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ABSTRACT

The popularity of blockchain-based systems has been steadily rising, and a wide range
of studies have emerged: from consensus algorithms to the management of huge and
immutable data structures. We have also seen the spawn of dozens of cryptocurrencies,
hundreds of Initial Coin Offerings (ICO), as well as the rise of big blockchains, such
as Bitcoin and Ethereum, and their use for digital crime. In this context, enthusiasts
are facing problems such as scalability, fast data retrieval for blockchain analytics and
fraud detection. Some surveys discuss the challenges faced by blockchain networks
and other discuss easier ways to make blockchain easily queriable and analysable.
However, the literature lacks an analysis of data models in such systems. Like, how
blocks are represented in most blockchains? Is there common ground between each
different chain? In order to fill this gap, this work researches the state-of-the-art on
blockchain data modelling, and proposes a suitable and expressive one in order to
tackle the mentioned problems. Differently from past works, the present work tries to
focus on a unified data model for different blockchains.

Keywords: blockchain. data. model.



RESUMO

A popularidade de sistemas baseados em blockchain vem crescendo e uma variedade
de estudos tém sido produzidos: desde algoritmos de consenso ao gerenciamento
de gigantescas e imutaveis estruturas de dados. Pode-se mencionar também o surg-
imento de dezenas de criptomoedas, centenas de Initial Coin Offerings (ICO), assim
como o surgimento de grandes blockchains, como Bitcoin e Ethereum, e seus usos
para o crime digital. Neste contexto, entusiastas estao enfrentando problemas como
escalabilidade, rapido acesso a dados de blockchains para analytics e deteccao de
fraudes. Alguns surveys discutem os desafios enfrentados pelas redes de blockchain
e outros discutem maneiras de tornar os dados gerados pelas blockchains facilmente
analisaveis. Contudo, a literatura ndo faz uma analise dos modelos de dados nestes
sistemas. Por exemplo, como blocos sé&o representados na maioria das redes? Ex-
istem definicbes comuns entre as diferentes redes? De maneira a preencher esta
lacuna, este trabalho investiga o estado da arte em modelagem de dados para dados
de blockchains e propde um modelo de dados adequado para resolver os problemas
mencionados. Diferentemente dos trabalhos ja existentes, o presente trabalho busca
focar no modelo de dados unificado para diferentes blockchains.

Palavras-chaves: blockchain. dados. modelo.



RESUMO EXPANDIDO

INTRODUCAO

Com o aumento do interesse em tecnologias baseadas em blockchain, o0 mundo testemunhou a
criacdo de novas e diferentes platafomas. A blockchain teve sua origem como uma forma de
descentralizar financas, sendo Bitcoin o exemplo mais bem-sucedido. No entanto, com a chega-
da das blockchains baseadas em contratos inteligentes, surgiram organizacdes descentralizadas
autdonomas, como Aragon, Maker e The DAO, além de exchanges descentralizadas, como U-
niswap, e até mesmo mundos virtuais inteiros, como Decentraland. Contudo, novas tecnologias
podem trazer novas e inovadoras formas de enganar seus usudrios. A pseudo-anonimidade con-
cedida por blockchains as torna uteis para atividades ilegais, como ransomware (KSHETRI;
VOAS, 2017) e esquemas Ponzi (CHEN et al., 2018).

No entanto, a pseudo-anonimidade ndo € anonimato total e hd discussdes em andamento sobre
desanonimizacdo de contas (TURNER; IRWIN, 2018). Um modelo de dados especificamente
projetado para blockchains poderia ajudar a tornar esse problema menos complicado. Por exem-
plo, um algoritmo de identificacdo poderia pesquisar um conjunto de dados com mais precisao
se estivesse de acordo com o modelo de dados. Isso também poderia ser associado a algoritmos
de aprendizado de maquina para fazer isso. Dessa forma, os pesquisadores gastariam menos
tempo limpando os dados e mais tempo analisando-os. Além disso, hd um tépico de pesquisa
chamado andlise de blockchain (VO; KUNDU; MOHANIA, 2018), onde problemas novos (anti-
gos), como consulta em grandes volumes de dados gerados por redes. Este ¢ um dos principais
pontos deste trabalho, ou seja, compreender os modelos de dados usados em sistemas baseados

em blockchain e as técnicas aplicadas para aprimorar a sua eficiéncia.

OBJETIVOS

O objetivo geral que esta pesquisa espera alcancar é desenvolver um modelo de banco de dados
que pode ser usado para mapear dados de varios blockchains em um modelo unificado. Este
modelo, usado em combinacio com solucdes de armazenamento conhecidas, como sistemas de
gerenciamento de bancos de dados, pode fornecer uma maneira muito mais fécil de extrair infor-
macodes das redes blockchain. Além deste objetivo geral, alguns objetivos especificos também
devem ser alcancgados: (1) Identificar os modelos atualmente utilizados pelas redes mais con-
hecidas, como Bitcoin e Ethereum; (2) Propor um modelo de dados que englobe os principais
componentes do modelos nessas redes; (3) Aplicar e avaliar este modelo de dados para testar

sua expressividade e utilidade ao extrair informagdes.



METODOLOGIA

O protocolo de pesquisa utilizado foi baseado na metodologia de revisdo sistematica da liter-
atura de (KITCHENHAM, 2004). O protocolo envolve a defini¢do de questdes de pesquisa,
uma string de busca adequada e critérios de inclusdo e exclusido. As perguntas de pesquisa in-
cluem investigacdes sobre modelos de dados para blockchains e técnicas de consulta de dados
de blockchain. A string de busca foi refinada para garantir resultados relevantes. Critérios de in-
clusdo e exclusdo foram estabelecidos para filtrar pesquisas irrelevantes, e o ano de publicacao
nao € considerado como critério de exclusao devido a novidade do tépico de gestdo de dados de
blockchain.

Ap6s encontrar os artigos relevantes e revisa-los, avancamos para a fase de desenvolvimento e
validagdo. Nesta etapa, definimos um modelo de dados para os dados de blockchain e realizamos
testes para validar sua eficicia. Os testes incluiram a avaliacdo da integridade e desempenho do
modelo em diferentes cendrios de uso. Os resultados demonstraram que o modelo proposto € ca-
paz de lidar com diversas operagdes de dados de blockchain de forma eficiente e precisa. Além
disso, identificamos dreas de melhoria e refinamento para otimizar ainda mais o modelo. Este
processo de desenvolvimento e validacdo foi crucial para garantir a robustez e confiabilidade do

modelo de dados para aplica¢des de blockchain.

RESULTADOS E DISCUSSAO

Ao comparar os resultados, observamos que o MongoDB, em alguns casos, apresenta desempen-
ho superior ao cliente oficial Ethereum. Por exemplo, 0 MongoDB mostrou resultados melhores
nas consultas "faceis", mesmo em comparacao com o cliente oficial Ethereum. O PostgreSQL
leva mais tempo do que o cliente Ethereum, mesmo que indices sejam criados e utilizados pelo

planejador de consultas.

No entanto, observamos que o PostgreSQL e o MongoDB se destacam quando precisamos re-
alizar as consultas "dificeis". Ambos os bancos de dados executam as consultas dificeis duas
ordens de magnitude mais rdpido do que o cliente Ethereum. O MongoDB tem a vantagem
aqui também, recuperando os dados mais de 10 vezes mais rdpido que o PostgreSQL em al-
guns casos. Isso se deve ao fato de que os dados, no PostgreSQL, sdo armazenados em duas
tabelas distintas. Portanto, sempre que queremos consultar dados que exigem informacgdes de
ambos, blocos e transagdes, precisamos realizar uma "junc¢io”, que nao é barata. O MongoDB,
por outro lado, devido a sua arquitetura orientada a documentos, nos permite obter facilmente
ambos os dados, blocos e transacdes, sem a necessidade de juncdes caras. Por exemplo, ao
consultar timestamps para transagdes, informagdes contidas na entidade "bloco", simplesmente
encontramos a transacdo desejada e obtemos seu bloco do mesmo documento. Enquanto para o
PostgreSQL, precisamos realizar uma "junc¢ao"entre o atributo "bloco"da tabela de transagdes

com o atributo "hash"da tabela de blocos.



CONSIDERAGCOES FINAIS

O gerenciamento e andlise de dados de blockchain ainda s@o questdes em aberto, embora
seus casos de uso sejam muito relevantes. Detec¢do de fraudes, desanonimizacio de carteiras,
transacOes e andlises entre cadeias sdo apenas alguns exemplos. Os clientes nativos de
blockchain nao estdo bem equipados para realizar essas tarefas. Nesse contexto, este trabalho
apresenta o estado-da-arte em relacdo a modelagem de dados de blockchain, destacando a
importancia de combinar o melhor desses mundos para projetar solu¢des de gerenciamento de
dados de blockchain. Além disso, o trabalho apresenta uma pesquisa pioneira sobre modelagem
de dados para informacdes de blockchain, bem como uma proposta de um modelo de dados
unificado usado para mapear informacdes de diferentes blockchains sob o mesmo esquema,
facilitando a criacdo de ferramentas para interagir com esses dados. No entanto, ainda nao
encontramos um trabalho que detalhe um processo de modelagem de dados de blockchain,
incluindo o uso de uma metodologia de design de banco de dados tipica, come¢ando por um
modelo conceitual e avangando para um modelo 16gico para ser implementado posteriormente
em um SGBD. Este estudo também resultou em uma publicacdo na iiWAS 2022, demonstrando
o interesse académico na drea de modelagem de dados de blockchain, e futuros trabalhos
incluem o uso de técnicas de modelagem de dados mais avancadas, como o uso de bancos de

dados baseados em grafos para entender melhor o movimento de fundos nessas redes.

