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RESUMO 

 
 

O elo que une os três ensaios desta tese é temático e metodológico. Os ensaios têm como tema 

principal a granularidade e seguem o mesmo itinerário metodológico: primeiro, testamos, 

utilizando o método de Gabaix e Ibragimov (2011), a hipótese de que os dados analisados 

estão distribuídos segundo uma lei de potência; segundo, testamos a “hipótese granular” de 

Gabaix (2011); terceiro, calcularemos o “tamanho granular” (em número de agentes em 

relação ao fenômeno analisado) utilizando o mecanismo de Blanco-Arroyo et al. (2018). No 

primeiro ensaio, testamos a hipótese de granularidade para os spillovers da inflação 

internacional, utilizando dados anuais de exportações e de inflação para 138 países, de 1991 a 

2020. Descobrimos que os volumes de exportação entre países não são distribuídos de forma 

gaussiana, mas seguem uma lei de potência. Constatamos também que os países com maior 

peso relativo no comércio internacional determinam uma parcela dos spillovers internacionais 

superior à sua participação no comércio internacional. Além disso, oito grandes grãos são 

responsáveis pela maior parte dos spillovers de inflação. No segundo ensaio estendemos o 

conceito de granularidade das empresas para as cidades, que se refere à coexistência de 

algumas cidades grandes e numerosas cidades pequenas. Argumentamos que a granularidade 

e as leis de potência estão inter-relacionadas e levantamos a hipótese de que as grandes 

cidades desempenham um papel significativo no ciclo econômico além da sua dimensão 

relativa. Nosso estudo sobre dados de cidades americanas e brasileiras de 2003 a 2019 não 

descartam a hipótese granular. Descobrimos que o tamanho granular da cidade nos Estados 

Unidos é de três áreas metropolitanas. Se redefinirmos as cidades como condados, o tamanho 

granular é de cinco condados. No Brasil, o tamanho granular equivale a três municípios. No 

terceiro ensaio, exploramos o impacto das grandes empresas nos ciclos de contratação e 

demissão no mercado de trabalho brasileiro. As principais conclusões incluem a observação 

de que as empresas apresentam uma distribuição de lei de potência para a dimensão da sua 

força de trabalho, com os choques idiossincráticos das grandes empresas influenciando 

significativamente os ciclos de contratação e demissões. Em particular, o setor de serviços 

desempenha um papel substancial na explicação destes ciclos, enquanto a indústria de 

transformação tem um poder explicativo limitado. Determinamos que o tamanho granular do 

mercado de trabalho brasileiro é de 15 empresas envolvidas em serviços públicos, e que as 

empresas privadas têm um impacto relativamente pequeno nos ciclos de contratação e 

demissão. Cada ensaio demonstra a importância da granularidade em diferentes esferas 

econômicas, desde o comércio internacional e a dinâmica urbana até aos padrões de emprego, 

mostrando a importância das grandes entidades na definição dos resultados económicos. 

 

Palavras-chave: Granularidade; Ciclos Econômicos. 
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ABSTRACT 

This thesis comprises three essays linked by the theme of granularity and a consistent methodology. 

The essays explore the distribution and impact of granular structures in different contexts using 

specific analytical methods. The key steps across the essays include testing for power law distribution 

with the Gabaix and Ibragimov (2011) method, examining Gabaix’s (2011) granular hypothesis, and 

calculating granular size based on the approach by Blanco-Arroyo et al. (2018). The first essay 

investigates the granularity of international inflation spillovers across 138 countries from 1991 to 

2020, using export and inflation data. It finds that exports follow a power law rather than a Gaussian 

distribution, with major traders disproportionately influencing inflation spillovers. Eight major 

“grains” (countries) are primarily responsible for these spillovers. The second essay extends the 

concept of granularity to cities, exploring the existence of a few large cities amidst many small ones 

and their disproportionate economic influence. Analyzing data from American and Brazilian cities 

(2003-2019), it cannot reject the granular hypothesis. In the U.S., the granular size is three 

metropolitan areas or five counties. In Brazil, it is three municipalities. The third essay examines the 

role of large companies in Brazil’s hiring and firing cycles, finding that workforce size distributions 

follow a power law. Large companies, particularly in the services sector, significantly impact 

employment cycles, with 15 public service companies constituting the Brazilian labor market’s 

granular size. Private companies have a minor effect. Each essay demonstrates the significance of 

granularity in different economic spheres, from international trade and urban dynamics to employment 

patterns, showcasing the importance of large entities in shaping economic outcomes. 

 
 

Keywords: Granularity; Business Cycles. 
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RESUMO EXPANDIDO 

 

 

O elo que une os três ensaios desta tese é temático e metodológico. Os ensaios têm como tema 

principal a granularidade e seguem o mesmo itinerário metodológico: primeiro, testamos, 

utilizando o método de Gabaix e Ibragimov (2011), a hipótese de que os dados analisados 

estão distribuídos segundo uma lei de potência; segundo, testamos a “hipótese granular” de 

Gabaix (2011); terceiro, calcularemos o “tamanho granular” (em número de agentes em 

relação ao fenômeno analisado) utilizando o mecanismo de Blanco-Arroyo et al. (2018). No 

primeiro ensaio, testamos a hipótese de granularidade para os spillovers da inflação 

internacional, utilizando dados anuais de exportações e de inflação para 138 países, de 1991 a 

2020. Descobrimos que os volumes de exportação entre países não são distribuídos de forma 

gaussiana, mas seguem uma lei de potência. Constatamos também que os países com maior 

peso relativo no comércio internacional determinam uma parcela dos spillovers internacionais 

superior à sua participação no comércio internacional. Além disso, oito grandes grãos são 

responsáveis pela maior parte dos spillovers de inflação. Adicionalmente, neste ensaio 

testamos a possibilidade de que alguns grupos de produtos (alimentos, combustíveis e 

manufaturados) seriam maiores condutores dos vazamentos de inflação. Também avaliamos 

com destaque a importância da Rússia nos vazamentos de inflação global, assunto em 

destaque por causa da Guerra da Ucrânia. De modo geral, os resultados sugerem que os 

alimentos explicam uma parte maior dos “spillovers”. No segundo ensaio estendemos o 

conceito de granularidade das empresas para as cidades, que se refere à coexistência de 

algumas cidades grandes e numerosas cidades pequenas. Argumentamos que a granularidade 

e as leis de potência estão inter-relacionadas e levantamos a hipótese de que as grandes 

cidades desempenham um papel significativo no ciclo econômico além da sua dimensão  

relativa. Nosso estudo sobre dados de cidades americanas e brasileiras de 2003 a 2019 não  

descarta a hipótese granular. Descobrimos que o tamanho granular nos Estados Unidos é de 

três áreas metropolitanas. Se redefinirmos as cidades como condados, o tamanho    granular é 

de cinco condados. No Brasil, o tamanho granular equivale a três municípios. Para o Brasil, 

também constatamos que as regiões metropolitanas parecem explicar uma fração pequena dos 

ciclos econômicos de modo que rejeitamos a hipótese granular neste contexto. Além da 

estimação por Mínimos Quadrados Ordinários (MQO), também calculamos os expoentes de 

Pareto por Máxima Verossimilhança (MV), nossa constatação foi que as estimativas de MV 

são uma fração estável das de MQO, de modo que, exceto para fins de previsão, as estimativas 

parecem ser equivalentes. No terceiro ensaio, exploramos o impacto das grandes empresas 

nos ciclos de contratação e demissão no mercado de trabalho brasileiro. As principais 

conclusões incluem a observação de que as empresas apresentam uma distribuição de lei de 

potência para a dimensão da sua força de trabalho, com os choques idiossincráticos das 

grandes empresas influenciando significativamente os ciclos de contratação e demissões. Em 

particular, o setor de serviços desempenha um papel substancial na explicação destes ciclos, 

enquanto a indústria de transformação tem um poder explicativo limitado. Determinamos que 

o tamanho granular do mercado de trabalho brasileiro é de 15 empresas envolvidas em 

serviços públicos, e que as empresas privadas têm um impacto relativamente pequeno nos 

ciclos de contratação e demissão. Cada ensaio demonstra a importância da granularidade em 

diferentes esferas econômicas, desde o comércio internacional e a dinâmica urbana até aos 

padrões de emprego, mostrando a importância das grandes entidades na definição dos 

resultados económicos. 

Palavras-chave: Granularidade; Ciclos Econômicos. 
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1. Introduction, research problem, and objectives 

 
 

The three essays in this thesis are united by their thematic and methodological 

focus on granularity. They follow a similar approach, starting with testing the hypothesis 

that the data conforms to a power law using the method by Gabaix and Ibragimov (2011). 

Then, they examine Gabaix's (2011) granular hypothesis, followed by calculating the 

"granular size" using the mechanism defined by Blanco-Arroyo et al. (2018). 

The overall objective of these essays is to test the granular hypothesis in non- 

traditional contexts. The first essay explores granularity in inflation spillovers, while the 

second essay investigates the role of large cities in their country's economic cycles. 

Finally, the third essay evaluates the impact of large companies on labor market dynamics, 

specifically with regards to hiring and firing. 

Common to all these cases is the underlying phenomenon and research problem: 

the presence of exceptionally large agents that seem to have an outsized influence on the 

overall fluctuations, surpassing what their own size would suggest. This occurs because 

there are often a small number of very large agents and a large number of very small 

agents. The compensatory effect of the small agents' idiosyncratic shocks, as predicted by 

the Law of Large Numbers, allows the variations of the few large agents to explain a 

significant portion of the aggregate oscillation as they have a greater likelihood of being 

"uncompensated." 

Previous research on granularity has primarily focused on the size of companies 

and their impact on the economic cycle. Key contributions include Gabaix's (2011) 

seminal article testing the granular hypothesis for large American companies. Similar 

findings have been observed by Silva and Da Silva (2020) for Brazil, Ebeke and Eklou 

(2017) for Europe, Blanco-Arroyo and Alfarano (2017) for Spain, Fornaro and 

Luomaranta (2018) for Finland, and Miranda-Pinto and Shen (2019) for Australia. 

The research agenda on granularity has also expanded to cover new topics, with 

companies remaining the central actors. Kovalenko et al. (2021) examined granularity in 

the German labor market, while Dosi et al. (2019) explored the granularity of company 

investments (referred to as the granularity of demand shocks). Additionally, Giovanni et 

al. (2020) analyzed the granularity of external shocks in France. However, in all three 

cases, the focus remains on the behavior of exceptionally large firms and the influence of 

their size on the market or specific contexts such as labor markets, investments, and 

external shocks. 
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In this thesis, the focus extends beyond exceptionally large agents being solely 

companies (except for the third essay). The first essay examines the granularity in inflation 

spillovers using countries as the grains, while the second essay analyzes the fluctuations in 

economic cycles within specific locations, such as cities, in Brazil and the United States. 

Finally, the third essay investigates how large companies influence hiring and firing 

shocks in the Brazilian economy. 

By testing the specific hypotheses in each essay, the aim is to broaden the 

understanding of the "granular hypothesis" and its applicability as a tool for studying 

economic phenomena in various contexts. 

The first essay constructs a granular residual by considering each country's role in 

international trade as a relative weight. The hypothesis is that large countries export 

inflation through trade, and therefore, the variations in global average inflation can be 

explained by the idiosyncratic shocks of these prominent players. 

In the second essay, the focus shifts to analyzing the geographical locations within 

countries where economic cycles occur. The hypothesis is that idiosyncratic shocks 

occurring in large human agglomerations, like counties, metropolitan regions, and 

municipalities, can explain a significant portion of the respective country's economic 

cycles. 

The third essay investigates the influence of large companies on hiring and firing 

shocks in the Brazilian economy. The policy implication of this research suggests that 

addressing periods of high unemployment in Brazil may be more effectively achieved 

through investing in public services rather than fiscal stimulus for manufacturing. 

Gabaix (2016) defines power laws as mathematical relationships of the form Y = 

aX
b
, where X and Y are variables, and "a" and "b" are parameters. Power laws can arise in 

various domains, such as the size of cities, metabolic rates of animals, and daily stock 

return rates. 

Power laws in economics have been observed in income distribution, as discovered 

by Pareto (1896), and in word frequency distribution, as identified by Zipf (1949). These 

power laws can arise through random growth models or through optimization and 

matching, where small differences in talent or skill lead to significant differences in 

outcomes. 

Granularity, as discussed by Gabaix (2016), is an application of power laws that 

provides valuable insights into fluctuations in GDP and stock markets. It highlights the 
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notion that economic cycles are often driven not by small diffuse shocks impacting all 

firms. 
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2. Essay 1: Granular inflation spillovers 

Abstract 

We test the granularity hypothesis to international inflation spillovers using annual exports and inflation data 

for 138 countries from 1991 to 2020. We find export volumes across countries are not Gaussian-distributed 

but follow a power law. This finding means the largest countries disproportionately impact world inflation. 

First, we quantify the power law for the right tail of the export volume distribution and discuss its 

implications. Then, we compute the granular residual, a measure of shocks to the largest countries. We find 

that countries with higher relative weight in international trade determine a portion of international spillovers 

greater than their trade share. Moreover, eight big grains are responsible for the bulk of inflation spillovers. 

The policy implication is that other countries’ central banks should closely monitor the eight big grains when 

conducting their domestic monetary policy. 

 

2.1. Introduction 

 
 

Business cycle shocks can transmit through inflation spillovers, impacting various 

countries. For instance, inflation in the Eurozone affects US inflation expectations, making 

term-structure-based models ineffective in predicting long-term inflation (Ciccareli and 

Garcia, 2015). Istiak et al. (2021) find that Japan and the United States are the leading 

"exporters" of inflation among the G7 countries, while Baurle et al. (2021) highlight 

heterogeneous inflation spillovers for Switzerland. Balcilar et al. (2020) emphasize the 

importance of inflation spillovers to commodity prices in Nigeria. Additionally, Halka and 

Szafranek (2016) demonstrate that small European economies, such as Poland, are "net 

importers" of inflation from the Eurozone. These inflation spillovers indicate the need for 

central banks to monitor foreign inflation to inform domestic monetary policy. 

To better understand international inflation spillovers, we propose considering 

"granularity." According to the granular hypothesis of Gabaix (2011), countries with 

significant international trade linkages play a substantial role in determining inflation 

spillovers beyond their trade participation. These countries, referred to as "big grains," 

often comprise large firms driving most of a country's exports (Freund and Pierola, 2015). 

The big grains, representing a significant share of economic activity, maintain direct trade 

connections with foreign countries (Di Giovanni et al., 2017, 2018). Consequently, by 

analyzing inflation spillovers, we can assume that if there is granularity in goods exports 

(Di Giovanni Levchenko, 2012), there is also granularity in inflation spillovers. 

Our hypothesis suggests that the big grains have a greater influence on inflation 

spillovers than their relative trade participation. As these large countries possess market 

power and dominate production, they can determine prices in international trade, leading 

to their domestic inflation affecting smaller countries with limited capacity to influence 

global prices. The literature supports this notion, highlighting how shocks at the industry 

level can propagate globally through the input-output network, ultimately impacting 
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inflation (Auer et al., 2019). Policymakers should consider the impact of important export 

items on inflation spillovers (Chandrarin et al., 2022). Importantly, we assume that the big 

grains' inflation is exogenous compared to other countries, meaning they influence global 

inflation but are not influenced by it. 

Different transmission channels play a crucial role in the spillover of inflation, and 

the type of shocks that drive inflation in other countries affects how these spillovers occur 

(Baurle et al., 2021). The literature shows that there is significant variation in the extent to 

which international price fluctuations affect domestic inflation, depending on the source of 

the fluctuations. 

In many models of international trade, heterogeneous firms are often represented as 

varying points on a continuum. However, studies have shown that when using whole 

numbers to represent firms in these models, random shocks at the individual firm level can 

impact aggregate variables (Eaton et al., 2012). As large firms play a significant role in 

international trade, it is worthwhile to consider sectors with a limited number of firms and 

examine comparative advantage across sectors with a more detailed analysis. Research 

suggests that shocks at both the aggregate and individual firm levels can affect 

comparative advantage, with granularity accounting for approximately 20% of the 

variation in export intensity across sectors (Gaubert and Itskhoki, 2021). 

Furthermore, the standard "gravity equations" used to explain trade flows between 

countries consider factors like GDP, geographical distance, and tariffs. However, these 

equations often overlook the empirical reality that a small number of large firms dominate 

world trade. Neglecting granularity can lead to significant inaccuracies in estimating trade 

patterns (Breinlich et al., 2020). 

To test the idea of granularity in inflation spillovers, we first examine whether 

export volumes among countries follow a power law, similar to the distribution of firm 

sizes (Da Silva et al., 2018). This serves as the empirical foundation for the granular 

hypothesis. Next, we calculate a measure called the "country granular residual" based on 

Gabaix's concept of granular residual at the firm level. This measure captures shocks 

experienced by the largest countries. Finally, we use the methodology developed by 

Blanco-Arroyo et al. (2018) to identify the optimal number of countries that contribute to 

inflation spillovers, which we refer to as the "country granular number." 

 

2.2. Materials and methods 

Data 
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We used annual export volumes and the annual rate of change of the consumer 

price index from the World Bank’s World Development Indicators database from 1991 to 

2020. Exports are expressed in 2015 US dollars. We excluded those countries with 

missing export data for more than 50% of the years in the sample. For those remaining 

countries with missing data, we filled the missing slots with the average from antecedent 

and subsequent data points. Moreover, we dropped from the sample the countries with no 

inflation data. We ended up with data for 138 countries. The dataset used is available at 

Figshare. 

