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RESUMO

Durante décadas, o projeto das redes de tráfego seguiu um padrão convencional, com faixas de
tráfego őxas, caminhos predeőnidos dentro dos cruzamentos e sinalização/semáforos de tráfego
controlando movimentos conŕitantes. No entanto, o panorama dos transportes está passando
por uma mudança profunda com o advento dos veículos conectados sob condução automatizada
(CVAD). Esta tecnologia transformadora preparou o terreno para reimaginar a própria essência
da gestão de tráfego. Os pesquisadores buscam um futuro mais inteligente, seguro e eőciente,
investigando cruzamentos sem semáforos para remover a sinalização de tráfego tradicional. Isto
aumenta a eőciência do tráfego através de intervalos mais curtos entre veículos e da eliminação
do tempo perdido em interseções antes semaforizadas. No entanto, apesar de algumas melhorias
na ŕexibilidade, os veículos ainda estão vinculados a faixas e caminhos predeterminados,
restringindo a capacidade e o potencial viário. Para romper o paradigma predominante, esta tese
dá um passo à frente ao propor o controle de interseção sem semáforos e com caminhos livres
(Signal-free Path Free Intersection Control - SPIC). Trata-se de uma estratégia de coordenação
de veículos em interseções urbanas que oferece melhor aproveitamento do espaço da interseção
visando melhorar a eőciência e a segurança do tráfego. O SPIC libera os veículos da necessidade
de seguir caminhos predeőnidos nas interseções, permitindo que percorram trajetórias ótimas.
Introduzimos duas formulações de controle ótimo para resolver o problema SPIC em uma
interseção urbana. O SPIC é transformado em um problema de programação não linear usando
séries őnitas de Fourier ou curvas de Bézier, juntamente com noções de discretização. Os
resultados numéricos revelam trajetórias quasi-ótimas e sem colisões, com o método Bézier
mostrando um desempenho ligeiramente melhor. No entanto, ambas as abordagens estão limitadas
a um conjunto existente de veículos com estados iniciais e őnais pré-deőnidos. Para resolver a
limitação destas primeiras abordagens, esta tese também apresenta uma abordagem de horizonte
deslizante baseada em otimização que é formulada como um problema de controle de contorno
preditivo não linear baseado em modelo (Nonlinear Model Predictive Contouring Control -
NMPCC). Em particular, propomos o algoritmo SPIC. Este algoritmo estende o NMPCC padrão
(Extended Nonlinear Model Predictive Contouring Control - ENMPCC) para ser adaptado
para resolver o problema SPIC. Ele maximiza o progresso do veículo no cruzamento, lidando
com chegadas contínuas, combinando planejamento e seguimento do caminho e garantindo
prevenção explícita de colisões para segurança. No entanto, soluções em tempo real podem ser
computacionalmente caras devido à não linearidade e à não convexidade do problema. Para
melhorar o desempenho computacional, incorporamos um modelo linear variável no tempo
(Linear Time Varying - LTV), usado no NMPCC padrão, no problema ENMPCC, produzindo
o LTV-ENMPCC. O método proposto está encapsulado no simulador SPIC (SPIC-Sim), uma
ferramenta de simulação que permite a modelagem da plena utilização de uma intersecção urbana.
Os resultados da simulação apresentam trajetórias ótimas e livres de colisão para CVAD com
melhor utilização do espaço de interseção, resultando em menor tempo de viagem necessário
para os veículos atravessarem a interseção, e em segurança.

Palavras-chave: Veículos conectados sob condução automatizada. Interseções urbanas. Controle
de contorno preditivo baseado em modelo. Prevenção de colisões.



RESUMO EXPANDIDO

INTRODUÇÃO

Os Veículos Conectados sob Condução Automatizada (Connected Vehicles under Automated

Driving - CVAD) apresentam uma tecnologia transformadora com potencial para melhorar o ŕuxo
de tráfego, a segurança, a redução de poluentes, a sustentabilidade e a eőciência de combustível.
Aproveitando recursos avançados de automação, os CVAD oferecem benefícios como regulação
de tráfego, redução de fatalidades por erros humanos e maior acessibilidade. As interseções
urbanas, críticas para os sistemas de transporte, sofrem com perdas de eőciência, colisões e
congestionamentos, representando ameaças à vida econômica e social. Os métodos tradicionais de
controle de tráfego têm limitações e, apesar dos avanços, o paradigma organizacional estabelecido
para a infra-estrutura rodoviária permanece praticamente inalterado. Para enfrentar estes desaőos,
é necessária uma nova estratégia organizacional adaptada ao CVAD nas interseções urbanas.

OBJETIVOS

Esta tese visa priorizar o desenvolvimento de estratégias de controle eőcientes para coordenar os
CVAD de forma eőcaz e segura em interseções urbanas complexas. Para permitir que os veículos
circulem com mais ŕexibilidade e também utilizem plenamente o espaço de interseção, nesta
tese focamo-nos na situação em que os veículos não estão vinculados a caminhos predeőnidos
e faixas viárias őxas, o que é referido como interseção sem caminhos. Permite-se conduzir em
qualquer lugar da superfície bidimensional da interseção. Em geral, os benefícios das interseções
sem caminhos são um comportamento de condução mais suave, maior capacidade da interseção e
redução do congestionamento do tráfego. Soma-se a isso o fato de semáforos com conőgurações
de sinalização inadequadas ou que não estão dinamicamente adaptados ao tráfego em tempo
real, não só diminuem a eőciência e a segurança do tráfego, mas podem até causar atrasos e
congestionamentos nas interseções. Nesta tese consideramos interseções livres de semáforos e
com caminhos livres.

Em particular, propomos um problema de controle de interseção livre de semáforos e com
caminhos livres (Signal-fee Path-free Intersection Control - SPIC) para coordenar CVAD
em interseções urbanas. O SPIC permite movimentos suaves e seguros dos veículos sem a
necessidade dos semáforos tradicionais ou caminhos predeőnidos. Primeiro, um problema de
controle ótimo baseado na teoria das séries őnitas de Fourier e curvas de Bézier é proposto para
resolver o problema que leva à resolução de um problema de programação não linear (NonLinear

Programming - NLP). Além disso, um método de controle de contorno preditivo de modelo
não linear estendido e adaptado (Nonlinear Model Predictive Contouring Control - NMPCC) é
introduzido para resolver a solução do problema SPIC, ao qual nos referimos como NMPCC
estendido (Extended Nonlinear Model Predictive Contouring Control - ENMPCC). O método
ENMPCC gera trajetórias CVAD ideais e livres de colisões com base em caminhos de referência
independentes do tempo e continuamente diferenciáveis, com foco na maximização do progresso
ao longo dos caminhos. Para garantir a prevenção de colisões, as áreas ocupadas pelos CVAD
são modeladas como conjuntos politópicos em que cada conjunto deve manter uma distância
mínima de segurança dos demais conjuntos. Para aumentar a eőciência numérica, incorporamos
um modelo linear variável no tempo (Linear Time Varing - LTV), usado no NMPCC padrão, no
problema ENMPCC, produzindo LTV-ENMPCC.



METODOLOGIA

A metodologia desta tese gira em torno de abordar o problema SPIC através de métodos de
controle ótimo e também modelar métodos de controle de contorno preditivo:

O Capítulo 3 apresenta o Controle de Interseção Sem Caminho e Sem Sinal, que é um problema
novo para o gerenciamento de interseções urbanas. O SPIC promove uma melhor utilização
do espaço de interseção para melhorar a eőciência geral do tráfego, aproveitando o potencial
dos CVAD para permitir a travessia sem caminhos numa interseção sem sinal, que é referida
como plaza. No plaza, a interseção transforma-se num espaço delimitado, onde caminhos livres
são permitidos desde que as trajetórias resultantes não se cruzem. Na verdade, além de evitar
colisões entre veículos, as restrições para os limites do plaza devem ser projetadas para impedir
que os CVAD violem seus limites. Para este őm, restrições adicionais são impostas ao problema
SPIC para deőnir a geometria do plaza.

O Capítulo 4 introduz o problema de controle ótimo de trajetória de interseção (Intersection

Trajectory Optimal control Problem - ITOP) como um tipo especíőco de problema SPIC. O
ITOP pode ser deőnido como a obtenção de trajetórias ótimas, sem caminhos pré deőnidos,
nas quais os veículos partem de seus estados iniciais e, após cruzarem uma interseção viária,
chegam aos estados őnais para minimizar um ou mais critérios e satisfazer os limites físicos da
praça e as restrições para evitar colisões. O ITOP permite o uso de uma estrutura juntamente
com dois métodos: um baseado nas séries őnitas de Fourier (Finite Fourier Series - FFS) e outro
utilizando curvas Bézier. Esses métodos são empregados para resolver o ITOP de forma eőcaz.
De acordo com as informações recebidas sobre os estados do veículo, e também a geometria
da interseção, os métodos FFS e curvas de Bézier podem gerar trajetórias quase ótimas e livres
de colisão dos CVAD, considerando a ausência de semáforos e caminhos predeterminados. Em
particular, o uso dos métodos FFS e Bézier e noções de discretização convertem o problema
ITOP em um problema de programação não linear, com coeőcientes de Fourier ou Bézier como
parâmetros desconhecidos.

O Capítulo 5 tem como objetivo apresentar uma nova formulação para o problema SPIC e
introduzir um novo método e algoritmo que ofereça uma solução eőcaz para resolver o problema
SPIC. Para fazer isso, propomos uma abordagem de horizonte deslizante baseada em otimização
que é formulada como um controle de contorno preditivo de modelo não linear (NMPCC).
Em particular, estendemos e adaptamos o método NMPCC padrão para resolver o problema
SPIC, ao qual nos referimos como NMPCC estendido (ENMPCC). O método ENMPCC gera
trajetórias CVAD ideais e livres de colisões com base em caminhos de referência independentes
do tempo e continuamente diferenciáveis, concentrando-se em maximizar o progresso ao longo
dos caminhos e, ao mesmo tempo, garantir a segurança. Para garantir a prevenção de colisões
entre CVAD, os veículos são modelados como conjuntos politópicos, onde cada conjunto é
obrigado a manter uma distância mínima de segurança dos demais conjuntos. A natureza não
linear e não convexa do problema SPIC, decorrente do modelo do veículo e das restrições
de segurança, apresenta desaőos computacionais. Empregamos modelos lineares variantes no
tempo (LTV) obtidos através da linearização de funções não lineares. Além disso, aproveitamos
a teoria da dualidade para suavizar as restrições para evitar colisões e permitir a utilização de
abordagens de solução eőcientes.



CONSIDERAÇÕES FINAIS

A tese conclui demonstrando a superioridade dos métodos propostos, nomeadamente ENMPCC
e LTV-ENMPCC, em termos de tempo total gasto, consumo de combustível e tempo de cálculo
em comparação com a condução convencional baseada em caminhos.

Palavras-chave: Veículos conectados sob condução automatizada. Interseções urbanas. Problema
de controle ótimo. Problema de controle de contorno preditivo baseado em modelo. Prevenção
de colisões. Otimização convexa.



ABSTRACT

For decades the design of traffic networks has followed a conventional pattern, with őxed traffic
lanes, predeőned paths within intersections, and traffic signs/signals controlling conŕicting
movements. However, the landscape of transportation is experiencing a profound shift with the
advent of connected vehicles under automated driving (CVAD). This transformative technology
has set the stage for reimagining the very essence of traffic management. Researchers aim for
a smarter, safer, and more efficient future by investigating signal-free intersections to remove
traditional traffic signs/signals. This boosts traffic efficiency through shorter headways and
elimination of lost time. However, despite some ŕexibility improvements, vehicles are still bound
to predetermined lanes and paths, restricting the capacity and potential of roads and intersections.
To disrupt the prevailing paradigm, this thesis takes a step forward by proposing signal-free path-
free intersection control (SPIC). It is a strategy for vehicle coordination at urban intersections
that offers better use of the intersection space targeting to improve traffic efficiency and safety.
SPIC liberates vehicles from predeőned paths within intersections, empowering them to traverse
along optimal trajectories. We introduce two optimal control formulations to address the SPIC
problem at an urban intersection. The SPIC is transformed into a non-linear programming (NLP)
problem using either the őnite Fourier series (FFS) or Bézier curves, along with discretization
notions. Numerical results reveal near-optimal collision-free trajectories, with the Bézier method
showing slightly better performance. However, both approaches are limited to an existing set of
vehicles with pre-deőned initial and őnal states. To tackle the limitation of these őrst approaches,
this thesis also presents an optimization-based receding horizon approach that is formulated as
a nonlinear model predictive contouring control (NMPCC) problem. In particular, we propose
the SPIC algorithm. This algorithm extends the standard NMPCC (ENMPCC) to be tailored for
solving the SPIC problem. It maximizes vehicle progress at the intersection, handling continuous
arrivals, combining path planning and following, and ensuring explicit collision avoidance for
safety. However, real-time solutions can be computationally expensive due to non-linearity and
non-convexity. To enhance capabilities, we incorporate a linear time-varying (LTV) model,
used in standard NMPCC, into the ENMPCC problem, yielding LTV-ENMPCC. The proposed
method is encapsulated in the SPIC simulator (SPIC-Sim), a simulation tool that enables the
modeling of full utilization of an urban intersection. The simulation results present optimal and
collision-free trajectories for CVAD with improved intersection space utilization , resulting in
lower travel time required for vehicles to traverse the intersection, with guaranteed safety.

Keywords: Connected vehicles under automated driving. Urban intersections. Model predictive
contouring control. Collision avoidance.
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k and Êl
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1 INTRODUCTION

Connected Vehicles under Automated Driving (CVAD) have emerged as a revolutionary

technology with the potential to improve the ŕow of traffic, safety, pollutant emissions reduction,

sustainability, and fuel efficiency. By leveraging advanced automation capabilities, these vehicles

offer numerous beneőts, such as traffic regulation in congested cities, a reduction in fatalities

caused by human errors, and increased accessibility for the elderly and individuals with disabilities

(ANDERSON et al., 2014). Thanks to extensive efforts in both academia and industry over the

past few decades, a high level of automated driving has become a feasible option for future

transportation (BUEHLER; IAGNEMMA; SINGH, 2009).

Furthermore, CVAD have the capability to establish communication with each other and

the infrastructure, thereby enhancing the decision-making process. In addition, the integration

of automation and communication technologies empowers vehicles to collaborate and make

decisions that surpass the capabilities of human drivers. By fostering a connected, automated,

and cooperative vehicle environment, advanced strategies for intersection management can be

implemented, surpassing the effectiveness of existing technologies such as traffic lights (CHEN,

L.; ENGLUND, 2016). Hence, the deployment of CVAD has opened avenues for improving

vehicular traffic efficiency, especially in complex urban intersections.

Urban intersections are a crucial part of the transportation systems. Intersecting roadways

are necessary to connect people driving, walking, and bicycling from one route to another.

However, where roads intersect and paths cross, the resulting conŕict points create circumstances

with efficiency loss and where crashes can occur. Traffic congestion at intersections is one

of the serious threats to the economic and social life of modern societies as well as to the

environment, which calls for serious and fundamental solutions. The congestion may cause

extreme travel delays and consequently increase pollution and fuel consumption, and decrease

traffic safety. In fact, each year roughly oneśquarter of traffic fatalities and about oneśhalf of all

traffic injuries in the United States are attributed to intersections (FHWA, 2021). Moreover, the

collision between vehicles at intersections accounts for anywhere between 25% and 45% of all

collisions (DRESNER; STONE, 2008).

The shared road space in an intersection is subject to vehicles with different origins and

destinations, leading to conŕicts. The conventional way of managing these conŕicts is by deőning

a limited set of allowed paths and associated traffic movements (ROESS, 2004). Right of way for

each movement or set of non-conŕicting movements is granted sequentially by traffic signals. The

research on traffic control at intersections achieved expressive improvements in traffic efficiency

(PAPAGEORGIOU et al., 2003). However, the organization of traffic within intersections into

allowed paths/movements, the lost times due to traffic cycles, and the high headways kept by

human drivers are factors in conventional driving that limit the increase of traffic efficiency. With

the advent of CVAD, many methods for coordinating traffic at signal-free intersections have been

developed, aiming to improve traffic efficiency by enabling shorter headways and eliminating
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lost time (CHEN, L.; ENGLUND, 2016; RIOS-TORRES; MALIKOPOULOS, 2017).

The majority of these methods deal with how to allocate time windows of a scarce

resource, the intersection space, to different vehicles. However, since they preserve the notion of

vehicular movement and an associated number of allowed paths in the intersection, they do not

offer the greatest possible efficiency (AHMADI et al., 2021). Indeed, despite the higher capacity

obtained by the elimination of the traffic light cycle and by smaller headways between vehicles

enabled by CVAD, the capacity of the intersection ends up being limited by the relationship

between paths constrained to pre-established vehicular movements.

Some works sought to increase the use of intersection space by enabling a different

organization of traffic at intersections. Stevanovic and Mitrovic (2020) allowed the real-time

reversal of the direction of approaching and leaving lanes and corresponding paths. Although

the left- and right-turning movements traverse the intersection without any conŕicts, the through

vehicles are still required to reserve time-space slots to avoid a collision. Another work proposed

to expand the number of allowed paths for some traffic movements (HE et al., 2018). Vehicles on

any lane were allowed to turn in any direction, at the cost of increasing the number of conŕicts

inside the intersection. It was shown that the method outperformed conventional driving. However,

even in these latter approaches, the number of allowed paths remains restricted, constraining the

achievable capacity at the intersection.

As a matter of fact, despite these advances, the paradigm established decades ago for the

organization of road infrastructure remains roughly the same. To bridge this gap and advance

the current state of the art, it is crucial to develop a novel organizational strategy speciőcally

tailored for CVAD at urban intersections. Additionally, future research endeavors should focus

on the implementation of an efficient control strategy to effectively and safely coordinate the

movement of CVAD at intersections. This novel organization poses several challenges in terms

of coordinating vehicles, ensuring safety, and optimizing the performance of CVAD at complex

and unpredictable urban intersections.

1.1 MOTIVATION

Most of the aforementioned methods for intersection management rely on the concept

of vehicle movements at an intersection, restricting the possible or allowed paths, thus limiting

the use of intersection space, and (i) assume a predeőned limited set of possible paths within

the intersection; (ii) assume that the CVAD speeds are set to be constant; (iii) consider the

intersection with the conŕict regions or deőne vehicle prioritization to avoid collision between

vehicles; (iv) none of them took the collision between vehicles and intersection boundaries into

consideration; and (v) the majority of these methods are formulated as mixed-integer linear

programming (MILP) or mixed-integer non-linear programming (MINLP) problems, which have

high complexity due to the many integer variables included. This results in, particularly at peak

hours, a waste of scarce intersection space and a loss of efficiency. Consequently, CVAD mobility

at the urban intersections is far from being fully exploited. To ensure the high traffic efficiency
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and safety of CVADs, it is imperative to devise a novel approach for their coordination.

This thesis is devoted to addressing the intricate problem of coordinating connected

vehicles under automated driving within signal-free and path-free intersections. Its overarching

objective is to overcome existing limitations and challenge the longstanding paradigm of road

utilization, ultimately aiming to optimize traffic efficiency in urban intersections. By prioritizing

the principles of traffic safety, this study endeavors to pave the way for a paradigm shift in the

traditional approaches to road usage at intersections. The potential for enhancing the usage of

available intersection infrastructure arises when vehicles are granted the freedom to fully exploit

the intersection space through the optimization of their trajectories along all feasible and free

paths.

To enable vehicles to drive with more ŕexibility, and also fully utilize the intersection

space, in this thesis we focus on the situation in which vehicles are not bound to predeőned

paths and őxed road lanes, which is referred to as path-free intersection. It enables driving

anywhere on the two-dimensional surface of the intersection. In general, the beneőts of the

path-free intersection are smoother driving behavior, more intersection capacity, and reduced

traffic congestion. In addition, the fact that traffic lights with inappropriate signal settings or the

ones that are not dynamically adapted to real-time traffic, not only decrease traffic efficiency and

safety but may even cause delay and congestion at the intersections (CHEN, L.; ENGLUND,

2016), in this thesis we consider signal-free intersection. In summary, this research is founded

upon the following principles:

• The traffic signals are no longer used for the CVAD coordination at the intersection,

i.e., we have a signal-free intersection.

• The CVAD paths are no longer őxed and are not conőned to the predeőned limited

set of possible paths within the intersection, i.e., we have a path-free intersection.

• The speeds of CVAD are not restricted to speciőed patterns or they are no longer set

to be constant.

• Applicability to any intersection layout.

• Assurance of collision-free interaction between every pair of vehicles.

• Imposition of constraints on vehicles to remain within the intersection boundaries.

• All CVAD have exact knowledge of their surroundings.

• All CVAD have the capability to establish communication with one another.

1.2 GOALS AND CONTRIBUTIONS

This thesis puts forward a novel strategy for vehicular traffic that leads to free use

of the intersection space in the era of connected vehicles under automated driving (CVAD),

preserving the safety restrictions, so as to obtain its optimal utilization. To this end, we consider

an intersection as an empty space free of movement-related horizontal markings or structural



Chapter 1. Introduction 24

restrictions, except for the intersection boundaries. We call this space a plaza, a signal-free and

path-free intersection. The objective is to propose a novel control strategy for the coordination of

CVAD at an intersection plaza, which is called Signal-free Path-free Intersection Control (SPIC).

SPIC coordinates CVAD by calculating a sequence of control inputs for each vehicle that allows

them to cross the intersection efficiently without colliding with each other and with the plaza’s

boundaries.

The difficulties of solving the SPIC problem potentially arise in the following main

aspects; (i) the non-linearity of the vehicle dynamics; (ii) handling both the static and dynamic

obstacles in a dynamic environment, the plaza; (iii) the non-convexity and high dimensionality of

the traffic safety and path constraints; and (iv) the lack of necessary ŕexibility of the traditional

simulation modeling tools to accurately model the full utilization of intersection space, posing a

signiőcant barrier to the modeling of different traffic organizations in urban networks.

The main contributions of this thesis are summarized as follows:

• Modeling:

ś Enable path-free traversing of connected vehicles under automated driving

at signal-free intersections, which is referred to as plaza, enhances the

efficient use of intersection space.

ś Present and consider the real-world situations including the vehicle’s dy-

namic, different completion times for each connected vehicle under auto-

mated driving, and so on, in the SPIC problem formulation.

ś Introduce effective strategies for collision avoidance constraints based on

safe distances between CVAD in any direction at all times.

ś Design efficient strategies to account for the geometry of the intersection

plaza in the SPIC problem and impose constraints to avoid collision between

vehicles and the plaza’s boundaries.

ś Develop concrete and a well-posed nonlinear optimal control problem for

the SPIC problem.

• Solution method:

ś Develop an efficient near-optimal method for the generation of feasible and

collision-free trajectories that utilizes the Finite Fourier Series (FFS) or

Bézier curves for solving SPIC problem.

ś Develop an algorithm based on an extension of the standard nonlinear

model predictive contouring control, called ENMPCC, for solving SPIC

problem, which results in optimal and collision-free trajectory generation

of CVAD in an intersection plaza.

ś Present linear time-varying (LTV) modeling framework, called LTV-

ENMPCC, to reduce computational effort needed to solve SPIC problem,

which leads to a more scalable solution strategy.
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• Simulation:

ś Develop the SPIC simulator (SPIC-Sim), a simulation modeling tool that

allows for the modeling of ŕexible utilization of urban intersections. SPIC-

Sim enables the investigation of both conventional path-based (lane-based)

and path-free (lane-free) traffic control scenarios.

ś Realistic simulation of traffic scenarios involving both straight and turning

movements and with the continuous arrival of vehicles from all possible

directions in the intersection plaza.

ś Comparison of the SPIC problem with the conventional path-based (lane-

based) driving approach at the intersections.

1.3 TERMINOLOGY AND DELIMITATION

In the literature, there are a variety of names for the type of vehicle considered in this work;

autonomous vehicles, driverless vehicles, connected vehicles, cooperative vehicles, unmanned

vehicles, automated vehicles, connected and automated vehicles, and robotic vehicles, among

others. For a comprehensive discussion on this subject, we recommend referring to the work by

Shladover (2018).