Palavras-chaves: blockchain. dados. modelo.
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1 INTRODUCTION

With the surge in popularity of blockchain technologies, the world has seen the
imagination of developers flourish with its many applications. Blockchain originated as
a way to decentralise finances, Bitcoin as its biggest and most successful example.
However, with the advent of smart contract-based blockchains, we have witnessed the
creation of decentralised autonomous organisations, like Aragon', Maker? and The
DAQ?®, as well as decentralised exchanges such as Uniswap?, and even full virtual
worlds, like Decentraland®.

Unfortunately, new technologies come with new and innovative ways to trick its
users. The pseudo anonymity given by blockchains make them useful for illegal activ-
ities, like most commonly ransomware (KSHETRI; VOAS, 2017), and ponzi schemes
(CHEN et al., 2018). Yet, contrary to popular belief, pseudo anonymity is not full
anonymity and there are ongoing discussions on the topic of de-anonymization of
accounts (TURNER; IRWIN, 2018; NICK, 2015). An specific designed data model for
blockchains could make this problem less cumbersome. It could help, for example, an
identification algorithm to search with more precision a dataset that is in accordance
to the data model. It could also be coupled with machine learning algorithms to do
so. In such a way, researches would spend less time cleaning the data and more time
performing analysis on it.

Additionally, there is a research topic, called blockchain analytics (VO; KUNDU,;
MOHANIA, 2018; AKCORA et al., 2018), where (old) new problems, such as data
querying, arise from the volume of data generated by networks. This is one of the main
points of this work, i.e., to understand data models used in blockchain systems and
the applied techniques to improve query efficiency in order to make analysis easier,
faster and cheaper. With that, a fast enough system could be used to make market
predictions based on token movements on the network, prevent frauds and identify
wallets. Besides, a well-designed data model provides an easier way to manipulate
data in order to fit a broad set of applications. For example, cross-chain analytics could
be made more viable by providing a data pattern used by most blockchain networks,
and even help integrate blockchain with existing systems, like Open Banking.

With new networks spawning every day, it is natural to see each network creating
its own data model to represent its real-world concepts. We need not to go any further
than the bigger networks to realise differences in their models. Some of them occur

' Aragon: https://aragon.org

2 Maker: https://makerdao.com
3 The DAO: https://github.com/blockchainsllc/DAO
Uniswap: https://uniswap.org

5 Decentraland: https://decentraland.org
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mainly in terms of naming, e.g., “transactionsRoot” vs “merkleroot” in Ethereum and
Bitcoin’s block, respectively. Yet, some differences are more complex, such as the
inclusion of “logsBloom” and “uncles”, in Ethereum’s blocks, which refers to Ethereum’s
specific features. This heterogeneity raises the need for a clearer understanding in the
subject.

1.1 OBJECTIVES

The general objective that this research hopes to achieve is to develop a data
model that can be used to map data from multiple blockchains under one unified model.
This model, used in combination with known storage solutions, such as DBMS, could
provide a much easier way to extract information from the blockchain networks. In order
to achieve this general objective, some specific ones must be achieved as well: (1)
Identify the models currently used by most well-known networks, such as Bitcoin and
Ethereum; (2) Propose a data model that encompasses the main components of the
models in those networks; (3) Apply and evaluate this data model in order to test its
expressiveness and usefulness when extracting information from it.

1.2 CONTRIBUTIONS

The main contributions of this work is the creation of a data model, together
with an extract, transform, load (ETL) process to be able to apply the data model to
publicly available blockchain data in order to evaluate the the model expressiveness
and usefulness.

1.3 METHODOLOGY

The methodology of this project follows the guidelines from the Wazlawick’s book
(WAZLAWICK, 2017), which comprises 3 steps: (1) A systematic review of the literature;
(2) Development of the solution; (3) Evaluation of the developed solution.

1.4 STRUCTURE

This document is organised as follows: Chapter 2 briefly covers some basic con-
cepts related to blockchains, like consensus, storage approaches and common net-
works properties and models. Chapter 3 shows an overview of the state-of-the-art in
order to gather current understandings and challenges on the subject. Chapter 4 de-
scribes the proposal and its implementation. Finally, Chapter 5 evaluates the proposed
model.



2 BASIC CONCEPTS

2.1 BLOCKCHAIN

A blockchain is a distributed hash list of blocks, also commonly called ledger.
Those blocks are usually composed of a set of transactions, in this case, of crypto coins',
sent from one user to another. The first published work that made use of blockchain-
like structure? was in 1990 (HABER; STORNETTA, 1990). It devised trustless time-
stamping service (TTS) where a linked list of hashed objects was used to guarantee
non tampering of timestamp of files. The big difference between the modern blockchains
and the one devised in 1990 is its use cases. Whereas the old one was used to assure
reliable timestamps, the newer ones are used to transfer digital currencies between
members.

Every node in the network® has an identical copy of the ledger. Every change
performed in a node is propagated to every other node to keep the structure in sync.
Unfortunately, a big problem arises from it. How to guarantee that the changes made
are valid/trustworthy? This is famously known as the Byzantine Fault (WENSLEY et al.,
1978). To solve this problem, consensus algorithms were introduced.

2.1.1 Consensus Algorithms

Consensus algorithms are used to achieve, as the name indicates, consensus
by the parties involved upon something. Be it a transaction, timestamp or anything
communicated between nodes. Nakamoto (2008) famously published the incentive-
based consensus algorithm together with the Bitcoin proposal. The basic idea is that
there must be incentives given for the peers in the network to play by the rules. It does
not sound like a perfectly safe idea, in theory. However:

...we observe consensus working, but have not developed the theory to fully
explain why it works (NARAYANAN, 2016, p. 35).

There are many consensus algorithms already devised (NGUYEN; KIM, 2018;
ALSUNAIDI; ALHAIDARI, 2019; SANKAR; SINDHU; SETHUMADHAVAN, 2017; FER-
DOUS; CHOWDHURY; HOQUE, 2021). Arguably, the most famous one is Bitcoin’s
Proof of Work (PoW) and in use by many other networks. It boils down to a race be-
tween all members of the network in the search of a partial hash based on the hash
of the latest block of the blockchain. When found, this value is used to validate a new
block which is appended to the ledger and broadcasted to the whole network. In other

1 Usually referred as simply “crypto”.
2 Although it was not called “blockchain” when it was published.

3 Usually a peer-to-peer (P2P) network.
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Figure 1 — An illustration of a basic blockchain ledger structure (MURCH, 2013).

words, it means that a node in the network spent computation power in order to find
the hash. Because of that, it receives an incentive, some Bitcoins, in the case of the
Bitcoin network. This way, this consensus incentivizes nodes to play by the rules and
also makes very expensive for malicious nodes to affect the network.

2.1.2 Storage

Blockchains were not developed with generic data access in mind. Most networks
use a key value store solution, as its underlying storage. Most notably, LevelDB*, a fast
key-value storage developed by Google. However, Hyperledger Fabric also allows the
use of Apache’s CouchDB?®, a JSON document-based database.

The choice for a key-value store was influenced by the fact that most data on a
blockchain is identified and linked by hashes of the data itself. Figure 1 illustrates this
idea. Each block has, included in itself, the hash of the previous block, together with the
hash of the root node of a Merkle Tree and some metadata. The key to most data is
the hash of the data itself. Therefore, faster key lookups were essential for performance
and influenced the choice for LevelDB (PODGORELEC et al., 2020).

2.2 COMMON BLOCKCHAIN NETWORKS

This section will present some popular blockchain networks. Here, we will report a
brief history of each of the networks while also describing the most important concepts
of each one, mainly how the blocks, transactions and accounts are modelled in each.
Finally, a brief description of the blockchain’s topology will be shown.

2.2.1 Bitcoin

Bitcoin (NAKAMOTO, 2008) was the first popular blockchain network, launched
in late 2008, early 2009. It is fully open source under the MIT license. Undoubtedly, it

4 https://github.com/google/leveldb

5 https://couchdb.apache.org/
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Figure 2 — Bitcoin’s data model (ROTH, 2015).

is the most famous network. Envisioned by someone under the pseudonym of Satoshi
Nakamoto. The real name of the author has yet to be known. It uses the Proof of Work
(PoW) consensus algorithm and it is widely criticised by the network’s enormous energy
consumption. Today, the network is mostly used as a distributed and (quite) unregulated
banking system. Its users can transact between themselves freely and without limits.

Bitcoin’s data model is widely used as the basis when describing how blockchains
work. Figure 2 shows a highish level UML diagram containing the basic components that
are part of the network. Some of the key takeaways from it are the relations between
blocks, transactions and wallets. Those relations and the data of each entity are the key
components that this work will focus on. The other components of the figure get too
specific for different networks and it will not be covered by this research.

Transactions are the most important part of Bitcoin’s model. It is “where things hap-
pen”. In this case, sending/receiving bitcoins. However, transactions are represented
differently in Bitcoin. Transactions are composed of inputs and outputs. If you have
20 bitcoins and want to send 5 to another user you will end up generating (sort of) 2
transactions. One of 5 bitcoins for the user you want to send the money and one of 15
bitcoins for yourself. These are called inputs and outputs. In the previous example, 20
bitcoins is the input and the 15 and 5 are called outputs. One input may generate more
outputs and one output may come from many inputs. Figure 3 shows a visualisation
of some types of transactions. Figure 3 (a) is the most common transaction of sending
some amount to someone. It generates 2 outputs, for the other user, the receiver, and
one to itself, the sender. This is a bit counter intuitive from the classic “user A sending
amount X to user B”. Yet, in the end, most applications make all of this transparent to its
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Figure 3 — Bitcoin transaction’s input and outputs (ANTONOPOULOS, 2017, Ch. 2).

users. Figure 3 (b) and Figure 3 (c) show other types of transactions where many users
are sending some bitcoin to a single user, generating a single output, and one user
sending bitcoin to many users, generating lots of outputs, respectively. This system is
known as Unspent Transaction Output (UTXO).

