
Pedro Afonso DEITOS REGIS

Systèmes Embarqués et Objets Connectés
2022-2023

STMicroeletronics
12 Rue Jules Horowitz, 38019 Grenoble

Lazify - A tool for automated testbench code
generation

from 13/02/23 to 11/08/23

Under the supervision of:

- Company supervisor: Thomas, ALOFS, thomas.alofs@st.com

- Phelma Tutor: Katell, ALLORY, katell.morin-allory@univ-grenoble-alpes.fr

Confidentiality: no
Ecole nationale
supérieure de physique,
électronique, matériaux

Phelma
Bât. Grenoble INP - Minatec
3 Parvis Louis Néel - CS 50257
F-38016 Grenoble Cedex 01

Tél +33 (0)4 56 52 91 00
Fax +33 (0)4 56 52 91 03

http://phelma.grenoble-inp.fr

.

Internship Report

Contents

1 Abstract 3

2 Resume 3

3 Introduction 4

3.1 General Context . 4

3.2 Restricted Context . 4

3.3 Problematic . 5

3.4 Objective . 6

3.5 Planning . 6

4 About the project 7

5 The Lazify Tool 18

5.1 First Step - Format Specification . 19

5.2 Second Step - Parser . 20

5.2.1 Data Base . 21

5.2.2 Parser . 22

5.3 Third Step - Generating Code. 22

6 Implementing the tool in the STUSB4531 project 23

7 Conclusion 27

7.1 Current Limitations and Future Prospects 28

7.2 Impact . 29

7.3 Personal Conclusion . 29

8 Annexes 30

8.1 Main Loop Code . 30

8.2 Assertions . 32

8.3 Reduced Assertions . 39

ST PUBLIC Page 1

Internship Report

List of Figures

2 Cost of a bug in the conception of product. 6

3 High Level Architecture of the Project 7

4 Main loop . 9

5 PPS2PPS loop . 11

6 FIX2FIX loop . 12

7 VAR2FIX loop . 13

8 VAR2AVS loop . 14

9 FIX2AVS loop . 15

10 Format for the Lazify Tool . 19

11 Data Base used in Lazify. 21

12 Main Loop Excel Sheet . 25

13 Assertions Excel Sheet . 26

List of Tables

1 FIXED RDO . 17

2 PPS RDO . 17

3 AVS RDO . 18

ST PUBLIC Page 2

Internship Report

1 Abstract

Lazify is a set of tools designed to streamline and automate the code generation process
for reference models that are commonly part of verification testbench for digital systems.
It aims to improve the efficiency, versatility and ease of verification tasks. By automating
certain aspects of the code generation process, Lazify simplifies the entire verification
workflow, making it faster and more generic.

The specific functionalities and features of Lazify may vary depending on the context
or application it is being used for. However, in general, Lazify tools provide a systematic
approach to extract relevant information from Excel files, parse the data, and generate
code, typically in languages such as SystemVerilog.

By leveraging Lazify, Digital Verification Engineers can save time and effort by au-
tomating repetitive tasks and reducing the potential for human error. This enables
engineers to focus more on higher-level verification activities and analysis, ultimately
enhancing the overall verification process.

2 Resume

Lazify est un ensemble d’outils conçus pour rationaliser et automatiser le processus de
génération de code pour les modèles de référence qui font communement partie des test-
bench de verification pour des systemes digitaux. Il vise à améliorer l’efficacité, la poly-
valence et la facilité des tâches de vérification. En automatisant certains aspects du
processus de génération de code, Lazify simplifie l’ensemble du flux de travail de vérifi-
cation, le rendant plus rapide et plus générique.

Les fonctionnalités spécifiques de Lazify peuvent varier en fonction du contexte ou
de l’application pour laquelle il est utilisé. Cependant, en général, les outils Lazify four-
nissent une approche systématique pour extraire les informations pertinentes des fichiers
Excel, analyser les données et générer du code, généralement dans des langages tels que
SystemVerilog.

En utilisant Lazify, les ingénieurs en vérification numérique peuvent gagner du temps
et de l’énergie en automatisant les tâches répétitives et en réduisant le risque d’erreur
humaine. Les ingénieurs peuvent ainsi se concentrer davantage sur les activités de vérifi-
cation et d’analyse de haut niveau, ce qui permet d’améliorer le processus de vérification
dans son ensemble.

ST PUBLIC Page 3

Internship Report

3 Introduction

3.1 General Context

STMicroelectronics [1] is a global leader in the semiconductor industry, providing inno-
vative solutions for a wide range of applications in various sectors such as automotive,
industrial, personal electronics, and communications. Founded in 1987, the company
has grown to become one of the largest semiconductor manufacturers in the world, with
operations in over 35 countries and more than 45,000 employees. STMicroelectronics is
committed to delivering cutting-edge technology and products that enable its customers
to stay ahead of the curve in today’s fast-paced, ever-changing technological landscape.
With a focus on sustainability and corporate responsibility, STMicroelectronics is dedi-
cated to making a positive impact on society and the environment.

STMicroelectronics exceptional revenue growth in 2022, with a 26% increase from the
previous year and a net income of $4 billion, a staggering 98% more than the previous
year, is a testament to the company’s unwavering commitment to quality and innova-
tion. This impressive performance has allowed STMicroelectronics to gain significant
market share over its competitors, solidifying its position as a leader in the semiconduc-
tor industry. With its strong financial position and continued investment in research and
development, STMicroelectronics is well-positioned to continue its growth trajectory in
the coming years. As the demand for advanced semiconductor solutions continues to rise,
STMicroelectronics is poised to play a leading role in shaping the future of the industry.

The internship took place at STMicroelectronics Grenoble, which is one of the com-
pany’s largest research and development centers. Located in the heart of the French Alps,
the Grenoble site is home to over 3,000 employees and is responsible for the development
of cutting-edge technologies and products in various fields such as automotive, industrial,
and personal electronics.

3.2 Restricted Context

The internship took place in the AMS division of STMicroelectronicsin a team responsible
for verifying various cutting-edge products that are expected to be launched in the near
future. Our team utilized advanced technologies and collaborated closely with other
departments to ensure that the products met the highest quality standards.

Verification is a crucial process in microelectronics that ensures that a design meets
the intended functionality and performance requirements. It involves checking the design
against the functional specifications to ensure that it meets the desired functionality and
performance requirements before sending the design to the wafer fab for production of the
chip. Verification is a complex process that involves multiple steps, including simulation,
formal verification, and testing.

Simulation involves running the design through a software simulator based on a RTL
model of the circuit. This allows designers to test the functionality of the design and

ST PUBLIC Page 4

Internship Report

identify any errors or issues that need to be addressed. This is a rigorous process that is
typically used for safety-critical applications.

Testing involves physically testing the design to ensure that it meets the intended
functionality and performance requirements. This involves creating test cases that stress
the design and identify any issues that need to be addressed. Testing is typically done
using specialized equipment that can measure the performance of the circuit.

Overall, verification is a critical process in microelectronics that ensures that designs
meet the intended functionality and performance requirements. It is a complex process
that involves multiple steps, including simulation, formal verification, and testing. By fol-
lowing a rigorous verification process, designers can ensure that their designs are reliable,
safe, and perform as intended.

3.3 Problematic

Writing code for functional verification is necessary because it allows engineers to simulate
the behavior of the product under various conditions and configurations. This is partic-
ularly important for complex products that have multiple functions and interactions. By
writing code, engineers can test the product’s behavior in a controlled environment and
identify any functional issues that may have been introduced by the RTL designers.

