

Vanderlei Munhoz Pereira Filho

HPC@Cloud: A Provider-Agnostic Toolkit to Enable the
Execution of HPC Applications on Public Clouds

Dissertação submetida ao Programa de Pós-
Graduação em Ciência da Computação para
a obtenção do título de Mestre em Ciência
da Computação.
Supervisor: Prof. Márcio Bastos Castro,
Dr.

Florianópolis

2023

Vanderlei Munhoz Pereira Filho

HPC@Cloud: A Provider-Agnostic Toolkit to Enable the Execution of HPC

Applications on Public Clouds

O presente trabalho em nível de mestrado foi avaliado e aprovado por banca

examinadora composta pelos seguintes membros:

Profa. Lúcia Maria de Assumpção Drummond, Dra.

Universidade Federal Fluminense (UFF)

Prof. Tiago Coelho Ferreto, Dr.

Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)

Prof. Douglas Dyllon Jeronimo de Macedo, Dr.

Universidade Federal de Santa Catarina (UFSC)

Certificamos que esta é a versão original e final do trabalho de conclusão que foi

julgado adequado para obtenção do título de Mestre em Ciência da Computação.

Prof. Márcio Bastos Castro, Dr.

Coordenador do Programa

Prof. Márcio Bastos Castro, Dr.

Orientador

Florianópolis, 2023.

ACKNOWLEDGEMENTS

The authors would like thank the National Laboratory for Scientific Comput-

ing (LNCC/MCTI), whose resources have contributed to this research. This work was

partially funded by the National Council for Scientific and Technological Development

(CNPq) and Amazon Web Services (AWS) through the CNPq/AWS call Nº 64/2022 —

Cloud Credits for Research.

RESUMO

O advento da computação em nuvem tornou o acesso à infraestrutura de computação
disponível para milhões de pesquisadores e organizações. No contexto da Computação de
Alto Desempenho (High Performance Computing – HPC), os recursos da nuvem pública
emergiram como uma alternativa custo-efetiva aos caros clusters locais. No entanto,
existem vários desafios e limitações na adoção dessa abordagem. Esta dissertação propõe
o HPC@Cloud, um conjunto de ferramentas de software de código aberto e agnóstico a
provedores que facilita a migração, teste e execução de aplicações HPC em plataformas
de nuvem pública. A ferramenta aproveita várias tecnologias de tolerância a falhas para
permitir o uso de infraestrutura de nuvem efêmera e de baixo custo, comumente conhecida
como instâncias “spot” na Amazon Web Services (AWS). Além disso, possui integração
com contêineres Singularity, permitindo aos usuários executar aplicações complexas em
clusters virtuais de HPC de maneira portátil e reprodutível. Executamos uma diversa
gama de experimentos para avaliar o desempenho e a eficiência das soluções propostas e
integradas ao HPC@Cloud, incluindo um estudo de caso de migração de uma aplicação real
de simulação física, o DynEMol, comparando seu desempenho na AWS e em um cluster
HPC tradicional. Por fim, nossa ferramenta fornece uma abordagem baseada em dados
para estimar os custos da infraestrutura de nuvem quando aplicações são executadas. Os
resultados obtidos em dois provedores de nuvem pública (AWS e Vultr) mostraram que:
(i) o HPC@Cloud pode construir clusters virtuais de HPC na nuvem de forma eficiente; (ii)
as estratégias de tolerância a falhas propostas são eficazes em ajudar a reduzir custos sem
incorrer em penalidades de desempenho relevantes; (iii) nosso estudo de caso de migração
do DynEMol demonstrou que o uso de uma plataforma de nuvem pública, embora menos
eficiente do que o cluster tradicional, é economicamente viável; (iv) o uso de contêineres
melhora a portabilidade das aplicações HPC com perda de desempenho mínima, embora
com complexidade adicional de configuração e comunicação; (v) a abordagem de previsão
de custos proposta é capaz de estimar o tempo de execução das aplicações na AWS e
Vultr com pequenos erros quadráticos médios, proporcionando informação valiosa para
tomada de decisão pelo usuário final.

Palavras-chave: HPC. Computação em Nuvem. Spot. Singularity. MPI.

RESUMO ESTENDIDO

Introdução

A computação em nuvem democratizou o acesso a recursos de infraestrutura, permitindo
a organizações e indivíduos utilizarem serviços pela Internet sem contratos de longo prazo,
reduzindo custos operacionais e de investimento. Embora ofereça vantagens significati-
vas, a migração e otimização de aplicações para High Performance Computing (HPC) em
ambientes de nuvem pública apresenta desafios devido à complexidade e aos requisitos
de desempenho, tornando a adoção custosa para alguns casos de uso. Os provedores de
nuvem oferecem hardware especializado de alto desempenho, mas alugar essas máquinas
pode ser mais caro do que manter um cluster HPC local. Além disso, a abstração de hard-
ware, apesar de ser uma vantagem da computação em nuvem, dificulta a otimização de
aplicações computacionalmente intensivas para HPC. Nesse contexto, nós argumentamos
que para uma gama de aplicações HPC, a computação em nuvem ainda pode ser custo-
efetiva se os usuários tiverem acesso a um conjunto abrangente de softwares e frameworks
para migração.

Objetivos

Este trabalho visa avaliar a eficiência de custo e a adequação das tecnologias atuais de
computação em nuvem para cargas de trabalho de HPC, variando de benchmarks a apli-
cações reais, e identificar os principais obstáculos na migração para plataformas de nuvem
pública. Desenvolvemos o HPC@Cloud, uma ferramenta de código aberto, para facilitar
a implantação de aplicações HPC em plataformas de nuvem pública com esforço mí-
nimo, abordando lacunas identificadas em estudos relacionados. Os objetivos específicos
incluem: (1) uma análise detalhada da eficiência de custo ao usar máquinas virtuais pú-
blicas do tipo persistente e também efêmeras, também conhecidas como instâncias spot,
para executar aplicações e benchmarks em dois provedores de nuvem (AWS e Vultr); (2)
a proposta de mecanismos de tolerância a falhas configuráveis para restauração de aplica-
ções baseadas em Message Passing Interface (MPI), voltadas para o uso de infrastrutura
efêmera na núvem, reduzindo custos; (3) avaliar o impacto de tecnologias de contêineri-
zação em virtualização de hipervisor para cargas de trabalho MPI na nuvem pública; (4)
introduzir um método empírico para estimar custos de execução de cargas de trabalho
MPI em nuvens públicas; e (5) realizar a migração e avaliação de performance de uma
aplicação de simulação física real, o DynEMol, para AWS, comparando custos operacio-
nais com um cluster tradicional, e detalhando os principais desafios encontrados e como
superá-los.

Metodologia

Neste trabalho, empreendemos uma avaliação abrangente visando abordar lacunas de soft-
ware no contexto da computação de alto desempenho em plataformas de nuvem pública,
conforme identificado em estudos anteriores. Nossa avaliação da ferramenta HPC@Cloud,
desenvolvido para facilitar a transição de cargas de trabalho HPC para ambientes em
nuvem, seguiu várias dimensões, incluindo escalabilidade, gerenciamento de recursos de
nuvem, estratégias de tolerância a falhas, migração de aplicações legadas, execução con-
tainerizada, e predição de custos de execução. No âmbito da escalabilidade de clusters,
tecnologias e gerenciamento de recursos, testamos a escalabilidade da infraestrutura em
nuvem da AWS e da Vultr executando uma aplicação benchmark desenvolvida neste tra-

balho, testando dois tamanhos de problema em várias configurações de clusters. Isso
incluiu a exploração de diferentes tipos de instâncias e tecnologias de nuvem relacionadas
a rede e armazenamento, buscando entender seu impacto no desempenho e escalabilidade
de aplicações HPC na nuvem. Continuamos analisando as estratégias de tolerância a
falhas propostas, avaliando a eficácia de diferentes mecanismos para cargas de trabalho
HPC, particularmente no contexto de recursos em nuvem efêmeros, como instâncias spot
da AWS. Executamos diversos experimentos comparando tecnologias como Berkeley Lab
Checkpoint-Restart (BLCR), Distributed MultiThreaded CheckPointing (DMTCP), Scala-
ble Checkpoint Restart (SCR), e User-Level Failure Mitigation (ULFM), identificando as
perdas de desempenho de cada uma delas conforme falhas ocorrem no sistema. Ademais,
buscamos realizar uma análise da economia financeira do uso de instâncias spot com apli-
cações tolerantes a falhas em comparação ao uso de instâncias persistentes com aplicações
sem tolerância a falhas. No estudo da migração de aplicações legadas, realizamos um caso
de estudo focado na migração e avaliação de desempenho da aplicação de simulação física
conhecida como DynEMol para a AWS. Testamos várias configurações e tecnologias em
nuvem para avaliar sua adequação e desempenho, fornecendo insights sobre os desafios
e benefícios da migração para a nuvem. Os resultados de desempenho e custo do Dy-
nEMol na AWS são então comparados com os resultados obtidos quando executado em
um cluster HPC tradicional do departamento de Física da UFSC. Na avaliação acerca da
execução containerizada, essa pesquisa também investigou o uso da tecnologia Singularity
como caso de teste para execução de cargas de trabalho MPI. O objetivo foi entender as
implicações de desempenho e complexidades operacionais de implantar aplicações HPC
desse tipo quando containerizadas em ambientes de nuvem. São executados diversos expe-
rimentos com benchmarks, onde analisamos a diferença de desempenho quando as cargas
são executadas diretamente nas instâncias, sem o uso de contêineres. Visando prever o
tempo e o custo de execução de uma aplicação, com o objetivo de apoiar o processo de
decisão na seleção da infraestrutura, testamos dois modelos de machine learning simples,
XGBoost e Regressão Linear, usando dados capturados pelo HPC@Cloud ao executar
cargas de trabalho. Nosso estudo comparativo sobre previsão de custos demonstrou visa
demonstrar a viabilidade do uso de modelos de aprendizado de máquina para esse obje-
tivo, lançando as fundações para trabalhos futuros na área. Cada um desses critérios de
avaliação foi meticulosamente projetado para sondar a convergência de HPC e Computa-
ção em Nuvem, focando não apenas em desempenho e escalabilidade, mas também nas
implicações operacionais e de custo de implantar cargas de trabalho HPC em ambientes
de nuvem. Esta metodologia abrangente fornece um robusto framework para avaliar a
viabilidade e eficácia das plataformas de nuvem para aplicações HPC, abrindo caminho
para futuras pesquisas e desenvolvimento nesta área crítica da tecnologia da computação.

Resultados e Discussão

Obtivemos os seguintes resultados: (a) o método utilizado pelo HPC@Cloud para requi-
sição e configuração de clusters é extremamente escalável, levando cerca de 1 minuto e
meio para preparar um cluster de até 8 nós quando utilizando imagens preparadas. Sem o
uso de imagens preparadas, o tempo de configuração de um cluster depende dos recursos
computacionais dos nós, que precisam compilar e instalar dependências. Se uma aplicação
muito grande será executada, criar uma imagem preparada para ganhar alguns minutos
no tempo de execução pode não valer o esforço; (b) nos experimentos que visam avaliar o
desempenho e escalabilidade na execução de benchmarks na AWS e Vultr, detectamos que
o tamanho do problema afeta diretamente na escalabilidade do cluster, confirmado pelos
resultados obtidos que demonstraram uma perda de desempenho significante quando o

cluster é escalonado horizontalmente para aplicações pequenas, enquanto que para apli-
cações grandes o escalonamento horizontal é vantajoso; (c) ademais, a partir dos experi-
mentos de escalabilidade e desempenho iniciais, concluímos que o uso de instâncias com
muitos recursos computacionais em menor quantidade é geralmente mais vantajoso do
que o uso de uma grande quantidade de instâncias com poucos recursos; (d) na avaliação
das estratégias de tolerância a falhas, concluímos que as estratégias em nível de sistema
(BLCR e DMTCP) são mais facilmente integráveis do que as estratégias em nível de apli-
cação (SCR e ULFM), todavia possuem desempenho geralmente inferior, com o ULFM
obtendo os melhores resultados, seguido por SCR, DMTCP e BLCR, respectivamente;
(e) em nossos testes, a abordagem e frequência adotada para a execução de checkpoints
influenciou drasticamente o tempo total de execução das aplicações, sobretudo quando
utilizadas as técnicas a nivel de sistema, causando uma demora aproximadamente 4 vezes
maior (BLCR com checkpoint periódico) para completar a execução, em comparação com
o caso sem falhas; (f) a técnica de tolerância a falhas mais eficiente foi a execução adapta-
tiva com ULFM, que permite a execução contínua da aplicação sem grandes interrupções
durante a ocorrência de falhas, proporcionando um desempenho próximo da aplicação
sem falhas; (g) no âmbito de custos, o uso da técnica ULFM com instâncias spot na AWS
proporcionou uma economia de até 87% comparado aos custos do uso de instâncias nor-
mais, enquanto que o uso da técnica BLCR com checkpoints periódicos (totalizando 20
checkpoints durante a execução), custou 42% a mais do que o uso de instâncias comuns,
demonstrando que o uso de infraestrutura efêmera não garante economia financeira; (h)
mesmo com técnicas não tão eficientes para tolerância a falhas, como as de nível de sis-
tema, com o uso de alarmes da AWS e a execução preemptiva de checkpoints, foi possível
reduzir bastante o tempo de execução (diminuindo de 20 para apenas 2 checkpoints rea-
lizados), atingindo uma economia de até 73% quando utilizando DMTCP com instâncias
spot, por exemplo; (i) quando levado em conta os possíveis custos de implementação de
uma solução mais eficiente a nível de aplicação, os custos podem acabar sendo maiores
do que simplesmente utilizar uma técnica a nível de sistema, que não requer modificações
em código; (j) em nosso estudo de caso de migração da aplicação DynEMol, confirma-
mos os mesmos resultados obtidos em outros experimentos, reforçando a importância da
configuração minuciosa do tamanho do cluster, ou escalonabilidade horizontal, que afeta
drasticamente o tempo de execução total; (k) quando comparada a execução virtualizada
na nuvem com a execução no cluster físico tradicional, os resultados foram similares, en-
tretanto, o cluster físico obteve os melhores resultados (speedup de 1.29, comparado com
um speedup de 1.22 na nuvem); (l) o uso de tecnologias proprietárias da AWS, como o
sistema de armazenamento FSx for Lustre, e a tecnologia de rede Elastic Fabric Adapter
(EFA) não demonstraram um ganho significativo de desempenho; (m) nos experimentos
envolvendo a execução containerizada, o uso da ferramenta Singularity para a execução
de cargas de trabalho MPI resultou em uma perda insignificante de desempenho, demons-
trando ser completamente viável para HPC na nuvem; (n) a abordagem de previsão de
custos proposta, baseada em XGBoost, foi capaz de estimar o tempo de execução das
aplicações na AWS e Vultr com um pequeno erro quadrático médio (7.97s para uma mé-
dia de 140.81s e mediana de 120.00s), enquanto que a abordagem baseada em regressão
linear não obteve resultados tão satisfatórios, sendo incapaz de detectar não-linearidade
nos dados utilizados para treinamento do modelo de predição.

Considerações Finais

A ferramenta HPC@Cloud representa um passo significativo em direção à convergên-
cia de HPC e computação em nuvem. Nossas contribuições neste trabalho não apenas

demonstram as capacidades da ferramenta, mas também fornecem percepções sobre as
complexidades do gerenciamento de recursos na nuvem e a tolerância a falhas em HPC na
nuvem. Ao continuar construindo sobre essas bases, nosso objetivo é desbloquear o poten-
cial total das plataformas de computação em nuvem públicas para a comunidade HPC.
Planejamos implementar uma versão centralizada do HPC@Cloud, que será acessada por
meio de uma API REST, eliminando a necessidade de instalação de dependências na
máquina do usuário, como Terraform, Docker e CLIs de provedores, simplificando o uso
por pesquisadores. Além disso, pretendemos adicionar suporte para outros dois grandes
provedores de nuvem pública: Google Cloud Platform (GCP) e Azure. Com esse suporte,
o HPC@Cloud pode se tornar verdadeiramente uma solução multiplataforma para HPC
na nuvem.

Palavras-chave: HPC. Computação em Nuvem. Spot. Singularity. MPI.

ABSTRACT

The advent of cloud computing has made access to computing infrastructure available to
millions of researchers and organizations. In the context of High-Performance Computing
(HPC), public cloud resources have emerged as a cost-effective alternative to expensive
on-premises clusters. However, there are several challenges and limitations in adopting
this approach. This dissertation proposes HPC@Cloud, a multi-provider, open-source
software toolkit that facilitates the migration, testing, and execution of HPC applications
on public cloud platforms. The toolkit leverages various fault tolerance technologies to
enable the use of inexpensive ephemeral cloud infrastructure, commonly known as “spot”
instances in Amazon Web Services (AWS). Additionally, it features integration with Sin-
gularity containers, allowing users to run complex applications on virtual HPC clusters
in a portable and reproducible way. We conducted a diverse range of experiments to
assess the performance and efficiency of the proposed solutions and integrations within
HPC@Cloud, including a case study of migrating a real physical simulation application,
DynEMol, and comparing its performance on AWS to a traditional HPC cluster. Fi-
nally, the toolkit provides a data-based approach to estimating cloud infrastructure costs
when running applications. The results obtained on two public cloud providers (AWS and
Vultr) show that: (i) HPC@Cloud can efficiently build virtual HPC clusters on the cloud;
(ii) the proposed fault tolerance strategies proved effective in helping reduce costs with-
out incurring relevant performance penalties; (iii) our case study migration of DynEMol
demonstrated that while the use of a public cloud platform is less efficient than the tradi-
tional cluster, it is economically viable; (iv) the use of containers improves the portability
of HPC applications with a minimal performance footprint, albeit with added setup and
communications complexity; (v) the proposed cost prediction approach can estimate the
running time of applications on AWS and Vultr with small round median square errors,
providing valuable information for end-user decision-making.

Keywords: HPC. Cloud Computing. Spot. Singularity. MPI.

