy — W
diSt(pi7t‘k, pref) < %7

i, €{1,...,Ny}, i <7,

(66)g

where superscript ¢ refers to i-th CVAD and NV}, is the prediction horizon. This problem is a
multi-objective optimization problem, with (66)a representing the objective function. In (66)b,
the function f(-) represents the nonlinear model of each CVAD as defined in (43) and (46). (66)c
represents the vehicle’s progress in which éi and v; are, respectively, an additional state variable
and an additional control variable. The state and input feasible sets are respectively denoted by
X and U, which show the state and control input constraints as defined in (47). Additionally,
constraints (66)f and (66)g represent the V2V collision avoidance constraints and intersection
plaza boundary constraints, respectively.

In practical terms, we operate under the assumption that the SPIC problem is addressed
through central coordination at the intersection plaza. In this process, every vehicle within
the intersection transmits its data, encompassing vehicles’ current states, to the coordinator.
The optimization problem is then solved by the coordinator, and the resulting trajectories are

subsequently communicated back to the respective vehicles.

5.2.2 Objective Function

In the SPIC problem, we would like to minimize the lateral and longitudinal errors and
maximize the vehicles’ progress along the reference paths while penalizing the control inputs

for each CVAD in the intersection plaza. Given Ek = [Eg, E}C}T, the objective function is:
J = EgQEk + V;T,/Vk — qeék + uZRuk, (67)
with weighting matrices () and R as:
Q- gc O CR- ry 0
0 q 0 rs

in which gc > 0, ¢ > 0, r, > 0, and ¢y > 0 are lateral error, longitudinal error, virtual input,

and progress cost weights, respectively, and v > 0 and r5 > 0 are, respectively, the weights



Chapter 5. A Model Predictive Approach for the SPIC Problem 76

on the acceleration and steering angle of each vehicle. The appropriate tuning of these weights
allows for a trade-off between contouring accuracy and progress along the reference paths. In
this application, it is desirable to sacrifice contouring accuracy to allow vehicles to traverse the

path as fast as possible and make better use of the intersection space.

5.2.3 Extended Nonlinear Model Predictive Contouring Control (ENMPCC)

The ENMPCC method involves the inclusion of additional cost terms, such as fuel
consumption (due to acceleration) or driving comfort (due to steering angle), and additional
reference paths to cover all possible vehicle paths at the intersection plaza. Compared to the
standard formulation, we incorporate V2V constraints to prevent potential vehicle collisions.
Moreover, we impose intersection boundary constraints to restrict vehicle movements within
intersection boundaries. Furthermore, the standard NMPCC assumes small lateral deviations of
the controlled object from the reference path which is for the case in a high-precision application
(LAM et al., 2013). However, the ENMPCC approach acknowledges the need for significant
deviations from the reference path. These deviations are necessary to prevent potential collisions
and/or to expedite the vehicles’ traverse.

By employing the objective function (67) to the problem (66), the ENMPCC problem is
defined as:

Ny [ k+Ny k+Np—1
: 5T OF 5 T T
nin > > ELQEi; —aefis+ D ulRuis+ v vy
Ve =1\ t=k t=k

S.t. Xi,t—i—l‘k — f(Xi,t‘kﬂ ui7t|k) = O,
O; t41 1k = Oitk + AtV 411y
5 5 (68)
X0k = Xik = 0, 0 o) =ik =0,

Xiﬂf‘k € X7 ui,t|k € Z/{, Vi7t|]{; S [07 Vmax]a

2 2
\/(%‘,ﬂk - xj,t|k> + (yz',t\k - yj,t\k> > ds + ly,

A A Wr — Wy
\/(xref(ei,t\k) — 4% + (O ) — Vi gp)? < —

5.2.4 Linear Time-Varying (LTV) Implementation

The objective of this section is to speed up the computation time of the proposed
ENMPCC method for solving the SPIC problem. Problem (68) is an NMPCC problem that
should be solved online at each time step. The computational cost associated with solving this
problem can be high. The linear time-varying approximation of the nonlinear kinematic bicycle
model as well as of the lateral and longitudinal errors is used to construct a tractable optimization
problem (FALCONE et al., 2007). Each nonlinear function is linearized around the output of the
last solution of the optimal control problem over a shifted horizon, except for the first and the

last steps. The state of the first step is measured. The last step was not predicted in the previous
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solution. Thus, the system is simulated for one time step assuming that the input is the same as

in the second to last step.

5.2.4.1 LTV Approximation of the Vehicle Model

The kinematic bicycle model (46) is approximated by first-order Taylor series expansion
around the predicted state’s trajectory (X; = [Ek,gk,zﬁk,@k]—r) and control inputs (0; =

[z, 0] ") computed at the previous time step as:

Xpt+1 = AxXy + Byrug + dy, (69)
with _ _ -
0 0 —wsin(yp+p) cos(v+ 5)
0 0 wvcos(yp+B) sin(y+B)
AR=10 g 0 L sin(3
I sin(5)
_0 0 0 0
[0 —T'% sin(¢y + )
0 Twcos(¢y + B) (70)
Bk. - 5 > ’
0 %F cos(3)
_1 0

(Ig + 1) (cos2(8) 4 12 sin2(5) /(Ip + 1;)2)
5.2.4.2 LTV Approximation of Lateral and Longitudinal Errors

The lateral and longitudinal errors (52) and (53) are approximated by linear functions

over the prediction horizon using a Taylor series expansion around X;, and ék as follows:

~ ~ = ~ = X75. — X
EPPPP = B¢ (xy,0) + (VE§ (33, 03)) T é’“ Q’“] (71)
k — Yk

o Xp — X

1 N _ ~ A~ _ ~
E™P = B} (%5, 0p) + (VEL(%3.01,)) T P ] : (72)
O — Ok
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with

~

V(% 0p) = [sin(o(0)) —cos(6(0r)) 0 0 dpe] .
VEL %k, 0r) = [~ cos(6(6))) —sin(6(6) 0 0 dpy]
dp.c = — VEL(Xp, ) — sin(@(0r)) V' (O) cos(6(0;)) V™ (9.,
)

di = VES(Rg, Op) + cos((03,)) V™™ (6),) sin(6(61,)) VL (6.,
n

(1+ a2)(Varet (§;))2
B vyt (6),)
Vet (g)
n = V20 Var (Or) — V' (0) V22" (0)).

Equations (71) and (72) are replaced in the objective function of the ENMPCC (68).

5.2.5 LTV-ENMPCC Formulation

The LTV-ENMPCC formulation incorporates (63) to address V2V collision avoidance
constraints, and it also integrates the LTV approximation method detailed in Section 5.2.4. This
approximation is applied to the ENMPCC problem formulation introduced in Section 5.2.3,
resulting in the following problem:

Nv k"'Nh k+Nh

: appT app

u, |Ikm'£1 . E E E qeﬁl ++ E u; tRuZ ++ 1/1 ATVt
g gy =1\ t=k t=k

)‘|k’>‘j\k’ i

St X 4k = AdaXg gk + Biewg g+ dy g
O p1k = ;g1 + Aty t|k:7
% 0k = Xik = 0, 0 oy — O = 0,
Xtk € X, Wigp €U, Vigpr € [0, Vmax], (73)
<—bi(xi‘k)T)\ti‘]7€ b (x
Ai(xak)T)‘ti‘; i = 0.

| \T yJsi J _
X1, )‘t|k Sy, = 0

i,] J5t
- Aﬂk <0, Aﬂk <0, s

Ty
At“{}) 2 d87

X))
AJ(

t‘k”Q S ]-7

Wy — W
\/(xref( k) — Tige)? + + (et (6; k) — Vi) < %
The complexity associated with problem (73) is reduced through the use of the LTV
approximation of the nonlinear terms present in the bicycle model (46) and the objective function
(67). Although LTV approximation of the V2V constraints can be a potential approach, for

safety-critical constraints such as (66)f, it is crucial to employ advanced methods that better
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capture the V2V constraints (LI, S. E. et al., 2020). Accordingly, we mitigated the complexity
of the V2V constraints by leveraging the duality theory as discussed in Section 5.1.4.2. By
this technique the non-differentiable collision avoidance constraints (66)f are reformulated into
smooth and differentiable algebraic inequalities (BOYD, S. P.; VANDENBERGHE, 2004).

