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RESUMO

Sejam M um monoide, ¥ uma categoria com pullbacks e X um objeto de €. Nés
introduzimos os conceitos de agao parcial e acao parcial forte de M em X e estudamos a
questao de sua globalizagdo. Se uma agao parcial possui uma reflexdo na subcategoria de
acoes globais, entao nés reduzimos o problema a verificagao de que um certo diagrama
é um pullback em % . Assim, nés damos uma construcao de uma tal reflexdo em termos
de um colimite de um certo funtor com valores em % . Nos especificamos esta construgao
para o caso de categorias que admitem certos coprodutos e coequalizadores. Nos aplicamos

estes resultados nas categorias de conjuntos, espagos topoldgicos e algebras.



RESUMO EXPANDIDO

Palavras Chave: acao parcial, monoide, categoria com pullbacks, globalizacao,

reflexao

INTRODUCAO

Uma agao parcial de grupo é uma forma mais fraca de uma agao (global) de grupo,
em que os elementos do grupo agem apenas em partes de um objeto. O conceito de agao
parcial de grupo foi introduzido por Exel no estudo de certas C*-algebras em [8], e desde
entao foi explorado em diversos outros contextos.

Uma grande quantidade de exemplos de ag¢des parciais de grupo provém de
restricoes de agoes globais a subconjuntos apropriados. Assim, um problema bastante
estudado é o de determinar sob que condi¢oes uma dada acao parcial é a restricio de uma
acao global, a qual, neste caso, ¢ dita uma globalizacao da agao parcial. Esta questao foi
inicialmente abordada por Abadie em [1] no caso de agbes parciais de um grupo topoldgico
em espagos topologicos e C*-algebras.

Agoes parciais de monoides foram introduzidas por Megrelishvili e Schroder em
[17], onde verificam que as acoes parciais de monoides em conjuntos e espagos topolégicos
sao globalizaveis. No artigo [11], Hollings introduz uma defini¢do de agao parcial de
monoide que é mais fraca que a de [17], e mostra que as chamadas agoes parciais fortes
(que correspondem as agoes parciais de [17]) sdo exatamente as agoes parciais que possuem
uma globalizacao.

Hu e Vercruysse em [12] definiram o conceito de uma (co)agao parcial de uma
(co)algebra em uma categoria monoidal com pullbacks em um objeto da mesma, chamada
de “geometric partial (co)module”. A questao da globalizagao de tais agoes parciais foi
posteriormente estudada por Saracco e Vercruysse em [18], em que obtiveram condigoes
necessarias e suficientes em termos de equalizadores e pushouts para que um “geometric
partial comodule” seja globalizavel.

Apesar de os “geometric partial (co)comodules” abrangerem diversos conceitos
de agoes parciais vistos na literatura, como ag¢oes parciais de monoides topoldgicos em
espacos topoldgicos, coagoes parciais de dlgebras de Hopf em dlgebras e (co)agdes parciais
de algebras de Hopf em espacos vetoriais, ha certos conceitos de acao parcial que até
entdo nao aparentam ser cobertos por esta teoria, como ac¢oes parciais de grupos em anéis,

algebras, C*-algebras e semigrupos.



OBJETIVOS

O objetivo principal deste trabalho ¢ introduzir uma forma unificada de se estudar
diversos tipos acoes parciais de monoides e grupos vistos na literatura, por meio da
definigao de agbes parciais (fortes) de monoides em objetos de categorias com pullbacks.

Além disto, também objetivamos oferecer algumas respostas para a questao da
globalizacao de tais agoes parciais, dando condi¢bes para que uma dada acao parcial
neste sentido possua uma globaliza¢ao (universal), e exibir algumas aplica¢oes para estes
resultados em certas categorias, observando também as relagbes com os resultados de

globalizagao ja encontrados na literatura.

METODOLOGIA

Pesquisa bibliografica por meio do estudo de artigos e outros tipos de trabalhos
académicos relacionados ao tema, além de discussoes frequentes sobre o trabalho com os

orientadores e outros pesquisadores.

RESULTADOS OBTIDOS

Inspirados pelo [12, Lema 1.7], verificamos a relagdo entre agoes parciais (fortes)
de monoides em conjuntos e morfismos parciais na categoria de conjuntos por meio de
uma certa correspondéncia.

Com base nesta correspondéncia, para M um monoide, ¢ uma categoria e X um
objeto de €, definimos dados de agdo parcial, agcoes globais, agoes parciais e acoes parciais
fortes de M em X. Definimos uma noc¢ao de morfismo entre estes conceitos, bem como a
categoria formada pelos mesmos. Estudamos as propriedades de uma agao parcial forte no
caso em que o monoide é um grupo.

A partir de uma agao global § de M em um objeto Y de € e um monomorfismo
t: X =Y, construimos uma acao parcial forte o de M em X, chamada a restricio de 3 a
X via o monomorfismo ¢. Com isto, definimos os conceitos de globalizacdo e globalizacao
universal de um dado de agao parcial. Para um dado de agao parcial o que possui uma
reflexdao na categoria M —Acty, formada pelas agoes globais de M em objetos de €, no
Teorema 5.2.5 obtivemos condi¢oes necesséarias e suficientes em termos de pullbacks para
que « possua uma globalizacao (universal).

No Teorema 5.2.15 construimos uma reflexdao de o em M —Acty em termos
de um colimite de um certo funtor com valores em %. Especificamos este resultado
no Corolario 5.2.19 para encontrar uma tal construgdo em termos de coprodutos e um

coequalizador em % . Se € possui tais coprodutos, no Teorema 5.2.26 exibimos condig¢oes



necessarias e suficientes para que a possua uma tal reflexdo em termos de um coequalizador
em M—Acty.

Observamos que na categoria de conjuntos estes resultados recuperam os resultados
de globalizacao de [11]. Descrevemos as agoes parciais globalizaveis na categoria de espagos
topoldgicos. Estudamos as agoes parciais de grupos na categoria de algebras e exploramos

as conexoes das globalizagoes universal com as agoes envolventes de [7].

CONSIDERACOES FINAIS

Este trabalho proporciona uma forma unificada de se estudar diversos tipos agoes
parciais de monoides e grupos vistos na literatura. Os principais resultados obtidos sao
os que dao uma constru¢ao de uma reflexao de uma acao parcial na categoria de agoes
globais, a qual nos permite discernir em termos de pullbacks quando a acao parcial em
questao possui uma globalizagao (universal) ou nao. Assim, este trabalho contribui com

uma forma unificada de estudar globalizagoes de agoes parciais em diversos contextos.



ABSTRACT

Let M be a monoid, € a category with pullbacks and X an object of €. We
introduce the notions of partial action and strong partial action of M on X and study the
question of their globalization. If a partial action admits a reflection in the subcategory of
global actions, then we reduce the problem to the verification that a certain diagram is a
pullback in %. We then give a construction of such a reflection in terms of a colimit of a
certain functor with values in 4. We specify this construction to the case of categories
admitting certain coproducts and coequalizers. We apply these results to the categories of

sets, topological spaces and algebras.
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1 INTRODUCTION

A partial group action is a generalization of a (global) group action that is
concerned with symmetries of parts of an object, rather than its whole. This concept was
introduced by Exel [8] in order to study certain C*-algebras as crossed products by partial
actions, and were since explored in many other settings. We refer the reader to the survey
papers [6, 2] containing an extensive literature on the subject.

Plenty of examples of partial group actions arise from the restriction of a global
action to an appropriate subset, in which case the global action is called a globalization
or enveloping action of the partial action. The problem whether or not a partial group
action has a globalization was first addressed by Abadie in the study of partial actions of
a topological group on topological spaces and C*-algebras in [1], where the author shows
that the former are always globalizable and finds conditions for the latter to be globalizable
in the commutative case.

In the setting of partial group actions on algebras, Dokuchaev and Exel showed
in [7] that if A is a unital (associative) algebra, then a partial group action on A has an
enveloping action if and only if each ideal associated to the partial action is unital. In this
paper, the authors also considered crossed products by partial actions on algebras, where,
unlike in the C*-algebraic setting, the associativity of a crossed product is not automatic,
and used them to relate partial actions with partial representations.

Partial monoid actions were introduced by Megrelishvili and Schroder in [17].
They show that the partial monoid actions on sets and topological spaces are globalizable,
and that the latter globalization is well behaved when the partial action is confluent.
In [11], Hollings introduces a weaker definition of a partial monoid action on a set and
shows that the strong partial actions (which correspond to the partial actions of [17]) are
precisely the globalizable ones.

In [12], Hu and Vercruysse introduced the concept of a partial (co)action of a
(co)algebra in a monoidal category with pullbacks, called a geometric partial (co)module,
in order to describe partial actions of algebraic groups from a Hopf-algebraic point of view.
This allowed an unified approach to several kinds of partial actions, such as partial actions
of topological monoids on topological spaces, partial coactions of Hopf algebras on algebras
and partial (co)actions of Hopf algebras on vector spaces. The question of the globalization
of geometric partial comodules was afterwards tackled by Saracco and Vercruysse in [18],
where they obtain necessary and sufficient conditions in terms of equalizers and pushouts
for such comodules to be globalizable.

The general theory of [12], however, does not seem to encompass certain concepts

of partial actions that appear in the literature, such as partial group actions on rings,
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algebras, C*-algebras and semigroups.

In this work we propose a parallel unified approach to partial actions that covers
these and many other kinds of partial actions of groups and monoids, by defining the
concept of a partial action of a monoid on an object in a category with pullbacks. Observe
that we do not assume any monoidal structure on the category under consideration, any
relation between the category and the monoid or any extra structure on the monoid.

We begin this thesis by briefly recalling in Chapter 2 basic notions and results,
and fixing some notations that will be used throughout this work. We recall the definitions
of categories, functors, natural transformations, (co)limits, pullbacks, (co)equalizers and
(co)products and also review the elementary theory of inverse semigroups.

In Chapter 3, we give a more detailed introduction of spans and partial morphisms
in a category ¢, along with their corresponding categories span, and par,. We introduce
restriction and inverse categories and verify that par, has an interesting restriction
structure that makes it a restriction category.

In Chapter 4 we introduce partial and strong partial monoid actions on sets in
terms of partial action data, and describe their connection to partial morphisms through
a correspondence similar to [12, Lemma 1.7]. This serves as an inspiration to generalize
the notions of partial action data, as well as global, partial and strong partial actions, to
the context of a monoid acting on an object in a category with pullbacks. We also define
morphisms between such partial action data and the corresponding categories that come
with this notion. At the end of this chapter we give a description of the strong partial
actions in the case where the monoid is a group.

The question of the globalization of these partial actions is tackled in Chapter 5.
Given [ a global action of a monoid M on an object Y in a category ¥ and t : X — Y a
monomorphism in %, we define the notion of a restriction a of g to X via ¢ and prove
that it is a strong partial action of M on X. In this situation, we say that (3,¢) is a
globalization of cv. We further say that (3, ) is a universal globalization of « if it satisfies a
certain universal property among the globalizations of «. Unlike [18], we do not require the
morphism ¢ : @« — 3 to be a reflection of « in the category M —Acty of global actions of M
on objects of € (see Example 6.3.10 for an example of a partial action that has a universal
globalization whose ¢ is not a reflection), and we also observe that not every strong partial
action has a globalization (see Example 6.2.9). However, when such a reflection exists,
Theorem 5.2.5 gives necessary and sufficient conditions for « to have a (universal and
otherwise) globalization in terms of pullback diagrams in ¢ that resemble (the dual of)
the pushout from [18, Theorem 3.5 (II)]. In the main results of this work, we describe a
construction of a reflection of o in M —Act4 in terms of a colimit of a certain functor
with values in € (see Theorem 5.2.15) and in terms of certain coproducts and a certain
coequalizer (see Corollary 5.2.19). If € admits such coproducts, we show in Theorem 5.2.26

that the existence of a reflection of a in M —Acty is equivalent to the existence of a
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coequalizer of a certain pair of morphisms in M —Acty, giving us a condition similar to
(the dual of) [18, Theorem 3.5 (I)]

We apply our general results to certain categories in Chapter 6. We illustrate
how one recovers Hollings’s results on the globalization of strong partial actions on sets
by applying our technique to ¥ = Set. We study the partial actions on objects in the
category of topological spaces and classify the globalizable ones. Finally, we describe the
connection between the universal globalizations and the enveloping actions of [7], showing
in Proposition 6.3.9 that, in the unital case, the enveloping action of a partial group action
on an algebra is a universal globalization of the partial action on an object of a certain

subcategory of the category of K-algebras.
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2 PRELIMINARIES

In this chapter we introduce notations and recall basic notions of category theory,
including those of reflections, functors, natural transformations, (co)limits, pullbacks,
(co)equalizers and (co)products. In the last section of this chapter we also review the basic

theory of inverse semigroups.

2.1 CATEGORIES, FUNCTORS AND NATURAL TRANSFORMA-
TIONS

Definition 2.1.1. A category % consists of the following data.
(1) A class' of objects denoted by Ob(€) or simply by % if there is no confusion.

(2) For each X,Y € ¢ a class Homg(X,Y') of morphisms from X to Y. We write f :
X — Y tomean f € Homg(X,Y'). We require that Home (X, Y)NHomg (X', Y') =0
if (X,Y) % (X', Y).

(3) For each X,Y,Z € € a map
oxyz : Homg (Y, Z) x Homg(X,Y) — Homg (X, Z),

called a composition of €. We denote oxy (g, f) by go f.
This data is required to satisfy the following properties.

(i) For all X € € there exists a morphism idy € End(X), called the identity morphism
of X, such that
Joidy=f=idyof

forall f: X =Y.

(ii) The composition of € is associative. That is, for all f : X - Y, g:Y — Z and
h: Z — W we have

(hog)of=ho(gof)

In a category ¥, for each X € % the set Homy (X, X) is a monoid under the
composition composition, called the monoid of endomorphisms of X, and we denote
it by Endy(X). Given f € Homy(X,Y), the domain of f is defined to be the object X

1

Many interesting collections of objects are too big to be sets, and are, rather, proper classes [13].
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and is denoted by dom f = X, and the codomain of f is defined to be the object Y and
is denoted by cdm f =Y.

There are several examples of categories, such as

o Set, the category whose objects are the sets, the morphisms are the maps between

the sets and the composition is given by the usual composition of maps;

e Sem, the category whose objects are the semigroups, the morphisms are semi-
group homomorphisms between the semigroups and the composition is the usual

composition of maps;
e Mon, the category formed by monoids and monoid homomorphisms;
e Grp, the category formed by groups and group homomorphisms;
o Top, the category formed by topological spaces and continuous maps;
o Poset, the category formed by partial ordered sets and order-preserving maps;
e Ring, the category formed by rings and ring homomorphisms;
e Vectyg, the category formed by vector spaces over a field K and linear maps;

o Algy, the category formed by (associative, not necessarily unital) algebras over a

field K and algebra homomorphisms;
« C’-Alg, the category formed by the C*-algebras and *-homomorphisms;

o given (X, <) a partially-ordered set, there is a category ¥ whose objects are the
elements of X, where there is a (unique) morphism from z to y when z < y and the

composition is given by the transitivity of <;

« given GG a group, there is a category, also denoted by GG, with a single object *, where

Homg (%, %) = G and the composition h o g is given by the product h - g in G.
Definition 2.1.2. A category % is said to be small if the class of objects of € is a set.

Definition 2.1.3. A category % is said to be locally small if the class of morphisms

between any two objects of € is a set.

Throughout this work, we will always assume a category % to be locally small,

unless stated otherwise.

Definition 2.1.4. Let € be a category. A subcategory of ¢ is a category 2 whose class
of objects is contained in the class of objects of ¥ and such that for all XY € & we have
Homgy(X,Y) C Homy(X,Y).

If Homg(X,Y) = Homg (X, Y) for all X,Y € €, we say that Z is a full subcate-
gory of €.
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Definition 2.1.5. Let € be a category, & a subcategory of ¥ and X € €. A reflection
of X in & (or a Z-reflection of X) is a morphism 7 : X — Y in ¢ with Y € 2 such that
for any f € Homy (X, Z) with Z € 2 there is a unique f’ € Homg (Y, Z) such that the

following diagram commutes.

X Y
N
A

In this situation, we say that X has a reflection in 2.
Definition 2.1.6. Let & be a category.

e A morphism f € Homg(X,Y) is a monomorphism if for all g, h € Homeg (W, X)
we have
feg=foh = g=h

o A morphism f € Hom¢(X,Y) is an epimorphism if for all g,h € Hom¢ (Y, Z) we
have
gof=hof = g=h

e A morphism ¢ € Homg(X,Y) is an isomorphism if there exists a morphism
¥ € Homg (Y, X) such that

wO@:idX and gOOQﬂ:Z'dy.

In this situation, we say that v is an inverse of .
Remark 2.1.7. The inverse of an isomorphism ¢ is unique, and is denoted by ¢!

Example 2.1.8. In Set, the monomorphisms are precisely the injective maps, the epi-

morphisms the surjective maps and the isomorphisms the bijective maps.

Definition 2.1.9. Let % be a category and Z € ¥. We say that two monomorphisms
f: X — Zand g:Y — Z are equivalent if there exists an isomorphism ¢ : X — Y such

that the following diagram commutes.

The equivalence classes formed by this relation on the class of monomorphisms

with codomain Z are said to be subobjects of Z.

Definition 2.1.10. Let € and 2 be categories. A (covariant) functor F' from % to 2,
denoted by F': € — &, consists of the following data.



Chapter 2. Preliminaries 18

(1) A map F from the class of objects of € to the class of objects of Z.
(2) For X,Y € €, amap F : Homg(X,Y) — Homgy(F(X), F(Y)).
This data is required to satisfy the following properties.

(i) For all X € €,
Flidy) = idpx).

(ii) For all f € Hom¢(X,Y) and g € Homy (Y, Z2),
F(go f)=F(g)o F(f).

Definition 2.1.11. A functor F': ¥ — & is said to be faithful if for all XY € € the
map F': Homy (X, Y) — Homgy (F(X), F(Y)) is injective.

There are also plenty of examples of functors between categories.

« Let ¥ € {Set,Sem, Mon, Grp, Top, Poset, Ring, Vecty, Algy, C"-Alg}. Then
there is a functor U : ¥ — Set, called a forgetful functor, where U(X) is the
underlying set of X for all X € € and U(f) = f for all f € Homg(X,Y).

o There are other kinds of forgetful functors that do not go to Set by forgetting less
structure. For example, there are forgetful functors from Grp to Mon, from Mon

to Sem, from Grp to Sem, from C*-Alg to Algy, among many others.

o Let € be any category. There is a functor idy : € — €, called the identity functor
of €, where idy(X) = X for all X € € and idg(f) = f for all f € Homg(X,Y).

o Let & be any category and € a subcategory of Z. Then there is a functor F': ¢ — &,
called the inclusion functor, where F'(X) = X for all X € € and F(f) = f for all
f € Homy (X, Y).

e Let GG be a group and « an action of G on a set X. Then « can be seen as a functor
a: G — Set, where a(x) = X and a(g) is the map from X to X given by the action
of g on X, for all g € G.

o There is a functor from Set to Grp that sends a set X to the free group F(X)
generated by X and a map f : X — Y to the unique map F(f) : F(X) — F(Y)
that restricts to f on the generators of F'(X).

Definition 2.1.12. Let F,G : € — Z be functors. A natural transformation n from F
to G, which we denote by 1 : F — G, is a family {F(X) ™ G(X): X € €} of morphisms
in & such that for all f € Homg(X,Y') the following diagram commutes.
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2.2 LIMITS AND COLIMITS

Definition 2.2.1. Let ¥ and Z be categories, and X € %. We define the functor
A(X) : € — 2, called a constant functor, that maps all objects in € to X and all

morphisms in € to idy.

Definition 2.2.2. Let I and & be categories (the former is called an index category), and
F: I — € a functor.

« A cone to F is a natural transformation 7 : A(X) — F for some X € €.
e A cocone to F' is a natural transformation n : ' — A(X) for some X € ¥.

o A limit of F'is a cone nn : A(X) — F such that for all cones £ : A(Y) — F there
exists a unique morphism & € Homg (Y, X) such that the diagram

&i
—
%

~

F(i)
¢

—

S

commutes for all 7 € I.

e A colimit of F' is a cocone 1 : F' — A(X) such that for all cocones & : F' — A(Y')
there exists a unique morphism & € Homg (X,Y) such that the diagram

F(i)

~

&-l

—

&
—

>

commutes for all 7 € I.

Definition 2.2.3. A category % is said to be (co)complete if every functor from a small

category to € has a (co)limit.

There are some interesting special cases of limits and colimits of functors that we

are going to illustrate now.
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2.2.1 PULLBACKS

Definition 2.2.4. Let € be a category, f € Homg(X,Z) and ¢ € Homg (Y, Z). A
pullback of f and g is a pair of morphisms p; : P — X and ps : P — Y such that

(1) the diagram

p
2N

X Y (2.1)
N, A

commutes;

(2) whenever ¢; : Q@ — X and ¢ : Q — Y are morphisms such that the diagram

commutes, there exists a unique morphism ¢ : () — P such that the following

diagram commutes.

q2

In this situation, we say that diagram (2.1) is a pullback diagram, a pullback

square or simply a pullback.

Remark 2.2.5. Let € be a category and f: X — Z and g : Y — Z morphisms in %.
Consider the category I whose class of objects is the set {1,2,3} and the only nontrivial
morphisms in I are 13 : 1 — 3 and o3 : 2 — 3. Then a pullback of f and g can be seen
as a limit of the functor F : I — € where F(p13) = f and F(pa3) = g, and vice-versa.

Definition 2.2.6. Let % be a category. If every pair of morphisms in % has a pullback,
we will say that € is a category with pullbacks.
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Example 2.2.7. Let f: X — Z and g : Y — Z be morphisms in Set. Then the maps
p1: P— X and py : P — Y form a pullback of f and g, where

P={(z,y) € X xY: f(z) = g(y)} (2.2)

and p; and ps are given by p;(z,y) = z and ps(x,y) =y, for all (z,y) € P.

Let ¢ € {Set, Sem, Mon, Grp, Top, Poset, Ring, Vecty, Alg,, C*-Alg}. If the
maps f and g are morphisms in %, then the set P, as defined in (2.2), naturally has
additional structure that makes it an object of ¢ and the maps p; and p; morphisms in
¢ that form a pullback of f and ¢ in €. Thus, € is a category with pullbacks.

Example 2.2.8. Let (X, <) be a partially-ordered set and x,y, z € X such that x,y < z.
Let € be the category associated to (X, <), f the unique morphism from z to z in ¥ and
¢ the unique morphisms from y to z in €.

Consider the set A = {a € X : a < z and a < y}. Observe that, given a € X,
there exists a morphism ¢? from a to x and a morphism /¥ from a to y if and only if a € A.

In this situation, the morphisms (¥ and ¢ are such that
fow=go0u,

since there is only one morphism in Homg(a, 2).
Thus, a pullback of f and g is precisely a maximum element p of A along with
the morphisms ¢ : p — z and ) : p — y in €.

In particular, if (X, <) is a meet-semilattice, € is a category with pullbacks.

Example 2.2.9. Let X,Y € Set, f : X — Y a map and A C Y, with corresponding

inclusion map ¢. Then the diagram

f7H(4)

X/ \fAA
RN

is a pullback, where 7 is the inclusion of f~1(A) into X and f is given by

v
Y

for all z € f1(A).

For our purposes, requiring a category to have pullbacks is a condition that is
stronger than necessary, and excludes a category we are going to explore later. Hence, we

introduce the following definition, whose nomenclature is inspired by Example 2.2.9.
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Definition 2.2.10. Let % be a category. If every pair of morphisms in ¢ that includes a

monomorphism has a pullback, we will say that € is a category with inverse images.

The following is the previously mentioned example of a category with inverse

images that doesn’t have all pullbacks.

Definition 2.2.11. Denote by AlgﬂlgCl the subcategory of Algy whose morphisms are the
K-algebra homomorphisms f : A — B such that f(A) is an ideal of B.

Proposition 2.2.12. The category Alg]11<d has inverse images.

Proof. Let f : A— C and g : B — C be morphisms in Algi, where g is a monomorphism.
We will verify that the maps p; : Z — A and py : Z — B form a pullback of f and ¢ in
Algid, where

Z ={(a,b) e Ax B: f(a) =g(b)}
as a subalgebra of A x B and p; and ps are given by p;(a,b) = a and py(a,b) = b, for all
(a,b) € Z.

Let us first verify that p; and py are morphisms in Alg . It is a simple verification
that p; and py are algebra homomorphisms, so we will only check that p;(Z) < A and
p2(Z) 4 B.

Let (a,b) € Z and @’ € A. Then

flad’) = f(a)f(d') = g(b)f(a’) = g(b) (2.3)

for some V' € B, since g(B) is an ideal of C.
By (2.3) it follows that (aa’,b") € Z. Therefore,

pi(a,b)d = ad' = py(ad’ V') € pi(2).

Similarly, a’p;(a,b) € pi(Z). Hence, pi(Z) is an ideal of A. In a similar fashion, p(Z) < B,
as desired.
Now let

2N o
N

be a commutative diagram in AlgHI<d
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Since the diagram

<N

N A

p p2

7 X

C
is a pullback in Algy, there exists a unique algebra homomorphism ¢ : W — Z such that

-
o

Observe that ¢ is given by p(w) = (¢1(w), g2(w)) for all w € W.
We will verify that ¢ is a morphism in Algle. For let w € W and (a,b) € Z. Since

the following diagram commutes.

I

/\D

¢1 and ¢y are morphisms in Alg]K , there exist w4, wp € W such that

G(w)a=q(wa) and ga(w)b = g(wp).

Therefore, we have

p(w)(a,b) = (q1(w), 2(w))(a,b) = (g1 (w)a, 2(w)b) = (@1 (wa), g2(wp)).  (2.7)

Now, by the fact that (¢1(wa), ¢g2(wp)) € Z and the commutativity of (2.4), we

have

9(@2(wa)) = fla1(wa)) = 9(g2(wp)).

Hence, since ¢ is a monomorphism, and, thus, an injective map,

ga(wa) = g2(wp). (2.8)

Thus, by (2.7) we have

p(w)(a,b) = (q1(wa), g2(wp)) = (@1(wa), g2(wa)) = p(wa),

so p(w)(a,b) € p(W). Therefore, p(W) is an ideal of Z.

Hence, ¢ is a morphism in Algy® such that diagram (2.6) commutes. Since ¢ is
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the unique such morphism in Algy, its uniqueness in Algi® also follows. Thus, (2.5) gives

a pullback of f and ¢ in Algﬂlg, and, hence, Alg]%d has inverse images, as desired. O

To check that AlgHI<d does not in general have pullbacks, we will first prove the

following lemma.

Lemma 2.2.13. Let f: A — C and g : B — C be morphisms in Algﬂlg. Then a pullback
of f and g in AlgHI<d is a pullback of f and g in Algy.

Proof. Let
w
2N
A B
N
C

be a pullback square in Algﬂlgd, and let p; : Z — A and py : Z — B, where
Z ={(a,b) € Ax B: f(a) = g(b)}
as a subalgebra of A x B and p; and p, are given by p;(a,b) = a and py(a,b) = b, for all

(a,b) € Z, so
Z

AyVYB
N A

is a pullback square in Algy, as seen in Example 2.2.7.

(2.10)

The same argument made in Proposition 2.2.12 shows that p; and py are morphisms
in Alg]}<d (observe that it was not required for f or g to be monomorphisms for this
argument).

Then since (2.9) is a pullback and (2.10) is a commmutative diagram in Algl®,

there exists a unique morphism ¢ in Algl such that the following diagram commutes.

p2

S

¢ SN

N A

7 X

Sy

Q
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And since (2.10) is a pullback and (2.9) is a commutative diagram in Algy, there

exists a unique morphism ¢ in Algy such that the following diagram commutes.

q1 q2

Since (2.10) is a pullback diagram, it is a simple verification that
Yo =1idy.

Hence, Y(W) D idz(Z) = Z, so v is a morphism in Algi. Since (2.9) is a

pullback, it is then also a simple verification that
Yo = idy.

Thus, ¢ is an isomorphism in Algg, so it is a straightforward verification that (2.9)

is a pullback in Algg. ]

One can promptly verify that if f and g have a pullback in Algﬂlgd, then a pullback
diagram in Algy is also a pullback diagram in Algl. Hence, we have the following example

of morphisms in Alg]%d that do not have a pullback.

Example 2.2.14. Consider f : K[z] — K and g : K[z] — K the evaluation homomor-
phisms given by
f(p) =p(0) and g(p) = p(1),

for all p € K[z]. Observe that f and g are surjective, so they are morphisms in Alg.
Assume by contradiction that f and g have a pullback in Algﬂlg.
Then the diagram

Z
PN
SN, A

] (2.11)
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is a pullback in Alg?, where
Z = {(p.q) € Klz] x Klz] : p(0) = ¢(1)}

and z; and zy are given by z1(p,q) = p and z2(p, q) = q, for all (p,q) € Z.
Let W be the ideal of K[z] generated by x(x—1). Then the corresponding inclusion
t: W — K][z] is such that

foir=gou

Thus, since (2.11) is a pullback diagram, there exists a unique morphism ¢ in

Algﬂlgl such that the following diagram commutes.

W
X%
Z
2N
X %
S Y
Z

It is a simple verification that ¢ must be given by ¢(p) = (p,p) for all p € W.
However, (W) is not an ideal of Z. Indeed, by taking p =2, ¢ =2 —1 and r = z(z — 1),

we have

p(r)(p,q) = (r,r)(p,q) = (rp,rq) = (2*(x — 1), 2(x — 1)%) & p(W).
Hence, we have a contradiction.