LIST OF FIGURES

Figure 1 – Common cloud service models compared to traditional Information

Technology (IT). 39

Figure 2 – Action diagram of the HEAT application logic. 44

Figure 3 – Overview of DynEMol simulation results and parallelization. 46

Figure 4 – Overview of software dependencies. 54

Figure 5 – Sequence diagram for cluster creation with HPC@Cloud. 56

Figure 6 – Sequence diagram for tasks execution with HPC@Cloud. 60

Figure 7 – MPI oversubscription approach for ULFM-based fault tolerance. 66

Figure 8 – MPI hybrid model: message passing communications between Virtual

Machine (VM) hosts and containers. 67

Figure 9 – Machine Learning training workflow in HPC@Cloud. 69

Figure 10 – Machine Learning scoring workflow in HPC@Cloud. 70

Figure 11 – Resource management efficiency results. 73

Figure 12 – HEAT execution times and horizontal scaling (no fault tolerance). . . . 75

Figure 13 – Evaluation of the fault tolerance strategies over different clusters. . . . 77

Figure 14 – DynEMol speedups achieved with different cluster configurations. . . . 80

Figure 15 – DynEMol execution costs (large workload). 81

Figure 16 – DynEMol time-steps per USD spent (large workload). 82

Figure 17 – Containerized execution performance evaluation. 83

Figure 18 – Predicted execution time residuals plot. 87

Figure 19 – Computed costs predictions residuals plot. 87

LIST OF TABLES

Table 1 – Related work contributions comparison. 52

Table 2 – Configurable parameters in HPC@Cloud. 55

Table 3 – Technology features available in each provider integrated into HPC@Cloud. 58

Table 4 – Task configurable parameters in HPC@Cloud. 59

Table 5 – Features and advantages of each fault tolerance technology. 66

Table 6 – Instance types evaluated in resource management efficiency tests. 73

Table 7 – Instance types evaluated with HEAT . 74

Table 8 – Test scenarios for fault tolerance evaluation. 76

Table 9 – Cluster configurations evaluated with DynEMol. 79

Table 10 – DynEMol workload sizes tested. 79

Table 11 – Workloads considered for containerization experiments. 82

Table 12 – Variables used for model training. 85

LIST OF LISTINGS

Listing 1 – Shell script for instance setup. 72

Listing 2 – Raw dataset sample for training (in CSV format). 85

LIST OF ALGORITHMS

Algorithm 1 – HEAT application iterative logic. 45

Algorithm 2 – HEAT application iterative logic, with Checkpoint/Restart (C/R) added

with SCR. 64

Algorithm 3 – HEAT application iterative logic, with C/R added with ULFM. . . 65

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence. 31, 35, 43

AMI Amazon Machine Image. 72, 73, 74, 83

API Application Programming Interface. 38, 39, 42, 54, 63, 64, 90, 93

ARB Architecture Review Board. 37

AWS Amazon Web Services. 29, 33, 35, 40, 41, 48, 49, 50, 51, 53, 54, 56, 57, 58,

59, 61, 63, 68, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 86, 89, 90, 91, 92

AZ Availability Zone. 53, 55, 57, 72, 74

BLCR Berkeley Lab Checkpoint-Restart. 10, 32, 49, 50, 61, 62, 64, 76, 77, 78, 90

C/R Checkpoint/Restart. 21, 32, 63, 64, 65, 76, 77, 91

CFD Computational Fluid Dynamics. 43, 47

CLI Command-Line Interface. 53, 55, 59, 68, 69, 70

CPU Central Processing Unit. 35, 36, 38, 56, 78, 81

CRIU Checkpoint/Restore In Userspace. 51

DMTCP Distributed MultiThreaded CheckPointing. 10, 32, 61, 62, 64, 76, 77, 78, 90

DNA Deoxyribonucleic Acid. 35

EBS Elastic Block Storage. 56, 57, 58, 63, 74, 80, 81, 82, 89, 91

EC2 Elastic Compute Cloud. 31, 57, 58, 68

ECR Elastic Container Registry. 83

EFA Elastic Fabric Adapter. 55, 58, 61, 79, 80, 89, 91, 92

EFS Elastic File System. 56, 57, 89

ENA Elastic Network Adapter. 58, 79, 80, 89, 91

FaaS Function as a Service. 47

FPGA Field-Programmable Gate Array. 35

FSx FSx for Lustre. 55, 89

GCP Google Cloud Platform. 12, 29, 47, 93

GPU Graphical Processing Unit. 31, 35, 36, 40, 41, 68, 90, 92

HCL HashiCorp Configuration Language. 53, 55

HPC High Performance Computing. . 9, 10, 11, 12, 29, 30, 31, 32, 33, 34, 35, 36,

37, 38, 39, 40, 41, 42, 43, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 68, 71, 74,

78, 79, 89, 90, 93

HT HyperThreading. 78

I/O Input and Output interfaces. 36, 62, 63, 77, 81, 82, 89, 91

IaaS Infrastructure as a Service. 38, 39, 40, 41, 47, 51

IaC Infrastructure as Code. 54

IOPs Input and Output Operations per Second. 55

IT Information Technology. 15, 38, 39

JSON JavaScript Object Notation. 55

LTS Long-Term Support. 67

MAE Mean Absolute Error. 84, 86

ML Machine Learning. 43, 86

MPI Message Passing Interface. . 9, 10, 11, 32, 33, 36, 37, 38, 41, 44, 46, 47, 49,

50, 52, 53, 54, 58, 61, 62, 63, 64, 65, 66, 67, 68, 74, 79, 80, 82, 83, 89, 90, 92

MPIF Message Passing Interface Forum. 37

NFS Network File System. 53, 55, 57, 67

NIST National Institute of Standards and Technology. 38

NPB NAS Parallel Benchmarks. 43, 44, 69, 71, 82, 84, 93

NSF National Science Foundation. 62

OS Operating System. 37, 82

PaaS Platform as a Service. 38, 39

PID Process Identification Number. 61

RAM Remote Access Memory. 77, 85

RDMA Remote Direct Memory Access. 78

RMSE Root Mean Square Error. 84, 86

RoCE RDMA over Converged Ethernet. 43

SaaS Software as a Service. 38, 39, 47

SCR Scalable Checkpoint Restart. 10, 21, 32, 44, 62, 63, 64, 76, 90

SOA Service Oriented Architecture. 38

SSH Secure Shell Protocol. 53, 58, 72

TPU Tensor Processing Unit. 43

UFSC University of Santa Catarina. 45, 78

ULFM User-Level Failure Mitigation. 10, 21, 32, 44, 49, 50, 62, 63, 64, 65, 76, 77,

90, 91

vCPU Virtual CPU. 29, 31, 39, 40, 56, 74

VLSI Very Large Scale Integration. 36

VM Virtual Machine. 15, 30, 31, 32, 35, 39, 40, 41, 47, 51, 53, 55, 57, 58, 59, 67,

68, 71, 72, 73, 82, 92

VNA VPC 2.0 Network Adapter. 58

VPC Virtual Private Cloud. 57

YAML Yet Another Markup Language. 55, 59

CONTENTS

1 INTRODUCTION . 29

1.1 Motivation . 30

1.2 Limitations of Existing Platforms and Strategies 31

1.3 Goals and Contributions . 32

1.4 Publications . 33

1.5 Work Organization . 34

2 BACKGROUND . 35

2.1 High Performance Computing . 35

2.1.1 Parallel Computer Architectures . 36

2.1.2 Parallel Programming Models . 37

2.2 The Cloud Computing Paradigm 38

2.2.1 Cloud Service Models . 38

2.2.2 Ephemeral Infrastructure in Public Cloud Platforms 39

2.2.3 Low-Budget Providers: Vultr Cloud . 40

2.3 HPC and Containerization . 41

2.4 HPC and Cloud Convergence Challenges 41

2.5 Applications and Benchmarks . 43

2.5.1 NASA Advanced Supercomputing Parallel Benchmarks (NPB) 43

2.5.2 Parallel Implementation of 2D-Heat Diffusion Equations (HEAT) 44

2.5.3 DynEMol Simulation Software . 45

3 RELATED WORK . 47

3.1 HPC and Cloud Computing Convergence 47

3.2 Ephemeral Cloud Infrastructure for HPC 48

3.3 Fault Tolerance for MPI Applications 50

3.4 Containerization for HPC . 50

3.5 Discussion . 51

4 THE HPC@CLOUD SOFTWARE TOOLKIT 53

4.1 HPC@Cloud Software Architecture Overview 53

4.2 Managing Multicloud Infrastructure 54

4.2.1 Cluster Topology, Storage and Networking Devices 55

4.2.1.1 Cluster Topology . 56

4.2.1.2 Cloud Storage Technologies . 57

4.2.1.3 Cloud Networking Technologies . 57

4.3 Managing Fault-Tolerant Workloads 58

4.3.1 Failure System Model . 60

4.3.2 System-Level Fault Tolerance . 61

4.3.2.1 Berkeley Labs Checkpoint-Restart (BLCR) 61

4.3.2.2 Distributed MultiThreaded CheckPointing (DMTCP) 62

4.3.3 Application-Level Fault Tolerance . 62

4.3.3.1 Scalable Checkpoint Restart (SCR) . 62

4.3.3.2 User-Level Failure Mitigation (ULFM) . 63

4.4 Images, Communication, and Containerization Support 67

4.5 Forecasting Costs . 68

5 EXPERIMENTAL RESULTS . 71

5.1 Resource Management Efficiency 71

5.2 Cluster Scalability . 74

5.3 Fault Tolerance Strategies . 76

5.4 DynEMol Migration Analysis . 78

5.5 Containerized Execution . 82

5.6 Costs Forecasting . 84

5.6.1 Adopted Evaluation Method . 84

5.6.2 Model Training . 84

5.6.2.1 Linear Regression . 85

5.6.2.2 XGBoost . 85

5.6.3 Model Scoring and Evaluation . 86

6 CONCLUSION AND FUTURE RESEARCH 89

6.1 Cluster Scalability, Technologies, and Resource Management . 89

6.2 Fault Tolerance Strategies and Ephemeral Instances 90

6.3 Migrating Legacy Applications . 91

6.4 Containerized Execution . 92

6.5 Costs Forecasting . 92

6.6 Other Future Directions for HPC@Cloud 93

BIBLIOGRAPHY . 95

29

1 INTRODUCTION

Public cloud platforms allow anyone to access their services over the Internet

without requiring a long-term contract. By leveraging economies of scale, the Cloud Com-

puting paradigm has democratized access to infrastructure resources, making it available

to millions of organizations and individuals. The common pay-per-use model adopted by

cloud providers significantly lowers the capital barrier required to set up computing in-

frastructure, reducing investment risk and operational costs (Buyya et al., 2019). Amazon

Web Services (AWS), Microsoft Azure, Alibaba Cloud, Google Cloud Platform (GCP),

and Huawei are some of the leading public cloud providers in terms of revenue, collectively

accounting for 80% of the market share (Gartner, 2022).

The compelling benefits of Cloud Computing, particularly for organizations han-

dling High Performance Computing (HPC) workloads on constrained budgets, make it an

attractive option for meeting their computational needs. Nevertheless, as underscored by

Netto et al. (2018), the migration of applications to the cloud is far from a straightforward

endeavor. The complexity is further exacerbated when attempting to optimize traditional

HPC applications, which have stringent performance requirements to function efficiently,

specially within the unpredictable shared environments offered by public cloud providers.

Comparable to what currently exists in terms of software tools for enterprise

web applications, there are few tools that focus on converging HPC and public cloud

platforms, despite the ongoing effort by major industry players and research institutions.

As of today, organizations that want to benefit from accessible compute resources have to

build, configure, and manage the necessary infrastructure from scratch, on top of handling

the entire migration process, making the public cloud adoption for HPC use cases costly

and potentially unviable (Coghlan; Yelick, 2011).

Although several mainstream providers offer specialized hardware through on-

demand cloud pricing models, renting these kinds of machines can easily get more expen-

sive than buying and maintaining an on-premise HPC cluster, contrary to what may be

expected (Emeras; Varrette; Bouvry, 2016). Market forces that regulate large-scale Cloud

Computing purchases are also different from small-scale use cases, where users can read-

ily get access to infrastructure without previous notice or long-term contracts. Standard

accounts in AWS, for instance, can launch up to 20 instances with up to 64 Virtual CPUs

(vCPUs) in total. To go beyond these limits, users must submit a request that needs to

be manually reviewed and approved by AWS prior to the creation of additional resources.

Moreover, the hardware abstraction, which is considered one of the biggest im-

provements brought by the Cloud Computing paradigm, is actually a painful aspect for

traditional HPC use cases, where fine-grained knowledge of the underlying hardware is

desired to optimize CPU-intensive applications. There are continuous debate and ongo-

ing studies on the viability of executing specialized HPC applications in uncontrolled and

30

abstracted environments such as public cloud platforms (Richter, 2016).

In this context, we argue that Cloud Computing options can still be cost-effective

for a range of HPC applications, given that users have access to a comprehensive software

stack and frameworks to migrate existing applications seamlessly.

1.1 Motivation

In the HPC realm, the resources provided by public cloud services present an

enticing alternative to costly on-site clusters. While it is true that the performance

of public cloud infrastructure might not measure up to traditional physical hardware,

they do possess certain compensatory attributes worth exploring. For instance, some

providers offer substantial discounts on ephemeral Virtual Machines (VMs), a.k.a spot

VMs, essentially renting out surplus infrastructure on a temporary basis. These machines

are labeled as ephemeral because the provider can, without prior notification, repossess

this infrastructure whenever a more lucrative long-term request is made by other clients.

The spot market unveils promising avenues for smaller research groups, enabling

them to utilize highly-parallel infrastructures at considerably reduced costs. However, it

is crucial for these applications to be fault-tolerant to ensure viable execution within such

environments. Moreover, establishing a sustainable HPC cloud platform necessitates a

robust software ecosystem. The need to fill software gaps, such as cost advisors, large

contract handlers, DevOps solutions, automation APIs, and cloud-aware resource man-

agers, is paramount to facilitate a fully operational HPC cloud platform (Netto et al.,

2018), and one of the main motivators for our research.

While public cloud platforms offer numerous advantages, they do come with a

distinct set of challenges that enterprises are actively studying and addressing. These in-

clude the issue of vendor lock-in, where switching platforms becomes difficult due to the

unique services and infrastructure of each provider. Additionally, the absence of universal

industry standards can complicate interoperability and integration efforts. The lack of

transparency surrounding pricing structures can also be a concern, potentially leading to

unforeseen cost escalations if resources are not meticulously managed. These accumulated

challenges forced organizations to employ dedicated professionals whose primary respon-

sibility is to manage their cloud resources and expenditures. In response to this need, a

comprehensive set of management practices has emerged to address the fluctuating ex-

penses associated with cloud resource usage, typically referred to as FinOps (Storment;

Fuller, 2023).

The democratization of computational resources is set to confer invaluable bene-

fits to scientific exploration and human progress. Consequently, surmounting these inher-

ent challenges becomes essential to empower researchers in their pursuit of groundbreak-

ing studies, spanning fields such as pharmacological discovery, climate modeling, genome

mapping, and materials science, among others (Shalf, 2020).

31

1.2 Limitations of Existing Platforms and Strategies

Over recent years, cloud providers have launched numerous localized products

and services, promoting them as HPC solutions. These offerings typically include in-

frastructure options featuring high-speed interconnections, such as InfiniBand, although

they can be expensive. Cloud providers also provide large VM instances equipped with

hundreds of vCPUs to cater to applications with substantial processing demands. Since

the mid-2010s, the rental of Graphical Processing Unit (GPU)-powered machines has

gained traction, particularly for accelerating Artificial Intelligence (AI) model training.

Recently, NVIDIA, the largest manufacturer in the field, achieved a monumental mile-

stone by reaching a market valuation of 1 trillion dollars1. This significant surge was

largely driven by the escalating demand for GPU chips, a phenomenon propelled by the

burgeoning interest in generative AI technologies.

Regarding software tooling, the most significant contributions have been centered

around task scheduling and virtualization technologies. For infrastructure provisioning,

for example, Amazon launched the AWS Parallel Cluster2 tool in 2016 to assist developers

in building clusters using Elastic Compute Cloud (EC2) instances from the command line.

Microsoft Azure has Azure CycleCloud3, a service which is basically a web interface to

help users dynamically provision virtualized clusters with tools widely used in HPC pre-

installed. Google launched their own Google Cloud HPC Toolkit4, similar to AWS Parallel

Cluster in functionality. However, despite their utility, these products and tools are

exclusive to each provider, making migration between solutions challenging due to the

absence of industry standards for Cloud Computing and HPC (Netto et al., 2018). There

is also the obvious lack of interest from the cloud providers to give means for users to easily

jump out of their platforms and join their competitors whenever they increase prices.

When it comes to utilizing ephemeral VMs for HPC, the predominant focus of

research has been on bag-of-tasks applications (Malla; Christensen, 2020; Teylo et al.,

2023). These are inherently easy to parallelize, and the eviction of an instance tends not

to pose significant issues, since only the work performed by the evicted instance needs to

be repeated. However, for tightly-coupled applications, instance eviction escalates into

a substantial challenge. In these cases, the implementation of fault-tolerance strategies

becomes critical, and they must be exceptionally efficient to prevent a substantial increase

in runtime and monetary costs. Nevertheless, there is a noticeable scarcity of updated

studies addressing the execution of such applications using public cloud infrastructure.

Furthermore, current software tools designed to aid users in migrating and executing these

applications cost-effectively are virtually non-existent.

1 https://www.forbes.com/sites/dereksaul/2023/05/30/nvidia-hits-1-trillion-market-value
2 https://github.com/aws/aws-parallelcluster/releases/tag/1.0.0
3 https://learn.microsoft.com/en-us/azure/cyclecloud/overview
4 https://cloud.google.com/blog/products/compute/new-google-cloud-hpc-toolkit

32

1.3 Goals and Contributions

Addressing the challenges highlighted earlier, the primary objective of this re-

search is to assess the cost-efficiency of current cutting-edge cloud computing technolo-

gies, while appraising their suitability for handling diverse HPC workloads, ranging from

benchmarks to real-world applications. Furthermore, this research aims to pinpoint the

primary obstacles that researchers may encounter while transitioning to, or developing

applications for, public cloud platforms. Consequently, we devise software solutions to

counter these identified setbacks. These solutions are then integrated into HPC@Cloud,

an open-source software toolkit developed in the context of this research. This toolkit is

designed to facilitate the deployment of HPC applications on public cloud platforms with

minimum effort, and also fill some software tooling gaps identified by related studies, such

as DevOps and FinOps capabilities.

Overall, we bring the following contributions to state of the art on HPC and

Cloud Computing convergence:

1. We produce a detailed cost-efficiency analysis of using standard and ephemeral pub-

lic cloud VMs to execute a diverse range of Message Passing Interface (MPI) ap-

plications and benchmarks across two cloud providers, giving a clear picture of the

pros and cons of using such type of infrastructure and a quick view of the main

performance bottlenecks faced by these kinds of applications.

2. We propose and evaluate four configurable fault-tolerance mechanisms for Check-

point/Restart (C/R) tailored for MPI applications running on ephemeral VMs.

Each strategy have variations on how checkpointing is executed, with an in-depth

analysis of performance and costs trade-offs of running them on a variety of different

cluster configurations. The evaluated fault-tolerance mechanisms are:

a) Berkeley Lab Checkpoint-Restart (BLCR).

b) Distributed MultiThreaded CheckPointing (DMTCP).

c) Scalable Checkpoint Restart (SCR).

d) User-Level Failure Mitigation (ULFM).

3. We evaluate the performance impact and viability of a well-established container-

ization technology (Singularity) when used on top of hypervisor virtualization for

running MPI workloads, testing benchmarks and real-world applications, discussing

the main advantages of this technology.

4. We introduce an empirical method to estimate job execution costs on public clouds.

This approach entails executing the target application with a small input problem

size and collecting execution metrics. These metrics are subsequently utilized to

train regression models, enabling the prediction of total execution time. By em-

ploying this solution, we aim to enhance the accuracy of estimating job execution

costs on public clouds.

33

5. As a case-study, we perform the migration of DynEMol, a real-world physics sim-

ulation application, to AWS. We evaluate the application performance on a range

of virtualized clusters, both persistent and ephemeral, as well as on a traditional

on-premise HPC cluster, analyzing and comparing the operational costs.

The aforementioned scientific contributions were packed into a new open-source

toolkit that leverages enterprise-grade technologies to help researchers migrate legacy

HPC code to public clouds named HPC@Cloud. This toolkit was designed to work with

different public cloud providers and is equipped with a versatile command line interface

that empowers users to efficiently determine the required computational resources and

configurations when configuring HPC infrastructure. It facilitates the seamless operation

of MPI applications on the provisioned cluster, employing TCP/IP or InfiniBand (when

available) for communication. Additionally, the toolkit provides inherent support for

Singularity containers, thus enhancing portability when it comes to transitioning legacy

HPC code to the Cloud.

1.4 Publications

The main contributions of this dissertation were published in high quality venues

(Munhoz; Castro; Mendizabal, 2022; Munhoz; Castro, 2022b; Munhoz; Castro, 2023;

Munhoz; Castro; Rego, 2023; Munhoz et al., 2023; Munhoz; Castro, 2022a; Ferrão;

Munhoz; Castro, 2023; Althoff; Munhoz; Castro, 2023). Below is a list of research papers

produced during the dissertation:

• Vanderlei Munhoz, Márcio Castro, Odorico Mendizabal. Strategies for Fault-

Tolerant Tightly-coupled HPC Workloads Running on Low-Budget Spot Cloud In-

frastructures. International Symposium on Computer Architecture and High Per-

formance Computing (SBAC-PAD). Bordeaux, France: IEEE Computer Society,

2022. DOI: 10.1109/SBAC-PAD55451.2022.00037.

• Vanderlei Munhoz, Márcio Castro. HPC@Cloud: A Provider-Agnostic Software

Framework for Enabling HPC in Public Cloud Platforms. Simpósio em Sistemas

Computacionais de Alto Desempenho (WSCAD). Florianópolis, Brazil: SBC, 2022.

DOI: 10.5753/wscad.2022.226528.

• Vanderlei Munhoz, Márcio Castro. Benchmarking the Scalability of MPI-Based

Parallel Solvers for Fluid Dynamics in Low-Budget Cloud Infrastructure. XXII

Escola Regional de Alto Desempenho da Região Sul (ERAD-RS). Curitiba, Brazil,

2022. DOI: 10.5753/eradrs.2022.19170.

• Lívia Ferrão, Vanderlei Munhoz, Márcio Castro. Análise do Sobrecusto de Uti-

lização de Contêineres para Execução de Aplicações de HPC na Nuvem. XXIII

Escola Regional de Alto Desempenho da Região Sul (ERAD-RS). Porto Alegre,

Brazil, 2023. DOI: 10.5753/eradrs.2023.229787.