5.2.6 SPIC: Algorithm Pseudo Code

In this section, we present the SPIC algorithm to solve problem (73) and to simulate
an intersection plaza in which CVAD continuously approach the intersection. The proposed
algorithm leverages the ENMPCC method to efficiently compute optimal trajectories for each
CVAD while considering various constraints. The SPIC algorithm is designed to handle dynamic
scenarios in a random order, making it an ideal candidate for coordinating CVAD at the
intersections where the vehicles are expected to interact with each other and with the intersection
infrastructure. The main steps of the algorithm are summarized in Algorithm 1 while its flowchart
is illustrated in Figure 21.

The algorithm starts assuming that no CVAD is in the Plaza. The algorithm then enters
a loop and waits for the arrival of a CVAD at the Plaza. As soon as a new CVAD arrives, its
optimal inputs and state predictions are estimated according to its initial conditions, and then the
number of CVAD, Ny, is incremented. These inputs and state predictions are used to compute
the LTV approximation problem (73). For each CVAD, the algorithm linearizes the lateral and
longitudinal errors and the nonlinear dynamics around the estimated optimal inputs and state
predictions. Then, the CVAD is included in the instantiated NLP problem (73). The problem is
solved and the optimal inputs for each CVAD are obtained. The algorithm then updates the state
and progress of each CVAD using the computed optimal inputs and shifts the optimal inputs
and states to estimate the next optimal inputs and state predictions. Finally, if a CVAD leaves the
intersection, it is removed from the NLP problem in the next instance, and the number of CVAD
in the system is decremented. The algorithm repeats this process for the remaining CVAD until

the desired stopping criterion is reached.

5.3 THE SPIC SIMULATOR

This section provides a high-level overview of the SPIC simulator (SPIC-Sim) architecture.
The SPIC simulator is a simulation modeling tool that allows for the modeling of flexible
utilization of urban intersections, enabling the investigation of both conventional (path-based
or lane-based) and unconventional (path-free or lane-free) traffic control scenarios. Figure 22
provides a high-level overview of the SPIC-Sim architecture, highlighting its key layers and
components. As observed in the figure, the primary layers of the SPIC-Sim are the user interface
(UI), the simulator, the controller, and the optimizer, each of which consists of different tools
and components. The layered architecture of the SPIC-Sim leads to a modular system that can

be appropriately extended by new features and algorithms. In the following, we describe each
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Algorithm 1 SPIC Algorithm

Input: Ny =0, MV, x;(0)Vi=1,...,Ny, Q, R
1: fork=0,1,... do
2: if ¢-th CVAD arrived at the Plaza then

3: Ny « Ny +1

4: Compute u; ;. and 7; ;. by using Procedure 1 introduced by Lam, Manzie, and Good
(2010). -

5: Compute X; ;. and «9}7 % by applying u; 5, and 7; ;. to (46) and (51), respectively.

6: endif

7. forall:=1,... Ny do -

8: Linearize EA]‘; and EAII{: around X; ;. and 9}7 k> using (71) and (72).

9: Linearize the nonlinear dynamics of the i-th CVAD (46), around u; j, and X; j, by using
(69).

10: Include the i-th CVAD in the new instance of the optimization problem (73).

11:  end for

12 Solve the NLP optimization problem (73) and obtain u; ., v/ .
13:  forall:i=1,...,Nydo

14: Update i-th CVAD states by applying the first element of u} ;. to the nonlinear dynamics
(46). ’

15: Update i-th CVAD progress by applying the first element of 1/;" ;. o (1.

16: Compute u; ;. and 7; ;. by shifting optimal states and inputs predictions u;?‘, ;. and VZ o

17: Compute X; ;, and 6’}-7 i, by applying u; 1, and 7; 1. to (46) and (51), respectively.

18:  end for

19:  if a CVAD left the Plaza then

20: Delete the CVAD from the NLP optimization problem (73).

21: Ny +— Ny —1

22:  end if

23: end for

. Obtain reference
Intersection data
paths

\ 4

Solve NLP Update vehicle
problem states

\ 4

k=k+1

Vehicle beyond
final point?

Figure 21 — A flowchart of the proposed SPIC algorithm.
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Figure 22 — The SPIC simulator architecture, main layers, and components.

layer of the SPIC-Sim and its main components.

5.3.1 User Interface

The UI component is the primary interface through which end-users interact with and
configure the SPIC problem and algorithms. The UI layer encompasses key elements, including
Input forms, and Graphics. The Input forms component consists of various forms and input
handlers to configure the problem and algorithms via a graphical interface. Parameters such as
vehicle height and width, prediction horizon, simulation time, etc can be defined by the input
forms component. On the other hand, the graphics component is employed to create various

visualizations and graphical elements like charts and animations.

5.3.2 Simulator

The simulator layer of the SPIC-Sim consists of multiple components such as the CVAD
generator, Intersection manager, Random arrival, Splines, Data mapper, and Data store. The role
of the CVAD generator component is to generate a new vehicle instance and introduce it to the
intersection manager component when a vehicle enters the intersection. The intersection manager
stands as a main component with the task of overseeing CVAD operations at an intersection. The
specific time when a vehicle enters the intersection is determined randomly by the random arrival
component. Upon the arrival of a new vehicle at the intersection, the intersection manager gathers
and classifies the vehicle instance according to its approach direction. Subsequently, the vehicles
are assigned suitable reference paths based on their origin and intended destination. These
reference paths are created through the utilization of the spline component and are integral to the
proposed methods. Additionally, the data mapper serves as entities responsible for transforming
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vehicle objects into a compatible format to be used by the controller layer. Lastly, the data store
component holds the simulator data intended for transmission to the UI layer, where it can be

utilized for visual representations.

5.3.3 Controller

The controller layer is the main dependency of the simulator layer and interfaces the main
control strategies implemented in this thesis, including ENMPCC, LTV-ENMPCC, and PB-MPC.
The ENMPCC component applies the ENMPCC algorithm without using LTV approximation.
On the other hand, the LTV approximation is employed within the LTV-ENMPCC component,
where linear approximations of the objective function and system dynamics are used. Meanwhile,
the PB-MPC component’s responsibility is implementing a path-based MPC approach, utilizing
a standard MPC method to address the conventional path-based (lane-based) driving approaches.
Hence, the controller layer offers a variety of control strategies for the simulator layer to choose
from, depending on user inputs. Once selected, the chosen control strategy remains in use for

the entire duration of the simulation.

5.3.4 Optimizer

The central component of the SPIC-Sim is the optimizer layer, responsible for building
and solving the optimization problem specified by the controller layer. The key elements within
this layer include the Modeling language for constructing optimization models and the NLP
solver for solving the associated optimization problems. In the present SPIC-Sim implementation,
the Casadi library is utilized for building optimization problems, and IPOPT is employed to

solve these optimization problems.

