
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO TECNOLÓGICO

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE AUTOMAÇÃO E SISTEMAS

Eric Mochiutti

Physics-Informed Echo State Networks for Modeling Controllable Dynamical Systems

Florianópolis

2023

Eric Mochiutti

Physics-Informed Echo State Networks for Modeling Controllable Dynamical Systems

Dissertação submetida ao Programa de Pós-Graduação
em Engenharia de Automação e Sistemas da Universi-
dade Federal de Santa Catarina para a obtenção do tí-
tulo de mestre em Engenharia de Sistemas e Automação.
Orientador: Prof. Eric Aislan Antonelo, Dr.
Co-supervisor:: Prof. Eduardo Camponogara, Dr.

Florianópolis

2023

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Mochiutti, Eric
 Physics-Informed Echo State Networks for Modeling
Controllable Dynamical Systems / Eric Mochiutti ;
orientador, Eric Aislan Antonelo, coorientador, Eduardo
Camponogara, 2024.
 85 p.

 Dissertação (mestrado) - Universidade Federal de Santa
Catarina, Centro Tecnológico, Programa de Pós-Graduação em
Engenharia de Automação e Sistemas, Florianópolis, 2024.

 Inclui referências.

 1. Engenharia de Automação e Sistemas. 2. Inteligência
Artificial. 3. Redes Neurais. 4. Redes de Estado de Eco.
5. Identificação de Sistemas. I. Antonelo, Eric Aislan. II.
Camponogara, Eduardo. III. Universidade Federal de Santa
Catarina. Programa de Pós-Graduação em Engenharia de
Automação e Sistemas. IV. Título.

Eric Mochiutti

Physics-Informed Echo State Networks for Modeling Controllable Dynamical Systems

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca examinadora

composta pelos seguintes membros:

Prof. Levy Boccato, Dr.

Departamento de Engenharia de Computação e Automação

Universidade Estadual de Campinas

Prof. Gustavo Artur de Andrade, Dr.

Departamento de Automação e Sistemas

Universidade Federal de Santa Catarina

CertiĄcamos que esta é a versão original e Ąnal do trabalho de conclusão que foi jul-

gado adequado para obtenção do título de mestre em Engenharia de Sistemas e Automação.

Prof. Julio Elias Normey Rico, Dr.

Coordenador do Programa

Prof. Eric Aislan Antonelo, Dr.

Orientador

Prof. Eduardo Camponogara, Dr.
Co-supervisor:

Universidade Federal de Santa
Catarina Ű UFSC

Florianópolis, 2023.

Dedico este trabalho à minha mãe Marilene, que me apoiou

incondicionalmente durante essa jornada, e ao meu pai

Silas (in memoriam), que sempre incentivou os meus

estudos.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Eric Aislan Antonelo, and co-advisor, Eduardo Cam-

ponogara, for their support and guidance during my research. I’m especially grateful for the

opportunity they provided for the development of this research.

Thanks to my mom and dad, whose encouragement and inspiration have been a

constant source of motivation. My brother, my girlfriend, dear friends, and everyone who

supported me during this research journey, I am also deeply grateful for their patience and

understanding during the moments of my absence. I am grateful for your invaluable help that

was crucial to my success.

I would like to express my gratitude to the Human Resources Program of the National

Agency of Petroleum, Natural Gas, and Biofuels (PRH-ANP) for Ąnancial support. Additionally,

I extend my thanks to Petrobras, and FEESC for funding the research that made this work

possible.

“Even the smallest person can change the course of the future.”

(J.R.R. Tolkien)

RESUMO

Redes Neurais com Estados de Eco (ESNs) são redes neurais recorrentes em que apenas
a camada de saída linear instantânea é treinada puramente a partir de dados. Portanto,
proporcionam facilidade no treinamento para modelar sistemas dinâmicos não lineares, o
que pode ser usado em aplicações de controle, por exemplo. Ao incorporar leis físicas no
treinamento das ESNs, as Redes de Estados de Eco Informadas por Física (PI-ESNs) foram
propostas na literatura, inicialmente para modelar sistemas dinâmicos caóticos sem entradas
externas. Isso resulta em uma rede que requer menos dados para treinamento, ao ser regular-
izada pelas informações das Equações Diferenciais Ordinárias (ODEs) durante o treinamento.
Nesta dissertação, é proposta uma PI-ESN com entradas externas, que pode ser usada para
modelar sistemas dinâmicos não lineares controláveis. Adicionalmente, um método autoad-
aptativo que equilibra as funções de custo da literatura é implementado e integrado à PI-ESN
proposta (PI-ESN-a), servindo para balancear as contribuições do termo de regressão resid-
ual e do termo de perda informada por física. O desempenho dessa arquitetura foi avaliado
em dois sistemas não lineares modelados por ODEs: o oscilador de Van der Pol, conhecido
por seu comportamento auto-oscilatório, e o sistema de quatro tanques, comumente usado
em testes de sistemas de controle multivariável. Também foi conduzida uma análise para um
sistema modelado por Equações Diferenciais Algébricas (DAE), representando uma Bomba
Elétrica Submersível (ESP) usada para elevação artiĄcial em poços de petróleo e gás. Uma
análise comparativa entre a PI-ESN-a e uma ESN convencional revelou que o erro de pre-
visão diminui para a primeira, especialmente em cenários com disponibilidade limitada de
dados. Além disso, constatou-se que o tempo de execução da PI-ESN é ordens de magnitude
menor do que os métodos numéricos tradicionais para resolver DAEs.

Palavras-chave: Aprendizado de Máquina. Redes Neurais. Redes de Estados de Eco. Apren-
dizado de Máquina Informada pela Física. IdentiĄcação de Sistemas.

ABSTRACT

Echo State Networks (ESNs) are recurrent neural networks where only a linear instanta-
neous readout output layer is trained purely from data. Thus, they provide ease of training
for modeling nonlinear dynamical systems, which can be used for control applications, for
instance. By incorporating physical laws into ESN’s training, Physics-Informed Echo State
Networks (PI-ESNs) were proposed in the literature, initially for modeling chaotic dynamic
systems without external inputs. This results in a network which needs less data to train, as
it is regularized by the information from Ordinary Differential Equations (ODEs) during its
training. In this dissertation, a PI-ESN with external inputs is proposed, which can be used to
model controllable nonlinear dynamical systems. In addition, a self-adaptive weighting loss
method from the literature is implemented and integrated into the proposed PI-ESN, serving to
balance the contributions of the residual regression term and the physics-informed loss term
(PI-ESN-a). The performance of this architecture was evaluated for two nonlinear systems
modeled by ODEs: the Van der Pol oscillator, known for its self-oscillatory behavior, and the
four-tank system, standard in multivariable control system tests. Additionally, a system mod-
eled by Differential Algebraic Equations (DAE), representing a Submersible Electric Pump
(ESP) used for artiĄcial lift in oil and gas wells, was assessed. Comparative analysis between
the proposed PI-ESN and a conventional ESN showed that the prediction error decreases
for the former, especially in scenarios with limited data availability. Furthermore, the runtime
of the PI-ESN was found to be orders of magnitude lower than traditional numerical methods
for solving DAEs.

Keywords: Machine Learning. Neural Networks. Echo States Network. Physics Informed
Machine Learning. System IdentiĄcation.

RESUMO EXPANDIDO

Redes Neurais de Estados de Eco (ESNs) são redes neurais recorrentes, na qual a camada
de saída é treinada exclusivamente com dados, sendo essa arquitetura usada para mode-
lagem de sistemas dinâmicos não lineares. Esse modelo pode ser aplicado em sistemas de
controle, proporcionando uma abordagem eĄcaz para lidar com complexidades e não lineari-
dades. As Redes de Estados de Eco Informadas por Física (PI-ESNs) foram propostas para
incorporar leis físicas no treinamento, inicialmente para sistemas caóticos sem entradas ex-
ternas, reduzindo a quantidade de dados ao serem regularizadas por Equações Diferenciais
Ordinárias (ODEs) que regem a física do sistema. Neste estudo, uma PI-ESN com entradas
externas é proposta para modelar sistemas dinâmicos não lineares controláveis. Introduz-se
um método autoadaptativo (PI-ESN-a) para balancear as funções de custo das PI-ESNs,
buscando equilibrar as contribuições do termo de regressão residual e do termo de perda
informada por física. O desempenho é avaliada em sistemas não lineares modelados por
ODEs, como o oscilador de Van der Pol e o sistema de quatro tanques, e para um sistema
modelado por Equações Diferenciais Algébricas (DAE), representando uma Bomba Elétrica
Submersível (ESP) para elevação artiĄcial em poços de petróleo e gás.

O capítulo 1 apresenta a motivação, objetivos e contribuições da dissertação, destacando
o uso de técnicas de aprendizado de máquina informadas por física para modelagem de
sistemas dinâmicos controláveis. O capítulo 2 realiza uma revisão da literatura relevante,
explorando redes neurais usadas para sistemas de controle e Redes de Estados de Eco
Informadas por Física usadas para modelagem de sistemas caóticos que serviram como
base para o desenvolvimento da pesquisa. O capítulo 3 fornece uma base teórica, incluindo
os conceitos fundamentais de sistemas dinâmicos, identiĄcação de sistemas, e redes neurais
artiĄciais.

O capítulo 4 explora a arquitetura das Redes de Estados de Eco, abordando os pesos,
parâmetros da rede, otimização e a integração das leis físicas na função de custo. Nesse
capítulo também é discutido a implementação da PI-ESN-a, destacando o balanceamento
dinâmico entre a função custo de dados e a função de custo física para melhor desempenho
em modelar sistemas físicos.

O capítulo 5 descreve as experiências conduzidas usando a ESN convencional, PI-ESN e
PI-ESN-a em três sistemas diferentes: oscilador de Van der Pol, sistema de quatro tanques
e uma Bomba Elétrica Submersível. A análise comparativa entre a PI-ESN-a e a ESN con-
vencional mostra uma redução signiĄcativa no erro de previsão, principalmente em contextos
com dados limitados disponíveis. Além disso, destaca-se uma notável diminuição no tempo
de execução quando comparada a métodos numéricos tradicionais para a resolução de
Equações Diferenciais Algébricas (DAEs).

O capítulo 6 apresenta a conclusão da dissertação, destacando os resultados obtidos, desta-
cando a superioridade da PI-ESN-a em cenários com disponibilidade limitada de dados, e
ressalta a eĄciência computacional da abordagem em comparação com métodos numéricos
tradicionais para resolver DAEs.

LIST OF FIGURES

Figure 1 Ű The Lorenz Attractor . 24

Figure 2 Ű Water Level System . 25

Figure 3 Ű System model . 26

Figure 4 Ű System identiĄcation . 26

Figure 5 Ű Non-linear neuron model . 29

Figure 6 Ű Example of Multi-layered ANN: a) DNN; b) RNN; c) CNN 30

Figure 7 Ű Data-based and knowledge-based scenarios 32

Figure 8 Ű Example of a PINNs applied to an ODE. 33

Figure 9 Ű Example of a PINNs applied to an PDE. 35

Figure 10 Ű Echo State Network (ESN) architecture with feedback output. 38

Figure 11 Ű Visualizing Projections: Input data, Reservoir, and Output Data in the State

Equation . 38

Figure 12 Ű Visualization of ESN reservoir formation through Projections. 40

Figure 13 Ű Echo state network in training mode and free-run mode 40

Figure 14 Ű Hyperparameter Tuning with Grid Search and Random Search 43

Figure 15 Ű Bayesian Optimization. 45

Figure 16 Ű Physics-Informed Echo State Network (PI-ESN) 46

Figure 17 Ű Representation of the PI-ESN collocation points used to calculate the

physics loss function. 47

Figure 18 Ű Self-Adaptive Physics-Informed Echo State Network (PI-ESN-a). 48

Figure 19 Ű Unforced Van der Pol oscillator system with oscillation variation. 52

Figure 20 Ű Simulation of the unforced Van der Pol oscillator system. 53

Figure 21 Ű ESN reservoir X for unforced Van der Pol system. 54

Figure 22 Ű Loss function and Error evolution during PI-ESN training for unforced Van

der Pol system. 55

Figure 23 Ű PI-ESN and ESN prediction for unforced Van der Pol system. 55

Figure 24 Ű Evolution of states after training PI-ESN and ESN. 56

Figure 25 Ű Comparison of Wout values between conventional ESN and PI-ESN. . . 56

Figure 26 Ű Difference between the states x[n] calculated by ESN and PI-ESN. . . . 57

Figure 27 Ű Simulation of the forced Van der Pol oscillator system 58

Figure 28 Ű Evolution of the adaptive weights (sd, sf), the loss functions (Jdata, Jphy)

and the MSE during the physics training of the PI-ESN for the forced Van

der Pol system. 59

Figure 29 Ű Prediction of the PI-ESN-a for Van der Pol oscillator after training. 60

Figure 30 Ű The average MSE of the PI-ESN-a shown for different values of Nt and Nf . 62

Figure 31 Ű Adaptive PI-ESN training with parametric error in µ 63

Figure 32 Ű Nonlinear process to control the water levels in a Four-Tank system. . . . 65

Figure 33 Ű Simulated Four-Tank systems . 65

Figure 34 Ű Evolution of the adaptive weights (sd, sf), the loss functions (Jdata, Jphy)

and the MSE during the physics training of the PI-ESN for four tank system. 67

Figure 35 Ű Prediction of the PI-ESN-a for Four-Tank system after training. 67

Figure 36 Ű MSE values for the PI-ESN-a were computed for various Nt sizes, consid-

ering both Nf = 2000 and Nf = 3000. 68

Figure 37 Ű Conventional ESP installation . 70

Figure 38 Ű ESP Model System . 71

Figure 39 Ű Simulated ESP system . 74

Figure 40 Ű Evolution of the adaptive weights (sd, sf), the loss functions (Jdata, Jphy)

and the MSE during the physics training of the PI-ESN-a for the ESP system. 75

Figure 41 Ű Prediction of the PI-ESN-a for ESP after training. 76

LIST OF TABLES

Table 1 Ű ESN’s parameters training for Van der Pol unforced system. 54

Table 2 Ű Parameters for ESN training: Van der Pol Forced System 59

Table 3 Ű Forced Van der Pol System: Average MSE for ESN and PI-ESN architectures. 61

Table 4 Ű Average MSE for the conventional ESN and the PI-ESN-a as a function of

the reservoir size (Nx) for the Forced Van der Pol system. 62

Table 5 Ű Model parameters of the Four-Tank system. 64

Table 6 Ű Average MSE for the conventional ESN and the PI-ESN-a with different

values of reservoir size (Nx) for the four tank system. 69

Table 7 Ű Variables Description for ESP model . 72

Table 8 Ű Parameter Values . 73

CONTENTS

1 INTRODUCTION . 15

1.1 MOTIVATION . 15

1.2 OBJECTIVES . 17

1.3 CONTRIBUTIONS . 17

1.4 THESIS ORGANIZATION . 17

2 RELATED WORKS . 19

2.1 PINNS/ECHO STATE NETWORKS FOR CONTROL 19

2.2 PHYSICS-INFORMED ECHO STATE NETWORKS 20

3 THEORETICAL FOUNDATIONS . 22

3.1 DYNAMIC SYSTEMS AND SYSTEM IDENTIFICATION 22

3.1.1 Dynamic Systems . 22

3.1.2 System IdentiĄcation . 25

3.1.3 Models and Simulation . 27

3.2 NEURAL NETWORKS . 28

3.2.1 Neural Networks Architectures 28

3.2.2 Physics-Informed Neural Networks 31

4 TOWARDS ECHO STATE NETWORKS WITH PHYSICS-INFORMED TRAINING 36

4.1 ECHO STATE NETWORKS . 36

4.2 ECHO STATE NETWORK ARCHITECTURE 37

4.3 ECHO STATE NETWORK WEIGHTS AND PARAMETERS 40

4.4 HYPERPARAMETERS OPTIMIZATION . 43

4.5 PHYSICS-INFORMED ECHO STATE NETWORK 44

4.6 ADAPTIVE LOSS FUNCTION FOR PI-ESN 48

5 EXPERIMENTS . 51

5.1 VAN DER POL OSCILLATOR . 51

5.1.1 Unforced Equation . 52

5.1.1.1 Dataset . 52

5.1.1.2 PI-ESN settings . 53

5.1.1.3 PI-ESN results . 54

5.1.2 Forced Equation . 57

5.1.2.1 Dataset . 57

5.1.2.2 PI-ESN-a settings and results 58

5.1.2.3 Comparative Analysis: PI-ESN vs. PI-ESN-a vs. ESN . . . 60

5.1.2.4 Effect of reservoir size and train data size 61

5.1.2.5 PI-ESN-a’s robustness to parameter model uncertainty . . 63

5.2 FOUR-TANK SYSTEM . 64

5.2.1 Dataset . 64

5.2.2 PI-ESN-a settings and results . 66

5.2.3 Effect of reservoir size and train data size 68

5.3 ELECTRIC SUBMERSIBLE PUMP . 69

5.3.1 Dataset . 73

5.3.2 PI-ESN-a settings and results . 74

6 CONCLUSION . 77

References . 78

15

1 INTRODUCTION

1.1 MOTIVATION

Physical laws expressed through Ordinary Differential Equations (ODEs) and Partial

Differential Equations (PDEs) are fundamental in industry, enabling the modeling and under-

standing of complex phenomena. They are essential for optimizing processes, conserving

resources, and enhancing industrial efficiency. These equations translate natural laws into

mathematical formulations for understanding their behavior under varying conditions that aid

in predicting and controlling complex industrial systems (Zheng; Wu, 2023).

The simulation of real-world systems employ computer models to predict the states of a

dynamical system. This technique has a wide range of practical applications and is crucial for

making informed and efficient decisions. Typically, these systems are solved numerically, but

simulating them using traditional approaches can be computationally expensive, especially if

the system is complex and has many states.