With the aim of establishing consistent terminology and comprehension of automation

systems for on-road motor vehicles, SAE International, more recently with the participation

of ISO, has maintained since 2014 a document that establishes a taxonomy and deőnitions of

terms in this domain (INTERNATIONAL, 2021). All terms listed in the previous paragraph do

not meet the SAE International taxonomy and deőnitions. Any reference to automation must be

made to driving and not to the vehicle. For more detail, it is recommended to review Section

7.1 of the document prepared by International (2021). Nonetheless, the SAE International

publication still presents a gap that doesn’t align with the type of vehicle in this work. The

aspect of communication and cooperation between vehicles or with the infrastructure remains

unaddressed.

In this thesis, the vehicles are referred to as Connected under Automated Driving (CVAD).

The term "connected" explicitly indicates the potential or requirement for communication. The

term "automated driving" serves SAE International by linking automation to driving and not

to the vehicle. In this sense, for this work, according to the SAE International classiőcation of

six levels (0 to 5) of driving automation, a driving automation system of level 4 or higher is

considered.

Moreover, in the literature, there are two names for the type of intersection considered

in this work; lane-free intersection (LI, B. et al., 2018; AMOUZADI; ORISATOKI; DIZQAH,

2022) and continuous free space (LI, B. et al., 2020). We suggest reading (SEKERAN et al.,

2022) for a discussion on the subject. In this thesis, as we focus on urban intersections, we adopt

the terminology path-free intersection, in which the intersection transforms into a boundary-
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constrained free space, where free paths are permitted on the condition that the resulting

trajectories do not collide.

While the proposed formulation of the SPIC problem is quite versatile and capable of

modeling any arbitrary road layouts, this thesis primarily focuses on an urban intersection as an

illustrative example in simulations.

The scope of the method can be broadened to encompass a network of intersections,

enabling its application beyond single intersections. The conceptualization of the connection

between two intersections as a lane-free traffic roadway, as proposed by Papageorgiou et al.

(2021) and Malekzadeh, Papamichail, and Papageorgiou (2021), offers a promising avenue for

further exploration.

Connected vehicles are considered capable of communicating with each other and also

the infrastructure. Communication is considered to be ideal. The time for collecting data from

all vehicles, processing, and calculating the control is considered instantaneous.

1.4 THESIS OUTLINE

The remainder of the thesis is laid out as follows. Chapter 2 brieŕy covers the main

background and the basic principles used throughout this thesis. In this chapter, concepts

of automated driving and connected vehicles are introduced, followed by a brief literature

review on CVAD coordination at intersections. The trajectory optimization problem is then

presented, along with explanations of optimal control and model predictive control techniques.

Important deőnitions and theoretical results from convex optimization are summarized. Finally,

the text discusses the collision avoidance problem. Chapter 3 introduces the Signal-free Path-free

Intersection Control (SPIC) problem which promotes better use of the intersection space to

improve overall traffic efficiency by leveraging the potential of the CVAD. Chapter 4 introduces

the intersection trajectory optimal control problem (ITOP), viewed as a speciőc instance of

the SPIC problem. The primary goal of the ITOP is to determine vehicle trajectories while

satisfying plaza boundaries and collision avoidance constraints. To achieve this, we present two

shape-based methods, relying on őnite Fourier series (FFS) and Bézier curves. These techniques

convert ITOP into a nonlinear programming (NLP) problem that can be solved by an NLP solver.

Chapter 5 introduces a new formulation for the SPIC problem. We build on a model predictive

control (MPC) suitable for trajectory optimization/planning, known as nonlinear model predictive

contouring control (NMPCC). In fact, based on an extension of the standard NMPCC, which

refers to the ENMPCC method, a solution for solving the SPIC problem is proposed. Finally,

Chapter 6 concludes this thesis, with some őnal remarks and comments on future research.

We note that we beneőted from the assistance of ChatGPT in revising the text of this

thesis. Around 5 percent of the text was revised using ChatGPT.
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2 BACKGROUND

This chapter provides a brief introduction to all the basic principles that will be used

throughout this thesis. Sections 2.1 and 2.2 present the concepts of automated driving and

connected vehicles, respectively. Section 2.3 is a brief literature review on CVAD coordination at

intersections. Section 2.4 presents the trajectory optimization problem. Section 2.5 and Section

2.8 explain the optimal control and model predictive control techniques, respectively. Section

2.9, summarizes several important deőnitions and theoretical results from convex optimization,

which plays a crucial role in optimization theory and methods. Finally, Section 2.10 discusses

the collision avoidance problem.

2.1 AUTOMATED DRIVING

Automated driving, refers to the operation of vehicles in which the driving tasks are

performed by an automated system or technology, rather than relying solely on human drivers.

In automated driving systems, a combination of sensors, cameras, radar, lidar, and advanced

algorithms are employed to perceive the vehicle’s surroundings, make decisions, and control the

vehicle’s movements. These systems can handle various aspects of driving, including acceleration,

braking, steering, and navigation, with limited or no human intervention. The goal of automated

driving is to enhance safety, efficiency, and convenience in transportation by reducing human

errors and enabling more efficient traffic ŕow.

The SAE International has deőned six levels of automation for driving systems, commonly

known as the SAE levels of automation (INTERNATIONAL, 2021). These levels provide a

framework for categorizing the capabilities and responsibilities of automated driving systems.

Here is a brief overview of each level:

• Level 0 (No Automation): the driver is in complete control of all driving tasks. There

is no automation present.

• Level 1 (Driver Assistance): certain driving tasks, such as steering or accelera-

tion/deceleration, can be automated by the vehicle. However, the driver remains

responsible for overall vehicle control and must actively monitor the driving environ-

ment.

• Level 2 (Partial Automation): the vehicle can simultaneously control multiple driving

tasks, such as steering and acceleration, under certain conditions. The driver is still

required to remain engaged and monitor the driving environment, ready to intervene

if needed.

• Level 3 (Conditional Automation): the vehicle is capable of managing most aspects

of the driving tasks under speciőc conditions. The driver is allowed to disengage from

actively monitoring the driving environment but must be ready to take control when

prompted by the system.
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• Level 4 (High Automation): the vehicle can perform all driving tasks under predeőned

conditions and does not require driver intervention. However, the system’s operational

domain may be limited to speciőc geographic areas or road types.

• Level 5 (Full Automation): the vehicle is capable of performing all driving tasks

under any condition that a human driver could handle. No human intervention is

required or expected.

2.2 CONNECTED VEHICLES

Connected vehicles refer to vehicles that are equipped with advanced communication

technologies, allowing them to connect and exchange data with other vehicles, infrastructure, and

various external sources. These vehicles use wireless communication systems, such as Dedicated

Short-Range Communication (DSRC) or Cellular Vehicle-to-Everything (C-V2X), to establish

connectivity (SHLADOVER, 2018).

Connected vehicles encompass various communication paradigms, including Vehicle-to-

Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Everything (V2X) interactions

(SHLADOVER, 2018). These interactions leverage advanced wireless communication technolo-

gies to enable seamless data exchange between vehicles, roadside infrastructure, and other entities

(SIEGEL; ERB; SARMA, 2018). They can exchange information about their location, speed,

acceleration, and other relevant data. This communication enables the vehicles to share real-time

information, such as traffic conditions, road hazards, and other relevant updates, enhancing

situational awareness and safety. In the context of this thesis, vehicle connectivity refers to the

capability of automated vehicles to exchange with each other real-time information about their

current states (position and speed), and also the intersection geometry, in an asynchronous mode.

2.3 CVAD COORDINATION AT INTERSECTIONS

CVAD coordination at signal-free intersections is a cutting-edge approach that leverages

advanced technologies and artiőcial intelligence to enhance the efficiency, sustainability, and

safety of road intersections. Traditional traffic control systems, such as traffic lights and stop

signs, often lead to congestion, delays, and accidents due to limited coordination and adaptation

capabilities. In contrast, CVAD coordination at intersections employs an appropriate framework

where CVAD communicate with each other and the infrastructure to make real-time decisions. By

dynamically adjusting their speed, trajectory, and timing, these vehicles can seamlessly navigate

intersections without the need for traditional traffic control mechanisms. The implementation of

CVAD coordination at signal-free intersections has shown promising results in reducing traffic

congestion, enhancing traffic ŕow, minimizing fuel consumption, sustainability, and improving

overall road safety (ZHANG, Y.; CASSANDRAS, 2019). Moreover, the integration of CVAD

coordination with smart city infrastructure and emerging technologies, such as V2V and V2I
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communication, has the potential to further optimize intersection management, leading to more

sustainable and efficient transportation systems (AHMED et al., 2022).

The proposed approaches for modeling intersections thus far can be summarized in four

categories (CHEN, L.; ENGLUND, 2016; MÜLLER, 2018):

• Cells: the intersection is discretized in space and time, being divided into cells while

time windows in each cell are allocated to vehicles so that there are no collisions.

Figure 1a shows an intersection divided into cells.

Dresner and Stone (2004) proposed a model based on space and time discretization.

The authors also extended this control scheme in Dresner and Stone (2008). They

divided the intersection in a cell grid and proposed a reservation-based mechanism

based on a őrst-come őrst-served (FCFS) policy. The FCFS enables the vehicles to

reserve in advance the required space-time so that once the reservation was fulőlled,

the vehicles kept the same speed to cross the intersection. In fact, the approaching

vehicles send requests to the intersection controller to reserve spaces and time slots

within the intersection area. Reservation requests can be accepted or rejected based on

their conŕicts with previous reservations. Moreover, the booking agent is capable of

suggesting new, free routes for vehicles that have their requests denied, to avoid a large

number of requests. A similar approach was followed by Schepperle and Böhm (2009)

who proposed a valuation-aware traffic control system in which vehicles negotiate

their time slots with each other and then adapt their speed according to the time slot

obtained. In any case, the vehicles followed predeőned paths.

• Path-based: a limited set of paths are allocated to vehicles in such a way that vehicles

on conŕicting paths do not collide. In general, the paths are deőned based on the

traffic engineering concept of vehicle movements. Figure 1b illustrates some possible

movements performed by vehicles in an intersection.

Lee and Byungkyu Park (2012) introduced an optimization problem that minimizes

the overlap of vehicles with potential transversal collisions between connected vehicles

at an intersection. The problem is solved in parallel using genetic algorithms and

solvers. Simulation results showed that the performance of the proposed method is

better than that of traffic lights. However, their solution approach offers no guarantee

of performance. Yu et al. (2019) proposed a mixed-integer linear program (MILP)

model to cooperatively optimize the trajectories of CVAD along a signal-free corridor.

They modeled the interactions of vehicle trajectories at the microscopic level, by

considering the coordination between vehicle trajectories. Nonetheless, the vehicle

paths are assumed őxed and they are not optimized. Moreover, at higher demand

levels the computational burden of the proposed method is heavy. As a conclusion,

considering the predeőned paths inside an intersection simpliőes the problem in such

a way that recognizing potential collisions is not a challenging task.
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(a) (b) (c)

Figure 1 ś Intersection modeling: (a) cells; (b) paths; and (c) collision regions/points (red circles)
(adapted from Lei Chen and Englund (2016))

• Conŕicting regions/points: roughly a combination of the previous two, in which only

the points or regions where conŕicts between paths occur are discretized, and time

windows are allocated to vehicles to pass through these points. Figure 1c illustrates

an intersection with highlighted conŕict regions.

One example of this modeling approach is proposed by Feng Zhu and Ukkusuri (2015),

who formulated a linear programming problem with an integer solution so that traffic

ŕows pass safely through the conŕict points of an isolated intersection. Mirheli et al.

(2019) presented a modeling strategy that prioritizes conŕicting movements at a signal-

free intersection in a distributed manner. The method converges to a near-optimal

solution using an iterative framework, through solving a mixed-integer nonlinear

programming problem. The iterative process continues so that CVAD solve their

trajectory planning problem and update their solutions until they reach a consensus.

Another work for this strategy proposed by Levin and Rey (2017), in which the

intersection manager assigns optimal reservations to CVAD through solving a MILP.

The passing order and intersection entrance time are simultaneously derived for all the

CVAD. However, neither vehicle trajectory coordination nor lane-changing behaviors

were taken into consideration. Müller, Carlson, and Kraus (2016) considered an

intersection with the conŕict regions and proposed an optimal arrival time scheduling

(OATS) for the CVAD at a single intersection. OATS is modeled as a centralized

MILP problem that guaranteed minimum aggregate arrival time and the absence of

vehicle collisions. First, the location and speed of the CVAD in each time step are

gathered to provide the shortest and longest travel times to reach an intersection. Then,

the aggregated arrival time for all vehicles is minimized and the speed proőles are

assigned to vehicles to approach the intersection.

• Path-free: the vehicles are allowed to make full use of the intersection space via the

deőnition of their trajectories for any possible path as long as the resulting trajectories

do not conŕict with each other. The research on this subject is rather limited. Bai Li
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et al. (2018) proposed a centralized optimal control problem (OCP) for a number

of CVAD crossing an intersection without using predeőned paths, which is solved

using a two-stage strategy. The őrst stage is performed online and guides the CVAD

to a standard formation before they enter the intersection. In the second stage, the

CVAD in formation cross the intersection according to optimized trajectories that

were computed offline. To handle collision-free constraints, They assumed that each

CVAD and each street block of the intersection is rectangular. When they expected

two rectangles not to collide, all four edge points on one rectangle should remain

outside the other rectangular region. As the authors mentioned, the computation

complexity of this method is too high, so that for 24 CVAD, if 10000 computers work

simultaneously, 358.2 years would be needed to build a complete standard case.

Bai Li et al. (2020) simpliőed the collision-avoidance constraints, a couple of circles

are used to approximate the rectangular street block, and two equal-sized discs are

utilized to cover the rectangular CVAD. To solve the problem, a centralized OCP is

formulated and then solved numerically. They proposed an algorithm for providing

suitable trajectories as initial guesses for the nonlinear programming formulation,

speeding up the solution. These works evolved into a batch-processing framework for

autonomous intersection management that is an integration of planning and reserva-

tion methods (LI, B. et al., 2021). The former handles the batches macroscopically,

and the latter optimizes the cooperative trajectories in one batch microscopically.

A minimum-time nonlinear OCP formulation was also attempted (AMOUZADI;

ORISATOKI; DIZQAH, 2022). The non-convex collision avoidance constraints were

reformulated by the use of the dual problem theory. This approach reduced the in-

tersection crossing time, but the scale of collision avoidance constraints made the

method computationally expensive. These nonlinear OCP-based methods do not take

into account the continuous arrival of vehicles, are conducted offline, require prior

knowledge of the initial and őnal states of the CVAD, and impose the same travel

times on all CVAD.

A strikingly different approach was proposed by Roca et al. (2016, 2020), who relied

on emergent behaviors by modeling vehicle behavior based on a hierarchical set of

rules, similar to the ones used for modeling ŕocks. The simplicity of the approach

results in low computation complexity but also in high sensitivity to minor changes

in the rules. Finally, Neto and Joannis (2021) used formal methods to model the

behavior at intersections to obtain safe trajectories within the intersection space. The

nature of the formulation and employed methods leads, however, to a combinatorial

explosion of the states even for small instances.
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2.4 TRAJECTORY OPTIMIZATION

The term trajectory optimization for motion planning refers to a set of methods that are

used to őnd the best choice of trajectory, that respects the system’s dynamics between an initial

and a őnal state, taking into account a set of constraints (BETTS, 1998; KELLY, 2017). It is

a special type of optimization problem where the decision variables are functions, rather than

real numbers. In fact, this problem generates a set of collision-free and feasible trajectories and

selects an optimal trajectory from the set based on optimization of the objective function.

Trajectory optimization is sometimes referred to as motion planning and incorrectly as

path planning; trajectory optimization differs from path planning since it is parametrized by time

(KATRAKAZAS et al., 2015). Generally, path planning generates a sequence of conőguration

states (way-points) in space taking into account safety, comfort, and accuracy. The path planner

does not answer how to move along the path based on the time, speed, and kinematics of vehicles

(GALCERAN; CARRERAS, 2013). On the other hand, trajectory optimization is a real-time

transition of a vehicle from one feasible state to the next feasible state taking into account

the vehicle’s kinematic constraints (speed constraint, acceleration constraint, etc.) and it must

produce safe, human-like, and human-aware trajectories in a wide range of driving scenarios

(SHARMA; SAHOO; PUHAN, 2021).

The trajectory optimization problem has been well studied in the őeld of robotics

(TAZAKI; MUROOKA, 2020), astrodynamics (SHIRAZI; CEBERIO; LOZANO, 2018), un-

manned aerial vehicles (LIU; BUCKNALL, 2018), and underwater vehicles (YOUAKIM;

RIDAO, 2018). Inspired by earlier studies on motion planning of robot vehicles in other con-

texts (KATRAKAZAS et al., 2015; SHARMA; SAHOO; PUHAN, 2021) and driven by rapid

implementations of communication technologies (MELSON; MA, 2021), studies on CVAD tra-

jectory optimization in the road traffic context have received attention. They mostly focus on the

non-intersecting roads and freeways for connected and non-connected vehicles (MAKANTASIS;

PAPAGEORGIOU, 2018; TYPALDOS; PAPAGEORGIOU; PAPAMICHAIL, 2021). We omit

the details of these works to maintain the focus of this chapter since we do not treat the same

problem as stated herein. On the other hand, intersection management strategies often involve

trajectory optimization to some degree. Trajectory optimization remains complex for vehicular

traffic at intersections, for instance, the risk of collision is increased at the intersections compared

to the motion of the CVAD along a freeway.

2.5 OPTIMAL CONTROL PROBLEMS

The trajectory optimization in road intersections calls for sophisticated approaches, such

as optimal control methods (LEWIS; VRABIE; SYRMOS, 2012; PADEN et al., 2016). Optimal

control theory formulations have the beneőt of obtaining a control input that minimizes a given

cost function while satisfying the dynamic constraints of the vehicles explicitly. There are two

general techniques for solving trajectory optimization problems: direct and indirect methods
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(RAO, 2009). The indirect methods consider the dualized form of the equations including states

and co-states through the application of Pontryagin’s maximum principle (SAERENS; DIEHL;

VAN DEN BULCK, 2010). Indirect methods depend strongly on the accuracy of the initial guess

and also double the size of the problem by introducing co-states that are not physically intuitive.

The direct methods, on the other hand, convert the continuous optimal control problem into an

NLP problem, considering different schemes of control and states parameterization (BETTS,

2010). Although direct methods are less accurate than indirect methods, they are usually preferred

due to the following reasons (CONWAY, 2012): (i) reduction of the problem sensitivity to initial

guesses, (ii) ease of the numerical implementation, (iii) larger domain of convergence, and (iv)

availability of efficient numerical packages and solvers.

One type of direct method is the one in which only the state variables are interpolated

and control variables are considered in the objective function. This method is sometimes

referred to as the shape-based (SB) method since it depends on the shape of the state variables

(PETROPOULOS, Anastassios E; LONGUSKI, 2004; GONDELACH; NOOMEN, 2015). The

SB methods assume the trajectory respects a certain shape (which can be fully described

analytically), and the parameters deőning this shape are then computed to ensure the trajectory

satisőes some boundary conditions (states at departure and arrival, travel time, and so on). The

analytical formulation reduces the computational load signiőcantly, which is a major advantage

of the SB methods over the traditional direct and indirect methods. Many kinds of SB methods

have been proposed by researchers (PETROPOULOS, Anastassios Evangelos, 2001; ZENG;

GENG; WU, 2017). Although there exist multiple SB methods proposed in the literature, the

Fourier series and Bézier curve are widely utilized within this kind of method (TAHERI;

ABDELKHALIK, 2012; CHOE, 2017; MINGYING et al., 2020), due to (i) fast computation

speeds, and (ii) they do not assume a speciőc shape for the trajectory; rather, it assumes an

approximation for the trajectory shape in terms of the FFS or Bézier expansion of the states. For

every different selection of the Fourier or Bézier coefficients, a different shape is obtained.

In the context of spacecraft trajectory generation, FFS and Bézier methods are among

the methods used for the rapid generation of feasible trajectories, introduced by Taheri and

Abdelkhalik (2012) and Fan et al. (2020). These methods provide approximated solutions to

the trajectory optimization problem of dynamical systems. In contrast to the spacecraft case,

in urban traffic systems, road vehicles require different considerations: (i) in the case of road

vehicles, the trajectories are limited to the geometry of the intersection while in the spacecraft the

trajectories are not necessarily limited to any predeőned geometry; (ii) the coordination system in

an intersection is two-dimensional (Cartesian) while spacecraft use a three-dimensional system

(Cylindrical or Spherical); (iii) in the case of intersection management, each vehicle has its own

completion time, while the ŕight time of the spacecraft trajectories are a őxed value; and (iv) it

is not reasonable to assume the initial and őnal speeds of vehicles in an intersection to be zero

which is valid for spacecraft.
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2.6 CONTOURING CONTROL

In contouring control, it is not necessary to track a time-parameterized reference trajectory

accurately, as long as the system follows the reference path (KOREN; LO, 1992). In such problems,

the contouring error is used to denote the error component orthogonal to the reference trajectory,

Contouring error is the deviation of the cutter position of a controlled object/tool from a reference

path while the tracking error is the difference between the predeőned reference path and measured

system output. Figure 2 shows the difference between these errors. The point R shows the value

of the reference at the current time, while P is the actual object/tool position. Point A is the

point on the reference path closest to P. The contouring errors in the x and y axes, ϵx and ϵy,

are measured from point A, while the x and y components of the tracking error, ex and ey, are

measured from the point R.

Cross-coupled control, introduced by Yoram Koren (1997), seeks to minimize contouring

errors instead of tracking errors. This is accomplished by estimating the contouring error of the

x and y axes, ϵx and ϵy, based on the tracking error, ex and ey, using a contouring error model.

A feedback control law is designed to minimize these contouring errors, and the output of the

contouring error controller is added to the control inputs of the individual axes. Several other

control approaches aim to minimize the contouring error rather than only tracking error. McNab

and Tsao (2000) implements receding horizon linear quadratic control using a cost function

penalizing contouring error as well as tracking error and control effort. A similar approach

using model predictive control is proposed by El Khalick M. and Uchiyama (2011), where

separate weighting factors are applied to the errors orthogonal and tangential to the desired path.

Contouring error controllers attempt to address the path-following control problem indirectly

by placing more emphasis on deviation from the path rather than tracking error. However, these

approaches have no ability to affect the path evolution.

2.7 PATH FOLLOWING CONTROL

In trajectory planning/tracking approaches, the reference path is converted to a time-

dependent reference trajectory using an appropriate trajectory planning technique. Trajectory

tracking controllers are then employed to track the reference trajectory. A general architecture

for these approaches is provided in Figure 3. In contrast, path-following controllers determine

the evolution of the reference path and the plant inputs simultaneously using available feedback.

Such controllers address the path-following control problem directly. A general architecture

for path-following approaches is shown in Figure 4. The distinction between tracking and

path-following is important to consider. Tracking requires each object or tool to follow a time-

parameterized reference trajectory governed by a trajectory planner or path governor (GILBERT;

KOLMANOVSKY, 2002; SUSANU; DUMUR, 2006) while minimizing tracking error. Path-

following, on the other hand, only requires an object or a tool to travel along a reference path,

which is not time-parameterized, without the need to track it precisely.
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Figure 2 ś Difference between contour error and tracking error (KOREN, Yoram, 1997); ϵx and
ϵy are the x and y components of the contouring error while ex and ey are the x and
y components of the tracking error.

Figure 3 ś Conventional architecture of the trajectory planning and tracking controller (LAM,
2012).

Dačić and Kokotović (2006) introduced a path-following controller for linear non-

minimum phase systems where a feedback law is designed for the path parameter θ to stabilize

the zero dynamics. Dacic, Nesic, and Kokotovic (2007) extended the approach to nonlinear

systems with unstable zero dynamics, where only practical convergence to the path is guaranteed.