Proposition 2.2.15. Let € be a category and consider the following diagram.

N
~
Sy

(2.12)

>
%
~
-
~
—
N<—Q

b
h<

If the squares I and 11 in (2.12) are pullback, then the outermost diagram of (2.12)
s a pullback.

Proof. Assume that the squares I and /] in (2.12) are pullback. Let P € € and p, : P — C
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and ps : P — X be morphisms such that the following diagram commutes.

P
p1
N\ A—1.p-T3C
hl I { II Jj
X k Y ; Z

Since the square /7] is a pullback and

Jjopr=1lokop,,

there exists a unique morphism ¢ : P — B such that the following diagram commutes.

\fB ™~ o (2.13)

- A
o ]
XleZ

Now, since the square [ is a pullback and
1oy =Fkops,

there exists a unique morphism ¢ : P — A such that the following diagram commutes.

P
™ >> B (2.14)

>

~

~.
%

P
D1
¢\4
A f B 9 C (2.15)
hl I { II Jj
X - Y . A

commutes. Let us verify that ¢ is the unique morphism such that (2.15) is commutative.
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For let ¢’ be a morphism such that the diagram

L, BT3¢
I { II Jj
Y A

commutes. Then since
z'o(foz//) =kopy
and

go(fow/):ph

by the uniqueness of ¢ in (2.13) it follows that

fod =
Thus, since we also have that
ho W = P2,
by the uniqueness of ¢ in (2.14) it follows that ¢ = 1), as desired. ]

Proposition 2.2.16. Let € be a category and f € Homy(X,Y). Then f is a monomor-
phism if and only if the following diagram is a pullback.

X
iV%
X X
N T

Y

Proof. Assume that f is a monomorphism and let g, h : W — X be morphisms such that

(2.16)

the diagram
w
PN
X X (2.17)
N T
Y

commutes. Then fog = f oh, so, since f is a monomorphism, g = h. In this case, let

w=g9=h.
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oy .
\ /

commutes. And ¢ is the unique such morphism, for if ¢’ is such that idx o ¢’ = g and

Then the diagram

idx o ¢ = h, then ¢’ = g = . Hence, (2.16) is a pullback.

Conversely, assume that (2.16) is a pullback and let g,h € Homeg (W, X) be
morphisms such that fog = foh. Then (2.17) commutes. Since (2.16) is a pullback, there
exists a unique morphism ¢ such that (2.18) commutes.

By the commutativity of (2.18) we then have
h=idxop=yg,

so f is a monomorphism, as desired. O

Proposition 2.2.17. Let € be a category, f € Homg (X, Z) and g € Homy (Y, Z). If f is

a monomorphism and

2N
X Yy (2.19)
e
A
is a pullback, then py is a monomorphism.
Proof. Let h,k : () — P be morphisms such that
proh=pyok. (2.20)

Then observe that, by the commutativity of (2.19) and by (2.20)
foproh=gopsoh=gopysok=fop ok.
Therefore, since f is a monomorphism,

pioh=pok.
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Let

p=pioh=piok:QQ—-X and v=proh=pyok:Q —Y. (2.21)

x (2.22)
/

commutes for both ¢ = h and ¢ = k. Hence, since (2.19) is a pullback, by the uniqueness

Then the diagram

O

/\1

of ¢ it follows that h = k, so py is a monomorphism, as desired. O

Definition 2.2.18. Let F': ¥ — Z be a functor. We say that F' preserves pullbacks if

whenever
P
VRN
X Y
PN
A

is a pullback diagram in %', then so is the following diagram in 2.

F(P)
F(p1) F(p2)
F% A)
F(Z)

Proposition 2.2.19. Let F : € — 2 be a functor. If F preserves pullbacks, then whenever

f is a monomorphism in €, we have that F(f) is a monomorphism in 9.

Proof. Let f € Homg(X,Y) be a monomorphism in €. By Proposition 2.2.16, the diagram

nywx
N

(2.23)
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is a pullback in % .
Now, since F'is a functor, F(idx) = idp(x). Therefore, since (2.23) is a pullback

and F' preserves pullbacks, we have the the diagram

id ) id
YF(X) N R (X)
F(X) / \ F(X)
FM Af)
F(Y)

is a pullback in 2. Hence, by Proposition 2.2.16, F'(f) is a monomorphism, as desired. [

2.2.2 EQUALIZERS AND COEQUALIZERS

Definition 2.2.20. Let % be a category and f,g : X — Y morphisms in .

o An equalizer of f and g is a morphism e : £ — X such that

(1) foe=goe
(2) whenever h : W — X is a morphism such that f oh = g o h, there exists a
unique morphism A’ : W — E such that the triangle in the following diagram
commutes.
f
E—“-X_—Y

‘ g
h/
A

W

e A coequalizer of f and ¢ is a morphism ¢ : Y — C such that

(1) cof=cog
(2) whenever h : Y — Z is a morphism such that h o f = h o g, there exists a
unique morphism A’ : W — E such that the triangle in the following diagram
commutes.
x—uy <, ¢
g9 x j{h/
Z
Remark 2.2.21. Let % be a category and f,g: X — Y morphisms in . Consider the
category I whose class of objects is the set {1,2} and the only nontrivial morphisms in
are 12, ¢y 1 — 2, and the functor F': I — € where F(p12) = f and F(¢},) = g. Then

an equalizer of f and g can be seen as a limit of F', and a coequalizer of f and g can be

seen as a colimit of F', and vice-versa.
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Example 2.2.22. Let f,g: X — Y be morphisms in Set. Consider the set £ = {x € X :
f(z) =g(x)} and e : E — X its corresponding inclusion map. Then e is an equalizer of f
and g.

Let ~ be the smallest equivalence relation on Y such that f(z) ~ g(x) for all
x € X. Then the quotient map ¢ : Y — Y/~ is a coequalizer of f and g.

If X and Y are topological spaces and f and g are continuous maps, by imbuing
the subspace topology on E and the quotient topology on Y/~ the maps e and c are,

respectively, an equalizer and a coequalizer of f and g in Top.

Example 2.2.23. Let f,g: X — Y be morphisms in Algy. Then the set £ = {x € X :
f(z) = g(x)} is a subalgebra of X and its corresponding inclusion map e : £ — X is an
equalizer of f and g.

Let I be the ideal of Y generated by the elements of the form g(z) — f(x) for each
x € X. Then the quotient map ¢: Y — Y/I is a coequalizer of f and g.

Proposition 2.2.24. Let € be a category and f,g: X — Y morphisms in € .
e Ife is an equalizer of f and g, then e is a monomorphism.
e If c is a coequalizer of f and g, then c is an epimorphism.

Proof. We will only verify the second item, as the first is analogous. Let ¢: Y — C' be a
coequalizer of f and g and h, k : C' — C’ morphisms such that

hoc=koec.

Let
v=hoc=koec (2.24)

Then, since c¢ is a coequalizer of f and g we have
vof=hocof=hocog=vog.

Therefore, since c is a coequalizer, there exists a unique morphism v/ : C' — C” such that

the triangle in the following diagram commutes.

Hence, by the uniqueness of v/ and by (2.24) it follows that

h=1v =k,
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so ¢ is an epimorphism, as desired. O

Proposition 2.2.25. Let € be a category, f,g: X — Y morphisms in € and c:Y — C

a coequalizer of f and g. If v is a monomorphism and
c=1t10oh (2.25)

for some morphism h, then v is an isomorphism.

Proof. Since c is a coequalizer of f and g, by (2.25), we have
tohof=cof=cog=t10hog.
Therefore, since ¢ is a monomorphism,
hof=hog.

Thus, since ¢ is a coequalizer of f and g, there exists a unique morphism A’ such
that
h="noc. (2.26)

Let us verify that A’ is an inverse of ¢. Indeed, observe that, by (2.25) and (2.26),
toh'oc=1o0h=c=1idcoec. (2.27)
Now, by Proposition 2.2.24, ¢ is an epimorphism. Thus, by (2.27) we have
Lo b = ide. (2.28)
On the other hand, observe that by (2.28) we have
tohor=rtidcot=1=10idgom,,
S0, since ¢ is a monomorphism, we have
W ot =idiom,.
Hence, h' is an inverse of ¢ and, thus, ¢ is an isomorphism, as desired. O

2.2.3 PRODUCTS AND COPRODUCTS

Definition 2.2.26. Let % be a category and {X;};c; a family of objects in €.
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« A product of the family {X;};cs is a pair (P, {p; : P — X;}) formed by an object
P € € and a family of morphisms {p; : P — X}, such that for all such pairs
(W, {fi - W — X;}) there exists a unique morphism ¢ : W — P such that the
diagram

¢ / (2.29)

w

commutes for all 7+ € I. We denote this unique morphism ¢ by [[;c; fi-

« A coproduct of the family {X;}ics is a pair (C,{u; : X; — C}) formed by an
object C' € € and a family of morphisms {u; : X; — C'}, such that for all such pairs
(Y. {f; : X; = Y}) there exists a unique morphism ¢ : C' — Y such that the diagram

u;

Xi —_—
\ ' (2.30)
fi 4
Y

commutes for all 7 € I. We denote this unique morphism ¢ by [l fi-

Remark 2.2.27. Let € be a category and {X;};c; a family of objects in 4. Consider the
set I as a category whose only morphisms are the identity morphisms and the functor
F : 1 — % where F(i) = X; for all i € I. Then a product of {X;};c; can be seen as a limit

of F', and a coproduct {X;};cr can be seen as a colimit of F', and vice-versa.

Example 2.2.28. Let {X;}ic; be a family of objects in Set. Then the cartesian product
[Licr Xi = {(xi)ier : z; € X;} along with the projections p; : [Tie; Xi — X; given by
p;((z:)ier) = x; for each j € I, form a product of {X;}ie;.

And the disjoint union | J;c; X; along with the inclusion maps w; : X; — [ ic; Xi

form a coproduct of {X;}ie;.

Example 2.2.29. Let A, B € Algg. Then the direct product A x B along with the
projections py : Ax B — A and pg: A x B — B form a product of A and B.
The coproduct of A and B has a less straightforward construction. Consider the

vector space
oo
T= @ Ty,
n=1

where

T\=A®B, T)=(A®A) & (A®B)®(B®A)® (B B),
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Define a product in T" as follows. Given two generators
11 ® - Qux, forneNand z; € AUB,Vi € {1,...,n},

and
Y1 Quyy, formeNand y; € AUB, Vi € {1,...,m},

we define
(1@ ®x) (N®  QYn) =21 Q0 QT QY &+ @ Y.

With this operation, T" is an algebra.
Let I be the ideal of T generated by elements of the form

a®a —ad and bRV —bb

for a,a’ € A and b,V € B.
Then T'/I along with the maps us : A — T/I and up : B — T/I given by

uala)=a+1I,a€e A and wup(b)=0+1,b€B

form a coproduct of A and B.

2.3 INVERSE SEMIGROUPS

Recall that a semigroup S is a set with an associative operation. We will denote
the product of elements of most semigroups in this work simply by juxtaposition.

Also recall that a semigroup is said to be a monoid if it has an identity element.

Definition 2.3.1. Let S be a semigroup. We say that S is an inverse semigroup (cf.
[16]) if for each element s € S there exists a unique element s* € S, called the inverse of
s, satisfying

ss*s=s and s'ss* =s".

If S is a monoid, we say that S is an inverse monoid.

Example 2.3.2. Let X be a set and Z(X) the set of partial bijections of X, that is, the
set of bijective maps between subsets of X. For each f,g € Z(X), let gf be the partial

bijection of X where

dom (gf) = f~'(cdm f Ndomyg), cdm(gf) = g(cdm f N domyg),
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and

(9)(x) = g(f(x)),

for all x € dom (g f). With this operation, Z(X) is an inverse monoid, where the inverse of

a partial bijection of X is its usual functional inverse.

Example 2.3.3. Let GG be a group. Then it is an inverse monoid, where the inverse of an

element g € G is its usual inverse ¢~! in the group.

Example 2.3.4. Let S be a semilattice. Then it is an inverse semigroup, where the inverse
of e € S is e itself.

Proposition 2.3.5. Let S be an inverse semigroup. Then for each element s € S we have

s = (s)".

Proof. Since s* satisfies

ss*s=s
and
s*ss* = s*,
by the uniqueness of the inverse of s* it follows that s = (s*)*, as desired. O
Idempotent elements form a very important class of elements in an inverse semi-
group.

Definition 2.3.6. Let S be a semigroup. An element e € S is said to be an idempotent
in S if

ee = e.
We denote by £(S) the set of idempotent elements of S.

Observe that inverse semigroups that are not groups have many idempotent

elements.
Proposition 2.3.7. Let S be an inverse semigroup and s € S. Then s*s € £(S).
Proof. Since ss*s = s, we have

(s5™)(s8") = (s8"s)s™ = s57,

as desired. O

Lemma 2.3.8. Let S be an inverse semigroup and e € E(S). Then
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Proof. Since e is an idempotent, we have
eee = ee = e,

so e* = e follows by the uniqueness of e*. n
Lemma 2.3.9. Let S be an inverse semigroup and e, f € E(S). Then ef € £(S).

Proof. Consider the element u = f(ef)*e € S. Since e, f € £(S5),

(eflulef) = (ef)(f(ef)e)ef) =e(ff)(ef) (ee)f = (ef)(ef) (ef) =ef
and

u(ef)u

(flef)e)ef)(f(ef)e) = flef) (ee)(ff)(ef) e
= fef)(ef)(ef))e = flef)e=u,

so, by the uniqueness of the inverse in an inverse semigroup, v = (ef)*.
Observe that

uu = (f(ef)*e)(f(ef)e) = f((ef) (ef)(ef) )e = f(ef)e = u,

sou € &(9).
By Lemma 2.3.8, since u is an idempotent, v* = u. Thus, since u = (ef)*, by

Proposition 3.5.3 we have
u=u"=((ef)) =ef.
In particular, it follows that ef is an idempotent, as desired. O

Proposition 2.3.10. Let S be a semigroup. Then S is an inverse semigroup if and only

if it satisfies the following.

(1) For each s € S there exists a (not necessarily unique) element t € S satisfying

sts =s (2.31)

(2) The idempotents of S commute.

Proof. Suppose S is an inverse semigroup. Clearly, S satisfies (1). Let us verify (2).
Let e, f € £(5). By Lemma 2.3.9, ef is an idempotent, so

(ef)(fe)ef) = e(f)(ee)f = (ef)(ef) = ef

and

(fe)ef)(fe) = flee)(ffe = (fe)(fe) = fe.



Chapter 2. Preliminaries 38

Thus, since S is an inverse semigroup, fe = (ef)*. By Lemma 2.3.8, we then have
fe=(ef) =ef,

as desired.
Now assume S satisfies (1) and (2). Observe that, given s € S, if t € S is an

element such that sts = s, then u = tst satisfies
sus = s(tst)s = (sts)ts = sts = s

and
usu = (tst)s(tst) = t(sts)tst = tstst = t(sts)t = tst = u.

Thus, by (1), for each s € S there exists an element ¢ € S such that
sts=s and tst=t. (2.32)

So, to verify that S is an inverse semigroup, it suffices to verify that, given s € S,
the element ¢ € S satisfying (2.32) is the unique such element.
For let ¢’ € S such that

st's=s and t'st’ =t (2.33)

Observe that ts and t's are both idempotents. Indeed, by (2.32) and (2.33) we
have
(ts)(ts) = (tst)s =ts

and
(t's)(t's) = (t'st')s = t's.

By (2.32) and (2.33), we have
t =tst = t(st's)t = (ts)(t's)t. (2.34)
Thus, by (2) and (2.32)—(2.34), and since ts and t's are idempotents,
t=(ts)(t's)t = ('s)(ts)t = t's(tst) = t'st = (t'st")st = t'(st’)(st). (2.35)

Similarly to ts and t’s, we can check that st and st’ are also idempotents in S. So,
by (2.32), (2.33) and (2.35) and (1) we have

t =1t'(st')(st) =t'(st)(st') =t'(sts)t' =t'st' =+
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Therefore, the uniqueness of t follows, and S is an inverse semigroup, as desired. n

Proposition 2.3.11. Let S be an inverse semigroup and s,t € S. Then
(st)" =t"s".
Proof. By Proposition 2.3.7 and Proposition 2.3.10 (2),
(st)(t"s™)(st) = s(tt*)(s"s)t = s(s*s)(tt*)t = (ss*s)(tt"t) = st

and
(t*s™)(st)(t*s™) = t*(s"s)(tt")s™ = t*(tt")(s"s)s™ = (t*tt")(s"ss™) = t*s".
Thus, by the uniqueness of the inverse we have (st)* = t*s*, as desired. O

To each group, one associates a very important inverse semigroup, its Exel’s
semigroup. To introduce this semigroup, let us revise some concepts from the theory of

semigroups.

Definition 2.3.12. Let X be a set. The free semigroup on X is the semigroup W(.S),
whose elements are non-empty words xyxs . ..x, where x; € X foralli=1,... n, and the

product of two words © = x125 ... 2, and ¥y = y1¥> . . . Y, iS given by juxtaposition:

T-Y=T1T2...TpY1Y2 .- . Ym-

A free semigroup satisfies the following universal property.

Proposition 2.3.13. Let X be a set, S a semigroup and f: X — S a map. Then there
exists a unique semigroup homomorphism f: W(X) — S such that

forallz € X.

Proof. Let f: W(X) — S be given by

f(@rws . xn) = f(21)f(22) ... f2n).

Then it is a simple verification that f is a semigroup homomorphism and

for all z € X.
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It is unique as such. Indeed, if h: W(X) — S is a semigroup homomorphism that

satisfies

for all z € X, then

h(zimy ... 2,) = h(z)h(ze) ... h(x,) = f(z) f(22) ... fzn) = flr129 ... 20). O

Definition 2.3.14. Let G be a group with identity e. The Exel’s semigroup [9] of G is
the inverse semigroup S(G) given by the quotient of the free semigroup on {[g] : g € G}
by the relations

lg~lgl[h] = (g~ "1[ghl,

[g][R][h~1] = [gh][n™1],

and

for each g,h € G.

Exel proved in [9] that S(G) is indeed an inverse semigroup, where the inverse of

(the congruence class of) a generator [g] € S(G) is (the congruence class of) the element

lg7"].
Observe that S(G) is further an inverse monoid, with identity [e].
The semigroup S(G) satisfies the following universal property.

Proposition 2.3.15. Let G be a group with identity e, S a semigroup and f: G — S a

map satisfying
(1) f(g)f(h)f(h™) = f(gh)f(h7Y), for all g.h € G;
(2) flg=")f(9)f(h) = f(g7)f(gh), for all g.h € G;
(3) f(9)f(e) = f(g), forall g € G;
(4) f(e)f(g) = f(g), for allg € G.

Then there exists a unique semigroup homomorphism f : S(G) — S such that

forall g € G.

Proof. A map f: G — S extends uniquely to a semigroup homomorphism f : W(G) — S.
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Now, since f satisfies (1)-(4), f respects the relations that determine S(G). Thus,
by the universal property of the quotient, there exists a unique semigroup homomorphism
f:8(G) — S such that

f=Toq

where ¢ : W(G) — S(G) is the appropriate quotient map.

It is then simple to verify that f is the unique semigroup homomorphism satisfying

for all g € G. m

Proposition 2.3.16. Let G be a group with identity e, M a monoid and f: G — M a

map satisfying
(1) f(9)f(h) f(h~Y) = fgh) f(h™"), for all g.h € G;
(2) flg~")f(9)f(h) = f(g=")f(gh), for all g.h € G;
(3) f(e) is the identity of M.

Then there exists a unique monoid homomorphism f : S(G) — M such that

forallg e G.

Proof. Since f satisfies (3), it satisfies Proposition 2.3.15 (3) and (4). Thus, by Proposi-
tion 2.3.15 (1)—(4), there exists a unique semigroup homomorphism f : S(G) — M such
that f([g]) = f(g) for all g € G.

Since f([e]) = f(e) is the identity of M, f preserves the identity of S(G). Thus, f
is a monoid homomorphism. It is a simple verification that it is unique as such, concluding

the proof. O

Lemma 2.3.17. Let G be a group with identity e, M an inverse monoid and f : G — M

a map satisfying
(1) flo)f(h) f(h=Y) = f(gh)f(h™"), for all g.h € G;
(2) f(e) is the identity of M.
Then § satisfies

Flo () f(h) = f(g")[fgh),

forall g,h € G.
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Proof. First observe that, given g € G, by (1) and (2)

F9) g f(g) = Flag ") flg) = fle)f(g) = f(g)

and

Thus, f(g7') = f(g)* in the inverse monoid M.
Now let g, h € G. Then, by Proposition 2.3.11 and (1),

Fla™ @) f(h) = (F(R)* Flo) flgH)) = (F(hH) e f(9) = (fF(h g™ ) f(9)
= flg) f(h " g™") = flg™) f(gh),
as desired. O

Proposition 2.3.18. Let G be a group with identity e, M an inverse monoid and f :
G — M a map satisfying

(1) f(g)f(R)f(h™) = f(gh)f(h71), for all g.h € G;
(2) f(e) is the identity of M.

Then there exists a unique monoid homomorphism f : S(G) — M such that

forall g € G.

Proof. The result follows by Proposition 2.3.16 and Lemma 2.3.17. [
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3 SPANS AND PARTIAL MORPHISMS

This chapter gives a more detailed introduction on spans and partial morphisms
in a category %, along with their corresponding categories span, and par,, as well as
some results on the functors from par, to par, that are induced by a functor from € to
9.

In the final sections of this chapter it is also introduced the theory of restriction
and inverse categories, where we also show how an inverse category can be obtained from
any restriction category. There we verify that par, has an interesting restriction structure
that makes it a restriction category, and study the inverse category isoy that comes from
it.

3.1 SPANS AND PARTIAL MORPHISMS

We will now work towards introducing partial actions from a categorical perspective.

To this end, we define the concept of a span in a category.

Definition 3.1.1. Let € be a category and X,Y € €. A span [3] from X to Y is a triple
(A, f,g) where A€ € and f: A— X and g : A — Y are morphisms, as illustrated.

A
N
X Y
In particular, we are interested in the concept of a partial morphism:

Definition 3.1.2. Let % be a category and X,Y € €. A partial morphism from X to

Y is a span (A, f,g) from X to Y where f is a monomorphism.

Partial morphisms from an object X to an object Y in a category 4 — or more
precisely, their isomorphism classes, which we shall introduce later — in a way describe
morphisms from a subobject of X to Y. Indeed, for example, the partial maps between

sets are partial morphisms in Set.

Definition 3.1.3. Let X and Y be sets. A partial map from X to Y is a map f :
dom f — Y where dom f C X.

Example 3.1.4. Let ¥ = Set, X and Y sets and f a partial map from X to Y. Then

(dom f, ¢, f) is a partial morphism from X to Y, where ¢ is the inclusion of dom f into X.

Morphisms in any category can also be described in terms of partial morphisms.
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Example 3.1.5. Let € be a category and f: X — Y a morphism in €. Then (X, idx, f)

is a partial morphism from X to Y.

Definition 3.1.6. Let % be a category, X,Y € € and (A, f,g) and (B, h, k) spans from
X to Y. A morphism of spans from (A, f, g) to (B, h, k) is a morphism ¢ : A — B in

% such that the following diagram commutes.

A
E
fBg
7N
X Y

Lemma 3.1.7. Let € be a category, X,Y € €, (A, f,9),(B,h, k) and (C,m,n) spans
from X toY and ¢ : (A, f,g9) = (B,h,k) and ¢ : (B, h,k) — (C,m,n) morphisms of
spans. Then 1 o v is a morphism of spans from (A, f,g) to (B, h, k).

Proof. Consider the following diagram.

f/ \9 (3.1)
RN
X Y

Since ¢ is a span morphism, the two triangles on the top of (3.1) are commutative,

Q¢e-Qges—=

and since v is a span morphism, the two triangles at the bottom of (3.1) are commutative.

Thus, (3.1) commutes, so the following diagram commutes.

A
[
f/ . g
Therefore, it follows that ¢ o ¢ is a morphism of spans from (A, f, g) to (B, h, k),
as desired. ]

Thus, we can define the following categories.
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Definition 3.1.8. Let € be a category and X, Y € €. We define the category Span,(X,Y)
of spans from X to Y, whose objects are spans from X to Y and whose morphisms are

span morphisms between those spans, with the usual composition of €.

Definition 3.1.9. Let € be a category and X,Y € %. We define the category Pary(X,Y)
of partial morphisms from X to Y as the full subcategory of Span,(X,Y’) whose

objects are the partial morphisms from X to Y.

The identity morphism of a span (or a partial morphism) (A4, f, g) in Span,(X,Y)
(or Pary(X,Y)) is the morphism id4.

Example 3.1.10. Let X and Y be objects in a category &, and X x Y a product of X
with Y, with associated projections p;: X XY — X and py: X XY — Y. Then, given a
span (A, f,¢g) from X to Y, the universal property of X x Y tells us that there exists a

unique morphism ¢ : A — X x Y such that the following diagram commutes.

o

Xxy \

1 R‘

X Y

f

Thus, there exists a unique span morphism from (A, f, g) to (X x Y, 7, m), so
(X X Y,m,m) is a terminal object in Span,(X,Y).

One can also easily verify that any terminal object in Span,(X,Y) is a triple
that determines a product of X and Y, so products of X and Y correspond to terminal
objects in Spang(X,Y).

This work deals primarily with isomorphism classes of spans in Span(X,Y’), so
the following proposition gives us a more straightforward way to determine when two

spans are isomorphic in this category.

Proposition 3.1.11. Let € be a category and X,Y € €. A morphism in Span,(X,Y)

is an isomorphism if and only if it is an isomorphism in € .

Proof. Let ¢ : (A, f,g9) — (B, h,k) be a morphism in Span,(X,Y).

On the one hand, assume that ¢ is an isomorphism in Span,(X,Y) and let
Y (B,h,k) — (A, f,g) be its inverse. Then ¢ o ¢ = ids and ¢ o) = idg, so ¢ is an
inverse of p in €, and it follows that ¢ is an isomorphism in .

On the other hand, assume that ¢ is an isomorphism in ¥ and let ¢y : B — A
be its inverse. To check that ¢ is an isomorphism in Span,(X,Y), it suffices to verify
that ¢ is a span morphism from (B, h, k) to (A, f,g), so it will clearly be its inverse in
Spany (X,Y).
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Indeed, since ¢ is a span morphism, we have hop = f and ko = g, so
fotp=hopoty=hoidg=nh

and
gop=koypotp=koidg =k,

and, thus, the diagram

B
[#
h 2 k
7N
X Y
commutes. O

The following proposition shows that Pary (X, Y") is a strictly full subcategory of
Spany (X,Y).

Proposition 3.1.12. Let € be a category, X,Y € €, (A, 1, f) a partial morphism from
X toY and (B,h,k) a span from X to Y. If (A, f) and (B, h,k) are isomorphic in
Spany (X,Y), then (B, h, k) is a partial morphism.

Proof. Let ¢ : (A, 1, f) — (B, h, k) be an isomorphism in Span, (X, Y’). Then, in particular,
h o @ = . Thus, since ¢ is an isomorphism and ¢ is a monomorphism (because (A, ¢, f) is
a partial morphism), it follows that A is a monomorphism, and, thus, (B, h, k) is a partial

morphism. O
What follows is one of the fundamental notions in this work.

Definition 3.1.13. Let % be a category, X,Y € € and (A, f,g) € Spany,(X,Y). The

~Y

isomorphism class represented by (A, f,g) is the class {P € Spany,(X,Y) : P =
(4, f,9)}, denoted by [(4, f,g)] or simply by [A, f, g].

We denote the class formed by the isomorphism classes represented by spans from
X to Y by span,(X,Y). That is,

spang(X,Y) = {[4, f,g] : (A, f,g9) € Span,(X,Y)}.

Clearly, by Proposition 3.1.12, if (A, f, g) is a partial morphism, every representa-
tive of [A, f,g] is a partial morphism. Thus, we define
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Definition 3.1.14. We denote the class formed by the isomorphism classes represented

by partial morphisms from X to Y by par,(X,Y). That is,
pary(X,Y) = {[A, f,g] : (A f,9) € Parg(X,Y)}.

Proposition 3.1.15. Let € be a category and (A,¢, f), (A, 1,g9) € Parg(X,Y) partial

morphisms such that

(A0, f) = (4,1, 9).
Then f =g.

Proof. Let ¢ : (A, t,g9) — (A, ¢, f) be an isomorphism, so the diagram

A
/N o2
ZBN
X Y

commutes. By the commutativity of (3.2) we have
Lo =1=101dy,

S0, since ¢ is a monomorphism, ¢ = id 4.
It then also follows by the commutativity of (3.2) that

f=TFfoida=fop=y,
as desired. O
In Set we have the following.

Proposition 3.1.16. Let X and Y be sets and (A, f,g) € Parget(X,Y). There exists
a unique partial map h from X to'Y such that (A, f,g) is isomorphic to (domh, iy, h),

where vy, is the inclusion of dom h into X.

Proof. Let domh = f(A) C X, ¢, the inclusion of domh into X and h : domh — Y
given by h(x) = g(a) if z = f(a). Since f is a monomorphism in Set, it is an injective
map, so for each z € f(A) there exists a unique a € A such that x = f(a) and, thus, A is
a well defined map.