A consequence of the above is that, in transactions with multiple inputs and mul-
tiple outputs, you cannot know for certain who sent how much to whom. Let’s say we
have a transaction with 2 inputs, one input X of 2 bitcoins and one input Y for 3; and
5 outputs of 1 bitcoin each. You cannot map any of the inputs to any of the outputs
directly. The only thing that is known is that both inputs contributed to all of the outputs
in the transaction.

Blocks give structure to the set of all transactions in the network. A block is
composed of two parts. A header, which holds metadata for the block, and a set of
transactions. The average number of transactions in a bitcoin block is around 1.900.
The transactions are stored in a Merkle tree and the block holds the hash of the root of
said tree in its header. Besides, the block header holds important information regarding
the block itself, like the timestamp of mining, difficulty, nonce and the previous block
header’s hash.

An account can be identified by its address, which is a hash of its public cryp-
tographic key. Accounts are the real “players” of the network, the ones who make
transactions. For its functionality and capacity to interact with the network, they are
usually represented as a pair of keys, private and public, like in Figure 2. However, for
the purposes of this work, we will only consider their addresses as a way to identify it
and its transactions.

2.2.2 Ethereum

Ethereum (BUTERIN et al., 2014) is a blockchain network and distributed comput-
ing system. It was released in 2015 under the GPL v3 license and it is fully open-source.
It used to use the Proof of Work (PoW) consensus algorithm, although a different one
from Bitcoin. Now, it has since changed to use a Proof of Stake (PoS) consensus, an
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event called “The Merge” by the community. It also differs from Bitcoin on block time,
the average time the network takes to mine a block. Whereas in Bitcoin a block takes
around 10 minutes® to be mined, in Ethereum a block takes around 12 seconds’.

Yet, the biggest difference between Ethereum and Bitcoin is its capacity to execute
so called Smart Contracts. Those “contracts” are simply computer programs that are
executed, and validated, by the nodes in the network and allow the introduction of
complex logic when transacting ether, the currency of the network. Those contracts are
written in Solidity, a high level programming language based on JavaScript.

Smart contracts were first conceptualised by Szabo (1997). It works on the idea
that if a node network can agree in some random pieces of data to be added in the
list of blocks, it can also validate computer programs executions and its outputs. As
the execution is limited to only use data from inside the chain itself, the execution of
these computer programs should be the same in every node that has the same chain.
This logic is used to validate smart contracts in the network. As a consequence, every
single state that the contract will ever have will be permanently stored in the blockchain.
Smart contracts provide a new paradigm where participants do not need to rely on any
third parties to “force” the execution of a program. The whole network of nodes will
act as the “enforcer”. The Ethereum network is the most famous example of a smart
contract-based blockchain.

Ethereum, as most blockchains, has a data model similar to Bitcoin. It is com-
posed of blocks, transactions and accounts®. Figure 4 shows an UML diagram of those
components and its relations, and Figure 5 shows what composes each primitive of
Ethereum’s blockchain. As we can see, there are many differences between Bitcoin and
Ethereum’s blocks and transactions. First, the block’s header is much more complex,
containing way more entries. Second, the body of the block contains a second data
structure from the transactions, called uncles®. Finally, the transactions contain more
information as well. This information is related to gas and smart contracts, which is not
present on Bitcoin’s.

Even though there are many differences between blockchains, the basic building
blocks remain very similar: blocks, transactions and accounts. These are the basic
components that most blockchains use and should be the focus of the proposed work.

Bitcoin is designed to always take around 10 minutes to mine a block. No matter the computational
power of the network.

7 Etherscan block times: https://etherscan.io/chart/blocktime
8 Accounts are also called Wallets.

Uncles are sometimes called Ommers.
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Figure 4 — UML diagram of Ethereum’s components (OLIVE, 2020).
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3 STATE-OF-THE-ART

This chapter elaborates on related works regarding blockchain data modelling.
However, even with the big interest in blockchain, no previous study with specific focus
on blockchain data modelling had been found by the authors.

The work of (HUANG et al., 2021), for example, performs a thorough analysis of
many blockchain surveys and its subjects. However, even though there are plenty of
surveys about blockchain data analytics and graph models, none of them highlights the
considered blockchain data model.

(XIE et al., 2019), in turn, performs a survey on blockchain scalability challenges.
This study does acknowledge the need for scalable data storage utilities, such as the
Inter Planetary File System, by (BENET, 2014), and an off-chain distributed hash table
by (ZYSKIND; NATHAN, et al., 2015). Both approaches discuss the removal of storage
off the blockchain and into separated services in order to make the networks lighter.
Nevertheless, none of the analysed approaches discusses scalability of data accessing
based on a data model for blockchain as our work intends to do.

3.1 RESEARCH PROTOCOL

This section describes the considered research protocol and its results. The cho-
sen protocol is the broad used systematic literature review (SLR) methodology by
(KITCHENHAM, 2004). The SLR protocol comprises a set of ordered steps:

1. Definition of research questions;
2. Definition of the search string;

3. Definition of inclusion and exclusion criteria.

These steps are performed in a way to direct the research and provide a well-
defined process for the review. The first step defines a set of questions that we hope
to find answers to. These questions are the starting point of the SLR. We propose the
following ones:

* What are the data models for blockchains?

» What are the techniques used for querying blockchain data?

Once defined the research questions, the next step is to define a search string.
For this work, we initially attempted a few sets of keywords, such as “blockchain data
model” and “blockchain model”. However, strings with the keyword “model” resulted in
works related to modelling systems based on blockchain and not in the data model
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itself, which is the focus of this research. Nonetheless, the search string “blockchain
AND (query OR model)” was chosen because its results were more promising.
Usually, queries performed on bibliographic DBs return too many results. This way,
on following the SLR protocol, we provide a set of inclusion and exclusion criteria in
order to filter out researches that are not related or important to our work. Our proposed
criteria are shown in Table 1. We do not consider the year of publication as an exclusion
criterion because blockchain data management is a relatively new research topic. So,

there are not old-fashioned works.

Table 1 — Inclusion and exclusion criteria

Inclusion

Exclusion

English and Portuguese only

Focuses on the economic aspect of
crypto coins

Discusses performance of data access in
popular blockchains

Has no performance considerations
about the described approach

Discusses use cases for fast blockchain
data querying

Describes entities and models for

blockchain data

We submitted the search string to a set of bibliographic DBs. Results are shown

in Table 2.

Table 2 — Search results for each bibliographic DB

DB

Total results

DBLP

24

Google Scholar

28.000

IEEE Xplore

150

Springer Link

2.013

Next, we narrowed down the result set to make the research viable. Based on the
inclusion and exclusion criteria, we applied the following filters:

1. Selection of the first 25 results of each DB;

2. Title filtering;
3. Abstract filtering;

4. Fully reading.

The remaining papers were fully read. Table 3 shows the 13 selected papers after

applying the aforementioned filters.
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Table 3 — Resulting papers after filtering each DB

DB Start | Title | Abstract | Full
DBLP 24 22 13 9
Google Scholar 25 8 3 3
IEEE Xplore 25 4 1 1
Springer Link 25 4 1 0

3.2 SELECTED WORKS

This section gives an overview of the 13 selected works by our research protocol.

(BARTOLETTI et al., 2017) proposes a tool, using Scala, for general purpose
analytics on the blockchains of Bitcoin and Ethereum. It allows the synchronisation of
views of blockchain data to common DBMSs, MongoDB or MySQL, for analysis. The
tool was tested using Bitcoin and both DBMS. However, the authors failed to compare
the performance of their solution against other approaches.

(Ll et al., 2017) introduces EtherQL. EtherQL is a REST service that synchronises
Ethereum blockchain data, such as accounts, blocks and transactions, into a MongoDB
instance. The authors validate their implementation by performing aggregate and range
queries unavailable at LevelDB when used by the Quorum blockchain network. The
results show that EtherQL is almost twice as fast in all tests.

(XU et al., 2017) discusses the creation of an Educational Certificate BlockChain
(ECBC). ECBC has a very specific use case, i.e., the emission of educational certifi-
cated by trusted parties. The transactions are modelled with a sender, receiver and
some extra metadata, such as issuance timestamp. The senders are usually educa-
tional institutions, and receivers are usually students. The authors deemed efficient
querying as a requirement for ECBC. In order to reach this requirement, they created
MPT-Chain, a combination of Merkle and Patricia Trees indexing data structures. The
experimental evaluation suggests that queries are fast when using this approach. How-
ever, the authors did not compare their results with any other available solution.

(BRAGAGNOLO et al., 2018) proposes Ethereum Query Language (EQL), an
SQL-like language, coupled with a tool to execute it. This tool allows its users to per-
form complex information fetching from Ethereum. In order to make queries faster, the
authors describe the creation of a binary search tree index. However, they did not spec-
ify if this index is created on the fly by queries being performed or beforehand. The
tests show a decrease in performance when using the tool. Yet, the expressiveness
of possible queries is the main point here. It allows user to easily fetch ranged and
aggregated data from the blockchain using SQL queries.