5.4 PRESENTATION AND DISCUSSION OF RESULTS

In this section, we assess the effectiveness of the proposed ENMPCC and LTV-ENMPCC
methods in addressing the SPIC problem through various scenarios. We consider different
vehicle models and incorporate different V2V collision avoidance modeling techniques to
comprehensively evaluate the proposed method. Furthermore, results from a comparison with
automated vehicles based on conventional path-based (lane-based) driving are shown. The
comparison aims to demonstrate the feasibility and benefits of employing the SPIC algorithm for
optimal and collision-free coordination of the CVAD at the intersection plaza. The simulations
are implemented in the Python programming language (PYTHON SOFTWARE FOUNDATION,
2022) with CasADi, an open-source software package for nonlinear optimization and algorithmic
differentiation (ANDERSSON et al., 2019). To solve the corresponding NLP problem (73),
we used IPOPT, an open-source solver for large-scale nonlinear optimization (WACHTER;
BIEGLER, 2006). The splines for obtaining the reference paths were computed using the Python

spline command.
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Table 5 — Settings for vehicles, intersection, and optimization problem

Parameter Description Value Unit
At Sampling time 0.2 (s)
Vmax Maximum speed 10 or 20 (m/s)
Amax Maximum acceleration 2o0r5 (m/s?)
Omax Maximum steering angle 0.52 (rad)
Smax Maximum steering angle rate 2.09 (rad/s)
fv Vehicle flow 1200 (veh/h)
g Gravitational acceleration 9.8 (m/s?)
dy Safe distance 1 (m)

L Vehicle’s wheelbase distance 2.52 (m)
Wy Vehicle width 1.40 (m)

ly Vehicle length 2.60 (m)
Wy Road width 10 (m)

le Distance from front axle to the vehicle CG  1.03 (m)

I Distance from rear axle to the vehicle CG 1.49 (m)
Ny Prediction horizon 30 (steps)
Q ENMPCC cost weight, diag(gc, q1) diag(0.005,5) -

R Control cost weight, diag(ry,rs) diag(5,0.5) -

Qo Progress cost weight 1 -

Ty Virtual input weight 0.02 -

Gx, Gy PB-MPC cost weights 10 -

N, Number of CVAD 28 -

N Number of lanes 2 -

h Number of intersection plaza boundaries 4 -

0 Friction coefficient 1 -

5.4.1 Scenario Setup

We consider a challenging traffic scenario with the coordination of multiple vehicles
entering the intersection plaza continuously. The simulations were conducted for a four-leg
intersection illustrated in Figure 15. This simple intersection geometry enables a clear presentation
of the method, including straight and turning movements, and two-way driving. Three simulation
scenarios are considered.

In the first Scenario (SC1), we consider a simple case study in which the intersection
plaza consists of two approaches; one from the south and the other from the west. In the first
approach, vehicles enter the plaza from the south and have the option to either turn right or
continue straight. On the other hand, in the second approach, vehicles enter from the west and
can choose to either turn left or go straight. The four reference paths that can be followed by
each CVAD based on their entry and exit directions are indicated by the light-blue, gray, purple,
and green dashed lines in Figure 15. Scenario 1a (SCla) and Scenario 1b (SC1b) evaluate the
proposed ENMPCC method in (68) by considering two different kinematic bicycle models (43)
and (46), respectively.

In the second Scenario (SC2), we consider a more complex case study in which the
CVAD can approach the intersection plaza from four possible origins, namely south, north, west,
or east, and can take one of three actions, turn left or right or go straight, i.e., toward any of

the three remaining destinations. The six possible reference paths that each CVAD can follow
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based on their entry and exit directions are displayed as colored dashed lines in Figure 15. SC2
implements the SPIC algorithm based on the LTV-ENMPCC method in (73) as described in
Section 5.2.6.

Finally, in Scenario 3 (SC3) a conventional path-based driving of the CVAD is applied in
the same conditions as Scenario 2. In this scenario, we use the same SPIC problem formulation
however, we use a standard tracking MPC objective function to provide a conventional path-based

trajectory tracking problem (PB-MPC) as:

N, k+Ny k+N,—1
£12 £12 T
T=Y D axlwig — 2" +qywie — v+ > uRuy (74)
i=1 \ t=k t=k

where ¢x and ¢y are suitable cost weights of the PB-MPC. We note that the reference paths are
appropriately shifted to make a path-based scenario and no deviation from the paths is allowed.
In this scenario, the analysis is carried out on a two-lane intersection, where each vehicle is
initially located in the center of each lane.

For each scenario, simulations of 900 time steps (180 s) with flows from 300 to 2700
veh/h/approach in steps of 600 veh/h/approach were tested. For each of these fifteen cases, seven
replications with different seeds were run to obtain mean estimates of the performance metrics
with 95% confidence of an error below 10% (LAW, 2013).

The arrival intervals between vehicles are generated randomly from a shifted negative
exponential distribution (FHWA, 2022). The arrival position along the road width at the entry
point and the arrival speed around 4 m/s for each CVAD are randomly selected by sampling a
uniform distribution. When exiting the plaza, the CVAD leave at either z = 60 m or y = 60
m, depending on the road used. We select NV}, = 30 to achieve a reasonable trade-off between
computational complexity and V2V collision avoidance constraints accuracy for future problem
instances. Table 5 lists the additional essential parameters pertaining to vehicles, intersection

geometry, and the optimization problem.

5.4.2 Scenario 1a (SC1a): The ENMPCC method with kinematic bicycle model (43)

The aim of this scenario is to assess the effectiveness of the proposed ENMPCC method
for solving the SPIC problem (66). The controller utilizes the kinematic bicycle model (43)
to represent the vehicles. To ensure safety, a circular representation is used to model the road
region occupied by each vehicle, and constraint (54) is implemented to prevent V2V collisions.
Moreover, constraint (64) is applied to keep the vehicles within the boundaries of the plaza.
To incorporate these constraints into the SPIC problem formulation, the respective equations,
namely (43), (44)—(45), (54), and (64), are substituted into the corresponding constraints in
problem (68).

The six snapshots of the optimal and collision-free trajectories of CVAD, obtained
through the solution of ENMPCC in (68), are illustrated in Figure 23 at time steps 125, 155,
235, 275, 365, and 435. In the figures, the two gray dashed lines represent the reference paths
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for vehicles moving straight through the intersection plaza, while the two gray dot-dash lines

show the reference paths for vehicles making left or right turns. We can also see the trajectory of
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Figure 23 — SC1a: snapshots of the trajectories of the vehicles at time steps 125, 155, 235, 275,
365, and 435 with a flow of 1200 veh/h/approach.

the vehicle until the snapshot time instant by the colored solid line and its prediction for the next
steps by the dotted lines of the same color. New arrivals are included in the problem, for example,
the red vehicle from Figure 23(a) to Figure 23(b). Once the vehicle is beyond the final point, it is
removed from the figures, for example, the brown vehicle from Figure 23(b) to Figure 23(c).
As can be seen in the figure, the vehicles are able to drive without being bound to the
usual path-related road lanes and horizontal markings. Thus, the trajectories may deviate from

what would be expected in a path-based method. For example, the vehicle with the light brown
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trajectory in Figure 23(e) and the vehicle with the garnet trajectory in Figure 23(g) are suiting
examples. The effectiveness of the collision avoidance constraint and the role of the prediction
horizon can be seen in Figure 23(b). The black and purple vehicles were still in straight paths
when a potential collision was predicted, as shown by the curved dotted lines in each predicted
trajectory. The deviation is confirmed by the executed path seen in 23(c).