34

• Luiz Fernando Althoff, Vanderlei Munhoz, Márcio Castro. Análise de Viabilidade

do Perfilamento de Aplicações de HPC Baseada em Contadores de Hardware na

AWS. XXIII Escola Regional de Alto Desempenho da Região Sul (ERAD-RS). Porto

Alegre, Brazil, 2023. DOI: 10.5753/eradrs.2023.230088.

• Vanderlei Munhoz, Márcio Castro. Enabling the Execution of HPC Applications

on Public Clouds with HPC@Cloud Toolkit. Concurrency and Computation: Prac-

tice and Experience (CCPE), 2023. DOI: 10.1002/cpe.7976.

• Vanderlei Munhoz, Márcio Castro, Luis G. C. Rego. Evaluating the Parallel

Simulation of Dynamics of Electrons in Molecules on AWS Spot Instances. Simpósio

em Sistemas Computacionais de Alto Desempenho (WSCAD). Porto Alegre, Brazil:

SBC, 2023. DOI: wscad.2023.235765.

• Vanderlei Munhoz, Antoine Bonfils, Márcio Castro, Odorico Mendizabal. A Per-

formance Comparison of HPC Workloads on Traditional and Cloud-based HPC Clus-

ters. International Symposium on Computer Architecture and High Performance

Computing Workshops (SBAC-PADW). Porto Alegre, Brazil: IEEE Computer So-

ciety, 2023. DOI: 10.1109/SBAC-PADW60351.2023.00026.

1.5 Work Organization

The remainder of this work is organized as follows. In Chapter 2, we cover the

required theoretical background on HPC and Cloud Computing concepts. In Chapter 3,

we discuss previous work and related research. In Chapter 4, we present our proposed

public cloud toolkit for HPC and detail its implementation, as well as all strategies devised

and applied to make it cost-effective. In Chapter 5, we present our evaluation method,

including evaluated metrics, applications and execution environments, delving into com-

prehensive discussions about the obtained results. Finally, we draw our main conclusions

and present valuable future studies related to our research in Chapter 6.

35

2 BACKGROUND

This chapter delves into the foundational aspects that underpin this work. We

start by providing a comprehensive overview of the HPC context, followed by an in-

depth exploration of the Cloud Computing paradigm. Then, we detail the ephemeral

VM market within the AWS public cloud platform. Next, we delve into the fundamental

virtualization and network technologies that form the core of Cloud Computing, discussing

their potential impact on the execution of HPC workloads. Then, we discuss the ongoing

HPC and Cloud Computing convergence, highlighting the state of the art and the main

challenges that are hindering the full convergence of both fields. Finally, we present a

brief overview of the benchmarks and the applications used in this research.

2.1 High Performance Computing

Traditional HPC usually refers to the utilization of physical computer clusters for

parallel processing of large-scale data and algorithms. The execution of HPC workloads

usually entails the collaborative effort of millions of processors, as their completion on

a single computer would be impractical within a reasonable timeframe. These computer

clusters, commonly known as supercomputers, were traditionally constructed using costly

and specialized circuitry. Nevertheless, technological advancements in parallel computer

architectures have driven their increased adoption in recent decades. This trend is pri-

marily driven by the limitations of heat dissipation when attempting to build Central

Processing Units (CPUs) with higher clock speeds. Within the HPC domain, paralleliza-

tion is indispensable for efficient computation.

HPC applications are typically optimized to run on specific hardware, leverag-

ing specialized processor instructions for specific operations. Various types of processor

cores, known as accelerators, such as GPUs and Field-Programmable Gate Arrays (FP-

GAs), can be employed to enhance performance for specific tasks within large algorithms.

This architecture, known as heterogeneous computing, has gained significant popularity

in fields such as cryptocurrency mining and AI. Another example of an accelerator is the

quantum computer, capable of leveraging quantum properties of matter to perform certain

algorithms exponentially faster than traditional algorithms executed on standard CPUs.

A considerable portion of advancements in science and engineering relies heavily

on HPC, as it provides solutions to complex problems such as Deoxyribonucleic Acid

(DNA) sequencing, real-world physics simulations, and climate modeling, all of which

involve vast amounts of data.

36

2.1.1 Parallel Computer Architectures

Parallel algorithms commonly utilize data parallelism, task parallelism or both.

Data parallelism entails the concurrent execution of identical tasks on distinct data seg-

ments using multiple threads or processes. This approach proves beneficial in scenarios

involving grid problems, where data parallelism can be effectively applied. On the other

hand, task parallelism involves the simultaneous execution of diverse tasks by multiple

threads or processes. Task parallelism finds its utility in signal processing algorithms

and similar cases. It is important to note that most real-world applications exist on a

spectrum between data and task parallelism, combining elements of both approaches to

achieve optimal performance.

At the hardware level, parallelism can be achieved in several ways: from Very

Large Scale Integration (VLSI) technology that made possible the fabrication of large

number of transistor components into the same chip, to modern multicore and multi-

processor architectures. Multicore systems refer to processor units with multiple cores,

which can be integrated into a single die or onto multiple dies, however inside a single

chip. In the mid 2010s, the computer industry swiftly pivoted processor architectures

from single-core to multicore systems, specially to mitigate overheating problems associ-

ated with high operation frequencies. Nowadays, multicore systems are widely present on

commodity hardware, and are used across many application domains. Multicore systems

are more energy efficient, and with this paradigm shift and technology diffusion at desk-

top and mobile computers, modern applications started to require parallel and concurrent

implementations to efficiently operate (Hill; Marty, 2008).

Multiprocessor systems refer to computers with multiple CPUs sharing the same

system bus, memory and Input and Output interfaces (I/O). These kinds of systems

allow us to solve problems that cannot fit inside a single CPU, or cannot be solved in a

reasonable time by a single processor. Most HPC systems are based on multiprocessor

architectures, typically connected through special grade high-speed networks, and possibly

having dedicated links between GPUs for even faster processing. Fault tolerance is a must

for HPC clusters, as tasks may execute for several days, or even weeks, and CPU failures

are bound to happen as the number of components increase up to millions.

In parallel computer architectures, the memory and other resources can be shared

or distributed among processor units, and developing applications targeting multiple

threads or processes is a complex task. With this technological shift, several programming

models and specifications were developed to help programmers write proper parallel code,

some of them prevalent in the HPC context, such as MPI. We briefly discuss the main

parallel programming models used for HPC in the next section.

37

2.1.2 Parallel Programming Models

In this section, we briefly discuss some of the most used parallel programming

models, specially in the HPC context. These include OpenMP and Message Passing

Interface (MPI).

OpenMP is a shared-memory programming model for C, C++, and Fortran

launched in 1997 by the OpenMP Architecture Review Board (ARB), a consortium

of hardware industry leaders and software vendors. This programming model was cre-

ated with the assumption of multiple lightweight processing elements managed outside of

OpenMP itself, such as Operating System (OS) threads or some other type of processor

unit, each one of them with equal-time access to a shared address space (Mattson, 2001).

Thus, in the OpenMP model, threads communicate by sharing variables, a data-access

pattern subject to unintended sharing of data known as racing conditions.

It uses the fork-join model of parallel execution: the program begins with a

single thread (a.k.a master thread), which executes sequentially until the first parallel

region construct is encountered. Inside a parallel region, OpenMP automatically creates

and manages multiple worker threads that execute the code inside the parallel region in

parallel. Parallel regions and other basic constructs of OpenMP are specified through

the use of compiler directives, which are embedded in C/C++ or Fortran source code.

During the compilation process, these directives are used to generate parallel code in a

transparent way. Overall, OpenMP features a wide range of directives to parallelize loops,

to synchronize threads and to execute parallel tasks with or without task dependencies.

Since OpenMP only works with shared-memory architectures, it can only be used

to achieve intra-node parallelization in a HPC cluster. Thus, another solution must be

employed for inter-node parallelization, enabling applications to run on all nodes of an

HPC cluster. The MPI is largely the most famous distributed programming model for

inter-node parallelization in the HPC domain. The specification of MPI is maintained

by the Message Passing Interface Forum (MPIF), an open group of parallel computing

experts. There are several implementations of the MPI standard specification, supporting

a wide range of operating systems and network standards. OpenMPI1, MPICH2, and

MVAPICH3 are popular implementations of MPI, although there are many other open-

source and also proprietary distributions.

MPI implementations provide abstractions supporting several features defined by

the MPI specification, working like middlewares. Upper-level applications make calls to

MPI functions to handle virtual topology, process synchronization and communications

through language-independent abstractions, including both point-to-point (communica-

tion between two specific processes) and collective communications (communications in-

1 https://www.open-mpi.org
2 https://www.mpich.org
3 http://mvapich.cse.ohio-state.edu

38

volving all processes in a group). MPI programs are typically composed by processes

bound to CPU cores at runtime by the workload agent or job manager, called mpirun or

mpiexec.

Although MPI is the main programming model used in HPC applications since its

inception, this programming model can be considered complimentary to shared-memory

models such as OpenMP, and are they often used together.

2.2 The Cloud Computing Paradigm

Academic literature defines the concept of Cloud Computing as an Information

Technology (IT) paradigm representing the omnipresent access to configurable shared re-

sources, that are capable of being rapidly provisioned with minimum effort through the

Internet (Buyya; Broberg; Goscinski, 2011). A similar definition was proposed by Mell

& Grance (2011), defining the Cloud Computing paradigm as a pay-per-use model which

allows the convenient on-demand access to a configurable group of computing resources

(networks, servers, storage, applications, software, and more) in a rapid manner with

minimum effort and contact with the provider. In simple terms, the Cloud Computing

paradigm can be described by the extension of the public utility business model to the

computing infrastructure world.

Cloud Computing platforms are typically categorized into three types: public,

private, and hybrid. Public clouds are designed to be accessible to anyone via the Internet

without needing long-term contracts or direct interaction with the provider. In contrast,

private clouds are typically accessible only to specific organizations or user groups with

appropriate access permissions. Finally, hybrid clouds allow organizations to connect

public and private clouds, enabling them to leverage both benefits while avoiding the

risks of relying solely on a single provider or on-premise infrastructures. In this research

we are mainly interested on leveraging low-budget public cloud infrastructure resources

for HPC.

2.2.1 Cloud Service Models

Most cloud providers offer their products following the Service Oriented Archi-

tecture (SOA) model. Services are classified based on three main types, standardized by

the American National Institute of Standards and Technology (NIST): Infrastructure as

a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). These

service types are commonly depicted by a stack chart as presented in Figure 1, showing

what are the client’s and the provider’s responsibilities.

IaaS offerings refers to online services that provide Application Programming In-

terfaces (APIs) for users to spawn and manage compute infrastructure, including low-level

details like network, storage, and backups. Cloud providers maintain hardware in several

40

instances that cost considerably less per hour than persistent (standard) machines and

run on the same type of infrastructure with identical performance and characteristics. As

organizations increasingly aim to minimize infrastructure expenses, most leading cloud

providers have introduced a variant of spot market for IaaS. Nonetheless, there is a caveat:

the cloud provider reserves the right to reclaim spot machines on short notice to accom-

modate persistent instances, which necessitates the user to proactively safeguard data

and prepare for application recovery in the event of instance repossessions.

Each cloud provider operates under its own unique rules and pricing mechanisms.

In this dissertation, we focus on discussing the AWS spot market. When requesting a

spot machine on this platform, users must bid the maximum price they are willing to pay

per hour for the requested resources. The provider will only fulfill requests if the specified

spare capacity is available at a price lower or equal to the bid value. This model differs

significantly from on-demand pricing, where an instance request is met instantly.

AWS provides historical spot pricing data for the public, although only during a

limited past timeframe. Supply and demand changes are opaque to the cloud consumers

during runtime, however AWS spot prices are quite steady and predictable. Machines

with large numbers of vCPUs or accelerators (GPUs) typically have few spot instances

available at a time, being the smaller standard x86 and ARM machines the commonly

used spot instances. AWS also provides a messaging system that alerts the consumer

within a short notice of two minutes before a spot instance repossession occurs. Such

alerts are helpful for preemptively preparing a recovery strategy, even without a complex

failure prediction model. Users are also able to define expiration times for their spot

requests (the maximum wait time before canceling a bid and giving up). This feature is

also explored in our cluster creation strategies.

It is essential to note that spot requests have no guarantee from the provider to

be met, making this characteristic a crucial detail in contexts where workloads have a

defined deadline for completion. Furthermore, spot prices for each instance type often

fluctuate dynamically based on market demand in each availability zone, although this

may vary depending on the provider. For example, Oracle offers a fixed discount for their

spot machines, regardless of the available capacity.

2.2.3 Low-Budget Providers: Vultr Cloud

Vultr is an alternative cloud provider known for low prices when compared to

major market players, and their target audience are individual software developers and

startups. Unfortunately, Vultr does not offer spot VMs at the time of this research.

Nevertheless, we conduct some experiments using non-transient infrastructure from Vultr,

as this provider is also a popular low-budget infrastructure option and have substantial

discounts compared to other cloud platforms. Vultr also lacks some features oriented to

HPC which are present at AWS, such as InfiniBand support, hardware accelerators, and

41

high-performance storage solutions such as Lustre. Moreover, Vultr instances are billed

in hourly increments, in contrast to AWS which bills VMs in seconds increments.

2.3 HPC and Containerization

Containerization has become essential in modern software development due to

its ability to accelerate and streamline application development and deployment pro-

cesses (Casalicchio; Iannucci, 2020). Containers are widely used in Cloud Computing

environments, enabling fast and scalable application deployment. Moreover, container-

ization tools like Docker and Kubernetes have become fundamental tools, helping or-

ganizations develop applications more efficiently (Kithulwatta et al., 2022). Although

containers are lightweight compared to VMs, they can still impact performance, which

may be a concern for some HPC applications. Nonetheless, the benefits of containerization

for most other use cases far outweigh the potential drawbacks.

Over the years, containerization tools tailored for HPC have been developed to ad-

dress the performance drawbacks of traditional containerization solutions. Sarus (Benedi-

cic et al., 2019) and Singularity (Kurtzer; Sochat; Bauer, 2017) are two such tools that

have gained popularity in the scientific community. Singularity, in particular, was designed

specifically for HPC environments and has been proven to have minimal performance foot-

print (Zhang; Lu; Panda, 2017), given that Singularity containers use fewer resources and

have lower latency than containerization technologies like Docker. Singularity allows users

to bundle the entire software environment, including the operating system, libraries, and

dependencies into a single portable container that can be run on different HPC clusters.

Singularity offers several key features that make it an excellent fit for HPC en-

vironments, including seamless integration with tools such as job schedulers, MPI, In-

finiBand networks, and GPUs. It is also easy to use, even for users unfamiliar with

containerization or HPC systems, and is widely adopted for research computing, scientific

simulations, and other types of workloads.

2.4 HPC and Cloud Convergence Challenges

In the context of HPC, the public-utility pricing model of IaaS offerings provides

an appealing alternative for budget-constrained researchers and organizations. This is

because it eliminates the need for expensive on-premise specialized hardware and sub-

stantially reduces the capital and technological entry barriers for HPC. Public cloud

platforms have evolved to support the rapid allocation and deallocation of virtualized

resources, allowing users to scale infrastructure dynamically based on their needs. As

a result, most companies use cloud resources to ensure service availability and disaster

recovery capabilities for their enterprise systems. In most cases, these companies do

not require low-level knowledge of the underlying hardware or high-speed communica-

42

tion between nodes, both of which are typical requirements for HPC workload (Santos;

Cavalheiro, 2020). Instead, for most enterprise applications, the primary requirements

are resiliency and fault tolerance, which can be achieved through redundancy: replicas of

the same service are executed in different geographical locations to avoid single points of

failure. The HPC use case, however, tends to be the opposite as nodes are allocated as

close as possible to each other to reduce communication latency.

Although spot markets and alternative low-cost cloud providers may be appealing

options for small organizations, traditional HPC still has a long way to go before effec-

tively utilizing cheap cloud resources. Due to the possibility of spot instance repossessions

during job execution, fault tolerance strategies are imperative for executing stateful appli-

cations, which is typical for most HPC workloads. Furthermore, since available capacity

varies between different instance types, careful consideration is necessary when selecting

instance flavors. The number of instances repossessions can be high and significantly slow

down execution, even when using low-overhead fault tolerance mechanisms. Additionally,

estimating optimal bids for minimum costs is a challenging problem due to the large op-

timization space and the need for more available information from most cloud providers.

These providers often lack transparency regarding pricing dynamics and historical data,

further complicating cost optimization efforts.

Unfortunately, the software ecosystem required to establish a viable HPC cloud

platform is not yet fully developed (Netto et al., 2018). There is a deficiency in cost

advisors, large contract handlers, DevOps solutions, automation APIs, and HPC-aware

resource managers. For example, cost advisors commonly used in standard cloud en-

vironments must not only be capable of predicting the duration of a user’s HPC jobs

but also estimate how long an experiment with an unknown number of jobs will take

to execute entirely. Additionally, it is necessary to have HPC-aware resource managers

that can handle specific HPC workflows and guarantee high levels of performance, which

typical cloud resource managers do not offer. Furthermore, large contract handlers and

automation APIs that can manage thousands of machines simultaneously are needed to

enable HPC workflows at scale. Such solutions are necessary for adopting HPC on cloud

platforms and necessitate new solutions to overcome these challenges.

Existing studies suggest that the traditional pricing models for public cloud ser-

vices are not tailored to the unique requirements of HPC workloads (Al-Roomi et al.,

2013). Since public cloud resources are shared among multiple users, the performance

of HPC workloads can vary substantially each time they are tested, which makes De-

vOps for HPC a complex and challenging task. Moreover, the lack of specialized tools

for managing HPC workloads in the cloud, such as HPC-aware resource managers and

automation APIs, makes optimizing the performance and cost of these workloads in the

cloud environment challenging. However, state of the art in Cloud HPC is characterized

by rapid innovation, with cloud providers continually adding new capabilities and fea-

tures to support the needs of HPC users. The availability of high-speed interconnects

43

such as InfiniBand and RDMA over Converged Ethernet (RoCE) on the cloud has led

to improved performance for parallel computing workloads by allowing low-latency com-

munication between compute nodes. Containerization technology, such as Singularity, is

also being used to simplify the deployment and management of HPC applications on the

cloud, increasing portability and agility.

Additionally, HPC is being used as a foundation for Machine Learning (ML) and

AI workloads, with specialized hardware such as Tensor Processing Units (TPUs) of-

fered by cloud providers to accelerate Deep Learning models. Many organizations are

adopting hybrid cloud architectures that combine on-premises infrastructure with cloud

resources to achieve optimal cost and performance for their HPC workloads. Integrating

these cutting-edge technologies propels innovation in HPC and expands its reach to a

broader audience. Nevertheless, it is crucial to acknowledge that many researchers still

face challenges due to software and technical limitations when attempting to transition

from traditional infrastructure to cloud-based computing.

2.5 Applications and Benchmarks

In this section, we give a brief overview of the applications and benchmarks used

in our experimental evaluation.

2.5.1 NASA Advanced Supercomputing Parallel Benchmarks (NPB)

The NAS Parallel Benchmarks (NPB), are a suite of programs developed by

NASA to help evaluate the performance of parallel supercomputers. These benchmarks

are derived from Computational Fluid Dynamics (CFD) applications and are intended to

assist in the performance analysis of parallel architectures, parallel processing compilers,

and parallel algorithms. They act as a standard measure, providing a vast number of

insights into different aspects of parallel computing. Over the years, these benchmarks

have been widely used within the HPC community to evaluate the performance of parallel

processors and environments.

Among the various workloads provided by NPB, we focused on three notable ones

(EP, FT, and IS), which provide unique challenges to the system under test and showcase

different facets of parallel computing performance:

1. EP (Embarrassingly Parallel): is designed to generate pairs of Gaussian ran-

dom deviates, emphasizing the floating-point performance of a system without the

complications of inter-process communication.

2. FT (Fast Fourier Transform): focuses on the computation of a three-dimensional

discrete Fourier transform, which involves intense floating-point operations and all-

to-all communications between processes.

45

Algorithm 1 – HEAT application iterative logic.

1: MPI initial setup
2: memory allocation and initialization
3: repeat
4: update ghost cell pattern
5: compute local mesh cell updates
6: all-reduce residual error with all ranks
7: if criterion (residual or iterations) reached then
8: converged = true

9: until converged
10: write solution into disk

check a stopping criteria (maximum number of iterations reached, for example) and then

write the solution to disk if completed. In case the simulation did not reach the solu-

tion, we update the ghost cell pattern by exchanging border cells information between

neighbors and start a new iteration. To get information on each neighbor process we

implemented a get_neighbors() function which returns the Cartesian coordinates and

rank of all neighbors of the current process. To get the Cartesian coordinates we use

the MPI_CART_SHIFT function5. In our implementation we use MPI_SENDRECV to update

the ghost cells between neighbor ranks. Algorithm 1 shows the iterative HEAT appli-

cation logic as pseudo-code. The source code of the HEAT application is available at:

https://github.com/vanderlei-filho/jacobi-method.