The code used in the verification process is typically written in a hardware description
language (HDL) such as Verilog or VHDL. These languages are used to describe the
behavior of the electronic components and systems being designed. However, writing code
for verification usually is a manual and time-consuming and challenging task. It requires
a deep understanding of the product’s design and functionality, as well as knowledge of
programming languages and testing methodologies. Moreover, the verification code must
be constantly updated and refined as the product evolves, which adds an additional layer
of complexity to the verification process.

Rewriting the code used in the verification process can be problematic for several
reasons. The verification process is critical to ensuring the reliability and safety of the
electronic systems being designed. Any errors or mistakes in the verification process can
lead to serious consequences, such as system failures or safety hazards.

Furthermore, rewriting the code may require significant time and effort. This can
result in additional costs and delays in the design process.

Despite the challenges, writing code for verification is essential for ensuring the qual-
ity and reliability of a product. It allows engineers to identify and fix issues early in
the development process, which can save time and resources in the long run. As tech-
nology continues to advance and products become more complex, the need for effective
verification methods will only continue to grow.

ST PUBLIC Page 5

Internship Report

Figure 2: Cost of a bug in the conception of product.

Finding bugs in the code during the verification phase is a critical and essential part
of the software development process. Verification, also known as testing or quality as-
surance, involves systematically evaluating the design to ensure it meets its specified
requirements and functions correctly. The importance of finding bugs during this phase
cannot be overstated, as it directly impacts the overall quality, reliability, and security of
the software.

3.4 Objective

Considering this, the verification team at STMicroelectronics contemplated initiating a
project aimed at developing a software solution capable of automating the code generation
process, intended to speed-up verification tasks. The Lazify primary objectives encompass
maximum versatility, speed, and user-friendliness, minimizing the necessity for manual
coding. Moreover, it should be readily deployable and exhibit a gentle learning curve for
users.

Furthermore, Lazify has the potential to assist verification engineers by offering a well-
defined verification strategy. Through tool utilization, users would input information in
an intelligible format, thus facilitating the creation of a comprehensible verification plan.

3.5 Planning

Following discussions with various teams, tutors, and internal team deliberations, we
have collectively reached the consensus that the optimal strategy entails dividing the

ST PUBLIC Page 6

Internship Report

project into three key focal points. This delineation could be aptly termed a "three-step
approach" to address the issue at hand.

• Translating the specification from the design team into a common input format
specified for Lazify.

• Using a parser to parse the information for the input format into a common database
that will later be used.

• Writing custom scripts that will exploit the common database to generate the code.

Figure 3: High Level Architecture of the Project

The three-step methodology is illustrated in Figure 3. Initially, the selected format
for this project is the Excel (.xlsx) format. Next, within the codeGen python script,
there exists a parser responsible for collecting data from the Excel input document. Sub-
sequently, custom scripts come into play, leveraging this generated database to automate
code generation.

4 About the project

The endeavor occurred within the framework of the STUSB4531 project, aimed at cre-
ating a chip for USB Type-C PD (Power Delivery) application. This innovative product
centers around rapid charging and a dynamic PD protocol harnessed through the USB

ST PUBLIC Page 7

Internship Report

Type-C connector. By leveraging this technology, devices can receive elevated power
levels, resulting in accelerated charging and enhanced power flexibility.

The USB Type-C PD protocol facilitates power negotiation, permitting the provision-
ing of elevated voltage and current rates for charging. This proves particularly advanta-
geous for power-intensive devices like laptops, tablets, and smartphones.

The main functionally that will be explained is the Power Negotiation and Delivery,
the DPM block is involved in the negotiation and management of power delivery between a
USB Type-C host and a connected device. This includes determining power requirements,
negotiating power contracts, and monitoring power delivery to ensure safe and efficient
charging. This negotiations and management of the power delivery happen with the help
of PDOs and RDOs.

In the context of USB Power Delivery (USB PD) and the Device Policy Manager
(DPM) block within the USB Type-C standard, Power Data Objects (PDOs) and Request
Data Objects (RDOs) are fundamental components that facilitate the negotiation and
management of power delivery between USB Type-C devices.

Power Data Objects (PDOs):

• Definition: PDOs represent the different power profiles or configurations that a
USB Type-C device is capable of supplying or accepting. Each PDO specifies a
combination of voltage levels, current limits, and other parameters that define a
particular power delivery capability.

• DPM Role: The DPM block is responsible for evaluating and managing the PDOs
of a USB Type-C device. It determines the available power options based on the
device’s capabilities and communicates this information to other connected devices
during the negotiation process.

• Negotiation: When two USB Type-C devices are connected, they exchange their
respective PDOs. The DPM of each device evaluates the PDOs received from the
other device to determine the best-suited power delivery configuration.

Request Data Objects (RDOs):

• Definition: RDOs are messages sent by a receiving USB Type-C device (typically a
Sink) to a transmitting device (typically a Source) to request a specific power de-
livery profile. An RDO specifies the desired voltage, current, and other parameters.

• DPM Role: The DPM block, specifically on the Sink side, generates RDOs based
on the device’s power requirements and desired operating conditions. It sends these
RDOs to the Source device to initiate the negotiation process for power delivery.

• Negotiation: The Source device’s DPM receives the RDO and evaluates whether it
can fulfill the requested power profile while considering its own PDOs and power
capabilities. The negotiation may involve sending Accept or Reject messages back to
the Sink until an agreement is reached on a compatible power delivery configuration.

The DPM block dynamically manages the negotiation process by comparing the PDOs
and RDOs to find the best common power profile that both devices can support.

The negotiation aims to optimize power delivery efficiency while meeting the power
requirements of the receiving device. This allows devices to operate at the highest power

ST PUBLIC Page 8

Internship Report

level possible without exceeding safety limits. Throughout the negotiation process, the
algorithm’s objective is to discover a match, which is know as PDO match, wherein the
values within the match satisfy the criteria of both the Sink and the Source.

The DPM continuously monitors the power delivery process, making adjustments as
needed, such as during changes in load conditions or power source availability.

In summary, the DPM block plays a crucial role in managing the negotiation between
USB Type-C devices by evaluating Power Data Objects (PDOs) and generating Request
Data Objects (RDOs) to establish an optimal power delivery configuration. This RDO
value is being written in the ALGO_RESULT register. This dynamic negotiation ensures
efficient and safe power delivery while adapting to the capabilities and requirements of
the connected devices.

To produce the correct RDO there are different types of loops that are selected base
on the state of the Main loop presented in the figure 4

Figure 4: Main loop

• src_cull_null_ff: the maximum power of the Source (PDP_SRC) is null
• end_loop_no_match: no PDO match found
• src_avs_ignore: ignore AVS APDO (Device setting from the registers block)

If the device receives a ipenewcontractreq the algorithm goes to the state savesrcpdos,
in this state the algorithm:

• saves the SRC_PDOj received from the SRC in the registers

ST PUBLIC Page 9

Internship Report

• extract the PDP_SRC information

After that the algorithm might go to PPS2PPS or FIX2FIX depending if the PPS
has priority of not.