(PRATAMA; MUTIJARSA, 2018) leverages the work of (LI et al., 2017). The au-
thors developed an improved REST interface for Ethereum data that is synchronised
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with MongoDB. It describes models for accounts, blocks and transactions. The authors
argue that their main focus is to make development and use of the system from (LI
et al., 2017) easier for others. The authors provided load tests, however, there is no
comparison with either (LI et al., 2017) or Ethereum’s default interfaces for aggregate
queries and select queries.

On contrasting with previous works, (HAN et al., 2019) develops a Quorum? client
that stores smart contract transactions in an embedded SQLite DB. It allows the use
of complex SQL queries. Their evaluation against LevelDB made use of range queries,
queries not available in LevelDB. The results show an increase around 16 times for
fetching data when comparing the performance of the oficial client. However, the authors
do not mention that their approach appears to double the disk usage because it stores
duplicated data, one copy in LevelDB and other one in SQLite.

(LINQY et al., 2019) proposes a tool to query Ethereum block data by using SQL
and Hadoop as the underlying processing layer. It uses an in-memory B*Tree that
indexes the block’s and transaction’s ids to find the Hadoop File System file paths
for the original data. It uses Hadoop’s MapReduce tasks to find and return the data
concurrently and in a distributed way. It allows range and aggregate queries. The
experimental evaluation suggests that the tool performance improves linearly with the
addition of more nodes to the system.

(PENG et al., 2019) presents a middleware, called Verifiable Query Layer, that
reorganises Ethereum blocks and transactions into a verifiable MongoDB instance. It
makes the data malleable according to MongoDB capabilities. The authors show that
the throughput of MongoDB is higher than Ethereum’s client, but they did not perform
more complex queries not available in such clients, like range and aggregate queries.

(QU et al., 2019) introduces a novel approach to enable spatio-temporal queries
over a blockchain. Blocks are defined as a set of transactions where each one contains
geographical coordinates (latitude and longitude) together with timestamps and the
public key of the entity that generated the data. It stores the transactions as a Merkle
KD tree that enables fast geographical queries such as range query, K-nearest neigh-
bours, bounded K-nearest neighbours, and ball-point query. Tests were performed in
comparison with “scan time space” and “scan space time”, full scan on the data filtering
by time and space and vice-versa, respectively. The results show that the custom data
structure outperforms the scans, being three times faster.

In a similar way to (LINQY et al., 2019), (TRIHINAS, 2019) introduces Datachain,
an open source framework for querying and manipulating data over blockchain networks.
The author’s implementation works with Hyperledger and BigchainDB?. Unlike Bitcoin,
that only considers a data model based on the cryptocurrency, the “asset” is the smallest

' An Ethereum based blockchain with enterprise features, such as customizable consensus algorithms.

2 https://www.bigchaindb.com
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data unit of Datachain. An asset can be anything, tangible or intangible. This way,
the models are entirely customizable for the use case of the network. However, the
author defines the minimum requirements for common blockchain transactions: sender
address, receiver address and asset address. The implementation allows its users
to query data using easier and well-established interfaces, such as common Python
libraries (numpy, pandas, etc.) and SQL. The evaluation shows that Datachain does not
perform better than querying data directly from Hyperledger and BigchainDB. This is
not a demerit, because the framework makes the data handling much easier. Yet, the
framework implements an async mode that lets many parts of the underlying queries
be performed in parallel, which then incurs in a bigger throughput compared to using
the original clients directly.

(ZHOU et al., 2019) presents Ledgerdata Refiner (LR). LR is a library that extracts
data from Hyperledger and parses them to be organised and stored in common DBMSs.
The tests used Postgres as the DBMS. They demonstrate that the synchronisation
between the blockchain and the DBMS is quite fast. However, the authors did not
provide performance analysis on the executed queries.

The work of (OZDAY|; KANTARCIOGLU; MALIN, 2020) is the result project of a
competition hosted by Multichain. Multichain is a Bitcoin compatible blockchain with
extra features such as data streams. These data streams can be used to store arbitrary
data into the blockchain. For this competition, the data placed in the streams, together
with the common Bitcoin block data, is a set of activity logs consisting of a timestamp,
node, id, ref-id, user, activity and resource. Although this data is not necessarily related
to the blockchain itself, it shows that arbitrary data could be stored into blockchain
systems. The query methods described by the authors use a set of reverse indexes
and bucketization techniques. The reverse index is used to quickly find all data related
to a user, for example. The bucketization, in turn, is used for range queries. At last,
the implemented approach proved to be less efficient than using a common relational
DBMS, like SQLite.

At last, (REN et al., 2020) describes a custom-built dual combination bloom filter®
(DCOMB) index that can be constructed using the hash power of available hardware cre-
ated for mining. This enables the conversion of all the computing power of blockchains,
specially proof of work (PoW) ones, to be used for query processing. This approach
focuses on Internet of Things applications. However, the authors say that it could be
adapted for more generic cases. The implementation uses DCOMB to quickly find the
correct block of the blockchain and query data inside that block based on indexed
fields. They also present an experimental evaluation showing that their implementation
is much faster than other techniques, such as indexing blockchain data into a known
DBMS, MySQL. A drawback of this work is the lack of a data model description. It only

3 “A probabilistic data structure for efficient insertion and query”, (REN et al., 2020).
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emphasises that the model contains timestamps.

3.3 WORK ANALYSIS

This section analyses the selected papers and compare related solutions. We
organize it into two parts: comparison and discussion.

3.3.1 Comparison

Most works agree that blockchain querying is not optimal. Some of them propose
solutions that make use of readily available DBMSs, such as MongoDB, PostgreSQL,
MySQL, which run besides the original blockchain and duplicate its data in a structured
manner. Table 4 shows, when applicable, the considered DBMSs.

Table 4 — DBMS usage

Work DBMS
(BARTOLETTI et al., 2017) MongoDB, MySQL
(LIl et al., 2017) MongoDB
(XU et al., 2017)

(BRAGAGNOLO et al., 2018)

(PRATAMA; MUTIJARSA, 2018) MongoDB
(HAN et al., 2019) SQLite
(LINOY et al., 2019)

(PENG et al., 2019) MongoDB
(QU et al., 2019)

(TRIHINAS, 2019)

(ZHOU et al., 2019) PostgreSQL
(OZDAYI1; KANTARCIOGLU; MALIN, 2020)

(REN et al., 2020)

Table 4 reveals that MongoDB is the most used DBMS. Most authors explain
their choices arguing that MongoDB is highly scalable and good for rapid development.
However, some works prefer relational DBMS.

We also notice the usage of custom and complex data indexing structures within
blockchain networks to increase query performance. Table 5 shows the works that
consider them.

Table 5 — Indexing data structures

Work Data structure
(BARTOLETTI et al., 2017)
(LI et al., 2017)
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XU et al., 2017)

Merkle and Patricia tree

BRAGAGNOLO et al., 2018) Binary tree
PRATAMA; MUTIJARSA, 2018)

HAN et al., 2019)

LINQY et al., 2019) B+ tree

QU et al., 2019)

Merkle KD-tree

TRIHINAS, 2019)

ZHOU et al., 2019)

OZDAYI1; KANTARCIOGLU; MALIN, 2020)

Bucketization and reverse index

(
(
(
(
(
(PENG et al., 2019)
(
(
(
(
(

REN et al., 2020)

Bloom filter

In some cases, the authors decided to implement data indexing structures into the
blockchain software itself. This makes the networks independent of a DBMS and avoid
duplicating data. However, it increases complexity of the network, in particular, when
we try to add this feature to current networks, such as Ethereum.

Table 6 summarises the querying strategies adopted by the selected works. Some
authors had developed libraries that only concern to make blockchain data easier to
query and in a more expressive way, like the usage of SQL or SQL-like languages, as
well as and REST interfaces. Additionally, they state that performance is not the main
point of the project. Instead, they just intend to facilitate data querying.

Table 6 — Querying strategies

Work

Querying Strategies

BARTOLETTI et al., 2017)

Ll etal., 2017)

EtherQL (REST API)

XU et al., 2017)

BRAGAGNOLO et al., 2018)

Ethereum Query Language (SQL)

PRATAMA; MUTIJARSA, 2018)

REST API

HAN et al., 2019)

SQL + Hadoop

PENG et al., 2019)

QU et al., 2019)

TRIHINAS, 2019)

SQL + Python libraries

ZHOU et al., 2019)

OZDAYI|; KANTARCIOGLU; MALIN, 2020)

(
(
(
(
(
(
(LINOY et al., 2019)
(
(
(
(
(
(

REN et al., 2020)

Unfortunately, not all works define the entities explicitly, i.e., blockchain data mod-
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Table 7 — Considered data entities.

Work Block | Transaction | Account Smart L
Contract

(BARTOLETTI et al., 2017) X X X X Elﬁ
(Ll etal., 2017) X X X X Eth
(XU et al., 2017) X X X Cus
(BRAGAGNOLO et al., 2018) X X X X Eth
(PRATAMA; MUTIJARSA, 2018) X X Eth
(HAN et al., 2019) X X Quc
(LINQY et al., 2019) X X Eth
(PENG et al., 2019) X X Eth
(QU et al., 2019) X X X Cus
(TRIHINAS, 2019) X X X Hyr
(ZHOU et al., 2019) X X Hyr
(OZDAYI; KANTARCIOGLU; MALIN, 2020) X X Mul
(REN et al., 2020) X X Cus

els are presented in a tangential way. For some of them, we had to search for the
source code, if available, and check what entities were implemented there. However,
many works do not provide the source code. In this case, we had to infer entities based
on the broad descriptions or tests reported. Table 7 shows the entities considered by
each work. As stated before, blocks and transactions are the basic ones. Accounts, in
turn, are usually an address with a balance count, and can be derived from the whole
list of blocks. However, for performance issues, some blockchain data models keep an
updated list of all accounts and their balances separately.