Furthermore, physical models do not always contain all the information about the phe-

nomenon, often involving various approximations that can deviate from the real scenario. In

this context, the use of a data-driven approach can be employed as proxy models of the

phenomenological models to accelerate the simulation (Brunton; Kutz, 2022). Among the

data-driven approaches, one prominent method involves the utilization of neural networks for

system identiĄcation. These approaches depend signiĄcantly on the availability of a substan-

tial dataset to effectively train the neural network in learning the desired physical processes.

An approach known as physics-informed machine learning proposes using physical knowl-

edge to assist in the training of the neural network, integrating insights from historical data with

a priori knowledge available in the form of ODEs and PDEs, which approximate the system

(Edwards, 2022).

Recent approaches that use deep learning to achieve this combination of data and

physics are called Physics-Informed Neural Networks (PINNs) (Raissi; Perdikaris; Karniadakis,

George E, 2019; Karniadakis, George Em et al., 2021). PINNs employ a loss function with

two components: data loss and physics loss. While the Ąrst term corresponds to the empirical

error given the training samples, the latter expresses the adherence to physical laws and

constraints. By minimizing both terms, PINNs are capable of predicting the system’s behavior

while signiĄcantly reducing computational costs compared to a numerical simulation of the

differential equation system’s (Edwards, 2022).

Integrating a physics-based understanding of the system with a data-driven method-

ology reduces the need for data to achieve accurate results. This integration is particularly

advantageous in cases where data acquisition is limited, as often encountered in various

real-world applications (small data regime). Furthermore, incorporating physics knowledge

can help regularize the neural network, ensuring compliance with the laws of physics and

reducing overĄtting to the available data (Raissi; Perdikaris; Karniadakis, George E, 2019).

Chapter 1. Introduction 16

An option for predicting dynamical systems is the Recurrent Neural Networks (RNNs)

architecture. RNNs offer an effective approach to model dynamic systems by leveraging their

internal memory to capture temporal dependencies. An example of RNNs is the LSTM (Long

Short-Term Memory) network (Hochreiter; Schmidhuber, 1997). LSTMs are trained using

iterative gradient descent-like methods and feature a specialized architecture designed to

address the instabilities and convergence issues frequently encountered in traditional RNNs.

Echo State Networks (ESNs) offer a compelling advantage over Long Short-Term

Memory (LSTM) networks when it comes to predicting chaotic dynamical systems. While both

ESNs and LSTMs fall under the category of Recurrent Neural Networks (RNNs), they differ

signiĄcantly in their approaches (Jaeger, 2001).

An ESN is divided into a reservoir network and a subsequent readout output layer. The

reservoir is a randomly generated RNN with random Ąxed weights, which is responsible to map

the input signals into a high-dimensional nonlinear space with memory. The linear readout

output, the sole trainable part of the ESN, maps instantaneous readings of the reservoir state

into the desired output. This training is typically achieved through a least-squares analytic

solution, eliminating the need for numerical least-squares solvers (Verstraeten et al., 2007).

ESNs have outperformed LSTMs due to their rapid training capabilities and their abil-

ity to achieve state-of-the-art performance in modeling chaotic dynamical systems (Shahi;

Fenton; Cherry, 2022). ESNs attains this performance advantage without the need for the intri-

cate architectural design and training complexity from LSTMs. This makes ESNs a preferable

choice when dealing with time series prediction.

Due to the characteristics of the ESN architecture, hybrid methods for integrating

physical information have been introduced by Doan, Polifke, and Magri (2019b), requiring

only minor modiĄcations to the neural network’s structure and altering the loss function to

integrate the physics information. Furthermore, ESNs are highly promising candidates for

control applications, as demonstrated in the works of Waegeman, Wyffels, and Schrauwen

(2012) and Jean P. Jordanou et al. (2018), as they do not require substantial alterations to

their architecture, unlike traditional PINNs (Antonelo, E. A. et al., 2021).

However, the original PI-ESN has been designed for systems without external control

input. Therefore, to make PI-ESNs work for modeling controlled systems described by ODEs,

a control input must be added to the network. Another application of interest involves oil

production platforms employing artiĄcial lift mechanisms described by DAEs, which pose

greater numerical complexity compared to systems described by ODEs.

Time series predictions are essential for optimizing the control and management of

complex systems, improving operational efficiency. Oil production plants entail intricate phe-

nomena that are difficult to be represented using models. Therefore, the modiĄcation and

improvement of techniques, such as PI-ESNs, are crucial for addressing challenges within

datasets of limited size, including those encountered in oil production platforms and various

engineering sectors. In this context, applying PI-ESNs in scenarios with limited data avail-

Chapter 1. Introduction 17

ability offers a hybrid approach that combines insights from physical models with data-driven

techniques to enhance prediction performance.

1.2 OBJECTIVES

The main objective of this dissertation is to extend the Physics-Informed Echo State

Network (PI-ESN) by including external inputs for modeling controllable dynamical systems

described by ODEs and DAEs.

The speciĄc objectives are:

• To implement a PI-ESN capable of incorporating external input information to ad-

dress dynamical systems that respond to control signals.

• To apply the PI-ESN to benchmark dynamic systems described by ODEs: the Van

der Pol oscillator, and the four-tank problem.

• To apply the PI-ESN to an electric submersible pump (ESP) used for artiĄcial lift

in oil wells, described by DAEs.

• To perform experiments on the proposed PI-ESN method in different settings with

limited data, comparing to its ESN conventional counterpart.

1.3 CONTRIBUTIONS

This dissertation presents the following contributions:

• A PI-ESN architecture to work with external inputs to enable the modeling of con-

trollable dynamical systems. This feature allows the PI-ESN to naturally accept

control inputs, in contrast to conventional PINNs which can only have Ąxed inputs

or initial conditions.

• Self-adaptive weights were introduced into the PI-ESN training, dynamically bal-

ancing each term (data loss and physics-based loss) in the loss function, helping

the training convergence for a class of systems.

• A comprehensive set of experiments was conducted, demonstrating the improved

performance and predictive capabilities of PI-ESN over the conventional ESN in

low-data scenarios for three different dynamic systems.

• An experiment that demonstrates that the execution time of PI-ESN is signiĄcantly

smaller than the numerical solution of the DAE.

1.4 THESIS ORGANIZATION

The remainder of this dissertation is organized as follows:

Chapter 1. Introduction 18

• RELATED WORKS: In this chapter, the focus is on conducting a comprehensive

literature review of relevant works concerning PINNs/ESN for Control and PI-ESN.

This review highlights the works used as the foundation for this dissertation.

• THEORETICAL FOUNDATIONS: This chapter is dedicated to establishing the

necessary theoretical foundations to comprehend this work. Key concepts such as

system identiĄcation, mathematical models, and neural networks are addressed.

This theoretical groundwork will serve as the basis for the subsequent discussions

and implementations.

• ECHO STATE NETWORKS: This chapter provides an exploration of the Echo

State Network architecture, speciĄcally focusing on the necessary adaptations for

the implementation of the PI-ESN. It delves into these adaptations, emphasizing

how they can enhance ESN’s performance.

• EXPERIMENTS: This chapter presents the experimental results focusing on the

application of PI-ESN to systems with external inputs. It also shows the following:

1) the impact of training data size vs. number of collocation points for physics-

informed training; 2) robustness to uncertainties in model parameters; 3) PI-ESN

applied to a system described by Algebraic Differential Equations; and 4) a thor-

ough examination of the limitations encountered in the proposed technique.

• CONCLUSION: This chapter concludes the dissertation, providing a comprehen-

sive overview of the achievements and future prospects.

19

2 RELATED WORKS

This chapter provides a comprehensive literature review of relevant works that are

correlated with this dissertation and have served as the foundation for its development. The

chapter is structured as follows:

• PINNs/Echo State Networks for Control (Section 2.1): This section presents

an exploration of neural networks applied for system control, with a focus on their

applications and contributions.

• Physics-Informed Echo State Networks (Section 2.2): This section delves into

the concept of Physics-Informed Echo State Networks, providing a comprehensive

examination of the state-of-the-art and highlighting the research that serves as the

foundation for this dissertation.

2.1 PINNS/ECHO STATE NETWORKS FOR CONTROL

In the architecture of PINNs, the inclusion of the time as an input to the neural network

poses challenges in generalization during the test phase, especially when time exceeds the

values observed in the training data. Physics-Informed Neural Nets for Control (PINC) are

proposed by Eric Aislan Antonelo et al. (2021) to extend the PINNs to deal with variable longer

time horizons that are not Ąxed in the training phase, by adding the initial state and control

signal as additional input variables to the PINNs.

In multi-body dynamics, PINC have been used for Model Predictive Control (MPC).

This approach streamlines controller design, reducing the need for Ąnite difference methods.

In fact, automatic differentiation is employed to compute sensitivities efficiently, leading to

gradient-based algorithms for optimal control problems (Nicodemus et al., 2022).

Another viable option is the utilization of Echo State Networks (ESNs) in control prob-

lems, as this neural network architecture requires minimal adaptation to be applied in MPC-

type controllers. For instance, the Practical Nonlinear Model Predictive Controller (PNMPC)

partially linearizes the ESN model, eliminating the need for Ąnite difference methods. This

approach, known as PNMPC-ESN, has proven successful in controlling a gas-lifted oil well

model, effectively adhering to constraints and achieving set point tracking (Jordanou, Jean

P. et al., 2022). ESNs can also be employed for online control, where they were effectively

applied to oil well problems (Jordanou, J.; Antonelo, E.; Camponogara, 2019).

Furthermore, ESNs Ąnd application in the control of various systems. In the case

of the Twin Rotor Aero-Dynamical System, ESNs are used with robust control to estimate

and mitigate disturbances, resulting in improved control quality (Czajkowski, 2014). For motor

speed control for differential drive robots, ESN controllers have been shown to outperform PID

controllers, demonstrating their versatility and effectiveness across different control scenarios

(Salmen; Ploger, 2005).

Chapter 2. Related Works 20

2.2 PHYSICS-INFORMED ECHO STATE NETWORKS

The ESN has proven to be an architecture with signiĄcant potential for applying physics-

informed machine learning techniques to time series prediction tasks relevant to the industry.

The literature on implementing hybrid echo state networks begins with the work of Pathak

et al. (2018). This work focuses on hybrid forecasting of chaotic processes, combining an

approximate knowledge-based model with an ESN. Their hybrid approach demonstrates

improved state prediction performance in two applications: forecasting the Lorenz system

and the Kuramoto-Sivashinsky equations. Essentially, their method expands the input to the

reservoir network to include predictions from the knowledge-based model.

Another method for incorporating physics into ESN’s was proposed by Doan, Polifke,

and Magri (2019b). In the proposed technique, the architecture of the network is minimally

altered, with physics being implemented in the loss function used to train the output layer

of the ESN. The proposed Physics-Informed Echo State Network (PI-ESN’s) is trained to

solve supervised learning tasks while ensuring adherence to physics laws. By incorporat-

ing an additional loss function based on the system’s governing equations during training,

non-physics predictions are penalized without requiring extra training data. The proposed ap-

proach demonstrates a signiĄcant improvement in the predictability horizon of chaotic systems

(chaotic Lorenz system and Charney-DeVore system), outperforming conventional ESN’s. It

is worth noting that Pathak et al. (2018) do not incorporate physics laws into the training of

ESNs as PI-ESNs do and requires the simulation of the model.

In the study conducted by Doan, Polifke, and Magri (2019a), PI-ESNs were employed

for predicting extreme events in turbulence. This research showcases the integration of empiri-

cal and physics-based modeling methods, facilitating precise forecasts of extreme events and

abrupt transitions in self-sustaining turbulence processes. Another application of PI-ESNs

involved reconstructing the evolution of unmeasured states in chaotic systems, as demon-

strated by Doan, Polifke, and Magri (2020). Through training the PI-ESN using data lacking

information on unmeasured states alongside the physics equations of a chaotic system, accu-

rate reconstruction of these unmeasured states was achieved. Additionally, the robustness of

the reconstruction to noisy data highlights the PI-ESN’s denoising capabilities, demonstrating

the potential of integrating physics knowledge and machine learning to enhance the predic-

tion and reconstruction of unmeasured states in chaotic dynamical systems. In this case, the

prediction horizon of the physics error is estimated by discretizing the equations using an

explicit Euler time-integration scheme.

The method proposed by Racca and Magri (2021) represents an improvement over the

previous approach by utilizing automatic differentiation for physics error computation, instead

of relying on an explicit Euler integration scheme. Through the application of automatic differ-

entiation, the method achieves a more precise estimation of the inherent physical error within

the chaotic system. This improved accuracy can be attributed to the meticulous treatment of

gradients and derivatives, enabling a Ąner adjustment of model parameters during the training

Chapter 2. Related Works 21

process.

Another proposal by Oh (2020) introduces the concept of ESNs that rely solely on

physics, acting as an approximation of ODEs. Physics-informed neural network models learn

solutions under speciĄc initial or boundary conditions, requiring retraining if those conditions

change. This limitation makes them less suitable for replicating a target system’s behavior

across various practical scenarios. In response, an ODE approximator is designed as a

straightforward solution to replicate the solution sequentially, guided by the fundamental

invariance of differential equations. In this method, the input sequence is unknown and must

be determined as an accurate solution. To overcome this challenge, the idea is to split the

training into two stages. Initially, a test solution is used. Once an accurate approximation is

achieved in the Ąrst stage, it becomes possible to prepare the input sequence for the next

stage. The goal is to generate the solution in a recurrent manner, but this requires the two-

stage approach for effective operation. This method was applied to the unforced Van der Pol

oscillator and the Lorenz system, both of which are chaotic systems.

In Na et al. (2023), the Pi-HESN architecture (Physics-Informed Hierarchical Echo

State Networks) is proposed to predict the dynamics of chaotic systems. This architecture is

based on multiple reservoirs connected sequentially. These reservoirs capture the dynamics

of the system by processing experimental data, using the internal state signal of each layer to

collect states. Then, Pi-HESN integrates data and physical laws, similar to a regular PI-ESN,

incorporating prior physical knowledge into the objective function to maintain fundamental

physical principles. This combination of data-based and knowledge-based approaches in

Pi-HESN enhances model generalization, reduces the need for extensive training data, and

ensures the consistency of physics in the results for four classic chaotic systems.

However, the aforementioned studies focus on predictions for systems without external

control input. For control purposes, it is necessary to adapt the network architecture to accept

an external input. Therefore, the motivation behind this work is to modify this architecture

to incorporate an external input. To achieve this, three different systems were chosen for

this application: the Van der Pol Oscillator, four-tank system, and Electric Submersible Pump

(ESP). The latter being a system of particular interest, given its practical use in the oil and

gas industry.

22

3 THEORETICAL FOUNDATIONS

This chapter presents the fundamental concepts that forms the basis of this work. The

chapter is organized as follows:

• Dynamic Systems and System IdentiĄcation (Section 3.1): In this section, the

fundamental principles governing dynamic systems are explored, accompanied by

an explanation of the system identiĄcation process.

• Neural Networks (Section 3.2): This section provides a brief review of ArtiĄcial

Neural Networks, focusing on the data-driven approach for system identiĄcation.

3.1 DYNAMIC SYSTEMS AND SYSTEM IDENTIFICATION

3.1.1 Dynamic Systems

Mathematical equations in dynamical systems describe the natural world, facilitating

the representation of interactions among quantities. A dynamical system can be deĄned as a

relationship between an input and an output that depends not only on the current input but

also on past inputs (Chen, 2012). In essence, these systems involve the analysis, prediction,

and understanding of systems deĄned by collections of differential equations. Real-world sys-

tems can be mathematically represented using Ordinary Differential Equations (ODE), partial

Differential Equations (PDE) or Differential-Algebraic system of Equations (DAE), formulated

based on established physical laws. These equations Ąnd application in various domains such

as weather prediction, Ćuid dynamics, turbulence modeling, and nearly all systems exhibiting

temporal evolution (Brunton; Kutz, 2022).

Dynamical systems can be classiĄed as discrete versus continuous systems, linear

versus nonlinear behaviors and time-variant versus time-invariant dynamics (Chen, 2012).

These classiĄcations offer direct insights into the nature of dynamic processes:

• Continuous-time or Discrete-time: Discrete dynamical systems involve variables that

change in speciĄc and separate steps or increments, often described by a Ąnite difference

equation. These systems are well-suited for modeling processes that evolve in discrete

intervals, such as population growth or algorithm iterations. On the other hand, continuous-

time dynamical systems involve variables that change continuously as time progresses,

typically described by differential equations. These systems Ąnd applications in modeling

continuous phenomena like Ćuid Ćow, continuous stirred-tank reactor, or electrical circuits.

• Linear or non-linear: For linear systems, the system’s behavior can be described using

linear equations that adhere to the principle of superposition, making them analytically

tractable. Many engineering and physical systems can be approximated as linear within

certain operating ranges. However, for nonlinear systems, the principles of proportionality

and superposition are not applicable. Their behavior is more complex and can give rise

to phenomena such as chaos and bifurcations. Nonlinear systems are prevalent across

Chapter 3. Theoretical Foundations 23

a wide range of natural and engineered systems, from biological networks to intricate

physical processes.

Ű Non-Chaotic System: exhibit stable and predictable behaviors over time;

Ű Chaotic System: Sometimes a nonlinear system has a complex steady-state

behavior, deviating from equilibrium or periodic oscillation. This behavior is com-

monly known as chaos. Some of these chaotic motions exhibit randomness,

despite the deterministic nature of the system. The chaotic system’s presents

high sensitivity with respect to initial conditions, resulting in unpredictable and

seemingly random behaviors. This phenomenon is famously illustrated by the

butterĆy effect (Devaney, 2021; Khalil, 2001; Brunton; Kutz, 2022).