In case it enter in the PPS2PPS loop the algorithm, it:

• enables the secondary FSM to compare the PPS SPR SNK_PDO with the PPS
SPR SRC_PDOj (which typically only consists of one AVS SPR)

• waits for the secondary FSM to generate a pdo_match pulse if a match is found
and an PPS RDO is prepared, else if there is no match found

In case it enter in the FIX2FIX loop the algorithm, it:

• enables the secondary FSM to compare the Fixed SNK_PDOi (up to three PDOs)
with the Fixed SRC_PDOj (up to seven PDOs)

• waits for the secondary FSM to generate a pdo_match pulse if a match is found and
a FIX RDO is prepared, else if there is no match found, an end_loop_no_match
pulse is generated instead

For the VAR2FIX loop the algorithm, it:

• enables the secondary FSM to compare the Variable SNK_PDOi with the Fixed
SRC_PDOj (up to seven PDOs)

• waits for the secondary FSM to generate a pdo_match pulse if a match is found and
a FIX RDO is prepared, else if there is no match found, an end_loop_no_match
pulse is generated instead

For the FIX2AVS loop the algorithm, it:

• enables the secondary FSM to compare the Fixed SNK_PDOi (up to three PDOs)
with the AVS SPR SRC_PDOj (which typically only consists of one AVS SPR).

• waits for the secondary FSM to generate a pdo_match pulse if a match is found and
an AVS RDO is prepared, else if there is no match found, an end_loop_no_match
pulse is generated instead

For the VAR2AVS loop the algorithm, it:

• enables the secondary FSM to compare the Variable SNK_PDO with the AVS SPR
SRC_PDOj (which typically only consists of one AVS SPR).

• waits for the secondary FSM to generate a pdo_match pulse if a match is found and
an AVS RDO is prepared, else if there is no match found, an end_loop_no_match
pulse is generated instead

And for the REQUEST_RDO state:

• a pulse is generated that indicates to the PE (Policy Engine) that the Best_RDO
is ready.

For the secondary FSM that are a few possible states:

• FIND_V_MATCH state: finds a voltage match between the SNK and the SRC
• CHECK_CURR state: finds a current match between the SNK and the SRC

ST PUBLIC Page 10

Internship Report

• PDO_MATCH state: generates the pdo_match and prepares a RDO to the Main
FSM

• IDLE_RDO state: idle state reached after the PDO_MATCH state generates the
pdo_match

It is important to note that the index of the variables signify the position in the vector
of the current or voltage being compared at the moment.

Figure 5: PPS2PPS loop

As we can see in the figure 5 the algorithm assesses whether the chosen voltage
falls within the range defined by the source’s minimum and maximum voltage limits.
Furthermore, it validates whether these proposed source limits align with the boundaries
of the sink’s minimal and maximal PPS values. When all these conditions are satisfied,
the algorithm proceeds to compare the sink’s maximum current with that of the source.
Based on this comparative analysis, the RDO value undergoes modification accordingly.

ST PUBLIC Page 11

Internship Report

Figure 6: FIX2FIX loop

As we can see in the figure 6 the algorithm evaluates whether the current values
within the predetermined fixed PDOs of both the source and the sink are identical.
Following this assessment, it confirms whether the source’s current surpasses that of
the sink. Subsequently, it formulates the RDO values by deriving insights from this
evaluation.

ST PUBLIC Page 12

Internship Report

Figure 7: VAR2FIX loop

As we can see in the figure 7 the algorithm assesses if the value of the fixed PDO from
the source falls within the boundaries set by the source’s minimum and maximum voltage
limits. Moreover, it verifies whether the current value of the fixed PDO from the source
is greater or lesser than the maximum current of the sink. Subsequently, it constructs
the RDO considering these factors.

ST PUBLIC Page 13

Internship Report

Figure 8: VAR2AVS loop

For the AVS algorithm the only bit fields that are used are the 4 MSB 1 in case
the PDO is a AV SPR APDO it generates the values of avs_voltage and avs_current
following this rules:

1Most Significant Bits

ST PUBLIC Page 14

Internship Report

avs_voltage:

• voltage in the fixerd source PDO with the highest index and non-null current

avs_current:

• if Output_v > 15V OR avs_voltage < 15.1V
– avs_current = the current in the fixed source PDO with the highest index and

non-null current
• Else

– avs_current = the current in the fixed source PDO with the second highest
index.

As we can see in the figure 8 the algorithm evaluates whether the avs_voltage value
surpasses the sink’s minimum threshold and if the avs_voltage is greater than 9V and if
the sink’s maximum voltage also exceeds 9V. Subsequent to these assessments, it deter-
mines whether the avs_current is lower or higher than the maximum current, and then
proceeds to formulate the RDO in accordance with this criteria.

Figure 9: FIX2AVS loop

As we can see in the figure 9 the algorithm assesses if the avs_voltage is greater
than or equal to the fixed voltage of the sink, and also checks if the sink’s fixed voltage
is greater than or equal to 9V, in addition to verifying if the avs_voltage exceeds 9V.
Following this, it evaluates whether the avs_current is greater or smaller than the current
value of the sink’s fixed PDO, the RDO is then formulated based on this evaluation.

ST PUBLIC Page 15

Internship Report

Three distinct categories of RDOs are produced through the matching process, with
a focus on maximizing power. In situations where multiple matches yield identical power
levels, preference is given to the match characterized by the greatest voltage, which
corresponds to the lowest current. These three types include:

ST PUBLIC Page 16

Internship Report

FIXED RDO - Used in the FIX2FIX and VAR2FIX

0 B31 Reserved

obj_pos[2:0]
B30...28 Object position (0000b and 1110b...1111b are
Reserved and Shall not be used)

0 B27 GiveBack flag
mismatch B26 Capability Mismatch
USB_COM_CAPABLE(REG) B25 USB communications Capable

1
B24 NO USB Suspend, initiated to 1 but can be update
by MCU in the TX buffer

0
B23 Unchunked Extended Messages Supported, initiated
to 0 but can be updated by MCU in the TX buffer

EPR_CAPABLE(REG) B22 EPR Mode Capable
0 B21..20 Reserved - Shall be set to zero

op_curr[9:0] B19...10 Operating Current in 10mA units
max_curr[9:0] B9...0 Max Current in 10mA units

Table 1: FIXED RDO

The power requested by the FIX RDO is obtained by multiplying the op_curr[9:0]
with the voltage match. The voltage match corresponds to the SRC FIX PDO situated
at the object’s position within bits [19:10].

PPS RDO - Used in the PPS2PPS

0 B31 Reserved

obj_pos[2:0]
B30...28 Object position (0000b and 1110b...1111b are
Reserved and Shall not be used)

0 B27 GiveBack flag
mismatch B26 Capability Mismatch
USB_COM_CAPABLE(REG) B25 USB communications Capable

1
B24 NO USB Suspend, initiated to 1 but can be update
by MCU in the TX buffer

0
B23 Unchunked Extended Messages Supported, initiated
to 0 but can be updated by MCU in the TX buffer

EPR_CAPABLE(REG) B22 EPR Mode Capable
0 B21 Reserved - Shall be set to zero

output_v[11:0] B20...9 Output Voltage in 20mV units
0 B8...7 Reserved - Shall be set to zero

op_curr[6:0] B6...0 Operating Current in 50mA units

Table 2: PPS RDO

The power requested by the PPS RDO is obtained by multiplying the op_curr[6:0]
and the output_v[11:0].

