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RESUMO 

 

Os problemas cardíacos como arritmias cardíacas representam uma das causas mais 

comuns de morte no mundo, arritmias cardíacas são originados em diferentes regiões 

do coração, apresentando, portanto, padrões muito específicos. O diagnóstico de 

doenças cardíacas é normalmente realizado por meio de eletrocardiogramas 

contando diferentes derivações. Esses exames são analisados por profissionais, 

entretanto, com o surgimento de melhores métodos de inteligência artificial, podemos 

observar um aumento nas tentativas de apoiar a análise com redes neurais. Existem 

várias abordagens utilizando tanto dados brutos quanto características desenvolvidas 

manualmente, como espectrogramas. As redes neurais mais populares são as redes 

neurais convolucionais que são frequentemente utilizadas como base, bem como as 

redes neurais recorrentes que também se mostram uma abordagem popular. A 

construção de um banco de dados para classificação é um desafio, por isso, utilizamos 

os dados do desafio Physionet 2021, composto por mais de 88.000 

eletrocardiogramas disponíveis publicamente, provenientes de diversas fontes. O 

objetivo desta dissertação é apresentar uma visão geral e a fundamentação teórica 

dos conceitos mais importantes utilizados e necessários para a compreensão deste 

trabalho, bem como detalhar as configurações dos modelos, incluindo as estruturas 

ResNet e LSTMs, os diferentes hiperparâmetros e especificidades dos dados 

utilizados. Os resultados de diferentes modelos usando dados brutos ou 

espectrogramas e/ou LSTMs são descritos. O modelo com melhor desempenho é um 

ResNet34 baseado no uso de espectrogramas e 3 derivacoes, com uma exatidão total 

no teste de 78,48%, seguido por um ResNet34 que usa dados brutos e atinge 78,25%. 

Os modelos menores e mais simples baseados no ResNet18 também alcançaram 

acuracías muito altas, próximas aos modelos maiores. O melhor LSTM usando dados 

brutos alcançou apenas 56,91% no teste, com desempenho significativamente pior. 

Com base nas observações feitas, concluímos que um número menor de derivações  

já era suficiente e que os LSTMs não tiveram um bom desempenho, devido ao 

excesso de ajuste, mostrando as enormes vantagens dos modelos mais simples neste 

trabalho. 

Palavras-chave: ECG, Electrocardiograma, Cardiologia, Arritmia Atrial, Classificação, 
Deep Learning, Redes Neurais 
 
 



 

ABSTRACT 

 

Cardiac arrhythmias and heart problems are among the most common causes of death 

worldwide, caused by various sicknesses in different heart regions and, therefore, 

having a pattern. The diagnosis of these diseases is commonly made with the help of 

electrocardiograms, which can include a different number of leads. Professionals 

usually analyze them; however, with the emergence of better artificial intelligence 

methods, there are more and more attempts to support the analysis with the help of 

deep neural networks. Various ideas exist for achieving that using raw data or 

handcrafted features such as spectrograms. For deep neural networks, convolutional 

neural networks are often used as a basis, and recurrent neural networks are a popular 

approach. Building an own database for classification is challenging, so for this work, 

the data of the Physionet 2021 challenge is used, consisting of over 88000 publicly 

available electrocardiograms with 12 leads from various sources. The overall goal of 

this dissertation is to create a well-performing, easy-to-use classifier for atrial 

arrhythmias. Therefore, an overview and theoretical background of the most important 

concepts being utilized is given needed to understand this work. Then, the model 

setups and configurations, including the ResNet Backbones and LSTM structures, are 

described, and the different hyperparameters and the specifics of the data are outlined. 

The results of different models using raw data or spectrograms and or LSTMs are 

given. The best-performing model is ResNet34 based, using Spectrograms and three 

leads having a full accuracy in the test of 78.48%, followed by a ResNet34 using raw 

data achieving 78.25 %. The smaller, simpler models based on ResNet18 also 

achieved very high accuracies close to the bigger models. The best LSTM using raw 

data only achieved 56.91 % in the test performed significantly worse. From the 

observations, we conclude that a smaller number of leads was already sufficient and 

that the LSTMs did not perform well, most likely due to overfitting showcasing the huge 

advantages of the simpler models in this work. 

Keywords: ECG, Electrocardiogram, Cardiology, Atrial Arrhythmia, Classification, 
Deep Learning, Neural Networks 
  



 

ZUSAMMENFASSUNG 

 

Herzrhythmusstörungen und Herzprobleme gehören weltweit zu den häufigsten 

Todesursachen, verursacht in unterschiedlichen Herzregionen mit spezifischen 

Mustern. Die Diagnose dieser Krankheiten wird in der Regel mit Hilfe von 

Elektrokardiogrammen gestellt, die mit unterschiedlichen Ableitungen erzeugt werden 

können. Mit dem Aufkommen besserer Methoden der künstlichen Intelligenz gibt es 

jedoch immer mehr Versuche, die Analyse mit Hilfe von neuronalen Netzen zu 

unterstützen. Es gibt verschiedene Ansätze, um dies mit Hilfe von Rohdaten oder 

handgefertigten Merkmalen wie Spektrogrammen zu erreichen. Für neuronale Netze 

werden oft Faltungsnetze als Grundlage verwendet wie auch rekurrente neuronale 

Netze. Der Aufbau einer eigenen Datenbank für die Klassifizierung ist schwierig, daher 

werden für diese Arbeit die Daten der Physionet 2021 Challenge verwendet, die aus 

über 88000 öffentlich verfügbaren Elektrokardiogrammen mit 12 Ableitungen aus 

verschiedenen Quellen bestehen. Das übergeordnete Ziel dieser Arbeit ist es, einen 

gut funktionierenden und einfach zu verwendenden Klassifikator für atriale 

Arrhythmien zu entwickeln. Um diese Arbeit zu verstehen, werden zunächst ein 

Überblick und ein theoretischer Hintergrund zu den verwendeten Konzepten gegeben. 

Anschließend werden die Modelle, einschließlich der ResNet-Backbones und LSTM-

Strukturen, beschrieben und die verschiedenen Hyperparameter sowie die 

verwendeten Daten skizziert. Die Ergebnisse der verschiedenen Modelle, die 

Rohdaten oder Spektrogramme und/oder LSTMs verwenden, werden angegeben. Das 

leistungsfähigste Modell ist ein ResNet34 auf der Grundlage von Spektrogrammen und 

drei Ableitungen mit einer Gesamtgenauigkeit von 78,48 % im Test, gefolgt von einem 

ResNet34, das mit Rohdaten 78,25 % erreicht. Die kleineren, einfacheren Modelle auf 

der Grundlage von ResNet18 erreichten ebenfalls sehr hohe Genauigkeiten. Das 

beste LSTM, das Rohdaten verwendet, erreichte im Test nur 56,91 % und schnitt damit 

schlechter ab. Aus den gemachten Beobachtungen können wir schließen, dass eine 

geringere Anzahl von Ableitungen bereits ausreichend war und dass die LSTMs für 

diesen Fall nicht gut abschnitten, was die enormen Vorteile der einfacheren Modelle 

in dieser Arbeit verdeutlicht. 

Schlüsselwörter: EKG, Elektrokardiogram, Kardiologie, Atriale Arrhythmie, 
Klassifikation, Deep Learning, Neuronale Netze 
 
 



 

RESUMO EXPANDIDO 

 

Introdução  

Problemas cardíacos, como arritmias cardíacas, representam uma das causas mais 

comuns de morte no mundo. As arritmias cardíacas se originam em diferentes regiões 

do coração e, portanto, apresentam padrões muito específicos. O diagnóstico de 

doenças cardíacas geralmente é feito com eletrocardiogramas com diferentes 

derivações. Esses eletrocardiogramas são analisados por profissionais; no entanto, 

com o surgimento de melhores métodos e desempenho de inteligência artificial, 

podemos observar um aumento nas tentativas de apoiar a análise com redes neurais 

artificiais. Há várias abordagens que usam dados brutos ou carateristicas extraídas 

dos sinais de eletrocardiograma, como espectrogramas. Uma das redes neurais mais 

populares são as redes neurais convolucionais em suas diferentes formas, que são 

frequentemente usadas como base, bem como as redes neurais recorrentes, que 

também estão se mostrando uma abordagem popular. A criação de um banco de 

dados para classificação é um desafio, por isso usamos os dados disponíveis 

gratuitamente do desafio Physionet 2021, que consiste em mais de 88.000 

eletrocardiogramas disponíveis publicamente de várias fontes. 

 

Objetivos 

O objetivo desta dissertação é criar e testar pipelines de classificação capazes de 

processar eletrocardiogramas com números variados de derivações e diferentes 

durações de forma significativa para classificar sinais de acordo com suas respectivas 

arritmias, incluindo sinais sem arritmias. Isso inclui testar as diferentes características 

de dados brutos (o eletrocardiograma original) e espectrogramas (o eletrocardiograma 

processado). 

 

Metodologia 

Depois de explicar os conceitos mais relevantes necessários para a compreensão da 

dissertação, como as funções cardíacas básicas, o processamentos de sinal e os 

conceitos de aprendizagem de máquina profundo usados, os experimentos realizados 

são descritos em detalhes. 

Primeiro, os conjuntos de dados são apresentados, incluindo uma descrição de seus 

parâmetros e o número de exemplos das diferentes arritmias atriais. Além disso, é 



 

realizada a divisão entre 60% de dados para treinamento e 20% de cada conjunto 

para validação e teste. 

Também, as configurações dos modelos são explicadas e delineadas. Os modelos 

têm um backbone baseado na ResNet 18 e na ResNet 34, que, em sua configuração, 

foram preparadas para processar eletrocardiogramas com uma janela de 5 segundos. 

Isso é implementado para usar apenas os primeiros cinco segundos para treinar 

apenas com o backbone, ou um LSTM de camada única de última geração é anexado 

para somar as janelas segmentadas do sinal. 

Por fim, todos os hiperparâmetros são descritos. Isso inclui o pré-processamento da 

amostra, com uma frequencia de amostragem de 250 Hz e a filtragem digital 

passabanda entre 0,5 e 50 Hz, bem como a forma como os espectrogramas foram 

calculados. Também são descritos os parâmetros de treinamento, como os 

otimizadores Adam usados e os índices de aprendizado. 

 

Resultados e Discussão 

O modelo com melhor desempenho é baseado num ResNet34 no uso de 

espectrogramas e três derivações, com uma exatidão total no teste de 78,48%, 

seguido por um ResNet34 que usa dados brutos e atinge 78,25%. Os modelos 

menores e mais simples baseados no ResNet18 também alcançaram acuracías muito 

altas, próximas aos modelos maiores. O melhor LSTM usando dados brutos alcançou 

apenas 56,91% no teste, com desempenho significativamente pior. 

Com base nos resultados, pode-se discutir que um número menor de derivações de 

eletrocardiograma já alcançará os melhores resultados possíveis. Além disso, 

observou-se que o aumento do tamanho da rede neural só proporcionou pequenas 

melhorias no desempenho, que mostra que os modelos menores desempenham 

satisfatoriamente. Foi possível observar na avaliação comparativa das janelas de toda 

a amostra, com o uso de apenas os primeiros cinco segundos para treinamento 

funcionou adequadamente, pois a exatidão foi similar em ambos os casos. 

Analisando os resultados obtidos usando espectrogramas com diferentes tamanhos 

de janela, pudemos ver que 300 ms teve o melhor desempenho. Os diferentes 

tamanhos de janela apresentaram desempenho variável, de modo que uma 

otimização adicional pode ser vantajosa. 



 

Além disso, poderíamos supor que os LSTMs cairam num overfit, pois a avaliação dos 

LSTMs com os backbones menores obteve melhores resultados do que os backbones 

maiores, embora a precisão do treinamento não tenha mostrado isso. 

 

Considerações Finais 

Com base nas observações feitas, concluímos que um número menor de derivações 

com três derivações já é suficiente quando usado só com os ResNets para crair um 

sistema classificador de arritmias a partri do eletrocardiograma. Como os LSTMs não 

tiveram um bom desempenho, concluimos que eles não foram adequados nesses 

experimentos mostrando, neste trabalho, as vantagens dos modelos mais simples de 

classificadores neurais. 

