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Abstract

This work corresponds to a 5-month internship in mobile robotics carried
out by the author at the Institute of Robotics of the ETHZ (Swiss Federal
Institute of Technology).

During this period of time a method for mobile robot navigation in a known
environment was developed. The technique combines position estimation from
odometry with observations of the environment from a CCD camera. Fized
lamps in the environment provide landmarks. The position of these landmarks
is known a priori by the robot.

At each localization cycle an image of the environment is captured and
processed by the vision system. The information obtained is then used by a
Kalman filter to correct the position and orientation of the robot.

The system was implemented in the SmartROB, a mobile robot platform
developed at the ETHZ. Results from experiments in a real environment are

presented.



Resumo (Estendido)

Este trabalho corresponde ao Projeto de Fim de Curso desenvolvido pelo
autor durante 5 meses no Instituto de Robdtica do ETHZ (Swiss Federal Insti-
tute of Technology). Durante este periodo um método para navegagdio de robos
moveis foi estudado. Este método € descrito em mais detalhes na sequéncia.

Na navegagdo de robés mdveis uma das questéoes mais importantes diz
respeito a localizagio. Como determinar a posi¢io do robo a partir de in-
formagées a priori a respeito do ambiente e também dos dados provenientes de
sensores? No presente trabalho explora-se a solugdo deste problema aplicando-
se a idéia da “fusdo de sensores”. Um sistema de visdo foi escolhido, mas
a mesma técnica pode ser utilizada com outros tipos de sensores como laser
scanners ou sonares por exemplo.

O processo de localizagdo pode ser interpretado como a determinagdo das
coordenadas (z,y,0) do robé com relagio a um sistema de coordenadas de
referéncia. Para um robé dotado de rodas, a forma mais natural, simples
e barata para realizar esta tarefa € usando a hodometria, ou seja, usando
as informagées proveniente de encoders instalados em cada um dos motores
acoplados as rodas. O problema € que por vdrios fatores como imprecisoes
no modelo, folgas mecdinicas e irreqularidades no chdo, esta técnica gera um
aciimulo ilimitado de erros que leva o robo a perder sua referéncia.

Para superar este problema outros sensores devem ser incorporados ao robo
para possibilitar uma localizagio mais precisa e robusta. No caso de um sis-
tema de visdo, marcas artificiais sdo instaladas em pontos predeterminados
do ambiente. As marcas escolhidas para a realizagao deste trabalho foram
lampadas fluorescentes. Por serem fontes de luz elas provéem um bom nivel
de contraste nas imagens, facilitando a sua detecgao.

A idéia de combinar as informagdoes provenientes da hodometria com in-
formagées do sistema de visio € implementada na prdtica utilizando-se um
filtro de Kalman. FEste filtro é composto de dois modelos. Um € o modelo da
planta, que descreve como a posi¢do do robo muda a cada intervalo de tempo.
O outro € o modelo do sensor, que descreve a relagdo entre a posigio do robo
em um dado instante e a posi¢do das marcas no ambiente.

A cada ciclo do algoritmo, a posi¢do do robé e a incerteza associada a ela
sdo primeiramente calculadas a partir da hodometria. Em seguida calculam-se

os dngulos com relagdo a posi¢io atual do robo, onde se espera encontrar as



marcas do ambiente. Fste cdlculo € possivel porque as posi¢oes das marcas sao
conhecidas a priori pelo robo.

No passo sequinte obtém-se as informagoes do sistema de visao. Uma
imagem do ambiente € capturada e dela sio extraidas as posi¢oes (angulos)
das lampadas em relagio ao robo. Compara-se entio estes angulos obtidos pelo
sensor com os angulos esperados calculados anteriormente. Essa comparagio
visa separar os angulos que realmente correspondem as marcas do ambiente
daqueles que foram introduzidos de forma espiria.

Apos este processo calcula-se o ganho do filtro de Kalman que € usado para
corrigir a posigao atual do robo e a sua respectiva incerteza, finalizando assim
o ciclo.

O ponto chave para entender todo o processo € perceber que através da
hodometria tem-se sempre a disposicio uma aprorimacdo inicial da posi¢ao
atual do robo, mesmo que esta ndo seja muito precisa. A informagdo prove-
niente do sistema de visdo dird entdo, que o robo estd numa posi¢dao um pouco
diferente daquela estimada no inicio do ciclo. Neste momento entra o filtro de
Kalman, que combina estas duas informagoes de forma estatistica atribuindo a
cada uma delas um peso correspondente as incertezas a elas associadas. O re-
sultado obtido € uma nova posi¢do (agora corrigida) com uma menor incerteza
associada.

O algoritmo de localizagao desenvolvido neste trabalho foi implementado
em um robé chamado SmartROB. FEste robo ¢ uma plataforma bdsica de robo
movel totalmente desenvolvida no Instituto de Robotica do ETHZ. Os resul-
tados mostraram que quando se utiliza somente a hodometria para realizar o
processo de localizacdo, existe um aumento ilimitado da incerteza em relagdo
a posicdo real do robo, inviabilizando assim uma navegagao de precisao.

Por outro lado, quando se combina a hodometria com o sistema de visao,
consegque-se realizar uma navegag¢do precisa, mantendo a incerteza sempre li-
mitada. A implementagio realizada, apesar de ndo ter sido otima, possibilitou
o entendimento e também a ilustra¢dao, na prdtica, do funcionamento de um

sistema simples de navegagdo de robos moveis.



The Three Laws of Robotics

#1 A robot may not injure a human being, or, through inaction, allow a
human being to come to harm.

#2 A robot must obey orders given it by human beings except where such
orders would conflict with the First Law.

#3 A robot must protect its own existence as long as such protection does
not conflict with the First or Second Law.

ISAAC ASIMOV



Contents

1 Introduction and Motivation
1.1 Specification of our Problem . . . .

1.2 Structure of this work . . ... ..

2 Description of the System

910 TheBobob: : w6 v s 55 ¢ s 2% 3
2:1.1 Eleotionies: : s 55 : s 5% =
2.1.2 Mechanics . . . .. ... ..
2.1.3 Software & Periphery . . . .

2.2 Vision Hardware . ... .. .. ..
2.2.1 The PMC-FG frame grabber
2.2.2 The CCD Camera . .. ..

3 Localization

3.1 Modeling Odometry. . . . ... ..
3.2 The Kalman Filter . . .. ... ..
3.2.1 The Plant Model . . . . ..
3.2.2 The Measurement Model . .
3.3 The Localization Cycle . . . . . ..
3.3.1 Vehicle Position Prediction .
3.3.2 Observation ... ......
3.3.3 Measurement Prediction . .
334 Matching - . .o « vwuw .
380 Estimation. s s «~ 5 s =%
330 ODUIIOALY «: s 0.c 5 5 54 s
3.4 System Implementation . . . . . . .

4 Vision System
4.1 Identifying Landmarks . . . . . ..

1X

......................

......................

10
11
12

13
14
14
16
16
17
17
18
18
19
20
20
21

24
24



4.2 The Matching Procedure . . . . . . .. .. ........ ... ... ..., 30

4.3 A Word about Camera Calibration . . .. ... ... ... ... ...... 31
Experiment Results 32
5.1 Evaluating our Odometry . .. .. .. .. .. ... ............. 32
5.2 Localization using only Odometry . . . . . . . . .. .. .. ... ...... 33
5.3 Localization using Odometry and Vision . . . ... .. ........... 35
Conclusion and Outlook 39
List of source programs in XOberon 41
A.1 MODULE SRLocalization.Mod . . . . . .. .. ... ... ... ....... 41



List of Figures

1.1
1.2

2.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5

Map of the Environment . . . . . . . ... .. ... ... ... L. 5
The Laboratory Area . . . . . . . . . . .. . e 5
The SiigrtROB BYSEEIN . . v « » v ¢ 5 mo 6 6 G i 8 6§ M §5 68 8 K 5 0 8
Global and Local Coordinate Systems . . . . . .. . ... ... ....... 15
Calemtation of Zlk 4+ 1): c s s c s v is apiinsws s w@ssamn@ass 19
Raw Image from Camera : « « « « s c s 550 5 0 95 6 8 @y s 8 we oo 25
Vectorized Tioa@e - =« ¢ s s s s sm 2 5 a B 2 6 Wis ¢ d G wE 8 5 @G@o* €3 26
Extracted Peaks . . . . . . .o - - ot e m s s s s e E G ES € 27
Extracted Landmarks . . . . .. .. .. ... o oo oo 27
Regionpof Refleckion . : : o v : 3 #9 s s o s soma s ¢ wmn o s wim o 5 29
Inadequate Threshold Value « ¢ ¢ 5 506 « 5 v @ s s 5w s 5 2 0w ¢ s mww s » 29
Falos EXUEREtION & - o ¢ 4 9.0 65 0 65 9.5 9 5§ 8 9@ § 5 558 858 9@ 5 s & 30
UMBmiark Test ~ Clockwise . ¢ s 523 3 v s 3 vwn s s wm s s w5 3 34
UMBmark Test - Counterclockwise . . .. .. ... ............. 34
Localization using only Odometry . . . . . .. ... .. .. .. ... .... 35
Localization using Odometry and Vision . . . ... ... ... ....... 36
Precise Navigation .« s » s s s s s s 3 wim s s g s v s s 8 909 ¢ 3 37