It is worth mentioning that all studies make use of the transaction entity. This
is due to the fact that the transaction contains the core information of the distributed
ledger, which usually is an account sending assets to another account. Some studies
also consider smart contracts as an entity (BARTOLETTI et al., 2017; BRAGAGNOLO
et al., 2018; HAN et al., 2019; HECTOR; BORIS, 2020; KRUIJFF; WEIGAND, 2017; LI
et al., 2017). This is the case of some blockchains, like Ethereum and Quorum, where
smart contracts are widely used.

Finally, we compare the data models considered by the authors. Unfortunately, not
all of them define the model directly, but many define the data they want to search as
being building blocks of common networks, mostly blocks, transactions and accounts.
For the works that do not specify a data model, it is possible to infer some of the data
entities based on the used blockchain.

Table 8 — Data models categorised by ledger or customized

Work Ledger Customized
(BARTOLETTI et al., 2017) Bitcoin
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(LI et al., 2017) Ethereum

(XU et al., 2017) X
(BRAGAGNOLO et al., 2018) Ethereum
(PRATAMA; MUTIJARSA, 2018) Ethereum

(HAN et al., 2019) Quorum

(LINQY et al., 2019) Ethereum

(PENG et al., 2019) Ethereum

(QU et al., 2019) X
(TRIHINAS, 2019) X
(ZHOU et al., 2019) Hyperledger
(OZDAY1; KANTARCIOGLU; MALIN, 2020) Multichain

(REN et al., 2020) X

Table 8 shows that Ethereum is the blockchain of choice in this topic. As one
of the most popular networks today, it is natural that many works tend to consider it.
Besides, its smart contract notion raised several smart contract specific studies, such
as (HAN et al., 2019), which is performed on Quorum, an Ethereum-based blockchain.
Another important point is its ease of use. It is very easy to boot up a local node
and start prototyping ideas. Finally, its community is very active and documentation is
plenty. We did not include BigchainDB in the Table 8 because, different from common
blockchains, BigchainDB tries to emulate properties of blockchains, like immutability,
within a database. This way, it works very differently from common blockchains and is
out of the scope of this project.

3.3.2 Discussion

From the previous comparison of the selected works, we see that blockchain
querying is a hot topic in the academy. Based on the proposed solutions, we can
classify the approaches into three categories:

1. Blockchain to DBMS data synchronisation;
2. Built-in indexing structures;

3. Query interfaces.

Category 1, as shown in Table 4, is a technique used by several works. In case of
relational DBMSs, it forces developers to use a rigid data model for blockchain data in
order to insert data into tables and sometimes create tables for relationships. Coupling
it with works like (OLIVE, 2020), where the authors proposed a well-defined schema
for blockchain data, this can become a powerful combination. In the case of NoSQL
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DBMSs, they relax the data model definition. Nevertheless, it still maintains some
common concepts between approaches, such as blocks, transactions and accounts,
which are the basis for building a useful DB.

Also, the use of largely used DBMSs seems like a good approach to make data
easily accessible by interested parties. But, besides making the data easy to query,
this approach has a pitfall. It requires duplicating data from the blockchain key-value
store, usually LevelDB, to another DBMS. Of course, storage is a cheaper resource.
However, a blockchain, as an append-only data structure, is always growing, making
storage management a future problem.

Regarding category 2, we argue that the advantage of this approach is a bit
more complicated. The usage of built-in index structures for blockchain data is, of
course, positive as it provides faster querying as a native feature. However, index
management on existing networks may be very hard. Some blockchain networks, like
Bitcoin, Ethereum and Ripple, already have mature code bases. Developers should
debate, very carefully, if the advantages of having faster queries make the effort to
insert this feature worth it, or if they should let it to be managed off chain, like the DBMS
approaches of category 1.

Finally, category 3 shows us that there is a need for easier data accessing. The
selected works claim that native clients lack interfaces for expressive queries when
fetching useful data from the network. Besides, we notice a lack of useful queries in the
key-value storage used by blockchains. This kind of storage is fast and reliable for the
network to work properly. However, it does not serve well when users want to perform
analysis on its data, and a new interface layer between users and the key-value storage
could be a promising research issue.

Even though we identified some works where data can be queried by using com-
mon DBMS, the approaches still lack a well-defined data model for blockchains.



4 PROPOSAL

4.1 PROBLEM

Blockchains were not developed with generic data access in mind. They use
efficient key-value stores in order to write and read specific data, mostly transactions,
blocks and accounts identified by their own hashes. Even though this approach is fast
and efficient for the networks’ use case, it lacks useful data manipulation features,
such as generic queries, like temporal queries and aggregations, such as “How many
transactions were made to an specific account, X, last week?”. It is completely possible
to iterate over all entries in the blockchain and filter out what is wanted or needed, but
this approach is terribly inefficient and slow, as the sizes of blockchains are getting
bigger and bigger. Besides, the lack of proper tooling, like common query APIs, such
as SQL, also makes this approach cumbersome.

Yet, not being able to access the data effectively and efficiently is only part of
the problem. There is a lack of a standard data model for representing blockchain
components. Each chain uses its own definition of a block and transaction. Usually, this
definition only makes sense for the inner workings of the chain itself, but most of its data
is not useful when one would like to perform analytics on it. For example, the concepts
of “logsBloom”, used to store a filter to identify logs emitted by a transaction, and “gas”,
used to describe how much the transaction did cost to be executed in the network, only
make sense for the Ethereum blockchain, as others do not have those features.

4.2 PROPOSED SOLUTION

In order to resolve the lack of a standardised data model that encompasses
different blockchains and its main components, such as blocks, transactions, accounts
and others, i.e., we propose a unified data model. With a good data model in hands,
it should be straightforward to extract, transform and load (ETL) data into any system
with common query interfaces.

We first need to set the requirements for this data model:

1. The model should map the 3 main components of a blockchain: blocks, transac-
tions and accounts;

2. The model should contain all of the original data extracted from the blockchain;
3. The model should be easy to import to any DBMS;

4. The model should allow us to perform queries that are hard/inefficient to do using
the official clients for the networks;
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For (1), we want our model to map the basic constructs of blockchains, which
are blocks, transactions and accounts; For (2), we want our model to not loose extra
data that is specific to a blockchain implementation. For example, Ethereum’s “gas”
and Bitcoin’s “bits” attributes. With this data included, we can still query the original
data for more specialised analysis. We included item (3) as a way to make our model
generic enough to not be bounded by relationships, for relational databases, or other
database concepts such as documents, for document-based databases. This way, our
model should be easily importable to multiple types of DBMS, such as PostgreSQL or
MongoDB. For (4), our model should allow us to perform aggregated queries. Those
queries are usually hard, or non performant, to do in the blockchains itself. This is due
to the key-value stores usually used by blockchains and also the nature of the data.

The main focus of the proposed model is that we should be able to query informa-
tion regarding transactions. Who sent? What amount? To whom? When? So our model
will focus on that.

It is important to that some questions are better suited for different types of
databases. For example, aggregation and time sensitive queries, such as “Which ac-
count made the most transactions last week?”, are easily answerable when the data
is on a relational or document based database. Yet, questions which want to find out
where the values of transaction are ending up, “follow the money” questions, are bet-
ter suited for graph based databases. An example question would be “From starting
transaction X, which accounts possibly received money from it on later transactions?”.

4.3 BASE DATA MODEL

Based on the requirements previously defined, we start by first defining the con-
ceptual model. The conceptual model defines the entities and its relationships. After-
wards, we will define the logic model. The logical model will be the one imported to
databases.

Figure 6 shows the UML diagram for the mapped entities. We will be considering
only the Block, Transaction and Account entities. Those are the main entities observed
in the survey shown on Chapter 3. A block contains a set of transactions, while a
transaction can be between multiple accounts. In the case of Bitcoin, for example,
multiple accounts can send tokens to multiple other accounts. In the case of Ethereum,
a single account can send to only one other account.

Figure 7 shows our proposed logical model based on the conceptual model from
Figure 6. In order to link a transaction to its respective block, we need to include the
block’s hash as an attribute’. Transactions do not need a timestamp, as all transactions
in a block are considered to be made at the exact same time, the block’s time. Also, as

' This is needed if our model is to be loaded in a relational database. For document based databases,

this is unnecessary as the transactions would be part of the same document.
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Figure 6 — UML diagram showing the minimal proposed conceptual model.
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str hash
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. str block
int number
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datetime timestamp
. str amount
json data .

json data

Figure 7 — Proposed logical data model.

a blockchain is a linked list of blocks, each block will contain the hash of the previous
block. Table 9 shows details of each of the attributes.

4.4 EXTRACT, TRANSFORM AND LOAD (ETL)

With the data model in hands, we implement an ETL process which extracts data
from network nodes, transform it to the model defined in Section 4.3 and load it to a
DBMS. Finally, when the data is loaded, an user can perform analysis on it by using the
DBMS’s interface, such as SQL. Figure 8 illustrates this process.

In the extract step, for each blockchain, we will create a tool, or use existent
solutions, to extract the data from it. This process needs to be performed on a per
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Table 9 — Table showing the modelled attributes and their meanings.

