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RESUMO

Um mecanismo estaticamente balanceado permanece em equilíbrio em qualquer posição em sua
faixa de movimento, o que é desejável em muitos dispositivos, pois dispensa a ação nos atuadores
para suportar o peso do mecanismo. Além disso, uma melhor eficiência energética, controle
simplificado e segurança inerente são propriedades adicionais de dispositivos estaticamente
balanceados. Embora o balanceamento estático tenha sido formalmente estudado por várias
décadas, as aplicações práticas ainda são desafiadoras. Portanto, é necessário desenvolver métodos
que permitam aos projetistas enfrentarem sistematicamente o problema de balanceamento estático
de mecanismos, utilizando ferramentas matemáticas modernas de modelagem. Os métodos
presentes na literatura não são gerais, e, portanto, cada problema de balanceamento é resolvido
caso a caso. Também não são relatados métodos para lidar com o balanceamento de mecanismos
confinados em espaços de trabalho reduzidos. Essa limitação está presente nos métodos de
síntese dimensional, uma vez que as variáveis de projeto são geralmente de natureza geométrica.
Em muitos casos, é desejável usar as coordenadas dos pares cinemáticos como variáveis de
projeto; esse assunto será discutido em detalhes nesta tese. O principal objetivo deste trabalho
é desenvolver uma metodologia para o balanceamento estático de mecanismos, baseada na
incorporação das coordenadas naturais na teoria dos helicóides. Existem abordagens na literatura
que permitem o balanceamento estático completo mediante a adição de massas ou elos adicionais,
tornando o mecanismo resultante volumoso e ineficiente no espaço ocupado. Neste trabalho,
um método de balanceamento estático é desenvolvido combinando a teoria dos helicóides e as
coordenadas naturais. Primeiramente, as ferramentas de análise cinemática são apresentadas
e propostas usando coordenadas naturais e o método de bilateração, que são a base para a
formulação das condições de equilíbrio de um mecanismo. Adicionalmente, o método proposto
para o balanceamento estático é adaptado no balanceamento dinâmico de mecanismos planos
mediante o uso de sistemas equimomentais de massas pontuais. Finalmente, serão propostos
casos de estudo com o objetivo de avaliar os métodos de balanceamento estático e dinâmico
desenvolvidos.
Palavras-chave: Balanceamento estático. Cinemática. Mecanismos. Balanceamento dinâmico.
Sistemas equimomentais.



RESUMO EXPANDIDO

Introdução

Em um mecanismo estaticamente equilibrado, as forças ou os torques que atuam para manter o
equilíbrio são mínimos ou nulos em qualquer configuração dentro de sua faixa de movimento.
Nos casos de mecanismos completamente equilibrados, o número de posições de equilíbrio é in-
finito. Em contrapartida, um mecanismo de equilíbrio aproximado está em equilíbrio apenas para
um número finito de posições dentro de sua faixa de movimento. O balanceamento aproximado
é uma solução satisfatória para a maioria das aplicações práticas de engenharia. Embora alguns
métodos forneçam mecanismos completamente equilibrados, eles exigem massas adicionais,
elos auxiliares ou todas as molas ligadas ao elo fixo, o que resulta em um mecanismo volumoso
e ineficiente em termos de espaço. O balanceamento estático é uma questão importante no
projeto de manipuladores e mecanismos paralelos, uma vez que esses mecanismos são frequente-
mente utilizados em aplicações que envolvem grandes cargas. Nesses casos, o balanceamento
estático pode aumentar a eficiência do mecanismo, uma vez que seus atuadores não precisam
contribuir para suportar o peso dos elos em nenhuma configuração. Outra aplicação importante
do balanceamento estático é o projeto de mecanismos para auxiliar pacientes em reabilitação
que enfrentam dificuldades para levantar certos membros. O balanceamento estático tem sido
objeto de estudo há várias décadas, e existem vários métodos que fornecem balanceadores de
gravidade completamente equilibrados. No entanto, as aplicações práticas ainda representam um
desafio. O projeto de mecanismos balanceados estaticamente com esses métodos requer a adição
de massas e elos, levando em consideração molas de comprimento inicial zero ou simulando-as
por meio de dispositivos adicionais. Poucos estudos na literatura abordam o balanceamento
estático utilizando molas convencionais de tensão e torção. Além disso, o projeto de mecanismos
estaticamente balanceados, limitado a um espaço de projeto reduzido, continua sendo um de-
safio. O balanceamento dinâmico de mecanismos pode ser tratado como balanceamento estático
quando as forças inerciais são consideradas. Nesse caso, o problema dinâmico é transformado
em um problema estático pela aplicação do princípio de D’Alembert. Uma maneira simples
de determinar as forças de inércia é utilizar sistemas de massa pontual equimomentais, o que
dispensa o uso de matrizes de inércia e apenas requer o conhecimento das acelerações das
massas pontuais. A principal aplicação do balanceamento dinâmico é a redução de vibrações em
máquinas e mecanismos, especialmente em motores de combustão interna e compressores. Nesta
tese, é desenvolvido um método para o balanceamento estático de mecanismos. A técnica de
balanceamento estático baseia-se na minimização das forças ou torques necessários para manter o
equilíbrio. No método proposto, as coordenadas naturais são incorporadas à teoria de helicóides,
o que possibilita uma formulação sistemática do problema de otimização, independentemente
da complexidade do mecanismo. Além disso, neste trabalho, um procedimento para determinar
sistemas de massa pontual em corpos rígidos planos é desenvolvido usando um formalismo
moderno. Isso permite a adaptação do método de balanceamento estático para o balanceamento
dinâmico de mecanismos planos.

Objetivos

O principal objetivo desta tese é desenvolver uma metodologia baseada na teoria dos helicóides
para o balanceamento de mecanismos.



Os objetivos específicos deste trabalho são:

• Desenvolver um método baseado na incorporação das coordenadas naturais na teoria dos
helicóides para o balanceamento estático de mecanismos.

• Desenvolver um procedimento para a obtenção de sistemas equimomentais de massas
pontuais de corpos rígidos planos.

• Propor um método para a análise dinâmica de mecanismos planos por meio de sistemas
equimomentais de massas pontuais.

• Adaptar o método de balanceamento estático proposto para o balanceamento dinâmico de
mecanismos planos.

Metodologia

Inicialmente, a teoria básica do balanceamento estático e suas aplicações é analisada. Na
revisão da literatura, torna-se evidente a falta de metodologias gerais para lidar com o problema
de balanceamento estático, e as abordagens propostas só funcionam para casos específicos.
Antes de tentar resolver o problema de balanceamento estático, é desenvolvido um método
conceitual para a síntese dimensional de mecanismos balanceados estaticamente, o que permite
obter uma visão global das diferentes alternativas ao desenvolver um método concreto de
balanceamento estático. Em seguida, o problema cinemático é abordado, no qual as coordenadas
naturais são apresentadas em detalhe. Esse formalismo é utilizado neste trabalho para modelar
mecanismos planos e espaciais. O método de bilateração também é apresentado, o qual, em
alguns casos, permite a determinação direta e elegante das coordenadas naturais dos mecanismos
planos. Propõe-se a incorporação das coordenadas naturais à teoria helicóides, o que simplifica
a resolução do problema de velocidade e aceleração de mecanismos planos e espaciais. O
método de balanceamento estático proposto baseia-se na minimização das forças de atuação. A
formulação do problema de otimização começa com a modelagem cinemática do mecanismo
usando coordenadas naturais e, em seguida, a estática do problema é resolvida por meio da
incorporação das coordenadas naturais no método de Davies, o que permite obter as equações da
estática de forma sistemática. O uso de coordenadas naturais como variáveis de projeto possibilita
o balanceamento estático de mecanismos com espaço de trabalho reduzido ou limitado. O método
de balanceamento estático foi adaptado para o balanceamento dinâmico de mecanismos planos
por meio do desenvolvimento de um procedimento para obter sistemas equimomentais de massas
pontuais.

Resultados e Discussão

Foi proposto um método conceitual para o balanceamento estático de mecanismos, o qual permitiu
obter uma visão global das diferentes abordagens para lidar com o problema de balanceamento
estático. Em relação à análise cinemática, foi proposta a incorporação das coordenadas naturais
na teoria de helicóides, o que possibilitou resolver o problema de velocidade e aceleração de
forma simples. O método de bilateração também foi introduzido para resolver a cinemática de
posição de mecanismos planos, no qual foi proposta uma maneira alternativa de representar
matrizes de bilateração utilizando números complexos. Além disso, foi derivada uma matriz de
bilateração livre singularidades para um mecanismo plano RRRP. Essa matriz de bilateração
pode ser utilizada para resolver a cinemática de posição de mecanismos mais complexos com



sub-cadeias do tipo RRRP. Foi proposto um método sistemático para o balanceamento estático de
mecanismos, independentemente de sua complexidade. Isso foi realizado através da incorporação
das coordenadas naturais ao método de Davies. O método de balanceamento foi aplicado a um
mecanismo de quatro barras para o movimento vertical em linha reta de uma carga externa, ao
balanceamento de um mecanismo espacial RSSR-SS e ao balanceamento estático de um robô
manipulador serial. Obtiveram-se reduções nos torques de atuação de 99,91%, 99,89% e 95,9%,
respectivamente. Utilizando o conceito de matriz de pseudo-inércia, foi possível desenvolver
uma metodologia para representar sistemas equimomentais de massas pontuais de corpos rígidos
planos. Com o uso de sistemas equimomentais de massas pontuais, o método de balanceamento
estático foi adaptado para o balanceamento dinâmico de mecanismos planos. O método de
balanceamento dinâmico proposto foi aplicado no balanceamento dinâmico de um mecanismo
biela-manivela, resultando em uma redução de 69,97% na força vibratória e uma redução de
99,99% no torque vibratório.

Considerações Finais

O método de balanceamento estático proposto demonstrou ser suficientemente geral para ser
aplicado a qualquer mecanismo, independentemente de sua complexidade. O uso de coorde-
nadas naturais em conjunto com a teoria de helicóides facilita a formulação do problema de
balanceamento estático ótimo. Os sistemas de massas pontuais equimomentais permitem que
o método de Davies possa ser usado para resolver problemas dinâmicos. Embora o método de
balanceamento dinâmico tenha sido desenvolvido para mecanismos planos, com algum trabalho
adicional, ele pode ser estendido a mecanismos espaciais.

Palavras-chave: Balanceamento estático. Cinemática. Mecanismos. Balanceamento dinâmico.
Sistemas equimomentais.



ABSTRACT

A statically balanced mechanism remains in equilibrium at any position in its range of motion,
which is desirable in many devices, as it eliminates the need for actuators to support the
mechanism’s weight. Furthermore, better energy efficiency, simplified control, and inherent
safety are additional properties of statically balanced devices. Although static balancing has
been formally studied for several decades, practical applications are still challenging. Therefore,
it is necessary to develop methods that allow designers to systematically tackle the problem
of static balancing of mechanisms using modern mathematical modeling tools. The methods
in the literature are not general, so each balancing problem is solved on a case-by-case basis.
There are also no reported methods for dealing with the balancing of confined mechanisms in
small workspaces. This limitation is present in dimensional synthesis methods since the design
variables are generally geometric. This limitation is present in the dimensional synthesis methods
since the design variables are usually geometric, and, in many cases, it is desirable to use the
coordinates of the kinematic pairs as design variables; this issue will be discussed in detail in
this thesis. The main objective of this work is to develop a methodology for the static balancing
of mechanisms based on incorporating natural coordinates into screw theory. Some approaches
in the literature allow complete static balancing by adding additional masses or links, making the
resulting mechanism bulky and inefficient in the space occupied. In this work, a static balancing
method is developed that combines screw theory and natural coordinates. First, kinematic analysis
tools are presented and proposed using natural coordinates and the bilateration method, which are
the basis for formulating the equilibrium conditions of a mechanism. Additionally, the methods
proposed for static balancing are adapted to the dynamic balancing of planar mechanisms by
using equimomental systems of point masses. Finally, case studies will be proposed to evaluate
the static and dynamic balancing methods developed.

Keywords: Static balancing. Kinematic. Mechanisms. Dynamic balancing. Equimomental sys-
tem.
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ÂD Unit action matrix

QA Action graph fundamental cutset matrix
a
Ψ Vector of the forces supply by each actuator

z Design variables vector

z Lower bounds of design variables vector

z Upper bounds of design variables vector

⊗ Kronecker product

Ξ̃ Pseudo-inertia matrix

p̃ Homogeneous position vector

G Homogeneous transformation matrix

D̃ Non-rigid transformation

U Orthogonal matrix

$in
i Inertia screw of the body i

$sh Shaking screw

η Normalization matrix

ν Weight matrix



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 MOTIVATION AND APPLICATIONS . . . . . . . . . . . . . . . . . . . . 22

1.3 THESIS CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 Kinematic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.2 Static balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.3 Equimomental systems representation of planar rigid bodies . . . . . . . 25

1.3.4 Dynamic balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 OVERVIEW OF THIS WORK . . . . . . . . . . . . . . . . . . . . . . . . 26

2 STATIC BALANCING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 APPLICATIONS AND FEATURES . . . . . . . . . . . . . . . . . . . . . 27

2.2 STATIC BALANCING METHODS . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Balancing with counterweights . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Balancing with springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 THEORY ON STATIC BALANCE . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Stability of equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 BIBLIOGRAPHIC REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Complete static balancing . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Approximate static balancing . . . . . . . . . . . . . . . . . . . . . . . . 35

3 STATIC BALANCING SYNTHESIS OVERVIEW . . . . . . . . . . . . 37

3.1 KINEMATIC MODELING . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Types of generalized coordinates . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1.1 Relative coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1.2 Reference point coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1.3 Natural coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1.4 Discussion on the choice of the type of coordinates . . . . . . . . . . . . . . 39

3.2 STATIC BALANCING SYNTHESIS . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Complete balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Approximate balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 Optimal synthesis problem . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.4 The conceptual method proposed for the static balancing synthesis . . . 44

3.2.5 Proposal to deal with the static balancing synthesis of mechanisms with

space constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 KINEMATIC ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 POSITION ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Natural coordinates in the plane . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1.1 Rigid body constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



4.1.1.2 Kinematic pair constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1.3 Initial position problem and successive displacements . . . . . . . . . . . . 52

4.1.2 Natural coordinates in the space . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.2.1 Rigid body constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2.2 Joint constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.3 Bilateration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.3.1 Bilateration matrices as normal matrices . . . . . . . . . . . . . . . . . . . 66

4.1.4 Bilateration via complex numbers . . . . . . . . . . . . . . . . . . . . . . 68

4.1.5 Bilateration matrix for a RRRP planar mechanism . . . . . . . . . . . . 70

4.2 VELOCITY ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Incorporation of natural coordinates into the screw theory . . . . . . . . 75

4.3 VIRTUAL DISPLACEMENTS AND VIRTUAL VELOCITY . . . . . . . . 76

4.4 ACCELERATION ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 Acceleration analysis through the combination of natural coordinates

and screw theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1.1 Acceleration analysis of a four-bar mechanism . . . . . . . . . . . . . . . . 81

5 SCREW THEORY-BASED STATIC BALANCING METHOD . . . . . 84

5.1 POSITION KINEMATIC ANALYSIS . . . . . . . . . . . . . . . . . . . . 84

5.1.1 Natural coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 STATIC ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Integration of natural coordinates in screw theory . . . . . . . . . . . . 86

5.2.2 Formulating the optimization problem . . . . . . . . . . . . . . . . . . . 89

5.2.3 Analytical sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.4 Procedure for optimal static balancing . . . . . . . . . . . . . . . . . . . 91

5.3 STATIC BALANCING OF A FOUR-BAR MECHANISM FOR VERTICAL

STRAIGHT LINE MOTION OF AN EXTERNAL LOAD . . . . . . . . . . 93

5.3.1 Mechanism topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Kinematic position analysis . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.3 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.4 Optimization problem formulation . . . . . . . . . . . . . . . . . . . . . 98

5.3.5 Implementation and results . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 STATIC BALANCING OF A RSSR-SS MECHANISM . . . . . . . . . . . 100

5.4.1 Mechanism topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.2 Kinematic position analysis . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.3 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.4 Optimization problem formulation . . . . . . . . . . . . . . . . . . . . . 105

5.4.5 Implementation and results . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 STATIC BALANCING OF A KUKA KR 210 R3100 SERIAL MANIPULA-

TOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



5.5.1 Kinematic position analysis . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5.2 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5.3 Optimization problem formulation . . . . . . . . . . . . . . . . . . . . . 113

5.5.4 Implementation and results . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 EQUIMOMENTAL SYSTEMS REPRESENTATIONS OF POINT-MASSES

OF PLANAR RIGID-BODIES . . . . . . . . . . . . . . . . . . . . . . . 118

6.1 EQUIMOMENTAL SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 INERTIA MATRIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 EQUIMOMENTAL SYSTEM WITH EQUAL POINT-MASSES . . . . . . 121

6.4 EQUIMOMENTAL SYSTEM WITH UNEQUAL POINT-MASSES . . . . 125

6.5 EQUIMOMENTAL SYSTEMS WITH PRESCRIBED POINT-MASSES . . 129

6.5.1 One prescribed point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5.1.1 Symmetrical planar rigid bodies . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5.2 Two prescribed point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5.3 Three prescribed point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6 EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6.1 Six point-masses rigidly connected . . . . . . . . . . . . . . . . . . . . . 131

6.6.2 Symmetric connecting rod . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.6.3 Asymmetric planar body . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 DYNAMIC BALANCING OF PLANAR MECHANISMS USING EQUIMO-

MENTAL SYSTEMS OF POINT-MASSES . . . . . . . . . . . . . . . . 138

7.1 SCREW BASED DYNAMIC OF PLANAR RIGID BODY . . . . . . . . . 138

7.2 SHAKING FORCE AND SHAKING MOMENT ANALYSIS . . . . . . . . 139

7.3 DYNAMIC BALANCING METHOD . . . . . . . . . . . . . . . . . . . . . 143

7.4 DYNAMIC BALANCING OF A SLIDER CRANK MECHANISM . . . . . 146

7.4.1 Position analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4.2 Acceleration analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4.3 Optimization problem formulation . . . . . . . . . . . . . . . . . . . . . 148

7.4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.1 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.2 PUBLISHED AND SUBMITTED PAPERS . . . . . . . . . . . . . . . . . 154

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

APPENDIX A – MATHEMATICAL TOOLS . . . . . . . . . . . . . . 167

A.1 PARTIAL DERIVATIVES OF A SCALAR, A VECTOR AND A MATRIX

WITH RESPECT TO A VECTOR . . . . . . . . . . . . . . . . . . . . . . 167



21

1 INTRODUCTION

A mechanism is statically balanced in a range of motion if it remains in equilibrium in any

position in that range of motion, or it can also be said that a mechanism is statically balanced if the

weight of the links does not produce any torque or force on the actuators under static conditions,

for any configuration of the mechanism (MOORE, 2009). The complete balanced mechanism

remains in equilibrium for an infinite number of positions in its range of motion, whereas an

approximate balancer mechanism is in equilibrium only for a finite number of positions in its

range of motion. For the majority of practical engineering applications, an approximate balancer

mechanism is a satisfactory solution. Although there are methods that provide exactly balanced

mechanisms, they require additional masses or auxiliary links, or all springs attached to the fixed

link, resulting in a bulky and space-inefficient mechanism (VEER; SUJATHA, 2015).

Static balancing is an important issue in the design of parallel manipulators and mecha-

nisms, since parallel mechanisms are often used in applications where large loads are involved,

where static balancing can improve the efficiency of the mechanism since its actuator does

not contribute to supporting the weight of the links in any configuration. Another important

application of static balancing is the design of mechanisms to help patients in rehabilitation with

difficulties lifting some of their limbs.

Static balancing has been studied for several decades, and there are several methods that

provide exact gravity balancers, but practical applications have been elusive (VEER; SUJATHA,

2015). Designing statically balanced mechanisms with these methods requires the addition of

masses and links, in addition to considering zero-free-length springs or simulated them through

additional devices. There are still few works in the literature that can deal with static balancing

using conventional tension and torsion springs. Furthermore, the design of statically balanced

mechanisms confined to a reduced design space is still a challenge to overcome.

In this thesis, several methods are proposed in order to allow the dimensional synthesis

of statically balanced mechanisms on practical implementations of handling large payloads or

exoskeletons for industry and devices for patient rehabilitation. This is achieved by integrating

the following methods and tools: natural coordinates method, bilateration method, screw theory,

principles of virtual works and powers, and unconventional optimization techniques.

1.1 OBJECTIVES

The main objective of this thesis is to develop a methodology based on screw theory for

balancing mechanisms.

The specific objectives of this work are:

• To develop a method based on the incorporation of natural coordinates into the screw

theory for the static balancing of mechanisms.
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• Develop a procedure for obtaining equimomental systems of point masses of flat rigid

bodies.

• To propose a method for the dynamic analysis of planar mechanisms by means of equimo-

mental systems of point masses.

• To adapt the proposed static balancing method for dynamic balancing of planar mecha-

nisms.

1.2 MOTIVATION AND APPLICATIONS

The genesis of this work arose from a specific balancing challenge that a company

entrusted to the Laboratory of Applied Robotics, Raul Guenther (LAR). Our team developed a

specific technique using the design tools we developed in our laboratory. This scenario led us to

ask ourselves: Is it possible to create a versatile method to balance any mechanism?

Exploring the specialized literature, an extensive study devoted to static balancing of

mechanisms was found, with numerous articles published. However, many of the proposed

methods apply only to particular cases. The existence of tools such as Davies’ method, born

within LAR, which allow the methodical analysis of mechanisms regardless of their level of

complexity, provided us with the motivation to develop a sufficiently generic tool that can address

the static balancing of mechanisms in practical applications, without requiring auxiliary devices

such as additional links, cables, and pulleys, and special springs.

Furthermore, mechanisms that achieve static balancing exhibit highly desirable charac-

teristics, such as the ability to operate with minimal or no actuation to support the weight of their

links. In this context, the dimensional synthesis procedures we propose in this thesis represent

significant contributions to future research and the industry itself.

Statically balanced mechanisms are highly desirable for many engineering applications:

• Static balancing of mechanisms is present in many devices of daily life. The most recog-

nizable example is the Anglepoise lamp (see Figure 1), which is a work lamp that can

move effortlessly and balance in arbitrary positions (TAKAHASHI et al., 2019).

• Statically balanced mechanisms are used in surgical devices as they allow the manipulation

of a payload with minimal effort, thereby reducing human fatigue due to the long operation

time. Figure 2a shows a stackable mechanism architecture for otologic surgery (WOO;

SEO; YI, 2019).

• Many people are affected by conditions that cause profound muscle weakness or impaired

motor control. However, the equipment available to facilitate this is very limited. Therefore,

it can be said that statically balanced devices can accelerate rehabilitation of patients with

difficulty moving any of their limbs (BANALA et al., 2006). Figure 2b shows a static

balancing mechanism for lower limb rehabilitation.
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Figure 1 – Anglepoise lamp model 1227.

Source: Adapted from (WIKIPEDIA, 2020).

Figure 2 – Stackable balancing mechanism for otologic surgery (a) and gravity-balancing leg
Orthosis (b).

(a) (b)

Source: Adapted from (WOO; SEO; YI, 2019; BANALA et al., 2006).

• An interesting application of statically balanced mechanisms is the simulation of environ-

ments with low gravity or gravity; this is especially useful in the training of cosmonauts or

in the testing of space devices such as satellites. Figure 3 shows a 6-Dof platform for testing

a free-floating spacecraft or space object in a zero-gravity environment (MA, 2013).
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Figure 3 – Concept design of the 6-Dof zero-gravity test platform.

Source: Ma (2013).

1.3 THESIS CONTRIBUTIONS

This thesis mainly contributes to the static balancing of mechanisms and the dynamic

balancing of planar mechanisms. Static and dynamic balancing methods are based on incor-

porating natural coordinates into screw theory, thus facilitating kinematic modeling and static

and dynamic analysis. Combining natural coordinates and screw theory makes it possible to

systematically approach static and dynamic balancing problems.

The specific contributions are as follows.