ST PUBLIC Page 17

Internship Report

AVS RDO - Used in the VAR2AVS and FIX2AVS

0 B31 Reserved

obj_pos[2:0]
B30...28 Object position (0000b and 1110b...1111b are
Reserved and Shall not be used)

0 B27 GiveBack flag
mismatch B26 Capability Mismatch
USB_COM_CAPABLE(REG) B25 USB communications Capable

1
B24 NO USB Suspend, initiated to 1 but can be update
by MCU in the TX buffer

0
B23 Unchunked Extended Messages Supported, initiated
to 0 but can be updated by MCU in the TX buffer

EPR_CAPABLE(REG) B22 EPR Mode Capable
0 B21 Reserved - Shall be set to zero

output_v[11:0]
B20...9 Output Voltage in 25mV units the least two
significant bits are set to zero making the effective
voltage step size 100mV

0 B8...7 Reserved - Shall be set to zero
op_curr[6:0] B6...0 Operating Current in 50mA units

Table 3: AVS RDO

the power requested by the AVS RDO is obtained by multiplying the op_curr[6:0]
and the output_v[11:0].

5 The Lazify Tool

Throughout the creation process of the Lazify tool, numerous discussions took place
within the team, as well as with other verification teams in ST, and there were also
consultations with the university tutor regarding the appropriate format for describing
the state machine.

Utilizing the tool is facilitated by a comprehensive help command, accessible to users,
which furnishes vital information for its effective operation. Moreover, a README file
is included upon cloning the associated Git repository, offering essential insights into the
tool’s setup and usage.

Furthermore, a user manual serves as an in-depth guide, delving into the intricacies
of the code, accompanied by extensive comments. This trifecta of resources ensures
that users are well-equipped to harness the tool’s capabilities, catering to a spectrum of
information needs and learning preferences.

ST PUBLIC Page 18

Internship Report

5.1 First Step - Format Specification

When engaged in the design of diverse circuits, designers frequently encounter a range
of choices in terms of expressing specifications through various formats. Addressing this
well-known challenge, the verification community consistently strives to find solutions.
Here are a few instances of the formats most frequently employed:

• Text.
• Visual State or UML Diagram.
• Excel table.
• A mix off all the above.

In this undertaking, the goal was to address this concern too. Acknowledging the
significance of creating a uniform structure was deemed crucial, one that could function
as an input for the tool. Furthermore, the intention was for this arrangement to provide
a concise portrayal of the VPlan.

Not just that, this arrangement ought to also be:

• Human readable: It should be easily understandable and interpretable by a human
being without the need for specialized knowledge or tools.

• Universal: It should be applicable, relevant, or existing everywhere or to everyone.
• Machine Extractable: The data or information should be easily and accurately

extracted by computer programs or algorithms.

Two primary formats were considered: UML diagrams and XLS sheets. The project
ultimately opted for the latter, driven by the fact that it is a format already employed
by professors to educate future engineers. Additionally, this choice encompassed all the
required features for the project’s implementation.

Figure 10: Format for the Lazify Tool

ST PUBLIC Page 19

Internship Report

The decision was made to partition the Excel table into three distinct sections: the
current state, the triggering event for the transition, and the next state. To initiate
the transition, all conditions of the current state must be satisfied. If a value is absent,
it signifies the absence of validation for that particular variable.

For example, in case the object typec_fsm_state is pierre AND the pin src_pdos
_saved_ff is 2 AND the timer tPDD is 8 the transition is activated and the object
typec_fsm_state becames inna AND the pin HV1 1 AND the counter PD_CFG
.CFG_1 is increased by 3 AND the timer tPDD is 4.

As depicted in figure 10, numerous possibilities exist for the values, encompassing a
spectrum from text and expressions to variable increments, decrements, and even value
intervals.

As it is possible to see from the example there are a few keys words to describe the
digital system, there is:

• Pins -> pin : Physical Pins
• Timers -> timer : Physical Timers
• Counters -> counter: Physical Counter (Has the possibility to increase and decrease

the value)
• Registers -> reg: Physical Register
• Events -> event: Event, for example clock
• Object -> obj: The object being delineated within the Testbench, albeit not in a

physical sense, necessitates manual description and inscription within the testbench
code.

These keywords will align with the conditions being used in the database, which will
be elucidated in the subsequent section.

5.2 Second Step - Parser

The parser was constructed using Python, primarily because of its widespread popularity
as a high-level language, and it is also increasingly gaining traction within the digital
verification community.

Another crucial rationale for employing Python in this project is its inherent support
for classes. This attribute provides the opportunity to create an object-oriented database
structure, enabling a more organized and representative depiction of verification objects.

To interact with Excel, the utilization of libraries is essential. For this project, the
selected Python library is openpyxl. This choice was made owing to several factors: its
lightweight nature compared to alternative libraries, its open-source nature with active
development, compatibility, the fact that it is implemented purely in Python, and its
capability for document structure manipulation.

The core and pivotal aspect of the project is the database, serving as the repository
for the information extracted by the parser from the Excel sheet. This database format
is designed to be flexible, highly comprehensible, and equipped with the capacity to
seamlessly accommodate additions or updates.

ST PUBLIC Page 20

Internship Report

5.2.1 Data Base

The significance of adopting a language that facilitates object-oriented programming
cannot be overstated, especially in the context of the database. Each condition possesses
distinct attributes, yet they inherit from a common class. This approach greatly simplifies
both programming and comprehension of the problem. Moreover, Python’s ability to
support multiple inheritance adds a crucial dimension to the project’s implementation.

Figure 11: Data Base used in Lazify.

Fromm what is being showed in the figure 11 the main classes in the database are the
NextState and the CurrentState, both behind extended from the State class.

ST PUBLIC Page 21

Internship Report

The CurrentState is a class encompassing a single transition. Within this transition
there is an NextState which represents the destine for the transition, an event that serves
as the trigger, this trigger is activates the transition when all conditions are satisfied.

These conditions can take the form of Object, Pin, Timer, Register, or Counters.
These conditions are initially conceptualized as abstract classes and attain concreteness
only when they fall into the categories of Fixed or Interval. This distinction is vital due
to the unique nature of Intervals, which entail two values and distinct handling for code
automation.

On the other hand, the NextState does not involve a transition; it exclusively com-
prises conditions. As the destination state, it represents the endpoint. In this scenario,
the conditions could be appropriately referred to as predictions or anticipated values for
the NextState.

5.2.2 Parser

The parser operates by first identifying merged cells within the Excel sheet. This un-
derscores the significance of adhering to the precise Excel sheet format as illustrated in
figure 10. Once identified, the parser commences the construction of the database for
the CurrentState, utilizing the conditions. It further reads the subsequent two cells to
incorporate the event and the ensuing state.

With the CurrentState established, the parser proceeds to assemble the NextState,
employing the boundaries established by the merged cells. The nomenclature of current
and next of these merged cells bears considerable importance, as they serve as cues
enabling the parser to accurately navigate its processing.

Furthermore, the significance of condition names cannot be overstated. If a condition
is omitted, the parser will disregard it entirely, generating a database that does not reflect
the intended description. This meticulous handling ensures that the generated database
remains aligned with the precise description and intended representation of the system.

5.3 Third Step - Generating Code.

The third and pivotal step of the process entails the actual generation of code. This script
is multifaceted, encompassing the reference model, as well as assertions. The purpose of
this code is to leverage the data stored within the meticulously constructed database,
which was meticulously crafted by the parser in the preceding steps. Through this code
generation, the system harnesses the comprehensive information within the database to
manifest a functional and coherent implementation.