Attributes

Details

Block.hash

The hash of the block

Block.number

The number of the block

Block.parent

The hash of the parent/previous block

Block.timestamp

The time when the block was mined

Block.data

Extra chain specific data

Transaction.hash

The hash of the transaction

Transaction.block

The hash of the block where this transaction was placed

Transaction.from

The senders of the transaction

Transaction.to

The receivers of the transaction

Transaction.amount

The amount transacted

Transaction.data

Extra chain specific data

Extract

. — =
Blockchain#1 ——» Extractor#1 —— RawData#1 ——————® Tranformer#1 \ /—’ B BEFIEESA

BaseModelData ————— Loader#2 —— Database#2

Transform
Load

Blockchain#2 —— Extractor#2 — RawData#2 —————p Tranformer#z ——W|

i kb der#n ——p Database#
Blockchain#n ——» Extractor#n —— RawData#n ———— Tranformer#n / Loader#n alabasesn

Figure 8 — Proposed extract, transform and load process.
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chain basis, because there is no unified interface to interact with all blockchains. For
the transform step, we will create transformers, again, for each blockchain in order to
map the raw data from the extract step to our defined model. Finally, in the load step,
we will load the data to databases using readily available tools to do so.

The rest of this chapter will go as follows, first we will describe the Extract and
Transform steps for Ethereum, than Bitcoin. As the Load step will only be different on
a per DBMS case, we will discuss it after showing the Extract and Transform steps for
each blockchain.

4.41 Ethereum

This section explains the ETL steps taken for the Ethereum blockchain.

4411 Extract

The first step of the ETL process is to extract the blockchain data from the
Ethereum network. In order to do that, we first start a node, locally, that will sync
up with Ethereum’s mainnet, the main network used by all nodes in the public Ethereum
blockchain. This process can be done in multiple ways, however, we decided to simply
start a Docker container by the official Ethereum implementation?, Geth. We booted up
the node and waited a a few hours until it had, at least, the first 1 million blocks synced.
This way, we have enough data to work with.

Once the syncing was finished, we used the ethereum-etl (ETHEREUM-ETL,
2023) open source project to extract the data from our local node into JSON files. This
way, the data is easier to work with. We executed the following command in order to
extract the first 1 million blocks, together with its transactions:

ethereumetl export_blocks_and_transactions \
--start-block '0' \
--end-block '1_000_000"' \
--provider-uri 'http://localhost:8545" \
--max-workers 8 \
--blocks-output 'eth_blocks.json' \

--transactions-output 'eth_transactions. json'

Listing 1 — Command used to extract the first 1 million blocks and transactions from Ethereum network.

Once it was done, we were left with two files, containing information about the first
1 million blocks and its transactions. The models exported by ethereum-etl can be seen
in Figure 9.

On creating an entity relationship diagram, we can see that the Ethereum chain

2 Ethereum client Docker: https://hub.docker.com/r/ethereum/client-go.
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ETH_BLOCK
int number
str hash
str parent_hash ETH_TRANSACTION
str nonce str hash
str sha3_uncles str nonce
str logs_bloom str block_hash
str transactions_root str block_number
str state_root int transaction_index
str receipts_root str from_address
str miner str to_address
int difficulty int value
int total_difficulty int gas
int size int gas_price
str extra_data str input
int gas_limit DateTime | block_timestamp
int gas_used int max_fee_per_gas
DateTime | timestamp int max_priority_fee_per_gas
int transaction_count int transaction_type
int base_fee_per_gas
str withdrawals_root
str withdrawals

Figure 9 — Models exported by ethereum-etl.

is very simple. It contains blocks and each blocks contains 0 or more transactions. All
transactions are always related two accounts, one sending funds, while the other is the
one receiving the funds. Figure 10 illustrates these relationships.

As we can see, the model extracted by ethereum-etl is very similar to the base
model defined in Section 4. The only difference is that there is no “Account” entity. The
account is merely an identifier in the transaction and blocks. Because of that, accounts
do not have a state in itself, such as the current balance. However, the balance can be
calculated by iterating over the blocks and checking all of the transactions.

4412 Transform

Now that we have the data, we need to transform it. The transformation step is a
conversion from the model extracted to our base model.

For Ethereum, this process is rather simple, as the base model is very similar
to Ethereum’s. So, we will need to move and rename some of its attributes. Table 10
shows the mapping for blocks. The Ethereum column shows the names of the block
attributes extracted from Ethereum, the Base Model column shows where did we map
all of the attributes from Ethereum extracted to the base model. As discussed, not all
attributes from all blockchains make sense in the base model, but we add those into the
“data” attribute, which will contain custom chain data on a per chain basis. For example,
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Figure 10 — Relation of extracted models from Ethereum.

“gas” related attributes only makes sense for Ethereum, so they will be added there
along with other attributes not shown in Figure 7.

Table 11 shows the mapping for the transactions. It follows the same structure as
Table 10, the Ethereum column shows the attributes extracted from Ethereum, and the
Base Model column shows where we are mapping those attributes to the base model.

4.4.2 Bitcoin

This section explains the steps taken for the Bitcoin blockchain.

4421 Extract

Similar to what was done for Ethereum in Section 4.4.1.1, we will start a local
node for Bitcoin. We decided to use the official Docker image for Bitcoin®, bitcoin-sv.

Once the syncing was finished, we used the bitcoin-etl (BITCOIN-ETL, 2023)
open source project to extract the data from our local node into JSON files. Here is the
command used to export the data:

bitcoinetl export_blocks_and_transactions \
--start-block '0' \
--end-block '100_000" \
--provider-uri 'http://bitcoin:password@localhost:8332"' \

3 Ethereum client Docker: https://hub.docker.com/r/bitcoinsv/bitcoin-sv.
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Table 10 — Table showing the mapping of block attributes from Ethereum model to Base Model.

Ethereum Base Model
number number
hash hash
parent_hash parent
nonce data.nonce
sha3_uncles data.sha3_uncles
logs_bloom data.logs_bloom
transactions_root | data.transactions
state_root data.state_root
receipts_root data.receipts_root
miner data.miner
difficulty data.difficulty
total_difficulty data.total_difficulty
size data.size
extra_data data.extra_data
gas_limit data.gas_limit
gas_used data.gas_used
timestamp timestamp
transaction_count | data.transaction_count
base_fee per_gas | data.base_fee per_gas
withdrawals_root | data.withdrawals root
withdrawals data.withdrawals

Ethereum Base Model
hash hash
nonce data.nonce
block hash block

block_number

data.block _number

transaction_index

data.transaction_index

from_address from
to_address to

value amount

gas data.gas
gas_price data.gas_price
input data.input
block_timestamp timestamp

max_fee_per_gas

data.max_fee_per_gas

max_priority_fee_per_gas

data.max_priority_fee_per_gas

transaction_type

data.transaction_type

Table 11 — Table showing the mapping of transaction attributes from Ethereum model to Base Model.
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--chain 'bitcoin' \
--max-workers 8 \
--blocks-output 'btc_blocks.json' \

--transactions-output 'btc_transactions. json'

Listing 2 — Command used to extract the first 100.000 blocks and transactions from Bitcoin network.

However, exporting all the data needed from Bitcoin is a two step process. After
extracting the transactions, we need to enrich them. The raw transaction data does not
contain all the information needed for us to construct our base model. For example, we
cannot know “who sent amount X to who”. The bitcoin-etl project contains a function
to help us with that, called “enrich_transactions”. This function takes the transactions
we already exported and enriches with more info from our node. So we execute the
following command to do so:

bitcoinetl enrich_transactions \
--provider-uri 'http://bitcoin:password@localhost:8332" \
--chain 'bitcoin' \
--max-workers 8 \
--transactions-input 'btc_transactions. json' \

--transactions-output 'btc_transactions_enriched. json'

Listing 3 — Command used to enrich the transactions from Bitcoin network.

Once the export finished, we were left with 2 files, containing information about
all the blocks and transactions for first 100 thousand blocks in the chain. The models
exported by bitcoin-etl can be seen in Figure 11.

Differently from Ethereum, Bitcoin has a different relationship between its entities.
For example, each transaction contains a set of inputs and outputs, as explained in
Section 2.2.1.

4422 Transform

With the data exported, we start the transforming step in order to convert the
Bitcoin model extracted to our base model.

The process is similar to what was done to Ethereum, we need to map the at-
tributes from Bitcoin to our base model. However, because the model for Bitcoin is con-
siderably different, we need to perform some further processing. For example, bitcoin-etl
does not export the parent block’s hash in the current block. So, using the block’s num-
ber, we add this information. Similar to Ethereum’s, we move and rename some of the
attributes. Table 12 shows the mapping from Bitcoin blocks to our base model. Table
13 shows the mapping of transactions.
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BTC_BLOCK
str hash
int [ size
int stripped_size
int weight
‘ int . number
int version
str merkle_root
DateTime | timestamp
str nonce
str [ bits
tr coninbase_param
int transaction_count

BTC_TRAMSACTION

str hash

int size

int virtual_size

int wversion

int lock_time

int block_number
str block_hash

DateTime | block_timestamp

bool is_coinbase
int index

int input_count
int output_count
int input_value
int output_value
int fee

BTC_TRANSACTION_INPUT

int index

str spent_transaction_hash
int spent_output_index

str | script_asm

str script_hex

int sequence

int required_signatures

str type

list[str] | addresses

int wvalue

Figure 11 — Models exported by bitcoin-etl.

BTC_TRANSACTION_OUTPUT

int index

str [ script_asm

str | script_hex

int required_signatures
str [ type

list[str] addresses

int

value

Table 12 — Table showing the mapping of block attributes from Bitcoin model to Base Model.