1.3.1 Kinematic analysis

New approaches for the kinematic analysis of mechanisms are proposed based on Davies’

method, natural coordinates, and the bilateration method. Specific contributions are as follows:

• The kinematic analysis by means of natural coordinates, bilateration, and screw theory

is reviewed. Then, a combination of natural coordinates and screw theory is proposed,

facilitating the kinematic analysis of velocities and accelerations of mechanisms. The

analysis of accelerations by incorporating natural coordinates in the Davies method

allows the determination of relative angular accelerations in a simple way. Moreover, a

simultaneous solution of the position and velocity problem is proposed.
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• In this thesis, the bilateration method was formulated in an alternative way using complex

numbers and showing that some properties can be easily demonstrated in the complex

form of bilateration matrices, called bilaterators. It also proposed a bilateration matrix for

a planar RRRP mechanism which can be used to solve the position kinematics of more

complex planar mechanisms.

1.3.2 Static balancing

A screw theory-based static balancing method is proposed that is applicable to planar

and spatial mechanisms. The static balancing problem is formulated as an optimization problem

that allows optimization techniques based on the computation of gradient and evolutionary

approaches. The specific contributions are:

• A conceptual algorithmic method for static balancing mechanisms was developed to serve

as a guide for the development of specific balancing methods. An approach was also

proposed to deal with the static balancing of mechanisms with limited workspaces.

• A screw theory-based static balancing method founded on incorporating natural coordinates

into Davies’ method is developed where the application of Davies’ method in conjunction

with natural coordinates permits finding of actuator forces in a systematic form. The

proposed method is helpful in practical engineering problems since there are no excessive

simplifications necessary.

• Using natural coordinates as design variables in the optimal static balancing of mechanisms

is also proposed. The main advantage of using natural coordinates as design variables is

that it facilitates static balancing of mechanisms confined to a reduced working space.

1.3.3 Equimomental systems representation of planar rigid bodies

Based on the description of equimomental systems of four point-masses of three-

dimensional rigid bodies proposed by Laus and Selig (2020), a procedure is developed to

determine an equimomental system of three point-masses of a given rigid body. Specific contri-

butions are as follows:

• In this work, the equimomental systems of three point-masses of planar rigid bodies are

investigated using the concept of pseudo-inertia matrix. It is found that, given a planar rigid

body, it is always possible to determine an equimomental system of three equal masses

located at the vertices of an isosceles triangle.

• A procedure is presented to determine equimomental systems with different masses,

guaranteeing that the masses are positive. It is shown that it is always possible to choose an

equimomental system of three point-masses located at the vertices of an isosceles triangle

with a prescribed position of one mass.
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1.3.4 Dynamic balancing

Based on the equimomental systems of three point-masses of planar rigid bodies, the

static balancing method is adapted for the dynamic balancing of planar mechanisms. Specific

contributions are as follows:

• The equation of motion of a planar rigid body is obtained from an equimomental system

of three point-masses, which is straightforward using Plücker coordinates. Based on the

concept of an inertial screw Frantz et al. (2018), a procedure is developed to solve the

inverse dynamics of mechanisms using Davies’ method.

• This thesis introduces the concept of a shaking screw. This new concept enables us to

adapt the static balancing method to the dynamic balancing of planar mechanisms. In this

case, as in static balancing, the mathematical formulation is based on incorporating natural

coordinates into the screw theory.

1.4 OVERVIEW OF THIS WORK

In this chapter, an introduction on statically balanced mechanisms is presented, in addition

to the objectives and contributions of this thesis, the motivation to carry out this work, and finally,

some important applications of statically balanced mechanisms are mentioned.

Chapter 2 presents the applications and features of static balancing. Methods or principles

for balancing a system are presented. The basic theory on static balancing is also discussed. At the

end of the chapter, a bibliographical review classified by methods of complete and approximate

static balancing is presented.

Chapter 3 presents an overview of the synthesis of statically balanced mechanisms, where

a conceptual method of static balancing is proposed, on which the method developed in Chapter

5 is based.

Chapter 4 is one of the most important chapters of this thesis, since it presents and

develops the kinematic analysis methods which are the basis of the static balancing methods

developed in Chapter 5.

In Chapter 5, a new screw theory-based static balancing method is developed. The method

is based on the incorporation of natural coordinates into the theory of screws.

In Chapter 6, the equimomental systems of three point-masses of planar rigid bodies are

investigated using the concept of pseudo-inertia matrix.

Chapter 7 proposes an adaptation of the static balancing method developed in Chapter 5

for the dynamic balancing of planar mechanisms using equimomental systems of point masses.

The conclusions of this thesis and future work are presented in Chapter 8.



27

2 STATIC BALANCING

This chapter presents the basic theory of static balancing and a preliminary bibliographic

review. Initially, the main applications and features of static balancing are presented, as well as

some static balancing methods based on the use of counterweights and/or springs. In a similar

manner, the equilibrium conditions and their classification are posed. Finally, a review of the

bibliography is presented where the works are classified in complete balance and approximate

balance.

2.1 APPLICATIONS AND FEATURES

Typical applications of static balancing are gravity compensation of mechanisms, vi-

bration isolation, and stiffness reduction in compliant mechanisms (GALLEGO SANCHEZ,

2013).

Figure 4 – Typical applications of static balancing.

Application of 

static balancing
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Gravity 
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Source: Adapted from (GALLEGO SANCHEZ, 2013).

• Gravity compensation: Static balancing for gravity compensation can be found in ap-

plications ranging from daily lives devices such as monitor supports, lamps, to more

sophisticated devices such as rehabilitation medical devices, serial and parallel manipu-

lators, antigravity devices in space applications. Typically, the idea is to compensate for

the weight of a mechanism in order to achieve an effortless actuation. Design methods for

gravity compensation are based on the use of springs and/or stationary centers of gravity.

This is the main subject of this thesis.

• Vibration isolation: Another basic application of static balancing is vibration isolation.

In theory, a statically balanced mechanism has a natural frequency equal to zero; therefore,

if it is subjected to a perturbation, it does not oscillate. Thus, they are ideal for passive

systems in vibration isolation. Some design methods for vibration isolation are presented

by Alabuzhev (1989), Park and Luu (2007), Eugene Rivin (1999), Freakley and Payne

(1978), Eugene I Rivin (2003), David L Platus (1993), DL Platus (1993).
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• Stiffness reduction: There are situations where a reduction in the operational stiffness of

compliant mechanisms is desirable, such as in the case of increasing energy efficiency

or the ability to keep the force feedback between the input and output of a compliant

tool. Imagine a mechanism where its actuator cannot exert high forces; in this case it is

convenient that all the energy from the actuator goes to the payload and it is not wasted

deforming the mechanism just to achieve motion (GALLEGO SANCHEZ, 2013). Some

works on this subject are presented by Herder and Van Den Berg (2000), Stapel and Herder

(2004), Trease and Dede (2004), Radaelli, Gallego, and Herder (2011), Tolou, Henneken,

and Herder (2010).

Herder (2001), lists the distinctive features of a statically balanced mechanism, of which

the following are highlighted:

• Energy-free motion: Statically balanced systems can be moved in the presence of consid-

erable conservative forces, but they require no operating force or energy.

• Improved information transmission: In manually operated instruments, such as body-

powered hand prostheses and surgical forceps, the elimination of undesired forces, such

as weight or undesired spring forces, not only reduces operating effort but also improves

feedback.

• Neutral buoyancy: By using gravity equilibrators, forces due to gravity are compensated.

This allows zero-gravity simulation, for instance, for space research applications.

• Improved performance: In general, the precision of operation is improved if the loading

characteristics are reduced. Furthermore, if undesired forces are eliminated, smaller

actuators are needed (if any), the whole construction can become more light-weight, and

control is simplified leading to better performance, also lower power consumption and

reduced heat rise.

• Inherent safety: The fact that statically balanced mechanisms are in equilibrium when

they are not actuated represents a form of safety. For example, in an electrically powered

robot arm with passive gravity balancing, a power failure does not result in a dramatic

breakdown of the mechanism.

2.2 STATIC BALANCING METHODS

In this section, the main balancing methods used in practical applications are shown. In

this case, we refer to the balancing method as the device or medium to store and exchange energy,

so that the total potential energy remains constant.
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2.2.1 Balancing with counterweights

A mechanism can be statically balanced by adding masses so that the energy of the entire

system is constant. One example is the Mechane, this device was used in classical Greek theater

to surprise the audience. The device consisted of a beam pivoted so that the weight of the man

at one extreme representing a hero or a god, was equilibrated by a counterweight at the other

extreme. In this way, a single person could operate the device without much effort 5.

The condition for the mechanism to be balanced is that the global center-of-mass of the

mechanism is fixed. This property is useful in manipulators or mechanisms where it is required

that they are balanced for any orientation.

M r̄ =
∑

i

mi r̄i = constant, (1)

Figure 5 – Deus ex Machina. Reconstruction of the ’mechane’ for the Athens theater of Dionysos.

Source: Adapted from (HERDER, 2001).

where M is total mass, r̄ is position of the center of mass, mi and r̄i are the mass and

position of i-th mass.

2.2.2 Balancing with springs

Static balancing with springs consists in ensuring that the total potential energy of the

mechanism remains constant, which means that the weight of the mechanism has no effect

on the actuators. In addition, with this approach, the weight of the entire mechanism can be

balanced with a much lower total mass than when counterweights are used. See, for example, a

six-degree-of-freedom parallel manipulator Figure 6, which was developed to be used in motion

simulators. The moving platform is carried in any position by the three spring-actuated legs

using parallelogram linkages, so that the actuators only need to accelerate and decelerate the
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system. As the desired accelerations are considerable, it was preferred to use springs instead of

counterweights.

In this case, the condition for the mechanism to be statically balanced is that the total

potential energy V from the sum of the gravitational potential energy Vg and the elastic potential

energy Ve must be constant.

V = Vg + Ve = constant . (2)

Figure 6 – Statically balanced parallel manipulator.

Source: Adapted from (LAVAL UNIVERSITY ROBOTICS LABORATORY, 2002).

2.3 THEORY ON STATIC BALANCE

The literature on theoretical aspects of equilibrium focuses mainly on the identification

of instability in structures and how to avoid it to ensure a stable equilibrium. But static balancing

is a special case of equilibrium called neutral or indifferent equilibrium, for which very few

works in the literature are devoted to this topic (GALLEGO SANCHEZ, 2013). Due to the above

and the fact that this thesis is not intended to deep into theoretical aspects of equilibrium, in this
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section the basic theory to understand the equilibrium of a mechanical system is presented, and

therefore it is far from being exhaustive and complete.

The basic idea behind static balancing is that if the potential energy in a system is constant,

then it remains in equilibrium at any position in its range of motion.

V(q) = constant, (3)

where q is the vector of generalized coordinates.

Definition 1 A mechanical system with constant potential energy along a certain range of motion

is a statically balanced system along such a range of motion (GALLEGO SANCHEZ, 2013).

2.3.1 Stability of equilibrium

It can be intuited that the equilibrium state of the three bars shown in Figure 7 is different.

The bar in Figure 7(a) tends to return to its equilibrium position if subjected to a small change

of position, while the bar in Figure 7(b) will move away from its equilibrium position under a

small change of position, and the bar in Figure 7(c) will remain in equilibrium in its new position.

These three types of equilibrium are classified, respectively, as stable equilibrium, unstable

equilibrium, and neutral equilibrium.

Figure 7 – Illustration of the types of equilibrium.

(a) (b) (c)  

Stable equilibrium Unstable equilibrium Neutral equilibrium

Source: Adapted from (BEER, 2010).

• Stable equilibrium: A system is said to be in stable equilibrium if it has a tendency to

return to its original position when the system is given a small displacement.

• Unstable equilibrium: A system is said to be in unstable equilibrium if it has a tendency to

move even farther from its original equilibrium position when given a small displacement.
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• Neutral equilibrium: A system is said to be in neutral equilibrium if the system remains

in equilibrium even when given a small displacement from its original position.

The potential function V of a system can be used to investigate the stability of equilibrium

by applying the principle of virtual work, which states that a mechanical system is in equilibrium

if the virtual work of external forces is zero (GOLDSTEIN; POOLE; SAFKO, 2013). Then

δW = 0, (4)

If all external forces are conservative, then the following relation can be written

dW = −dV, (5)

and applying the virtual operator to Equation 5, yields

δW = −δV . (6)

Consider that the potential energy is a function of the degrees of freedom grouped in the

vector q, that is, V = V(q). Then the potential energy variation can be expressed as

δV =
∂V

∂q
δq

= δT
q

[
∂V

∂qi

]
. (7)

From Equation 4, Equation 6 and due to the fact that the virtual displacements δq are

independent, we can deduce the equilibrium condition for a mechanic system,

[
∂V

∂qi

]
= 0. (8)

To determine the stability of equilibrium, the criterion of the second derivative can be

used to determine the maxima and minima of a function; for more details, see (KAPLAN, 2002).

Thus, a complete classification is:

[
∂V
∂qi

]
= 0;

[
∂2V
∂qj∂qi

]
≻ 0 : Stable equilibrium

[
∂V
∂qi

]
= 0;

[
∂2V
∂qj∂qi

]
≺ 0 : Unstable equilibrium

[
∂V
∂qi

]
= 0;

[
∂2V
∂qj∂qi

]
= 0 : Neutral equilibrium

Otherwise : Partially stable or partially

neutral equilibrium



Chapter 2. Static balancing 33

Figure 8 – Potential energy for the three types of equilibrium in a 1-DoF system.

(b) (c)

(a)

Stable equilibrium

Unstable equilibrium Neutral equilibrium

Source: Adapted from (HIBBELER, 2010).

Figure 8 illustrates the three types of equilibrium stability for a one-degree-of-freedom

system. Here it can be seen that in the stable equilibrium position the potential function is a

minima, in the unstable equilibrium position the potential function is a maxima and the potential

function corresponding to the neutral equilibrium is constant.

2.4 BIBLIOGRAPHIC REVIEW

In this section a bibliography review of the literature on statically balanced mechanisms

of the last four decades is shown, classified as perfect static balancing and approximate static

balancing.

2.4.1 Complete static balancing

In (SHIN, Eungsoo; STREIT, Donald A., 1991), a study is presented for the static

balancing of planar pantographs using a potential energy approach. The study presents complete

balancers with both kinematic pairs of revolution and prismatic, where one of the applications is

on walking machine legs, since they provide relatively good energy efficiency. Walsh, Streit, and

Gilmore (1991), present a general methodology for the design of all possible balancers of two

degrees of freedom in a spatial arrangement, with two revolution pairs, where the system may
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consist of n-springs, each attached to the ground at one end. Streit and Shin (1993), show the

fact that any planar mechanism with lower and/or higher kinematic pairs can be, in theory, fully

balanced. Balance is achieved by adding a two degree-of-freedom mechanism to each center of

gravity of each link. Another interesting work on a balancer used on the legs of a quadruped to

improve its efficiency is presented in (SHIN, E.; STREIT, D. A., 1993). Dynamic simulation

demonstrates that proper balancer design can reduce peak torque of leg actuators by more than

90 percent and offer a vehicle specific resistance 70 percent smaller than that of tracked vehicles.

An important contribution on statically balanced manipulators is found in (WANG, 1997),

the author presents a dimensional synthesis formulation for balancing with counterweights and

balancing with springs, planar and spatial parallel manipulators with revolute actuators, from

two to six-degrees of freedom. Moreover, it is also found that balancing is always possible for any

given value of the design variables, which is an interesting result since it allows the kinematic

design of a mechanism to be completed using any criterion and the balancing to be performed a

posteriori.

Complete balancing using higher kinematic pairs is possible by variable shape of the

pairs as is presented by Simionescu and Ciupitu (2000b), where some constructional solutions

for the balancing of robotic arms are presented, and exact balancing is performed for all points

of the workspace by using mechanisms with higher pairs.

A theoretical viewpoint on static balancing is presented by Herder (2001), whereby the

use of different principles is derived from the relationship between geometrical parameters for

the neutral equilibrium of some basic balancer mechanisms. Moreover, basic composition rules

are proposed in order to generate new balance mechanisms from the basic balancers.

The stationary center-of-mass method for static balancing of hexapods is addressed in

(RUSSO; SINATRA; XI, 2005), where static balancing is defined as a mechanism in which

the weight of the links does not produce any force on the actuators for any configuration of the

manipulator. Moore (2009), presents an algebraic method for static and dynamic balancing for 4R

mechanisms, where the necessary and sufficient conditions for the static balancing of spherical

4R linkages and Bennet linkages are established, in both cases, the balancing is achieved by the

addition of masses.

Banala et al. (2006) presents a statically balanced mechanism for leg orthosis, which is

designed to assist persons with hemiparesis to walk by eliminating the effects of gravity. The

balancing conditions are derived from the potential energy approach.

Po Yang Lin, Win Bin Shieh, and Dar Zen Chen (2010), develop a methodology to

determine the location of the springs of a statically balanced planar manipulator without auxiliary

links. Static equilibrium analysis is formulated using the potential energy approach, which is

determined through a constant block stiffness matrix. The main advantage of the method is that

singularities that may be present due to the addition of additional links are avoided.

Deepak and Ananthasuresh (2012) present three techniques to statically balance a four-

bar mechanism loaded with a zero-free length spring. The authors state that the number of
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necessary linkages and auxiliary springs is less than or equal to that found in the literature. In

addition, the Roberts–Chebyshev cognate theorem is extended to static balancing of four-bar

linkages. Applications of perfect static balancing to support the upper or lower limbs of patients

in rehabilitation or people with some type of disability that limits the ability to move are shown

in (LIN, P.-Y.; SHIEH, W.-B.; CHEN, D.-Z., 2013; TSENG et al., 2017; KUO; NGUYEN,

et al., 2021). Other medical applications are surgical devices based on static balancing that are

discussed in (WOO; SEO; YI, 2019; KUO; LAI, 2016; KIM et al., 2019).

2.4.2 Approximate static balancing

Segla, Kalker-Kalkman, and Schwab (1998), show that the static balancing of a robot

mechanism can be formulated as an optimization problem by using a Computer Algebra System.

A general program based on the Monte-Carlo method and a genetic algorithm is also developed,

and it is shown that a practical problem can be solved without the need for simplifications.

Simionescu and Ciupitu (2000a), present some constructional solutions for statically

balanced robot arms. The formulation developed by the authors permits the balancing for a

discrete number of work field positions.

Procedures for static balancing of mechanisms with torsion spring are proposed in

Radaelli, Gallego, and Herder (2011), Gallego and Herder (2011), Gallego Sanchez (2013).

In these works, static balancing is formulated as an optimization problem where geometric

parameters of the mechanism are also considered as design variables.

Perreault, Cardou, and Gosselin (2014), present a novel method to approximate the static

balancing of a planar parallel cable-driven mechanism based on four-bar linkages and spring.

The author proposed the use of nonlinear spring to generate minimum torques and thus keep the

cable taut. In this paper, we have first determined the best non-linear tension profile in the cables

in order to approximate neutral equilibrium over the workspace. The objective was to minimize

over the workspace the Euclidean norm of the resultant of all forces applied on the end effector

while ensuring a minimum tension in the cables. Then, the desired four-bar linkage input–output

relationship was determined.

Carrabotta et al. (2015), propose different solutions for static balancing of a commercial

robot for palletizing. The solutions consist of using only counterweights, springs, and the

combination of counterweights and springs. In all cases, the design variables are determined by

two proposed optimization procedures. Simionescu, Ciupitu, and Ionita (2015), present a new

solution and its respective mathematical model for the static balancing of a parallel delta robot.

The results showed that the maximum torque required by the actuators was reduced about 20

times that of the unbalanced robot.

Denizhan (2015) presents an interesting application of the statically balanced mechanisms

that deals with a procedure of optimal synthesis of three positions for static balancing of

the hood of a vehicle. Veer and Sujatha (2015) prove that exact static balancing in a serial

kinematic chain with springs connected to consecutive links is impossible. The authors propose
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an optimization procedure based on minimizing the variance of the potential energy for discretized

configurations with which an approximate static balance is achieved. Similar work (ROSYID;

EL-KHASAWNEH; ALAZZAM, 2019; TAKAHASHI et al., 2019; WANG; KONG, 2020) uses

the minimization of a measure derived from the potential energy or by minimizing the force of

the actuators (RAO; WAGHMARE, 2018; ROSYID; EL-KHASAWNEH; ALAZZAM, 2019;

ALAMDARI; HAGHIGHI; KROVI, 2019; MARTINI; TRONCOSSI; RIVOLA, 2019; ZHOU

et al., 2020).

Developing techniques for static balancing of mechanisms through screw theory is

incipient, and published works are scarce. Ma et al. (2019) show the kinetostatics of the TriMule

parallel robot using screws, although the kinetostatic model has a small discrepancy with the

Solidworks model. The balancing is performed by two sets of gas springs. A geometric method

based on screws for static balancing of mechanisms constructed using spherical chain units is

presented in (WANG; KONG, 2019). Shekarforoush, Eghtesad, and Farid (2013) present the

static balancing of a spatial tensegrity mechanism with compliant active components. In this

work, the kinetostatic problem is solved using screws. In the works cited above, no systematic

procedure is presented to generate the equations of statics through screw theory, unlike the

method proposed in this thesis, which systematically determines the constitutive equations of

statics. Moreover, in the literature consulted, there is no evidence of the use of graph theory in

the context of static balancing.
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3 STATIC BALANCING SYNTHESIS OVERVIEW

In Chapter 2, the theoretical bases of equilibrium needed to understand the static balancing

of a mechanism were briefly addressed, but it was not said how the dimensions and parameters

necessary for a mechanism to be statically balanced can be found, this aspect is called static

balancing synthesis and will be conceptually approached in this chapter. Although the neutral

equilibrium conditions for static balancing are simple this cannot be used majority directly to

synthesize mechanisms, due that in general, the mechanisms’ structure is highly nonlinear.

3.1 KINEMATIC MODELING

Since a mechanism is composed of links interconnected by kinematic pairs, before

considering synthesis it is necessary to choose how to mathematically describe the relationship

between the links. This mathematical description constitutes the model on which it will be built

later in the formulation of the optimal synthesis. This subject will be covered in more detail in

Chapter 4.

To modeling a mechanism, we need description variables to know the position of all

the links. All these positions at a given moment constitute a linkage configuration. Description

variables, also called generalized coordinates, can be independent or dependent. In fact, since

bodies are interconnected by joints, their movements are not completely free and this can cause

restrictions between some generalized coordinates.

It must be emphasized here that the kinematic modeling is crucial for the behavior of the

optimal synthesis process. During the optimization, the model will be evaluated with various

values of the dimensions (angles or lengths) leading to various configurations of the mechanism.

For closed-loop linkages, these evaluations also involve the assembly of the mechanism and

problems of singularity that may occur.

3.1.1 Types of generalized coordinates

This subsection will briefly describe the three types of coordinates most used in the

bibliography on the definition of mechanisms (JEAN-FRANÇOIS COLLARD, 2007; JALÓN;

BAYO, 1994), namely, relative coordinates, Cartesian or reference point coordinates, and natural

coordinates.

3.1.1.1 Relative coordinates

Relative coordinates are defined in each kinematic pair and each one of them measures

the position of an element with respect to the previous one in the kinematic chain. With the

relative coordinates, the constraint equations basically come from the loop closure conditions.

Table 1 shows the main advantages and disadvantages of this type of coordinates.
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Table 1 – Advantages and disadvantages of relative coordinates.

Advantages Disadvantages

They are the minimum number of dependent coor-
dinates that can be define.

Complex mathematical formulation, since the abso-
lute position of an element, depends on the previous
ones in the chain.

They are especially recommended for the study of
open chain mechanisms.

The closed-loop equations are reduced in number,
but highly non-linear.

As they are defined in the kinematic pairs, the
movement of the input coordinates can be directly
controlled.

May require some postprocessing work to deter-
mine the absolute kinematics of a point, for exam-
ple.

Source: Adapted from (ANA MAGDALENA DE JUAN DE LUNA, 2011; JEAN-FRANÇOIS COLLARD, 2007).

3.1.1.2 Reference point coordinates

The reference point coordinates place the position and orientation of each element of

the mechanism absolutely. There are several possible choices. The most direct consists of

defining a reference system rigidly attached to the element and taking, on the one hand, the

coordinates of its origin to define the translation and, on the other, the Euler angles (or another

way of parameterizing the rotations) to define its orientation. The constraint equations arise by

examining each pair and writing mathematically the restrictions to the movement imposed by

the own pair on the two elements joined by it.

Table 2 shows the main advantages and disadvantages of this type of coordinates.

Table 2 – Advantages and disadvantages of reference point coordinates.

Advantages Disadvantages

The position and orientation of each element are
defined directly.

It is not taken into account if the mechanism is
open or closed chain.