 
Power law in export volumes distribution 

 
 

The granular hypothesis challenges the notion that shocks to individual firms 

diversify away by the law of large numbers and thus do not affect the business cycle 

(Gabaix, 2011). The economy is granular, not smooth. Empirical support to granularity 

comes from heavy-tailed firm size distributions because this means a few 

disproportionately large firms, implying that firm-level shocks do not cancel out. 

Similarly, we evaluate whether export volumes are normally distributed. If not, we 

compute the power law for the right tail of the export volumes distribution. 

Inflation spillovers do not matter if export volumes are normally distributed. Positive 

inflationary shocks in some countries would be offset by negative shocks in others. By 

contrast, if export volumes follow a power-law distribution, the largest countries impact 

more world inflation. 

We assess Gaussianity using the Kolmogorov-Smirnov test for 2019, considering n = 

138 countries. In addition, to get an OLS estimation of the tail exponent, we use the rank – 

½ method of Gabaix and Ibragimov (2011). Thus, we take 
 

 

ln(rank  1 )  a   ln 
exports

i
 

 

i 2 exports 

(1) 
 

 

where exportsi is the sum of export volumes of the country i from 1991 to 2020, 

ranki ranks exportsi from highest to lowest, and exportsm is the lowest bound we used as a 

cutoff to analyze the tail. Because few distributions follow a power law over their entire 

range, a power law occurs between a minimum cutoff and a maximum threshold. This is 

m , 
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why we say a distribution has a power-law tail (Newman, 2005). The α in equation (1) is 

the tail index (Pareto exponent) tracking the heaviness of the right tail, with smaller values 

pointing to heavier tails (Jenkins, 2017). 

A critical feature of such heavy-tailed distributed data is that aggregate fluctuations 

are not proportional to 1 n , as expected if the data were Gaussian-distributed (Gabaix, 

2011). Here, we relate this fact to foreign shocks canceling out. However, because foreign 

shocks are granular fluctuations, they are proportional to 1 ln n (Gabaix, 2011). As a 

result, shocks to the largest countries are not offset, and international inflation spillovers 

are significant. 

 

The country granular residual 

 

At the firm level, the granular residual measures the shocks to the largest 

companies. One critical implication is that if we regress a country’s growth rate on the 

granular residual of its largest companies, the adjusted R
2
 will be higher than the 

percentage of participation of those companies in GDP
1
. This suggests productivity shocks 

to large companies explain a significant portion of the business cycle (Gabaix, 2011). 

Similar to Gabaix’s firm granular residual, we define the granular residual 

for K countries as 

 

 

 
 

(2) 
 

 

where  
i ,t   is the country i’s inflation rate in period t, and w ,t   is the average world 

inflation in t. For the sake of simplicity, we do not consider the effects of exchange rate 

and interest rates on inflation spillovers; that is, we assume the only mechanism by which 

inflation is spilled from one country to others is through the international flow of goods. 

However, we appreciate the effects of relaxing this assumption after finishing our analysis. 

In line with the main implication of the firm granular residual, we hypothesize 

that the countries with higher relative weight in international trade are responsible for a 

portion of inflation spillovers larger than their participation in international trade. 

 

 

 

1
 See appendix (section 7 of the thesis) for insights about de granular residual. 
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Q 

Following the OLS methodology in Gabaix (2011), we regress 

the resulting R
2
 with a country’s trade share. 


w,t   on  t and compare 

Table A1 in the Appendix shows the ranking of the top 50 countries according to 

their share in international trade averaged between 1991 and 2020. These figures provide 

the coefficient values used as weights to compute the granular residual in equation (2). 

Listing the top 50 countries gives us a leeway to calculate the granular number next. 

 
The country granular number 

 
 

A country’s granular residual contribution to inflation spillovers can be under- or 

overestimated if we do not calibrate using the optimal number of countries 

(2). 

K 
* 

in equation 

Following Blanco-Arroyo et al. (2018), we evaluate the explanatory power of the 

country granular residual by comparing a curve with weights (equation (2)) with another 

of equal weights after making 

curve” of function C(L) is 

exportsi,t world exports
t = 1 in equation (2). The “granular 

 

1 Q 
2
 

(3) 

C(L)  R (K , L) 
K 1 , 

where Q is an arbitrary number of countries. The idea is to examine the sensitivity of R
2
 to 

a sequential exclusion of the largest countries, which means increasing L. So, we consider 

the explanatory power curve R
2 
(K , L) as a function of an increasing number of countries 

K and for different values of the largest countries L. We want to see how the curve 

R
2
 (K , L) performs depending on the number L of highest-ranked countries that are 

removed from the sample and replaced by the Q + 1, …, Q + L following countries. 

Moreover, we run the same number Q of regressions with the granular residual  
t as the 

explanatory variable for each L. And C(L) refers to the average R
2
 in every L for Q 

regressions performed. 

In turn, the equal-weight  curve quantifies the shocks’ contribution to  inflation 

spillovers from equal-size countries, which are expected to be negligible for that matter. 
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Finally, we aim to see the transition from the “granular curve” C(L) to the equal-weight 

curve as we progressively remove the L largest countries from the granular residual. The 

country granular number 

equal-weight curve. 

K * 
corresponds to the L where the curve C(L) first intersects the 

A caveat is needed here. To avoid running more than 1,000 regressions, we 

simplified computation by considering Q = 40. Then, we ran the regressions for the L 

countries in fives, L = 5, L = 10..., until the curves with and without weights intersect. We 

also ran the regressions for K in fives. Finally, whenever we find a value for which C(L) is 

lower than the R
2
 for equal weights, we consider the intermediate values of L to find the 

granular number. This procedure will be clarified next. 

Finally, the underlying empirical model is 
 

 

t  1  2t  t , 

(4) 
 

 

where t is the GDP-weighted averaged world inflation at time t,  
t is the granular 

residual, t 

 

is the estimated error, 1    is the mean inflation rate, and 2 

 

captures the 
 

sensitivity of world inflation to the granular residual. The parameters 
1    and 2 

 

are 

estimated using ordinary least squares in accordance with Gabaix (2011), where the 

adjusted R
2
 estimate quantifies the explanatory power of the granular residual. 

 
2.3 Results 

 
 

We can reject the null hypothesis that export volumes are normally distributed 

because the calculated Komolgorov-Smirnov coefficient (0.4330) is greater than its 

tabulated values for the 1, 5, and 10% significance levels: 0.1387, 0.1157, and 0.1038, 

respectively. Because n = 138 > 40 we employ the values estimated by 1.63 for 1%, 
 

1.36 for 5%, and 1.22 for 10%. 

After dismissing Gaussianity, we quantify the tail exponents for different cutoffs 

using equation (1). The high R
2
 values in Table 1 suggest we cannot ignore the power-law 

distribution. (Throughout this essay, R
2
 values refer to adjusted R

2
.) The smaller the 

cutoffs, the higher the R
2
 values. Moreover, as the cutoffs decrease, the right tail becomes 

138 

138 138 
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heavier (α becomes smaller). One can go further and calculate the optimal cutoff (as in 

Clauset et al., 2009), but high R
2
 values suffice to settle the issue. 

 
Table 1: Estimation of Equation (1) 

 

 
 

Furthermore, a back-of-the-envelope calculation allows us to appreciate a critical 

property of the power-law distribution mentioned earlier. Comparing shocks proportional 

to 1 ln n (power law) and to 1 n (Gaussian), we can see that inflation spillovers loom 

larger for the power-law case, regardless of cutoffs. Indeed, for the 10% cutoff, 1 ln14 = 

0.38, and 1    14 = 0.20; thus, the spillovers are 1.4 times larger for the power-law case. 

The same holds for the entire sample (100% cutoff). In particular, 1 ln138 = 0.20, and 

1 138 = 0.085, and thus the spillovers are 2.4 times larger. 

Table 2 shows the granular residuals calculated after considering the K top-ranked 

countries from Table A1. We see we cannot reject the granular hypothesis. For example, if 

K = 5, R
2
 is 0.9755 in the fourth column, which means the top five countries are 

responsible for 97% of inflation spillovers, even though these countries’ relative share in 

the total exports of goods is only 34%. 

 

Table 2: Estimation of Equation (2) 
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t 

 
 

 

Roughly, both the intercept and the estimated granular residual tend to grow as K 

increases in the second and third columns of Table 2. We explain this trend by the fact that 

the countries with more significant participation in international trade also present 

inflation rates lower than the global average, leading to a negative granular residual. This 

picture reverts as we add more countries (as we increase K). 

The fifth to seventh columns show the results of the regressions after making 

exportsi,t 
world exports = 1 in equation (2). We see the values of R

2
 are reduced for K = 

5, for example, which means the big grains’ share in global trade adds explanatory power 

to the regressions. However, for K > 15, these effects vanish, suggesting that trade share 

does not explain the whole story. Here, we should consider the fact that outliers such as 

Russia, Brazil, Turkey, Ukraine, Kazakhstan, Iraq, Romania, Belarus, Bulgaria, Lithuania, 

Croatia, and Latvia – that experienced very high inflation rates in the sample period – 

distort the explanatory power for K > 15. 

In light of these results, we make an educated guess that the granular number 

K *  15 , and we should compute this number by leaving out the outliers. Figure 1 shows 

the granular curve C(L) and the equal-weight curve. 

 
Figure 1. Granular Curve (Blue) and Equal-weight curve (red) 
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Because we consider the L values in fives, a first inspection suggests the granular 

curve first intersects the equal-weight curve before L = 10. Then, computing the 

intermediate values, we find the curves intersect between L = 8 and L = 9, so the country 

granular number is K *  L  8. Therefore, the countries impacting world inflation more 

than their relative size in global trade are the United States, China, Germany, the United 

Kingdom, Japan, France, Italy, and the Netherlands. These big grains are responsible for 

the bulk of international inflation spillovers. 

 
2.4 Discussion 

 
Running a regression with these eight countries using equation (2) yields an R

2
 

equal to 0.87, while the relative participation of these countries in international trade is 

44%. However, if we run a regression with the same eight countries but considering the 

coefficient exports
i,t    

world exports
t = 1 in equation (2), R

2
 becomes 0.84. Because these 

values are very close, we conclude that inflation spillovers may have an unexplained 

component related to exchange rates and interest rates. 

Note that of the eight big grains, four belong to the Eurozone, and the UK was a 

member of the European Union for the entire sample period. An interesting exercise is to 

aggregate such countries in a Eurozone, and thus the new big grains become the United 

States, China, Japan, and the Eurozone. With K = 4, R
2
 drops to 0.41, and with the 

coefficient equal to one in equation (2), R
2
 is 0.50. Thus, the big five European grains play 
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a larger role than the aggregate Eurozone. This fact occurs because we dilute the impact of 

the largest countries when aggregating and, therefore, R
2
 decreases. 

As the euro only started to circulate in 1999, it is interesting to observe our results 

for the period 1999-2020 as well. Now, R
2
 is 0.52, and with the coefficient equal to one, 

R
2
 is at 0.68. This finding reinforces that Germany, France, the UK, Italy, and the 

Netherlands contribute more to changes in world inflation than the aggregate Eurozone. 

Our hypothesis that big grains can influence global inflation but cannot be affected 

by it is granularity-specific. Other transmission mechanisms undoubtedly play a role, and 

global inflation spillover may have an impact on large economies. There are two 

competing hypotheses about the impact of global inflation on domestic inflation, 

according to the literature. First, price fluctuations in the energy and commodity markets 

drive the global component of inflation (Bianchi and Civelli, 2015; Mikolajun and Lodge, 

2016; Kamber and Wong, 2020; Attinasi and Balatti, 2021). These effects, however, are 

thought to be minor and transient. The other hypothesis is related to the slope of the 

Phillips curve, as globalization reduces the sensitivity of inflation to domestic slack 

(Ciccarelli and Mojon, 2010; Auer et al., 2017; Forbes, 2019). Because the Eurozone is a 

net energy importer, recent inflation reflects the rise in energy prices caused by Russia’s 

invasion of Ukraine. As a result, it is considered “imported inflation,” and monetary policy 

has no control over it. However, energy is a minor concern in the United States, and price 

pressures are primarily due to domestic factors. Used vehicles, for example, do to US 

inflation what energy does to Eurozone inflation (Schnabel, 2022). As a result, the United 

States is currently not importing global inflation. 

We exclude Russia from the sample because the country experienced significant 

inflation during the 1990s. This raises the question of whether we subjected the data to 

significant “winsorizing” because the largest outlier was missed. The model would lose 

explanatory power if we included Russia. After all, this occurs in Gabaix’s original model, 

which leads to a paradox because granular shocks appear to be important only if the 

shocks themselves are not heavy-tailed (Dosi et al., 2019). However, Russia is 

unimportant in our case. 

Of course, Russia’s invasion of Ukraine elevated Russia to the forefront of global 

inflation. Considering Russia would also reduce the granular residual’s explanatory power 

in terms of adjusted R
2
. However, if we reintroduce Russia using only data from 2000 to 

2020, the adjusted R
2
 increases from 0.7888 to 0.8115. As a result, it contributes little 
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explanatory power to the granular residual. Furthermore, Russia ranks only 16th in terms 

of international market share from 1991 to 2020. Russia is unlikely to be a big grain. 

Russia is primarily a commodity exporter and thus a price taker. Using World Bank 

data, we find an R
2
 of 0.0917, 0.0069, and 0.0287 when we regress the average price of 

crude oil, natural gas, and wheat on Russian inflation as an independent variable, 

indicating that Russia’s domestic prices have little impact on international prices of these 

commodities. As a result, rather than a spillover of Russian inflation via commodities, the 

invasion of Ukraine impacted global inflation through restrictions on commodity supply in 

international markets. 

How do our results fit into the literature on inflation spillovers? First, they agree 

with those of Halka and Szafranek (2015) because small European economies import 

inflation from Eurozone countries. Furthermore, we add that more than the Eurozone as a 

whole, inflation is mainly exported by Germany, the United Kingdom, France, Italy, and 

the Netherlands, since when we replace these countries with an aggregate Eurozone, the 

granular residual loses its explanatory power. This conclusion also extends to the results in 

Ciccareli and Garcia (2015). 

Baurle et al. (2021) argue that around 50% of price changes in Switzerland come 

from external inflationary shocks. However, as foreign monetary policy tends to be 

relatively more restrictive, such effects are amplified by the exchange rate depreciation of 

the Swiss franc. Although we have not directly studied the effects of the exchange rate on 

inflation spillovers, note that the magnitude of the impact of the spillovers they find is 

similar to that we see for high K. 

Istiak et al. (2021) studied the inflation spillover in the G7 countries and concluded 

that Japan is the primary transmitter of inflation, followed by the United States. Our results 

are in line with theirs. However, Canada is not a big grain. Moreover, our study also 

suggests the United States is the top transmitter. However, those authors credit Abenomics 

the precedence of Japan. Because we do not consider the monetary policy as a determinant 

of inflation spillovers, we cannot settle this issue. Despite this limitation, we can 

confidently argue for the importance of granularity (an economic concept) over the G7 (a 

political convention) in studying inflation spillovers. 

In line with all this previous literature, our results advise central banks to monitor 

foreign variables while conducting monetary policy. But, more importantly, we further 

pinpoint the big grains as deserving special attention. 
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2.5 Conclusion 

 
 

Foreign shocks are essentially granular fluctuations. We can better understand 

international inflation spillovers considering the granularity hypothesis because countries 

responsible for the bulk of international trade linkages determine a portion of inflation 

spillovers larger than their size in global trade. These countries are the big grains. If there 

is granularity in the exports of goods, then there is granularity in inflation spillovers. 

We consider annual exports and inflation data for 138 countries from 1991 to 2020. 

We first find export volumes across countries are not Gaussian-distributed but follow a 

power law. Because exports follow a power-law distribution, the largest countries 

disproportionately impact world inflation. This finding paves the way to the plausibility of 

our hypothesis of granularity in inflation spillovers because these do not matter if export 

volumes are normally distributed. Next, we quantify the power law for the right tail of the 

export volumes distribution and discuss its implications. 

Then, we compute the granular residual, a measure of shocks to the largest 

countries. We find that countries with greater relative weight in international trade 

determine a portion of international spillovers larger than their trade share. 

Finally, we address the problem of precisely identifying the number of countries 

most responsible for transmitting inflation. We find eight countries impact world inflation 

more than their relative size in global trade, namely the United States, China, Germany, 

the United Kingdom, Japan, France, Italy, and the Netherlands. These big grains account 

for the lion’s share of inflation spillovers. The policy implication is that other countries’ 

central banks should closely monitor these eight big grains when conducting their 

domestic monetary policy. 

 
 

Appendix 2.1 

Table A1. Ranking of the top 50 countries according to their average international trade share, 2020. 

 
Ranking Country Trade share, % 

1 USA 10.80 

2 China 8.32 

3 Germany 7.03 

4 United Kingdom 4.38 

5 Japan 3.90 

6 France 3.86 

7 Italy 3.25 
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8 Netherlands 3.02 

9 Canada 2.92 

10 Hong Kong 2.57 

11 South Korea 2.19 

12 Singapore 2.15 

13 Switzerland 2.08 

14 Spain 1.98 

15 Belgium 1.93 

16 Russia 1.91 

17 Mexico 1.75 

18 India 1.59 

19 Saudi Arabia 1.34 

20 Ireland 1.32 

21 Australia 1.20 

22 Thailand 1.16 

23 Brazil 1.10 

24 Sweden 1.09 

25 Poland 1.09 

26 Malaysia 1.05 

27 Austria 1.02 

28 Norway 0.98 

29 Turkey 0.89 

30 Denmark 0.83 

31 Indonesia 0.81 

32 Vietnam 0.60 

33 Czechia 0.54 

34 Luxemburg 0.54 

35 Iran 0.54 

36 South Africa 0.50 

37 Finland 0.49 

38 Israel 0.47 

39 Ukraine 0.45 

40 Hungary 0.39 

41 Portugal 0.38 

42 Philippines 0.37 

43 Chile 0.36 

44 Slovakia 0.32 

45 Greece 0.32 

46 Kazakhstan 0.31 

47 Romania 0.31 

48 Iraq 0.30 

49 Algerie 0.26 

50 New Zealand 0.24 
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Appendix 2.2 

 
 

We used the percentage of a country’s exports that went to international markets as 

a weight. We looked at all types of exports. In this Appendix 2, we will test the granular 

hypothesis by comparing exports in three important sectors: food, fuel, and manufacturing. 