Hauser and Hindman (1995) proposed a method to convert trajectory tracking controllers to

path-following controllers for linearizable feedback systems using an appropriate mapping from

the current state to the path parameter θ. Path-following control schemes also arise in wheeled

mobile robots (SAMSON, 1992), which rely on computing a projection of the robot onto the

reference path. These path-following control approaches discussed thus far do not consider

any constraints on the system. Kanjanawanishkul, Hofmeister, and Zell (2009) combined path-

following control with trajectory tracking control for mobile robots using non-linear model

predictive control. Moreover, Faulwasser, Kern, and Findeisen (2009) proposed model predictive

path-following control (MPFC) for general nonlinear continuous-time systems. Following a

model predictive control framework, a cost function is minimized, subject to constraints, at each

sample. In contrast to tracking MPC, The MPFC approach determines the plant inputs and path

parameter evolution simultaneously. As a receding horizon structure is used in MPFC, feedback

may be taken into account at each time step, while the cost function may be selected to reŕect
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Figure 4 ś Conventional architecture of the path-following controller (LAM, 2012).

desired control objectives such as minimizing traversal time or contouring error.

2.8 MODEL PREDICTIVE CONTROL

Conventional methods for trajectory optimization and motion planning, such as feedback

controllers (AGHA-MOHAMMADI et al., 2011) or iterative linear quadratic regulators (LQR)

(NAGARIYA; SARIPALLI, 2020), often involve decoupling lateral and longitudinal dynamics

and may not fully consider state and actuator constraints. In this regard, model predictive control

(MPC) is a viable alternative to these approaches (ROSSITER, 2018; SCHWENZER et al., 2021).

In MPC, the goal is to use a model of the system to predict the system’s output for a number of

time steps in the future while minimizing an objective function that deőnes the distance between

the predicted outputs and some given desired outputs. This problem is a reference tracking

problem since at each sampling time the outputs of the system are forced to track a reference

signal at a certain time. A key advantage of the MPC is that the constraints can be explicitly

considered in the optimization problem. By solving the corresponding optimization problem, a

sequence of control inputs is obtained over part or the whole time horizon. However, only the

őrst control input is applied to the system. In the next time step, the whole process is repeated for

the computation of the next control input with the horizon shifted one step ahead in time. Thus,

the system operates in a receding horizon fashion. The number of time steps ahead utilized for

prediction is called the prediction horizon.

Nonlinear model predictive contouring control (NMPCC) (LAM; MANZIE; GOOD,

2010) is a control strategy that combines the principles of path-following control (FAULWASSER;

KERN; FINDEISEN, 2009) with the concept of contouring control (KOREN; LO, 1992) and

model predictive control (ROSSITER, 2018). NMPCC contains an analytical description of the

reference paths, parameterized with a tailored path parameter instead of time. The objective

of NMPCC is to minimize the projected distance between the current position of a tool or

object and a reference path while maximizing its progress along the path. NMPCC offers the

advantage of combining both path planning and path tracking in a single nonlinear optimization

problem through the application of contouring control. In contrast to the state-of-the-art motion

planning techniques that involve a two-level optimization process, where an upper-level optimizer

generates time-dependent trajectories and a lower-level optimizer tracks the generated trajectory

accurately (GILBERT; KOLMANOVSKY, 2002; LI, N. et al., 2017), the NMPCC combines

these levels into a single optimal control problem. While NMPCC has been applied to drone
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racing (ROMERO et al., 2022), car racing (LINIGER; DOMAHIDI; MORARI, 2015), parallel

autonomy for self-driving cars (SCHWARTING et al., 2017), and winding roads (LEVY;

HADDAD, 2021, 2022), this work applies NMPCC to a complex driving scenario, signal-free

path-free urban intersection, which is expected to be more challenging.

2.9 CONVEX OPTIMIZATION AND DUALITY

In this section, the basic terminology of the convex optimization problem is discussed

(BOYD, S. P.; VANDENBERGHE, 2004; BERTSEKAS, 2009). The optimality conditions of

convex problems are also discussed. The general form of a convex optimization problem is:

minimize f0(x)

subject to gi(x) ≤ 0, ∀i = 1, . . . ,o (1)

aTi x = bi, ∀i = 1, . . . ,p

where f0 : Rn → R is a convex function called the objective function, n is the dimension of

decision variables, gi : R
n → R, i = 1, . . . ,o deőne the inequality constraints which are all

convex functions, and őnally aTi x = bi, ∀i = 1, . . . ,p deőne the equality constraints which are

affine functions (and therefore also convex). In summary, a convex optimization problem consists

of minimizing a convex function over a convex set. If the objective function is zero, then the

problem is called a feasibility problem. Regarding problem (1), some important deőnitions and

terminologies apply and are discussed in the following.

Deőnition 1 A point x ∈ Rn is called feasible if it satisfies all equality and inequality constraints.

A set of feasible points is called the feasible set. Accordingly, problem (1) is called feasible if the

feasible set is not empty.

Deőnition 2 A point x∗ ∈ Rn is called the optimal point if it is feasible and minimizes the

objective function f0. An optimal point is called global if it is optimal in the entire feasible set

and it is called local if it is optimal in a feasible neighborhood of x∗.

Deőnition 3 The optimal value, p∗, of problem (1) is defined as

p∗ = min{f(x) | gi(x) ≤ 0, i = 1, . . . ,o, aTi x = bi, i = 1, . . . ,p}.

Proposition 1 For any convex problem in the form of (1) every local optimal point is also

global.

After discussing the general form of convex optimization problems, the next subsection will

introduce the duality theory pertaining to these problems.

The basic idea in Lagrangian duality is to take the constraints into account by augmenting

the objective function with a weighted sum of the constraint functions. Considering problem (1),
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the Lagrangian Function L : Rn ×Ro ×Rp → R is deőned as:

L(x,λ, s) = f(x) +
m
∑

i=1

λigi(x) +

p
∑

i=1

si(a
T
i x− bi) (2)

where, λi(si) is the Lagrange multiplier associated with the i-th inequality (equality) constraint.

The vectors, λ and s are called dual variables associated with problem (1).

Proposition 2 For any feasible point x ∈ Rn, the Lagrangian function induces a lower bound

on the objective function if λi is a positive number.

In order to őnd the best lower bound, the Lagrangian dual function q : Rn × Rp → R is

constructed as follows:

q(λ, s) = min
x
L(x, λ, s) (3)

Proposition 3 The dual function q(λ, s) is a concave function and hence, a global maximum

point exists.

Proposition 4 For any λ ≥ 0 the dual function yields a lower bound on the optimal value p∗ of

problem (1), i.e.,

q(λ, s) ≤ p∗. (4)

The lower bound provided by the dual function is not necessarily the best dual bound. According

to the concavity property of the dual function, the best lower bound is obtained by maximizing

the dual function. This is another optimization problem, which is called the dual problem is

deőned as:

maximize
λ,s

q(λ,s) (5)

subject to : λ ≥ 0 (6)

The optimal value of the dual problem, d∗, is the best lower bound on p∗. In particular, we have

d∗ ≤ p∗.

The difference p∗ − d∗ is called the duality gap. In general and for general nonlinear problems

(not necessarily convex) the duality gap is usually nonzero. However, for convex problems and

under certain conditions, called Slater’s condition, the duality gap is zero, i.e.,

d∗ = p∗.

The former and the latter case are called weak and strong duality, respectively.

By using the concept of dual problem and strong duality, the necessary and sufficient

conditions (KKT conditions) of optimality for the convex problem can be stated in the following

proposition.
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Proposition 5 Consider the convex problem (1) and assume the strong duality holds. Then x∗

is the optimal point if the following conditions are satisfied:

gi(x
∗) ≤ 0, i = 1, . . . ,o,

aTi x
∗ = bi, i = 1, . . . ,p,

λ∗i ≥ 0, i = 1, . . . ,o,

λ∗i gi(x
∗) = 0, i = 1, . . . ,o,

∇xL(x
∗,λ∗,s∗) = 0.

In summary, for any optimization problem with differentiable objective and constraint functions

for which strong duality holds, any pair of primal and dual optimal points must satisfy the KKT

conditions.

2.10 COLLISION AVOIDANCE

Collision avoidance is an integral part of motion planning and trajectory optimization and

plays a crucial role in ensuring safety and mitigating potential risks in various domains. Whether

in transportation, robotics, or any autonomous system involving moving objects, collision

avoidance is of utmost importance (BERNTORP, 2017; HUANG; TEO; TAN, 2019; VAGALE

et al., 2021). By actively detecting and predicting potential collisions, and taking preventive

measures, collision avoidance systems can help prevent accidents, minimize damages, and save

lives. The ability to anticipate and avoid collisions not only enhances the safety of vehicles and

machinery but also improves overall operational efficiency. Collision avoidance in robotic motion

planning refers to the process of ensuring that a planned trajectory is safe and collision free

(MINGUEZ; LAMIRAUX; LAUMOND, 2016). This can include being free of collisions between

the controlled object and static obstacles in its environment, collisions between the controlled

object and other objects or dynamic obstacles in motion, as well as self collisions between

different parts of the controlled object itself. From CVAD navigating busy roads to industrial

robots working alongside humans, collision avoidance technology is a fundamental component

that enables safe and reliable operations. Emphasizing the development and implementation of

effective collision avoidance strategies is paramount to creating a safer and more sustainable

future (MINGUEZ; LAMIRAUX; LAUMOND, 2016).

Many effective methods exist to solve the problem of collision avoidance in path/trajectory

planning in the őelds of unmanned aerial vehicles, robots, and CVAD vehicles. Earlier works

considered the obstacle avoidance problem in a continuous time framework using dynamic

optimization (SUNDAR; SHILLER, 1995; HAGENAARS; IMURA; NĲMEĲER, 2004). The

set of states that can be steered to a target set, while satisfying bound constraints and avoiding

obstacles, is a level set of the value function of the dynamic optimization problem, obtained

by solving a Hamilton-JacobiśBellman equation. Another approach is to include an additional

potential function for avoiding obstacles in the cost function, thus converting the collision
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avoidance problem into an unconstrained optimization problem allowing gradient-based solvers

(KIM; SHIM; SASTRY, 2002). However, the construction of potential functions in a general

framework is difficult. Other techniques include the A∗ method, the V -graph method, and the

Rapidly-exploring Random Trees method (AGGARWAL; KUMAR, 2020; MAC et al., 2016).

These methods usually do not consider dynamic models, or convert the model and constraints

into simple geometric constraints, and then obtain geometric paths connecting the start and

terminal points, meeting obstacle avoidance constraints and other constraints through different

ideas.

Machine learning techniques can be used to learn collision avoidance policies from data.

This approach involves training a model on a dataset of collision-free trajectories and then

using the model to predict a safe trajectory for the robot (VIRDI, 2018). Deep learning-based

pure planning (HONG; SAPP; PHILBIN, 2019) or joint planning (EVERETT; CHEN, Y. F.;

HOW, 2018) and prediction approaches learn typical distributions of interaction and motion

patterns and, hence, are supposed to yield collision-free and human-like trajectories. Like for

many problems, these learned approaches are arguably best in average solution quality even at

solution times required by automated driving. However, solutions that can guarantee feasible or

safe trajectories are still in their infancy (BROSOWSKY et al., 2021).

To address the issue of collision avoidance, an approach that can be adopted involves

the formulation of a trajectory optimization problem that incorporates a dynamic model, per-

formance index, and diverse constraints. This methodology takes into account the perspectives

of optimal control and collision avoidance concerns, and subsequently solves the optimization

problem using either analytical or numerical methods (SHIRAZI; CEBERIO; LOZANO, 2018).

Considering optimization-based collision avoidance, the design of a collision avoidance algo-

rithm is inŕuenced by various factors. Ericson (2004) categorizes these factors into different

aspects, including the representation of the application domain, the types of queries, parameters

of the simulation environment, performance considerations, robustness, as well as ease of imple-

mentation, and use. To maintain conciseness and prioritize the ideas employed in this thesis, the

remainder of this section will focus on the őrst three factors.

The őrst factor, application domain representation, refers to the geometrical representation

used for the bodies of the controlled objects. It can be thought of as the process of choosing

which shape we want to use to model the area occupied by controlled objects. The chosen

geometric representations have a direct inŕuence on the algorithms that have to be utilized for

solving the optimization problem. The second factor refers to the different types of queries and

the nature of the queries we aim to pose to the collision detection system. To illustrate, we

might seek to address whether multiple objects intersect or collide at a speciőc moment in time.

Alternatively, we may inquire about potential approaches to resolve a collision between two

objects. The objective of these inquiries is to determine whether there is any overlap between

two or more objects, taking into account their positions, velocities, and orientations relative to a

coordinate frame at a speciőc moment in time. The ability to address these questions forms the
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foundation of any collision avoidance algorithm. In the context of automated system trajectory

optimization/planning, our primary focus lies in ascertaining if two objects intersect and, if

so, devising a strategy to prevent them from colliding. Finally, the third factor refers to the

environment simulation parameters, i.e., to the several parameters in the simulation that have a

direct impact on the collision avoidance algorithm like the number of controlled objects, their

relative sizes, and positions.

Collision avoidance can be viewed in terms of a distance formulation since it implies

that the distance between every two controlled objects should be greater than the minimum safe

distance. In various studies, static/dynamic obstacles are modeled using circles, cylinders, spheres,

or cones (ZHAO; ZHOU, 2013; DAM, 2019; BROSSETTE; WIEBER, 2017). In this scenario, a

collision is deemed to occur if the Euclidean distance between the objects is less than a speciőed

minimum safe distance. Representing the problem in this manner transforms the optimization

problem into a non-convex NLP problem. Although NLP solvers offer ŕexibility, they can

be computationally demanding and challenging for solving collision avoidance problems. To

address these challenges, linearization, and convexiőcation methods are often employed to reduce

the computational complexity of the problem (MORGAN, 2015; CHU, 2015; NAIR; TSENG;

BORRELLI, 2022). These techniques aim to approximate the non-convex problem as a convex

or linear one (D’ASPREMONT; BOYD, S., 2003). Alternatively, some studies have adopted a

polygonal representation for two-dimensional objects or a polyhedral representation for three-

dimensional objects to formulate collision avoidance constraints. In such cases, a mixed-integer

programming formulation is commonly used (KEVICZKY et al., 2008). Furthermore, some

research endeavors have explored leveraging strong duality (BOYD, S. P.; VANDENBERGHE,

2004; ZHANG, X.; LINIGER; BORRELLI, 2020), Farkas’ Lemma (GERDTS et al., 2011),

or polar set (PATEL; GOULART, 2011) representations to exactly reformulate the collision

avoidance constraints into expressions compatible with NLP solvers. However, these approaches

introduce additional variables and constraints to the problem.

2.11 CONCLUSION

This chapter brieŕy reviewed some of the important topics that are needed throughout this

thesis, such as the concept of automated driving, connected vehicles, and the notion of connected

vehicles under automated driving at signal-free intersections. In addition, basic fundamentals of

trajectory optimization, optimal control, model predictive control, and convex optimization were

presented. Lastly, we reviewed the theoretical concepts of collision avoidance constraints and

their applications in transportation and robotics. With the information presented in this chapter,

we are now ready to begin with the main contributions of this thesis.
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3 SIGNAL-FREE PATH-FREE INTERSECTION CONTROL PROBLEM

This chapter introduces the Signal-free Path-free Intersection Control (SPIC) which is a

novel problem for urban intersection management. SPIC promotes better use of the intersection

space to improve overall traffic efficiency by leveraging the potential of the CVAD to enable

path-free traversing at a signal-free intersection, which is referred to as plaza. In the plaza, the

intersection transforms into a boundary-constrained space, where free paths are permitted on the

condition that the resulting trajectories do not intersect. In fact, in addition to vehicle-to-vehicle

(V2V) collision avoidance, the constraints for the plaza’s boundaries must be designed to disallow

the CVAD from violating the limits of the plaza. To this end, additional constraints are imposed

on the SPIC problem to deőne the geometry of the plaza.

In this chapter, we provide a detailed explanation of the SPIC problem. The notion of

the plaza is introduced in Section 3.1, followed by the presentation of the vehicle model in

Section 3.2. Furthermore, Sections 3.3 and 3.4 introduce the safety constraints, while Section

3.5 presents the concept of the objective function. Lastly, the overall formulation of the SPIC

problem is outlined in Section 3.6, with a concluding summary provided in Section 3.7.

3.1 PLAZA MODELING

We consider a schematic example of the plaza in Figure 5 to clarify this idea in more

detail. Figure 5a depicts a plaza P within which, as an example, two vehicles with trajectories T1
and T2 can travel between any two points, e.g., approaching and departing roads. These vehicles

are free to adjust their trajectories without being bound to pre-speciőed paths or movements.

The plaza P can have varied layouts, concerning the number of intersecting roads and shapes, to

enable the modeling of various intersections. Figures 5b and 5c show the vehicles’ coordinates in

time. Figure 5d shows that as long as the trajectories of the two vehicles do not cross at the same

time and at the same location, there is no collision. Analogously, this means that at all times a

minimum safe distance, ds, is maintained between every two vehicles as shown in Figure 5d.

According to the concept of the plaza, there is no need to continue with path-based roads

and intersections and mimic path-based driving tasks. This enables increasing the intersection

space utilization, thus allowing for higher ŕow and capacity. Therefore, in contrast to the

conventional path-based (lane-based) urban roads and intersections, this ŕexibility offers more

beneőts under the scenario with heavy traffic ŕow, especially, with heavy left-turn movements

(PARK, S.; RAKHA, 2010). The objective is to őnd the optimal trajectories of CVAD, without

predeőned paths, that should be followed by the vehicles so as to minimize one or more criteria,

such as the intersection delay, fuel consumption, emissions, and passenger comfort, while strictly

avoiding vehicle collision.

It should be noted that SPIC must include both static and dynamic obstacles which makes

the problem more difficult because of the time-varying nature of vehicle positions in the plaza. In

fact, in addition to preserving collision avoidance between the trajectories of every two vehicles,
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Figure 5 ś (a) Plaza P and trajectories T1 and T2 of two CVAD in the Cartesian coordinate
system; (b) vertical coordinate of the trajectories; (c) horizontal coordinate of the
trajectories; and (d) distance between two vehicles and minimum safe distance ds.

SPIC must produce trajectories that do not collide with the boundaries of the plaza, as long as

CVAD are inside the plaza. To do so, at all times a minimum safe distance is maintained in any

direction between every two vehicles as well as with intersection boundaries. To clarify this, we

consider the following example for a typical four-leg intersection as a plaza which is shown in

Figure 6.

We consider the case in which two CVAD streams are approaching a plaza from north

and west, respectively. Figure 6a and Figure 6b show, respectively, the trajectories of these two

CVAD and the relative distance between them in a case where no constraints were deőned to

avoid collision. Subsequently, as can be seen from the őgure, these two traffic streams potentially

collide with each other, i.e., they cannot keep a safe distance. Now, suppose the case we impose

traffic safety constraints into the SPIC problem. In this case, the trajectories of the two CVAD

and the relative distance between them are shown in Figure 6c and Figure 6d, respectively.

As depicted in Figure 6c, the trajectories of both CVAD deviate to the right-hand side of the

intersection in order to avoid a possible collision. Although the continuous trajectories of the two

CVAD are in fact intersecting, as shown in Figure 6d, the trajectories do not cross at the same

time and the same location. Thus the relative distance between them remains above a minimum
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Figure 6 ś Evaluation of the traffic safety constraint; (a) trajectories of the two CVAD and (b)
the relative distance between them before applying collision avoidance constraints;
(c) trajectories of the two CVAD and (d) the relative distance between them after
applying collision avoidance constraints. When the constraint is active, the distance
between two CVAD remains above the minimum safe distance ds.

safe distance, and therefore there will be no collision.

3.2 DYNAMIC MODEL

A dynamical model is a mathematical representation used to describe the time-dependent

behavior of a system (BRIN; STUCK, 2002). One of the most common forms of dynamical

models is expressed through ordinary differential equations (ODEs). The general form of an

ODE-based dynamical model to be controlled is described as:

ẋ(t) = f(x(t),u(t)), (7)
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In this equation, x(t) represents the state variables of the system, u(t) is the vector of control

inputs, and t denotes time. The function f(·) describes a nonlinear function that deőnes the

dynamic of the system. The continuous-time dynamical model (7) can be discretized to simulate

the system’s behavior over discrete time steps. This discretization is often achieved using

numerical integration methods like the Euler method. The discretized equations with sampling

time ∆t can be expressed as:

xk+1 = xk +∆tf(xk,uk), (8)

with k the discrete time index and t = k∆t, xk is the state variables vector at time k, and uk

is the control inputs vector at time k. Discretized dynamical models are essential in numerical

simulations and numerical solutions of differential equations, enabling us to understand and

predict complex system dynamics.

3.3 VEHICLE-TO-VEHICLE COLLISION AVOIDANCE CONSTRAINTS

Vehicle-to-vehicle (V2V) collision avoidance constraints present unique challenges for

coordinating vehicles at the plaza. Two vehicles may end up occupying the same space at the

same time, leading to a potential collision if they both maintain their current speed. In such cases,

at least one of the vehicles needs to adjust its speed and/or change course to avert the collision,

allowing the other vehicle to pass through safely. While collision-free trajectory optimization

is well-established for single vehicles to avoid known obstacles, the complexity increases when

multiple vehicles interact in scenarios like urban intersections or highways. Navigating through

urban environments demands heightened safety measures due to the increased need for obstacle

avoidance, contrasting with the relatively straightforward maneuvers often encountered on

highways with minimal obstacle avoidance.

In essence, the interactions between vehicles at the plaza necessitate the introduction

of constraints to generate collision-free trajectories for the vehicles. Unlike existing strategies

for vehicular traffic safety, we are concerned with the position of vehicles and minimum safe

distances between them in any direction and not with a following or lateral headway. This is

because the paths of vehicles are not predeőned. To ensure strict collision avoidance, a minimum

safety distance, denoted as ds, must be maintained in all directions between every pair of vehicles.

3.4 PLAZA BOUNDARIES CONSTRAINTS

In addition to V2V collision avoidance, for a signal-free path-free intersection plaza, it is

crucial to ensure the prevention of collisions between vehicles and intersection plaza boundaries.

Without traditional traffic signals and with path-free movements, the reliance on the geometric

layout becomes even more critical to facilitate the safe movement of vehicles. By incorporating

constraints that deőne the geometry and boundaries of the plaza, boundary-aware trajectories
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can be generated which ensure the vehicles remain within the plaza boundaries while navigating

through it.

3.5 OBJECTIVE FUNCTION

The objective function is essential in an optimization problem as it quantiőes the perfor-

mance of solutions and provides a well-deőned target for achieving optimal results. By converting

real-world problems into mathematical representations, the objective function enables systematic

search algorithms to identify the most favorable solutions while considering trade-offs between

competing objectives. In vehicle coordination at intersections, common objective functions

include minimizing total travel time or delay, maximizing intersection throughput, and ensuring

safety by reducing collision risk and promoting compliance with traffic regulations. These

objectives aim to optimize traffic ŕow and enhance overall efficiency and safety at intersections.

3.6 OVERALL FORMULATION OF THE SPIC PROBLEM

The SPIC problem formulation can be written as follows:

min Objective function,

s.t.

Vehicle’s model,

Vehicle’s kinematic constraints,

Vehicle’s initial and őnal constraints,

Vehicle-to-vehicle collision avoidance constraints,

Plaza boundaries constraints.

(9)

3.7 CONCLUSION

In conclusion, designing a controller or motion planner plays a critical role in the

navigation of the CVAD through the plaza in the SPIC problem. Its ability to bridge the gap

between environmental perception and vehicle response is essential to guide the vehicle’s actions

and ensure vehicles remain on the boundaries of the plaza while avoiding collisions. The

successful implementation of an effective controller signiőcantly contributes to the overall safety

and performance of vehicles’ coordination.