• Time-variant or Time-invariant: Time-variant systems exhibit behaviors that change over

time. The system’s parameters, equations, or relationships evolve with time, leading to

varying dynamics. Analyzing time-variant systems often requires techniques that account

for changing conditions. For control purposes, a slowly varying parameter, such as the

pressure in an oil and gas reservoir, can be considered time-invariant (Jordanou, Jean

Panaioti, 2019). On the other hand, time-invariant systems maintain consistent behaviors

regardless of time. The system’s parameters and equations remain constant, allowing for

simpler analysis and prediction of long-term behaviors.

Equation (1) represents a generic dynamical system, with x(t) denoting the system’s

state and u(t) serving as an input, acting as an independent variable.

ẋ(t) = g(t,x(t),u(t); θ), (1)

where g represents a vector Ąeld that possibly depends on the system state x(t), the time t,

and a parameter set θ. States vectors, inputs vectors, and functions are presented in Equation

(2):

x(t) =













x1

x2
...

xn













, u(t) =













u1

u2
...

un













, g(t,x(t),u(t); θ) =













g1(t,x(t),u(t); θ)

g2(t,x(t),u(t); θ)
...

gn(t,x(t),u(t); θ)













(2)

When Equation (1) does not require the explicit presence of an input u, it is referred to as the

unforced state equation, which is given as follows:

ẋ(t) = g(t,x(t); θ) (3)

The unforced state equation does not mean that the input to the system is zero. It

could be that the input has been speciĄed as a given function of time, u = g(t), a given

Chapter 3. Theoretical Foundations 24

feedback function of the state, u = g(x) (Khalil, 2001). An example of a dynamical system is

the chaotic Lorenz system in Equation (4), each described by its respective set of equations

(Lorenz, 1963):

ẋ1 = σ(x2 − x1),

ẋ2 = x1(ρ− x3)− x2,

ẋ3 = x1x2 − βx3,

(4)

where σ = 10, ρ = 28, and β = 8/3. In this case, the state vector is xd = [x1 x2 x3]
T and

the parameter vector is θ = [σ ρ β]T . The Lorenz system, as shown in Figure 1, stands as an

example of a chaotic dynamical system that has captured considerable attention in the Ąeld

of nonlinear dynamics. This recognition is attributed to its different traits, including sensitivity

to initial conditions and the presence of attractors (Brunton; Kutz, 2022). In the Figure 1 (a),

it is possible to observe the evolution of the Lorenz dynamical equations and their respective

attractor. Meanwhile, Figure 1 (b) illustrates the temporal evolution of the dynamical states.

Figure 1 Ű The Lorenz Attractor

(a)
(b)

Source: Author

Another example of a dynamic system is a valve-controlled system designed to regu-

late Ćuid Ćow in response to changing conditions, as shown in Figure 2. The system involves

the manipulation of valve openings, where two valves, denoted as u1 and u2, control the Ćow

of Ćuid. The system aims to maintain a stable Ćow rate within a speciĄed range by adjusting

these valve openings. The dynamics of this system are described by the following differential

equation:

A
dxd
dt

= K1u1 −K2u2
√

2gxd, (5)

where A represents the cross-sectional area of the tank’s water, K1 and K2 are constants

Chapter 3. Theoretical Foundations 25

associated with the valves, xd is the Ćuid level within the system, and g is the acceleration

due to gravity. Given speciĄc values of K1 = 0.05m3/s, K2 = 0.015m3/s, A = 0.05m2, and

g = 9.8m/s2, the equation captures how changes in the valve openings affect the rate of Ćuid

Ćow and, consequently, the Ćuid level within the system.

Figure 2 Ű Water Level System

(a) (b)

Source: Author

This valve-controlled system showcases the principles of dynamic control, where pre-

cise adjustments of valve openings enable the regulation of Ćuid Ćow and level, contributing to

the stability and efficiency of industrial processes involving Ćuid transport and management.

The Lorenz system and the water level system demonstrate contrasting behaviors with

respect to their interactions with external factors. The Lorenz system operates autonomously,

driven solely by its internal state variables. It does not require any external input to evolve over

time. In other words, the Lorenz system does not respond to external signals or inĆuences.

As a result, the vector u(t) representing external inputs is zero (u = 0), or, it can be said that

the system’s input consists of its own output values (output feedback), characterizing it as an

unforced steady-state system. Its behavior is self-contained, determined solely by its initial

conditions and the equations governing its dynamics.

In contrast, the water level system is inĆuenced by external factors, speciĄcally the

valve actions. Changing the valve openings affects the system’s behavior by altering the Ćow

rate and, consequently, the water level. In this case, the vector u(t) captures the effects

of valve adjustments. Unlike the Lorenz system, the water level system responds to and is

shaped by external inputs.

3.1.2 System IdentiĄcation

System identiĄcation is a methodology used to develop a mathematical model of a

dynamic system. In this method, a function is chosen to describe the relationship between

Chapter 3. Theoretical Foundations 26

the system’s inputs and outputs. Analyzing process characteristics and relationships between

variables is crucial for predicting, controlling and monitoring systems. The process of devel-

oping a mathematical description of the studied process, known as a model, is a key step.

Two main approaches are used for model development: a theoretical approach based on fun-

damental physics laws, and an empirical approach based on analyzing observed data from a

system (Tangirala, 2014). Figure 3 illustrates the model with a mathematical representation

of the relationship between input and output in a dynamic system.

Figure 3 Ű System model

Source: Author

In control systems, normally inputs are variables that can be directly adjusted, just

like pressing keys on a keyboard or turning the knobs on a stove. Outputs correspond to the

data gathered through human observation or instruments, such as the characters displayed

on a screen in response to keyboard inputs or the temperature reading obtained from the

stove’s display panel (Jordanou, Jean Panaioti, 2019). Figure 4 shows a system identiĄcation

diagram. The objective is to develop a model from observed data.

Figure 4 Ű System identiĄcation

Source: Author

System identiĄcation consists of using input and output data to Ąnd a model that

approximates the physics of the system. Acquiring a model for a dynamical system allows the

prediction of future states in response to different inputs, which can be used later for system

control. A range of algorithms and computational resources are available to conduct system

modeling, and they can be categorized into three different approaches:

Chapter 3. Theoretical Foundations 27

• White-box model: Models are based on the physical equations that dictate the system’s

behavior. It is modeled based on physics equations that fully explain the dynamics of the

system.

• Grey-box model: Some information about the system is known, although part of the

dynamics may remain unknown or be overly complex for direct modeling, requiring identi-

Ącation procedures.

• Black-box model: Absence of prior knowledge about the system or its complexity inhibits

modeling. System identiĄcation with data is necessary to construct a model that mimics

the operation of the real system within a speciĄc region. Due to excessive complexity, a

simpler model becomes more manageable for control and/or optimization purposes.

The fundamental aspect of various applications relies on employing models for simu-

lations and predictions, which serve as the primary motivations for developing these models.

Simulations provide a cost-effective and time-efficient alternative to experiments. Advances

in computational science and technology have elevated simulations to powerful tools for

comprehending physical processes.

Predictions involve using the model to anticipate process behavior under current op-

erating conditions over a limited time interval. Predictions play a crucial role in activities

such as design, control, anomaly detection, and testing novel approaches. Nevertheless, the

precision requirements for models in prediction-based applications are less stringent than

in simulation-based scenarios (Tangirala, 2014). However, it is important to note that there

exists a distinction between a mathematical model and an actual real-life system. A model

typically constitutes a simpliĄed approximation of a system that exists in the real world.

3.1.3 Models and Simulation

First-principle models originate from fundamental principles, utilizing physics laws

and relationships, resulting normally in Ordinary Differrential Equations (ODE) or Differential-

Algebraic Equations (DAE) or Partial Differential Equations (PDE). Despite their effectiveness

and reliability, simulations of these models require proĄcient numerical and algebraic solvers.

ODEs capture relations involving an independent variable, often time (t), and their

respective solutions depend on initial conditions, which describe the initial state of the system

in relation to the dependent variables. A system of these equations is a collection that involves

dependent variables, their derivatives, and the independent variable. In a system of ODEs,

all equations are differential. A generalized representation of ODEs system is presented in

Equation (6):
ẋ1 = g1(t,x1,x2, . . . ,xn)

ẋ2 = g2(t,x1,x2, . . . ,xn)
...

ẋn = gn(t,x1,x2, . . . ,xn)

(6)

Chapter 3. Theoretical Foundations 28

Alternatively, the deĄnition of DAEs includes non-differential algebraic equations in

the system. DAEs are systems of equations similar to ODEs that have additional algebraic

constraints related to the dependent variable. A generic form of a DAE is expressed in Equation

(7). These complexities intensify when additional algebraic terms are involved, making DAEs

more challenging to solve numerically.

ẋ1 = g1(x1, x2, t)

0 = g2(x1, x2, t)
(7)

PDEs consider multiple independent variables, incorporating spatial dimensions along-

side time, and are widely utilized in scenarios like heat diffusion and Ćuid dynamics. A generic

PDE is expressed in Equation (8):

∂x

∂t
+

∂2x

∂l2
= 0, (8)

where l is the spatial dimensional independent variable. Solving PDEs requires specifying both

the initial conditions of the system, similar to ODEs, and the boundary conditions that deĄne

the conditions at the domain boundaries where the solution is determined. Typically, these

systems of equations are much more complex to solve analytically or numerically compared

to ODEs.

Modeling and simulation using these equations aim to replicate real-world system

evolution. Simulation provides signiĄcant advantages, sparing the costs of conducting experi-

ments on actual processes. These simulations facilitate performance analysis over time and

predict behavior under varying input conditions. The versatility of simulations empowers re-

searchers to evaluate system behavior over time, envisage complex phenomena, and predict

responses under diverse scenarios. This multifaceted approach facilitates a comprehensive

understanding of dynamic systems across various domains, spanning from engineering to

the natural sciences.

3.2 NEURAL NETWORKS

3.2.1 Neural Networks Architectures

ArtiĄcial Neural Networks (ANNs) have become widely popular as an extremely useful

tool for solving problems involving tasks such as classiĄcation, pattern recognition, and pre-

diction (Abiodun et al., 2018). Silva, Spatti, and Flauzino (2016) highlights that ANNs can be

used in process identiĄcation and control, time series forecasting, and system optimization.

An ANNs consists of layers of basic computational units called neurons. The outputs

from one layer of neurons serve as inputs for the following layers, resulting in the formation of

multiple layers of neurons. Neurons serve as fundamental processing units and include acti-

vation functions denoted as f(·). These activation functions play a crucial role in non-linearly

Chapter 3. Theoretical Foundations 29

mapping input signals (u) to output signals (y), as illustrated in Figure 5. Mathematically, a

neuron can be expressed as:

y = f

(

∑

i=1

(wiui + b)

)

, (9)

where: wi represents the weights that adjust the connections between the inputs ui to the

output y during the forward pass; b represents the bias, a Ąxed value that introduces an offset

to the activation function. Activation functions introduce nonlinearity into the neural network’s

computations. For example, hyperbolic tangent function restrict the output, a result of the

weighted sum of inputs, to be within the interval from -1 to 1. These functions enhance the

network’s capacity to capture complex patterns (Silva; Spatti; Flauzino, 2016).

Training involves learning from errors through the calculation of gradients using the

backpropagation method. This method computes derivatives across the layers of neurons

in the network, facilitating the adjustment of weights and biases through an optimization

algorithm such as gradient descent or Adam. It operates on the premise of assessing how

alterations in weights and biases impact the objective function. The primary objective of the

network is to minimize the discrepancy between predicted and actual outputs, quantiĄed by

the loss function in Equation (10) utilizing mean square error. Alternative loss functions, such

as cross-entropy, can be used for training.

min
w,b

1

Nt

Nt
∑

i=1

[

ŷi − yi(wi,b)
]2
, (10)

where ŷi is the desired value, yi(wi,b) is the neural network output and Nt is the number of

training data points.

Figure 5 Ű Non-linear neuron model

Source: Author

Moreover, neuron units can be organized into more than one layer and interconnected

by a large number of connections, each associated with weights that store all the knowledge

obtained by ANNs and serve to weigh the input of each neuron in the network (Braga, 2007;

Chapter 3. Theoretical Foundations 30

Elsheikh et al., 2019). Based on this, various network architectures are built upon this multi-

layered organization to solve problems, as illustrated in Figure 6.

Figure 6 Ű Example of Multi-layered ANN: a) DNN; b) RNN; c) CNN

Source: Author

Deep Neural Networks (DNN) consist of multiple interconnected layers and are de-

signed for extracting complex features from structured data. Recurrent Neural Networks

(RNNs) contain feedback connections within the internal structure, maintaining memory

across steps to model temporal dependencies; thus, are tailored for sequential data. Convo-

lutional Neural Networks (CNNs), on the other hand, excel in extracting features from grid-like

data, such as images, by applying convolution operations. While DNNs specialize in deep

feature learning, RNNs handle sequential data, and CNNs excel in grid-like data processing,

these categories can also be combined in hybrid architectures to tackle more intricate prob-

lems, often seen when using CNNs and RNNs together for tasks involving sequential image

analysis, such as speech recognition and image captioning.

For instance, Savalia and Emamian (2018) employed Multilayer Perceptrons (MLP)

and Convolutional Neural Networks (CNN) to classify cases of cardiac arrhythmia. Schwed-

ersky, Flesch, and Dangui (2020) used Echo State Networks (ESN), a type of recurrent

neural network, for the identiĄcation of multivariable and nonlinear systems. Similarly, Yang

et al. (2019) and Eric Aislan Antonelo, Camponogara, and Foss (2017) employed ESNs in

Chapter 3. Theoretical Foundations 31

algorithms for time series predictions and for estimating the pressure of oil extraction wells,

respectively.

ESNs, introduced by Jaeger (2001), are known for their faster training compared

to LSTMs, another type of recurrent neural network architecture. Additionally, they exhibit

superior performance in modeling chaotic dynamical systems, as demonstrated in a study by

Shahi, Fenton, and Cherry (2022). They Ąnd applications across various domains, including

robot localization (Antonelo, E. A.; Schrauwen; Stroobandt, 2008), navigation (Antonelo, E.;

Schrauwen, 2014), IoT (Zhou et al., 2022), power systems (Roberts et al., 2022), and oil

well control (Jordanou, J.; Antonelo, E.; Camponogara, 2019; Antonelo, E. A.; Camponogara;

Foss, 2017). This work is focused on Echo State Networks because of their ability to predict

dynamic systems and fast training compared to LSTM.

3.2.2 Physics-Informed Neural Networks

Machine learning models typically rely on a signiĄcant amount of data to achieve ac-

curate predictions. However, this amount of information is not always available when dealing

with real-world systems, often because measuring certain quantities can be very difficult or

even impossible. Even in cases where there is a substantial amount of data, machine learning

models can exhibit physically inconsistent predictions due to extrapolation and generaliza-

tion performed by the neural network. As a result, models have been proposed where the

architecture of the neural network incorporates the physics laws governing the system. This

approach aims to merge the known physics with the available data (Karniadakis, George Em

et al., 2021).

Figure 7 illustrates three different categories of physics problems and their correspond-

ing available data. In the small data regime, it is assumed that a comprehensive understand-

ing of all physical aspects is available, allowing for predictions with a high level of precision

through mathematical modeling of the system’s physics, with data provided for both initial and

boundary conditions. In real-world applications, the most prevalent scenario falls within the

middle category, where partial knowledge of both data and physics exists. In the realm of big

data, one might assume that the quantity of data available is sufficient to fully describe the

physics of the system. However, it is understood that due to the generalization tendencies of

neural networks, deviations can still occur, potentially leading to violations of certain physical

laws (Na et al., 2023).

Physics-Informed machine learning operate at the interface of physics and neural

networks, providing a solution that connects data with physical laws, where prior knowledge

underlying empirical, observational, physics, or mathematical understanding is harnessed to

enhance learning algorithm performance (Karniadakis, George Em et al., 2021).

The work by Raissi, Perdikaris, and George E Karniadakis (2019) introduced the

concept of Physics-Informed Neural Networks (PINNs), which involves training deep neural

networks in a supervised manner to adhere to physical laws described by PDEs. This ap-

Chapter 3. Theoretical Foundations 32

Figure 7 Ű Data-based and knowledge-based scenarios

Source: Na et al. (2023)

proach empowers the automatic discovery of data-driven solutions for PDEs or ODEs, where

the underlying physics function can be represented by an ODE as shown in Equation (11).

These solutions are subsequently employed to approximate the states of dynamic systems

governed by ODEs.

F(y) ≡ ∂ty −N (y), (11)

where: F represents a general non-linear operator, ∂t is the time derivative, and N is a

nonlinear differential operator. The Ąrst term corresponds to the time derivative of the neural

network output y, while the second term, N (y), pertains to the ODE followed by the same

output. When these two terms are equated (F(y) = 0), the neural network solution aligns

with the ODE.

To train a PINN, it is essential to deĄne appropriate loss functions that consider both

observed data and physical constraints. Typical loss functions for ODE-based PINNs consist

of two main components:

• Data Loss: This term quantiĄes the error between the neural network’s predictions

and the observed data. Typically, a regression cost function such as the Mean

Squared Error (MSE) is used to measure this discrepancy. The formula for the

data loss is shown in Equation (12).

Ld =
1

Nt

Nt
∑

i=1

(

ŷ(tid)− y(tid)
)2

(12)

where
{

tid
}Nt

i=1
denotes the training data, y(tid) represents the neural network’s prediction,

ŷ(tid) is the observed value in the training data and Nt is the number of training data.

Chapter 3. Theoretical Foundations 33

• Physics Loss: This term is essential to ensure that the solution approximated by

the PINNs also satisĄes the underlying differential equations. For ODEs, this term

involves evaluating the residual of the physical equations at the solutions provided

by the neural network. The formula for the physics loss term is shown in Equation

(13).