High-tech exports are also important, but we do not include them because the known data 

series for this sector begins in 2007, and data for many countries are also lacking. 

Table A2 displays the descriptive statistics for the data, which considers mean 

values for the countries from 1991 to 2020. In addition to high standard deviations and 

significant asymmetries, the variables, excluding global inflation, also exhibit excess 

kurtoses. This is predicted given that the variables obey power laws. Moreover, note that 

the average annual inflation of countries (28%) is higher than the average annual inflation 

of the world (4.5%). This is due to the fact that in average country inflation, the weight 

given to each country is equal, whereas, in global inflation, the weight given to each 

country in each year is proportional to the size of its economy. Therefore, larger countries 

with lower inflation carry more weight. 

 
 

 

Table A3 shows that the ranking of countries according to their share of the 

international food market differs from that of trade shares (Table A1 in Appendix 1). Note 

that due to Russia’s relatively small market share, the invasion of Ukraine cannot 

specifically affect the global food market. Furthermore, without ignoring outliers for the 

entire sample period 1991-2020, Table A4 indicates that we cannot reject the granular 

hypothesis when constructing the granular residual weighted by international food market 

participation for K = 1, 2, 3, and 4. 

 
Table A3. Top 30 countries according to their international food market share, 2020. 

Ranking Country Food market share, % 

1 United States 11.43 

2 Netherlands 7.37 

3 France 6.97 
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4 Germany 5.78 

5 Brazil 4.15 

6 Belgium 3.81 

7 Canada 3.57 

8 China 3.50 

9 Spain 3.47 

10 Italy 3.25 

11 United Kingdom 2.95 

12 Australia 2.35 

13 Thailand 2.14 

14 Denmark 1.98 

15 Indonesia 1.72 

16 Mexico 1.63 

17 India 1.56 

18 Malaysia 1.56 

19 New Zealand 1.46 

20 Ireland 1.26 

21 Poland 1.20 

22 Turkey 1.04 

23 Hong Kong 1.03 

24 Chile 1.01 

25 Vietnam 0.98 

26 Austria 0.80 

27 Norway 0.78 

28 Ukraine 0.74 

29 Singapore 0.72 

30 Russia 0.71 

 

 
 

 

 
 

For K = 5, three phenomena are observed. First, the adjusted R
2
 falls from 0.9229 

to 0.2915, where it remains for subsequent K. Second, the intercept increases from 

approximately 2 to approximately 4. Third, the estimated granular residual becomes 

positive. As previously mentioned, these three indicators suggest that the inclusion of the 

fifth country (Brazil) biases the granular residual. Brazil experienced high inflation rates at 

the start of the sample period, 1991-1994. Due to the fact that Brazil’s share of the food 

market is relatively greater than its share of total exports, the size of the granular residual 
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is relatively very large. For example, the aggregate residual for 1991 is -1.91, which is the 

largest residual in absolute value. Ukraine, Russia, and Turkey have residuals greater than 

one in only a few of the sample years. Considering this, we have two options. The initial 

step is to eliminate Brazil, Ukraine, Russia, and Turkey from the sample. The alternative is 

to use the sample only from 1996 onwards, which excludes the years with high inflation 

for these outliers. Table A4 also shows that the adjusted R
2
 and coefficient estimates are 

more stable if we replace Brazil, Ukraine, Russia, and Turkey with South Africa, Hungary, 

Greece, and Sweden, which are ranked 31 to 34. As a result, we do not reject the granular 

hypothesis because R
2
 exceeds the share of the international food market. Furthermore, we 

cannot reject the granular hypothesis with data from 1996 to 2020, as evidenced by the 

fact that the adjusted R
2
 is greater than the proportion of the international food market up 

to K = 20. For this time sample, Brazil has neither a significant impact on R
2
 nor a 

significant impact on the estimated coefficients, indicating that the data have been 

adequately filtered. However, the results are worse, in terms of a lower R
2
, than we 

discovered when we eliminated the outliers with high inflation. 

Thus, when we remove outliers and restrict the number of years, the results are 

superior to what we observed when we did not take such precautions. We also find that the 

results based on participation in the international food market are superior to those based 

on exports in general, suggesting that inflation spillovers are transmitted more easily via 

food exports. The results are also significantly greater than those obtained with weighted 

regressions, indicating that weights provide additional information about the dynamics of 

global inflation. 

Now we move on to the fuel markets. Table A5 displays the top 30 countries by 

fuel market share. 

 
Table A5. Top 30 countries according to their international fuel market share, 2020. 

 

Ranking Country Fuel market share, % 

1 Saudi Arabia 10.95 

2 Russia 9.87 

3 Canada 4.90 

4 Norway 4.58 

5 United States 4.43 

6 Iran 3.54 

7 Netherlands 3.12 

8 Nigeria 3.06 

9 United Kingdom 2.88 

10 Algeria 2.67 

11 Australia 2.45 
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12 Singapore 2.33 

13 Indonesia 2.31 

14 Iraq 2.04 

15 Mexico 2.03 

16 Belgium 1.64 

17 Germany 1.43 

18 China 1.39 

19 South Korea 1.34 

20 Oman 1.33 

21 Kazakhstan 1.26 

22 France 1.25 

23 India 1.03 

24 Colombia 0.87 

25 Italy 0.86 

26 Spain 0.68 

27 Brazil 0.58 

28 Bahrain 0.54 

29 Japan 0.49 

30 Sweden 0.48 

 

Only about 50% of the global market for fuel is dominated by the top ten exporters; 

this concentration rate is comparable to that of the global food market. We do not reject 

the granular hypothesis when using the international fuel market share, as shown in Table 

A6. When we weigh the granular residual based on food share, the results for the adjusted 

R
2
 and the estimated coefficients are less stable, but the estimated explanatory power is 

higher. Russia, Iran, Nigeria, Iraq, Kazakhstan, Brazil, and Ecuador are outliers because 

between 1991 and 2020, their cumulative inflation rates exceeded 500%. We cannot rule 

out the granular hypothesis after removing these outliers from the sample because the 

adjusted R
2
 is higher than the shares for all K analyzed. The regression results worsened 

when the first five years of the sample were excluded, when inflation was high in the 

outliers. In addition, for no K, the estimated granular residual is statistically different from 

zero. Overall, fuels offer a lower adjusted R
2
 than total exports or food granular residuals, 

which suggests that fuels do not spill over inflation. 
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Regarding manufacturing, Table A7 shows the top 30 countries in terms of global 

manufacturing market share, and Table A8 shows the results of regressions that used 

manufacturing participation as weights in the construction of the granular residuals. Note 

that these are similar to those obtained when using food, despite the fact that the major 

countries in both cases are different. Furthermore, except for K = 30, where the adjusted 

R
2
 is close to that obtained in the other K, the results obtained using only the sample after 

1996 and for the case without outliers are quite similar. 

 
Table A7. The top 30 countries according to their global manufacturing market share, 2020 

Ranking Country Manufacturing market share, % 

1 Germany 7.64 

2 United States 7.15 

3 China 6.98 

4 Japan 5.41 

5 France 3.47 

6 Italy 3.07 

7 United Kingdom 2.76 

8 Belgium 2.41 

9 South Korea 2.38 

10 Netherlands 2.29 

11 Hong Kong 2.14 

12 Canada 1.79 

13 Singapore 1.57 

14 Mexico 1.57 

15 Spain 1.32 

16 Switzerland 1.23 

17 Sweden 0.94 

18 Malaysia 0.92 

19 Austria 0.89 

20 Thailand 0.82 

21 Ireland 0.75 

22 India 0.74 

23 Poland 0.66 

24 Czechia 0.63 

25 Turkey 0.52 

26 Denmark 0.49 

27 Brazil 0.47 
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28 Finland 0.46 

29 Hungary 0.42 

30 Indonesia 0.42 

 

 

 
 

 

As an exercise, we estimate the empirical model using the share of global GDP 

from 1991 to 2020 as a weight for the granular residual. Table A9 displays the results. 

Given the preceding discussion, it is not surprising that we cannot reject the granular 

hypothesis in Table A9 when GDP is used as a weight in constructing the granular 

residual. Because countries are distributed by a power law when ordered by GDP, the 

largest countries are expected to account for the largest share of changes in global 

inflation, which is greater than their relative size. This is because the variations of many 

small countries tend to cancel each other out and converge towards the average, whereas 

the variations of large “grains,” in much smaller quantities, are not “compensated” by the 

law of large numbers. This means that even if we rejected the granular hypothesis using 

shares of global GDP, we could not rule out the possibility of inter-country inflationary 

spillovers. After all, the estimated correlations between the shares of various types of 

exports and the share of global GDP are strong (Table A10). The correlations by country 

were calculated in Table A10 for the intersection of the sets of countries for which we had 

GDP data and, concurrently, exports of the products in question. As a result, the number of 

countries n varies in each correlation calculation. Because the residual is calculated based 

on the ranking in each market rather than the fixed countries, we considered (and 
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confirmed) the possibility that the correlation between the shares in the order of the 

countries was greater than for each specific country. 

 

 

 
 

 

 

 

 

Finally, Table A11 compares the various means of weighing the granular residual. 

The adjusted R
2
 in the column Total exports share decreases significantly between K = 1 

and K = 2 (when China is added). As a result, the results of the weights without China are 

shown in the following column. As we can see, except when we use the share of the 

international fuel market as weights, the explanatory power of exports is greater than the 

share of GDP for several K. This provides evidence that using exports adds explanatory 

power to the granular residual. Therefore, we cannot dismiss the hypothesis that there are 

granular inflation spillovers and that the transmission mechanism occurs, at least in part, 

through the international market. Although we cannot reject the granular hypothesis for 

fuel share, we can see that for any K, the adjusted R
2
 exceeds the GDP share, implying that 

inflation is not transmitted through the fuel market. In contrast, the food share results are 

always higher than the GDP share results, indicating that inflation migrates from one 

country to another via this market. The results vary when weighted by manufacturing 

market participation. Six of the 14 K have results that exceed the GDP share, while eight 
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have results that are lower, implying that, to a lesser extent than for food, we cannot rule 

out the possibility that the manufacturing market transmits some of the inflation. 

 
Table A11. Adjusted R

2
 for alternative ways of weighing the granular residual, data without outliers. 

K GDP share Trade share Trade share without China Food share Fuel share Manufacturing share 

1 0.8395 0.8406 0.8406 0.8487 0.3816 0.8521 

2 0.8653 0.3642 0.8863 0.9054 0.5736 0.8812 

3 0.8647 0.6007 0.8865 0.9122 0.6890 0.7644 

4 0.8734 0.7214 0.8821 0.9229 0.7406 0.8703 

5 0.8757 0.7880 0.9039 0.9221 0.7875 0.8820 

6 0.8852 0.8408 0.9004 0.9246 0.7935 0.8887 

7 0.8912 0.8537 0.9086 0.9293 0.7377 0.8852 

8 0.8951 0.8733 0.9042 0.9210 0.7650 0.8908 

9 0.8957 0.8840 0.8962 0.9201 0.7734 0.8984 

10 0.9016 0.8579 0.8934 0.9205 0.7454 0.9054 

15 0.9137 0.8673 0.8773 0.9344 0.6900 0.8963 

20 0.9170 0.8784 0.8874 0.9281 0.6932 0.8929 

25 0.9109 0.6610 0.8937 0.9226 0.7212 0.8995 

30 0.9080 0.6823 0.8906 0.9098 0.7168 0.8931 
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3. Essay 2: Granular cities 

 
Abstract 

We propose extending the concept of granularity from firms to cities, where it refers to the coexistence of a 

few large and numerous small cities. City size distribution follows Zipf’s law, a power law. We argue that 

granularity and power laws are interrelated, and hypothesize that large cities play a significant role in the 

business cycle beyond their relative size. Our study on American and Brazilian cities’ data from 2003 to 

2019 supports this granular hypothesis. We find that the granular city size for the United States is three 

metropolitan areas. If we redefine cities as counties, the granular size is five counties. In Brazil, the granular 

size equates to three municipalities. This essay contribution to the literature is to highlight a spatial 

component of granularity not considered so far. 

 
3.1 Introduction 

 

Cities are considered one of humanity’s greatest inventions as they bring people 

closer, facilitating connections and the exchange of information, leading to the 

emergence of new ideas and innovations (Glaeser, 2011). Our hypothesis is that large 

cities play a crucial role in the business cycle beyond their relative size. To test this 

hypothesis, we apply the concept of “granularity,” originally used in the context of firms 

(Gabaix, 2011). 

Granularity within firms refers to the coexistence of a few large firms alongside 

numerous smaller ones. An economy is considered “granular” due to this diversity; if all 

firms were the same size, it would be “smooth.” The “granular residual” is the cumulative 

effect of individual firm-specific shocks, weighted by their respective sizes. This term 

emphasizes the portion of the business cycle that cannot be explained by macroeconomic 

shocks alone and underscores the significance of microeconomic shocks unique to each 

firm. The granular residual captures the impact of shocks on the largest firms, accurately 

assessed by considering the “granular size.” 

The presence of significant “grains” necessitates a heavy right tail in the size 

distribution of firms. This power law tail enables these large grains to impact the business 

cycle in ways that a continuum of equally sized firms cannot. When the firm size 

distribution follows a heavy-tailed pattern, idiosyncratic shocks affecting the largest firms 

should not average out at the aggregate level. Instead, they are expected to influence GDP 

dynamics. Similarly, in cities, we observe a similar pattern where a few cities are 

significantly larger than the majority of smaller cities (Zipf’s law). Consequently, 
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idiosyncratic shocks to large cities may not be fully compensated by opposing shocks to 

smaller cities. If all firms were the same size and reacted similarly to shocks, the granular 

residual would be zero. However, if large firms are more susceptible to shocks, the 

granular residual could be substantial. 

Zipf’s law (Zipf, 1949) characterizes a power law distribution of city populations, 

where population is inversely related to rank. Although Zipf’s law predates and is separate 

from the concept of granularity, both approaches acknowledge hierarchical patterns in 

urban systems. We highlight that granularity and Zipf’s law are closely related, as the 

heavy-tailed distribution inherent in hierarchical quantities allows for the presence of 

exceptionally large units. 

Growth rates exhibit correlation with individual unit shocks (firms or cities) 

(Gabaix, 2011; Dosi et al., 2019). Hence, these shocks can be viewed as growth rates for 

cities. The majority of the business cycle can be explained by growth, wherein recessions 

occur when significant units experience below-average growth, while booms witness the 

opposite. Consequently, idiosyncratic shocks serve as growth rates for cities. The level of 

integration of a city into the national economy determines the extent of spillover effects 

on other cities within the country. This integration, in turn, enhances the explanatory 

power of the granular residual. 

Various factors contribute to differential growth rates of cities compared to the 

national average, such as the discovery of natural resources, the emergence of innovation 

hubs, changes in building codes, the arrival of multinational corporations, or substantial 

state investments. The key notion is that greater integration of a city into the national 

economy amplifies spillover effects, consequently intensifying the explanatory power of 

the granular residual. 

The city-firm analogy finds justification in the fact that despite advancements in 

technology facilitating information transmission, direct human contact remains highly 

efficient due to centuries of human development. This efficiency enhances the benefits of 

human agglomeration in confined geographical areas, making new information 

technologies complementary to physical proximity. Consequently, the largest and most 

innovative companies tend to locate near dense populations, capitalizing on the 

knowledge flows and opportunities for economic growth facilitated by larger cities. This 

positive feedback process reinforces the emergence of exceptionally large cities (Glaeser, 

2011). 

The rationale behind Zipf’s law for cities, which states that city sizes (in terms of 
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population) follow a power law with an exponent of one, can thus be justified. However, 

alternative interpretations exist (Rauch, 2014), as Zipf’s law lacks a sufficient theoretical 

explanation and is not accounted for by standard urban system models (Krugman, 1996). 

A random growth model may adequately explain it (Simon, 1955), or it might not require 

any theoretical justification at all (Mandelbrot, 1961). It is plausible that city location is 

fundamentally random, with city size unaffected by interactions with other cities 

(Ioannides and Overman, 2004). A meta-analysis of 515 estimates from 29 studies 

indicates that the Zipf coefficient exceeds one and that cities are more evenly distributed 

than suggested by Zipf’s law (Nitsch, 2005). Chauvin et al. (2017) provide a concise 

overview of the ongoing debate surrounding Zipf’s law. 

Previous authors, including Zipf (1949), Krugman (1996), Dobkins and Ioannides 

(1998), and Gabaix (1999), have shown the presence of Zipf’s law in various U.S. 

databases. Zipf’s analysis focused on the top 100 metropolitan areas in the United States 

in 1940, calculating a power law with a slope of approximately one (0.9835 ± 0.0625) 

based on the rank-frequency distribution. We replicate Zipf’s law using a more recent 

dataset that includes counties and metropolitan areas in the United States. While Rozman 

(1990) shows Zipf’s law for China in the mid-1800s, we were unable to obtain the specific 

data required to calculate the granular residual for recent China data. However, we do 

utilize data from Brazil, an emerging country. Gabaix (1999) attributes Zipf’s law to the 

growth processes observed in cities in the upper tail (referred to as Gibrat’s law) and the 

diminishing decline of shocks with size beyond a certain threshold. Although Giesen and 

Sudekum (2011) confirm this hypothesis for German cities, it fails to hold for a broader 

sample of U.S. cities from 1900 to 1990 (Black and Henderson, 2003). Nevertheless, we 

argue that Gabaix’s insight emphasizes the interrelation of power law and granularity, 

motivating our investigation into granular cities. 