In the next chapters, this thesis presents novel methods to address the SPIC problem using

optimal control and model predictive control techniques. The proposed approaches leverage the

theory of őnite Fourier series (FFS) and Bézier curves, as well as nonlinear model predictive

contouring control (NMPCC) to effectively address the collision-free trajectory optimal control

problem outlined in (9). These innovative methods hold signiőcant promise in enhancing path-

following capabilities while ensuring collision avoidance in complex scenarios.
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4 AN OPTIMAL CONTROL APPROACH FOR THE SPIC PROBLEM

The problem of signal-free path-free intersection control (SPIC) for the coordination of

connected vehicles under automated driving (CVAD) at the intersection plaza was presented

in Chapter 3. In this chapter, we introduce the intersection trajectory optimal control problem

(ITOP) as a speciőc type of the SPIC problem. ITOP can be stated as őnding optimal trajectories,

without predeőned paths, in which the vehicles depart from their initial states and, after crossing

a road intersection, arrive at őnal states so as to minimize one or more criteria and satisfy the

plaza physical limits and collision avoidance constraints. The optimality is measured concerning

minimum travel time and/or minimum total acceleration.

ITOP enables using a framework along with two shape-based methods; one based on

the őnite Fourier series (FFS) and another using Bézier curves. These methods are employed

to solve the ITOP effectively. It should be noted that other direct methods for solving optimal

control problems can be employed to provide a solution for ITOP. According to the receiving

information about vehicle states, and also intersection geometry, the FFS and Bézier curves

methods can generate near-optimal and collision-free trajectories of the CVAD, considering

the absence of signals and predetermined paths. In particular, the use of the FFS and Bézier

methods and discretization notions convert the ITOP problem to a nonlinear programming (NLP)

problem, with Fourier or Bézier coefficients as the unknown parameters.

In Section 4.1 the ITOP is further detailed, encompassing intersection plaza modeling,

vehicle state equations, performance criteria, and constraints. Section 4.2 introduces intersection

trajectory optimization methods, leveraging FFS and Bézier approaches for state representation

and NLP transcriptions. Section 4.3 showcases numerical outcomes, drawing comparisons

between FFS and Bézier methods. Lastly, Section 4.4 offers conclusion and preliminary ideas

for the next chapter.

4.1 ITOP FORMULATION

In this section, we model the environment of the intersection plaza and the vehicles.

Each vehicle is described by two simple state equations. Subsequently, we give mathematical

formulations of the set of constraints that have to be satisőed for the desired trajectories to be

feasible. The set of constraints includes vehicle dynamic constraints and traffic safety constraints,

which consist of V2V collision avoidance constraints and plaza boundary constraints. Finally, an

objective function is presented.

4.1.1 Plaza modeling

A four-leg intersection is shown in Figure 7 as a plaza. In the őgure, two vehicles are

shown with example trajectories T1 and T2. The X and Y axes represent the central lines of the

intersection on the Cartesian coordinate system (CCS). This intersection is modeled simply by its
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Figure 7 ś A typical four-leg intersection as a plaza (yellow area) with approximated boundaries
(dashed lines), and example trajectories T1 and T2 of two CVAD.

four intersection boundaries (IB) shown by the dashed lines in Figure 7. Each IBh, h = 1, . . . , 4,

is modeled by an exponential function given by:

yh = fh(x(t)), (10)

where,

fh(x(t)) = r0,h + r1,h · e
r2,h·(x(t)+r3,h), (11)

with parameters r0,h, r1,h, r2,h, and r3,h shape the function according to the intersection

geometry and h being the number of IB utilized for deőning the plaza boundaries constraints.

4.1.2 Vehicle’s equations of motion

A simpliőed equation of motion (EoM) is used that models vehicles as particles as follows

(although other models can be used):






ẍj(t) = axj
(t),

ÿj(t) = ayj (t),
(12)

with axj
and ayj the acceleration of vehicle j in coordinates x and y in the CCS, respectively,

and t the continuous time. The total (absolute) acceleration of vehicle j is given by:

aj(t) =
√

a2xj
(t) + a2yj (t). (13)

Given Nv vehicles at the plaza, the total speed increment is deőned as:

∆v(t) = ∆v1(t) + . . .+∆vNv
(t), (14)

with ∆vj(t) the speed increment of the j-th vehicle:

∆vj(t) =

∫ Tf

0
aj(t)dt, j = 1, . . . , Nv, (15)

in which Tf stands for the completion time, i.e., the time taken by the vehicles to cross the plaza.
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4.1.3 Vehicle’s kinematic constraints

To guarantee that the speeds and accelerations of the vehicles are within admissible

values, the following constraints are imposed for CVAD j:

aj(t) ≤ amax,

0 ≤ vj(t) ≤ vmax,
(16)

with aj the total acceleration of vehicle j, vj the speed of vehicle j, and amax and vmax the

maximum total acceleration and maximum speed, respectively.

4.1.4 Initial and őnal constraints

In addition to vehicles’ kinematic constraints, initial and őnal constraints are deőned for

the trajectory of each CVAD as follows,

zj(t = 0) = zj,0, zj(t = Tf) = zj,f

żj(t = 0) = żj,0, żj(t = Tf) = żj,f ,
(17)

where zj(t) = [xj(t) yj(t)]
⊤ with xj(t) and yj(t) the position of vehicle j in each coordinate x

and y, respectively, zj,0 and zj,f the given initial and őnal position state variables, respectively,

and żj,0 and żj,f are the given initial and őnal speed state variables of each vehicle j, respectively.

4.1.5 V2V collision avoidance constraints

In order to strictly avoid collisions, a minimum safe distance, ds, must be kept in any

direction between every two vehicles:

dij(t) ≥ ds, (18)

in which dij(t) is the distance between vehicles i and j, i = 1, . . . , Nv, j = 1, . . . , Nv, with Nv

the number of vehicles in the plaza, and i < j.

4.1.6 Plaza boundaries constraints

In addition to V2V collision avoidance, constraints must be enforced to disallow the

CVAD from violating the boundaries of the plaza. Then, the intersection’s geometric constraints,

based on (10), that ensure there are no collisions of CVAD with the boundaries, are:






yj(t) ≤ fh(xj(t)), if h = 1, 2

yj(t) ≥ fh(xj(t)), if h = 3, 4
∀j, ∀t. (19)

with fh is deőned in (11).
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4.1.7 Performance index

The performance index is chosen as a weighted sum of ∆v and Tf that should be

minimized:

J = w1 ·∆v + w2 · Tf , (20)

withw1 ≥ 0 andw2 ≥ 0 weighting parameters. Minimizing ∆v and Tf are conŕicting objectives

that have a direct effect on fuel consumption and comfort versus speed and completion time.

4.1.8 Overall ITOP Formulation

Given the EoM, constraints, and performance index, the ITOP can be written as follows:

minimize J in (20),

s.t.

Vehicle’s kinematic model (12),

Vehicle’s kinematic constraints (16),

Initial and őnal constraints (17),

V2V collision avoidance constraints (18)

Plaza boundaries constraints (10) and (19).

(21)

The states are the position and speed of each vehicle j in each coordinate x and y (xj(t),

yj(t), vxj
(t), and vyj (t)), and the control variables are axj

(t), ayj (t), and Tf . Moreover, the

resulting collision-free trajectory optimization problem is non-linear and non-convex duo to the

objective function and also V2V collision avoidance constraints.

4.2 INTERSECTION TRAJECTORY OPTIMIZATION METHOD

In this section, the FFS and Bézier curves methods are proposed to solve the ITOP

for coordinating the CVAD at the intersection plaza. In these methods, the state variables, i.e.,

positions and speeds, are interpolated, and control variables, i.e., accelerations and completion

time, are considered in the objective function. Then, the FFS or Bézier representations of state

variables are imposed on the dynamics, and the required acceleration to realize the resulting

trajectories are evaluated. Finally, the ITOP is reduced to a system of algebraic equations in

the Fourier series or Bézier coefficients, and a collision-free trajectory optimization problem is

formulated.

4.2.1 FINITE FOURIER SERIES

Inspired by the ŕexibility of the Fourier series to approximate any continuous function,

in this work, we propose to customize the FFS method to solve the ITOP and generate feasible

trajectories of the CVAD, based on the works by Taheri and Abdelkhalik (2016) and Mingying
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et al. (2020) applied to spacecraft. The trajectories of the CVAD can be deőned, by a given

parameterized FFS whose coefficients must be optimized.

4.2.1.1 Fourier approximations

Each position state variable of each vehicle j in each coordinate x and y (xj and yj) is

approximated by a FFS as:

z(τ) =
bz0
2

+

Nz
∑

n=1

(bzn cos (πnτ) + czn sin (πnτ)) , (22)

with Nz the number of Fourier terms used for approximating position state variable z, and bz0;

bzn and czn the corresponding coefficients to be determined, and τ the scaled time such that:

0 ≤ τ ≤ 1, τ =
t

Tf
. (23)

The speed state variables of each vehicle j in each coordinate x and y (vxj
and vyj ) are the

őrst derivatives of (22) with respect to the scaled time, τ . The corresponding őrst and second

derivatives with respect to the scaled time can be readily obtained, For further details, please refer

to the Appendix A. Afterward, this representation of state variables is imposed to the dynamics

and the required acceleration to realize the resulting trajectories are evaluated.

4.2.1.2 Boundary conditions

For each vehicle, we know the boundary conditions (BCs), i.e., the initial and őnal

positions and speeds in the coordinate system. The BCs with respect to scaled time for each

vehicle are:
z(0) = zI, z′(0) = Tf żI,

z(1) = zF, z′(1) = Tf żF,
(24)

and the labels I and F refer to ‘initial’ and ‘őnal’, respectively, while the prime denotes the

derivative with respect to the scaled time and the dot the derivative with respect to the conventional

time. These relations are obtained through the chain rule resulting in:

d

dt
=

1

Tf

d

dτ
.

The previous relation is also needed to obtain the time derivative of the states and the following

relation is needed to obtain the time second derivative of the states:

d2

dt2
=

1

T 2
f

d2

dτ2
.

The advantage of using the BCs is that they are physically meaningful quantities in contrast

with the Fourier coefficients. The direct estimation of Fourier coefficients is not straightforward

because the sum of a series of unique sin and cos terms is not known prior. Therefore, it is easier
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and more physically meaningful to extract some of the unknown Fourier coefficients in terms of

the physical values to reduce the total number of design variables. Another advantage of the BCs

for solving some of the Fourier parameters is that we avoid the introduction of extra equality

constraints.

4.2.1.3 Using the BCs for expressing some coefficients

Some of the coefficients can be expressed in terms of the BCs and the other coefficients.

This reduces the number of unknown Fourier coefficients. Next, the expressions of the őrst four

coefficients are derived.

By manipulating algebraically (22), its őrst derivative, and (24), and solving a linear

system of equations, it is straightforward to derive the őrst four coefficients of (22) as:

bz1 =
zI − zF

2
−

Nz
∑

n=3

bzn; for n odd,

bz2 =
zI + zF

2
−
b0
2
−

Nz
∑

n=4

bzn; for n even,

cz1 =
1

2π
(żI − żF)−

Nz
∑

n=3

nczn; for n odd,

cz2 =
1

4π
(żI + żF)−

1

2

Nz
∑

n=4

nczn; for n even,

(25)

The derivation of (25) from (22) and (24) is provided in the Appendix A.1.

4.2.1.4 Evaluation Points

In order to solve for the unknown Fourier coefficients, the EoM are evaluated atm points,

called discretization points (DPs). We considermDPs with equal time intervals within the scaled

time:

τ1 = 0 < τ2 < · · · < τm−1 < τm = 1.

All the proposed constraints in Section 4.1 are satisőed only at each DP. Thus, to avoid

violations between DPs, we must choose a large enough safety distance and/or sufficiently

dense DPs. This special set of DPs can be used to evaluate the integral efficiently by using a

reduced set of points. Moreover, selecting a suitable number of discretization points is often

problem-dependent and is found after a few trials, much like selecting the number of Fourier

terms; too few will cause inaccurate results and too many will slow down the solution algorithm.

4.2.1.5 Compact matrix form representation

Since the EoM are evaluated at the DPs, a compact matrix form representation for the

position state variables and its derivatives (speed state variables and accelerations) already
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incorporating the coefficients from the BCs can be used. Considering bracket [·] as vector

representation, we can write the positions state variables at the m DPs as vectors of its values:

[z]m×1 = [Az]m×(2Nz−3)[Xz](2Nz−3)×1 + [Fz]m×1, (26)

with [Az] a matrix of coefficients depending on Nz and on the DPs, [Xz] the vector of unknown

Fourier coefficients to be determined, and [Fz] a vector of terms obtained from the BCs. The

values of [Az] and [Fz] are computed offline and the only unknowns are the FFS coefficients.

The deőnition of these matrices and the representation of the compact matrix form of the őrst

and second derivatives of (26) are both derived in Appendix A.2.

The total acceleration of vehicle j along the trajectory can be represented in the matrix

compact form as well by replacing (26) and its derivatives in (12) and (13):

[

aj
]

m×1 =

√

∑

∀z

[az]2m×1 ≤ [amax]m×1. (27)

Note that az = z̈, therefore we need the relations between z̈ and z′′ (see Section 4.2.1.2).

4.2.1.6 Nonlinear programming formulation

Given the compact matrix form (26) and corresponding derivatives, the ITOP described

in (21) is transcribed as the following nonlinear programming problem:

min
[Xz]∀z∀j,Tf

w1 ·∆v(t) + w2 · Tf

s.t.

[aj(t)] ≤ [amax],

0 ≤ [vj(t)] ≤ [vmax],

[dij(t)] ≥ [ds],

[yj(t)] ≤ [fh(xj(t))], if h = 1, 2

[yj(t)] ≥ [fh(xj(t))], if h = 3, 4

(28)

where i = 1, . . . k, j = 1, . . . , k, i < j; w1 and w2 are weighting positive parameters, which

assign priority to each term of the objective function.

We note that (26) and its derivatives are embedded in (28) through the substitution

in (12)ś(15). The vector of decision variables is the completion time, Tf , and the remaining

unknown Fourier coefficients after enforcing the BCs, [Xz]. Therefore, the number of decision

variables is Nv(2Nz − 9) + 1.

4.2.1.7 Initialization of Decision Variables

Due to the NLP formulation, the efficiency of the solvers is sensitive to the initial guess of

decision variables. Hence, obtaining a good initial guess is expected to decrease the computation



Chapter 4. An optimal control approach for the SPIC problem 54

time considerably. The initialization of the unknown coefficients can be expressed in compact

form as:

[Xz](2Nz−3)×1 =
(

[Az]na×(2Nz−3)

)−1 (

[za]na×1 − [Fz]na×1

)

, (29)

with na the number of discretization points for the approximation and [za] the approximated

position state variables. Then, cubic polynomials can be used to approximate the position state

variables at the DPs, and more detail can be found in Appendix A.3.

The initialization of the completion time can be approximated by arbitrarily selecting

the time taken by a vehicle to cross in a straight direction from its origin to its destination with

maximum total acceleration:

Ta =

√

2S

amax
, (30)

where S is the distance between the origin and destination of the selected vehicle.

4.2.2 Bézier Curves

In the previous section, we explored the FFS method for the generation of trajectories. In

this section, we incorporate the Bézier curves method (LATTARULO et al., 2018; SCHWUNG;

LUNZE, 2021; FAN et al., 2020) and discretization concepts to transform the ITOP into an

NLP, where the unknown parameters are the Bézier coefficients. Additionally, we present a

novel compact representation of the Bézier curve method, which further reduces the number of

decision variables compared to the work by Fan et al. (2020).

4.2.2.1 Bézier Approximations

The Bézier curves (FAROUKI, 2008) have several properties for trajectory optimization

that are appropriate for the purpose of this work; (i) the starting and ending points of the curve

correspond to the őrst and őnal Bézier coefficients, respectively; (ii) the curve completely lies

within the convex hull formed by all Bézier coefficients; and (iii) the curves have the advantage of

simplicity and curvature continuity. In this part, a Bézier curve is employed to approximate each

position state variable of each vehicle j in each coordinate of the CCS (xj and yj) as follows:

z(τ) =

nz
∑

l=0

Bz,l(τ)Pz,l, (31)

with z = [xj(τ) yj(τ)]
⊤, 0 ≤ τ = t/Tf ≤ 1 the scaled time, nz the number of Bézier terms

(order of the Bézier curve), Pz,j the unknown Bézier coefficients to be determined, and Bz,l(τ)

the Bernstein basis polynomials given by:

Bz,l(τ) =

(

nz
l

)

τ l(1− τ)nz−l, l ∈ {0,1, . . . , nz}. (32)

Accordingly, the őrst and second derivatives of (31) with respect to the scaled time, τ ,

can be easily obtained. For more detailed information, please refer to the Appendix B.
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4.2.2.2 Boundary conditions

Similar to the FFS method, the BCs, i.e., the initial and őnal positions and speeds with

respect to scaled time for each vehicle are:

z(0) = zI, z(1) = zF, z′(0) = Tf żI, z′(1) = Tf żF. (33)

The labels ‘I’ and ‘F’ refer to ‘initial’ and ‘őnal’, respectively, the prime denotes the derivative

with respect to the scaled time, and the dot the derivative with respect to the continuous time.

4.2.2.3 Using the BCs for expressing some coefficients

By manipulating algebraically (31) and (32) and using the BCs (33), it is straightforward

to derive four Bézier coefficients of (31) as a function of given BCs as follows:

Pz,0 = zI, Pz,1 = zI +
Tf żI
nz

,

Pz,nz−1 = zF −
Tf żF
nz

, Pz,nz
= zF,

(34)

reducing the number of unknown Bézier coefficients, thus speeding up the optimization. The

derivation of (34) from (31) and (33) is provided in the Appendix B.1. Then, substituting these

coefficients in (31) and organizing the resulting expression gives:

z(τ) = Fz +

nz−2
∑

l=2

Bz,l(τ)Pz,l, (35)

with

Fz = Bz,0Pz,0 +Bz,1Pz,1 +Bz,nz−1Pz,nz−1 +Bz,nz
Pz,nz

. (36)

The corresponding őrst and second derivatives with respect to the scaled time, z′(τ) and z′′(τ),

can be readily obtained.

4.2.2.4 Evaluation points

In order to solve for the unknown Bézier coefficients, similar to the FFS method, the

EoM are evaluated at m DPs with equal time intervals within the scaled time (τi − τi−1 =

1/(m− 1), i = 2, . . . ,m):

τ1 = 0 < τ2 < · · · < τm−1 < τm = 1, (37)

The constraints in Section 4.1 are satisőed only at each DP.

4.2.2.5 Compact matrix form representation

The compact matrix form representation of the position state variables and its derivatives

can be written as vectors of its values at the m DPs as follows:

[z]m×1 = [Bz]m×(nz−3)[Xz](nz−3)×1 + [Fz]m×1, (38)



Chapter 4. An optimal control approach for the SPIC problem 56

with [Fz] a constant vector depending on nz and on the BCs obtained using (36), [Bz] a matrix

of coefficients given by:

[Bz]m×(nz−3) = [Bz,2 Bz,3 . . . Bz,nz−2]
⊤, (39)

and [Xz] the vector of unknown Bézier coefficients:

[Xz](nz−3)×1 = [Pz,2 Pz,3 . . . Pz,nz−2]
⊤. (40)

Matrices [Bz] and [Fz] are computed offline and [Xz] results from the optimization. The compact

forms of the őrst and second derivatives of (38) have a similar structure. Further detail is provided

in Appendix B.2.

4.2.2.6 Nonlinear Programming Formulation

Given the compact matrix form (38) and corresponding derivatives, we can formulate a

NLP with the unknown Bézier coefficients [Xz] and the completion time Tf as decision variables:

min
[Xz]∀z∀j,Tf

J

s.t.[aj(t)] ≤ [amax],

0 ≤ [vj(t)] ≤ [vmax],

[dij(t)] ≥ [ds],

[yj(t)] ≤ [fh(xj(t))], if h = 1, 2

[yj(t)] ≥ [fh(xj(t))], if h = 3, 4,

(41)

with i = 1, . . . , k, j = 1, . . . , k, and i < j. We note that (38) and its derivatives are embedded

in formulation (41) through the substitution in (12)ś(15).

4.2.2.7 Initialization of Decision Variables

The initialization of the unknown Bézier coefficients can be expressed in a compact form

as follows:

[Xz](nz−3)×1 =
(

[Bz]na×(nz−3)

)−1 (

[za]na×1 − [Fz]na×1

)

, (42)

with na the number of DPs for the approximation and [za] the approximated position state

variables. A cubic Bézier curve can be used to approximate [za] using the BCs. The initialization

of the completion time Ta can be approximated using (30).

4.3 NUMERICAL RESULTS

This section presents an evaluation of the ITOP solution using the FFS and Bézier curve

methods. The evaluation is carried out on a machine with an Intel Core i5-8265U CPU and
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Table 1 ś Settings for vehicles and intersection.

Parameter Description Value
Nv Number of CVAD 3
amax Maximum acceleration (m/s2) 2
vmax Maximum speed (m/s) 15
ds Safe distance (m) 1
wr Road width (m) 11
Lr Road length (m) 90

Table 2 ś Scaling parameters.

Parameter IB1 IB2 IB3 IB4

r0 11 11 −11 −11
r1 1 1 −1 −1
r2 −1 1 1 −1
r3 −11 11 11 −11

16 GB of memory in MATLAB 2018b. The NLP problems (28) and (41) are solved using

the fmincon solver of the optimization toolbox. To compute each ∆vj(t) in (15), we perform

numerical integration of the corresponding total acceleration over time Tf utilizing the built-in

function trapz. Furthermore, we compare the results obtained with the FFS method to those

obtained using the method based on the Bézier curve.

4.3.1 Scenario setup

We investigate a simple scenario with three CVAD at the intersection plaza each of which

with different initial and őnal positions and speeds. The goal is to show that the proposed FFS and

Bézier methods are able to generate near-optimal and collision-free trajectories for these three

vehicles. CVAD1 travels from north to east, CVAD2 travels from south to west, and CVAD3 goes

straight from east to west. The center of the plaza is the origin of the CCS. The initial positions

(xi,j , yi,j) of the three CVAD are (−2, 40) m, (2,−40) m, and (43, 8) m, respectively, and the

őnal positions (xf,j , yf,j) are, respectively, (45,−4) m, (−45, 1) m, and (−45, 8) m. The initial

speeds (vi,xj
, vi,yj ) are (1,−5) m/s, (−1, 5) m/s, and (−7, 0) m/s, respectively, and the őnal

speeds (vf,xj
, vf,yj ) are, respectively, (6,−2) m/s, (−6, 2) m/s, and (−8, 0) m/s. The required

parameters for the formulation and numerical simulations are summarized in Tables 1, 2, and 3.

In order to determine appropriate values for the weighting parametersm,w1,w2,Nz, and

nz we undertake the resolution of the NLP problems (28) and (41) with various settings. After

thorough experimentation, we select w1 = 4, w2 = 2, m = 30, Nz = 8, and nz = 8 as they

achieve a reasonable trade-off between approximation accuracy and computational complexity

for future problem instances. Further elaboration on the chosen numerical results can be found

in Appendix A.4.
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Table 3 ś Experiment setup for three CVAD.

CVAD Initial position Final position Initial speed Final speed Direction
(m) (m) (m/s) (m/s)

1 (−2, 40) (45,−4) (0,−3) (4, 0) N-E
2 (2,−40) (−45, 1) (0, 2) (−4, 0) S-W
3 (43, 8) (−45, 8) (−3, 0) (−5, 0) E-W
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Figure 8 ś SC1: FFS method; (a) trajectories of three CVAD and (b) safe distance between them
with ds = 1 m.

4.3.2 Scenario 1 (SC1): Analysis of the trajectories obtained by the FFS method

The optimized trajectories generated by the solution of the NLP problem based on the

FFS method are illustrated in Figure 8a. The labels CVAD1śCVAD3 identify the trajectories,

colored disks indicate DPs and time, and the gray squares are the initial positions for each

CVAD. The solid thick black lines show the boundary of each IB whose approximations are

presented by black dashed lines. For this particular scenario, the trajectories deviate from what

would be expected in a path-based method and it is clear that the CVAD follow free trajectories.