X1



\% 4

Vh

no

ng

P(k + 1]k)
Pi

Q(k)
R(k)

S(k)

u(k)

v(k)

W (k)
w(k)

x(k)

%(k + 1|k)
Z(k)

Z(k)
z;(k)
zi(k)

v(k)

List of Symbols

state transition Jacobian

validation gate

measurement Jacobian

number of observations (extracted landmarks)
number of expected landmarks

vehicle position estimate covariance

position vector of landmark 2

plant noise covariance matrix

observation noise covariance matrix
innovation covariance

vehicle control input

plant noise

Kalman gain

measurement noise

vehicle position state vector

vehicle position estimate

current set of observations (extracted landmarks)
current set of predicted landmarks

extracted landmark or observation

predicted landmark

innovation



Chapter 1

Introduction and Motivation

Two pages of the final manuscript. .. Although they look like a first draft, they
had already been rewritten and retyped - like almost every other page - four
or five times. With each rewrite I try to make what I have written tighter,
stronger and more precise, eliminating every element that is not doing useful
work. Then I go over it once more, reading it aloud, and am always amazed

at how much clutter can still be cut.

- WILLIAM ZINSSER, On Writing Well (1990)

Leonard and Durrant-Whyte [ZDW92], summarized the general problem of mobile
robotics by the following three questions: “Where am 1?7, “Where am I going?” and

“How should I get there?”.

The first question corresponds to localization, one of the major tasks of autonomous
robot navigation. How can I work out where I am in a given environment, based on
what I can see and what I have previously been told? The second and third questions are
essentially those to specifying a goal ai.d being able to plan a path that results in achieving
this goal. Investigation of the latter two questions usually come under the domain of path

planning and obstacle avoidance.

In a typical indoor environment with a flat floor, the task of localization becomes a



(8]
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matter of determining the Cartesian coordinates (z,y) and the orientation 6 of the robot
on a two dimensional plan. For a wheeled robot, odometry (also known as dead reckoning)
is one of the most important means of achieving this task. In practice, optical encoders
that are mounted on both drive wheels, feed discrete wheel increment information to a
processor. This processor continually updates the robot’s state using geometric equations.
However, with time, odometric localization unboundedly accumulates errors due to several

problems:

(1) surface roughness and undulation may cause the distance to be over-estimated;
(ii) wheel slippage can cause the distance to be under-estimated;
(iii) variations in load can distort the odometry wheels and introduce additional errors;

(iv) discrete sampling of wheel increments also contribute to inaccurate measurements.

Although good approaches have already been investigated [CK97], all these problems
make it rather difficult to perform really accurate navigation only using odometry. There-
fore, some other kind of position updating method must be used. To reach its destination
with reasonable accuracy, the robot requires external sensors and sensor fusion algorithms

to relate knowledge about its environment to the information obtained from its sensors.

Many authors have extensively studied different kinds of sensors, such as laser scan-
ners [Arr96, HGB97, Ada99], vision sensors [Kro89, CC92, CSCD97, Tom98b] and
sonars [LDW92]. The idea is to combine position estimation from odometry with ob-

servations of the environment obtained from the chosen sensor.

In case of a laser scanner, reflectors (also known as beacons) are used. The positions of

these beacons are known a priori by the robot, and constitute the map of the environment.

Using sonar, the idea is slightly different. Planes, cylinders, corners and edges (known
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as targets) are used to model the environment.

For a vision sensor, fixed objects in the known environment provide landmarks which
are listed in a database. Landmarks are distinct features (e.g. rectangles, lines, circles)
that a robot can recognize from its sensory inputs. In general, landmarks have a fixed and
known position, relative to which a robot can localize itself. They are carefully chosen to
be easy to identify; for example, there must be sufficient contrast to background. Before
a robot can use landmarks for navigation, their characteristics must be known and stored
in the robot’s memory. The main task in localization is then to recognize the landmarks

reliably and to calculate the robot’s position.

In all these cases, the Kalman filter is the basic tool to approach navigation and sensor
fusion. It combines all measurement data to get an optimal estimate of the system state
in a statistical sense. The inputs to a Kalman filter are the system measurements. The
a priori information are the system dynamics and the noise properties of the system
and the sensors. The outputs of the Kalman filter are the estimated system state and
the innovation (i.e., the difference between the predicted and observed measurement).
The extended Kalman filter is a version of the Kalman filter that can handle non-linear

dynamics or non-linear measureme.t equations [BSF88, May90, AG92, GA93].

Many other sensors and methods can be used for mobile robot positioning, which are
beyond the scope of this work. A good starting point is the extensive survey presented

by Borenstein and Everett in [BEF96].

1.1 Specification of our Problem

In the recent years the ETHZ (Swiss Federal Institute of Technology), through the IfR

(Institute of Robotics), has developed a mobile robot platform called SmartROB.
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The SmartROB system is a versatile, easy to use, mobile robot kit, suitable for the
realization of a wide variety of tasks. It has been used with great success since 1992 in
the lecture “Smart Mechatronic Product Design”, where groups of students develop a

mechatronic product based on a predeterminately posed problem.

The present work has been motivated from the very beginning by the success of this
experience and also by the interest of embedding a vision system in the SmartROB,
reinforced by the importance and evidence of the subject in the research world nowadays.
Moreover, the recent development at the ETHZ of a new framer grabber compatible with

XOberon and the availability of a CCD camera also contributed to our choice.

The main goals of this work are: first, to better understand where the problems in
mobile robotics are and in which directions the solutions to them are heading to; second,
to implement a simple localization system, using vision and odometry, to be used in the

SmartROB.

The chosen environment was part of the Laboratory room at the ETHZ. In this area,
three fluorescent lamps were vertically placed in predetermined positions to be used as
landmarks. Figure 1.1 shows a map of this environment and Figure 1.2 a photo of the area
in the Laboratory. The SmartROB, equipped with a CCD camera and a frame grabber,
should be able to localize itself and navigate using information from odometry (encoders)

and the vision systems (position of landmarks extracted from images).

1.2 Structure of this work

This work is structured as follow:

Chapter 2 presents the SmartROB system. The mechanical, electrical and software

features are described, including the real-time operating system XOberon.
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Figure 1.1: Map of the Environment

Figure 1.2: The Laboratory Area
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Chapter 3 discusses the localization method. The theoretical aspects of the Kalman
filter are presented and discussed with respect to our problem. An implementation of a

localization algorithm is proposed.

Chapter 4 discusses our vision system. A method of identifying landmarks is pro-

posed.
Chapter 5 presents some experiments and discusses our results.

Finally, Chapter 6 provides an overall discussion of this work and also proposes some

ideas on how to continue it.



Chapter 2

Description of the System

Sometimes, to be able to understand the whole

we need to know all details.

Anonymous

2.1 The Robot

The SmartROB system is a mobile robot platform based on a Power PC 604 micropro-
cessor. In the last 6 years the SmartROB has been used by undergraduate and graduate
students at the ETHZ in the development of different products in mechatronics. Each

year a different problem is posed to the students, which search for their own solutions.

Problems like finding golf-balls in a square field and placing them in a center hole,
building a tower of wooden blocks as high as possible, collecting different objects in a
labyrinth, playing soccer, finding burning candles in a labyrinth and covering them with
a cup to extinguish the fire and developing an autonomous vacuum cleaning robot have

already been investigated.

Although these themes seem quite ludic, they involve many non-trivial problems in

mobile robotics that require intelligent approaches to be solved. This challenging task
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encourages students to use their creativity and improve their knowledge in different areas

such as sensors, actuators, mechanics, electronics and software [SBB9S].

To fulfill the requirements of a general-purpose platform for quickly developing simple
products in mechatronics, an appropriate hardware is needed. Below, the basic features

of the SmartROB system are briefly described. Figure 2.1 shows a picture of it.

Figure 2.1: The SmartROB System

2.1.1 Electronics

The heart of the SmartROB system is a Power PC 604 32-bit processor running at
300M Hz. 1t has a 16 M B (expandible to 128M B) on-board ECC DRAM and a 32K B
L1 cache. An Ethernet transceiver interface with 32-bit PCI local bus DMA and an

asynchronous serial port are also available.