2.5.3 DynEMol Simulation Software

Dynamics of Electrons in Molecules (DynEMol6) is a sophisticated simulation

tool for accurately representing how molecules behave when they are attached to large

solid surfaces and during processes where electrical charge is transferred. It performs

simulations of the excited-state dynamics of molecular systems in the solid and liquid

phases. This software package is used as case study in this research, in partnership with

the Department of Physics of University of Santa Catarina (UFSC).

DynEMol’s simulation method combines tight-biding Quantum Mechanical (QM)

with classical Molecular Mechanics (MM) formalisms in a semi-empirical hybrid quantum-

classical model capable of simulating the non-adiabatic dynamics of large atomistic models

at the lowest computational cost. This method provides the tools for studying a vari-

ety of photo-induced effects, including the charge and energy transfer dynamics in large

molecular and nanostructured materials subject to complex structural deformations (Tor-

res et al., 2018; Abraham; Rego; Gundlach, 2019). Simulations are carried out within

the framework of the self-consistent Ehrenfest method and the Coherent Switching with

5 https://www.open-mpi.org/doc/current/man3/MPI_Cart_shift.3.php
6 https://luisrego.sites.ufsc.br/

47

3 RELATED WORK

Most research and industry efforts regarding HPC and Cloud Computing is fo-

cused on understanding the cost-benefit of moving legacy applications from on-premise

clusters to a public cloud platform. Research in the field is also largely focused on how

to extract the best performance possible from unknown underlying hardware, connected

through a much slower and unreliable network.

Given the broad range of topics involved in our work, we organize the related

works in separate sections.

3.1 HPC and Cloud Computing Convergence

The utilization of public cloud resources for HPC has garnered significant at-

tention in the past years. Numerous studies have delved into the challenges and oppor-

tunities of leveraging cloud resources for HPC workloads, addressing performance, cost,

and security concerns. For instance, a recent study by Guidi et al. (2021) showed that

contemporary high-end Cloud Computing could provide HPC-competitive performance

at moderate scales. Aljamal, El-Mousa & Jubair (2018) produced an in-depth survey of

existing HPC offerings in four major public cloud providers, although this study is quite

outdated by now given the fast evolution of cloud platforms in the past years.

Malla & Christensen (2020) evaluates the usage of Function as a Service (FaaS)

and IaaS offerings at GCP for an embarrassingly parallel application, evaluating the

cost-effectiveness of each type of compute service for this particular workload. Although

we do not consider FaaS services in our research, given that we focus on tightly-coupled

MPI applications which are not suited for parallel execution with self-contained functions,

we produce a more in-depth analysis of VM usage for a more diverse range of HPC applica-

tions and cloud providers, with additional fault tolerance strategies for reliable execution

with ephemeral instances.

Peña-Monferrer, Manson-Sawko & Elisseev (2021) proposed a framework for ex-

ecuting CFD workloads based on an hybrid cloud architecture. The majority of the

computational load is executed in a traditional on-premises HPC cluster, while the data

processing of the results is done using public cloud infrastructure. Our research has a

different scope and infrastructure, since we focus on bringing HPC workloads entirely to

the public cloud.

Other studies concentrate on providing access to applications on public cloud plat-

forms rather than developing and running them directly in the cloud. Wong & Goscinski

(2013) introduced a framework for deploying and offering HPC applications as SaaS so-

lutions in public clouds. While their research addresses the provisioning of HPC appli-

cations, our study investigates the feasibility of executing HPC workloads using public

48

cloud infrastructure. In addition, our study delves deeper into the cost-effectiveness of

running these workloads on ephemeral instances at AWS.

Despite the existence of provider-specific tools, such as AWS ParallelCluster1,

there is still a need for provider-agnostic software that can make it easier for the HPC com-

munity to build HPC clusters with public cloud resources with minimal effort. In our work,

we propose HPC@Cloud, a software framework that addresses some of the challenges and

limitations of using public cloud resources for HPC workloads. The key differences from

previous technology such as AWS ParallelCluster lies in the built-in support for spot

cluster restoration, costs prediction capabilities, and a provider-agnostic architecture.

We demonstrate the effectiveness of HPC@Cloud through an experimental analysis on

two public cloud platforms: AWS and Vultr cloud. While our research also employs mi-

crobenchmarks to assess performance gaps, it primarily focuses on low-budget instances

lacking high-speed memory systems and interconnects featured in prior studies. Addition-

ally, we delve deeper into the actual costs of deploying HPC applications to the cloud, a

complex task that may ultimately constitute the most significant expense associated with

cloud-based application execution.

3.2 Ephemeral Cloud Infrastructure for HPC

Several studies explore the feasibility of using ephemeral instances for HPC ap-

plications, specially AWS spot instances. Teylo et al. (2023) comprehensively assessed

the use of AWS spot instances for scheduling bag of tasks applications. We consider their

research complementary to ours, offering valuable insights into employing spot instances.

Our study extends their work by introducing a generalized software toolset for migrating

tightly-coupled HPC workloads to public cloud platforms. Zhou et al. (2022) proposed a

framework for optimizing costs with spot instances. Again, their research is complemen-

tary to ours, as their framework is focused solely on predicting prices in the AWS spot

market without considering the use of AWS on-demand instances (or other provider’s

infrastructure) to minimize costs and the actual execution of HPC workloads on these

instances with fault-tolerant mechanisms.

Dancheva, Alonso & Bartoň (2023), and Fernandez (2022), present a broad anal-

ysis of IaaS from public cloud providers, using micro and macro benchmarks to assess

the performance of MPI operations across various vendors and architectures. Our re-

search differs in several key aspects: (i) we evaluate real-world HPC applications, such as

DyNEmol, which is a distinct departure from the use of microbenchmarks in the referenced

studies; (ii) we address the challenges of migrating and managing such HPC applications

in a public cloud environment, which is not explicitly addressed by the aforementioned

studies; (iii) we focus on strategies for further reducing costs associated with cloud-based

1 Available at: https://aws.amazon.com/hpc/parallelcluster/

49

HPC, such as leveraging transient virtual machines like AWS spot instances, rather than

just relying on on-demand pricing models; and (iv) our study also delves into a practical

application of a fault tolerance technique tailored for AWS spot clusters, taking advan-

tage of a eviction notification system to minimize checkpoint frequency and overhead.

Therefore, our research offers a more applied perspective on cloud-based HPC, addressing

both the performance and operational challenges associated with such an approach.

Sena et al. (2023) presented a comprehensive exploration of the potential advan-

tages users might extract from the diversity of instances and contract models offered by

public cloud providers, aiming to reduce financial expenditure. Their research delineates

a methodology for dynamically scheduling applications subject to deadline constraints

across both spot and persistent instances. While their focus on spot instances aligns

with ours, our research takes a different approach. Rather than emphasizing scheduling

strategies and pricing model analyses, we concentrate on the practical nuances of running

real-world applications using the aforementioned infrastructure. Thus, our work offers

valuable insights into the application side of leveraging such resources.

Marathe et al. (2014) researched redundancy for the cost-effectiveness of time-

constrained HPC applications on AWS, and Marathe et al. (2014) explored techniques to

minimize costs for running time-constrained applications on AWS spot machines making

use of redundancy and checkpointing for fault tolerance. Nevertheless, both studies,

although valuable, are not applicable anymore due to the overhaul of the AWS spot

market bidding and pricing schema in 20182.

Within the scope of cloud costs forecasting, Zhou et al. (2022) proposed FarSpot, a

framework that centers on forecasting AWS infrastructure expenses using Machine Learn-

ing ensemble methods, such as Xgboost. While aligning with the broader theme of cost

optimization, our study serves a distinct purpose and offers a complementary perspec-

tive. Rather than developing a generalized machine learning model for predicting spot

instances costs, we explore the application of an empirical solution based on sample work-

load execution, which can be applied over any type of cloud infrastructure.

Gong, He & Zhou (2015) provided a detailed analytical model that estimates the

costs of using fault-tolerant techniques in the AWS spot market. This study observed

that checkpoints help reduce the cost of failures while replicated execution reduce the

risk of failures. Similar to our work, they used the BLCR library for a rollback-recovery

approach for fault tolerance. We expanded the analysis with experiments considering

multiple cloud providers and different strategies, such as application-level rollback restart

with ULFM. We also advanced the state-of-the-art within HPC in the cloud with an

empirical cost prediction strategy for tightly-coupled MPI applications, with a detailed

cost-effectiveness evaluation.

Furthermore, in the case of tightly-coupled applications, fault tolerance is impera-

2 Available at: https://aws.amazon.com/blogs/compute/new-amazon-ec2-Spot-pricing/

50

tive for efficient execution and there is a research overlap between ephemeral infrastructure

and fault tolerance.

3.3 Fault Tolerance for MPI Applications

We integrated into HPC@Cloud existing fault tolerance strategies to address the

unreliability of spot instances (Munhoz; Castro; Mendizabal, 2022). These strategies are

built upon existing technologies such as BLCR and the innovative ULFM, which is cur-

rently under development by the MPI Forum. Although numerous studies have explored

fault tolerance using BLCR and other well-established technologies, such as (Hargrove;

Duell, 2006; Wang et al., 2007; Hariyale et al., 2012), they do not comprehensively analyze

the advantages and disadvantages of utilizing more affordable, less reliable cloud instances

compared to high-end options in a public cloud and HPC context. We also propose and

evaluate new adaptive fault tolerance strategies based on ULFM that does not stop the

MPI application when AWS revokes spot instances, thus minimizing idle infrastructure

and providing better performance than blocking fault tolerance strategies.

Brum et al. (2023) offers a comprehensive review of the fault tolerance tech-

niques most commonly employed by applications operating within cloud and HPC en-

vironments. Their focus primarily revolves around checkpoint-rollback and replication

strategies, in addition to exploring fault detection approaches and existing reliable stor-

age solutions within the cloud. In our study, we empirically examine several adapted

checkpoint-rollback methods for ephemeral cloud infrastructure. We consider our work

complementary, as our analysis contributes theoretical and practical insights to the ex-

isting landscape, enhancing our understanding of how these fault tolerance techniques

perform in real-world Cloud Computing scenarios.

Amoon et al. (2019) suggested a design method that centers around reactive

checkpointing. This approach dynamically tailors the checkpoint frequency to the chang-

ing circumstances of the cloud environment. While their work sets an important the-

oretical groundwork, our study provides a unique and complementary angle. We delve

into a real-world fault-tolerant HPC application that leverages reactive checkpointing,

introducing a method intended to decrease checkpoint overhead by harnessing AWS spot

instances’ eviction notification systems. Characterized by a practical approach, our re-

search is supported by empirical data, demonstrating the practical benefits of reducing

checkpointing frequency in real-world applications.

3.4 Containerization for HPC

Numerous other studies focused on developing workflows for HPC in public cloud

environments, including the work of Vaillancourt et al. (2020), centering on HPC appli-

cations portability. Their research employs Docker and Terraform to build clusters on

51

AWS and test multi-VM MPI applications, a method similar to ours. However, this dis-

sertation expands upon this by assessing containerization technologies designed for HPC,

such as Singularity, and utilizing cost-effective AWS spot instances to further reduce ex-

penses. Furthermore, we introduce and develop a software toolkit that enables users to

seamlessly customize their infrastructure according to their requirements, eliminating the

need for prior cloud-specific technical expertise.

Sindi & Williams (2019) shared insights from their implementation of a con-

tainerized HPC environment based on Docker for running multi-VM MPI workloads,

investigating container migration techniques for fault tolerance. Their primary approach

involved using Checkpoint/Restore In Userspace (CRIU) technology to migrate contain-

ers to different hosts in anticipation of potential failures. Although their research also

addresses the containerization of HPC applications, it does not focus on executing them

on public cloud platforms, neither analyzing the associated workflow costs.

Overall, there is a vast overlap between research areas that are important for

enabling HPC in public cloud platforms, and our work tackle most of these issues. We

provide an end-to-end analysis and solutions for the main hurdles and challenges faced

by scientists and organizations that wish to tap cheap compute resources.

3.5 Discussion

In Table 1, we conduct a comprehensive comparison between the topics addressed

and the contributions made in this dissertation with those covered in the related work

discussed in this chapter. Our evaluation criteria encompass a diverse range of aspects,

including: (1) studies on cloud computing and their contributions towards enhancing

HPC through the use of public cloud infrastructure; (2) innovative solutions and sig-

nificant contributions in the realm of IaaS management, alongside the development of

specialized software toolkits in this domain; (3) in-depth analyses on task scheduling

methodologies; (4) empirical research utilizing spot or ephemeral instances on public cloud

platforms; (5) exploration of Burstable instances within AWS; (6) examination of system-

level fault tolerance technologies and strategies; (7) investigation into application-level

fault tolerance technologies and strategies; (8) predictive modeling for cost management

in public cloud environments; and (9) the application of containerization technologies

within HPC contexts.

This dissertation delivers significant advancements across the presented areas,

except in burstable instances exploration and task scheduling, which we acknowledge

as complementary to our research scope. Notably, our work distinguishes itself in the

realm of application-level fault tolerance for MPI applications, particularly by focusing

on tightly-coupled workloads, as opposed to the bag-of-tasks model commonly explored

in existing studies. In the fault tolerance domain, we uniquely incorporate provider-

specific services, such as AWS spot eviction alarms, into our fault tolerance strategies.

52

Table 1 – Related work contributions comparison.

P
ub

lic
C

lo
ud

St
ud

ie
s

Ia
aS

M
an

ag
em

en
t

T
as

k
Sc

he
du

lin
g

Sp
ot

In
st

an
ce

s
B

ur
st

ab
le

In
st

an
ce

s
Sy

st
em

-L
ev

el
Fa

ul
t

T
ol

er
an

ce
A

pp
lic

at
io

n-
L

ev
el

Fa
ul

t-
T

ol
er

an
ce

C
os

ts
P

re
di

ct
io

n
C

on
ta

in
er

s
fo

r
H

P
C

Aljamal, El-Mousa & Jubair (2018) ✓

Malla & Christensen (2020) ✓ ✓

Peña-Monferrer, Manson-Sawko & Elisseev (2021) ✓

Wong & Goscinski (2013) ✓

Teylo et al. (2023) ✓ ✓ ✓ ✓ ✓

Zhou et al. (2022) ✓ ✓ ✓ ✓

Dancheva, Alonso & Bartoň (2023) ✓ ✓

Fernandez (2022) ✓

Sena et al. (2023) ✓ ✓ ✓ ✓ ✓

Marathe et al. (2014) ✓ ✓ ✓ ✓

Gong, He & Zhou (2015) ✓ ✓ ✓ ✓

Brum et al. (2023) ✓ ✓

Amoon et al. (2019) ✓ ✓

Vaillancourt et al. (2020) ✓ ✓ ✓

Sindi & Williams (2019) ✓ ✓

THIS WORK ✓ ✓ ✓ ✓ ✓ ✓ ✓

This integration represents a novel contribution to the field, enhancing the resilience of

cloud-based applications against failures.

We offer additional insights into the utilization of containerization technologies

within the HPC context. Our investigation is concentrated on assessing current methods

for containerizing MPI workloads and analyzing the associated overhead. This evaluation

serves as a valuable reference point for optimizing containerized HPC environments in

public cloud shared infrastructure. Furthermore, in terms of costs prediction, this dis-

sertation lays the foundational steps towards the development of an automated toolkit

designed for forecasting the expenses associated with running MPI workloads on public

cloud clusters. This secondary contribution sets the stage for future research aimed at

enabling more cost-effective cloud computing solutions for HPC applications.

53

4 THE HPC@CLOUD SOFTWARE TOOLKIT

This chapter introduces our proposed software toolkit, HPC@Cloud, designed

to utilize public cloud resources for running HPC applications. While the initial version

supports only two cloud providers (Amazon AWS and Vultr Cloud), HPC@Cloud is readily

extensible to accommodate additional providers. Our software contributions are open-

source, and accessible at https://github.com/lapesd/hpcac-toolkit.

4.1 HPC@Cloud Software Architecture Overview

To facilitate the migration of HPC applications to public cloud platforms, our

proposed toolkit offers a Command-Line Interface (CLI) that can be executed on the

user’s machine. The CLI enable users to configure cloud infrastructure, execute jobs,

monitor performance, predict costs, and interact with cloud platforms in an automated

and provider-agnostic manner.

The usual workflow is based on defining a configuration file with the desired

cluster specifications, such as: target provider, regions, Availability Zones (AZs), number

of nodes, types of instances, storage setup, and more. With the configuration file ready,

the user can spawn the desired cluster using a CLI command, and then access it through

Secure Shell Protocol (SSH) when the infrastructure is ready.

We also provide provider-specific VM images already configured for MPI and

shared storage solutions supported by our software suite, such as Network File System

(NFS) and FSx for Lustre (AWS). HPC@Cloud is developed using mostly Python and

HashiCorp Configuration Language (HCL).

Overall, HPC@Cloud’s software architecture is based on four main components,

each serving a distinct purpose:

• Command-Line Interface (CLI), a Python package that can be installed with

pip, from which the end user can submit commands to manage infrastructure and

run tasks;

• Terraform, a third-party solution for managing the state of cloud resources, facil-

itating the integration of different cloud providers with the HPC@Cloud CLI;

• Postgres Database, a relational database system for storing cluster configurations

and experiment execution data. It offers flexibility in deployment, allowing for cloud

hosting or, alternatively, local containerized setup on the end-user’s machine;

• MinIO, a high-performance object storage solution utilized by HPC@Cloud for

file storage. Similar to the Postgres database, it provides deployment flexibility,

accommodating various hosting environments.

54

Figure 4 – Overview of software dependencies.

HPC@Cloud CLI

Container Engine
Python Terraform

MinIO Postgres

End-User's Machine

VM Instance

Cloud Provider

Shared-Storage
SolutionVM Instance

Virtual Network

MPIMPI
User's Task

Software Dependencies
MPI Workload

Cloud Infrastructure

Python Application

Source: Produced by the author.

HPC@Cloud is shipped with configuration files for the whole containerized envi-

ronment with Postgres and MinIO, allowing it to be executed entirely in the end-user’s

machine. Figure 4 depicts a high-level overview of the existing dependencies between

HPC@Cloud and third-party tools, also depicting the main cloud resources involved in

running MPI tasks.

In the following sections, we will delve into the operational processes and inter-

actions of HPC@Cloud with its previously mentioned dependencies. We outline the steps

involved in creating clusters and executing tasks.

4.2 Managing Multicloud Infrastructure

Despite standardization efforts, configuring and managing cloud resources fre-

quently requires provider-specific knowledge about the platform and its APIs, which may

be subject to arbitrary changes by the providers. Repeatable infrastructure management

is a sought-after feature in both the HPC and enterprise domains. According to Rahman,

Mahdavi-Hezaveh & Williams (2019), the current best practice for infrastructure man-

agement centers around the concept of Infrastructure as Code (IaC). IaC refers to the

practice of configuring computing resources via machine-readable definition files instead

of relying on interactive configuration tools.

We have integrated the concept of IaC into the HPC@Cloud toolkit for creating,

monitoring, and destroying cloud resources. To bridge the gap between Cloud Computing

and HPC, our proposed toolkit aims to utilize pre-existing open-source tools whenever

feasible. For infrastructure configuration, we chose Terraform1, a tool that adopts a

declarative approach to defining infrastructure. Terraform allows us to create virtual

clusters on numerous cloud providers, including AWS and Vultr Cloud — two cloud

platforms evaluated in this dissertation.

1 http://terraform.io

55

Table 2 – Configurable parameters in HPC@Cloud.