Para trabalhos futuros, pode-se sugerir uma busca mais completa e refinamentos de 

hiperparâmetros para a criação de espectrogramas, a criação de um classificador que 

integre espectrogramas e dados brutos para usar ambas as caracteristicas, o teste de 

uma abordagem mais eficiente para otimizar uma janela móvel adequada para a 

classificação com ResNets, bem como a busca de melhores hiperparâmetros para 

treinar as LSTMs. Mais classificadores neurais para identificar outras patologias 

poderiam ser treinados com o mesmo pipeline. Para implementar os resultados desta  

pesquisa na vida real, é necessário definir uma interface comum para transmitir os 

dados para o classificador, bem como fazer testes reais para demonstrar a usabilidade 

e a aplicabilidade desta abordagem. 

 
 
Palavras-chave: ECG, Electrocardiograma, Cardiologia, Arritmia Atrial, Classificação, 
Deep Learning, Redes Neurais, LSTM, ResNet
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1 INTRODUCTION 

 

1.1 OVERVIEW OF THE SUBJECT 

It is well-known that arrhythmias and heart problems are among the most 

common causes of death worldwide (Virani et al., 2021). They can be caused by 

various sicknesses and abnormalities and have a very specific pattern (Sattar et al., 

2023). Diagnosing these diseases is commonly done with the help of 

electrocardiograms (ECG), as they make various arrhythmias visible, showing very 

specific patterns in the electric signal emitted by the heart. 

The heart's electrical activity (Electrocardiography) can be measured with 

different numbers of leads; however, using full 12-lead electrocardiograms is a widely 

used standard (Kligfield 2002). Nevertheless, signal measurement with fewer leads is 

also performed due to simplicity and lower costs. These subsets are also valuable but 

do not always capture the same amount of information as 12 leads (Aldrich et al. 1987, 

Drew et al. 2002, Green et al. 2007). 

Electrocardiograms are usually analyzed by professional medical personnel. 

However, with the emergence of better artificial intelligence methods, there are more 

and more attempts to support data analysis with deep neural networks to achieve 

automated machine-based classification, as will be described in this thesis. 

As input to the classifier, raw data is a popular option (Zhu et al. 2021; Singstad 

et al. 2020; Mostayed et al. 2018; Wong et al. 2021; Xu et al. 2020; Chen et al. 2019, 

Natarajan 2020) however we also find a lot of handcrafted features many times based 

on frequency components such as Mel-Frequency-Cepstral-Coefficients (Arpitha et al. 

2021) or spectrograms (Huang et al. 2019, Gupta et al. 2021) are chosen. For data 

classification, methods such as support vector machines (Arpitha et al. 2021), k-

nearest-neighbor (Arpitha et al. 2021, Ignacio et al. 2020), or Random Forest 

classifiers (Nonaka et al. 2020) are still popular options giving very good results 

depending on the type of data and features, however, with huge amounts of data, they 

are often outperformed by deep neural networks (DNN) as well as DNNs not depending 

on creating specialized features (Mahapatra 2018). For the latter, convolutional neural 

networks (CNN) are frequently used as a basis (Zhu et al. 2021; Singstad et al. 2020; 

Wong et al. 2021; Xu et al. 2020; Chen et al. 2019; Huang et al. 2019). In addition, the 

use of recurrent neural networks (RNNs) like different versions of Long-Short-Term 
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Memory units (LSTM) (Mostayed et al. 2018; Wong et al. 2021; Xu et al. 2020; Chen 

et al. 2019) is a well-liked approach to deal with the time dependence of 

electrocardiograms. 

 

1.2 DATABASE: THE PHYSIONET/COMPUTING IN CARDIOLOGY 

CHALLENGE 2021 

Since building an own database for classification is difficult, with a lot of legal 

requirements and being time-consuming, this work will be based on the data and builds 

on the idea of the Physionet 2021 challenge (Reyna et al. 2020, PhysioNet/Computing 

in Cardiology Challenge 2021) "Will Two Do? Varying Dimensions in 

Electrocardiography", since it has a large publicly available database. 

The challenge is the follow-up to the ones in 2017 classifying single-lead 

electrocardiograms and 2020 (Perez et al. 2020) classifying 12-lead 

electrocardiograms. The emphasis is identical to the one of 2020, but as the title "Will 

Two Do? Varying Dimensions in Electrocardiography" already displays, it differs in the 

number of leads considered. Therefore, not only 12 leads but also a more limited 

number of leads was to be considered (Reyna et al. 2020, PhysioNet/Computing in 

Cardiology Challenge 2021) to build a fully automated classifier that could be trained 

and evaluated while still achieving good performances (Reyna et al. 2020, 

PhysioNet/Computing in Cardiology Challenge 2021). 

The PhysioNet/Computing in Cardiology Challenge 2021 data corpus consists 

of over 88000 publicly available electrocardiograms with 12 leads from various sources 

displaying various arrhythmias (Reyna et al. 2020, PhysioNet/Computing in Cardiology 

Challenge 2021). Thirty-nine teams participated officially, and the winners were 

announced on 15 September 2021 at the Computing in Cardiology Conference in Brno, 

Czech Republic. The winning team was called ISIBrno-AIMT with an attention-based 

approach. 

 

1.3 STATE OF RESEARCH 

If we make a deep structured analysis of the literature, we find a lot of different 

approaches used to classify electrocardiograms, as will be shown here.  



20 

 

First, 53 articles were published on the program's website 

(PhysioNet/Computing in Cardiology Challenge 2021: Program) from different teams 

participating in the challenge, of which not all were published in a scientific journal. 

Therefore, a complete online literature search was conducted. The search key 

included the three years with Physionet challenges with electrocardiograms and trying 

to catch all other approaches with more general keywords. The key 

"electrocardiogram" OR (("CinC" OR "Computing in Cardiology" OR "Physionet") AND 

("2017" OR "2020" OR "2021") AND "challenge") AND ("automated" OR "neural 

network") AND ("classification" OR "detection") was chosen and applied to the online 

search site PubMed. A total of 90 results were found on the 7th of December 2022, with 

a time frame of five years. Of these 90 results, 48 remained after reviewing the titles 

and abstracts. 

Summarizing the results, we can group them into different approaches. One of 

the very popular approaches is using different convolutional neural networks 

(Romdhane et al. 2020, Hsieh et al. 2020, Tutuko et al. 2021, Wu et al. 2020, Antoni 

et al. 2022, Krasteva et al. 2021, Zhang et al. 2021, Alsaleem et al. 2022, He et al. 

2021, Lee et al. 2021, Nasim et al. 2022, Sbrollini et al. 2022, Jekova et al. 2022, Jiang 

et al. 2020, Prabhakararao et al. 2022, Aublin et al. 2022, Srivastava et al. 2022, Rubin 

et al. 2018) coming in different variations based on state-of-the-art architectures such 

as ResNet, DenseNet or Inception-based networks. However, we can sometimes also 

find simple convolutional layers. Another (convolutional) approach is squeeze-and-

excitation networks (Ge et al. 2021, Yang et al. 2021, Zhu et al. 2021, Xu et al. 2022, 

Zhao et al. 2022). Recurrent neural network structures such as LSTMs or GRUs can 

also be found (Sawant et al. 2022, Cheng et al. 2021, Wang 2021, Xiong et al. 2018, 

Ping et al. 2020, Liang et al. 2020, Yildrim et al. 2020, Kang et al. 2022) as they provide 

simple solutions for inconsistent signal lengths and time dependencies. Recurrent 

models were often combined with an overlay convolutional neural network to build 

features, which were then processed by the recurrent units. 

Another interesting approach is using attention-based models (Jiang et al. 

2021, Gao et al. 2020, Xu et al. 2022), which seem to achieve high accuracy. Model 

ensembles are also a highly effective approach, as shown by the examples found 

(Khamis et al. 2018; Warrick et al. 2018; Rizwan et al. 2018). Some articles could not 

be sorted into any of the above categories as they, for example, used decision trees 
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(Shao et al. 2018), a sparse decomposition over composite dictionary (Raj et al. 2018), 

a canonical discriminant correlation analysis (Shi et al. 2021), a multilevel binary 

classifier (Mukherjee et al. 2019) or an adversarial neural network (Zhang et al. 2021). 

For retrieving features, many researchers use raw signals as input data; 

however, handcrafting different features is also applied. Some specialized ways to 

extract features were found; however, the most commonly used types are wavelet-

based features (Sharma et al. 2019, Toma et al. 2022, Bortolan et al. 2021, Kalidas et 

al. 2019, Hernandez et al. 2018) or frequency analysis-based-spectrograms (Jeong et 

al. 2021, Wickramasinghe et al. 2022). 

 

1.4 RESEARCH QUESTION 

This thesis aims to create a classification pipeline capable of handling 

electrocardiograms in a meaningful way to distinguish signals according to their 

respective arrhythmias, including signals of a healthy. 

More specifically, after giving an overview of the most important concepts 

needed for understanding the approach, this work will explore options for classifying 

electrocardiograms with one or multiple arrhythmias, as there may be more than one 

label found for each electrocardiogram. Therefore, a classification system is created to 

analyze only a few seconds of a signal as a basis for a strong backbone on which to 

build. 

After that, a network capable of handling time sequences of different lengths 

has to be raised, as sequence lengths, arrhythmia occurrences, and the number of 

specific events in electrocardiograms can vary. This creates the need to be able to 

analyze the entire signal to get stable and valid results. 

Different data inputs are identified using raw signals or a frequency spectrum, 

giving different options with different characteristics. Frequency analysis has more 

information but is also more complex because the computation of the spectrogram is 

necessary, and the dimension is normally higher. Different model sizes need to be 

explored to show the effect of size, considering complexity, runtime, and accuracy. A 

special focus will be laid on making the model as efficient as possible while trying to 

stay as effective as possible to give a good guideline to show which size is needed. 

The ECG data also provides the unique opportunity to explore different lead 

options using varying leads, as each lead carries different information, which may be 
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redundant. Therefore, knowing how many leads are needed to achieve good results is 

important. 

Trying to summarize the subject within a single question, we state: 

 

How well is a state-of-the-art, as easy as possible-to-use classification network 

with neural networks as defined in this thesis, capable of analyzing 

electrocardiograms for a given number of arrhythmias and leads using a raw 

signal or frequency analysis? 
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2 THEORETICAL BASIS 

 

The purpose of this part is to provide an overview of the most important 

concepts that are needed to understand this thesis. 

 

2.1 ELECTROCARDIOGRAMS 

2.1.1 History 

The history of ECGs starts with the first recordings of the electric impulses of 

a human heart with a mercury capillary electrometer by Augustus Waller in 1887. 

However, the tracings were of low quality. Willem Einthoven began studying ECGs with 

the mercury capillary electrometer and was already able to improve the recording 

quality before the turn of the century. Later, he used a string galvanometer as a design 

element, enhancing the quality such that in 1902, he recorded the first clinically 

applicable ECG. However, Einthoven is not only known for pioneering the development 

of the technology, but he also developed a system of electrocardiographic 

standardization that still is in use as a standard all over the world, introducing the 

triaxial bipolar system with three limb leads (Barold 2003). 

 

2.1.2 General Description 

ECGs represent an electrical tracing of the heart and are recorded non-

invasively from the body's surface. They are a very important diagnostic tool needed 

to investigate cardiovascular diseases. They are also used for monitoring patients 

treated with antiarrhythmics and other medicines, preoperative assessment of patients 

undergoing non-cardiac surgery, and screening individuals in high-risk occupations 

and sports (Sattar et al., 2023). 

The heart is a muscular organ containing four chambers with two atria opening 

into the two ventricles. The wall consisting of muscle separating the four chambers is 

called the septum. The coronary arteries are on the surface of the heart, giving vascular 

supply to different heart regions. The heart also emits electrical signals. Their 

distribution is significant, as a 12-lead ECG can assess those and, thus, helps to 

localize and diagnose ischemic or infarcted areas (Sattar et al., 2023). 