It contains multiple analogue and digital inputs and outputs and eight 100W power

amplifiers (24V, 4A each), one needed per DC servomotor.
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The whole electronics is assembled in a small rack including the power supply for
412 and 5V for the microprocessor and for the electrically isolated periphery and power
electronics. Additional PCI Mezzanine Card (PMC) slots and a general-purpose slot allow

easy extension.

2.1.2 Mechanics

The basic mechanical hardware of the SmartROB is a mobile platform with three wheels.
The chassis is based on aluminum profiles. The two front wheels are driven by two
independently controlled DC-motors with integrated gearbox. The third wheel is a castor.

For optimal position and speed control, the motors are equipped with encoders.

2.1.3 Software & Periphery

The Power PC 604 processor runs the real-time operating system XOberon [Bre98] de-
veloped at the Institute of Robotics, which is based on Oberon (object oriented successor
of Modula2 and Pascal) [Rei91, M6s93]. A complete software library for handling a wide
range of processor functions, 1/0, basic sensor programming and robot motion functions

are also available.

Due to its modularity, the compatibility of its components and the ease of program
development and testing, the system allows various configurations of mechatronic products

to be quickly built and tested.

XOberon is a development system that runs either on Macintosh, Sun or PC host
computers. The target system (The SmartROB in this case) is connected through a serial
link with the host computer. A monitor program that executes basic commands, e.g. for

downloading and debugging programs, runs on the target processor.
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The main features of XOberon are:

e Real-time processing;

e Deadline-driven scheduler;

e Safe Memory Architecture with Paging Support;

e Safe dynamic linking and loading;

e Garbage Collector;

e Web server with CGI support, allowing remote control and diagnosis;
e Telnet server, F'TP server, TF'TP server and SMTP (Mail) client;

e Database-oriented driver architecture;

e High reliability and run-time safety;

e Digital configurable controllers for PID position and velocity control;

e Drivers for periphery.

Different sensors can also be integrated with the SmartROB, such as infrared tri-
angulation sensors (mounted on a servomotor for scanning), ultrasound sensors (with
micro-controller and serial interface) and frame grabber for standard B/W as well as

color cameras (composite or S-Video).

2.2 Vision Hardware

A frame grabber and a CCD camera compose the hardware used in our vision system.
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2.2.1 The PMC-FG frame grabber

The PMC-FG frame grabber is a PMC (PCI Mezzanine Card) capturing module, based

on the Bt848A processor.

The Bt848A integrates a NTSC/PAL/SECAM composite and S-video decoder, scaler,

DMA controller, and PCI Bus master on a single device.

The PMC format family is usable on (but not limited to) single VME64 boards,
Multibus I and II boards, single slot Futurebus + modules, desktop computers, portable
computers, servers and similar type of applications. The electrical and logical layers are

based on the PCI Specification from the PCI Special Interest Group.

The PMC-FG features precise video capturing hardware for applications that require

high color accuracy. Hardware features include:

High color accuracy with low pixel jitter;
e PCI bus master design for real-time image capturing to system memory;

e Image capturing resolution up to full-size: 768 x 576 (PAL and SECAM) and 640 x
480 (NTSC);

e Horizontal and vertical clipping and scaling of captured images to minimize system

memory usage and bus bandwidth requirements;
e Common color output formats, including RGB and Y8 (grayscale);
e Continuos, software-controlled image captures;
e Four multiplexed composite video inputs (one input can be S-video);

e +12V output for powering cameras and other devices.
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2.2.2 The CCD Camera

The camera used in this work was a common CCD (Charge-Coupled Device) camera,
which contains a semiconductor chip with a light-sensitive grid, used for converting images
into electrical signals. It was already at hand in the Laboratory of the IfR and no further

technical data was available.



Chapter 3

Localization

No matter where you go, there you are.

The motto of the USS Excelsior.
STAR TREK VI, The Undiscovered Country

Localization is the process of determining the position of the robot with respect to
a global reference frame (i.e. a coordinate system). It is a cyclic process that should

continuously keep the robot on track.

In our case, position updates are produced by a matching algorithm that uses an initial
estimate of the vehicle position from odometry. A vision-based sensor system is then used.
The aim of this system is to recognize known landmarks in the environment based on an
a priori map, and then determine the position and orientation of these landmarks relative

to the robot.

A combination of information from odometry and from the vision system is used to
update the robot’s position. The tool used to fuse this information is the Kalman filter,

which is described in the following sections.
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3.1 Modeling Odometry

Before talking about the Kalman filter, we should dedicate some words to explain in more
detail the odometry model. In the SmartROB, the odometry calculation is based on
two optical encoders mounted on the front wheels. We assume that As; is the distance
traveled by the left wheel, and As, is the distance traveled by the right wheel in the time

cycle At.

Let the origin of the robot’s coordinate system be the middle point of the front axle,
as shown in Figure 3.1. Then, the position and orientation changes of the robot are

calculated using:

1 1
As = 3(As +As)), A0 = = (As; — As) (3.1)

where H is the distance between the two front wheels. In other words, the robot’s lo-
cation changes by a translation forward through the distance As followed by a rotation

counterclockwise through the angle A#d.

3.2 The Kalman Filter

We denote the position and orientation of the vehicle at time step k& by the state vector
x(k) = [z(k),y(k),0(k)]" comprising a Cartesian location and an angle defined with
respect to a global coordinate system, as shown in Figure 3.1. At initialization, the robot
starts at a known position (e.g. the origin), and has an a priori map of ng landmarks,

whose locations are specified by the set of known vectors {p; = (pz.py) | 1 <1 < ng}.

At each time step, observations z;(k + 1) of these landmarks are taken. In our vision
system, an image is captured and then processed to extract the landmarks. Each extracted
landmark is converted into an angle with respect to the robot coordinate system. These

angles compose our observations.
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Figure 3.1: Global and Local Coordinate Systems
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The extended Kalman filter is then used to associate measurements z;(k + 1) with the
correct landmarks p; to compute X(k + 1|k + 1), the updated estimate of the vehicle’s

position.

The Kalman filter consists of two models: a plant model and a measurement model.

3.2.1 The Plant Model

The plant model describes how the vehicle’s position x(k) changes with time in response

to a control input u(k) and a noise disturbance v(k), and has the form
x(k +1) = £(x(k), u(k) + v(k),  v(k) ~ N(0,Q(k)) (3.2)

where f(x(k), u(k)) is the non-linear state transition function. We use the notation v(k) ~
N(0,Q(k)) to indicate that the noise source is assumed to be zero-mean Gaussian with

covariance Q(k).

The control input u(k) = [As(k), A8(k)]" comes from the odometry model discussed

in the previous section, and leads us to the following state transition function:
z(k) + As(k) cos 0(k) }

f(x(k), u(k)) = [ y(k) + As(k) sin (k)
0(k) + AO(k)

(3.3)

3.2.2 The Measurement Model

The robot is equipped with a CCD camera and a frame grabber. For our convenience the
camera was installed in the origin of the robot’s coordinate system. The information we
have a priori is the position of our ng landmarks with respect to the global coordinate
system. QOur vision system will provide us with angles corresponding to the extracted

landmarks (i.e. observations). Then we can define the set of observations

Z(k) = {z;(k) | 1 < j < no} (3.4)
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where ng is the number of observed landmarks. We have already seen that ng is the total
number of known landmarks, which will also be referred to as the number of erpected

landmarks.
Details about the vision system will be discussed in Chapter 4.

'I'he measurement model relates a sensor observation to the vehicle position and has
the form:

z;(k) = h(x(k),p) + w;(k), w;(k) ~ N(O,R;(k)) (3.5)

The measurement function h(x(k), p) expresses an observation z(k) from the sensor as a

function of the vehicle position x(k). It has the following form:

o Py — y(k)
h(x(k),p) = arctan (m) — (k). (3.6)

Each observation is assumed corrupted by a zero-mean, Gaussian disturbance w;(k) with

covariance R;(k).

3.3 The Localization Cycle

Given the a posteriori vehicle position estimate X(k|k) and its covariance P(k|k) for time
k, the current control input u(k), the current set of observations Z(k+1) and the a prior:
map, compute the new a posteriori estimate X(k + 1|k + 1) and its covariance P(k +
1|k 4+ 1). The algorithm consists of the following steps: position prediction, observation,

measurement prediction, matching, and estimation.

3.3.1 Vehicle Position Prediction

First, using the plant model and the knowledge of the control input u(k), we predict the

robot’s new location at time step k + 1:

%(k + 1|k) = £(x(k|k), u(k)). (3.7)
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Next we compute P(k + 1|k), the variance associated with this prediction:
P(k + 1|k) = Vf P(klk) VET + Q(k) (3.8)

where Vf is the Jacobian of the state transition function f(X(k|k),u(k)) obtained by

linearizing about the updated state estimate x(k + 1|k):
1 0 —As(k)sin(é(k))
VE=|0 1 As(k)cos(6(k)) (3.9)
0 0 1

3.3.2 Observation

The next step is to obtain the observation set Z(k + 1) from the vehicle’s sensor system
on the new vehicle location, that is, capture an image and apply an algorithm to identify

the landmarks. Then convert these landmarks into angles.