Name Description

cluster_label A label, or name tag for the cluster
region The region code of a specific provider (example: us-east-1)

provider The target cloud provider tag (currently supporting aws and vultr)
availability_zone The AZ code of a specific provider

private_rsa_key_path System path to a private RSA key to be used by the cluster
public_rsa_key_path System path to a public RSA key to be used by clients

public_key_name A label, or name tag for the RSA key pair
node_count The desired number of nodes in the cluster

instance_username The username that needs to be used to login into the selected VM image
machine_image_id The identifier code of a custom VM image to be used

node_instance_type Instance type code (example: t3.2xlarge)
init_commands A list of shell commands to be executed in every node after creation

use_spot Flag variable to define if ephemeral infrastructure should be used
spot_maximum_rate Maximum value in USD per hour to pay for spot instances

spot_maximum_timeout Maximum spot request wait time in seconds
node_rbs_size Size of the root block storage for each node, in Gigabytes
node_rbs_type Type of root block storage
node_rbs_iops Root block storage Input and Output Operations per Second (IOPs) for each node

use_efa Flag variable to define if Elastic Fabric Adapter (EFA) should be used
use_fsx Flag variable to define if FSx for Lustre (FSx) should be used
use_efs Flag variable to define if an NFS shared storage system should be created

To interact with multiple public cloud platforms, we use prepared Terraform

recipes with reasonable defaults for HPC clusters written in HCL, a configuration language

visually resembling JavaScript Object Notation (JSON). In essence, we implemented func-

tions responsible for mapping standardized user-defined parameters into provider-specific

Terraform recipes. To support a new cloud provider, these Terraform recipes must be

created using the same variable naming conventions as those adopted by HPC@Cloud.

The configurable cluster variables are shown in Table 2, and are passed to the system in

Yet Another Markup Language (YAML) format.

When an user defines a cluster configuration, HPC@Cloud generates and saves

Terraform files in a MinIO2 bucket, a high performance object storage solution for modern

data lakes. Terraform can then read the files and spawn infrastructure when the user runs

the create_cluster command. When applying changes or creating infrastructure for the

first time, Terraform checks the state of the desired cluster and defines which resources

are stale, missing, or needing to be re-created with different configurations.

Figure 5 depicts the sequence of actions involved between HPC@Cloud and its

dependencies when the user dispatches a CLI command to create a cluster.

4.2.1 Cluster Topology, Storage and Networking Devices

The Terraform plans generated by HPC@Cloud follow a standard recipe, which

has some common elements regardless of provider. In this section, we detail the proposed

HPC cluster architecture built on top of AWS and Vultr using HPC@Cloud. AWS and

2 https://min.io/

56

Figure 5 – Sequence diagram for cluster creation with HPC@Cloud.

:CLI

dispatch

generate
Terraform

plans

parse YAML
file with

cluster info

:Terraform

save cluster configuration

callback

:Cloud Provider

terraform apply

:Postgres

update cluster status

callback

:MinIO

save terraform plans

callback
request cluster creation

callback
callback

return

Source: Produced by the author.

Vultr provide a diverse spectrum of instances, each differing in attributes such as hyper-

visor type, CPU design, number of vCPUs, memory capacity, and more, enabling users

to pinpoint the ideal configuration for their unique requirements.

4.2.1.1 Cluster Topology

We propose a cluster architecture blueprint akin to a classical on-premise homo-

geneous HPC cluster. Given the single-use character of the clusters – being instantiated

solely for a singular task before termination – there is no distinction between master and

worker nodes. As such, every node will be dedicated to workload execution. In AWS we

can leverage spot instances to build ephemeral clusters, which are not available in Vultr.

The cluster topology is based on a shared storage topology, where multiple nodes

access a shared storage system, ensuring they can all read and write data to the same

set of files concurrently. A centralized storage approach simplifies data management and

provides a consistent data view to all nodes. The performance, however, relies heavily

on the network, depending on the type of device used to implement the shared storage

system. In this dissertation, we discuss three storage options: Elastic File System (EFS),

Elastic Block Storage (EBS), and FSx for Lustre. FSx for Lustre and EFS are only

available at AWS.

57

4.2.1.2 Cloud Storage Technologies

EBS is a ubiquitous storage service present in most cloud providers, including

AWS and Vultr. At a low level, EBS volumes operate like raw, unformatted block de-

vices, which can be individually attached to the cluster’s nodes. Once attached, they are

formatted with a file system. EBS volumes can also be configured in terms of Input and

Output Operations per Second (IOPS), and we test a variety of setups in our experiments.

Our cluster design allocates a distinct EBS volume to each node, maintaining a consistent

IOPS configuration across all volumes.

Amazon provides the Elastic File System (EFS) service, a cloud-based file stor-

age service designed to provide scalable, elastic, shared file storage that is accessible to

multiple Amazon EC2 instances. Unlike traditional block storage (EBS), which offers

block-level storage exclusively to a single EC2 instance, EFS serves as a managed file sys-

tem that can be simultaneously mounted and accessed by multiple instances, facilitating

easier data sharing across applications and services. To establish a shared file system,

HPC@Cloud can utilize the EFS service from AWS, or build a raw Linux NFS when

working with providers that do not offer managed shared file system services, such as

Vultr.

Lustre is a shared file system tailored for rapid processing, prevalent in HPC set-

tings. For our cloud-based clusters, we can also utilize Amazon FSx for Lustre, a managed

version of the Lustre file system. Unlike EBS volumes, which can only be attached to

a single EC2 instance at once, FSx for Lustre supports concurrent attachment to multi-

ple instances, providing a ready-to-use, high-performance shared file system. A notable

distinction between using raw Block Storage devices instead of services like EFS or FSx

for Lustre, beyond the financial implications, is that the latter options are equipped with

its own dedicated computational infrastructure, not requiring the allocation of extra re-

sources for a file system server.

4.2.1.3 Cloud Networking Technologies

Both Vultr and AWS provide robust and scalable network infrastructure for

VM instances. A Virtual Private Cloud (VPC) is a logically isolated section of the un-

derlying cloud infrastructure where resources, including VM instances, can be launched.

It enables configurations of resources like subnets, route tables, and network gateways,

mimicking conventional network elements. We have opted to deploy a VPC in a single

AZ for our cloud cluster architecture. This ensures all nodes are housed within the same

physical data center, minimizing geographic spread and, consequently, reducing latency.

Moreover, when launching multiple EC2 instances in AWS, they are strategically

positioned to ensure a spread distribution across the underlying hardware, mitigating the

risk of simultaneous failures. Although ideal for enterprise web applications focused on

58

Table 3 – Technology features available in each provider integrated into HPC@Cloud.

Cloud Ephemeral
ENA/VNA

Elastic Fabric Elastic Block Elastic File FSx for
Provider Instances Adapter (EFA) Storage (EBS) System Lustre

AWS ✓ ✓ ✓ ✓ ✓ ✓

Vultr × ✓ × × ✓ ×

fault tolerance through redundancy, this default behavior results in high network latency,

damping the performance of tightly-integrated node-to-node communications commonly

seen in HPC applications. To improve this, we configured the EC2 service to pack in-

stances closely together with the AWS placement groups3 feature, thus further improving

the network performance. In Vultr there are no configurable setting equivalent to place-

ment groups in AWS.

The basic network interface provided by AWS is called Elastic Network Adapter

(ENA), which provides bandwidth capabilities above 100 Gbps for some specific instances.

AWS also offers an improved network interface to be attached to EC2 instances named

EFA. EFA provides all of the functionality of an ENA but is specifically designed to

boost network performance by allowing instances to bypass the typical TCP/IP stack

when communicating with each other, resulting in lower network latency. EFA is an

optional EC2 networking feature that can be enabled at no additional cost. A downside

is that a limited number of operating systems and EC2 instance types are compatible with

EFA adapters. In Vultr we have only the standard VPC 2.0 Network Adapter (VNA),

that is configured by default on all VMs.

Table 3 highlights the availability of each integrated feature from AWS and Vultr

into HPC@Cloud.

4.3 Managing Fault-Tolerant Workloads

Workloads are managed using ubiquitous tools in the HPC world, such as mpiexec

for MPI applications. This approach enables users familiar with these tools to seamlessly

deploy their applications in the cloud, thus simplifying the migration process. Once a

cluster is created, the user can transfer application files to the cluster’s shared file system

and execute them using mpiexec over an SSH connection. Besides using SSH and access-

ing the clusters directly, users can also use the run-tasks command from HPC@Cloud to

run multiple MPI applications. HPC@Cloud has its own SSH client implemented with

the paramiko Python package, used to communicate remotely with provisioned cloud

infrastructure.

To handle failures, HPC@Cloud is embedded with a routine script that period-

ically checks cluster health. When a node eviction is detected during task execution, a

3 Available at: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html

59

new node is automatically requested by re-applying the generated Terraform plans. It is

important to note that the provider might lack sufficient spare infrastructure to fulfill new

spot requests. To circumvent indefinite waiting for requests to be met, HPC@Cloud will

opt for an on-demand instance after the spot_maximum_timeout threshold is exceeded. If

this parameter is set to zero, or if there are no available on-demand infrastructure as well,

HPC@Cloud will terminate the cluster in the absence of available spare infrastructure.

Some providers offer mechanisms to predict imminent ephemeral instance evic-

tions, saving additional time when requesting new VMs and also when checkpointing

applications. Specifically for AWS, by default we enable spot repossession alarms, which

provide a two-minute warning before a spot instance is reclaimed. When an ephemeral

AWS cluster is created with HPC@Cloud, the routine script also monitors the AWS evic-

tion notices to checkpoint and create new spot bids before a failure occur.

When running tasks with the HPC@Cloud run-tasks command, the execution

loop will keep running in the background and restarting tasks when a failure or spot

eviction occur. If no checkpoints are available, execution is restarted from the beginning.

HPC@Cloud supports system-level fault tolerance by allowing the restart of failed tasks

from checkpoint files created by previous executions, or using specific shell commands

provided by the user in the tasks configuration YAML file.

Workloads that employ fault tolerance in the application-level are not tracked

by HPC@Cloud. In these cases, the user is responsible for coding a custom fault tolerance

mechanism that can or cannot be based on checkpoint-restart, thus HPC@Cloud assumes

the fault tolerance is being handled correctly by the application.

The configurable task variables are shown in Table 4, and are parsed in YAML for-

mat by HPC@Cloud.

Figure 6 depicts the sequence of actions involved between HPC@Cloud and its

dependencies when the user dispatches a CLI command to run tasks in a provisioned

cluster, highlighting the case where a failure occurs and the repair process.

Table 4 – Task configurable parameters in HPC@Cloud.

Name Description

delete_cluster_after_execution Self-explanatory flag variable
overwrite_tasks Define if tasks with the same label should be overwritten in Postgres

task_tag Label to help identify tasks
setup_command Shell command to setup task execution, usually compiling
run_command Shell command to start the task execution
ckpt_command Command to create system-level checkpoint files

restart_command Command to be executed when retrying executions after failures
fault_tolerance_technology_label Label to help identify tasks

checkpoint_strategy_label Label to help identify tasks
retries_before_aborting Maximum number of retries before aborting execution

remote_outputs_dir A remote folder to be saved locally after execution

60

Figure 6 – Sequence diagram for tasks execution with HPC@Cloud.

:CLI

dispatch

:Terraform

save tasks configurations

callback

:Cloud Provider:Postgres

check cluster status

:MinIO

callbackRepeat
for each

Task
launch Task over SSH (first attempt)

callback (failure or spot eviction happens)

fetch stored terraform plans

callback

terraform refresh
request cluster repair

callback
callback

update task status

callback

return

retry Task over SSH (second attempt, from checkpoint if available)

callback (success)

Source: Produced by the author.

4.3.1 Failure System Model

We assume a distributed system composed of interconnected processes running

on top of a cloud infrastructure. The system is asynchronous, i.e., there is no bound on

message delays and on relative process speeds. The underlying infrastructure comprises

instance nodes that can be allocated or deallocated on the fly. Computational nodes may

differ in computing, memory, and network capacities.

The unbounded set of processes P = {p1, p2, . . . } is automatically mapped to the

unbounded set of nodes N = {n1, n2, . . . }, where each process pi ∈ P is mapped to a node

nj and all nodes nj ∈ N host at least one process. Computational nodes are classified as

spot or on-demand instances. We assume there is no resource’s scarcity for on-demand

instances. Thus, although spot instances might be unavailable, on-demand instances are

available whenever they are requested.

Spot instances may fail, or they can be revoked by the cloud provider, while

the on-demand instances never fail or are revoked. Any process executing on a faulty or

revoked node eventually fails. We assume the fail-stop failure model and exclude malicious

and arbitrary behavior (e.g., no Byzantine failures). This means that a faulty processes

running on spot instances are detected by correct processes in the system. We assume

the existence of a notification system that alerts system processes before a spot instance

revocation occurs. Typically, these alerts are notified with short notice, but processes can

61

miss the alert. Processes are equipped with a volatile memory, a local storage, and they

share a persistent storage. Upon a failure, a process loses its volatile memory and local

storage content, but the information written in stable storage survives the failure.

4.3.2 System-Level Fault Tolerance

We integrated into HPC@Cloud two system-level checkpointing technologies:

BLCR and DMTCP. The BLCR package (Hargrove; Duell, 2006) approach was pre-

viously proposed and extensively tested in (Munhoz; Castro; Mendizabal, 2022). We also

proposed two checkpointing strategies (periodic and preemptive) that can be employed

with both of these technologies.

The following subsections briefly present these technologies and discuss their pros

and cons.

4.3.2.1 Berkeley Labs Checkpoint-Restart (BLCR)

Utilizing the BLCR method for fault tolerance necessitates no modifications to the

MPI application code. The BLCR command-line tool is invoked by HPC@Cloud to create

and restore a checkpoint, using the Process Identification Number (PID) of the launched

MPI application. To leverage spot repossession alerts from AWS, HPC@Cloud can proac-

tively orchestrate checkpoints, initiating new spot requests and monitoring spot eviction

notifications from the cloud provider. While periodical checkpoints are initiated at pre-

defined time intervals, preemptive ones are activated exclusively upon AWS notifications.

It is worth noting that some applications might require a longer duration than a brief

alarm to finalize a checkpoint, potentially making the preemptive approach ineffective.

In summary, the BLCR approach has the following limitations:

1. Outdated Solution: BLCR requires specific versions of old Linux kernel headers

to work, which are difficult to install on cloud instances and have severe unpatched

security issues—the latest version of BLCR (0.8.6) is tested with CentOS Linux

release 7.3.1611, kernel version 3.10.0–514.el7.

2. Dynamically Linked Applications Unsupported: Executables must be com-

piled as a static binary for BLCR to be able to checkpoint them.

3. Support for TCP/IP Only: BLCR only supports MPI over TCP/IP connections;

thus, it cannot use InfiniBand and other types of high-speed networks, such as the

improved EFA from AWS for example.

4. MPI Libraries Unsupported: MVAPICH2 is the only MPI distribution with

embedded support for BLCR, limiting options for the users.

5. Inefficient Operations: BLCR checkpoint save and restoration actions are com-

pletely blocking, wasting idle cloud resources.

62

Despite these issues, BLCR is simple enough that self-contained MPI applications

can be made fault-tolerant without requiring any source code changes.

4.3.2.2 Distributed MultiThreaded CheckPointing (DMTCP)

In comparison to BLCR, DMTCP4 is a much newer solution, not having the

major compatibility downsides that BLCR has. DMTCP is partially funded by Intel

Corporation and the National Science Foundation (NSF).

In contrast to BLCR, DMTCP has the following advantages:

1. Modern and Updated: DMTCP is a newer solution compared to BLCR, sup-

porting a wider range of system configurations without being bound to older Linux

kernel headers.

2. Flexibility with Networking: While BLCR is limited to TCP/IP networking,

DMTCP supports a broader array of network protocols, including InfiniBand.

3. Dynamically Linked Applications Supported: DMTCP does not require ap-

plications to be static binaries.

4. MPI Libraries Supported: DMTCP works with all major MPI distributions,

such as OpenMPI, IntelMPI, MVAPICH2 and MPICH.

Although DMTCP is a much more versatile solution for checkpointing than

BLCR, it still has the same disadvantages that file-based system-level solutions have.

For example, DMTCP requires a potentially large amount of storage space for checkpoint

files, as well as requiring a considerable amount of time for I/O operations.

Despite the issues, DMTCP is the most versatile system-level checkpointing so-

lution currently available, also requiring no changes to existing application code.

4.3.3 Application-Level Fault Tolerance

In this dissertation, we have also tested two major frameworks for application-

level fault tolerance: SCR and ULFM. They are briefly described in the next subsections.

4.3.3.1 Scalable Checkpoint Restart (SCR)

SCR is a high-level library for caching checkpoint data in local storage on compute

nodes, or remote and parallel file systems. It provides a fast and scalable checkpoint

restart capability for MPI applications (Moody et al., 2010).

In contrast to system-level solutions such as BLCR and DMTCP, SCR requires

code changes in the target application. Integrating SCR into an application at the code

4 Accessible at: https://dmtcp.sourceforge.io/

63

level typically involves linking with the SCR library and inserting API calls at strategic

points within the codebase. Initially, the application’s configuration file must specify

parameters like checkpoint intervals and storage hierarchy details. In the application, the

developer initiates the checkpointing process with a call to the SCR’s Start_checkpoint

API, followed by the actual data saving routines, which might involve serializing data

structures and writing them to designated local storage. Once the checkpoint data is

prepared, a call to Complete_checkpoint finalizes the process. If a failure is detected

upon application restart, SCR provides mechanisms to identify the most recent valid

checkpoint with functions like Have_restart, facilitating the restoration process. To aid

in this, SCR handles the retrieval of checkpoint data from either local storage or more

remote, reliable storage mediums, depending on the configuration and circumstances of

the failure. Throughout this process, it is imperative to ensure thread safety and manage

potential I/O bottlenecks, which SCR optimizes through asynchronous data transfers and

by minimizing data movement.

We implemented a fault-tolerant version of HEAT (Section 2.5.2) using SCR,

adding C/R capabilities to the main Jacobi loop. We use SCR API calls to write and

read checkpoints from a storage system that can be local EBS storage or a shared FSx for

Lustre system – depending on the cluster setup. With the periodical C/R strategy set,

we save checkpoint files based on the checkpoint frequency configured. If the preemptive

C/R strategy is set, we save a checkpoint file after polling an eviction notice from AWS. In

case of an eviction alarm, we promptly exit the application after the checkpoint is saved,

and HPC@Cloud is then responsible for restoring the cluster and restarting HEAT .

Checkpoint files for HEAT contain array data with the mesh cell values and

some flow control variables. The pseudo-code with our implementation is presented in

Algorithm 2.

4.3.3.2 User-Level Failure Mitigation (ULFM)

ULFM offers a solution to manage failures by providing a set of extensions to

the MPI standard, enabling application developers to handle errors. These extensions

allow the detection, reporting, and recovery from process failures within the MPI appli-

cations (Bland et al., 2013).

Unlike other fault tolerance mechanisms that focus on checkpointing or replication

techniques, ULFM allows applications to adapt their behavior and continue execution in

the presence of process failures, making adaptive restoration possible. However, this

requires developers to design and implement their own solutions, tailoring them to their

applications’ specific requirements and characteristics. ULFM in MPI is a framework that

equips developers with the tools necessary to build resiliency into parallel applications in

an adaptive manner.

In summary, the ULFM approach has the following main limitations:

64

Algorithm 2 – HEAT application iterative logic, with C/R added with SCR.

1: MPI initial setup
2: memory allocation and initialization
3: if checkpoint is available then
4: get data from last checkpoint
5: update mesh cells with checkpoint data

6: repeat
7: if periodic checkpoint then
8: save state checkpoint

9: if spot alarm notifies an eviction then
10: save state checkpoint
11: exit application ▷ HEAT will be restarted by HPC@Cloud

12: update ghost cell pattern
13: compute local mesh cell updates
14: all-reduce residual error with all ranks
15: if criterion (residual or iterations) reached then
16: converged = true

17: until converged
18: write solution into disk

1. More Complexity: In contrast to BLCR, DMTCP and SCR, ULFM does not

provide a ready-to-use solution; instead, users must design and implement a fault

tolerance strategy of their own, requiring significant source-code modifications to

the MPI application, making migration time-consuming and costly;

2. Some MPI Libraries Unsupported: Not all MPI library distributions currently

offer comprehensive support for ULFM, though the most popular ones either pro-

vide limited support or are working towards implementing it. Among the available

options, the development branch of OpenMPI currently delivers the most robust

ULFM support;

3. Limited to C and Fortran: At present, ULFM APIs for MPI are exclusively

available for C and Fortran programs.

Despite its limitations, employing ULFM significantly enhances checkpointing

efficiency compared to system-level methods, such as BLCR and DMTCP, and offers

inventive methods for maintaining application continuity, different from the basic check-

pointing provided by SCR APIs.