An overview of the structure of the electric systems of the heart is given in 

Figure 1. 
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Figure 1 – Electrical Systems of the Heart 

 

Source: https://www.hopkinsmedicine.org/health/conditions-and-diseases/anatomy-and-function-of-
the-hearts-electrical-system 

 

 

2.1.3 Measurement and Signals 

The standard ECG consists of 12 leads divided into two groups - the limb leads 

and precordial leads. Limb leads consist of standard bipolar limb leads (I, II, and III) 

and augmented unipolar leads (aVL, aVF, and aVR). The bipolar limb leads and 

augmented unipolar leads are according to the Eindhoven triangle shown in Figure 2. 

The precordial leads consist of leads V1 to V6. The correct placement of all the 

electrodes for the 12 leads can be seen in Figure 3. The pattern of the limb lead shows 

the heart activity in a vertical and the precordial leads in a horizontal plane representing 
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the electrical cardiac activity. The principle behind this is that depolarization moving to 

an electrode will get recorded as a positive deflection, while when it travels away from 

the electrode, it will show as a negative deflection (Sattar et al., 2023). 

 

Figure 2 – The Eindhoven Triangle, Including Leads I, II, III, AVR, AVL, and AVF 
 

 

 

Source: 
https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/function/bipolar_leads.php 
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Figure 3 – Placement of Electrodes on the Human Body (The Positions of the Arm 
and Leg Electrodes are at the Wrists and Ankles, Respectively) 

 

Source: Time Of Care: https://www.timeofcare.com/ecg-leads-placement-and-their-deflection-on-
paper/ 

 

The first wave is the P-wave shown by the green arrow in Figure 4, which 

represents atrial depolarization initiated by the sinus node on the ECG. The PR interval 

is the interval from the beginning of atrial depolarization to the start of ventricular 

depolarization, which includes the delay at the atrioventricular node. The QRS complex 

(blue arrow in Figure 4) represents ventricular depolarization as electrical current 

passes down the atrioventricular node. The Q-Wave shows the depolarization of the 

interventricular septum, while the R-Wave, the tallest of the QRS complex, shows the 

stimulus passing through the ventricles during depolarization. The S wave is the last 

of the complex and visualizes the final depolarization of the Purkinje fibers. The last 

wave is the T-Wave (red arrow in Figure 4), depicting the ventricular repolarization. 

The ST segment represents the end of ventricular depolarization and the beginning of 

ventricular repolarization. The QT interval represents the start of depolarization to the 
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end of the repolarization of ventricles (Sattar et al., 2023). A fully traced 12-lead ECG 

is depicted in Figure 4. 

All the waves and intervals have specific durations and heights, which are then 

interpreted by a medical professional, as any deviation from the norm can point out a 

cardiac abnormality (Sattar et al., 2023). 

 

Figure 4 – Full 12-Lead Electrocardiogram (Green Arrow: points to P-Wave, Blue 
Arrow: points to QRS-Complex, Red Arrow: points to T-Wave) 

 

Source: (Sattar et al. 2023) 
 

2.2 CARDIAC ARRHYTHMIAS 

According to the American Heart Association, "arrhythmia" refers to any 

problem in a person's heartbeat rate or rhythm. During an arrhythmia, the electrical 

impulses may be too fast, slow, or erratic, causing an irregular heartbeat (American 

Heart Association, 2023).  

Examples of arrhythmia are Atrial Fibrillation, Atrial Flutter, Bradycardia, 

Conduction Disorders, Premature Contractions, and Tachycardia, among others 

(American Heart Association, 2023).  

The normal sequence of a heart contraction starts when an electrical impulse 

is created in the sinus node and moves through the heart. After beginning in the right 
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atrium, the signal spreads through the atria to the atrioventricular node. From there, 

the impulse goes to the Bundle of His and through the Purkinje fibers, creating the 

ventricles' contraction. This heartbeat sequence is normally very regular with organized 

contraction (American Heart Association, 2023). 

If any change from the normal sequence of electrical impulses occurs, it is 

referred to as arrhythmia. Some of them are so brief that the overall function is barely 

affected. If they, however, occur frequently or for a longer duration, they can have a 

negative impact on the function of the heart (American Heart Association, 2023). 

Even though the sinus node normally triggers the heart's pace, almost all heart 

tissue can start an impulse under the right conditions, leading to a heartbeat. If these 

other cells in the heart fire unwantedly and start the electrical activity, this might disturb 

the normal sequence of the heart, causing arrhythmia. Other typical causes include 

delays or blockages of electrical signals managing the beat, stress situations of a 

person, excessive exertion or strain, an imbalance of hormones or electrolytes, 

changes of heart tissue caused by, e.g. changes in blood flow, stiffening or scarring of 

the tissue or damage to the electrical system of the heart as well as some heart 

medications (American Heart Association, 2023). 

 

2.3 SIGNAL PROCESSING AND FILTERING 

2.3.1 Short-Time-Fourier-Transform 

A standard approach to analysing a one-dimensional signal is to divide it into 

its frequency components. The Discrete Fourier Transform (DFT) describes the 

discrete conversion of a discrete function into the Fourier space, displaying the 

frequencies of the signals. It is defined as 

𝑋[𝑘] =  ∑ 𝑥[𝑛] ∙  𝑒−𝑖 ∙ 𝑘 ∙ 
2𝜋
𝑁

 ∙ 𝑛  𝑘 𝜖 𝑍

𝑁−1

𝑛=0

 

The Short Time Fourier Transform (STFT) is an analysis with the DFT of short 

potentially overlapping windows with a given size N of a signal with an FFT-size L and 

hop-size H and is defined as 

𝑋[𝑘] =  ∑ x[n +  mH]  ∙  ω[n] ∙  𝑒−𝑖 ∙𝑘 ∙ 
2𝜋
𝑁

 ∙ 𝑛  𝑘 𝜖 𝑍

𝐿−1

𝑛=0

; 𝐿 < 𝑁 
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As the DFT can only be used to analyze periodic signals as it does not portray 

any occurring frequency changes within the signal, the STFT was created. As the STFT 

is a DFT of small windows in the signal, it can make premises on frequency changes 

over time with a frequency resolution of 𝑓𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  
𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑟𝑎𝑡𝑒

𝐿
  with frequencies being 

sorted into L bins, creating a 2D spectrogram displaying the frequency components in 

relation to time. 

The important thing one has to consider is that the better the frequency 

resolution is, the lower the time resolution. The same applies to the other way around. 

This effect is caused when increasing window size, having more bins giving more 

frequency information and, therefore, a more accurate frequency resolution, while the 

frequencies can occur at any point in the larger window, decreasing time resolution. 

This is important when making a trade-off between high-frequency and high-time 

resolutions to serve the application's purpose best. 

 

2.3.2 Frequency Filter for Signals 

A frequency filter is a tool used to suppress a band of unwanted frequencies. 

The filters can be low-pass filters eliminating frequencies above a predetermined 

border, high-pass filters removing frequencies below a defined border, bandpass filters 

allowing only frequencies within a predefined range, and band-stop filters clearing 

frequencies in a predetermined range. 

Those filters can be designed in several ways, like the Chebyshev or Bessel 

filter or the used Butterworth Filter. This filter, first described by Stephen Butterworth 

(Butterworth, 1930), has the advantage of a frequency response being as flat as 

possible in the passband and stopband (no ripples), giving very smooth and good 

results. For an ideal Butterworth Filter, the cutoff frequency would be at -3db, and 

depending on the order, the frequency will drop off 20db times the order after the cutoff 

every decade (Figure 5). It will have no ripples trying to approximate a 100 % cutoff for 

higher orders. In reality, this cannot be achieved, but the Butterworth filter is still a good 

approximation to filter frequencies very good. 
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Figure 5 – Filter Response of a Butterworth-Filter for Different Orders 

 

Source: https://www.electronics-tutorials.ws/filter/filter_8.html 

 

2.4 PERFORMACE MEASUREMENT 

2.4.1 True Positives, False Positives, True Negatives, and False Negatives 

The listed metrics in the headline are very important, describing other metrics 

and shall be defined here. A prediction being true positive (TP) defines that the 

prediction and label both are “true”, false negative (FN) that the prediction is “false” 

while the target is “true”, false positive (FP) that the prediction is “true” while the label 

is “false” and true negative (TN) both are “false”. This behavior is visualized in the 

confusion table (Table 1). 

 

Table 1 – Confusion Table 

  Prediction 

  1 0 

Label 
1 True Positive False Negative 
0 False Positive True Negative 

Source: Created by the Author and based on Goutte and Gaussier 2005 

 

2.4.2 Accuracy 

For this thesis, two different accuracies are used. Assuming a target label and 

output vector of size m x n with m classes and n samples, the per-label accuracy is 
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calculated by counting all true positives and negatives and dividing them by all 

predictions (m x n) made. 

The other accuracy we calculate is full-label accuracy, where we calculate not 

per class and per sample but only per sample. Therefore, we only consider a “true” if 

the whole label vector of a sample has been predicted correctly. To calculate this 

measurement, we divide all the correctly estimated label vectors by all the samples. 

 

2.4.3 Recall, Precision, and F1-Score 

Recall, Precision, and F-Score are other performance measurement methods 

frequently used to describe classifier performance. The Recall (R) is defined by  𝑅 =

 
𝑇𝑃𝑠

𝑇𝑃𝑠+𝐹𝑁𝑠
 and describes how many of the positive labels were predicted correctly. The 

Precision (P) can be calculated by the formula 𝑃 =  
𝑇𝑃𝑠

𝑇𝑃𝑠+𝑇𝑁𝑠
 and describes how many 

of the positive predictions are, in fact, positive and correct. The F1-Score is a 

combination of both and is defined by 𝐹1 = 2 ×
𝑃 × 𝑅

𝑅 + 2 × 𝑃
=

2 × 𝑇𝑃𝑠

2 × 𝑇𝑃𝑠 + 𝐹𝑁𝑠 + 𝐹𝑃𝑠
 (Goutte and 

Gaussier 2005). 

 

2.5 DEEP LEARNING ARCHITECTURES 

Deep learning is a term used for the family of artificial neural networks and 

representation learning and its techniques. They have been used successfully in the 

last years for different classification and learning tasks in various fields, from computer 

vision to audio processing. The following will describe the relevant architectures and 

concepts for this thesis. 

 

2.5.1 Deep Neural Networks 

A deep neural network (DNN) has multiple layers, normally with two or more 

hidden layers. A hidden layer contains weighted nodes, which, multiplied with the 

layer's input, calculate a weighted representation (Goodfellow et al., 2016). An 

exemplary structure of a DNN, which in this case seems to be a fully connected neural 

network, can be seen in Figure 6. There are three main ways to train a network. 
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Figure 6 – Exemplary Structure of a DNN 

 

Source: https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964 

 

The two following passes do supervised training of the weights. The forward 

pass transmits the input through the layers, calculating an output. The output is then 

compared with the given labels, calculating a loss with a loss function like cross-

entropy loss, showing how well the output represents the given labels (Goodfellow et 

al., 2016). After that, the backward pass calculates a gradient for each layer to optimize 

and minimize the loss. This starts at the last layer and is done layer by layer using the 

chain rule, whereas the adjusted error of the previous layer passing backwards can be 

utilized to calculate the error for the current layer, giving a gradient to improve 

(Goodfellow et al., 2016). 

Unsupervised learning is an option when no labels are available. A very 

popular group of models to do unsupervised learning are autoencoders who create a 

hidden representation of the data and then try to reconstruct the original sample, 

calculating the loss between reconstruction and original. The learned representations 

can then be clustered into classes of representations of proximity (Goodfellow et al. 

2016). 

Semi-supervised training is a mixed form between the two other methods and 

can be very powerful against overfitting first initializing the weights with a large 

unlabeled dataset to find the best features representing the data to do then finetuning 

with a smaller labelled dataset (Goodfellow et al. 2016). 

https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964
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Optimization is then done with one of the gradient descent methods, which can 

be a simple stochastic gradient descent or more advanced methods building up on the 

same principle (Goodfellow et al., 2016). 