Let ¢ : A — dom h be the corestriction of f to dom h. Then for all a € A we have
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by definition of h and ¢, so

hoyp=g.
Similarly, we have
tpow=f.
Therefore, the diagram
A
E
dom h
X Y

commutes, so ¢ is a span morphism from (A, f, g) to (dom h, ¢y, h). Further, ¢ is a bijection,
since f is injective, so it is an isomorphism in Set. Because of that, by Proposition 3.1.11
it is an isomorphism from (A, f, g) to (dom h, ¢p,, h), and so the two partial morphisms are
isomorphic.

We shall now verify its uniqueness. Let k be a partial map from X to Y (with
g domk — X the corresponding inclusion map) such that (A, f, g) is isomorphic to
(dom k, ¢y, k). Then the latter is also isomorphic to (dom h, ¢y, h), so there exists a bijection

¢ : dom h — dom k such that the diagram

dom h

¢

domk \! (3.3)

/ k

X Y

Lh

commutes.
By the commutativity of (3.3) we have ¢ 0 ¢ = 5, so since ¢, and ¢}, are inclusion

maps it follows that
p(r) = ulp(x) = w(z) ==

for all x € dom h. Hence, dom h C dom k and ¢ is the inclusion map. Since ¢ is a bijection,
it follows that dom h = dom k, ¢ is the identity map and, so, ¢, = 1.

Thus, since (dom h, i, h) = (dom k, 1y, k) and ¢p, = tx, by Proposition 3.1.15 we
have that A = k, and the uniqueness of the partial map follows. O

Thus, every isomorphic class represented by a partial morphism from X to Y has
a unique representative that comes from a partial map from X to Y.
Hence, if A C X and ¢4 is the corresponding inclusion map, we may denote an

isomorphism class [A, 14, f] € parge(X,Y) by simply f, its associated partial map.
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More generally,

Proposition 3.1.17. Let € be a category, X,Y € € and I the class of subobjects of X .
Let {t;}ier be a family where 1; © X; — X is a representative of the subobject i for each
i € I. Then for any partial morphism (A, ¢, f) from X toY there exist unique i € I and
g: X; =Y such that

(A7 L, f) = (Xiabiag)' (34)

Proof. Let (A, ¢, ) be a partial morphism from X to Y. Let i be the subobject represented
by the monomorphism ¢. Since ¢ and ¢; represent the same subobject i, there exists an

isomorphism ¢ : X; — A such that

Li =10 . (3.5)
So, let
g=roep. (3.6)
Then the diagram
Xi
E
L A 9
L
X Y

commutes by (3.5) and (3.6), so ¢ is a span morphism from (Xj, ¢;, g) to (A, ¢, f). Since ¢
is an isomorphism in %, by Proposition 3.1.11 it is an isomorphism between the partial
morphisms, and, thus, we have (3.4).

It remains only to verify the uniqueness of 7 and g. Indeed, suppose we have j € I
and ¢’ : X; — Y such that

(A7 L, f) = (X]7 Ljvg/)'
Then we have
(Xiy Liag) = (va Ljag,)v (37>

so let ¢ : (Xj,¢5,9) — (Xi, i, g) be an isomorphism. Then the diagram

commutes. In particular, since v is an isomorphism and

Liowzbﬁ
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t; and ¢; represent the same subobject of X, so i = j.
Since there is exactly one representative of the subobject ¢ in {¢; }s¢s, it follows that
t; = t;. By Proposition 3.1.15 and (3.7) we then have that g = ¢’. Thus, the uniqueness of

¢ and g follows, as desired. n

Remark 3.1.18. Let € be a category, X € ¢ and fix {¢; : X; — X}ier a family of
representatives of the distinct subobjects of X. Then, by Proposition 3.1.17, par,(X,Y)
is in bijection with the class of partial morphisms from X to Y of the form (Xj,¢;, g) for
some ¢ € [ and g : X; — Y. Thus, an element of par,(X,Y) is nothing more than a
morphism g : X; — Y for some i € I, just like in the category Set (see Proposition 3.1.16).
Hence, instead of [X;,¢;, g] € pary(X,Y) we may simply write g, if there is no confusion.

For the sake of convenience, we assume that ¢; = idx whenever ¢; is an isomorphism.

3.2 THE CATEGORIES OF SPANS AND OF PARTIAL MOR-
PHISMS

Definition 3.2.1. Let & be a category and X,Y,Z € €. Let (A, f,g) be a span from
X to Y and (B, h, k) a span from Y to Z. If g and h have a pullback in &, we say that
the ordered pair of spans ((B, h, k), (A, f,g)) is composable and (P, f o p, ko q) is a span

composition of (B, h, k) with (A, f,g), as in the following diagram, whose square is a

pullback.
P
N
A B
/ X / X
X Y A

Remark 3.2.2. Since any two pullbacks of g and h are isomorphic, any two compositions
of (B, h, k) with (A, f, g) are also isomorphic as spans, through the isomorphism between
the pullbacks.

Notice that any composable pair of spans may have many distinct (albeit isomor-
phic) compositions, as two morphisms may have plenty of pullbacks. Thus, in order to
have a notation for a composition of two spans in a category, we must beforehand fix
a choice of composition for each ordered pair of composable spans in the category. So,
whenever we compose two spans (B, h, k) and (A, f,g) in a category, unless the choice
is specified we will assume that such a choice was made beforehand, and we denote the
composition of those spans by (B, h, k) e (A, f,g) or simply (B, h,k)(A, f,g).
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Remark 3.2.3. If ¢ is a category with pullbacks, whenever (A, f,¢g) is a span from X to
Y and (B, h, k) is a span from Y to Z in €, there exists a composition of (B, h, k) with
(A, f,9)-

If (B, h, k) is a partial morphism, for a composition of (B, h, k) with (A4, f, g) to
exist, it suffices for € to have inverse images. Indeed, in this situation, the morphisms g

and h have a pullback in € because h is a monomorphism.

Remark 3.2.4. Once we fix a choice of compositions of spans in a category with pullbacks,
this choice may not give an associative (partial) operation, and the span (X, idy,idx) may
not act as an identity. As a result, it is not possible to properly define a category whose
morphisms are spans with this composition. Later on, we will explore two ways to address

this issue.

Partial morphisms behave well with this composition, as the following proposition

shows.

Proposition 3.2.5. Let € be a category. A composition of any composable pair of partial

morphisms in € is a partial morphism.

Proof. Let ((B,h,k), (A, f,g)) be a composable pair of spans in ¢, as in Definition 3.2.1,
and assume that (A, f,g) and (B, h, k) are partial morphisms, so f and h are monomor-
phisms. Let (B, h, k) e (A, f,g) be the outer span in the diagram (3.8), whose square is a
pullback.

Since h is a monomorphism, by Proposition 2.2.17 we have that p is a monomor-

phism. Thus, since f is a monomorphism, f o p is also a monomorphism. So,

<B7h7k).(A7f7g):<P7fop7koq)

is a partial morphism, as desired. O

It is interesting to observe the composition of partial maps, seen as partial

morphisms between objects in Set.

Example 3.2.6. Let X, Y and Z be sets, f a partial map from X to Y, g a partial map
from Y to Z, and (dom f, ¢y, f) and (dom g, ¢4, g) their associated partial morphisms.
Then the diagram

f~*(dom g)

dom f dom g

S
S A
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is a pullback in Set, where z; is the inclusion of f~!(dom g) into dom f and f=f \dom ‘éom o)

Thus, a composition of (dom g, ¢4, g) with (dom f, ¢, f) is given by the external span in

the following diagram.

f(domyg)
/ \‘
dom f dom g
X / \ / \ Z

That is,
(f~'(domg),vp 0 iy, g0 f)

is a composition of (dom g, ¢4, g) with (dom f, ¢, f).

Notice that this is precisely the partial morphism associated to the partial mor-
phism go f |d°m*‘éomg from X to Z. In other words, a span composition of g with f, seen
as partial morphisms, may be viewed as the usual composition of maps go f on the largest

subset of the domain of f where this composition makes sense.

As we have mentioned, one may not define a category formed by spans and their
compositions. However, as we will verify, the isomorphism classes of spans behave well

with this composition and, along with it, form a category.

Proposition 3.2.7. Let € be a category with pullbacks, X,Y,7Z € €, (A, f,q9),(A’, f',qd) €
Spany (X,Y) and (B, h, k), (B, W, k') € Span, (Y, Z). If

(A, f.9)= (A fg) and (B h k)= (BN K),

then
(B, h,k)e (A f,9) = (B I K)e (A, f.q).

Proof. Consider the diagrams

A B (3.9)
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and

/\
/\/\

whose squares are pullback squares, so that

(3.10)

(P,fOp,kOq) = (B7h7k).(Aaf7g)

and
(P flop K og)= (B I K)e (A, f.J)
Since (A, f,g9) = (A, f,¢'), there exists an isomorphism ¢4 : A — A’ such that
frfopa=fand g ops=yg. (3.11)
And since (B, h, k) = (B, I/, k), there exists an isomorphism ¢p : B — B’ such that
h'opp="hand k' o pp = k. (3.12)
Since the square in (3.9) is commutative, g o p = h o ¢. Then by (3.11) we have
g olpaop)=(gopa)op=gop=hog=(hopp)og="h'o(ppoq).

Thus, by the universal property of the pullback square in (3.10) there exists a unique
morphism ¢p : P — P’ such that the diagram

P
|
i PP
pAOp v ¥B°q
P
N
A B’

commutes. This morphism is, even more, an isomorphism, because one can readily see
that w4 o p and pp o ¢ form a pullback of ¢’ and A'.

The morphism ¢p is, in fact, a span morphism from (P, f op,koq) to (P, f' o
P k' oq'), since

(ffop)opp=fo(popp)=folpaop)=(fopa)op=fop
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and
(K'oq)opp=Fko(dopp)=Fko(ppoq)=(Kopp)og=koq.
Thus, by Proposition 3.1.11, since ¢p is a span morphism that is an isomorphism
in €, @p is an isomorphism from (B, h,k) e (A, f,g) to (B',h', k') e (A’, f'.¢), and, so,

the two spans are isomorphic, as desired. O
Thus, whenever [A, f,g] = [A, f',¢] and [B,h,k] = [B',}, k'] we have that

(B,h,k)e (A, f,g) and (B',h' k') e (A, f',¢') represent the same isomorphism class. So,
the following is well defined.

Definition 3.2.8. Let € be a category with pullbacks, XY, Z € €, [A, f, g] € spany,(X,Y)
and [B, h, k] € span, (Y, Z). We define the composition of [B, h, k] with [A, f, g] to be

[B,h,k]e[A, f,g] =[(B,h,k)e (A, f g) (3.13)

The composition of [B, h, k| with [A, f, g] as in Definition 3.2.8 does not depend
on the choice of composition of (B, h, k) with (A, f, g), since any two such compositions
are isomorphic, by Remark 3.2.2.

We will sometimes denote [B, h, k] ® [A, f, g] by simply [B, h, k|[A, £, g].

Definition 3.2.8 gives an associative composition, as the following proposition

shows.

Proposition 3.2.9. Let € be a category with pullbacks, X,Y,Z, W € €, [A, f,g] €
spany(X,Y), [B,h, k] € spany (Y, Z) and [C,m,n] € span,(Z,W). Then

([C7m7n] i [B7h7k]) d [A,f,g] = [Camvn] o ([B7h7k] d [A,f,g]).

Proof. Consider the diagram

£ 3@/”

\/\

o N

whose squares I, I1 and [11 are pullback squares.

The largest span with vertex @ in (3.14) is a composition of (C, m,n) with (B, h, k),
since square I11 is a pullback square. Thus, it is a representative of [C,m,n| e [B, h, k] =
[(Cym,n) e (B, h,k)]|.

/ \ (3.14)
\ /
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Since squares I and I are pullbacks, by Proposition 2.2.15, the rectangle they
form together is also a pullback. Thus, the outermost span in (3.14) is a composition
of (C;m,n) e (B,h,k) with (A, f,g), and, therefore, is a representative of ([C,m,n] e
[B.h,k]) e 4. f,q].

On the other hand, the largest span with vertex P in (3.14) is a representative of
[B, h,k] e [A, f,qg], since I is a pullback diagram.

So, since the rectangle formed by the squares I1 and I11 is a pullback, because the
two squares are pullbacks, it follows that the outermost span in (3.14) is a representative
of [C,m,n] e ([B,h,k]e[A,f, g])

Thus, as [C, m,n]e([B, h,k|e[A, f,g]) and ([C,m,n|e[B, h,k])e[A, f,g]) have the

same representative, it follows that the two isomorphism classes are equal, as desired. [
We can then define the following category.

Definition 3.2.10. Let % be a category with pullbacks. We define the category span.
as the category whose objects are the objects of ¢, Homgpan, (X,Y) = spany(X,Y) for
all X,Y € ¢, and the composition is given by (3.13).

Observe that the identity morphism of X € % is the class represented by
(X, idx,1dy).

Definition 3.2.11. Let % be a category with pullbacks. We define the category pary as the
subcategory of span containing the same class of objects, and such that Hompa,, (X,Y) =

pary(X,Y) for all XY € ¥.

Proposition 3.2.5 assures us that the composition of morphisms in par, yields a

morphism in pare.

Remark 3.2.12. The category par, in Definition 3.2.11 can be defined regardless of
spang, and this definition only requires & to be a category with inverse images (see
Remark 3.2.3). Throughout this work, all the results regarding par, that we prove for a
category with pullbacks ¢ can be adapted to this case.

Remark 3.2.13. While the isomorphism classes of spans in ¢ form a category, the
spans in € form a bicategory [3], whose objects are the objects in @ and whose category
of morphisms from an object X to an object Y is Spany(X,Y'), where the horizontal
composition is given by the composition of spans. Similarly, the partial morphisms in ¢
form a bicategory Pare.

We choose not to give an exact definition of a bicategory here, as it is quite
technical and will not be used throughout the work. The interested reader may consult,

for instance [3], for more details.

With the following, one can see a category with pullbacks € as a subcategory of

par.
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Lemma 3.2.14. Let € be a category with pullbacks and f : X — Y and g : Y — Z

morphisms in €. Then
Y, idy, g ® [X,idx, f] = [X,idx,g o f].

Proof. The square in

X
X Y
X Y A
is a pullback, so

[Y,idy,g] e [X,idx, f] = [X,idx oidx,go f] = [X,idx,g o f]. O

Proposition 3.2.15. Let € be a category with pullbacks. There is a faithful functor
F : € — pary that is given on the objects by F(X) = X and on the morphisms by

F(f) = [domfaiddomf7f]'

Proof. Observe that idx is a monomorphism for all X € %, so [X,idx, f] is indeed a
morphism from X to Y in pary forall f: X — Y in ¥.
Let us first verify that F' is functorial. Indeed, for all X € €,

Flidy) = [ X, idy, idx]

is the identity of F(X) = X in par,,.
And F preserves the composition. Indeed, if f : X — Y and g : Y — Z are

morphisms in %, then by Lemma 3.2.14 we have
F(g) ¢ F(f) = [Y.idy,g] o [X,idx, f] = [X,idx,g0 f] = F(go f).

The faithfulness of F' follows by Proposition 3.1.15. O

We give the following definition to name the morphisms in par, that come from

% .

Definition 3.2.16. Let € be a category with pullbacks. A morphism in par, of the form
[X,idx, f] is said to be global.

By Remark 3.1.18, when there is no risk of confusion, we may use both of the no-

tations [X,idx, f] and f interchangeably. In this situation, observe that, by Lemma 3.2.14,
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the composition g e f of global morphisms g and f in pary is the global morphism g o f.

Proposition 3.2.17. Let X and Y be sets and [A, 1, f] € pargy(X,Y), where A C X
and v is the corresponding inclusion map. Then [A, 1, f] is a global morphism if and only if

A=X and . = idx.

Proof. Clearly if A = X and ¢ = idx we have that [A, ¢, f] is a global morphism.

Now assume [A, ¢, f] is a global morphism. Then [A, ¢, f] = [X,idx, g] for some
g: X — Y. Since both ¢+ : A — X and idx : X — X are inclusion maps, and (A4, ¢, f) and
(X,idx, g) both represent the same isomorphism class, by Proposition 3.1.16 it follows
that

<A7 L’f) = (X7idX;g)a

so A =X and ¢« = idyx, as desired. O

Proposition 3.2.18. Let € be a category with pullbacks, XY, Z € €, [A,, f] €
pary(X,Y) and g € Homy (Y, Z). Then

ge A, fl=1[A 1,90 f].

Proof. The square in
A
A Y
X Y Z

gelA,, fl=1[Avoida,go fl=[A 1,90 f]. =

is a pullback, so

It should be mentioned that span, and par, may not be locally small even when
% is locally small (see Proposition 3.2.20 below). We will show a necessary and sufficient

condition for pary, to be locally small.

Definition 3.2.19. A category % is said to have few subobjects if the class of subobjects

of every object of € is a set.

Proposition 3.2.20. Let € be a (locally small) category with pullbacks. Then pary is
locally small if and only if € has few subobjects.

Proof. The “if” part. Assume % has few subobjects and let X and Y be objects in €. We
will prove that par,(X,Y) is a set.
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Let I be the set of subobjects of X and fix a representative ¢; : X; — X for each
subobject ¢ € I. By Proposition 3.1.17, each partial morphism from X to Y is isomorphic
to a unique partial morphism of the form (Xj,¢;, g) for some i € I and g € Homg (X, Y).

Every element of par,(X,Y) is, then, of the form [X}, ¢, g] for some ¢ € I and
g € Homy (X, Y). Thus, par,(X,Y) is in bijection with the set [[;c; Homg(X,Y), and,
so, pary(X,Y) is a set.

Since Hompar, (X, Y) is a set for all X,Y € €, it follows that pary is locally
small, as desired.

The “only if” part. Assume that pary is locally small and let X € €. Let I be
the class of subobjects of X. For each i € I let ¢; be a representative of 1.

Define the following map from [ to par, (X, X). For each i € I, let V(i) =
[ X, 1, 1] € pary (X, X).

Clearly, ¥ is a well-defined map. We will verify that ¥ is an injection. Let i, € I
such that (i) = ¥(j). Then

(X, b, 1] = [ X5, 45,45,

so there is an isomorphism ¢ : (X, ¢, 4;) = (X, ¢4, ¢5).

Since ¢ is a span morphism, in particular we have that

LZ':LJ'OQD,

and since ¢ is an isomorphism, it follows that ¢; and ¢; represent the same subobject. Thus,
i=7.

By hypothesis, par, is locally small, so par, (X, X) is a set. Since VU is an injection
from I to par, (X, X), we have that [ is also a set. Thus, € has few subobjects. O

To avoid set-theoretic complications, from this point onward we will always assume
a category % to have few subobjects. We emphasize that every category we are dealing

with in this work has few subobjects.

3.3 PULLBACK-PRESERVING FUNCTORS AND SPANS

Proposition 3.3.1. Let € and 2 be categories with pullbacks and F : € — P a
functor. Then the association that maps an isomorphism class [A, f,g] € spang(X,Y)
to the isomorphism class F([A, f,g]) = [F(A),F(f),F(g9)] € spany(F(X),F(Y)) is
well-defined.

Proof. Let (B, h, k) be a span from X to Y such that [B,h, k| = [A, f, g]. We must verify
that [F'(A), F'(f), F(g)] = [F'(B), F(h), F(k)].
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Since [B, h, k] = [A, f, g], there exists an isomorphism ¢ : A — B in % such that

X / X Y

Since F' is a functor, by the commutativity of (3.15) the diagram

the following diagram commutes.

F(A

)
) JF“") F(o)
F(B)
SN
) F(Y)

commutes. By the functoriality of F', since ¢ is an isomorphism, so is F'(¢). Thus, it
follows that

F(f
F(X

as desired. O

Proposition 3.3.2. Let € and & be categories with pullbacks and F : € — 2 a functor
that preserves pullbacks. Then F' induces a functor F' : span, — spany, that is the same

on the objects and maps an isomorphism class [A, f, g] € spany(X,Y") to the isomorphism
class F([A, f,g]) = [F(A), F(f), F(g)] € spany,(F(X), F(Y))

Proof. Observe that this functor is well-defined by Proposition 3.3.1.
Since F'is a functor, for all X € €,

F([X,idx,idx]) = [F(X), F(idx), F(idx)] = [F(X), idpx), idpx)),

so it preserves identities.
We will now verify that F' preserves the composition. Let [A, f, g] € span,(X,Y)
and [B, h, k| € spany (Y, Z). Consider the following diagram, whose square is a pullback,
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so its outermost span is a representative of [B, h, k| @ [A, f, g].
A B (3.16)

Thus, the outermost span of the following diagram is a representative of F'([B, h, k]e

(A, f,9]).

/ \("
(B)
/ \ / \F(i“)
F(Z)
On the other hand, since F' is a functor that preserves pullbacks, the square

n (3.17) is a pullback, so its outermost span is a representative of [F(B), F'(h), F'(k)] e
[F(A),F(f) F(g)] = F([B,h,k]) @ F([A, f,g]). Thus, we have

(3.17)

F([B,h,k]) e F([A, f,g]) = F([B, h, k] o [A, f, g]),
so the composition is preserved, as desired. O]

Corollary 3.3.3. Let € and & be categories with pullbacks and F : € — 2 a functor
that preserves pullbacks. Then F' induces a functor F' : pary, — par, that is the same

on the objects and maps an isomorphism class [A, f, g] € pary,(X,Y) to the isomorphism
class F([A, f,g]) = [F(4), F(), F(g)] € pary (F(X), F(Y))

Proof. By Proposition 3.3.2 it suffices to verify that the induced functor from span, to
spang sends morphisms in pary, to morphisms in par,,.

Indeed, let [A, f, g] € pary(X,Y). Since f is a monomorphism and F' preserves
pullbacks, by Proposition 2.2.19 it follows that F'(f) is a monomorphism. Thus,

F([A, f,9]) = [F(A), F(f), F(9)] € pary,(F(X), F(Y)),
as desired. O

Proposition 3.3.4. Let € and & be categories with pullbacks and F : € — 2 a faithful
functor that preserves pullbacks and satisfies the following property: for all monomorphisms
g € Homg(X,Y) and f € Homg (Y, Z), if g = F(¢') and go f = F(h) for some morphisms
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g hin €, then f = F(f') for some morphism f' in € such that h = ¢’ o f'. Under those

assumptions, the induced functor F' : par, — par, is faithful.

PTOOf’ Let [A’ fa g]’ [B7 h? k] € par%(X7 Y) such that
F([A, f,9]) = F([B, h, k]).

Then

so there exists an isomorphism ¢ : F(A) — F(B) such that the following diagram

commutes.
F(A)
F(f) }” F(g)
F(B) (3.18)
N
F(X) F(Y)

Since ¢ and F'(h) are monomorphisms and F'(h) o ¢ = F(f), by hypothesis it
follows that ¢ = F(¢') for some ¢’ : A — B such that

hoy = f. (3.19)

Similarly, since 1) == ¢! and F(f) are monomorphisms and F(f) o = F(h), we
have that ¢ = F(¢’) for some ¢’ : B — A such that

fod =h. (3.20)
Observe that by (3.19) and (3.20) we have
folop=hoy =f

and

hod o/ = fouf =h,

so, since f and h are monomorphisms, it follows that ¢’ o ¢’ = id4 and ¢’ o)’ = idg, and,
therefore, ¢’ is an isomorphism.

Now, observe that by the commutativity of (3.18) we have

F(koy')=F(k)o F(¢') = F(k)oy=F(g),
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so since F' is faithful it follows that
koo =g. (3.21)

Thus, by (3.19) and (3.21) the diagram

A
|+
fBg
VRN
X Y

commutes, so since ¢’ is an isomorphism it follows that [A, f, g| = [B, h, k]. Therefore, the

induced functor is faithful, as desired. O

3.4 RESTRICTION CATEGORIES

In this section we will define restriction categories, see some of their properties

and show that par, has a natural restriction structure for any category with pullbacks €.

Definition 3.4.1. A (right) restriction monoid is a monoid M together with a unary

operation m — 7, satisfying the following conditions: for all m,n € M,

(R1) mm =m,
(R2) mn = nm,
(R3) nm = nm,

(R4) mm = mnm.

For more details on restriction monoids, see [5] and [10].
A restriction category is a categorical analogue of a restriction monoid (similarly

as categories being generalizations of monoids).

Definition 3.4.2. A restriction structure on a category % is an association of a
morphism f : X — X to any morphism f : X — Y in ¥, satisfying the following
conditions. For all f: X - Y ¢g: X — Z and h: Y — Z morphisms in ¢,
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(R4) hof=fohof.
A restriction category [4] is a category € together with a restriction structure.

Remark 3.4.3. In a locally small restriction category €, for all X € € the set Endy(X)

is a (right) restriction monoid [5].

Example 3.4.4. Any category can be trivially seen as a restriction category with the
restriction structure that associates to any morphism f : X — Y the identity morphism

tdx.

Example 3.4.5. A basic nontrivial example of a restriction category is that of sets and
partial maps. Here, given f : dom f C X — Y a partial map, f : dom f C X — X is the

inclusion map of dom f into X.

The above mentioned example is a particular case of the natural restriction

structure on pary, that we are going to introduce below.

Proposition 3.4.6. Let € be a category with pullbacks. Then pary, is a restriction category,

with restriction structure that associates to any (A, f,g] € pary(X,Y) the isomorphism

class [A, f,q] = [A, , f] € pary (X, X).

Proof. First, we must verify that such an association is well-defined. Indeed, assume
[A, f,g], B, h, k] € pary(X,Y) are such that

[Avf’g] = [thvk]

Then there exists an isomorphism ¢ : A — B such that the following diagram commutes.

X% xY

In particular, since h o ¢ = f, the following diagram is commutative.

f TSO f
N

X
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Then, since ¢ is an isomorphism, it follows that (A, f, f) = (B, h, h), and, so,
[Aa f7 f] — [B, h, h] ThUS,

[A,f,g] = [A7f7f] = [B7h7h] = [thvk]

Now let us verify the axioms of a restriction category.
(R1). Let [A, f, g] € pary(X,Y). Since f is a monomorphism in %, the square
in the following diagram is a pullback, and, thus, its outermost span is a representative of

(A, f,g] e [A, [, f].
A
) zy o \dj )
X X Y

Thus, we have

(A, f,gl e [A, f.gl = [A f,gle[A f, fl = [A, foida,goida] = [A, f,g].

(R2). Let [A, f,g] € pary(X,Y) and [B,h,k] € pary(X,Z). Consider the

following diagram, whose square is a pullback.
P ~
2N
A B
X X X

Then the outermost span of (3.22) represents the composition of [A, f, f] with
[B, h, h]. Thus,

(3.22)

[A, f.gle[B,h, k] =[A, f,f]e[B,h,hl =[P, foh,ho f]. (3.23)

Similarly, since
P
N
B A
X X X
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is a diagram whose square is a pullback, we have that

[B,h,k]e[A, f, gl =[B,h,h]e[A, f,fl=[P,ho f,foh) (3.24)

Since the square in (3.22) commutes, we have that h o f = foh. Thus, by (3.23)
and (3.24) it follows that

(A, f,g] @ [B,h, k] = [B, h, k] e [A, f, g].

(R3). Let [A, f,g] € pary(X,Y) and [B,h,k] € par,(X,Z). Consider the

following diagram, whose square is a pullback.

P/\
VRN
A B

(3.25)
X X Z
The outermost span of (3.25) is a representative of
[B,h. k] e [A, f.g] = [B,h, k] e [A, f, [].
Thus,
[B.h.k] e [A, f.g] = [P, foh, foh). (3.26)
On the other hand, by (3.24) and since the square in (3.25) is commutative, we
have

[B, I, k] e [A, f,gl =[P, hof, fohl=[P foh,foh. (3.27)

Thus,

[B,h,k’].[A,f,g] = [B,h,k‘].[A,f,g].

(R4). Let [A, f,g] € pary(X,Y) and [B, h, k] € par,(Y, Z). Consider the follow-

ing diagram, whose square is a pullback.

B (3.28)
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The outermost span of (3.25) is a representative of [B, h, k] e [A, f, g], so

[B,h, k] e [A, f,g] =[P, foh,foh. (3.29)

Now, the square in

is a pullback, since f is a monomorphism. Thus,
[A,f.g]® [P, foh,foh] =[P, fohgohl

so, by (3.29),

[A, f.gl®[B,h,k]e[A, f,g]=|P,foh,goh] (3.30)

On the other hand, since the square in
P
A\

B (3.31)

is a pullback, we have
[B, 1, K] o [A, f,g] = [B,h,h e [A, f.g] = [P. foh,hog) = [P, foh,gohl,

where the last equality is due to the commutativity of the square in (3.31).
Thus, by (3.30),

[thvk].[Aaf’g]:[Aaf’g].[B’}%k}.[Aaﬁg]' [

Proposition 3.4.7. Let € be a restriction category and X € €. Then idx = idx.
Proof. By (R1),

idX O@ = ZdX
Thus, idxy = idy. O

In a restriction category &, for all X,Y € € there is a natural partial order on
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Homy(X,Y) that comes from the restriction structure.

Definition 3.4.8. Let ¥ be a restriction category and X,Y € ¥. We define the relation
< on Homg (X, Y) by

f<g <= [f=ygof
Proposition 3.4.9. The relation in Definition 3.4.8 is a partial order.

Proof. By (R1), for all f € Homg(X,Y') we have that f = fo f, so

f<7

and, thus, < is a reflexive relation.
For the antisymmetry, let f,g € Homg(X,Y) such that f < g and g < f. Then

f=gof and g=/fogy,

so, by (R2),
f=gof=fogof=fofog=fog=g

Finally, for the transitivity, let f, g, h € Homg(X,Y') such that f < g and g < h.