We implemented routines to add C/R capabilities into the parallel HEAT appli-

cation (Section 2.5.2), First, routines to allocate and update an array with global mesh

checkpoint data were added. Secondly, we set a custom error handler routine for the

application. By default, MPI errors are handled by MPI_ERRORS_ARE_FATAL, which ter-

minates the MPI_COMM_WORLD and stops the entire application. With the ULFM API, we

are able to set a new MPI_ERRORS_RETURN handler, which will return an error code in case

of failure (Bland et al., 2012).

65

Algorithm 3 – HEAT application iterative logic, with C/R added with ULFM.

1: function error_handler(MPI_Comm, . . .)
2: replace failed communicators
3: re-order communicators to original rank ordering
4: longjmp() to recovery

5:

6: MPI initial setup
7: set error_handler(MPI_comm, ...) as the error handler
8: memory allocation and initialization
9: setjmp() for recovery

10: if recovering then
11: get data from last checkpoint
12: update arrays with checkpoint data
13: longjmp() to computation

14: repeat
15: if periodic checkpoint then
16: save state checkpoint

17: if spot alarm notifies an eviction then
18: save state checkpoint
19: request ephemeral cluster to be repaired ▷ API call to Terraform

20: setjmp() for computation

21: compute local mesh cell updates
22: all-reduce residual error with all ranks
23: if criterion (residual or iterations) reached then
24: converged = true

25: until converged
26: write solution into disk

After a spot eviction, all MPI processes currently hosted at that instance are

unusable. By setting a custom MPI_ERRORS_RETURN handler, we define a set of routine

calls to restore the MPI world and resume execution from the last in-memory check-

point. To remove failed processes and stop current operations after a failure, we call

the MPIX_Comm_shrink routine to create a new communicator by excluding all known

failed processes from the parent communicator. For fully recovering our application, we

need to restore our MPI world to the same previous size while also maintaining the same

exact rank mapping. To re-spawn missing processes preserving rank mapping we use

the MPI_Comm_spawn routine. Algorithm 3 shows the application logic to fully recover

execution as pseudo-code.

All other presented fault tolerance methods relied on blocking restoration (i.e., the

application is suspended temporarily when the cloud provider revokes any spot instance).

With our ULFM approach, the HEAT application continue executing without waiting for

new spot instances to be created.

Figure 7 describes how this mechanism works. Let us consider that an MPI ap-

67

4.4 Images, Communication, and Containerization Support

Users can select basic operating system images when spawning VMs on public

cloud platforms, which are usually the Long-Term Support (LTS) releases of popular

Linux distributions. Most cloud providers also allow customers to save snapshots of

modified machine images. As using a snapshot to create a new machine is much faster

than installing everything from scratch every time, HPC@Cloud leverages this feature

to reduce cluster setup time. Users can use pre-defined machine images with the latest

packages and libraries needed by HPC@Cloud or provide his own machine image.

To execute installations that depend on the configuration of other machines,

such as setting up a NFS server for shared storage and connecting clients to it, users of

HPC@Cloud can define shell scripts to be executed immediately after a VM is instantiated.

To minimize makespan, dependencies must be installed beforehand and copied as static

binaries or a custom machine image must be utilized.

HPC@Cloud provides a prepared VM image with the latest Singularity5 release

installed from source, incorporating a compatible distribution of the MPI library (MPICH,

OpenMPI, or MVAPICH2). To allow applications inside Singularity containers to com-

municate with each other, we have implemented a hybrid approach wherein an MPI dis-

tribution is installed inside the containers as well, allowing it to communicate seamlessly

with the MPI process from the host VM.

The hybrid model for MPI communications between Singularity containers oper-

ates by establishing a bridge between containers utilizing the MPI distribution present on

the VM hosts. This implies that for one container to communicate with another, it must

first engage with the host MPI, followed by host-to-host communication. Subsequently,

the host containing the target container forwards the information to the container MPI

process. This communication hierarchy is illustrated in Figure 8.

At this point, processes within the container function as they would typically do

5 https://sylabs.io

Figure 8 – MPI hybrid model: message passing communications between VM hosts and containers.

MPI + Singularity

MPI MPI

MPI + Singularity

MPIMPI

MPI + Singularity

MPI MPI

MPI + Singularity

MPIMPI

Singularity Container

Virtual Machine (VM)

MPI Communication (VM-VM)

MPI Communication (Container-VM)

Source: Produced by the author.

68

directly on the host VM. The benefits of this workflow include seamless integration with

resource managers and simplicity, as the process closely mirrors natively running MPI ap-

plications. However, the drawbacks of this workflow involve the need for compatibility

between the MPI version within the container and the host’s MPI version, as well as

the necessity for careful configuration of the container’s MPI implementation to ensure

optimal hardware usage, especially when performance is crucial. Hursey (2020) presents

other approaches for running MPI applications using containers.

4.5 Forecasting Costs

Predicting Cloud Computing costs has become a significant concern for compa-

nies and organizations. Although the initial information technology investments can be

avoided, over time, Cloud Computing expenses may exceed those of operating a physical

data center, depending on the scale and types of services utilized (Li et al., 2021). As

Netto et al. (2018) highlighted, accurate cost predictions remain a significant challenge in

developing a fully realized cloud HPC platform.

For multi-VM MPI applications, the total cluster makespan constitutes the most

significant cost, as storage and network expenses are negligible compared to compute time

prices per hour. Makespan costs are billed by various increments, such as months, hours,

minutes, or even seconds, depending on the cloud provider, with most providers offering

discounts for long-term purchases. In the case of applications running on AWS, EC2,

and storage services have been billed in seconds since 2017 (Amazon Web Services, 2017).

Elastic GPUs are also billed by seconds, albeit with a 1-minute minimum.

Estimating costs thus becomes a matter of determining the workload’s runtime,

which is a complex problem due to the numerous variables involved. For spot instances,

despite their variable pricing, the smoother price fluctuations since 2017 have made time

series prediction a viable option for accurately predicting the spot price of specific in-

stances (Chhetri et al., 2017). However, public Cloud Computing resources are inherently

shared, resulting in unreliable performance. Identical VMs may behave differently, as the

underlying hardware state is unknown.

HPC@Cloud allow users to benefit from a quick costs estimation before commit-

ting resources to execute tasks. We embedded a simple machine learning workflow for

training and scoring task duration based on a XGBoost model, which is trained using

historical task execution data stored by HPC@Cloud in the Postgres database. The XG-

Boost model is implemented with the xgboost Python library. To initiate model training,

the user must execute a specific command via the CLI. Subsequently, when a new task is

launched, the XGBoost model utilizes preliminary task information, including infrastruc-

ture and workload specifics, to predict the total execution time. This prediction is then

used to calculate the estimated infrastructure costs during the task execution.

Figure 9 depicts the machine learning training workflow in HPC@Cloud. The

69

Figure 9 – Machine Learning training workflow in HPC@Cloud.

:CLI

dispatch

train XGBoost
model

:Terraform

fetch tasks configurations

callback

:Cloud Provider:Postgres

generate and save test.csv and train.csv datasets

save model configuration

callback

:MinIO

save trained model in pickle format

callback

callback

return

Source: Produced by the author.

model training is triggered by a CLI command, and the resulting model artifact is pickled

and stored in MinIO for later use.

Figure 10 showcases the machine learning scoring workflow in HPC@Cloud. Be-

fore finalizing the task launch, users will be provided with a cost forecast generated by the

XGBoost model. This allows them to make an informed decision regarding the allocation

of resources for the task.

We have chosen the following variables for training our XGBoost model, due to

their significance in influencing the execution time and overall task performance:

1. Total execution time in seconds: This is our target variable, an integer indicat-

ing how long the experiment will take in seconds.

2. Application class: This is a variable representing the scale or complexity of the

application. This concept is akin to the classification of application “classes” in

many benchmarks, including the NPB.

3. Number of nodes: A numerical variable that captures the scale of parallelism.

More nodes often mean better distributed computing capabilities, but can also in-

troduce complexities related to communication overhead.

4. vCPUs per node: A numerical variable that translates to more computational

power in each cluster node. Applications that are CPU-bound will be directly

influenced by the number of vCPUs available.

5. RAM memory per node: Given as a numerical value, it denotes the memory

capacity available to each node. For memory-intensive applications, having adequate

RAM is crucial to avoid bottlenecks related to swapping and paging.

6. Measured node-to-node network bandwidth: A numerical representation of

the communication speed between nodes. This is essential for applications that

70

Figure 10 – Machine Learning scoring workflow in HPC@Cloud.

:CLI

dispatch

predict total
Task execution

time with
XGBoost

return

:Terraform :Cloud Provider:Postgres

fetch pickled XGBoost model

callback

update task status

callback

check cluster status

callback

launch Task over SSH

callback

save tasks configurations

callback

:MinIO

confirm

return

Source: Produced by the author.

require frequent data exchanges between nodes, as a higher bandwidth can reduce

inter-node communication delays.

7. Measured IOPS when writing to shared-storage: This numerical metric is

critical for applications with high disk I/O operations, indicating the speed at which

data can be written to or read from shared storage systems.

Being a tree-based model, XGBoost is inherently capable of handling a broad

range of data distributions. Numerical variables like vCPUs per node, and Measured

node-to-node network bandwidth require no specific transformation before training.

The variables are stored in the HPC@Cloud Postgres database and can be directly ac-

cessed via the CLI command during the training phase of the machine learning model.

Once the training is complete, the XGBoost model is serialized into a binary format

(pickled) and stored as an object in MinIO.

When running tasks with the HPC@Cloud CLI, the user can enable the costs

forecasting if a previously trained XGBoost model is available. The task and cluster

configurations are then passed as input for scoring in the machine learning model to

get an estimated time for completion. With this estimated time, we calculate the total

costs by multiplying this duration with the per-second cluster cost. To determine the

minimum anticipated expenses, we factor in spot discounts, assuming no failures. As of

now, HPC@Cloud lacks a feature to predict spot evictions, making it a promising field

for future research.

71

5 EXPERIMENTAL RESULTS

This chapter presents our evaluation methodology to assess HPC@Cloud and our

proposed fault tolerance strategies, as well as the obtained results when testing our toolkit

with real public cloud infrastructure. We split our experiments into five branches:

• Resource Management Efficiency (Section 5.1): We assess the resource man-

agement efficiency of HPC@Cloud by measuring the time required to launch VM in-

stances across virtual clusters of varying node counts.

• Cluster Scalability (Section 5.2): This section delves into the scalability of

clusters across varying sizes running the HEAT application. We mainly assess the

pros and cons of using many small instances versus few fat instances for cluster

creation.

• Fault Tolerance Strategies (Section 5.3): We analyze the cost-effectiveness and

performance of a wide range of fault tolerance approaches applied to the HEAT ap-

plication running on ephemeral clusters in AWS, comparing them with on-demand

options from both AWS and Vultr.

• DynEMol Migration Analysis (Section 5.4): This sectio brings an in-depth

study case of a real-world HPC application (DynEMol) migration to the public

cloud.

• Containerized Execution (Section 5.5): We analyze the performance overhead

of the containerization layer added by Singularity, using the HEAT application and

NPB as test workloads.

• Costs Forecasting (Section 5.6): We analyze the accuracy of HPC@Cloud’s costs

forecasting method, also using the HEAT application and NPB as test workloads.

5.1 Resource Management Efficiency

Our goal is to determine the cost overhead solely related to the infrastructure

setup, which incurs charges from the provider even when no tasks are executed. To

achieve this, we initiated clusters featuring different node counts and instance types. We

deployed variations of homogeneous clusters with 1, 2, 4, and 8 nodes, utilizing a range

of instance types in AWS. We specifically measured the duration of the following steps

involved in the cluster setup process:

1. Instance spawn time, comprising the period from the instance request to when

it becomes accessible via the SSH protocol.

2. Cluster initialization, comprising the aggregate time consumed by executing all

user-defined initialization commands specified in the cluster_config.yaml file.

72

3. Shared file system configuration, comprising the total time dedicated to con-

figuring the shared file system.

We define the total setup time as the cumulative duration encompassing the afore-

mentioned processes. During the cluster initialization process, we execute commands to

update the machine’s operating system, install, and compile OpenMPI along with its

dependencies from source. This also includes altering configuration files to enable pass-

wordless SSH connections between nodes and access to a shared file system. Dependencies

are installed and updated with yum, the standard Amazon Linux 2023 package manager.

AWS VMs are created in the us-east-1a AZ, using the base Amazon Machine Image

(AMI) for Amazon Linux 2023, with code ami-0230bd60aa48260c6. Listing 1 presents

the shell script used to setup instances.

We select exclusively CPU-only instances with shared-infrastructure, represent-

ing the majority of available instances in public cloud platforms, which can be readily used

without long-term contracts. Details of the instances used in the infrastructure manage-

ment experiments are shown in Table 6, and Figure 11 presents the obtained results. Each

experiment was repeated 3 times.

Based on the results, we notice that using pre-built machine images is essential

to reduce the time needed to launch clusters and reduce costs, as highlighted in Figure 11

by the much larger time spent running initialization commands.

Instances within the Compute Optimized category, including c5.2xlarge and

Listing 1 – Shell script for instance setup.

1 #!/bin/bash

2 sudo yum -y update

3 sudo yum groupinstall -y 'Development Tools'

4 sudo yum install -y git wget nfs-utils

5 sudo yum clean all sudo rm -rf /var/cache/yum

6 sudo mkdir /var/nfs_dir

7 sudo chown -R nobody:nobody /var/nfs_dir

8 sudo chown -R ec2-user:nobody /var/nfs_dir

9 sudo chmod -R 775 /var/nfs_dir

10 sudo rm /etc/ssh/ssh_config

11 sudo touch /etc/ssh/ssh_config

12 sudo sh -c "echo 'Host *' >> /etc/ssh/ssh_config"

13 sudo sh -c "echo 'StrictHostKeyChecking no' >> /etc/ssh/ssh_config"

14 sudo sh -c "echo 'UserKnownHostsFile=/dev/null' >> /etc/ssh/ssh_config"

15 sudo sh -c "echo '10.0.0.10' >> /root/.ssh/authorized_keys"

16 git clone --recursive https://github.com/open-mpi/ompi.git && cd ompi

17 sudo ./autogen.pl

18 sudo ./configure --disable-io-romio CFLAGS='-O0 -g'

19 sudo make all install

20 sudo git clean -fdx

21 sudo rm -rf 3rd-party

Source: Produced by the author.

74

Our tests reveal that cluster setup times remain remarkably consistent, regardless

of whether 2 or 8 nodes are created, indicating good scalability. It is evident that the

attained high scalability for resource creation and setup is attributed to the parallel cre-

ation of cluster nodes, being limited only by the provider’s capacity. Single-node clusters

can be created much faster, given that there is no need for setting up a shared storage

system.

Furthermore, the benefit of manually creating AMIs may not justify the effort

and time involved, particularly for large workload sizes which will execute for much longer

than the cluster spawn and setup times. AMIs also incur storage costs to remain available

in the cloud, and there is a cap on how many images one can generate. Amazon restricts

the creation of public images to a default maximum of five. Additionally, at the time of

our experiments, Vultr Cloud did not support machine image snapshots, indicating that

the feasibility of utilizing this feature is specific to the utilized cloud provider.

5.2 Cluster Scalability

In this section, we conduct a thorough assessment of the performance and scala-

bility of cloud computing clusters with HPC applications of differing sizes. Our analysis

focuses on how effectively these clusters can scale by integrating additional nodes. For the

practical experiments we select a range of cluster configurations using AWS and Vultr.

We focus our experiments on the readily available CPU-only machine types, including the

r6idn.16xlarge instance, which is marketed by Amazon for high-performace tasks. We

also test one of the cheapest baremetal infrastructure options in the market, the Vultr

vbm-6c-32gb machine with Intel E-2286G processors. AWS machines are created in the

us-east-1a AZ, located in Washington DC (USA), and Vultr machines are created in the

dfw AZ located in Dallas (USA). We prepared a series of cluster configurations with sizes

varying between 1, 2, 4, and 8 nodes, adopting a one MPI rank per vCPU assignment

mapping for all executions. Our clusters use the standard EBS for shared storage, and also

the standard network adapters for node-to-node communication. Detailed information on

the instance types employed in these experiments is provided in Table 7.

Table 7 – Instance types evaluated with HEAT .

Platform
Instance Instance

Cores*
On-Demand Spot Price

Discount
Name Category Price (hourly) (hourly)

AWS

t3.2xlarge General Purpose 8 0.3328 0.1277 61.6%
c5.2xlarge Compute Optimized 8 0.3400 0.1147 66.1%
i3.2xlarge Storage Optimized 8 0.6240 0.1913 69.3%

r6idn.16xlarge HPC 64 6.2525 0.7024 88.8%

Vultr
vhp-8c-16gb Compute Optimized 8 0.1430 × ×
vbm-6c-32gb Baremetal 6 0.2750 × ×

∗Virtual (logical) cores with HyperThreading enabled.

76

5.3 Fault Tolerance Strategies

To assess the effectiveness of the proposed fault tolerance strategies, we conducted

experiments comparing the failure-prone and fault-tolerant versions of the HEAT applica-

tion outlined in Section 4.3. These experiments included variant implementations utiliz-

ing BLCR, DMTCP, ULFM, and SCR to explore the performance footprint and incurred

costs of each proposed fault tolerance technology and mechanism.

The different implementations of HEAT were evaluated with clusters comprised of

AWS instances only, the same used for the scalability tests, and described in Table 7. We

run 200 iterations of the heat large configuration on 8-node (t3.2xlarge, c5.2xlarge,

and i3.2xlarge), and 1-node (r6idn.16xlarge) clusters. Spot evictions are emulated

using a helper script designed to terminate a single instance at specific points during

execution, namely at one-third and two-thirds of the total iteration count. When a

failure happens, HPC@Cloud automatically requests a new spot instance. We limited our

analysis to instances where the spot infrastructure was immediately available, excluding

any results from instances when the provider was unable to meet our request — a situation

that occurred only once during our experiments.

The periodic C/R approaches are all configured to save checkpoints at fixed

intervals — every 10 iterations of HEAT . The metrics used for analysis are essentially the

total execution times and incurred cloud infrastructure costs. Unfortunately, it wasn’t

possible to use a single MPI distribution or operating system for our tests, given the

technological restrictions of each fault tolerance mechanism. The evaluated scenarios are

detailed in Table 8.

Figure 13 showcases the total execution time of the large HEAT workload when

applying each fault tolerance and checkpointing strategy. The results shown in Subfig-

ure 13(a) demonstrate the advantage of less frequent checkpointing in reducing overall

execution time, particularly when comparing periodic and preemptive strategies. How-

ever, reducing checkpointing frequency can lead to increased re-work when an application

needs to be restarted. Therefore, it is advisable for users to opt for more frequent pe-

Table 8 – Test scenarios for fault tolerance evaluation.

Fault Tolerance Checkpoint Total Total Failures Operating Kernel MPI Library
Technology Strategy Checkpoints (Restores) System Version Release

— — 0 0 AL 2023 v6.1.58 OpenMPI 5.0.0

BLCR Periodic 20 2 CentOS 7.3.1611 v3.10.0 MVAPICH2 2.3.7

BLCR Preemptive 2 2 CentOS 7.3.1611 v3.10.0 MVAPICH2 2.3.7

DMTCP Periodic 20 2 AL 2023 v6.1.58 MVAPICH2 2.3.7

DMTCP Preemptive 2 2 AL 2023 v6.1.58 MVAPICH2 2.3.7

SCR Periodic 20 2 AL 2023 v6.1.58 OpenMPI 5.0.0

SCR Preemptive 2 2 AL 2023 v6.1.58 OpenMPI 5.0.0

ULFM — 0 2 AL 2023 v6.1.58 OpenMPI 5.0.0

78

i3.2xlarge did not improve performance over the t3.2xlarge and c5.2xlarge instances.

This is mainly because the workload does not rely heavily on storage speed, and thus

the higher cost of the storage-optimized i3.2xlarge machine, which includes a faster

but underused SSD, does not pay off. Similarly, t3.2xlarge has more memory but a

slower processor and network, resulting in longer execution times. This highlights the

importance of choosing the right infrastructure for the workload type. The right choice

is just as crucial as a lightweight fault tolerance mechanism.

Finally, it is also important to note that for short tasks which only take a few

minutes — like the HEAT workload tested in this study — the time it takes to provision

a replacement spot instance and restore execution from a checkpoint file is relatively long

(depicted in Figure 13 as “Idle and C/R time”). However, for much larger tasks, like those

simulated by DynEMol, which can take days or weeks, this waiting time becomes insignif-

icant. In such cases, system-level checkpointing methods like BLCR and DMTCP could

be more cost-effective than they seem from the results shown in Subfigure 13, specially

when considering the software development and migration expenses associated with the

application-level methods.