LF =
1

Nf

Nf
∑

i=1

∣

∣

∣
F(y(tif))

∣

∣

∣

2
, (13)

where
{

tif

}Nf

i=1
denotes the collocation points, F(y(tif)) represents the evaluation of the

residual of the equations at the collocation points using the approximated solution y(tif) and

Nf is the number of collocation points. The data-Ąt term and the physics-Ąt term are combined

to form the overall cost function of the PINNs:

Lt = LF + Ld. (14)

This total loss function is then minimized during the neural network training process, al-

lowing the PINNs to learn from both observed data and the underlying physical laws, resulting

in an accurate and physically meaningful solution to the ODE. Furthermore, the representation

of the PINNs concept is depicted in Figure 8, which illustrates the utilization of automatic dif-

ferentiation to compute partial derivatives concerning time. The total loss function (14) steers

the network’s optimization process, aiming to minimize it through iterative adjustments of the

network layers, driven by the weights wi.

Figure 8 Ű Example of a PINNs applied to an ODE.

Source: Author

A generic PDE can be described by Equation (15) where t > 0 and x ∈ (a, b):

yt = yxx, (15)

Chapter 3. Theoretical Foundations 34

where yxx represents the second partial derivative with respect to space, and yt is the partial

derivative with respect to time. The boundary conditions are y(t,a) = 0 and y(t,b) = 0, and

the initial condition is a known function y(0, x) = f(x). In the context of PDE applications as

shown in Figure 9, the total loss function takes a form where additional terms representing

boundary conditions and initial conditions are incorporated, resulting in:

Lt = Ld + Lpde + Lbc + Lic. (16)

Here, the Ąrst loss term Ld corresponds to the typical loss function for regression

(Bishop; Nasrabadi, 2006), which quantiĄes the error between the network’s predictions and

the observed data, ensuring that the PINN Ąts the data accurately. The second loss term

Lpde ensures the physical nature of the solution by penalizing discrepancies in the behavior

of y(t, x), similar to LF . This term ensures that the PINN solutions adhere to the partial

differential equations. Additionally, two other terms are introduced in Equation (16):

• Lbc: represents the loss term associated with enforcing boundary conditions. This

term ensures that the PINN solutions satisfy the speciĄed boundary conditions,

which are critical in many PDE problems.

Lbc =
1

Nb

Nb
∑

t=1

(

ŷ(tib,a)− y(tib,a)
)2

+
(

ŷ(tib,b)− y(tib,b)
)2

(17)

where
{

tib
}Nb

i=1
corresponds to the collocation points on the boundary, ŷ(tib, a)− y(tib,a) rep-

resents the evaluation of the residual of the boundary conditions and Nb corresponds to the

number of collocation points on the boundary.

• Lic: represents the loss term for enforcing initial conditions. This term is particularly

important for time-dependent PDEs, as it tends to force the PINN to start with the

correct initial conditions at the beginning of the simulation.

Lic =
1

N0

N0
∑

i=1

(

f(xi0)− y(0,xi0)
)2

, (18)

where
{

xi0
}N0

i=1 denotes the initial data, f(xi0) − y(0, xi0) represents the evaluation of the

residuals at t = 0, leading to the neural network solution y(0, xi0) approaching the initial

conditions behavior of the PDE, and N0 corresponds to the number of initial conditions. It is

possible to assign weights to the loss terms in the PDE as follows:

Lt = λdLd + λpdeLpde + λbcLbc + λicLic. (19)

where (λd, λpde, λbc, λic) represent the loss weights for each term. This adjustment is made

to enhance the accuracy of the neural network.

In summary, the total loss function for PINNs in ODE applications uses two terms,

combining the data loss and physics loss. In PDE applications, it combines these four terms

Chapter 3. Theoretical Foundations 35

Figure 9 Ű Example of a PINNs applied to an PDE.

Source: Author

to simultaneously Ąt the observed data, adhere to the governing PDE, the boundary conditions,

and the initial conditions. This approach leads to accurate and physically consistent solutions

for ODE/PDE problems. To train the weights, gradient descent methods such as ADAM,

stochastic gradient descent, or L-BFGS are employed to minimize the loss function as closely

as possible, aiming for convergence to zero.

FINAL REMARKS

This chapter provided a comprehensive review of concepts pertinent to this disserta-

tion. The subsequent chapter will delve into an explanation of ESN and the contributions made

to the PI-ESNs employed in this study. These contributions encompass the incorporation of

external inputs in PI-ESNs, along with the introduction of self-adaptive weights during PI-ESN

training (PI-ESN-a). These adaptive weights dynamically balance each term (data loss and

physics-based loss) within the loss function.

36

4 TOWARDS ECHO STATE NETWORKS WITH PHYSICS-INFORMED TRAINING

This chapter explains the architecture of the ESN and the physics regularization im-

plemented for the system identiĄcation task. The chapter is organized as follows:

• Echo State Network (Section 4.1): This section provides a description of ESN

characteristics, outlining key concepts and offering a general overview of the net-

work’s operation.

• Echo State Network Architecture (Section 4.2): In this section, the ESN archi-

tecture with output feedback used in this dissertation is presented, focusing on the

training mode and the free-run mode, while presenting the equations for calculating

the states and the network’s output.

• Echo State Network Weights and Parameters (Section 4.3): This section dis-

cusses key parameters that conĄgure an ESN. Understanding these parameters

is essential for optimizing performance.

• Hyperparameter Optimization (Section 4.4): This section focuses on hyperpa-

rameter optimization within ESNs, covering the process of selecting and tuning

the network’s hyperparameters to improve its overall performance. It discusses

techniques such as grid search, random search, and Bayesian optimization.

• Physics-Informed Echo State Network (Section 4.5): This section describes

the implementation of physics within the Echo State Network, focusing on how to

incorporate physics laws into its loss function.

• Self-adaptive loss balanced Physics-Informed Echo State Network (Section

4.6): This section describes the proposed mechanism for a dynamic balance be-

tween its loss functions (data loss and physics loss), leading to improved adapt-

ability and performance in complex physics-informed tasks.

4.1 ECHO STATE NETWORKS

The ESN is a type of recurrent neural network that employs supervised learning princi-

ples and reservoir computing. It includes a special layer known as the ŞreservoirŤ, consisting

of a large number of randomly interconnected neurons (Jaeger, 2001).

The fundamental concept of reservoir computing is that the reservoir operates dynami-

cally, allowing it to capture complex temporal information from input data. This layer is followed

by an output layer that performs a linear transformation to map the captured information to

the speciĄc task at hand, such as classiĄcation or prediction (Verstraeten et al., 2007).

ESNs consist of a Ąxed-weight reservoir network and a trainable readout output layer.

The reservoir, a randomly generated recurrent layer, transforms inputs into a high-dimensional

nonlinear space, while the readout layer maps reservoir states to desired outputs using linear

regression (Verstraeten et al., 2007).

Chapter 4. Towards Echo State Networks with Physics-Informed Training 37

ESNs possess memory, allowing the creation of models for dynamic systems based on

their historical behavior, making them particularly valuable for tasks like system identiĄcation

and time series prediction. One of the advantages of ESNs is their low computational resource

requirements compared to other recurrent neural network architectures, enabling rapid training

and achieving accurate results.

4.2 ECHO STATE NETWORK ARCHITECTURE

Given an input signal u[n] ∈ R
Nu and the corresponding output signal y[n] ∈ R

Ny

for n = 1, . . . ,N time steps, the state update equation for the reservoir states x[n] ∈ R
Nx is

given by:

x[n+ 1] = (1− α)x[n] + αf(Winu[n+ 1] +Wx[n] +Wfby[n] +Wb), (20)

where: f is the activation function, usually tanh; α ∈ (0,1] is the leak rate (Jaeger, 2001);

Win ∈ R
Nx×Nu represent the connections from input to the reservoir, W ∈ R

Nx×Nx are

the recurrent connections in the reservoir, and Wfb ∈ R
Nx×Ny represent the feedback

connections from the readout output to the reservoir, Wb ∈ R
Nx are the bias. The readout

output y is given by:

y[n+ 1] = Woutx[n+ 1], (21)

where: Wout ∈ R
Ny×Nx are the adaptive weights of the output layer. The ESN architecture is

shown in Figure 10 1. The solid lines represent the weights that are not trained, whereas the

dotted lines represent the trained matrices. The ESN output (y) is fed back to the reservoir

to calculate the states with Equation (20).

All connections leading to the reservoir (Win, W, Wb and Wfb) are initialized ran-

domly and remain constant. This deliberate randomness creates a matrix of connections, and

this randomness is crucial to ensure that each neuron responds in a unique and nonlinear to

the input and feedback output signals.

The Echo State Property, a crucial enabling precondition for ESN learning algorithms,

refers to the reservoir’s ability in an ESN to retain relevant information from previous inputs

over a period of time. It involves having a reservoir with fading memory, asymptotically washing

out any information from initial conditions.

Figure 11 illustrates that the state update equation comprises three distinct projections:

the input projection, the reservoir projection, and the output projection (bias omitted). These

projections primarily serve to map the input and output data into the high-dimensional reservoir

space, thereby endowing the network with rich dynamic characteristics and self-adaptability.

The visualization process of these projections is shown in Figure 12. This transforma-

tion is crucial for the Echo State Network’s ability to handle complex information and adapt to

1 It should be noted that the images presented in this Echo State model have the bias weights omitted

Chapter 4. Towards Echo State Networks with Physics-Informed Training 38

Figure 10 Ű Echo State Network (ESN) architecture with feedback output.

Source: Author

Figure 11 Ű Visualizing Projections: Input data, Reservoir, and Output Data in the State Equa-
tion

Source: Author

dynamic patterns in the training data (Na et al., 2023). During the state’s generation through

the projections, the red zone is known to contain transient and unstable states. For training

purposes, these states are typically discarded in a process known as reservoir warm-up.

The output layer is typically adjusted with the aid of linear regression techniques, aiming

to minimize the mean squared error between the network output y and the desired output

ŷ as shown in Equation (22), while considering a linear mapping from the high-dimensional

reservoir layer to the readout output layer (Lukoševičius, 2012).

Chapter 4. Towards Echo State Networks with Physics-Informed Training 39

Jdata =
1

Ny

Ny
∑

i=1

1

Nt

Nt
∑

n=1

[

ŷi[n]− yi[n]
]2
, (22)

where: Nt represents the number of training data samples available; Ny represents the

number of outputs. Ridge regression, expressed in Equation (23), is usually employed to Ąnd

Wout:

Wout = ŶXT (XXT + γI)−1, (23)

where: X and Ŷ represent column concatenation of the n instants of the ESN states x and

the desired output ŷ[n + 1], respectively; and γ is the Tikhonov regularization factor. Each

row of matrix X (Equation (24)) represents a state, and each column represents the instant

at which they were calculated. Ŷ is deĄned similarly (Equation (25)):

X ∈ R
Nx×Nt =









x1[1] . . . x1[Nt]
...

. . .
...

xNx
[1] . . . xNx

[Nt]









(24)

Ŷ ∈ R
Ny×Nt =









ŷ1[1] . . . ŷ1[Nt]
...

. . .
...

ŷNy
[1] . . . ŷNy

[Nt]









(25)

When generating x[n] to construct the design matrix X in Equation (24), the output

follows two different modes of operation:

• In training mode (Figure 13 (a)), the so-called teacher forcing technique is em-

ployed, so that the desired output ŷ[n] is transmitted back to the reservoir with the

weights in Wfb, as exempliĄed in Equation (26). Hence, during this phase, ŷ[n]

is employed to compute X, Ŷ, and subsequently, train the output layer (Wout).

• In the free-run mode (Figure 13 (b)), which is adopted after the output layer Wout

has been trained, the actual output y[n] (ESN output prediction) is fed back into

the reservoir to update the states, as demonstrated in Equation (20). Therefore,

this mode operates independently of the training data, and the network no longer

relies on it to calculate the states and the output y[n].

x[n+ 1] = (1− α)x[n] + αf(Winu[n+ 1] +Wx[n] +Wfbŷ[n] +Wb) (26)

This desired output ŷ comes from an industrial plant or from a phenomenological

model as collected data, for instance. In Figure 13, the input u is also fed to the plant, which

in turn generates the target ŷ. After training, Equation (26) is used for a few initial time steps

to warm-up the reservoir, in the sequence Equation (20) is employed, where the actual output

prediction y is fed back to the reservoir.

Chapter 4. Towards Echo State Networks with Physics-Informed Training 40

Figure 12 Ű Visualization of ESN reservoir formation through Projections.

Source: Author

Figure 13 Ű Echo state network in training mode and free-run mode

(a) Teacher-forcing mode (b) Free-run mode

Source: Author

4.3 ECHO STATE NETWORK WEIGHTS AND PARAMETERS

The weight matrices, particularly the reservoir matrix W, play a crucial role in deter-

mining the effectiveness and stability of the model. This is especially true for the reservoir

Chapter 4. Towards Echo State Networks with Physics-Informed Training 41

matrix, as it is essential for ensuring the Echo State Property 2. The method by which the

weights were generated for the experiments in the dissertation is presented:

• W is randomly generated from a uniform distribution in the interval [−1, 1].

• Win values are selected from the set 0, δin, −δin with probabilities of 0.5, 0.25,

and 0.25, respectively, where δin serves as an input scaling factor.

• Wfb is randomly generated from a uniform distribution in the interval [δfb, −δfb],

where δfb functions as an output scaling factor.

• Wb is generated from a uniform distribution in the interval [δb, −δb], where δb

functions as a bias scaling factor.

The following parameters are essential in the Echo State Network (ESN) for enhancing

its performance:

• Spectral Radius (ρ): This parameter, denoted as ρ(W), is a scaling factor selected

to ensure that ρ(W) is less than 1; this helps ensure the Echo State Property 3. It

is deĄned as ρ(W) = max{|λ| : λ is an eigenvalue of W}. The spectral radius is

usually selected as close as possible to 1, where the reservoir operates at the edge

of stability. This is done to generate more diverse signals that can contribute to

the identiĄcation of the dynamics of a system. It is worth mentioning that, although

ρ(W) > 1 causes self-induced internal dynamics in the reservoir, such a network

can still be trained for some tasks, as it can become stable. Therefore, the spectral

radius is a hyperparameter that can be selected to control the learning process. To

this end, the selected spectral radius (ρ∗) is used in Equation (27) (Yildiz; Jaeger;

Kiebel, 2012). Here, ρ∗ is a hyperparameter that scale W so that its spectral radius

is equal to the value of ρ∗ (Yildiz; Jaeger; Kiebel, 2012):

W = W∗ ρ∗

ρ(W∗)
, (27)

where W∗ represents random values before the application of the desired spectral

radius value.

• Leak Rate (α): It is a parameter that regulates the extent to which states ŞleakŤ

over time, and it takes values between 0 and 1. A smaller value of α moves the

reservoir toward a slower dynamic state, enhancing its memory of previous states.

Conversely, a leak rate of 1 corresponds to complete state decay, effectively reset-

ting the state at each time step (Jaeger, 2001). Typically set between 0 and 1, a

moderate leak rate strikes a balance, enabling the ESN to retain some information

from pastime steps while accommodating new input data. This balance can be

2 In the literature, various techniques are proposed for reservoir weight design without relying on random
initialization (Verstraeten et al., 2007; Schrauwen et al., 2008; Boccato; Attux; Von Zuben, 2014)

3 This does not guarantee the Echo State Property, as demonstrated in the work of Yildiz, Jaeger, and Kiebel
(2012), where further considerations are discussed.

Chapter 4. Towards Echo State Networks with Physics-Informed Training 42

Ąne-tuned to control the network’s memory and its capacity to capture temporal

dependencies within the data.

• Regularization factor (γ): Applied to the training of the output layer’s weight matrix

(Wout) in Equation (23), this factor is utilized to prevent excessively large weights

during training. Large weights can lead to overĄtting, where the network closely

Ąts the training data, capturing noise rather than underlying patterns, resulting in

poor generalization to new data. Tikhonov’s regularization addresses this issue

by introducing a penalty term to the training objective, which prevents the Wout

values from becoming too large.

• Reservoir Size (Nx): The choice of reservoir size should be based on task com-

plexity and available training data. A larger reservoir can capture intricate patterns

and often leads to better performance but requires more data. If the available train-

ing data is limited, a large reservoir might not be able to generalize well and could

lead to overĄtting. In contrast, a smaller reservoir is suitable for simpler tasks or

limited data situations.

• Scaling (δin, δfb, δb): Input, output, and bias scaling parameters control the inĆu-

ence of their respective weights on the network. They regulate the magnitude of

the input data, output data, and bias in the state calculation.

• Warm-up: The primary purpose of the warm-up phase is to allow the network to

transition from its initial state, often set to all zeros, to a state that captures the

underlying dynamics of the input data (as can be seen in Figure 12). The duration of

the warm-up phase can vary depending on the complexity of the system. Generally,

it is recommended to discard the initial states during the warm-up phase, as they

may contain transient and unstable states.

• Data Normalization: Data normalization is a preprocessing step in ESNs. It in-

volves transforming the input and output data to have a standardized range or

distribution. Common methods for data normalization include min-max scaling,

z-score normalization, or any other technique that scales the data to a common

range or centers it around zero with a standard deviation of one. The min-max

scaling can be deĄned as:

yscaled =
y − ymin

ymax − ymin
, (28)

where y is the original value, yscaled is the scaled value, ymin is the minimum value

in the dataset, and ymax is the maximum value in the training dataset. Normalizing

the data ensures that input and output signals are within a consistent range, pre-

venting issues related to varying data scales. This preprocessing step contributes

to the stability and effectiveness of the ESN by ensuring that the activation function

can capture patterns across different input features and data ranges.

