
FEDERAL UNIVERSITY OF SANTA CATARINA
JOINVILLE’S TECHNOLOGICAL CENTER
FACULTY OF AEROSPACE ENGINEERING

HANS HERBERT SCHULZ

DECENTRALIZED BRILLIANCE: DEPLOYING A FEDERATED LEARNING
PLATFORM AND EVALUATING AGGREGATION ALGORITHMS

Joinville
2024

HANS HERBERT SCHULZ

DECENTRALIZED BRILLIANCE: DEPLOYING A FEDERATED LEARNING
PLATFORM AND EVALUATING AGGREGATION ALGORITHMS

Bachelor Thesis submitted as a
requirement for obtaining the bachelor’s
degree in Aerospace Engineering at
Joinville’s Technological Center of the
Federal University of Santa Catarina.

Supervisor: Prof. Dr. Benjamin Grando Moreira

Co-supervisor: Eng. Gustavo Laydner
de Melo Rosa

Joinville
2024

I dedicate this work to my family for their unwavering support and encouragement
throughout my academic endeavor.

ACKNOWLEDGMENTS

As graduation approaches, it provides a meaningful opportunity for me to reflect
on my academic journey and the people who have been a part of it.

First and foremost, I thank God for his boundless benevolence and blessings
throughout my life.

I extend my gratitude to my family, Janete, Edemar, Ana Vitória, and Maria Elisa
whose unconditional support proved indispensable for paving the path to this milestone.

To my supervisor Benjamin Grando who promptly accepted guiding my ideas
for this thesis and my co-supervisor Gustavo Laydner, whose supportive hand and
penchant for problem-solving propelled this project to its current stature.

To my internship supervisor Philip Jongebloed, whose charisma, guidance, and
leadership were like a fine symphony—now sorely missed. Herzlichen Dank für alles!

To my colleagues from the Fraunhofer’s 220 Abteilung, especially, Heiko
Baumman, Sören Herkströter, and Tim Nagel. I look forward to our next bierchen
at Kaktus.

To the friends I made in Germany—Berkan Akin, Berkay San, Gustavo Mello,
Inés Mesquida, João Vitor Smagar, Julian Storms, Karl Ngondji, Marten Gralla, Shamil
Kudukkath, and Sjoerd Hammers. Fondly reminiscing on the good times we shared.

To Lucas Ma Famg, whose priceless support and dubious sense of humor
brightened even the longest workdays, leaving an indelible mark on this project.

To the friends at UFSC, especially, Pieter van Tilburg, Irisson Lima, Luiz F.
Camargo, Beatriz Faga, Henrique Zschornack, and Widmark Kauê.Your support and
patience have been invaluable to me and I wouldn’t have gone this far without you.

To the Fraunhofer Institute for Production Technology and the Federal University
of Santa Catarina (UFSC) for providing the necessary means and resources to the
conclusion of this project.

To all others that somehow contributed to the making of this work.

"Aber in dem allen überwinden wir weit durch den, der uns geliebt
hat." - Römer 8:37

ABSTRACT

With the exponential development in the artificial intelligence field, the concern for privacy
and data acquisition has increased dramatically. Several governments have already
restricted their data protection laws to better shield individuals from information leakage.
The Federated Learning (FL) approach was conceived to mitigate any leakage possibility
so that models could be trained without accessing one’s private data. Furthermore, it
allows several clients who are geographically apart to partake in the training process
without sharing data. This work deployed an FL platform in two clients using container
technology. Moreover, a training procedure using the two most common FL strategies
was performed using the MNIST dataset. Finally, the achieved results were able to tell
whether the platform was correctly deployed and which strategy performed better, both
within the model and within the hardware capabilities of the clients.

Keywords: Federated learning. Docker. Artificial intelligence. IBM.

RESUMO

Com o desenvolvimento exponencial no campo da inteligência artificial, a preocupação
com a privacidade e a aquisição de dados aumentou dramaticamente. Vários governos
já restringiram suas leis de proteção de dados para melhor proteger o indivíduo
contra vazamentos de informações. Para mitigar a possibilidade de vazamento, foi
concebida a abordagem de Federated Learning, de modo que os modelos pudessem
ser treinados sem acessar os dados privados de uma entidade. Além disso, ela permite
que vários clientes, geograficamente separados, participem do processo de treinamento
sem compartilhar dados. Para este trabalho, uma plataforma de Federated Learning
foi implantada em dois clientes usando tecnologia de contêineres. Além disso, foi
realizado um procedimento de treinamento usando as duas estratégias de Federated
Learning mais comuns e usando o conjunto de dados MNIST. Finalmente, os resultados
alcançados foram capazes de determinar se a plataforma foi implantada corretamente
e qual estratégia teve um desempenho melhor, tanto dentro do modelo quanto dentro
das capacidades de hardware dos clientes.

Palavras-chave: Aprendizado Federado. Docker. Inteligência Artificial. IBM.