Noteworthy, the followed paths seem to approach the paths of minimum distance. Figure 8b shows

that the distances between every two vehicles remain above the safe distance by a large margin

for this scenario. It means that the trajectories of every two CVAD do not cross simultaneously

and at the same location and ensure collision avoidance. Although the continuous trajectories of

CVAD1 and CVAD3 are in fact intersecting, as shown in Figure 8b the relative distance between

them (the green dash-line) is above a safe distance (solid pink line), and therefore there will be

no collision between them. The solution of the NLP problem (28) for w1 = 4, w2 = 2, m = 30

and Nz = 8 resulted in a completion time, Tf = 18.3 s, a total speed increment, ∆v = 14.6 m/s,

and an objective function value of 95.3. The computation time for generating the trajectories by

using the FFS is 8.5 s.

Figures 9(a)ś(c) show the acceleration in both axes (axj
and ayj ), the total (absolute)

acceleration (aj), and the acceleration (âj) for each of the three CVAD, with j = 1, 2, 3. Figures

9(d)ś(f) show the speed in both axis (vxj
and vyj ), and the total speed (vj) for the same three

vehicles. As shown in the őgures, the total acceleration proőle and also speed proőle of each
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(a) (b) (c)

(d) (e) (f)

Figure 9 ś SC1: FFS method; (a)ś(c) acceleration proőles and (d)ś(f) speed proőles of CVAD j,
where j takes values 1, 2, and 3.
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Figure 10 ś SC1: FFS method; (a) trajectories of three CVAD and (b) safe distance between
them with ds = 7 m.

vehicle are far below the maximum total acceleration and maximum speed values, respectively,

which satisőes the existing constraints at the plaza. In addition, the proőles are smooth, as

expected due to the minimization of ∆v. The lower weight on Tf and the low initial and őnal

speeds contribute to the low speeds observed.

To evaluate the effectiveness of the collision avoidance constraint, we present in Figure 10

the numerical results of three CVAD based on a value of ds that differ from the one in Figure 8.

We select a relatively large value of ds = 7 m to emphasize the impact of ds on the results. In

this case, the completion time is obtained as Tf = 21.3 s. We observe in Figure 10a a slightly

different behaviour of CVAD3. In particular, CVAD3 is not allowed to travel through a straight
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Figure 11 ś SC2: Bézier method; (a) trajectories of three CVAD and (b) safe distance between
them with ds = 1 m.

path (compare to Figure 8a). It can also be seen in Figure 10b that the collision avoidance

constraint avoid CVAD1 and CVAD3 to collide in the time interval [9, 10.8] seconds, and

subsequently, the distance between the vehicles (green dashed line) does not go below the safe

distance line (solid purple line). We conclude that the smaller ds leads to faster trips while in

contrast, a large ds can lead to a conservative solution.

4.3.3 Scenario 2 (SC2): Analysis of the trajectories obtained by the Bézier method

The optimized trajectories generated by the solution of the NLP problem based on the

Bézier method are illustrated in Figure 11a. Figure 11b shows the distances between every two

CVAD. It can be observed that, at all times, a minimum safe distance is maintained between all

CVAD, accordingly, the vehicles distances remain above ds by a large margin for this scenario.

The solution of the NLP problem (41) for w1 = 4, w2 = 2, m = 30 and nz = 8 resulted in a

completion time, Tf = 14.5 s, a total speed increment, ∆v = 13.4 m/s, and an objective function

value of 90.8. The computation time for generating the trajectories by using the Bézier method

is 4.5 s.

We experimented with different combinations of values for m, w1, w2 and nz. Varying

the values of w1 and w2 had more inŕuence on the total speed increment than the completion

time. When the number of DPs (m) is increased there is an expected increase in computation time.

Despite the corresponding increase in total speed increment, completion times also increase,

suggesting that worse local minima are found for higher values of m, i.e., trajectories in

longer paths result. Finally, increasing nz also increases the computation time without sensible

improvements in the other measures. Small values ofm and nz may result in better values of ∆v,

Tf , and computation time. However, the trajectories might not be smooth and may also lead to

infeasible instances of the NLP problem. Similar results to those obtained with the FFS method,

as shown in Appendix A.4, were observed.

To evaluate the efficacy of the collision avoidance constraint, we present in Figure 12 the

numerical results of three CVAD based on a larger value of safe distance, ds = 7 m. We observe
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Figure 12 ś SC2: Bézier method; (a) trajectories of three CVAD using Bézier method; and (b)
distance between them with ds = 7 m.

in Figure 12a a slightly different behavior of CVAD1, which keeps more distance from the corner

of the IB (compared to Figure 11a) due to the activation of collision avoidance constraints. It can

also be seen in Figure 12b that the collision avoidance constraint avoids the collision between

CVAD1 and CVAD3 at around t = 5 s, and subsequently, the distance between the vehicles

(green dashed line) does not go below the safe distance line (solid purple line).

4.3.4 Scenario 3 (SC3): Comparative Analysis; FFS vs. Bézier Methods

In this section, a comparison is made between the results obtained using the FFS and

Bézier curve methods. The optimized trajectories generated by the solution of the NLP based

on the Bézier and FFS methods are illustrated in Figure 13. The colored disks corresponding

to the cool colormap indicate DPs and time of the Bézier method (TB), and the colored disks

corresponding to the warm colormap indicates DPs and time of the FFS method (TF). The gray

squares are the initial positions for each CVAD. The solid thick black lines show the boundary of

each IB whose approximations are presented by black dashed lines. For this particular scenario,

Initial
position

CVAD
2

CVAD
1 CVAD

3

Figure 13 ś SC3: FFS vs. Bézier; trajectories of three CVAD using Bézier method (TB) and FFS
method (TF) with ds = 1 m.
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(a) (b) (c)

(d) (e) (f)

Figure 14 ś SC3: FFS vs. Bézier; (a)ś(c) acceleration proőles and (d)ś(f) speed proőles of CVAD
j, where j takes values 1, 2, and 3.

the trajectories of both methods deviate from what would be expected in a path-based method

and it is clear that the CVAD follow free trajectories. Noteworthy, the followed paths of the

Bézier method seem to approach the paths of minimum distance compared to the FFS method.

Figures 14(a), (b), and (c) show the total (absolute) acceleration (aj), and the acceleration

(âj) for each of the three CVAD, with j = 1, 2, 3, for both Bézier and FFS methods. Figures

14(d), (e), and (f) show the speed (vj) for the same three vehicles. The total acceleration and

speed proőles of each vehicle are far below the maximum total acceleration and maximum

speed values, respectively, which satisőes the existing constraints at the plaza. In addition, the

proőles of both methods are smooth, as expected due to the minimization of ∆v. However,

the acceleration and speed proőles of the trajectories generated with the FFS method exhibit

more variation compared to the ones with the Bézier method. Accordingly, we can conclude

that the Bézier method is capable of providing more comfortable vehicle movement with less

computation time.

The numerical results derived from the solution of the NLP problem (28) for the FFS

method and NLP problem (41) for the Bézier method is presented in Table 4. The table compares

the total speed increment (∆v), completion time (Tf ), objective function (J ), and computation

time (Tc) of three CVAD. Notably, the completion time is deőned as the duration required for all

CVAD to cross the intersection plaza and reach their respective destinations. As seen in Table 4,

the computation time of the Bézier method is lower than with the FFS method due to the smaller

number of decision variables in the őrst method. Moreover, smaller total speed increment and

completion time were obtained with the Bézier method.
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Table 4 ś SC3: numerical results of Bézier and FFS methods.

Method ∆v (m/s) Tf (s) J Tc (s)
Bézier 14.1 11.5 93.5 4.3
FFS 18.2 12.3 97.4 7.9

4.4 CONCLUSION

The ITOP has been addressed using the FFS and Bézier representations along with

discretization strategies. These methods offer notable beneőts such as fast computation speed

and efficient generation of feasible trajectories, but, they are not fast enough for real-time

applications. Although the solutions obtained from these methods serve as excellent initial

estimates for direct optimal control techniques, they are considered to be near-optimal due to

their sole parameterization of the states and not the states and control signals.

In the forthcoming chapter, our objective is to address the limitations of the proposed

methodologies and effectively solve the SPIC problem with improved efficiency and reliability.

To achieve this, we present an enhanced formulation of the SPIC problem that, in contrast to the

ITOP formulation, incorporates various real-world considerations, including:

• Vehicle dynamics: incorporate a kinematic bicycle model to emulate the actual

behavior of vehicles with the ŕexibility to accommodate other vehicle models.

• Continuous arrival of vehicles: take into account a continuous ŕow of the CVAD

approaching the intersection plaza.

• Separated travel time: adapt the SPIC problem formulation to assign individual travel

times to each vehicle.

• Initial and őnal states: take the current states for initial conditions, while leaving the

őnal conditions free.

• Improve safety and plaza boundary constraints: develop sufficiently accurate mathe-

matical constraints to prevent potential collisions.

• Solution methodology: devise a problem-speciőc algorithm based on model predictive

control as a solution methodology for the SPIC problem.
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5 A MODEL PREDICTIVE APPROACH FOR THE SPIC PROBLEM

The aim of this chapter is to present a new formulation for the signal-free path-free

intersection control (SPIC) problem and introduce a novel method and algorithm that offer an

effective solution for addressing the SPIC problem. As explored in Chapter 4, the ITOP employed

multiple exponential functions as algebraic equations to model the intersection plaza geometry.

However, this constraint modeling approach is not efficient enough due to some difficulties such

as differentiability at the origin, nonlinearity, and so on. Furthermore, the dynamics of a particle

used to represent vehicle dynamics in the previous formulation are not entirely realistic for real-

world scenarios. In light of these limitations, this chapter presents a novel formulation for the

SPIC problem that addresses these difficulties and incorporates various real-world considerations.

In addition to the aforementioned modeling limitations, the FFS and Bézier curve methods

used to convert the ITOP into a őnite dimension NLP problem also have some limitations. As

discussed in Chapter 4, although these methods provide fast and collision-free solutions for the

ITOP, their solutions are near-optimal and are conducted offline. A common ground of these

methods is that their applications are limited to an existing set of vehicles with predeőned initial

and őnal states. Furthermore, the requirement for CVAD to have identical completion times

and the absence of continuous vehicle arrival render these methods impractical in real-world

scenarios. Additionally, the non-convex nature of the FFS and Bézier curve methods poses

challenges in convexifying them, and also their computational demand increase exponentially

with the number of vehicles, resulting in prolonged computation times. Consequently, it is crucial

to develop a solution strategy for the new formulation of the SPIC problem that overcomes the

limitations of the methods presented in Chapter 4.

To do so, we propose an optimization-based receding horizon approach that is formulated

as a nonlinear model predictive contouring control (NMPCC) (LAM; MANZIE; GOOD, 2010;

LINIGER; DOMAHIDI; MORARI, 2015; SCHWARTING et al., 2018). In particular, we extend

and tailor the standard NMPCC method (LAM; MANZIE; GOOD, 2010) to address the solution

of the SPIC problem, which we refer to as extended NMPCC (ENMPCC). The ENMPCC

method generates collision-free and optimal CVAD trajectories based on time-independent and

continuously differentiable reference paths, with a focus on maximizing progress along the paths.

To guarantee V2V collision avoidance, the vehicles are modeled as polytopic sets, where each set

is required to maintain a minimum safe distance from the other sets. The nonlinear and non-convex

nature of the SPIC problem, arising from the vehicle model and safety constraints, presents

computational challenges. We employ linear time-varying (LTV) models obtained through the

linearization of nonlinear functions. Additionally, we leverage duality theory (BOYD, S. P.;

VANDENBERGHE, 2004) for smoothing the collision avoidance constraints and enabling the

utilization of efficient solution approaches.

In Section 5.1, we describe the modeling techniques employed to characterize the

intersection plaza, vehicle dynamics, reference paths, and safety constraints. Section 5.2 provides
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X
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Figure 15 ś A four-leg signal-free intersection as a plaza (yellow area) with one CVAD traversing
on a path-free; the solid black lines mark the plaza boundaries and the dashed lines
are the different reference paths.

an overview of the SPIC problem formulation and introduces the ENMPCC and LTV-ENMPCC

methods. In 5.3 the SPIC simulator (SPIC-Sim), which serves as a software tool to implement the

proposed methods is introduced. In Section 5.4, we present the results of numerical simulations

conducted across various scenarios. Lastly Section 5.5 concludes this chapter.

5.1 PROBLEM MODELING

In this section, we present a new formulation of the SPIC problem that takes into account

several real-world considerations, distinguishing it from the ITOP formulation. The SPIC problem

introduces a revised model for the intersection plaza boundaries and adopts the kinematic bicycle

model as the vehicle model, but, with the ŕexibility to include other vehicle models. Additionally,

the SPIC problem incorporates additional reference paths, employs a polytopic representation for

each vehicle, and formulates V2V collision avoidance constraints as a dual optimization problem.

Moreover, the SPIC problem models the plaza’s boundaries and the vehicle’s dimensions as

exact sizes with no approximation or enlargement.

5.1.1 Intersection Plaza Model

In Figure 15, the plaza is depicted as a yellow area with boundaries delimited by black

lines, representing a four-leg intersection. However, different geometries can be considered for

representing the plaza. The X and Y axes denote the central lines of the plaza. In the őgure, a

vehicle is traversing from its initial position toward its destination. Within the plaza, the vehicle

is free to adjust its trajectory, shown by the solid red line, without being bound to predetermined

paths or traffic lanes.



Chapter 5. A Model Predictive Approach for the SPIC Problem 66

5.1.2 Vehicle Model

There are various models to describe a vehicle’s dynamics, from the simple unicycle

model (SICILIANO; KHATIB; KRÖGER, 2008) to sophisticated vehicle models (ULSOY;

PENG; CAKMAKCI, 2012). We model each vehicle within the plaza by using a nonlinear

kinematic bicycle model. The bicycle model is a widely used model for simplifying the dynamics

of vehicle motion by reducing the number of wheels involved. It lumps the left and right wheels

into a pair of single wheels in the middle of the vehicle’s axles (RAJAMANI, 2011).

In this work, two conőgurations of the bicycle model are employed as vehicle models; (i) a

kinematic bicycle model which has rear-wheel driving, see Figure 16, and (ii) a kinematic bicycle

model which has a center of gravity (CG) driving, see Figure 17. By using Euler discretization,

both models are discretized with the discrete-time index k and the time step ∆t. Furthermore,

each vehicle is identiőed by its index i ∈ V = {1,2, . . . ,Nv} with Nv the number of vehicles.

5.1.2.1 Kinematic bicycle model with rear-wheel driving

The discretized equations of motion described by őve state equations are as follows

(RAJAMANI, 2011):
xi,k+1 = xi,k +∆t vi,k cos(ψi,k),

yi,k+1 = yi,k +∆t vi,k sin(ψi,k),

ψi,k+1 = ψi,k +∆t
vi,k tan(δi,k)

L
,

vi,k+1 = vi,k +∆t u1i,k,

δi,k+1 = δi,k +∆t u2i,k,

(43)

where the i-th vehicle state vector is denoted by xi,k = [xi,k, yi,k, ψi,k, vi,k, δi,k]
⊤, in which xi,k

(m) and yi,k (m) are the longitudinal and lateral position of each CVAD in the CCS, respectively,

ψi,k is the orientation angle (rad), δi,k is the steering angle (rad), and vi,k (m/s) is the speed of the

vehicle. The control input vector is denoted by ui,k = [u1i,k, u
2
i,k]
⊤, in which u1i,k = ai,k (m/s2)

and u2i,k = δ̇i,k (rad/s) are the acceleration and steering angle rates of the vehicle, respectively.

The vehicle’s wheelbase distance, the distance between the front and rear wheels, is represented

as L (m).

The bicycle model (43) is sensitive to large lateral accelerations, thus minimum and

maximum values are imposed:

−0.5lvµg ≤ v2i,k tan(δi,k) ≤ 0.5lvµg, (44)

with lv the vehicle length, µ the friction coefficient, and g the gravitational acceleration. Some

of the system states and both inputs are bounded to minimum and maximum values:

vmin ≤ vi,k ≤ vmax,

δmin ≤ δi,k ≤ δmax,

umin ≤ ui,k ≤ umax.

(45)
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Figure 16 ś Kinematic bicycle model with rear-wheel driving; the left and right wheels lumped
into single wheels in the middle of the vehicle’s axles; x and y the longitudinal and
lateral position of each CVAD, ψ the orientation, v the speed, δ the front wheel
steering angle, and L is the vehicle’s wheelbase distance.

where vmin, vmax, δmin, δmax, umin, and umax are the lower and upper boundaries of speed,

steering angle, and control inputs, respectively.

5.1.2.2 Kinematic bicycle model with a center of gravity driving

The discretized bicycle model of a vehicle is given by (KONG et al., 2015; POLACK

et al., 2017):
xi,k+1 = xi,k +∆t vi,k cos(ψi,k + βi,k),

yi,k+1 = yi,k +∆t vi,k sin(ψi,k + βi,k),

ψi,k+1 = ψi,k +∆t
vi,k sin(βi,k)

lr,i
,

vi,k+1 = vi,k +∆t ai,k,

βi,k = tan−1

(

lr,i
lf,i + lr,i

tan(δi,k)

)

,

(46)

where the i-th vehicle state vector is xi,k = [xi,k, yi,k, ψi,k, vi,k]
⊤, in which xi,k (m) and yi,k (m)

are the longitudinal and lateral position of each CVAD, respectively, ψi,k (rad) is the orientation

angle, and vi,k (m/s) and βi,k (rad) are the speed and the slip angle at the CG of the vehicle. The

i-th vehicle control vector is ui,k = [ai,k, δi,k]
⊤, in which ai,k (m/s2) is the acceleration and

δi,k (rad) is the front wheel steering angle of the vehicle. The distances from the front and rear

axles to the CG of the i-th vehicle are lf,i (m) and lr,i (m), respectively.

To ensure compliance with the dynamic limitations of the vehicles, the following con-

straints are enforced for each CVAD:

vmin ≤ vi,k ≤ vmax,

δmin ≤ δi,k ≤ δmax,

amin ≤ ai,k ≤ amax,

(47)
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Figure 17 ś Kinematic bicycle model with a center of gravity (CG) driving; the left and right
wheels lumped into single wheels in the middle of the vehicle’s axles; ψ the
orientation, v the speed, and β the slip angle at the CG, given by x and y, respectively,
the longitudinal and lateral position of each CVAD; δ the front wheel steering angle;
and the distances from the front and rear axles to the CG are lf and lr.

where vmin, vmax, δmin, δmax, amin, and amax are the lower and upper boundaries of speed,

steering angle, and acceleration.

The kinematic bicycle models, as presented in (43) and (46), are a suitable choice for our

plaza application; these models can be implemented in low-speed vehicles commonly found at

intersections, allow for designing controllers for stop-and-go scenarios frequently encountered

in urban driving, and are less computationally demanding than methods that employ vehicle

tire models (KONG et al., 2015). However, it should be noted that model (43), with rear-wheel

drive, may pose safety concerns regarding potential collisions between vehicles. This issue will

be further examined and discussed in the subsequent simulation.

5.1.3 Reference Path Model

We use the road center lines as reference paths. Six different paths cover all possible

movements at the intersection plaza in Figure 15. Each reference path is then followed by the

vehicles according to their traversal intention at the intersection. As an example, the light blue

dashed line shows the turning reference path for the vehicle approaching the plaza from the

west intended to make a left turn. The other reference paths follow a similar description for

the remaining directions. Note that we utilize the reference paths for computing the vehicles’

progress and path error measures.

The goal is to control the motion of the CVAD along reference paths while minimizing

the distance between the current position of the CVAD and the reference path, which is known as

the contouring control problem (CCP) (KOREN, Yoram; LO, 1991). In the following, we review

some concepts of the CCP, including the parameterization of the reference path and the deőnition

of the path error measures based on two orthogonal components, the lateral (contouring) and
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Ê l
k

Êc
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Figure 18 ś A reference path corresponding to the center line of a road used for computing the
vehicles’ progress; lateral error (Ec

k) and longitudinal error (El
k), shown in solid red

lines and their approximation Êc
k and Êl

k shown in dashed red lines. If Êl
k is zero,

then El
k is also zero and therefore θ̂k is equal to θk.

longitudinal (lag) errors (LAM; MANZIE; GOOD, 2010).

5.1.3.1 Reference Path Parameterization

Each CVAD at position pk = (xk, yk) follows a continuously differentiable and time-

independent reference path pref(θ) = (xref(θ), yref(θ)), parameterized by the path parameter θ.

It is assumed that the parameterization of the path satisőes ds/dθ = 1, where s (m) determines

the traveled distance by each CVAD along the path which allows us to compute the progress of

each vehicle along the path. The parameterization of curves by arc length is nontrivial. However,

methods like splines (WANG; KEARNEY; ATKINSON, 2002) or Bézier curves (ZHU, Y.;

HAN, X.; HAN, J., et al., 2012) can approximate the arc length properly.

5.1.3.2 Lateral and Longitudinal Errors

Contouring accuracy is measured by the lateral error, that is the shortest distance of the

actual position of the vehicle pk from the reference path, pref(θ), see Figure 18. The value of

the path parameter for which the distance between pk and pref(θ) is minimal can be obtained by

the following projection:

min
θ
∥pk − pref(θ)∥2, (48)

where the minimizer at time step k is θk as shown in Figure 18. The lateral error is then given by

(KOREN, Yoram; LO, 1991; LAM; MANZIE; GOOD, 2010):

Ec
k = sin(ϕ(θk))(xk − x

ref(θk))− cos(ϕ(θk))(yk − y
ref(θk)), (49)

where ϕ(θk) is the tangent angle to the reference path with respect to the x axis and given as:

ϕ(θk) = arctan

(

∇yref(θk)

∇xref(θk)

)

, (50)
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with

∇yref(θk) = dyref(θ)/dθ
∣

∣

∣

θ=θk
, ∇xref(θk) = dxref(θ)/dθ

∣

∣

∣

θ=θk
.

However, given that (48) is an optimization problem itself, this formulation of lateral

error is not appropriate for use in an online optimization problem. Then, an approximation θ̂k
of θk was introduced with dynamics (PATRIKALAKIS; MAEKAWA, 2002; LAM; MANZIE;

GOOD, 2010):

θ̂k+1 = θ̂k +∆t νk, νk ∈ [0, νmax], νmax > 0, (51)

where θ̂k is the approximated value of the path parameter at time k that can be interpreted as the

vehicle progress along the reference path, νk is a virtual input that controls the evolution of θ̂k,

and νmax is a maximum value for the virtual input.

The optimal path parameter θk and its approximation θ̂k are linked by introducing the

longitudinal error El
k = ∥θk − θ̂k∥. The longitudinal error is also approximated since θk is

not known at the optimization time. Consequently, the approximated lateral error (Êc
k) and

approximated longitudinal error (Êl
k) are deőned as follows:

Êc
k = sin(ϕ(θ̂k))(xk − x

ref(θ̂k))− cos(ϕ(θ̂k))(yk − y
ref(θ̂k)), (52)

Êl
k = − cos(ϕ(θ̂k))(xk − x

ref(θ̂k)− sin(ϕ(θ̂k))(yk − y
ref(θ̂k)), (53)

where ϕ(·) is deőned in (50). It can be seen in Figure 18 that θk ≈ θ̂k if Êl
k ≈ 0.

5.1.4 V2V Collision Avoidance Constraints

Ensuring the safety of the CVAD remains a critical concern while traveling through

urban roads, especially in complex intersections. Hence, the modeling of collision avoidance

constraints plays a pivotal role in cooperative trajectory optimization, as they determine the

resultant collision-free trajectories of the CVAD. In this context, we examine two potential

approaches that are based on the geometrical representation of vehicles; one employing circular

deőnitions (see Figure 19) and the other employing rectangular polytopes (see Figure 20). The

choice of geometric representation directly impacts the algorithms that have to be utilized for

solving the problem.

5.1.4.1 Circular Representation of the road region occupied by each CVAD

When using a circular approximation, the road region occupied by each CVAD is modeled

as a circle of appropriate radius. Figure 19 depicts two vehicles on the road and the parameters

related to collision avoidance. The thick black curves are the left and right boundaries of the

road and the dashed gray curve is a reference path. The schematic of constraint on the collision

between two vehicles i and j based on the kinematic bicycle models (43) and (46) is shown in

Figure 19(a) and Figure 19(b), respectively. The solid circle in Figure 19(a) and Figure 19(b)

shows the area for which the constraint should be satisőed. If the coordinate of vehicle i or any

other vehicle enters the solid circle, the constraint would be violated.