Chapter 4. Towards Echo State Networks with Physics-Informed Training 43

4.4 HYPERPARAMETERS OPTIMIZATION

To optimize the ESN hyperparameters, the dataset (1, . . . , Nt) is divided into a training

set (1, . . . , Nte) and a validation set (1 + Nte, . . . , Nt). Hence, Nte +Nve = Nt, where Nte

represents the number of training data samples and Nve stands for the number of validation

data samples used in the hyperparameter search. Three types of optimization methods will

be discussed: grid search, random search and Bayesian optimization.

Figure 14 displays and compares grid search and random search optimization. The

black points represent the hyperparameter values that are being searched, namely, important

and unimportant parameters. Model accuracy, typically represented as Mean Squared Error

(MSE), is depicted as a function of each search dimension. The grid search and random

search differ in how they explore the hyperparameter space.

Figure 14 Ű Hyperparameter Tuning with Grid Search and Random Search

(a) Grid Search (b) Random Search

Source: Pilario, Cao, and ShaĄee (2021)

In grid search, a predetermined set of hyperparameter values is deĄned for each pa-

rameter, and all possible combinations are systematically evaluated, resembling a structured

grid search. It adopts a discrete approach by specifying a predeĄned grid of values for each

hyperparameter and evaluating the model’s performance at each grid point.

It essentially tests all possible combinations of hyperparameters on the grid. Grid

search is relatively straightforward to implement and comprehend, but it may become inef-

Ącient when the region containing the best hyperparameters is unknown, as it evaluates all

combinations, including less promising ones (Jaeger et al., 2007). The random search se-

lects hyperparameter values randomly from predeĄned ranges, exploring the space through

random sampling, which can be more efficient, especially with extensive search spaces.

Chapter 4. Towards Echo State Networks with Physics-Informed Training 44

Figure 15 represents how Bayesian optimization operates by deriving and optimizing

the score function or acquisition function of the model, which expresses the most promising

setting for the next iteration, based on the difference between observations and the objective

function (in red), typically measured using MSE and the uncertainty. The model’s quality

improves progressively over time as successive measurements are incorporated (Greenhill et

al., 2020). Bayesian optimization is a continuous approach that explores the hyperparameter

space iteratively. It utilizes a probabilistic model, often a Gaussian regression model with

mean represented in black and uncertainty in blue, to estimate the model’s performance

concerning hyperparameters.

This probabilistic model, known as surrogate function, helps guide the optimization

process towards promising regions. The surrogate function is a simpliĄcation of the objective

function. It is chosen to be a simpler, often parameterized function that represents an ap-

proximation of the behavior of the real objective function. Bayesian optimization is generally

more efficient than grid search, as it focuses on areas with a high likelihood of containing

the best hyperparameters. However, it can be more complex to set up due to the need to

deĄne a search space, an acquisition function, and select an appropriate probabilistic model

(Yperman; Becker, 2017).

Each approach, Bayesian optimization and grid search, has its advantages and limi-

tations. The decision between these two methods depends on several factors, including the

problem’s nature and the resources available for hyperparameter optimization in an ESN.

While these methods are practical for most use cases, it is important to remark that they

primarily rely on statistical measures. As a result, they can only approximate the local optimal,

leaving room for further optimization (Thiede; Parlitz, 2019).

In this study, the optimization process was customized for each dynamic system,

utilizing grid search or Bayesian optimization to select the hyperparameters for tuning. Once

the best hyperparameter values were identiĄed, the ESN was retrained using all available

data (1, . . . , Nt).

4.5 PHYSICS-INFORMED ECHO STATE NETWORK

A traditional PINNs (Figure 8) needs a time t as input. This input does not exist in the

PI-ESN since the ESN is a discrete-time recurrent network that implicitly incorporates time

through the network state update equation (Equation (20)), where the next state depends

on the previous state. This architecture has already been applied to autonomous chaotic

systems in which the PI-ESN has the feedback output into the reservoir, but does not have

any other input besides the feedback (Doan; Polifke; Magri, 2019b). In this work, the PI-ESN

was extended to accept external inputs, such as a plant control, in addition to the output

feedback itself as shown in Figure 16. The ESN output (y) is used to calculate the physics

loss function. Then the (∂J
∂Wout) is calculated by automatic differentiation and used to update

the values of the output layer (Wout) in an optimization process that aims to minimize the

Chapter 4. Towards Echo State Networks with Physics-Informed Training 45

Figure 15 Ű Bayesian Optimization.

Source: Greenhill et al. (2020)

total loss function.

As with standard ESNs, the only trainable layer is the output layer Wout. For PI-ESN

training, the starting point is the output layer calculated through traditional ESN training (within

the time window [0, T] with Nt data) as an initial guess for computing the new values of Wout.

To use the physics laws in the ESN, it is needed the neural network output (y[n]) obtained

during the ESN free-run mode, in the time window t ∈ (T, Tf], with Nt+1, . . . , Nf +Nt data

samples, where Nf is the number of collocation points as shown in Figure 17.

These values can be applied to approximate the states of a dynamical system de-

scribed by ODE’s. In Figure 17 the solid black represents the input data u[n], which is used in

both the data loss function (in the time steps n, . . . , Nt) and the physics loss function (in the

time steps Nt+1, . . . , Nt+Nf). The training output data ŷ[n] (during time steps n, . . . , Nt) is

shown in dark green. These values are used for teacher forcing in the ESN training (see Figure

13) and to calculate Equation (25). After the training of the ESN, these values will be used in

Equation (22) for the PI-ESN training. ESN output (y[n]) in the time steps Nt+1, . . . , Nt+Nf

Chapter 4. Towards Echo State Networks with Physics-Informed Training 46

Figure 16 Ű Physics-Informed Echo State Network (PI-ESN)

Source: Author

is shown in pink. These values are used in Equation (29), as represented in the scheme inside

the blue rectangle, to calculate the physics loss in Equation (30). In light green, it is the real

system output that is desired for approximation, but is not used to calculate the loss function

or any other equation in physics training.

The PI-ESN has no time input explicitly and works in discrete time. Hence, Equation

(11) must be discrete using numeric methods, such as explicit Euler, or Runge-Kutta, for

example (Doan; Polifke; Magri, 2019b) or by utilizing more accurate differentiation techniques

as suggested in Racca and Magri (2021). Using explicit Euler and assuming that ∂ty−N (y) =

0, it has the following:

F(y[n]) ≡ y[n+ 1]− (y[n] +N (y[n])∆t) (29)

ThisF function is applied at each collocation point, generating the physics loss function

Jphy:

Jphy =
1

Ny

Ny
∑

i=1

1

Nf

Nf
∑

n=Nt+1

|F(yi[n])|
2 (30)

The total loss function to be minimized considers both data loss and the residual

function of physics laws:

J = λdata · Jdata + λphy · Jphy, (31)

where λdata and λphy are hyperparameters used to balance the importance of the loss func-

tions during optimization. Typically, the parameter λdata is set to a value of 1, while only the

value of the parameter λphy is adjusted. The total loss function is minimized by Ąnding the

Chapter 4. Towards Echo State Networks with Physics-Informed Training 47

Figure 17 Ű Representation of the PI-ESN collocation points used to calculate the physics
loss function.

Source: Author

value of the output weight matrix Wout through the minimization of the objective function

J(Wout), employing ADAM or L-FBGS optimizers available in frameworks like TensorFlow

or PyTorch. It is important to recall that the automatic differentiation does not pass through

the recurrence of the reservoir, that is, there is no retropropagation of errors through time.

This happens because the matrix Xf in Equation (32) (similar to the Equation (24)

but with time steps Nt + 1, . . . , Nt + Nf) is used to stabilize the PI-ESN training, updating

the values of Xf every j optimization iterations. Since Xf depends on the value of Wout

because there is feedback from the previous output y[n] in the states x[n + 1], the values

of all states would change in each iteration j of the optimizer, i.e., in each update of Wout.

To prevent this from happening, the states are only updated after K iterations, stabilizing the

training process.

Xf ∈ R
Nx×Nf =









x1[Nt + 1] . . . x1[Nt +Nf]
...

. . .
...

xNx
[Nt + 1] . . . xNx

[Nt +Nf]









(32)

This is equivalent to use two versions of Wout, one that is constantly updated by

training, and another used to calculate the ESN output (Equation (21)) which is updated every

K iteration to the value of the Ąrst.

Algorithm 1 shows how the generation of Xf and the update of Wout work with the

adaptive loss function. Although the temporal dependence exists, for practical purposes, the

training disregards this, which simpliĄes and speeds up the training. Experiments carried out

Chapter 4. Towards Echo State Networks with Physics-Informed Training 48

considering the temporal dependence did not achieve good results.

4.6 ADAPTIVE LOSS FUNCTION FOR PI-ESN

The Balanced Self-Adaptive Loss Physics-Informed Neural Networks (lb-PINNs), pro-

posed by (Xiang et al., 2022), is a self-adaptive loss balanced approach that automatically

updates weights for each loss term during the optimization process. Their work applied lb-

PINNs to solve partial differential equations such as Navier-Stokes, Allen-Cahn, and Poisson.

The main idea is based on Maximum Likelihood Estimation (MLE) of Gaussian parameters,

adapting it to a minimization problem. MLE is a technique in machine learning to accomplish

the task of creating a statistical model that can perform a given task on unseen data (data

not available for training phase). This technique can be used to determine the values of λdata
and λphy, without requiring additional data during the physics training phase. It relies solely

on the training data that are initially available.

The balanced self-adaptive loss algorithm, originally developed for traditional PINNs,

is here extended to PI-ESNs, leading to the version henceforth denoted as PI-ESN-a. An

illustration of the PI-ESN-a is shown in Figure 18. The values of the output (y[n]) are utilized

to compute the total loss (Equation (35)). Subsequently, an optimizer is employed to minimize

this function and obtain the new values for the weight matrix Wout as well as for the adaptive

weights ϵd and ϵf . This optimization procedure can be repeated multiple times as outlined in

Algorithm 1.

Figure 18 Ű Self-Adaptive Physics-Informed Echo State Network (PI-ESN-a).

Source: Author

Assuming that the output of our Gaussian probability model consists of two vectors,

denoted as ŷ1 and ŷ2, following a Gaussian distribution (Ng), the likelihood function is deĄned

Chapter 4. Towards Echo State Networks with Physics-Informed Training 49

as a Gaussian distribution with mean equal to the approximation of the PI-ESN y(Wout;u),

and the uncertainty captured by the variances ϵd and ϵf :

p(ŷ1, ŷ2|y(W
out;u)) = p(ŷ1|y(W

out;u)) · p(ŷ2|y(W
out;u)) (33)

p(ŷ1, ŷ2|y(W
out;u)) = Ng(y(W

out;u), ϵ2d) · Ng(y(W
out;u), ϵ2f), (34)

The uncertainty parameters ϵd and ϵf are predetermined as part of the weight decay

process in physics-informed neural network. The objective is to minimize the negative log-

likelihood of the model while simultaneously pursuing the minimization of Wout and the

uncertainty parameters ϵd and ϵf (Equation (35)). Furthermore, the network can automatically

assign weights to data loss by updating the uncertainty parameter ϵd in each epoch using

maximum likelihood estimation.

− log p(ŷ1, ŷ2|y(W
out;u)) ∝

1

2ϵ2
d

∥

∥

∥
ŷ1 − y(Wout;u))

∥

∥

∥

2

+
1

2ϵ2
d

∥

∥

∥
ŷ2 − y(Wout;u))

∥

∥

∥

2
+ log ϵdϵf , (35)

where Jdata =
∥

∥ŷ1 − y(Wout;u)
∥

∥

2
and Jphy =

∥

∥ŷ2 − y(Wout;u)
∥

∥

2
. The minimization

objective of the model can be expressed as:

L(Wout, ϵ;N) =
1

2ϵ2
d

Jdata(W
out;Nt) +

1

2ϵ2
f

Jphy(W
out;Ny, Nf) + log ϵdϵf , (36)

where ϵ = {ϵd, ϵf} denotes the adaptive weights for the data loss and physics loss, respec-

tively, and N = {Nt, Ny, Nf}. The variance parameters can be expressed as s = {sd, sf} to

use the exponential mapping (s = log(ϵ2)), as shown in Equation (37). By taking the exponen-

tial of the variance parameters s, which guarantees that the resulting value is in the positive

domain, the adaptive weight will not converge to zero too quickly and is more numerically

stable for the training process (Xiang et al., 2022).

L(Wout, s;N) =
1

2
exp (−sd)Jdata(W

out;Nt)

+
1

2
exp (−sf)Jphy(W

out;Ny, Nf) + sd + sf (37)

Chapter 4. Towards Echo State Networks with Physics-Informed Training 50

Algorithm 1: Training of PI-ESN with external inputs and Self-Adaptive Balancing
Loss.

input: M , K, s = [sd, sf]
T , F , {u[n] : n = 1, . . . , Nt +Nf }, {ŷ[n] : n = 1, . . . , Nt};

Using {(u[n], ŷ[n]) : n = 1, . . . , Nt}, build X by Equation (24) and Ŷ by Equation
(25); // training data

Pretrain PI-ESN weights Wout by ridge regression with Equation (23) using X and Ŷ;
for M1 iterations do

Generate Xf using Equation (20) and Equation (21), updated Wout, and u[n] for
timesteps n = Nt + 1, . . . , Nt +Nf ; // collocation points

for M2 iterations do

// Adapting Wout, sd, sf to minimize total loss

Compute ESN’s outputs for the data points Yt = WoutX and for collocation
points Yf = WoutXf

DeĄne Jdata(W
out) loss on Yt and target Ŷ as in Equation (22);

DeĄne Jphysics(W
out) loss on F(Yf) as in Equation (30);

Combine both losses into L(Wout; s) as in Equation (37) and compute its
gradient with respect to Wout, sd, sf ;

Update Wout, sd, sf with an optimizer and the obtained gradients;

output: Wout

FINAL REMARKS

This chapter presented the architectures of ESNs and their adaptation for Physics-

Informed Echo State Networks (PI-ESNs). It outlined the contributions made by incorporating

an external input into the PI-ESN architectures and adding adaptive weights to balance the loss

functions of the PI-ESN-a. In the next chapter, experiments utilizing the proposed architectures

from this chapter will be showcased, applying them to three systems. These include two

described by ODEs: the van der Pol oscillator and a four-tank system, and one described by

DAEs, speciĄcally an electric submersible pump.

51

5 EXPERIMENTS

In this chapter, the experiments conducted using PI-ESN and PI-ESN-a are described

on three different systems: the Van der Pol system, the Four-Tank system, and an Electric

Submersible Pump. The chapter is structured as follows:

• Van der Pol Oscillator (Section 5.1): This section provides a description of both

the unforced and forced Van der Pol systems, both of which are utilized for system

identiĄcation with PI-ESN and PI-ESN-a. Additionally, a step-by-step explanation of

the alterations made to an ESN when applying physics regularization is provided.

• Four-tank system (Section 5.2): In this section, the Four-Tank system is intro-

duced. It also highlights the application of physics-informed machine learning tech-

niques in the experimental approach with PI-ESN-a.

• Electric Submersible Pump (Section 5.3): In this section, an introduction is

provided to artiĄcial lifting systems within the oil and gas industry, with a particular

emphasis on the ESP (Electric Submersible Pump) system and the utilization of

PI-ESN-a for system identiĄcation.

5.1 VAN DER POL OSCILLATOR

Extensive research has been conducted on the Van der Pol Oscillator, which is de-

scribed by Equation (38), with the aim of enhancing the approximations of solutions to non-

linear systems. This self-oscillatory dynamical system is widely recognized as a valuable

mathematical model that can be utilized for more complex systems. It is a second-order

ordinary differential equation featuring cubic nonlinearity (Tsatsos, 2008).

ḧ− µ(1− h2)ḣ+ h = 0, (38)

where µ represents the damping parameter, which inĆuences the system’s oscillation as

shown in Figure 19. Equation (38) can be write in bidimension form, in the unforced form:

ḣ1 = h2

ḣ2 = µ(1− h1
2)h2 − h1

(39)

In the forced form, an external input u is added, resulting in the following model:

ḣ1 = h2

ḣ2 = µ(1− h1
2)h2 − h1 + u

(40)

Figure 19, generated with initial conditions h1(0) = h2(0) = 0.1, illustrates the oscilla-

tory behavior, which is dependent on the damping parameter (µ). On the left-hand side of the

image, the inĆuence of varying the parameter µ on the outputs h1 and h2 can be observed. On

the right-hand side, the phase space of the oscillator is represented, describing the trajectory

Chapter 5. Experiments 52

of the dynamic system in a multidimensional space. As the system oscillates over time, the

trajectories in the phase space depict how the variables evolve. The Van der Pol oscillator

is known for exhibiting various behaviors in phase space, including limit cycles and chaotic

behavior, depending on the system parameters such as the damping coefficient µ and initial

conditions.

Figure 19 Ű Unforced Van der Pol oscillator system with oscillation variation.

Source: Author

5.1.1 Unforced Equation

5.1.1.1 Dataset

The dynamic behavior of the Van der Pol oscillator system was simulated using Equa-

tion (39), and the simulation was carried out with an explicit Euler method, employing a time

step of ∆t = 0.05 seconds. The initial conditions were set to h1 = h2 = 2, and the damping

parameter was µ = 1.

The simulation schematic, shown in Figure 20, includes distinct datasets: training data,

collocation points region, and the subsequent test dataset for evaluating ESN and PI-ESN.

• Training Data Region: This is the initial phase of the simulation. Training data is

generated by simulating the behavior of the Van der Pol oscillator using the given

equations and initial conditions. This data is used to train the conventional ESN.