Then
f=gof and g=hog.
0, by (R3),
f=gof=hogof=hogof=hof,
whence f < h. O]

Proposition 3.4.10. Let € be a restriction category and W, X, Y, Z € €. If f < g €
Homy (X,Y), h € Homg (Y, Z) and k € Homy (W, X) then

hof<hog (3.32)
and
fok<gok. (3.33)
Proof. Since f < g, we have
f=gof (3.34)

Then
hogoho f (3:34)hogohog07 (ig)hogohogo? (il)hogof (§4)hof,

and thus (3.32) follows.
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And

gokofok=go(kofok) (24)go(7ok:):(gof)ok CLM)fok:,

so (3.33) follows. O

Corollary 3.4.11. Let € be a restriction category and X,Y,Z € €. If f € Homg(X,Y),
g € Homg (Y, Z), h € Homy (X, Z) and go f < h, then

gof<hof. (3.35)
Proof. By Proposition 3.4.10, since g o f < h we have
gofof<hof,

so (3.35) follows by (R1). O

Proposition 3.4.12. Let € be a restriction category and X,Y € €. Then for all f €
Homy (X,Y) and any morphism g with dom g = X we have

fog</. (3.36)

Proof. By (R3) we have

fofog=fofog=/fey
so (3.36) follows. O

Proposition 3.4.13. Let € be a category with pullbacks and [A, f, g], B, h, k] € par,(X,Y).
Then [A, f,g] < [B,h, k| if and only if there exists a span morphism from (A, f,q) to
(B, h, k).

Proof. The “only if” part. Assume [A, f, g] < [B, h, k]. Then

[A,f,g] = [B7h7k] d [A,f,g] = [th>k] i [A7f7f] (337>

Consider the following diagram

A B (3.38)
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whose square is a pullback, so
[B.h.k]e[A, f,fl =[P, fohko fl. (3.39)
Since the square in (3.38) is commutative, by (3.37) and (3.39) it follows that
A f.9) = [B.h. k] [A. [, f] =[P, foh.ko fl=[P.ho f.ko f,

and, thus
(A, f,9) = (P,ho f ko f).

So, there exists an isomorphism ¢ : A — P such that the following diagram commutes.

A
"/ p
X X

It follows, then, that 1) := f o ¢ is a span morphism from (A, f,9) to (B, h, k),
since the diagram
A
B
'/ B

N

g

commutes.
The “if” part. Assume there is a span morphism ¢ from (A, f,g) to (B, h, k).
Than is, v is such that the diagram

A
N
'/ B

N

g

commutes, and, in particular,

f=hov (3.40)

and
g=~Fko1. (3.41)
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Since h is a monomorphism and we have (3.40), the square in the following diagram

is a pullback.
A
A B
X X Y

Thus,

[B,h,k].[A,f,g] = [B,h,k].[A,f,f] = [A7f0idA,/€0¢],

and so, by (3.41),

[B,h,k]O[A,f,g] = [A,f,g].

Therefore,
[A, f.g] < [B, h,k].

O

Definition 3.4.14. Let % be a restriction category. A morphism f: X — Y in % is said

to be a total morphism if f = idy.

Proposition 3.4.15. Let ¢ be a category with pullbacks. The total morphisms of par

are the global morphisms.

Proof. Clearly, if [X,idx, f] is a global morphism in par, then
[X.idy, f] = [X,idx, idx],

so it is a total morphism.
On the other hand, let [A, f,g] : X — Y be a total morphism in par,. Then

(A, f, 11 =[A, f, 9] = (X idx, idx].

Thus, (X, idx,idx) = (A, f, f), so there exists an isomorphism ¢ : X — A such

that the following diagram commutes.
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Hence, ¢ is an isomorphism such that the diagram

X
X2
idx ;1 goy
A7
X Y

commutes, and so (A4, f,g) = (X, idx, g o ¢), and, therefore

[Avfag] = [X7iangoS0L

so [A, f,g] is a global morphism. ]

Definition 3.4.16. Let 4 and Z be restriction categories. A restriction functor from
¢ to Z is a functor F' : € — 2 satisfying

F(f)=F(f)
for all morphisms f in €.

Proposition 3.4.17. Let F': € — 2 be a restriction functor. If f < g in Hom¢(X,Y),
then

F(f) < F(g)
is Homg (F(X), F(Y)).

Proof. Since f < g, we have f = go f; Therefore, since F is a restriction functor it follows
that

F(f)=F(gof)=F(g)oF(f)=F(g)o F(f

and so we have F(f) < F(g), as desired. O

~—

Y

Proposition 3.4.18. Let € and Z be categories with pullbacks and F : € — & a functor
that preserves pullbacks. Then the induced functor F' : par, — pary, is a restriction

functor.

Proof. Let [A, f,g] € pary(X,Y). Then

F([A, f.9]) = F([A, 1 f]) = [F(A), E(f), F(N)] = [F(A), F(f), F(9)] = F([A, [, g]),

so I preserves the restriction structure, as desired. O
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3.5 INVERSE CATEGORIES

Definition 3.5.1. Let % be a category. We say ¢ is an inverse category [19]' if for each
morphism f € Homg(X,Y) there exists a unique morphism f* € Homy (Y, X), called the
inverse? of f, satisfying

foffof=Ff
and

frofofr=r

Remark 3.5.2. The monoid of endomorphisms of an object X in a locally small inverse

category € is an inverse monoid, where the inverse of f € Endy(X) is its inverse f* in %.

Proposition 3.5.3. Let € be an inverse category. Then for each morphism f in € we

have f = (f*)*.
Proof. The proof is analogous to the proof of Proposition 2.3.5. O

Just like idempotents are important elements in an inverse monoid (recall Defini-

tion 2.3.6), they also manifest great importance in inverse categories.

Definition 3.5.4. Let % be a category and X € %. We denote by £(X) the set
E(Endy (X)), formed by the idempotent elements of the monoid Endg (X). A morphism f
in ¢ is an idempotent morphism if f € £(X) for some X € ¥.

The following proposition could be proved in a similar way to Proposition 2.3.10,

but we opted for another proof using

Proposition 3.5.5. Let € be a category. Then € is an inverse category if and only if it
satisfies the following.

(1) For each f € Homy(X,Y) there exists a (not necessarily unique) morphism g €
Homg (Y, X) satisfying
fogof=F (3.42)

(2) For each X € € the elements of £(X) commute in Endg(X).
Proof. The proof is analogous to the proof of Proposition 2.3.10. O

Definition 3.5.6. Let € be a restriction category. We define inv(%’) to be the subclass
of the class of morphisms of € formed by the morphisms f : X — Y in % such that there

1 Most articles that deal with inverse categories reference [14]. However, we could not find a way to

access this article.
This is not the standard inverse of the morphism in the category. However, it is worth noting that
when f is an isomorphism we have f* = f~1.

2
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exists a morphism ¢ : Y — X in ¥ satisfying
f=gof and g=foy

Remark 3.5.7. Observe that the morphism ¢ in Definition 3.5.6 belongs to inv(%) by

symmetry.
Proposition 3.5.8. Let € be a restriction category. Then inv(€) is a subcategory of € .

Proof. The identity morphism of each object in € is a morphism in inv (%) by Proposi-
tion 3.4.7. We must then verify that the composition of morphisms in inv(%) is still a
morphism in inv(%).

Indeed, let f: X — Y and f': Y — Z be morphisms in inv(%). Let g : ¥ — X
and ¢’ : Z — Y be morphisms in € (and, thus, in inv(%’), by Remark 3.5.7) such that

f=gof, g=fog, [f=gof and g=foyg. (3.43)

Then observe that, by (R1)-(R4) and (3.43),

gogofof=gofof=gofofof=foflof=Ffofof=fofof=Ffof

and

flofogog =fogog =fogogog=gogog=gogog=gogog=goyg.
Thus, f’o f is a morphism in inv(%’), and, thus, inv(%’) is a subcategory of €. [

Definition 3.5.9. Let % be a category. The core groupoid of % is the subcategory of

% whose objects are the objects of ¥ and whose morphisms are the isomorphisms in .

Example 3.5.10. If € is a category with the trivial restriction structure, then inv(%’) is
the core groupoid of €.

We will verify that inv(%) is an inverse category by using Proposition 3.5.5. To

do so, we have the following lemma.

Lemma 3.5.11. Let € be a restriction category and e an idempotent morphism of €. If
e € inv(%), thene =e.

Proof. Let e € Endg(X) be an idempotent morphism of € in inv (%), and let f € Endg(X)
be a morphism such that
e=foe (3.44)

and

F=eof. (3.45)
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By (R1) and (R4) and the fact that e is an idempotent morphism, observe that

€oe=coeoe=coe=e. (3.46)
And by (R1) and (3.44) and (3.45), observe that

foe=eofoe=coe=c. (3.47)
Then, by (R1) and (R2) and (3.44), (3.45) and (3.47),

oe=coeofoe=cofoeoe=coeofofoecoe=cofofoe

oe=cof=fococof=foecof=fof=f.

)
I
o

I
|

Thus, by (3.44),

e=foe=coe=c¢,
as desired. ]

Proposition 3.5.12. Let € be a restriction category. Then inv(%) is an inverse category,

where the inverse of a morphism f in inv(%) is the morphism g in € satisfying

f=gof and g=fogy.

Proof. We will verify items (1) and (2) of Proposition 3.5.5.
To this end, let f : X — Y be a morphism in inv(%). Then there exists a
morphism ¢ : Y — X in € (and in inv(%’), by Remark 3.5.7) such that

f=gof and g=fog. (3.48)
Now, by (3.48) and (R1), g satisfies
fogof=fof=f and gofog—gog—g, (3.49)

so Proposition 3.5.5 (1) follows.
To verify Proposition 3.5.5 (2), let e, f € Homjuy(4) (X, X) be idempotent mor-
phisms. By Lemma 3.5.11, e = € and f = f. So, by (R2),

cof=ec¢of=foe=foe.

Thus, idempotent morphisms commute in inv(%).

Therefore, by Proposition 3.5.5, inv(%’) is an inverse category. O

Definition 3.5.13. Let % be a category with pullbacks. We define isoy as the inverse
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category inv(par).

Proposition 3.5.14. Let € be a category with pullbacks. The morphisms in isoy are
precisely the isomorphism classes [A, f, g] in pary such that g is a monomorphism in € .

The inverse of a morphism [A, f, g] in isoy is the isomorphism class

(A, fogl" = [A g, f]

Proof. Let [A, f, g] be an isomorphism class in par, (X, Y’) such that ¢ is a monomorphism.

Observe that since g is a monomorphism, the diagram
7 v \

is a pullback, so [A4, g, f] ® [A, f, g] is the isomorphism class represented by the outermost

.

partial morphism in the following diagram.

A
ida N de
A A
X Y X

Thus, we have

[A, g, fle[A, f, 9] =[A, f, fl = 1A, f, g].

Similarly, we have

(A, f, gl e [A g, fl=[A, 9,9l = [A, g, f],

so, by Definition 3.5.6, [A, f, g] € isog.
Now let [A, f, g] € isox(X,Y). By Definition 3.5.6, there exists an isomorphism
class [B, h, k| € par (Y, X) such that

[A, f, 9] = [B,h,k] & [A, f,g] (3.50)

and
[B,h,k] =[A, f,g] ® [B,h, kK. (3.51)
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By (3.50), there exists an isomorphism ¢ such that the following diagram, whose

square is a pullback, is commutative.

< e

(3.52)

AN

And by (3.51) there exists an isomorphism ? such that the following diagram,

whose square is a pullback, is commutative.

(3.53)

S0, since f is a monomorphism, ho @ = id . Thus, also by the commutativity of (3.52),
we get

hogop=gohoyw=goids=g. (3.54)

Since (3.53) commutes, we have
gokoy=h. (3.55)
By (3.54) and (3.55), it follows that
h=hogoypokou,
so, since h is a monomorphism,

jogpokot =idg. (3.56)
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A similar analysis yields
kowogop=idy. (3.57)

Thus, by (3.56) and (3.57), g o ¢ is an isomorphism in €. Since ¢ is an isomorphism, it
then follows that so is §g. Therefore, by (3.54), since g and ¢ are isomorphisms and h is a

monomorphism, ¢ is a monomorphism, as desired. O
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4 PARTIAL ACTIONS ON OBJECTS IN
CATEGORIES WITH PULLBACKS

We begin the discussion of partial actions in this chapter. Section 4.1 is a review
of partial actions of monoids (and groups) on sets, while Section 4.2 relates such partial
actions with partial morphisms in the category of sets.

Inspired by this relationship between partial actions and partial morphisms, we
introduce in Section 4.3 the partial actions of monoids on objects in categories with
pullbacks, as well as the corresponding strong partial actions and global actions. There we
show that many notions of partial action seen in the literature are covered by this concept.
In Section 4.4 we give the appropriate definition of a morphism between these concepts,
along with the corresponding categories that come with it.

Finally, in Section 4.5 we study the case in which the monoid is a group, showing
equivalent descriptions of a strong partial action in this situation.

For the remainder of this chapter, if not stated otherwise, M will be a monoid

with multiplication p : M x M — M and identity e.

4.1 PARTIAL MONOID ACTIONS ON SETS

Throughout this and the following section, X and Y will be sets, if not otherwise
stated.
Recall that a transformation of X is a map from X to X, and the set Tx of all

transformations of X is a monoid under the composition of maps.
Definition 4.1.1. An action of M on X is a monoid homomorphism from M to Tx.

Whenever « is an action of M on X, we will usually denote the map a(m) : X — X
by simply ayy,.
Taking an approach similar to that of [12], we will define partial actions of a

monoid in terms of partial action data.

Definition 4.1.2. A partial action datum of M on X is a family of maps {«,, : dom «,,, —
X }menm where dom ay,, € X, for all m € M.

Before defining a partial action, observe that the actions of a monoid can be seen

as partial action data in the following way.

Proposition 4.1.3. There is a one-to-one correspondence between the actions of M on

X and the partial action data {oum}menr of M on X satisfying
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(GA1) a, = idy,

(GA2) dom v, = X for allm € M and
Qn © Oy = Qs (4.1)

for all m,n € M.

Proof. To each action o : M — Tx we associate the partial action datum {a(m)}menr. Ob-
serve that {a(m)}menr satisfies (GA1) because « preserves the identity and satisfies (GA2)
because it is a map with values in 7x and it preserves the product of M.

And to each partial action datum {au,}men satisfying (GA1) and (GA2) we
associate the map a : M — Tx where a(m) = a,, for each m € M.

Observe that each «,, is indeed a transformation in 7x because dom «,, = X,
by (GA2). Then (GA1) states that « preserves the identity and (GA2) that « preserves
the composition. Hence, « is a monoid homomorphism, and, thus, an action.

It is then a straightforward verification that the two associations are inverse to

one another, and so we have a one-to-one correspondence, as desired. O

We will then interchange the definition of a monoid action with that of a partial
action datum satisfying (GA1) and (GA2).

A partial action of a monoid is, in a way, a generalization of the concept of an
action of a monoid, where the elements of M do not have to interact with every element

of X.

Definition 4.1.4. A partial action of M on X is a partial action datum {a,, }men of M
on X, such that:

(PA1) doma, = X and a, = idy;
(PA2) o '(dom ay,) C dom vy, for all m,n € M;
(PA3) a,, © iy = Q00 H(dom ay,), for all myn € M.
Observe that axiom (PA3) makes sense because of axioms (PA2).

Remark 4.1.5. Axiom (PA1) is equivalent to [11, Definition 2.2 (PA1)] and axioms (PA2)
and (PA3) together are equivalent to [11, Definition 2.2 (PA2’)].

To distinguish an action of a monoid from a partial action, we may also call the

former a global action.

Definition 4.1.6. A partial action {ay, }menr of M on a set X is said to be strong if

instead of (PA2) we have the following stronger condition:
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(PA2’) a'(dom av,) = dom ay,,, N dom ay,, for all m,n € M.

Remark 4.1.7. The concept of a strong partial monoid action from Definition 4.1.6 is
equivalent to that of [11, Definition 2.4] and [17, Definition 2.3] (although in the latter

definition it is called just a partial action).

Example 4.1.8. Let M = (N, +) and X = N. Then the partial action datum {, },ey is

a partial action of M on X, where for each n € N,
doma, ={z€N:z<n} anda,(z)=z+n,

for all z € dom a,,. Moreover, {a,, },en is not a strong partial action.

Example 4.1.9. Let M = (N, +) and X = Z~. Then the partial action datum {a, }en

is a strong partial action of M on X, where for each n € N,
doma, ={z€Z :24+n <0} and a,(z) =z+n,

for all z € dom «,.

Proposition 4.1.10. Let « be a global action of M on X. Then the partial action datum

{@m}menm of M on X is a strong partial action.

Proof. Since « is a monoid homomorphism, it preserves the identity of M, and so {, }men
satisfies (PA1).
Because a,, = a(m) is a transformation of X, doma,, = X for all m € M,

so (PA2’) follows trivially.

Finally, {c, }men satisfies (PA3) because a preserves the operation of M. O

We may, in fact, construct many strong partial actions from global actions, by

restricting them to subsets.

Definition 4.1.11. Let 3 be a global action of M on a set Y and X C Y. The restriction
of B to X is the partial action datum o« of M on X, where

a={ay, :doma, = XN HX) = Xtmen, m() = Bn(x),Vz € dom ayy,.

Proposition 4.1.12. Let 5 be a global action of M on a setY and X CY. The restriction

a of B to X is a strong partial action.

Proof. Since f is a global action, 3, = idy, so
doma, =XNEHX)=XNX =X

and ae(x) = fe(x) = x for all z € X, so « satisfies (PA1).
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To verify (PA2’), let m,n € M. Let x € a;'(doma,,). Clearly, z € dom a,.

Furthermore, we have

Bnm(m) = ﬁn % ﬁm(x) = ﬂn(ﬂm('r)) = 6n(am(x))7

50, since ay,(x) € dom ay,, By (am () = ap(am,(x)). In particular, it follows that 3, () €
X,s0 z € B,L(X). Thus, z € X N B, L(X) = domay,. Therefore, ;,!(doma,) C
dom oy, N dom oy,

Now let x € dom ay,,,, N dom «,,,. Observe that

Bulam(x)) = Bn(Bm(x)) = Bn 0 Bn(®) = Bum(x) € X,

since z € dom a,,,. Thus, a,,(z) € X N 3, 1(X) = doma,,. Therefore, it follows that
r € a;'(dom ay,), so dom vy, N dom oy, C o, (dom avy,).
Hence, a;!(dom ) = dom ay,,, N dom o, and, thus, « satisfies (PA2’).
Finally, let z € )} (dom ;). Then

(7)) = Bu(Bn (7)) = Bn 0 Bin(1) = Bum(7) = atnm (),

so « satisfies (PA3), as desired. O

Example 4.1.9 is an example of a strong partial action that comes from the
restriction of a global action. Indeed, let 8 be the global action of N on Z given by
Bn(z) = z+n for all n € N and z € Z. Then the partial action « in Example 4.1.9 is the
restriction of 3 to Z~.

Megrelishvili and Schroder [17], and, later on, Hollings [11], proved a converse
of Proposition 4.1.12. That is, every strong partial action of a monoid on a set can be
obtained as a restriction of some global action. In fact, they showed, even more, that, in a
way, each strong partial action has a minimal global action that restricts to it.

In Proposition 6.1.3 we will also prove this fact, by using the machinery we develop
in Chapter 5.

The natural concept of a morphism between partial action data is the following.

Definition 4.1.13. Let M be a monoid and X and Y sets. Let a = {am}men and
B = {Pm}mem be partial action data of M on X and Y, respectively. A datum morphism
from o to $is a map f: X — Y such that

(DM1) f(dom ) C dom f3,,, for all m € M,

(DM2) B, 0 f = foa,, ondoma,, for all m € M.



Chapter 4. Partial actions on objects in categories with pullbacks 82

4.1.1 PARTIAL GROUP ACTIONS ON SETS

Throughout this section, let G be a group with identity e. A partial action of a

group on a set is defined in [12] in terms of partial action data as follows.

Definition 4.1.14. A partial action of G on X is a partial action datum {oy}seq of G
on X, such that:

(PGA1l) doma, = X and «, = idy;
(PGA2) ay(dom ay Ndom ay-1) € dom ag—1 N dom agpy-1, for all g, h € G;
(PGA3) ay, 0 g = g on dom vy N dom aypy, for all g, h € G.

Observe that axiom (PGA3) makes sense because of (PGA2). Indeed, by (PGA2),
for each g, h € G we have

ag(dom ag N dom ay) = ag(dom oy N dom ayg-1p,-1)-1) € dom g1 N dom vgg-1j-1)-1

= dom a1 Ndom v, € dom avy,.

Remark 4.1.15. Definition 4.1.14 is equivalent to the classical definition of a partial

action of a group on a set, such as the definition found in [7, Definition 1.1].

Proposition 4.1.16. Let {o,},eq be a partial action of G on X. Then
ag(dom ay) C dom g1 (4.2)

and ag-1 0 ayg = idx on domoy for all g € G.

Proof. Let g € G. By taking h = e on (PGA2) we obtain
ag(dom ay) = ag(dom oy N dom ae-1) € dom g1 N dom a(gey-1 = dom avy-1,

so (4.2) follows.
Then the fact that ay-10a, = idx on dom ¢, follows by (PGA1) and (PGA3). O

Corollary 4.1.17. Let {oy}sec be a partial action of G on X. Then oy is an injective
map for all g € G.

Proof. Let g € G and z,y € dom a such that ay(x) = a4(y). Then by Proposition 4.1.16
T =idx(7) = ag-1 0 ay(r) = ag-1 0 ay(y) = idy(y) =¥,

so the injectivity of o, follows. O
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The following results will relate a partial action of a group, in the sense of
Definition 4.1.14, with a (strong) partial action of the group seen as a monoid, in the sense
of Definitions 4.1.4 and 4.1.6.

Lemma 4.1.18. Let {o,}sec be a partial action of G on X. Then we have
ag(dom oy N dom a-1) = dom arg—1 N dom ay(gpy-1,

forall g,h € G.

Proof. Let g, h € G. The inclusion oy (dom ayNdom ay,-1) € dom cvy—1 Ndom avgp)-1 follows
from (PGA2), so it suffices to verify that

dom ag-1 N dom agpy-1 C ag(dom ay N dom ap-1).
Now, by (PGA2),
ag-1(dom g1 Ndom cxygpy-1) € dom ag N dom a(g-1gp)-1 = dom ay 0 dom cy-1.
Therefore, by Proposition 4.1.16,

dom arg-1 N dom oygpy—1 = idx (dom ag—1 N dom ay(gpy-1) = g © g1 (dom g1 N dom cvggpy-1)

C ay(dom ary o dom avp,-1),

as desired. ]

Proposition 4.1.19. Let {ay}sec be a partial action datum of G on X. Then the following

are equivalent.
(1) {ay}tgec is a partial action of G on X;
(2) {ag}tgec is a partial action of G seen as a monoid on X and
ag(domay) C dom oy (4.3)
forall g € G;
(3) {ag}tgec is a strong partial action of G seen as a monoid on X.

Proof. Let o = {ay}gec-
(1) = (2). Suppose « is a partial action of G on X. Then (4.3) follows by
Proposition 4.1.16. Let us verify that « satisfies (PA1)—-(PA3).
Clearly, (PGA1) implies (PA1).
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Now, to verify (PA2), let g, h € G. Then by Lemma 4.1.18 and (4.3) we have

ag(ay, ' (domay)) C dom ag-1 N dom ay, = dom ag—1 N dom aygp-1)-1
= dom a1 Ndom agg-14-1y-1 = dom ag—1 N dom g(pg)-1)-1

= ag(dom oy N dom v(pg)-1)-1) = ag(dom g N dom aypg).
By Corollary 4.1.17, o is an injective map. Therefore we have
ag_l(dom ap) € dom oy, Ndom vy € dom .

Hence, « satisfies (PA2).
Axiom (PA3) then follows by (PGA3) because of (PA2).
(2) = (3). Suppose « is a partial action of the monoid G on X. Since «
satisfies (PA1) and (PA3), all that remains is to verify (PA2’).
Let g, h € G. Clearly, ag_l(dom ap) € dom oy, s0

a;l(dom ay) € dom ayp, N dom oy
by (PA2).
On the other hand, let x € domay, N dome,. By (4.3), since z € domay,
z € ot (dom ag-1). Therefore, by (PA1) and (PA3) we have
ag-1(ay(x)) = ae(x) = . (4.4)
Since x € dom ayg, by (4.4) and (PA2) we have
ay(z) € agill (dom apg) € dom aupgg-1 = dom a,.
Thus, = € a,'(dom ;). Hence,

dom ayg N dom vy Ndom ey C a;l(dom ap).

Therefore, (PA2’) follows, and « is a strong partial action, as desired.

(3) = (1). Suppose « is a strong partial action of the monoid G on X. Then (PGA1)
follows by (PA1).

For (PGA2), let g,h € G. Then let € dom a; N dom ay-1. By (PA2’),

r € dom ayNdom aj-1 = dom agNdom ap-14-1, = dom agNdom agpy-1, = a;l(dom Oé(gh)—l).
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Thus, ay(r) € dom agpy-1, s0
ag(dom ag N dom av,-1) € dom oy(gpy-1. (4.5)
Also, by (PA2’) and (PA1) we have

ag(dom o) = ay(dom oy N dom e ) = g(dom g N dom ary-1,)

= ag(ag_l(dom ay-1)) € domay,-1,

SO
ay(dom ay N dom ay-1) C ag(dom eyy) € dom avy-1. (4.6)
Therefore, (PGA2) follows by (4.5) and (4.6).
Then (PGA3) follows by (PA3), because of (PA2’). Hence, « is a partial action in
the sense of Definition 4.1.14, as desired. O

4.2 PARTIAL MORPHISMS AND PARTIAL ACTION DATA

Proposition 4.2.1. There exists a bijection between
(1) the set of partial action data of M on X;
(2) parge (M x X, X);
(3) the set of maps from M to parge (X, X).

Proof. (1) <+ (2). Given {a, }menm a partial action datum of M on X, let
Me X ={(m,z) e M x X :x € domay,,}.

Let o : M o X — X be given by a(m,x) = a,,(x) and ¢ be the inclusion of M e X into
M x X.
We associate to {ay, }mens the isomorphism class [M e X, ¢, o] € pargy (M x X, X),

whose representative is illustrated as follows.

M x X X

Given [A, f, g] € parg. (M x X, X), let (M e X, 1, &) be the unique representative
of [A, f,g] where M ¢ X C M x X and ¢ is the corresponding inclusion map, given by

Proposition 3.1.16.
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For each m € M, let
doma,, ={re X :(mux)e MeX}

and a, : dom a,,, — X be given by a,,(z) = a(m, z). We associate to [A, f, g] the partial
action datum {o, bmer of M on X.
It is a straightforward verification that the two associations are inverse to one
another, and, thus, induce bijections between (1) and (2).
(1) <> (3). Given a partial action datum {a,, }men of M on X let ¢,,, be the
inclusion of dom «,,, into X.
We associate to {a,}tmen the map o @ M — parg, (X, X) given by a(m) =

[dom vy, Lm, ). The representative for a(m) is illustrated as follows.
dom ay,,

X X

Given o : M — pargy (X, X), for each m € M let (dom ,y,, Ly, ayy) be a repre-
sentative of the isomorphism class a(m) where dom «,,, C X and ¢, is the corresponding
inclusion map, given by Proposition 3.1.16.

We associate to « the partial action datum {a,, }men of M on X.

It is also a simple verification that these associations are inverse to each other and

induce a bijection between (1) and (3). O

Proposition 4.2.2. Let {ay, }men be a partial action datum of M on X. The following

are equivalent.

(1) {m}tmen satisfies (PA1);

(2) The associated isomorphism class [M o X, i, ] from Proposition 4.2.1 is such that
(X, n,idx] < [M e X, 1, a],
where n : X — M x X is given by
n(x) = (e, x);
(3) The associated map o : M — parge (X, X) from Proposition 4.2.1 is such that
ale) = [X,idy,idx].

Proof. (1) = (2). Assume {ay, }menr satisfies (PA1). Then doma, = X and a, = idx.
Then the map ¢ : X — M e X given by p(z) = (e, x) is well defined and the diagram
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X
Js@
n MeX idx
M x X X

commutes, because

and
a(p(z)) = ale,r) = ac(z) = v = idx(),
for all z € X.
Thus, ¢ is a span morphism from (X, 7,idx) to (M e X, 1, a), so (2) follows by
Proposition 3.4.13.
(2) = (1). Assume that

[X>7772dX] S [M’Xa L,Oé]-

By Proposition 3.4.13, there exists a span morphism ¢ from (X, 7n,idx) to (M e

X, ¢, ). That is, a morphism from X to M e X such that the following diagram commutes.

X
E
" Mex \™ (4.7)
M x X X

p(x) = ulp()) = n(z) = (e, ). (4.8)

In particular, it follows that (e,z) € M ¢ X = {(m,z) € M x X : x € doma,, }
for all z € X, so doma, = X.
By (4.8) and by the commutativity of the right triangle of (4.7) it follows that

a(z) = ale,r) = ap(x)) = idx(z)

for all x € X, so a, = idx.
Thus, (1) follows.
(1) = (3). Suppose {am, }menr satisfies (PA1), so dom . = X and «, = idx.
Since the associated map « : M — parg. (X, X) is such that, for all ¢ € G,
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a(g) = [dom ay, ¢y, ay], where ¢4 is the corresponding inclusion map of dom «, into X, it
follows that

ale) = [dom a, te, ] = [ X, idx, idx],
and so we have (3).
(3) = (1). Assume (3). Since by definition of o we have
a(e) = [dom g, te, ]
and by hypothesis we have
Ck(@) = [X, idx,l.dx},

it follows that

(dom ave, te, ) = (X, idy,idx).