3.3.3 Measurement Prediction

Now we use the predicted robot location X(k + 1|k) and the a priori map to generate

predicted observations for each landmark p;:
zi(k+1) = hi(x(k+1[k),p:)

= arctan (Zi:—m) —0(k), i1=1,...,ng (3.10)

to yield the set of predictions:
Z(k+1)={z(k+1) | 1 <i< ng} (3.11)

which contains ng predicted (i.e expected) landmarks. Figure 3.2 illustrates the calcula-

tion of z;(k + 1).

The predicted state estimate X(k+ 1|k) is used to compute the measurement Jacobian

piy—y(k) T

(piz—z(k))?+(piy—u(k))?

Vh; = —Pig —z(k) 3.12
(Piz—2(k))2+(piy—u(k))? ( )

-1
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P;=(Pyx.Py)

0 =K x

Figure 3.2: Calculation of z;(k + 1)

for each prediction.

3.3.4 Matching

The goal of the matching procedure is to produce an assigment from measurements z;(k)

to landmarks p;. For each prediction and observation we first compute the innovation v;;.

V,'j(k—Fl) = [Zj(k+l)—éi(k+1)] (313)

(2, (k + 1) — hu(R(k + 1]k), pi)].
The innovation covariance is then calcultated by

Sii(k+1) = Vh,P(k + 1|k)Vh] + Ri(k +1). (3.14)

A wvalidation gate is used to determine the correspondece between predictions and

observations:

V,‘j(k +1) <G (3.15)
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This equation is used to test each sensor observation z;(k + 1) with each predicted mea-
surement Z;(k + 1). When a single observation falls in the validation gate, we get a
successfull match. Measurements which do not fall in this gate are ignored for localiza-
tion. The same occurs if a measurement falls in the gate for more then one prediction, or

vice-versa.

3.3.5 Estimation

The final step is to use successfully matched predictions and observations to compute
x(k + 1|k + 1), the updated vehicle position estimate. First we build a new vector z(k +
1) containing all the matched observations for time k 4+ 1 and calculate the composite
innovation v(k + 1). Then we build another vector Vh with all the validated predictions.
Using the composite noise vector R(k+1) we compute the composite innovation covariance

S(k + 1) as in Equation 3.14. We then calculate the Kalman filter gain
W(k+1)=P(k+ 1|k)AhTS™ (k4 1) (3.16)
to compute the updated vehicle position estimate
x(k+1k+1)=%x(k+1|k)+ W(k+ 1v(k + 1) (3.17)
with associated variance

Pk+1lk+1)=Pk+1|k) - W(k+ 1)S(k + )W (k + 1). (3.18)

3.3.6 Summary

We can summarize the localization cycle by the following steps:

1. %(k+1|k), P(k+1|k) + vehicle-position-prediction(X(k|k), P(k|k),u(k), Q(k))

2. Z(k+1) + observation
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3. Z(k+1),Vh(k + 1) + measurement-prediction(X(k + 1|k), map)
4. v(k+1),S(k+1) + matching(Z(k+1),Z(k+1),P(k+1|k), Vh(k +1),R(k + 1))

5. W(k+1),x(k+1lk+1),P(k+1|k+1) + estimation(X(k+1|k),P(k+1|k),v(k+
1), Vh(k + 1),S(k + 1))

3.4 System Implementation

We implemented our Kalman filter algorithm for localization using XOberon. In XOberon
each program is called a module and each module is divided into procedures. Our system
was mainly consisted of two modules. The first one, called SRLocalization.Mod imple-
ments the Kalman filter algorithm. The second module, called ExtractLandmarks.Mod
implements the vision procedures to capture images and identify the angles correspond-
ing to the extracted landmarks. Additional modules containing I1/O procedures were also

implemented. The source code is presented in Appendix A.

To facilitate our description, in this section we are going to follow the sequence pre-

sented in the summary of the last section.

The first a priori information defined in SRLocalization is the position of our landmarks

with respect to our global coordinate system:

p1 = (1.203m, 3.880m);
Map = { p; = (2.100m, 3.880m); (3.19)
ps = (2.733m, 2.870m);

With respect to the Vehicle Position Prediction, X(k + 1|k) is obtained directly from
the odometry calculation. This value is accessible in the SmartROB database by means

of a predefined object.

With %(k + 1|k) we can obtain dz = Ascos0(k), dy = Assinf(k) and Af by just

subtracting from x(k|k). We can then update Vf.
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Q(k) for each time step k is defined by:

K, dx 0 0
Qk)=| 0 Kidy 0 (3.20)
0 0 KgAs + R’ggAa

where K,,, K, and Ky are drifting coefficients presented by Crowley in [CC92]. The

values of these coefficients were empirically set to be:

K, =0.01; K, =0.005 Ky = 0.01; (3.21)

We then calculate P(k + 1|k) using Equation 3.8.

The next step is the Observation. Now we call the module ExtractLandmarks which
performs all the image manipulation. For the time being, what we need to know is that it
will return a set Z(k + 1) of ng observed angles z;(k + 1) corresponding to the extracted

landmarks. The module ExtractLandmarks will be described in more detail in Chapter 4.

Now comes the Measurement Prediction step. First, with X(k + 1|k) and the map, we
calculate the ng expected angles using Equation 3.10 and also Vh; for 1 < ¢ < ng from

Equation 3.12.

In the Matching step we calculate all the innovations v;; using Equation 3.13 and
apply Equation 3.15 to match the right angles. The validation gate G was empirically set

to G = 0.02rad.

In the Estimation step, we update the position. If no angles are matched in the
previous step then the updated vehicle position X(k + 1|k + 1) is set to be x(k + 1|k)
and P(k + 1|k + 1) = P(k + 1|k). This means that the position was updated just using

information from odometry.

Now it is important to emphasize that our innovation v(k + 1) and consequently
S(k + 1) are one-dimensional. This fact made the calculations much easier because no

matrix inversion procedure (S~'(k + 1)) is needed.
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To calculate S;(k + 1) we use Equation 3.14 with
R;(k + 1) = [T',‘,‘] (322)
where r;; is the covariance associated with the landmark «.

Then for a matched angle we can calculate the Kalman filter by

1

and also

X(k+ 1]k +1) = %(k + 1|k) + Wik + Dri(k + 1) (3.24)

In case of more than one matched angle this procedure is repeated for each one of them

separately.

Now we just have to update the robot’s position. To do that we just change the

attributes of the object odometry for the new values.

We start the algorithm with a P(0]0), whose elements correspond to the initial uncer-

tainty in the robot’s position.



Chapter 4

Vision System

You can observe a lot by just watching.

Yogi Berra

In this chapter we explain in more details our vision system. As seen before, it is
composed by a frame grabber and a CCD camera. The algorithms for image processing

were developed in XOberon.

4.1 Identifying Landmarks

The first task that our system has to do is to capture an image from the environment.
This task is done using predetermined procedures. But before we can fully use them we

must perform a preliminary configuration in the frame grabber.

We choose one of its 4 inputs and also select the desired image format. We have chosen
the PAL image format with a dimension of 768x288 pixels and an 8-bit grayscale mode

which generates 256 levels of brightness.

An image is first captured and stored in the DMA memory. We then transfer it to
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the RAM memory for later manipulation. Figure 4.1 shows an example of a raw image

captured by the camera.

Figure 4.1: Raw Image from Camera

Now that we have the image, we identify in pixel level where the lamps are located.
Lamps are sources of light and provide regions of high brightness that characterize them.
All we have to do is detect these regions and find the peaks of brightness. To do that we
define a pizel threshold value. Because we are dealing with sources of light, this value can

be considerably high (e.g Th &~ 220 in a 0-255 scale of brightness).

The algorithm we developed condenses the image information in a single vector with
dimension equal to the number of columns of the image. We initialize this vector with
zeros. Then for each column of our image, we test the level of brightness of each element.
If it is greater than the threshold we add 1 to the corresponding element in our vector.
In the end of this process our vector contains all the information we need to detect the

peaks of brightness. Figure 4.2 illustrates this vector graphically.

Now we “walk” through this vector and analyze each set of 5 subsequent elements,
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Brightness

Yector Elements

Figure 4.2: Vectorized Image

summing their values. If the result is greater than a sum threshold then we define the

middle element to be an extracted landmark. Figure 4.3 illustrates this fact.
Recovering the image we obtain the result shown in Figure 4.4.

The image is also saved in GIF format for later use.