• Collocation Points Region: During this phase, the simulation introduces the con-

cept of physics regularization. In the context of traditional ESN, no additional train-

ing or utilization of extra information takes place within this region. The ESN gen-

erates outputs exclusively based on the training conducted with historical data. In

practice, this area can serve as a test dataset for conventional ESNs. In contrast,

the Physics-Informed Echo State Network (PI-ESN) operates uniquely within this

region. It applies physics regularization without the need for any additional data.

Chapter 5. Experiments 53

This means that no extra information or datasets are introduced. Instead, physics

regularization is employed, as depicted in Figure 17, to ensure that the ESN con-

forms to the underlying physical principles governing the Van der Pol oscillator. This

approach enhances the PI-ESN accuracy and adherence to the known physics

without relying on supplementary data.

• Test dataset: After the implementation of physics regularization, this phase as-

sesses the system’s performance after the physics training. It evaluates the sys-

tem’s behavior and its adherence to the governing equations, even when subjected

to conditions beyond those encountered during training or within the collocation

points region. This region demonstrates how the physics regularization applied in

the collocation points region extends its inĆuence to test dataset where collocation

points are not employed.

Figure 20 Ű Simulation of the unforced Van der Pol oscillator system.

Source: Author

5.1.1.2 PI-ESN settings

For the experiments reported, the proposed PI-ESN was trained in two stages: 1) Ąrst

pretraining an ESN by conventional ridge regression and optimizing its main hyperparameters;

and 2) subsequently reĄning this ESN by applying the physics-informed method.

The ESN was trained using the parameters described in Table 1 1 with 90 training
1 The spectral radius value was chosen to effectively illustrate the enhancement resulting from the imple-

mentation of physical regularization. Additional experiments were conducted with values in proximity to 1,
showcasing improvements that, albeit present, were less visually pronounced.

Chapter 5. Experiments 54

Table 1 Ű ESN’s parameters training for Van der Pol unforced system.

Parameter Value
α 1
δin 0
δfb 0.15
δb 0

γ 10−5

ρ(W) 0.4
Nx 50

Source: Author

points illustrated in Figure 20. The ESN architecture does not employ bias weights, input

weights (since the system being modeled is autonomous) and is non-leaky. A warm-up was

applied to the Ąrst 5 states to discard unstable states. The state reservoir is depicted in Figure

21. This reservoir remains constant throughout the optimization conducted by the PI-ESN.

Figure 21 Ű ESN reservoir X for unforced Van der Pol system.

Source: Author

After the linear regression for the calculation of Wout, 1000 collocation points were

employed for the physics loss function. For the PI-ESN training, λphy was set to 0.01, and

λdata was set to 1. The implementation was conducted using the PyTorch framework, and

the ADAM optimizer was employed to update the value of Wout. The learning rate for the

optimizer was set to 10−5.

5.1.1.3 PI-ESN results

In Figure 22, the data loss, physics loss, total loss and MSE during the PI-ESN training

are shown. A consistent reduction is observed during the training. The data, physics, and

total loss continuously decrease, reĆecting the model’s improvement in Ątting the data and

adhering to physics laws. This is conĄrmed with the MSE calculated for the collocation points

Chapter 5. Experiments 55

region and test dataset, demonstrating the model’s increasing accuracy in generalizing to

new data.

Figure 22 Ű Loss function and Error evolution during PI-ESN training for unforced Van der
Pol system.

Source: Author

The prediction of the PI-ESN for the unforced Van der Pol oscillator after training is

shown in Figure 23.

Figure 23 Ű PI-ESN and ESN prediction for unforced Van der Pol system.

Source: Author

Chapter 5. Experiments 56

In the background, it is possible to observe the absolute error of the ESN and PI-ESN

with the actual system output. This prediction refers to the collocation points and test data

of the system presented in Figure 20. The MSE values in the collocation points region were

0.3575 for the ESN and 0.0054 for the PI-ESN. In the test dataset, the corresponding MSE

values were 2.0209 and 0.0673, respectively.

The new calculated states for the collocation points and test dataset after the conven-

tional ESN training and PI-ESN training are displayed in Figure 24, along with the new Wout

shown in Figure 25.

Figure 24 Ű Evolution of states after training PI-ESN and ESN.

Source: Author

Figure 25 Ű Comparison of Wout values between conventional ESN and PI-ESN.

Source: Author

Chapter 5. Experiments 57

It is possible that the difference between the states of ESN and PI-ESN results in

increasing divergence in their respective output calculations over time (Figure 26). This di-

vergence arises from the recurrent nature of state propagation inherent in the neural network

architecture, gradually separating the response from the system’s output. In this example,

changes in network states, combined with adjustments to the Wout weights, have enhanced

the neural network’s response, beneĄting from the application of physics laws during training.

Figure 26 Ű Difference between the states x[n] calculated by ESN and PI-ESN.

Source: Author

5.1.2 Forced Equation

5.1.2.1 Dataset

The Van der Pol oscillator’s dynamic system was generated using Equation (40)

through an explicit Euler method with a time step of ∆t = 0.03 seconds. Initial values of

h1 = h2 = 2 and µ = 1 were employed. In this case, an input signal was required, and it

was generated using Amplitude Modulated Pseudo-Random Bit Sequences (APRBS) with

an amplitude ranging from 0 to 2 and a signal variation occurring every 500 to 800 time steps.

Figure 27 provides an illustrative example of a simulated Van der Pol system, presented in

three plots.

In the Ąrst plot, the training set Nte of 500 time steps and the validation set Nve of

300 time steps are separated by a dashed blue line, which was used for hyperparameter

search during ESN training. This plot encompasses the entire training set, totaling Nt = 800

points, with a warm-up of 50 time steps. The second plot represents the region where physics-

informed training occurs, involving 2000 collocation points. In this region, only the random

Chapter 5. Experiments 58

Figure 27 Ű Simulation of the forced Van der Pol oscillator system

Source: Author

input values u at the Nf collocation points are used for regularization purposes, without

employing the labels h1 and h2.

This highlights the distinction from the case without external input (unforced equation).

While input values are necessary in the collocation point region, these values can be prede-

termined, such as a constant or speciĄc input value not used in conventional network training.

To evaluate the performance of both ESN and PI-ESN in the region where physics-based

training occurs, a random signal was employed. Lastly, the third plot illustrates the test dataset

consisting of 3000 points, which is utilized for the analysis of the PI-ESN.

5.1.2.2 PI-ESN-a settings and results

A grid search was conducted to explore the values of input scaling (δin) and feedback

scaling (δfb) within the range of 0.05 to 0.95, with increments of 0.05. Additionally, the Tikhonov

regularization factor γ was investigated over magnitudes ranging from 10−2 to 10−7, using a

resolution of 10−1. The values for Nx, α and ρ(W) remained constant during the optimization.

The values found are available in Table 2.

The resulting ESN was then used as the initial guess for the PI-ESN-a. The optimization

was carried out using the L-BFGS algorithm implemented in the TensorFlow framework. The

PI-ESN-a training process is illustrated in Figure 28, where the data and physics loss values,

Chapter 5. Experiments 59

MSE for the collocation points, MSE for the test dataset, and the adaptive parameters sf and

sd are displayed. These results correspond to the simulated system illustrated in Figure 27.

Table 2 Ű Parameters for ESN training: Van der Pol Forced System

Parameter Value
α 1
δin 0.1
δfb 0.1
δb 0

γ 10−7

ρ(W) 0.8
Nx 200

Source: Author

Figure 28 Ű Evolution of the adaptive weights (sd, sf), the loss functions (Jdata, Jphy) and the
MSE during the physics training of the PI-ESN for the forced Van der Pol system.

Source: Author

By analyzing the different graphs, it is evident that there was a reduction in both

physics and data loss functions, as well as errors in the test dataset and collocation points.

This improvement helps the model adhere more closely to the physics equations, similar to

what is observed in the unforced Van der Pol case. The Jdata and Jphy values at the end

of the experiment are 6 × 10−7 and 4.25 × 10−6, respectively. Moreover, the Ąnal values

of the [sd,sf] parameters are [−13.75,−13.61], this implies that approximately 53.5% of the

data loss function’s value and 46.5% of the physics loss function’s value contributed to the

calculation of the total loss function. However, it is essential to clarify that these percentages

do not directly reĆect the contribution to the Ąnal value of the total loss function, due to

Chapter 5. Experiments 60

the inherent difference in magnitude between the physics and data loss functions. Rather,

these values denote the proportional weight by which each function multiplies their respective

contributions.

The evaluation of the results for h1 and h2 outputs is presented in Figure 29. The blue

dashed vertical line splits the region between collocation points (left) and test dataset (right).

In the background, it is possible to observe the absolute error of the ESN and PI-ESN with

the actual system output.

Figure 29 Ű Prediction of the PI-ESN-a for Van der Pol oscillator after training.

Source: Author

This prediction refers to the collocation points and test data of the system presented

in Figure 27. The MSE for the collocation points region was found to be 0.1204 for the ESN

and 0.0101 for the PI-ESN-a. In the test data, the corresponding MSE values were 0.8601

and 0.1741, respectively.

The achieved results demonstrate that training with physics laws can adjust the be-

havior of the ESN for data that are not used in training. It is important to highlight that physics

training does not use output data from collocation points region, only the input values.

5.1.2.3 Comparative Analysis: PI-ESN vs. PI-ESN-a vs. ESN

This experiment consists of validating the proposed PI-ESN in a limited training data

scenario. Table 3 shows the MSE for the collocation points and the test set, for three ESN

architectures: conventional ESN, PI-ESN, and PI-ESN-a. For each case, the performance

Chapter 5. Experiments 61

was averaged over Ąve different randomly generated ESNs and input values. Nte, Nve, Nt =

[500, 300, 800] was employed for ESN training. The ESN was constructed with Nx = 100,

α = 1, ρ(W) = 0.8 and a warm-up of 50 time steps. For each run, a hyperparameter search

was conducted to determine suitable values for δin, δfb, and γ with a grid search optimization,

while Nx, α and ρ(W) remained constant.

Table 3 Ű Forced Van der Pol System: Average MSE for ESN and PI-ESN architectures.

Architecture Collocation Points Test
ESN 1.5217 1.5485
PI-ESN 0.1967 0.2575
PI-ESN-a 0.1161 0.1912

Source: Author

The PI-ESN-a was initiated with sd, sf = [1,1], and for the PI-ESN, the parameters

were set to λdata = λphy = 1. Nf = 2000 collocation points were utilized for both PI-ESN

and PI-ESN-a during physics-informed training. Mean squared error was calculated for the

collocation points region with 2000 points and for the test dataset containing 3000 points.

Table 3 shows that the mean squared error is reduced when employing the adaptive

architecture. On average, it achieves superior results compared to the PI-ESN and the ESN.

It can be observed that the PI-ESN-a reduces the MSE of the ESN by an average of 89.5%,

while the PI-ESN reduces it by an average of 84.8% compared to the ESN.

5.1.2.4 Effect of reservoir size and train data size

Table 4 displays the mean squared error concerning variations in the reservoir size. For

this experiment, 5 neural networks were employed for each reservoir size, spanning across

the 6 randomly selected inputs. The spectral radius, training size, collocation points, and test

size are consistent with those used in the experiment detailed in Table 3. Each presented

value was obtained by averaging the MSE from approximately 30 experiments. A total of

120 runs were conducted for this experiment, with 22 runs exhibiting training instability and

subsequently being excluded from the Ąnal analysis presented in the table. The analysis

demonstrates that the mean squared error consistently maintains a similar magnitude across

different reservoir sizes. This observation can be attributed to the inherent error introduced

by the explicit Euler approximation utilized in the physics training process, as emphasized in

Racca and Magri (2021).

It is also important to notice that a traditional ESN network can make predictions with

low error, but in such cases, a larger amount of data would be required. To illustrate this

difference between PI-ESN-a and traditional ESN, Figure 30 presents an experiment in which

the Van der Pol oscillator system is executed with varying sizes of the training set (Nt). The

presentation is based on six runs with different random seeds inĆuencing the initial ESN

weights, while the external signal maintains a constant seed for generating consistency.

Chapter 5. Experiments 62

Table 4 Ű Average MSE for the conventional ESN and the PI-ESN-a as a function of the
reservoir size (Nx) for the Forced Van der Pol system.

Reservoir
Size

Collocation Points Test
ESN PI-ESN-a ESN PI-ESN-a

100 1.255 0.346 1.758 0.435
200 0.873 0.400 1.230 0.481
300 0.514 0.274 0.815 0.346

400 1.373 0.450 1.762 0.614
Source: Author

The results include the MSE of the ESN, allowing for comparative analysis with physics-

based training for different collocation point sizes (Nf = [1000, 1500, 2000]). The evaluation

of the mean squared error is performed over a duration of 2100 time steps. The average MSE

of the PI-ESN-a is plotted against the size of the labeled training dataset, Nt, for the three

different cases of Nf .

Figure 30 Ű The average MSE of the PI-ESN-a shown for different values of Nt and Nf .

Source: Author

In Figure 30, it is noticeable that for small amounts of data, the error and standard

deviation of the PI-ESN-a are lower than those of the ESN. As the quantity of data increases,

the ESN’s performance improves, resulting in a decrease in the error value. By evaluating the

number of collocation points, it is evident that the error and standard deviation of the PI-ESN-a

are not proportional to the number of collocation points. When using a training dataset with

Nf = 2000, the error and standard deviation are found to be higher compared to the cases

when 1000 or 1500 points are utilized.

Chapter 5. Experiments 63

5.1.2.5 PI-ESN-a’s robustness to parameter model uncertainty

In real-world scenarios, it is common to observe disparities between the model and the

actual system dynamics. To evaluate the network’s robustness, a parametric uncertainty was

introduced by manipulating the parameter µ, which directly impacts the oscillation behavior.

As shown in Figure 19, the parameter was exclusively altered within the physics function

utilized during the physics training process, while the system data was kept at the reference

value of µ = 1. The results for the disturbed damping parameter (µ) from Equation (40),

which were used in the physics-based loss for training the PI-ESN, are presented in Figure 31.

The parameters of the adaptive network were the same as those presented in the previous

experiment concerning Figure 28 and Figure 29. The MSE is displayed for the collocation

points region, test set, and total dataset (as shown in the data split Figure 27) for the PI-ESN-a.

The horizontal lines represent the constant MSE values of the ESN for the collocation points

region and test set, as the damping parameter alteration only affects the calculation of the

physics function (Equation (29)).

Figure 31 Ű Adaptive PI-ESN training with parametric error in µ

Source: Author

By disturbing the parameter µ, it is possible to observe variations in the network’s

error. When disturbance is too strong, i.e., µ exceeds 1.1 or falls below 0.95, the test error

(blue dots) of PI-ESN-a is slightly worse than that of ESN (horizontal blue line). However, for

disturbances resulting in µ ∈ [0.95,1.1], the proposed PI-ESN-a continues to improve and

regularize ESN’s prediction, as seen by the dots below their respective horizontal lines of the

same color. Consequently, this outcome highlights the capability of the PI-ESN to achieve

lower error rates than the ESN, despite the presence of a parametric error associated with

the µ variable in the physics equation, as well as errors arising from the derivative calculated

using the explicit Euler method.

Chapter 5. Experiments 64

5.2 FOUR-TANK SYSTEM

The Four-Tank system consists of interconnected tanks with two pumps that can be

used to control the Ćow rate into the tanks. In this process, it is desired to control the levels of

the tanks by manipulating the voltages applied to pumps (Alvarado et al., 2006; Johansson,

2000). The determination of the nonlinear model parameters for the Four-Tank system is

critical in order to develop and implement an effective control strategy. Therefore, accurately

identifying the system dynamics is important for the application of predictive controllers. The

process is characterized by the following system of differential equations:

dh1(t)
dt

= − a1
A1

√

2gh1(t) +
a3
A1

√

2gh3(t) +
γ1k1
A1

V1(t)

dh2(t)
dt

= − a2
A2

√

2gh2(t) +
a4
A2

√

2gh4(t) +
γ2k2
A2

V2(t)

dh3(t)
dt

= − a3
A3

√

2gh3(t) +
(1−γ2)k2

A3
V2(t)

dh4(t)
dt

= − a4
A4

√

2gh4(t) +
(1−γ1)k1

A4
V1(t)

(41)

where the variable hi denotes the level of each tank i, and V1 and V2 represent the voltage

applied to the pumps. The cross-sectional area of each tank and the cross-sectional area of

the bottom oriĄce are represented by Ai and ai, respectively. The constants k1 and k2 relate

the Ćow rate to the applied voltage in the pump, while the valves that have Ąxed openings are

denoted by γ1 and γ2. The corresponding values for each parameter, along with their units,

are presented in Table 5.

Table 5 Ű Model parameters of the Four-Tank system.

Parameter Value Unit
A1, A3 28 cm2

A2, A4 32 cm2

a1, a3 0.071 cm2

a2, a4 0.071 cm2

g 981 cm2.s−2

k1, k2 1 cm3.V −1.s−1

γ1 0.7
γ2 0.6

Source: Author

5.2.1 Dataset

The Four-Tank system was generated with Equation (41) using an explicit Euler method

with a time step ∆t = 1 sec, initial values of h1 = h2 = h3 = h4 = 2. The input signal was

generated using an APRBS with an amplitude ranging from 0 to 5 and a signal oscillation of

Chapter 5. Experiments 65

Figure 32 Ű Nonlinear process to control the water levels in a Four-Tank system.

Source: Author

100 to 200 time steps. The regions where conventional training, physics-informed training,

and testing occur are represented Figure 33.