The kinematic bicycle model (43) with rear-wheel driving may cause potential challenges
related to the collision between every two vehicles as illustrated in Figure 19(a). This arises
due to the model’s use of the rear wheel as the reference point for vehicle coordinates, which
necessitates a careful selection of the parameter ds. To address this concern, in the next scenario,
we assess the ENMPCC method while employing the kinematic bicycle model (46) with a center

of gravity driving.

5.4.3 Scenario 1b (SC1b): The ENMPCC method with kinematic bicycle model (46)

In this scenario, we consider the same conditions as in Scenario 1a, but with a difference
in the employed kinematic bicycle model. Specifically, we adopt the kinematic bicycle model
(46) as the vehicle model for this scenario. Accordingly, we incorporate constraints (46), (47),
(54), and (64) into the corresponding constraints of the SPIC problem (68).

Figure 24 displays a sequence of six snapshots of the optimal trajectories of CVAD
entering the plaza. These snapshots correspond to the same time steps as SCla. These trajectories
are obtained by solving optimization problem (68), utilizing the kinematic bicycle model
illustrated in Figure 17. The trajectories of the red, green, and purple vehicles in Figure 24(c),
along with the vehicle exhibiting the light blue trajectory in Figure 24(e), serve as fitting examples
of path-free behavior of CVAD. New vehicles arriving are treated as new instances of the problem.
For example, vehicle 4 with red trajectory from Figure 24(a) to Figure 24(b). Moreover, once the
vehicle is beyond the final point, it is removed in the next instance of the problem, for example,
vehicle 1 with the gray trajectory is removed from Figure 24(b) to Figure 24(c). As in SCla,
in Figure 24(b), one can seen the influence of the collision avoidance constraints. Notably, the
green and purple vehicles initially followed straight paths but deviated due to predicted collisions,
shown by curved lines in their trajectories.

To better assess the proposed method, Figures 25(a) to 25(e) show the speed, acceleration,
orientation, steering angle, and progress profiles for six vehicles of interest (vehicles 2, 3, 5, 6,
8, and 9). To plot the figures, we assumed that vehicles have constant profiles, and thus, zero
acceleration profiles before entering and after leaving the intersection plaza. Figure 25(f) shows
the distances between six pairs of the vehicles of interest (vehicles 2-3, 2-4, 5-6, 7-8, 8-9, and
9-10). To plot the figure, we considered the time steps that every two vehicles are inside the
intersection plaza.

To interpret the figures, we considered vehicles 2 and 3 as an example. Vehicle 3 is seen
to reduce its speed and acceleration (Figures 25(a)-(b)). On the other hand, vehicle 2 is seen to

increase its speed and acceleration (Figures 25(a)-(b)). Meanwhile, both vehicles are seen to
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Figure 24 — SC1b: snapshots of the trajectories of the vehicles at time steps 125, 155, 235, 275,
365, and 435 with a flow of 1200 veh/h/approach.

steer to the right and then to the left (Figure 25(c)) with a corresponding temporary change in
orientation (Figure 25(d)). Indeed, in Figure 24(c) one can see that vehicles 2 and 3 go further to

the right relative to their previous position so that, along with the changes in speed (Figure 25(a)),
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Figure 25 — SC1b: the state and control variables for six vehicles of interest (vehicles 2, 3, 5, 6,
8, and 9): (a) Speed; (b) acceleration; (c) steering angle; (d) orientation; (e) distance
between every two selected vehicles; and (f) progress.

a collision is avoided. It can be seen from Figure 25(e) that the distance between vehicles 2 and

3 (the green line) decreases and then increases staying above the minimum safe distance (the
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Figure 26 — SC2: snapshots of intersection plaza in time steps (a) 635, (b) 88, (c) 109, and (d) 130
operating under the LTV-ENMPCC algorithm with a flow of 1200 veh/h/approach.

light blue line). Finally, in Figure 25(f), with the proposed method, all vehicles have increasing

progress profiles, which is one of this paper’s goals.

5.4.4 Scenario 2 (SC2): The LTV-ENMPCC method

Figure 26 shows a sequence of four snapshots of the application of the proposed LT V-
ENMPCC algorithm with time steps 65, 88, 109, and 130. The flow is 1200 veh/h/approach.
In the snapshots, the six gray dash-dotted lines show the reference paths for through, left, and
right turning movements. The colored solid curves show the trajectories of the CVAD until the
snapshot time step. The predicted trajectories for the next steps are shown by the dashed lines
of the same color. New arrivals are included in a new instance of the problem. For example,
vehicles 5 and 6 from Figure 26(b) to Figure 26(d). Vehicles that traveled beyond the exit point
are removed in the next instance of the problem, for example, vehicle 1 from Figure 26(a) to
Figure 26(b) or vehicles 2, 3, and 4 from Figure 26(b) to Figure 26(c).

As depicted in Figure 26, the vehicles have the ability to drive without being restricted to
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Figure 27 — SC2: states and inputs of the first eight vehicles in the intersection plaza operating
under the LTV-ENMPCC algorithm with a flow of 1200 veh/h/approach.

conventional path-related road lanes and horizontal markings. As a result, their trajectories may
deviate from what would typically be expected using a path-based approach, to either maximize

their progress or avoid potential collisions. Notably, the trajectories of vehicles 1 and 2 shown in
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Figure 26(a), the trajectories of vehicles 3 and 4 depicted in Figure 26(b), and the trajectories of
vehicles 5 and 8 depicted in Figure 26(d) serve as compelling examples of such deviations. Figure
26(b) illustrates the progress maximization achieved through the utilization of path deviation,
leading to more effective utilization of the intersection space.

Furthermore, Figure 26(a) provides a clear illustration of the collision avoidance con-
straint’s effectiveness and the critical role played by the prediction horizon. Specifically, vehicles
1 and 2, traveling in straight paths, encountered a potential collision that was detected and
addressed with a deviation from their original trajectories, as evidenced by the curved dashed
lines in each predicted path. The executed paths, as shown in Figure 26(b), confirm the avoidance
maneuver taken by these vehicles. In addition, Figure 26(d) provides evidence of the collision
avoidance behavior of vehicle 8 upon entering the plaza, as it slightly deviates to the right of the
road to prevent a collision with vehicle 5, which is exiting the plaza as evidenced by the curved
dashed lines in the predicted path of vehicle 8.

To gain a better understanding of the snapshots, we can refer to Figure 27 which
displays the speed, acceleration, steering angle, orientation, and progress profiles of the vehicles
depicted in Figure 26 (vehicles 1-8) and the distances between selected vehicles. The vehicles
accelerate to reach the maximum allowed speed and maintain that speed until they exit the
intersection. To interpret the figures, we considered vehicle 8 as an example. Vehicle 8 is seen
to exhibit a slower rate of speed increase for a short period (Figure 27(a)) and a reduction in
its acceleration (Figure 27(b)). Meanwhile, the vehicle is seen to steer to the right and then to
the left (Figure 27(c)) with corresponding temporary changes in their orientation (Figure 27(d)).
In addition, in Figure 27(e) all vehicles have increasing progress profiles, which is one of this
work’s goals. Finally, Figure 27(f) illustrates the distances between seven pairs of vehicles. As an
example, it can be seen that the distance between vehicles 1 and 2 (the light-blue line) decreases
and then increases staying above the minimum safe distance (the red line) to avoid a potential
collision as shown in Figures 26(a)-(b).