LIST OF FIGURES

Figure 1 – Horizontally partitioned data . 17
Figure 2 – Vertically partitioned data . 18
Figure 3 – Horizontal federated learning model 19
Figure 4 – Vertical federated learning model . 20
Figure 5 – Cross-device federated learning system overview 22
Figure 6 – Cross-silo federated learning system overview 24
Figure 7 – Simplified architecture. (a) Container. (b) Virtual Machine 27
Figure 8 – Generic ANN model . 28
Figure 9 – Simplified CNN architecture with five layers 29
Figure 10 – Conceptual scheme of IBM’s federated learning 32
Figure 11 – Architecture stack of IBM’s federated learning 33
Figure 12 – Architecture stack of IBM’s federated learning 34
Figure 13 – Docker architecture . 36
Figure 14 – MNIST digits . 38
Figure 15 – Custom keras CNN detailed architecture 39
Figure 16 – Overall FL architecture . 40
Figure 17 – Physical devices setup . 41
Figure 18 – CPU usage for FedAvg strategy in Experiment 1 43
Figure 19 – RAM usage on device IPT-N-0311 with FedAvg in Experiment 1 . . . 44
Figure 20 – RAM usage on device IPT-N-0007 with FedAvg in Experiment 1 . . . 44
Figure 21 – Network traffic on device IPT-N-0311 with FedAvg in Experiment 1 . 45
Figure 22 – Network traffic on device IPT-N-0007 with FedAvg in Experiment 1 . 46
Figure 23 – CPU usage for FedSDG strategy in Experiment 1 47
Figure 24 – RAM usage from device IPT-N-0311 while in FedSDG 47
Figure 25 – RAM usage from device IPT-N-0007 while in FedSDG 48
Figure 26 – Network traffic from device IPT-N-0311 while in FedSDG 49
Figure 27 – Network traffic usage from device IPT-N-0007 while in FedSDG . . . 49
Figure 28 – Experiment 1 confusion matrix using FedAvg with F1-Scores 51
Figure 29 – Confusion matrices using FedAvg with F1-Scores 52
Figure 30 – Experiment 1 confusion matrix using FedSDG with F1-Scores 54
Figure 31 – Confusion Matrices using FedSDG with F1-Scores 55
Figure 32 – Hardware metrics for party IPT-N-0007 in experiment 2 63
Figure 33 – Hardware metrics for party IPT-N-0007 in experiment 3 64
Figure 34 – Hardware metrics for party IPT-N-0007 in experiment 4 64
Figure 35 – Hardware metrics for party IPT-N-0007 in experiment 5 65

Figure 36 – Hardware metrics for party IPT-N-0311 in experiment 2 65
Figure 37 – Hardware metrics for party IPT-N-0311 in experiment 3 66
Figure 38 – Hardware metrics for party IPT-N-0311 in experiment 4 66
Figure 39 – Hardware metrics for party IPT-N-0311 in experiment 5 67
Figure 40 – Hardware metrics for party IPT-N-0007 in experiment 2 68
Figure 41 – Hardware metrics for party IPT-N-0007 in experiment 3 69
Figure 42 – Hardware metrics for party IPT-N-0007 in experiment 4 69
Figure 43 – Hardware metrics for party IPT-N-0007 in experiment 5 70
Figure 44 – Hardware metrics for party IPT-N-0311 in experiment 2 70
Figure 45 – Hardware metrics for party IPT-N-0311 in experiment 3 71
Figure 46 – Hardware metrics for party IPT-N-0311 in experiment 4 71
Figure 47 – Hardware metrics for party IPT-N-0311 in experiment 5 72

LIST OF CHARTS

Chart 1 – Libraries feature comparison. 31
Chart 2 – Hardware comparison. 37

LIST OF TABLES

Table 1 – Parameters used . 39
Table 2 – Global model metrics achieved with FedAvg strategy 50
Table 3 – Maximum difference for global model Metrics with FedAvg strategy . 53
Table 4 – Global model metrics achieved with FedSDG strategy 53
Table 5 – Maximum difference for global model Metrics with FedSDG strategy . 55
Table 6 – Training time with FedAvg strategy . 56
Table 7 – Training time with FedSDG strategy 56
Table 8 – Metrics mean average . 57
Table 9 – Experiment 1 model metrics with FedAvg strategy 73
Table 10 – Experiment 2 model metrics with FedAvg strategy 73
Table 11 – Experiment 3 model metrics with FedAvg strategy 73
Table 12 – Experiment 4 model metrics with FedAvg strategy 73
Table 13 – Experiment 5 model metrics with FedAvg strategy 73
Table 14 – Experiment 1 model metrics with FedSDG strategy 74
Table 15 – Experiment 2 model metrics with FedSDG strategy 74
Table 16 – Experiment 3 model metrics with FedAvg strategy 74
Table 17 – Experiment 4 model metrics with FedSDG strategy 74
Table 18 – Experiment 5 model metrics with FedSDG strategy 74