Finished the image processing procedures, we still need to convert our eventual ex-
tracted landmarks from positions in a vector into angles with respect to the robot’s
coordinate system. This process is done after a calibration of the camera, where we build

a conversion table that associates an angle to each position in our vector.

Summarizing we have the following steps:

1. Capture an image;
2. Define a pixel threshold;

3. Scan the image and convert it into a vector;
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peak

Threshold

peak

Brightness

Yector Elements

Figure 4.3: Extracted Peaks

Figure 4.4: Extracted Landmarks
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4. Define a sum threshold;
5. Scan the vector and find peaks:

6. Convert eventual peaks into corresponding angles;

Although it seems quite easy to perform this task, when we work with vision we real-
ize that many factors influence our results, such as the reflection of light on objects, the
amount of artificial or natural light in the environment, image distortion, the character-
istics of the camera and how the camera is tuned. All these conditions make the process

of tuning the threshold values something really hard.

Ideally, we would want to have some dynamic procedure that could perform this task
in real-time taking into account the instantaneous conditions of the environment. This is
not a trivial task, so we have decided to define these values once in the beginning of the
process. To be able to do that we assumed that the environmental conditions wouldn’t

change too much, something that could be questionable in a real situation.

This fact brings some drawbacks. Figure 4.5, for example, shows an image where the
reflection of light on the wall generates two regions of high brightness around the lamp.
In this case, if we tune our thresholds inadequately (see Figure 4.6), we end up having

false observations as shown in Figure 4.7.

Because of these problems we need a good Matching procedure to be able to distinguish

correct from false landmarks. In the next section we discuss this point in more detail.

4.2 The Matching Procedure

In the previous chapter we superficially presented a matching procedure algorithm using

a validation gate. In our algorithm, after the Measurement Prediction and Observation
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Figure 4.5: Regions of Reflection

Brightness

peak

peak peak

Threshold fk J\

AT

Yector Elements

Figure 4.6: Inadequate Threshold Value
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Figure 4.7: False Extraction

steps, we have a set Z (k+1) of ng predicted angles and also a set Z(k+1) of np observed

landmarks.

The number of elements in these two sets (ng and ng) is not necessarily the same,
e.g. the case we described in the previous section where reflection areas on the wall were
identified as landmarks. The following question arises: How do we distinguish correct

observations from false ones?

The answer to this question is also a little bit complex. Many authors have already
discussed this problem and solutions point to the use of filters that separate false ob-
servations from correct ones [BSF88, AG92, LDW92, GA93]. These more elaborated
approaches are beyond the scope of our work. Our implementation was simply based on

applying Equation 3.15.

The choice of ¢ depends on the accuracy of our odometry and also our vision system,
and tells us how far, at most, an extracted landmark can be from a predicted one. If the

odometry is precise enough we can make GG small, otherwise we have to relax it. This
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assumption is quite reasonable because if we set G to a small value we are assuming that
an observation has to be close enough to a prediction to be matched. If our odometry is
not so precise, we can loose important information just because of this strict choice of G.
On the other hand, if we relax G we allow the observations to be in a wider range around
our prediction, consequently we have a greater chance of detecting a false observation.

Clearly there’s always a trade-off between these two things.

4.3 A Word about Camera Calibration

The CCD camera used in our experiment had an objective angle of about 20 degrees. Some
calibration procedures developed by Nicola Tomatis at EPFL (Swiss Federal Institute of
Technology Lausanne) showed that for this camera the distortion in the images was low
enough not to require a correction algorithm. This fact considerably reduced our amount

of work.
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Experiment Results

I don’t have any solution, but I certainly admire the problem.
Ashleigh Brilliant
When all else fails. .. read the instructions !

BTEX help message

In Chapter 3 we presented the theoretical aspects about localization. Having under-
stood the theory behind it we can start talking about a feasible implementation. In this
chapter we focus on this practical part. We start with an evaluation of the odometry in
the SmartROB and then show results from some experiments. We compare localization

only based on odometry with localization based on odometry and vision.

5.1 Evaluating our Odometry

The first step toward testing our system is to evaluate the accuracy in our odometry.

We used the UMBmark (University of Michigan Benchmark) test proposed by Borenstein
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and Feng [BEF96] to illustrate qualitatively the characteristics of the odometry in the
SmartROB.

This test was developed to detect systematic errors like unequal wheel diameters,
misalignment of wheels or finite encoder resolution. It is consisted of an experiment
where the robot is programmed to run through the four borders of a square path, both
in the clockwise and counterclockwise directions. The path will return the vehicle to the
starting area but, because of odometry and controller errors, not precisely to the starting

point.

Figure 5.1 and Figure 5.2 show the results obtained. The starting point is indicated
by an arrow. The blue balls represent the position given by the SmartROB’s odometry.
The red crosses indicate where the SmartROB really is. We can notice that there’s a
distortion in the robot’s path. Our measurements showed that for a 10-meter run the
error in the position was approximately 10 centimeters. Although it seems quite accurate
(1% error), it’s not precise enough if for example, the robot will be used to perform a task

that requires millimeter precision.

Our intention in running this test was just to have some feeling about our odometry,
not to improve its characteristics. The reason for that is the fact that our ultimate goal is
to make a comparison between the use of odometry alone and its combination with vision.
If our odometry were too precise, it would be more difficult to illustrate the improvements

added by a vision system or any other sensor.

5.2 Localization using only Odometry

When we perform localization using only odometry, at each time step we estimate the
robot’s position based on information from the encoders and than associate a correspon-

dent uncertainty to it. With this approach each estimated position is surrounded by a
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Figure 5.1: UMBmark Test - Clockwise
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Figure 5.2: UMBmark Test - Counterclockwise
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characteristic “error ellipse” which indicates a region of uncertainty for the robot’s actual
position. Typically, these ellipses grow with travel distance, due to odometry errors. To

construct them we used the first four elements of P(k|k).

Figure 5.3 shows the result obtained with the SmartROB when only odometry is
used for localization. The blue crosses represent the position given by the SmartROB’s
odometry. The red balls indicate the real position of the SmartROB. The theory is
confirmed and the robot looses precision with travel distance. In the long-term it will

surely get lost.

Another sensor is then required to overcome this problem. In the next section we

present the results obtained with our vision system.

Figure 5.3: Localization using only Odometry

5.3 Localization usirg Odometry and Vision

In the second run of experiments our vision system was used. To better illustrate the

improvements achieved in localization we defined a sequence of steps for each run. The
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robot starts at the origin with an initial uncertainty defined by P(0]0). In each subsequent
step we move the robot to a new position and than run the localization cycle to update

the position. Figure 5.4 shows the result.

Figure 5.4: Localization using Odometry and Vision

In the first five steps of this path the SmartROB was intentionally placed with such
orientation that no landmarks were seen. The result is that only the odometry is used to

update the robot’s position, therefore the associated uncertainty starts growing.

When the robot first sees a landmark in the sixth step we notice that the position is
corrected and the uncertainty is reduced. The same occurs in the next two steps. It means
that every time the robot sees a landmark we have more confidence in our position. This
confidence is determined by the state covariance matrix P(k|k) that is used to construct
the error ellipses. Our task is to keep P(k|k) as small as possible. In a real situation the
localization algorithm has to be executed continuously and the idea is that the robot be

able to see at least one landmark at a time to keep his position accurate.

In our implementation the camera used was fixed on the robot, so if the robot’s

orientation is such that no landmark can be seen we loose precision in the position. To
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overcome this problem a servomotor could be installed in the camera. Then, at each cycle,
the camera is rotated to a position where at least one landmark can be seen, therefore

the position can be updated.

In a system where we have a precise odometry and also a precise vision system, the
uncertainty associated to the actual position should be reduced to very small values. This

allows very precise navigation as shown in Figure 5.5.

Figure 5.5: Precise Navigation

In our case (Figure 5.4) we can notice that when the robot sees a landmark the
uncertainty does not grow and is even a little bit reduced. However, it is not comparable

to what we can see in Figure 5.5.

Many reasons led us to these results. The first one is related to our camera. Its
fixation on the robot was not mechanically stable, i.e. it had a backlash that introduces
inaccuracies in the measurements. It means that we have to reduce our confidence with
respect to our vision system. Besides that, our Kalman filter used a simple Matching
procedure. As we discussed previously, when we relax the value of G we have a greater

chance of detecting false landmarks. If we just use Equation 3.15 without any other
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criterion of selection, when more then one observation fall in the validation gate we loose

precious information.

Besides all the problems in our implementation we were able to navigate the
SmartROB quite precisely keeping bounded the uncertainty around the position. The
results were satisfactory if we take in account the simplifications we made. It follows that

it’s possible to perform accurate navigation of mobile robots with a simple approach.



Chapter 6

Conclusion and Outlook

Nothing more than education advances the prosperity,

the power, and the happiness of a nation.