The obtained results demonstrate that the proposed method is able to produce collision-
free multi-vehicle interaction and has the reasonable capability to resolve vehicle conflicts in

challenging intersection scenarios.

5.4.5 Scenario 3 (SC3): Conventional Path-based Approach

In this scenario, we conduct an analysis on an intersection with a two-lane road, where
each vehicle is initially positioned in the center of each lane as depicted in Figure 28(a). The
intersection parameters and the vehicle parameters used in the controller remain unchanged from
those employed in Scenario 2.

Figure 28 depicts four snapshots of the intersection plaza at the same time steps of the
previous scenario and for the same seed. The corresponding states and control inputs of the
vehicles, as well as the distance between selected vehicles in Figure 28, are presented in Figure 29.

All vehicles are seen to increase their speed and acceleration once they enter the intersection.
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Figure 28 — SC3: snapshots of intersection plaza in time steps (a) 65, (b) 88, (c) 109, and
(d) 130 operating under the conventional path-based control with a flow of 1200
veh/h/approach.

However, vehicles 1, 2, 3, 7, and 8 are seen to decrease their speed and acceleration for a short
period to avoid a possible collision with other vehicles before accelerating and reaching the
maximum allowed speed. This can potentially lead to vehicle delays and result in impaired traffic
performance.

Vehicles 2 and 8 show a considerable reduction in their speed and acceleration to prevent
a possible collision with vehicles 1 and 6, respectively, as illustrated in Figures 29(a)—(b). In
contrast, when using the LTV-ENMPCC algorithm, we see a smoother behavior of the vehicles,
as depicted in Figures 27(a)—(b), which is attributed to the path-free solution and the possibility
of full use of the intersection space. This can affect the total time spent (TTS).

Furthermore, the distance traveled by the vehicles shown in Figure 29(e) is longer
compared to the path-free results illustrated in Figure 27(e). This is because, in the path-based
approach, the vehicles travel along the predefined reference paths and are not allowed to deviate
from the paths, which can lead to inefficient use of the intersection space. To provide an illustration,

consider vehicle 3 as an example. The LTV-ENMPCC algorithm generates a shorter path for
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Figure 29 — SC3: states and inputs of the first eight vehicles in the intersection plaza operating
under the conventional path-based control with a flow of 1200 veh/h/approach.

vehicle 3 resulting in less traveled distance to exit the intersection as shown in Figure 26(b)
and Figure 27(e). In the path-based scenario, however since vehicle 3 is not allowed to deviate

from the predefined reference path, it traverses more distance to exit the intersection leading to
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Figure 30 — SC3: total time spent of SC2 (LTV-ENMPCC algorithm) and SC3 (conventional
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longer vehicle progress as shown in Figure 28(b) and Figure 29(e). In general, the conventional
path-based approach can lead to longer travel distances for vehicles, as it does not allow them to

take advantage of all the available space in the intersection.

5.4.6 Total Time Spent (TTS)

Figure 30 shows the TTS for both the proposed method and the conventional path-based
driving for various flow rates, ranging from 300 to 2100 veh/h/approach. By comparing the
boxes within each flow rate category, one can observe that the proposed SPIC method generally
results in a lower TTS. At all flow rates, the proposed method allows CVAD to follow free-path
driving, resulting in faster TTS. However, path-based driving may take longer due to tracking
predefined paths and decelerating to avoid collisions, as shown in Figs. 27(a)—(b) and 29(a)—(b).
As a result, the LTV-ENMPCC algorithm yields a better performance and constitutes a more

promising solution to enhance the overall efficiency of vehicular traffic at urban intersections.

5.4.7 Fuel Consumption

Finally, Table 6 presents the evaluation of the average fuel consumption of both LTV-
ENMPCC method and the conventional path-based approach. In this study, we adopt the fuel
consumption model presented in Akgelik (1983), which assumes that a vehicle can be in four
operational modes; idling, cruising at a constant speed, accelerating, and decelerating. The model
uses different formulas to calculate the fuel consumption for each mode, and the parameters of
the model are different for different vehicle engines. In the simulations, we use the parameters
for the Honda Civic engine 1.8 L vehicle obtained from (MARINHO et al., 2018). As can be
seen from the table, the LTV-ENMPCC algorithm demonstrates lower fuel consumption than the

conventional path-based method at all flow rates. The differences between the methods become
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Table 6 — SC3: average fuel consumption (ml/s) of SC2 (LTV-ENMPCC algorithm) and SC3
(conventional path-based)

Flow
Method 300 900 1500 2100

LTV-ENMPCC algorithm 53.5 56.1 594 65.0
Conventional path-based  57.4 62.0 73.3 85.7
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Figure 31 — The average computation time of the ENMPCC and LTV-ENMPCC methods for
varying counts of CVAD numbers present in the intersection. The numbers above
each box provide the median values.

more evident as the flow rate increases. This suggests that the LTV-ENMPCC algorithm might

offer better fuel efficiency.

5.4.8 Computation Time

Figure 31 shows the average computation time of seven runs of the proposed ENMPCC
and LTV-ENMPCC methods for different numbers of vehicles in the intersection. The figure
demonstrates that the LTV-ENMPCC method speeds up the computation time compared to
the proposed ENMPCC method when addressing the SPIC problem. For both methods, the
computation time is relatively low when the number of vehicles is small, but it increases as the
number of vehicles increases. The computation time can be improved by leveraging the separable
structure of the SPIC problem and developing a distributed and parallel algorithm to exploit this

structure which is considered for future work.

5.5 CONCLUSION

This chapter proposed a method based on the linear time-varying approximation of the
extended nonlinear model predictive contouring control (LTV-ENMPCC) algorithm for solving

the signal-free path-free intersection control (SPIC) problem. In order to promote traffic safety,



Chapter 5. A Model Predictive Approach for the SPIC Problem 96

SPIC uses a polytopic representation of the CVAD and incorporates duality theory to satisfy V2V
collision avoidance constraints. Additionally, a set of appropriate constraints to avoid collisions
between CVAD and intersection plaza boundaries was introduced. This method enables CVAD
to optimally use the intersection space while improving their travel times as demonstrated in
the simulation results. Although the SPIC algorithm offers some computational advantages over
previous solutions, the computation times increase exponentially with the number of vehicles.
Therefore, for higher demands, the solution may not be fast enough for real-time applications.

Future research will focus on enhancing the SPIC formulation and its solution algorithm.



97

6 CONCLUSIONS AND FUTURE WORKS

6.1 CONCLUSIONS

This thesis focused on addressing critical challenges in the development of connected
vehicles under automated driving (CVAD) decision and control systems. These challenges are
crucial for ensuring the safe and effective operation of CVAD at urban intersections. The thesis
tackles these challenges from three different perspectives, aiming to provide practical solutions
and enhance the reliability of the CVAD decision-making processes.

In Chapter 3, we introduced the signal-free path-free intersection control (SPIC) problem
as a new approach to urban intersection management. The SPIC problem was designed to
optimize the utilization of intersection space and enhance traffic efficiency by leveraging CVAD
technology to enable path-free traversing within a signal-free intersection. Within the plaza, the
intersection was transformed into a boundary-constrained free space, where vehicles are allowed
to travel along the reference paths, provided that their trajectories do not lead to collisions.