 

2.5.2 Convolutional Neural Networks 

A Convolutional neural network (CNN) is a deep learning concept created by 

LeCun et al. (1998) for handwritten letter recognition. It has proven to be a very efficient 

tool to be applied to shapes like images or spectrograms. The plan for the original 

network depicting its structure can be seen in Figure 7. Its design is based on traditional 

pattern recognition principles using convolutional layers with trainable convolutional 

kernels for feature learning and extraction and fully connected layers for classification. 

Within the convolutional layers, there are several important architectural approaches 

applied. They are first local receptive fields, second shared weights, and finally, spatial 

and temporal sub-sampling (pooling). This all increases the performance of 

architecture designed in such a manner. 

 

Figure 7 – Network structure of the original CNN 

 

Source: Lecun et al. 1995 
 

2.5.3 Residual Networks 

Residual Networks were created to train deep neural networks to learn higher-

level and more discriminate feature results in various optimization problems. For these, 

vanishing or exploding gradients or the degradation problem, which describes that 

deeper nets may not perform better despite their larger amount of trainable weights, 

were a limiting factor in network sizes being still efficient. 
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Therefore, He et al. (2016) evaluated a deep residual learning architecture 

named residual network (ResNet). It uses residual mappings to prevent learning and 

optimizing unreferenced underlying mappings H(x) to the input x, expressing it through 

a residual mapping 𝐹(𝑥) = 𝐻(𝑥) − 𝑥 to achieve a viable solution to counteract the 

degradation mentioned above problem successfully. A depiction of a residual block 

can be seen in Figure 8. 

 

Figure 8 – Structure of a Basic Residual Block 

 

Source: He et al. 2015 
 

On top of that, He et al. evaluated several structure sizes and presented 

several different and typical ResNet architectures based on their size (number of 

concatenated layers), which proved their value in practical experiments. 

 

2.5.4 Recurrent Neural Networks 

Recurrent neural networks (RNNs) were invented to process signals with a 

temporal context. Feeding a whole sequence into a big network is generally not a good 

idea due to inefficient memory usage, a difficult or even impossible training process, 

and no differences between spatial and temporal dimensions; it also does not work in 

real-time (Gehring et al., 2017). 
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One of the very first and simple RNNs was the Elman cell depicted in Figure 9 

(Elman et al., 1990). There, we see that RNNs compute the output from the input and 

have an additional hidden state. Therefore, to compute the output, the input and the 

previous hidden state are calculated in an updated hidden state from which the output 

is determined and used as the initial hidden state for the next time step. 

Training the network is done by a classical forward pass and the 

backpropagation through time, as each output also depends on the previous timesteps. 

 

Figure 9 – Structure of the Elman Cell 

 

Source: https://towardsdatascience.com/recurrent-neural-networks-part-1-498230290534 
 

2.5.5 Long-Short-Term-Memory Units 

A Long-Short-Term-Memory (LSTM) unit is a special RNN concept for better 

long-term dependencies and was created by Hochreiter and Schmidhuber (Hochreiter 

and Schmidhuber 1997). 

Basic RNNs have the problem that they cannot effectively learn long-term 

dependencies. This is caused by the hidden state being overwritten each time, short-

term dependencies hiding long-term dependencies due to their longer, exponentially 

smaller gradients, and exploding and vanishing gradients in training (Hochreiter and 

Schmidhuber 1997). 

Therefore, the LSTM introduces an extra cell state. It is updated by the 

combined old hidden state and input through a forget gate deciding to delete long-term 

information and an input gate deciding on new input for the cell state. The new hidden 

state and output are then calculated with the new cell state, the old hidden state, and 

the input. An LSTM cell is visualized in Figure 10. 
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Figure 10 – Structure of an LSTM Cell 

 

Source: https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-
conceptual-guide-with-keras-2a650327e8f2 
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3 DATA SOURCES AND METHODS 

 

This paragraph describes the used data and different experimental setups and 

parameters. 

 

3.1 DATA 

As mentioned in the introduction, the dataset used was compiled from the 

public data available in the PhysioNet/CinC 2021 challenge. Five of the seven sources 

had at least parts of their datasets publicly available (PhysioNet/CinC 2021).  

The first source is data published during the China Physiological Signal 

Challenge 2018 at the 7th International Conference on Biomedical Engineering and 

Biotechnology in Nanjing, China. This source contains the officially used (CPSC in 

Table 3) and unused data (CPSC_Extra in Table 3) from this challenge. Together, they 

number 13,256 ECGs, of which 10,330 were shared and publicly available. The 

recordings were between 6 and 144 seconds with a sampling frequency of 500 Hz and 

were taken from hospitals. 

The second dataset is the St Petersburg INCART 12-lead Arrhythmia 

Database (St Petersburg in Table 3). This set is comprised of 74 ECGs, which were all 

shared. The recordings are all 30 minutes long with a sampling frequency of 257 Hz. 

Another source is from the Physikalisch-Technische Bundesanstalt, including 

their two public datasets (PTB in Table 3 and PTB_XL in Table 4). They, in total, 

number 22,353 ECGs. The clinical recordings are between 10 and 120 seconds long, 

with a sampling frequency between 500 and 1,000 Hz. 

The fourth database is a Georgia database (Georgia in Table 4), mimicking 

the demographic reality of the Southeastern United States. This database contains 

20,672 ECGs, of which 10,344 ECGs were shared publicly. The lengths of the 

recordings vary between five and 10 seconds with a sampling frequency of 500 Hz. 

The last dataset coming from hospitals with publicly available data is taken 

from Chapman University, the Shaoxing People's Hospital (Chapman_Shaoxing in 

Table 4), and the Ningbo First Hospital (Ningbo in Table 4) databases. This dataset 

has a total of 45,152 ECGs, which are all publicly available. They have a length of 10 

seconds each with a sampling frequency of 500 Hz. 
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Even though the dataset of St Petersburg was available, it is not used in this 

thesis as it only contains a few samples, which did not have a considerable overlap 

with the labels while having very different measurement parameters and the data being 

very long and difficult to handle. 

The remaining datasets were annotated using SNOMED-CT codes. There are 

133 codes, of which more than one could be true for a sample. The labels are very 

unevenly distributed, so for the challenge itself, only 26 labels with 30 different codes 

were used (four pairs were counted as the same classification). For this work, we focus 

on only eight labels of interest, all in the family of atrial arrhythmias. This reduction was 

made to facilitate training and the expressiveness of the results while only using labels 

with sufficient examples. Atrial arrhythmias were chosen over ventricular arrhythmias, 

as they are the most common (David Siu and Hanh Tse 2008).  

Of the complete original database, we, therefore, include them in a total of 

75412 samples showcasing our labels, with a total of 81764 observations being atrial 

fibrillation, atrial flutter, 1st-degree av block, premature atrial contraction, 

supraventricular premature beats being counted as the same label as premature atrial 

contraction, as even though they have different nomenclature codes they are the 

same, sinus arrhythmia, sinus bradycardia, and sinus tachycardia as well as the sinus 

rhythm. The number for each observation can be seen in Table 2, and the distribution 

of samples from the different datasets can be seen in Tables 3 and 4. 

 

Table 2 – Evaluated Labels with Description (Blue Labels are counted as the same 
Label) 

  SNOMED-CT Code Abbreviation Total 

atrial fibrillation 164889003 AF 5255 

atrial flutter 164890007 AFL 8374 

1st degree av block 270492004 IAVB 3534 

sinus rhythm 426783006 NSR 28971 

premature atrial contraction 284470004 PAC 3041 

sinus arrhythmia 427393009 SA 3790 

sinus bradycardia 426177001 SB 18918 

sinus tachycardia 427084000 STach 9657 
supraventricular premature 
beats 63593006 SVPB 224 

TOTAL     81764 
Source: Based on https://github.com/physionetchallenges/evaluation-

2021/blob/main/dx_mapping_scored.csv and modified by the author 

 

https://github.com/physionetchallenges/evaluation-2021/blob/main/dx_mapping_scored.csv
https://github.com/physionetchallenges/evaluation-2021/blob/main/dx_mapping_scored.csv
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Table 3 – Number of Observed Labels per Dataset (Blue Labels are counted as the 
same Label) (Part1) 

  CPSC CPSC_Extra StPetersburg PTB 

atrial fibrillation 1221 153 2 15 

atrial flutter 0 54 0 1 

1st degree av block 722 106 0 0 

sinus rhythm 918 4 0 80 

premature atrial contraction 616 73 3 0 

sinus arrhythmia 0 11 2 0 

sinus bradycardia 0 45 0 0 

sinus tachycardia 0 303 11 1 
supraventricular premature 
beats 0 53 4 0 

TOTAL 3477 802 22 97 
Source: Based on https://github.com/physionetchallenges/evaluation-

2021/blob/main/dx_mapping_scored.csv and modified by the author 

 

Table 4 – Number of Observed Labels per Dataset (Blue Labels are counted as the 
same Label) (Part2) 

  PTB_XL Georgia Chapman_Shaoxing Ningbo 

atrial fibrillation 1514 570 1780 0 

atrial flutter 73 186 445 7615 

1st degree av block 797 769 247 893 

sinus rhythm 18092 1752 1826 6299 

premature atrial contraction 398 639 258 1054 

sinus arrhythmia 772 455 0 2550 

sinus bradycardia 637 1677 3889 12670 

sinus tachycardia 826 1261 1568 5687 
supraventricular premature 
beats 157 1 0 9 

TOTAL 23266 7310 10013 36777 
Source: Based on https://github.com/physionetchallenges/evaluation-

2021/blob/main/dx_mapping_scored.csv and modified by the author 

 

3.2 EXPERIMENTAL SETUPS 

As input data, segments of five seconds duration are used. The length of 5 

seconds was chosen as a tradeoff, as this length always includes several heartbeats 

with a great chance of fully including an occurrence of an arrhythmia while not being 

too difficult to handle. If the sample is longer, the whole sample can be processed with 

a moving window of the determined length. Furthermore, the length of the samples 

begins with this duration, which is also a practical aspect. If the training is done without 

LSTM, the first five seconds of the signal are used for training, validation, and testing, 

https://github.com/physionetchallenges/evaluation-2021/blob/main/dx_mapping_scored.csv
https://github.com/physionetchallenges/evaluation-2021/blob/main/dx_mapping_scored.csv
https://github.com/physionetchallenges/evaluation-2021/blob/main/dx_mapping_scored.csv
https://github.com/physionetchallenges/evaluation-2021/blob/main/dx_mapping_scored.csv
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as visualized in Figure 11, and an extra evaluation on the test set with a moving window 

with an overlap of 50 % was made to show performance on the whole sample. This 

evaluation was done in two ways. The first was to assume the sequence having the 

same label in all of the segments and evaluate each segment against the label vector, 

and the second was to sum all the classifications of all segments of a sample and 

evaluate it against its label vector. With LSTM training, segments overlapping one 

second are cut sequentially, as seen in Figure 11. 

 

Figure 11 – Choice of Signal Segments as Inputs for the Different Models 

 

Source: By the author 

 

If raw data is used, the desired number of leads is selected, and the data is 

sampled to a common rate of 250 Hz. The rate of only 250 Hz was chosen to reduce 

the data without losing necessary information because all the important frequencies 

are within the range of 125 Hz, which would be the maximum included frequency 

according to the Nyquist theorem. Then, the Analog-to-Digital (ADC) gains and 

baselines are normed and filtered with a bandpass Butterworth filter of the 5th order 

having a minimal frequency of 0.5 Hz and a maximum frequency of 50 Hz because 

frequencies of low interest in an ECG can be suppressed and higher frequency noise 
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and baseline drift filtered out. With that, the input signal parts have a length of 1250 

bins.  

If an additional frequency analysis is made, an STFT of different window sizes 

depending on the model is performed while implementing in the library suggested 

Hann window and using a hop size of 2 bins (8 milliseconds) is chosen to calculate the 

frequency spectrogram of the signal, which is then used as input. The frequency 

direction is then reduced, discarding the bin for the constant without frequency and the 

bins, which have a frequency above the filtered 50 Hz, reducing the number of bins in 

the frequency dimension to only include relevant data. 