The constraint equations are much more simple
than in the case of relative coordinates, leading to
a more efficient calculation process.

More coordinates are needed, and therefore equa-
tions are much higher than in the case of relative
coordinates.

Source: Adapted from (ANA MAGDALENA DE JUAN DE LUNA, 2011; JEAN-FRANÇOIS COLLARD, 2007).

3.1.1.3 Natural coordinates

Natural coordinates also absolutely define the position of each element, but instead of

being located in the origin of the reference system of the element, like reference point coordinates,

they are usually placed in the pairs. With natural coordinates, the constraint equations are of two

types: rigid body and kinematic pair, the latter only in certain pairs.

Table 3 shows the main advantages and disadvantages of this type of coordinates.
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Table 3 – Advantages and disadvantages of natural coordinates.

Advantages Disadvantages

The position and orientation of each element are
defined directly.

It is not taken into account if the mechanism is
open or closed chain.

Trigonometric functions do not appear in the re-
striction equations.

May require some post processing work to deter-
mine angular values whether these are necessary.

Natural coordinates are particularly well adapted
to sensitivity analysis and optimization.

More coordinates are needed, and therefore equa-
tions are much higher than in the case of relative
coordinates.

Source: Adapted from (ANA MAGDALENA DE JUAN DE LUNA, 2011; JEAN-FRANÇOIS COLLARD, 2007).

3.1.1.4 Discussion on the choice of the type of coordinates

Given the advantages of the natural coordinates mentioned above, these are the formalism

chosen for the description of mechanisms in this thesis. Another advantage of this choice is that

this type of coordinates can naturally be integrated into screw theory, as will be shown in later

chapters.

Figure 9 – Classification of static balancing synthesis of mechanisms.

Static balancing synthesis

Approximate balanceComplete balance

Solving synthesis equations that are 

independent of the generalized 

coordinates.

Other methods

Solving a square system of synthesis 

equations for a limited of precision 

points.

Optimization

Source: The author.
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3.2 STATIC BALANCING SYNTHESIS

In this thesis, we refer to the static balancing synthesis as the process of determining the

dimensions of the mechanism, the position and properties of the springs and / or counterweights.

The dimensional synthesis of statically balanced mechanisms can be classified into two categories:

complete balance and approximate balance as shown in Figure 9.

3.2.1 Complete balance

In theory, any planar or spatial mechanism with lower and/or higher kinematic pairs

can be completely balanced (HERDER, 2001). To demonstrate this intuitively consider a basic

mechanism that keeps the center of mass of a link balanced as represented in the graph (Figure

10). The basic balanced mechanisms are obtained either by solving synthesis equations that are

independent of the generalized coordinates or using other methods, see Figure 9.

Figure 10 – Graph of isolate link equilibrated by a basic balanced mechanisms.

LinkBalanced mechanismGround

Balanced system

Source: The author.

Now we consider the generic mechanism shown in Figure 11, which is composed of n+ 1

links. Then this system can be exactly balanced by adding a basic balancing mechanism for each

link. If each basic balancing mechanism is composed by m links then the resultant mechanism is

formed by nm + 1.

Although the ideal balancing system is an exact balancer mechanism, this in practice

leads to the following disadvantages:

• The use of zero-free-length springs that are not common and more complicated to manu-

facture than normal springs.

• It is necessary to add links that make the mechanism more complicated and therefore

increase the total cost.

• Generally, the final mechanism becomes bulkier, which is a problem if the workspace is

tight.

• Singularity problems can occur due to the additional links.
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Figure 11 – Graph of generic rigid body system balanced by basic balanced mechanisms.
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In accordance with the objectives of this thesis, the perfect balance will not choose due

to the aforementioned. All our efforts will be focused on approximate balance where the bases

of conceptual synthesis are detailed in the following sections.

3.2.2 Approximate balance

As normal springs usually are cheapest to produce, it is worthwhile to consider their use

in a simple non-linear linkage converting the spring forces as desired. Although normal springs

can often be used to obtain the behavior of zero-free-length springs, this, therefore, requires the

use of additional cables and links that make the mechanism more complex, and in some cases, it

does not meet space requirements (HERDER, 2001).

Approximate balance can be faced by two approaches: Solving a square system of

synthesis equations for a limited of precision points, or using optimization, see Figure 9. The

first one is limited to a number of precision points while the second one is more general and can

be used to synthesize balanced mechanisms with complicated design restrictions.

In this thesis, we refer to the dimensional optimization of statically balanced mechanisms

simply as optimal synthesis.The wedding between optimization and synthesis (Figure 12),

permits us to tackle complicate balanced multi-loop mechanisms where it is necessary to solve

simultaneously the position or assembly problem, moreover avoiding singularity positions and

multiple assembly modes separated by bifurcation configurations.
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Figure 12 – Wedding between optimization and synthesis.
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3.2.3 Optimal synthesis problem

The optimization problem is conformed of an objective function whose minimization

results in the dimensions of the balanced mechanism, in addition to some constraints that can be

classified as constraints of the design variables and constraints of the generalized coordinates as

it shows in the Figure 13.

Figure 13 – Construction of the optimal synthesis problem.
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Design variables constraints 

Generalized coordinates constraints Optimal synthesis problem

Source: The author.
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The objective function is formulated from the equilibrium conditions mentioned in

Chapter 2. Then the constraints of the design variables are formulated, which generally correspond

to the limit dimensions of the links and the values of the parameters of the counterweights and/or

springs. Finally, the generalized coordinates constraints are formulated, which can be mainly

associated with space constraints as illustrated in the Figure 14. These restrictions can also be

associated with the maximum travels of the springs.

Figure 14 – Mechanism with space constraints.

Source: The author.

Once the optimization problem is formulated, we can use deterministic, hybrid or

stochastic methods to find an optimal solution, see Figure. 15. Theoretical details about these

methods and their implementation are found in (ARORA, J., 2012), (ARORA, R. K., 2015).

Figure 15 – Classification of the optimization algorithms.

Optimization methods

HybridDeterministic Stochastic

Direct 

search

Gradient-

based

Evolutionary 

Algorithms

Swarm 

Intelligence

Source: Adapted from (JEAN-FRANÇOIS COLLARD, 2007).
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3.2.4 The conceptual method proposed for the static balancing synthesis

In this section, we propose a conceptual static balancing synthesis method, from which

the methods proposed in Chapter 5 are derived. The step by step of the proposed method is the

following:

• The first step is to select a mechanism topology that it guarantees a permissible approximate

balancing. One way to do this is by selecting a mechanism previously balanced by complete

balancing methods.

• The second step is kinematic modeling. First, we model the mechanism using adequate

generalized coordinates, then as far as possible we solve the position in closed form,

otherwise, it is obtained a numerical solution. Immediately we performed the velocity

analysis either by screw theory or using differentiation. The velocity analysis is only

necessary if we used virtual work or virtual power principles to formulate the equilibrium

conditions.

• In the third step, we select the appropriate equilibrium conditions in order to make an

objective function in the next step. The equilibrium conditions can be formulated from:

– Constant potential energy condition.

– Virtual work or virtual power principle.

– Zero input forces or torques condition. This can be systematically performed by solv-

ing the static problem via screw theory or using the natural coordinates formulation.

• The fourth step is to formulate static balancing synthesis as an optimization problem. To

solve the optimization problem can be used gradient-based methods, stochastic methods,

and hybrid methods.

• Finally, we analyze the optimal mechanism in order to find any singularity problem and

verify that the balancing is acceptable for a practical application.

The method described above is illustrated in the Figure 16.

3.2.5 Proposal to deal with the static balancing synthesis of mechanisms with space

constraints

To deal with the problem of static balancing synthesis of mechanisms with space

constraints, in this thesis it is proposed to use the generalized coordinates as design variables,

which makes it much easier to deal with this type of constraints. The use of generalized coordinates

as design variables has already been used in (GARCÍA-MARINA et al., 2018), (BUSTOS,

2004), and (SUH; RADCLIFFE, 1978), in these works, the design variables correspond to the

generalized coordinates of the initial position of the mechanism. To date no studies have been
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Figure 16 – The conceptual method proposed for the static balancing synthesis.
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reported that use the above approach to static balancing, and in the studies consulted there is no

evidence of an efficient method to address space constraints.

Conceptually this method consists of the following steps:

• First of all, we must choose from the generalized coordinates those that will be part of the

design variables.

• Then the objective function is formulated suitably in such a way that it allows an efficient

computation and also that a sensitivity analysis is possible in the case that a hybrid

optimization method is used.

• The next step is to represent the space constraints of the mechanism by using the generalized
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coordinate constraints. Also, restrictions on the design variables of the counterweights and

/ or springs are included.

• Finally, the optimization problem is solved through an optimization method of those shown

in the Figure 16.

The Figure 17 illustrates the method described above.

Figure 17 – The conceptual method proposed for static balancing synthesis with space con-
straints.
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4 KINEMATIC ANALYSIS

As described in Chapter 3, kinematic modeling or kinematic analysis is the most important

stage in static balancing synthesis, since the behavior of the optimization or optimal synthesis

process depends on the approach to the kinematic description of a mechanism. Therefore, this

subject is covered in detail in this chapter.

Kinematics is the study of motions of objects in the Euclidean plane or space. Furthermore,

kinematics can be defined accurately, as the study of the geometry of motion, since kinematics is

geometry with the addition of the time dimension (WALDRON; KINZEL; AGRAWAL, 2016).

In our case, in the following sections we study the position, velocity, virtual displacements, and

virtual velocities of a mechanism.

4.1 POSITION ANALYSIS

The position analysis consists basically of finding the feasible assembly modes that a

kinematic chain can adopt. An assembly mode is a possible relative transformation between

the geometrical elements, i.e. the links of a kinematic chain. When a position and orientation

assignment is made for all links, an assembly mode is called a configuration (ROJAS, 2012).

Next, the position analysis using natural coordinates and the bilateration method is

described, which will be widely used throughout this thesis.

4.1.1 Natural coordinates in the plane

Natural coordinates were originally introduced by García De Jalón and collaborators

(JALÓN; UNDA; AVELLO, 1986; JALÓN; BAYO, 1994), In planar mechanisms natural

coordinates are mostly cartesians coordinates located at kinematic pairs or points of interest.

The main advantage in the use of natural coordinates is its simplicity and intuitive physical

interpretation. Moreover, it is not necessary to define angular type coordinates to define the

orientation of each elements to the mechanism, avoiding all the complexity that this entails

(AVELLO, 2014).

To correctly model a mechanism in natural coordinates, you can follow the following

rules:

1. A point must be placed on each joint.

2. In prismatic pairs, there must be at least three collinear points: two to define the axis and

one for the sliding joint.

3. Each link must contain at least two points. If this condition is not met, it is impossible to

determine the orientation of the link.

4. In addition to the above, as many additional points as necessary can be used.
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Once the points are defined, we can add another type of coordinates and group in the

vector q. Then the position is represented by the constraint equations vector as

Φ(q) = 0, (9)

where the number of constraint equations nc, the number of coordinates nv and mobility M are

related by

nc = nv − M . (10)

Figure 18 – Slider-crank mechanism modeled with natural coordinates.

Source: The author.

Example 1 (Slider-crank mechanism modeling with natural coordinates)

For modeling of the slider-crank mechanism shown in Figure 18, the points D and E are

taken. Fixed points A, B, and C are necessary for the formulation of the constraint equations, but

do not belong to the natural coordinates, because they are not variables. Therefore the vector of

natural coordinates is,

q =

[
D

E

]
=



xD

yD

xE

yE



. (11)

As the mobility of the mechanism is M = 1 and it is modeled with nv = 4 natural coordinates,

by Equation (10) we have that three constraint equations are necessary that are:

rT
ADrAD − d2

AD = 0, (12)
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rT
DErDE − d2

DE = 0, (13)

rBE × rBC = 0. (14)

Equations (12) and (13) are obtained from the rigidity condition of the links. Equation (14)

corresponds to the collinearity condition of points A, B, and C. Now, writing this equations in

the form of Equation (9) we have that

Φ(q) =


(xD − xA)2 + (yD − yA)2 − d2
AD

(xE − xD)2 + (yE − yD)2 − d2
DE

(xE − xB)(yC − yB) − (yE − yB)(xC − xB)



= 0. (15)

4.1.1.1 Rigid body constraints

The rigid body constraints are those necessary so that the points of the same element do

not have relative displacements. In a planar element defined by n points, there must be 2n − 3

constraint equations, since the element has three degrees of freedom.

Figure 19 – Planar rigid body constraints.

(a) (b) (c) (d)

Source: The author.

• Two points ( Figure 19a ): In this case, the distance between points i and j is constant,

therefore, we have a unique constraint equation that can be written as:

rT
i jri j − d2

i j = 0, (16)

[
(x j − xi) (y j − yi)

] [
(x j − xi)
(y j − yi)

]
− d2

i j = 0, (17)

φ = (x j − xi)2 + (y j − yi)2 − d2
i j = 0. (18)

• Three non collinear points ( Figure 19b ): Now, we need three constraints equations to

maintain constant distances on the triangle △i j k, that are:

rT
i jri j − d2

i j = 0, (19)
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rT
ikrik − d2

ik = 0, (20)

rT
jkr j k − d2

j k = 0, (21)

written in expanded form as,

φ1 = (x j − xi)2 + (y j − yi)2 − d2
i j = 0, (22)

φ2 = (xk − xi)2 + (yk − yi)2 − d2
ik = 0, (23)

φ3 = (xk − x j)2 + (yk − y j)2 − d2
j k = 0. (24)

• Three collinear points ( Figure 19c ): When the three points are collinear, the three

distance constraint equations do not guarantee the condition of a rigid body because the

three equations would not be independent. The solution to this problem is to replace two

distance constraint equations with two proportionality constraint equations,

rT
i jri j − d2

i j = 0, (25)

ri j −
di j

dik

rik = 0, (26)

expanding Equation (25) and Equation (26), yields

φ1 = (x j − xi)2 + (y j − yi)2 − d2
i j = 0, (27)

φ2 = (x j − xi) −
di j

dik

(xk − xi) = 0, (28)

φ3 = (y j − yi) −
di j

dik

(yk − yi) = 0. (29)

• Four points ( Figure 19d ): To model a rigid body with four points it is necessary five

constraint equations, that are:

rT
i jri j − d2

i j = 0, (30)

rT
ikrik − d2

ik = 0, (31)

rT
jkr j k − d2

j k = 0, (32)

ril − αri j − βrik = 0, (33)

where the Equations (30) to (32) are constant distance constraints and Equation (33) is the

result of writing ril as linear combination of the vectors ri j and rik , where α and β are

constants of proportionality. Writing these equations in expanded form, we have that

φ1 = (x j − xi)2 + (y j − yi)2 − d2
i j = 0, (34)

φ2 = (xk − xi)2 + (yk − yi)2 − d2
ik = 0, (35)

φ3 = (xk − x j)2 + (yk − y j)2 − d2
j k = 0, (36)

φ4 = (xl − xi) − α(x j − xi) − β(xk − xi) = 0, (37)

φ5 = (yl − yi) − α(y j − yi) − β(yk − yi) = 0. (38)
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• More than four points: Three constraint equations are set for three noncollinear points,

and two linear combination constraint equations are added for each additional point.

4.1.1.2 Kinematic pair constraints

The kinematic pair constraints are necessary so that the coordinates of the elements that

are joined through a pair can move according to the degrees of freedom allowed by the pair.

Figure 20 shows the main pairs in a mechanism.

Figure 20 – Planar kinematic pair constraints.

(a) (b) (c)

Source: The author.

• Revolute pair ( Figure 20a ): Since in the revolute pair the two elements are sharing the

same point, it is not necessary to establish constraint equations. In the case that we want

to use constraints to model a revolute pair, we can consider the coordinates of each pair

element as different and then the coordinates of each point are forced to be equal, resulting

in two constraint equations.

• Revolute-prismatic pair association ( Figure 20b ): To model this pair it is necessary

to have three collinear points. The equation that guarantees that the points i, j and k are

collinear, is achieved through the equation of null vector product between the vectors ri j

and rik .

ri j × rik = 0, (39)



(x j − xi)
(y j − yi)

0



×


(xk − xi)
(yk − yi)

0



= 0, (40)

φ = (x j − xi)(yk − yi) − (y j − yi)(xk − xi) = 0. (41)
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• Rigid prismatic pair ( Figure 20c ): The rigid prismatic pair can be modeled as revolute-

prismatic pair, but in this case, is necessary to add a second constraint that guarantees

constant angle between vector ri j and rkl . The constraint equations are:

ri j × rik = 0, (42)

rT
i jrkl − di j dkl cos γ = 0, (43)

expanding Equation (42) and Equation (43), we have

φ1 = (x j − xi)(yk − yi) − (y j − yi)(xk − xi) = 0, (44)

φ2 = (x j − xi)(xl − xk) + (y j − yi)(yl − yk) − di j dkl cos γ = 0. (45)

4.1.1.3 Initial position problem and successive displacements

Coordinates vector q can be split as

q =

[
Kq
Dq

]
, (46)

where Dq and Kq are driving and driven coordinates respectively. When driving coordinates are

independent, these represent degrees of freedom. Now we define two type of constraints written

as

Φ(q) = 0, (47)

D
Φ(q) = 0, (48)

where expression in Equation (47) represents the kinematic constraints and expression in Equation

(48) represents the driving constraints. To solve the position problem, one of the following two

methods can be used (NIKRAVESH, Parviz E., 1988, 2007):

1. Coordinate partitioning method: First, determine the known coordinates, Dq, from the

driver expressions of Equation (48). Then solve Equation (47) for the unknown coordinates,
Kq.

2. Appended constraints method: In this method, the driving constraints are appended to

the kinematic constraints to form the system,

Φ(q, t) =
[
Φ(q)

D
Φ(q)

]
= 0, (49)

and solve this equation for unknown coordinates, q.

Method 1 is more efficient in the kinematic analysis of a specific mechanism since the number

of equations and restrictions is smaller than that of Method 2, but in the development of general
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purpose kinematic analysis programs, Method 2 is more efficient (NIKRAVESH, Parviz E,

2007).

To solve the initial position problem we must solve the constraint equations given in

the coordinate partitioning method or the appended constraints method. The solution of the

constraint equations can be found through the Newton-Raphson method, that is based in the

linearization of the constraints equations.Taking the first two terms of the expansion in a Taylor

series around a certain approximation qi,

Φ(q) � Φ(qi) +Φq(qi)∆qi = 0, (50)

where

Φq =
∂Φ

∂q
=

[
∂Φi

∂q j

]
, (51)

then, to approximate the solution, the next iterative procedure is followed,

Assume a solution qi = q0:

• Evaluate the function Φ = Φ(qi);

• If
√
Φ

T
Φ ≤ ε, then qi is the solution to Φ(q) = 0, stop iteration;

• Otherwise, evaluate Φq(qi);

• Solve Φq(qi)∆qi = −Φ(qi) for ∆qi;

• Improve the estimate solution as qi+1 = qi + ∆qi.

Repeat the process.

Depending on the choice of q0, the Newton-Raphson method converges to one config-

uration or the other, and in some cases, the method diverges. To ensure the convergence to a

configuration, the vector q0 must be close to the desired configuration.

Once the initial position of the mechanism has been determined, the next position of the

mechanism is obtained giving a small finite displacement to the driving coordinates. One way

of determining successive displacements is by using the anterior position as an approximation

to find a posterior position through the Newton-Raphson method, whenever the increments of

the displacements are small enough.

Example 2 (Modeling a planar multi-loop mechanism using natural coordinates)

Figure 21 shows a 1-DoF mechanism modeled with natural coordinates, where A, B,

C and D are fixed points and ϕ is an independent input angular coordinate. Then the natural
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coordinates vector is,

q =



F

G

E



=



xF

yF

xG

yG

xE

yE



. (52)

Let xE and yE be two dependent driving coordinates described through the driving

constraints,

rBE − dBEu = 0, (53)

where u =
[

cos ϕ sin ϕ
]T

, therefore the point E is a function of ϕ. Let us suppose that link

BE is frozen, then the mobility of the mechanism becomes M = 0, and according to Equation

(10) it is necessary nc = 4 − 0 = 4 kinematic constraints, that are:

rT
AGrAG − d2

AG = 0, (54)

rAG × rAE = 0, (55)

rAG × rAF = 0, (56)

rCD × rCF = 0. (57)

Now using the coordinate partitioning method we have that,

Dq =

[
xE

yE

]
=

[
xB + dBE cos ϕ

yB + dBE sin ϕ

]
, (58)

Φ(q) =



(xG − xA)2 + (yG − yA)2 − d2
AG

(xG − xA)(yE − yA) − (yG − yA)(xE − xA)
(xG − xA)(yF − yA) − (yG − yA)(xF − xA)
(xD − xC)(yF − yC) − (yD − yC)(xF − xC)



= 0. (59)

In case it is necessary to use appended constraints method, then we write the constrains as,

Φ(q) =



(xG − xA)2 + (yG − yA)2 − d2
AG

(xG − xA)(yE − yA) − (yG − yA)(xE − xA)
(xG − xA)(yF − yA) − (yG − yA)(xF − xA)
(xD − xC)(yF − yC) − (yD − yC)(xF − xC)

(xE − xB) − dBE cos ϕ

(yE − yB) − dBE sin ϕ



= 0. (60)

4.1.2 Natural coordinates in the space

In the case of multibody three-dimensional systems, the natural coordinates describe the

position of each element with the Cartesian coordinates of some points located in the pairs of
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Figure 21 – Example of modeling with natural coordinates.

Source: The author.

the elements and with the Cartesian components of multiple unit vectors. Each element of the

system must have enough points and vectors linked to it that its movement completely defines

the movement of the element (JALÓN; BAYO, 1994).

The modeling of a three-dimensional mechanism with natural coordinates can be carried

out following these general rules and recommendations:

1. The elements must contain a sufficient number of points and unit vectors so that their

motion is completely defined.

2. A point shall be located at the joints in which there is a point common to the two linked

elements. This occurs at the spherical joint (S), at the revolute joint (R), at the universal

joint (U), and at other kinematic joints.

3. A unit vector must be placed at those joints having a rotational or translational axis and

should have the direction of the corresponding axis. Sometimes, the role performed by a

unit vector can also be performed by a couple of basic points.

4. All points of interest, whose positions are to be considered as a primary unknown variable

of the problem, can likewise be defined as natural coordinates.
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5. Each unit vector is associated with a specific point, and the same single unit vector can be

associated with several points.

4.1.2.1 Rigid body constraints

The natural coordinates of a multibody system in space correspond to the Cartesian

coordinates of the kinematic pairs, the Cartesian coordinates of some points of interest, and the

Cartesian coordinates of some unit vectors. Therefore, the coordinates of a rigid body in space

are formed by a set of points and unit vectors rigidly attached to the element. There are different

ways to define the natural coordinates of a rigid body, depending on the pair of elements present

in the body. The following are the combinations of points and unit vectors that define some rigid

bodies.

• Element with two points (Figure 22(a)): The constraint equation is similar to the planar

case. The only difference is the additional z-coordinate of the points; therefore, the

constraint equation can be written as

Figure 22 – Spatial elements: (a) two points, (b) three non-collinear points, and (c) three collinear
points.

(a)

(b)

(c)

Source: The author.

rT
i jri j − d2

i j = 0, (61)

[
(x j − xi) (y j − yi) (z j − zi)

] 

(x j − xi)
(y j − yi)
(z j − zi)



− d2
i j = 0, (62)

φ = (x j − xi)2 + (y j − yi)2 + (z j − zi)2 − d2
i j = 0. (63)

• Element with three non-collinear points (Figure 22(b)): The constraint equations for

three non-collinear points can be defined with three equations of constant distance. Then

the constraint equations are as follows:
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rT
i jri j − d2

i j = 0, (64)

rT
ikrik − d2

ik = 0, (65)

rT
jkr j k − d2

j k = 0, (66)

written in expanded form as,

φ1 = (x j − xi)2 + (y j − yi)2 + (z j − zi)2 − d2
i j = 0, (67)

φ2 = (xk − xi)2 + (yk − yi)2 + (zk − zi)2 − d2
ik = 0, (68)

φ3 = (xk − x j)2 + (yk − y j)2(zk − z j)2 − d2
j k = 0. (69)

Note that this alternative way to model this element is to use the fact that the angles of the

triangle are constant. Although more complicated, this alternative way can be advantageous

in optimizing mechanisms, since it is more general.