In Chapter 4, we introduced the intersection trajectory optimal control problem (ITOP)
as a first attempt to model and solve the SPIC problem. The ITOP simplified the problem by
representing vehicle dynamics with an equation of motion of particles. It guaranteed safety
by modeling the intersection plaza geometry with multiple exponential functions and avoiding
collisions between vehicles using the Euclidean norm. We then transformed the ITOP problem
into a nonlinear programming (NLP) optimization problem by employing finite Fourier series
(FFS) and Bezier curve methods which generated near-optimal and collision-free trajectories of
CVAD. Although the solutions obtained from these methods served as good initial estimates for
direct optimal control methods, they showed some limitations. Motivated by the limitations of the
ITOP problem, such as the non-linearity and non-diftferentiability of the boundary constraints, the
same completion time for all CVAD, and the need for pre-defined initial and final conditions, in
Chapter 5 we proposed a novel formulation of the SPIC problem that addressed these difficulties.

In Chapter 5, the SPIC problem used a kinematic bicycle model to represent the dynamics
of CVAD, with the flexibility to consider other vehicle models. Each vehicle was constrained to
travel within a well-defined circle that prevented it from violating the intersection boundaries.
Circular and polytopic representations of the road region occupied by each CVAD were also
considered to define well-posed V2V collision avoidance constraints. We proposed an extended
nonlinear model predictive contouring control (ENMPCC) method to solve the SPIC problem.
ENMPCC generates optimal and collision-free CVAD trajectories by solving an NLP optimization
problem at each time step of the simulation. To improve the numerical performance of ENMPCC,
we utilized a linear time-varying (LTV) approximation of the objective functions and the vehicle
dynamics which led to better computational efficiency. Compared to the conventional path-based
(lane-based) driving of CVAD, the simulation results of the SPIC problem showed that it can
improve intersection space utilization, resulting in lower travel time and fuel consumption for

the vehicles to traverse the intersection, with guaranteed safety.
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6.2 PUBLICATIONS

The SPIC problem and the quest for a suitable solution have been pivotal in shaping the

author’s doctoral research, leading to the publication of four conference papers and two journal

papers, all of which serve as precursors to this thesis.

6.2.1 Conference Papers

1.

Elham Ahmadi, Rodrigo Castelan Carlson, Werner Kraus Junior, and Ehsan Taheri.
Near-optimal coordination of vehicles at an intersection plaza using Bézier curves. In
VEHICULAR 2022: The Eleventh International Conference on Advances in Vehicular
Systems, Technologies and Applications, pages 6—12, Italy, IARIA, 2022.

Elham Ahmadi and Rodrigo Castelan Carlson. Model predictive control of multi-
vehicle interaction at unsignalized intersections. In 36° Congresso Nacional de

Pesquisa e Ensino em Transportes, Brasil, ANPET, 2022.

. Rodrigo Castelan Carlson, Elham Ahmadi, Eduardo Rauh Miiller, and Gabriel Wendel

Santos da Silva. Optimal coordination of connected vehicles under automated driving
at path-free signal-free urban intersections. In 36° Congresso Nacional de Pesquisa e
Ensino em Transportes, Brasil, ANPET, 2022.

. Elham Ahmadi, Rodrigo Castelan Carlson, Werner Kraus Junior, and Ehsan Taheri.

Near-optimal coordination of vehicles at an intersection plaza using finite Fourier
series. In 35° Congresso Nacional de Pesquisa e Ensino em Transportes, Brasil,
ANPET, 2021.

Roberto Willoughby Maya, Elham Ahmadi, and Rodrigo Castelan Carlson. On-ramp
merging in lane-free freeways using the SPIC algorithm. In 37° Congresso Nacional
de Pesquisa e Ensino em Transportes, Brasil, ANPET (Accepted), 2023.

6.2.2 Journal Papers

1.

Elham Ahmadi, Alireza Olama, Rodrigo Castelan Carlson, and Eduardo Camponogara.
Signal-free path-free intersection control. IEEE Transactions on Intelligent Trans-
portation Systems (Under Review). IEEE, 2023.

2. Elham Ahmadi and Rodrigo Castelan Carlson. Model predictive control of connected

vehicles under automated driving at path-free signal-free intersections. Transportes
(Accepted), 2023.

6.3 FUTURE WORKS

The results presented in this thesis demonstrate the potential of the SPIC and the proposed

methods in solving the trajectory optimization problem of CVAD at signal-free and path-free
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urban intersections. In this section, we provide an overview of several future research directions

with significant potential to be explored.

* Exploit Frenet coordinates: A prospective research direction entails exploring the
application of the Frenet coordinate system (FCS) over the Cartesian coordinate
system within the ENMPCC method. The FSC can lead to better path-following

accuracy and tuning since it eliminates the requirement to define the lag error.

* Improve computational efficiency: The ENMPCC methods proposed in this thesis rely
on solving a nonlinear optimization problem at each sampling time. The numerical
complexity of this optimization problem increases exponentially with the number
of vehicles making it computationally expensive to solve in real-time. Therefore,
improving the computational efficiency of the proposed methods is of significant
importance. One research direction that has the potential to explore and is currently
under investigation is to reformulate the SPIC problem as a bilinear optimization
problem that can be solved efficiently by commercial optimization solvers such as
GUROBI.

* Distributed optimization: The SPIC problem can be seen as a distributed problem in
which the vehicles can collaboratively solve the associated optimization problem. A
promising future direction is to exploit the separability structure of the SPIC problem
and develop distributed optimization algorithms in which a significant portion of the
optimization problem is solved in parallel which can lead to a lower computational

time.

* Different Plaza layouts: The SPIC problem can be used in different plaza layouts than
urban intersections. A possible research direction is to customize and use the SPIC
formulation and the proposed methods for different plaza layouts such as roundabouts,
three-leg intersections, and on-ramp merging in lane-free freeways. Currently, we are

investigating the application of the SPIC problem for on-ramp merging.

» Comprehensive network of intersections, extending the applicability of the proposed
method beyond individual intersections. An essential focus lies in adapting the model
and control approach to accommodate a mixed-traffic vehicular system, where con-
nected vehicles under automated driving (CVAD) coexist with human-driven vehicles,
thereby enhancing the efficacy of the proposed framework. Additionally, future inves-
tigations will delve into refining the methodology to address stochastic disturbances
and parametric uncertainties. A critical consideration involves refining the assumed
perfect communication between vehicles and infrastructure by incorporating a more
realistic model of communication between vehicles into the problem. Furthermore,
the research will aim to incorporate passenger comfort into the optimization problem,
specifically by minimizing jerk, and assess the resultant impact on the trajectory

optimization algorithms.
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* Experimental and real-time implementation: Another research direction is to reform
the proposed methods to be implemented in a laboratory setting, preceding real-world

testing.
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APPENDIX A - FINITE FOURIER SERIES METHOD DERIVATION

In the intersection trajectory optimal control problem (ITOP), there are eight boundary
conditions (BCs), the initial and final positions and speeds, that need to be satisfied with respect
to scaled time 7. Using the finite Fourier series (FFS) representation of states, (22), and by taking
its derivative, the following equation can be constructed:

N,
7 (1) = Z (—mnb? sin (mn7) 4+ 7ncs cos (TnT)) . (75)

n=1

A.1 EXPRESSING SOME FINITE FOURIER SERIES COEFFICIENTS USING BOUND-
ARY CONDITIONS

Because the first eight coefficients are the ones obtained for n = 1,2, (22) and (75) can

be rewritten as:

bZ
z(7) = 50 + b7 cos (n7) + f sin (77) + b5 cos (2n7) 4 5 sin (277)

N, (76)
+ Z (b% cos (mnT) + & sin (7nT1)) ,
n=3
7 (1) = — ﬂb% sin (7w7) + wcf cos (77) — 27b5 sin (277) + 27 cos (277)
(77)

+ Z —mnbZ sin (mnT) + mncy cos (mnT)) .