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

DNN Deep Neural Network

FedAvg Federated Averaging

FedSDG Federated Stochastic Gradient Descent

FL Federated learning

HFL Horizontal Federated Learning

IBM International Business Machines Corporation

MNIST Modified National Institute of Standards and Technology

OS Operating System

RAM Access Memory

ReLu Rectified Linear Unit

RNN Recurrent Neural Network

SVM Support Vector Machine

VFL Vertical Federated Learning

VM Virtual Machine

SUMMARY

1 INTRODUCTION . 14
1.1 Objectives . 15
1.1.1 General Objective . 15
1.1.2 Specific Objectives . 15

2 BACKGROUND . 16
2.1 Federated Learning Overview . 16
2.2 Horizontal and Vertical Data Distribution 16
2.3 Horizontal and Vertical Training Models 20
2.3.1 Cross-Device Federated Learning 20
2.3.2 Cross-Silo Federated Learning . 22
2.4 Federated Learning Algorithms . 24
2.4.1 Federated Stochastic Gradient Descent 25
2.4.2 Federated Averaging . 26
2.5 Containerizing . 26
2.6 Neural Network Architecture Overview 27

3 METHODOLOGY . 30
3.1 Federated Learning Libraries . 30
3.1.1 IBM FL General Concepts . 31
3.1.2 General Architecture . 33
3.1.3 Aggregator Stack . 34
3.1.4 Party Stack . 35
3.2 Deployment . 35
3.2.1 Docker . 35
3.3 Third-Party Evaluation Tools . 36
3.4 Experiment . 36
3.4.1 Hardware . 37
3.4.2 Dataset . 37
3.4.3 Training Model . 38
3.4.4 FL Parameters . 39
3.4.5 Network Configuration . 40
3.4.6 Evaluation Criteria . 41

4 RESULTS AND DISCUSSIONS . 43
4.1 Resource Usage . 43
4.1.1 Evaluation of FedAvg Strategy . 43

4.1.2 Evaluation of FedSDG Strategy . 46
4.2 Training Results . 50
4.2.1 Evaluation of FedAvg Strategy . 50
4.2.2 Evaluation of FedSDG Strategy . 53
4.2.3 Runtime . 56
4.2.4 Takeaways . 57

5 CONCLUSIONS . 58

REFERENCES . 60

APPENDIX A . 63

APPENDIX B . 68

APPENDIX C . 73

APPENDIX D . 74

14

1 INTRODUCTION

After the Second World War ended, many scientists started questioning how
clever machines could become (ANYOHA, 2020). Among those men was British
mathematician Alan Mathison Turing, who published a paper entitled Computing
Machinery and Intelligence in which he described the idea of creating a machine
that could learn from experience and how to assess its results (TURING, 1950).

In the current state of affairs, artificial intelligence (AI) is being applied in several
fields of science and industry. Among those fields is predictive maintenance, which
seeks to find the best time to change or repair components from a production process to
mitigate the costs of shutting down a machine due to unscheduled disruptions (BEHERA,
2016). However, it still presents many challenges that must be overcome. Among these
challenges, we may find the ever-growing need for computational power and data privacy
concerns.

A commonly used method in machine learning is to train models using
centralized datasets. However, this approach poses potential risks, especially in system
breaches that could expose all data used for training (LUDWIG et al., 2020).

Such risks are amplified in specific contexts, including hospital environments
with sensitive patient health data and government instances with national security
implications. Some examples of these breaches are the Anthem Inc. breach, considered
the largest one in the United States of America so far, (UNITED STATES DEPARTMENT
OF HEALTH & HUMAN SERVICES, 2020) and the U.S. Office of Personnel Management
breach that affected almost 21,5 million people (NBC NEWS, 2015).

Furthermore, in recent years, several laws have been passed to limit and protect
data, such as the General Data Protection Regulation(GDPR), which further challenges
the scenario for machine learning applications.

Additionally, given the amount of data to be processed for the deep learning
context, the computing costs for a centralized server are humongous. The FL approach
also seeks to reduce such costs and improve the overall performance of the training
procedure (SHARMA; SHAMOUT; CLIFTON, 2019).

The proposed work is part of an industrial solution entitled AI-NET-ANIARA
(IPT, 2021), developed by the Fraunhofer-Institut für Produktionstechnologie (IPT) that
seeks to enhance the scope of predictive maintenance in the production engineering
scenario. The project intends to develop a multi-sensory platform to acquire and
transmit air parameters (e.g., saturation, temperature, and flow speed) from industrial air
exchange systems. With this data, train machine learning models to enhance predictive
maintenance.

15

The deployment process is also described and comprises a series of tasks
to install a pre-developed application into its intended operational environment
(HEYDARNOORI; MAVADDAT, 2006). To deploy the platform, containerization through
the Docker application is possible. After a successful deployment, performance tests
are conducted utilizing the usual FL techniques for machine-learning model algorithms,
and the results are discussed.

1.1 OBJECTIVES

1.1.1 General Objective

The main objective of this work is to deploy a Federated Learning platform and
check its functionality by comparing the performance of machine learning models using
different federated learning strategies.

1.1.2 Specific Objectives

To achieve the desired general objective, the following steps will be sequentially
taken:

• Deploy an already existing model of federated learning on Raspberry Pi devices
through digital containers and conclude the connection between server and client;

• Compare parameters such as GPU, network usage, and training time between
different federated learning methods and the conventional centralized method;

• Explore the advantages and challenges of federated learning that resulted from
this work.