Figure 33 Ű Simulated Four-Tank systems

Source: Author

Chapter 5. Experiments 66

The Ąrst plot displays the training set Nte and the validation set Nve, separated by

a dashed blue line used for hyperparameter tuning during the training of the ESN. The Ąrst

plot corresponds to the total number of points in the training set Nt = 800. The second plot

represents the region where physics-informed training is performed using 2000 collocation

points. In this region, only the random input values u at the Nf collocation points are utilized

for regularization purposes, while the labels h1, h2, h3 and h4 are not used. Lastly, the third

plot illustrates the test dataset consisting of 2000 points, which is utilized for the analysis of

the PI-ESN.

5.2.2 PI-ESN-a settings and results

The ESN employed for the simulated system illustrated in Figure 33 was generated

with the following parameters: Nx = 400, α = 1, and ρ(W) = 0.8, δb = 0 and a warm-up

of 50 time steps. The grid search was carried out similarly to the Van der Pol experiments,

with a training set (Nte) of 500 time steps and a validation set (Nve) of 300 time steps. The

ESN was then retrained using a total of Nt = Nte +Nve = 800 time steps using the values

δfb = 0.2, δin = 0.1, γ = 10−5 found in the grid search. Subsequently, the resulting ESN

was used as the initial approximation for the PI-ESN.

The PI-ESN-a training process is presented in Figure 34, which displays the data and

physics loss values, the mean squared error at the collocation points and test dataset, as well

as the adaptive parameters sf and sd. Throughout the process, the data loss and physics

loss decrease, enhancing the PI-ESN-a model’s capability to Ąt the data and adhere to the

principles of physics. At the end of the experiment, the Jdata and Jphy values were found

to be 1.65× 10−7 and 2.76× 10−6, respectively. The Ąnal values of the [sd,sf] parameters

were determined to be [−14.97,−14.07], this implies that approximately 71.1% of the data

loss function and 28.9% of the physics loss function contributed to the calculation of the total

loss function. As discussed previously, these values represent the proportional weights of

each function.

The evaluation of the results for the tank levels outputs is presented in Figure 35,

where the blue dashed vertical line splits the region between collocation points (left) and test

set (right). In the background, it is possible to observe the absolute error of the ESN and

PI-ESN with the actual system output. This prediction refers to the collocation points and

test data of the system presented in Figure 33. The MSE for the collocation points region

was found to be 0.0468 for the ESN and 0.0016 for the PI-ESN-a. In the test dataset, the

corresponding MSE values were 0.1266 and 0.0221, respectively.

It can be seen that the PI-ESN-a prediction performance is signiĄcantly improved and

consistently over the initial ESN, not only the collocation points (left area of the dashed vertical

blue line), but also on new points in the test set which were generated by random inputs. Thus,

for small data regimes, physics-informed training of the ESN is relevant and useful if physical

laws are available.

Chapter 5. Experiments 67

Figure 34 Ű Evolution of the adaptive weights (sd, sf), the loss functions (Jdata, Jphy) and the
MSE during the physics training of the PI-ESN for four tank system.

Source: Author

Figure 35 Ű Prediction of the PI-ESN-a for Four-Tank system after training.

Source: Author

Chapter 5. Experiments 68

5.2.3 Effect of reservoir size and train data size

To demonstrate the performance of PI-ESN-a relative to traditional ESNs, in small

data regime, an experiment was conducted as depicted in Figure 36. The experiment involved

executing the Four-Tank system for various training set sizes (Nt). SpeciĄcally, ESNs were

run for each of the six training dataset sizes (250, 300, 350, 400, 450, 500 while employing

physics training for different collocation point sizes (Nf = [2000, 3000]).

The evaluation of mean square error was carried out over 4000 time steps. For each

run, a hyperparameter search was conducted to determine suitable values for δin, δfb, and γ

with a grid search optimization. The results also include the MSE of a traditional trained ESN

for comparison. Standard deviation is shown for 5 runs with different random seeds, which

affect the ESN’s initial weights, but not the control signal, which remains Ąxed.

Figure 36 Ű MSE values for the PI-ESN-a were computed for various Nt sizes, considering
both Nf = 2000 and Nf = 3000.

Source: Author

Similarly to the results presented by the oscillator experiment, the PI-ESN-a was able

to reduce the mean square error of the system even in cases where there is a reduced amount

of data. It can be observed that the ESN gradually improves the performance as the amount

of data increases, but PI-ESN-a was able to reduce the MSE of the original ESN for all training

set sizes. With more data, ESN reduces its prediction error, but so does PI-ESN-a, which

shows the potential of the proposed physics-informed ESN training in small data regimes.

Table 6 displays the average MSE concerning variations in the reservoir size. For this

experiment, 5 neural networks were employed for each reservoir value, considering the 4

Chapter 5. Experiments 69

randomly selected inputs. Between parenthesis, the error reduction percentage of PI-ESN-a

over the respective ESN is shown. The spectral radius, training size, collocation points, and

test size mirror those used in the experiment detailed in Figure 35. A total of 60 runs were

conducted for this experiment, with 6 runs experiencing training instability and subsequently

being excluded from the Ąnal analysis presented in the table. Each value is obtained by

averaging the MSE of around 20 experiments.

The analysis indicates that the mean squared error consistently demonstrates a com-

parable magnitude across various reservoir sizes, aligning with the behavior observed in

the Van der Pol oscillator experiment. This behavior can be attributed to the inherent error

introduced by the explicit Euler approximation utilized during the physics training process. To

address this error, including the instability in physics-informed training, an additional possibility

is to employ automatic gradient techniques.

Table 6 Ű Average MSE for the conventional ESN and the PI-ESN-a with different values of
reservoir size (Nx) for the four tank system.

Reservoir
Size

Collocation Points Test set
ESN PI-ESN-a ESN PI-ESN-a

200 0.415 0.032 (-92%) 0.504 0.057 (-87%)
400 0.289 0.028 (-90%) 0.510 0.044 (-91%)
800 0.366 0.101 (-72%) 0.465 0.094 (-80%)

Source: Author

5.3 ELECTRIC SUBMERSIBLE PUMP

Oil is found in porous/fractured and permeable rock formations, and the location is

referred to as an oil reservoir, which typically has high pressure. Impermeable rocks usually

isolate the reservoir. The Ćuids (hydrocarbons and water) contained within the reservoir require

a certain amount of energy to overcome the physical resistance of the porous channels and

migrate to the production units on the surface (Filho, 2011).

An oil reservoir can have multiple extraction wells. When referring to wells, it typically

means the equipment necessary to transport gas and oil from the reservoir to the production

facility. Initially, when production begins, there is a natural pressure within the oil reservoir,

known as primary energy, which results from all geological processes the deposit underwent

during its formation (Thomas, 2004). However, as production continues, this energy decreases

due to the decreasing pressure in the well, leading to Ąnancial losses and potentially making oil

extraction economically impracticable. Therefore, various methods of artiĄcial lift are employed

to extend the production life of wells (Filho, 2011).

One of these methods is the Electric Submersible Pump (ESP) shown in Figure 37.

The electric submersible motor is located at the unit’s base and is cooled by the surrounding

Chapter 5. Experiments 70

well stream. It connects to the protector section, which serves essential functions for safe unit

operation (Takacs, 2018).

The pump intake or gas separator allows well Ćuids to enter the centrifugal pump

while simultaneously removing quantities of gas from the well stream. The separated gas

rises through the liquid column in the casing annulus, reaching the casing head, from where

it is directed into the Ćow line. The connection between the casing head and the Ćow line

maintains a constant Ćuid level above the submersible pump. The multistage centrifugal pump,

at the core of the ESP system, lifts the liquid to the surface. Produced Ćuids Ćow through the

tubing string to the surface, where a wellhead facilitates the introduction of the electric cable

into the well. On the surface, the equipment for supplying power consists of a junction box

where electric cables are connected and a switchboard that offers measurement and control

functions (Takacs, 2018).

Figure 37 Ű Conventional ESP installation

Source: Takacs (2018)

ESPs are primarily employed in high-production oil wells, both offshore and onshore,

due to their proĄciency in extracting substantial liquid volumes. However, they come with

notable drawbacks, encompassing high implementation, operational, and maintenance costs,

as well as susceptibility to gas presence at the suction inlet and potential lifespan reduction

Chapter 5. Experiments 71

due to solid materials like sand. Despite these challenges, ESPs offer advantages such as

efficient liquid extraction from moderately deep wells, high operational efficiency exceeding

1000 barrels per day (bpd), adaptability to deviated well conĄgurations, and the potential for

low maintenance when operated correctly. Furthermore, their compact design renders them

well-suited for offshore installations (Hernes, 2020).

The ESP modeling employed in this study is illustrated in Figure 38, which is based on

the work of Jean P. Jordanou et al. (2022), Hernes (2020) and Binder, Pavlov, and Johansen

(2015). Table 7 shows the model variables. The model outputs are the bottom hole pressure

pbh, wellhead pressure pwh and average Ćow rate q, whereas the inputs are the ESP frequency

f and choke valve opening z.

Figure 38 Ű ESP Model System

Source: Hernes (2020) and Binder, Pavlov, and Johansen (2015)

The DAE system is described by the differential part shown in Equation (42) and the

algebraic part in Equations (43) and (44):

Chapter 5. Experiments 72

Table 7 Ű Variables Description for ESP model

Symbol Description
q Average liquid Ćow rate
qr Flow rate from reservoir into the well
qc Flow rate through production choke
pm Production manifold pressure
pwh Wellhead pressure
pbh Bottom hole pressure
pp,in ESP intake pressure
pp,dis ESP discharge pressure
pr Reservoir pressure
f ESP frequency
z Choke valve opening
V1 Pipe volume below ESP
V2 Pipe volume above ESP
h1 Height from reservoir to ESP
h2 Height from ESP to production choke

Source: Binder, Pavlov, and Johansen (2015), Hernes (2020) and Jean P. Jordanou et al. (2022)

ṗbh =
V1
β1

(qr − q)

ṗwh =
V2
β2

(q − qc)

q̇ =
1

M

(

pbh − pwh − ρg(h1 + h2)−∆pf +∆pp
)

(42)

where β1 and β2 represent the bulk modulus below and above the ESP, respectively. M

stands for the Ćuid inertia parameter. ∆pf and ∆pp denote pressure losses attributed to

friction and ESP dynamics, respectively.

qr = PI (pr − pbh) ,

qc = Cc

√

pwh − pmz,

∆pf = F1 + F2,

(43)

where PI is the production index calculated for the reservoir. Cc signiĄes the choke valve

constant, while F1 and F2 symbolize frictional pressure drops below and above the ESP,

respectively.

Fi = 0.158
ρLiq

2

DiA
2
i

(

µ

ρDiq

)
1

4

,

∆pp = ρgH,

H = CH(µ)

(

c0 + c1

(

q

CQ(µ)

f0
f

)

− c2

(

q

CQ(µ)

f0
f

)2(f

f0

)2
)

,

(44)

Chapter 5. Experiments 73

where L1 and L2 designate the length from the reservoir to the ESP and from the ESP to the

choke, respectively. A1 represents the cross-sectional area of the pipe below the ESP, and

A2 stands for the cross-sectional area of the pipe above the ESP. D1 and D2 correspond to

the pipe diameters below and above the ESP, respectively. µ signiĄes the Ćuid viscosity, and

ρ denotes the density of the produced Ćuid. H represents the head developed by the ESP,

and g denotes the gravitational acceleration constant. Additionally, the viscosity correction

factors are denoted as CQ(µ) and CH(µ).

The parameters used in this work are based on the parameters from Binder, Pavlov,

and Johansen (2015). The bulk modulus, density, viscosity and manifold pressure are as-

sumed constant in this dissertation as done by Hernes (2020). Table 8 shows the parameters

used to simulate the ESP system.

Table 8 Ű Parameter Values

Symbol Value Unit Symbol Value Unit
g 9.81 m/s2 β1 1.5× 109 pa

Cc 2× 10−5 * β2 1.5× 109 pa

A1 0.008107 m2 Pr 1.26× 107 pa

A2 0.008107 m2 µ 0.025 pa · s
D1 0.1016 m ρ 950 kg/m3

D2 0.1016 m PI 2.32× 109 m3/s/pa

h1 200 m Pm 20× 105 pa
h2 800 m f0 60 Hz

L1 500 m M 1.992× 108 kg/m4

L2 1.2 m c0 9.5970× 102 *
V1 4.054 m3 c1 7.4959× 103 *
V2 9.729 m3 c2 1.2454× 106 *

Source: Hernes (2020) and Jean P. Jordanou et al. (2022)

5.3.1 Dataset

To simulate the system, the Gekko library, which is a Python package primarily de-

signed for solving dynamic optimization and control problems, particularly well-suited for

Differential Algebraic Equations (DAE) in the context of dynamic systems. Gekko provides

tools for modeling and solving complex systems by optimizing their performance over time,

making it valuable for various applications, including process control, engineering design, and

advanced simulations.

The ESP system was simulated using a time step of ∆t = 0.01 s. The initial conditions

for the system were pbh = 70×106 pa, pwh = 20×106 pa, and q = 0.01m3/s. The simulated

system is shown in Figure 39.

An APRBS input signal was generated with values for z ranging from 0.1 to 1 and f

ranging from 35 to 65 Hz and a signal variation occurring every 500 to 800 time steps. All the

Chapter 5. Experiments 74

Figure 39 Ű Simulated ESP system

Source: Author

plots in Figure 39 depict different data regions. The training set consists of Nte = 4000 time

steps, and the validation set includes Nve = 2000 time steps. These two sets are separated

by a dashed blue line used for hyperparameter tuning during the ESN training.

Following hyperparameter tuning, there is a purple-dashed line marking the start of the

ESN’s Ąnal training phase, covering Nt = 6000 time steps. Afterward, there is the collocation

points region, spanning Nf = 2000 time steps, indicated by a green dashed line. Finally,

the test data comprises 4000 time steps. The data were normalized for ESN training using

min-max scaling (Equation (28)).

5.3.2 PI-ESN-a settings and results

The ESN was initially conĄgured with hyperparameters close to those suggested in

Jean P. Jordanou et al. (2022), utilizing Nx = 300 and a warm-up period of 50 time steps.

Bayesian optimization was employed to Ąne-tune the hyperparameters α, ρ(W), δb, δfb, and

δin using the BayesianOptimization package in Python. This choice of optimization method

was driven by the quantity of hyperparameters involved.

Subsequently, the ESN was retrained with a total of Nt = 6000 time steps, utilizing

the following values: δfb = 0.1, δin = 0.1, δb = 0.1, γ = 0.0599, α = 0.15, and ρ(W) = 0.8,

as determined through the Bayesian search. Figure 40 shows the physics-informed training

process, which showcases the physics and data loss functions, MSE at collocation points,

Chapter 5. Experiments 75

the test dataset, and the adaptive parameters sf and sd.

Figure 40 Ű Evolution of the adaptive weights (sd, sf), the loss functions (Jdata, Jphy) and the
MSE during the physics training of the PI-ESN-a for the ESP system.

Source: Author

Due to data normalization for ESN training application, a subsequent descaling pro-

cess became necessary during for the physics-informed training. This led to signiĄcant dis-

parities in the magnitudes of the loss functions. Unlike the experiments conducted on the Van

der Pol and Four-Tank system, the optimization of sd and sf values is more challenging due

to disparities in the magnitudes of the physics and data loss functions. This magnitude differ-

ence posed a challenge for the balanced self-adaptive loss algorithm, resulting in instabilities

during the adaptive training.

After completing the physics-informed training, the values of Jdata and Jphy were

determined to be 8.26× 10−8 and 1.26× 107, respectively. Additionally, the Ąnal values for

the [sd,sf] parameters were calculated as [−15.67, 15.66], this implies that approximately

99.9% of the data loss function while 0.1% of the physics loss function contributed to the

calculation of the total loss function. However, it is crucial to notice that the value applied in

the physics loss function is non-normalized, whereas in the data loss function, it is normalized.

This results in a difference of 15 orders of magnitude between the physics loss function and

the data loss function.

The evaluation of the ESP’s output results is depicted in Figure 41, the blue dashed

vertical line splits the region between collocation points (left) and test set (right). The MSE for

the collocation points region was found to be 0.0026 for the ESN and 0.0004 for the PI-ESN-a.

In the test dataset, the corresponding MSE values were 0.0084 and 0.0011, respectively.

Chapter 5. Experiments 76

Figure 41 Ű Prediction of the PI-ESN-a for ESP after training.

Source: Author

Regarding the execution time of the dataset presented in Figure 39, a comparison was

made between the dynamic simulator Gekko and the PI-ESN-a, with 10 runs. The average

execution time for PI-ESN was 3.9 seconds, while the Gekko optimizer took 98.5 seconds. This

experiment was conducted on an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz processor,

with a clock speed of 2592 MHz, 6 cores, and 12 logical processors. This result shows that

the execution time of PI-ESN is approximately 96.32% faster than the numerical solution of

the DAE.

77

6 CONCLUSION

In this dissertation, the PI-ESN architecture was extended to incorporate external

inputs, making it applicable to dynamical systems requiring control. Moreover, some improve-

ments were proposed for the training process of PI-ESN as follows. Self-adaptive weights

originally proposed for PINNs were introduced in the PI-ESN framework to dynamically bal-

ance each term (data loss and physics-based loss) within the loss function to be minimized,

enhancing the Ąnal PI-ESN prediction performance. Additionally, an extensive series of exper-

iments were conducted, showcasing the performance improvements and predictive capabili-

ties of the proposed PI-ESN, especially when compared to ESN, in scenarios characterized

by limited data availability. These experiments encompassed three distinct representative

dynamical systems modeled by ODEs and DAEs.

In summary, these accomplishments emphasize the versatility and effectiveness of

PI-ESN as a tool for modeling and forecasting dynamical systems, particularly within contexts

where data is scarce. However, certain issues related to the training instability of this neural

network can be addressed in future research, as proposed below:

• Exploring the use of automatic differentiation instead of explicit Euler for calculating

the derivatives in the physics loss function could be an option to improve training

stability in the physics-based aspect (Racca; Magri, 2021).