By replacing the BCs (24) in Egs. (76) and (77) we obtain:

0
= +f +bZ+Zb (78)
i
_ VA 77, Z
=5 b+ b+ Z b2, (79)
N,
zp=m(cf+25+ ) nd |, (80)
n=3
N,
zp =1 |24 —cF + Z(—l)nncﬁ : (81)
n=3

Rewriting (78)—(81) with the four coeflicients on the left hand side results in two linear systems:
b N,
b7 + b5 :zl—g—znngg
bz N,
b5 — b =zp — 3 — ang(—l)”bfl
cf +2c5 = %ZI - Zflvig nc?

. N,
2% — % = Lgp — SV (—1)"ncZ.

(82)
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The solution of these systems gives eight FES coeflicients as presented in (25).

A.2  FINITE FOURIER SERIES COMPACT MATRIX FORM

Replacing back the calculated Fourier coeflicients (25) in (76) and organizing the resulting

expression gives:

N,
2(7) = Fg+ Ciab + Y (Ci by + Cen ) (83)
n=3
with
Fy = 5 (o — ) cos(r) + 5(1 — ) sinfr)
—(z1 — zp) cos — (21 — zp) s
VA B Z1 VAN T o Z1 ZF ) SIN\TT
1 1
+3 (z1 + zp) cos(2nT) + 4—(ZI + zp) sin(277) (84)
T
1
Chz = 5(1 — cos(27T)) (85)
cos(nmt) — cos(mT)  when n is odd,
O = (86)
" cos(nmT) — cos(2w7) when n is even,
sin(nm7) — nsin(r7)  when n is odd,
Cez = (87)
sin(nmt) — Qn sin(277) when n is even.
The corresponding first derivative with respect to the scaled time is:
N,
2 (1) = Fy + Cighf + ) (Clabfy + Clnch) (88)
n=3
with
T
F, = — g(zl — zp) sin(77) + E(ZI — 2 ) cos(7T)
T
— 7(z1 + zp) sin(277) + E(ZI + zp) cos(27T) (89)
C’/8 = msin(277) (90)

, —nmsin(nm7) 4+ wsin(w7) when n is odd,
Ciz = 91)
—nmsin(nrT) 4+ 27sin(277)  when n is even,

, nmcos(nmT) — nmwcos(mT)  when n is odd,
Cly = (92)
nmcos(nmT) — nmwcos(2nT)  when n is even.

and the second derivative is:

2" (r) = Fj + Cribf + Z Cha by + Cla ) (93)
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with
2
T
F) =~ %(ZI —zp) cos(mT) — %(zl — zp) sin(77)
— 212 (21 + zp) cos(2n7) — 7T (21 + zp) sin(277) (94)
cr, z = — 2% cos(2n7) (95)
2 .
—(nm)* cos(nmt 2 cos(wr)  whennis odd,
o [~ costunr) 4 2 costnr) 6
" —(nm)? cos(nnt) 4 472 cos(2rT)  when n is even,
o —(nm)? sin(na7) + na’sin(rr)  when n is odd, ©7)
o —(nm)? sin(nm7) 4+ 2na? sin(277)  when n is even.

Finally, the compact matrix form representation for the position state variables and its
derivatives (speed state variables and accelerations) already incorporating the coeflicients from
the BCs can be used. Considering bracket |-| as vectors representation, we can write the positions

state variables and its first and second derivatives as:

2], 1 =[Az]mx 2, -3) [ Xzl 2N, -3)x1 + [Felmx1,
[Z,}mxl :[Az’]mx(2Nz—3) {XZ](QNZ— 3)x1 7t [F Jmx1, (98)
[Z”}mxl :[Az”]mx(QNz—?))[XZ}@N 3)x1 + [F ]leu

with -
[Xz}(QNz—g)m =[bf b3 5 ... by, o]

[Azlinx 2N, -3) =Ciz Coz Cez - Coa Cex, L (an,-3)

99)
(Al (2N, -3) =[Chz Ciz Cez - Cpz Cox linx(2N,-3),

N
[Az”]mx(2Nz—3) :[CHZ Ch Cé% C”zz CélN ]mx(2N -3)

and [Fyp <1, [Fylmx1, and [} ],,x1 obtained from (84), (89), and (94), and [Az] 11, [AL]mx 1,
and [A ]mx 1 obtained from (85), (86), (87), (90), (91), (92), and (95), (96), (97), respectively.
The “F” terms (Fy,Fy, and F}) depend on the boundary information at the position and
speed level. Therefore, the speed-level and acceleration-level boundary conditions are updated
since they are multiplied by 7} and sz, respectively. In general, the terms that depend on the
boundary conditions are updated at every iteration if 7¢ happens to change during iterations.
From this analysis, it results that fixed-time problems are easier and faster to solve. Moreover, for
time-free problems, the rest of the structure remains intact, and it provides additional flexibility

in the case of intersection management.

A.3  FINITE FOURIER SERIES UNKNOWN COEFFICIENT INITIALIZATION

In the initialization of the unknown coefficients of the FFS method in equation (29),

the cubic polynomials can be used to approximate the position state variables [z,] at the
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Table 7 — Numerical results for different values of w; and w9 (m = 30 and N, = 8)

wy we Total speed increment Completion time Objective function Computation time

Av [m/s] T [s] J [s]
4 0 12.7 27.6 51.1 10.1
0 4 40.7 12.9 51.8 6.4
4 4 15.2 19.3 138.2 9.3
4 2 14.6 18.3 95.3 8.5
2 4 19.4 17.9 110.4 11.5

Table 8 — Numerical results for different values of m (w1 = 4, w9 = 2, and N, = 8)

m  Total speed increment Completion time  Objective function ~Computation time

Av [m/s] Tt [s] J [s]
10 13.2 17.8 88.4 6.6
30 14.6 18.3 95.3 8.5
50 16.2 19.4 103.6 12.4
70 16.9 22.2 112.1 18.7
90 18.1 28.7 129.8 35.9

approximation DPs as:
za(7) = az7'3 + bZ72 + cgT + dg, (100)

for which the coefficients can be obtained from the BCs as follows:

ag =T'zy + Tzp + 2(z] — zp),

by =3(zp — 1) — 2Ty — Trp,

z =3(2F — 21) I F (101)
CZ :TZI,

dz :ZI.
A.4 FINITE FOURIER SERIES WEIGHTING PARAMETER SELECTION

In order to find suitable values for m, w1, w9, and N,, we solve the NLP problem (28)
for different values. Selected numerical results are reported in Tables 7-9. Table 7 presents
the results with respect to different values of wq and wso. It is clear in the table the trade-off
between completion time and total speed increment (see (14)). We choose w1 = 4 and wo = 2
for subsequent problem instances because of the relatively low computation time and balance
between Av and T5.

In Table 8 the results for different numbers of the DPs (m) are reported. As expected,
increasing the number of DPs results in increased computation time. Despite the corresponding
increase in total speed increment, completion times also increase, suggesting that worse local
minima are found for higher values of m, i.e., trajectories in longer paths result. We choose
m = 30 for subsequent problem instances, sufficiently large to avoid collision in between DPs.