• Element with three collinear points (Figure 22(c)): When all three points lie on the same

line, the three distance constraint equations cannot ensure the rigid body condition, since

they are not independent. To address this issue, two of the distance constraint equations

are replaced with three proportionality constraint equations.

rT
i jri j − d2

i j = 0, (70)

ri j − αrik = 0, (71)

expanding Equation (70) and Equation (71), yields

φ1 = (x j − xi)2 + (y j − yi)2 + (z j − zi)2 − d2
i j = 0, (72)

φ2 = (x j − xi) − α(xk − xi) = 0, (73)

φ3 = (y j − yi) − α(yk − yi) = 0, (74)

φ4 = (z j − zi) − α(zk − zi) = 0, (75)

where α is constant and only needs to be calculated once.

• Element with two points and one unit vector (Figure 23): The element in Figure 23(a)

has two points and one non-collinear unit vector. It has nine natural coordinates and six

degrees of freedom, resulting in three constraint equations. The constraint equations are a

distance equation between points Pi and Pj , a constant angle equation between vectors um

and ri j , and a unit vector condition, respectively.

rT
i jri j − d2

i j = 0, (76)
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Figure 23 – Element with two basic points and a unit vector.

(a)

(b)

Source: The author.

rT
i jum − di j cos φ = 0, (77)

uT
mum − 1 = 0. (78)

If the unit vector is aligned with the points Pi and Pj (angle φ equal to zero), the element

will have five degrees of freedom. In this case, the four constraint equations will be

rT
i jri j − d2

i j = 0, (79)

ri j − αum = 0, (80)

where α is a constant. Defining a unit vector in the direction of a known segment is not very

necessary, as unit vectors are primarily employed to establish directions. In this particular

case, the direction has already been determined. However, introducing a unit vector may

still be feasible for other purposes, such as ensuring compatibility with an adjacent body.

• Element with two points and two unit vectors (Figure 24): The body has two points and

two non-coplanar vectors of units. Therefore, it has 12 natural coordinates and 6 degrees of

freedom. The six constraint equations must be found. These six conditions are one constant

distance equation, three constant angle conditions (between two vectors and segment and

between two vectors themselves) and two unit module conditions for unit vectors. The

corresponding equations are the following:

rT
i jri j − d2

i j = 0, (81)
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Figure 24 – Element with two points and two unit vectors.

Source: The author.

rT
i jum − di j cos φ = 0, (82)

rT
i jun − di j cosψ = 0, (83)

uT
n um − cos γ = 0, (84)

uT
mum − 1 = 0, (85)

uT
n un − 1 = 0. (86)

If the two unit vectors are coplanar, then the constraint equations are as follows:

rT
i jri j − d2

i j = 0, (87)

rT
i jum − di j cos φ = 0, (88)

uT
mum − 1 = 0, (89)

un − α1ri j − α2un = 0, (90)

where α1 and α2 are the constant scalar coefficients of the linear combination.

• More complex elements: To streamline the derivation of constraint equations and enhance

the accuracy of results, the following steps can be employed for more intricate elements.

– Three vectors are selected to form a basis in the three-dimensional space. These

vectors can be either segments, denoted as ri j , connecting two fundamental points,

or unit vectors.

– The constraint equations are established to ensure that the three chosen vectors form

a rigid body.
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– The remaining vectors of the body, including both segments and unit vectors, are

expressed as linear combinations of the three base frame vectors. This approach

offers the advantage of obtaining linear constraints.

4.1.2.2 Joint constraints

After incorporating the constraint equations to ensure the rigid body motion of each

element, it becomes essential to formulate additional constraints to enforce the relative motions

between the bodies based on the kinematic joints that connect them. It will be demonstrated that

for certain joints, no additional equations are required, while for others, additional equations need

to be introduced. The types of joints discussed include spherical (S), revolute (R), cylindrical

(C), and prismatic (P).

• Spherical joint (Figure 25): In a spherical pair, defining constraint equations is unnecessary,

since two elements share the same point. Therefore, the only relative motion between the

elements is rotations around the shared point, which corresponds to a spherical pair.

Figure 25 – Spherical joint.

Source: The author.

If the spherical joint is going to be broken during the simulation at a specific moment and

the points are not shared, we can still define the constraint equations. To do this, we need

to match the coordinates of points Pi and Pj that belong to different bodies.

ri j = 0. (91)

• Revolute joint (Figure 26): When two adjacent elements share a point and a unit vector,

the revolute joint is automatically considered without the need for constraint equations.

The only possible relative motion is rotation around the unit vector (Figure 26(a)).
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Figure 26 – Revolute joint.

(a) (b)

Source: The author.

One way to introduce the revolute joint automatically is by having two adjacent elements

share two points, as shown in Figure 26(b). This allows for only one type of relative motion:

rotation around the axis passing through those two points.

• Cylindrical joint (Figure 27): When a cylindrical joint is used, it is necessary to create

four constraint equations to constrain four degrees of freedom. In Figure 27, the two joint

elements share a unit vector in the direction of the joint axis, resulting in two constraint

equations. The two additional constraint equations are created by ensuring that two points

on the joint axis, each belonging to a different element, are aligned with the unit vector.

This condition is expressed mathematically by a cross-product

ri j × u = 0, (92)

where only two of the three algebraic equations are independent.

• Prismatic joint (Figure 28): The prismatic joint allows only one degree of freedom; and

generates five constraint equations. These equations are the same as those generated by the

cylindrical joint. In fact, all the degrees of freedom restricted by the cylindrical joint are

also restricted by the prismatic joint. In addition, one equation prevents relative rotation



Chapter 4. Kinematic analysis 62

Figure 27 – Revolute joint.

Source: The author.

between the elements with respect to the joint axis.

rT
imr jn − α = 0, (93)

where α is a scalar constant.

Figure 28 – Prismatic joint.

Source: The author.

Example 3 (RSCR mechanism modeled with natural coordinates)
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Figure 29 – RSCR spatial mechanism.

Source: The author.

In Figure 29, a 3D four-bar mechanism called RSCR (Revolute-Spherical-Cylindrical-

Revolute) is modeled using natural coordinates. This mechanism has three points and one unit

vector that can move, resulting in 12 dependent Cartesian coordinates and one degree of freedom.

An input angle y has also been added as an externally driven coordinate. The following are the

constraint equations related to this mechanism:

(x1 − xA) (x0 − xA) + (y1 − yA) (y0 − yA) + (z1 − zA) (z0 − zA) − k1 cos ϕ = 0, (94)

(x1 − xA)2 + (y1 − yA)2 + (z1 − zA)2 − k2 = 0, (95)

(x1 − xA) uAx + (y1 − yA) uAy + (z1 − zA) uAz − k3 = 0 (96)

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 − k4 = 0, (97)

(x2 − x1) u23x + (y2 − y1) u23y + (z2 − z1) u23z − k5 = 0, (98)

u2
23x + u2

23y + u2
23z − 1 = 0, (99)

(x3 − xB)2 + (y3 − yB)2 + (z3 − zB)2 − k6 = 0, (100)

(x3 − xB) u23x + (y3 − yB) u23y + (z3 − zB) u23z − k7 = 0, (101)

(x3 − xB) uBx + (y3 − yB) uBy + (z3 − zB) uBz − k8 = 0, (102)

uBxu23x + uByu23y + uBzu23z − k9 = 0, (103)

(y3 − y2) u23z − (z3 − z2) u23y = 0, (104)
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(z3 − z2) u23x − (x3 − x2) u23z = 0, (105)

(x3 − x2) u23y − (y3 − y2) u23x = 0. (106)

This system of non-linear equations governs the position problem for the RSCR mecha-

nism. The first equation corresponds to the input angle definition; equations 95 and 96 represent

rigid body conditions for element PAP1; equations 97 to 99 represent rigid body constraints for

element P1P2; equations 99 to 103 represent the same for element P3PB, and equations 104

to 106 (only two are independent) contribute to defining the cylindrical joint. Finally, ki for

i = 1, ...,9 represents constant values.

4.1.3 Bilateration

Bilateration consists of determining the coordinates of a vertex of a triangle, where the

coordinates of two vertices are known and their respective distances to the vertex with unknown

coordinates (ROJAS, 2012). Let us use the generic triangle illustrated in Figure 30, to deduce

the necessary equations and thus to solve the bilateration problem. Here lowercase and capital

bold letters denote vector and matrix, respectively.

Figure 30 – Bilateration problem.

Source: The author.

Let li j k be the scalar projection of the vector pik onto the vector pi j and let hi j k be the

scalar rejection of the same vector from pi j , then we have that

li j k = pik · ui j = dik cos θ, (107)

where ui j is unit vector in the same direction of pi j and dik is the Euclidean norm of the vector

pik . From law of cosines it can be written

cos θ =
d2

ik
+ d2

i j
− d2

j k

2di j dik

, (108)
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and replacing Equation (108) into Equation (107), yields

li j k =

d2
ik
+ d2

i j
− d2

j k

2di j

, (109)

now applying Pythagoras’ theorem to the triangle △PiPePk , it results in

hi j k = ±
√

d2
ik
− l2

i j k
= ±

√
4d2

ik
d2

i j
− (d2

ik
+ d2

i j
− d2

j k
)2

2di j

(110)

rearranging the Equation (110) gives

hi j k = ±

√
(d2

ik
+ d2

i j
+ d2

j k
)2 − 2(d4

ik
+ d4

i j
+ d4

j k
)

2di j

. (111)

Notice that li j k and hi j k depend on the distances only, that is, both scalar projection and

rejection do not depend on the reference frame chosen. Now according to vectors in Figure 30,

we can write the following expression

pik = pie + pek, (112)

where

pie =
li j k

di j

pi j, (113)

pek =
hi j k

di j

Rpi j, (114)

here R is a π/2 counterclockwise 2×2 rotation matrix. Substituting Equation (113) and Equation

(114) into Equation (112), yields

pik =
li j k

di j

pi j +
hi j k

di j

Rpi j =

(
li j k

di j

I +
hi j k

di j

R

)
pi j, (115)

where I is a 2 × 2 identity matrix. The Equation (115) can be written as

pik = Ni j kpi j, (116)

where

Ni j k =

[ li jk
di j

− hi jk
di j

hi jk
di j

li jk
di j

]
=

1

2di j2



d2
ik
+ d2

i j
− d2

j k
∓
√
(d2

ik
+ d2

i j
+ d2

j k
)2 − 2(d4

ik
+ d4

i j
+ d4

j k
)

±
√
(d2

ik
+ d2

i j
+ d2

j k
)2 − 2(d4

ik
+ d4

i j
+ d4

j k
) d2

ik
+ d2

i j
− d2

j k


,

(117)

is named a bilateration matrix. Finally we have that

pk = pi + Ni j kpi j . (118)
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4.1.3.1 Bilateration matrices as normal matrices

Bilateration matrices can be seen as 2 × 2 normal matrices since they are of the form

A =

[
a −b

b a

]
and therefore holds that AAT

= ATA = det(A)I, (HORN; JOHNSON, 2012).

Some fundamental properties of 2 × 2 normal matrices are:

Let two perpendicular matrices A =

[
a −b

b a

]
and B =

[
c −d

d c

]
, then

1. Normal matrix addition is closed and commutative. A + B = B + A and A + B is a

normal matrix

Proof. The expansion of A + B and B +A yields

[
(a + c) −(b + d)
(b + d) (a + c)

]
, that is, a normal

matrix. �

2. Normal matrix product is closed and commutative. AB = BA and AB is a normal

matrix

Proof. The expansion of AB and BA yields

[
(ac − bd) −(ad + cb)
(ad + cb) (ac − bd)

]
, that is, a normal

matrix. �

3. Scaling. If u = Av with u and v appropriate vectors, then ‖u‖2
= det(A)‖v‖2

Proof. Square of Euclidean norm of vector u is ‖u‖2
= uTu, therefore,

‖u‖2
= (Av)T (Av) = vTATAv

= vT det(A)Iv
= det(A)vTv

= det(A)‖v‖2

�

In the next two examples, the enormous potential of the bilateration on the position

analysis of mechanisms or kinematic chains with complex geometry is evidenced. The first

example corresponds to the Theo Jansen mechanism and the second example is a Baranov chain.

Example 4 (Position analysis of a Theo Jansen mechanism)

The position analysis of the Theo Jansen mechanism Figure 31, begins computing the

point C as,

C = A + dACuAC, (119)
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where uAC =

[
cos ϕ sin ϕ

]T

. To calculate the remaining points, the following sequence of

bilateration is sufficient:

D = C + NCBD(B − C), (120)

G = C + NCBG(B − C), (121)

E = B + NBDE (D − B), (122)

F = E + NEGF(G − E), (123)

P = F + NFGP(G − F). (124)

Since each bilateration equation has two possible solutions, the mechanism would have

32 possible assembly modes or configurations. Considering the sign of the bilateration matrices

NBDE and NFGP constant that corresponds to ternary link and left leg respectively, the assembly

modes will be 8, this is to maintain the orientation of triangles △BDE and △FGP .

The position analysis of the right side of the mechanism is similar to the procedure above.

Figure 31 – Theo Jansen mechanism.

Source: Adapted from (ROMERO NUÑEZ et al., 2018).

Example 5 ( Position analysis of five-bar Baranov chain)

To solve the position of the Baranov chain shown in Figure 32, it is necessary to find

a closure equation because it is not possible to determine all the points using a bilateration

sequence only. Let us use p16 as a reference, then we have

p25 = −p12 + p16 + p65
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= −N132p13 + p16 + N645p64

= −N132N163p16 + p16 + N645N164p16

= (I − N132N163 + N645N164)p16. (125)

Applying the scaling property to Equation (125), yields

d2
25 = det(I − N132N163 + N645N164)d2

16, (126)

that is a single variable scalar equation in d16. This equation can be used to derive

the characteristic polynomial that can be solved numerically and to determine the possible

configurations.

Figure 32 – Five links Baranov chain (5/B1)

Source: Adapted from (ROJAS, 2012)

Assuming that triangle △P1P2P3 is fixed, then the position of the rest of the points can

be computed using the following bilateration sequence:

p6 = p1 + N136p13, (127)

p4 = p1 + N164p16, (128)

p5 = p4 + N465p46. (129)

4.1.4 Bilateration via complex numbers

In the Section 4.1.3 bilateration was performed by means of vector and matrix repre-

sentation. In this section, we propose an alternative way of solving the problem of bilateration

through complex numbers. To this we consider the following notation: Let zp = xp + ypi denote

a point in the complex plane, where i is the imaginary unit, zpr = zr − zp = (xr − xp)+ (yr − yp)i
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is the vector that goes from zp to zr , d2
pr = zpr z̄pr is the square distance between zp and zr and

zpr eθi is the counterclockwise rotation through an angle θ of the vector zpr .

According to the previous notation and Figure 33, the relative position of the point r with

respect to point p can be expressed as

zpr = zpe + zer, (130)

where

zpe =
lpqr

dpq

zpq, (131)

zer =
hpqr

dpq

zpqe
π

2 i
=

hpqr

dpq

zpqi, (132)

Figure 33 – Bilateration problem using complex numbers

Source: The author

then, substituting Equation (131) and Equation (132), we get

zpr =
lpqr

dpq

zpq +
hpqr

dpq

zpqi (133)

=

(
lpqr

dpq

+

hpqr

dpq

i

)
zpq, (134)

where (
lpqr

dpq

+

hpqr

dpq

i

)
= zpqr . (135)

Therefore the solution of the bilateration problem can be expressed as:

zpr = zpqr zpq, (136)

zr = zp + zpqr zpq. (137)

The complex number zpqr will be called the bilaterator. Since the bilaterator obviously

has all the properties of complex numbers, some properties demonstrated in the previous section
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can be easily proofed here. For example we can write

zpr z̄pr = (zpqr zpq)(zpqr zpq)
|zpr |2 = zpqr z̄pqr zpq z̄pq

|zpr |2 = |zpqr |2 |zpq |2

d2
pr = |zpqr |2d2

pq,

this is exactly the scaling property in the complex numbers version. Where the following

equivalence is evident:

|zpqr |2 = det (Npqr). (138)

4.1.5 Bilateration matrix for a RRRP planar mechanism

The forward position problem of the planar RRRP mechanism illustrated in Figure 34(a)

is equivalent to the circle-line interception problem described in Figure 34(b). Rojas (2012)

presents a bilateration matrix for the intersection between a line and a circle, but this matrix

has a singularity when the line passes through the center of the circle. The matrix that will be

deduced to continuation solves the singularity problem described above.

Figure 34 – (a) Planar RRRP mechanism, (b) interception between circle and line.

(a) (b)

Source: The author.

The idea is to determine the distances die and dek and compute the vector pik as a function

of si j , s j k , pi j , and uik . The distance die is the projection pi j on the line defined by Pi and uik ,

then die = pi j · uik . Now it is applied Pythagoras’ theorem in triangles △PiPj Pe and △PePj Pk as

follows

si j = (pi j · uik)2 + s je, s j k = s je + sek,
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s je = si j − (pi j · uik)2, sek = s j k − s je,

where sie = (pi j · uik)2, then

sek = s j k − si j + (pi j · uik)2. (139)

Moreover, the vector pik can be expressed as follows:

pik = (pi j · uik)uik ±
√

s j k − si j + (pi j · uik)2uik

=

[
(pi j · uik)I ±

√
s j k − si j + (pi j · uik)2I

]
uik, (140)

where I is the 2 × 2 identity matrix. Writing the Equation (140) in a compact form yields:

pik = Yi j kuik . (141)

Where Yi j k is the bilateration matrix

Yi j k =



(pi j · uik) ±
√

s j k − si j + (pi j · uik)2

0

0

(pi j · uik) ±
√

s j k − si j + (pi j · uik)2


. (142)

The signs ± in Equation (142) correspond to the two possible configurations represented

by the points Pk and P′
k
, as shown in Figure 34(b). Applying the scaling property (ROJAS;

THOMAS, 2012) to Equation (141) yields sik = det (Yi j k); this property is essential to derive

closure equations.

4.2 VELOCITY ANALYSIS

Velocity analysis of a mechanism consists of formulating the necessary equations to

determine angular and/or linear velocities that permit one to specify each link’s velocity state.

In this section, two methods widely studied by kinematicians to perform the velocity analysis of

a mechanism systematically are shown. Furthermore, a method is proposed that incorporates the

natural coordinates into the screw theory for the analysis of position and velocity simultaneously.

One method for velocity analysis is to derive the constraint vector (Equation (10)) respect

to time

d

dt
(Φ(q)) = ∂Φ

∂q
dq
dt
= 0, (143)

Φq Ûq = 0. (144)
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The velocity vector Ûq can be split as Ûq =
[

d Ûq i Ûq
]T

, where d Ûq is a vector of dependent

velocities and i Ûq is a vector of as many independent velocities as degrees of freedom. Therefore

the Equation (144) can be written in the form:

[
d
Φq

i
Φq

] [
d Ûq
i Ûq

]
= 0. (145)

Then
d
Φq

d Ûq = −i
Φq

i Ûq. (146)

To illustrate the procedure to perform the velocity analysis, let us consider a simple

mechanism shown in Figure 35. If this system is modeled by coordinates q =
[

xP yp θ

]T

,

then the constraint vector is

Φ(q) =
[

xP − d cos θ

yP − d sin θ

]
= 0, (147)

and applying the Equation (144) results in the expression:

[
1 0 d sin θ

0 1 −d cos θ

] 

ÛxP

ÛyP

Ûθ



=

[
0

0

]
. (148)

This equation can also be written as:
[

1 0

0 1

] [
ÛxP

ÛyP

]
= −

[
d sin θ

−d cos θ

]
Ûθ, (149)

therefore the velocity of the point P can be expressed as

vP =

[
ÛxP

ÛyP

]
=

[
−d sin θ

d cos θ

]
Ûθ. (150)

It is worth mentioning that the linear system (Equation (146)) can be redundant. Therefore,

in this case, the system can be solved by a numerical method or by eliminating the system’s

redundant rows to determine the inverse of the Jacobian of the system.

A second method to perform the velocity analysis of a mechanism is through screw

theory, which allows building the Jacobian of the system without taking derivatives. A screw

in the kinematic case represents the state of the velocity of a rigid body as an angular velocity

around an axis and a linear velocity on the same axis, as illustrated in Figure 36 (DAVISON;

HUNT, 2004). The state of the velocity of the body j seems from the body i can be expressed in

vector form as

$i j =

[
ωi j

S0 × ωi j + hωi j

]
=

[
ωi j

vO

]
, (151)



Chapter 4. Kinematic analysis 73

Figure 35 – The velocity of a single rotatable link.

Source: The author.

where the coordinates of this vector are called Plücker coordinates of the screw (BOTTEMA;

ROTH, 1990). It is also common to write Equation (151) in normalized form, which is useful in

formulating the velocity constraints equations of a mechanism,

$i j = $̂i jωi j =

[
s

S0 × s + hs

]
ωi j, (152)

where $̂i j is the normalized screw, s is a unit vector in the direction of the angular velocity ωi j ,

ωi j is the magnitude of the vector ωi j and h is the pitch of the screw.

In a serial kinematic chain, the screw of the final link n with respect to the initial link 0

can be expressed as

$0n =

n−1∑

i=0

$i,n+1 = $̂01ω01 + $̂12ω12 + · · · + $̂n−1,nωn−1,n. (153)

(154)

Now let us consider the closed kinematic chain shown in Figure 37, where is verified that

$0n = 0, then the equation that corresponds to the velocity analysis of a closed kinematic chain

is given by

$01 + $12 + · · · + $n−2,n−1 + $n−1,n = 0, (155)

which can be written in compact form as

M̂Nϕ = 0, (156)
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Figure 36 – Representation of the velocity state of a rigid body j with respect to a rigid body i

through a screw.

Source: The author.

where M̂N is the network unit motion matrix,

M̂N =

[
$̂0,1 $̂1,2 · · · $̂n−2,n−1 $̂n−1,n,

]

and ϕ is the velocity vector,

ϕ =

[
ω01 ω12 · · · ωn−2,n−1 ωn−1,n

]T

.

For mechanisms with several loops, the matrix M̂N is calculated systematically by the

Davies method (DAVIES, 2006). For the reader who did not have been introduced with the

Davies method, it is recommended to read (CAZANGI, 2008) and (ERTHAL, 2010).

To solve the velocity Equation (156) we split the vector ϕ into dependent and independent

velocities. Therefore we have that

[
dM̂N

iM̂N

] [
d
ϕ

i
ϕ

]
= 0, (157)

where dM̂N and iM̂N are the dependent and independent network unit motion matrix respec-

tively.The above equation is rewritten as

dM̂N
d
ϕ =

iM̂N
i
ϕ, (158)

that can either solve numerically or symbolically.
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Figure 37 – A closed kinematic chain forms by n bodies.

Source: The author.

4.2.1 Incorporation of natural coordinates into the screw theory

The Cartesian coordinates of a point on the axis of the screw of each kinematic pair

are necessary to determine the screw’s coordinates. Recalling that the natural coordinates are

Cartesian points located in the kinematic pairs, it is natural to use the natural coordinates and

screws together to analyze a mechanism.

To illustrate the combination of natural coordinates and screw theory, we will use the

mechanism shown in Figure 38 as an example. Let us define the natural coordinates vector as

follow

q =



xC

yC

xD

yD



.

So we can define the following vector of constraints

Φ(q) =



(xD − xC)2 + (yD − yC)2 − d2
AC

(xD − xB)2 + (yD − yB)2 − d2
BD

(xC − xA) − dAC cos ϕ

(yC − yA) − dAC sin ϕ



= 0. (159)

Now of the screws of the mechanism, we have the following expression

$01 + $12 + $23 + $30 = 0, (160)



1

yA

−xA



ω01 +



1

yC

−xC



ω12 +



1

yD

−xD



ω23 +



1

yB

−xB



ω30 = 0,
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Figure 38 – Four-bar mechanism.

Source: The author.



1 1 1 1

yA yC yD yB

−xA −xC −xD −xB





ω01

ω12

ω23

ω30



= 0,

therefore we can write the Equation (160) in the form

M̂N (q)ϕ = 0 (161)

The Equation (159) and Equation (161) can be grouped in the vector

Ω(q,ϕ) =
[
Φ(q)

M̂N (q)ϕ

]
= 0. (162)

And therefore, the position and velocity analysis are performed simultaneously by combining

natural coordinates and screw theory, thus obtaining the advantages of both methods.