16

2 BACKGROUND

As industries around the globe grow, more technology is being required and
developed. Among those technologies, Federated Learning was born as a pioneering
approach to some common issues faced in the field of machine learning, such as privacy
and data storage. This chapter aims to discuss the backbone of the digital infrastructure
and the main concepts used in the industrial multi-sensory platform.

2.1 FEDERATED LEARNING OVERVIEW

With the advent of deep learning (DL), the need for data acquisition in several
science instances has increased. This is mainly because DL models are usually
interpolators, meaning they present the best results when the input is similar to the data
used for training models. Therefore, a vast amount of heterogeneous data is required to
achieve decent accuracy (SARMA et al., 2021).

One way to contour this issue would be to create pooled data silos, where
several institutions would upload their acquired material to the joint database. However,
such a method would present a significant security and privacy risk for each party
involved. The question remains: How can vast amounts of heterogeneous data be
gathered and maintained in order to keep the desired privacy and security?

In light of this inquiry, Google presented in 2016 the concept of federated
learning (FL), which can be described as: "[...] A machine learning technique [...] as
a way of providing decentralized and collaborative learning across distributed nodes"
(MANIAS, 2021, p. 3).

In other words, the FL architecture comprises multiple parties and an aggregator
agent. Firstly, a global model is generated and sent to each party. Then, the model will
be trained in each party with its own data set, meaning each model will have a different
result by the end of the process.

An update that contains the difference between the base model and the new
one is then generated by the parties and sent to the aggregator agent. The agent then
merges the updates and creates a new global model, which is sent to each party, and
so on (MANIAS, 2021).

2.2 HORIZONTAL AND VERTICAL DATA DISTRIBUTION

Data can be distributed and used in the FL context in different ways. The
conventional way consists of having multiple parties training a model independently,
and the data in all parties possess the same features. Such distribution results in the

17

so-called Horizontal Federated Learning (HFL) approach (LUDWIG; BARACALDO,
2022).

However, most data sets in the real world will sometimes have different features.
Ludwig e Baracaldo (2022) propose an example to illustrate such a scenario better.

Suppose that a patient in a medical environment requires surgery, and a model
is being developed to anticipate the outcome of the operation. The medical institution
will have different forms of data on him. Primary care physicians, for instance, may have
records regarding the individual’s health status throughout different visits. A radiologist,
on the other hand, may have data on the patient’s X-rays. This means that the hospital
would have two different data features for the same patient, and they can both help
predict the outcome of a surgery. So, the general idea would be to train a model using
both features related to the same patient. This approach is called Vertical Federated
Learning (VFL).

To summarize, the main difference between HFL and VFL lies in how the training
data is distributed among parties. The HFL will focus on training multiple data samples
that share the same features, whereas the VFL will use the same sample but with
different features. Figure 1 depicts the horizontal FL since it has different subjects
marked as Xi,Ai+1 and Xi,Bi+1 have the same features which are represented by Xi+1,Ai .

Figure 1 – Horizontally partitioned data

Source: Ludwig e Baracaldo (2022, p. 12).

On the other hand, Figure 2 represents different features being trained about
the same subject, represented by the column containing the X4,[A,B]i+1.

18

Figure 2 – Vertically partitioned data

Source: Ludwig e Baracaldo (2022, p. 12).

After comprehending the data distribution, it is worth noting that the overall FL
process presents some differences for each type.

In the HFL, all parties will train a global model locally. Since the data has the
same features, all parties can use the same AI model (e.g., deep learning and decision
trees). Then, all newly trained models will be aggregated, and a new updated global
model will be computed (NGUYEN et al., 2021). Figure 3 illustrates the procedure.

19

Figure 3 – Horizontal federated learning model

Source: Nguyen et al. (2021, p. 1627)

Conversely, the VFL will share an AI model with parties with the same set of
data samples but different data features. Then, an alignment entity will overlap the
data samples of parties. Such samples will be combined to train the standard AI model
(NGUYEN et al., 2021). The process scheme is shown in Figure 4.

20

Figure 4 – Vertical federated learning model

Source: Nguyen et al. (2021, p. 1627).

2.3 HORIZONTAL AND VERTICAL TRAINING MODELS

From a system perspective, the FL scenarios aim to train machine learning
models using disparate data to maintain privacy and overall model performance. It is
imperative that data is not moved across parties and not even visualized by the central
server. To achieve that, there are mainly two system designs: cross-device, usually used
with the VFL data partition, and cross-silo, often used with HFL(LUDWIG; BARACALDO,
2022).

2.3.1 Cross-Device Federated Learning

According to Ludwig e Baracaldo (2022), the objective of cross-device FL is
minimizing the function F (w), which is defined by Equation 1.

F (w) =
n∑

k=1

pkFk(w) (1)

21

In Equation 1, Fk(w) is the local objective function for the device k with model
weights w. The term pk represents the importance of the contribution of the k device to
the global model objective function. Such a term is described by Equation 2 as:

pk =
jk∑n
l=1 jl

(2)

Where jk depicts the total number of data points the local model wk was trained
on in the k device. Therefore, it can be inferred that pk is the weighted average of the
number of data points per device(LUDWIG; BARACALDO, 2022).