Considering the insights from Glaeser (2011) and Gabaix (1999, 2011), it is 

plausible to hypothesize that the business cycle primarily occurs in large cities. If it were 

the opposite, small cities would have a more significant impact on the business cycle, 

resulting in symmetric cycles of rise and fall. Our hypothesis carries a crucial implication: 

economic growth spreads from large cities to smaller ones. Gabaix and Koijen (2020) 

propose that evaluating the granular hypothesis also allows us to test various types of 

spillovers. When large cities foster innovative developments linked not only to the 

business cycle but also long-term economic growth (Glaeser, 2011), such growth is 

expected to  disseminate to smaller cities, strongly influencing a country’s production 
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fluctuations. Metropolitan areas often encompass multiple municipalities, making it 

challenging to separate the economic growth of specific municipalities from their 

surroundings. Hence, we examine counties and metropolitan areas, rather than focusing 

solely on municipalities, to account for these complexities. 

Studying the business cycle at the city level involves examining economic 

fluctuations and patterns within specific urban areas. The concept of granularity aligns 

well with this endeavor, offering a comprehensive understanding of localized impacts and 

economic dynamics. While the business cycle is typically analyzed at the national or 

regional level, studying it at the city level provides a more detailed perspective. It allows 

exploration of the relationship between the city-level business cycle and broader 

macroeconomic factors, including national economic conditions, policies, international 

trade, and global trends. Such analysis holds practical implications for policymakers, 

urban planners, and businesses. It aids in identifying economic strengths and 

vulnerabilities, designing targeted policies to stimulate growth or address downturns, and 

assessing regional disparities within a country’s economy. 

To ensure the generalizability of our findings, we analyze data from both a 

developed country (the United States) and an emerging country (Brazil). We test the 

granular hypothesis using data from counties, metropolitan areas, and municipalities in 

these countries spanning from 2002 to 2019. Our hypothesis is stated as: 

 

Hypothesis. Larger cities in the United States and Brazil explain a greater proportion of 

the business cycle than their relative size. 

 
If this hypothesis holds true, it implies the existence of granular cities, similar to 

granular firms discussed in the literature, which explain the business cycle in both the 

U.S. (Gabaix, 2011) and Brazil (Silva and Da Silva, 2020). We use Blanco-Arroyo et al. 

(2018)’s methodology to compute the granular size of American and Brazilian cities. 

The essay’s structure is as follows: 1) We replicate Zipf’s law for our dataset using 

Gabaix and Ibragimov’s (2011) methodology. 2) We test the granular hypothesis, 

examining whether large cities contribute more to the business cycle relative to their size. 

3) We calculate the granular size of cities. 4) We compare our findings between the two 

countries and with the existing literature on firms. 

 
3.2 Materials and methods 
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Cities can be defined in various ways. A narrow definition sees cities as 

municipalities with specific boundaries and governing bodies. A broader definition 

includes metropolitan areas, which encompass a central city, suburbs, and 

interconnected urban and suburban regions. This definition acknowledges that cities 

extend beyond a single administrative unit and considers economic and social 

relationships between the center city and its surroundings. Legally defined cities such as 

counties or municipalities are typically not ideal for economic analysis unless there is a 

compelling reason. In this case, the availability of data justifies including counties and 

municipalities in our study. Despite this limitation, we can still obtain significant 

findings for metropolitan areas, especially for the United States. 

To compute the granular residual, population and economic output data are 

essential. In the United States, we have access to output data for counties and metropolitan 

areas, so we consider both. The Census Bureau provides GDP data for counties and 

metropolitan areas, whereas the Brazilian Institute of Geography and Statistics releases 

GDP data for municipalities. New York City’s five boroughs (Bronx, Kings, New York, 

Queens, and Richmond) correspond to five counties. On the other hand, Los Angeles 

County, the largest in the U.S., comprises 88 municipalities. With the municipality-level 

data available, we can calculate population and GDP for 82 Brazilian metropolitan areas. 

Therefore, we analyze data in four ways: 1) U.S. counties, 2) U.S. metropolitan areas, 3) 

Brazilian municipalities, and 4) Brazilian metropolitan areas. The examination covers 

population and economic output for both countries, spanning from 2002 to 2019. You can 

find the datasets on Figshare. 

Table A1 in the Appendix presents the most populous counties in the United 

States. Over the period of 2002 to 2019, Los Angeles County had a population more than 

ten times larger than DuPage County, IL, which ranked 51st. Similarly, Table A2 in the 

Appendix displays the 51 largest metropolitan areas in terms of population during the 

same period. The largest metropolitan area, New York-Northern New Jersey-Long Island, 

was approximately 18 times larger than the 51st, Rochester. Moving on to Table A3, it 

showcases the largest Brazilian municipalities based on average population between 2002 

and 2019. Out of around 5570 Brazilian municipalities, Sao Paulo, the largest one, 

accounted for nearly 5% of the national population and was almost 27 times the size of 

Santos, the 51st largest municipality. Lastly, Table A4 reveals the 51 largest Brazilian 

metropolitan areas out of a total of 82. The contrast is even more significant for 

metropolitan areas. Greater Sao Paulo, the largest metropolitan area, had a population 
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approximately 56 times larger than Toledo, the 51st on the list. 

In the Appendix, Tables A5 and A6 present descriptive statistics for four subsets 

of data. These statistics cover the 200 largest American counties and Brazilian 

municipalities with over 100,000 average inhabitants between 2002 and 2019, as well as 

all metropolitan areas in the United States and Brazil. The statistics exclude extreme 

idiosyncratic shocks in terms of growth rates but retain population outliers. We found that 

outliers greatly influenced the results when calculating growth rates, specifically 

impacting asymmetry, kurtosis, and the Jarque-Bera test. To address this, we removed 

growth rate outliers with absolute z-scores exceeding 2 from the sample. As a result, 

Tables A5 and A6 display population and growth rate descriptive statistics based on 

samples of varying sizes. 

The Jarque-Bera test assesses the Gaussianity of the test statistic, which follows a 

chi-square distribution with two degrees of freedom. The critical value at a 5% 

significance level is 5.99. Across the four datasets, we reject the null hypothesis that cities 

are normally distributed when ordered by population. This aligns with the expected 

outcome if cities adhere to Zipf’s law. Notably, growth rates are normally distributed for 

American counties, metropolitan areas, and Brazilian municipalities. Therefore, we 

anticipate the granular hypothesis to hold for these subsamples. However, the normality 

hypothesis for growth rates in Brazilian metropolitan areas is rejected, indicating a 

deviation from the granular hypothesis. In these cases, the estimated values in the Jarque- 

Bera test exceed the critical value of 5.99. These findings reflect the requirement for 

population to follow a power law in order to test the granular hypothesis, while growth 

rates are not necessarily characterized by heavy tails (Dosi et al., 2019). 

 

Zipf’s law 

 
The size distribution of cities, according to Zipf’s law, follows a power law: the 

number of cities with populations greater than x is proportional to 1/x (Gabaix, 1999). 

To test for the presence of power laws in all subsets of population data, we obtain 

ordinary least squares (OLS) estimates of the tail exponents employing the rank – ½ 

method of Gabaix and Ibragimov (2011). Thus, we take 

 
 

(1) 
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where populationi is the mean population for the regions in the samples from 2002 to 

2019 for both countries, ranki is rank from highest to lowest according to the size of 

populationi, and populationm is the lowest bound used as a cutoff to analyze the tail. A 

power law occurs between a minimum cutoff and a maximum threshold because few 

distributions follow a power law over their entire range. This is why a distribution is 

said to have a power-law tail (Newman, 2005). The  in equation (1) is the tail index 

(Pareto exponent) and measures the weight of the right tail, with smaller values 

indicating heavier tails (Jenkins, 2017). The aggregate fluctuations in heavy-tailed 

distributed data are not proportional to √
1 

, as would be expected if the data were 
𝑛 

 

Gaussian-distributed. Granular shocks are proportional to 1 ln n instead (Gabaix, 2011). 

As a result, shocks to large cities are not offset, and economic growth spillovers are 

substantial. 

 

The city granular residual 

 

The granular residual quantifies the impacts of shocks on major companies at the 

individual firm level. An important implication is that when regressing a country’s growth 

rate on the granular residual of its largest companies, the adjusted R
2
 will exceed the 

companies’ share of GDP. This suggests that shocks, specifically those related to 

productivity, affecting large corporations play a substantial role in shaping the business 

cycle (Gabaix, 2011). 

Similar to Gabaix’s firm granular residual, we define the granular residual for K 

cities as 

 

 
 

(2) 

where city populationi,t is the population of city i at time t, country populationt is the 

country population at time t, gi,t   is city i’s per capita output growth rate at time t, and Gt 

is the country’s per capita GDP growth rate at time t. To compute  t , we add up the 

residuals of the i  1, 2, …,K cities. Then, we run an OLS regression of the country’s per 

capita GDP growth rate on the granular residual  t . The adjusted R
2
 value is expected to 

be greater than the percentage of the country’s population represented by such cities in 
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the presence of granular effects. In this case, we do not reject our previously stated 

hypothesis. 

The granular residual’s contribution assesses the extent to which shocks impacting 

large cities influence a country’s overall economic dynamics. It suggests that the effects 

of shocks experienced by large cities may not be entirely counteracted by opposing effects 

in smaller cities. This underscores the significance of comprehending the specific 

dynamics and characteristics of individual cities when explaining a nation’s overall 

economic fluctuations. Essentially, the granular residual for cities implies that shocks 

originating from large cities have a greater influence than what can be accounted for by 

their relative size alone. This encompasses the integration of large cities into the national 

economy and the potential spillover effects on other cities within the country. 

According to the standard method in the business cycles literature, after 

demonstrating how granular cities can explain the business cycle, the next step should be 

to evaluate the impact of a few cities on aggregate volatility (the second order moment). 

However, our analysis does not extend to this level of detail. 

The link between city population size and economic output is well-supported in 

urban economics and economic geography. Key points include: 1) Larger cities can 

provide services like transportation and healthcare more efficiently, spreading costs over 

a larger population, which may reduce per-capita costs (economies of scale) (Glaeser, 

2011). 2) The concentration of people and firms in big cities boosts productivity through 

knowledge spillovers, labor market pooling, and improved access to suppliers and 

customers, enhancing output and innovation (Duranton and Puga, 2004). 3) Larger cities 

attract a wide range of skills, helping firms find suitable employees and boosting 

productivity (Florida, 2019). Thus, improvements in technological efficiency and 

innovation contribute to increased labor productivity, the key measure we employed for 

calculating shocks. 4) This diversity in bigger cities drives innovation by bringing 

together varied perspectives and expertise (Jacobs, 1970). 5) Larger cities often see more 

development and investment in infrastructure, supporting business operations and 

contributing to higher economic output (Bettencourt et al., 2007). 

Although there are reasons to link city population size with economic output, this 

relationship is intricate and shaped by factors like the city’s industrial makeup, 

geographical position, policies, and history. Additionally, bigger cities often contend with 

issues such as higher living costs, traffic congestion, and environmental challenges. 

Nevertheless, empirical research consistently indicates a positive correlation between a 
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city’s size and its economic performance, with larger cities typically having higher per 

capita GDP than smaller cities or rural regions (Glaeser, 2011; Bettencourt et al., 2007; 

Rosenthal and Strange, 2004). 

Replacing economic output with city population size in modeling is challenging. 

Specifically, in the granular equation (2), we need to factor in the Domar weight 

multiplied by idiosyncratic shocks. Originating from Hulten’s theorem and explored in 

Gabaix (2011), this approach is based on an input-output economy framework. The 

Domar weight, defined as a firm’s gross output relative to total GDP, indicates its 

contribution to overall output or productivity, typically in economies with intermediate 

inputs and networks. However, applying this concept to cities, where the links between 

intermediate goods among different cities are less clear, presents difficulties. In equation 

(2), the Domar weight should represent a city’s gross output as a proportion of GDP, not 

its population share. While the (g  G) component still quantifies the effect of a city’s 

growth shock, it is important to note that unlike firms, which directly contribute to 

aggregate output, cities function as hubs that attract labor and businesses. The literature 

includes a few examples of studies related to this modeling task. Hsieh and Moretti (2019) 

used a spatial equilibrium model to measure the extent and aggregate costs of labor 

misallocation across U.S. cities. Duranton and Puga (2024) created a microfounded urban 

growth model in which human capital spillovers promote entrepreneurship and learning 

in heterogenous cities. They used this model to explore different hypothetical scenarios, 

quantitatively evaluating the impact of cities on economic growth and overall income. 

 

The granular city size 

 

To accurately assess a city’s granular residual contribution, it is crucial to calibrate 

using the granular city size K* in equation (2). We evaluate the explanatory power of the 

city granular residual by comparing a weighted curve (as defined in equation (2)) with an 

equal-weighted curve. The equal-weighted curve assumes all cities are of the same size 

and follows a methodology introduced by Blanco-Arroyo et al. (2018) for determining 

the granular size of firms. This ensures that the estimation of a city’s granular residual is 

not underestimated or overestimated. 

Therefore, to accurately analyze the granular residual contribution of cities, it is 

important to consider the concept of granular cities. This entails including the granular 

city size in the analysis, achieved through a calibration procedure. The calibration aims to 

strike a balance by including enough cities to capture meaningful variation while 



45  

Q 

excluding cities that may introduce irrelevant information. Insufficient inclusion of cities 

may lead to an underestimation of the granular residual contribution, as significant 

variations in excluded cities are overlooked. Conversely, an excessive number of cities 

may result in an overestimation, as noise from less economically significant cities dilutes 

the overall signal. By calibrating the analysis, we identify a subset of cities that provide a 

representative sample, mitigating biases arising from too few or too many cities. This 

approach enables a more accurate evaluation of the explanatory power of the granular 

residual by comparing observed granular residuals to a hypothetical curve with equal 

weights assigned to all cities, treating them as if they were of equal size. 

The “granular curve” of function C(L) of average cumulative explanatory power is 

 

(3) 
1 Q 

2
 

C(L)  R (K , L) , 
K 1 

 
where Q is an arbitrary number of cities, and L is the number among the best-ranked cities 

that should be removed from the sample and replaced by the Q + 1, …, Q + L best-ranked. 

Thus, for each L, the same number of regressions is calculated, with the granular residual 

(with the weights attributable to population size) as the only explanatory variable. C(L) 

indicates the average R
2
, in each L, for Q regressions performed. Therefore, the idea is to 

examine the sensitivity of R
2
 to a sequential exclusion of the largest cities, which means 

increasing L. So, we consider the explanatory power curve R
2
 (K, L) as a function of an 

increasing number of cities K and for different values of the largest cities L. We want to 

see how the curve R2 (K, L) performs depending on the number L of highest-ranked cities 

that are removed from the sample and replaced by the Q + 1, …, Q + L following cities. 

Moreover, we run the same number Q of regressions with the granular residual  t     as the 

explanatory variable for each L. And C(L) refers to the average R
2
 in every L for Q 

regressions performed. 

In parallel, we must run the same regressions without weights, which means 

ignoring the population size weights. The granular number is obtained when the granular 

curve C(L) equals the adjusted R
2
 of the regressions without weights. In general, the 

granular size indicates the number of the largest grains that can be removed from the 

sample without affecting the average explanatory power (adjusted R
2
) of the granular 

residual for the various possible K ≤ Q. 

In short, the equal-weight curve quantifies the contribution of shocks to the 
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business cycle from cities as if they were all the same size, with negligible cities playing a 

larger role. As we gradually remove the L largest cities from the granular residual, we 

expect to see the transition from the granular curve C(L) to the equal-weight curve. The 

number L where the granular curve C(L) first intersects the equal-weight curve corresponds 

to the granular city size K*. 

We streamline the  computation into three steps to avoid running several thousand 

regressions: 

 
1. We define Q for each case as 1.5 the value of K from which the adjusted 

R
2
/population size ratio is below 1, that is, Q = 36 for U.S. counties and Q = 18 for 

U.S. metropolitan areas, and Q = 15 for Brazilian municipalities. 

2. We run regressions for the L in threes (L = 3, L = 6, etc.) until the curves with and 

without weights intersect. We also run regressions with the K in threes. 

3. We compute C(L) and the regressions for the intermediate values of L to find the 

granular size when C(L) with weights is less than R
2
 without weights. 

 
The empirical model 

 

The empirical model is then 

 

gi,t  1  2t t  , (4) 

 
where  t is given by equation (2), 1 and 2 are the parameters estimated by Gabaix’s 

(2011) OLS method, and t is the estimated error. Parameter 1 is the intercept, and parameter 

2 represents the country’s average growth rate in response to the granular residual. The 

adjusted R
2
 estimated for this empirical model, in turn, is a measure of the granular residual’s 

explanatory power in relation to the business cycle. 

 
3.3 Results 

 
 

Power Law 

 
Table 1 presents the estimation of equation (1) for American counties across different cutoffs 

from 2002 to 2019. The high adjusted R
2
 values suggest that the population distribution of 

American counties may follow a power law or potentially Zipf’s law. Notably, the  values 
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in Tables 1-4 are approximately one, which supports the literature’s conclusion that the Pareto 

exponent is greatly influenced by the definition of city and the sample size (Rosen and 

Resnick, 1980). 