The functioning mechanism involves the sequential extraction of the initial state from
the CurrentState and the subsequent state from the NextState. Thereby culminating in
a code structure resembling the exemplified code below:

ST PUBLIC Page 22

Internship Report

1 if(typec_fsm_state == pierre && src_pdos_saved_ff ==2 && tPDD ==8) begin
2 typec_fsm_state = inna;
3 HV1 = 1;
4 state1_loop_cntr +=3;
5 tPDD = 4;
6 end
7 else if(typec_fsm_state == olivier && i_pps_prio == 5 &&

state1_loop_cntr == 2) begin
8 typec_fsm_state = frederic;
9 HV1 = min(3,6);

10 state1_loop_cntr -=1;
11 end
12 else if(typec_fsm_state == mark && src_pdos_saved_ff =<5 && tPDD == 8)

begin
13 typec_fsm_state = olivier;
14 PD_CFG.CFG_1 = 2;
15 end
16 else if(typec_fsm_state == thomas && src_pdos_saved_ff == 2 &&

state1_loop_cntr == 7) begin
17 typec_fsm_state = pierre;
18 HV1 = 1;
19 state1_loop_cntr = 3;
20 tPDD = 4;
21 end

It’s important to note that the aforementioned code was generated based on the Excel
format depicted in figure 10.

This approach ensures a methodical translation of the data into executable code,
leading to an outcome that mirrors the description of the design made in the excel sheet.

Expanding the tool’s capabilities necessitates the creation of distinct code segments
for code generation, each tailored to the specific functionality. These segments would also
entail the extraction of relevant information from the database. To integrate these new
functionalities, a simple addition would involve introducing an argument to invoke the
appropriate code segment within the main script. This modular approach allows seamless
integration of new features while maintaining the tool’s overall structure and usability.

6 Implementing the tool in the STUSB4531 project

The DPM was selected as the initial test vehicle for the tool due to its inherent complexity,
as evident from the insights presented in section 4. This choice is driven by the presence
of two concurrent state machines within the DPM, operating in parallel. Furthermore,
the challenge arising from varying unit resolutions further accentuates the intricacy of
the DPM, making it an ideal candidate to thoroughly evaluate the tool’s capabilities and
robustness.

In addition to these reasons, it’s worth noting that there was already a dedicated
verification engineer engaged in the validation of the block. This assurance of a thor-
ough verification process already in place contributed to our confidence that the circuit’s

ST PUBLIC Page 23

Internship Report

validation would remain accurate even with the tool’s development. This collaborative
approach not only reinforced the tool’s credibility but also ensured a reliable and com-
prehensive verification outcome for the circuit.

Given the ongoing nature of the design specification and the relatively less familiar
domain, extensive interactions were essential with the design team. These discussions
aimed to comprehensively grasp the functioning and intricacies of the block. This col-
laborative effort was imperative to ensure a clear understanding of the block’s intended
operation and to align the tool’s development with the project’s requirements. The iter-
ative dialogue fostered effective communication, enabling the tool to accurately cater to
the unique aspects of the subject matter.

The main focus during the initial test phase revolved around creating a reference
model, commonly known as a scoreboard, designed specifically to cater to the intricacies
of the DPM. The objective was to create a benchmark for comparison, facilitating the
evaluation of the autogenerate code’s outcomes against the actual results produced by
the circuit. This approach enabled a comprehensive assessment of the tool’s accuracy
and effectiveness, ensuring a thorough validation of the circuit’s functionality through a
robust and systematic comparison process.

Indeed, this endeavor went beyond mere comparison. It acted as a method to validate
and comprehensively assess the tool’s functionalities. By subjecting the autogenerated
code’s results to comparison with the actual circuit’s outcomes, not only were potential
discrepancies highlighted, but also the tool’s strengths and weaknesses were illuminated.
This iterative validation process not only bolstered confidence in the tool’s reliability
but also provided invaluable insights into its performance nuances, paving the way for
refinement and enhancement.

To facilitate this comparison, a rudimentary checker was devised to verify the values
of register against the value generated by the tool.

ST PUBLIC Page 24

Internship Report

Figure 12: Main Loop Excel Sheet

The figure 12 illustrates the Excel representation of the main loop, as depicted in
figure 4. And the code in the annex 8.1

The tool’s value became evident as it revealed previously undetected bugs, despite
the concurrent efforts of another verification engineer on the block. Additionally, the
tool’s comprehensive verification process resonated well with the design team, as it not
only identified existing issues but also offered a rigorous level of verification that garnered
their appreciation. This dual impact showcased the tool’s ability to enhance verification
depth and accuracy, garnering positive feedback from both the verification and design
stakeholders.

Subsequent to the completion of the reference model generation, another test vehicle
was proposed for the project. This involved the generation of assertions to validate
message responses for the Policy Engine (PE). These assertions were designed to verify the
expected responses based on the configuration of the Device Under Testing (DUT). This
extension of the tool’s functionality aimed to ensure comprehensive protocol compliance
testing, encompassing various DUT configurations and corresponding response scenarios.

ST PUBLIC Page 25

Internship Report

Figure 13: Assertions Excel Sheet

ST PUBLIC Page 26

Internship Report

As evidenced in figure 13, the table structure for the assertions closely resembles that
of the reference model, as it adheres to the same format.

The underlying concept remains consistent with that of the reference model. The
identical parser is employed, with the differentiating factor being the utilization of an
alternate script tailored for generating assertions. This approach ensures continuity in
terms of methodology while accommodating the specific requirements for generating as-
sertions pertaining to message responses.

The outcome of the assertions can be observed in annex 8.2.

Examining the assertions sheet, it becomes evident that several lines could potentially
be streamlined for response validation. Contemplating this, a proposal for implementing
boolean reduction of the table emerges as a viable solution.

By leveraging an open-source code from GitHub [2] and making slight adaptations, the
implementation process was streamlined. The end result is the assertion code, which has
been simplified through boolean reduction. This reduced assertion code can be examined
in Annex 8.3.

Upon comparing the two sets of code, a substantial disparity in the number of lines
and the enhanced readability is apparent. However, it’s important to acknowledge that
this streamlined approach comes at the cost of losing specific information, particularly
the ability to discern which line of assertions triggered a particular assertion.

Discussions also arose about incorporating a new feature into Lazify, specifically
"equivalence checking." However, the introduction of this feature encountered a road-
block due to a disparity in the design partition, particularly the pin-out, between the
RTL and the reference model generated by Lazify.

7 Conclusion

The culmination of this project marks a significant stride forward in the realm of verifi-
cation, underscoring the effectiveness of modern tooling in ensuring the robustness and
reliability of complex digital systems. The journey embarked upon revolved around the
development of a versatile and potent tool capable of systematically generating refer-
ence models, crafting assertions, and streamlining verification procedures. The motiva-
tion driving this effort stemmed from the acknowledgment of the increasing complexities
inherent in modern digital designs. This recognition prompted the need for inventive
solutions to effectively address the challenges associated with thorough verification.

From its inception, the project set its sights on an ambitious objective: to design
a tool that could seamlessly integrate with existing design processes, thereby bolstering
the efficacy of verification methodologies. The selection of Python as the implementation
language was a strategic choice, capitalizing on its object-oriented nature and widespread
usage within the digital verification community. This choice paved the way for a multi-
step approach, beginning with the construction of an intricate database through the

ST PUBLIC Page 27

Internship Report

parsing of Excel sheets. This meticulous extraction and organization of data formed the
base for subsequent processes.