There are also additional constraints that must be fulfilled. Firstly, it is essential
that no third parties can access end-user data, and it must not be associated with
a particular device. Secondly, the achieved performance of a model using FL must
be close enough to the performance obtained using traditional methods (LUDWIG;
BARACALDO, 2022).

The global model training is executed in rounds, and each round consists of five
steps, which are also described by Ludwig e Baracaldo (2022) as:

1. Initially, the model G0 is untrained and initialized with random weights. At the
beginning of each round, a subset of the available devices will be selected. The
number of selected devices will significantly impact the training time, the model
performance, the convergence time, and the computational cost of the system.
Therefore, it is a critical point of the process. However, the basic FL implementation
suggests that around 10% of the available devices should be randomly used.

2. After selecting the k devices, the initial weights w of the global model Gn will be
sent to the devices. It is crucial to note that this is a network-expensive step since
deep learning models can be large, and therefore, transferring them across the
devices has a great bandwidth cost.

3. Training then starts for each individual dataset Dk, which will result in the model
gkn being created in the respective k device.

4. After the generation of the local models, privacy mechanisms are put in place to
ensure that none of the newly trained models can be linked to a specific device.
Then, it is sent to the aggregator.

5. The aggregator then uses an aggregation algorithm to generate a new global
model Gn+1 and the process returns to Step 1. This set of procedures is repeated
until a stopping condition is met, such as the maximum round number or some
model convergence criteria.

Figure 5 visually represents each of the aforementioned steps.

22

Figure 5 – Cross-device federated learning system overview

Source: Ludwig e Baracaldo (2022, p. 200).

2.3.2 Cross-Silo Federated Learning

The main objective of Cross-Silo Federated Learning can be formally described
as minimizing the L(W) function described by Equation 3.

L(W) =
m∑
j=1

n∑
i=1

L(wj, x
i
j) (3)

where L(W) is the global loss function for the global model W , i represents the client,
j is the data provider (i.e., silos) with the local model wj trained from data feature xi

j.
It simply means training a model using data from different silos that refer to the same
client but possess different features and labels (LUDWIG; BARACALDO, 2022).

Similarly to the Cross-Device FL, this system has two constraints. The first
concerns privacy matters and states that no parties involved in the training can be
associated with another party’s data point ID. In practical terms, it means that one party
knows that another party is involved but cannot access the detailed data of that other
party. Such constraint can be met using the homomorphic encryption technique1, which
uses mathematical operations to transform data so that its original form cannot be
observable.

The second constraint regards performance, and it states that the overall global
performance using this system must be as close to the performance of a model that
would have been generated had all the data been present in a single silo as in traditional
distributed learning (LUDWIG; BARACALDO, 2022).

1 The homomorphic encryption technique allows mathematical operations to be carried on a cipher text
instead of the actual data. The main requirement of the technique is that the final output must be the
same after operating on the encrypted text and the plain text (ROCHA; LÓPEZ, 2019).

23

The training procedure also happens in rounds but with one significant
difference: all silos take part in every round of the training. The key steps are shown
below according to Ludwig e Baracaldo (2022). For simplicity, only two data silos are
being considered, but the steps can be extended to any desired number of silos.

1. Before the training, all participants must align their datasets using an anonymous
data alignment technique. One could find secure multi-party communication, key-
sharing, and randomized responses among those techniques. These methods
can be rather computationally expensive but usually run once before the training.
The output of this step is such that the data between the parties are aligned with
the same ID. The unmatched ones are usually discarded.

2. A third-party aggregator will generate and send encryption key pairs to each party
for secure communication, and the partial models that need to be trained are
initialized. The term partial models is used because, usually, for this system, it
is assumed that only the last party to be trained contains the labels. The other
parties only have the training features and the part of the model that can perform
a forward pass using those features.

3. The first party trains on one mini-batch of its local data and creates an output. This
output is then encrypted via homomorphic encryption and is sent to the next party.

4. The second party also performs a forward pass with its own data. Since it was
assumed that there were only two parties for the example, it is also possible to
assume that the labels are contained in the second and final party. Therefore,
the calculation of the loss function happens here. The intermediate outputs are
then sent to the first party, where they will be required to update the party’s model
weights. The loss is sent to the third-party aggregator.

5. Both parties will then calculate their partial gradients, add another layer of
encryption, and send them to the third-party aggregator. The extra layer serves so
that no information can be obtained in the intermediate outputs.

6. The aggregator will then decrypt the last layer and, along with the loss values from
Step 3, will be able to determine the exact gradient for each partial model in all
the participants and send them back to their respective silos. These gradients will
then be used to update their local models and generate new ones. After that, the
process is repeated from Step 01.

The Cross-silo FL steps are depicted in Figure 6.

24

Figure 6 – Cross-silo federated learning system overview

Source: Ludwig e Baracaldo (2022, p. 206).

It is worth reassuring that, among the differences, the devices that act as the
party are usually distinct from one system to another. Usually, in cross-device FL, the
devices are user-owned IoT (Internet of Things) instruments such as cellphones, tablets,
edge devices, and others. Since there are so many options in the market, the training
may have parties from an array of different devices and specifications. In the context of
cross-silo, the data silos used as parties tend to be of commercial grade, providing a
less heterogeneous environment and generally having better computational resources
than IoT devices (LUDWIG; BARACALDO, 2022).