The numbers of leads chosen for the experiments are single lead (lead II), 

three leads (leads II, V1, V5), and twelve leads (leads I, II, III, aVR, aVL, aVF, V1, V2, 

V3, V4, V5, V6). The single lead II was chosen because it has shown great success in 

showing the majority of arrhythmias. For the three-lead choice, the leads, which 

represent atrial arrhythmias, are used. The idea of training on fewer leads is that 

making an ECG with fewer leads is simpler, and the data is faster and simpler to 

process due to its lower dimensionality. On top of that, a smaller number of leads 

already carries a significant part of the information of a full lead ECG, which can already 

be enough to classify arrhythmias perfectly. 

Several neural networks are trained, all of them having a ResNet backbone. 

The two chosen sizes are ResNet18 and ResNet34, as they are still fairly small and 

fast to train with a relatively small risk of an overfit. Two adaptations were implemented 

as they were required to process two- and three-dimensional data to handle the 

different data types. The two-dimensional ResNets, as shown in Figure 12, have an 

initial convolutional layer with a kernel size of 13 in the time direction and one in the 

lead direction to handle the different leads separately. The ResNet blocks have kernel 

sizes of 9 in the time direction. The three-dimensional Nets, as shown in Figure 13, 

start with three-dimensional kernel sizes of 5x5 in the initial convolutional layer and 

3x3 for the residual blocks chosen, while in the lead direction, the kernel size is 1 to 

keep the leads separated. All the data was padded circularly when necessary. From 

the input, 512 feature vectors were calculated for each ECG lead, which was then 

summed up by a convolutional layer to 512 feature vectors being subsequently 

transformed to 512 features with average pooling. Out of those 512 features, the labels 



42 

 

were calculated with fully connected and sigmoid layers to achieve an output between 

zero and one. We can see the visualization of the classifying structure in Figure 14. 

Using an LSTM, the segments are first transformed to 512 features as 

described above and then put through the LSTM with cell state and hidden state also 

has the size of 512. The output was calculated just at the end of the sequence. The 

schematics of this net are visualized in Figure 15. The implementation of the LSTM is 

based on an exemplary implementation of an article explaining the basic LSTM and its 

implementation (Esposito 2020). Due to the samples having different lengths, the batch 

size must be one, or the data would have to be padded to (groups of) the same length, 

which only gave bad results in the first test, so this approach was discarded. 

The exact parameters of all included models are highlighted with their 

respective results in the result section. 

All implementations were written in Python 3, mainly using PyTorch's deep 

learning library and (standard) libraries like NumPy, math, pickle, tensorboardX, glob, 

scipy, and resampy. Some of the helping methods for loading data were used from 

implementing the Physionet challenge (Physionet/CinC 2021) from which the data 

originated. 
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Figure 12 – Structure of the ResNet-Based Network Structure 

 

Source: Drawing of the Author 
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Figure 13 – Structure of the ResNet-Based Network Structure Using Spectrograms 
with a 200 ms window. 

 

Source: Drawing of the Author 
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Figure 14 – Structure of the Used Basic Classifying Structure 

 

Source: Drawing of the Author 
 

Figure 15 – Structure of the Used LSTM-Based Network 

 

Source: Drawing of the Author 
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3.3 EXPERIMENTAL PARAMETERS 

Many models were trained to test parameters and debug the models and the 

classification pipeline. For this thesis, only the most recent and best working models 

shall be of interest, highlighting different parameters like batch sizes, learning rates, 

and model configuration and their effects. 

A binary cross entropy loss is utilized to train the models due to being a 

multilabel problem. A commonly used Adam optimizer optimizes with betas of 0.9 and 

0.999 and the AMS Grad extension switched on. The extension was used, as it was 

shown that Adam does not have a convergence guarantee, while the AMS Grad 

extension is supposed to fix this (Reddi et al. 2019). The learning rate is adapted to 

the model. The different models are implemented with an early stopping criterion, 

which stops the training after seven epochs without improvement and a learning rate 

decay of 50% after every three epochs without improvement in the loss. 

The available data was split into 60 % training and each, 20 % test, and 20 % 

validation set. The splits are saved to guarantee the same split for all the training, 

making the models comparable. The exact numbers of samples from each dataset and 

label distribution for each split are given in Tables 5 and 6. 

The training of models was and is mostly done on the free version of Google 

Colab because it features free GPU resources, accelerating the training considerably. 

 

Table 5 – Absolut Number of Labels per Set 

Absolut Train Validation Test 

atrial fibrillation 3208 996 1049 

atrial flutter 5066 1639 1669 

1st degree AV block 2123 759 652 

sinus rhythm 17332 5858 5781 

sinus arrhythmia 2291 760 737 

sinus bradycardia 11266 3807 3845 

sinus tachycardia 5794 1930 1922 
premature atrial contraction and 
supraventricular premature beats 1949 642 665 

TOTAL 49029 16391 16320 
Source: Elaborated by the Author 
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Table 6 – Percentage of Labels per Set 

In % Train Validation Test 

atrial fibrillation 61,07% 18,96% 19,97% 

atrial flutter 60,50% 19,57% 19,93% 

1st degree AV block 60,07% 21,48% 18,45% 

sinus rhythm 59,83% 20,22% 19,95% 

sinus arrhythmia 60,48% 20,06% 19,46% 

sinus bradycardia 59,55% 20,12% 20,32% 

sinus tachycardia 60,07% 20,01% 19,93% 
premature atrial contraction and 
supraventricular premature beats 59,86% 19,72% 20,42% 

TOTAL 59,98% 20,05% 19,97% 
Source: Elaborated by the Author 
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4 RESULTS 

 

The results of the experiments are displayed and highlighted in the next 

paragraph. 

 

4.1 RESULTS WITH RESNET BACKBONE 

A total of 9 models with the parameters highlighted in Table 7 shall be of 

interest for this thesis. They all had the same learning rate and batch size to compare 

the results better.  

 

Table 7 – Parameters of the Models Training on the ResNet Backbone 

    Parameters 
  Name Size LeadNr Batch-Size Learning rate 

1 RES18_arr_1e3_filt_max50_norm_1L_128b 18 1 128 0,001 
2 RES18_Arr_1e3_filt_max50_250 18 3 128 0,001 
3 RES18_arr_1e3_filt_max50_norm_3L_ 18 3 128 0,001 
4 RES18_arr_1e3_filt_max50_norm_12L_128b 18 12 128 0,001 
5 RES18_arr_1e3_filt_max50_norm_12L_ 18 12 128 0,001 
6 RES34_arr_1e3_filt_max50_norm_1L_128b 34 1 128 0,001 
7 RES34_arr_1e3_filt_max50_norm_128b_1e3 34 3 128 0,001 
8 RES34_arr_1e3_filt_max50_norm_3L_128b_ 34 3 128 0,001 
9 RES34_arr_1e3_filt_max50_norm_12L 34 12 128 0,001 
 

Table 8 showcases the results, with the light green being the best value 

obtained with size 18 (or 34) and the darker green being the best value overall. The 

best values obtained with a ResNet18 were 77.8% in validation and 77.9% in the full 

test accuracy. Almost all of the remaining values also gave the best results for this 

model when using one lead, but we can see that the overall spread of performance 

achieved for one and three leads for this model size is fairly small, while the models 

with 12 leads performed worse. Using the larger model, the best model in validation 

used 12 leads, achieving a full accuracy of 78.1%, while the best model in the test with 

three leads achieved a best full accuracy of 78.25%. The difference between the larger 

and smaller models’ performance was small, with some overlap, and the larger models 

performed slightly better.   
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Table 8 – Results of the Training on the ResNet Backbone. 

  Name Accuracy Precision Recall 
Accuracy-
Full F1-Score 

 
Loss 

     Training 
1 RES18_arr_1e3_filt_max50_norm_1L_128b 0,9624 0,8831 0,8322 0,7987 0,8569  34,415 
2 RES18_Arr_1e3_filt_max50_250 0,9601 0,8748 0,8228 0,7826 0,8480  35,980 
3 RES18_arr_1e3_filt_max50_norm_3L_ 0,9582 0,8686 0,8145 0,7752 0,8407  37,445 
4 RES18_arr_1e3_filt_max50_norm_12L_128b 0,9398 0,8297 0,6986 0,6672 0,7585  144,110 
5 RES18_arr_1e3_filt_max50_norm_12L_ 0,9446 0,8367 0,7347 0,6926 0,7824  135,605 
6 RES34_arr_1e3_filt_max50_norm_1L_128b 0,9660 0,8920 0,8517 0,8183 0,8714  31,223 
7 RES34_arr_1e3_filt_max50_norm_128b_1e3 0,9574 0,8646 0,8124 0,7707 0,8377  37,723 
8 RES34_arr_1e3_filt_max50_norm_3L_128b_ 0,9656 0,8905 0,8509 0,8703 0,8400  31,417 
9 RES34_arr_1e3_filt_max50_norm_12L 0,9653 0,8918 0,8463 0,8082 0,8684  63,750 

     Validation 
1 RES18_arr_1e3_filt_max50_norm_1L_128b 0,9564 0,8684 0,8007 0,7780 0,8332  13,841 
2 RES18_Arr_1e3_filt_max50_250 0,9533 0,8575 0,7867 0,7448 0,8206  13,874 
3 RES18_arr_1e3_filt_max50_norm_3L_ 0,9544 0,8570 0,7975 0,7582 0,8262  13,810 
4 RES18_arr_1e3_filt_max50_norm_12L_128b 0,9374 0,8221 0,6882 0,6672 0,7492  20,666 
5 RES18_arr_1e3_filt_max50_norm_12L_ 0,9454 0,8423 0,7362 0,6996 0,7857  16,400 
6 RES34_arr_1e3_filt_max50_norm_1L_128b 0,9543 0,8634 0,8090 0,7714 0,8277  14,303 
7 RES34_arr_1e3_filt_max50_norm_128b_1e3 0,9524 0,8549 0,7823 0,7520 0,8170  13,920 
8 RES34_arr_1e3_filt_max50_norm_3L_128b_ 0,9577 0,8630 0,8183 0,7807 0,8400  13,083 
9 RES34_arr_1e3_filt_max50_norm_12L 0,9586 0,8474 0,8221 0,7807 0,8437  28,939 

     Test 
1 RES18_arr_1e3_filt_max50_norm_1L_128b 0,9564 0,8682 0,7990 0,7793 0,8321  13,762 
2 RES18_Arr_1e3_filt_max50_250 0,9542 0,8575 0,7929 0,7493 0,8239  13,548 
3 RES18_arr_1e3_filt_max50_norm_3L_ 0,9555 0,8594 0,8018 0,7640 0,8296  13,529 
4 RES18_arr_1e3_filt_max50_norm_12L_128b 0,9379 0,8230 0,6891 0,6596 0,7501  20,891 
5 RES18_arr_1e3_filt_max50_norm_12L_ 0,9452 0,6987 0,7354 0,6987 0,7840  16,310 
6 RES34_arr_1e3_filt_max50_norm_1L_128b 0,9550 0,8497 0,8104 0,7771 0,8296  14,210 
7 RES34_arr_1e3_filt_max50_norm_128b_1e3 0,9528 0,8547 0,7841 0,7560 0,8179  13,929 
8 RES34_arr_1e3_filt_max50_norm_3L_128b_ 0,9578 0,8605 0,8213 0,7825 0,8404  13,026 
9 RES34_arr_1e3_filt_max50_norm_12L 0,9580 0,8636 0,8190 0,7796 0,8407  13,946 

 

 

4.2 RESULTS WITH RESNET BACKBONE AND FREQUENCY ANALYSIS 

Eleven models with different model sizes, lead numbers, learning rates, and 

window sizes to make the STFT (50 bins = 200 ms) are of interest here. The exact 

parameters of the models can be seen in Table 9. 
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Table 9 – Parameters of the Models Training on the ResNet Backbone with 
Spectrograms 