4.3 VIRTUAL DISPLACEMENTS AND VIRTUAL VELOCITY

A virtual displacement is defined as an imaginary infinitesimal change in the position of

a system at a fixed time that is consistent with its boundary conditions and constraints (JALÓN;

BAYO, 1994). If the position is represented by the vector q, the vector of virtual displacements

is represented by δq. The symbol δq is called a variational operator because it represents the

variation or change of a quantity. The variational operator acts like a differential operator, but

with respect to the dependent variables. Therefore, the laws of variations of sum, ratios, powers,

and so forth are analogous to the laws of differentiation (REDDY, 2017).

The driving and driven constraints can be combined in the vector

Φ(q, t) = 0, (163)
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then the derivative with respect to time results in the following expression:

Φq Ûq +Φt = 0, (164)

and using the analogy between varational and differential operators we obtain

Φqδq = 0, (165)

note that the term Φt vanishes because the time is maintained fixed. Virtual displacements and

real velocities are similar and satisfy the same equations. Then, for this reason, the easiest way

to calculate virtual displacements is, frequently, to compute real velocities and, from there, to

get virtual displacements applying the virtual operator where appropriate.

Consider the simple mechanism shown in Figure 39. The vector of natural coordinates is

q =
[

xP yP θ

]T

, then the position is modeled by the constraints vector,

Φ(q) =
[

xP − d cos θ

yP − d sin θ

]
= 0. (166)

From Equation (165),

[
1 0 d sin θ

0 1 −d cos θ

] 

δxp

δyp

δθ



=

[
0

0

]
. (167)

Considering δθ as the independent virtual displacements, then the above expression is rewritten

as
[
δxp

δyp

]
=

[
−d sin θ

d cos θ

]
δθ, (168)

note the similarity of this equation with velocity Equation (150). In mechanisms with more than

one degree of freedom, it is necessary to apply as many independent virtual displacements as

degrees of freedom to determine all the unknown virtual displacements.

The procedure used above to find the virtual displacements of the mechanism shown

in Figure 39 can be generalized as follows: The virtual displacement vector δq can be split as

δq =

[
δdq δiq

]T

, where δdq is the vector of dependent virtual displacements and δiq is the

vector of independent virtual displacements. Hence the Equation (165) is written as

[
d
Φq

i
Φq

] [
δdq

δiq

]
= 0,

d
Φqδdq +

i
Φqδiq = 0.

If d
Φq is nonsingular then, we have that

δdq = −d
Φ

−1
q

i
Φqδiq. (169)
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Figure 39 – Virtual displacements of a single rotatable link.

Source: The author.

Therefore, one can write the vector δq as

δq =

[
−d
Φ

−1
q

i
Φq

I

]
δiq, (170)

where I is an identity matrix, with dimension nv − nc.

Instead of talking about virtual displacements, we can also talk about virtual velocities

obtained by dividing the virtual displacement by the virtual time. It can be thought that virtual

time is a temporal magnitude whose law of variation is completely independent of real time, to

which the rest of the mechanical laws are subjected. Contrary to virtual displacements, virtual

velocities do not have to be infinitesimal, and like virtual displacements, virtual velocities and

real velocities are similar and satisfy the same equations (AVELLO, 2014; JALÓN; BAYO,

1994).

The virtual velocity vector is denoted as Ûq∗ and must satisfy the constraint equation:

Φq Ûq∗
= 0, (171)

and similarly to the Equation (170) we have that,

Ûq∗
=

[
−d
Φ

−1
q

i
Φq

I

]
i Ûq∗, (172)

where i Ûq∗ is the vector of independent virtual velocities.
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Figure 40 – Virtual velocity screw representation.

Source: The author.

The virtual velocities associated with the particles of a rigid body satisfy the expression

v∗B = v∗A + ω
∗ × rAB, (173)

where ω
∗ is the virtual angular velocity of the rigid body (FOIX, 2000). Let us now consider

the body j belonging to the generic mechanism shown in Figure 40. Suppose that the virtual

velocity of the body j is defined by the screw $0 j ,

$0 j =

[
ω

∗

S0 × ω
∗
+ hω∗

]
=

[
ω

∗

v∗

]
, (174)

then v∗ = S0 × ω
∗
+ hω∗, where v∗0 = hω∗, thus

v∗ = v∗0 + S0 × ω
∗. (175)

Note that Equation (173) and Equation (175) are equivalent, therefore the screw $0 j really

describes the virtual velocity of the rigid body j.

4.4 ACCELERATION ANALYSIS

Our objective in the acceleration problem is to determine the acceleration Üq for all the

mechanisms variables. We achieve this by utilizing the position q, velocity Ûq and degrees of
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freedom accelerations. The desired result can be obtained by deriving the Equation (144) of

velocities with respect to time.

Φq Üq + ÛΦq Ûq = 0. (176)

Equation (176) can be divided into dependent and independent variables. Then the above

equation can be written as follows

[
d
Φq

i
Φq

] [
d Üq
i Üq

]
+ ÛΦq Ûq = 0. (177)

Rearranging the terms, one can write

d
Φq

d Üq = − ÛΦq Ûq − i
Φq

i Üq. (178)

Through this method, we can directly know the linear accelerations of some points. If we

need to know the angular accelerations of the links, post-processing is necessary. In the following

section, we propose a procedure to directly determine the angular accelerations of the links.

4.4.1 Acceleration analysis through the combination of natural coordinates and screw

theory

Combining natural coordinates and screw theory can solve the acceleration problem.

While the approach described below involves calculating derivatives, this task is simplified

because natural coordinates are used. However, solving the acceleration problem through an

entirely geometric approach will require additional research and will be explored in upcoming

work.

The derivation of the Equation (161) respect to time produces

d

dt

(
M̂Nϕ

)
= 0,

∂

∂q

(
M̂Nϕ

)
Ûq + ∂

∂ϕ

(
M̂Nϕ

)
Ûϕ = 0,

(
M̂Nϕ

)
q
Ûq + M̂Nα = 0, (179)

where α = Ûϕ is the acceleration vector. Let us rewrite Equation (179) as follows:

[
d
(
M̂Nϕ

)
q

i
(
M̂Nϕ

)
q

] [
d Ûq
i Ûq

]
+

[
dM̂N

iM̂N

] [
d
α

i
α

]
= 0,

d
(
M̂Nϕ

)
q

d Ûq + i
(
M̂Nϕ

)
q

i Ûq + dM̂N
d
α +

iM̂N
i
α = 0,

dM̂N
d
α = −d

(
M̂Nϕ

)
q

d Ûq − i
(
M̂Nϕ

)
q

i Ûq − iM̂N
i
α. (180)
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Finally from Equation (180) the dependent acceleration vector can be isolated, resulting in the

equation:

d
α =

dM̂−1
N

[
d
(
M̂Nϕ

)
q

d
Φ

−1
q Φq − i

(
M̂Nϕ

)
q

]
i Ûq − dM̂−1

N
iM̂N

i
α. (181)

4.4.1.1 Acceleration analysis of a four-bar mechanism

To illustrate the procedure developed to perform the acceleration analysis using the

Davies’ method, the analysis of the four-bar mechanism shown in Figure 41 is performed.

Figure 41 – Acceleration analysis of a four-bar mechanism.

Source: The author.

The vector of constraints of the four-bar mechanism is,

Φ(q) =



(xD − xC)2 + (yD − yC)2 − b2

(xD − xB)2 + (yD − yB)2 − c2

(xC − xA) − a cos ϕ

(yC − yA) − a sin ϕ



= 0, (182)

where q =
[

xC yC xD yD ϕ

]T

. From Equation (146) we have that,



−2(xD − xC) −2(yD − yC) 2(xD − xC) 2(yD − yC)
0 0 2(xD − xB) 2(yD − yB)
1 0 0 0

0 1 0 0



Ûq =


0

−a sin ϕ

a cos ϕ



ωa. (183)

Where ωa is the input velocity, and Ûq =
[

ÛxC ÛyC ÛxD ÛyD

]T

is the velocity vector of the

dependent natural coordinates.

From the application of the Davies’ method we have

M̂N =

[
$̂a $̂c $̂d −$̂b

]
(184)
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=



1 1 1 −1

0 yC yD −yB

0 −xC −xD xB



; (185)

therefore



1 1 −1

yC yD −yB

−xC −xD xB



ϕ = −


1

0

0



ωa, (186)

where ϕ =

[
ωc ωd ωb

]T

. Now using the Equation (181) we obtain:



1 1 −1

yC yD −yB

−xC −xD xB



α = −


0 0 0 0

0 ωc 0 ωd

−ωc 0 −ωd 0



Ûq −


1

0

0



αa, (187)

where αa is the input acceleration and α =

[
αc αd αb

]T

. Let us suppose that xA = 0 [m],

yA = 0 [m], xB = 4 [m], yB = 0 [m], a = 1 [m], b = 5 [m], c = 4 [m], ωa = 1 [rad/s],

αa = 0 rad/s2.

Figure 42 compares the results between the proposed method and the GIM mechanism

analysis program (PETUYA et al., 2014). Here, an exact match between the angular accelerations

is evidenced. Although the example shown here is for illustrative purposes, the method can be

applied to any planar or spatial mechanism.
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5 SCREW THEORY-BASED STATIC BALANCING METHOD

This section shows a method for optimal static balancing of mechanisms. This approach is

based on the minimization of the actuation forces necessary to keep the mechanism in equilibrium.

These actuation forces are systematically computed using Davies’ method (DAVIES, 2006). The

objective function is formulated in a quadratic form, allowing an analytical approach to the

sensitivities analysis, increasing the precision and efficiency of the optimization.

5.1 POSITION KINEMATIC ANALYSIS

Since a mechanism is composed of links interconnected by kinematic pairs, it is necessary

to choose how to mathematically describe the relationship between the links before considering

the optimal synthesis. This mathematical description constitutes the base of the optimal synthesis

modeling. To model a mechanism, we need description variables to know the position of all

the links. All these positions at a given moment constitute a linkage configuration. Description

variables, also called generalized coordinates, can be independent or dependent. In fact, since

bodies are interconnected by joints, their movements are not completely free and generate

constraints between some generalized coordinates. Therefore kinematic modeling is crucial

for the behavior of the optimal synthesis process. During the optimization, the model will

be evaluated with various values of the dimensions (angles or lengths), leading to various

configurations of the mechanism. For closed-loop linkages, these evaluations also involve the

assembly of the mechanism and singularity problems.

Three types of generalized coordinates are generally used to describe the position

kinematics of a mechanism as illustrated in Figure 43: reference point coordinates Figure 43(a),

natural coordinates Figure 43(b) and relative coordinates Figure 43(c).

Figure 43 – Four-bar linkage modeled using three types of coordinates.

(a) Reference point coordinates (b)  Natural coordinates (c)  Relative coordinates 

Source: The author.

Regardless of the type of generalized coordinates used to describe the mechanism, the

position kinematics can be represented by a set of constraint equations:

Φ(q) = 0, (188)
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where Φ is the constraints vector and q is the generalized coordinates vector. Figure 44 shows a

classification of the methods for solving the kinematic position problem, which is not intended to

be an exhaustive classification but rather one that shows robust and simple to implement methods

known to the authors.

Figure 44 – Classification of position analysis methods.

Position Analysis

Closed form solution

Bilateration method 

Optimization methods

Numerical solution

Newton-Raphson method

Methods based on 

solving loop equations 

Source: The author.

Within the closed-form solution methods, we will focus on the bilateration method

(ROJAS, NICOLAS, 2012), which allows modeling the position kinematics of planar mechanisms

elegantly and compactly. Any point of interest of the mechanism will be determined by:

pl = pk +Ωpi j

= pk +Ω(p j − pi)
, (189)

where: pi, p j and pk are known points, pl is unknown point and Ω is a bilateration matrix that

depends only on distances. As shown, the kinematic position analysis using bilateration is quite

simplified, see for instance (ROJAS; THOMAS, 2012; NANSAI; ELARA; IWASE, 2016).

The most direct way to obtain a numerical solution is through the Newton-Raphson

method:

Φq(qi)(qi+1 − qi) = −Φ(qi), (190)

where Φq is the Jacobian matrix of the constraint equations with respect to the generalized

coordinates q. This method is simple to implement, but has the following drawbacks: If the

starting point solution is singular then the first iteration step cannot be performed because

the Jacobian is not invertible. For a particular configuration, the starting point must be close

enough to this configuration so as not to have problems of chaotic changing between different

configurations, in the case that the assembly is not physically possible, the Newton-Raphson

method will diverge, and it will not contain an efficient error measure to penalize the objective

function in the optimal synthesis.

The above drawbacks can be solved if the position problem is solved by some suitable

optimization method as shown in (JEAN-FRANÇOIS COLLARD, 2007). If an optimization

method based on Newton’s method is used then the computational cost is not a problem since, in
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general, whether the starting point is sufficiently close to the minimum, the method will converge

quadratically towards the solution (FRANDSEN; JONASSON, 2004).

5.1.1 Natural coordinates

Natural coordinates were originally introduced by García De Jalón and collaborators

(JALÓN; BAYO, 1994), In planar mechanisms natural coordinates are mostly Cartesian coordi-

nates located at kinematic pairs or points of interest. The main advantages of natural coordinates

are: simplicity and intuitive physical interpretation, the position and orientation of each element

are defined directly, and trigonometric functions do not appear in the constraint equations. More-

over, natural coordinates are particularly well adapted to sensitivity analysis and optimization

(JEAN-FRANÇOIS COLLARD, 2007; ANA MAGDALENA DE JUAN DE LUNA, 2011;

AVELLO, 2014).

Given the advantages of the natural coordinates mentioned above, they are chosen for

the description mechanism in this work. Another advantage of this choice is that this type of

coordinates can naturally be integrated into the screw theory, as will be shown in Section 5.2.

5.2 STATIC ANALYSIS

In this work, we adopt Davies’ method for static analysis that uses graph theory to model

the topology and screw theory to represent the physical behavior of the mechanisms. This method

allows systematically obtaining the equations of statics regardless complexity of the mechanism.

For more details of this method, we suggest the reader see (DAVIES, 1981, 2006; CAZANGI,

2008; MEJIA; SIMAS; MARTINS, 2016; LAUS; SIMAS; MARTINS, 2020).

5.2.1 Integration of natural coordinates in screw theory

Applying the Davies’ method (DAVIES, 2006) to solve the static of a mechanism produces

a system of equations written in a compact form as:

ÂNΨ = 0 , (191)

where ÂN is the network unit action matrix of a coupling network and Ψ is the vector of

magnitudes of action screws. The matrix ÂN is assembled from the unit action matrix ÂD as

ÂN =



ÂDQ1

ÂDQ2
...

ÂDQk



, (192)

where Qi = diag([QA]i), i = 1,2, · · · , k are diagonal matrices whose diagonal elements cor-

respond to row i of cutset matrix QA, derived from action graph GA. A cut is equivalent to
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disassembling parts of the mechanism as in the well known free body diagram. Unlike funda-

mental cuts, free-body diagrams can generate dependent equations in statics, which makes it

necessary to change the free-body diagrams.

The unit action matrix is composed by one unit action screw for column:

ÂD =

[
$̂a $̂b · · · $̂ j · · · $̂C

]
, (193)

where C is the gross degree of constraint, so that the j-th unit action screw $̂ j is written in Plücker

coordinates in ray formation (BOTTEMA; ROTH, 1990) as

$̂ j =

[
s0 × s + hs

s

]
, (194)

where s0 is a point on the axis of the action screw, s is a unit vector in the direction of the action

screw and h is the pitch of the screw. Note that s0 corresponds to the Cartesian coordinates of a

point on the axis of the action screw, therefore naturally s0 can be written as a function of the

natural coordinate vector of the mechanism, that is s0 = s0(q), in the same way, the unit vector s

can also be written as a function of the vector q i.e, s = s(q) . Therefore, Equation (191) can be

rewritten in the form

ÂN (q)Ψ = 0 , (195)

thus this expression combines natural coordinates and screw theory, thereby obtaining the

advantages of both mathematical tools.

Let us split the vector Ψ into three vectors as follows: the vector of the internal forces

acting in each kinematic pair i
Ψ, the vector of the forces supply by each actuator a

Ψ and the

vector of external forces e
Ψ. Thus, Equation (195) is written as:

[
iÂN (q) aÂN (q) eÂN (q)

] 

i
Ψ

a
Ψ

e
Ψ



= 0 , (196)

where iÂN (q) is the network unit internal action matrix, aÂN (q) is the network unit actuator

action matrix and eÂN is the network unit external action matrix. Rearranged the Equation (196)

we can determine the internal forces and loads supplied by the actuators:

rÂN (q)rΨ = −eÂN (q)eΨ , (197)

where rÂN (q) =
[

iÂN (q) aÂN (q)
]

is the resultant network unit action matrix and r
Ψ =

[
i
Ψ

T a
Ψ

T
]T

is the resultant forces vector. Let us use a simple illustrative example which

consists of a rotating bar with a constant force on one extreme, as shown in the Figure 45. Where,

fox , foy, and τ are internal forces in joint o, and actuation torque, respectively Figure 45(a).

Bar 1 can be modeled by the natural coordinates vector q =
[

x y

]T

that corresponds to the
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Cartesian coordinates of point P. Then, the unit action screws for fox , foy, τ, and F according

Equation (194) are:

$̂ox(q) =


0

1

0



, $̂oy(q) =


0

0

1



, $̂τ(q) =


1

0

0



, $̂p(q) =


−x

0

−1



,

respectively. This simple case has only one cut, as shown in the actions and fundamental cutsets

graph Figure 45(b), then the cutset matrix is QA =

[
1 1 1 1

]
. Applying Equation (192),

yields

ÂD(q) =
[

$̂ox(q) $̂oy(q) $̂τ(q) $̂p(q)
]
,

and replacing the above equation in Equation (196) and rearranging according Equation (197) is

obtained

Figure 45 – Illustrative example of static analysis: (a) actions and (b) cutset graph.

(a) (b)

Source: The author.

[
$̂ox(q) $̂oy(q) $̂τ(q)

] 

fox

foy

τ



= −$̂p(q) f .

Solving the previous equation, we obtain that fox = 0, foy = f , and τ = x f .

This illustrative example shows the static analysis through integrating the natural co-

ordinates in Davies’ method, which produces simple equations and therefore facilitates the

computation of derivatives in the optimization process.
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5.2.2 Formulating the optimization problem

A mechanism is perfectly balanced if the weight of the links does not produce any torque

or force on the actuators under static conditions for any configuration. (MOORE, 2009). The aim

of this work is the approximate static balancing; hence our objective is to reduce the actuation

forces, that is, minimize the sum of squares of the actuation forces:

f (z) = 1

2

n∑

j=1

a
Ψ

T
j

a
Ψ j, (198)

where z is the design variables vector and n is the number of discretized configurations.

To avoid the magnitude of the objective function being influenced by the number of

discretized configurations, one can replace the factor 1
2 with 1

n
. However, all the subsequent

development has been done for 1
2 since this scaling factor affects only the value of the objective

function but not the optimization result.

The optimization method used in this work is based on the analytical or approximate

computing of the gradient of the objective function. For this reason, the objective function has

been defined in quadratic form, since it satisfies the essential requirement of being differentiable.

Various authors using a similar function can be found in the literature (ANGELES; BERNIER,

1987; COLLARD; DUYSINX; FISETTE, 2010; DE-JUAN; SANCIBRIAN; VIADERO, 2012).

Let z and z be lower and upper bounds of design variables respectively, let g(q,z) ≤ 0

and h(q,z) = 0 be inequality and equality constraints vectors of the design variables and natural

coordinates. Then, taking into account that in order to evaluate the objective function, the position

problem and the equations of the statics must be solved, the optimization problem is written

mathematically as:

minimize
z

f (z) = 1

2

n∑

j=1

a
Ψ

T
j

a
Ψ j,

subject to




g(q,z) ≤ 0,

h(q,z) = 0,

z ≤ z ≤ z̄,

while solving




Φ(q,z) = 0,

rÂN (q,z)rΨ j = −eÂN (q,z)eΨ j, where r
Ψi =

[
i
Ψ j

a
Ψ j

]
.

(199)

To evaluate the objective function, first, the position problem is solved for each configu-

ration, then the static problem is solved, and finally, the objective function and constraints are

evaluated. In practice, this procedure is done within a cycle, and the values are accumulated to

obtain the total value of the objective function.
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5.2.3 Analytical sensitivity analysis

Before using gradient-based optimization techniques, it is necessary to carry out a

sensitivity analysis of the objective function. So, we derive Equation (198) with respect to the

vector of design variables z.

df

dz
=

n∑

j=1

a
Ψ

T
j

(
∂a
Ψ j

∂z
+

∂a
Ψ j

∂q
∂q
∂z

)
, (200)

and taking into account that the numerator layout is used here, the gradient of the objective

function is ∇ f =
(

df

dz

)T

. Now to determine the change of the natural coordinates with respect to

the design variables ∂q
∂z , Equation (188) is derived with respect to the vector z

∂Φ

∂z
+Φq

∂q
∂z
= 0, (201)

where Φq represents the Jacobian matrix of the constraint equations with respect to the natural

coordinates. Rewriting the Equation (201) results the following linear system

Φq
∂q
∂z
= −∂Φ

∂z
. (202)

To compute
∂aΨ j

∂z is derived Equation (197) with respect to z ∈ Rm. Here it is used the

definition of matrix derivatives as in (VAN KHANG, 2010),

rÂN

∂r
Ψ j

∂z
+

∂rÂN

∂z
(rΨ j ⊗ Im) = −eÂN

∂e
Ψ j

∂z
− ∂eÂN

∂z
(eΨ j ⊗ Im), (203)

where Im is a m × m identity matrix and ⊗ is the Kronecker product. Rearranging the Equation

(203), yields

rÂN

∂r
Ψ j

∂z
= −

[
eÂN

∂e
Ψ j

∂z
+

∂eÂN

∂z
(eΨ j ⊗ Im) +

∂rÂN

∂z
(rΨ j ⊗ Im)

]
, (204)

allows us to determine ∂aΨi

∂z by solving Equation (204), since that

∂r
Ψi

∂z
=

[
∂iΨ j

∂z
∂aΨ j

∂z

]
. (205)

Now, deriving Equation (197) with respect to q ∈ Rp and rearranging it, yields

rÂN

∂r
Ψ j

∂q
= −

[
eÂN

∂e
Ψ j

∂q
+

∂eÂN

∂q
(eΨ j ⊗ Ip) +

∂rÂN

∂q
(rΨ j ⊗ Ip)

]
, (206)

∂r
Ψi

∂q
=

[
∂iΨ j

∂q
∂aΨ j

∂q

]
, (207)

and therefore, solving this equation, we obtain the partial derivative
∂aΨ j

∂q .

Before solving the Equation (204) and Equation (207) the partial derivatives ∂Φ
∂z ,

∂eΨ j

∂z ,
∂eΨ j

∂q , ∂
eÂN

∂z , ∂
eÂN

∂q , ∂
r ÂN

∂z and ∂r ÂN

∂q must be symbolically computed. These derivatives are relatively

simple since most of the individual terms of each matrix are linear or quadratic.



Chapter 5. Screw theory-based static balancing method 91

5.2.4 Procedure for optimal static balancing

This section details the step by step of the optimal synthesis proposed method for static

balancing which is summarized in Figure 46.

Step 1: The first step is to know the mechanism topology previously that is: kinematic struc-

ture, number of springs, their connectivity and attachment points and the number of

counterweights and their location.

Step 2: The second step is kinematic modeling. First, we model the mechanism using natural

coordinates. Then, as far as possible, the position is solved in closed form by means

of bilateration, otherwise which is formulated as a numerical solution either by using

Newton-Raphson or an optimization method.

Step 3: The next step is the static analysis, where the equations of statics are obtained through the

integration of the natural coordinates in the Davies’ method as explained in Section 5.2.

Step 4: The design variables are established, followed by the formulation of the objective function

Equation (198). The lower and upper bounds of the design variables are also established.

Finally, the constraints of equality and inequality are adequately formulated if they are

necessary. The optimization problem is formulated mathematically as shown in Equation

(199).

Step 5: Computing of the sensitivities of the objective function by using Equation (200) and

the numerical solution of the linear Equation (197), Equation (202), Equation (204) and

Equation (207) respectively.

Step 6: Before starting the optimization process, an initial mechanism must be established, which

is previously analyzed to evaluate its performance. This first mechanism is represented by

the initial design variables vector z0.

Step 7: The optimization process begins with the evaluation of the objective function and the

restrictions by means of the previous solution of the position and the statics of the

mechanism for each configuration through Equation (188) and Equation (197) respectively.