Therefore, when implementing an FL environment, the targeted devices used as
parties to train a model will play a significant role in choosing one of the aforementioned
systems.

2.4 FEDERATED LEARNING ALGORITHMS

After establishing the main concepts of FL and its benefits and challenges, it
becomes clear that the next step is optimization to address common issues, such as
unbalanced data sets and limited communication. For such a process, algorithms have
been created, which are usually applicable to any finite-sum objective (MCMAHAN et
al., 2023). Hence, the problem becomes minimizing the f(w) function that is defined by:

f(w)
def
=

1

n

n∑
i=1

fi(w) (4)

where w is a vector containing d model parameters.
Usually, in supervised learning, it is said that fi(w) = l(xi, yi;w). In other words,

it represents the loss of the prediction on the labeled example (xi, yi) made with model
parameters (w). It is also assumed that there are K clients and P is the set of indexes
of data points on client k, and the number of training examples held by each client is

25

denoted as nk = |Pk| (MCMAHAN et al., 2023). Therefore, Equation 4 can be rewritten
as:

f(w) =
K∑
k=1

nk

n
Fk(w) (5)

where

Fk(w) =
1

nk

∑
i∈Pk

fi(w) (6)

Each client will then hold a part Pk of all training examples and compute Fk(w),
representing the average loss on client k (NILSSON et al., 2018).

Among the many available algorithms, it is worth noting the Federated Stochastic
Gradient Descent (FedSGD) and the Federated Averaging (FedAvg) as they are the
most common in FL(LUDWIG; BARACALDO, 2022).

2.4.1 Federated Stochastic Gradient Descent

According to McMahan et al. (2023), the latest successful applications of deep
learning have heavily relied on the variants of the stochastic gradient descent (SGD) for
optimization. Therefore, the most straightforward approaches for FL algorithms can be
conceived by having the SDG as its backbone.

The SDG can be naively applied to an FL problem where a single batch gradient
calculation is done per round of communication. Such a method is computationally
efficient, but it usually requires several training rounds to produce reasonably good
models (MCMAHAN et al., 2023).

To apply this technique in FL, a C fraction of clients is chosen in each round, and
the gradient of the loss over all the data held by the clients is computed. Therefore, C
refers to the global batch size with C = 1 representing the full batch setup (MCMAHAN
et al., 2023).

A typical implementation is proposed by McMahan et al. (2023) with C = 1,
a fixed learning rate η. In this scenario, each client k will compute gk = ∇Fk(wt) (the
average gradient on its local data for model wt). Then, the central server aggregates
these gradients and applies the update wt+1 ← wt−η

∑K
k=1

nk

n
gk since that

∑K
k=1

nk

n
gk =

∇f(wt).
An equivalent update is found by ∀k, wk

t+1 ← wt − ηgk followed by wt+1 ←∑K
k=1

nk

n
wk

t+1. This means each client will locally take one step of gradient descent on
the current model using its local data. The server then takes a weighted average of the
resulting models (MCMAHAN et al., 2023).

26

2.4.2 Federated Averaging

The Federated Averaging algorithm, FedAvg, is an extension of the FedSDG.
The central concept follows the same steps motioned above but also iterates the local
update wk ← wk − η∇Fk(w

k) in each client multiple times before the averaging step
(MCMAHAN et al., 2023).

Besides the previous hyperparameters C and η, the FedAVG will count with two
more. B represents the local mini-batch size, and E is the number of iterations through
the local data before the global model is updated (NILSSON et al., 2018).

A pseudo-code is proposed by McMahan et al. (2023) and is presented within
Algorithms 1 and 2.

Algorithm 1: Federated Averaging. The K clients are indexed by k; B is the
local minibatch size, E is the number of local epochs, and η is the learning rate
(MCMAHAN et al., 2023).

Data: Initialize w0

1 for each round t = 1, 2, . . . do
2 m← max(C ·K, 1);
3 St ← random set of m clients;
4 for each client k ∈ St in parallel do
5 wt+1

k ← ClientUpdate(k, wt);
6 end
7 mt ←

∑
k∈St

nk;
8 wt+1 ←

∑
k∈St

nk

mt
wk

t+1;
9 end

Algorithm 2: ClientUpdate(k, w) (MCMAHAN et al., 2023).
1 B ← (split Pk into batches of size B)
2 foreach local epoch i from 1 to E do
3 for batch b in B do
4 w ← w − η∇l(w, b);
5 end
6 end
7 return w to server

2.5 CONTAINERIZING

Since the central concept of FL is enforcing data privacy by not centralizing all
data in one major center, it is evident that the silos or devices used will be physically
apart, which can generate a compatibility issue. Some of those devices may have
different operating systems (OS) or may be in a different hardware version for instance.
To overcome this challenge, the concept of virtualization is introduced.

In its essence, computer virtualization allows a single physical machine to be
split into several virtual machines (VM) (SHEA; LIU, 2012). More recently, however,

27

the container technology was created as a lightweight alternative to VMs (SULTAN;
AHMAD; DIMITRIOU, 2019). A container is a group of processes isolated from other
groups through different kernel namespaces and resource allocation quota (WAN et al.,
2019).