 
 

 
Note: Except for the 1% cutoff, where the intercept and slope are statistically significant at 5%, all estimated 

coefficients are statistically significant at 1%. 

 

Based on the adjusted R
2
 values from different cutoffs for U.S. metropolitan areas 

(Table 2), we find no evidence to reject the hypothesis that population distributions adhere to 

a power law. In most cases, the estimated Pareto exponent is near -1, suggesting that the 

distribution of metropolitan areas potentially follows Zipf’s law, similar to Gabaix’s (1999) 

sample. 

 
Table 2. Power law for the U.S. metropolitan areas. 
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In the Brazilian data, power laws are also observed. Table 3 indicates that the 

proximity of 1 for most cutoffs prevents us from dismissing the notion that municipalities 

sizes from 2002 to 2019 adhere to a power law. Specifically, the distribution potentially aligns 

with Zipf’s law, supported by the high adjusted R
2
 values. 

 
Table 3. Power law for the Brazilian municipalities. 

     

Cutoff, % n Intercept a R2 

1 56 3.99 -1.36 0.99 

5 279 5.68 -1.27 0.99 

10 557 6.41 -1.21 0.99 

20 1114 7.05 -1.17 0.99 

30 1671 7.45 -1.15 0.99 

40 2228 7.77 -1.13 0.99 

50 2785 8.05 -1.11 0.99 

60 3342 8.31 -1.08 0.99 

70 3899 8.53 -1.03 0.98 

80 4456 8.72 -0.98 0.97 

90 5013 8.94 -0.92 0.96 

100 5570 9.90 -0.84 0.93 

Note: All estimated coefficients are statistically significant at 1%. 
 

The presence of high adjusted R
2
 values suggests that the distribution of Brazilian 

metropolitan areas may conform to a power law. Additionally, Pareto exponents close to 1 

indicate the influence of Zipf’s law (Table 4). These findings in Tables 3 and 4 align with 

previous literature (Chauvin et al., 2017). 
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In Appendix 3, following Clauset et al. (2009)’s method, we estimate Pareto exponents 

with maximum likelihood and compare power law to exponential distributions, both derived 

using maximum likelihood. While maximum likelihood estimates differ from those by 

ordinary least squares, their ratio is consistent across the four datasets. Except for Brazilian 

metropolitan areas, the power law distribution is more likely to describe the data than the 

exponential distribution. 

 

Granular residual 

 

We present the estimation of equation (4) for each of the four data subsets. Table 5 

displays the results for the largest U.S. counties. In the range of K = 3 to K = 25, the 

R
2
/population ratio is positive and greater than one, indicating the statistical significance of 

the estimated granular residual at a 5% level. Interestingly, the adjusted R
2
 is consistently 

higher than the county population/country population ratio for K values from 3 to 25. Hence, 

we cannot dismiss the granular hypothesis, which suggests that economic growth spills over 

from large cities and they play a significant role in the business cycle. Notably, the highest R
2
 

value (0.53) is observed at K = 6, including counties such as Los Angeles, Cook, Harris, 

Maricopa, San Diego, and Orange, CA. However, when considering only the granular residual 

of Los Angeles County (combining 88 cities), the adjusted R
2
 turns negative. To address this, 

we replace Los Angeles County with Maricopa County and rerun the regressions for the 

largest counties in each region, resulting in an adjusted R
2
 of 0.34. Additionally, noteworthy 

contributions to the R
2
/population ratio come from Cook, Harris, and Maricopa Counties, 

achieving an adjusted R
2
 of 0.47 for 4.23% of the population, with an R

2
/population ratio of 

11.3, surpassing any other county. 

 
Table 5. The granular residual of the U.S. counties 

  
County 

population/ 

   
Intercept 

 

 

K 

 

R2 
 R

2
/population 

ratio 

Growth 

rate 

 
 

Estimated 

granular 

residual 

 

p-value 

  Country 
population 

    

1  0.03   0.03 2.71 0.85 

2  0.04  0.92 0.03 5.74 0.66 

3 0.16 0.06 2.64 3.72 0.02 17.88 0.06 

4 0.39 0.07 5.35 2.70 0.02 21.61 0.00 

5 0.48 0.08 5.71 0.35 0.02 22.17 0.00 

6 0.53 0.09 5.64  0.02 19.99 0.00 
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7 0.35 0.10 3.44  0.02 17.57 0.00 

8 0.38 0.11 3.53 0.08 0.02 15.99 0.00 

9 0.38 0.11 3.25  0.02 14.59 0.00 

10 0.27 0.12 2.19  0.02 12.33 0.01 

11 0.26 0.13 1.97  0.02 11.28 0.02 

12 0.25 0.13 1.85  0.02 10.51 0.02 

13 0.25 0.14 1.78  0.02 10.21 0.02 

14 0.32 0.15 2.12 0.34 0.02 10.00 0.01 

15 0.34 0.15 2.17 0.04 0.02 10.12 0.00 

16 0.29 0.16 1.78  0.02 9.02 0.01 

17 0.33 0.16 2.00 0.21 0.02 9.51 0.00 

18 0.34 0.17 1.98  0.02 9.04 0.00 

19 0.32 0.17 1.80  0.02 8.65 0.01 

20 0.27 0.18 1.50  0.02 8.03 0.01 

21 0.25 0.18 1.35  0.02 7.53 0.02 

22 0.26 0.19 1.36 0.00 0.02 7.90 0.01 

23 0.24 0.19 1.23  0.02 7.59 0.02 

24 0.20 0.20 1.00  0.02 7.27 0.03 

25 0.20 0.20 0.96  0.02 7.03 0.04 

26 0.15 0.21 0.73  0.02 6.43 0.06 

27 0.12 0.21 0.55  0.02 5.96 0.09 

28 0.13 0.22 0.60 0.04 0.02 5.86 0.08 

29 0.14 0.22 0.62 0.02 0.02 5.94 0.07 

30 0.12 0.23 0.52  0.02 5.65 0.09 

40 0.18 0.26 0.68 0.15 0.02 5.94 0.05 

50 0.14 0.29 0.48  0.02 4.94 0.07 

Note: All intercept estimates are statistically significant at 1%. Values in italics are those that are 5% statistically 

significant. 

 

 
In the context of U.S. metropolitan areas (Table 6), the granular hypothesis exhibits 

stronger explanatory power. In particular, for K values from 1 to 13, the R
2
/population ratio 

exceeds one. The New York-Northern New Jersey-Long Island metropolitan area stands out 

with an impressive adjusted R
2
 of 0.51, despite accounting for only 6.12% of the population. 

The impact of New York City is less evident in county-level analysis due to its division into 

five counties, with Queens ranking as the tenth largest. However, at K = 6 and K = 7, which 

correspond to the Philadelphia-Camden-Wilmington and Washington-Arlington-Alexandria 

metro areas, the R
2
/population ratio increases significantly. Combining these three metro 

areas with the first New York-Northern New Jersey-Long Island area yields an astonishing 

adjusted R
2
 of 0.65, representing 9.84% of the population. These findings suggest that the 

American Northeast plays a crucial role in explaining the U.S. business cycle and has a 

substantial growth spillover effect. In contrast, the inclusion of the second largest metro area, 
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Los Angeles-Long Beach-Santa Ana, reduces the adjusted R
2
 to 0.61, indicating that Los 

Angeles County may bias the granular residual and weaken its explanatory power. Comparing 

Tables 5 and 6, metropolitan areas demonstrate a stronger association with the granular 

residual than counties, potentially indicating a closer connection between the growth of U.S. 

central cities and their surroundings. 

 
Table 6. The granular residual of the U.S. metropolitan areas. 
K R2 Metro area population/ R2/population ratio Growth rate Intercept Estimated granular residual p-value 

  Country population   1   

1 0.51 0.06 8.46 - 0.01 -11.50 0.00 

2 0.51 0.10 4.99 -3.47 0.01 -10.19 0.00 

3 0.49 0.13 3.73 -1.25 0.01 -8.75 0.00 

4 0.46 0.15 3.02 -0.71 0.00 -8.26 0.00 

5 0.41 0.17 2.40 -0.61 0.00 -7.38 0.00 

6 0.50 0.19 2.59 0.19 0.00 -7.63 0.00 

7 0.56 0.21 2.66 0.06 0.00 -7.38 0.00 

8 0.45 0.22 1.98 -0.67 0.00 -6.73 0.00 

9 0.39 0.24 1.61 -0.36 0.00 -6.04 0.00 

10 0.41 0.26 1.59 -0.02 0.00 -5.69 0.00 

11 0.41 0.27 1.48 -0.10 0.00 -5.27 0.00 

12 0.33 0.28 1.15 -0.32 0.00 -4.71 0.00 

13 0.26 0.30 0.87 -0.28 0.00 -4.44 0.01 

14 0.21 0.31 0.67 -0.19 0.00 -4.01 0.03 

15 0.20 0.32 0.63 -0.04 0.00 -3.94 0.03 

16 0.21 0.33 0.63 -0.00 0.00 -3.90 0.03 

17 0.20 0.34 0.59 -0.03 0.00 -3.83 0.03 

18 0.19 0.35 0.53 -0.05 0.00 -3.66 0.04 

19 0.22 0.36 0.61 0.07 0.00 -3.79 0.03 

20 0.24 0.37 0.65 0.04 0.00 -3.81 0.02 

21 0.25 0.38 0.65 -0.93 0.00 -3.73 0.02 

22 0.27 0.39 0.70 0.04 0.00 -3.74 0.01 

23 0.26 0.39 0.66 -0.03 0.00 -3.68 0.01 

24 0.27 0.40 0.67 0.00 0.00 -3.66 0.01 

25 0.24 0.41 0.58 -0.08 0.00 -3.47 0.02 

30 0.22 0.44 0.51 -0.07 0.00 -3.16 0.02 

40 0.20 0.50 0.41 -0.10 0.00 -2.76 0.03 

50 0.24 0.54 0.44 0.03 0.00 -2.69 0.02 

100 0.21 0.65 0.33 -0.11 0.00 -2.06 0.03 

150 0.23 0.71 0.32 -0.00 0.00 -1.93 0.02 

200 0.25 0.76 0.33 0.01 0.00 -1.90 0.02 

250 0.25 0.79 0.32 -0.01 0.00 -1.83 0.02 

300 0.26 0.81 0.33 0.00 -0.00 -1.80 0.01 

357(all) 0.28 0.83 0.34 0.01 -0.00 -1.81 0.01 

Note: All intercept estimates are statistically significant at 1%. 

 

Analyzing data from Brazil between 2002 and 2019 (Table 7), the granular hypothesis 

remains unrefuted. Among the 281 municipalities with over 100,000 people on average 

during this period, the adjusted R
2
 exceeds the population ratio for K values of 2, 3, 4, 5, 7, 

and 10. Consequently, we cannot dismiss the granular hypothesis when considering Brazilian 

municipalities, and there is a possibility of growth spillover from larger cities to the rest of the 

country. The next step involves identifying these granular municipalities. 

To examine the correlation between municipalities within the same Brazilian 

geographic regions, we selected the five largest municipalities from each region: Curitiba 
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(South), Sao Paulo (Southeast), Brasilia (Midwest), Salvador (Northeast), and Manaus 

(North). Surprisingly, the adjusted R
2
 of 0.01 was lower than all other cases in Table 7, 

indicating that the regional aspect does not significantly impact the granular effect of large 

municipalities. However, some municipalities, like Rio, Brasilia, Manaus, Recife, and Porto 

Alegre, displayed lower adjusted R
2
 values (0.02) compared to others. In particular, including 

Sao Paulo and increasing K to 6 resulted in an impressive adjusted R
2
 of 0.40 for a national 

population share of only 13%, underscoring Sao Paulo’s crucial role in the Brazilian business 

cycle and growth spillover. 

 

Table 7. The granular residual of the Brazilian municipalities. 

 
Metro area 

population/ 

 
K 

 
R2 

 
R

2
/population 

ratio 

Growth 

rate 

Intercept 
 

 

Estimated 

granular 

residual 

 
p-value 

Country 
population 

1 0.51 0.06 8.46  0.01  0.00 

2 0.51 0.10 4.99  0.01  0.00 

3 0.49 0.13 3.73  0.01  0.00 

4 0.46 0.15 3.02  0.00  0.00 

5 0.41 0.17 2.40  0.00  0.00 

6 0.50 0.19 2.59 0.19 0.00  0.00 

7 0.56 0.21 2.66 0.06 0.00  0.00 

8 0.45 0.22 1.98  0.00  0.00 

9 0.39 0.24 1.61  0.00  0.00 

10 0.41 0.26 1.59  0.00  0.00 

11 0.41 0.27 1.48  0.00  0.00 

12 0.33 0.28 1.15  0.00  0.00 

13 0.26 0.30 0.87  0.00  0.01 

14 0.21 0.31 0.67  0.00  0.03 

15 0.20 0.32 0.63  0.00  0.03 

16 0.21 0.33 0.63  0.00  0.03 

17 0.20 0.34 0.59  0.00  0.03 

18 0.19 0.35 0.53  0.00  0.04 

19 0.22 0.36 0.61 0.07 0.00  0.03 

20 0.24 0.37 0.65 0.04 0.00  0.02 

21 0.25 0.38 0.65  0.00  0.02 

22 0.27 0.39 0.70 0.04 0.00  0.01 

23 0.26 0.39 0.66  0.00  0.01 

24 0.27 0.40 0.67 0.00 0.00  0.01 

25 0.24 0.41 0.58  0.00  0.02 
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30 0.22 0.44 0.51  0.00  0.02 

40 0.20 0.50 0.41  0.00  0.03 

50 0.24 0.54 0.44 0.03 0.00  0.02 

100 0.21 0.65 0.33  0.00  0.03 

150 0.23 0.71 0.32  0.00  0.02 

200 0.25 0.76 0.33 0.01 0.00  0.02 

250 0.25 0.79 0.32  0.00  0.02 

300 0.26 0.81 0.33 0.00   0.01 

357(all) 0.28 0.83 0.34 0.01   0.01 

Note: All intercept estimates are statistically significant at 1%. Values in italics are statistically significant at 5%. 

 

In Table 8, we shift our focus to Brazilian metropolitan areas and “urban 

agglomerations” as analysis units. These agglomerations represent extensions of central cities, 

encompassing neighboring municipalities with shared social and economic relations, 

urbanization, commuting patterns, and contiguity. However, the results indicate that none of 

the regressions’ adjusted R
2
 values surpass the percentage of the population residing in the 

metro area. As a consequence, we must reject the granular hypothesis for Brazilian 

metropolitan areas. Additionally, the 2 value is not statistically significant at 10% for any K, 

emphasizing the limited relevance of the granular residual in explaining the business cycle 

within these metro areas. 

 
Table 8. The granular residual of the Brazilian metropolitan areas. 
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Note: All intercept estimates are statistically significant at 1%. 

 

It is worthwhile to make a comment on the finding of some negative R
2
 values. In the 

U.S., negative adjusted R
2
 values were observed for certain K values (number of largest cities 

included) at the county level, indicating weak explanatory power of the hypothesis for these 

areas. However, U.S. metropolitan areas generally showed positive, significant R
2
 values, 

supporting the hypothesis in these regions. Brazilian municipalities presented mixed results. 

While some K values showed positive R
2
 values, suggesting growth spillovers from larger 

cities, metropolitan areas did not support the granular hypothesis. No regression for these 

areas exceeded their population percentages in R
2
 values, leading to the hypothesis’s 

rejection. 

The negative R
2
 values in U.S. counties and Brazilian metropolitan areas imply the 

granular hypothesis’s limitations for these specific analyses. This might be due to: 1) Varying 

levels of economic integration and dynamics across counties, municipalities, and metropolitan 

areas. Large cities and counties may exhibit unique economic patterns not captured by the 

hypothesis. 2) Large cities’ distinct economic features and challenges, potentially leading to 

negative R
2
 values if these specificities are not accounted for in the model. 3) Possible 

limitations of the methodology used to test the granular hypothesis, especially in capturing 

complex economic dynamics at the city level. 

The difference in the applicability of the granular hypothesis between Brazilian 

municipalities and metropolitan areas might be due to the degree of aggregation. As 

aggregation increases, the granular residual tends to regress to the mean following the law of 

large numbers. In simpler terms, when calculating the residual for the entire metropolitan 

area, the impact of the central city’s idiosyncratic shock gets diluted within the residual. To 

test the hypothesis, we used OLS regression, with the growth rate of metropolitan areas 

(excluding the central city) as the variable to be explained and the growth rate of the central 

city as the explanatory variable. Regression directly on the residual indicates a positive 

granular effect, given the larger population of the metropolitan area compared to the central 

city. As anticipated, the coefficient estimated for the growth rate is positive but less than one, 

showing a positive yet imperfect correlation, supporting regression to the mean. We excluded 

areas with central cities having less than 100,000 inhabitants on average, reducing 

observations from 82 to 53. Table 9 confirms that the hypothesis is not rejected. Generally, 

variations in central cities’ per capita GDP growth rate have limited explanatory power for 
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their periphery’s growth rate (low R
2
), as the 2 

one. 

value is as expected, positive and less than 

 

Table 9. Regressing the growth rate of the largest municipalities in the periphery by the growth rate of their 

respective central cities, 2003-2019. 

 

 
When calculating the residual solely for other municipalities in the metropolitan areas 

(excluding central cities), the adjusted R
2
 significantly reduces, often becoming negative. This 

indicates that these outskirts contribute minimally to the business cycle and have little to no 

growth spillover effects on the rest of the country (Table 10). In particular, the outskirts of 

large central cities are themselves highly populous. For instance, the surroundings of Sao 

Paulo account for over 4% of the Brazilian population and, if treated as a single municipality, 

would be the country’s second-largest. 