Chapter 5. A Model Predictive Approach for the SPIC Problem 71

(xref , yref)

wr

lv

ds(xj,k, yj,k)

wv

wv

(xi,k, yi,k)

(a)

wr

(xref , yref)

wv

(xi,k, yi,k)

(b)

(xj,k, yj,k)

wv
lv

ds

Figure 19 ś Schematic of a road with two vehicles and parameters related to collision avoidance,
(a) based on the bicycle model with rear-wheel driving, (43), and (b) based on the
bicycle model with a center of gravity driving, (46); the dashed circle around point
(xref , yref) shows the area within which the vehicle satisőes the boundary constraint;
the solid circle shows the area for which the V2V collision avoidance constraints
should be satisőed.

For two circles that belong to different vehicles with center positions pi = [xi,k, yi,k]
⊤

and pj = [xj,k, yj,k]
⊤, the collision avoidance constraint reads as:

dist(pi, pj) ≥ ds + lv, (54)

with i, j ∈ V , i < j, ds being the minimum safe distance between vehicles, lv being the vehicle

length, and dist(pi, pj) is the Euclidean distance between vehicles i and j and deőned as:

∥pi − pj∥2 =

√

(

xi,k − xj,k
)2

+
(

yi,k − yj,k
)2
. (55)

The constraint (54) is nonlinear and non-convex and deőnes the collision-free region

outside of a circle with the center at the j-th vehicle as shown in Figure 19. When opting for a

larger number of smaller circles, a more precise representation of the vehicle can be achieved.

However, this approach introduces additional constraints and increases the complexity of the

problem.

5.1.4.2 Polytopic Representation of the road region occupied by each CVAD

When using a rectangular approximation, the road region occupied by each CVAD is

modeled as a polytopic set P , which is a bounded intersection of a őnite number of half-spaces.

This representation uses dual optimization to formulate the collision avoidance constraints. For

two polytopic sets Pi and Pj that belong to different vehicles the collision avoidance constraint

reads:

dist(Pi,Pj) ≥ ds. (56)



Chapter 5. A Model Predictive Approach for the SPIC Problem 72

Y

xk

yk

P̃
Xwv

wv

lv

wr

P ψk

pref

Figure 20 ś Schematic of a road; the thick black curves are the left and right boundaries of the
road and the dashed gray curve is a reference path; the dashed circle around point
pref = [xref , yref ]⊤ shows the area within which the vehicle satisőes the boundary
constraint that forces the vehicle to remain within the road boundaries. P is the
polytopic representation of the vehicle and its transformation from P̃ to P with ψk
as the vehicle orientation.

The initial pose of each CVAD can be mathematically described by a two-dimensional

rectangular polytope P̃i as shown in Figure 20 (ZHANG, X.; LINIGER; BORRELLI, 2020):

P̃i = {pi ∈ R
2 | Ãi pi ≤ b̃i}, (57)

where

Ãi =
[

I2×2 −I2×2

]⊤
,

b̃i =
[

lv
2

wv
2

lv
2

wv
2

]⊤
,

(58)

with lv being the length and wv the width of the CVAD. As each CVAD i moves along the

road, polytope P̃i undergoes affine transformations including rotation and translation. Hence,

the transformed polytope Pi is a function of the states and deőned as:

Pi(xi,k) = {pi ∈ R
2 |Ai(xi,k)pi ≤ bi(xi,k)}, (59)

where

Ai(xi,k) = Ãi

[

cos(ψi,k) − sin(ψi,k)

sin(ψi,k) cos(ψi,k)

]

,

bi(xi,k) = b̃i +Ai(xi,k)pi.

(60)

This representation is time-varying and is a function of the vehicle states. For clarity and

simplicity, in the following, we consider Pi = Pi(xi,k), Ai = Ai(xi,k), and bi = bi(xi,k).

To prevent collisions, the intersection of the polytopic sets of vehicles i,j ∈ V , and i < j,

should be avoided, that is, Pi ∩Pj = ∅ with Pi and Pj being the i-th and j-th CVAD polytopes,

respectively. This results in a non-convex problem that is difficult to solve. In the remaining of

this subsection, we address this issue by reformulatingPi∩Pj = ∅ to a smooth and differentiable

optimization problem (ZHANG, X.; LINIGER; BORRELLI, 2020).
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This optimization problem is deőned as the distance between the sets Pi and Pj and is

written as the following primal problem (BOYD, S. P.; VANDENBERGHE, 2004):

dist(Pi,Pj) = min
pi,pj

{∥pi − pj∥2 |Aipi ≤ bi,Ajpj ≤ bj}, (61)

with
Pi = {pi ∈ R

2 |Aipi ≤ bi},

Pj = {pj ∈ R
2 |Ajpj ≤ bj}.

(62)

To guarantee collision avoidance, not only the intersection of these sets should be empty, but also a

minimum safe distance, ds, must be kept in any direction between them, that is, dist(Pi,Pj) ≥ ds.

The optimization problem (61) cannot be directly applied in the general form of the optimal

control problem. The reason is that an optimization problem would act as a constraint for another

optimization problem. To solve this problem, the duality theory is employed as suggested in

(BOYD, S. P.; VANDENBERGHE, 2004; ZHANG, X.; LINIGER; BORRELLI, 2020).

Given problem (61), where Pi and Pj are nonempty sets, the following dual problem

can be solved instead of primal problem (61) (ZHANG, X.; LINIGER; BORRELLI, 2020):

dist(Pi,Pj) = max
λi,j ,λj,i,si,j

−b⊤i λi,j − b⊤j λj,i

s.t. A⊤i λi,j + si,j = 0, A⊤j λj,i − si,j = 0,

∥si,j∥2 ≤ 1, −λi,j ≤ 0,−λj,i ≤ 0,

(63)

withλi,j ,λj,i and si,j = sj,i being the Lagrange multiplier vectors associated with the inequality

constraints and equality constraints, respectively. The derivation of (63) from (61) is provided in

Appendix C. Furthermore, problem (63) can be reformulated as the following feasibility problem

{∃ −λi,j ≤ 0,−λj,i ≤ 0, si,j : −b
⊤
i λi,j−b

⊤
j λj,i ≥ ds, A

⊤
i λi,j+si,j = 0, A⊤j λj,i−si,j =

0, ∥si,j∥2 ≤ 1}, using the intuition that the optimal value of the dual problem, which represents

the distance between Pi and Pj , is constrained to be greater than ds.

This approach provides an exact reformulation of non-differentiable collision avoidance

constraints (56) into smooth, differentiable constraints by leveraging the strong duality of

convex optimization. This approach offers several advantages over alternative methods. Firstly,

it avoids the need to solve a mixed integer linear/quadratic programming problem, which can

be computationally expensive. Additionally, it eliminates the requirement for linearization,

which can restrict the solution space by imposing limitations on collision-avoidance constraints.

Furthermore, this method enables the speciőcation of a safe distance between vehicles, rather

than relying on separating hyperplanes.

5.1.5 Plaza Boundary Constraints

The SPIC problem must satisfy constraints to prevent the i-th CVAD from violating

the intersection boundaries. This section introduces constraints that are distinct from the plaza

boundary constraints IB1 to IB4 discussed in section 4.1.6. These constraints can be expressed by
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denotingOr as a polytope set occupied by the r-th intersection boundary, where r ∈ {1, 2, . . . , h},

and h is the number of intersection boundaries. The constraints require that Pi and Or do not

intersect, i.e., Pi ∩ Or = ∅. A similar reformulation of V2V collision avoidance constraints

discussed in Section 5.1.4.2 can be derived for the intersection plaza boundary constraints.

However, it would preserve non-convexity and increase complexity by adding more decision

variables and constraints to the optimization problem.

Hence, this section presents a new set of constraints to ensure that vehicles stay within

the intersection plaza boundaries. Each vehicle is constrained to travel only within a well-deőned

circle with the center point moving along the reference path pref = [xref(θ̂i,k), y
ref(θ̂i,k)]

⊤ with

a diameter of the road width, wr, minus the vehicle width, wv, (LEVY; HADDAD, 2021). In

Figure 19(a), Figure 19(b), and Figure 20, the dashed circle surrounding the point pref shows the

region within which the vehicle satisőes the boundary constraint, even though, by deőnition, the

vehicle is on a line on the diameter of the circle perpendicular to the reference path. The plaza

boundaries constraints are then deőned as the following convex constraints:

dist(pi, p
ref) ≤

wr − wv

2
, (64)

with dist(pi, p
ref) is the Euclidean distance between the current position of the i-th vehicle and

the point pref . So, constraint (64) is deőned as:

√

(xref(θ̂i,k)− xi,k)
2 + (yref(θ̂i,k)− yi,k)

2 ≤
wr − wv

2
. (65)

with wr being the road width.

5.2 SPIC PROBLEM FORMULATION

Based on the models and constraints introduced in Section 5.1, in this section, we introduce

the SPIC problem formulation. Then, we build on a nonlinear MPC formulation suitable for

solving SPIC problem, known as nonlinear model predictive contouring control (NMPCC) (LAM;

MANZIE; GOOD, 2010; LINIGER; DOMAHIDI; MORARI, 2015). NMPCC, in comparison

to standard nonlinear MPC, incorporates an analytical representation of a reference path that

is not time-parameterized but rather based on a tailored path parameter (parameterization).

The use of the lateral and longitudinal errors in the cost function of the controller is what

differentiates the NMPCC controller from the standard nonlinear MPC. In particular, we propose

a practical extension of the standard NMPCC (LAM; MANZIE; GOOD, 2010), denoted as

extended NMPCC (ENMPCC), to address the solution of the SPIC problem.

5.2.1 SPIC in General Form

The multi-vehicle interaction at the intersection plaza can be considered as a signal-

free path-free intersection control problem. we introduce the SPIC problem formulation as the
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following optimization problem that computes optimal and collision-free trajectories for all the

CVAD in the intersection plaza:

min
ui,·|k,∀i

Nv
∑

i=1

k+Nh
∑

t=k

Ji,t(xi,t,ui,t), (66)a

s.t. xi,t+1|k − f(xi,t|k,ui,t|k) = 0, (66)b

θ̂i,t+1|k = θ̂i,t|k +∆t νi,t|k, (66)c

xi,0|k − xi,k = 0, θ̂i,0|k − θ̂i,k = 0, (66)d

xi,t|k ∈ X , ui,t|k ∈ U , νi,t|k ∈ [0, νmax], (66)e

P(xi,t|k) ∩ P(xj,t|k) = ∅, (66)f

dist(pi,t|k, p
ref) ≤

wr − wv

2
, (66)g

i,j ∈ {1, . . . ,Nv}, i < j,

where superscript i refers to i-th CVAD and Nh is the prediction horizon. This problem is a

multi-objective optimization problem, with (66)a representing the objective function. In (66)b,

the function f(·) represents the nonlinear model of each CVAD as deőned in (43) and (46). (66)c

represents the vehicle’s progress in which θ̂i and νi are, respectively, an additional state variable

and an additional control variable. The state and input feasible sets are respectively denoted by

X and U , which show the state and control input constraints as deőned in (47). Additionally,

constraints (66)f and (66)g represent the V2V collision avoidance constraints and intersection

plaza boundary constraints, respectively.

In practical terms, we operate under the assumption that the SPIC problem is addressed

through central coordination at the intersection plaza. In this process, every vehicle within

the intersection transmits its data, encompassing vehicles’ current states, to the coordinator.

The optimization problem is then solved by the coordinator, and the resulting trajectories are

subsequently communicated back to the respective vehicles.

5.2.2 Objective Function

In the SPIC problem, we would like to minimize the lateral and longitudinal errors and

maximize the vehicles’ progress along the reference paths while penalizing the control inputs

for each CVAD in the intersection plaza. Given Êk = [Êc
k, Ê

l
k]
⊤, the objective function is:

J = Ê⊤k QÊk + ν⊤k rννk − qθθ̂k + u⊤k Ruk, (67)

with weighting matrices Q and R as:

Q =

[

qc 0

0 ql

]

, R =

[

rv 0

0 rδ

]

in which qc > 0, ql > 0, rν > 0, and qθ > 0 are lateral error, longitudinal error, virtual input,

and progress cost weights, respectively, and rv > 0 and rδ > 0 are, respectively, the weights



Chapter 5. A Model Predictive Approach for the SPIC Problem 76

on the acceleration and steering angle of each vehicle. The appropriate tuning of these weights

allows for a trade-off between contouring accuracy and progress along the reference paths. In

this application, it is desirable to sacriőce contouring accuracy to allow vehicles to traverse the

path as fast as possible and make better use of the intersection space.

5.2.3 Extended Nonlinear Model Predictive Contouring Control (ENMPCC)

The ENMPCC method involves the inclusion of additional cost terms, such as fuel

consumption (due to acceleration) or driving comfort (due to steering angle), and additional

reference paths to cover all possible vehicle paths at the intersection plaza. Compared to the

standard formulation, we incorporate V2V constraints to prevent potential vehicle collisions.

Moreover, we impose intersection boundary constraints to restrict vehicle movements within

intersection boundaries. Furthermore, the standard NMPCC assumes small lateral deviations of

the controlled object from the reference path which is for the case in a high-precision application

(LAM et al., 2013). However, the ENMPCC approach acknowledges the need for signiőcant

deviations from the reference path. These deviations are necessary to prevent potential collisions

and/or to expedite the vehicles’ traverse.

By employing the objective function (67) to the problem (66), the ENMPCC problem is

deőned as:

min
ui,·|k,

νi,·|k,∀i

Nv
∑

i=1





k+Nh
∑

t=k

Ê⊤i,tQÊi,t − qθθ̂i,t +

k+Nh−1
∑

t=k

u⊤i,tRui,t + ν⊤i,trννi,t





s.t. xi,t+1|k − f(xi,t|k,ui,t|k) = 0,

θ̂i,t+1|k = θ̂i,t|k +∆t νi,t|k,

xi,0|k − xi,k = 0, θ̂i,0|k − θ̂i,k = 0,

xi,t|k ∈ X , ui,t|k ∈ U , νi,t|k ∈ [0, νmax],
√

(

xi,t|k − xj,t|k

)2
+
(

yi,t|k − yj,t|k

)2
≥ ds + lv,

√

(xref(θ̂i,t|k)− xi,t|k)
2 + (yref(θ̂i,t|k)− yi,t|k)

2 ≤
wr − wv

2
.

(68)

5.2.4 Linear Time-Varying (LTV) Implementation

The objective of this section is to speed up the computation time of the proposed

ENMPCC method for solving the SPIC problem. Problem (68) is an NMPCC problem that

should be solved online at each time step. The computational cost associated with solving this

problem can be high. The linear time-varying approximation of the nonlinear kinematic bicycle

model as well as of the lateral and longitudinal errors is used to construct a tractable optimization

problem (FALCONE et al., 2007). Each nonlinear function is linearized around the output of the

last solution of the optimal control problem over a shifted horizon, except for the őrst and the

last steps. The state of the őrst step is measured. The last step was not predicted in the previous
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solution. Thus, the system is simulated for one time step assuming that the input is the same as

in the second to last step.

5.2.4.1 LTV Approximation of the Vehicle Model

The kinematic bicycle model (46) is approximated by őrst-order Taylor series expansion

around the predicted state’s trajectory (x̄k = [x̄k, ȳk, ψ̄k, v̄k]
⊤) and control inputs (ūk =

[āk, δ̄k]
⊤) computed at the previous time step as:

x̄k+1 = Akx̄k +Bkūk + dk, (69)

with

Ak =













0 0 −v̄ sin(ψ̄ + β̄) cos(ψ̄ + β̄)

0 0 v̄ cos(ψ̄ + β̄) sin(ψ̄ + β̄)

0 0 0 1
lr
sin(β̄)

0 0 0 0













,

Bk =













0 −Γv̄ sin(ψ̄ + β̄)

0 Γv̄ cos(ψ̄ + β̄)

0 v̄
lr
Γ cos(β̄)

1 0













,

dk = ˙̄x−Ax̄−Bū,

Γ =
lr

(lf + lr)(cos2(δ̄) + l2r sin
2(δ̄)/(lf + lr)2)

.

(70)

5.2.4.2 LTV Approximation of Lateral and Longitudinal Errors

The lateral and longitudinal errors (52) and (53) are approximated by linear functions

over the prediction horizon using a Taylor series expansion around x̄k and ¯̂
θk as follows:

Ê
c,app
k

= Êc
k(x̄k,

¯̂
θk) + (∇Êc

k(x̄k,
¯̂
θk))

⊤

[

xk − x̄k

θ̂k −
¯̂
θk

]

, (71)

Ê
l,app
k

= Êl
k(x̄k,

¯̂
θk) + (∇Êl

k(x̄k,
¯̂
θk))

⊤

[

xk − x̄k

θ̂k −
¯̂
θk

]

, (72)
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with

∇Êc
k(x̄k,

¯̂
θk) =

[

sin(ϕ(
¯̂
θk)) − cos(ϕ(

¯̂
θk)) 0 0 dp,c

]

,

∇Êl
k(x̄k,

¯̂
θk) =

[

− cos(ϕ(
¯̂
θk)) − sin(ϕ(

¯̂
θk)) 0 0 dp,l

]

,

dp,c =− γÊ
l
k(x̄k,

¯̂
θk)− sin(ϕ(

¯̂
θk))∇x

ref(
¯̂
θk) cos(ϕ(

¯̂
θk))∇y

ref(
¯̂
θk),

dp,l = γÊc
k(x̄k,

¯̂
θk) + cos(ϕ(

¯̂
θk))∇x

ref(
¯̂
θk) sin(ϕ(

¯̂
θk))∇y

ref(
¯̂
θk),

γ =
η

(1 + α2)(∇xref(
¯̂
θk))

2
,

α =
∇yref(

¯̂
θk)

∇xref(
¯̂
θk)

,

η = ∇2yref(
¯̂
θk)∇x

ref(
¯̂
θk)−∇y

ref(
¯̂
θk)∇

2xref(
¯̂
θk).

Equations (71) and (72) are replaced in the objective function of the ENMPCC (68).

5.2.5 LTV-ENMPCC Formulation

The LTV-ENMPCC formulation incorporates (63) to address V2V collision avoidance

constraints, and it also integrates the LTV approximation method detailed in Section 5.2.4. This

approximation is applied to the ENMPCC problem formulation introduced in Section 5.2.3,

resulting in the following problem:

min
ui,·|k, νi,·|k,

λ
i,j

·|k,λ
j,1

·|k , s
i,j

·|k

Nv
∑

i=1





k+Nh
∑

t=k

Ê
appT
i,t QÊ

app
i,t −qθθ̂i,t +

k+Nh−1
∑

t=k

u⊤i,tRui,t + ν⊤i,trννi,t





s.t. xi,t+1|k = Ai,txi,t|k +Bi,tui,t|k + di,t|k

θ̂i,t+1|k = θ̂i,t|k +∆t νi,t|k,

xi,0|k − xi,k = 0, θ̂i,0|k − θ̂i,k = 0,

xi,t|k ∈ X , ui,t|k ∈ U , νi,t|k ∈ [0, νmax],
(

−bi(xit|k)
⊤
λ
i,j
t|k
− bj(x

j
t|k

)⊤λ
j,i
t|k

)

≥ ds,

Ai(xit|k)
⊤
λ
i,j
t|k

+ s
i,j
t|k

= 0,

Aj(x
j
t|k

)⊤λ
j,i
t|k
− s

i,j
t|k

= 0,

− λ
i,j
t|k
≤ 0, −λj,i

t|k
≤ 0, ∥si,j

t|k
∥2 ≤ 1,

√

(xref(θ̂i,t|k)− xi,t|k)
2 + (yref(θ̂i,t|k)− yi,t|k)

2 ≤
wr − wv

2
.

(73)

The complexity associated with problem (73) is reduced through the use of the LTV

approximation of the nonlinear terms present in the bicycle model (46) and the objective function

(67). Although LTV approximation of the V2V constraints can be a potential approach, for

safety-critical constraints such as (66)f, it is crucial to employ advanced methods that better
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capture the V2V constraints (LI, S. E. et al., 2020). Accordingly, we mitigated the complexity

of the V2V constraints by leveraging the duality theory as discussed in Section 5.1.4.2. By

this technique the non-differentiable collision avoidance constraints (66)f are reformulated into

smooth and differentiable algebraic inequalities (BOYD, S. P.; VANDENBERGHE, 2004).

5.2.6 SPIC: Algorithm Pseudo Code

In this section, we present the SPIC algorithm to solve problem (73) and to simulate

an intersection plaza in which CVAD continuously approach the intersection. The proposed

algorithm leverages the ENMPCC method to efficiently compute optimal trajectories for each

CVAD while considering various constraints. The SPIC algorithm is designed to handle dynamic

scenarios in a random order, making it an ideal candidate for coordinating CVAD at the

intersections where the vehicles are expected to interact with each other and with the intersection

infrastructure. The main steps of the algorithm are summarized in Algorithm 1 while its ŕowchart

is illustrated in Figure 21.

The algorithm starts assuming that no CVAD is in the Plaza. The algorithm then enters

a loop and waits for the arrival of a CVAD at the Plaza. As soon as a new CVAD arrives, its

optimal inputs and state predictions are estimated according to its initial conditions, and then the

number of CVAD, Nv, is incremented. These inputs and state predictions are used to compute

the LTV approximation problem (73). For each CVAD, the algorithm linearizes the lateral and

longitudinal errors and the nonlinear dynamics around the estimated optimal inputs and state

predictions. Then, the CVAD is included in the instantiated NLP problem (73). The problem is

solved and the optimal inputs for each CVAD are obtained. The algorithm then updates the state

and progress of each CVAD using the computed optimal inputs and shifts the optimal inputs

and states to estimate the next optimal inputs and state predictions. Finally, if a CVAD leaves the

intersection, it is removed from the NLP problem in the next instance, and the number of CVAD

in the system is decremented. The algorithm repeats this process for the remaining CVAD until

the desired stopping criterion is reached.

5.3 THE SPIC SIMULATOR

This section provides a high-level overview of the SPIC simulator (SPIC-Sim) architecture.

The SPIC simulator is a simulation modeling tool that allows for the modeling of ŕexible

utilization of urban intersections, enabling the investigation of both conventional (path-based

or lane-based) and unconventional (path-free or lane-free) traffic control scenarios. Figure 22

provides a high-level overview of the SPIC-Sim architecture, highlighting its key layers and

components. As observed in the őgure, the primary layers of the SPIC-Sim are the user interface

(UI), the simulator, the controller, and the optimizer, each of which consists of different tools

and components. The layered architecture of the SPIC-Sim leads to a modular system that can

be appropriately extended by new features and algorithms. In the following, we describe each
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Algorithm 1 SPIC Algorithm

Input: Nv = 0, Nh, xi(0) ∀i = 1, . . . ,Nv, Q, R
1: for k = 0,1, . . . do
2: if i-th CVAD arrived at the Plaza then
3: Nv ←− Nv + 1
4: Compute ūi,k and ν̄i,k by using Procedure 1 introduced by Lam, Manzie, and Good

(2010).

5: Compute x̄i,k and ¯̂
θi,k by applying ūi,k and ν̄i,k to (46) and (51), respectively.

6: end if
7: for all i = 1, . . . ,Nv do
8: Linearize Êc

k and Êl
k around x̄i,k and ¯̂

θi,k, using (71) and (72).
9: Linearize the nonlinear dynamics of the i-th CVAD (46), around ūi,k and x̄i,k by using

(69).
10: Include the i-th CVAD in the new instance of the optimization problem (73).
11: end for
12: Solve the NLP optimization problem (73) and obtain u∗i,k, ν∗i,k.
13: for all i = 1, . . . ,Nv do
14: Update i-th CVAD states by applying the őrst element of u∗i,k to the nonlinear dynamics

(46).
15: Update i-th CVAD progress by applying the őrst element of ν∗i,k to (51).

16: Compute ūi,k and ν̄i,k by shifting optimal states and inputs predictions u∗i,k and ν∗i,k.