Bitcoin

Base Model

hash

hash

size

data.size

stripped_size

data.stripped_size

weight

data.weight

number number

version data.version
merkle_root data.merkle_root
timestamp timestamp
nonce data.nonce

bits

data.bits

coninbase_param

data.coinbase_param
miner

transaction_count

data.transaction_count
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Table 13 — Table showing the mapping of transaction attributes from Bitcoin model to Base Model.

Bitcoin Base Model
hash hash
size data.size
virtual_size data.virtual_size
version data.version
lock _time data.lock_time
block_number data.block_number
block _hash block
block_timestamp data.block_timestamp
is_coinbase data.is_coinbase
index data.index
outputs[].addresses to

inputs[].index

data.inputs[].index

inputs[].spent_transaction_hash

data.inputs[].spent_transaction_hash

inputs[].spent_output_index

data.inputs[].spent_output_index

inputs[].script_asm

data.inputs[].script_asm

inputsl].script_hex

data.inputsl[].script_hex

inputs[].sequence

data.inputs[].sequence

inputs[].required_signatures

data.inputs[].required_signatures

inputs[].type

data.inputsl[].type

inputs[].addresses

from

inputs[].value

data.inputs[].value

outputs[].index

data.outputs[].index

outputs[].script_asm

data.outputs[].script_asm

outputs[].script_hex

data.outputs|].script_hex

outputs[].required_signatures

data.outputs[].required_signatures

outputs[].type

data.outputs[].type

outputsl].value

data.outputs|].value

input_count data.input_count
output_count data.output_count
input_value data.input_value
output_value amount

fee data.fee
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Figure 12 — Relation of extracted models from Bitcoin.

4.4.3 Load

The load step of the ETL process has its own section because the process is
the same for every blockchain. However, it differs between databases. We’ve decided
to load the data into three different DBMS: PostgreSQL, a relational database; and
MongoDB, a document based database.

This section is organised as follows: we have a section for how we mapped the
data to each of the DBMS chosen. Starting with PostgreSQL, followed by MongoDB.

4.4.3.1 PostgreSQL

For PostgreSQL we have created a schema based on two tables, a “blocks” table
and a “transactions” table. The blocks table contains all the information about each
block. The transactions table contains all the information about each transaction. For
the blocks table, the primary key is the hash of the block, as it guarantees that each
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Blocks
str hash PK
int . number -
str ' parent
datetime . timestamp .

json data

contains
1.

Transactions

'5:r hash P‘H.
str block FK

stri] | to
stri] | from

sir amount

json | data

Figure 13 — Relational model used for PostgreSQL.

block will have a unique hash. The same can be said for the transactions table, where
each transaction contains its own unique hash, so it is also used as a primary key.
Finally, the use the block’s hash as the foreign key in order to create the relationship
between blocks and transactions. Figure 13 shows the relationship model used for
PostgreSQL.

4.4.3.2 MongoDB

For MongoDB, the stored model differs a bit from the PostgreSQL one. Instead of
having two distinct collections, we have a single collection of documents, the “blocks”
collection. Each block document contains the transactions of said block in itself. This
goes more in line with data modelling for document based databases.

Figure 14 shows the relationship for MongoDB. The only difference between the
MongoDB model and the PostgreSQL model is that the transaction entity is contained
inside the block entity.
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Figure 14 — Document model used for MongoDB.



5 ANALYSIS

In order to do so, we have developed two sets of questions. The first set contains
questions that are easily answerable using the official Ethereum blockchain. While the
second set is questions that are hard to answer. For example, queries that perform
some sort of aggregation.

The following questions were devised based on the remote procedure calls (RPCs)
available to interact with Ethereum nodes. Those questions are considered easy to
answer as the data is stored in key value stores enabling the nodes to quickly return
this data. These questions will be henceforth named “easy” queries or questions:

1. How many transactions were in block X?
2. Which block contains transaction Z?

3. When was the block X mined?

4. Who sent transaction Z?

5. Who received transaction Z?

6. How much was sent in transaction Z?

The following questions were devised based on what we cannot easily answer
using a Ethereum node. Mostly, queries that perform some aggregation on the data. In
order to perform aggregations on Ethereum directly, we would need to perform a scan
as the data is not indexed for these types of queries. These questions will be henceforth
named “hard” queries or questions:

1. Which account made the most transactions?

2. Which account made the most transactions last week?
3. Which day had the most transactions? Or blocks?

4. Which block has the most transactions?

5. What are the biggest transactions?

6. What is the biggest transaction?

All the queries used for each of the databases and Ethereum can be found in the
appendix.

The evaluation was executed in a Linux computer running Arch Linux, kernel
version 6.5.9-arch2-1. The CPU is a Intel i7-8550U and the machine has 20Gb of
memory. The data extracted from the networks, using the steps shown in Chapter 4,
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has already been inserted in the databases and the proper indexes were created for
each database.

However, first we need to have baselines in order to be able to compare the
performance of our queries with the network client. For this, we are going to use the
set of easy questions from the previous section. The code used to interact with the
Ethereum node is listed in Appendix E. The queries used for PostgreSQL and MongoDB
are listed in Appendices B and D, respectively. Figure 15 shows a comparison of
execution times. As we can see, PostgreSQL takes the longest to answer. So much that
the values for MongoDB and Ethereum are almost invisible in the graph.

Query execution time (avg of 100)
B Ethereum [ PostgreSaL Mongo
0.3

0.2
01
0.0 =

Query 1 Query 2 Query 3 Query 4 Query &5 Query 6

Seconds

Figure 15 — Easy queries execution times for Ethereum, PostgreSQL and MongoDB. Data in Appendix

In order to show the performance comparison between MongoDB and Ethereum,
Figure 16 shows only MongoDB and Ethereum query execution times. As we can see,
even though Ethereum uses a fast key value store, MongoDB was still able to answer
the queries faster than Ethereum.

Now, in order to have a way to compare the query execution performance for the
hard queries from DBMS with the Ethereum client, we will create a baseline measure.
As our hard queries contain aggregations, we will perform a “scan” on the Ethereum
chain. The scan is used as there is no other way to perform those queries, while using
the official clients, without having to scan the whole chain. We scan the first 100.000
blocks from Ethereum. No data analysis, filtering, or aggregation will be performed. This
way, we will be able to see how fast we can fetch the data from the chain. It is safe to
assume that any other steps added, like filtering or aggregations, would only impact
the time negatively. Table 14 shows the times taken to get the first 100 thousand blocks
from a local Ethereum node. It is safe to assume that to extract all of the 1 million blocks
we loaded into our databases would take approximately 10x the time.
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Figure 16 — Easy queries execution times for Ethereum and MongoDB.

Type Time (s)
Sequential 228.98
Concurrently (1024 workers) 184.97
Concurrently (100k workers) 155.73
Parallel (4 CPUs) 89.32
Parallel (8 CPUs) 66.32

Table 14 — Time to perform a manual scan for the first 100 thousand blocks from Ethereum.

With the baseline metrics in hand, we can start making queries to the data loaded
in DBMSs. For PostgreSQL, we will use SQL to query the data. All queries are in
Appendix A. For MongoDB, we will use MongoDB’s custom query syntax, which is
based on JavaScript. All queries are in Appendix C. Figure 17 shows the execution time
comparison between MongoDB and PostgreSQL.

When comparing the results shown in Figure 15 and Figure 16, we can see that
MongoDB, in some cases, is more performant than the official Ethereum client. For
example, MongoDB showed better results on the “easy” queries, even compared with
the official Ethereum client. PostgreSQL takes longer than the Ethereum client, even
though indexes are created and used by the query planner.

Yet, we see the PostgreSQL and MongoDB shine when we need to perform the
“hard” queries. See Figure 17. Both databases perform the hard queries 2 orders of
magnitude faster than the Ethereum client. MongoDB has the advantage here as well,
fetching the data more than 10 times faster than PostgreSQL on some cases. This is
due to the fact that the data, in PostgreSQL, is stored in two distinct tables. So any time
we want to query for data which requires information from both, blocks and transactions,
we need to perform a “join”, which is not cheap.

MongoDB, on the other hand, because of its document oriented architecture,
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Figure 17 — Hard queries execution times for PostgreSQL and MongoDB. Data in Appendix F.

allows us to easily get both data, blocks and transactions, without the need of expensive
joins. For example, when querying timestamps for transactions, information that is
contained in the “block” entity, we simply find the transaction we want and get its block
from the same document. While for PostgreSQL, we need to perform a “join” between
the table transactions’ “block” attribute with the “hash” attribute of the block table.



6 CONCLUSION

Blockchain data management and analysis still is an open issue. However, its use
cases are very relevant. Fraud detection, wallet de-anonymization, transactions and
inter-chain analysis are just the simpler ones. Native blockchain clients are not well
equipped to perform such tasks.

Following this context, this work presents the state-of-the-art regarding blockchain
data modelling. We see the usage of well-established technologies, such as different
DBMSs, to better store, index and query blockchain-related data, as well as common
interfaces, like REST and SQL, to facilitate interaction instead of using native clients,
which are not well equipped to handle such tasks. It highlights the importance of com-
bining the best of those worlds to design blockchain data management solutions.

This work also present a pioneer survey on data modelling for blockchain infor-
mation, as well as a proposal of a unified data model used to map information from
different blockchains under the same schema, making it easier to create tools to in-
teract with these data. A set of ETL tools were developed in order to map data from
different blockchain networks to the proposed model and load it into multiple database
technologies.