- THOMAS JEFFERSON, (17/3-1826)

In this work we have developed a simple localization algorithm for mobile robot navi-
gation. This algorithm was based on odometry and vision. Fluorescent lamps were used

as landmarks. A Kalman filter was used to update the robot’s position.

The results showed that when we use only odometry for localization, the uncertainty
correspondent to the robot’s position grows with distance travel. On the other hand when
we combine odometry with vision we can keep the uncertainty bounded, allowing precise

navigation.

Due to some problems already described our results were not optimal, however we

were able to achieve our ultimate goals.

Improvements in our system could be addressed in the following directions:

1. Use a more stable fixation for the camera to increase precision;
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2. Develop a more sophisticated matching procedure in the localization cycle;
3. Develop algorithms to dynamically calculate the threshold values;

4. Optimize the code;

An interesting study would be the performance evaluation of the SmartROB navigation

system.

Suggestions of new approaches include the use of landmarks that naturally occur in
the environment, such as edges of a table, corners of the room, doors, etc. The main
idea is that we don’t need to change the environment just to be able to have precise

localization.

Another suggestion would be the implementation of map building (i.e. update and
keep an accurate map of the environment) and obstacle avoidance (i.e avoid objects in
the environment whose location are not predictable). These two problem are also part of

a navigation system.

Emphasizing, our implementation was far from being optimal. In fact, it was very sim-
ple. But its simplicity could clearly illustrate how a localization algorithm works. Because
of its limitations we could see where the problems are and how we should approach them.
Implementing a system like the one we did, involves not only a theoretical background
but also a practical experience and feeling. The former we can learn by reading books,

but the latter we only learn by doing.



Appendix A

List of source programs in XOberon

A.1 MODULE SRLocalization.Mod

MODULE SRLocalization; (* last updated 01.03.99 by Hugo *)

(* This module implements a localization algorithm for the SmartROB System, based on Vision *)
(* and Odometry. The Kalman filter notation is taken from [Leonard & Durrant-Whyte, 1992]. *)
(* This color (brown) is used for general description of Procedures, black is used for normal code, *)
(* blue is used for explanations and green is used for commented calculations that were optional. *)
(* Author: Hugo L. Gosmann (gosmann@usa.net). February, 1999. *)

IMPORT
XT:=XTexts,
MA:=MathL,
OdometryDD,
SRPosCtrl,
XOberon,

Base,
ExtractLandmarks,
MyOQutputs;

CONST
GATE = 0.04;(* Validation Gate: Mazimum distance between observed and expected Landmarks *)

(¥ ———- Position of Landmarks ———- ¥)
[& = M Mo == T)

LM1x = 1.203; LM1ly = 3.880;

LM2x = 2.100; LM2y = 3.880;

LM3x = 2.733; LM3y = 2.870;

(¥ ———- Covariances ————- *)

SigmaZl = 0.02; (* 0.02 rad = 1.15 degrees *)
SigmaZ2 = 0.02;

SigmaZ3 = 0.02;

(* Drifting coeficients from [Chenavier & Crowley, 1992] *)
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Kss = 0.01;

Kst = 0.005;

Ktt = 0.01;
VAR

w: XT.Writer;

(* Kalman Filter-related variables *)

x: ARRAY 3 OF LONGREAL; (* State vector of the system *)

F, (* Jacobian of f, transition function of the system *)

H, (* Jacobian of h, the measurement model *)

P: ARRAY 3,3 OF LONGREAL; (* Position Covariance Matriz *)

W, (* Kalam Filter Gain Matriz *)

S. (* Innovation Covariance *)

R: ARRAY 3 OF LONGREAL; (* Measurements Covariance Matriz *)
innovation: LONGREAL; (* The innovation *)

(* Vision-related variables *)

nExpectedLM, (* Number of expected Landmarks *)

nExtractedLM, (* Number of extracted Landmarks *)

nMatchedLM: INTEGER; (* Number of matched Landmarks *)

expectedLM: ARRAY 3 OF LONGREAL; (* Vector containing the expected Landmarks *)
extractedLM: ARRAY 12 OF LONGREAL; (* Vector containing the extracted Landmarks *)
matchedLM: ARRAY 3,2 OF INTEGER; (* Vector containing the position of matched Landmarks *)
matchingMatrix: ARRAY 3,12 OF LONGREAL; (* Cross-Matriz used for matching *)

(* Odometry and Position Control-related variables *)
obj: Base.Object;

myQdometry: OdometryDD.Odom;

myPosCtrl: SRPosCtrl.Ctrl;

PROCEDURE ArcTan2 (y,x : LONGREAL) : LONGREAL;
CONST
ARCTANEPSILON = 0.000000001;
VAR
Value : LONGREAL;
BEGIN
IFABS(x)<ARCTANEPSILON THEN
IFy > 0.0 THEN
RETURN(MA pi /2.0);
ELSIF y < 0.0 THEN
RETURN(-MA.pi/2.0);
ELSE
RETURN(0.0);
END;
ELSE
Value := MA arctan(y/x);
IF (x < 0.0) & (y > 0.0) THEN
RETURN(Value+ MA pi);
ELSIF (x < 0.0 ) & (y <= 0.0) THEN
RETURN(Value-MA.pi);
ELSE
RETURN(Value);
END;
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END;
END ArcTan2;

f ————— OUTPUTS —————- *}
PROCEDURE WriteMatrix(M: ARRAY OF ARRAY OF LONGREAL; dimension: INTEGER);
VAR
i, j; INTEGER;
BEGIN
FOR i := 0 TO dimension-1 DO
FOR j := 0 TO dimension-1 DO
XT.WriteLongRealFix(w, M[i, j], 10, 10, 0);
END;
XT.WriteLn(w);
END;
XT.Append(XOberon.Log(), w.buf);
END WriteMatrix;

PROCEDURE WriteVector(v: ARRAY OF LONGREAL; dimension: INTEGER);
VAR

i INTEGER;
BEGIN

FOR i := 0 TO dimension-1 DO

XT.WriteLongRealFix(w, v[i], 10, 10, 0); XT.WriteLn(w);

END;

XT.Append(XOberon.Log(), w.buf);
END WriteVector;

PROCEDURE WriteP*;

VAR
i, J: INTEGER;

BEGIN
XT.WriteString(w, "% Covariance Matrix P:"); XT.WriteLn(w);
WriteMatrix(P,3);

END WriteP;

PROCEDURE WriteX*;

BEGIN
XT.WriteString(w, "% Robot Current Position (x, y, theta):"); XT.WriteLn(w);
WriteVector(x,3);
XT.Append(XOberon.Log(), w.buf);

END WriteX;

r —m——m——- KALMAN FILTER —————- *)
PROCEDURE PositionPrediction*;
(* This procedure performs the vehicle position prediction based on Odometry *)
VAR
currentX, currentY, currentT heta,
dx, dy, dtheta,
accul, accu?2: LONGREAL;
BEGIN
(* "Calculate” (get from Odometry) the estimate of the current stante *)
(* (k+11k) = f(z(KiK), u(k)) *)

myQOdometry.Get(currentX, currentY, currentTheta);
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dx := currentX - x[0];
dy := currentY - x[1];
dtheta := currentTheta - x[2]; (* currentTheta is allways in the interval [-pi, pi] *)

(* But dtheta can lie in the interval [-2pi, 2pi], so we have to check it and correct if necessary *)
IF dtheta > MA.pi THEN dtheta := dtheta - 2*MA .pi;

ELSIF dtheta < -MA.pi THEN dtheta := dtheta + 2*MA.pi;

END;

(* Update the Odometry’s model *)

(* F is the Jacobian of the state transition function f *)
F[0][2] := -dy; (* -delta y = -T(k) * sin(theta(k)) *)
F[1][2] := dx; (* delta x = T(k) * cos(theta(k)) *)

(* Update the Position *)
x[0] := currentX;

x[1] := currentY;

x[2] := currentTheta;

(* Calculate the estimated P *)

(* Pk+1]k) = F)P(KK)F'(K) + Q(k) *)

(* Q describes the uncertanty in the model of the system, taken from [Chenavier & Crowley, 1992] ¥)
accul := P[0][2] + F[0][2] * P[2][2]; (* Accumulators to speed up the calculation *)

accu2 := P[1][2] + F[1][2] * P[2][2];

(* P(1][0], P[2][0] and P[2][1] are not calculated because P is simmetric *)

P[0][0] := P[0][0] + F[0][2] *(P[0][2] + accul) + Kss*ABS(dx);

P[O][1] := P[0][1] + F[O][2] * P[1][2] + accul * F[1][2];

P[0][2] := accul;

(* P[1j{0] := P[0][1] + P[0][2] * F[1][2] + accu2 * F[0][2]; ¥)

P[1][1] := P[1][1] + F[1][2] *(P[1][2] + accu2) + Kss*ABS(dy);