In the next section we continue our experimental analysis, detailing the migration

of DynEMol to AWS.

5.4 DynEMol Migration Analysis

DynEMol’s migration evaluation is mostly focused on comparing the performance

of this real-world HPC application running in the cloud versus the performance when run-

ning in a traditional on-premise HPC cluster. The Department of Physics at UFSC houses

an HPC cluster named FISICA-01 . This cluster is composed by four homogeneous nodes,

each powered by Intel Xeon E5–2687W CPUs equipped with 16 physical cores with Hyper-

Threading (HT) enabled (32 virtual cores). The nodes are interconnected via a high-speed

InfiniBand network, with Remote Direct Memory Access (RDMA) capabilities, achieving

high-speed data transfers. The cluster operating system is based on the Linux Ubuntu

20.04.4 LTS distribution.

Our evaluation aims to assess DynEMol’s performance using public cloud infras-

tructure and the minimum amount of resources required to attain performance similar to

FISICA-01 ’s output. We also assessed a variety of different AWS cluster configurations,

mirroring the setup of the FISICA-01 cluster. Given that DynEMol has its own fault

tolerance method embedded into the application, we considered clusters composed of both

spot and on-demand instances in AWS. Table 9 shows the cluster configurations used in

DynEMol’s experimental evaluation.

All AWS clusters are composed of c5n.9xlarge instances due to its close resem-

blance to the FISICA-01 nodes. We executed preliminary tests varying the number of

MPI ranks per cluster node and number of OpenMP threads per rank, which revealed

79

Table 9 – Cluster configurations evaluated with DynEMol.

Platform Nodes Cores* per Node Infrastructure Type Storage Network Adapter

AWS

4 36 VM – On-demand EBS ENA (TCP/IP)
4 36 VM – Spot EBS ENA (TCP/IP)
4 36 VM – Spot EBS EFA
4 36 VM – Spot FSx EFA

FISICA-01 4 32 Baremetal SSD InfiniBand
∗Virtual (logical) cores with hyperthreading enabled.

that DynEMol attained the best performance when executed with four MPI ranks and

four OpenMP threads per cluster node. We thus kept this configuration as the standard

one for all of the remaining experiments. To investigate the performance implications of

DynEMol’s checkpointing mechanism, we measured the time required to save checkpoint

files and restart execution from a checkpoint.

We carried out simulations using DynEMol that describe the vibrational relax-

ation of photoexcited molecular systems, whereby a photon excites the molecular system

from the ground quantum-state to an unoccupied quantum-state of higher energy, thus

leaving the ground state unoccupied (with an excitation known as a “hole”). As the simu-

lation progresses, the photo-excited high-energy electron decays back to the ground state

and eventually annihilates the hole. In these simulations, electronic decay occurs through

the generation of vibrational states on the molecular arrangement. Therefore, electronic

energy is converted into vibrational energy of the molecular system.

We executed three different molecular simulations using the parameters described

in Table 10. Only one isolated molecule is in the gas phase in the small system. The

medium and large systems comprise a molecular dye attached (anchored) to the surface

of a titanium dioxide (TiO2) anatase cluster. In these cases, in addition to generating

vibrations in the molecule and the cluster arrangements, the photoexcited electron is

transferred from the molecular dye into the TiO2 cluster (the process is called interfacial

electron transfer). This type of inorganic substrate sensitized with molecular dyes is used

in photoelectrochemical fuel cells.

We pursue the following primary objectives when running DynEMol across di-

verse cluster architectures in AWS (on-demand and spot) as well as on the FISICA-

01 HPC cluster: (i) assess both the performance enhancements and cost-effectiveness of

FSx for Lustre relative to EBS; (ii) investigate the performance benefits derived from

employing ENA and EFA to optimize network communications; and (iii) gauge the per-

Table 10 – DynEMol workload sizes tested.

Workload Size Quantum Atoms Orbitals Force Pairs Time-Steps (ts) Simulated Time

Small 35 95 595 100, 000 1 ps
Medium 451 2, 351 4, 656 100 10−3 ps
Large 628 3, 412 4, 005 100 10−3 ps

84

5.6 Costs Forecasting

Our goal is to explore the potential of leveraging machine learning to enhance

decision-making in the planning of cloud infrastructure for large-scale workloads. To

initiate this exploration, we trained two simple models using a constrained dataset, laying

the groundwork for more extensive research in the future.

5.6.1 Adopted Evaluation Method

To assess the precision of our experimental cost prediction methodology, we eval-

uate the efficacy of the XGBoost model described in Section 4.5. We additionally test a

simple and cheaper Linear Regression model trained using the same HPC@Cloud work-

flows. The model training process involved the utilization of a dataset derived from

executing the NPB benchmarks workloads — NPB-EP , NPB-FT , and NPB-IS of the

standard test problems: Classes A, B, and C. Each class of problems has around a 4×

size increase going from one class to the next. The diversity of workload patterns in the

NPB benchmarks ensures that the training data encapsulates a wide variety of computa-

tional and data access patterns, which is paramount for a holistic evaluation.

In a departure from prior methodologies used in Munhoz & Castro (2023), we

refined our costs prediction evaluation strategy to enhance the validity of the predictive

models. This was achieved by implementing a cross-application assessment where the

models, trained on NPB benchmarks, were applied to predict the execution costs of an

entirely separate application, the HEAT program. This approach circumvents the poten-

tial overfitting to a single application scenario, thereby providing a more generalized and

robust assessment of model performance.

For a comprehensive evaluation, we calculated prediction errors by comparing

the models’ cost predictions against actual observed execution times. We specifically

employed the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) metrics,

alongside a residual plot analysis, to provide a nuanced understanding of the models’

accuracy.

5.6.2 Model Training

The training dataset used to build our model is comprised by 1 target variable,

w_time, representing the total execution time in seconds, and 6 features, described in

Section 4.5 and further detailed in Table 12. The assembled dataset has 384 rows, with

sample data shown in Listing 2.

85

Table 12 – Variables used for model training.

Variable Name Variable Type Variable Role Description

w_time numerical Target Total workload execution time
w_class categorical Feature Value provided by the user (workload-specific)
c_nodes numerical Feature Number of cluster nodes

c_vcpus_pn numerical Feature Number of vCPUs available per cluster node
c_ram_pn numerical Feature Amount of RAM per cluster node

c_bandwidth numerical Feature Node-to-node measured bandwidth
c_iops numerical Feature Instructions per second when writing to shared storage

Listing 2 – Raw dataset sample for training (in CSV format).

1 w_time,w_class,c_nodes,c_vcpus_pn,c_ram_pn,c_bandwidth,c_iops

2 1212,npb-ft-C,1,8,21.0,22.9,2262

3 657,npb-ft-C,2,8,21.0,23.1,2312

4 399,npb-ft-C,4,8,21.0,22.2,2332

5 412,npb-ft-C,8,8,21.0,21.3,2295

6 587,npb-ft-C,16,8,21.0,22.2,2254

Source: Produced by the author.

5.6.2.1 Linear Regression

To train the Linear Regression model, which accepts only numerical variables, we

apply the following transformations to the raw dataset partially shown in Listing 2:

1. One-Hot Encoding: Because w_class is a categorical variable representing differ-

ent classes of workloads, it should be converted into numerical form using one-hot

encoding. This process creates binary columns for each category of the variable,

ensuring that the model can interpret and use this information correctly.

2. Feature Scaling: Also known as normalization, this transformation is important

for ensuring that all features contribute equally to the model training, especially

since linear regression is sensitive to the scale of input features. For example,

c_ram_pn, c_bandwidth, and c_iops have different scales, which could affect the

model’s performance. We apply a Min-Max scaling to convert values to be in the

range of 0 to 1, by subtracting the minimum value and dividing by the range of the

data.

5.6.2.2 XGBoost

For the XGBoost model, our transformation approach is slightly different due

to its inherent capability to handle a broader range of data distributions. Numerical

variables require no specific transformation in this case, as XGBoost, being a tree-based

model, is less sensitive to variable scale. We simply one-hot encode the w_class variable

for training XGBoost.

86

5.6.3 Model Scoring and Evaluation

The selected error metrics (RMSE and MAE) offer a dual perspective: the

RMSE emphasizes the impact of large errors, while the MAE provides a straightforward

average error magnitude. The residual plot in Figure 19 further allows us to visualize the

variance in prediction errors across the range of costs, giving us deeper insights into the

predictive quality and potential biases of our models. In our tests, the main objective is

not merely to predict costs but to gauge the accuracy of these predictions vis-à-vis actual

incurred costs. This distinction is pivotal since the value of a prediction model lies in its

ability to approximate real-world outcomes.

The blind total execution time forecasting results for HEAT when using Linear

Regression and XGBoost models are showcased in terms of the RMSE and MAE error

metrics in Figure 18. Forecasted and measured values are shown in execution time (sec-

onds). Cost estimations are then computed from the total cluster costs (including storage

and networking) multiplied by the predicted execution times, and results are presented

in Figure 19.

Subfigure 18(a) elucidates the performance of the Linear Regression model, which

incurs a relatively high RMSE of 26.20s and MAE of 18.25s. This indicates that while

Linear Regression provides a baseline model, it struggles to handle the complexity inherent

in the dataset, potentially due to its assumptions of linearity.

In stark contrast, Subfigure 18(b) presents the XGBoost model as significantly

more precise, boasting an RMSE of only 7.97s and MAE of 7.28s. The enhanced accuracy

of the XGBoost model can be attributed to its advanced ML algorithm that effectively

captures complex non-linear patterns and interactions among variables. This is particu-

larly beneficial for the tackled problem of costs prediction with heterogeneous datasets.

When we compute the total costs from the predicted execution times, given that

our workloads are relatively small, the error is virtually negligible. When rounding to

cents (the minimum billable amount in AWS), Linear Regression and XGBoost boast an

RMSE of 0.02$ and 0.01$ respectively, for workloads with a mean actual cost of 0.10$, or

10 times the RMSE.

In the context of transient infrastructures, it is important to recognize that a

multitude of factors affect the aggregate execution costs. These encompass the overhead

associated with checkpointing and the fluctuating availability of instances. Moreover,

while AWS hourly spot rates have become more stable, as reported by Amazon Web Ser-

vices (2018), they continue to be a variable difficult to predict, which influences the overall

expenses. Additionally, the absence of a predictive mechanism within HPC@Cloud for

forecasting spot instance evictions constitutes a significant limitation in providing accu-

rate cost estimates for spot infrastructure usage.

The unpredictability of spot instance eviction frequency and the absence of pub-

licly accessible provider data make it infeasible to develop a predictive dataset econom-

89

6 CONCLUSION AND FUTURE RESEARCH

In this work, we tackled several of the HPC and Cloud Computing convergence

software gaps identified by Netto et al. (2018), introducing the HPC@Cloud toolkit to

facilitate the migration of HPC workloads to public cloud platforms. Although we focused

on tightly-coupled MPI applications, our contributions extend to other types of workloads,

such as bag-of-tasks. HPC@Cloud includes software modules for automated virtual en-

vironment configuration, cloud infrastructure management, and costs forecasting. We

have demonstrated its usefulness and efficacy by running multiple types of workloads and

benchmarks, including a real-world HPC application (DynEMol), over different cluster

configurations in real public cloud platforms (AWS and Vultr).

In the following sections, we draw our main conclusions about each one of the

main contributions of this work, as well as future research.

6.1 Cluster Scalability, Technologies, and Resource Management

We evaluated cloud scalability by executing both small and large classes of the

HEAT application across various cluster sizes. The results indicated a clear pattern: large

applications gain significantly from horizontal scaling, whereas smaller applications are

best served by single-instance execution. The effectiveness of using large clusters with

resource-intensive nodes in public cloud settings is notably constrained by the resource

limits imposed by most providers. This limitation somewhat undermines the very princi-

ple of public cloud platforms, as it forces users to manually request resources and await

non-automated approval from the provider.

In this dissertation, we investigated a variety of cloud computing technologies

related to networking and storage, such as FSx for Lustre, EBS, EFS, ENA, EFA, among

others. Yet, numerous other avenues remain unexplored. For instance, future work will

consider testing cluster topologies that forego centralized shared storage, potentially en-

hancing workload execution speeds by eliminating potential I/O bottlenecks. Such an

approach would necessitate a shift in both application-level strategies and the interaction

model within HPC@Cloud, adapting to a scenario where files are not uniformly accessible

across all cluster nodes.

Moreover, one of the most important features of our toolkit, which is the fault

tolerance support with eviction alarms from AWS CloudWatch, would need some code

adaptations to work in a transparent manner with a different cloud provider, such as

Microsoft Azure. The adaptations required, besides the addition of Terraform recipes for

clusters using the new provider, include the implementation of several helper functions to

fetch node IP addresses, check node state, and identify eviction alarms (if available). The

integration of a second ephemeral infrastructure provider is one of the highest priorities

90

in HPC@Cloud’s roadmap.

The integration of hardware accelerators, particularly GPUs, into the supported

computing infrastructure is also critically important. Modern HPC applications are in-

creasingly designed to leverage the computational power of GPUs, achieving substantial

performance enhancements as a result. GPUs, with their highly parallel structure, are ex-

ceptionally well-suited for the complex mathematical and simulation tasks that are typical

in HPC environments. This compatibility allows for significant speedups in processing

times, enabling more efficient and faster computations compared to traditional CPU-only

setups. Although HPC@Cloud can spawn and manage instance types with GPUs, we did

not conduct empirical tests with them, being another important area for future research.

6.2 Fault Tolerance Strategies and Ephemeral Instances

To be able to explore ephemeral cloud infrastructure such as AWS spot instances,

we proposed and evaluated a combination of four different fault tolerance technologies for

MPI workloads: (a) Berkeley Labs Checkpoint Restart (BLCR), (b) Distributed Mul-

tiThreaded CheckPointing (DMTCP), (c) Scalable Checkpoint Restart (SCR), and (d)

User-Level Failure Mitigation (ULFM). We also employed three restoration strategies: (a)

Periodic Checkpointing, (b) Preemptive Checkpointing, and (c) Adaptative Restoration

(with ULFM only).

Results in Figure 13 corroborate a stark decrease in infrastructure costs when us-

ing AWS spot instances, specially when applying lightweight application-level fault toler-

ance technologies such as SCR and ULFM. System-level fault tolerance with DMTCP and

BLCR also proved useful for quickly making use of cheaper infrastructure without need-

ing to change source code, although BLCR support ended with Linux Kernel 3.10.0.

Collected results from our experiments also indicate that application performance can be

heavily impacted by spot instance evictions, which often lead to idle times while awaiting

provider resource provisioning. To alleviate this, we make use of provider-specific notifi-

cation systems like AWS CloudWatch to preemptively checkpoint and manage resources,

thus reducing idle times due to spot instance failures. When these alarm systems are not

available, fault tolerant applications can still fallback to periodic checkpointing, albeit

with a higher performance footprint. Using the ULFM APIs, we managed to completely

nullify the idle time when running the HEAT application with spot instances by oversub-

scribing MPI ranks to existing nodes during failures, which resulted in higher performance

and lower infrastructure costs, as shown in Figure 13.

Nevertheless, our cost analysis suggests that spot resource utilization by itself

does not always result in savings, as evidenced by the comparable cost-effectiveness of

persistent Vultr instances — persistent 8-node vhpc-8c-16gb clusters attained almost the

same performance as the ephemeral 8-node t3.2xlarge clusters when running HEAT -

large (Figure 12), costing around 0.4 USD less per hour. This comparison highlights the

91

importance of careful instance selection based on your specific workload requirements.

Moreover, our investigation into high-end instances reveals that while they can be more

cost-effective when spot options are available, reliance on a single-node setup increases

risk, as revocations necessitate fallback to expensive persistent storage solutions.

Future directions include the research into simplifying the adoption of application-

level fault tolerance, by devising automatic code injection methods or other mechanism

to facilitate the development of simple C/R capabilities that could quickly enable the

use of ephemeral infrastructure. We also plan to investigate the feasibility of integrating

ULFM with Charm++1 and StarPU 2, two distributed programming models that leverage

MPI for inter-process communication that can potentially provide fault tolerance with

ULFM in a transparent way.

6.3 Migrating Legacy Applications

We migrated the DynEMol simulation tool to AWS using the HPC@Cloud soft-

ware toolkit, mainly to assess its usefulness in a real-world scenario. We tested vari-

ous cluster configurations, evaluating different available technologies, such as spot and

on-demand instances for computational infrastructure; EBS and FSx for storage; and

EFA and ENA for networking.

Our experimental results suggest that while cloud-based resources configured

optimally exhibit slightly inferior scalability compared to the on-premise infrastructure

tested, they still offer substantial benefits. The existing fault tolerance mechanism in

DynEMol, specifically its checkpointing feature, is sufficiently lightweight and its perfor-

mance footprint is virtually undetectable for medium to large workloads. This feature

enables us to increase checkpointing frequency, thereby circumventing unnecessary re-

work when restoring from these checkpoints. Moreover, limiting the number of instances

enhances the cost-effectiveness of spot infrastructure due to the associated reduction in

failure probability. Utilizing spot instances and maintaining a finely-tuned parallel compo-

sition for the workload is crucial for achieving cost-effectiveness. Our results corroborate

the conclusions of related studies, discussed in Chapter 3. These suggest that fewer fat

instances, equipped with hundreds of cores, may be more suitable than a large number

of small nodes. The downside for larger instances rests on their usual unavailability and

inexistence in most providers, especially low-cost ones.

Regarding the storage technologies available in AWS, although FSx can be costly,

the benefits outweigh the costs when a high number of nodes (at least four) perform

parallel I/O. Furthermore, advances in networking technologies have paved the way for

high-bandwidth, low-latency communications in the public cloud. When testing network-

ing technologies, we observed better performance when using EFA, attesting to this fact.

1 https://charmplusplus.org/
2 https://starpu.gitlabpages.inria.fr/

92

Furthermore, EFA can be enabled in AWS at no additional cost, further improving the

speedup efficiency.

Future research includes a deeper analysis of DynEMol’s parallelization methods

to further improve the obtainable speedups, both through code improvements and fine-

tuning of the number of MPI ranks and OpenMP threads. We also intend to test the

GPU-accelerated version of DynEMol using cloud resources, a different range of instance

types, and cloud providers. Future objectives also include the development of a cloud-

native version of DynEMol for easy deployment by any researcher in the field.

6.4 Containerized Execution

Through integrating Singularity into HPC@Cloud, we enabled containerized exe-

cution, which yielded performance comparable to native VM execution, as clearly shown

in Figure 17. This finding underpins the potential of container technology in cloud-

based HPC applications. In conclusion, the practicality of deploying containers in a

single-purpose cluster designed to run only a single workload before decommissioning is

debatable, as it potentially introduces unnecessary operational complexity.

The design of HPC@Cloud is primarily guided towards execution of workloads

on single-purpose clusters, yet it is versatile enough to facilitate the creation of long-lived

clusters serving multiple users. On the other hand, within a persistent, multi-user shared

cluster hosted on a public cloud platform, the utilization of containers becomes signifi-

cantly more beneficial due to the isolation they provide. Workload managers like SLURM

can be seamlessly integrated by specifying initialization commands within HPC@Cloud.

In such multi-user environments, containerized execution emerges as a particu-

larly relevant approach, albeit the absence of a scheduler to efficiently manage containers

across distributed nodes presents a challenge. Incorporating this functionality would in-

evitably increase operational complexity and consume valuable computational resources

that could otherwise be dedicated to running workloads directly. Therefore, due to these

considerations, we have decided set aside further developments in containerization within

HPC@Cloud. Our focus will remain on optimizing the single-purpose cluster model for

public cloud environments.

Nevertheless, a significant area of research that could enhance HPC@Cloud in-

volves integrating fault tolerance techniques for containers. This would facilitate the

utilization of spot instances, offering a robust solution for cost-efficient computing re-

sources.

6.5 Costs Forecasting

In this dissertation, we established the foundation for integrating machine learn-

ing models into HPC@Cloud, aimed at predicting execution time and costs. This ini-

93

tiative is designed to support decision-making processes in selecting the optimal cluster

infrastructure for handling large workloads, allowing the end-user to make an informed

decision before committing resources. We test two straightforward models — XGBoost

and Linear Regression — using data captured by HPC@Cloud when running HEAT and

NPB workloads. Our comparative study on cost forecasting unambiguously demonstrates

the superiority of XGBoost over Linear Regression. XGBoost’s robust handling of non-

linear complexities renders it a valuable asset for precise forecasting, which is crucial in

the dynamic and often unpredictable landscape of cloud resource pricing and allocation.