Nevertheless, we failed to find a work that details a blockchain data modelling
process, including the usage of typical DB design methodology starting by a concep-
tual model and moving to a logical model to be further implemented over a DBMS.
As described in Section 3.2, DBMSs with different data models are considered (e.g.,
document, key-value and relational), but there is no focus on how their corresponding
logical and physical schemas are designed. One promising research direction, in this
context, is to propose a polystore design methodology so that different logical models,
as well as related DBMSs, could be considered for maintaining parts of a conceptual
schema for blockchains. The choice for one or more DB models could be guided by
the representation of entities and relationships, as well as the expected workload over
them.

There is also the lack of a common conceptual data model for blockchains, i.e., a
consensual set of concepts that properly represent blockchain data. As stated before,
we have some blockchain network schemas, like Bitcoin and Ethereum, that are used
as baselines for many works. However, these works do not worry about the design
of a single interface for querying data for multiple blockchains and provide inter-chain
relations based on a consensual data model. One example could be to link different
accounts in different networks. It would be useful for fraud detection programs to identify
possible inter-chain frauds.

Another relevant research issue that was tackled in this project is a comprehensive
comparison of DB technologies for storing and querying blockchain data. Many selected
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works consider relational DBMSs, but we also see MongoDB as a valid choice, proving
itself as more performant than the official clients for the networks, even for queries that
are commonly thought to be more performant to key-value stores. For complex queries,
we have showed that both DBMSs used are multiple times faster than the official clients
of the networks when executing more complex queries.

Finally, this study resulted in a publication to iiWAS 2022 (MEYER; SANTOS
MELLO, 2022), which shows the academic interest in the area of blockchain data
modelling. Future works on this topic includes the use of more advanced data modelling
techniques, such as using graph-based DBs to better understand the movement of
funds in those networks. Further publications are planned for 2024 where we will show
the results of this research to the academy.
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APPENDIX A — POSTGRESQL “HARD” QUERIES

-- (1) Which account made the most transactions?
SELECT t.from, count(t)

FROM eth_transactions t

GROUP BY t.from

ORDER BY count(t) DESC

LIMIT 5;

-- (2) Which account made the most transactions last week?
SELECT t.from, count(t)
FROM eth_blocks b LEFT JOIN eth_transactions t
ON b.hash = t.block
WHERE
b.timestamp >= '2015-10-01"
AND b.timestamp < '2015-10-08"'
GROUP BY t.from
ORDER BY count(t) DESC
LIMIT 5;

-- (3) Which day had the most transactions? Or blocks?
SELECT date_trunc('day', b.timestamp) AS day, count(t)
FROM eth_blocks b LEFT JOIN eth_transactions t

ON b.hash = t.block

GROUP BY day

ORDER BY count(t) DESC

LIMIT 5;

-- (4) Which block has the most transactions?
SELECT b.number, b.hash, count(t)

FROM eth_blocks b LEFT JOIN eth_transactions t
ON b.hash = t.block

GROUP BY b.hash, b.number

ORDER BY count(t) DESC

LIMIT 5;

-- (5) What is the biggest transaction?
-- (6) What are the biggest transactions?
SELECT t.hash, t.amount

FROM eth_transactions t

ORDER BY t.amount DESC, t.hash
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40 LIMIT 5;
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APPENDIX B — POSTGRESQL “EASY” QUERIES

-- (1) How many transactions were in block X?
SELECT COUNT (t)

FROM eth_blocks b LEFT JOIN eth_transactions t
ON b.hash = t.block

WHERE b.number = 123

-- (2) Which block contains transaction Z7?
SELECT b.hash

FROM eth_blocks b LEFT JOIN eth_transactions t
ON b.hash = t.block

WHERE t.hash = "0x...'

-- (3) When was the block X mined?
SELECT b.timestamp

FROM eth_blocks b

WHERE b.number = 123

-- (4) Who sent transaction Z?
SELECT t."from"

FROM eth_transactions t

WHERE t.hash = '0x...'

-- (5) Who received transaction Z7?
SELECT t."to"

FROM eth_transactions t

WHERE t.hash = "'0x...'

-- (6) How much was sent in transaction Z7?
SELECT t.amount

FROM eth_transactions t

WHERE t.hash = "'0x...'
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APPENDIX C - MONGODB “HARD” QUERIES

# (1) Which account made the most transactions?

db.blocks.aggregate ([

D

{'$project': {'_id': @, 'transactions': 13}},

{'"$unwind': '$transactions'},
{"$group': {'_id': '$transactions.from', 'total': {'$sum’':
{"$sort': {'total': -13}3},

{'$limit': 53},

# (2) Which account made the most transactions last week?

db.blocks.aggregate ([

D

{"$match': {'timestamp': {'$gte': '2015-10-01"', '"$1t':
'2015-10-8"'3}}7},
{'"$project': {'_id': @, 'transactions': 1}},

{'$unwind': '$transactions'},
{"$group': {'_id': '$transactions.from', 'total': {'$sum’':
{'$sort': {'total': -13%}},

{'$limit': 53,

# (3) Which day had the most transactions? Or blocks?

db.blocks.aggregate ([

D

{'$project': {

"tx': {'$size': '$transactions'},
"date': {'$dateToString': {
"format': '%Y-%m-%d', 'date': '$timestamp'}}}},
{"$group': {'_id': '$date', 'total': {'$sum': "$tx'3}}},
{"$sort': {'total': -13}3},

{'$limit': 5},

# (4) Which block has the most transactions?

db.blocks.aggregate ([

D

{'$project': {'_id': @, 'hash': 1, 'transactions': 1}},
{"$unwind': '$transactions'},

{"$group': {'_id': '$hash', '"total': {'$sum': 13}}},
{"$sort': {'total': -13}},

{'$limit': 5%

1333,

1333},
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# (5) What is the biggest transaction?

# (6) What are the biggest transactions?

db.blocks.aggregate ([

D

{'$project': {'_id': @, 'transactions': 1}},

{'$unwind': '$transactions'},
{'$replaceRoot': {'newRoot': '$transactions'}},
{'$sort': {'amount': -1, 'hash': 13}},

{'$limit"': 5}%
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APPENDIX D - MONGODB “EASY” QUERIES

# (1) How many transactions were in block X?
db.aggregate ([

{"$match': {'number': 123}},

{'$project': {'size': {'$size': 'S$transactions'}}},

D

# (2) Which block contains transaction Z?
db.aggregate ([
{"'"$match': {'transactions.hash': '0x..."'}},

D

# (3) When was the block X mined?
db.aggregate ([

{'$match': {'number': 1233}3},
D

# (4) Who sent transaction Z?

db.aggregate ([

{"$match': {'transactions.hash': '0x...'}},
{'"$unwind': '$transactions'},

{'$replaceRoot': {'newRoot': '$transactions'}},
{"$match': {'hash': 'ox..."'}},

{'$project': {'from': '$from'}},

D

# (5) Who received transaction Z?

db.aggregate ([

{"'"$match': {'transactions.hash': '0x...'}},
{'$unwind': '$transactions'},

{'$replaceRoot': {'newRoot': '$transactions'}},
{'$match': {'hash': '@ox...'}},

{'$project': {'from': '"$to'}},

D

# (6) How much was sent in transaction Z7?
db.aggregate ([
{"$match': {'transactions.hash': '0x...'}},
{'"$unwind': '$transactions'},

{"'$replaceRoot': {'newRoot': '$transactions'}},
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{'$match': {'hash': '0x.

{'$project': {'amount':

D

N

"$amount'}},
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APPENDIX E — ETHEREUM “EASY” QUERIES

Queries are represented as calls to a local Ethereum node using the web3 pack-

age' for the Python language.

# (1) How many transactions were in block X?
def q1(w3: Web3) -> int:

return w3.eth.get_block_transaction_count (123)

# (2) Which block contains transaction Z?
def gq3(w3: Web3) -> str:

tx = w3.eth.get_transaction('Qx...")
return tx['blockHash']l # or blockNumber

# (3) When was the block X mined?
def g4(w3: Web3) -> int:

blk = w3.eth.get_block(123)
return blk['timestamp']

# (4) Who sent transaction Z7?

def g5(w3: Web3):

tx = w3.eth.get_transaction('0x...")

return tx['from']

# (5) Who received transaction Z?
def q6(w3: Web3):

tx = w3.eth.get_transaction('ox...")

return tx['to']

# (6) How much was sent in transaction Z?
def q7(w3: Web3):

tx = w3.eth.get_transaction('0x...")

return tx['value']

1

web3.py - https://github.com/ethereum/web3.py


https://github.com/ethereum/web3.py

APPENDIX F — EXECUTION TIMES FOR “HARD” QUERIES

Data for execution times for hard queries. Data used to generate Figure 17. Aver-
age of 100 executions. Data is in seconds.

PostgreSQL Mongo

Query 1 4.77676739 | 2.228310444
Query 2 6.67E+00 4.86E-01
Query 3 20.1019508 | 2.238149748
Query 4 | 7.588967261 | 2.677318439
Query 5 | 0.4637488818 | 2.448379524
Query 6 | 0.4637488818 | 2.448379524




APPENDIX G — EXECUTION TIMES FOR “EASY” QUERIES

Data for execution times for easy queries. Data used to generate Figure 15. Aver-

age of 100 executions. Data is in seconds.

Ethereum PostgreSQL Mongo
Query 1 | 0.003174932003 | 0.001934921741 | 0.0007137560844
Query 2 | 0.002773206234 0.2822695255 | 0.0006787109375
Query 3 | 0.004147675037 | 0.0009716916084 | 0.0005009746552
Query 4 | 0.00221817255 0.2741855526 | 0.0005585432053
Query 5 | 0.002046205997 0.2841969633 | 0.0005664920807
Query 6 | 0.002186026573 0.2505286384 | 0.0005709385872
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