The first test vehicle, focusing on the generation of a reference model, demonstrated
the tool’s capability to uncover subtle bugs that had gone unnoticed in previous as-
sessments. Notably, the ability to validate against an established verification engineer’s
efforts underscored the tool’s added value. Moreover, the tool’s capacity to harmonize
with diverse design specifications, guided by meticulous discussions with the design team,
further attested to its adaptability.

The exploration didn’t stop there. The tool’s prowess was extended to assertions
for message responses, thus broadening its utility to encompass a spectrum of verifica-
tion needs. This expansion aligned with the intricate nature of digital designs, where
customized assertions play a crucial role in ensuring the correct operation of various
configurations. The implementation of boolean reduction further underscored the tool’s
adaptability, resulting in more concise assertion code while acknowledging the trade-off
of lost granularity.

Looking back„ the journey embarked upon was a comprehensive exploration of modern
verification challenges, yielding a multifaceted tool that empowers verification engineers
to navigate the complexities of digital design with enhanced efficiency and rigor. This
project’s success is a testament to the collaborative synergy between technology and
human expertise, signaling a promising path forward in the ever-evolving landscape of
digital verification.

7.1 Current Limitations and Future Prospects

While the developed tool marks a substantial leap forward in automating verification
processes, it is important to acknowledge certain current limitations. One notable aspect
is the extent of manual code writing that persists, particularly in cases such as defining
testbench signals. At present, setting up these signals requires a significant investment
of time and effort, especially during the initial stages of implementation.

Despite this limitation, it is worth highlighting that the tool’s true potential unfolds
in the long run. The up-front time investment to meticulously establish the required
signals and configurations gradually yields significant dividends as the verification process
progresses, which is a common occurrence during development, given that verification
often commences while the design itself is still undergoing creation and modifications.
This dynamic process between design evolution and ongoing verification necessitates a
flexible approach that acknowledges the need for iterative adjustments and enhancements
to the tool’s capabilities.

This inherent trade-off, where an initial manual effort translates into substantial time
savings over extended verification cycles, is a hallmark of the tool’s pragmatic value.

As the tool continues to evolve, there exists a promising trajectory for further au-
tomation, potentially encompassing areas that currently necessitate manual intervention.

ST PUBLIC Page 28

Internship Report

By addressing these aspects, the tool’s efficiency and effectiveness could be further in-
creased, streamlining the overall verification process even more comprehensively. The
ongoing pursuit of refining and augmenting the tool holds the promise of bridging the
current gap between manual involvement and automated verification, this sets the stage
for a period marked by increased efficiency and greater reliability in the verification of
digital designs.

In conclusion, while the current state of the tool acknowledges certain manual as-
pects, its ability to revolutionize the verification landscape remains indisputable. As
advancements are made and the tool matures, the balance between initial investment
and long-term gains will undoubtedly shift further in favor of enhanced efficiency and
expedited verification processes.

7.2 Impact

During the course of the internship, a pivotal moment transpired through a collaborative
meeting with the verification teams both at ST Grenoble and on a global scale across
ST. This event served as a platform for presenting the project’s progress and intricacies,
having notable interest from several teams. The impact of the tool’s abilities was evident
during the discussions, as various teams showed excitement about incorporating the tool
into their verification processes.

A particularly promising development emerged within the immediate working context,
as the team directly engaged with during the internship is now actively being encouraged
to initiate utilization of the tool. This growing interest within the company underscores
the tool’s practical usefulness and fits well with the broader aim of encouraging thorough
verification practices throughout the organization.

The recognition and interest exhibited by the broader verification community, coupled
with the internal impetus to adopt the tool, underscores its intrinsic value and its potential
to drive positive transformation in verification methodologies. This recognition, fueled by
genuine interest and practical application, serves as a testament to the tool’s significance
and the impact it stands to make in streamlining and enhancing the verification process.

7.3 Personal Conclusion

The internship journey has been truly fulfilling, offering a chance to make meaningful
strides in the project. The work environment was fantastic, with supportive and friendly
colleagues who were always ready to assist. The possibility of future collaboration with
ST was also extended, which was a great honor. Although I had to defer this opportunity
due to my return to Brazil, ongoing discussions indicate potential for future engagement.

This internship experience has been incredibly valuable, not just for the technical
accomplishments but also for the professional relationships and opportunities that have
emerged. The impact of this experience is felt not only in what has been achieved, but
also in the exciting prospects that may lie ahead. ST has proven to be a place where
hard work and contributions are acknowledged and welcomed.

ST PUBLIC Page 29

Internship Report

8 Annexes

8.1 Main Loop Code

1 if(dpm_if.i_pe_request_received == 1) begin
2 main_fsm = SAVE_SRC_PDOS;
3 fix2fix_enable = 0;
4 var2fix_enable = 0;
5 var2avs_enable = 0;
6 fix2avs_enable = 0;
7 pps2pps_enable = 0;
8 ALGO_RESULT = 0;
9 end

10 else if(main_fsm == SAVE_SRC_PDOS && src_pdos_saved_ff == 1 && dpm_if.
i_op_spec_rev == PD_3 && dpm_if.i_snk_feature [1] == 1 && dpm_if.
i_pps_prio == 1) begin

11 main_fsm = PPS2PPS_LOOP;
12 pps2pps_enable = 1;
13 end
14 else if(main_fsm == SAVE_SRC_PDOS && src_pdos_saved_ff == 1 && dpm_if.

i_op_spec_rev == PD_2) begin
15 main_fsm = FIX2FIX_LOOP;
16 fix2fix_enable = 1;
17 end
18 else if(main_fsm == SAVE_SRC_PDOS && src_pdos_saved_ff == 1 && dpm_if.

i_snk_feature [1] == 0) begin
19 main_fsm = FIX2FIX_LOOP;
20 fix2fix_enable = 1;
21 end
22 else if(main_fsm == SAVE_SRC_PDOS && src_pdos_saved_ff == 1 && dpm_if.

i_pps_prio == 0) begin
23 main_fsm = FIX2FIX_LOOP;
24 fix2fix_enable = 1;
25 end
26 else if(main_fsm == FIX2FIX_LOOP && src_curr_null_ff == 0 && dpm_if.

i_snk_feature [0] == 1 && pdo_match == 1) begin
27 main_fsm = VAR2FIX_LOOP;
28 fix2fix_enable = 0;
29 var2fix_enable = 1;
30 end
31 else if(main_fsm == FIX2FIX_LOOP && src_curr_null_ff == 0 && dpm_if.

i_op_spec_rev == PD_3 && pdo_match == 1 && dpm_if.i_src_avs_ignore
== 0) begin

32 main_fsm = FIX2AVS_LOOP;
33 fix2fix_enable = 0;
34 fix2avs_enable = 1;
35 end
36 else if(main_fsm == FIX2FIX_LOOP && pdo_match == 1) begin
37 main_fsm = REQUEST_RDO;
38 fix2fix_enable = 0;
39 end
40 else if(main_fsm == FIX2FIX_LOOP && END_LOOP_no_match == 1) begin
41 main_fsm = REQUEST_RDO;
42 fix2fix_enable = 0;

ST PUBLIC Page 30

Internship Report

43 end
44 else if(main_fsm == FIX2AVS_LOOP && dpm_if.i_snk_feature [0] == 1 &&

END_LOOP_no_match == 1) begin
45 main_fsm = VAR2AVS_LOOP;
46 var2avs_enable = 1;
47 fix2avs_enable = 0;
48 end
49 else if(main_fsm == FIX2AVS_LOOP && dpm_if.i_snk_feature [0] == 0 &&