    Parameters 
  Name Size LeadNr Batch-Size Learning rate n_fft 

1 RES18_arr_1e3_filt_max50_norm_3L_freq_200ms 18 3 32 0,00100 50 
2 RES18_arr_1e3_filt_max50_norm_3L_freq_300ms 18 3 32 0,00100 75 
3 RES34_arr_1e3_filt_max50_norm_1L_32b_freq 34 1 32 0,00100 50 
4 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_100ms 34 1 32 0,00100 25 
5 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_300ms 34 1 32 0,00100 75 
6 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_500ms 34 1 32 0,00100 125 
7 RES34_arr_1e3_filt_max50_norm_freq 34 3 32 0,00100 50 
8 RES34_arr_1e5_filt_max50_norm_freq 34 3 32 0,00001 50 
9 RES34_arr_1e3_filt_max50_norm_3L_32b_freq_300ms 34 3 32 0,00100 75 

10 RES34_arr_1e5_filt_max50_norm_freq_300ms 34 3 32 0,00001 75 
11 RES34_arr_1e5_filt_max50_norm_freq_500ms 34 3 32 0,00001 125 

 

If we compare the results shared in Table 10, the best model with size 18 

achieved a validation full accuracy of 75.86% and in the test 74.17%, performing lower 

than the equivalent models not using spectrograms. Training the bigger model with 

spectrograms resulted in the best model achieving 77.75% and 78.45% of full accuracy 

in validation and test. They were trained with a 0.001 learning rate and a window size 

of 300 ms. What else we can see from the results with the large models is that some 

performed similarly to the models with raw data, and some performed worse, not 

showcasing stable results overall. 
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Table 10 – Results of the Training on the Resnet Backbone with Spectrograms 

  Name Accuracy Precision Recall 
Accuracy-
Full F1-Score Loss 

    Training 
1 RES18_arr_1e3_filt_max50_norm_3L_freq_200ms 0,9579 0,8809 0,7968 0,7586 0,8367 160,16 
2 RES18_arr_1e3_filt_max50_norm_3L_freq_300ms 0,9441 0,8418 0,7228 0,6837 0,7778 209,09 
3 RES34_arr_1e3_filt_max50_norm_1L_32b_freq 0,9341 0,8115 0,6692 0,6386 0,7335 243,17 
4 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_100ms 0,9649 0,8964 0,8380 0,8015 0,8662 130,10 
5 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_300ms 0,9648 0,8966 0,8364 0,8047 0,8655 132,98 
6 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_500ms 0,9542 0,8671 0,7819 0,7508 0,8223 172,11 
7 RES34_arr_1e3_filt_max50_norm_freq 0,9585 0,8788 0,8043 0,7714 0,8399 157,42 
8 RES34_arr_1e5_filt_max50_norm_freq 0,9538 0,8694 0,7755 0,7358 0,8198 172,35 
9 RES34_arr_1e3_filt_max50_norm_3L_32b_freq_300ms 0,9677 0,9061 0,8492 0,8178 0,8767 123,68 

10 RES34_arr_1e5_filt_max50_norm_freq_300ms 0,9544 0,8731 0,7765 0,7380 0,8220 169,06 
11 RES34_arr_1e5_filt_max50_norm_freq_500ms 0,9728 0,9353 0,8585 0,8305 0,8953 109,90 
   Validation 

1 RES18_arr_1e3_filt_max50_norm_3L_freq_200ms 0,9524 0,8679 0,7664 0,7359 0,8140 59,660 
2 RES18_arr_1e3_filt_max50_norm_3L_freq_300ms 0,9383 0,8273 0,6894 0,6677 0,7521 76,941 
3 RES34_arr_1e3_filt_max50_norm_1L_32b_freq 0,9352 0,7943 0,7052 0,6495 0,7471 78,867 
4 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_100ms 0,9503 0,8333 0,7928 0,7437 0,8126 65,025 
5 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_300ms 0,9574 0,8590 0,8216 0,7761 0,8399 55,958 
6 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_500ms 0,9524 0,8573 0,7790 0,7491 0,8163 60,427 
7 RES34_arr_1e3_filt_max50_norm_freq 0,9423 0,8176 0,7409 0,7032 0,7774 76,210 
8 RES34_arr_1e5_filt_max50_norm_freq 0,9470 0,8564 0,7324 0,7032 0,7895 66,189 
9 RES34_arr_1e3_filt_max50_norm_3L_32b_freq_300ms 0,9587 0,8747 0,8123 0,7775 0,8424 52,628 

10 RES34_arr_1e5_filt_max50_norm_freq_300ms 0,9474 0,8407 0,7562 0,7152 0,7962 65,888 
11 RES34_arr_1e5_filt_max50_norm_freq_500ms 0,9474 0,8369 0,7608 0,7079 0,8953 67,877 
   Test 

1 RES18_arr_1e3_filt_max50_norm_3L_freq_200ms 0,9532 0,8686 0,7703 0,7417 0,8165 58,652 
2 RES18_arr_1e3_filt_max50_norm_3L_freq_300ms 0,9389 0,8289 0,6909 0,6699 0,7536 75,379 
3 RES34_arr_1e3_filt_max50_norm_1L_32b_freq 0,9352 0,7922 0,7059 0,6482 0,7466 78,365 
4 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_100ms 0,9511 0,8347 0,7958 0,7476 0,8148 65,160 
5 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_300ms 0,9576 0,8575 0,8235 0,7745 0,8401 55,430 
6 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_500ms 0,9500 0,8437 0,7737 0,7412 0,8072 63,673 
7 RES34_arr_1e3_filt_max50_norm_freq 0,9427 0,8176 0,7419 0,7048 0,7779 75,623 
8 RES34_arr_1e5_filt_max50_norm_freq 0,9471 0,8531 0,7354 0,7069 0,7899 66,138 
9 RES34_arr_1e3_filt_max50_norm_3L_32b_freq_300ms 0,9600 0,8768 0,8191 0,7848 0,8470 51,215 

10 RES34_arr_1e5_filt_max50_norm_freq_300ms 0,9479 0,8404 0,7587 0,7195 0,7975 65,359 
11 RES34_arr_1e5_filt_max50_norm_freq_500ms 0,9475 0,8371 0,7600 0,7096 0,7967 67,550 

 

4.3 RESULTS OF EVALUATION OF BACKBONE WITH WINDOWING 

The evaluations of the models in Table 11 for the training without using 

spectrograms show a similar pattern than in the simple test cases, with accuracies 

coming close to before being more than 1% lower than the test case with the same 

models having the best full accuracies. For the smaller model, the best accuracies 
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achieved were 76.41% and 76.34%, while for the best (and bigger) model, the full 

accuracy of 77.03% and 76.58% were measured. 

 

Table 11 – Results of the Evaluation of Resnet Backbone Models on the Whole 
Sequence 

  Name Accuracy Precision Recall 
Accuracy-
Full F1-Score Loss 

    Evaluation Constant Label for Whole Sequence 
1 RES18_arr_1e3_filt_max50_norm_1L_128b 0,9526 0,8504 0,7873 0,7641 0,8177 1.788,6 
2 RES18_Arr_1e3_filt_max50_250 0,9516 0,8457 0,7840 0,7365 0,8137 1.753,5 
3 RES18_arr_1e3_filt_max50_norm_3L_ 0,9525 0,8463 0,7919 0,7518 0,8182 1.754,2 
4 RES18_arr_1e3_filt_max50_norm_12L_128b 0,9335 0,8012 0,6744 0,6440 0,7324 2.725,2 
5 RES18_arr_1e3_filt_max50_norm_12L_ 0,9420 0,8229 0,7261 0,6867 0,7715 2.082,5 
6 RES34_arr_1e3_filt_max50_norm_1L_128b 0,9509 0,8324 0,7968 0,7606 0,8142 1.830,3 
7 RES34_arr_1e3_filt_max50_norm_128b_1e3 0,9503 0,8434 0,7759 0,7454 0,8082 1.770,7 
8 RES34_arr_1e3_filt_max50_norm_3L_128b_ 0,9549 0,8481 0,8111 0,7703 0,8292 1.673,1 
9 RES34_arr_1e3_filt_max50_norm_12L 0,9554 0,8515 0,8105 0,7661 0,8305 1.729,5 

    Evaluation Prediction Summed to Label 
1 RES18_arr_1e3_filt_max50_norm_1L_128b 0,9533 0,8419 0,8055 0,7634 0,8233 3.369,2 
2 RES18_Arr_1e3_filt_max50_250 0,9518 0,8330 0,8044 0,7345 0,8184 3.314,9 
3 RES18_arr_1e3_filt_max50_norm_3L_ 0,9529 0,8376 0,8076 0,7492 0,8224 3.345,2 
4 RES18_arr_1e3_filt_max50_norm_12L_128b 0,9341 0,7938 0,6910 0,6485 0,7388 5.336,8 
5 RES18_arr_1e3_filt_max50_norm_12L_ 0,9428 0,8154 0,7446 0,6883 0,7784 4.066,6 
6 RES34_arr_1e3_filt_max50_norm_1L_128b 0,9515 0,8220 0,8173 0,7560 0,8197 3.380,3 
7 RES34_arr_1e3_filt_max50_norm_128b_1e3 0,9511 0,8342 0,7956 0,7442 0,8145 3.372,5 
8 RES34_arr_1e3_filt_max50_norm_3L_128b_ 0,9554 0,8376 0,8303 0,7658 0,8340 3.145,6 
9 RES34_arr_1e3_filt_max50_norm_12L 0,9560 0,8416 0,8304 0,7638 0,8360 3.251,7 

 

Evaluating the models using spectrograms showed the same pattern as the evaluation 

with no spectrograms, also achieving a little lower accuracy than in the simple test, 

with the best smaller model achieving 73.51% and 73.63% and the best ResNet34 

achieving 77.63% and 77.53% as can be seen in Table 12. 
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Table 12 – Results of the Evaluation of Resnet Backbone Models with 
Spectrograms on the Whole Sequence 

 

 

4.4 RESULTS WITH LSTM 

In total, 6 LSTM models with different parameters like the base model size or 

leads, as shown in Table 13, demonstrated some interesting results. 

 

Table 13 – Parameters of the LSTM 

    Parameters 
  Name Size LeadNr Batch-Size Learning rate 

1 LSTM18_1L_1e3_arr_filt_norm_fit 18 1 1 0,001 
2 LSTM18_3L_1e3_arr_filt_norm_fit 18 3 1 0,001 
3 LSTM34_1L_1e3_arr_filt_norm_fit 34 1 1 0,001 
4 LSTM34_3L_1e2_arr_filt_norm_fit 34 3 1 0,010 
5 LSTM34_3L_1e3_arr_filt_norm_fit_ 34 3 1 0,001 
6 LSTM34_12L_1e3_arr_filt_norm_fit 34 12 1 0,001 

  Name Accuracy Precision Recall 
Accuracy-
Full F1-Score Loss 

   Evaluation Constant Label for Whole Sequence 
1 RES18_arr_1e3_filt_max50_norm_3L_freq_200ms 0,9517 0,8608 0,7657 0,7351 0,8105 1.871,5 
2 RES18_arr_1e3_filt_max50_norm_3L_freq_300ms 0,9359 0,8112 0,6839 0,6603 0,7422 2.411,2 
3 RES34_arr_1e3_filt_max50_norm_1L_32b_freq 0,9328 0,7768 0,7041 0,6426 0,7387 2.503,1 
4 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_100ms 0,9487 0,8229 0,7898 0,7381 0,8061 2.092,7 
5 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_300ms 0,9549 0,8455 0,8149 0,7643 0,8299 1.762,5 
6 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_500ms 0,9479 0,8341 0,7665 0,7333 0,7989 2.024,8 
7 RES34_arr_1e3_filt_max50_norm_freq 0,9418 0,8111 0,7415 0,7026 0,7747 2.449,8 
8 RES34_arr_1e5_filt_max50_norm_freq 0,9449 0,8401 0,7303 0,6996 0,7814 2.113,9 
9 RES34_arr_1e3_filt_max50_norm_3L_32b_freq_300ms 0,9579 0,8678 0,8120 0,7763 0,8390 1.636,8 