17: Compute x̄i,k and ¯̂
θi,k by applying ūi,k and ν̄i,k to (46) and (51), respectively.

18: end for
19: if a CVAD left the Plaza then
20: Delete the CVAD from the NLP optimization problem (73).
21: Nv ←− Nv − 1
22: end if
23: end for

Intersection data
Obtain reference

paths

New
arrivals?

No

Vehicle beyond 
 final point?

M > 0
No

k = 0

Solve NLP
problem

Update vehicle
states

New problem
instance

Yes

No

k = k + 1

Yes
Yes k = k + 1

Initialize
NMPCC

Figure 21 ś A ŕowchart of the proposed SPIC algorithm.
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manager
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Figure 22 ś The SPIC simulator architecture, main layers, and components.

layer of the SPIC-Sim and its main components.

5.3.1 User Interface

The UI component is the primary interface through which end-users interact with and

conőgure the SPIC problem and algorithms. The UI layer encompasses key elements, including

Input forms, and Graphics. The Input forms component consists of various forms and input

handlers to conőgure the problem and algorithms via a graphical interface. Parameters such as

vehicle height and width, prediction horizon, simulation time, etc can be deőned by the input

forms component. On the other hand, the graphics component is employed to create various

visualizations and graphical elements like charts and animations.

5.3.2 Simulator

The simulator layer of the SPIC-Sim consists of multiple components such as the CVAD

generator, Intersection manager, Random arrival, Splines, Data mapper, and Data store. The role

of the CVAD generator component is to generate a new vehicle instance and introduce it to the

intersection manager component when a vehicle enters the intersection. The intersection manager

stands as a main component with the task of overseeing CVAD operations at an intersection. The

speciőc time when a vehicle enters the intersection is determined randomly by the random arrival

component. Upon the arrival of a new vehicle at the intersection, the intersection manager gathers

and classiőes the vehicle instance according to its approach direction. Subsequently, the vehicles

are assigned suitable reference paths based on their origin and intended destination. These

reference paths are created through the utilization of the spline component and are integral to the

proposed methods. Additionally, the data mapper serves as entities responsible for transforming
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vehicle objects into a compatible format to be used by the controller layer. Lastly, the data store

component holds the simulator data intended for transmission to the UI layer, where it can be

utilized for visual representations.

5.3.3 Controller

The controller layer is the main dependency of the simulator layer and interfaces the main

control strategies implemented in this thesis, including ENMPCC, LTV-ENMPCC, and PB-MPC.

The ENMPCC component applies the ENMPCC algorithm without using LTV approximation.

On the other hand, the LTV approximation is employed within the LTV-ENMPCC component,

where linear approximations of the objective function and system dynamics are used. Meanwhile,

the PB-MPC component’s responsibility is implementing a path-based MPC approach, utilizing

a standard MPC method to address the conventional path-based (lane-based) driving approaches.

Hence, the controller layer offers a variety of control strategies for the simulator layer to choose

from, depending on user inputs. Once selected, the chosen control strategy remains in use for

the entire duration of the simulation.

5.3.4 Optimizer

The central component of the SPIC-Sim is the optimizer layer, responsible for building

and solving the optimization problem speciőed by the controller layer. The key elements within

this layer include the Modeling language for constructing optimization models and the NLP

solver for solving the associated optimization problems. In the present SPIC-Sim implementation,

the Casadi library is utilized for building optimization problems, and IPOPT is employed to

solve these optimization problems.

5.4 PRESENTATION AND DISCUSSION OF RESULTS

In this section, we assess the effectiveness of the proposed ENMPCC and LTV-ENMPCC

methods in addressing the SPIC problem through various scenarios. We consider different

vehicle models and incorporate different V2V collision avoidance modeling techniques to

comprehensively evaluate the proposed method. Furthermore, results from a comparison with

automated vehicles based on conventional path-based (lane-based) driving are shown. The

comparison aims to demonstrate the feasibility and beneőts of employing the SPIC algorithm for

optimal and collision-free coordination of the CVAD at the intersection plaza. The simulations

are implemented in the Python programming language (PYTHON SOFTWARE FOUNDATION,

2022) with CasADi, an open-source software package for nonlinear optimization and algorithmic

differentiation (ANDERSSON et al., 2019). To solve the corresponding NLP problem (73),

we used IPOPT, an open-source solver for large-scale nonlinear optimization (WÄCHTER;

BIEGLER, 2006). The splines for obtaining the reference paths were computed using the Python

spline command.
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Table 5 ś Settings for vehicles, intersection, and optimization problem

Parameter Description Value Unit
∆t Sampling time 0.2 (s)
vmax Maximum speed 10 or 20 (m/s)
amax Maximum acceleration 2 or 5 (m/s2)
δmax Maximum steering angle 0.52 (rad)
δ̇max Maximum steering angle rate 2.09 (rad/s)
fv Vehicle ŕow 1200 (veh/h)
g Gravitational acceleration 9.8 (m/s2)
ds Safe distance 1 (m)
L Vehicle’s wheelbase distance 2.52 (m)
wv Vehicle width 1.40 (m)
lv Vehicle length 2.60 (m)
wr Road width 10 (m)
lf Distance from front axle to the vehicle CG 1.03 (m)
lr Distance from rear axle to the vehicle CG 1.49 (m)
Nh Prediction horizon 30 (steps)
Q ENMPCC cost weight, diag(qc, ql) diag(0.005, 5) -
R Control cost weight, diag(rv, rδ) diag(5, 0.5) -
qθ Progress cost weight 1 -
rν Virtual input weight 0.02 -
qx, qy PB-MPC cost weights 10 -
Nv Number of CVAD 28 -
Nl Number of lanes 2 -
h Number of intersection plaza boundaries 4 -
µ Friction coefficient 1 -

5.4.1 Scenario Setup

We consider a challenging traffic scenario with the coordination of multiple vehicles

entering the intersection plaza continuously. The simulations were conducted for a four-leg

intersection illustrated in Figure 15. This simple intersection geometry enables a clear presentation

of the method, including straight and turning movements, and two-way driving. Three simulation

scenarios are considered.

In the őrst Scenario (SC1), we consider a simple case study in which the intersection

plaza consists of two approaches; one from the south and the other from the west. In the őrst

approach, vehicles enter the plaza from the south and have the option to either turn right or

continue straight. On the other hand, in the second approach, vehicles enter from the west and

can choose to either turn left or go straight. The four reference paths that can be followed by

each CVAD based on their entry and exit directions are indicated by the light-blue, gray, purple,

and green dashed lines in Figure 15. Scenario 1a (SC1a) and Scenario 1b (SC1b) evaluate the

proposed ENMPCC method in (68) by considering two different kinematic bicycle models (43)

and (46), respectively.

In the second Scenario (SC2), we consider a more complex case study in which the

CVAD can approach the intersection plaza from four possible origins, namely south, north, west,

or east, and can take one of three actions, turn left or right or go straight, i.e., toward any of

the three remaining destinations. The six possible reference paths that each CVAD can follow
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based on their entry and exit directions are displayed as colored dashed lines in Figure 15. SC2

implements the SPIC algorithm based on the LTV-ENMPCC method in (73) as described in

Section 5.2.6.

Finally, in Scenario 3 (SC3) a conventional path-based driving of the CVAD is applied in

the same conditions as Scenario 2. In this scenario, we use the same SPIC problem formulation

however, we use a standard tracking MPC objective function to provide a conventional path-based

trajectory tracking problem (PB-MPC) as:

J =

Nv
∑

i=1





k+Nh
∑

t=k

qx(xi,t − x
ref)2 + qy(yi,t − y

ref)2 +

k+Nh−1
∑

t=k

u⊤i,tRui,t



 (74)

where qx and qy are suitable cost weights of the PB-MPC. We note that the reference paths are

appropriately shifted to make a path-based scenario and no deviation from the paths is allowed.

In this scenario, the analysis is carried out on a two-lane intersection, where each vehicle is

initially located in the center of each lane.

For each scenario, simulations of 900 time steps (180 s) with ŕows from 300 to 2700

veh/h/approach in steps of 600 veh/h/approach were tested. For each of these őfteen cases, seven

replications with different seeds were run to obtain mean estimates of the performance metrics

with 95% conődence of an error below 10% (LAW, 2013).

The arrival intervals between vehicles are generated randomly from a shifted negative

exponential distribution (FHWA, 2022). The arrival position along the road width at the entry

point and the arrival speed around 4 m/s for each CVAD are randomly selected by sampling a

uniform distribution. When exiting the plaza, the CVAD leave at either x = 60 m or y = 60

m, depending on the road used. We select Nh = 30 to achieve a reasonable trade-off between

computational complexity and V2V collision avoidance constraints accuracy for future problem

instances. Table 5 lists the additional essential parameters pertaining to vehicles, intersection

geometry, and the optimization problem.

5.4.2 Scenario 1a (SC1a): The ENMPCC method with kinematic bicycle model (43)

The aim of this scenario is to assess the effectiveness of the proposed ENMPCC method

for solving the SPIC problem (66). The controller utilizes the kinematic bicycle model (43)

to represent the vehicles. To ensure safety, a circular representation is used to model the road

region occupied by each vehicle, and constraint (54) is implemented to prevent V2V collisions.

Moreover, constraint (64) is applied to keep the vehicles within the boundaries of the plaza.

To incorporate these constraints into the SPIC problem formulation, the respective equations,

namely (43), (44)ś(45), (54), and (64), are substituted into the corresponding constraints in

problem (68).

The six snapshots of the optimal and collision-free trajectories of CVAD, obtained

through the solution of ENMPCC in (68), are illustrated in Figure 23 at time steps 125, 155,

235, 275, 365, and 435. In the őgures, the two gray dashed lines represent the reference paths
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for vehicles moving straight through the intersection plaza, while the two gray dot-dash lines

show the reference paths for vehicles making left or right turns. We can also see the trajectory of

(a) (b)

(c) (d)

(e) (f)

Figure 23 ś SC1a: snapshots of the trajectories of the vehicles at time steps 125, 155, 235, 275,
365, and 435 with a ŕow of 1200 veh/h/approach.

the vehicle until the snapshot time instant by the colored solid line and its prediction for the next

steps by the dotted lines of the same color. New arrivals are included in the problem, for example,

the red vehicle from Figure 23(a) to Figure 23(b). Once the vehicle is beyond the őnal point, it is

removed from the őgures, for example, the brown vehicle from Figure 23(b) to Figure 23(c).

As can be seen in the őgure, the vehicles are able to drive without being bound to the

usual path-related road lanes and horizontal markings. Thus, the trajectories may deviate from

what would be expected in a path-based method. For example, the vehicle with the light brown
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trajectory in Figure 23(e) and the vehicle with the garnet trajectory in Figure 23(g) are suiting

examples. The effectiveness of the collision avoidance constraint and the role of the prediction

horizon can be seen in Figure 23(b). The black and purple vehicles were still in straight paths

when a potential collision was predicted, as shown by the curved dotted lines in each predicted

trajectory. The deviation is conőrmed by the executed path seen in 23(c).

The kinematic bicycle model (43) with rear-wheel driving may cause potential challenges

related to the collision between every two vehicles as illustrated in Figure 19(a). This arises

due to the model’s use of the rear wheel as the reference point for vehicle coordinates, which

necessitates a careful selection of the parameter ds. To address this concern, in the next scenario,

we assess the ENMPCC method while employing the kinematic bicycle model (46) with a center

of gravity driving.

5.4.3 Scenario 1b (SC1b): The ENMPCC method with kinematic bicycle model (46)

In this scenario, we consider the same conditions as in Scenario 1a, but with a difference

in the employed kinematic bicycle model. Speciőcally, we adopt the kinematic bicycle model

(46) as the vehicle model for this scenario. Accordingly, we incorporate constraints (46), (47),

(54), and (64) into the corresponding constraints of the SPIC problem (68).

Figure 24 displays a sequence of six snapshots of the optimal trajectories of CVAD

entering the plaza. These snapshots correspond to the same time steps as SC1a. These trajectories

are obtained by solving optimization problem (68), utilizing the kinematic bicycle model

illustrated in Figure 17. The trajectories of the red, green, and purple vehicles in Figure 24(c),

along with the vehicle exhibiting the light blue trajectory in Figure 24(e), serve as őtting examples

of path-free behavior of CVAD. New vehicles arriving are treated as new instances of the problem.

For example, vehicle 4 with red trajectory from Figure 24(a) to Figure 24(b). Moreover, once the

vehicle is beyond the őnal point, it is removed in the next instance of the problem, for example,

vehicle 1 with the gray trajectory is removed from Figure 24(b) to Figure 24(c). As in SC1a,

in Figure 24(b), one can seen the inŕuence of the collision avoidance constraints. Notably, the

green and purple vehicles initially followed straight paths but deviated due to predicted collisions,

shown by curved lines in their trajectories.

To better assess the proposed method, Figures 25(a) to 25(e) show the speed, acceleration,

orientation, steering angle, and progress proőles for six vehicles of interest (vehicles 2, 3, 5, 6,

8, and 9). To plot the őgures, we assumed that vehicles have constant proőles, and thus, zero

acceleration proőles before entering and after leaving the intersection plaza. Figure 25(f) shows

the distances between six pairs of the vehicles of interest (vehicles 2-3, 2-4, 5-6, 7-8, 8-9, and

9-10). To plot the őgure, we considered the time steps that every two vehicles are inside the

intersection plaza.

To interpret the őgures, we considered vehicles 2 and 3 as an example. Vehicle 3 is seen

to reduce its speed and acceleration (Figures 25(a)-(b)). On the other hand, vehicle 2 is seen to

increase its speed and acceleration (Figures 25(a)-(b)). Meanwhile, both vehicles are seen to
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Figure 24 ś SC1b: snapshots of the trajectories of the vehicles at time steps 125, 155, 235, 275,
365, and 435 with a ŕow of 1200 veh/h/approach.

steer to the right and then to the left (Figure 25(c)) with a corresponding temporary change in

orientation (Figure 25(d)). Indeed, in Figure 24(c) one can see that vehicles 2 and 3 go further to

the right relative to their previous position so that, along with the changes in speed (Figure 25(a)),
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Figure 25 ś SC1b: the state and control variables for six vehicles of interest (vehicles 2, 3, 5, 6,
8, and 9): (a) Speed; (b) acceleration; (c) steering angle; (d) orientation; (e) distance
between every two selected vehicles; and (f) progress.

a collision is avoided. It can be seen from Figure 25(e) that the distance between vehicles 2 and

3 (the green line) decreases and then increases staying above the minimum safe distance (the
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Figure 26 ś SC2: snapshots of intersection plaza in time steps (a) 65, (b) 88, (c) 109, and (d) 130
operating under the LTV-ENMPCC algorithm with a ŕow of 1200 veh/h/approach.

light blue line). Finally, in Figure 25(f), with the proposed method, all vehicles have increasing

progress proőles, which is one of this paper’s goals.

5.4.4 Scenario 2 (SC2): The LTV-ENMPCC method

Figure 26 shows a sequence of four snapshots of the application of the proposed LTV-

ENMPCC algorithm with time steps 65, 88, 109, and 130. The ŕow is 1200 veh/h/approach.

In the snapshots, the six gray dash-dotted lines show the reference paths for through, left, and

right turning movements. The colored solid curves show the trajectories of the CVAD until the

snapshot time step. The predicted trajectories for the next steps are shown by the dashed lines

of the same color. New arrivals are included in a new instance of the problem. For example,

vehicles 5 and 6 from Figure 26(b) to Figure 26(d). Vehicles that traveled beyond the exit point

are removed in the next instance of the problem, for example, vehicle 1 from Figure 26(a) to

Figure 26(b) or vehicles 2, 3, and 4 from Figure 26(b) to Figure 26(c).

As depicted in Figure 26, the vehicles have the ability to drive without being restricted to
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Figure 27 ś SC2: states and inputs of the őrst eight vehicles in the intersection plaza operating
under the LTV-ENMPCC algorithm with a ŕow of 1200 veh/h/approach.

conventional path-related road lanes and horizontal markings. As a result, their trajectories may

deviate from what would typically be expected using a path-based approach, to either maximize

their progress or avoid potential collisions. Notably, the trajectories of vehicles 1 and 2 shown in
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Figure 26(a), the trajectories of vehicles 3 and 4 depicted in Figure 26(b), and the trajectories of

vehicles 5 and 8 depicted in Figure 26(d) serve as compelling examples of such deviations. Figure

26(b) illustrates the progress maximization achieved through the utilization of path deviation,

leading to more effective utilization of the intersection space.

Furthermore, Figure 26(a) provides a clear illustration of the collision avoidance con-

straint’s effectiveness and the critical role played by the prediction horizon. Speciőcally, vehicles

1 and 2, traveling in straight paths, encountered a potential collision that was detected and

addressed with a deviation from their original trajectories, as evidenced by the curved dashed

lines in each predicted path. The executed paths, as shown in Figure 26(b), conőrm the avoidance

maneuver taken by these vehicles. In addition, Figure 26(d) provides evidence of the collision

avoidance behavior of vehicle 8 upon entering the plaza, as it slightly deviates to the right of the

road to prevent a collision with vehicle 5, which is exiting the plaza as evidenced by the curved

dashed lines in the predicted path of vehicle 8.

To gain a better understanding of the snapshots, we can refer to Figure 27 which

displays the speed, acceleration, steering angle, orientation, and progress proőles of the vehicles

depicted in Figure 26 (vehicles 1ś8) and the distances between selected vehicles. The vehicles

accelerate to reach the maximum allowed speed and maintain that speed until they exit the

intersection. To interpret the őgures, we considered vehicle 8 as an example. Vehicle 8 is seen

to exhibit a slower rate of speed increase for a short period (Figure 27(a)) and a reduction in

its acceleration (Figure 27(b)). Meanwhile, the vehicle is seen to steer to the right and then to

the left (Figure 27(c)) with corresponding temporary changes in their orientation (Figure 27(d)).

In addition, in Figure 27(e) all vehicles have increasing progress proőles, which is one of this

work’s goals. Finally, Figure 27(f) illustrates the distances between seven pairs of vehicles. As an

example, it can be seen that the distance between vehicles 1 and 2 (the light-blue line) decreases

and then increases staying above the minimum safe distance (the red line) to avoid a potential

collision as shown in Figures 26(a)-(b).

The obtained results demonstrate that the proposed method is able to produce collision-

free multi-vehicle interaction and has the reasonable capability to resolve vehicle conŕicts in

challenging intersection scenarios.

5.4.5 Scenario 3 (SC3): Conventional Path-based Approach

In this scenario, we conduct an analysis on an intersection with a two-lane road, where

each vehicle is initially positioned in the center of each lane as depicted in Figure 28(a). The

intersection parameters and the vehicle parameters used in the controller remain unchanged from

those employed in Scenario 2.

Figure 28 depicts four snapshots of the intersection plaza at the same time steps of the

previous scenario and for the same seed. The corresponding states and control inputs of the

vehicles, as well as the distance between selected vehicles in Figure 28, are presented in Figure 29.

All vehicles are seen to increase their speed and acceleration once they enter the intersection.
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Figure 28 ś SC3: snapshots of intersection plaza in time steps (a) 65, (b) 88, (c) 109, and
(d) 130 operating under the conventional path-based control with a ŕow of 1200
veh/h/approach.

However, vehicles 1, 2, 3, 7, and 8 are seen to decrease their speed and acceleration for a short

period to avoid a possible collision with other vehicles before accelerating and reaching the

maximum allowed speed. This can potentially lead to vehicle delays and result in impaired traffic

performance.

Vehicles 2 and 8 show a considerable reduction in their speed and acceleration to prevent

a possible collision with vehicles 1 and 6, respectively, as illustrated in Figures 29(a)ś(b). In

contrast, when using the LTV-ENMPCC algorithm, we see a smoother behavior of the vehicles,

as depicted in Figures 27(a)ś(b), which is attributed to the path-free solution and the possibility

of full use of the intersection space. This can affect the total time spent (TTS).

Furthermore, the distance traveled by the vehicles shown in Figure 29(e) is longer

compared to the path-free results illustrated in Figure 27(e). This is because, in the path-based

approach, the vehicles travel along the predeőned reference paths and are not allowed to deviate

from the paths, which can lead to inefficient use of the intersection space. To provide an illustration,

consider vehicle 3 as an example. The LTV-ENMPCC algorithm generates a shorter path for
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Figure 29 ś SC3: states and inputs of the őrst eight vehicles in the intersection plaza operating
under the conventional path-based control with a ŕow of 1200 veh/h/approach.

vehicle 3 resulting in less traveled distance to exit the intersection as shown in Figure 26(b)

and Figure 27(e). In the path-based scenario, however since vehicle 3 is not allowed to deviate

from the predeőned reference path, it traverses more distance to exit the intersection leading to
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Figure 30 ś SC3: total time spent of SC2 (LTV-ENMPCC algorithm) and SC3 (conventional
path-based) for ŕows from 300 to 2100 veh/h/approach. The numbers above each
box provide the median values.

longer vehicle progress as shown in Figure 28(b) and Figure 29(e). In general, the conventional

path-based approach can lead to longer travel distances for vehicles, as it does not allow them to

take advantage of all the available space in the intersection.

5.4.6 Total Time Spent (TTS)

Figure 30 shows the TTS for both the proposed method and the conventional path-based

driving for various ŕow rates, ranging from 300 to 2100 veh/h/approach. By comparing the

boxes within each ŕow rate category, one can observe that the proposed SPIC method generally

results in a lower TTS. At all ŕow rates, the proposed method allows CVAD to follow free-path

driving, resulting in faster TTS. However, path-based driving may take longer due to tracking

predeőned paths and decelerating to avoid collisions, as shown in Figs. 27(a)ś(b) and 29(a)ś(b).

As a result, the LTV-ENMPCC algorithm yields a better performance and constitutes a more

promising solution to enhance the overall efficiency of vehicular traffic at urban intersections.

5.4.7 Fuel Consumption

Finally, Table 6 presents the evaluation of the average fuel consumption of both LTV-

ENMPCC method and the conventional path-based approach. In this study, we adopt the fuel

consumption model presented in Akçelik (1983), which assumes that a vehicle can be in four

operational modes; idling, cruising at a constant speed, accelerating, and decelerating. The model

uses different formulas to calculate the fuel consumption for each mode, and the parameters of

the model are different for different vehicle engines. In the simulations, we use the parameters

for the Honda Civic engine 1.8 L vehicle obtained from (MARINHO et al., 2018). As can be

seen from the table, the LTV-ENMPCC algorithm demonstrates lower fuel consumption than the

conventional path-based method at all ŕow rates. The differences between the methods become
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Table 6 ś SC3: average fuel consumption (ml/s) of SC2 (LTV-ENMPCC algorithm) and SC3
(conventional path-based)

Method
Flow

300 900 1500 2100

LTV-ENMPCC algorithm 53.5 56.1 59.4 65.0
Conventional path-based 57.4 62.0 73.3 85.7

Figure 31 ś The average computation time of the ENMPCC and LTV-ENMPCC methods for
varying counts of CVAD numbers present in the intersection. The numbers above
each box provide the median values.

more evident as the ŕow rate increases. This suggests that the LTV-ENMPCC algorithm might

offer better fuel efficiency.

5.4.8 Computation Time

Figure 31 shows the average computation time of seven runs of the proposed ENMPCC

and LTV-ENMPCC methods for different numbers of vehicles in the intersection. The őgure

demonstrates that the LTV-ENMPCC method speeds up the computation time compared to

the proposed ENMPCC method when addressing the SPIC problem. For both methods, the

computation time is relatively low when the number of vehicles is small, but it increases as the

number of vehicles increases. The computation time can be improved by leveraging the separable

structure of the SPIC problem and developing a distributed and parallel algorithm to exploit this

structure which is considered for future work.

5.5 CONCLUSION

This chapter proposed a method based on the linear time-varying approximation of the

extended nonlinear model predictive contouring control (LTV-ENMPCC) algorithm for solving

the signal-free path-free intersection control (SPIC) problem. In order to promote traffic safety,
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SPIC uses a polytopic representation of the CVAD and incorporates duality theory to satisfy V2V

collision avoidance constraints. Additionally, a set of appropriate constraints to avoid collisions

between CVAD and intersection plaza boundaries was introduced. This method enables CVAD

to optimally use the intersection space while improving their travel times as demonstrated in

the simulation results. Although the SPIC algorithm offers some computational advantages over

previous solutions, the computation times increase exponentially with the number of vehicles.