The results for a different number of FFS terms (/V,) are presented in Table 9. Increasing
Ny increases the computation time without sensible improvements in the other measures. Slight
changes in completion time are observed despite the lower total speed increment, indicating

that shorter paths are enabled by the increased flexibility in function generation. We choose
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Table 9 — Numerical results for different values of N, (w1 = 4, wo = 2, and m = 30)

N, Total speed increment Completion time Objective function ~Computation time

Av [m/s] 1% [s] J [s]
6 15.0 17.2 96.4 4.7
8 14.6 18.2 94.9 8.5
10 15.8 19.1 101.7 10.1
12 16.5 19.1 104.2 18.8
14 15.6 18.6 99.6 32.8

Nz = 8 to achieve a reasonable trade-off between approximation accuracy and computational
burden. Small values of m and N, may result in better values of Av, T}, and computation time.
However, the trajectories might not be smooth and may also lead to infeasible instances of the
NLP problem. On the other hand, large values result in even higher computation times and,

possibly, worse local optima.
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APPENDIX B — BEZIER CURVE METHOD DERIVATION

To satisfy the boundary conditions (BCs) in (24), it is necessary to compute the derivatives
of (31) and (32) with respect to the scaled time 7. The first derivative of (31) provides the speed
state variables of each vehicle j, Uz and Vy,» in each coordinate of the Cartesian coordinate
system (CCS), given by:

Ny
()= B, (T)Pyy, (102)
=0
and the second derivative is: "
Z' (1) = Z By () Py, (103)
=0
where
—ng(1—71)"="1 if 1 =0,
z! -1 1— nz—l1 z! l 1— ngz—Il—1 .
By (1) = { "=t — e i L€ [Ling = 1] (104)
nZT”z_l, if | =ng.
and
ng(ng —1)(1 —7)"==2 if [ =0
ng(ng — 1)(ng — 2)7(1 — 7)"273 — 2ny(ng — 1)(1 — 7)"=72, if [ =1
" _ ) n 2 (1—r)nz ! 2n,! 7 (1—7)rz -1 ng! 7! (1—7)"2 =12 .
B, (7) = i — et i,y €[22 2]

ng(ng — 1)(ng — 2)7"=3(1 — 1) — 2ng(ng — )72, if l=ny—1

ng(ng — 1)7’"2_27 if | =ny

\
(105)
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B.1 EXPRESSING SOME BEZIER COEFFICIENTS USING BOUNDARY CONDITIONS

By replacing 7 = 0 and 7 = 1 in (32) and (104), the boundary values of B, () and

B;Lz’ ;(7) can be obtained as follows:

1 [=0
BZ,Z(T =0)=

0 l€[l,ng

0 1e0,ng—1]
BZ,Z(T =1)=

1 l:nz

( z

—nz =0 (106)
B;,Z(T = O) = Ny l =1

10 [ € [2,n4]

(

0 [ €[0,ng — 2]
B;J(T =1)=<(—-n, l=ny—1

nz l:nz

Given equations (24), (31), (102), and (106), one can write the following relations:
zi = B0, zt = P, (107)
. ; n
zZj = ?(Pz,l - Pz,0>7 Zp = ?Z(Pz,nz - Pz,nzfl)

By manipulating (107), one can obtain eight known Bezier coefficients (7 o, Py 1,

Ng

Py n,—1 and Py p,) as presented in (34).

B.2 BEZIER COMPACT MATRIX FORM

The first and second derivatives of positions state variables (38) at the m discretization

points (DPs) as vectors of their values can be obtained as follows:

[2mx1 = [Balmx (n, —3)[Xzl(n,—3)x1 + [Fzlmx1,

21 = [Bylnx (ny—3) Xl (n,—3)x1 + [Fzlmx1, (108)
2" limx1 = (Bl (n,—3) [ Xal (n,—3)x1 + [FZ Jmx1,
with
(Xal(n,—3)x1 = [Pa2 Pa3 - Pon,—2)", (109)
(Bl (n,—3) = [Ba2 Bas - Bam,—2)", (110)
[BYlmx(n,—3) = [Br2 By - By, ol", (111)
Byl (ny—3) = [Bua Byg - By ol (112)

where [Fy], [F}], and [F}/] are the constant vectors depending on n; and on the BCs that are

obtained using (36) and its derivatives.
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APPENDIX C - DUAL FORMULATION DERIVATION

In order to derive (63) from (61), we can leverage the convexity of the primal problem
(61) and the nonemptiness of sets 7; and P;. This leads to the establishment of strong duality,
as discussed in (BOYD, S. P.; VANDENBERGHE, 2004). Consequently, we can solve the dual

problem instead of the primal problem. The equivalent form of primal problem (61) is:

min [|p; —pjllz = min fwi;ll2
st. A;p; <b; (113)
Ajpj =b;
P —Pj = Wi
The Lagrangian function associated with problem (113) is defined as follows:
Lpi-pj: Mg N 8ig) = Wi gllz + ALy (Api = bi) + X5(Ap; —bp)

T
+8; j(Pi — Pj — Wi j),

where A; j, A ; ands; ; = s; ; are the Lagrange multiplier vectors associated with the inequality
constraints and equality constraints, respectively. Then, the Lagrangian dual function is defined
as:

(AlijjZ’SZ,j) inf L(pivpj7)‘2]a>‘327513) (115)

Pi;Pj ;Wi j

By rearranging the terms in (115), one can write the following relation:

(Alj7Aj ZJSZ]> inf‘ (HWZ',jHQ zT]Wz,j>
Wi

+ inf <(Az‘T)‘i,j +5ij) pi - AZJbi) (1o
. T T
+inf <(Aj Nji = i4) P = Ajib; )

One can simplify and rephrase (116) by employing the definition of the conjugate
function f*(s) = supxedomf(sT:c — f(x)) and utilizing the fact that inf f(x) = — sup(—f(x)).
Consequently, we obtain:

inf(f(x) — s7a) = —sup(— () + s7x) = —[*(s).
€T

For the first term of the right-hand side of (116), we have
inf . sI T L . 117
évn ' ”Wz,]HQ Si,jWi,j SUP G WVi,j ”Wz,]HQ —f* (Sz,j) —|lw; ]HQ’ (117)
2,7

and the conjugate of [|w; ;|| is (see example 3.26 on page 93 of the book by Stephen P Boyd and
Vandenberghe (2004)):
0 Isijll« <1
Fi(sij) = " (118)

oo otherwise,



APPENDIX C. Dual Formulation Derivation 121

with ||-|| is a norm on R" and ||-||« is the dual norm. For the second term of the right-hand side
of (116), we have:

—bIN;; ATXj+si;=0

in ((AzT)‘i,j +si5) pi — AZjbi) = : (119)
g —00 otherwise,
and similarly, for the third term of the right-hand side of (116), we have:
. ~bIA:; ATA; —s;:=0
inf ((ATAj+si5)py = Njpy) = ¢ 770 TR (120)
J —00 otherwise.
Finally, by replacing (117)—(120) in (116) and forming the dual problem as:
max g(N; i, Nij,Sii
9N Ajir 8ig) (121)
s.t. )‘i,ja Aj,i >0
the dual form of (61) is formed as follows:
dist(P;, P;) = —bI A —bIA;;
6P Py) =, max i i = By Ay
st AT +s;=0 ATX;; —s;; =0, (122)

Isijlla <1, =X;; <0,=X;; <0.

The optimal value of the dual problem, which is the distance between P; and P;, is constrained
to be larger than dg. We can utilize this intuition to reformulate problem (63) as the following
feasibility problem for —)\m' <0, _)\j,i < 0, and s:

T T
—bi Aij —bjAji > ds
AN j+sij=0,
T
AjAji —sij =0,

Isijll2 < 1.

(123)
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