• Investigating alternative self-weight adaptive balancing loss functions available in

the literature that may offer more stable training.

• Applying PI-ESN to different oil and gas systems with experimental data to assess

whether the technique can still be beneĄcial even if there are differences between

the model used in the physics-based training and the real-world plant.

• Examining the impact of changes in initial conditions on the performance of PI-

ESN.

• Additionally, applying PI-ESN for the reconstruction of unmeasured hidden states

and integrating them into a Predictive Nonlinear Model Predictive Controller (PN-

MPC) for estimating and controlling these unmeasured states in various applica-

tions.

78

REFERENCES

ABIODUN, O. I.; JANTAN, A.; OMOLARA, A. E.; DADA, K. V.; MOHAMED, N. A.;

ARSHAD, H. State-of-the-art in artiĄcial neural network applications: A survey. Heliyon, v. 4,

n. 11, e00938, 2018.

ALVARADO, I.; LIMON, D.; GARCÍA-GABÍN, W.; ALAMO, T; CAMACHO, E.F. An

educational plant based on the quadruple-tank process. IFAC Proceedings Volumes, v. 39,

n. 6, p. 82Ű87, 2006. 7th IFAC Symposium on Advances in Control Education.

ANTONELO, Eric; SCHRAUWEN, Benjamin. On Learning Navigation Behaviors for Small

Mobile Robots With Reservoir Computing Architectures. IEEE Transactions on Neural

Networks and Learning Systems, v. 26, n. 4, p. 763Ű780, 2014.

ANTONELO, Eric Aislan; CAMPONOGARA, Eduardo; FOSS, Bjarne. Echo State Networks

for data-driven downhole pressure estimation in gas-lift oil wells. Neural Networks, v. 85,

p. 106, 2017.

ANTONELO, Eric Aislan; CAMPONOGARA, Eduardo; SEMAN, Laio Oriel;

SOUZA, Eduardo Rehbein de; JORDANOU, Jean P; HUBNER, Jomi F. Physics-Informed

Neural Nets for Control of Dynamical Systems. arXiv preprint arXiv:2104.02556, 2021.

ANTONELO, Eric Aislan; SCHRAUWEN, Benjamin; STROOBANDT, Dirk. Event detection

and localization for small mobile robots using reservoir computing. Neural Networks, v. 21,

n. 6, p. 862Ű871, 2008.

BINDER, Benjamin J.T.; PAVLOV, Alexey; JOHANSEN, Tor A. Estimation of Flow Rate and

Viscosity in a Well with an Electric Submersible Pump using Moving Horizon Estimation.

IFAC-PapersOnLine, v. 48, n. 6, p. 140Ű146, 2015. 2nd IFAC Workshop on Automatic

Control in Offshore Oil and Gas Production (OOGP) 2015.

BISHOP, Christopher M; NASRABADI, Nasser M. Pattern Recognition and Machine

Learning. 1. ed. New York: Springer, 2006. (Information Science and Statistics).

BOCCATO, Levy; ATTUX, Romis; VON ZUBEN, Fernando J. Self-organization and lateral

interaction in echo state network reservoirs. Neurocomputing, v. 138, p. 297Ű309, 2014.

ISSN 0925-2312.

References 79

BRAGA, Antônio de Pádua. Redes Neurais ArtiĄciais: Teoria e Aplicações. 2. ed. Rio de

Janeiro: LTC Editora, 2007.

BRUNTON, Steven L.; KUTZ, J. Nathan. Data-Driven Science and Engineering: Machine

Learning, Dynamical Systems, and Control. 2. ed. [S.l.]: Cambridge University Press,

2022.

CHEN, Chi-Tsong. Linear System Theory and Design. 4. ed. Cary, NC: Oxford University

Press, Nov. 2012. (Oxford Series in Electrical and Computer Engineering).

CZAJKOWSKI, Andrzej. Robust Control with Disturbance Estimation Using Echo State

Networks for the Twin Rotor Aero-Dynamical System Application. IFAC Proceedings

Volumes, v. 47, n. 3, p. 11305Ű11310, 2014. 19th IFAC World Congress.

DEVANEY, Robert L. An Introduction to Chaotic Dynamical Systems. [S.l.]: Chapman

and Hall/CRC, Oct. 2021.

DOAN, Nguyen Anh Khoa; POLIFKE, Wolfgang; MAGRI, Luca. A physics-aware machine

to predict extreme events in turbulence. [S.l.: s.n.], 2019. arXiv: 1912.10994

[physics.flu-dyn].

DOAN, Nguyen Anh Khoa; POLIFKE, Wolfgang; MAGRI, Luca. Learning Hidden States in

a Chaotic System: A Physics-Informed Echo State Network Approach. [S.l.]: arXiv

preprint arXiv: 2001.02982, 2020.

DOAN, Nguyen Anh Khoa; POLIFKE, Wolfgang; MAGRI, Luca. Physics-informed echo state

networks for chaotic systems forecasting. In: SPRINGER. International Conference on

Computational Science. [S.l.: s.n.], 2019. P. 192Ű198.

EDWARDS, Chris. Neural Networks Learn to Speed up Simulations. Commun. ACM,

Association for Computing Machinery, New York, NY, USA, v. 65, n. 5, p. 27Ű29, 2022.

ELSHEIKH, Ammar H.; SHARSHIR, Swellam W.; ABD ELAZIZ, Mohamed; KABEEL, A. E.;

GUILAN, Wang; HAIOU, Zhang. Modeling of solar energy systems using artiĄcial neural

network: A comprehensive review. Solar Energy, v. 180, p. 622Ű639, 2019.

FILHO, H. S. A. RIZZO. Otimização de Gás lift na Produção de Petróleo: Avaliação da

Curva de Performance do Poço. 2011. Dissertation (Master in Energy Planning) Ű

Universidade Federal do Rio de Janeiro.

References 80

GREENHILL, Stewart; RANA, Santu; GUPTA, Sunil; VELLANKI, Pratibha;

VENKATESH, Svetha. Bayesian Optimization for Adaptive Experimental Design: A Review.

IEEE Access, v. 8, p. 13937Ű13948, 2020.

HERNES, Sondre Bø. Practical NMPC of Electrical Submersible Pumps based on Echo

State Networks. 2020. Dissertation (Master in Cybernetics and Robotics) Ű Norwegian

University of Science and Technology.

HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long Short-Term Memory. Neural

Comput., MIT Press, Cambridge, MA, USA, v. 9, n. 8, p. 1735Ű1780, Nov. 1997. ISSN

0899-7667.

JAEGER, Herbert. The ŚŚecho state’’ approach to analysing and training recurrent neural

networks Ű with an Erratum note. In: German National Research Center for Information

Technology. [S.l.]: Fraunhofer Institute for Autonomous Intelligent Systems, 2001.

JAEGER, Herbert; LUKOŠEVIČIUS, Mantas; POPOVICI, Dan; SIEWERT, Udo. Optimization

and applications of echo state networks with leaky- integrator neurons. Neural Networks,

v. 20, n. 3, p. 335Ű352, 2007. Echo State Networks and Liquid State Machines.

JOHANSSON, Karl Henrik. The Quadruple-Tank Process: A Multivariable Laboratory

Process with an Adjustable Zero. IEEE Transactions on Control Systems Technology,

v. 8, n. 3, p. 456Ű465, 2000.

JORDANOU, Jean; ANTONELO, Eric; CAMPONOGARA, Eduardo. Online learning control

with Echo State Networks of an oil production platform. Engineering Applications of

ArtiĄcial Intelligence, v. 85, p. 214Ű228, 2019.

JORDANOU, Jean P.; CAMPONOGARA, Eduardo; ANTONELO, Eric Aislan;

AGUIAR, Marco Aurélio Schmitz. Nonlinear Model Predictive Control of an Oil Well with

Echo State Networks. IFAC-PapersOnLine, v. 51, n. 8, p. 13Ű18, 2018.

JORDANOU, Jean P.; OSNES, Iver; HERNES, Sondre B.; CAMPONOGARA, Eduardo;

ANTONELO, Eric Aislan; IMSLAND, Lars. Nonlinear Model Predictive Control of Electrical

Submersible Pumps based on Echo State Networks. Advanced Engineering Informatics,

v. 52, p. 101553, 2022.

JORDANOU, Jean Panaioti. Echo State Networks for Online Learning Control and MPC

of Unknown Dynamic Systems: Applications in the Control of Oil Wells. 2019.

References 81

Dissertation (Master in Automation and System Engineering) Ű Universidade Federal de

Santa Catarina.

KARNIADAKIS, George Em; KEVREKIDIS, Ioannis G.; LU, Lu; PERDIKARIS, Paris;

WANG, Sifan; YANG, Liu. Physics-informed machine learning. Nature Reviews Physics,

v. 3, n. 6, p. 422Ű440, 2021.

KHALIL, Hassan K. Nonlinear Systems. 3. ed. Upper Saddle River, NJ: Pearson, Dec.

2001.

LORENZ, Edward N. Deterministic Nonperiodic Flow. Journal of the Atmospheric

Sciences, American Meteorological Society, v. 20, n. 2, p. 130Ű141, Mar. 1963.

LUKOŠEVIČIUS, Mantas. A Practical Guide to Applying Echo State Networks. In: Neural

Networks: Tricks of the Trade: Second Edition. Ed. by Grégoire Montavon,

Geneviève B. Orr and Klaus-Robert Müller. Berlin, Heidelberg: Springer Berlin Heidelberg,

2012. P. 659Ű686.

NA, Xiaodong; LI, Yuan; REN, Weijie; HAN, Min. Physics-informed hierarchical echo state

network for predicting the dynamics of chaotic systems. Expert Systems with Applications,

v. 228, p. 120155, 2023.

NICODEMUS, Jonas; KNEIFL, Jonas; FEHR, Jörg; UNGER, Benjamin. Physics-informed

Neural Networks-based Model Predictive Control for Multi-link Manipulators.

IFAC-PapersOnLine, v. 55, n. 20, p. 331Ű336, 2022. 10th Vienna International Conference

on Mathematical Modelling (MATHMOD) 2022.

OH, Dong Keun. Toward the Fully Physics-Informed Echo State Network Ű an ODE

Approximator Based on Recurrent ArtiĄcial Neurons. [S.l.: s.n.], 2020. arXiv:

2011.06769 [cs.LG].

PATHAK, Jaideep; WIKNER, Alexander; FUSSELL, Rebeckah; CHANDRA, Sarthak;

HUNT, Brian R.; GIRVAN, Michelle; OTT, Edward. Hybrid forecasting of chaotic processes:

Using machine learning in conjunction with a knowledge-based model. Chaos: An

Interdisciplinary Journal of Nonlinear Science, AIP Publishing, v. 28, n. 4, p. 041101,

2018.

References 82

PILARIO, Karl Ezra Salgado; CAO, Yi; SHAFIEE, Mahmood. A Kernel Design Approach to

Improve Kernel Subspace IdentiĄcation. IEEE Transactions on Industrial Electronics,

v. 68, n. 7, p. 6171Ű6180, 2021.

RACCA, Alberto; MAGRI, Luca. Automatic-differentiated Physics-Informed Echo State

Network (API-ESN). CoRR, abs/2101.00002, 2021.

RAISSI, Maziar; PERDIKARIS, Paris; KARNIADAKIS, George E. Physics-informed neural

networks: A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations. Journal of Computational Physics, v. 378,

p. 686Ű707, 2019.

ROBERTS, Ciaran; LARA, José Daniel; HENRIQUEZ-AUBA, Rodrigo; BOSSART, Matthew;

ANANTHARAMAN, Ranjan; RACKAUCKAS, Chris; HODGE, Bri-Mathias;

CALLAWAY, Duncan S. Continuous-time echo state networks for predicting power system

dynamics. Electric Power Systems Research, v. 212, p. 108562, 2022.

SALMEN, M.; PLOGER, P.G. Echo State Networks used for Motor Control. In: Proceedings

of the 2005 IEEE International Conference on Robotics and Automation. [S.l.: s.n.], 2005.

P. 1953Ű1958.

SAVALIA, S.; EMAMIAN, V. Cardiac Arrhythmia ClassiĄcation by Multi-Layer Perceptron and

Convolution Neural Networks. Bioengineering (Basel), v. 5, n. 2, 2018.

SCHRAUWEN, Benjamin; WARDERMANN, Marion; VERSTRAETEN, David;

STEIL, Jochen J.; STROOBANDT, Dirk. Improving reservoirs using intrinsic plasticity.

Neurocomputing, v. 71, n. 7, p. 1159Ű1171, 2008. Progress in Modeling, Theory, and

Application of Computational Intelligenc. ISSN 0925-2312.

SCHWEDERSKY, Bernardo B.; FLESCH, Rodolfo C. C.; DANGUI, Hiago A. S. IdentiĄcação

de Sistemas Dinâmicos Não Lineares Multivariáveis com Redes de Estado de Eco. In:

Congresso Brasileiro de Automática (CBA). [S.l.]: Sociedade Brasileira de Automática, 2020.

v. 2.

SHAHI, Shahrokh; FENTON, Flavio H.; CHERRY, Elizabeth M. Prediction of chaotic time

series using recurrent neural networks and reservoir computing techniques: A comparative

study. Machine Learning with Applications, v. 8, p. 100300, 2022.

References 83

SILVA, Ivan Nunes da; SPATTI, Danilo Hernane; FLAUZINO, Rogério Andrade. Redes

Neurais ArtiĄciais Para Engenharia e Ciências Aplicadas: Fundamentos Teóricos e

Aspectos Práticos. 2. ed. São Paulo: Artliber, 2016.

TAKACS, Gabor. Electrical Submersible Pumps Manual. 2nd Edition. [S.l.]: Elsevier,

2018.

TANGIRALA, Arun K. Principles of system identiĄcation: Theory and practice. Boca

Raton, FL: CRC Press, Dec. 2014.

THIEDE, Luca Anthony; PARLITZ, Ulrich. Gradient based hyperparameter optimization in

Echo State Networks. Neural Networks, v. 115, p. 23Ű29, 2019.

THOMAS, Jose Eduardo. Fundamentos de Engenharia de Petróleo. [S.l.]: Editora

Interciência, 2004.

TSATSOS, Marios. Theoretical and Numerical Study of the Van der Pol equation. 2008.

Dissertation (Master in Astrophysics Astronomy and Mechanics Mechanics) Ű Aristotle

University of Thessaloniki.

VERSTRAETEN, D.; SCHRAUWEN, B.; D’HAENE, M.; STROOBANDT, D. An experimental

uniĄcation of reservoir computing methods. Neural Networks, v. 20, n. 3, p. 391Ű403, 2007.

WAEGEMAN, Tim; WYFFELS, Francis; SCHRAUWEN, Benjamin. Feedback Control by

Online Learning an Inverse Model. IEEE Transactions on Neural Networks and Learning

Systems, v. 23, n. 10, p. 1637Ű1648, 2012.

XIANG, Zixue; PENG, Wei; LIU, Xu; YAO, Wen. Self-adaptive loss balanced

Physics-informed neural networks. Neurocomputing, v. 496, p. 11Ű34, 2022.

YANG, C.; QIAO, J.; AHMAD, Z.; NIE, K.; WANG, L. Online sequential echo state network

with sparse RLS algorithm for time series prediction. Neural Networks, v. 118, p. 32Ű42,

2019.

YILDIZ, Izzet B.; JAEGER, Herbert; KIEBEL, Stefan J. Re-visiting the echo state property.

Neural Networks, v. 35, p. 1Ű9, 2012.

YPERMAN, Jan; BECKER, Thijs. Bayesian optimization of hyper-parameters in

reservoir computing. [S.l.: s.n.], 2017. arXiv: 1611.05193 [cs.LG].

References 84

ZHENG, Yingzhe; WU, Zhe. Physics-Informed Online Machine Learning and Predictive

Control of Nonlinear Processes with Parameter Uncertainty. Industrial & Engineering

Chemistry Research, v. 62, n. 6, p. 2804Ű2818, 2023.

ZHOU, Jian; HAN, Taotao; XIAO, Fu; GUI, Guan; ADEBISI, Bamidele; GACANIN, Haris;

SARI, Hikmet. Multiscale Network Traffic Prediction Method Based on Deep Echo-State

Network for Internet of Things. IEEE Internet of Things Journal, v. 9, n. 21,

p. 21862Ű21874, 2022.

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	Resumo Expandido
	List of Figures
	List of Tables
	Contents
	Introduction
	Motivation
	Objectives
	Contributions
	Thesis Organization

	Related Works
	PINNs/Echo State Networks for Control
	Physics-Informed Echo State Networks

	Theoretical Foundations
	Dynamic Systems and System Identification
	Dynamic Systems
	System Identification
	Models and Simulation

	Neural Networks
	Neural Networks Architectures
	Physics-Informed Neural Networks

	Towards Echo State Networks with Physics-Informed Training
	Echo State Networks
	Echo State Network Architecture
	Echo State Network Weights and Parameters
	Hyperparameters Optimization
	Physics-Informed Echo State Network
	Adaptive Loss Function for PI-ESN

	Experiments
	Van der Pol Oscillator
	Unforced Equation
	Dataset
	PI-ESN settings
	PI-ESN results

	Forced Equation
	Dataset
	PI-ESN-a settings and results
	Comparative Analysis: PI-ESN vs. PI-ESN-a vs. ESN
	Effect of reservoir size and train data size
	PI-ESN-a's robustness to parameter model uncertainty

	Four-tank system
	Dataset
	PI-ESN-a settings and results
	Effect of reservoir size and train data size

	Electric Submersible pump
	Dataset
	PI-ESN-a settings and results

	Conclusion
	References

		2024-01-21T22:43:44-0300

		2024-01-24T14:50:55-0300

		2024-01-24T21:17:10-0300