If the optimality criteria are not met, the optimizer generates a new solution which is

evaluated again and continues this cycle until the optimality criteria are met.

Step 8: Once an optimal solution is obtained, an analysis is carried out to detect kinematic problems

and verify that the static balancing is adequate. If the solution obtained is not satisfactory,

then the initial mechanism is changed and the process continue iteratively to obtain an

adequate solution.

In summary, what is done is to mathematically formulate the position problem and the

statics of the mechanism. Then the sensitivity analysis is performed, and the necessary derivatives
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Figure 46 – Flowchart of the proposed procedure.
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Source: The author.

are calculated symbolically. Then, in each iteration of the optimizer, the position problem is

solved, the statics and the sensitivities equations are determined, and this cycle is continued

until an optimum value is obtained. If the optimal value is not satisfactory, the initial guess is
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modified, and the cycle repeats.

5.3 STATIC BALANCING OF A FOUR-BAR MECHANISM FOR VERTICAL STRAIGHT

LINE MOTION OF AN EXTERNAL LOAD

Static balancing of an external load that moves in a vertical straight line is especially

useful in devices where vertical adjustment of the payload is required with minimal efforts, such

as, monitors with adjustable height, statically balanced shelves, writing-boards, and so forth. The

first candidate mechanism that comes in mind is the four-bar mechanism with revolute joints,

due to its versatility demonstrated to solve a wide variety of problems, moreover, of its relative

simplicity. One application of the straight line four-bar mechanism is shown in Figure 47(a),

which consists of a balanced writing-board with adjustable height. Another practical application

is the 4-DoF support mechanism for desktop-monitor shown in Figure 47(b).

Figure 47 – Practical application of a straight line balancer four-bar mechanism.

Small 

clearance

(a)  Writing-board

(b)  Desktop-monitor

Source: The author.

5.3.1 Mechanism topology

A schematic of the straight line four-bar mechanism is shown in Figure 48. In this case

study, the mechanisms is previously synthesized for a proximate straight line, and the mechanism

is balanced after employing two non-zero free length springs attached to the input link.
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Figure 48 – Straight line balancer four-bar mechanism (ARAVIND BASKAR, GURUNATHAN
SARAVANA KUMAR, 2015).

Source: The author.

5.3.2 Kinematic position analysis

The dimensions of the four-bar mechanism are taken from (ARAVIND BASKAR, GU-

RUNATHAN SARAVANA KUMAR, 2015), for an approximate vertical straight line of 0.2m in

the interval of the input angle of −30◦ ≤ ϕ ≤ 30◦, where the numerical values are detailed in

the Table 4.

Table 4 – Design parameters of the straight line four-bar mechanism.

Parameter a b c d xA yA xB yB

Value [m] 0.2 0.09 0.276 0.3 0 0 −0.08 0.09

Source: Adapted from (ARAVIND BASKAR, GURUNATHAN SARAVANA KUMAR, 2015).



Chapter 5. Screw theory-based static balancing method 95

In the first place the constraint equations vector of the mechanism is formulated

Φ(q,z) =



(xD − xC)2 + (yD − yC)2 − b2

(xD − xB)2 + (yD − yB)2 − c2

(xC − xA) − a cos ϕ

(yC − yA) − a sin ϕ

ϕ − ϕA(t)



= 0, (208)

where the natural coordinates vector is q =
[

xC yC xD yD ϕ

]T

and ϕA(t) is a law under

which the mechanism moves. The first and second constraints correspond to the rigidity condition

of links CD and BD, respectively, and the last three are driving constraints.

The natural coordinates xC, yC, xD and yD can be determined in a closed-form as functions

of the input angle ϕ by using the bilateration method as in (ROMERO et al., 2019). Let us define

the unit vector

uAC =

[
cos ϕ

sin ϕ

]
, (209)

then, point C is computed as

pC =

[
xC

yC

]
= pA + auAC , (210)

where, a is the link AC length. Applying bilateration to the triangle △CBD is determined the

point D

pD =

[
xD

yD

]
= pC + NCBD(pB − pC), (211)

where the bilateration matrix NCBD is written as

NCBD =
1

dCB

[
lCBD −hCBD

hCBD lCBD

]
, (212)

and

dCB =

√
(pB − pC)T (pB − pC), lCBD =

b2
+ d2

CB
− c2

2dCB

, hCBD = −
√

b2 − l2
CBD

.

Additionally, in the static analysis of Section 5.3.3, it is necessary to know the additional

points G, P1, and P2. Where G is the point of application of the external load, P1 and P2 are the

attachment points of the springs on link AC, respectively. This points are computed as

pG =

[
xG

yG

]
= pC +

d

b
(pD − pC), (213)

p1 =

[
x1

y1

]
= pA + euAC , (214)

p2 =

[
x2

y2

]
= pA + f uAC , (215)

where, d, e and f are the distances of CG, AP1 and AP2 respectively.
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5.3.3 Static analysis

The static analysis begins with the representation of internal and external actions present

in the mechanism see Figure 49(a), from which the action graph and cutset are derived as shown

in Figure 49(c). Where, f1, f2 are springs forces, fg is the weight of the external load and τa is

the actuation torque.The spring forces and their unit vectors are computed as

f1 = k1(l1 − 0l1) , f2 = k2(l2 − 0l2) ,

l1 =

√
(pE − p1)T (pE − p1) , l2 =

√
(pH − p2)T (pH − p2) ,

u1 =

[
u1x

u1y

]
=

1

l1
(pE − p1) , u2 =

[
u2x

u2y

]
=

1

l2
(pH − p2) ,

where k1 and k2 are the springs stiffness, 0l1 and 0l2 are the springs free length.

Now, from the unit action screws of all the forces, the unit action matrix is obtained

ÂD =

fax fay fbx fby fcx fcy fdx fdy fg f1


0 0 −yB xB −yC xC −yD xD xG (x1u1y − y1u1x)
1 0 1 0 1 0 1 0 0 u1x

0 1 0 1 0 1 0 1 1 u1y

f2 τa



(x2u2y − y2u2x) 1

u2x 0

u2y 0

. (216)

Applying Equation (192) it is obtained the the network unit action matrix ÂN then splitting

it as in Equation (196) and rearranging we obtained the static analysis equations (Equation (197)).

Where the matrices rÂN , eÂN and vectors r
Ψ, e
Ψ are the following

rÂN (q,z) =

fax fay fbx fby fcx fcy fdx fdy τa





0 0 −yB xB 0 0 0 0 1

1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 −yB xB −yC xC 0 0 0

0 0 1 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 yB −xB 0 0 −yD xD 0

0 0 −1 0 0 0 1 0 0

0 0 0 −1 0 0 0 1 0

, (217)
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Figure 49 – Schematic representation of couplings and actions.

(b) Directed coupling graph 

(a)  Internal and external actions

(c)  Actions and fundamental cutsets graph

Source: The author.
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eÂN (q,z) =

fg f1 f2




xG (x1u1y − y1u1x) (x2u2y − y2u2x)
0 u1x u2x

1 u1y u2y

xG 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 0

, (218)

r
Ψ =

[
fax fay fbx fby fcx fcy fdx fdy τa

]T

, (219)

and
e
Ψ(q,z) =

[
fg f1 f2

]T

. (220)

5.3.4 Optimization problem formulation

In this example, the dimensions of the mechanism do not change because the mechanism

was previously synthesized to perform an approximate straight line. Therefore, the design

variables correspond to the location of the tension springs and their properties. Then the vector

of design variables is defined as:

z =
[

k1 k2
0l1

0l2 xE yE xH yH e f

]T

.

Now the lower and upper bounds of the design variables are defined:

z =



0 Nm

0 Nm

0.1 m

0.1 m

−0.2 m

−0.3 m

−0.2 m

−0.3 m

0.04 m

0.04 m



, z̄ =



10000 Nm

10000 Nm

0.3 m

0.3 m

0.2 m

0.3 m

0.2 m

0.3 m

0.16 m

0.16 m



,
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then, the optimization problem is formulated as

minimize
z

f (z) = 1

2

n∑

j=1

a
Ψ

T
j

a
Ψ j ,

subject to z ≤ z ≤ z̄ ,

while solving

{
Φ(q,z) = 0; Eq.(208)
rÂN (q,z)rΨ j = −eÂN (q,z)eΨ j .

(221)

where a
Ψ j = [τa]. In this case, it was not necessary to define inequality and equality constraints.

5.3.5 Implementation and results

The optimization problem defined above is solved for the payload m = 60 kg, using

the interior-point algorithm of the built-in fmincon function in the software Matlab®. Table

5, shows the optimal design parameters which are illustrated in Figure 50(b).The Figure 50(a)

shows the initial mechanism that is represented by the initial vector of design variables

z0 =

[
100 100 0.05 0.05 0.1 0.3 −0.2 0.2 0.04 0.14

]T

,

this initial mechanism was selected from a pre-analysis by setting iteratively different design

parameters until to find adequate ones.

Table 5 – Optimal design parameters.

Design parameter Value Unit
k1 9967.97129311232 [Nm]
0l1 0.299493442996904 [m]
e 0.150391105503725 [m]

xE −0.188689683701425 [m]
yE −0.0943722256223178 [m]
k2 9969.84992797751 [Nm]
0l2 0.113609035840242 [m]
f 0.159760684640614 [m]

xH −0.0297426243905242 [m]
yH 0.160610921414398 [m]

Source: The author.

Figure 51(a) shows the convergence of the objective function where a value of 0.022 was

reached with 1226 iterations. Figure 51(b) shows the torque for the unbalanced and balanced

mechanisms, in which the maximum torques are 117.8 Nm and 0.1104 Nm, respectively,

indicating a reduction of 99.91%. Note that the torque range of the unbalanced mechanism is

from 98 to 118 Nm, and the torque range of the balanced mechanism is from -0.08 to 0.12 Nm.

In Figure 51(c), it can be seen that the total potential energy of the mechanism is practically

constant throughout the range of motion.
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Figure 50 – Optimization results: (a) initial mechanism and (b) optimal mechanism.
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5.4 STATIC BALANCING OF A RSSR-SS MECHANISM

This example presents the static balancing of a rigid-body guidance spatial mechanism

named RSSR-SS, see Figure 52. The Revolution-Spherical-Spherical-Revolution-Spherical-

Spherical (RSSR-SS) mechanism is a particular type of multi-loop spatial mechanism with

greater structural stiffness than a four-bar spatial mechanism. This property makes it a good

candidate for rigid body guidance due to its high capacity for loads (PATEL; BHATT, 2022).

Another important application of the RSSR-SS mechanism is also the path generation as shown

in (PREMKUMAR; KRAMER, 1990).

The literature has abundant works on the analysis and dimensional synthesis for path

generation and rigid body guidance. Still, there is no evidence of works on the static balancing

of RSSR-SS mechanism, so the author believes this proposed application is novel.

5.4.1 Mechanism topology

To balance the mechanism a tension spring is connected between the ground and the

coupler as shown in Figure 53. The design parameters in the proposed topology are eight,

corresponding to three coordinates of point P relative to the coupler, three coordinates of point

H relative to the global reference system, and two spring parameters corresponding to the elastic

constant and free length, respectively.
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Figure 51 – Optimization results: (a) actuator torque τa unbalanced mechanism, (b) actuator
torque τa balanced mechanism, (c) convergence of the objective function, and (d)
potential energies of the optimal mechanism.
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5.4.2 Kinematic position analysis

The unit vector of revolute joint uA can be parameterized using the rotation angles θAz,

and θAy. Then the unit vector is defined as uA = R(θAz, θAy)uA0, where uA0 =

[
1 0 0

]T

is

the initial orientation of uA, and R(θAz, θAy) is a successive rotation about the moving coordinate

axes. The rotation matrix of the successive rotation angles θAz, and θAy is computed as

R =



c θAz c θAy − s θAz c θAz s θAy

s θAz c θAy c θAz s θAz s θAy

− s θAy 0 c θAy



. (222)

Similarly, the unit vector uB of the revolute joint at B is defined. . The next step is to

determine the position of point D as a function of input angle ϕ. For this, it is first necessary to
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Figure 52 – RSSR-SS mechanism.

Source: The author.

Figure 53 – Topology of balancer RSSR-SS mechanism.

Source: The author.

determine the initial position of point D as follows,

rD0 = R(θAz, θAy)


dAD cos φA

dAD sin φA

0



, (223)
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and using the matrix form of Rodrigues’ formula, we obtain the position of point D as a function

of the input angle

rD = R(ϕ)rD0 , (224)

where the elements of the rotation matrix R(ϕ) are given by:

r11 = (u2
Bx − 1)(1 − c ϕ) + 1 ,

r12 = uBxuBy(1 − c ϕ) − uBz s ϕ ,

r13 = uBxuBz(1 − c ϕ) + uBy s ϕ ,

r21 = uByuBx(1 − c ϕ) + uBz s ϕ ,

r22 = (u2
By − 1)(1 − c ϕ) + 1 ,

r23 = uByuBz(1 − c ϕ) − uBx s ϕ ,

r31 = uBzuBx(1 − c ϕ) − uBy s ϕ ,

r32 = uBzuBy(1 − c ϕ) − uBx s ϕ ,

r33 = (u2
Bz − 1)(1 − c ϕ) + 1 .

Now we defined the constraint vector Equation (225). These six constraint equations

correspond to the five constant distances dCF , dDE , dEF , dEF , dBE , and a constant angle constraint

between rBE and uB.

Φ(q,z) =



rCF · rCF − d2
CF

rDE · rDE − d2
DE

rDF · rDF − d2
DF

rEF · rEF − d2
EF

rBE · rBE − d2
BE

rBE · uB − dBE cos φB



= 0, (225)

where the natural coordinates vector is q =
[

xE yE zE xF yF zF

]T

.The Eq. (225) is

easily solved using the Newton-Raphson method as showed in Section 5.1.

To determine the position of point P in relation to the coupler, we define the coordinates

µ1, µ2, and µ3 with respect to the vector basis uDE , uDF , and nD = uDE × uDF . Then the

coordinates of point P with respect to the global reference frame are determined through the

following expression

rP = rD + µ1uDE + µ2uDF + µ3nD (226)

5.4.3 Static analysis

For spatial mechanisms, the static analysis is similar to that for planar mechanisms. The

main difference is that the direction of the kinematic pairs must be considered in order to properly
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define the actions in each pair. In spherical pairs, no special treatment of the unit vectors is

necessary since the reactions are defined in the direction of the coordinate axes of the global

reference system.

By simplicity, the reference frame is defined as coincident with point A. In the pair of

revolution at A, we define a reference system formed by the unit vectors uB, vB, and wB where

the vector vB is chosen so that it is perpendicular to the vector wB and thus wB = uB × vB. In the

same way, a reference frame is defined in the pair of revolution in B. The internal and external

actions are illustrated Figure 54.

Figure 54 – Internal and external actions.

Source: The author.

The action graph and cutset are shown in Figure 55. From the actions shown in the Figure

54, the unit action matrix [AD]4×28 is determined, and from the fundamental cutsets graph Figure

55, the fundamental cutset matrix [QA]4×28 is determined. Due to the size of these matrices it is

not possible to show the elements here.

The constitutive equations of statics can be written in a compact form as:

[
rÂN

]
24×23

[
i
Ψ

a
Ψ

]

23×1

= −
[
eÂN

]
24×5 [

e
Ψ]5×1 , (227)
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Figure 55 – (a) Directed coupling graph GC , and (b) actions and fundamental cutsets graph GA.

(a) (b)

Source: The author.

where,

i
Ψ =

[
fau fav faw τav τaw fbu fbv fbw τbv τbw fcx

fcy fcz fdx fdy fdz fex fey fez f f x f f y f f z

]T

,

a
Ψ = τau ,

e
Ψ =

[
fg1 fg2 fg3 fg4 f1

]T

.

5.4.4 Optimization problem formulation

The description of the design variables is shown in Table 6. These variables correspond

to the spring properties: spring stiffness constant and free length and the spring attachment points

with the coupler and the ground.

In this case, there are only constraints due to the upper and lower bounds of the design

variables, so the optimization problem formulation is the same as in Section 5.3, see Equation 221.

It is necessary to solve the position problem Equation 225 numerically at each iteration and for

the discretized configurations during optimization.

5.4.5 Implementation and results

Table 7 shows the dimensions of two RSSR-SS balancer named mechanism i and

mechanism ii. The masses of each link are: m1 = m2 = m3 = 10 [kg], and m4 = 30 [kg] for

both mechanisms. We assume that the center of mass of each link is located at the geometric

center. The values used in these example are arbitrary and do not correspond to any practical

application, so they are illustrative. The input angle range for mechanism i is 45◦ ≤ ϕ ≤ 120◦
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Table 6 – Design parameters of RSSR-SS balancer.

Design parameter Description Unit
k1 Spring stiffness [Nm]
0l1 Spring free length [m]
µ1 uDE coordinate of the point P relative to coupler [m]
µ2 uDF coordinate of the point P relative to coupler [m]
µ3 nD coordinate of the point P relative to coupler [m]
xH x-coordinate of the point H [m]
yH y-coordinate of the point H [m]
zH z-coordinate of the point H [m]

Source: The author.

and 20◦ ≤ ϕ ≤ 200◦ for mechanism ii. For mechanism i, n = 76 configurations were used and

n = 181 configurations for mechanism ii; in both cases, the input angles had a constant increment

of one degree.

Table 7 – Dimensions for RSSR-SS mechanism i and mechanism ii.

Variable RSSR-SS i RSSR-SS ii Unit

uA

[
1 0 0

]T [
1 0 0

]T
[m]

uB

[
1√
2

1√
2

0
]T [

1√
2

1√
2

0
]T

[m]

rA
[

0 0 0
]T [

0 0 0
]T

[m]

rB
[

0 4 0
]T [

0 4 0
]T

[m]

rC
[
−4 2 0

]T [
−4 2 0

]T
[m]

φA 90 90 [◦ ]
φB 100 95.0316 [◦ ]

dAD 4 2 [m]
dCF 4 4 [m]
dDF 4 4.8989 [m]
dDE 4 4.5 [m]
dEF 4 4.0311 [m]
dBE 4 4.0311 [m]

Source: The author.

Figure 56 shows the optimal mechanisms at a particular position. Table 8 and Table 9

show the optimal values of the design variables and the optimization parameters: limits and

initial values of the design variables. Figure 57 shows the evolution of the objective function for

both mechanisms, where 659 iterations were necessary to obtain a local optimum for mechanism

i, and 258 iterations for mechanism ii.

Figure 58(a) and Figure 58(b) show the torques for the unbalanced and the balanced

mechanism i which the maximum torques are 1467.818 [Nm] and 1.3667 [Nm] respectively,

which indicates a reduction of 99.9%. Figures 58 (c) and Figure 58 (d) show the torques for the

unbalanced and balanced mechanism ii, in which the maximum torques are 698.888 [Nm] and

0.749 [Nm], respectively, which indicates a reduction of 99.89%. Note that the torque range of

the unbalanced mechanism i goes from -1500 to 1000 Nm, the torque range of the balanced

mechanism i goes from -1.5 to 1.5 Nm, the torque range of the unbalanced mechanism ii goes
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Figure 57 – convergence of the objective function: (a) mechanism i and (b) mechanism ii.
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Source: The author.

balanced.

5.5 STATIC BALANCING OF A KUKA KR 210 R3100 SERIAL MANIPULATOR

In this section, the proposed methodology is applied in the static balancing of the KUKA

KR 210 R3100 serial manipulator using an auxiliary mechanism as shown in the Fig. 60. This

example was inspired by Nguyen (NGUYEN, 2022) but here parallelogram linkages are not

considered to make the balancing problem more generic. Shoulder O1 and O2 elbow joints are

only taken into consideration because the first joint at the base aligns with the direction of gravity

and the last three joints near the end-effector can be neglected. Therefore, the balancer robot can

be treated as a planar mechanism.

5.5.1 Kinematic position analysis

The geometric parameters of the robot balancer are shown in the kinematic representation

in Figure 61 and Table 10, that show the dimensional and mass parameters of the KUKA KR

210 R3100 robot. Where r1, r2 are the distances between O1 and O2, O2 and O3 respectively,

r̄1 and r̄2 are the distances of the center of mass of link 1 and link 2 from O1 and O2, m1, m2,

and m3 are the masses of link 1, link 2 and the payload respectively. Moreover, ak = ‖pAkBk
‖,

bk = ‖pBkCk
‖, ck = ‖pOkCk

‖, dk = ‖pOk Ak
‖,ek = ‖pOkEk

‖, gk = ‖pBkDk
‖, hk = ‖pOkHk

‖,
ik = ‖pCkDk

‖, pk = ‖pCkEk
‖, d3 = ‖pO2 A3

‖ and j = ‖pA1 A3
‖ are distances with k = 1,2.

The following vector of constraint equations models the kinematics of the mechanism:



Chapter 5. Screw theory-based static balancing method 109

Figure 58 – Optimization results: (a) actuator torque τau unbalanced mechanism i, (b) actuator
torque τau balanced mechanism i, (c) actuator torque τau unbalanced mechanism ii,
(d) actuator torque τau balanced mechanism ii.
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Φ(q,z) =



(xB1 − xA1)2 + (yB1 − yA1)2 − a2
1

(xB1 − xC1)2 + (yB1 − yC1)2 − b2
1

(xA3 − xA1)2 + (yA3 − yA1)2 − j2

(xA3 − xO2)2 + (yA3 − yO2)2 − d2
3

(xB2 − xA2)2 + (yB2 − yA2)2 − a2
2

(xB2 − xC2)2 + (yB2 − yC2)2 − b2
2

(xD1 − xB1)2 + (yD1 − yB1)2 − g
2
1

(xD1 − xC1)2 + (yD1 − yC1)2 − i21

(xD2 − xB2)2 + (yD2 − yB2)2 − g
2
2

(xD2 − xC2)2 + (yD2 − yC2)2 − i22

(xA3 − xO2) −
d3
d2
(xA2 − xO2)

(yA3 − yO2) −
d3
d2
(yA2 − yO2)



= 0, (228)
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Figure 61 – Modeling using natural coordinates.

Source: The author.

Table 10 – Dimensional and mass parameters of the KUKA KR 210 R3100 robot (NGUYEN,
2022, 2021).

Parameters Value Unit
r1 1.35 [m]
r2 1.4 [m]
r̄1 0.525 [m]
r̄2 0.482 [m]
m1 349 [kg]
m2 324 [kg]
m3 30 [kg]

Source: The author.

To this let us define the unit vectors

uO1O2 =

[
cos ϕ1

sin ϕ1

]
, (230)

uO2O3 =

[
cos ϕ2

sin ϕ2

]
, (231)

then, the coordinate points O2, O3, E1, E2, H1, and H2 are computed as
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pO2
= pO1

+ r1uO1O2 , pO3
= pO2

+ r2uO2O3 ,

pE1
= pO1

+ e1uO1O2 , pE2
= pO2

+ e2uO2O3 ,

pH1
= pO1

+ h1uO1O2 , pH2
= pO2

+ h2uO2O3 ,

and the rest of points are determined using bilateration as follows

pC1
= pO1

+ NO1E1C1(pE1
− pO1

),

pA2
= pO2

+

(
d2

d3

)
(pA3

− pO2
),

pB1
= pA1

+ NA1C1B1(pC1
− pA1

),
pC2
= pO2

+ NO2E2C2(pE2
− pO2

),
pD1
= pB1

+ NB1C1D1(pC1
− pB1

),
pB2
= pA2

+ NA2C2B2(pC2
− pA2

),
pA3
= pO2

+ NA1O2 A3(pO2
− pA1

),
pD2
= pB2

+ NB2C2D2(pC2
− pB2

),

where, the bilateration matrix NI JK is computed as in Equation (212).

The centers of gravity G1, G2 ..., can be computed without much difficulty once the

natural coordinates are known.

5.5.2 Static analysis

Figure 62 depicts the couplings and actions diagram. Actions and fundamental cutsets

graph is shown in Figure 63, where black arrows represent internal forces, gravity forces are

drawn in green color, the spring forces are represented by red arrows and the actuators are drawn

in fuchsia color.