Unlike the VMs, containers share only the operating system kernel, not a
full copy of the OS. This reduces a container’s startup time to milliseconds and the
computational resources needed, making them a sensible pick for usage in edge
devices (SULTAN; AHMAD; DIMITRIOU, 2019). Figure 7 depicts both container and VM
architectures.

Figure 7 – Simplified architecture. (a) Container. (b) Virtual Machine

Source: Sultan, Ahmad e Dimitriou (2019, p. 52977).

2.6 NEURAL NETWORK ARCHITECTURE OVERVIEW

Artificial Neural Networks (ANNs) are a series of computational systems
that attempt to mimic the behavior of a biological neural system. The ANNs usually
comprise a series of interconnected computational nodes that are referred to as neurons
whose primary function is to receive an input and collectively assist the learning and
optimization of the final output by the entire network (O’SHEA; NASH, 2015).

A generic ANN model is shown in Figure 8. Usually, input is given in the form of
a multidimensional vector and forwarded to the hidden layer. The hidden layer will make
decisions based on previous layers and evaluate whether the final output improves
or worsens. If a model has multiple hidden layers, it is commonly referred to as deep
learning (O’SHEA; NASH, 2015).

28

Figure 8 – Generic ANN model

Source: O’Shea e Nash (2015, p.2)

One of the many variations of ANNs is the Convolutional Neural Networks
(CNNs), which are designed mostly for image pattern recognition and are the project’s
main scope. The term convolutional refers to the algebraic operation of convolution,
which consists of an operation that combines two different functions and creates a third
one. Mathematically, it can be described as (HERMAN, 2015):

(f ∗ g)(x) =
∫ ∞

−∞
f(t) · g(x− t)dt (7)

The CNN architecture is composed of three-layer categories. A convolutional
layer, a pooling layer, and fully-connected layers. A basic architecture designed for
the MNIST dataset is shown in Figure 9 containing one input, one convolutional, one
pooling, and two fully-connected layers.

29

Figure 9 – Simplified CNN architecture with five layers

Source: O’Shea e Nash (2015, p.4)

The convolutional layer determines the output of neurons connected to local
regions through the convolution operations. The rectified linear unit (ReLu) aims to apply
an activation function, such as the sigmoid, to the output of the activation produced by
the previous layer (O’SHEA; NASH, 2015).

The pooling layer, on the other hand, performs down-sampling along the spatial
dimensionality of the given input. Finally, the fully-connected layers attempt to produce
class scores from the activations so that they can be classified (O’SHEA; NASH, 2015).

30

3 METHODOLOGY

This project is part of an industrial solution led by Ericsson AB that aims
to develop a multi-sensory platform that monitors air parameters (e.g. saturation,
temperature, and flow speed) from industrial exchange systems (IPT, 2021).

Since this project has many partners across Europe, the exchange systems are
installed in several locations. Hence, an FL platform is needed to acquire and use data
provided by these facilities.

This endeavor comprises several sequential steps. Initially, the appropriate FL
library is picked. The next step is understanding its operating mechanism to implement
it within the project. Further on, the deployment mechanism must be selected alongside
a deployment platform. Then, the setup FL platform will be tested using model training
with the MNIST dataset. Finally, the results will be evaluated, and the performances
achieved with different FL strategies will be compared.

3.1 FEDERATED LEARNING LIBRARIES

One of the critical concepts of the project is deploying an FL platform to perform
the necessary training in the developed models. Therefore, the choice of the primary
library is paramount. The key aspects considered for a thorough analysis were the
accepted ML frameworks, data partitioning type, privacy and security, FL strategies, FL
paradigms, and ML models. Chart 1 presents the most prominent libraries and their
characteristics.

31

Chart 1 – Libraries feature comparison.
Features/ Framework Pysyft Flower IBM FL TFF FedML

Contributor Open - Minded Adap Gmbh IBM Google FedML Inc.

General Environment

Windows,
Mac,
Linux,
Docker

Windows,
Mac,
Linux,
Docker

Windows,
Mac,
Linux,
Docker

Windows,
Mac,
Linux,
Docker

Windows,
Mac,
Linux,
Docker

ML Framework Pytorch

Pytorch,
TF,
Libtorch,
JAX...

Pytorch,
TF,
Scilearn,
Keras

TF Pytorch,
TF

Data Partitioning Vertical
Horizontal

Vertical
Horizontal Horizontal Horizontal Vertical

Horizontal

Architecture Data Types

Numbers,
Text,
Image,
Time-Series

Numbers,
Text,
Image,
Time-Series

Numbers,
Text,
Image,
Time-Series

Numbers,
Text,
Image,
Time-Series

Numbers,
Text,
Image,
Time-Series

Privacy and Security
HE,
MPC,
DP

SecAgg
Multiple
cryptographic
methods

DP

Secret
sharing
key
agreement

FL Strategy FedAVG,
FedSGD

FedAVG,
FedSGD,
QF FedAvg ...

FedAVG,
FedSGD,
FedAVG+ ...

FedAVG,
FedSGD

FedAVG,
FedNOV,
FedNAS...