Thus, there exists an isomorphism ¢ from (dom a, te, @) to (X, idx,idx). Since

© is a span morphism, the following diagram commutes.

dom a,

Le

In particular, we have
le = P = Q. (49>

By (4.9), since ¢ is an isomorphism, so is .. Thus, since ¢, is an inclusion of a
subset of X on X, it follows that dom o, = X and ¢, = idx. It then also follows by (4.9)
that a, = idx. Therefore, we have (1). O

Remark 4.2.3. Let {ay, }men a partial action datum of M on X and [M e X, ¢, o] its
associated isomorphism class from Proposition 4.2.1. In the following propositions, we will
at times denote [M o X ¢, o] simply by « (recall Remark 3.1.18), and by idy; X o we mean

the isomorphism class represented by the partial morphism

M x (M e X)

M x M x X M x X,

and by p X idx we mean the isomorphism class represented by the partial morphism
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Mx MxX

idpr xM/ WX

Mx MxX M x X.

Proposition 4.2.4. Let {ay, }menr be a partial action datum of M on X. The following

are equivalent.

(1) {m}tmen satisfies (GA2);

(2) The associated isomorphism class [M o X, i, ] from Proposition 4.2.1 is a global
morphism such that
ae(idy X a)=ae(uxidy) (4.10)

in pargy, (M x M x X, X);

(3) The associated map o : M — parge (X, X) from Proposition 4.2.1 is such that o(m)
is a global morphism for all m € M and

a(n) e a(m) = a(nm), (4.11)
for allm,n € M.

Proof. (1) < (2). First we will verify that doma,, = X for all m € M if and only if
[M e X1, a] is a global morphism.
Indeed, if dom «,,, = X for all m € M, we have

MeX ={(mz)e M x X:zxedomay,}={(mz)e M xX:2e€ X} =MxX

and ¢ = 1dpy;xx, SO

(M e X 1] =[M x X,idyxx, ]

is a global morphism.

And if [M e X, ] is a global morphism, by Proposition 3.2.17 it follows that
MeX =M x X and ¢ = idpxx. Thus, given m € M and = € X we have (m,z) € M o X,
so x € dom oy, so it follows that dom «,,, = X.

In this case, since M ¢ X = M x X, we have M x (M e X) = M x M x X. Thus,
ae(idy x o) and ave (uux X) are avo (idy X o) and o (p X idy ), seen as global morphisms.

So (4.10) is equivalent to the commutativity of the following diagram.

id}\{Xa

MxMxX —/— MxX
uxidxl la (4.12)

MxX ——— X
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Now, for all m,n € M and x € X we have
ao (idy X a)(n,m,z) = a(n, a,(x)) = ap(an(z)) (4.13)

and

ao(pxidy)(n,m,z)=a(nm,z) = aym(x), (4.14)

so (4.10) holds if and only if o, o a,, = @y, for all myn € M, and we have what was
desired.

(1) & (3). Let m € M. Since t,, is the inclusion of dom «, into X, by Proposi-
tion 3.2.17 we have that dom «,,, = X if and only if a(m) = [dom oy, tm, ] is a global
morphism. In this case, a(m) can be identified with .

Thus, for all m,n € M, a(n) @ a(m) is just a,, o a,,. Hence, (4.11) is equivalent

to (4.1), and we have what was desired. O

Proposition 4.2.5. Let {a, }bmen be a partial action datum of M on X. The following

are equivalent.
(1) {am}men satisfies (PA2) and (PAS3);
(2) The associated isomorphism class [M o X, i, ] from Proposition 4.2.1 is such that
ae (idy xa) <ae(uxidy)
in parge (M x M x X, X);
(3) The associated map o : M — pargy (X, X) from Proposition 4.2.1 is such that
a(n) e a(m) < a(nm),
for all m,n € M.
Proof. (1) < (2). Denote (idyr x a)™(M @ X) by M e (M e X), i.c.,
Me(MeX):={(nmuz)e MxMxX:xca,' (doma,)}. (4.15)
Then the square in the diagram

M e (MeX)

LM.V o W@

M x (M e X) MeX (4.16)

M x X

Mx MxX X
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is a pullback, where tre(arex) is the inclusion of M e (M e X)) into M x (M e X) and
tdy; @ v is given by

(idpr @ @) (n, m, x) = (n, @y, (x)). (4.17)

Observe that if (n,m,z) € M e (M e X) then z € o, (dom av,,), S0 () € dom cv,, and
(n, ay(x)) is an element of M e X

Thus, we have
e (idy x o) = [M e (MeX), (idy X )0 tpre(mex), o (idps @ ). (4.18)
Now denote (p x idx) (M e X) by (M x M) e X, i.e.,
(M x M)e X ={(n,m,x) € M x M x X :z¢cdomayn,}. (4.19)

Then the square in the diagram

(M x M) e X
L(]Wx]bf)/ o wj
Mx MxX MeX (4.20)
Mx MxX M x X X

is a pullback, where ¢(arxarjex is the inclusion of (M x M) e X into M x M x X and
(L@ idx is given by
(neidx)(n,m,z) = (nm,x). (4.21)

Observe that if (n,m,x) € (M x M) e X then z € dom a,,,, so (nm,x) € M e X.
Thus,

ae(uxidy)=[(Mx M)eX, trxrex,0o (feidx)]. (4.22)

Notice that {au, }menr satisfies (PA2) if and only if M e (M e X) C (M x M) e X
(recall (4.15) and (4.19)). In this case, {y, }mens satisfies (PA3) if and only if

ao (idyea)=cao(ueidy)on Me(MeX). (4.23)
Indeed, observe that for all (n,m,z) € M e (M e X), by (4.17),
ao (idy e a)(n,m,z) = a(n,an(r)) = a,(an(x)),

and, by (4.21),

ao(peidy) = anm,z) = apy,(z),
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so (4.23) if and only if
Qp © () = ()

for all n,m € M and z € o' (dom «v,,), which is precisely (PA3).
Conversely, observe that by (4.18) and (4.22) and Proposition 3.4.13 we have that

ae (idy xa) <ae(uxidx).

if and only if there is a span morphism from the outermost span of (4.16) to the outermost
span of (4.20).

Thus, to check the equivalence (1) < (2) it suffices to show that there is a span
morphism from the outermost span of (4.16) to the outermost span of (4.20) if and only if
we have M o (M e X) C M x (M o X) and (4.23).

Assume that there is a span morphism ¢ from the outermost span of (4.16) to

the outermost span of (4.20). That is, ¢ is a morphism such that the following commutes.

Me (MeX)

|
K%

(idMXL)OLM,(M.X) (M y ;\4) o ao(idprea) (424)
M/I)QX ao(#m
Mx MxX X

Since the morphisms ¢(arxar)ex and (idpr X 1) 0 LMe(Mex) are inclusions, it follows
from the commutativity of the left triangle of (4.24) that M e (M e X) C (M x M) e X
and ¢ is the corresponding inclusion map. In this case, the commutativity of the right
triangle of (4.24) gives us (4.23).

And by assuming that we have M o (M e X) C M x (M e X) and (4.23), let ¢ be
the inclusion map of M e (M e X) into M x (M e X). It is then straightforward to check
that ¢ is such that the diagram (4.24) commutes, completing the proof.

(1) < (3). Observe that, for each m,n € M, the square in the diagram

at(dom ay,)
e
dom «,, dom o, (4.25)

is a pullback, where i, is the inclusion map of a;,!(dom «,) into dom a,,, and @y, is given
by

() = am(@),
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for all z € «,,'(doma,). Thus, the outermost span of (4.25) is a representative of
a(n) e a(m). That is,

a(n) e a(m) = [a;(dom ), Ly © i, Cty © Q). (4.26)

Then, by Proposition 3.4.13, we have that a(n) e a(m) < a(nm) if and only if
there exists a span morphism from (o '(dom ), Ly, © Iy, Gt © Q) t0 (dOM Qs Ly ),
which is to say that there exists a map ¢ : a;!(dom «,,) — dom ay,,, such that the following
diagram commutes.
a(dom ay,)

dom oy,

~
LmOln

cnoim (4.27)

X X

So, for the “only if” part assume (1) and let m,n € M. By (PA2), a;;}(dom «,) C
dom a,,,, so let ¢ be the associated inclusion map. It is then immediate that ¢ is such
that the left triangle of (4.27) commutes, and the commutativity of the right triangle
of (4.27) follows easily from (PA3).

And for the “if” part, assume (3), so for each m,n € M there exists a map ¢ such
that (4.27) commutes. Then it is easy to see that for each m,n € M the commutativity
of the left triangle of (4.27) implies that o, '(doma,) C dom ay,, with ¢ being the
corresponding inclusion map, and that the commutativity of the right triangle of (4.27)
implies that a,, o ay, = @y, o0 @ (dom ay,), so both (PA2) and (PA3) follow. O

Proposition 4.2.6. Let {a,}men be a partial action datum of M on X. The following

are equivalent.
(1) {mtmenm satisfies (PA2’°) and (PAS3);
(2) The associated isomorphism class [M o X, i, ] from Proposition 4.2.1 is such that
ae (idy x o) =ae(pxidy)e (idy x a) (4.28)

in parg, (M x M x X, X);

(3) The associated map o : M — pargy (X, X) from Proposition 4.2.1 is such that

a(n) e a(m) = a(nm) e a(m),

for all m,n € M.
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Proof. (1) < (2). Denote (M x (M e X))N((M x M)eX) by (MelM)e X, ie,
(MoeM)eX ={(n,m,xz) € M x M x X :z € dom ay, Ndoma,,}. (4.29)

Then the square in the diagram

(MeoM)eoe X
/ W}oidx
v
M x (M o X) (M x M) e X
W idp Xt L(MV X(/uidx)
Mx X xX Mx M x X X

(4.30)
is a pullback, where 7 and ty/eps ® idx are inclusion maps. Thus, by (4.22), the outermost

span of (4.30) is a representative of « e (i X idy) e (idy; X «). That is,
ae(uxidy)e(idy x a)=[(MeM)eX, (idy X t)ot,ao(pneidy)o (Lrrens ®idx)| (4.31)

Assume (1). In particular we have Proposition 4.2.5 (1), so Proposition 4.2.5 gives
us that

Oé.(idMXOl)Sa.(MXidx).

By Corollary 3.4.11 it then follows that
ae(idy X a) < ae(uxidx)e (idy x a). (4.32)

By (4.18), (4.31) and (4.32) and Proposition 3.4.13 there is a morphism ¢ such

that the following diagram commutes.

(idar Xt)otpre(rrex)

% ao(ueidx )o(trrensr®idx

Since (idpy X t) © tare(mex) and (idy x ) o T are both inclusion maps, by the
commutativity of the left triangle of (4.33) it follows that M e (M e X) C (M e M) e X
and ¢ is the corresponding inclusion map.

Let (n,m,z) € (M o M) e X. Then, by (4.29), x € dom ay,, N dom a,. Since
{am }men satisfies (PA2’), it follows that z € a,!(doma,). So, by (4.15), we have
(n,m,x) € M o (M e X). Hence, (M o M) e X C M o (M e X) and ¢ is a bijection.

(4.33)

Mx Mx X X
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Since ¢ is a bijection, an isomorphism in Set, by Proposition 3.1.11 it follows
that the spans in (4.33) are isomorphic. Thus, by (4.18) and (4.31) we have (2).

Now assume (2). In particular, we have Proposition 4.2.5 (2), which is equivalent
to Proposition 4.2.5 (1). It suffices, then, to verify that dom oy, Ndom «,,, C «a;,'(dom a,)
for all m,n € M.

By (4.18), (4.28) and (4.31) there exists an isomorphism ¢ such that diagram (4.33)
commutes.

Similar to a previous argument, the commutativity of the left triangle of (4.33)
implies that M e (M e X)) C (M e M) e X and ¢ is the corresponding inclusion map. Since

© is an isomorphism in Set, it is a bijection, so we have
Me(MeX)=(MeM)eX. (4.34)

Let m,n € M and = € dom a,,,, N dom a,,,. Then by (4.29) we have (n,m,x) €
(M e M) e X. Thus, by (4.34) (n,m,x) € M e (M e X), and, so, by (4.15) it follows that
r € a;,;'(dom ). Therefore, dom oy, N dom vy, € ot (dom vy, ), as desired.

(1) < (3). Observe that the square in

dom a,,,, N dom a,

y o R
dom ay, dom ay, (4.35)
is a pullback, where 7,, and 7,,, are inclusion maps. Thus,
a(nm)ea(m) = [dom a,Ndom qy,, QpmOTm, LmOlnm| = [dom vy, Ndom Ay, Qm Ty Lym Ot
(4.36)

where the last equality follows by the commutativity of the square in (4.35).
Firstly, assume (1). By Proposition 4.2.5, for all m,n € M we have

a(n) e a(m) < a(nm),

and, thus, by Corollary 3.4.11,

a(n) e a(m) < a(nm) e a(m)

So, by Proposition 3.4.13 and (4.26) and (4.36), for all m,n € M there exists a
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map ¢ : a;}(dom ay,) — dom gy, N dom «y, such that the following diagram commutes.

(4.37)

Since the left triangle in (4.37) commutes, it follows that ¢ is the inclusion map of
o '(dom av,) into dom a,,, N dom vy, By (PA2’) it follows that ¢ is, in fact, a bijection.

Thus, since (4.37) commutes, its top and bottom spans are isomorphic, and, so,
by (4.26) and (4.36) we have (3).

Now assume (3). In particular, it follows that a(n)  a(m) < a(nm) e a(m) for
all m,n € M, and, thus, we have (3), so by Proposition 4.2.5 {a, }men satisfies (PA2)
and (PA3). Thus, to show (1), it suffices to verify that

dom cv,,,, N dom vy, € ' (dom vy, (4.38)

for all m,n € M.

Indeed, let m,n € M. Since a(n) ® a(m) = a(nm)  a(m), by (4.26) and (4.36)
there exists an isomorphism ¢ in Set such that (4.37) commutes.

By the commutativity of the left triangle of (4.37) we have that ¢ is the inclusion

map of a;! into dom a,,, N dom a,,,. Since ¢ is a bijection, (4.38) follows. O

Proposition 4.2.7. Let {a}men and { B }menr be partial action data of M on X and
Y, respectively, and let f : X — Y be a map. The following are equivalent.

(1) f is a datum morphism from {y, tmen t0 {Bm tmen;
(2) f is such that
fea< fe(idy xf)
in parge (M X YY), where [M o X1, a] € pargey, (M x X, X) and [M oY, k, 5] €

parg.. (M x YY) are the isomorphism classes from Proposition 4.2.1, associated to

{mtmen and {Bm}ment, respectively;

(8) f is such that
fea(m) < f(m)ef

for all m € M, where a : M — parge (X, X) and f: M — pargy(Y,Y) are the

maps from Proposition 4.2.1, associated to {cy, }menr and {Bm Ymen, respectively.
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Proof. (1) < (2). By Proposition 3.2.18,
fea=[MeX i foal. (4.39)

The following diagram illustrates a representative of f e «.

MeX

/ foa

X Y
Denote (idy X f)"' (M eY) by M e f71(Y), i.e.,

Mef {Y)={(m,z) € M x X :x € f*(dom S,)}.

Then the square in

Me f71(Y)
/ Ny Wf
M x X MeY
M x X M xY Y

is a pullback, where & is the inclusion map of M e f~1(Y) into M x X and sz is the

appropriate restriction and corestriction of idy; x f, so
Be(idy x f)=[Mef 1 (Y),R Boidy x f]. (4.40)

By Proposition 3.4.13 and (4.39) and (4.40), f e a < S e (idy x f) if and only if

there exists a map ¢ such that the following diagram commutes.

(4.41)

Let us assume (1), so f satisfies (DM1) and (DM2).

Let (m,z) € M e X. Then x € dom a,,. By (DM1), it follows that f(z) € dom 5,,,
so (idy X f)(m,z) = (m, f(x)) € M Y. Therefore, (m,z) € M o f~1(Y), and, thus,
Me X C Me f~1(Y). Let ¢ be the associated inclusion map.

It is immediate that ¢ is such that the left triangle of (4.41) commutes, since it if
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formed by inclusion maps.
Now let (m,xz) € M o X. Then

Boidy X fop(m,x) = Boidy X f(m,z)=B(m, f(z)) = Bunlf(z)). (4.42)

Since (m,x) € M o X, x € dom a,, so by (DM2) we have §,,(f(z)) = f(am(x)). Thus,
by (4.42),
poidy X fop(m,x)= flan(z)) = foalm,x),
so the right triangle of (4.41) commutes.
Thus, since ¢ is such that (4.41) commutes, we have (2).

Now assume (2), so there exists a map ¢ such that (4.41) commutes.

The commutativity of the left triangle of (4.41) implies that
MeX CMef(Y) (4.43)

and ¢ is the associated inclusion map.

Let m € M and x € doma,,. Then (m,z) € M e X, so by (4.43) (m,z) €
M e f71(Y), and, thus, x € f~'(domp,,). So, it follows that f(domc,,) C dom f3,,.
Therefore, f satisfies (DM1).

And by the commutativity of the right triangle of (4.41) it follows that for all
(m,x) e MeX

Bu(f(w)) = Blm, f(x)) = Boidy X fop(m,x) = foalmz)=flom()),

so f also satisfies (DM2). Thus, (1) follows.
(1) & (3). Let m € M. By Proposition 3.2.18,

fea(m)=[domau,, tm, f o ay). (4.44)

The following diagram illustrates a representative of f e a(m).

dom a,

s

X Y

Let us denote by k,, the inclusion map of dom f3,, into Y. Then also observe that the
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square in

f~H(dom Bm)

Km

dom 5, (4.45)

/

Y

is a pullback, where &, is the inclusion map of f~!(dom ,,) into X and f is the appropriate

restriction and corestriction of f, so
B(m) e f=[f"(dom B,), Fon, B © f1. (4.46)

Thus, by Proposition 3.4.13 and (4.44) and (4.46), f e a(m) < G(m) e f if and

only if there exists a map ¢ such that the following diagram commutes.

dom «,,

(4.47)

tm

X

Assume (1) first and let m € M. Then f satisfies (DM1) and (DM2). By (DM1),
it follows that dom «v,,, € f~!(dom 3,,,), so let ¢ be the corresponding inclusion map.

Then we can see that the left triangle of (4.47) commutes immediately, and the
right triangle of (4.47) commutes by (DM2). Therefore, f e a(m) < 3(m) e f, and, so, (3)
follows.

Now assume (3) and let m € M. Then there exists a map ¢ such that (4.47)
commutes.

By the commutativity of the left triangle of (4.47) it follows that dom «,, C
f~Y(dom f3,,) and ¢ is the corresponding inclusion map. Hence, f(dom a,,) C dom f3,,,
o (DM1) follows.

And by the commutativity of the right triangle of (4.47) it follows that 3, o f =
f o ay, on dom vy, so (DM2) follows. Consequently, we have (1). O

4.3 PARTIAL MONOID ACTIONS ON OBJECTS IN CATEGORIES
WITH PULLBACKS

For the remainder of this chapter, let € be a category with pullbacks (or only

with inverse images) and M a monoid, whose identity we denote by e.
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Motivated by the correspondences proved in Section 4.2, we define partial action

data of a monoid M on an object of ¥

Definition 4.3.1. A partial action datum of M on X € ¥ is a map o : M —
par, (X, X).

A straightforward definition of a global action of M on an object X of ¥ would
be that of a monoid homomorphism from M to Endy(X) (see, for example, the definition
of an M-object in [20], or, in the group case, the definition of a G-object in [21]). However,
we will give a different (albeit equivalent) definition, to see the global actions as partial

action data.

Definition 4.3.2. A global action of M on X € % is a partial action datum « of M on
X such that:

(CGAL) ale) = [X, idy, idx];

(CGA2) a(m) is a global morphism from all m € M and a(n) e a(m) = a(nm), for all
n,m & M.

Remark 4.3.3. By Propositions 4.2.2 and 4.2.4, in Set axiom (CGA1) corresponds
to (GA1) and axiom (CGA2) corresponds to (GA2).

Proposition 4.3.4. A partial action datum a(m) = [doma,, = X, idx,a,] of M on
X € € is a global action if and only if the map @ : M — Endg(X) given by a(m) = au,

s a monoid homomorphism.

Proof. Observe that @(m) is well-defined by Proposition 3.1.15.
Now, since @(e) = ae, « satisfies (CGA1) if and only if a(e) = idx.
And by Proposition 3.1.15 and Lemma 3.2.14 « satisfies (CGA2) if and only if

a(n) oa(m) = a(nm),

for all m,n € M.
Hence, «a satisfies (CGA1) and (CGA2) if and only if @(m) = a,,, preserves the
identity and the product of M, as desired. O

The following definitions were inspired by Propositions 4.2.2, 4.2.5 and 4.2.6.

Definition 4.3.5. A partial action of M on X € % is a partial action datum «a of M
on X such that

(CPAl) CK(@) = [X, idx,idx];

(CPA2) a(n)ea(m) < a(nm) for all m,n € M.
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Definition 4.3.6. A strong partial action of M on X € ¥ is a partial action datum «
of M on X such that

(SCPA1) afe) = [X,idy,idx];
(SCPA2) a(n) e a(m) = a(nm) e a(m) for all m,n € M.

Remark 4.3.7. A (strong) partial action of M on X € ¥ is a (strong) premorphism [11,
Definitions 2.7 and 2.9] from M to the restriction monoid par, (X, X).

Remark 4.3.8. For each m € M, let (dom ay, tm, auy) be a representative of a(m).
Axiom (CPA2) says that for all m,n € M, if

a 1(dom a,)

~m n
ln w
x /

is a pullback (recall diagram (4.25)), then there exists a morphism ¢ : a;.'(dom ay,) —

(4.48)

dom «, dom o,

v
X
dom av,,, such that the diagram

a; !(dom a,)
P
v

doma, anoay, (4.49)

tm o]t

commutes.

Remark 4.3.9. For each m € M, let (dom ayy, tm, ayy) be a representative of a(m).
Axiom (SCPA2) says that for all m,n € M, if

dom a,,, N dom ayy,

(4.50)

and (4.48) are pullbacks (recall diagrams (4.25) and (4.35)), then there exists an isomor-
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phism ¢ : o} (dom av,) — dom avy,,,, N dom v, such that the diagram

(4.51)

commutes.

Remark 4.3.10. By Propositions 4.2.2, 4.2.5 and 4.2.6, in Set axioms (CPA1) and (SCPA1)
correspond to (PA1), axiom (CPA2) corresponds to (PA2) and (PA3) and axiom (SCPA2)
corresponds to (PA2’) and (PA3).

Hence, the set-theoretic (strong) partial actions of M on a set X correspond to

the (strong) partial actions of M on the object X in Set.

Proposition 4.3.11. Let « be a partial action datum of M on X € €. The following

statements hold.

1. If a is a global action, then it is a strong partial action;

2. If « is a strong partial action, then it is a partial action.

Proof. First assume that « is a global action. Then (SCPA1) follows by (CGAL).
To verify (SCPA2), let m,n € M. Since « is a global action, a(m) is a global

morphism, so a(m) = [X,idx,idx]. Thus, by (CGA2) we have

a(n) e a(m) = a(nm) = a(nm) e a(m),

so it follows that « is a strong partial action.

Now assume that « is a strong partial action. Let us verify that it is a partial
action. Obviously, (CPA1) follows by (SCPA1).

And by (SCPA2), (CPA2) is equivalent to

a(nm) e a(m) < a(nm)
for all m,n € M, which follows by Proposition 3.4.12. O]

For the following definition, recall Proposition 3.3.1.

Definition 4.3.12. Let % and Z be categories with pullbacks, F': € — & a functor and
a(m) = [dom ay, Ly, a,y] a partial action datum of M on X € . We define the partial
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action datum F'(a) of M on F(X) in & given by
(F(e))(m) = F(a(m)) = [F(dom ay, ), F(un), Fam)],

for each m € M.

Observe that by Proposition 3.3.1 the partial action datum in Definition 4.3.12 is
well-defined.

Proposition 4.3.13. Let € and & be categories with pullbacks, F : € — 2 a functor
that preserves pullbacks and a(m) = [dom vy, tm, aun]| a partial action datum of M on
X € €. Then

(1) If v is a partial action (resp. strong partial action), then F(«) is a partial action

(resp. strong partial action);

(2) If F' the induced functor F : par, — par,, s faithful and F(«) is a partial action

(resp. strong partial action), then « is a partial action (resp. strong partial action);

Proof. We will only verify (1) and (2) for strong partial actions.
(1). Assume that « is a strong partial action and denote 5 = F'(«). Since F is a
functor and « satisfies (SCPA1) we have

Ble) = [F(X), F(idx), F(idx)] = [F(X),idrx), idpx)),

so (3 satisfies (SCPA1).
Now recall that since F' preserves pullbacks it induces a functor from par, to
par, as in Proposition 3.3.2, which, by Proposition 3.4.18 is a restriction functor between

the two restriction categories. Thus, since « satisfies (SCPA2), for each m,n € M we have

B(n) « B(m) = F(a(n)) o F(a(m)) = F(a(n) » a(m)) = F(a(nm) » a(m))
— F(a(nm)) » F(a(m)) = B(nm) o B(m).

(2). Assume 3 = F(«a) is a strong partial action. Once again, since F' preserves
pullbacks it induces a restriction functor F': par, — pary,.
Because [ satisfies (SCPA1) we have

Flale)) = Ble) = [F(X), idrx, idpo)] = F(X, id, idx]).

Since F : par, — par,, is faithful, it follows that a(e) = [X,idx,idx]. Therefore, «
satisfies (SCPAL).
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Now let m,n € M. Since [ satisfies (SCPA2), we have

F(a(n) e a(m)) = F(a(n)) e Fa(m)) = F(a(nm)) e F(a(m))

= F(a(nm)) » F(a(m)) = F(a(nm)  a(m)),

so, since I : par, — par,, is faithful, « satisfies (SCPA2). Thus, « is a strong partial

action, as desired. O

In particular in many concrete categories the (strong) partial actions coincide

with the set-theoretical (strong) partial actions.

Proposition 4.3.14. Let € be a concrete category whose associated forgetful functor
U : € — Set preserves pullbacks and induces a faithful functor U : par, — pargy,. Let
a(m) = [dom auy,, Ly, o] be a partial action datum of M on X € € where dom,,, C X
and t,, is the corresponding inclusion map of dom oy, into X. Then « is a partial action
(resp. strong partial action) if and only if the set-theoretic partial action datum {c, }menr

of M on X is a partial action (resp. strong partial action).

Proof. By Proposition 4.3.13, since the forgetful functor U preserves pullbacks and the
induced functor U : par, — parg,, is faithful, a is a partial action if and only if F(«) is
a partial action.
Now, by Remark 4.3.10, F'(«) satisfies (CPA1) and (CPA2) if and only if the
corresponding partial action datum {a, }men of M on U(X) = X satisfies (PA1)-(PA3).
Thus, « is a partial action if and only if {a,, }mens is a partial action, as desired.
Similarly, « is a strong partial action if and only if {a,, }mens is a strong partial

action. ]
In particular,

Corollary 4.3.15. Let ¥ € {Set,Sem, Mon, Grp, Ring, Vecty, Alg,, C*-Alg} and
a(m) = [dom ayp, iy, @] @ partial action datum of M on X € € where dom ay,,, € X and
Lm 18 the corresponding inclusion map of dom «v, into X. Then « is a partial action (resp.
strong partial action) if and only if the set-theoretic partial action datum {cu,}men of M

on X is a partial action (resp. strong partial action).

Proof. The forgetful functor U from % to Set preserves pullbacks in each of those cases.
It is a straightforward verification that U also satisfies the hypothesis of Proposition 3.3.4,
so the induced functor U : par, — parg, is faithful. Hence, the result follows from
Proposition 4.3.14. O

Remark 4.3.16. If M is a group, by Proposition 4.1.19, the partial action datum «
in Proposition 4.3.14 or in Corollary 4.3.15 is a strong partial action if and only if the
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set-theoretic partial action datum {a, }menr of M on X is a partial action in the sense of
Definition 4.1.14.

However, Corollary 4.3.15 does not apply to certain concrete categories whose
associated forgetful functor preserves pullbacks, such as Top and Poset, as the following

example illustrates.

Example 4.3.17. Let M be the trivial monoid and X a set with at least two elements.
Consider 7 the indiscrete topology on X and 7’ the discrete topology on X.
Consider the partial action datum « of M on the object (X, 7) in Top, where

a(e) is the isomorphism class represented by the following partial morphism.

. (X, T,) .
(X,7) (

Observe that idx is a continuous map from (X, 7’) to (X, 7) that is a monomor-

X,7)

phism in Top, so a(e) is indeed an element of pary,, (X, X).

However, idx is not an isomorphism in Top. Therefore, a(e) # (X, 7), id(x ), id(x ),
so a does not satisfy (CPA1), and is, thus, not a partial action.

Nonetheless, a, seen as a partial action datum of M on the object X in Set, is a

partial action.