P[1][2] := accu2;

(* P[2][0] := accul; *)

(* P2][1] := accul]; *)

P[2][2] := P[2][2] + Kst*ABS(MA sqrt(MA . power(ABS(dx), 2)+MA.power(ABS(dy), 2))) + Ktt*ABS(dtheta);
END PositionPrediction;

PROCEDURE Observation*;

(* This procedure calls the Vision module which performs the extraction *)

(* of the angles corresponding to the Landmarks. *)

BEGIN
nExtractedLM := 0;
ExtractLandmarks.FindLightSource(extractedLM, nExtractedLM);
XT.WriteString(w," % Angular Position of Extracted Landmarks"); XT.WriteLn(w);
WriteVector(extractedLM, nExtractedLM);

END Observation;

PROCEDURE MeasurementPrediction*;
VAR
i, j: INTEGER;
BEGIN
nExpectedLM := 3; (* Total number of Landmarks *)

(* Measurement Prediction *)
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(* z(k+1)=h(x(k+1]k), LM) *)

(* Calculate the expected observations *)

expectedLM[0] := ArcTan2(LM1y-x[1], LM1x-x[0]) - x[2];
expectedLM[1] := ArcTan2(LM2y-x[1], LM2x-x[0]) - x[2];
expectedLM[2] := ArcTan2(LM3y-x[1], LM3x-x[0]) - x[2];

XT . WriteString(w," % Position of Expected Landmarks”); XT.WriteLn(w);
WriteVector(expectedLM, 3);

(* Calculate H{k+1) that is the Jacobian of h *)

H[0][0] := (LM1y - x[1])/(MA.power(ABS(LM1x - x[0]),2) + MA.power(ABS(LM1y - x[1]),2)):
H[0][1] := (-LM1x + x[0])/(MA.power(ABS(LM1x - x[0]).2) + MA.power(ABS(LM1y - x[1]),2)):
H[0][2] := -1;

H[1][0] := (LM2y - x[1])/(MA .power(ABS(LM2x - x[0]).2) + MA.power(ABS(LM2y - x[1]),2)):
HHH = (-LM2x + x[0])/(MA power(ABS(LM2x - x[0]),2) + MA .power(ABS(LM2y - x[1]),2));
H[1][2] := -1;

H[2][0] := (LM3y - x[1])/(MA power(ABS(LM3x - x[0]),2) + MA.power(ABS(LM3y - x[1]),2));
H[2][1] := (-LM3x + x[0])/(MA .power(ABS(LM3x - x[0]).2) + MA power(ABS(LM3y - x[1]),2));
H[2][2] :=-1;

END l;\JIIJ.'EEI.'!.UrementPrec:Iic:tion;

PROCEDURE Matching*;
VAR
i, j, noOfMatches, match: INTEGER;
BEGIN
(* Calculate the distances between the expected and the extracted landmakrs *)
FOR i := 0 TO nExpectedLM-1 DO
FOR j := 0 TO nExtractedLM-1 DO
matchingMatrix[i, j] := ABS(expectedLM[i] - extractedL M[j]);
END;
END;
(* Match Observations with Predicted Landmarks *)
nMatchedlLM := 0;
(* Check, for each expected LM, all observations, to see if one of them satisfies the condition! ¥)
FOR i:=0 TO nExpectedLM-1 DO
noOfMatches:=0;
match:=-1;
FOR j:=0 TO nExtractedLM-1 DO
IFmatchingMatrix[i,j] < GATE THEN
INC(noOfMatches);
match:=j;
END;
END;
(* If exactly one does satisfy then check if this observation does not satisfy for another expected LM *)
IF noOfMatches=1 THEN
FOR j:=0 TO nExpectedLM-1 DO
IF matchingMatrix[j,match] < GATE THEN
INC(noOfMatches);
END;
END;
(* If noOfMatches equals exactly 2, then the match is valid *)
IF noOfMatches=2 THEN
matchedlL M[nMatchedl M][0]:=i;
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matchedl M[nMatchedl M][1]:=match;
INC(nMatchedLM);
END;
END;
END;
XT.WriteString(w,” % Number of Matched Landmarks”); XT.WriteLn(w);
XT.Writelnt(w, LONG(nMatchedL M), 10); XT.WriteLn(w);
XT.Append(XOberon.Log(), w.buf);
END Matching;

PROCEDURE Estimation*;
VAR
i: INTEGER;
accu0, accul, accu2: LONGREAL;
rv: LONGINT;
BEGIN
(* If there are no matches than the position won’t be updated *)
IF nMatchedLM=0 THEN

XT.WriteString(w, " Position Update Cycle will be bypassed”); XT.WriteLn(w);

XT.Append(XOberon.Log(), w.buf);
END;
FOR i := 0 TO nMatchedLM-1 DO

* Calculate the innovation *)

innovation := expectedL M[matched LM[i][0]] - extractedLM[matchedL M[i][1]];

(* Calculate P(k+1|k)Hi’(k+1) separately to speed up *)

accu0 := P[0][0] * H[i][0] + P[O][1] * H[i][1] + P[0][2] * HI[i][2];
accul = P[O][1] * HEI[O] + P[1][1] * HEI[1] + P[1][2] * HE[2)
accu2 := P[0][2] * H[i][0] + P[1][2] * H[i][1] + P[2][2] * H[i][2];

(* Calculate Si(k+1) = Hi(k+1)P(k+1|k)Hi’(k+1) + Ri(k+1) - a scalar! *)

S[i] := H[i][0] * accu0 + HI[i][1] * accul + H[i][2] * accu2 + R[i];

IF S[i] < 1.0E-11 THEN

XT.WriteString(w, " Overflow S["); XT.Writelnt(w,i,1); XT.WriteString(w, "]");

XT.WriteLn(w); XT.Append(XObeion.Log(), w.buf);
ELSE

(* Calculate the Kalman Filler Gain Matriz *)

WI[0] := accu0 / S[i];

W[1] := accul / S[i];

W[2] := accu2 / SJi];

(* Calculate P(k+1|k+1) = P(k+1|k) - W(k+1)Si(k+1)W’(k+1) ¥)

P[0][0] := P[0][0] - W[0] * accuO:;

P[0][1] := P[0][1] - W[0] * accul;

P[0][2] := P[0][2] - W[0] * accu2;

P[1][0] := P[1][0] - W[1] * accuO;

P[1][1] := P[1][1] - W[1] * accul;

P[1][2] := P[1][2] - W[1] * accu2;

P[2][0] := P[2][0] - W[2] * accuO;

P[2][1] := P[2][1] - W[2] * accul;

P[2][2] := P[2][2] - W[2] * accu2;

(* Update the Position *)

x[0] := x[0] + W[0]*innovation;

x[1] := x[1] + W[1]*innovation;

46
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x[2] := x[2] + W[2]*innovation;
(* Update Odometry *)
myQOdometry.Set(x[0], x[1], x[2]);
rv := myPosCtrl.SetNew Target(x[0], x[1], x[2], 0.0);
END;
END;
END Estimation;

PROCEDURE Localization*;
BEGIN
PositionPrediction;
WriteX;
MyOQutputs. WritePosition(888, x, P);
Observation;
MeasurementPrediction:
Matching;
Estimation;
WriteX:
MyOutputs. WritePosition(999, x, P);
END Localization;

PROCEDURE SavePosition999%;
BEGIN

MyOutputs. WritePosition(999, x, P);
END SavePosition999;

PROCEDURE Go*;
VAR
rv: LONGINT:
BEGIN
rv := myPosCtrl.SetNewTarget(1.0, 1.0, 0.0, 0.0);
END Go;

BEGIN
XT.OpenWriter(w);

(* F is the Jacobian of f, state transition function of the system *)
F[0][0] := 1.0; F[0][1] := 0.0; F[0][2] := 0.0; (* F[0][2] := -dy *)
F[1][0] := 0.0; F[1][1] := 1.0; F[1][2] := 0.0; (* F[1]/2] = dz ¥)
F[2J[0] := 0.0; F[2][1] := 0.0: F[2][2] := 1.0;

(* H is the Jacobian of h, the mesurement model *)
H[0][0] := 0.0; H[0][1] := 0.0; H[0][2] := 0.0;
H[1][0] := 0.0; H[1][1] := 0.0; H[1][2] := 0.0;
H[2][0] := 0.0; H[2][1] := 0.0; H[2][2] := 0.0;

(* P (simmetric matriz) is zero if initial position of robot is perfect. This is definitely not the case *)
P[0][0] := 0.05*0.05;

P[0][1] := O;
P[0][2] := O;
P[1][0] := 0;
P[1][1] := 0.05*0.05;
P1][2] := 0;

P[2][0] := O;
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P[2][1] := 0;
P[2][2] := 0.05%0.05;

(* R describes the uncertanty in the measurements *)
R[0] := SigmaZ1*SigmaZl;
R[1] := SigmaZ2*SigmaZ2;
R[2] := SigmaZ3*SigmaZ3;

(* S is the Innovation Covariance Matriz *)

S[0] :=0;

S[1] :=0;

S[2] :=0;

(* Kalman Filter Gain Matriz *)
W[0] := 0.0;

W[1] := 0.0;

W[2] := 0.0;

(* r is the state vector of the system *)
x[0] := 0.0;

x[1] := 0.0;

x[2] := 0.0;

(* Grab the object "OdomSR” from the database into "obj” and test if it is *)
(* of the type OdometryDD.Odom, if so, asign it to MyOdometry *)
Base.GetObj(" OdomSR", obj);

IF obj IS OdometryDD.Odom THEN myOdometry:=obj(OdometryDD.Odom) ELSE HALT(99) END;

(* Grab the object "SRPCTRL” from the database into "obj” and test if it 1s *)

(* of the type SRPosCtrl.Ctrl, if so, asign it to MyPosCtrl *)

Base.GetObj(" SRPCTRL", obj);

IF obj IS SRPosCtrl.Ctrl THEN myPosCtrl:=obj(SRPosCtrl.Ctrl) ELSE HALT(99) END;
END SRLocalization.