The fundamental cutset matrix QA of action graph GA and the unit action matrix ÂD

are obtained from the actions and coupling graph schematic, see Figure 62. Applying Equation

(197) it is obtained a 24 × 24 linear system

[
rÂN

]
24×24

[
i
Ψ

a
Ψ

]

24×1

= −
[
eÂN

]
24×13 [

e
Ψ]13×1 , (232)

where, the actuation forces vector is composed as

a
Ψ =

[
τo1

τo2

]
,
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and the internal forces vector is

i
Ψ =

[
fa1x fa1y fa′

1x
fa′

1y
fa2x fa2y fa3x fa3y fb1x

fb1y fb2x fb2y fc1x fc1y fc2x fc2y fo1x fo1y fo2x fo2y

fo′2x fo′2y

]T

.

Figure 62 – Schematic representation of couplings and actions: (a) internal and external actions
and (b) directed coupling graph.

Source: The author

5.5.3 Optimization problem formulation

This example is substantially more complicated than the previous one since the dimensions

of the mechanism are also design variables. The masses of the links of the mechanism are

previously defined to simplify the optimization problem. Then the vector of design variables is

defined as:

z =
[

k1 k2
0l1

0l2 a1 a2 b1 b2 c1 c2 d1 d2 d3 e1 e2

g1 g2 h1 h2 i1 i2 j p1 p2

]T

.
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Figure 63 – Actions and fundamental cutsets graph GA.

Source: The author.

Assembly of the mechanism may not be physically possible during the optimization

process. Therefore, it is necessary to formulate constraints in order to avoid this type of problem.

The distances sets: {c1, e1, p1}, {b1,g1, i1}, {c2, e2, p2}, {b2,g2, i2}, {a1, b1, dA1C1}, {d3, j, dA1O2},
{a2, b2, dA2C2} must satisfy the triangle inequality that can be written in compact form as

g j(q,z) =



(c1 − e1 + p1)(c1 + e1 − p1)(c1 − e1 − p1)
(b1 − g1 + i1)(b1 + g1 − i1)(b1 − g1 − i1)
(c2 − e2 + p2)(c2 + e2 − p2)(c2 − e2 − p2)
(b2 − g2 + i2)(b2 + g2 − i2)(b2 − g2 − i2)

(a1 − b1 + dA1C1)(a1 + b1 − dA1C1)(a1 − b1 − dA1C1)
(d3 − j + dA1O2)(d3 + j − dA1O2)(d3 − j − dA1O2)

(a2 − b2 + dA2C2)(a2 + b2 − dA2C2)(a2 − b2 − dA2C2)



≤ 0, (233)
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then, the optimization problem is formulated as

minimize
z

f (z) = 1

2

n∑

j=1

a
Ψ

T
j

a
Ψ j ,

subject to
g j(q,z) ≤ 0 ,

z ≤ z ≤ z̄ ,

while solving

{
Φ(q,z) = 0; Eq.(228)
rÂN (q,z)rΨ j = −eÂN (q,z)eΨ j Eq.(232).

(234)

5.5.4 Implementation and results

Table 11 shows the optimization parameters and the optimal values of the variables.

Figure 64(a) shows the initial mechanism, and Figure 64(b) shows the optimized robot. Figure

65 shows the evolution of the objective function, and Figure 66(a) and Figure 66(b) show

the actuators’ torques in the unbalanced robot’s shoulder and elbow. Figure 66(c) and Figure

66(d) show the torques of the balanced robot, and finally, Figure 67 shows the gravitational

potential energy, elastic potential energy and total potential energy. The maximum actuation

torque was considerably reduced from 8405[Nm] to 343.24[Nm], corresponding to a reduction

of approximately 95.9%. Note that the torque range of the unbalanced robot goes from 0 to

10000 Nm and from 800 to 2000 Nm at the shoulder and elbow, respectively, and the torque

range of the balanced robot goes from -400 to 200 Nm and from -200 to 200 Nm at the shoulder

and elbow respectively.

Table 11 – Optimization parameters and solution of the balancing of the KUKA KR 210 R3100
robot.

z z0 z z̄ Optimal z z z0 z z̄ Optimal z
k1 [Nm] 600000 0 700000 600230.294658 d3 [m] 0.551 0 0.8 0.505922
k2 [Nm] 200000 0 700000 200253.348435 e1 [m] 0.5 0 0.8 0.768402
0l1 [m] 0.1 0 1 0.539316 e2 [m] 0.5 0 0.8 0.381746
0l2 [m] 0.1 0 1 0.950349 g1 [m] 0.4 0 0.8 0.798099
a1 [m] 0.5 0 0.8 0.795314 g2 [m] 0.4 0 0.8 0.184379
a2 [m] 0.5 0 0.8 0.746580 h1 [m] 1 0.5 1.35 0.500382
b1 [m] 0.5 0 0.8 0.799549 h2 [m] 1 0.5 1.4 1.060447
b2 [m] 0.5 0 0.8 0.65854 i1 [m] 0.4 0 0.8 0.77282
c1 [m] 0.5 0 0.8 0.378685 i2 [m] 0.4 0 0.8 0.70796
c2 [m] 0.25 0 0.8 0.543282 j [m] 1.35 2.5 0.5 1.451492
d1 [m] 0.4 0 0.7 0.571242 p1 [m] 0.25 0 0.8 0.389718
d2 [m] 0.7 0 0.8 0.126921 p2 [m] 0.5 0 0.8 0.198751

Source: The author.
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6 EQUIMOMENTAL SYSTEMS REPRESENTATIONS OF POINT-MASSES OF PLA-

NAR RIGID-BODIES

Equimomental point-mass systems facilitate the definition of the inertial properties of a

rigid body and simplify the dynamic analysis of mechanisms and machines. In this work, the

equimomental systems of three point-masses of planar rigid bodies are investigated using the

concept of pseudo-inertia matrix. It is found that given a planar rigid body, it is always possible to

determine an equimomental system of three equal masses located at the vertices of an isosceles

triangle. A procedure is presented to determine equimomental systems with different masses,

guaranteeing that the masses are positive. It is shown that it is always possible to choose an

equimomental system of three point-masses located at the vertices of an isosceles triangle with

a prescribed position of one mass. The conditions for prescribing the position of two and three

point-masses are also investigated. A first idealized example shows the step-by-step procedure for

determining an equimomental system of three point-masses of a planar rigid body. The proposed

model is applied to a symmetric connecting rod in a second example due to its wide use in

combustion engines. A third example shows an equimomental system of an asymmetric bucket

of an excavator.

6.1 EQUIMOMENTAL SYSTEMS

A three-dimensional rigid body can always be modeled by a dynamically equivalent

system of four rigidly connected point masses (SEYFERTH, 1974). However, in the case of planar

rigid bodies, it is always possible to construct a dynamically equivalent system with a three point-

mass (SOMMERVILLE, 1930). These systems having the same dynamic behavior are known

as equimomental systems (SELIG, J. M., 2015). Wenglarz et al. (WENGLARZ; FOGARASY;

MAUNDER, 1969) and Haung (HUANG, 1993) introduce the concept of equimomental systems.

Equimomental systems help to define the inertial properties of rigid bodies and determine

shaking forces, shaking moments, and input torques of mechanical systems (CHAUDHARY;

SAHA, 2009; ROUTH, E. J., 1905). Laus and Selig (LAUS; SELIG, 2020) show formal proof

of the existence of four point-mass equimomental to a given three-dimensional rigid body. The

authors developed analytical expressions to determine the possible location and values of the

masses using modern methods. They also derived the equation of motion based on the screw

theory of a rigid body in space. Similarly, in Chica et al. (CHICA; POLO; MOLINA, 2014),

the same result is derived in a more current language. The authors state that this important

property seems to be forgotten, and up to the publication date of this paper, they had not found

an appropriate demonstration.

Chaudhary and collaborators have extensively studied the equimomental systems of planar

rigid bodies (CHAUDHARY; SAHA, 2007, 2008, 2009; CHAUDHARY; CHAUDHARY, 2014a,

2015). In the proposed models, it cannot be assured that the masses are always positive. However,

this is not an obstacle for the rigid body representation process as long as the total mass and
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the moment of inertia about the center of mass give positive values (SHERWOOD; HOCKEY,

1969). Jan de Jong et al. (JONG; DIJK; HERDER, 2017) propose a method to determine

planar equimomental mechanisms through an inertia decomposition method. This method avoids

infeasible solutions using constraints on the model parameters. The main disadvantage of this

procedure is that it cannot be applied to mechanisms with more than one loop or to the mechanism

where there are bodies connected with prismatic pairs. Gössner (GÖSSNER, 2021) proposes an

equimomental model of point masses located at the vertices of a polygon. The author believes

that this polygonal system approach is new to the best of his knowledge. Future work can focus

on the negative masses that occur here and their avoidance.

Equimomental point-mass systems are especially advantageous in the dynamic balancing

of mechanisms and machines (CHAUDHARY; SAHA, 2006; GUPTA; SAHA; CHAUDHARY,

2019), in the minimization of constraint forces and actuation moments (KUMANI; CHAUD-

HARY, 2018; GUPTA; CHAUDHARY; SAHA, 2015). Here, the equations of the dynamic

model are greatly simplified and also allow a reduced use of design parameters. An interesting

application of equimomental systems in the field of biophysics is shown in Fábián et al. (FÁBIÁN;

THALLMAIR; HUMMER, 2022), where a simulation of the molecular dynamics of cholesterol

is performed. The authors claim that with an equimomental arrangement, the convergence of the

binding constraint is accelerated while preserving the original force field and the dynamics of

cholesterol.

Another possible and interesting application of point-masses equimomental systems is

dynamic synthesis, which consists of determining the shape of a body given inertial properties

and some restrictions on the body’s form and maximum allowable stresses (TISCHLER et al.,

2000). Unfortunately, nowadays, dynamics is studied from the analytical point of view without

a synthetic branch in the same way as in statics. Therefore, in inherently dynamic problems, a

quasi-static behavior is assumed (SELIG; MARTINS, 2014).

The discussion of equimomental systems of point masses dates back to the 19th century

(ROUTH, E., 1897). However, nowadays, few researchers have taken this approach despite

its advantages in the dynamic analysis of mechanisms and machines. Laus and Selig (LAUS;

SIMAS; MARTINS, 2020) have made significant advances in the case of three-dimensional

rigid bodies, although the models developed have not yet been adapted to planar rigid bodies.

These are the main reasons that motivated the realization of the present work, besides trying to

simplify the dynamic analysis of mechanisms and machines.

Next, a study on the equimomental systems of point masses of a planar rigid body is

presented. Using the formalism of the pseudo-inertia matrix, an equimomental system of three

equal point masses always forms an isosceles triangle. If the radii of gyration are equal, the

triangle formed by the three masses is equilateral; these results are stated as a theorem and a

corollary with their respective proof. A procedure is also shown to determine equimomental

systems with three different masses and always guarantee positive masses. Then a theorem on

the possibility of prescribing the position of one of the point masses is shown, and the conditions
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for prescribing the position of two and three masses are established. By means of a numerical

example, the step-by-step procedure for determining a three-mass system equimomental to a

planar rigid body is shown. An example is also shown where the results found are applied to

determine an equimomental system of a symmetric connecting rod. Finally, in a third example,

an equimomental system of three point-masses of an asymmetric plane rigid body is determined.

6.2 INERTIA MATRIX

Two rigid bodies are called equimomental if they have the same inertial properties; in

other words, two equimomental bodies have the same mass, their centers of mass coincide, and

their inertia matrices are equal with respect to a fixed coordinate system (SELIG, J. M., 2015).

One of the ways to combine the inertial properties in a single matrix is through the homogeneous

plane-distance inertia matrix, commonly known in a rather loose way as the pseudo-inertia

matrix. The pseudo-inertia matrix appears naturally when determining mean-squared distance

of a rigid body to a plane, as presented in Selig and Martins (SELIG; MARTINS, 2014).

The pseudo-inertia matrix of a body B is defined as:

Ξ̃ =

∫

B

p̃p̃T
dm =



∫
B

x2 dm
∫

B
xy dm

∫
B

xz dm
∫

B
x dm∫

B
xy dm

∫
B
y

2 dm
∫

B
yz dm

∫
B
y dm∫

B
xz dm

∫
B
yz dm

∫
B

z2 dm
∫

B
z dm∫

B
x dm

∫
B
y dm

∫
B

z dm
∫

B
dm



, (235)

where, p̃ =
[

x y z 1
]T

is the homogeneous position vector. Given the following definitions

Ixx =

∫

B

(y2
+ z2) dm Ixy = −

∫

B

xy dm mxC =

∫

B

x dm

Iyy =

∫

B

(x2
+ z2) dm Ixz = −

∫

B

xz dm myC =

∫

B

y dm

Izz =

∫

B

(x2
+ y

2) dm Iyz = −
∫

B

yz dm mzC =

∫

B

z dm

where, m is the mass of the body; Ii j corresponds to the elements of the traditional 3 × 3 inertia

matrix I and xC, yC, zC are the center of mass coordinates. Then, the pseudo-inertia matrix can

be expanded to

Ξ̃ =



1
2

(
−Ixx + Iyy + Izz

)
−Ixy −Ixz mxC

−Ixy
1
2

(
Ixx − Iyy + Izz

)
−Iyz myC

−Ixz −Iyz
1
2

(
Ixx + Iyy − Izz

)
mzC

mxC myC mzC m



, (236)

since
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∫

B

x2 dm =
1

2

∫

B

−(y2
+ z2) + (x2

+ z2) + (x2
+ y

2) dm ,

∫

B

y
2 dm =

1

2

∫

B

(y2
+ z2) − (x2

+ z2) + (x2
+ y

2) dm ,

∫

B

z2 dm =
1

2

∫

B

(y2
+ z2) + (x2

+ z2) − (x2
+ y

2) dm .

Laus and Selig (LAUS; SELIG, 2020) argue that this matrix is a unique property and two

bodies will be equimomental if and only if they have the same homogeneous matrix. In a planar

rigid body, the pseudo-inertia matrix Equation (236) loses the third row and the third column as

the points of the body are constrained in the xy plane i.e. z = 0 . Then, the pseudo-inertia matrix

becomes

Ξ̃ =



1
2

(
−Ixx + Iyy + Izz

)
−Ixy mxC

−Ixy
1
2

(
Ixx − Iyy + Izz

)
myC

mxC myC m



, (237)

The pseudo-inertia matrix of planar body represented by n point-masses can be written

as

Ξ̃ =

n∑

i=1

mip̃ip̃
T
i , (238)

where, mi is i-th point-mass, and p̃i is the homogeneous extended position vector of point pi

and has the form p̃i =

[
xi yi 1

]T

. The rigid transformation can be performing by standard

homogeneous representation

Ξ̃
′
= GΞ̃GT (239)

where, G is a homogeneous transformation matrix of the form

G =

[
R t

0 1

]
, (240)

with R the 2 × 2 rotation matrix and t its translation vector (SELIG, J. M., 2015).

The following section presents a procedure to determine a system of three equal point

masses by scaling an equilateral triangle.

6.3 EQUIMOMENTAL SYSTEM WITH EQUAL POINT-MASSES

It is a classical theorem that there exists a translation that locates the center of mass

at the origin of coordinates and a rotation that aligns the coordinate axes with the principal

directions of inertia. That is, there is a homogeneous transformation G that diagonalizes a given

pseudo-inertia matrix Ξ̃
′
. So the pseudo-inertia matrix can be written as

Ξ̃ = GΞ̃
′
GT
= m diag

(
a2, b2,1

)
, (241)
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where, I3 is a 3 × 3 identity matrix.

Theorem 1 Any planar rigid body is equimomental to a system of three equal point masses

located at the vertices of an isosceles triangle.

Proof. To facilitate calculations and without loss of generality, let us set the triangle’s orientation

to θ = π/2, which means that the triangle in the new orientation is symmetric with respect to

the y-coordinate axis, see Figure 69. Then, replacing θ = π/2 in the extended position vectors

Equation (247) yields,

q̃1 =



0√
2

1



, q̃2 =



√
6

2

−
√

2
2

1



, and q̃3 =



−
√

6
2

−
√

2
2

1



. (249)

Using the transformation shown in Equation (239), it is always possible to find a

transformation G that converts the pseudo-inertia matrix into a diagonal matrix of the form

Ξ̃ = m diag
(
a2, b2,1

)
. The points in Equation (249) can be moved using a non-rigid transforma-

tion D̃ = diag(a, b,1) so that the extended position vectors of the points become p̃i = D̃q̃i,

p̃1 =



0√
2b

1



, p̃2 =



√
6

2 a

−
√

2
2 b

1



, and p̃3 =



−
√

6
2 a

−
√

2
2 b

1


Placing three equal masses m/3 at these points produces a system with the required

inertia matrix,

m

3

3∑

i=1

p̃ip̃
T
i =

m

3

3∑

i=1

D̃q̃iq̃
T
i D̃

T
= mD̃I3D̃

T
= Ξ̃ . (250)

Then, all plane rigid body is equimomental to three equal points-masses, located at

the vertices of a triangle, which are obtained by deforming the equilateral triangle by the

transformation D̃ = diag(a, b,1); moreover, this triangle is isosceles since ‖p12‖2
= 3(a2

+3b2)/2,

‖p13‖2
= 3(a2

+ 3b2)/2, and ‖p23‖2
= 6a2 as shown in Figure 70.

�

Corollary 1 If a planar rigid body with inertia matrix Ξ̃ = m diag
(
a2, b2,1

)
respect to a

reference frame with origin at the center of mass and coordinate axes coincident with the

principal axes, where a = b, then the rigid body is equimomental to a system of three equal point

masses located at the vertices of an equilateral triangle

Proof. The system of three-point masses is equimomental to the planar rigid body with inertia

matrix Ξ̃ = m diag
(
a2, b2,1

)
, as shown in Equation (250). Furthermore, if a = b, then ‖p12‖2

=

‖p13‖2
= ‖p23‖2

= 6a2 proving that the three point masses form an equilateral triangle. �
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Uq̃2 =



√
6

2 cos β + sin β

−
√

2
2

−
√

6
2 sin β + cos β



= (cos β −
√

6

2
sin β)



(
√

6
2 cos β + sin β)/(cos β −

√
6

2 sin β)
−
√

2/2(cos β −
√

6
2 sin β)

1



, (254)

Uq̃3 =



−
√

6
2 cos β + sin β

−
√

2
2√

6
2 sin β + cos β



= (
√

6

2
sin β + cos β)



(−
√

6
2 cos β + sin β)/(

√
6

2 sin β + cos β)
−
√

2/2(
√

6
2 sin β + cos β)

1



. (255)

The right side of above equations can be used to find the point-masses and their position

since that,
3∑

i=1
(Uq̃i)(Uq̃i)T = cos2 βq̃′

1q̃′T
1 + (cos β −

√
6

2 sin β)2q̃′
2q̃′T

2 + (
√

6
2 sin β + cos β)2q̃′

3q̃′T
3 ,

then the masses are: m1 =
m
3 cos2 β, m2 =

m
3 (cos β −

√
6

2 sin β)2, and m3 =
m
3 (

√
6

2 sin β + cos β)2.

The extended position vectors are then,

q̃′
1 =



tan β√
2 sec β

1



, (256)

q̃′
2 =



(
√

6
2 cos β + sin β)/(cos β −

√
6

2 sin β)
−
√

2/2(cos β −
√

6
2 sin β)

1



, (257)

q̃′
3 =



(−
√

6
2 cos β + sin β)/(

√
6

2 sin β + cos β)
−
√

2/2(
√

6
2 sin β + cos β)

1



. (258)

by eliminating the parameter β in vector q′
1 it is determined that the mass m1 describes a

hyperbola defined by equation y
2

2 − x2
= 1, see Fig. 71. Similarly, it is concluded that the masses

m2 and m3 describe the same hyperbola defined by equation y
2

1/5 − x2
= 1, see Figure 71.

Varying the parameter β from 0 to 2π, it starts with the masses that form the equilateral

triangle studied above. One point at a time moves to infinity and reappears on the opposite side.

When the parameter reaches the value of π, an equilateral triangle is formed again, but with

points reflected with respect to the x-axis in relation to the initial triangle. Once the parameter

reaches the value of 2π the points return to the original position. Figure 72 shows the variation

of the normalized mass; note that the sum is constant and equal to 1.
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Let us define an xy coordinate system coincident with the principal axes. If the rotation angle

θ = 0, then the point q1 is on the x-axis according to Equation (262). Now, if we fix the point p1,

it obtains the following relation

β = arctan

(
x1 −

√
2a

a +
√

2x1

)
, (265)

then, the points q̃1 and q̃2 of the non-scaled triangle can be written as

q̃2 =



sin β−
√

2
2 cos β

cos β+
√

2
2 sin β

−
√

6

2(cos β+
√

2
2 sin β)

1



, q̃3 =



sin β−
√

2
2 cos β

cos β+
√

2
2 sin β√
6

2(cos β+
√

2
2 sin β)

1



. (266)

From Equation (259), Equation (260), and Equation (261) we have that the masses are

m1 =
m

3
(cos β −

√
2 sin β)2, (267)

m2 = m3 =
m

3
(cos β +

√
2

2
sin β)2, (268)

and according to Equation (251) we have that
3∑

i=1
p̃ip̃T

i
= m diag

(
a2, b2,1

)
then the three point-

masses form a system equimomental to the given rigid body. �

Note that points p̃1 and p̃2 are symmetric with respect to the x-coordinate axis; therefore,

the system of point masses forms an isosceles triangle with two equal masses, m2 = m3.

Theorem 2 For a planar rigid body, an equimomental system of three point masses located at

the vertices of an isosceles triangle can always be chosen with a mass at an arbitrary point.

Proof. Suppose that a point is prescribed, and its coordinates are written relative to a fixed

coordinate system on the body. In that case, it is clear that the point coordinates can be written

relative to a reference system with the origin at the center of mass and coordinate axes coincident

with the principal axes. In this coordinate system, the point can be rotated at an angle θ around the

center of mass so that it is on the x-axis. It is now possible to determine an equimomental system

with three-point masses located at the vertices of an isosceles triangle, as shown in Lemma 1.

Finally, the prescribed point at the current position is rotated at an angle −θ that locates it at the

original position. �

6.5.1.1 Symmetrical planar rigid bodies

In the case of a planar rigid body with at least one axis of symmetry, the determination

of an equimomental system is substantially facilitated since it is sufficient to define a point on an

axis of symmetry exempt from the center of mass, then we obtain an isosceles triangle with two

equal masses symmetrical to the axis of symmetry.
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6.5.2 Two prescribed point

According to Theorem 2, two points can be prescribed as long as they are symmetric to

an axis passing through the center of mass of the body. If the body is symmetric, then the two

points must be symmetric to the axis of symmetry.

6.5.3 Three prescribed point

Some models, such as the one presented by Chaudhary (CHAUDHARY; SAHA, 2009),

allow prescribing three point-masses with some restrictions, but it cannot be guaranteed that the

masses are positive. It is clear that it is impossible to define three general points arbitrarily since

the position of the masses must obey Equation (262), Equation (263), and Equation (264).

6.6 EXAMPLES

In the following, we first show an idealized example to demonstrate the procedure for

determining an equimomental system of a planar rigid body. In the two subsequent examples,

we consider a symmetric and an asymmetric rigid body, respectively.

6.6.1 Six point-masses rigidly connected

This idealized example shows the procedure to determine an equimomental system of

three-point masses of a given rigid body.

Next we show the step-by-step procedure for determining the equivalent three-point-mass

system given a pseudo-inertia matrix. The pseudo-inertia matrix of a set of six point-masses,

summing m = 1, located in the positions:

q̃1 =



−4

6

1



, q̃2 =



3

8

1



, q̃3 =



3

5

1



, q̃4 =



−6

−1

1



, q̃5 =



1

−2

1



, q̃6 =



5

−4

1



,

is

Ξ̃ =
1

6

6∑

i=1

q̃iq̃
T
i =



16.0000 −0.1667 0.3333

−0.1667 24.3333 2.0000

0.3333 2.0000 1.0000



, (269)

here we are using equal masses for simplicity but we have no loss of generality. To determine

the transformation G that converts the matrix Ξ̃ into a diagonal one, we must first translate the

body center of mass. Then the eigenvectors of the matrix I that form a rotation matrix R are

determined (SELIG, J., 2005). Therefore, the transformation matrix has the form,

G =

[
RT −RT tC

0 1

]
, (270)
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where tC is the position of the center of mass. Following the above procedure, we have

G =



−0.1784 0.9840 −1.9084

−0.9840 −0.1784 0.6848

0 0 1.0000



, (271)

then the diagonal pseudo-inertia matrix is

Ξ̃
′
= GΞ̃GT

=



20.4844 0 0

0 15.7378 0

0 0 1



, (272)

and remember that the diagonal matrix is written as Ξ̃
′
= m diag

(
a2, b2,1

)
, and the non-rigid

transformation of the triangle is D̃ = diag(a, b,1); therefore, we have that

D̃ =



4.5260 0 0

0 3.9671 0

0 0 1



, (273)

then, using p̃′
i
= D̃q̃i for i = 1,2,3. it is computed the position of vertices’ triangle in the current

reference frame,

p̃′
1 =



0

5.6103

1.0000



, p̃′
2 =



5.5432

−2.8052

1.0000



, and p̃′
3 =



−5.5432

−2.8052

1.0000



.