10 RES34_arr_1e5_filt_max50_norm_freq_300ms 0,9455 0,8285 0,7517 0,7093 0,7882 2.093,8 
11 RES34_arr_1e5_filt_max50_norm_freq_500ms 0,9458 0,8269 0,7565 0,7045 0,7901 2.170,2 

   Evaluation Prediction Summed to Label 
1 RES18_arr_1e3_filt_max50_norm_3L_freq_200ms 0,9519 0,8515 0,7798 0,7363 0,8141 3.661,6 
2 RES18_arr_1e3_filt_max50_norm_3L_freq_300ms 0,9365 0,8046 0,6994 0,6666 0,7483 4.745,0 
3 RES34_arr_1e3_filt_max50_norm_1L_32b_freq 0,9332 0,7684 0,7235 0,6435 0,7453 4.935,0 
4 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_100ms 0,9485 0,8096 0,8085 0,7305 0,8091 3.918,2 
5 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_300ms 0,9549 0,8341 0,8313 0,7593 0,8327 3.352,3 
6 RES34_arr_1e3_filt_max50_norm_1L_32b_freq_500ms 0,9483 0,8246 0,7837 0,7326 0,8037 3.860,1 
7 RES34_arr_1e3_filt_max50_norm_freq 0,9418 0,8015 0,7563 0,6998 0,7782 4.720,0 
8 RES34_arr_1e5_filt_max50_norm_freq 0,9456 0,8309 0,7495 0,7030 0,7881 4.110,6 
9 RES34_arr_1e3_filt_max50_norm_3L_32b_freq_300ms 0,9583 0,8572 0,8290 0,7735 0,8429 3.101,6 

10 RES34_arr_1e5_filt_max50_norm_freq_300ms 0,9456 0,8172 0,7691 0,7079 0,7924 4.049,5 
11 RES34_arr_1e5_filt_max50_norm_freq_500ms 0,9457 0,8105 0,7798 0,6987 0,7949 4.077,0 
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The behaviour we can observe in Table 14 is that the 12-lead larger model performed 

the best in the training. In contrast, in the test and validation, the smaller model with a 

ResNet18 backbone with three leads performed for most of the performance 

calculations considerably better, achieving a full accuracy of 55.97% and 56.91% in 

validation and test while the best larger model only achieved 43.04% and 43.41%. 

Furthermore, we can see that the LSTMs were outperformed by the models only using 

the Resnet backbone. 

 

Table 14 – Results of the LSTM Training 

  Name Accuracy Precision Recall 
Accuracy-
Full F1-Score Loss 

   Training 
1 LSTM18_1L_1e3_arr_filt_norm_fit 0,9442 0,8242 0,7473 0,7228 0,7839 6106,4 
2 LSTM18_3L_1e3_arr_filt_norm_fit 0,9431 0,8254 0,7357 0,7133 0,7779 6274,1 
3 LSTM34_1L_1e3_arr_filt_norm_fit 0,9448 0,8264 0,7495 0,7239 0,7861 6013,7 
4 LSTM34_3L_1e2_arr_filt_norm_fit 0,8353 0,3831 0,3535 0,3502 0,3677 745150,0 
5 LSTM34_3L_1e3_arr_filt_norm_fit_ 0,9548 0,8526 0,8058 0,7686 0,8286 4778,4 
6 LSTM34_12L_1e3_arr_filt_norm_fit 0,9591 0,8697 0,8215 0,7925 0,8449 4435,3 

    Validation 
1 LSTM18_1L_1e3_arr_filt_norm_fit 0,8769 0,5634 0,4162 0,3857 0,4788 4582,4 
2 LSTM18_3L_1e3_arr_filt_norm_fit 0,9123 0,7277 0,5668 0,5597 0,6373 3258,4 
3 LSTM34_1L_1e3_arr_filt_norm_fit 0,8897 0,6469 0,4136 0,3791 0,5046 4705,7 
4 LSTM34_3L_1e2_arr_filt_norm_fit 0,8363 0,3884 0,3574 0,3539 0,3723 246962,5 
5 LSTM34_3L_1e3_arr_filt_norm_fit_ 0,8732 0,5389 0,4602 0,3508 0,4965 4419,2 
6 LSTM34_12L_1e3_arr_filt_norm_fit 0,8909 0,5966 0,6078 0,4304 0,6021 4044,0 

    Test 
1 LSTM18_1L_1e3_arr_filt_norm_fit 0,8787 0,5696 0,4232 0,3936 0,4856 4518,5 
2 LSTM18_3L_1e3_arr_filt_norm_fit 0,9141 0,7315 0,5761 0,5691 0,6446 3172,8 
3 LSTM34_1L_1e3_arr_filt_norm_fit 0,8905 0,6501 0,4123 0,3765 0,5046 4670,6 
4 LSTM34_3L_1e2_arr_filt_norm_fit 0,8356 0,3832 0,3542 0,3511 0,3682 248037,5 
5 LSTM34_3L_1e3_arr_filt_norm_fit_ 0,8741 0,5401 0,4636 0,3581 0,4989 4395,0 
6 LSTM34_12L_1e3_arr_filt_norm_fit 0,8920 0,5985 0,6113 0,4341 0,6048 4011,4 

 

4.5 RESULTS WITH LSTM AND FREQUENCY ANALYSIS 

The training of the three included LSTMs using spectrograms portrayed in 

Table 15 showed that the accuracy of the trained models was higher in the validation 

but lower in the test than the equivalent models using raw data. Compared to all the 

models using raw data, the performance was lower and did not show benefits. The 

maximum achieved accuracies were only 43% in validation and 32.6% in the test for 
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the best-performing models. The accuracies in the training were comparable with the 

other LSTMs using raw data. 

 
Table 15 – Full Results Table of LSTM Training Using Spectrograms 

  Parameters 
Name Size LeadNr Batch-Size Learning rate n_fft   
LSTM34_1L_1e4_arr_filt_norm_fit_freq 34 1 1 0,0001 50   
LSTM34_3L_1e4_arr_filt_norm_fit_freq_re 34 3 1 0,0001 50   
LSTM34_3L_1e3_arr_filt_norm_fit_freq 34 3 1 0,0010 50   

  Accuracy Precision Recall Accuracy-Full F1-Score Loss 
  Training 
LSTM34_1L_1e4_arr_filt_norm_fit_freq 0,9379 0,8224 0,6910 0,6805 0,7510 7.315,0 
LSTM34_3L_1e4_arr_filt_norm_fit_freq_re 0,9520 0,8492 0,7849 0,7545 0,8158 5.195,4 
LSTM34_3L_1e3_arr_filt_norm_fit_freq 0,9529 0,8472 0,7960 0,7613 0,8208 5.026,7 
  Validation 

LSTM34_1L_1e4_arr_filt_norm_fit_freq 0,8484 0,3873 0,1995 0,1587 0,2633 6.419,5 
LSTM34_3L_1e4_arr_filt_norm_fit_freq_re 0,8625 0,4924 0,3816 0,4300 0,2796 4.912,9 
LSTM34_3L_1e3_arr_filt_norm_fit_freq 0,8721 0,5341 0,4582 0,3258 0,4932 4.718,9 
  Test 
LSTM34_1L_1e4_arr_filt_norm_fit_freq 0,8492 0,3881 0,2001 0,1605 0,2641 6.404,9 
LSTM34_3L_1e4_arr_filt_norm_fit_freq_re 0,8631 0,4920 0,3807 0,2807 0,4293 4.897,3 
LSTM34_3L_1e3_arr_filt_norm_fit_freq 0,8723 0,5323 0,4609 0,3260 0,4940 4.727,7 
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5 DISCUSSION 

 

The results of the research and experiments will be discussed in the following. 

 

5.1 EFFECT OF THE NUMBER OF LEADS 

As shown by the results, there were some differences in the accuracies of 

models using different numbers of leads. Those differences were often small, 

especially between using three and twelve leads. It can be explained by the chosen 

set of detectable arrhythmias, especially in leads II, V1 and V5, which professionals 

commonly use to classify atrial arrhythmias. Using only lead II and the three leads, as 

just mentioned, we can expect more valuable information using three leads, but using 

all 12 leads will not give a significantly higher amount of information. Interestingly, the 

ResNet18 with only one lead performed better than using multiple leads, maybe 

because of the increased complexity of processing the information of multiple leads. 

One has to know one’s data and its arrhythmias as a specific lead combination 

and specific leads are more important and can reduce the dimension of input data while 

achieving similar results. Therefore, adjusting the number and types of leads used for 

the problem is very important, as some leads do not have extra information. 

 

5.2 EFFECT OF THE MODEL SIZE 

The model size of the classifiers had different effects. In the simple models, 

we did only achieve minor gains in accuracy. One possible explanation is that we 

already have a good representation with the ResNet18, which is, in fact, already quite 

a powerful network structure. Therefore, a bigger network did not give us a significantly 

better representation. Suppose we wanted to increase the performance with a bigger 

network. In that case, we might have to consider increasing the training data and model 

size to counteract the possibility of an overfit on the data or use more complicated 

features, which at the same time also need to transmit more information better 

representing the arrhythmias. Another option to increase the training data and its 

variability is using augmentation techniques specific to ECGs, as data augmentation is 

a very common and inexpensive way to do so. However, one must be mindful only to 

implement methods guaranteeing the label invariability with augmentation. It can 

further be expected to have a bigger difference in accuracy if we increase the number 
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of labels because the network will have to learn more different patterns and 

representations. 

Using the LSTMs with a different backbone size seemed to have the opposite 

effect of what should be expected because the smaller backbones performed better in 

the evaluations. The most likely explanation is that it overfitted less with the smaller 

backbone, while overfitting was one of the general problems, as will be discussed in 

the next chapter. 

 

5.3 EFFECTS WHEN USING A RECURRENT NEURAL NETWORK 

Using an LSTM did not have the desired improvement in the accuracies of the 

classifiers. On average, the accuracies were significantly lower than just training using 

the backbone with a very limited length of 5 seconds. 

One suggested explanation is that a large part of the training samples was 

short, so the chance of the arrhythmias being in the first seconds is fairly high. If the 

arrhythmias already occur in the first seconds, it makes the extra summing up of 

features over time obsolete, and therefore, we cannot expect an improvement using 

an LSTM. If our training data was, on average, created with long samples with only 

very spread-out arrhythmias, using only the base without LSTM for training would likely 

not yield good results, making using a classifier with an LSTM more reliable. 

Another thing we can observe in the accuracies is that if we compare the full 

training accuracy with the validation and test accuracy, the training accuracy is much 

higher. This suggests that the model was overfitted, which could be explained by the 

LSTM being a bigger, more complicated structure with more weight. We could try to 

counteract that by using a smaller base, like a smaller, simpler CNN, to calculate the 

features or use fewer features in the hidden and cell state of the LSTM. 

Moreover, it must be stated that the training of the utilized LSTM is very difficult 

compared to the base ResNet. First, one problem is that only a batch size of one can 

be used, as the samples have different lengths. This slows down the training 

considerably. It was tried in this thesis to pad all the samples to the same length, but 

as the sample size differs a lot, it is inefficient in terms of memory. Another possibility 

is to divide the set into sets of different lengths covering a certain range, where we pad 

the samples to the maximum range length and use different batch sizes for the different 

ranges. This is effective, but training a model in this fashion and padding the samples 
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also yielded bad results. An explanation is that one must be careful how to pad, as 

simply padding to 0 or a mean might give bad gradients for the training of a longer 

LSTM. Therefore, training with batch size 1 had to be practiced. 

Another idea for improving the training of this approach would be giving an 

output of each LSTM cell and comparing it to the labels, as it will give additional 

gradients for each timestep and not one that has to be passed down the complete time 

series. This was not done because we only have one label vector for each sample with 

no time information. Therefore, giving labels to a cell might also negatively affect it, 

where the arrhythmias might not yet have occurred. 