Therefore, for higher demands, the solution may not be fast enough for real-time applications.

Future research will focus on enhancing the SPIC formulation and its solution algorithm.
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6 CONCLUSIONS AND FUTURE WORKS

6.1 CONCLUSIONS

This thesis focused on addressing critical challenges in the development of connected

vehicles under automated driving (CVAD) decision and control systems. These challenges are

crucial for ensuring the safe and effective operation of CVAD at urban intersections. The thesis

tackles these challenges from three different perspectives, aiming to provide practical solutions

and enhance the reliability of the CVAD decision-making processes.

In Chapter 3, we introduced the signal-free path-free intersection control (SPIC) problem

as a new approach to urban intersection management. The SPIC problem was designed to

optimize the utilization of intersection space and enhance traffic efficiency by leveraging CVAD

technology to enable path-free traversing within a signal-free intersection. Within the plaza, the

intersection was transformed into a boundary-constrained free space, where vehicles are allowed

to travel along the reference paths, provided that their trajectories do not lead to collisions.

In Chapter 4, we introduced the intersection trajectory optimal control problem (ITOP)

as a őrst attempt to model and solve the SPIC problem. The ITOP simpliőed the problem by

representing vehicle dynamics with an equation of motion of particles. It guaranteed safety

by modeling the intersection plaza geometry with multiple exponential functions and avoiding

collisions between vehicles using the Euclidean norm. We then transformed the ITOP problem

into a nonlinear programming (NLP) optimization problem by employing őnite Fourier series

(FFS) and Bezier curve methods which generated near-optimal and collision-free trajectories of

CVAD. Although the solutions obtained from these methods served as good initial estimates for

direct optimal control methods, they showed some limitations. Motivated by the limitations of the

ITOP problem, such as the non-linearity and non-differentiability of the boundary constraints, the

same completion time for all CVAD, and the need for pre-deőned initial and őnal conditions, in

Chapter 5 we proposed a novel formulation of the SPIC problem that addressed these difficulties.

In Chapter 5, the SPIC problem used a kinematic bicycle model to represent the dynamics

of CVAD, with the ŕexibility to consider other vehicle models. Each vehicle was constrained to

travel within a well-deőned circle that prevented it from violating the intersection boundaries.

Circular and polytopic representations of the road region occupied by each CVAD were also

considered to deőne well-posed V2V collision avoidance constraints. We proposed an extended

nonlinear model predictive contouring control (ENMPCC) method to solve the SPIC problem.

ENMPCC generates optimal and collision-free CVAD trajectories by solving an NLP optimization

problem at each time step of the simulation. To improve the numerical performance of ENMPCC,

we utilized a linear time-varying (LTV) approximation of the objective functions and the vehicle

dynamics which led to better computational efficiency. Compared to the conventional path-based

(lane-based) driving of CVAD, the simulation results of the SPIC problem showed that it can

improve intersection space utilization, resulting in lower travel time and fuel consumption for

the vehicles to traverse the intersection, with guaranteed safety.
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6.2.2 Journal Papers

1. Elham Ahmadi, Alireza Olama, Rodrigo Castelan Carlson, and Eduardo Camponogara.

Signal-free path-free intersection control. IEEE Transactions on Intelligent Trans-
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6.3 FUTURE WORKS

The results presented in this thesis demonstrate the potential of the SPIC and the proposed

methods in solving the trajectory optimization problem of CVAD at signal-free and path-free
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urban intersections. In this section, we provide an overview of several future research directions

with signiőcant potential to be explored.

• Exploit Frenet coordinates: A prospective research direction entails exploring the

application of the Frenet coordinate system (FCS) over the Cartesian coordinate

system within the ENMPCC method. The FSC can lead to better path-following

accuracy and tuning since it eliminates the requirement to deőne the lag error.

• Improve computational efficiency: The ENMPCC methods proposed in this thesis rely

on solving a nonlinear optimization problem at each sampling time. The numerical

complexity of this optimization problem increases exponentially with the number

of vehicles making it computationally expensive to solve in real-time. Therefore,

improving the computational efficiency of the proposed methods is of signiőcant

importance. One research direction that has the potential to explore and is currently

under investigation is to reformulate the SPIC problem as a bilinear optimization

problem that can be solved efficiently by commercial optimization solvers such as

GUROBI.

• Distributed optimization: The SPIC problem can be seen as a distributed problem in

which the vehicles can collaboratively solve the associated optimization problem. A

promising future direction is to exploit the separability structure of the SPIC problem

and develop distributed optimization algorithms in which a signiőcant portion of the

optimization problem is solved in parallel which can lead to a lower computational

time.

• Different Plaza layouts: The SPIC problem can be used in different plaza layouts than

urban intersections. A possible research direction is to customize and use the SPIC

formulation and the proposed methods for different plaza layouts such as roundabouts,

three-leg intersections, and on-ramp merging in lane-free freeways. Currently, we are

investigating the application of the SPIC problem for on-ramp merging.

• Comprehensive network of intersections, extending the applicability of the proposed

method beyond individual intersections. An essential focus lies in adapting the model

and control approach to accommodate a mixed-traffic vehicular system, where con-

nected vehicles under automated driving (CVAD) coexist with human-driven vehicles,

thereby enhancing the efficacy of the proposed framework. Additionally, future inves-

tigations will delve into reőning the methodology to address stochastic disturbances

and parametric uncertainties. A critical consideration involves reőning the assumed

perfect communication between vehicles and infrastructure by incorporating a more

realistic model of communication between vehicles into the problem. Furthermore,

the research will aim to incorporate passenger comfort into the optimization problem,

speciőcally by minimizing jerk, and assess the resultant impact on the trajectory

optimization algorithms.
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• Experimental and real-time implementation: Another research direction is to reform

the proposed methods to be implemented in a laboratory setting, preceding real-world

testing.
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APPENDIX A ś FINITE FOURIER SERIES METHOD DERIVATION

In the intersection trajectory optimal control problem (ITOP), there are eight boundary

conditions (BCs), the initial and őnal positions and speeds, that need to be satisőed with respect

to scaled time τ . Using the őnite Fourier series (FFS) representation of states, (22), and by taking

its derivative, the following equation can be constructed:

z′(τ) =

Nz
∑

n=1

(−πnbzn sin (πnτ) + πnczn cos (πnτ)) . (75)

A.1 EXPRESSING SOME FINITE FOURIER SERIES COEFFICIENTS USING BOUND-

ARY CONDITIONS

Because the őrst eight coefficients are the ones obtained for n = 1,2, (22) and (75) can

be rewritten as:

z(τ) =
bz0
2

+ bz1 cos (πτ) + cz1 sin (πτ) + bz2 cos (2πτ) + cz2 sin (2πτ)

+

Nz
∑

n=3

(bzn cos (πnτ) + czn sin (πnτ)) ,

(76)

z′(τ) =− πbz1 sin (πτ) + πcz1 cos (πτ)− 2πbz2 sin (2πτ) + 2πcz2 cos (2πτ)

+

Nz
∑

n=3

(−πnbzn sin (πnτ) + πnczn cos (πnτ)) .
(77)

By replacing the BCs (24) in Eqs. (76) and (77) we obtain:

zI =
bz0
2

+ bz1 + bz2 +

Nz
∑

n=3

bzn, (78)

zF =
bz0
2
− bz1 + bz2 +

Nz
∑

n=3

(−1)nbzn, (79)

z′I = π



cz1 + 2cz2 +

Nz
∑

n=3

nczn



 , (80)

z′F = π



2cz2 − c
z
1 +

Nz
∑

n=3

(−1)nnczn



 . (81)

Rewriting (78)ś(81) with the four coefficients on the left hand side results in two linear systems:






bz1 + bz2 = zI −
b0
2 −

∑Nz

n=3 b
z
n

bz2 − b
z
1 = zF −

bz0
2 −

∑Nz

n=3(−1)
nbzn







cz1 + 2cz2 = 1
π żI −

∑Nz

n=3 nc
z
n

2cz2 − c
z
1 = 1

π żF −
∑Nz

n=3(−1)
nnczn.

(82)
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The solution of these systems gives eight FFS coefficients as presented in (25).

A.2 FINITE FOURIER SERIES COMPACT MATRIX FORM

Replacing back the calculated Fourier coefficients (25) in (76) and organizing the resulting

expression gives:

z(τ) = Fz + Cbz0
bz0 +

Nz
∑

n=3

(Cbzn
bzn + Ccznc

z
n) (83)

with

Fz =
1

2
(zI − zF) cos(πτ) +

1

2π
(żI − żF) sin(πτ)

+
1

2
(zI + zF) cos(2πτ) +

1

4π
(żI + żF) sin(2πτ) (84)

Cbz0
=

1

2
(1− cos(2πτ)) (85)

Cbzn
=







cos(nπτ)− cos(πτ) when n is odd,

cos(nπτ)− cos(2πτ) when n is even,
(86)

Cczn =







sin(nπτ)− n sin(πτ) when n is odd,

sin(nπτ)− 1
2n sin(2πτ) when n is even.

(87)

The corresponding őrst derivative with respect to the scaled time is:

z′(τ) = F ′z + C ′bz0
bz0 +

Nz
∑

n=3

(C ′bzn
bzn + C ′cznc

z
n) (88)

with

F ′z =−
π

2
(zI − zF) sin(πτ) +

T

2
(żI − żF) cos(πτ)

− π(zI + zF) sin(2πτ) +
T

2
(żI + żF) cos(2πτ) (89)

C ′bz0
= π sin(2πτ) (90)

C ′bzn
=







−nπ sin(nπτ) + π sin(πτ) when n is odd,

−nπ sin(nπτ) + 2π sin(2πτ) when n is even,
(91)

C ′czn =







nπ cos(nπτ)− nπ cos(πτ) when n is odd,

nπ cos(nπτ)− nπ cos(2πτ) when n is even.
(92)

and the second derivative is:

z′′(τ) = F ′′z + C ′′bz0
bz0 +

Nz
∑

n=3

(C ′′bzn
bzn + C ′′cznc

z
n) (93)
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with

F ′′z =−
π2

2
(zI − zF) cos(πτ)−

πT

2
(żI − żF) sin(πτ)

− 2π2(zI + zF) cos(2πτ)− πT (żI + żF) sin(2πτ) (94)

C ′′bz0
= 2π2 cos(2πτ) (95)

C ′′bzn
=







−(nπ)2 cos(nπτ) + π2 cos(πτ) when n is odd,

−(nπ)2 cos(nπτ) + 4π2 cos(2πτ) when n is even,
(96)

C ′′czn =







−(nπ)2 sin(nπτ) + nπ2 sin(πτ) when n is odd,

−(nπ)2 sin(nπτ) + 2nπ2 sin(2πτ) when n is even.
(97)

Finally, the compact matrix form representation for the position state variables and its

derivatives (speed state variables and accelerations) already incorporating the coefficients from

the BCs can be used. Considering bracket [·] as vectors representation, we can write the positions

state variables and its őrst and second derivatives as:

[z]m×1 =[Az]m×(2Nz−3)[Xz](2Nz−3)×1 + [Fz]m×1,
[

z′
]

m×1 =[Az′ ]m×(2Nz−3)[Xz](2Nz−3)×1 + [F ′z]m×1,
[

z′′
]

m×1 =[Az′′ ]m×(2Nz−3)[Xz](2Nz−3)×1 + [F ′′z ]m×1,

(98)

with
[Xz](2Nz−3)×1 =[bz0 b

z
3 c

z
3 . . . b

z
Nz

czNz

]⊤,

[Az]m×(2Nz−3) =[Cbz0
Cbz3

Ccz3
. . . CbzNz

CczNz

]m×(2Nz−3),

[Az′ ]m×(2Nz−3) =[C ′bz0
C ′bz3

C ′cz3
. . . C ′bzNz

C ′czNz

]m×(2Nz−3),

[Az′′ ]m×(2Nz−3) =[C ′′bz0
C ′′bz3

C ′′cz3
. . . C ′′bzNz

C ′′czNz

]m×(2Nz−3),

(99)

and [Fz]m×1, [F ′z]m×1, and [F ′′z ]m×1 obtained from (84), (89), and (94), and [Az]m×1, [A′z]m×1,

and [A′′z]m×1 obtained from (85), (86), (87), (90), (91), (92), and (95), (96), (97), respectively.

The łF ž terms (Fz,F ′z, and F ′′z ) depend on the boundary information at the position and

speed level. Therefore, the speed-level and acceleration-level boundary conditions are updated

since they are multiplied by Tf and T 2
f , respectively. In general, the terms that depend on the

boundary conditions are updated at every iteration if Tf happens to change during iterations.

From this analysis, it results that őxed-time problems are easier and faster to solve. Moreover, for

time-free problems, the rest of the structure remains intact, and it provides additional ŕexibility

in the case of intersection management.

A.3 FINITE FOURIER SERIES UNKNOWN COEFFICIENT INITIALIZATION

In the initialization of the unknown coefficients of the FFS method in equation (29),

the cubic polynomials can be used to approximate the position state variables [za] at the
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Table 7 ś Numerical results for different values of w1 and w2 (m = 30 and Nz = 8)

w1 w2 Total speed increment Completion time Objective function Computation time
∆v [m/s] Tf [s] J [s]

4 0 12.7 27.6 51.1 10.1
0 4 40.7 12.9 51.8 6.4
4 4 15.2 19.3 138.2 9.3
4 2 14.6 18.3 95.3 8.5
2 4 19.4 17.9 110.4 11.5

Table 8 ś Numerical results for different values of m (w1 = 4, w2 = 2, and Nz = 8)

m Total speed increment Completion time Objective function Computation time
∆v [m/s] Tf [s] J [s]

10 13.2 17.8 88.4 6.6
30 14.6 18.3 95.3 8.5
50 16.2 19.4 103.6 12.4
70 16.9 22.2 112.1 18.7
90 18.1 28.7 129.8 35.9

approximation DPs as:

za(τ) = azτ
3 + bzτ

2 + czτ + dz, (100)

for which the coefficients can be obtained from the BCs as follows:

az =T żI + T żF + 2(zI − zF ),

bz =3(zF − zI)− 2T żI − T żF,

cz =T żI,

dz =zI .

(101)

A.4 FINITE FOURIER SERIES WEIGHTING PARAMETER SELECTION

In order to őnd suitable values for m, w1, w2, and Nz, we solve the NLP problem (28)

for different values. Selected numerical results are reported in Tables 7ś9. Table 7 presents

the results with respect to different values of w1 and w2. It is clear in the table the trade-off

between completion time and total speed increment (see (14)). We choose w1 = 4 and w2 = 2

for subsequent problem instances because of the relatively low computation time and balance

between ∆v and Tf .

In Table 8 the results for different numbers of the DPs (m) are reported. As expected,

increasing the number of DPs results in increased computation time. Despite the corresponding

increase in total speed increment, completion times also increase, suggesting that worse local

minima are found for higher values of m, i.e., trajectories in longer paths result. We choose

m = 30 for subsequent problem instances, sufficiently large to avoid collision in between DPs.

The results for a different number of FFS terms (Nz) are presented in Table 9. Increasing

Nz increases the computation time without sensible improvements in the other measures. Slight

changes in completion time are observed despite the lower total speed increment, indicating

that shorter paths are enabled by the increased ŕexibility in function generation. We choose
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Table 9 ś Numerical results for different values of Nz (w1 = 4, w2 = 2, and m = 30)

Nz Total speed increment Completion time Objective function Computation time
∆v [m/s] Tf [s] J [s]

6 15.0 17.2 96.4 4.7
8 14.6 18.2 94.9 8.5
10 15.8 19.1 101.7 10.1
12 16.5 19.1 104.2 18.8
14 15.6 18.6 99.6 32.8

Nz = 8 to achieve a reasonable trade-off between approximation accuracy and computational

burden. Small values of m and Nz may result in better values of ∆v, Tf , and computation time.

However, the trajectories might not be smooth and may also lead to infeasible instances of the

NLP problem. On the other hand, large values result in even higher computation times and,

possibly, worse local optima.
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APPENDIX B ś BÉZIER CURVE METHOD DERIVATION

To satisfy the boundary conditions (BCs) in (24), it is necessary to compute the derivatives

of (31) and (32) with respect to the scaled time τ . The őrst derivative of (31) provides the speed

state variables of each vehicle j, vxj
and vyj , in each coordinate of the Cartesian coordinate

system (CCS), given by:

z′(τ) =

nz
∑

l=0

B′z,l(τ)Pz,l, (102)

and the second derivative is:

z′′(τ) =

nz
∑

l=0

B′′z,l(τ)Pz,l, (103)

where

B′z,l(τ) =



















−nz(1− τ)
nz−1, if l = 0,

nz! τ
l−1(1−τ)nz−l

(l−1)!(nz−l)!
−

nz! τ
l(1−τ)nz−l−1

l!(nz−l−1)!
, if l ∈ [1, nz − 1],

nzτ
nz−1, if l = nz.

(104)

and

B′′z,l(τ) =











































nz(nz − 1)(1− τ)nz−2, if l = 0

nz(nz − 1)(nz − 2)τ(1− τ)nz−3 − 2nz(nz − 1)(1− τ)nz−2, if l = 1

nz! τ
l−2 (1−τ)nz−l

(l−2)!(nz−l)!
−

2nz! τ
l−1 (1−τ)nz−l−1

(l−1)!(nz−l−1)!
+

nz! τ
l (1−τ)nz−l−2

l!(nz−l−2)!
, if l ∈ [2, nz − 2]

nz(nz − 1)(nz − 2)τnz−3(1− τ)− 2nz(nz − 1)τnz−2, if l = nz − 1

nz(nz − 1)τnz−2, if l = nz
(105)
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B.1 EXPRESSING SOME BÉZIER COEFFICIENTS USING BOUNDARY CONDITIONS

By replacing τ = 0 and τ = 1 in (32) and (104), the boundary values of Bnz,l(τ) and

B′nz,l
(τ) can be obtained as follows:

Bz,l(τ = 0) =







1 l = 0

0 l ∈ [1, nz]

Bz,l(τ = 1) =







0 l ∈ [0, nz − 1]

1 l = nz

B′z,l(τ = 0) =



















−nz l = 0

nz l = 1

0 l ∈ [2, nz]

B′z,l(τ = 1) =



















0 l ∈ [0, nz − 2]

−nz l = nz − 1

nz l = nz

(106)

Given equations (24), (31), (102), and (106), one can write the following relations:

zi = Pz,0, zf = Pz,nz

żi =
nz
T
(Pz,1 − Pz,0), żf =

nz
T
(Pz,nz

− Pz,nz−1)
(107)

By manipulating (107), one can obtain eight known Bezier coefficients (Pz,0, Pz,1,

Pz,nz−1 and Pz,nz
) as presented in (34).

B.2 BÉZIER COMPACT MATRIX FORM

The őrst and second derivatives of positions state variables (38) at the m discretization

points (DPs) as vectors of their values can be obtained as follows:

[z]m×1 = [Bz]m×(nz−3)[Xz](nz−3)×1 + [Fz]m×1,

[z′]m×1 = [B′z]m×(nz−3)[Xz](nz−3)×1 + [F ′z]m×1,

[z′′]m×1 = [B′′z ]m×(nz−3)[Xz](nz−3)×1 + [F ′′z ]m×1,

(108)

with

[Xz](nz−3)×1 = [Pz,2 Pz,3 . . . Pz,nz−2]
T , (109)

[Bz]m×(nz−3) = [Bz,2 Bz,3 . . . Bz,nz−2]
T , (110)

[B′z]m×(nz−3) = [B′z,2 B
′
z,3 . . . B′z,nz−2]

T , (111)

[B′′z ]m×(nz−3) = [B′′z,2 B
′′
z,3 . . . B′′z,nz−2]

T , (112)

where [Fz], [F ′z], and [F ′′z ] are the constant vectors depending on nz and on the BCs that are

obtained using (36) and its derivatives.
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APPENDIX C ś DUAL FORMULATION DERIVATION

In order to derive (63) from (61), we can leverage the convexity of the primal problem

(61) and the nonemptiness of sets Pi and Pj . This leads to the establishment of strong duality,

as discussed in (BOYD, S. P.; VANDENBERGHE, 2004). Consequently, we can solve the dual

problem instead of the primal problem. The equivalent form of primal problem (61) is:

min
pi,pj

∥pi − pj∥2 = min
pi,pj ,wi,j

∥wi,j∥2

s.t. Ai pi ≤ bi

Aj pj ≤ bj

pi − pj = wi,j

(113)

The Lagrangian function associated with problem (113) is deőned as follows:

L(pi,pj ,λi,j ,λj,i, si,j) = ∥wi,j∥2 + λ
T
i,j(Aipi − bi) + λ

T
j,i(Ajpj − bj)

+ sTi,j(pi − pj −wi,j),
(114)

where λi,j ,λj,i and si,j = sj,i are the Lagrange multiplier vectors associated with the inequality

constraints and equality constraints, respectively. Then, the Lagrangian dual function is deőned

as:
g(λi,j ,λj,i, si,j) = inf

pi,pj ,wi,j

L(pi,pj ,λi,j ,λj,i, si,j), (115)

By rearranging the terms in (115), one can write the following relation:

g(λi,j ,λj,i, si,j) = inf
wi,j

(

∥wi,j∥2 − sTi,jwi,j

)

+ inf
pi

(

(AT
i λi,j + si,j)

Tpi − λ
T
i,jbi

)

+ inf
pj

(

(AT
j λj,i − si,j)

Tpj − λ
T
j,ibj

)

.

(116)

One can simplify and rephrase (116) by employing the deőnition of the conjugate

function f∗(s) = supx∈domf (s
Tx− f(x)) and utilizing the fact that inf f(x) = − sup(−f(x)).

Consequently, we obtain:

inf
x
(f(x)− sTx) = − sup

x
(−f(x) + sTx) = −f∗(s).

For the őrst term of the right-hand side of (116), we have

inf
wi,j

(

∥wi,j∥2 − sTi,jwi,j

)

= − sup
wi,j

(

sTi,jwi,j − ∥wi,j∥2

)

= −f∗(si,j) = −∥wi,j∥
∗
2, (117)

and the conjugate of ∥wi,j∥ is (see example 3.26 on page 93 of the book by Stephen P Boyd and

Vandenberghe (2004)):

f∗(si,j) =







0 ∥si,j∥∗ ≤ 1

∞ otherwise,
(118)
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with ∥·∥ is a norm on R
n and ∥·∥∗ is the dual norm. For the second term of the right-hand side

of (116), we have:

inf
pi

(

(AT
i λi,j + si,j)

Tpi − λ
T
i,jbi

)

=







−bTi λi,j AT
i λi,j + si,j = 0

−∞ otherwise,
(119)

and similarly, for the third term of the right-hand side of (116), we have:

inf
pj

(

(AT
j λj,i + si,j)

Tpj − λ
T
j,ibj

)

=







−bTj λj,i AT
j λj,i − si,j = 0

−∞ otherwise.
(120)

Finally, by replacing (117)ś(120) in (116) and forming the dual problem as:

max g(λi,j ,λj,i, si,j)

s.t. λi,j ,λj,i ≥ 0
(121)

the dual form of (61) is formed as follows:

dist(Pi,Pj) = max
λi,j ,λj,i,si,j

−bTi λi,j − bTj λj,i

s.t. AT
i λi,j + si,j = 0, AT

j λj,i − si,j = 0,

∥si,j∥2 ≤ 1, −λi,j ≤ 0,−λj,i ≤ 0.

(122)

The optimal value of the dual problem, which is the distance between Pi and Pj , is constrained

to be larger than ds. We can utilize this intuition to reformulate problem (63) as the following

feasibility problem for −λi,j ≤ 0, −λj,i ≤ 0, and s:

− bTi λi,j − bTj λj,i ≥ ds

AT
i λi,j + si,j = 0,

AT
j λj,i − si,j = 0,

∥si,j∥2 ≤ 1.

(123)
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