 

Table 10. Regressions with the granular residual of metropolitan area municipalities, excluding the central cities. 
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In Gabaix’s (2011) methodology, the granular residual is a sum, preserving all data 

and potentially leading to biases and reduced explanatory power in the metro areas’ granular 

residual. Consequently, the granular hypothesis is rejected for Brazilian metro areas, unlike 

large municipalities, which are central cities with a higher proportion of the national 

population. By adopting multiple regression methodology, we can discard irrelevant data, 

such as metro areas with a negative marginal effect on the R
2
/population ratio. For instance, 

the exclusion of the Sao Paulo metropolitan area, which weakens the granular residual’s 

explanatory power, is demonstrated in Table 11, which showcases metro areas where the 

R
2
/population ratio consistently exceeds one in all specifications. 

 
Table 11. Brazilian metropolitan areas’ debiased granular residual. 

Note: + means a metro area is added to the previous one. 

 

Granular size 

 
 

In Figure 1, the granular size for U.S. counties, based on equation (3), is illustrated. The 

granular (weighted) curve and equally weighted curve intersect at L = 5, determining the 

value K* = 5. This refers to Los Angeles, Cook, Harris, Maricopa, and San Diego Counties, 

which represent about 8.4% of the U.S. population on average over the period but account for 

48% of GDP growth (Table 5). 
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Figure 1. Granular size for the U.S. counties: granular curve (blue) and equal-weight curve (red), 2002-2019. 

 

Equation (3) reveals that the granular size for U.S. metropolitan areas occurs at L = 3 

(Figure 2). The value K* = 3 corresponds to New York-Northern New Jersey-Long Island, 

Los Angeles-Long Beach-Santa Ana, and Chicago-Joliet-Naperville. These three metro areas 

represent around 13.4% of the American population but explain 49% of GDP growth (Table 

6). As anticipated, due to higher population density in the largest metropolitan areas compared 

to counties, the granular size for metro areas is lower. 

The top three metropolitan areas with the most significant granular effect are situated 

in different geographic regions of the United States. Interestingly, similar to the counties, 

none of these granular metro areas are capital cities (e.g., Albany, Springfield, and 

Sacramento). This aligns with the idea that there is a positive correlation between political 

power and human agglomerations, as proposed by Ades and Glaeser (1994). 
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Figure 2. Granular size for the U.S. metro areas: granular curve (blue) and equal-weight curve (red), 2002-2019. 

 

New York City, the largest municipality in the U.S., does not have a significant 

granular effect among counties, but it becomes relevant within the greater metropolitan area. 

The adjusted R
2
 drops from nearly 0.4 with L = 0 (considering New York-Northern New 

Jersey-Long Island), to just below 0.05 with L = 1 (when this metro area is excluded). 

However, the increased importance of the greater Los Angeles area indicates that the growth 

of Los Angeles and its surroundings appears to be unrelated to that of the rest of the country. 

When applying equation (3) to Brazilian municipalities, the granular and equal-weight 

curves intersect around L = 3 (Figure 3), implying a granular size K* = 3. This indicates that 

idiosyncratic shocks in Sao Paulo, Rio, and Salvador significantly impact the economy due to 

their higher relative weight. Despite being just three municipalities, they represent 10% of the 

Brazilian population and explain 12% of GDP growth (Table 7). Notably, Sao Paulo alone 

contributes about 6% of the population and 13% of the GDP. When excluding the three 

largest grains, the average adjusted R
2
 for K is no longer influenced by assigned weights 

(relative size in the national population). 
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Figure 3. Granular size for Brazilian municipalities: granular curve (blue) and equal-weight curve (red), 2002- 

2019. 

 

Table 12 displays the R
2
 for each municipality’s regressions using the granular 

residual, indicating significant variation in explanatory power. Fortaleza, Sao Bernardo do 

Campo, Joao Pessoa, Uberlandia, Ribeirao Preto, and Sorocaba have relatively high adjusted 

R
2
 values. Apart from Fortaleza, these municipalities rank above 20, suggesting that as L 

increases, their relative weight in the granular residual composition grows, leading to higher 

explanatory power. This phenomenon applies to the equal-weight curve as well, as 

municipalities with strong explanatory power enter more regressions with increasing L. 

However, both the granular and equal-weight curves grow at similar rates, with the equal- 

weight curve slightly higher. This implies that the relative weights (percentage of the 

Brazilian population) of these municipalities do not contribute significantly to the granular 

residual’s increased explanatory power. Instead, they exhibit a strong correlation with national 

growth, explaining the upward trajectory of the granular and equal-weight curves. 

For Brazilian metropolitan areas, using equation (2) to calculate K* is not applicable, 

as discussed earlier. Additionally, after debiasing the sample, determining K* becomes 

unfeasible, as the debiasing process removes the largest grains. Without population shares, 

very small areas carry relatively higher weight, skewing the results. The equal-weight curve 

consistently exceeds the granular curve, mainly due to the high correlation of certain small 

metropolitan areas with national growth. This makes it impossible to ascertain the granular 

size, K*, using the current methodology. 

 
Table 12. Granular residual regressions for individual municipalities. 
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Rank Municipality R2 

1 Sao Paulo 0.05 

2 Rio de Janeiro 

3 Salvador 0.05 

4 Brasilia 0.06 

5 Fortaleza 0.20 

6 Belo Horizonte 

7 Manaus 

8 Curitiba 0.00 

9 Recife 

10 Porto Alegre 

11 Belem 

12 Goiania 

13 Guarulhos 0.04 

14 Campinas 

15 Sao Luis 

16 Sao Goncalo 0.09 

17 Maceio 

18 Duque de Caxias 0.02 

19 Natal 

20 Nova Iguacu 0.05 

21 Teresina 

22 Campo Grande 

23 Sao Bernardo do Campo 0.17 

24 Joao Pessoa 0.21 

25 Osasco 0.03 

26 Santo Andre 

27 Jaboatao dos Guararapes 

28 Sao Jose dos Campos 0.03 

29 Uberlandia 0.11 

30 Contagem 

31 Ribeirao Preto 0.20 

32 Sorocaba 0.22 

33 Feira de Santana 0.09 

34 Aracaju 

35 Cuiaba 

36 Juiz de Fora 

37 Joinville 

38 Londrina 

39 Ananindeua 

 

3.4 Discussion 
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Although the granular size for U.S. counties (K* = 5) is higher than for Brazilian 

municipalities (K* = 3), the proportion of the population in the U.S. case is lower. This means 

granular municipalities in Brazil are larger than granular counties in the United States. Even 

the largest American municipality, New York City, and the largest county, Los Angeles 

County, only represent approximately 3% of the total U.S. population. In contrast, Sao Paulo 

accounts for about 6% of the Brazilian population. 

Zipf’s law, being a statistical phenomenon with no underlying causes (Mandelbrot, 

1961), could account for random differences between the two countries. However, Ades and 

Glaeser (1994) present a compelling causal argument linking political factors to urban 

concentration, not vice versa. They argue that in more authoritarian countries with less 

economic freedom, population tends to concentrate around political poles like national or state 

capitals. This political power concentration also corresponds to income concentration, 

attracting the poorer populations to these large centers and leading to higher overall 

population concentrations. 

Applying this causal narrative to Brazil, we find two granular municipalities in the 

Southeast, situated 450 kilometers apart. In contrast, only the Northeast lacks granular 

counties in the United States, possibly due to historical reasons. Economic Freedom Index 

rankings for 2022 place the United States 25th and Brazil 133rd, suggesting a higher 

concentration of the Brazilian population near centers of power. Remarkably, all three 

granular municipalities in Brazil are state capitals, and even a relatively new municipality like 

Brasilia, founded in 1960, already houses about 1.5% of the Brazilian population, surpassing 

Washington, D.C., established in 1791, which has only around 0.2% of the U.S. population. 

This points to a higher spatial concentration of economic activity in Brazil compared to the 

United States, potentially linked to political factors. The granular size serves as a measure of 

concentration, with fewer grains indicating greater economic importance in a region. 

Moreover, the Sun Belt accommodates four out of the five granular counties in the 

United States, supporting the hypothesis that the warmest U.S. regions in January act as 

significant population magnets, experiencing faster growth rates than the national economy 

(Glaeser and Gottlieb, 2009). This population analysis also clarifies why U.S. cities have a 

greater impact on the business cycle than Brazilian cities, considering their relative sizes. 

The findings align with previous literature on granular firms (Gabaix, 2011). In 

particular, granular city size is much smaller than firm city size, with the largest cities 

contributing more to GDP than the largest companies. For instance, in Brazil, Sao Paulo 
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accounts for 6% of the population and 13% of GDP, while the largest company, Petrobras, 

only contributes 4% of GDP (Silva and Da Silva, 2018). Handling city granularity is akin to 

dealing with mega-grains. Interestingly, while granular firms in emerging economies have a 

greater impact on the business cycle (Grigoli et al., 2023), the opposite is true for granular 

cities. Our results show that large city grains explain a smaller percentage of the business 

cycle in Brazil (an emerging economy) compared to the United States. 

We believe that the impact of granular cities on the business cycle varies between 

emerging and developed economies due to several factors: 1) Economic activities in emerging 

economies are often concentrated in a few large firms, significantly affecting the business 

cycle through their substantial GDP and employment share. In contrast, these activities are 

more dispersed across cities, reducing their influence on the business cycle compared to 

developed economies, where cities have more economic concentration. 2) Developed 

economies have urban economies diversified across multiple industries and advanced 

services, amplifying large cities’ impact on the national business cycle. Emerging economies, 

with urban economies centered around fewer sectors or dominated by a single firm, 

experience less influence from their large cities. 3) Cities in developed economies, better 

integrated into the global economy with advanced infrastructure, significantly impact the 

business cycle through trade, finance, and technology. In emerging economies, less 

integration, both domestically and internationally, limits cities’ influence. 4) Developed 

economies usually have more stable and effective governance, enhancing cities’ role in the 

business cycle. In contrast, emerging economies may struggle with less efficient urban 

governance and infrastructure deficits, limiting their cities’ economic impact. In summary, the 

differing impacts of cities on the business cycle in emerging versus developed economies may 

stem from economic diversification, structural urban differences, levels of integration and 

connectivity, and governance effectiveness. 

 
3.5 Conclusion 

 
 

Large cities play a crucial role in the business cycle, as they are home to granular 

firms, which are primarily responsible for driving it. This study explores the concept of 

granularity, extending it from firms to cities, and investigates how granular cities influence 

the business cycle. Our contribution is to highlight a spatial component of granularity not 

considered so far. The analysis is based on data from 2003 to 2019, focusing on cities in the 
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United States and Brazil, where we observe that city size distributions adhere to Zipf’s law. 

By computing the granular residual, we identify the granular size for these cities. 

The granular size for counties in the U.S. is five, representing Los Angeles, Cook, 

Harris, Maricopa, and San Diego Counties. These five counties, comprising 8% of the U.S. 

population, contribute to 48% of GDP growth. Similarly, the granular size for metropolitan 

areas is three, including New York-Northern New Jersey-Long Island, Los Angeles-Long 

Beach-Santa Ana, and Chicago-Joliet-Naperville. These areas, accounting for 13% of the 

American population, explain 49% of GDP growth. In Brazil, the granular size is three, with 

municipalities representing 10% of the population and explaining 12% of GDP growth. 

Notably, Sao Paulo, accounts for 6% of the population and 13% of GDP. Therefore, we could 

not reject the hypothesis that cities in the United States and Brazil explain a greater proportion 

of the business cycle than their relative size. 

Conventional analyses of the business cycle focus on national or regional levels, but 

examining it at the city-level offers deeper insights into local economic dynamics. This 

approach holds practical value for policymakers, urban planners, and businesses. The 

discovery that cities wield significant influence on the business cycle, beyond their size, has 

vital implications. It allows us to pinpoint cities’ economic strengths and weaknesses, 

facilitating targeted policies for growth and resilience. Moreover, it aids in assessing regional 

imbalances, enabling more effective resource allocation to address disparities and promote 

balanced development. 

 

Appendix 3.1 

 
Table A1. The average population of the most populous U.S. counties from 2002 to 2019. 

 

Rank County Population 

1 Los Angeles 9,893,578 

2 Cook 5,216,620 

3 Harris 4,147,583 

4 Maricopa 3,881,412 

5 San Diego 3,118,644 

6 Orange, CA 3,040,962 

7 Miami-Dade 2,526,471 

8 Kings 2,524,281 

9 Dallas 2,416,129 

10 Queens 2,242,563 

11 Riverside 2,163,119 

12 San Bernardino 2,031,639 
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13 King 1,976,515 

14 Clark 1,939,196 

15 Wayne 1,848,308 

16 Tarrant 1,823,093 

17 Broward 1,803,610 

18 Santa Clara 1,800,432 

19 Bexar 1,731,970 

20 New York 1,601,516 

21 Alameda 1,541,421 

22 Philadelphia 1,533,884 

23 Middlesex 1,524,906 

24 Suffolk 1,483,503 

25 Sacramento 1,430,306 

26 Bronx 1,394,218 

27 Palm Beach 1,345,861 

28 Nassau 1,343,255 

29 Cuyahoga 1,287,895 

30 Hillsborough 1,259,067 

31 Allegheny 1,230,892 

32 Oakland 1,221,839 

33 Franklin 1,187,835 

34 Orange, FL 1,176,786 

35 Hennepin 1,174,902 

36 Contra Costa 1,063,088 

37 Travis 1,051,423 

38 Salt Lake 1,037,265 

39 St Louis 1,001,204 

40 Montgomery 979,754 

41 Pima 973,391 

42 Honolulu 952,012 

43 Westchester 951,521 

44 Milwaukee 945,2 

45 Pinellas 934,915 

46 Shelby 926,355 

47 Fresno 926,164 

48 Fulton 925,552 

49 Erie 924,501 

50 Fairfield 920,891 

51 DuPage 920,738 

 

Table A2. The average population of the most populous U.S. metropolitan areas from 2002 to 2019. 

Rank Metropolitan area Population 

1 New York-Northern New Jersey-Long Island 18,924,664 

2 Los Angeles-Long Beach-Santa Ana 12,876,591 

3 Chicago-Joliet-Naperville 9,403,216 
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4 Dallas-Fort Worth-Arlington 6,403,882 

5 Houston-Sugar Land-Baytown 5,969,239 

6 Philadelphia-Camden-Wilmington 5,941,397 

7 Washington-Arlington-Alexandria 5,627,589 

8 Miami-Fort Lauderdale-Pompano Beach 5,617,024 

9 Atlanta-Sandy Springs-Marietta 5,227,443 

10 Boston-Cambridge-Quincy 4,614,588 

11 San Francisco-Oakland-Fremont 4,413,892 

12 Detroit-Warren-Livonia 4,340,234 

13 Phoenix-Mesa-Glendale 4,156,695 

14 Riverside-San Bernardino-Ontario 4,110,535 

15 Seattle-Tacoma-Bellevue 3,490,696 

16 Minneapolis-St. Paul-Bloomington 3,313,846 

17 San Diego-Carlsbad-San Marcos 3,107,209 

18 Tampa-St. Petersburg-Clearwater 2,791,786 

19 St. Louis 2,780,826 

20 Baltimore-Towson 2,706,133 

21 Denver-Aurora-Broomfield 2,577,039 

22 Pittsburgh 2,368,081 

23 Portland-Vancouver-Hillsboro 2,229,138 

24 San Antonio-New Braunfels 2,150,906 

25 Orlando-Kissimmee-Sanford 2,141,098 

26 Sacramento-Arden Arcade-Roseville 2,126,362 

27 Cincinnati-Middletown 2,120,806 

28 Cleveland-Elyria-Mentor 2,086,535 

29 Kansas City 2,014,011 

30 Charlotte-Gastonia-Rock Hill 1,986,477 

31 Las Vegas-Paradise 1,887,074 

32 Columbus 1,873,479 

33 San Jose-Sunnyvale-Santa Clara 1,867,850 

34 Indianapolis-Carmel 1,812,350 

35 Austin-Round Rock-San Marcos 1,740,875 

36 Virginia Beach-Norfolk-Newport News 1,686,641 

37 Nashville-Davidson-Murfreesboro-Franklin 1,625,721 

38 Providence-New Bedford-Fall River 1,602,457 

39 Milwaukee-Waukesha-West Allis 1,550,643 

40 Jacksonville 1,343,183 

41 Memphis 1,298,987 

42 Oklahoma City 1,261,386 

43 New Orleans-Metairie-Kenner 1,242,908 

44 Louisville-Jefferson County 1,235,659 

45 Richmond 1,214,209 

46 Hartford-West Hartford-East Hartford 1,196,596 

47 Buffalo-Niagara Falls 1,142,204 

48 Raleigh-Cary 1,119,514 

49 Salt Lake City 1,108,956 
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50 Birmingham-Hoover 1,086,659 

51 Rochester 1,060,962 

 

Table A3. The average population of the most populous Brazilian municipalities from 2002 to 2019. 