Using a pre-trained base, which creates the feature vectors for the training, 

would be another option. It would result in a very good comparison of using an LSTM 

with the base instead of only using the base, as the difference in performance would 

only be dependent on the LSTM and would ensure a good base for its training. 

Another topic needing to be discussed here is that a very simple LSTM with 

depth one and 512 features was used. Therefore, we could also try to use even fewer 

features to counteract overfitting and simplify the model or make the model more 

complicated, trying to process the feature vectors better. Options for that would be to 

make the model deeper or use a bi-directional LSTM, where we can see in a very 

similar approach by Chen et al. (Chen et al. 2019) a model performing well. 

Finally, we must mention the big advantage of an LSTM, which unfortunately 

did not achieve the desired results in this work. This advantage would be the ability, to 

sum up a whole time sequence very effectively and, even more importantly – it can be 

adapted to giving real-time outputs while considering the past inputs, which should 

stabilize and improve the results of a real-world used classifier. 

 

5.4 EFFECT OF SPECTROGRAMS WITH DIFFERENT WINDOW SIZES 

COMPARED TO RAW SIGNALS 

Using spectrograms as features instead of using the raw signal did give mixed 

results; some of the models seemed to perform not as well as those using raw signals, 

but the best models using spectrograms did perform as well or even a little better than 

using raw signals. 

This can be explained by the fact that even though the spectrogram brings 

further information, the extra frequency information was unnecessary for the task, not 
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giving advantages. Another possibility is that it might even have hindered the training 

and that for ECGs, the time resolution being worse in a spectrogram could not be 

counteracted by the extra frequency information.  

When analyzing the results achieved with different window sizes, we can see 

that of all the sizes, 300 ms seemed to have given most of the time, but with other 

window sizes, good results were achieved as well as having a non-convex behaviour 

because a window of 100 ms performed better than 200 ms, and 500 ms performed 

worse than 300 ms. Depending on the sizes, an advantageous tradeoff of time and 

frequency resolution is reached; a thorough search could give clarity and an optimized 

size. 

A further hyperparameter one could think about training is the hop size. It was 

chosen very low to show detailed frequency changes; however, it might not be 

necessary, and one could reduce the input data size by reducing this parameter if 

performance stays the same. 

A very interesting consideration would be to train a future model using 

spectrograms and raw signals while combining both advantages to achieve an even 

better model. 

 

5.5 EVALUATION OF THE RESNET BACKBONES FOR THE WHOLE 

SAMPLE 

In our study, we could show that the loss of accuracy in evaluating the models 

on the full sample with a moving-window approach as described was minor. Therefore, 

we can assume that even though we only trained with the first five seconds, we still got 

a good representation. This is most likely because many samples were very short, so 

the arrhythmias would likely occur in the first five seconds. A dataset with long samples 

and spread arrhythmias would be interesting to verify if the approach is still working. 

Another interesting dataset to work with would be one having time-dependent labels 

so that a moving window could be trained and then verified more precisely. 

 

5.6 TRAINING WITH FREE RESOURCES 

The limits given by the available resources, only having access to the free 

version of Google Colab as well as to one Laptop with an NVIDIA GFORCE RTX Titan 
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GPU with 4 GB RAM, give a great insight into the practicality of the training as well as 

the actual usage of similar models in practice. 

The evaluation and test of the classifiers in practice on a computer (especially 

with graphics card) can be achieved quickly without problem; if many samples need to 

be analyzed for a study, however, the time needed will increase, needing to be taken 

into consideration or using a more powerful GPU. 

Training models on the used Laptop had its difficulties, as big model sizes and 

or bigger batch sizes will not fit on the RAM of the GPU. Moreover, the training did bind 

a large amount of the processing power, CPU, and CPU RAM, making working on 

projects during training more challenging. 

Working with Google Colab was an overall positive experience, as it opened 

much computational power with bigger GPUs while outsourcing the calculations, not 

slowing down the user's device. Without Colab, achieving the results for this thesis 

would have been a lot more challenging. 

However, one should not forget that the time limits are strict, only being able 

to, on average, train around 4 hours every 24 hours while needing to be connected to 

the internet and active in the Colab notebook for the training to continue. Furthermore, 

resources are not reliably available, as it can (and did) happen that all the resources 

are occupied by paid accounts or Google itself, which can even happen for several 

days. 

The limited amount of resources also did not allow the retraining of models on 

a larger scale to have more statistical validation of the performance of a model. 

Furthermore, it slowed hyperparameter search, such as learning rates and or window 

sizes and limited the experiments possible in the time given, especially for the more 

complex models training longer. 

 

5.7 TRAINING TIMES 

The training times of the models showed an expected pattern. The very small 

ResNet18-based models train the fastest, and the ResNet34-based models longer. 

More leads will augment the time needed, and more data must be processed. Utilizing 

spectrograms will also increase the training times, especially when the ready 

spectrograms are not yet saved in the cache needing to make the STFT. It is very 

important to cache the data as it did speed up the training in many cases by multiples. 
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Training LSTMs increased training times even more due to the small batch size used 

because the samples were different lengths. To know the times, the ResNet-based 

models could normally be trained on Colab within one to a few days of training (with 

the limitations of using the free Resources of Colab), while the bigger LSTMs could 

take weeks to train. 

Concerning the training times compared to the achieved results, one must 

conclude from this thesis that the complex models with the LSTMs did not pay off 

concerning the training times, as their performance, as with reasons discussed above, 

was lower while their training times were much higher. Using a simpler model, mostly 

when having limited resources, is a consideration one should take, as they are, in many 

cases, sufficient, having only minor differences in performance while being simpler and 

with fewer resources to handle and faster to train. 

 

5.8 EVALUATION OF THE RESULTS OF THIS WORK TO REAL-WORLD 

APPLICATIONS 

Using the models trained here for real-world applications would be possible 

quite easily. The only necessity would be creating an interface to transform the digitized 

ECGs and other essential data, like the sampling rate, into a format the algorithm can 

read. Furthermore, the output must be transformed into an easily usable format. All 

this would have to be done in an easy executable and installable program with all the 

necessary trained models integrated, which could be installed on any hospital 

computer, preferably one with more computational power and a graphic card. Another 

option would be to install the program on a server so that this application could run 

remotely online, which would not require the user to have a good computer. 

To the question of where to use an algorithm like the one created here, two 

possible ways seem to be the most reasonable. First, we could use it as an advice tool 

for the medical environment. As the classifications are imperfect so far, diagnosing 

based only on the algorithm is not advisable. However, the algorithm still can be used 

as a safety measure, which can register arrhythmias that would have otherwise been 

overseen, being very important, for example, in the constant supervision of a patient. 

The classification can also allow the cardiologist to diagnose early on to make 

diagnosing faster and improve the workflow in, e.g., a hospital. 
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A second possible usage is for research. If we have large amounts of data 

needing analysis, e.g., a study, getting qualified personnel to label is time-consuming 

and cost-intensive. If we know the error in our classification system, we can analyze 

those large amounts of data rapidly and automatically while still having a statistically 

meaningful result within our error rate. In many cases, this can help derive a new and 

important insight into our dataset.   

 

5.9 LIMITATIONS OF THIS THESIS 

One limitation is the very restricted resources available for training the models. 

This reduced the possibility of retraining the models, which would help to get different 

initializations and random processes during the training for a more complete picture of 

the models. Furthermore, it limited the number of parameters and models and tried to 

get better comparisons. On top of that, it limited the hyperparameter optimization, 

especially in the models with a lot, e.g., when using spectrograms, the models might 

not be optimized to the best available ones. This was especially an issue when the 

models had very long training times, like when training with the underlying LSTMs. 

Therefore, we only get a limited view of the possible performance of the models. 

Another limitation of this thesis is given by the data available. Even though we 

have very good and large datasets from various sources, this does not guarantee that 

all more specific environments for measuring ECGs are accounted for. This can include 

regional differences in making ECGs, uncommon in countries where the data is from. 

Moreover, the labels of the datasets will most likely have some errors and be partly 

unbalanced. This will also affect the training of the models influencing performance. 

Therefore, at least testing the models on some different unseen data might give some 

more insights about the true performance of the in this thesis tested structures. 

Lastly, the models were never used in a field test; therefore, we cannot make 

any certified observations on their performance and utility in a real environment. Due 

to that, we can only make assumptions about their performance based on the 

experiments, limiting the expressiveness regarding that. That, of course, could mean 

that the model could perform worse in an application. Therefore, we will have to test 

the model in a more real environment for verification before it can be applied on a 

larger scale. 
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6 CONCLUSION AND OUTLOOK 

 

In the following, the whole work will be briefly summarized to conclude then. 

Future work will be outlined as well. 

As cardiac arrhythmias are a very common concern in healthcare, it is 

important to be able to diagnose and treat them. ECGs are a very common tool to gain 

insights into the beating process of the heart, as the heart emits an electric signal 

during its different stations while beating. This signal can be measured at different 

points, giving different insights and creating various channels. As deep learning 

advances, it is possible to create automated classification systems, as is done in this 

thesis. Creating a training database is very time-consuming and labor-consuming; for 

this thesis, the 2021 Physionet challenge data was used, as this dataset provides an 

ample dataset for classification. 

For this thesis, several state-of-the-art methods were tested. Simple models 

based on ResNet18 and ResNet34 being trained on the first five seconds for various 

lead combinations were tried. As input data, either the raw data was slightly modified 

by filtering and normalization, or spectrograms were created using different window 

sizes. These models were also evaluated with a moving window approach on the whole 

sample. Furthermore, those models were utilized as backbones to create feature 

vectors fed into a simple one-layer/one-directional LSTM to analyze and train on 

samples with different lengths. 

The training and testing of the models resulted in the simple models only 

analyzing five seconds performing well, while the LSTMs did not meet the 

expectations. 

Based on the results of the discussions, it can be concluded that using all leads 

is unnecessary, as 12 leads did not improve performance, as the best models were 

only trained using three leads. Furthermore, only little improvement in the accuracies 

of the best models using spectrograms was found, while the average using 

spectrograms had lower performance, resulting in the conclusion that the creation of 

spectrograms did not have great advantages. The model size using ResNet18 and 

ResNet34 based models showed little more performance for the bigger model, 

concluding that utilizing a bigger model is the better choice, however only by little 

difference. Using LSTMs, this was the opposite, as the LSTMs with ResNet18 
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performed better, most likely due to overfitting. Using LSTMs did not achieve the 

opposite result of what was expected as they did not perform well, concluding that it is 

sometimes preferable to use simpler network structures. This is also true because 

while evaluating the five-second models on the whole sample, good results were 

achieved, outperforming the LSTMs proving their value and usability. From the 

resources available, the observation was made that simple models are also favorable 

due to simpler training and faster training times and being able to do more experiments 

with very limited resources. Furthermore, possible usage of the models was outlined 

in different settings that were easily applicable without much extra work.  

In total, it can be concluded that it was possible to create a simple classifier for 

atrial arrhythmias with good results and fast training times in the form of a ResNet34 

classifier either using raw data or spectrograms as can be seen by the accuracies 

achieved in test and evaluation. Furthermore, the conclusion can be drawn that 

extending the structure by an LSTM did not improve performance. 

Investigations driving this project further on developing the classifier could 

include a more thorough hyperparameter search for creating the spectrograms to 

achieve better performance or creating a classifier integrating spectrograms and raw 

data to use both. On top of that, a more optimized approach for optimizing a moving 

window for the classification could be tested. Another hyperparameter search could 

also be conducted to train LSTMs to find better values to improve their performance. 

On top of that, simpler neural networks to create the input could be counteracting 

overfitting more efficiently or using pre-initialized networks to create the features for 

performance. If other databases are available, validating their results would also be 

interesting. Validating the classifier for each class would also give insights into 

problems classifying some of the chosen arrhythmias. Furthermore, more classifiers 

trained to find other diseases could be trained with the same pipeline. 

Moreover, a common interface to transmit the data must be defined for the 

network to be usable in real-world cases. After that, a field test could be made to show 

the usability and applicability and give valuable insights into where improvements must 

be made. 
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