A similar example can be found in Poset, by considering partial orders < and <’
on the set X = {a,b}, where a < b, but a £’ b. In this situation, idx is an order preserving
map from (X, <') to (X, <) that is not an isomorphism in Poset.

The following illustrates what are the partial actions on objects of a category

coming from a meet-semilattice.

Example 4.3.18. Let (X, <) be a meet-semilattice, € its corresponding category and

x € X. Then a partial morphism from z to z in % is a diagram of the form

a
i T

in ¥. That is, each partial morphism from z to x corresponds to an element a € X such
that a < x. By reflexivity of <, (a, (%, "

Y Yar Ya

) is the only representative of its isomorphism
class.

Since the pullbacks in & are given by the meet of the elements of X, we have

[b7 ngjv ngj] hd [CL L Lm] - [b Na, L:lf/\aa be/\a]'

Y Yar Ya
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Also, by Proposition 3.4.13 the partial order in par, (X, X) is given by [a, (%, %] <
[b,¢f, 7] if and only if a < b.

Hence, the restriction monoid (recall Remark 3.4.3) par, (X, X) is isomorphic to
the semilattice 2+ = {a € X : a < z}.

Therefore, the partial actions of M on z correspond to the maps o : M — x*

where
ale) =z and «a(n) Aa(m) < a(nm),

and the strong partial actions of M on z correspond to the maps a : M — z+ where

ale) =x and a(n) A a(m) =alnm) A a(m).

4.4 DATUM MORPHISMS AND THE CATEGORY OF PARTIAL
ACTION DATA
The following definition was inspired by Proposition 4.2.7.

Definition 4.4.1. Let « and 8 be partial action data of M on objects X and Y in %,
respectively. A datum morphism from a to £ is a morphism f : X — Y in % such that

(CDM1) fea(m)<pB(m)ef forall me M.

Remark 4.4.2. For each m € M, let (dom ayy,, tm, ) be a representative of a(m) and
(dom By, Km, Bm) be a representative of (m). Axiom (CDM1) says that for all m € M, if

f~H(dom Bm)
/

is a pullback (recall diagram (4.45)), then there exists a morphism ¢ : doma,, —

dom 5 (4.52)

f~Y(dom 3,,) such that the following diagram commutes.

dom O,

(4.53)

tm
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Proposition 4.4.3. Let a(m) = [dom auy, Ly, ] and S(m) = [dom By, Km, Bm] be partial
action data of M on objects X and Y in €, respectively. Then a morphism f: X —Y
is a datum morphism from « to B if and only if for all m € M there exists a morphism

fm : dom «,, — dom f3,, such that the following diagram commutes.

dom «,,
X fm X
(4.54)
dom f3,, f

Proof. Firstly, assume f is a datum morphism from « to § and let m € M. Then by
Remark 4.4.2 there exists a morphism ¢ : doma,, — f~!(domf3,,) such that (4.53)
commutes, where (4.52) is a pullback.

Then observe that f,, = f o ¢ is such that (4.54) commutes. Indeed, by the
commutativity of (4.52) and (4.53) we have

f
Y

K © fn = Km0 fop = foRmop=fou,

and
Bin © frn = B o fop= foan.

Conversely, assume that for each m € M there exists a morphism f,, such
that (4.54) commutes, and let m € M. Since the left square of (4.54) commutes and (4.52)
is a pullback, there exists a unique morphism ¢ : dom «,,, — f~!(dom f3,,,) such that the

following diagram commutes.

dom o,
}o
Lm ffl(dom Bm) fm (455)
Fom F
X dom f3,,

Then ¢ is such that (4.53) commutes. Indeed, the commutativity of the left
triangle of (4.53) follows from the commutativity of the left triangle of (4.55), and the
commutativity of the right triangle of (4.53) follows from the commutativity of (4.54)
and (4.55), because

ﬁmofAO@:ﬁmOfmIfOOém.
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]

When g is a global action, datum morphisms f : a@ — [ admit a simpler

description.

Lemma 4.4.4. Let a(m) = [dom qip, Ly, ] be a partial action datum on X € € and
B(m) = [Y,idy, Bm] be a global action of M on'Y € €. Then a morphism f from X toY
in € is a datum morphism from « to [ if and only if the following diagram commutes for

allme M.
dom ay,,

X X
EmOf\‘ /
Y

Proof. If f is a datum morphism from « to 3, then, by Proposition 4.4.3, for each m € M

(4.56)

there exists a morphism f,, : dom «,,, — Y such that the diagram

dom «,,

X | X

Im
(4.57)

f Y f
N
Y Y

commutes. The commutativity of the left square of (4.57) yields f,, = f o ¢, which
together with the commutativity of the right square yields 3, 0 f 0 tyy = B © fin = f © U,
so the commutativity of (4.56) follows.

Conversely, if (4.56) commutes for all m € M, then the morphism f,, .= f o,
makes the diagram (4.57) commute, and hence, by Proposition 4.4.3, f is a datum

morphism. O

Corollary 4.4.5. Let a(m) = [X,idx, ay,) and 5(m) = [Y, idy, Bn] be global actions on
objects X andY in €, respectively. Then a morphism f from X toY in € is a datum

morphism from o to [ if and only if

foam:6m0f7
for allm e M.

Proof. Follows immediately from Lemma 4.4.4. O]
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Proposition 4.4.6. Let a(m) = [dom au, L, @), B(m) = [dom By, K, Bm] and y(m) =
[dom Yy, A, Ym] be partial action data of M on objects X, Y and Z in €, respectively. If
f is a datum morphism from o to B and g is a datum morphism from (3 to . Then go f

is a datum morphism from a to 7.

Proof. Let m € M. Since f is a datum morphism from « to [, by Proposition 4.4.3 there

exists a morphism f,, : dom «,,, — dom (3,,, such that the following diagram commutes.

dom ay,,
X fm X
(4.58)
dom f3,,

/\

And since g is a datum morphism from (5 to v, by Proposition 4.4.3 there exists a

morphism g, such that the following diagram commutes.

dom f3,,

>R
Y Y

gm

(4.59)

dom ~,,

/\

Then consider the following diagram.

dom ay,,

>N

X dom S3,,

/ / \ )ff (4.60)

Y dom ~,, Y

>

A A

s}
S

Observe that by the commutativity of (4.58) the top two squares of (4.60) commute,
and by the commutativity of (4.59) the bottom two squares of (4.60) commute. Thus,
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gm © fm is a morphism such that the following diagram commutes.
dom «,,

I N

gmofm X

dom ~,,

/\

Hence, by Proposition 4.4.3, g o f is a datum morphism from « to ~. O]

Proposition 4.4.7. Let a(m) = [dom auy, Ly, ] be a partial action datum of M on

X € €. Then idx is a datum morphism from « to «.

Proof. For each m € M, the morphism idgom ,, makes the diagram
dom ay,,

X ' X

iddom am

idx dom ay,,
commute. Thus, idy is a datum morphism from « to a. O

We can then define the categories of partial action data, partial actions and global

actions.

Definition 4.4.8. Denote by M —Datume the category whose objects are partial action
data of M on objects in 4 and whose morphisms are the datum morphisms between those

objects, where the composition is inherited from 4. Moreover, let

1. M —pAct, denote the full subcategory of M —Datumg formed by the partial actions
of M on objects in €.

2. M —Acty denote the full subcategory of M —Datumg formed by the global actions
of M on objects in .

3. M —spAct, denote the full subcategory of M —Datumgy formed by the strong

partial actions of M on objects in €.
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45 PARTIAL GROUP ACTIONS ON OBJECTS IN CATEGORIES
WITH PULLBACKS

If M is a group, there are some equivalent descriptions of its strong partial actions,
which will be explored in this section. Throughout this section, let G be a group, that will
be treated as its underlying monoid whenever necessary, and recall that € is a category
with pullbacks.

Recall that isoy is the inverse category induced by the restriction structure in
par,, which, by Proposition 3.5.14, is composed of the isomorphism classes [A4, f, g] in
par, such that g is a monomorphism.

From this point onward, for each X € € we will denote isox (X, X) by Z(X).

Lemma 4.5.1. Let a be a strong partial action of G on X € €. Then

a(g™) e alg) = alg), (4.61)
forall g € G.

Proof. Let g € G. By (SCPA1) and (SCPA2), we get

a(g~) ea(g) = alg'g) e alg) = ale) e alg) = aly),
as desired. O

Corollary 4.5.2. Let « be a strong partial action of G on X € €. Then

a(g)ea(g!) e alg) = aly), (4.62)

forall g € G.

Proof. Let g € G. Then, by Corollary 4.5.3 and (R1), we have

a(g) ea(g™’) e alg) = alg) » alg) = alg)
as desired. ]

Corollary 4.5.3. Let a be a strong partial action of G on X € €. Then a(G) C Z(X).

Proof. Let g € G. By Lemma 4.5.1, a(g™!) is an isomorphism class in par, (X, X) such
that

and
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Thus, by Definition 3.5.6 «(g) € Z(X). Therefore, a(G) C Z(X) as desired. [

Theorem 4.5.4. A partial action datum o of G on X € € is a strong partial action if
and only if

(1) a(G) CI(X),
(2) ale) = [X,idx,idx],
(3) a(h)ea(g) ea(g™) = a(hg) eal(g™) for allg.h € G.

Proof. (=). Assume that « is a strong partial action. Then (1) follows by Corollary 4.5.3
and (2) follows by (SCPAL).
To verify (3), let g, h € G. By (SCPA2) and Lemma 4.5.1 we have

a(h) e a(g) = a(hg) e a(g) = alhg) e alg™") e a(g). (4.63)

By (4.63) and Corollary 4.5.2 it follows that

a(h)ea(g)ea(g™) = alhg)ealg')ea(g) ea(g™") = alhg) e alg™),

so we have (3).

(«<). Now assume (1)—(3). By (2), « satisfies (SCPA1), so it suffices to ver-
ify (SCPA2).

By (2) and (3),

a(g) e a(g™") e alg) = ale) e a(g) = a(g)

for all g € G.

Let g € G. Since a(g) e a(g™) e a(g) = a(g) and a(g')a(g)a(¢g™! = a(g™), and
Z(X) is an inverse monoid, by (1) we have a(g)* = a(¢™!). In particular, by Proposi-
tion 3.5.12, we get

a(g™") e alg) = alg). (4.64)
Now let g,h € G. By (3) and (4.64) it follows that

a(h) e a(g) = a(h) e a(g) e a(g™") e ag) = a(hg) e a(g™") e alg) = a(hg) ® a(g).

Thus, « satisfies (SCPA2), and is a strong partial action, as desired. ]

We then have the following relationship between the strong partial actions of a

group and the Exel’s semigroup of the group.

Theorem 4.5.5. Let X € €. There is a correspondence between the
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(1) strong partial actions of G on X;
(2) monoid homomorphisms from S(G) to Z(X).

Proof. The monoid homomorphisms from S(G) to Z(X) are in correspondence with the
maps from G to Z(X) satisfying Proposition 2.3.18 (1) and (2). Those, in turn, correspond
to the strong partial actions of G on X, by Theorem 4.5.4. n

As a final characterization of strong partial actions of groups we have the following.

Theorem 4.5.6. A partial action datum o« of G on X € € is a strong partial action if
and only if

(1) « is a partial action,
(2) a(G) € Z(X),

(3) a(g™) = alg)* forallg € G.

Proof. 1f « is a strong partial action, then (1) follows by Proposition 4.3.11, and (2) and (3)
follow by Corollaries 4.5.2 and 4.5.3.

Now assume that « satisfies (1)—(3). By (2), « satisfies Theorem 4.5.4 (1), and
by (CPA1), « satisfies Theorem 4.5.4 (2). Let us verify Theorem 4.5.4 (3).

Let g,h € G. By (CPA2),

a(h) e a(g) < a(hg),
s0, by Proposition 3.4.10,
a(h) e a(g) e a(g™) < alhg) e alg™). (4.65)
On the other hand, also by (CPA2) we have
a(hg) e a(g™) < al(hg)g™) = a(h).

So, using the definition of the partial order < and by (R1)-(R3) we have

a(hg) e a(g™") = a(h) e a(hg) e a(g~!) = a(h)  a(hg) ® a(g~") ® a(g~)

a(h)ea(hg)ea(g™t)ea(g™) =a(h)ea(g™)ea(hg) e a(g™).

By (3), it follows that a(g=!) = a(g) e a(g™!). Thus, by Proposition 3.4.12 we

have

a(hg)ea(g™) = a(h) ealg) e alg™!) e a(hg) e a(g—") < a(h) e alg) e alg™'). (4.66)
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Therefore, Theorem 4.5.4 (3) follows by (4.65) and (4.66), and, so, « is a strong
partial action by Theorem 4.5.4. O]
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5 RESTRICTIONS AND GLOBALIZATIONS
OF PARTIAL MONOID ACTIONS

The problem of the globalization of the partial actions of monoids on objects
in categories with pullbacks is tackled in this chapter. In Section 5.1 we introduce the
restriction of a global action of a monoid on an object in a category with pullbacks to a
subobject, and show that it is a strong partial action.

Section 5.2 contains the main results of this work, where we introduce globalizations
of partial actions in this categorical context and find conditions for a given partial action
to be globalizable.

In Theorem 5.2.5 we show necessary and sufficient conditions in terms of pullback
diagrams for a given partial action to have a (universal) globalization, under the assumption
that it has a reflection in M —Acty. We then show in Theorem 5.2.15 and Corollary 5.2.19
that if the category % has a certain colimit, or if it has certain coproducts and coequalizer,
the partial action has such a reflection, which allows the application of Theorem 5.2.5.
Assuming the existence of the previous coproducts, in Theorem 5.2.26 we show necessary

and sufficient conditions for such a reflection to exist, in terms of a coequalizer in M —Acty.

5.1 RESTRICTIONS OF GLOBAL ACTIONS

Throughout this chapter, M will be a monoid with identity e and € a category
with pullbacks, and whenever 3 is a global action of M on an object Y € ¥, we will
assume that g(m) = [Y,idy, 5,,] for all m € M.

In this categorical context, we can also construct (strong) partial actions from

global actions, similar to Definition 4.1.11.

Definition 5.1.1. Let 8 be a global action of M on ¥ € € and + : X — Y a
monomorphism in €. The restriction of 5 to X (via ¢) is the partial action datum

a(m) = [dom vy, Ly, a4y, where for each m € M the following diagram is a pullback.

dom ay,,

%v&
X X
Y

Remark 5.1.2. Observe that since ¢ is a monomorphism, each ¢, is a monomorphism, so

(5.1)

[dom ., L, ] € pary (X, X) and « is indeed a partial action datum.
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Also, oo does not depend on the choice of a pullback of /3,, o« and ¢, since any two

such pullbacks are always isomorphic spans.

Remark 5.1.3. Notice that by Lemma 4.4.4 the morphism ¢ : X — Y in Definition 5.1.1

is a datum morphism from « to 5.

The following proposition gives an equivalent way to describe restrictions of global
actions.

Recall that any morphism ¢ : X — Y in % can be seen as the isomorphism class
[X,idx, ] € pary(X,Y). Moreover, if ¢ is a monomorphism, it can be seen as a morphism
in the inverse category isos. In this case, by Proposition 3.5.14, [ X, idy, ¢]*, which we will

denote only by *, is the isomorphism class [ X ¢,idx]| € pary, (Y, X).

Proposition 5.1.4. Let 8 be a global action of M onY € €, 1 : X — Y a monomorphism

in € and a(m) = [dom auy, tym, a4y the restriction of f to X wia t. Then
alm)=1"e[(m) e,

for allm € M.

Proof. Observe that the square in

X
X Y
X Y Y

is a pullback, so
B(m) e = [X, idx, fBm o] (5.2)

Now, since « is the restriction of § to X via ¢, the square in the diagram

dom ay,,
% v X
X X
DTN TN
X Y X

is a pullback, so

o [ X idx, B ot] = [dom ayy, idx © Ly, idx 0 ] = [dom aup, L, Q.- (5.3)
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Thus, by (5.2) and (5.3),
tFefB(m)er=1"e[X idx, By ot] = [dom ay,, tym, ] = a(m),

as desired. ]

If € = Set and ¢ is the inclusion of a subset X into Y, the restriction of g to X
via ¢ from Definition 5.1.1 gives us the construction seen in Definition 4.1.11, as shown in

the sequel.

Proposition 5.1.5. Let 8 be a global action of M on'Y € Set and X C Y with associated
inclusion map ¢. Then the restriction of 5 to X in the sense of Definition 4.1.11 corresponds
(as in Proposition 4.2.1) to the restriction of § to X wvia ¢ in the sense of Definition 5.1.1.

Proof. The restriction of # to X in the sense of Definition 4.1.11 is the partial action

{@m }men where, for each m € M
dom av,,, = X N 3 H(X)
and «, : dom «,, — X is given by

(1) = P () (5-4)

for each = € dom a,.

By Proposition 4.2.1 the family {c,, }men corresponds to a(m) = [dom aup, Ly, i),
where ¢, is the inclusion of dom «,,, into X.

Notice that, by (5.4), diagram (5.1) commutes for all m € M. We are going to
verify that it is a pullback diagram.

Let Z € Set and pq,p> : Z — X such that

B o Lopr =10ps. (5.5)

Given z € Z, since fn(t(p1(2))) = t(p2(2)) € «(X) = X, we have pi(2) = u(pi1(2)) €
B, 1(X), so p1(z) € dom a,,,. This way, define ¢ : Z — dom a,, by

e(z) = pi(2). (5.6)
Then we have for all z € Z
tn(9(2)) = tm(p1(2)) = p1(2)

and, by (5.4)—(5.6),
am(0(2)) = B (p1(2)) = p2(2).
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Thus ¢ makes the diagram

Bmot /

commute, and it is unique as such because ¢, is a monomorphism in Set. It follows
that (5.1) is a pullback diagram.
By Definition 5.1.1, we have that « is the restriction of 5 to X via ¢, as desired. [J

We will prove below that any restriction of a global action is a partial action.
To this end, for the remainder of this section, assume that we are in the setting of
Definition 5.1.1.

Lemma 5.1.6. The restriction o of 5 to X wvia v in Definition 5.1.1 is a partial action.

Proof. We first check (CPA1). Since f is a global action, . = idy, so . ot = . Thus,

because ¢ is a monomorphism, by Proposition 2.2.16 the following diagram is a pullback.
X
X X
ﬁk‘ /
Y

a(e) = [X, de,ZdX}

Therefore,

We will verify (CPA2) by using Remark 4.3.8. Let m,n € M. Our goal is to, given
pullback squares (4.48) and (4.50), construct an isomorphism ¢ : ;! (dom a,,) — dom v,
which makes diagram (4.51) commute.

Notice that, since § is a global action, and by the commutativity of the dia-
grams (4.48) and (5.1), we have
(6anL)O(LmOan) = (ﬁnOﬁm)OLOLmOZ;?:Bno(ﬁmOLOLm)OZZ1
:Bno([,OO(m)OZZL:6nOLO(amOZ$) :5nOLO(LnO&7T)

(8

L, 0LoL,)odn = (toay)odalr =10 (a,odl).
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Thus, the diagram

'(dom a,,)

LV Qn
m

commutes, and so, by the universal property of the pullback (5.1), there exists a unique

o
Q)

m
n

\

morphism ¢ such that the diagram

a;(dom ay,)

commutes, and so ¢ makes (4.49) commute. Therefore, « satisfies (CPA2), as desired. [

Proposition 5.1.7. The restriction o of 8 to X wia v in Definition 5.1.1 is a strong

partial action.

Proof. By Lemma 5.1.6, « is a partial action. In particular, « satisfies (CPA1), and,
thus, (SCPA1).

We will now verify (SCPA2) by using Remark 4.3.9. To do so, let m,n € M.

Since « is a partial action, there exists a morphism ¢ : a;,!(dom a,) — dom av,y,
that makes diagram (4.49) commute.

Notice that, by the commutativity of (4.49),

~m
lym © @Y = U, O Ly,

so since (4.50) is a pullback there exists a unique morphism 6 : o' (dom a,,) — dom a,,, N
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dom «,,, that makes the following diagram commute.

©
dom a,,, N dom a,,

) 5 x (5.7)

dom o, dom oy,

The morphism 6 makes (4.51) commute, because, by the commutativity of (4.50)
and (5.7),

(tnm 0 T") 00 = (tm 0 T5,) 00 = 1y 0 (T, 0 0) =t 0 T3

and by the commutativity of (4.49) and (5.7),

(anmozrnm)ogzanmo(znmmoe) :O./anQOZOénOaZT

Let us verify that # is an isomorphism by exhibiting its inverse. Notice that by
the commutativity of (4.50) and (5.1) we have

L0 (Qpm 0 T") = (L0 Q) 013" = (Brm © L 0 L) 0 7"

B0 Bm) 0L 0 (bym 0T™) = 0 By 010 (L 0 Thiry)

:6n0(6mOLOLm)OZ?m:ﬁnO(LO&m)OZ:?m

~~

= B oo (amolyy,)

so since (5.1) is a pullback, there exists a unique morphism 7 : dom a,,,,, N dom «,, —

a;t(dom ay,) such that the following diagram commutes.

dom «,,,, N dom av,,

I
|
'n
I
~
m Tnm
nm AnmOly,

dom «

QoL

(5.8)

v

n n

/8

Brot

/A
\
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In particular, by the commutativity of (5.8) it follows that

L O = Qp Ol

so since (4.48) is a pullback, there exists a unique morphism v : dom s, N dom oy, —

a;'(dom a,) such that the following diagram commutes.

dom ay,,, N dom oy,

(5.9)

Let us verify that ¢ is the inverse of 6. Notice that by the commutativity of (5.7)
and (5.9) we have

-m _am _-m __ -m .
bpm © to ¢ =1y © ¢ = loym = bpm © lddomanmmdomam7

so, since 7 is a monomorphism (because (4.50) is a pullback for all m,n € M and ¢y, is
a monomorphism), we have 6 0 90 = idqom a,,,,Ndom ayy, -
Similarly, the commutativity of (5.7) and (5.9) gives us
by 0tpof =15, 00=10"=1ioid,

n L(dom )’

so, since 7' is a monomorphism (because ¢, is a monomorphism in (4.48)), we have

w e} 9 — ida;q,l(
Therefore, « satisfies (SCPA2), and is, thus, a strong partial action, as desired. [

domay)- 1hUS, ¥ is an isomorphism, as desired.

Remark 5.1.8. Another proof that a satisfies (SCPA2) using Proposition 5.1.4 goes as
follows. Let m,n € M. Then by the fact that [ is a global action and Proposition 5.1.4
and (R4)

an)ea(m)=(t"epB(n)er)e(t*eF(m)eL)=1"e3(n)e(Le. e 3(m)e)
— e () o (F o Bm) o) = i* o B(n) » (B(m) o 1o 7« Fm) #7)

)
— " o (B(n) » B(m)) e e a(m) = " « Bnm) o L ® a(m) = a(nm) e a(m).

Inspired by Proposition 5.1.4, one could in fact define restrictions of any partial

action data to a subobject. The following proposition illustrates what happens if one were
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to restrict partial actions and strong partial actions in such a way.

Proposition 5.1.9. Let 8 be a partial action datum of M onY € €, 1: X — Y a
monomorphism in € and consider the partial action datum o(m) = * e B(m) e of M on

X. If B is a (strong) partial action, then « is a (strong) partial action.

Proof. First, observe that, by (R4), for all m,n € M we have

an)ea(m)=(1"ef(n)er)e(t*eF(m)er)=1"e3(n)e(Le. e [F(m)e.)
e B(n) o (F o Bm) o) = ¢ » B(n) o (B(m) » 0 e BT 00

S0,

a(n) o a(m) = i* o B(n) ® () o 1 » (), (5.10)
Assume, then, that § is a partial action. Since § satisfies (CPA1), f(e) =
[Y,idy,idy] is the identity morphism of Y in par,. Thus, we have

ale)=1"ef(e)or=1"01=17=[X,idx,idx],

so « satisfies (CPAL).
Now let m,n € M. Then, since (3 satisfies (CPA2), and by Propositions 3.4.10
and 3.4.12 and (5.10), we have

a(n)ea(m)= e (f(n)ep(m))erealm) <. e3(nm)e.ealm)

= a(nm) e a(m) < a(nm).

Thus, « is a partial action.

Now assume that [ is a strong partial action. Similar to the previous case, it then
follows that « satisfies (SCPA1), so let us verify (SCPA2).

Let m,n € M. Then, since (3 satisfies (SCPA2), and by (R2)—(R4) and (5.10) we

have

a(n) e a(m) = i* o (B(n)  B(m)) o ¢ o alm) = £* o (B(nm) o Bm)) o ¢ » a{m)
=1 e f(nm)e(S(m)er)ea(m)="1"eF(nm)e(1e(m)eL)ea(m)
= ("o B(nm) e ) e (5(m)erea(m))=alnm)e(a(m)es(m)e.)

— a(nm) e a(m) e B(m) e £ = a(nm) e a(m).

where the final equality follows by (R1), since a(m) = 1*e3(m)e.. Thus, « satisfies (SCPA2).
[

Proposition 5.1.10. Let 5 be a global action of M on'Y € € and v : X — Y and

/X" = Y monomorphisms. Let o be the restriction of f to X wvia ¢ and o be the
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restriction of B to X' via (/. If v and ' represent the same subobject of Y, then o and o’

are isomorphic in M —Datumy.

Proof. Let us say that a(m) = [dom ay,, tm, @] and o/(m) = [domal, i/ ! | for all
m € M.

Assume that ¢ and ¢/ represent the same subobject of Y. Then there exists an
isomorphism ¢ : X — X’ such that

Jop =1 (5.11)

Let us verify that ¢ is an isomorphism from « to o/ in M —Datumey. We will first
verify that ¢ is a datum morphism from « to «’.

Let m € M. Observe that since « is the restriction of § to X via ¢, the diagram (5.1)
is a pullback, and, in particular, commutes. With this and (5.11) we thus have

Brmnot 000ty =Lm0otol, =100, ="10po0a,. (5.12)
Now, since o is the restriction of 5 to X’ via ¢/, the diagram

dom o,

L

is a pullback. Then, by (5.12), there exists a unique morphism ¢,, : dom o, — dom«/,

\ /4

such that the diagram

dom a,,

iy

(oW

\/;/

om

J/
o



Chapter 5. Restrictions and globalizations of partial monoid actions 124

commutes. In particular, the diagram

dom «,,
X Pm X
dom o, ¢

/ \X/

commutes for all m € M, so ¢ is a datum morphism from « to o’ by Proposition 4.4.3.

)
X/

Now let 9 be the inverse of ¢. A similar verification, utilizing the universal property
of (5.1), shows us that 1 is a datum morphism from o’ to «. It is immediate, then, that
is an inverse of ¢ in M —Datume, so ¢ is an isomorphism from « to o’ in M —Datumg,
as desired. O

5.2 GLOBALIZATIONS OF PARTIAL ACTIONS

We can now define the notion which is in some sense inverse to the restriction of

a global action.

Definition 5.2.1. Let « be a partial action datum of M on X € . A globalization of «
is a pair ((,¢) formed by a global action § of M on an object Y € ¢ and a monomorphism
t: X — Y, such that « is the restriction of 5 to X via ¢.

If o has a globalization, we say that « is globalizable.

By Remark 5.1.3, the morphism ¢ in Definition 5.2.1 is a datum morphism from «

to 3.

Example 5.2.2. Let (X, <) be a meet-semilattice, € its associated category and « a
globalizable partial action of M on x € %. Then « is a global action.

Indeed, for all y € € the only global morphism in pary(y,y) is [y, idy, id,], so any
global action of M on y is trivial. Hence, if ((,¢) is a globalization of a where, say, § acts

on y € €, then, by Proposition 5.1.4,
a(m)=1"ef(m)er=1"0[y,idy,, id,]| e =1" e =[x, id,,id,],

for all m € M.

Definition 5.2.3. Let a be a partial action datum of M on X € %. A universal

globalization of « is a pair (3, ) such that:
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(UG1) (5,¢) is a globalization of «;

(UG2) whenever (v, k) is a globalization of «, there exists a unique morphism ' : § — ~

such that the following diagram commutes.

VAN
x

Remark 5.2.4. Observe that our concept of a universal globalization slightly differs from

(6]
n/ (5.13)

2L

that of a globalization defined in [18] because we do not require the datum morphism ¢ in
Definition 5.2.3 to be a reflection of o in M —Act.

Nevertheless, whenever a reflection ¢ of o in M —Acty exists, it gives us a necessary

and sufficient condition for « to have a (universal) globalization.

Theorem 5.2.5 ([15, Theorem 4.4]). Let a(m) = [dom v, L, ] be a partial action
datum of M on X € €. Assume that o has a reflection v : o« — [ in M —Acty, with, say,
B acting on'Y € €. Then the following are equivalent:

(1) (B,¢) is a globalization of a;

(2) (B,¢) is a universal globalization of o;

(8) « has a universal globalization,

(4) « has a (not necessarily universal) globalization;

(5) for all m € M the following diagram is a pullback diagram in € .

dom ay,

¥ > (5.14)
Y

&m)X

Proof. Implication (1) = (2) follows because (3, ), being a globalization, satisfies (UG1),
and (UG2) is a consequence of the fact that ¢ is a reflection.

Implications (2) = (3) and (3) = (4) are immediate and (5) = (1) follows
from the definition of a globalization, so it remains to check (4) = (5).