END_LOOP_no_match == 1) begin
50 main_fsm = REQUEST_RDO;
51 fix2avs_enable = 0;
52 end
53 else if(main_fsm == FIX2AVS_LOOP && dpm_if.i_snk_feature [0] == 1 &&

pdo_match == 1) begin
54 main_fsm = VAR2AVS_LOOP;
55 var2avs_enable = 1;
56 fix2avs_enable = 0;
57 end
58 else if(main_fsm == FIX2AVS_LOOP && dpm_if.i_snk_feature [0] == 0 &&

pdo_match == 1) begin
59 main_fsm = REQUEST_RDO;
60 fix2avs_enable = 0;
61 end
62 else if(main_fsm == PPS2PPS_LOOP && pdo_match == 1) begin
63 main_fsm = REQUEST_RDO;
64 pps2pps_enable = 0;
65 end
66 else if(main_fsm == PPS2PPS_LOOP && END_LOOP_no_match == 1) begin
67 main_fsm = FIX2FIX_LOOP;
68 fix2fix_enable = 1;
69 pps2pps_enable = 0;
70 end
71 else if(main_fsm == VAR2FIX_LOOP && dpm_if.i_op_spec_rev == PD_3 &&

pdo_match == 1 && dpm_if.i_src_avs_ignore == 0) begin
72 main_fsm = FIX2AVS_LOOP;
73 var2fix_enable = 0;
74 fix2avs_enable = 1;
75 end
76 else if(main_fsm == VAR2FIX_LOOP && pdo_match == 1 && dpm_if.

i_src_avs_ignore == 1) begin
77 main_fsm = REQUEST_RDO;
78 var2fix_enable = 0;
79 end
80 else if(main_fsm == VAR2FIX_LOOP && dpm_if.i_op_spec_rev == PD_2 &&

pdo_match == 1) begin
81 main_fsm = REQUEST_RDO;
82 var2fix_enable = 0;
83 end
84 else if(main_fsm == VAR2FIX_LOOP && dpm_if.i_op_spec_rev == PD_3 &&

dpm_if.i_src_avs_ignore == 0 && END_LOOP_no_match == 1) begin
85 main_fsm = FIX2AVS_LOOP;
86 var2fix_enable = 0;
87 fix2avs_enable = 1;
88 end

ST PUBLIC Page 31

Internship Report

89 else if(main_fsm == VAR2FIX_LOOP && dpm_if.i_src_avs_ignore == 1 &&
END_LOOP_no_match == 1) begin

90 main_fsm = REQUEST_RDO;
91 var2fix_enable = 0;
92 end
93 else if(main_fsm == VAR2FIX_LOOP && dpm_if.i_op_spec_rev == PD_2 &&

END_LOOP_no_match == 1) begin
94 main_fsm = REQUEST_RDO;
95 var2fix_enable = 0;
96 end
97 else if(main_fsm == VAR2AVS_LOOP && pdo_match == 1) begin
98 main_fsm = REQUEST_RDO;
99 var2avs_enable = 0;

100 end
101 else if(main_fsm == VAR2AVS_LOOP && END_LOOP_no_match == 1) begin
102 main_fsm = REQUEST_RDO;
103 var2avs_enable = 0;
104 end
105 else if(dpm_if.i_rst_n == 0) begin
106 main_fsm = IDLE_ALGO;
107 fix2fix_enable = 0;
108 var2fix_enable = 0;
109 var2avs_enable = 0;
110 fix2avs_enable = 0;
111 pps2pps_enable = 0;
112 end
113 else if(main_fsm == REQUEST_RDO) begin
114 main_fsm = IDLE_ALGO;
115 end

8.2 Assertions

1 if(tx_msg.control_msg_resp == USB_PD_VCONN_SWAP) begin
2 if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0 && reg

.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 && reg.
stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 0) begin

3 asrt_exp_control_msg_resp_to_vconn_swap_is_not_supported_1 :
assert(rx_msg.control_msg_resp == USB_PD_NOT_SUPPORTED)

4 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Not_Supported , actual = %s", rx_msg.
control_msg_resp.name()))

5 end
6 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 0) begin

7 asrt_exp_control_msg_resp_to_vconn_swap_is_not_supported_2 :
assert(rx_msg.control_msg_resp == USB_PD_NOT_SUPPORTED)

ST PUBLIC Page 32

Internship Report

8 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Not_Supported , actual = %s", rx_msg.
control_msg_resp.name()))

9 end
10 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 0) begin

11 asrt_exp_control_msg_resp_to_vconn_swap_is_not_supported_3 :
assert(rx_msg.control_msg_resp == USB_PD_NOT_SUPPORTED)

12 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Not_Supported , actual = %s", rx_msg.
control_msg_resp.name()))

13 end
14 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 0) begin

15 asrt_exp_control_msg_resp_to_vconn_swap_is_not_supported_4 :
assert(rx_msg.control_msg_resp == USB_PD_NOT_SUPPORTED)

16 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Not_Supported , actual = %s", rx_msg.
control_msg_resp.name()))

17 end
18 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 1) begin

19 asrt_exp_control_msg_resp_to_vconn_swap_is_not_supported_5 :
assert(rx_msg.control_msg_resp == USB_PD_NOT_SUPPORTED)

20 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Not_Supported , actual = %s", rx_msg.
control_msg_resp.name()))

21 end
22 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 1) begin

23 asrt_exp_control_msg_resp_to_vconn_swap_is_not_supported_6 :
assert(rx_msg.control_msg_resp == USB_PD_NOT_SUPPORTED)

24 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Not_Supported , actual = %s", rx_msg.
control_msg_resp.name()))

25 end
26 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 1) begin

27 asrt_exp_control_msg_resp_to_vconn_swap_is_not_supported_7 :
assert(rx_msg.control_msg_resp == USB_PD_NOT_SUPPORTED)

ST PUBLIC Page 33

Internship Report

28 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Not_Supported , actual = %s", rx_msg.
control_msg_resp.name()))

29 end
30 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 1) begin

31 asrt_exp_control_msg_resp_to_vconn_swap_is_not_supported_8 :
assert(rx_msg.control_msg_resp == USB_PD_NOT_SUPPORTED)

32 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Not_Supported , actual = %s", rx_msg.
control_msg_resp.name()))

33 end
34 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 0) begin

35 asrt_exp_control_msg_resp_to_vconn_swap_is_not_supported_9 :
assert(rx_msg.control_msg_resp == USB_PD_NOT_SUPPORTED)

36 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Not_Supported , actual = %s", rx_msg.
control_msg_resp.name()))

37 end
38 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 1) begin

39 asrt_exp_control_msg_resp_to_vconn_swap_is_not_supported_10 :
assert(rx_msg.control_msg_resp == USB_PD_NOT_SUPPORTED)

40 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Not_Supported , actual = %s", rx_msg.
control_msg_resp.name()))

41 end
42 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 0) begin

43 asrt_exp_control_msg_resp_to_vconn_swap_is_accept_1 : assert(
rx_msg.control_msg_resp == USB_PD_ACCEPT)

44 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Accept , actual = %s", rx_msg.
control_msg_resp.name()))

45 end
46 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 0) begin

47 asrt_exp_control_msg_resp_to_vconn_swap_is_accept_2 : assert(
rx_msg.control_msg_resp == USB_PD_ACCEPT)

ST PUBLIC Page 34

Internship Report

48 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Accept , actual = %s", rx_msg.
control_msg_resp.name()))