Rank City Population 

1 Sao Paulo 11,384,688 

2 Rio de Janeiro 6,292,483 

3 Salvador 2,780,167 

4 Brasilia 2,612,834 

5 Fortaleza 2,470,872 

6 Belo Horizonte 2,421,608 

7 Manaus 1,832,282 

8 Curitiba 1,804,438 

9 Recife 1,554,811 

10 Porto Alegre 1,439,941 

11 Belem 1,414,073 

12 Goiania 1,314,843 

13 Guarulhos 1,269,201 

14 Campinas 1,097,047 

15 Sao Luis 1,015,875 

16 Sao Goncalo 998,588 

17 Maceio 945,037 

18 Duque de Caxias 860,655 

19 Natal 816,39 

20 Nova Iguacu 812,116 

21 Teresina 810,6791 

22 Campo Grande 792,935 

23 Sao Bernardo do Campo 792,601 

24 Joao Pessoa 721,941 

25 Osasco 692,004 

26 Santo Andre 686,246 

27 Jaboatao dos Guararapes 660,396 

28 Soo Jose dos Campos 639,016 

29 Uberlandia 618,664 

30 Contagem 616,581 

31 Ribeirao Preto 605,768 

32 Sorocaba 598,818 

33 Feira de Santana 569,983 

34 Aracaju 566,741 

35 Cuiaba 555,092 

36 Juiz de Fora 524,744 

37 Joinville 520,189 

38 Londrina 515,595 

39 Ananindeua 486,143 
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40 Niteroi 485,986 

41 Belford Roxo 481,33 

42 Aparecida de Goiania 477,227 

43 Sao Joao de Meriti 462,43 

44 Campos dos Goytacazes 456,189 

45 Caxias do Sul 437,092 

46 Porto Velho 434,222 

47 Vila Velha 428,659 

48 Florianopolis 428,553 

49 Serra 427,622 

50 Maua 425,641 

51 Santos 424,635 

 

Table A4. The average population of the most populous Brazilian metropolitan areas (and “urban 

agglomerations”) from 2002 to 2019. 

Rank Metropolitan area Population 

1 Sao Paulo 20,136,062 

2 Rio de Janeiro 12,305,504 

3 Belo Horizonte 5,593,040 

4 Porto Alegre 4,147,724 

5 Brasilia 4,015,091 

6 Recife 3,832,479 

7 Fortaleza 3,778,207 

8 Salvador 3,708,305 

9 Curitiba 3,345,439 

10 Campinas 2,867,801 

11 Belem 2,319,885 

12 Vale do Paraiba-Litoral Norte 2,315,771 

13 Manaus 2,252,979 

14 Goiania 2,348,813 

15 Sorocaba 1,916,248 

16 Vitoria 1,752,142 

17 Baixada Santista 1,705,743 

18 Ribeirao Preto 1,531,931 

19 Sao Luiz 1,489,629 

20 Natal 1,441,807 

21 Piracicaba 1,364,692 

22 Norte-Nordeste Catarinense 1,245,245 

23 Maceio 1,203,398 

24 Joao Pessoa 1,166,235 

25 Teresina 1,122,175 

26 Florianopolis 1,032,434 

27 Londrina 1,019,096 

28 Vale do Rio Cuiaba 954,421 

29 Feira de Santana 867,61 
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30 Aracaju 842,863 

31 Serra Gaucha 740,592 

32 Maringa 728,172 

33 Vale do Aco 727,964 

34 Jundiai 709,223 

35 Petrolina-Juazeiro 707,27 

36 Vale do Itajai 700,422 

37 Franca 618,188 

38 Campina Grande 610,77 

39 Sul 593,69 

40 Cariri 568,528 

41 Agreste 558,205 

42 Carbonifera 553,636 

43 Foz do Itajai 540,842 

44 Macapa 524,154 

45 Contestado 507,898 

46 Cascavel 497,542 

47 Sobral 462,478 

48 Porto Velho 456,288 

49 Chapeco 439,07 

50 Palmas 405,406 

51 Toledo 359,618 

 

Table A5. Descriptive statistics, United States. 

 

 

 

 

 

 
 

Note: population entries are in thousands. 

Table A6. Descriptive statistics, Brazil. 

Note: population entries are in thousands. 

 

Appendix 3.2 
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In this analysis, we test the granular hypothesis by using GDP from the previous year 

(t  1) as the share for constructing the current year’s (t) granular residual. This approach 

aligns with Gabaix’s (2011) methodology, allowing comparison with population-based share 

analsysis. Although there is a strong GDP-population correlation (about 0.98 in the U.S. and 

0.96 in Brazil), the findings using GDP as a share show notable differences from those using 

population. To streamline our analysis, we focus on the U.S. metropolitan areas and Brazilian 

municipalities, where population share has shown the most significant results. 

In Table A7, the results for U.S. metropolitan areas indicate an increase in explanatory 

power compared to Table 6. However, the significance of the estimated coefficient for the 

granular residual is generally lower. This implies that in the U.S., using population as a 

weighting factor for grain size suggests large grains’ impact on GDP is not solely due to their 

larger GDP. Therefore, the population’s role in influencing the impact of large grains on the 

business cycle is significant. 

 
Table A7. Granular residual in U.S. metropolitan areas, calculated using GDP share. 

In Brazil, findings mirror those of the U.S. Table A8 shows that for larger sample sizes 

(n ≥ 10), using last year’s GDP share yields less explanatory power if compared with those in 

Table 7, with the granular residual’s coefficient becoming statistically nonsignificant at 5%. 

This reinforces the idea that large cities influence the business cycle not just via their GDP, 

but also through their population size and the geographical distribution of economic activity. 

 
Table A8. Granular residual in Brazilian municipalities, calculated using GDP share. 
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i 

 

 
 

In our analysis of both cases, using population to calculate the granular residual 

revealed significant insights. It showed that population density and economic activity have a 

broader impact on the business cycle than just GDP alone. 

 
Appendix 3.3 

 
In this appendix, we estimate Pareto exponents through maximum likelihood and 

compare the power law distribution to an exponential distribution, also derived using 

maximum likelihood. Following Clauset et al. (2009)’s methodology, we calculated parameter 

estimates using group population averages for the periods analyzed, as discussed in Section 2. 

The Pareto exponent is estimated using maximum likelihood, expressed as: 
 

 

 

 

 
 

Here,   ̂ is the estimated Pareto coefficient, n represents the number of observations, xmin   is 

the smallest observation’s value, and xi is the value of each observation. The estimated power 

law distribution function, denoted as P(x )  Cxˆ , constant C  ˆ 1 xˆ1
 . 

i i 

 

The exponential distribution we consider is denoted by 

min 

 

P(x )  Ce̂
xi  , which includes 

 

the normalization constant C  ̂e
̂xmin  .  Thus,  the  estimated  parameter ̂ determined via 

maximum likelihood is represented as: 
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Table A9 displays the calculated Pareto exponents for each of the four data subsets. 

 
Table A9. Estimates of Pareto exponents by maximum likelihood. 

Note: all exponents are significant at the 1% level. 

 
Note that estimates obtained via maximum likelihood significantly differ from those 

calculated using ordinary least squares, as shown in Table A10. However, the ratio of ordinary 

least squares to maximum likelihood estimates remains stable and similar across the four 

datasets. 

 
Table A10. Comparing Pareto exponent estimates: maximum likelihood vs. ordinary least squares. 

 

Note: all exponents are significant at the 1% level. 
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Now we test if the datasets follow an exponential distribution rather than a power law 

distribution. After confirming through the Jarque-Bera test that the data are not normally 

distributed, we consider the exponential distribution as an alternative. This choice is 

reasonable because the exponential distribution also accounts for large value occurrences. 

Parameter λ estimates are presented in Table A11. 

 
Table A11. Maximum likelihood estimates of parameter λ in the exponential distribution. 

 

 

 
The likelihood ratio test compares how well two distributions fit a specific data set. 

Table A12 presents the results of this test for our power law and exponential distributions. It 

reveals that only Brazilian metropolitan areas do not follow a power law distribution, 

explaining our rejection of the granular hypothesis for this dataset. 

Table A12. Likelihood ratio test R results: power law vs. exponential distribution. 

Note: Italics indicate data sets where the exponential distribution is more likely than the power law to describe 

the data. 
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4. Essay 3: Is the Brazilian labor market granular? 

 
Abstract 

This study explores the impact of large firms, often referred to as “big grains,” on hiring and firing cycles in the 

Brazilian labor market. We found strong support for the granular hypothesis. Our methodology involved 

analyzing the power-law distribution, granular residuals, and the granular size of the labor market. Key findings 

include the observation that firms exhibit a power-law distribution based on their workforce size, with large 

companies’ idiosyncratic shocks significantly influencing hiring and firing cycles. In particular, the service sector 

plays a substantial role in explaining these cycles, while manufacturing has limited explanatory power. We 

determined that the granular size of the Brazilian labor market consists of 15 firms engaged in public services, 

and private companies have a relatively minor impact on hiring and firing cycles. The policy implication here is 

that addressing periods of high unemployment in Brazil may be more effectively achieved by investing in public 

services rather than providing fiscal stimulus for manufacturing. This study contributes to the global body of 

evidence on labor market granularity and is compared with the existing research focused on Germany. We find 

that the Brazilian labor market is less granular than the German one. 

 

4.1 Introduction 

 

In 2023, the Brazilian government established a dedicated ministry to enhance the role 

of micro and small businesses in job creation, recognizing that these businesses contribute 

around 80% of job opportunities in Brazil. The question arises: Do these small businesses, 

rather than large corporations, drive the hiring and firing cycles in the Brazilian labor 

market? 

International evidence suggests that job turnover is primarily observed in large, well- 

established companies, which significantly affects fluctuations in unemployment rates 

(Davis et al., 1996). This phenomenon can be explained by the concept of "granularity" 

(Kovalenko et al., 2020). 

The granular hypothesis acknowledges the coexistence of a few major companies, or 

"grains," with numerous smaller ones, challenging the assumption that individual shocks 

from firms are diluted by the law of large numbers (Gabaix, 2011). This aligns with the 

observation of skewed firm size distributions, where shocks from disproportionately large 

firms persist. The concept of "granular residual," which captures idiosyncratic shocks 

weighted by size, allows us to quantify its impact on aggregate quantities through statistical 

methods like regressions and R2 statistics. It is crucial to calibrate for the optimal number of 

firms to avoid underestimating or exaggerating the granular residual (Blanco-Arroyo et al., 

2018). This study applies these ideas to investigate whether the Brazilian labor market 

exhibits granularity. 

Figure 1 depicts the cyclical nature of the Brazilian labor market in terms of formal 

job growth from 1996 to 2019, deviating from a linear trend. This raises the question: What 

factors contribute to this phenomenon? We consider three possibilities: 1) Cycles solely 
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result from aggregate shocks affecting the entire economy uniformly; 2) Cycles stem from 

idiosyncratic shocks to small businesses; and 3) Cycles arise from idiosyncratic shocks to 

major corporations. 

 

 

 

Figure 1. Formal job growth in Brazil in millions from 1996 to 2019. 

 

The first possibility suggests that in a market with evenly-sized companies, negative 

shocks to some firms would be offset by positive shocks in others. However, data from 

previous studies (Da Silva et al., 2018; Silva and Da Silva, 2020) indicates that Brazilian 

businesses follow a power-law distribution, where larger firms have a more significant impact 

on the business cycle. This supports the application of the granularity hypothesis in analyzing 

hiring and firing cycles in the Brazilian labor market, similar to the approach taken by 

Kovalenko et al. (2020) in their study of the German labor market. 

In this study, the authors examine whether specific sectors, such as industrial and 

service sectors, have a greater influence on hiring and firing cycles compared to the overall 

labor market. Additionally, they analyze the role of the labor market in private enterprises 

separately from public companies. The essay is organized as follows: firstly, the data and 

methodology used are provided; descriptive statistics are then presented; the results are 

reported; comparisons are made with previous studies; and finally, the essay concludes with 

concluding comments. 

 
4.2. Materials and methods 
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From 1996 to 2019, we obtained data on the total number of employees per company 

from the RAIS (Annual Social Information List) database and calculated the total numberof 

formal occupations in Brazil using the CAGED (General Register of Employed and 

Unemployed) database, both provided by the Brazilian Ministry of Labor. Unlike 

Kovalenko et al. (2021), we do not have quarterly statistics, so we do not need to accountfor 

seasonality. Our data is aggregated by CNPJ, the National Register of Legal Businesses, an 

identity number for businesses of taxation relevance, including firms, partnerships, and 

foundations. 

We applied the Gabaix and Ibragimov (2011) method to estimate coefficients andtest 

if employee numbers follow a power law. We used ordinary least squares to derive estimates 

with this equation: 

 

 

(1) 

where ranki represents the company’s position in the ranking, sorted from largest to 

smallest based on employeesi (the number of employees at the company i) and employeesm 

(the smallest number of employees among the companies in the sample). 

To investigate the granular hypothesis regarding the influence of large companies 
on hiring and firing cycles, we calculate the granular residual  t : 

 
 

 

 
Here, employeesit represents the number of employees at a specific firm i at time t, 

total employmentt is the total population employment at time t,   git   refers   to   the   growth 

rate of the number of employees at the largest firms in t, and gt is the labor market’s 
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overall formal employment growth rate in t. We then use ordinary least squares regressionto 

analyze the relationship between the growth rate of formal employment and the granular 

residual. 

Using a nonoptimal number of firms K in equation (2) can lead to an inaccurate 

estimation of a firm’s contribution to hiring and firing cycles. Blanco-Arroyo et al. (2018) 

suggest a method for finding the granular size K 
*
. This involves comparing the 

explanatory power of a firm’s granular residual by evaluating a weighted curve (the same 

equation (2)) against another curve with identical weights after making equation (2). 

The function C(L)’s “granular curve” is 

 

 

 

 

(3) 

 

 
Here, Q is an arbitrary number of firms. Our aim is to assess how R

2
 reacts to the 

gradual exclusion of the largest firms by increasing L. We want to see how the curve 

performs aswe replace the top L firms in the sample with the Q + 1, …, Q + L following 

firms. For each L value, we run Q regressions using the granular residual (the curve with 

weights) as the explanatory variable. C(L) represents the average R
2
 for these Q 

regressions. 

Furthemore, the equal-weight curve estimates the impact of shocks from equally- 

sized firms, expected to be minor. We anticipate observing a shift from the granular curve 

C(L) towards the equal-weight curve as we remove the L largest firms from the granular 

residual. The granular size K * corresponds to the L value where the curve C(L) intersects 

the equal-weight curve for the first time. 

To streamline the computation process and reduce the number of regressions to 

under 1,000, we start by assuming Q = 40. Then, we run regressions for the subset of firms 

L at intervals of ten (L = 0, 10, 20, and so on) until we observe the intersection of curves 

with and without weights. For each L value, we run regressions with variable K, 

incrementing by twenty up to 160 (i.e., K = 20, 40, ..., 160). When we identify a value ofK 

where C(L) falls below the R
2
 value obtained without weights, we calculate C(L) and run 

regressions for intermediate L values to pinpoint the granular size. 

The empirical model is defined as follows: 
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Gt  1  2t   t . (4) 

 
Here, Gt is the growth rate of the formal jobs in time period t, 1 and 2 are parameters 

estimated using ordinary least squares, as describeb in Gabaix (2011), where 1 represents 

the average value of the growth rate of the number of jobs relative to the granular residual, 

2 is the sensitivity of the growth rate to the granular residual, and t is the estimated 

error. The adjusted R
2
, calculated for this model, quantifies how well the granular 

residual explains hiring and firing cycles. 

 
 

4.3. Descriptive statistics 

 
 

Table 1 shows that as the sample size grows from 50 to 1,000 firms, the average 

numberof employees decreases over the period from 1996 to 2019. A positive asymmetry 

valuesuggests that the sample is skewed to the left, meaning that smaller enterprises are 

closer to the mean. Additionally, kurtosis values exceeding three indicate leptokurtosis. 

 
Table 1. Companies’ descriptive statistics in relation to the number of employees. 

 

 
We consider the Jarque-Bera test to reject the null hypothesis that the 

distributionof firms’ number of employees is Gaussian. In all cases, the test yields much 

higher values than the critical value of 5.99, as it follows a chi-square distribution with 

two degrees offreedom. 

Table 2 provides descriptive statistics for employee growth rates. The aggregate 

growth rates for the largest 50, 100, 200, and 500 enterprises are lower than that for the 

1,000 largest firms. This suggests that job growth during the period primarily occurred in 

smaller firms, as mentioned earlier. 

 
Table 2. Companies’ descriptive statistics in relation to the growth rates in the number of employees. 

Number of Growth Standard  

Asymmetry 
 

Kurtosis 
Jarque-Bera 

firms average deviation test 
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50 -0.0033 0.0333 0.08 3.38 0.17 

100 0.0001 0.0310 0.35 3.70 0.94 

200 0.0039 0.0294 0.35 3.53 0.72 

500 0.0093 0.0279 0.22 2.87 0.21 

1000 0.0296 0.0403 0.61 4.00 2.38 

 

We found no evidence to reject the hypothesis that growth rates follow a normal 

distribution at the 5% significance level when we look at the kurtosis values. This aligns 

with Dosi et al.’s (2019) assertion that while firm size distribution may follow a power 

law, the growth rates they experience should still conform to a normal distribution. 

 

 

4.4 Results 

4.4.1 Power Law 

 
 

To support the granular hypothesis, firm size (in terms of employee count) must 

follow a power-law distribution rather than a normal distribution (Gabaix, 2011). In a 

power-law distribution, larger firms are more abundant, leading to a slower tail decay. 

This implies that idiosyncratic shocks to these large grains play a more substantial role 

in explaining hiring and firing cycles, challenging the conventional idea that only 

aggregate shocks influence these cycles observed under a normal distribution. 

The Jarque-Bera test in Table 1 indicates that the normal distribution hypothesis 

for employee numbers in firms can be rejected. Meanwhile, the high R
2
 value in Table 3 

from equation (1) suggests that we cannot dismiss the possibility that firms follow a 

power-law distribution. 

 

 

 

 

Table 3. The power law for the firm size distribution in terms of employee count. 

 

Note: The estimates are significant at 1%. 

 

4.4.2 Granular residual 

 

Following Kovalenko et al. (2021), we use the Akaike information criterion to 

identify the number of lags needed for testing the granular hypothesis, with a maximum 

lag duration of two years. This figure is derived from Kovalenko et al.’s selection of six 



74  

lags, equivalent to a year and a half in their quarterly data. The results are presented in 

Table 4. 