For future enhancements, we consider the integration of real-time market data for

spot instances, potentially refining the accuracy of our predictive models by uncovering

more nuanced relationships impacting costs. Furthermore, the development or integration

of spot instance eviction predictors is another promising avenue. Creating a predictive

model capable of estimating the likelihood and timing of spot instance evictions could

significantly improve cost estimations for ephemeral infrastructures. However, it is crucial

to note that such a model would be provider-specific and may not seamlessly integrate

into HPC@Cloud existing framework.

Finally, to accommodate the trend towards multi-cloud environments, the models

could be trained with data from various cloud providers. This cross-platform approach

to cost forecasting could significantly aid researchers and practitioners in making well-

informed decisions regarding multi-cloud strategies, ensuring cost efficiency and optimiza-

tion across different cloud platforms.

6.6 Other Future Directions for HPC@Cloud

The HPC@Cloud toolkit represents a significant step towards the seamless adap-

tation of legacy HPC applications to the cloud. Our contributions in this work not only

demonstrate the toolkit’s capabilities but also provide insights into the complexities of

cloud resource management and fault tolerance in cloud HPC. By continuing to build

upon these foundations, we aim to unlock the full potential of Cloud Computing for the

HPC community.

We plan to deploy a centralized version of HPC@Cloud, which will then be ac-

cessed through a REST API, eliminating the need for dependencies to be installed in

the user’s machine, such as Terraform, Docker and provider’s CLIs, simplifying use by

researchers.
We also intend to add support for other two big public cloud providers: GCP and

Azure. With this support, HPC@Cloud can truly become a multi-platform solution for
cloud HPC.

95

BIBLIOGRAPHY

ABRAHAM, B.; REGO, L. G. C.; GUNDLACH, L. Electronic-Vibrational Coupling
and Electron Transfer. The Journal of Physical Chemistry C, American Chemical
Society, v. 123, n. 39, p. 23760–23772, 2019.

AL-ROOMI, M. et al. Cloud Computing Pricing Models: A Survey. International
Journal of Grid and Distributed Computing, Science & Engineering Research
Support soCiety (SERSC), Daedoek-Gu, Republic of Korea, v. 6, p. 93–106, 2013. ISSN
2005-4262.

ALJAMAL, R.; EL-MOUSA, A.; JUBAIR, F. A Comparative Review of High-
Performance Computing Major Cloud Service Providers. In: Proceedings of the
9th International Conference on Information and Communication Systems.
London, United Kingdom: Association for Computing Machinery, 2018. p. 181–186.

ALTHOFF, L.; MUNHOZ, V.; CASTRO, M. Análise de Viabilidade do Perfilamento
de Aplicações de HPC Baseada em Contadores de Hardware na AWS. In: Anais da
XXIII Escola Regional de Alto Desempenho da Região Sul. Porto Alegre,
Brazil: Sociedade Brasileira de Computação (SBC), 2023. p. 45–48. ISSN 2595-4164.

Amazon Web Services. New Amazon EC2 Billing Model. 2017. Accessed at:
2023-11-06. Available from Internet: https://aws.amazon.com/blogs/aws/new-per-
second-billing-for-ec2-instances-and-ebs-volumes/.

Amazon Web Services. New Amazon EC2 Spot Pricing. 2018. Accessed at:
2023-11-06. Available from Internet: https://aws.amazon.com/blogs/compute/new-
amazon-ec2-spot-pricing/.

AMOON, M. et al. On the Design of Reactive Approach with Flexible Checkpoint
Interval to Tolerate Faults in Cloud Computing Systems. Journal of Ambient
Intelligence and Humanized Computing, Springer International Publishing, v. 10,
p. 4567–4577, 2019.

BENEDICIC, L. et al. Sarus: Highly Scalable Docker Containers for HPC Systems. In:
ISC High Performance International Workshops. Frankfurt, Germany: Springer
International Publishing, 2019. p. 46–60.

BLAND, W. et al. An Evaluation of User-Level Failure Mitigation Support in MPI. In:
Recent Advances in the Message Passing Interface. Berlin, Heidelberg, Germany:
Springer International Publishing, 2012. v. 95, p. 193–203.

BLAND, W. et al. Post-Failure Recovery of MPI Communication Capability: Design
and Rationale. The International Journal of High Performance Computing
Applications, Sage Publications, v. 27, n. 3, p. 244–254, 2013.

BRUM, R. et al. Ensuring Application Continuity with Fault Tolerance Techniques. In:
High Performance Computing in Clouds: Moving HPC Applications to a
Scalable and Cost-Effective Environment. Berlin, Heidelberg, Germany: Springer
International Publishing, 2023. p. 191–212. ISBN 978-3-031-29769-4.

96

BUYYA, R.; BROBERG, J.; GOSCINSKI, A. Cloud Computing: Principles
and Paradigms. Hoboken, New Jersey, USA: John Wiley & Sons, 2011. ISBN
978-0-470-88799-8.

BUYYA, R. et al. A Manifesto for Future Generation Cloud Computing: Research
Directions for the Next Decade. ACM Computing Surveys, Association for
Computing Machinery, London, United Kingdom, v. 51, n. 5, 2019. ISSN 0360-0300.
Available from Internet: https://doi.org/10.1145/3241737.

CASALICCHIO, E.; IANNUCCI, S. The State-of-the-Art in Container Technologies:
Application, Orchestration and Security. Concurrency and Computation: Practice
and Experience, John Wiley & Sons, Hoboken, New Jersey, USA, v. 32, n. 17, p.
56–68, 2020.

CHHETRI, M. B. et al. On Estimating Bids for Amazon EC2 Spot Instances Using
Time Series Forecasting. In: Proceedings of the IEEE International Conference
on Services Computing. Honolulu, HI, USA: IEEE Computer Society, 2017. p. 44–51.

COGHLAN, S.; YELICK, K. The Magellan Final Report on Cloud Computing.
Berkeley, USA: Lawrence Berkeley National Laboratory, 2011. 50–54 p. Available from
Internet: https://www.osti.gov/biblio/1076794.

DANCHEVA, T.; ALONSO, U.; BARTOŇ, M. Cloud Benchmarking and Performance
Analysis of an HPC Application in Amazon EC2. Cluster Computing, Springer
International Publishing, p. 1–18, 2023.

EMERAS, J.; VARRETTE, S.; BOUVRY, P. Amazon Elastic Compute Cloud (EC2)
vs. In-House HPC Platform: A Cost Analysis. In: Proceedings of the IEEE
International Conference on Cloud Computing. San Francisco, USA: IEEE
Computer Society, 2016. p. 284–293.

FERNANDEZ, A. Evaluation of the Performance of Tightly Coupled Parallel Solvers
and MPI Communications in IaaS From the Public Cloud. IEEE Transactions on
Cloud Computing, v. 10, n. 4, p. 2613–2622, Oct 2022. ISSN 2168-7161.

FERRÃO, L.; MUNHOZ, V.; CASTRO, M. Análise do Sobrecusto de Utilização de
Contêineres para Execução de Aplicações de HPC na Nuvem. In: Anais da XXIII
Escola Regional de Alto Desempenho da Região Sul. Porto Alegre, Brazil:
Sociedade Brasileira de Computação (SBC), 2023. p. 37–40. ISSN 2595-4164.

GARTNER. Worldwide Public Cloud Services Markets. 2022. Accessed at:
2023-11-06. Available from Internet: https://www.gartner.com/en/newsroom/press-
releases/2022-06-02-gartner-says-worldwide-iaas-public-cloud-services-market-grew-41-
percent-in-2021.

GONG, Y.; HE, B.; ZHOU, A. C. Monetary Cost Optimizations for MPI-based
HPC Applications on Amazon Clouds: Checkpoints and Replicated Execution.
In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. Austin, Texas, USA: Association
for Computing Machinery, 2015. p. 1–12.

GUIDI, G. et al. 10 Years Later: Cloud Computing is Closing the Performance
Gap. In: Proceedings of the International Conference on Performance

97

Engineering. Virtual Event: Association for Computing Machinery, 2021. p. 41–48.
ISBN 978-1-450-38331-8.

HADJIDIMOS, A. Successive Overrelaxation (SOR) and Related Methods. Journal
of Computational and Applied Mathematics, Elsevier Science Publishers B.V,
Amsterdam, Netherlands, v. 123, n. 1, p. 177–199, 2000.

HARGROVE, P.; DUELL, J. Berkeley Lab Checkpoint/Restart (BLCR) for Linux
Clusters. Journal of Physics: Conference Series, IOP Publishing, Bristol, United
Kingdom, v. 46, p. 494, 2006.

HARIYALE, H. et al. Load Balancing in Cluster Using BLCR Checkpoint/Restart.
In: Advances in Computing and Information Technology. Berlin, Heidelberg,
Germany: Springer International Publishing, 2012. p. 729–737. ISBN 978-3-642-31513-8.

HILL, M. D.; MARTY, M. R. Amdahl’s Law in the Multicore Era. Computer, IEEE
Computer Society, v. 41, n. 7, p. 33–38, 2008.

HURSEY, J. Design Considerations for Building and Running Containerized MPI
Applications. In: Proceedings of the 2nd International Workshop on Containers
and New Orchestration Paradigms for Isolated Environments in HPC. Atlanta,
GA, USA: IEEE Computer Society, 2020. p. 35–44.

KITHULWATTA, W. M. C. J. T. et al. Adoption of Docker Containers as an
Infrastructure for Deploying Software Applications: A Review. In: Advances on
Smart and Soft Computing. Berlin, Heidelberg, Germany: Springer International
Publishing, 2022. p. 247–259. ISBN 978-981-16-5559-3.

KJOLSTAD, F. B.; SNIR, M. Ghost Cell Pattern. In: Workshop on Parallel
Programming Patterns (ParaPLoP). Carefree, Arizona, USA: Association for
Computing Machinery, 2010. ISBN 978-1-450-30127-5.

KURTZER, G. M.; SOCHAT, V.; BAUER, M. W. Singularity: Scientific Containers for
Mobility of Compute. PLOS ONE, Public Library of Science, San Francisco, California,
USA, v. 12, n. 5, p. 1–20, 2017.

LI, Z. et al. Efficiency or Innovation: The Long-Run Payoff of Cloud Computing.
Journal of Global Information Management, IGI Global International Academic
Publisher, Hershey, Pennsylvania, USA, v. 29, n. 6, p. 1–23, 2021.

MALLA, S.; CHRISTENSEN, K. HPC in the Cloud: Performance Comparison of
Function as a Service (FaaS) vs Infrastructure as a Service (IaaS). Internet Technology
Letters, John Wiley & Sons, Hoboken, New Jersey, USA, v. 3, n. 1, p. 131–137, 2020.

MARATHE, A. et al. Exploiting Redundancy for Cost-Effective, Time-Constrained
Execution of HPC Applications on Amazon EC2. In: Proceedings of the 23rd
International Symposium on High-Performance Parallel and Distributed
Computing. Vancouver, BC, Canada: Association for Computing Machinery, 2014. p.
279–290. ISBN 978-1-450-32749-7.

MATTSON, T. An Introduction to OpenMP. In: Proceedings of the 1st IEEE/ACM
International Symposium on Cluster Computing and the Grid. London, United
Kingdom: Association for Computing Machinery, 2001. p. 3–3. ISBN 0-7695-1010-8.

98

MELL, P. M.; GRANCE, T. The NIST Definition of Cloud Computing.
Gaithersburg, USA, 2011.

MOODY, A. et al. Design, Modeling, and Evaluation of a Scalable Multi-Level
Checkpointing System. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. New Orleans,
Louisiana, USA: IEEE Computer Society, 2010.

MUNHOZ, V. et al. A Performance Comparison of HPC Workloads on Traditional and
Cloud-Based HPC Clusters. In: Proceedings of the International Symposium
on Computer Architecture and High Performance Computing Workshops
(SBAC-PADW). Porto Alegre, Brazil: IEEE Computer Society, 2023. p. 108–114.

MUNHOZ, V.; CASTRO, M. Benchmarking the Scalability of MPI-Based Parallel
Solvers for Fluid Dynamics in Low-Budget Cloud Infrastructure. In: Anais da XXII
Escola Regional de Alto Desempenho da Região Sul. Curitiba, Brazil: Sociedade
Brasileira de Computação (SBC), 2022. p. 77–78. ISSN 2595-4164.

MUNHOZ, V.; CASTRO, M. HPC@Cloud: A Provider-Agnostic Software Framework
for Enabling HPC in Public Cloud Platforms. In: Anais do XXIII Simpósio em
Sistemas Computacionais de Alto Desempenho (WSCAD). Florianópolis, Brazil:
Brazilian Computer Society, 2022. p. 157–168.

MUNHOZ, V.; CASTRO, M. Enabling the Execution of HPC Applications on Public
Clouds with HPC@Cloud Toolkit. Concurrency and Computation: Practice and
Experience, John Wiley & Sons, Hoboken, New Jersey, USA, 2023.

MUNHOZ, V.; CASTRO, M.; MENDIZABAL, O. Strategies for Fault-Tolerant Tightly-
coupled HPC Workloads Running on Low-Budget Spot Cloud Infrastructures. In:
International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). Bordeaux, France: IEEE Computer Society, 2022. p.
263–272.

MUNHOZ, V.; CASTRO, M.; REGO, L. G. C. Evaluating the Parallel Simulation of
Dynamics of Electrons in Molecules on AWS Spot Instances. In: Anais do XXIV
Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD). Porto
Alegre, Brazil: Sociedade Brasileira de Computação (SBC), 2023.

NETTO, M. et al. HPC Cloud for Scientific and Business Applications: Taxonomy,
Vision, and Research Challenges. ACM Computing Surveys, Association for
Computing Machinery, London, United Kingdom, v. 51, n. 8, p. 1–29, 2018.

PEÑA-MONFERRER, C.; MANSON-SAWKO, R.; ELISSEEV, V. HPC-Cloud
Native Framework for Concurrent Simulation, Analysis and Visualization of CFD
Workflows. Future Generation Computer Systems, Elsevier Science Publishers
B.V, Amsterdam, Netherlands, v. 123, p. 14–23, 2021. ISSN 0167-739X.

RAHMAN, A.; MAHDAVI-HEZAVEH, R.; WILLIAMS, L. A Systematic Mapping
Study of Infrastructure as Code Research. Information and Software Technology,
Elsevier Science Publishers B.V, Amsterdam, Netherlands, v. 108, p. 65–77, 2019. ISSN
0950-5849.

99

RICHTER, H. About the Suitability of Clouds in High-Performance Computing. In:
Computer Science & Information Technology. Mumbai, India: Academy &
Industry Research Collaboration Center (AIRCC), 2016.

SANTOS, M. d.; CAVALHEIRO, G. G. H. Cloud Infrastructure for HPC Investment
Analysis. Revista de Informática Teórica e Aplicada, Federal University of Rio
Grande do Sul, Porto Alegre, Brazil, v. 27, n. 4, p. 45–62, 2020.

SENA, A. C. et al. Harnessing Low-Cost Virtual Machines on the Spot. In: High
Performance Computing in Clouds: Moving HPC Applications to a
Scalable and Cost-Effective Environment. Berlin, Heidelberg, Germany: Springer
International Publishing, 2023. p. 163–189. ISBN 978-3-031-29769-4.

SHALF, J. The Future of Computing Beyond Moore’s Law. Philosophical
Transactions of the Royal Society A, The Royal Society Publishing, v. 378, n. 2166,
2020.

SHU, Y. et al. Time-Derivative Couplings for Self-Consistent Electronically Nonadiabatic
Dynamics. Journal of Chemical Theory and Computation, American Chemical
Society, v. 16, n. 7, p. 4098–4106, 2020.

SINDI, M.; WILLIAMS, J. R. Using Container Migration for HPC Workloads Resilience.
In: Proceedings of the High Performance Extreme Computing Conference.
Waltham, MA, USA: IEEE Computer Society, 2019. p. 1–10.

STORMENT, J.; FULLER, M. Cloud FinOps. Sebastopol, California, USA: O’Reilly
Media, Inc., 2023. ISBN 978-1-492-05457-3.

TEYLO, L. et al. Scheduling Bag-of-Tasks in Clouds using Spot and Burstable Virtual
Machines. IEEE Transactions on Cloud Computing, IEEE Computer Society,
v. 11, n. 1, p. 984–996, 2023.

TORRES, A. et al. Charge Transfer Driven Structural Relaxation in a Push-Pull
Azobenzene Dye-Semiconductor Complex. The Journal of Physical Chemistry
Letters, American Chemical Society, v. 9, n. 20, p. 5926–5933, 2018.

VAILLANCOURT, P. et al. Reproducible and Portable Workflows for Scientific
Computing and HPC in the Cloud. In: Practice and Experience in Advanced
Research Computing. Portland, OR, USA: Association for Computing Machinery,
2020. p. 311–320. ISBN 978-1-450-36689-2.

WANG, C. et al. A Job Pause Service under LAM/MPI+BLCR for Transparent
Fault Tolerance. In: Proceedings of the International Parallel and Distributed
Processing Symposium. Long Beach, California USA: IEEE Computer Society, 2007.
p. 1–10.

WONG, A. K.; GOSCINSKI, A. M. A Unified Framework for the Deployment, Exposure
and Access of HPC Applications as Services in Clouds. Future Generation Computer
Systems, v. 29, n. 6, p. 1333–1344, 2013. ISSN 0167-739X.

ZHANG, J.; LU, X.; PANDA, D. K. Is Singularity-Based Container Technology Ready
for Running MPI Applications on HPC Clouds? In: Proceedings of the International
Conference on Utility and Cloud Computing. Austin, Texas, USA: Association for
Computing Machinery, 2017. p. 151–160. ISBN 978-1-450-35149-2.

100

ZHOU, A. C. et al. FarSpot: Optimizing Monetary Cost for HPC Applications in the
Cloud Spot Market. Transactions on Parallel and Distributed Systems, IEEE
Computer Society, v. 33, n. 11, p. 2955–2967, 2022.

	Title page
	Acknowledgements
	Resumo
	Resumo Estendido
	Abstract
	Introduction
	Motivation
	Limitations of Existing Platforms and Strategies
	Goals and Contributions
	Publications
	Work Organization

	Background
	High Performance Computing
	Parallel Computer Architectures
	Parallel Programming Models

	The Cloud Computing Paradigm
	Cloud Service Models
	Ephemeral Infrastructure in Public Cloud Platforms
	Low-Budget Providers: Vultr Cloud

	HPC and Containerization
	HPC and Cloud Convergence Challenges
	Applications and Benchmarks
	NASA Advanced Supercomputing Parallel Benchmarks (NPB)
	Parallel Implementation of 2D-Heat Diffusion Equations (HEAT)
	DynEMol Simulation Software

	Related Work
	HPC and Cloud Computing Convergence
	Ephemeral Cloud Infrastructure for HPC
	Fault Tolerance for MPI Applications
	Containerization for HPC
	Discussion

	The HPC@Cloud Software Toolkit
	HPC@Cloud Software Architecture Overview
	Managing Multicloud Infrastructure
	Cluster Topology, Storage and Networking Devices
	Cluster Topology
	Cloud Storage Technologies
	Cloud Networking Technologies

	Managing Fault-Tolerant Workloads
	Failure System Model
	System-Level Fault Tolerance
	Berkeley Labs Checkpoint-Restart (BLCR)
	Distributed MultiThreaded CheckPointing (DMTCP)

	Application-Level Fault Tolerance
	Scalable Checkpoint Restart (SCR)
	User-Level Failure Mitigation (ULFM)

	Images, Communication, and Containerization Support
	Forecasting Costs

	Experimental Results
	Resource Management Efficiency
	Cluster Scalability
	Fault Tolerance Strategies
	DynEMol Migration Analysis
	Containerized Execution
	Costs Forecasting
	Adopted Evaluation Method
	Model Training
	Linear Regression
	XGBoost

	Model Scoring and Evaluation

	Conclusion and Future Research
	Cluster Scalability, Technologies, and Resource Management
	Fault Tolerance Strategies and Ephemeral Instances
	Migrating Legacy Applications
	Containerized Execution
	Costs Forecasting
	Other Future Directions for HPC@Cloud

	Bibliography

		2024-02-27T17:30:41-0300

		2024-02-27T17:31:03-0300