The above points are written in the original reference frame using the transformation

p̃i = G−1p̃′
i
,

p̃1 =



−5.1869

0.9990

1.0000



, p̃2 =



2.1044

7.9547

1.0000



, and p̃3 =



4.0825

−2.9537

1.0000



,

The pseudo-inertia matrix is calculated with these points, confirming that the two systems

are equimomental Equation (274). Figure 74 shows in red the set of six points, the undeformed

triangle in blue, in green the deformed triangle representing the equimomental system, and the

black point is the position of the center of mass.

Ξ̃ =
1

3

3∑

i=1

p̃ip̃
T
i =



16.0000 −0.1667 0.3333

−0.1667 24.3333 2.0000

0.3333 2.0000 1.0000



(274)
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solutions with unequal masses are determined, and the values of the normalized masses are

shown graphically. Also, a procedure is developed to determine an equimomental system with

the position of a prescribed mass. Conditions are given to prescribing the position of two and

three point-masses. Finally, three examples of application of the ideas explored in this work are

presented.
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Now, the position of point-masses epk for k = 1,2,3 written in the inertial reference

frame can be computed as,

pk = pi + Re
epk , (283)

and deriving twice with respect to time yields

Üpk = Üpi +
ÜRe

epk . (284)

According to Laus and Selig (2020), the total wrench acting in the body is equal to the

sum of the inertial wrenches of the point masses of the equimomental system,

[
τ

F

]
= m1

[
(Sp1)T Üp1

Üp1

]
+ m2

[
(Sp2)T Üp2

Üp2

]
+ m3

[
(Sp3)T Üp3

Üp3

]
, (285)

where, S =

[
0 −1

1 0

]
represents a π/2 radian counterclockwise rotation, τ and F are the total

moment and force acting on the body.

This formulation is suitable for solving the inverse dynamics of mechanisms since the

accelerations are calculated a priori. In the next section, we show an application of the use of

equimomental point-masses systems to solve the inverse dynamics of a slider-crank linkage.

7.2 SHAKING FORCE AND SHAKING MOMENT ANALYSIS

This section shows an application of equimomental systems in analyzing forces and

shaking moments. As an illustrative example, the slider crank mechanism was selected as it is

widely used in internal combustion engines and compressors, see Figure 79.

Davies’ method was developed to solve the kinematics and statics of planar and spatial

mechanisms systematically, see (DAVIES, 1981, 2006; CAZANGI, 2008; MEJIA; SIMAS;

MARTINS, 2016; LAUS; SIMAS; MARTINS, 2020). To adapt the technique to the solution

of inverse dynamics is sufficient to apply the D’Alembert principle (GOLDSTEIN; POOLE;

SAFKO, 2002), whereby the screw of inertia (FRANTZ et al., 2018) of the body considering

equal masses can be written as follows:

$in
i =



τi

fix

fiy



= −mi

3

([
(Spi

1)
T Üpi

1

Üpi
1

]
+

[
(Spi

2)
T Üpi

2

Üpi
2

]
+

[
(Spi

3)
T Üpi

3

Üpi
3

])
, (286)

where, τi is inertial torque in the body i, fix and fiy are the x and y components of the

inertial force of body i, pi
j
for j = 1,2,3. is the inertial screw position j of body i, and Üpi

j
is the

acceleration of point j of body i.
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and, from the unit action screws of all the forces, the unit action matrix is obtained

ÂD =

fbx fby fcx fcy fd τd fox foy τ fp


−yB xB −yC xC xCyud
− yC xud

1 0 0 1 xCyuA
− yC xuA

1 0 1 0 xud
0 1 0 0 xuA

0 1 0 1 yud
0 0 1 0 yuA

f in
1 f in

2 f in
3



τ̂1 τ̂2 τ̂3

xu1 xu2 xu3

yu1 yu2 yu3

(292)

then, the constitutive equations of the dynamics can be written compactly as

ÂN (q)Ψ = 0 , (293)

where, ÂN is the network unit action matrix of a coupling network and Ψ is the vector of

magnitudes of action screws. The matrix ÂN is assembled from the unit action matrix ÂD as

ÂN =



ÂDQ1

ÂDQ2
...

ÂDQk



, (294)

where Qi = diag([QA]i), i = 1,2, · · · , k are diagonal matrices whose diagonal elements corre-

spond to row i of cutset matrix QA, derived from action graph GA.

Let us split the vector Ψ into three vectors as follows: the vector of the internal forces

acting in each kinematic pair i
Ψ, the vector of the forces supply by each actuator a

Ψ and the

vector of external forces e
Ψ. Thus, Equation (293) is written as:

[
iÂN (q) aÂN (q) eÂN (q)

] 

i
Ψ

a
Ψ

e
Ψ



= 0, (295)

where iÂN (q) is the network unit internal action matrix, aÂN (q) is the network unit actuator

action matrix and eÂN is the network unit external action matrix. Rearranged the Equation (295)

we can determine the internal forces and loads supplied by the actuators:

rÂN (q)rΨ = −eÂN (q)eΨ, (296)

where rÂN (q) =
[

iÂN (q) aÂN (q)
]

is the resultant network unit action matrix and r
Ψ =

[
i
Ψ

T a
Ψ

T
]T

is the resultant forces vector.



Chapter 7. Dynamic balancing of planar mechanisms using equimomental systems of point-masses 143

The dimensions of the slider crank mechanisms and their inertial properties are sum-

marized in the Table 12. The mechanism is moved by a motor located at point O, rotating at a

constant angular velocity Ûϕ of 2π rad/s. Moreover, the point A coincides with point O, and the

unit vector uAC is parallel to x-axis and same sense.

Table 12 – Dimensions and inertial properties (CHAUDHARY; CHAUDHARY, 2014b).

Body i 1 2 3 Unit

Mass mi 2 3 4 [kg]
Length li 0.292 0.427 − [m]

Inertia Izzi 0.03 0.14 0 [kg · m2]
Center of mass exCi

0.146 0.214 0 [m]
Center of mass e

yCi
0 0 0 [m]

Source: The author.

The proposed kinematic and dynamic model was implemented in Matlab. The Figure

81(a) shows the mechanism in an arbitrary configuration, where the triangles in green represent

the equimomental point masses of the crank and connecting rod. The Figure 81(b) and Figure

81(c) show the shaking forces components, and Figure 81(d) shows the shaking moment. The

shaking screw is computed using the equation. The shaking screw is computed using the equation,

$sh =

[
τsh

Fsh

]
= −

[
τ + τd + (SpOC)TFd

Fo + Fd

]
(297)

where, Fo is the reaction force in point O, Fd is the reaction force in slider pair, and pOC is the

position of point C relative to point O.

A simulation was performed in the kinematic and dynamic analysis software of planar

and spatial mechanisms GIM (PETUYA et al., 2014; HERNÁNDEZ et al., n.d.) to validate

the proposed model. The Figure 82 shows the comparison of the input torque of the proposed

method and the one calculated in GIM, where the two plots are a close match.

7.3 DYNAMIC BALANCING METHOD

In this section, a method for dynamic balancing of planar mechanisms is proposed. The

proposed method is a dating method developed for static balancing in which the dynamic problem

is transformed into a static problem by considering inertial forces. The balancing is achieved

by minimizing the forces and shaking moments; therefore, we deal with a multi-objective

optimization problem. The steps of the proposed method are the following:

Step 1: First, the position problem is formulated using natural coordinates, as in Section 4.1.1.

Step 2: The second step is the computing of the accelerations. It is achieved by deriving the

constraint vector twice, see Equation (288) and Equation (289).
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where η1 is a positive number that normalizes the shaking torque and η2 normalizes the

shaking force. The weight matrix ν is defined as

ν =



ν 0 0

0 (1 − ν) 0

0 0 (1 − ν)



(301)

when ν = 0, the problem becomes a shaking force balancing, and shaking torque balancing

for ν = 1.

Step 9: Finally, the optimization problem is solved either by gradient-based techniques or evolu-

tionary algorithms.

Figure 83 shows a flow chart that illustrates the proposed procedure for dynamic balancing

of planar mechanisms.

7.4 DYNAMIC BALANCING OF A SLIDER CRANK MECHANISM

In this section, the dynamic balancing of a slider crank mechanism is presented. The

dimensions of the mechanism and the masses of the links are the same as those used in Section

7.2.

7.4.1 Position analysis

First, the position of the point B is calculated as a function of the input angle using

the expression pB = [ l1 cos ϕ l1 sin ϕ ]T . The position of point C is easily determined by

bilateration as follows:

pC = pA + YABCuAC, (302)

where

YABC =

[
pAB · uAC +

√
sBC − sAB + (pAB · uAC)2 0

0 pAB · uAC +

√
sBC − sAB + (pAB · uAC)2

]
.

(303)

7.4.2 Acceleration analysis

Before solving the acceleration problem, it is necessary to solve the velocity problem.

By applying Equation (145) and dividing the velocity vector into dependent and independent
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Figure 83 – Flowchart of the proposed procedure for dynamic balancing.
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velocities, we can write the velocity problem in expanded form as



−(xC − xB) −2(yC − yB) 2(xC − xB) 2(yC − yB)
0 0 yuAC

−xuAC

1 0 0 0

0 1 0 0





ÛxB

ÛyB

ÛxC

ÛyC



= −



0

0

l1 sin ϕ

−l1 cos ϕ



Ûϕ . (304)

Now the acceleration problem can be written in expanded form as follows.



−(xC − xB) −2(yC − yB) 2(xC − xB) 2(yC − yB)
0 0 yuAC

−xuAC

1 0 0 0

0 1 0 0





ÜxB

ÜyB

ÜxC

ÜyC



= − ÛΦq



ÛxB

ÛyB

ÛxC

ÛyC

Ûϕ



, (305)

where

ÛΦq =



−2( ÛxC − ÛxB) −2( ÛyC − ÛyB) 2( ÛxC − ÛxB) 2( ÛyC − ÛyB) 0

0 0 0 0 0

0 0 0 0 l1 cos ϕ Ûϕ
0 0 0 0 l1 sin ϕ Ûϕ



. (306)

7.4.3 Optimization problem formulation

Considering that the masses of the links are previously known and that the objective is to

distribute the masses in each link so that the shaking forces and shaking torques are minimized,

we can define the vector of design variables as follows.

z =
[

Izz1 xC1 yC1 Izz2 xC2 yC2

]T

, (307)

where Izzi for i = 1,2 are the mass moments of inertia with respect to the center of mass. In this

optimization, we are not interested in the shape of the links. Therefore, we can consider in the

optimization that the links are symmetric and that Ixy = 0, and Ixx = Iyy = Izz/2. In future work,

the shape of the links can be considered in the optimization using the equimomental systems

formalism proposed in this work.

In this case, the only constraints in the optimization are the bounding values of the design

variables, so the optimization problem is substantially simplified. Then in the dynamic balancing
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of the slider crank mechanism, we can write the optimization problem as

minimize
z

f (z) =
n∑

j=1

$T
shj

ην$shj
,

subject to z ≤ z ≤ z̄,

while solving

{
Φ(q) = 0,
rÂN (q,z)rΨ j = −eÂN (q,z)eΨ j .

(308)

7.4.4 Numerical results

Table 13 presents the masses and lengths of the links in which we consider that the piston

moves horizontally and that its mass is zero. The above assumptions are made for simplicity but

do not represent any loss of generality since the model allows to optimize the mechanism in any

arrangement and also considering external forces on the piston. The consideration of external

forces on the piston due to gas pressure is an important issue in the design of compressors and

internal combustion engines; this issue will be studied in future work as it is not the focus of this

work.

Table 13 – Dimensions and masses of links.

Body i 1 2 3 Unit

Mass mi 1.64346901 2.51946901 0 [kg]
Length li 0.25 0.4 − [m]

Source: María Teresa Orvañanos Guerrero (2022).

The mechanism is moved by a motor located at point O, rotating at a constant angular

velocity Ûϕ of 500 [rpm]. Table 14 shows the limit values of the design variables, the initial values

of the design variables, and the optimum solution. The interior-point algorithm of the Matlab

toolbox was used to solve the optimization problem. The normalization values η1 and η2 were

calculated relative to the initial solution, that is, the squared sum of the shaking torques and the

squared sum of the shaking forces, respectively. In the optimization the same weight was given

to the two objective functions, that is, ν = 0.5. Figure 84 shows the convergence of the objective

function in which a value of 3.147426 × 10−2 was reached in 31 iterations.

Table 14 – Optimization parameters and results.

Variables z z̄ z0 Optimal Units
Izz1 0 1 0.01109156672 0.499933107990787 [kg · m2]
xC1 -0.25 0.25 0.125 -0.249999863527270 [m]
yC1 -0.25 0.25 0 3.49115728996315e-08 [m]
Izz2 0 1 0.0394565196 0.0715844690734737 [kg · m2]
xC2 -0.4 0.4 0.2 0.0923548465403011 [m]
yC2 -0.4 0.4 0 4.27135932507908e-10 [m]

Source: The author.
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8 CONCLUSIONS

First, this thesis proposes a systematic method for the dimensional synthesis of statically

balanced mechanisms. Unlike the methods found in the literature, the developed method is general

enough to deal with static balancing problems of planar and spatial mechanisms regardless of

their complexity. The proposed method is based on the integration of natural coordinates in screw

theory, which allows the advantages of both tools. The main advantages of natural coordinates

are simplicity and intuitive physical interpretation; the position and orientation of each element

are directly defined, and trigonometric functions do not appear in the constraint equations. In

addition, natural coordinates are particularly well suited for sensitivity analysis and optimization.

The main advantage of the screw theory is that it has a geometrical interpretation that allows

dealing with both the kinematics and the statics of the mechanisms. In this thesis, the constitutive

equations of statics are obtained systematically through Davies’ method. The proposed method

was applied to static balancing of a four-bar mechanism for vertical straight-line motion of an

external load. Step by step descriptions are shown so that the reader can reproduce this study.

The straight-line four-bar balance mechanism achieved a 99.9% reduction in the actuation torque.

Next, a static balancing of an RSSR-SS mechanism was considered. In this case, a reduction

in actuation torque of 99.9% and 99.89% was achieved for mechanism i and mechanism ii,

respectively. A third example shows the balancing of the KUKA KR 210 R3100 manipulator

robot, achieving a 95.9% reduction in the actuation torque. The examples shown are illustrative;

therefore, the values found should not be used as appropriate for manufacturing a physical model,

since some data were assumed and do not represent actual data.

This thesis explores the equimomental systems of three point-masses in planar rigid

bodies using the concept of pseudo-inertia matrix. The research shows that it is always possible

to identify an equimomental system of three equal masses located at the vertices of an isosceles

triangle for a planar rigid body. The procedure presented guarantees that the masses are positive

while determining equimomental systems with different masses. It is also possible to select an

equimomental system of three point-masses in an isosceles triangle with a prescribed position

for one of the masses. The research also investigates the conditions for prescribing the position

of two and three point-masses. The process for determining an equimomental system of three

point-masses of a planar rigid body is demonstrated in the first example. The second example

applies the proposed model to a symmetric connecting rod due to its extensive use in combustion

engines. The third example shows an equimomental system of an asymmetric bucket of an

excavator.

Based on the representation of equimomental systems and with the support of the

integration of natural coordinates in the screw theory, it was possible to adapt the static balancing

method to the dynamic balancing of planar mechanisms. In formulating the optimization problem,

the concept of a shaking screw was introduced, allowing an elegant and compact definition of

the objective function. The method was applied to balancing a sliding crank mechanism where
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an improvement in the shaking force of 69.97% and an improvement in the shaking torque of

99.99% was achieved.

This thesis proposes new approaches for the kinematic analysis of mechanisms based on

Davies’ method, natural coordinates, and the bilateration method. The study reviews kinematic

analysis techniques using natural coordinates, bilateration, and screw theory. In addition, it

suggests integrating natural coordinates and screw theory to simplify the analysis of velocities

and accelerations in mechanisms. Incorporating natural coordinates into Davies’ method allows

the relative angular accelerations to be determined directly, thus facilitating the analysis of

accelerations. Furthermore, the study proposes a simultaneous solution to the position and

velocity problem. In this thesis an alternative formulation of the bilateration method using

complex numbers is presented. This formulation shows that certain properties can be easily

demonstrated using the complex form of bilateration matrices, known as bilaterators. In addition,

a bilateration matrix for a planar RRRP mechanism is proposed, which is helpful in solving the

position kinematics of more complex planar mechanisms.

8.1 FUTURE WORK

Future works on this thesis includes:

• In this work, the problem of structural synthesis of statically balanced mechanisms was not

addressed. This problem can be dealt with using the techniques developed in Laboratory

of Applied Robotics Raul Guenther (LAR), particularly the techniques proposed by Murai

(2019).

• To extend the static balancing method to planar and spatial compliant mechanisms.

• Develop user-friendly and intuitive software that allows the engineering designer to explore

a wide number of possible solutions.

• To explore the problem of dimensional synthesis of dynamic balancing of spatial mecha-

nisms using equimomental systems of point-masses.

• To develop a dynamic synthesis method, i.e., given the inertial properties of a rigid body,

to synthesize the rigid body subject to constraints on the shape and stresses supported.

Inertia from a geometrical perspective, as studied in (TISCHLER et al., 2000; SELIG;

MARTINS, 2014), seems to be a promising approach to solving the above problem.

• To study the relationship between the Jacobian calculated using natural coordinates and

the geometric Jacobian constructed with screws. If it is possible to determine the Jacobian

in natural coordinates using screws directly, it will facilitate the kinematic analysis of

position, velocity analysis, and acceleration analysis of mechanisms.

• To extend the bilateration method to spherical mechanisms. For this, it is necessary to

determine a matrix expression in terms of the arcs that form the links.
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8.2 PUBLISHED AND SUBMITTED PAPERS

This work yielded several papers for journals and conferences:

• NUÑEZ, Neider Nadid Romero; VIEIRA, Rodrigo S.; MARTINS, Daniel. Equimomental

systems representations of point-masses of planar rigid-bodies. Acta Mechanica, [S. l.], p.

1-16, 18 Aug. 2023.

• NUÑEZ, Neider Nadid Romero; CUTA, Carlos Humberto Pinzón; VIEIRA, Rodrigo

S.; MARTINS, Daniel. Optimal dimensional synthesis of central-lever steering linkage

using natural coordinates as design variables. 27th International Congress of Mechanical

Engineering COBEM, A Associação Brasileira de Engenharia e Ciências Mecânicas –

ABCM, n. 27, p. 1-10, 7 nov. 2023.

• NUÑEZ, Neider Nadid Romero; ZHAO, Jing-Shan; MISYURI, Sergey Yurievich; VIEIRA,

Rodrigo S.; MARTINS, Daniel. A Screw Theory-based Method for Approximate Static

Balancing of a RSSR-SS Mechanism. 16th World Congress of the International Federation

for the Promotion of Mechanism and Machine Science, Mechanisms and Machine Science,

n. 16, p. 1-10, 5 nov. 2023.

• NUÑEZ, Neider Nadid Romero; ZHAO, Jing-Shan; NICOLAZZI, Lauro Cesar; VIEIRA,

Rodrigo S.; MARTINS, Daniel. Double Butterfly Steering Linkage. 16th World Congress

of the International Federation for the Promotion of Mechanism and Machine Science,

Mechanisms and Machine Science, n. 16, p. 1-10, 5 nov. 2023.

• NUÑEZ, Neider Nadid Romero; FLOREZ, Anderson Romero; VIEIRA, Rodrigo S.;

MARTINS, Daniel. Dimensional synthesis of rack-and-pinion steering mechanism using

a novel synthesis equation. Journal of the Brazilian Society of Mechanical Sciences and

Engineering, [S. l.], p. 1-10, 20 jun. 2023.

• Neider Nadid Romero; CONTRERAS, Gonzalo Moreno; TOLOZA , Sonia Carolina Man-

tilla; MARTINS, Daniel. Balanceo estático de un mecanismo de rehabilitación de miembro

inferior para reducir los requerimientos de actuación. XV Congreso Iberoamericano de

Ingeniería Mecánica, Universidad Nacional de Educación a Distancia, p. 1-7, 22 nov. 2022.

• BUZZI, B.F.; ROMERO, N.N.; MARTINS, D.; de Souza Vieira, R. Dimensional Synthesis

of a Two-Axles Steering System. In: Pucheta, M., Cardona, A., Preidikman, S., Hecker, R.

(eds) Multibody Mechatronic Systems. MuSMe 2021. Mechanisms and Machine Science,

vol 94. Springer, Cham.

• NUÑEZ, Neider Nadid Romero; CAMPOS, Alexandre; MARTINS, Daniel; VIEIRA ,

Rodrigo S. A new approach for the optimal synthesis of four-bar path generator linkages.

SN Applied Sciences, [S. l.], v. 1, n. 11, p. 1-8, 28 out. 2019.
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APPENDIX A – MATHEMATICAL TOOLS

A.1 PARTIAL DERIVATIVES OF A SCALAR, A VECTOR AND A MATRIX WITH

RESPECT TO A VECTOR

Definition 2 (Partial derivatives of a scalar with respect to a vector) Let scalar ϕ = ϕ(x) be

a function of column vector x ∈ Rn. The partial derivative of the scalar ϕ(x) with respect to

vector x is defined by (NIKRAVESH, Parviz E., 2018; SHABANA, 2013; VAN KHANG, 2010)

∂ϕ

∂x
=

[
∂ϕ

∂x1

∂ϕ

∂x2
· · · ∂ϕ

∂xn

]
(309)

Definition 3 (Partial derivatives of a vector with respect to a vector) Let vector ϕ = ϕ(x) ∈
R

m be a function of vector x ∈ Rn. The partial derivative of the vector ϕ(x) with respect to vector

x is defined by (NIKRAVESH, Parviz E., 2018; SHABANA, 2013; VAN KHANG, 2010)

∂ϕ

∂x
=



∂ϕ1
∂x
∂ϕ2
∂x
...

∂ϕm
∂x



=



∂ϕ1
∂x1

∂ϕ1
∂x2

· · · ∂ϕ1
∂xn

∂ϕ2
∂x1

∂ϕ2
∂x2

· · · ∂ϕ1
∂xn

...
...

. . .
...

∂ϕm
∂x1

∂ϕm
∂x2

· · · ∂ϕm
∂xn



(310)

Definition 4 (Partial derivatives of a matrix with respect to a vector) Let matrix A = A(x) ∈
R

m×p be a function of vector x ∈ Rn. The partial derivative of the matrix A(x) with respect to

vector x is defined by (VAN KHANG, 2010)

∂A
∂x
=

[
∂a1
∂x

∂a2
∂x · · · ∂ap

∂x

]
=
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∂a11
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∂x
...

...
. . .

...
∂am1
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∂x · · · ∂amp
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(311)

Definition 5 (Kronecker product of two matrices) The Kronecker product of two matrices

A(x) ∈ Rm×p and B(x) ∈ Rq×s, denoted by A ⊗ B, is a mq × ps matrix defined as (LAUB, 2005;

VAN KHANG, 2010)

A ⊗ B =



a11B a12B · · · a1pB

a21B a22B · · · a2pB
...

...
. . .

...

am1B am2B · · · ampB



(312)
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Theorem 3 (Time derivative of a matrix) When matrix A(x) ∈ Rm×p is a function of vector

x ∈ Rn, and x(t) is a function of the time, we have the following rule (VAN KHANG, 2010)

dA(x)
dt

=

∂A(x)
∂x

(In ⊗ Ûx) (313)

Theorem 4 (Partial derivative of the product of two matrices) Let the matrices A(x) ∈ Rm×p

and B(x) ∈ Rq×s be functions of vector x ∈ Rn. Then the partial derivative of the matrix product

A(x)B(x) with respect to vector x is given by (VAN KHANG, 2010)

∂(AB)
∂x

=

∂A
∂x

(B ⊗ In) + A
∂B
∂x

(314)
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