Assume thus that « has a globalization (v, k), with, say, v acting on Z € €. By
Definition 5.2.1, « is the restriction of v to X via . That is, for all m € M the diagram
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dom ay,,

X/ 7 \X

o

is a pullback diagram.
Since ¢ is a reflection of o in M —Acty and 7 is a global action with x a datum

morphism from « to 7, there exists a unique datum morphism «’ : f — ~ such that
k=FK oL (5.15)
Fix m € M. As " and ¢ are datum morphisms, by Lemma 4.4.4 we have
Ymok =k of, and B, 010 Ly = L0 ay,. (5.16)

This way, by (5.15) and (5.16), the diagram

commutes. Now, since its perimeter is a pullback diagram, it is customary to check that

the inner square is also a pullback. O

Remark 5.2.6. Since ¢ is a datum morphism from « to 3, diagram (5.14) is already a

commutative diagram, by Lemma 4.4.4.

In Example 6.3.10 we will present a universal globalization (/3,¢) whose ¢ is not a
reflection.

Observe that universal globalizations are unique up to isomorphism.

Proposition 5.2.7. Let o be a partial action datum of M on X € € and (5,t) and
(7, k) universal globalizations of . Then there exists an isomorphism ¢ :  — ~ such that

poL=RK.

Proof. Since (f,t) is a universal globalization of o and (v, k) is a globalization of «,
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by (UG2) there exists a unique morphism ¢ such that the following diagram commutes.

e
x

In particular, ¢ is such that ¢ ot = k. Let us verify that it is an isomorphism.

o
)

Qs

In a similar way, since (7, k) is a universal globalization of «, by (UG2) there
exists a unique morphism v : v — 3 such that ¥ o kK = ¢.
Then observe that

Ypopor=1Yor=1=1idgour,

so since (3, ) satisfies (UG2) it follows that ¢ o ¢ = idg.
Similarly, since (7, k) satisfies (UG2) we have ¢ o ¢ = id,. Hence, ¢ is an

isomorphism, as desired. O

Corollary 5.2.8. Let « be a partial action datum of M on X € € and (f,t) an universal
globalization of a. If o has a reflection in M —Acty, then v : a — (8 is a reflection of a in
M—Actcg.

Proof. Let r : @« — v be a reflection of a in M —Acty. Since a has a globalization, by
Theorem 5.2.5, (v, r) is a universal globalization of a. Hence, since (f3,¢) and (v,r) are

universal globalizations of «, the result follows by Proposition 5.2.7. O

5.2.1 REFLECTION IN TERMS OF A COLIMIT

Now we are going to provide conditions for a partial action datum to have a
reflection in M —Acty. To this end, for the remainder of this subsection fix a partial action
datum a(m) = [dom vy, ty, ] of M on X € €.

Define the category I with Ob([) = (M x M)U M, where for each (m,n) € Ob([)
there is a morphism from (m,n) to mn and a morphism from (m,n) to m, and there are

no other non-trivial morphisms.

Definition 5.2.9. The functor' associated to « is the functor F : [ — % defined as

follows. Given m,n € M, it maps
e (m,n) to dom a,,

e mto X,

L Strictly speaking, the functor is not unique, since it depends on the choice of representatives of the

isomorphism classes a(m), m € M.
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o the morphism (m,n) — mn to t,, and
o the morphism (m,n) — m to a,,
as illustrated.
(m,n) . dom «,,
mn m X X

We are going to show that a colimit of F' induces a reflection of « in M —Acty.
To this end, recall that for all Y € € we denote by A(Y') the constant functor from I to
% that maps all objects in I to Y and all morphisms in [ to idy.

Lemma 5.2.10. Let n = {F(i) 25 Y : i € I} be a natural transformation from F to
A(Y). Then for each m € M the family n™ = {F (i) oy ic I}, where

mst), fi=1(s,t)e M x M,
n = sy ¥0=(5,%) (5.17)
Nimss ifi=s€ M,

is also a natural transformation from F to A(Y).

Proof. Fix m € M. Since the only non-trivial morphisms in [ are (s,t) — st and (s,t) — s
for each s,t € M, to verify that n™ is a natural transformation from F' to A(Y), it suffices

to check that the diagrams

Ns .t Ns.t
dom oy e,y dom «, Dy
LtJ{ J,id and atJ{ id (5 . 18)
X "43) Y X SN Yy

commute for each s,t € M.

Let s,t € M. Since 7 is a natural transformation from F' to A(Y'), sty 0 2 =
Nims)t © Lt = Nms,t)- S0, we have the commutativity of the left diagram of (5.18), in view
of (5.17).

The commutativity of the right diagram of (5.18) follows similarly. ]

Assume that there exists a colimit n : F© — A(Y) of the functor F' associated
to a and let n™ be the corresponding natural transformation from Lemma 5.2.10. Fixed
m € M, by the universal property of n there exists a unique natural transformation (3,
from A(Y) to A(Y') such that n™ = 3, on.

That is, for each m € M there exists a unique morphism Y Pm v such that

B © Nsity = N5y = Nimsit) (5.19)
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for all s,t € M, and
Bm OTns = n;n = Nms (520)

for all s € M.
Consider then the partial action datum S of M on Y given by

B(m) = [Y.idy, By] (5.21)
for each m € M.

Lemma 5.2.11. The partial action datum 3 defined in (5.21) is a global action of M on
Y.

Proof. We will verify that the map 3 : M — Endg(Y), where 3(m) = 3,, is a monoid
homomorphism.

By (5.17),

idy O N(s,ty = N(st) = Nest) = Ms.t) = Be © Ns.t)

for all s,t € M, and
Z‘dYons = TNs = TNes :775:660778
for all s € M. Thanks to the uniqueness of f3,, it follows that 8, = idy. Therefore,

preserves the identity.
Now let m,n € M. By (5.19) and (5.20), for all s,t € M we have

(671 o ﬂm) O MNs,t) = ﬂn % (6m ° 77(3,t)) = ﬂn O Nms,t) = TN(n(ms),t)
= T((nm)s,t) = Bnm O T(s,t)

and

(ﬁn © Bm) O1s = ﬁn © (Bm © 775) = ﬁn O Nms = Nn(ms) = N(nm)s = Bnm O 1s-

Thus, by the uniqueness of f3,,, we have (3, o 8,, = B.m. Therefore, ol preserves the
product of M.

Thus, 3 is a monoid homomorphism. Hence, 3 is a global action by Proposi-
tion 4.3.4. 0

Definition 5.2.12. Let 1 be a colimit of the functor associated to «. By the global
action associated to 1 we mean 5 € M—Acty given by (5.21).

Proposition 5.2.13. Let n: F — A(Y) be a colimit of the functor F' associated to «,
and let B be the global action associated to n. Then n. : X — Y is a datum morphism from
a to 3.
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Proof. Given m € M, since 7 is a natural transformation from F' to A(Y'), we have

Nm © bm = TNem © by = N(eqm) = Te © Q. By (5.20) we have (3, 0 . = ny,. Thus,

<5mone>obm:77mo//m:neoama

and so, by Lemma 4.4.4, 7, is a datum morphism as desired. O
Lemma 5.2.14. Let (v, f) be a pair formed by a global action v of M on Z € € and a

datum morphism f : a — ~y. Then the family & = {F (i) S zic I}, where

mn © fOly, ifi=(m,n)€e M x M,
a0 f ifi=(m,n) (5.22)
Ym © f, ifi=me M,

is a natural transformation from F to A(Z).

Proof. We shall verify that for each m,n € M the diagrams

dom av,, Somm, dom av,, fmm),
Lnl }'d and anl }'d (5.23)

commute.
The commutativity of the left diagram of (5.23) follows directly by (5.22).

For the second diagram, by Lemma 4.4.4 we have

foa,=v0fou,.
Thus, since 7 is a global action, we have
Emoan=Ymof)oan="mo(foan)=rmo(mofouLw)
= (Ym 9 V) © f 0 ln = Ymn © f 0 tn = {mn),
giving us the commutativity of the right diagram of (5.23). O

Theorem 5.2.15 ([15, Theorem 4.15)). Let F - A(Y) be a colimit of the functor F
associated to o and 3 the global action associated to n. Then o = 3 is a reflection of o
m M—Athg.

Proof. Let (v, f) be a pair formed by a global action v of G on Z € ¥ and a datum
morphism f : o — 7. We must show that there exists a unique datum morphism f’: g — ~
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such that the diagram

(07

; (5.24)

MNe
_
N

24 ™

commutes.
Let ¢ be the natural transformation (5.22) from F to A(Z) constructed in
Lemma 5.2.14.

By the universal property of n, there exists a unique morphism Y L 7 such that

&= fon (5.25)

for each ¢ € I. Since v, = idz, by (5.22) we have & = f, whence ' on, = f by (5.25). So,
diagram (5.24) commutes modulo the verification that f’ is a datum morphism from § to
v, which we are going to do now. By Lemma 4.4.4, this will be accomplished if we show
that for each m € M

f'oBm=94mof. (5.26)

m

To this end, fix m € M and consider the natural transformation £™ = {F(7) RN
i € I} from F to A(Z), where

mst), ifi=(s,t)€ M x M,
&' = Stmos) (&:2) (5.27)
Ems, ifi =s¢€ M,

constructed from ¢ as in Lemma 5.2.10.

By the universal property of 7, there exists a unique morphism Y ", 7 such that
for each i € 1

&' =¢mon. (5.28)

Since v is a global action, for all s € M we have

Ym © Vs = Vms- (5.29)
Thus, for all s,t € M,
Mo fon B ot B o0 B0 B, Een Vo,
and
Ym o f'o N(s,t) (29 Tm © §(s,t) 22 Ym © Vst © f Ot (29 Ym(st) © Jou

5

22 5 27 5
= Y(ms)t © f Ol f(ms t) f(st

28)
gmonst)
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so the uniqueness of £™ in (5.28) gives

Ym0 [l =&m. (5.30)

On the other hand, for all s,t € M we have

(5.20) (5.25) (5.27) ., (5.28) —
f/oﬁmons = flonms = gms = 58 = 5’"0775
and
(5.19) (5.25) (5:27) Ly (5:28) =
frobBmoney = foNmsy = Emsny = Eany = MO,
so the uniqueness of £™ in (5.28) also gives
froBm=¢&m (5.31)

This way, (5.30) and (5.31) complete the proof of (5.26), so f” is a datum morphism
from [ to 7, as desired.
Finally, let us check the uniqueness of f’ as a datum morphism from 3 to ~. To

do so, let f” be a datum morphism from 3 to 7 such that

f=f"on.. (5.32)

Since f” is a datum morphism, by Lemma 4.4.4 we have
[0 Bm="mo f. (5.33)

Thus, given s,t € G, we have

5 (5.33 (5.32)

20) 33) (5.22)
f”ons = fﬂoﬁsone = 'ysof”one = 7sof =

&. (5.34)

Since 7 is a natural transformation from F' to A(Y'), for each s,t € M we have

N(s,;t) = Mst O Lt. (5.35)

Hence,

5.22)

(5.35) (5.34) (5.22) (
= f” ong ot = Egoly = Yo foruy = g(s,t)- (536)

f/l o T](svt)

So, by (5.34) and (5.36), & = f” on; for all i € I. Since f’ is the unique morphism
satisfying (5.25), we have f” = f’, as desired. O]

Corollary 5.2.16. Let € be a cocomplete category. Then « has a strong universal

globalization if and only if o has a (not necessarily strong universal) globalization.
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Proof. Since € is cocomplete, the functor F' associated to « has a colimit. In this case, by
Theorem 5.2.15, a has a reflection in M —Acty. Thus, the result follows by Theorem 5.2.5.
m

5.2.2 REFLECTION IN TERMS OF COPRODUCTS AND A COEQUALIZER

One particular case of a colimit of the functor F' gives us a stronger but more
tangible condition for a partial action to have a reflection in M —Acty, where we assume
that certain coproducts and a certain coequalizer exist in €.

Fix a partial action datum a(m) = [dom oy, Ly, @] of M on X € € and assume
that the coproducts [I,,ep X and [, nyenmxar doma, exist in €. For each m,n € M,

denote the associated inclusion morphisms by

U © X — H X and () : dom oy, — H dom av,,, (5.37)

meM (mn)eMxM

and all the coproducts of morphisms in this subsection will be with respect to one of the
two families in (5.37).

Consider the morphisms p, q : [T nyerrxn dom oy, — [e00 X given as follows:

p= [T (wmnot,) and g= T (umoan). (5.38)

(m,n)eMxM (m,n)eMxM

We shall now work towards verifying that a coequalizer of p and ¢ induces a

colimit of the functor F' associated to a.

Lemma 5.2.17. Let Z € € and £ = {F (i) 7€ I} be a natural transformation
F — A(Z). Then the coproduct [1,nens Em : Lmerr X — Z satisfies

< 11 §m> op= ( 1T §m> °gq. (5.39)

meM meM

Proof. To prove (5.39), it suffices to verify that for all m,n € M we have

( H Em) OP O Uim,n) = ( H £m> © g © U(m,n)-

meM meM

Denote, for simplicity, [, e &m by =. Fix m,n € M. Then we have

Zo (p © u(m,n)) =Zo (umn © Ln) = (E © umn) Olp = Smn Olp = g(m,n)7

where the last equality follows from the fact that £ is a natural transformation (see (5.23)).
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Similarly, we have

—_

=0 (qou(m,n)) ==o (um Oan) - (E o um) o Qp = gm oy = g(m,n)- [l

Proposition 5.2.18. Assume that there exists a coequalizer [1,,epr X ==Y of p and q.
Then the family n = {F(i) ==Y :i € I} such that

COPOUy =COqOoUsy, Iift=I(st)eMxDM,
= PO Us ) gouy, ifi=1(s1) (5.40)
€O Ug, ifi=s¢€ M,

is a colimit of the functor F associated to a.

Proof. Firstly, note that n is a natural transformation from F to A(Y"), since for each

m,n € G the diagrams

n(m n) 77(m n)

dom oy, —— dom o,, —>

T e

X X I

commute by (5.38) and (5.40).
Given Z € €, let £ = {F (i) Ny I'} be a natural transformation from F' to
A(Z). Let us show that there exists a unique morphism ¢ : Y — Z such that

£=pon. (5.41)

By Lemma 5.2.17, we have (I1,ear &m) © P = (mear &m) © g, s0, by the universal
property of ¢ as a coequalizer of p and ¢, there exists a unique morphism ¢ : Y — Z such
that

I én=ypoc (5.42)

meM

Now, ¢ satisfies (5.41), since for all m,n € M by (5.40) and (5.42) we have

ponm=po(couy)=(poc oum—<H §m> U = &m

meM

and by (5.38), (5.40) and (5.42) together with the fact that £ is a natural transformation

@ O N(m,n) = PO (C opo u(m,n)) = (90 o C) o (p o u(m,n))

( H £m> umn o Ln) fmn Olp = g(m,n)

meM

It remains to show that ¢ is the unique morphism satisfying (5.41). For, assume
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that ¢’ is a morphism such that £ = ¢’ on. Then for each m € M using (5.40) we have
@ ocou, =@ on,=En,

so that ¢’ oc = [1,,,eas &m- Since ¢ is the unique morphism that satisfies (5.42), we conclude
that ¢ = . O

Let 5(m) = [Y,idy, Bm] be the global action associated (see Definition 5.2.12) to
the colimit 1 from Proposition 5.2.18. Notice that for each m € M, 3, can be described

precisely as the unique morphism such that for all s,t € M
B © €O Ug = €O Ups, (5.43)

since, in this case,

ﬁmocopous,tzcopoums,t

automatically follows from (5.43).

As a consequence of Proposition 5.2.18 and Theorem 5.2.15, we get the following.

Corollary 5.2.19 ([15, Corollary 4.20]). Let [1,,enr X —— Y be a coequalizer of p and q.
Then cou, : a — [ is a reflection of o in M —Acty.

So, in this case, we can work with a universal globalization of « in terms of
coproducts and a coequalizer, due to Theorem 5.2.5.

In a final approach to finding conditions for « to have a reflection in M —Acty,
we shall define structures of global actions on the coproducts we worked with so far, in
order to find necessary and sufficient conditions in terms of a coequalizer in M —Act.

For each m € M, consider the morphisms

Om = H U(ms,t) H dom oy — H dom oy (5.44)

(s,t)yeM x M (s,t)yeM x M (s,t)eM x M
and

U= ] ums: [ X = [[ X (5.45)

seM seEM seM

It is a simple verification that the partial action data

(p(m> = [H(s,t)EMXM dom 7% Zda Som] and w(m) = [HSEM X7 Zd) @Dm}

are global actions of M on [[(, nyerrxnm dom oy, and [1,,ep X, respectively.

Proposition 5.2.20. The morphisms p,q : L mmnyemxm dom oy = Tmens X in (5.38) are
morphisms from ¢ to ¥ in M—Acty.
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Proof. We shall only verify that ¢ is a datum morphism, as the verification for p is

analogous. By Lemma 4.4.4, it suffices to show that

40 Ym = Ymoq,
for each m € M. The latter is equivalent to
q O Om O Usy) = Pm © qO Uy for each (s,t) € M x M.
Indeed, fixed m € M, by (5.38), (5.44) and (5.45), for all s,t € M we have
q O Pm O Ust) = GO Ulms) = Ums © 0 = (VY 0 U) O g
= P 0 (Us © ) = 1 © ¢ 0 U(s py.-
0

Lemma 5.2.21. Let v be a global action of M on Z € € and X Ny morphism in €.
Then men(Ym © f) is a morphism from ¢ to v in M —Acty.

Proof. For the simplicity of notation, let I' = [1,,ca7(7m © f). Then for each s € M we
have

I'o Us = Vs © f
Therefore, given m, s € M, by (5.45) and the fact that 7 is a global action we have
(Iothm) ous =T 0 (Ymous) =T 0Ups =Yms 0o f = (ymos)of
:’Ymo(’Ysof) vaO(I’ous) = (’}/mOF)OUS,

so that I'o ), = vy, oI
Thus, by Lemma 4.4.4, T" is a datum morphism from v to v, as desired. O

In view of Lemma 5.2.21 we can define the following map.

Definition 5.2.22. Let v be a global action of M on Z € €. Define Hx ,, : Hom (X, Z) —
Homs - act, (¥,7) by

Hx,(f) = I (ymo f), (5.46)

meM
for any f € Homg (X, Z).

Proposition 5.2.23. Let v be a global action of M on Z € €. Then Hx ., given by (5.46)

is a bijection whose inverse is

Homp/—act, (¢,7) 2 ' = I'ou, € Homy (X, Z). (5.47)
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Proof. To simplify the notation, denote Hx , by H. Let us verify that the map G defined
in (5.47) is the inverse of H.
Let f € Homyg (X, Z). Then by (5.46) and (5.47)

G(H(f)): H (W/mof)oue:'}/eof:f'

meM

On the other hand, let I' € Homp;_act., (¢, 7). We have by (5.46) and (5.47)

H(GT) = T (ymo (T oue)). (5.48)

meM

As T is a datum morphism, for each m € M we have T'o1),, = 4, 0T, so, by (5.45)
and (5.48),
Fouy, =Tot,0u =vynol ou.=H(GI)) o upy.

Thus, I' = H(G(I")). O

Lemma 5.2.24. Let § and ~ be global actions of M on'Y € € and Z € €, respectively,
g € Homp/_act, (8,7) and f € Homg(X,Y). Then

Hx (g0 f)=go Hxp(f) (5.49)

Proof. Let m € M. By Lemma 4.4.4 we have ~,, 0 g = g o 3, so by (5.46)

Hx,(go f)oun =9mogof=gopfnof=goHxg(f)oun,
whence (5.49). O

Lemma 5.2.25. Let v be a global action of M on Z € € and f € Homy (X, Z). Then f

is a datum morphism from « to v if and only if

Hx(f)op=Hx,(f)oq. (5.50)

Proof. Write H = Hx ., for short. Assume that f is a datum morphism from « to «y. For
all m € M, by Lemma 4.4.4 we have

Ym © fotlm = foapn, (5.51)

and by (5.46) we have
H(f)oum="mo f. (5.52)

By (5.38) and (5.52) we get

H(f)oqouwy =H(f)ousoa, =50 foa. (5.53)
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Therefore, by (5.38) and (5.51)—(5.53), and since v is a global action, for each

(s,t) € M x M,

5.53 5.51

H(f)oqougy 2 o foam =m0 (foa) EV v 0 (o fou)
:(sO’Yt)OfOLt:’Ystofobt:(%tof)obt

5.52 5.38

( )(H(f)oust)oLt:H(f)o(ustoLt) (:)

H(f) O PO Us,t),

whence (5.50).
Conversely, assume that ' := H(f) satisfies

Fop=Tog. (5.54)
By Proposition 5.2.23,
f=H(f)ou, =T ou,. (5.55)
It follows from (5.38), (5.52), (5.54) and (5.55) that for all m € M
(Ym o f) o tm (352 (T o ty) 0 by, =T 0 (U, © L) @ P, (p © U(e,m))
(5.54)
= (F © p) O Ue,m) = (F o Q) O Ule,m) = I'o (q © U(e,m))
(5:38) ['o (ue © am) = (F o ue) O Qy (5:55) f O Oy,
[

and, thus, by Lemma 4.4.4, f is a datum morphism from « to ~.
Theorem 5.2.26 ([15, Theorem 4.27]). The following statements hold:

(1) If o == B is a reflection of o in M—Acty, then Hx (r) is a coequalizer of p and q
m M—Actc,;.
(2) If v = B is a coequalizer of p and q in M—Acty, then cou, is a reflection of a in
M—Athg.
In particular, o has a reflection in M—Acty if and only if p and q have a

coequalizer in M —Acty.

Proof. (1) Assume o — (3 is a reflection of o in M —Acty. Let us check that Hx g(r) is

a coequalizer of p and ¢ in M —Act.
By Lemmas 5.2.21 and 5.2.25, Hx () is a datum morphism from ¢ to /5 such

that Hx 5(r) op = Hx g(r) o q.
Let 1 R ~v be a datum morphism such that fop = f oq. We must show that

there exists a unique datum morphism f’: 5 — = such that

[ =f oHxg(r). (5.56)
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By Lemma 5.2.25, H)}}W(f) = f ou, is a datum morphism from « to 7. Since r is

a reflection of o in M —Acty, there exists a unique datum morphism f’: 8 — ~ such that
flor=fou,. (5.57)
This way, by Proposition 5.2.23, (5.57), and Lemma 5.2.24 we have

f=Hx,(fou)=Hx,(f or)=f"oHxpg(r).

Note that f’ is the unique datum morphism satisfying (5.56). Indeed, if f” is a
datum morphism from S to vy such that f” o Hx g(r) = f, then by Proposition 5.2.23

fror=f"o(Hxp(r)oue) = (f" o Hxp(r)) o ue = foue,

and by the uniqueness of f’ in (5.57), we have f” = f’. Thus, Hx g(r) is a coequalizer of p
and ¢ in M —Actg.

(2) Let ¢ be a coequalizer of p and ¢ in M —Acty. We shall verify that cou, is a
reflection of o in M —Act.

By Lemma 5.2.25, H~!(c) = ¢ o u, is a datum morphism from « to 3, since c is a
datum morphism such that cop =coq.

So, let a N ~v be a datum morphism. We must show that there exists a unique

datum morphism f’ from S to « such that

f=1fol(cou) (5.58)

Lemma 5.2.25 tells us that Hy ,(f) is a datum morphism from v to 7 such that
Hx (f)op= Hx,(f)oq. So, since ¢ is a coequalizer of p and ¢, there exists a unique

datum morphism f’ from S to ~ such that
Hx,(f)=f'oc (5.59)
This morphism is such that
f=Hx~(f)oue=(foc)ou.= fo(cou).

Moreover, f’is the unique datum morphism satisfying (5.58). Indeed, if there
were f” with f = f” o (cowu,), then by Lemma 5.2.24 and Proposition 5.2.23

Hx . (f)=Hx~(f"o(cou.)) = f"oHxg(cou,) = f"oc,

and, due to the uniqueness of f’ in (5.59), we would have f” = f’. O
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Observe that if a coequalizer of p and ¢ exists in %, it is also a coequalizer in
M —Athg.

Proposition 5.2.27. Let [1,,ep X —= Y be a coequalizer of p and q in € and S the global
action of M on'Y satisfying (5.43). Then c is a datum morphism from 1 to 8 that is a
coequalizer of p and q in M —Acty.

Proof. We will first verify that ¢ is a morphism from 1 to 5. By Corollary 4.4.5 it suffices
to verify that c o, = (3, o c for all m € M.
Let s € M. Then, by (5.43),

BmOCOUS = CO Upms :Coqu)mOUS
for all s € M. Hence, it follows that

BmOCZCOI/}m

as desired.
Now let us verify that ¢ : ©» — [ is a coequalizer of p and ¢ in M —Acty. Let
P 7, ~v be a morphism in M —Acty such that

fop=/foq (5.60)

The global action 7 acts on, say, an object Z € %. Since f is a morphism in
¢ satisfying (5.60) and c is a coequalizer of p and ¢, there exists a unique morphism
f' Y — Z such that

floc=f. (5.61)

Let us verify that f’is a morphism from S to v by Corollary 4.4.5. For let m € M.
Then, by Corollary 4.4.5 and (5.61),

o floC=Tmof=fothm=Focolu=Fobnoc
Since ¢ is a coequalizer in %, it is an epimorphism in %. Hence, it follows that

’Ymof/:f/oﬂma

as desired.

Clearly, f’ is the unique morphism from ¢ to «y satisfying (5.61), because it is the
unique morphism in ¥ satisfying such equation. Hence, c¢ is a coequalizer of p and ¢ in
M —Acty, as desired. O

We will now verify a certain property that a reflection coming from a coequalizer
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satisfies.

Lemma 5.2.28. Let (3,t) be a universal globalization of o and assume that p and q have

a coequalizer in €. Then 11,,car(Bm o t) is a coequalizer of p and q in €.

Proof. By Corollary 5.2.19, since p and ¢ have a coequalizer ¢ in €, a has a reflection
in M —Acty. Thus, by Corollary 5.2.8, it follows that ¢ : a — [ is a reflection of « in
M—Acty.

Therefore, by Theorem 5.2.26 (1), Hx g(¢) = [Tnem(Bm o t) is a coequalizer of p
and ¢ in M —Acty, as desired. O

Theorem 5.2.29. Let (f3,¢) be a universal globalization of o, where B acts on an object
Y€€, andv:Y' — Y a monomorphism, and assume that p and q have a coequalizer in

€. If B o factors through v for all m € M, then v is an isomorphism.

Proof. For each m € M, let v, : X — Y’ be the morphism such that
VO Uy, = By O L.

Consider then the morphism [1,,cas m @ e X — Y. Observe that

I Brot)y=vo IT vm, (5.62)

meM meM

since for each m € M we have

(H 5moL>oum:5mOL:mm:m<<H vm)oum>:<vo 1 m)um

meM meM meM

By Lemma 5.2.28, [1,,cas(8m 0 ) is a coequalizer of p and ¢ in €. Hence, since v

is a monomorphism, by Proposition 2.2.25 and (5.62) it is an isomorphism, as desired. [

Theorem 5.2.29 tells us that the category-theoretic union of the family {5, 0t} e
of subobjects of Y is the subobject idy .
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6 RESULTS AND EXAMPLES IN CERTAIN
CATEGORIES

In this chapter we apply the results obtained in Chapter 5 to certain categories.

We verify in Section 6.1 that, in Set, Corollary 5.2.19 and Theorem 5.2.5 recover
Hollings’s results on the globalization of strong partial actions on sets.

In Section 6.2 we study the partial actions on objects in Top and classify the
globalizable ones in Proposition 6.2.4.

Finally, in Section 6.3 we consider the partial actions of groups on algebras in the
sense of [7] and in Proposition 6.3.9 we observe that, in the unital case, the enveloping
action of such a partial action « is a universal globalization of a, seen as a partial action

on an object in Alg]}gd.

6.1 THE CATEGORY OF SETS

Fix a(m) = [dom v, tm, ] & partial action datum of M on X € Set, where
dom «v,,, € X and ¢, is the corresponding inclusion map (recall that every partial morphism
in Set has such a representative, by Proposition 3.1.16).

Denote by =~ the equivalence relation on M x X generated by ~, where
(m,x) ~ (n,y) < 3Im’ € M such that m = nm’, z € dom a,,y and y = (). (6.1)

Let Y = (M x X)/~ and denote by [m, x] the ~-equivalence class of (m,x).

Lemma 6.1.1. The maps 3, : Y — Y given by
Pu([m, ) = [nm, 2] (6.2)
define a global action B of M on'Y and the map ¢ : X =Y given by
t(x) = e, x|

1s a reflection o — 3 of a in M —Actget.

Proof. Consider the coproduct [1,,car X = M x X with inclusions u,, : X 3 2 — (m,x) €
M x X, and the coproduct [I(,, myenmrxy dom oy, = {(m,n,z) : x € dom oy, } = M?*e X with
inclusions () : dom oy, > x — (m,n,x) € M?eX. Then the maps p,q : M?eX — MxX
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from (5.38) are given by
p(m,n,x) = (mn,,(x)) = (mn, )

and
qg(m,n,x) = (m, a,(zx)).

The canonical projection ¢ of M x X onto its quotient by the equivalence relation
generated by ~= {(p(m,n,z),q(m,n,z)) : (m,n,x) € M? e X} is a coequalizer of p and
g. It is a simple verification that ~ coincides with (6.1), so ¢ is precisely the natural
projection of M x X onto Y.

Then the global action 5 of M on Y from Corollary 5.2.19 (see (5.43)) is given
precisely by (6.2), with ¢ = cou, : @« — [ being a reflection of « in M—Actget. O

Lemma 6.1.2. Let ¢ be the reflection of a in M —Actset as in Lemma 6.1.1. If a €
M —spActg,,, then diagram (5.14) is a pullback for all m € M.