 
Table 4. The number of lags selected according to the Akaike information criterion. 

 

When we exclude lags in the model, values decrease, suggesting that the impact 

of large grains on hiring and firing cycles is short-lived within the current period. 

Consequently, we employed the lag-free model for data analysis. 

Since we employed annual data, we refrained from seasonally adjusting the 

quarterly results. Table 5 provides a summary of the results from equation (4), where only 

the granular residual was used as a regressor. 

 

Table 5. Explanatory power of the granular residual. 

Notes: Italicized values indicate significance at the 1% level. When calculating the labor market percentage, 

the average from 1996 to 2019 is utilized. 

 

The relatively high adjusted R
2
 values support the validity of the granular 

hypothesis in the Brazilian labor market. In particular, the granular residual’s explanatory 

power surpasses the labor market’s firm representation percentage, highlighting the 

significant influence of idiosyncratic shocks from large firms on hiring and firing cycles. 

One intriguing finding is that manufacturing does not seem to drive employment 

trends in the Brazilian labor market. This is indicated by the non-significant granular 

residual and a negative adjusted R
2
. Several possible explanations include: 1) 

Manufacturing has a smaller share compared to other sectors; 2) The manufacturing 

workforce is shrinking (as shown in Figure 2); and 3) The largest employers in the 

Brazilian industrial sector are not big grains. For example, the top company that once 

ranked 20th in job creation in 1996 has now dropped to 68th place in 2019. 
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Figure 2. Manufacturing jobs as a percentage of total jobs. 

 

In Kovalenko et al. (2021), manufacturing’s explanatory power in the German 

labor market is weaker compared to other specifications, and the granular hypothesis was 

not disproven. However, a notable contrast arises: the top 100 German manufacturers 

account for 14.7% of jobs, whereas in Brazil, they represent only 1.5% of formal job 

positions. This indicates that German manufacturers are relatively larger grains than their 

Brazilian counterparts. The largest German company employed approximately 62,000 

individuals, whereas in Brazil, the largest company had 23,000 employees in 1997. It is 

important to note that our data are based on CNPJ registration, not establishments as in 

Kovalenko et al., suggesting that the actual difference may be even more substantial. 

 
4.4.3 Granular size 

 
Figure 3 shows that when K*=15, the wighted curve (equation (2)) crosses the equal- 

weight curve. The two curves move very near to each other after the crossing, indication 

that the explanatory power owing to the differing weights becomes gradually irrelevant. 

Figure 3. The granular size of the Brazilian labor market. 
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Note: The weighted curve (equation (2)) is represented by the red line, and the equal-weight curve is 

represented by the blue line. 

 
 

These 15 companies that define the granular size of the Brazilian job market are 

linked to the government. When we recalculate explanatory power using only private 

companies, the results are shown in Table 6. 

 
 

Table 6. Explanatory power of the granular residual when only private companies are considered. 

Notes: Italicized values indicate significance at the 5% level. When calculating the labor market percentage, 

the average from 1996 to 2019 is utilized. 

 

The coefficient for the granular residual is only statistically significant when the 

number of firms equals 100. Furthermore, the explanatory power is significantly lower 

compared to using all companies (as shown in Table 5). This suggests that the hiring and 

firing cycles in the Brazilian labor market are minimally influenced by idiosyncratic 

shocks from Brazilian private companies. 

This can be attributed to two factors. First, the private businesses in our sample 

are smaller in size compared to the public companies. The top CNPJ among public 

companies has over 400,000 employees, while among private enterprises, the leading 

CNPJ has approximately 20,000 employees. This difference is partially due to private 

corporations having multiple CNPJs for various activities or regions. 
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Second, the absolute value of the Pareto exponent for the distribution of private 

enterprises (2.4; Table 7) is notably higher than the exponent for the entire sample (1.6; 

Table 3). This is due to the smaller workforce in large private companies compared to the 

overall sample, resulting in larger grains being relatively smaller, a faster tail decay, and 

consequently, a decrease in explanatory power. 

 
Table 7. The power law for the firm size distribution in terms of employee count when only private 

companies are considered. 

Note: The estimates are significant at 1%. 

 

4.5. Discussion 

 
The study conducted by Carlsson et al. (2021) emphasizes the significant role of 

idiosyncratic shocks in labor market cycles, specifically analyzing Swedish firms' reactions 

to various shocks and their impact on workforce dynamics. Their findings indicate that 

firms often adjust their workforce through hiring and firing in response to these shocks, 

with larger firms and persistent shocks leading to more substantial changes. However, 

unlike our analysis, their study did not specifically explore the granular hypothesis, which 

explains how shocks in larger companies contribute to overall firing and hiring cycles in 

the labor market. 

Our findings in the Brazilian labor market align with the results of Kovalenko et 

al. (2020) in the German labor market, supporting the granular hypothesis. However, we 

observe that the explanatory power of the granular hypothesis diminishes when we focus 

solely on manufacturing or services. In particular, in our analysis, when we isolate 

manufacturing, the statistical significance of the granular residual is lost, suggesting that 

manufacturing does not account for hiring and firing cycles in Brazil. This may be 

attributed to the absence of large-scale grains within the Brazilian manufacturing sector. 

It is important to note that our study reveals lower adjusted R2 values for Brazil 

compared to Kovalenko et al.'s findings, indicating that the Brazilian labor market is less 

granular than the German labor market. Additionally, our focus on companies by CNPJ, 

rather than establishments, may further accentuate the differences between the labor 

markets of the two countries. 

One notable implication of our study is that manufacturing has a minimal impact 

on hiring and firing cycles in the Brazilian labor market, suggesting that job-protection 
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policies should not primarily target the manufacturing sector. This finding aligns with a 

study by Geracy et al. (2019), which found that tax policies aimed at stimulating the 

economy and job creation had limited influence on the labor market in Brazil. 

Furthermore, our research reveals that government-affiliated companies play a 

significant role in the Brazilian job market, indicating a dependency on government 

employment. This lower degree of labor market "fluidity" compared to economies driven 

by the private sector can hinder overall productivity growth and economic development 

(Davis and Haltiwanger, 2014). Additionally, the presence of numerous small and low- 

productivity firms can pose another obstacle to economic growth in Brazil (Firpo and 

Pieri, 2017). 

 
4.6. Conclusion 

 
 

According to our research on the Brazilian labor market, job turnover is mainly 

seen in large corporations, commonly known as big grains. This phenomenon can be 

measured in terms of granularity. Our study did not reject the granular hypothesis by 

showing that the labor market in Brazil is significantly affected by idiosyncratic shocks in 

big companies, leading to hiring and firing cycles. Additionally, the service sector has a 

more significant impact on these cycles compared to manufacturing. We found that the 

size of the labor market's granularity in Brazil is around 15 firms connected to public 

service provision. Furthermore, private companies have minimal influence on the hiring 

and firing cycles. Therefore, rather than providing fiscal stimulus for manufacturing, 

addressing high unemployment periods in Brazil can be more efficiently achieved by 

investing in public services (Author's last name, Year). 
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5. Final Considerations 

 
In our research, we conducted three tests of Gabaix's (2011) granular hypothesis, 

and in each case, we did not find evidence to reject it. 

In the first essay, we discovered that countries with a higher relative weight in 

international trade exert a larger impact on global repercussions than their trade share 

would suggest. Specifically, we identified eight major players, or "large grains," that 

account for most of the inflation spillovers. This implies that central banks in other 

countries should closely monitor these eight major players when formulating their 

monetary policies. In future research, it would be interesting to explore the hypothesis that 

economic growth from these "big grains" may be responsible for global economic cycles, 

and examine the granularity of global endogenous growth. 

The second essay explores the relationship between granularity and power laws, 

and proposes that large cities play a significant role in the economic cycle beyond their 

population size. We found that in the United States, the granular city size consists of three 

metropolitan areas, while in Brazil, it is equivalent to three municipalities. This research 

emphasizes the spatial component of granularity that has not been previously considered. 

To extend this study, it would be beneficial to incorporate indicators of economic 

complexity to further understand the impact of large agglomerations on economic cycles. 

Lastly, in the third essay, we focused on the distribution of power among 

companies based on their workforce size, observing that idiosyncratic shocks in large 

companies significantly influence hiring and firing cycles. The services sector was found 

to play a substantial role in explaining these cycles, whereas the manufacturing industry's 

explanatory power was limited. We determined that the granular size of the Brazilian labor 

market consists of 15 companies involved in public services, with private companies 

having a relatively smaller impact on hiring and firing patterns. This research could be 

extended to investigate the granular effects of large firms on technological innovation, 

such as through patent analysis. 
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7. Appendix 

 
 

This appendix aims to use simplified models to gain insights into the relationship 

between grains and their shocks, as well as the explanatory power of the granular residue 

in relation to economic cycles. 

 

In Case 1, we make the following assumptions: 

 
 

1. The economy as a whole is initially normalized to 1. 

2. There is a large company that holds (1-α)% of the market, where 0<α<1. 

3. There are n small and equal companies that each hold α/n of the market. 

4. The large company's production is determined by the following equation: 
 

 

 

 

 

where: 

θt = is the aggregate shock in percentage terms with expectation 0 and variance σθ
2. 

εt = is the idiosyncratic shock in percentage terms in the large firm with expectation 0 and variance 
2 

ε 

Like this, 

 

 
Small companies: 

 

 
 

 

where: 

γi,t  = is the idiosyncratic shock in percentage terms in small firm i with mean 0 and 

variance (the same for all companies) σγ
2 . 

The aggregate of the economy (yt) is given by the sum of the production of the 

large company with the sum of the production of the n small companies, therefore we 

have: 

σ 
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Since the expectation of γi is zero, we will assume that n is large enough for us to consider 

𝑛 
𝑖=1 𝛾𝑖, 𝑡 equal to zero (as argued in Lucas (1977) and Gabaix (2011)) , so we will have that the 

expected output of the economy will be E(yt) = 1. 

And the variance: 
 

 
 

 

 
When we test the granular hypothesis, we generally use the “granular residual” (GR) as an 

explanatory variable. For the case with only one “large grain” that we are analyzing, it would be 

calculated as: 

 
GR = (share).(large firm growth rate – economy growth rate). 

 
 

Assuming that the initial values for the large firm are (1-α) and for the economy as a whole 

are 1, we have: 

 
 

 

 
 

 
 

Replacing the growth rate of the large company and the growth rate of the economy in the 

granular residual (for the large company) we have: 

 
 

 
 

In testing the granular hypothesis, we performed Ordinary Least Squares (OLS) regression of yt in 

relation to GR and analyzed the explanatory power (R
2
). Note that R

2
 is given by the square of the 

correlation coefficient between yt and GR, in this case we have: 

 
 

∑ 
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in which we observed that 𝜕𝑅
2

 

𝜕𝐶𝑜𝑣(𝜃𝑡,𝗌𝑡) 
> 0 ;  

𝜕𝑅2

 

𝜕σ2
𝗌 

< 0; 𝑎𝑠 (𝐶𝑜𝑣(𝜃𝑡, 𝜀𝑡))2 < 𝜎2𝜃 σ2
𝗌
 , 

𝜕𝑅2       

>
 

𝜕(1−𝛼) 

0;    𝑎𝑛𝑑    
𝜕𝑅2

 

𝜕σ2
𝜃 

< 0 . 

 

 

From the analysis of R
2
 we can infer that: 

 
 

i) 
𝜕𝑅2 > 0, therefore the higher Cov(θ , ε ), the greater the explanatory power of the 

𝜕𝐶𝑜𝑣(𝜃𝑡,𝗌𝑡) 
t t

 

Granular Residual. In this way, when we add a grain to the Granular Residual whose errors are 

more correlated with θt, the tendency is for the explanatory power of the residue to increase. On the 

other hand, if Cov(θt, εt) decreases, it is possible (ignoring changes in σ2𝗌 and if Cov(θt εt) 

decreases, dominate the effect of the increase in (1-α)) in which If R
2
 decreases, in this case, we 

would be “contaminating” the residue with a grain that removes explanatory power. 

 

ii) 
𝜕𝑅2

 

𝜕σ2𝗌 
< 0, therefore, if we add grains with a variance greater than that of the residual to 

the residual, it is possible that the explanatory power will decrease. In some circumstances 

in which we are faced with grains whose growth rates fluctuated sharply (for example, in 

the essay on the granularity of inflation spillovers, countries that were in acute inflationary 

processes and had an abrupt stabilization, such as Brazil or Russia, had a 

disproportionately large granular residue for some years, which would imply a shock with 

very high variance) we observed that the addition of these grains in the aggregate residue 

ended up reducing its explanatory power. 

 
iii) Notice that (𝐶𝑜𝑣(𝜃𝑡, 𝜀𝑡))2 ≤ 𝜎2𝜃 σ2𝗌, then (𝐶𝑜𝑣(𝜃𝑡, 𝜀𝑡))2/𝜎2𝜃 σ2𝗌) would be the 

square of the correlation coefficient between θt and εt and this is, by construction, between 

0 and 1. This causes the denominator in R
2
 to be greater than the numerator and 

consequently 𝜕𝑅
2

 

𝜕(1−𝛼) 

 

> 0. Note that the “maximum” impact of increasing share occurs 

when Cov (θt, εt) = 0, which indicates that when the aggregate and idiosyncratic shocks are 

less correlated, the granular size is probably greater in a given scenario, as share gains 

“protagonism” in determining R
2
. 

 

iv)  𝜕𝑅
2

 

𝜕σ2
𝜃 

< 0, indicates that the greater the variance of the aggregate shock, the lower the 

explanatory power of the granular residual. This makes sense, because the greater the 
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𝑖=1 

> ( 

variance of the aggregate shock, the smaller the relative size of the idiosyncratic shock and 

consequently its explanatory power for variations in the growth rate of yt. 

 
v) If we imagine “perfectly idiosyncratic” shocks, that is, θt and εt are independentes (Cov (θt, εt) = 

0), and εt i.i.d. and use the reference value R
2
> large firm share = (1-α) we have σ2 

𝜎2
𝜃

 
 

𝗌 𝛼(1−𝛼) 

 

). If 

α=0,5 (which maximizes α(1- α)), the explanatory power of the granular residue will be greater 

than the share only if σ2𝗌> 4 𝜎2𝜃 , a result with a strong indication that large grains explain a large 

part of economic cycles. 

 
vi) if only the aggregate shocks mattered (σ2𝗌 = 0) which would imply that Cov (θt, εt) = 0 

(since εt would be constant) the estimated R
2
 would be 0. Therefore, in order not to reject 

the Granular Hypothesis (i.e., that idiosyncratic shocks are important to explain cycles) is 

sufficient for R
2
 to be sufficiently greater than zero. 

 
Case 2 

 
 

Assumptions: 

- two large companies (yg1 and yg2) of the same size that together represent (1-α) the 

market: 

 
 

 
and 

 

 

 

Both with “perfectly idiosyncratic” shocks (Cov (θt,ε1t) = Cov (θt,ε2t)=0), but with shocks that are 

not independent of each other (Cov (ε1t,ε2t) ≠ 0). We consider that the two companies may have 

idiosyncratic shocks of different variances, that is, Var(ε1t) ≠ Var (ε2t). 

Small businesses are the same as in Case 1. The economy as a whole is given by: 
 
 

yt = 1 + θt + ((1- α)/2)( ε1t + ε2t ) + (α/n) . ∑𝑛 𝛾𝑖, 𝑡, 
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again, we will consider that n is large enough so that we can disregard shocks from small 

companies. 

Doing the necessary algebra, we conclude that the explanatory power of the granular 

residual calculated using the two large firms in relation to yt is given by: 

 

 

 

 
, 

 
 

where σ2 = Var(ε1t) and σ2 = Var (ε2t). 
1 2 

If σ2 = σ2 = σ2𝗌, R
2
 becomes: 

1 2 

 

 

. 

 
 

Note that, if σ2 = σ2𝗌 > σ2 (and multiplying 𝑅2( σ2𝗌)) by 2/2), then: 
1 2 

 

 

. 

 
 

Based on our observations, we have come to realize the following insights: 

i) R2
 is positively correlated with Cov(ε1t, ε2t). This means that adding grains to the 

granular residual whose idiosyncratic shocks are positively correlated with the existing 

shocks in the residue (but not correlated with the aggregate shock) increases the 

explanatory power of the residue in relation to yt. 

ii) If the added grain has a lower variance than the variance of the granular residue, 

it has the potential to reduce the explanatory power of the residue. However, when another 

grain is added, it also increases the "share" represented by the granular residue. The net 

effect on the explanatory power depends on the magnitudes involved. 

 
Conclusion 

 
 

When a q+1-th grain is added to a granular residue calculated from q grains, several 

phenomena occur with R2: 
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i) The share of the Granular Residual will necessarily increase, which can enhance 

the explanatory power. 

ii) However, if the added grain has a lower variance than the residual and its 

idiosyncratic shocks are poorly correlated with the existing shocks in the residue, or it is 

less correlated with θ, then R
2
 tends to decrease. This negative effect can outweigh the 

positive effect of increasing the share, resulting in a decrease in explanatory power. We 

refer to this as the contamination of the Granular Residue by the additional grain. 

iii) Furthermore, if the added grain has a negative Cov(ε1t, ε2t) (a negative 

covariance between idiosyncratic shocks) and is of significant magnitude, it can abruptly 

reduce explanatory power. In cases where some grains exhibit aggressive oscillations and 

are somewhat disconnected from other agents, the increase in their influence tends to bring 

R
2
 close to zero. This phenomenon was observed in the context of studying inflation, 

where countries with very high inflation rates had to be excluded from the analysis, such 

as Russia and Brazil. 
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