49 end
50 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 0) begin

51 asrt_exp_control_msg_resp_to_vconn_swap_is_accept_3 : assert(
rx_msg.control_msg_resp == USB_PD_ACCEPT)

52 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Accept , actual = %s", rx_msg.
control_msg_resp.name()))

53 end
54 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 0) begin

55 asrt_exp_control_msg_resp_to_vconn_swap_is_accept_4 : assert(
rx_msg.control_msg_resp == USB_PD_ACCEPT)

56 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Accept , actual = %s", rx_msg.
control_msg_resp.name()))

57 end
58 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 1) begin

59 asrt_exp_control_msg_resp_to_vconn_swap_is_accept_5 : assert(
rx_msg.control_msg_resp == USB_PD_ACCEPT)

60 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Accept , actual = %s", rx_msg.
control_msg_resp.name()))

61 end
62 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 1) begin

63 asrt_exp_control_msg_resp_to_vconn_swap_is_accept_6 : assert(
rx_msg.control_msg_resp == USB_PD_ACCEPT)

64 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Accept , actual = %s", rx_msg.
control_msg_resp.name()))

65 end
66 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 1) begin

67 asrt_exp_control_msg_resp_to_vconn_swap_is_accept_7 : assert(
rx_msg.control_msg_resp == USB_PD_ACCEPT)

ST PUBLIC Page 35

Internship Report

68 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Accept , actual = %s", rx_msg.
control_msg_resp.name()))

69 end
70 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 1) begin

71 asrt_exp_control_msg_resp_to_vconn_swap_is_accept_8 : assert(
rx_msg.control_msg_resp == USB_PD_ACCEPT)

72 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Accept , actual = %s", rx_msg.
control_msg_resp.name()))

73 end
74 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 0) begin

75 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_1 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

76 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

77 end
78 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 0) begin

79 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_2 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

80 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

81 end
82 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 0) begin

83 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_3 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

84 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

85 end
86 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 0) begin

87 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_4 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

ST PUBLIC Page 36

Internship Report

88 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

89 end
90 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 1) begin

91 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_5 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

92 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

93 end
94 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 1) begin

95 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_6 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

96 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

97 end
98 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 1) begin

99 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_7 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

100 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

101 end
102 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 1) begin

103 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_8 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

104 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

105 end
106 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 0) begin

107 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_9 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

ST PUBLIC Page 37

Internship Report

108 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

109 end
110 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 0) begin

111 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_10 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

112 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

113 end
114 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 0) begin

115 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_11 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

116 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

117 end
118 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 1) begin

119 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_12 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

120 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

121 end
122 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
dut_is_vconn_src == 1) begin

123 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_13 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

124 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

125 end
126 else if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 1) begin

127 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_14 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

ST PUBLIC Page 38

Internship Report

128 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

129 end
130 end
131 if(tx_msg.control_msg_resp == USB_PD_DR_SWAP) begin
132 if(reg.stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1 && reg

.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0 && reg.
stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
dut_is_vconn_src == 1) begin

133 asrt_exp_control_msg_resp_to_dr_swap_is_reject_1 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

134 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
DR_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

135 end
136 end

8.3 Reduced Assertions

1 if(tx_msg.control_msg_resp == USB_PD_VCONN_SWAP) begin
2 if(reg.stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg

.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1) begin

3 asrt_exp_control_msg_resp_to_vconn_swap_is_not_supported_1 :
assert(rx_msg.control_msg_resp == USB_PD_NOT_SUPPORTED)

4 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Not_Supported , actual = %s", rx_msg.
control_msg_resp.name()))

5 end
6 else if(reg.dut_is_vconn_src == 0 && reg.

stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 1) begin
7 asrt_exp_control_msg_resp_to_vconn_swap_is_not_supported_2 :

assert(rx_msg.control_msg_resp == USB_PD_NOT_SUPPORTED)
8 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for

VCONN_SWAP message: expected = Not_Supported , actual = %s", rx_msg.
control_msg_resp.name()))

9 end
10 else if(reg.dut_is_vconn_src == 1 && reg.

stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1) begin

11 asrt_exp_control_msg_resp_to_vconn_swap_is_accept_1 : assert(
rx_msg.control_msg_resp == USB_PD_ACCEPT)

12 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Accept , actual = %s", rx_msg.
control_msg_resp.name()))

13 end
14 else if(reg.dut_is_vconn_src == 1 && reg.

stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0) begin

15 asrt_exp_control_msg_resp_to_vconn_swap_is_accept_2 : assert(
rx_msg.control_msg_resp == USB_PD_ACCEPT)

ST PUBLIC Page 39

Internship Report

16 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Accept , actual = %s", rx_msg.
control_msg_resp.name()))

17 end
18 else if(reg.stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0

&& reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 &&
reg.stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0) begin

19 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_1 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

20 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

21 end
22 else if(reg.dut_is_vconn_src == 0 && reg.

stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_off == 0) begin
23 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_2 : assert(

rx_msg.control_msg_resp == USB_PD_REJECT)
24 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for

VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

25 end
26 else if(reg.dut_is_vconn_src == 1 && reg.

stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 0 && reg.
stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 1 && reg.
stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 1) begin

27 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_3 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

28 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

29 end
30 else if(reg.dut_is_vconn_src == 1 && reg.

stusb4531_reg_item_cloned.pd_revision.pd_rev_maj == 1 && reg.
stusb4531_reg_item_cloned.dpm_ctrl.vconn_swap_2_on == 0 && reg.
stusb4531_reg_item_cloned.gpio_setting.gpio_conf == 0) begin

31 asrt_exp_control_msg_resp_to_vconn_swap_is_reject_4 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

32 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
VCONN_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

33 end
34 end
35 if(tx_msg.control_msg_resp == USB_PD_DR_SWAP) begin
36 if(reg.dut_is_vconn_src == 1 && reg.stusb4531_reg_item_cloned.

pd_revision.pd_rev_maj == 0 && reg.stusb4531_reg_item_cloned.
dpm_ctrl.vconn_swap_2_on == 1 && reg.stusb4531_reg_item_cloned.
dpm_ctrl.vconn_swap_2_off == 1 && reg.stusb4531_reg_item_cloned.
gpio_setting.gpio_conf == 1) begin

37 asrt_exp_control_msg_resp_to_dr_swap_is_reject_1 : assert(
rx_msg.control_msg_resp == USB_PD_REJECT)

38 else ‘uvm_error(get_type_name (), $sformatf("Wrong response for
DR_SWAP message: expected = Reject , actual = %s", rx_msg.
control_msg_resp.name()))

39 end
40 end

ST PUBLIC Page 40

Internship Report

References

[1] “Stmicroeletronics.” https://st.com.

[2] S. Adhikari, “Quine mccluskey algorithm for minimizing logical expressions.” https:
//github.com/int-main/Quine-McCluskey, 2018.

ST PUBLIC Page 41

https://st.com
https://github.com/int-main/Quine-McCluskey
https://github.com/int-main/Quine-McCluskey

	Abstract
	Resume
	Introduction
	General Context
	Restricted Context
	Problematic
	Objective
	Planning

	About the project
	The Lazify Tool
	First Step - Format Specification
	Second Step - Parser
	Data Base
	Parser

	Third Step - Generating Code.

	Implementing the tool in the STUSB4531 project
	Conclusion
	Current Limitations and Future Prospects
	Impact
	Personal Conclusion

	Annexes
	Main Loop Code
	Assertions
	Reduced Assertions