Proof. Let m € M. Since ¢ is a datum morphism, by Lemma 4.4.4 diagram (5.14) commutes.

Consider the pullback square
A
2N
X X
ﬁm /
Y

where Z = {(z,y) € X x X : B,(e(z)) = (y)} = {(z,y) € X x X : [m,z] = [e,y]} and py
and ps are the corresponding projections. There exists ¢ : dom a,, — Z, p(x) = (x, ()
such that ¢ o p; = ¢, and p o py = «,,,. We are going to show that ¢ is a bijection. It is
clearly an injective map, so we will verify that it is surjective.

Observe that since a € M—spActg, (6.1) implies that
if (m,z) ~ (n,y), then z € doma,, <= y € domay,, (6.3)

and, in this case, a,,(z) = a,(y). Indeed, by Corollary 4.3.15 the partial action datum
{@m }mens satisfies (PA2’) and (PA3), so we have

T E oz,;}(dom a,) = dom a,,y N dom vy = dom iy N dom vy, € dom vy,

and

U (T) = Qg () = (@ (7)) = ().

Now, let (z,y) € Z. Then (m,x) =~ (e, y), so, since ~ is the smallest equivalence

relation containing ~, there exists a sequence (m,x) = (my,x1), ..., (mg, ;) = (e,y) such
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that either
(mi, @) ~ (Mg, Tigr) OF (Mig1, Tiga) ~ (M4, 25) (6.4)
foralli € {1,...,k—1}. Since y € dom a, (because dom o, = X, by (PA1)), in either of the
cases of (6.4), by (6.3) we have x;_1 € dom g1 and auy,_, (7x—1) = @e(y) = y. Recursively,
we have for all i that z; € dom oy, and qu,, (2;) = O, (Tig1) = -+ = W, (Th-1) = V.
In particular, taking i = 1 we get z € dom «,,, and () = ¥.
Hence, (z,y) = (z, am(z)) = ¢(z), and it follows that ¢ is surjective. Thus, ¢ is a
bijection and (5.14) is a pullback, as desired. O

Proposition 6.1.3. A partial action datum o in M—Datumge; has a universal global-

ization if and only if « € M —spActgg,.

Proof. If o has a universal globalization, then o € M —spActg,, by Proposition 5.1.7.
Conversely, by Lemma 6.1.1 a has a reflection in M —Acty, which, since o €
M —spActg,,, by Lemma 6.1.2, is such that (5.14) is a pullback for all m € M. Thus, by

Theorem 5.2.5 a has a universal globalization. O

6.2 THE CATEGORY OF TOPOLOGICAL SPACES

The coequalizers in Top are, those from Set equipped with a suitable topology.

Fix a(m) = [dom ay, tm, 4] a partial action datum of M on X € Top, where
dom «v,,, € X and ¢, is the corresponding inclusion map.

Consider the topological space M x X with the product topology, where M has
the discrete topology. Denote by ~ the equivalence relation on M x X generated by ~,

where
(m,z) ~ (n,y) <= 3Im’ € M such that m = nm/, z € dom v,y and y = (). (6.5)

Let Y = (M x X)/~ with the quotient topology and denote by [m, x| the ~-equivalence

class of (m,x).

Lemma 6.2.1. The maps 5, : Y — Y given by
Bn(lm, x]) = [nm, x] (6.6)
define a global action B of M on'Y and the map v : X — Y given by
uz) = le, ]

is a reflection oo — B of o in M —Actrop.
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Proof. Consider the coproduct [1,,car X = M x X with inclusions u,, : X 3 x — (m,x) €
M x X, and the coproduct [I(,, myenmrxy dom oy, = {(m,n,z) : € dom oy, } = M?*e X with
inclusions gy, ) : dom oy, 3 x — (m,n,x) € M?eX. Then the maps p,q : M?eX — MxX
from (5.38) are given by

p(m,n,x) = (mn,i,(x)) = (mn, )

and

qg(m,n,x) = (m, a,(x)).

The canonical projection ¢ of M x X onto its quotient by the equivalence relation
generated by ~= {(p(m,n,x),q(m,n,x)): (m,n,z) € M* e X} is a coequalizer of p and
g. It is a simple verification that ~ coincides with (6.5), so ¢ is precisely the natural
projection of M x X onto Y.

Then the global action 8 of M on Y from Corollary 5.2.19 (see (5.43)) is given pre-
cisely by (6.6), while the map ¢ is precisely the morphism cowu, : &« — 3 in Corollary 5.2.19,

which is a reflection of @ in M —Actrop. O

The following lemma characterizes the pullbacks in Top, which will be helpful for

the description of the (universally) globalizable partial actions on objects of Top.

Lemma 6.2.2. Let f: X — Z and g: Y — Z be morphisms in Top. Then a diagram

P

p1 p2

7N
N4

A

in Top is a pullback if and only if it is a pullback diagram in Set and the topology T of P

is the smallest topology on P such that py and ps are continuous maps.

Proof. Assume that (6.7) is a pullback in Top. Then it is a pullback diagram in Set
because the forgetful functor from Top to Set preserves pullbacks.
Let us verify that 7 is the smallest topology on P such that p; and p, are continuous.

Let 7/ be any such topology on P. Then the diagram

(P, 7')
XV &Y
e

A
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is a commutative diagram in Top. Since (6.7) is a pullback in Top, there exists a unique

continuous map ¢ : (P,7) — (P, 7) such that the diagram
(P, 7)
.l N
(P, 7)
N
X Y
\ /
A

commutes. Since (6.7) is a pullback in Set, the map ¢ can easily be verified to be equal to
idp. Hence, idp is a continuous map from (P, 7’) to (P, 7). Thus, 7’ contains 7, and, so, 7
is a the smallest topology on P such that p; and p, are continuous, as desired.

Now assume that (6.7) is a pullback diagram in Set and 7 is the smallest topology
on P such that p; and py are continuous. Let () be a topological space and ¢; and g2 be

continuous maps such that the diagram

XyQYY
N

commutes.
Since (6.7) is a pullback in Set, there exists a unique map ¢ : ) — P such that

diagram

Q

a lso q2
P

1

2 (6.9)

7 X
NS

A

commutes in Set. Let us verify that ¢ is a continuous.
By hypothesis, the topology 7 is generated by sets of the form p;*(U), for some
open U C X and p;* (V) for some open V C Y. Therefore, it suffices to verify that the
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inverse image of each of those sets by ¢ is open in @). Indeed, given an open U C X,

e Hpr ' (U) = (prow) (U) = ¢, (1),

which is open in @, since ¢, is continuous. Similarly, ¢ (py *(V)) is open in Q for all open
VC_yY.
Hence, ¢ is a morphism in Top such that diagram (6.9) commutes, and it is

unique as mentioned above. Therefore, (6.7) is a pullback in Top, as desired. O

Lemma 6.2.3. Let ¢ be the reflection of o in M—Actyep as in Lemma 6.2.1. If o €
M —spActg,, and the topology on dom a,, is the smallest topology such that i,, and o,

are continuous maps for all m € M, then diagram (5.14) is a pullback for all m € M.

Proof. The forgetful functor U : Top — Set preserves pullbacks. Thus, by Proposi-
tion 4.3.13 (1), we have that U(«) is a strong partial action of M on X in Set.

By applying the forgetful functor U to (5.14) we obtain a diagram in Set, which
is a pullback by Lemma 6.1.2.

Therefore, given m € M, since dom o, has the smallest topology such that ¢,

and «,, are continuous maps, (5.14) is a pullback by Lemma 6.2.2. O

Proposition 6.2.4. A partial action datum o in M —Datumge; has a universal globaliza-
tion if and only if « € M —spActg,, and the topology on dom a,, is the smallest topology

such that v, and oy, are continuous maps for all m € M.

Proof. 1f a has a universal globalization, then « € M —spActg,, by Proposition 5.1.7. And,
by Theorem 5.2.5, for all m € M diagram (5.14) is a pullback, so the topology on dom a,
is the smallest topology such that ¢,, and «,, are continuous maps, by Lemma 6.2.2.
Conversely, let ¢ be the reflection of @ in M —Act¢ given by Lemma 6.2.1. Then,
since the topology on dom «, is the smallest topology such that ¢, and «,, are continuous
maps for all m € M, by Lemma 6.2.3 we have that diagram (5.14) is a pullback for all
m € M. Thus, by Theorem 5.2.5 o has a universal globalization. O

Definition 6.2.5. An embedding of a topological space X into a topological space Y is

an injective continuous map f : X — Y that is a homeomorphism onto its image.

Corollary 6.2.6. Let a(m) = [dom quy, Ly, ] be a strong partial action of M on
X € Top, where doma,,, € X and i, is the corresponding inclusion map. If i, is an

embedding for all m € M, then « has a universal globalization.

Proof. Let m € M. Since ¢, is an embedding, dom «,,, has the smallest topology such
that ¢, is a continuous map. Hence, dom «,,, has the smallest topology such that ¢, and
Q,;, are continuous maps.

Therefore, o has a universal globalization by Proposition 6.2.4. [
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The following example illustrates that the converse of Corollary 6.2.6 does not
hold.

Example 6.2.7. Let M = Zy = {0,1} and X = {z,y} with the topology whose only

non-trivial open set is {x}. Consider the partial action datum « of M on X in Top, where
a(0) = [X,idx, idx] and a(1) = [X¥ idy, f],

where X45¢ is the set X with the discrete topology and f : X45¢ — X is given by f(z) =y
and f(y) = x.

Then « is a strong partial action where the topology on dom «,, is the smallest
topology such that ¢, and «,, are continuous maps for all m € M, so, by Proposition 6.2.4,
it has a universal globalization.

However, ¢ : X4 — X is not an embedding.

Example 6.2.8. Let a as in Example 6.2.7, and let X3¢ be the set X with the indiscrete
topology. Consider 3 the global action of M on X™4i¢ where

Bi(z) =y and pBi(y) ==, (6.10)

and
L=idx : X — Xndise, (6.11)

Then (3,¢) is a universal globalization of «.
Indeed, consider the coproduct I1,,cpr X = M x X (with the discrete topology on
M). Then the equivalence relation (6.5) on M x X has exactly the following non-trivial

relations.

(O,ZE) ~ (lay)v (Ly) ~ (O,ZL‘), (an) ~ (17$) and (17‘75) ~ (an)

Hence, Y = (M x X)/~ = {[0,2],[0,y]} = {z,y} with the indiscrete topology.
That is, Y & X™disc Tn this situation, the global action 4 and map ¢ from Lemma 6.2.1
are, up to the homeomorphism Y = Xndisc oiven by (6.10) and (6.11).

The following is an example of a strong partial action that does not have a

universal globalization.

Example 6.2.9. Let M = Zy = {0,1} and X = {z,y} with the topology whose only

non-trivial open set is {x}. Consider the partial action datum « of M on X in Top, where
a(0) = [X,idx, idx] and o(1) = [X ¥ idx, idx],

where X45¢ is the set X with the discrete topology.
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Then « is a strong partial action of M on X. However, the discrete topology
is not the smallest topology on X that makes idy : X — X continuous. Hence, by

Proposition 6.2.4 the strong partial action o doesn’t have a universal globalization.

6.3 THE CATEGORIES OF ASSOCIATIVE ALGEBRAS

Throughout this section, let K be a field and G a group with identity e. Every
algebra in this section is assumed to be an associative and not necessarily unital K-algebra.
The concept of a partial action of G on an algebra, as defined by Dokuchaev and

Exel in [7], is the following.

Definition 6.3.1. A partial action of G on an algebra A is a partial action {o,},ec of G
on the underlying set of A where dom ay is an ideal of A and ¢, is a homomorphism of

algebras for each g € G.

Observe that, by Corollary 4.3.15 and Proposition 4.1.19, if {a,}4e¢ is a partial
action of G on an algebra A, then the partial action datum a(g) = [dom «, ¢y, ay] of the
monoid G on the object A € Algy, where ¢, is the inclusion map of dom oy into A for all
g € G, is a strong partial action of G' on the object A in Algy.

At times we will interchange the notation a partial action {ay}4eq in the sense of
Definition 6.3.1 with its corresponding strong partial action « in the sense of Definition 4.3.6.

We distinguish the two concepts of partial actions by saying that one is classical,
while the other is categorical.

However, given a strong partial action a of a group on an object X in Algy, it
may not come from a partial action of the group on an algebra, as the domains of the
corresponding partial maps of a may be subalgebras of X that are not ideals.

In [7] the authors define the concept of an enveloping action of a partial action of

a group on an algebra, which may be described as follows.

Definition 6.3.2. Let o be a classical partial action of a group G on an algebra A. An
enveloping action of « is a pair (f3,t), where [ is a global action of G on an algebra B
and ¢ : A — B is an injective K-algebra homomorphism whose image is an ideal of B,

satisfying the following.
(EA1) «(domay) = t(A) N By-1((A));
(EA2) toay(x) =B, 0(z) for all x € dom ay;

(EA3) B is generated by U,cq By(L(A)).

Proposition 6.3.3. Let a be a categorical partial action of a group G on an algebra A. A

pair (5,t), where 3 is a global action of G on an algebra B and v : A — B is an injective
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K-algebra homomorphism, satisfies (EA1) and (EA2) if and only if it is a globalization of

a, seen as a categorical partial action.

Proof. Let a(g) = [dom ay, t4, a,], where dom a,; € A and ¢, is the corresponding inclusion
of each g € G.
First assume that ((,¢) is a globalization of a. Then for each g € G the diagram

dom o

A/ &A
N

A\

(6.12)

B

is a pullback in Algy.

It is a simple verification that (EA2) follows from the commutativity of (6.12) for
each g € G.

Let us now verify (EA1). Let g € G. Consider the subalgebra

P={(a,b) € Ax A: By((a)) =c(b)}
of A x A. Then the diagram
P
2N
A A
B

is a pullback in Algy, where p; and py are given by p;(a,b) = a and ps(a,b) = b, for all
(a,b) € P.

Since both dom ¢, and P form pullbacks of 3,0¢ and ¢, there exists an isomorphism

(6.13)

¢ : dom oy — P such that the diagram

dom a
L NG
’ P ’ (6.14)
A A

commutes. It is a simple verification that ¢ is given by

pla) = (a,aq(a)). (6.15)
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Let x € «(domay). Then x = ¢(a) for some (unique) a € dom . In particular,
x € 1(A), since a € A. Also, observe that, by the commutativity of (6.12),

r=1(a) =tot4(a) = By10Py0t04(a) = By10t00a4a) = By-1(tag(a))).

Thus, since ay(a) € A, v € B,-1(¢(A)). Hence, x € 1(A) N By-1(c(A)).
On the other hand, let « € t(A) N ,-1(¢(A)). Then there exist a,b € A such that

In this situation, observe that

Thus, (a,b) € P. Since ¢ : dom oy — P is an isomorphism of algebras, in particular it
is a surjective map. Therefore, there exists ¢ € doma, such that ¢(c) = (a,b). Hence,
by (6.15),

(a,0) = p(c) = (¢, ay(c)),

so a = ¢ € dom ¢, and, consequently, x = t(a) € ((dom o).

Thus, ¢«(dom o) = ¢(A) N By-1(e(A)) so (EAT) also follows.

Now assume that (f3,t) satisfies (EA1) and (EA2). To verify that (5,:) is a
globalization of o we must show that diagram (6.12) is a pullback for all g € G.

Fix g € G. By (EA2), (6.12) is commutative. Hence, since (6.13) is a pullback,
there exists a unique K-algebra homomorphism ¢ : dom ay — P such that (6.14) commutes.
To verify that (6.12) is a pullback, it then suffices to prove that ¢ is an isomorphism of
algebras.

It is an easy verification that ¢ is given by the formula (6.15) and that it is
injective, so all that remains is to check that ¢ is surjective.

Let (a,b) € P. Then B,(c(a)) = ¢(b), so t(a) = Py-1(¢(b)). Hence, since a,b € A,
v(a) € L(A) N Bg-1(u(A)).

By (EA1) it follows that «(a) € ¢(dom ). Since ¢ is an injective map, we have
a € dom ay.

By (EA2), since a € dom «, we then have

1(b) = Py(ua)) = 1(ay(a)).

Thus, by the injectivity of ¢, b = a,(a).

Therefore, we have

pla) = (a,a4(a)) = (a,0).
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Hence, ¢ is surjective, as desired. O

Proposition 6.3.4. Let « be a categorical partial action of G on an algebra A and (5,1)
a universal globalization of . Then (B,1) satisfies (EAS3).

Proof. Let us say that § acts on an algebra B. Consider the subalgebra .. Bm(¢(A))
of B. Then clearly it contains the subalgebra f3,,(¢(A)) of B for each m € M.

Thus, 5, ot factors through the inclusion map v of Y,,cas B (¢(A)) into B for
all m € M. Therefore, by Theorem 5.2.29, v is an isomorphism, so Y,,cas Bm(t(4)) = B.
Hence, (3,¢) satisfies (EA3), as desired. O

Observe, however, that Propositions 6.3.3 and 6.3.4 do not imply that a universal
globalization (/3,¢) of a classical partial action of a group on an algebra is an enveloping
action, since the image of + may not be an ideal of the algebra on which § acts.

The following example illustrates this fact, by providing a partial action that has

an enveloping action and a universal globalization that are not isomorphic.

Example 6.3.5. Let G = Zy = {0, 1} and A any non-trivial algebra. Consider the global
action § of G on B = A x A, where

B1(a,b) = (b, a),

for all (a,b) € B.
Let ¢ : A — B be given by

v(a) = (a,0),

for all a € A. Clearly, it is a monomorphism in Algy. Let, then, a be the restriction of /3
to A via ¢.
It is a simple verification that « is the categorical partial action of G on A € Algy
given by
a(1) =10,0,0]. (6.16)

This partial action comes from the classical partial action {a,}4eq of G on the algebra A
where domay = {0} and oy is the zero map.

Since (3, ¢) is a globalization of «, by Proposition 6.3.3, it satisfies (EA1) and (EA2).
Since

B=AxA=Ax{0}+{0} x A=u(A)+ B,(c(A)),

the pair (3, ¢) also satisfies (EA3). Thus, since ¢(A) is an ideal of B, (f,¢) is an enveloping
action of .
However, (f3,¢) is not a universal globalization of . Consider C' = [[ ¢ A with

corresponding inclusion morphisms wuy and wu; (recall Example 2.2.29). Let v be the global
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action of G on C where 7, is the unique morphism in Algy with v o ug = u; and
1 0 u; = ug, given by the universal property of the coproduct. Also let k = uy: A — C.

Since « has a globalization, Theorem 5.2.5 and the construction in Corollary 5.2.19
show us that the pair (v, ) is a universal globalization of «.

Now, assume by contradiction that (/3,¢) is a universal globalization of a. Then,
by Proposition 5.2.7, there exists an isomorphism ¢ : 8 — « such that ¢ o+ = k. Since
t(A) is an ideal of B and ¢ is an isomorphism, it then follows that x(A) = ¢(¢(A)) is an
ideal of C.

However, since A is not the trivial algebra, x(A) is not an ideal of C'. Indeed,

k(a)ui(a) € K(A) for any a # 0 in A. Hence, (f3,¢) is not a universal globalization of «.

As we have observed, the partial actions of a group on objects in Algy generalize
properly the classical partial actions of the group on algebras. A more appropriate setting

to deal with these partial actions is, then, the category Algy (recall Definition 2.2.11).

Proposition 6.3.6. Let a be a partial action datum of a monoid M on an object A € Algﬂlg.
Then « is a (strong) partial action if and only if it is a (strong) partial action of M on A
in Algy.

Proof. By Lemma 2.2.13, the inclusion functor of AlgHI<d into Algy preserves pullbacks.
It is a simple verification that it also satisfies the hypothesis of Proposition 3.3.4, so the

result follows from Proposition 4.3.13. ]

Thus, the classical partial actions of a group on algebras correspond to strong
partial actions of the group on objects in AlgIIKd. And, in this case, the converse is also
true, since the morphisms in AlgHI<d that are inclusion maps are inclusions of ideals.

The next proposition will show a certain relationship between the enveloping
actions and the universal globalizations in Algl%{d. Its proof was heavily inspired by the

proof of the uniqueness part of [7, Theorem 4.5].

Lemma 6.3.7. Let {a,}sec be a classical partial action of a group G on an algebra A
where each ideal dom oy, is a unital algebra with unity element 1,. Then ay(1,) = 1,-1 for

each g € G.

Proof. Let g € G. Observe that o, is injective by Corollary 4.1.17. And by taking h = e
in Lemma 4.1.18 we obtain

ay(dom ayy) = dom ayy-1. (6.17)

Hence, a4 induces a bijective map, and, thus, an isomorphism of algebras, from dom a4 to

dom avy-1. Therefore, ay(1,) = 1,-1, as desired. O

Lemma 6.3.8. Let A be an algebra and {A;}ier a finite family of unital ideals of A such
that A =3;cr A;. Then A is a unital algebra.
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Proof. First we prove that if A is the sum of two ideals [ and J, with unity elements 1;
and 1, respectively, then A is a unital algebra.
Let 14=1;+1;—1;1;. Let a € I. Then we have

alA:a(1[+1J—111J):a11+a1J—a1[1J:a—i—alJ—alJ:a

and, similarly, 14a = a. Likewise, aly = a = 14a for all a € J. Hence, since A =1+ J, 14
is a unity element of A.

Then the general result follows by induction. O

Proposition 6.3.9. Let {a,},eq be a classical partial action of a group G on an algebra
A where each ideal dom oy, is a unital algebra, and (5,1) an enveloping action of o.. Then

(B,1) is a universal globalization of the strong partial action « of G on A in Algﬂlg.

Proof. For each g € G denote by 1, the unity element of the ideal dom .

Since the pullbacks in Algg are the same as in Algy and (3,¢) is an enveloping
action of «a, by Proposition 6.3.3 it is a globalization of «a. So, it suffices to verify that
(B, 1) satisfies (UG2).

Let (v,k) be a globalization of a. We must show that there exists a unique
morphism ' : f — v such that diagram (5.13) commutes. Let us say that v acts on an
algebra C.

Observe that if such £’ exists, by the commutativity of (5.13) and by Corollary 4.4.5,

we must have that
K (By(1(a)) = 74(K'(1(a)) = 4((a)), (6.18)

for all g € G and a € A.

Now, by (EA3), B is generated by Uyeq 84(t(A)). Hence, B is generated as a
vector space by elements of the form f,(c(a)), for ¢ € G and a € A. So, once we establish
the existence of k', we have its uniqueness, as it must be given by (6.18).

Define, then, the map &’ : B — C given on ,4(¢(A)) by (6.18) for each g € G.

Observe that if £’ is a well-defined morphism in Alg]}g, then it is a morphism
from § to . Indeed, for each g € G, and each generator = 5 (¢(a)) of B, by (6.18) and
the fact that g and v are global actions, we have

K (Bg()) = K'(B4(Bn(1(a)))) = K'(Bgn(1(a))) = vgn(r(a)) = Y4 (1n((a)))
= 7%(K'(Br(e(a)))) = (K (z)),

so k' o 8, = 7, 0 k. Thus, by Corollary 4.4.5, £ is a datum morphism from J to .

Also, observe that, in this case, diagram (5.13) commutes, since, by (6.18),

w'(1(a)) = K (Be(u(a))) = ve(r(a)) = K(a)
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for all @ € A.

All that remains is to show that ' is a well-defined homomorphism of algebras
whose image is an ideal of C'.

First, let us verify that «’ is a well-defined linear map. Let {a,}4ec € A with only

a finite number of non-zero elements such that

> By(u(ag)) = 0. (6.19)

geG

We must verify that > cq74(k(ag)) = 0.
Let h € G and a € A. Then, by (6.19), > e By(t(ay))Br(t(a)) = 0. By applying
Bhn-1 to this equality we get

>~ Bu-1g(e(ag))e(a) = 0. (6.20)

geG
Let g € G. Since «(A) and Bj,-1,(¢(A)) are ideals of B, we have 3,-1,4(¢(ag))t(a) €
t(A) N By-14(¢(A)). Thus, by (EA1) and the fact that dom a1, is a unital ideal of A,

Br-14(t(ag))e(a) € t(dom oy-1y) = t(Alg-1p) = t(A)e(14-1p).

The algebra ¢(A)i(1,-15,) is a unital ideal of B, with unit element ¢(14-15).
Then, by Lemma 6.3.7 and (EA2)

Br1g(t(ag))i(a) = Proig((ag))e(@)e(lg-1n) = Br-14(t(ag))e(lg-1n)e(a)

= Br-1g(t(ag))t(an-14(1p-14))t(a) = Br-14(t(ag))Br-14(t(1p-14))t(a)
(6.21)

= Br-14(t(aglp-1y))i(a) = tlan-14(aglp-1g))t(a) = tlan-14(aglp-14)a).

Now, (v, k) is a globalization of . Therefore, by Proposition 6.3.3 it satisfies (EA1)
and (EA2). Hence, similarly we have

Vhflg(’f(ag))’da) = ’f(ah*g(aglhflg)a)- (6.22)

By (6.20) and (6.21),

L (Z O‘hlg(aglhlg)a) = > van-1g(aglp-1g)a) = Y Br-14(t(ag))e(a) =0,

geG geG geG

S0, since ¢ is an injective map, we have

> ap-14(aglp-14)a = 0. (6.23)

geG
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Then, by (6.22) and (6.23), we have

> merg(lag))ila) = D klap-1g(agly-1g)a) = & (Z ahlg(aglhlg)a) = r(0) =0.

geG geG geG

By applying 75, to (6.24) we get

> (klag))mm(s(a)) = 0. (6.25)
gea
Since (6.25) holds for all h € GG and a € A, the element 3 . 74(x(ay)) annihilates
vu(k(A)) for all h € G.
Let G’ be the finite set {g € G : a4, # 0} C G and C; be the algebra generated by
Ugear 79(K(A)). Since v4(x(A)) is an ideal of C for each g € (, it is also an ideal of C}.
Clearly each v,4(x(A)) is unital, because A is unital. Therefore, as Cy = Y- cqr 74(K(A)),
by Lemma 6.3.8 we have that C is a unital algebra. Let

loy = Y (k(ay))

heG’

be its unit.
Now, 3= ,cc v4(k(ay)) € Cy. Thus, since Y- g V4(k(ay)) annihilates each 7;,(k(A)),

we have

> Ya(klag) = > ve(klag)le, = D v(klag)) D m(k(ay))

g€G geG geG heq’
= 3 (3 wlrla) k() = 3 0=0.

Hence, the well-definition of ' follows.

We now have a linear map «’ : B — C'. Let us verify that it preserves the product
of the algebras.

It suffices to do so on two generators of B. Let g, h € G and ag4, a;, € A. We will
check that #'(8,(1(a)) Bu(1(an))) = #(By(t(ag))K (B (e(an)).

By (6.21), we have fS,-14(t(ag))t(an) = t(an-14(aglp-14)an), so, by applying £, we
obtain

Bg(t(ag))Br(elan)) = Pr(vlan-1g(agln-1g)an)) (6.26)
Similarly, by (6.22) we have

o(Klag))rn(r(an)) = n(K(an-1g(agln-14)an)) (6.27)



Chapter 6. Results and examples in certain categories 157

Hence, by (6.18), (6.26) and (6.27),

K'(By(1lag)) Br(t(an))) = K" (Bu(t(an-14(agln-14)an))) = (r(an-1g(aglp-1g)an))
= Yg(k(ag))n(k(an)) = & (By(t(ag)))K (Bn(k(an))),

as desired.
So, k' is an algebra morphism from B to C. Finally, £’ is a morphism in Algﬂlg.
Indeed, by (EA3) and (6.18),

K(B) = ' (Z @@(A))) =2 (Be(t(A))) = > 74((A))

geG geG geG

is a sum of ideals of C| since each ~y, o x is a morphism in Alg]%d. O]

Unfortunately, AlgHI<d does not have all colimits, so we cannot apply the results
from Theorem 5.2.15 or Corollary 5.2.19 to partial actions in this category.
In fact, the category Alg]11<d gives us an example of a universal globalization that

does not come from a reflection.

Example 6.3.10. Let G = Zy = {0,1} and A be a non-trivial unital algebra. Let 5 and ¢
as in Example 6.3.5. Observe that ¢(A) is an ideal of B = A x A. We can then interpret
as a global action on an object of AlgIIKd and ¢ as a monomorphism in Alg]%d.

Let a be the restriction of 5 to A via ¢ in Alg%. Clearly, since the pullbacks
involving monomorphisms of Alg]%gl are the same of Algy (by Lemma 2.2.13), « is given
by (6.16).

As we have verified, (3,¢) is an enveloping action of «. Hence, since each of the
ideals of a is unital, by Proposition 6.3.9, (5, ¢) is a universal globalization of o in Algi?.
Let us verify that ¢ is not a reflection of a in M —Act Algld-

To do so, consider the global action v of M on A given by 71 = ids and the
morphism k = id 4.

Notice that, by Lemma 4.4.4, x is a morphism in M—pActAlgIIKd from « to v,
since ypokoty=1tdy =Kkoagand yy0ko01; =0=KoQy.

Suppose that there is a morphism ' : § — ~ such that

Then it as a simple verification that that " must be given by

K'(a,b) = r(a) + 71 (k(b) = a+b,
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which is not an algebra morphism, since

K'(1,0)5'(0,1) = 1 # 0 = £'((1,0)(0,1)).
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