A.2 MODULE ExtractLandmarks.Mod

MODULE ExtractLandmarks; (* last updated 12.02.99 by Hugo *)
(* This module implements the extraction of landmarks using the Vision System. *)
(* Author: Hugo L. Gosmann (gosmann@usa.net). February, 1999. *)

IMPORT
XTexts, XOberon, XWebServer, DMAImages, Bt848, VisionDMA  FastVision,GreyscaleGIF Files;

CONST
Columns = Bt848.PALColumns;
Lines = Bt848.PALLines DIV 2;

VAR
w: XTexts.Writer:
server: XWebServer.Server:
Result: INTEGER;

48
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Imagel, Image2: ARRAY Columns*Lines OF INTEGER;
Sum: ARRAY Columns OF INTEGER;

PROCEDURE VisionProblem:;
BEGIN
XTexts.WriteString(w,” Vision Problem: "); XTexts. Writelnt(w,Result,0);
X Texts.WriteString(w,” (for details: ET.Open Bt848Errors.txt)”); XTexts. WriteLn(w);
XTexts.Append(XOberon.Log(),w.buf);
HALT(99);
END VisionProblem:;

PROCEDURE ResetFrameGraber*;
BEGIN
Bt848. Reset;
Bt848.SetInput(Bt848.I1formMux1, Result);
IF Result # 0 THEN VisionProblem END;
Bt848.SetVideoFormat(Bt848.PALVideoFormat, Result);
IF Result # 0 THEN VisionProblem END;
Bt848.SetMode(Bt848.ForceMode, Result);
IF Result # 0 THEN VisionProblem END;
Bt848.SetCaptureField(Bt848.CodeA Bt848. ANYField, Bt848.Gray8Color, DMAImages.ImageAdrA, Result);
IF Result # 0 THEN VisionProblem END;
Bt848.SetCaptureField(Bt848.CodeB,Bt848. ANYField, Bt848.Gray8Color, DMAImages.ImageAdrB, Result);
IF Result # 0 THEN VisionProblem END;
END ResetFrameGraber;

PROCEDURE SaveGIF*(VAR image: ARRAY OF INTEGER; name: ARRAY OF CHAR);
VAR
f: Files.File;
w: Files.Writer;
BEGIN
f:=Files.New();
IF f # NIL THEN
Files.OpenWriter(w,f,0);
GreyscaleGIF.Make(w,image, Columns, Lines,8);
Files.CloseWriter(w);
Files.Register(f,name);
(* RETURN TRUE *)
END;
(* RETURN FALSE *)
END SaveGIF;

PROCEDURE FindThreshold(X,Y: INTEGER; VAR Image: ARRAY OF INTEGER):INTEGER;
BEGIN

RETURN 220
END FindThreshold:;

PROCEDURE ThresholdingAndSum(X, Y, Th: INTEGER; VAR InOutlmage: ARRAY OF INTEGER);
VAR i: LONGINT;
BEGIN
i = XPY-1:
WHILE i >= 0 DO
IF InOutlmage[i] > Th THEN INC(Sum[i MOD X]) END;
DEC(i)
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END
END ThresholdingAndSum;

PROCEDURE VisualizePeak(X, Y, y: INTEGER; VAR InOutlmage: ARRAY OF INTEGER);
VAR i: LONGINT;
BEGIN
=y,
WHILE i < X*Y DO
InOutlmage[i] := 0;
=i+ X
END:;
END VisualizePeak;

PROCEDURE FindLightSource*(VAR ExtractedLM: ARRAY OF LONGREAL; VAR nExtractedLM: INTEGER);
CONST
PeakTh = 1000;
VAR
th, i, oldpeak, newpeak: INTEGER;
peak: BOOLEAN:
BEGIN
X Texts.WriteString(w, " Start capture...”); XTexts.WriteLn(w);
XTexts. Append(XOberon.Log(), w.buf);
Bt848.StartCapture(Bt848.CodeA, Result); IF Result # 0 THEN VisionProblem END;

XTexts.WriteString(w, " Wait end capture..."); XTexts.WriteLn(w);
XTexts.Append(XOberon.Log(), w.buf);
Bt848.WaitEndCapture(Bt848.CodeA, Result); IF Result # 0 THEN VisionProblem END;

XTexts.WriteString(w, " Copy image from DMA to RAM..."); XTexts.WriteLn(w);
XTexts.Append(XOberon.Log(), w.buf);
VisionDMA.DMAtoRAM(Columns, Lines, DMAImages.ImageArrayA, Imagel);

XTexts.WriteString(w, " Save input image as debugl.gif..." ); XTexts.WriteLn(w);
XTexts.Append(XOberon.Log(), w.buf);
SaveGIF(Imagel, "debugl.gif");

XTexts. WriteString(w, " Find threshold for the image and apply it..." ); XTexts. WriteLn(w);
XTexts.Append(XOberon.Log(), w.buf);

th := FindThreshold(Columns, Lines, Imagel);

ThresholdingAndSum(Columns, Lines, th, Imagel);

peak := FALSE;
nExtractedLM := 0;
i = 2;
newpeak := Sum[0]4+Sum[1]4+Sum[2]4+Sum[3]+Sum[4];
WHILE i < Columns-4 DO
INC(i);
oldpeak := newpeak;
newpeak := newpeak - Suml[i-3] + Suml[i+2];
(* IF newpeak > 0 THEN X Teats. WriteInt(w, newpeak,0); X Texts. WriteLn(w);*)
(* X Texts. Append(XOberon.Log(), w.buf) END; ¥)
IF newpeak > PeakTh THEN
IF (oldpeak > newpeak) & peak THEN
peak := TRUE;
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XTexts. WriteString(w, " Peak at y = "); XTexts.Writelnt(w, i-1,0); XTexts. WriteLn(w);
XTexts.Append(XOberon.Log(), w.buf);
VisualizePeak(Columns, Lines, i-1, Imagel);
nExtractedLM := nExtractedLM+1;
ExtractedL M[nExtractedLM-1] := 0.0003205*(384-(i-1));

ELSIF (oldpeak < newpeak) & peak THEN
peak := FALSE

END

END
END;

XTexts. WriteString(w, " Save result as debug?2.gif..."); XTexts.WriteLn(w);
XTexts. Append(XOberon.Log(), w.buf);
SaveGlIF(Imagel, "debug?.gif");

(* XTexts. WriteString(w, "Save thresholded image as debug3.gif..."); X Texts. WriteLn(w);¥)
(*X Texts. Append(XOberon.Log(), w.buf); *)

(* FastVision. Thresholding(Columns, Lines, th, Imagel); *)

(* SaveGIF(Imagel, "debug3.gif”); *)

XTexts. WriteString(w, "...Ok!"); XTexts.WriteLn(w); XTexts. Append(XOberon.Log(), w.buf);
END FindLightSource;

PROCEDURE Extraction*;
VAR
ExtractedLM: ARRAY 12 OF LONGREAL;
i,nExtractedLM: INTEGER;
BEGIN
FindLightSource(ExtractedLM, nExtractedLM);
FOR i := 0 TO nExtractedLM-1 DO
XTexts WriteLongRealFix(w, ExtractedLM[i], 10, 5, 0); XTexts. WriteLn(w);
XTexts.Append(XOberon.Log(), w.buf);
END;
END Extraction;

BEGIN
XTexts.OpenWriter(w);
server := XWebServer.FindServer(80);
XWebServer.Register Type(server, "admin”, "BMP", "image-x/bmp”);
ResetFrameGraber:;
END ExtractLandmarks.
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