Paradigm

Vertical FL yes yes no no yes
FTL no yes no no yes

Cross-Device yes yes no no yes
Cross-Silo yes yes yes yes yes

Hetero-task learning no yes yes no yes
Edge computing yes yes no yes yes

ML Models

Regression yes yes yes no yes
Clustering no yes yes no no

Trees no yes yes no no
SVM no no yes no no

Bayes networks no no yes no no
NN yes yes yes yes yes

DNN yes yes yes yes yes
CNN yes yes yes yes yes
RNN yes yes yes yes yes

Source: Adapted from Saidani (2023, p. 67).

Since the application is enterprise-oriented, the matters of privacy, security, and
fast model specification stand above all else. Moreover, a horizontal data partitioning
approach was selected for the project. Additionally, only Flower and IBM FL are
production-ready libraries (SAIDANI, 2023). After examining Chart 1, the IBM FL library
emerges as the optimal choice since it has multiple cryptographic methods, a wide
range of FL strategies, and several supported ML models. A comprehensive exposition
of the chosen library is made below.

3.1.1 IBM FL General Concepts

For a practical understanding, it is essential to go over the main functionalities
of the IBM FL library.

The platform trains a model M using a data set D. However, the data set is
split into n parties. It is important to note that each party Pi owns a unique section of
the data set Di, and no party can access the other party’s data set. Additionally, the

32

Federated Learning process also includes an aggregator A that cannot access any of
the party’s data set. The process steps below are described by Ludwig et al. (2020) and
shown in Figure 10:

1. To train MG, the aggregator uses a function Q that takes as input the current model
or state of the training Mt at round t and generates a next query qt+1.

2. One such query, qt, requests information about a local model or aggregated
information about each party’s data set. Example queries include requests for
gradients or model weights of a neural network or count for decision trees.

3. The local training process applies a function L that takes query qt and the
local dataset Di and outputs a model update ri,t. Usually, the query, qt, contains
information that the party can use to initialize the local training process, for example,
model weights to start with local training or candidate feature values and/or class
labels to compute counts for.

4. ri,t is sent back from party Pi to the aggregator A, which collects all the ri,t from
parties Pi.

5. When parties model updates r1,t, r2,t, ..., rn,t, where ri,t refers to the model
update of party i at round t, are received by the aggregator forming set Rt =

{r1,t, r2,t, ..., rn,t}, they are aggregated by applying fusion function F that takes as
input Rt and returns Mt. (LUDWIG et al., 2020, p.4)

Figure 10 – Conceptual scheme of IBM’s federated learning

Source: Ludwig et al. (2020, p.5)

33

3.1.2 General Architecture

The framework is built modularly to make the communication infrastructure
independent of the machine learning library and the federated learning algorithm. The
main modules are the aggregator, hence the name Aggregator Stack, and the parties Pi

stack. Additionally, this modular division allows the parties to read and pre-process from
different locations, which is the platform’s ultimate goal Ludwig et al. (2020). Figure 11
provides a representation of the platform’s architecture.

Figure 11 – Architecture stack of IBM’s federated learning

Source: Ludwig et al. (2020, p.6)

The main components described by Ludwig et al. (2020) are:
1. Connection: Given that the platform’s primary goal is a decentralized learning

model, a proper connection method is imperative to maintain the quality and
continuity of the process. It is important to note that all connectivity procedure
is handled by the FLConnection component in the Aggregator Stack. IBM’s
platform supports several connection methods, such as Flask web framework
and WebSockets, which is the chosen method for this work’s connection handling;

2. Protocol handler: For the parties to be able to communicate, message exchange
is necessary, and this component is responsible for controlling this message. The
message set comprises a query q, a model update r, and other sub-components
such as party registration. There is a difference between each handler for each
stack, given that each stack has different messages to be exchanged;

3. Data handler: In several corporate environments, it is possible that the FL training
must be executed within different data structures, and therefore, the data handler

34

component is needed for accessing and pre-processing the dataset Di for each
respective party Pi.

4. FL training modules: IBM’s FL has embedded machine learning algorithms
that can be selected by configuring a FusionHandler in the aggregator and
LocalTrainingHandler in the parties. The remaining components are:

a) FusionHandler: This particular component is responsible for two key
functions: generating queries via Q and fusing model updates using F . To
facilitate message exchange and interpret party replies, the ProtocolHandler

provides a set of APIs for sending and receiving messages. Ultimately, the
goal is to aggregate the model updates and produce a final result using the
F function;

b) LocalTrainingHandler: Specifies the L function that will generate the model
updates and ship them to the aggregator;

c) FLModel: The purpose of this module is to create a standardized API for
model training, saving, evaluation, updating, and generating model updates
that can be used with various machine learning libraries, such as Keras or
scikit-learn.

3.1.3 Aggregator Stack

When treating the stack as a whole, the aggregator stack possesses the required
elements for the aggregator A to operate. Its main functions are coordinating the FL
process, executing the function F , the fusion algorithm, and forwarding the meta-data of
the FL process (LUDWIG et al., 2020).

Additionally, the aggregator offers an interface with the commands that the user
can enter. It has six main phases, which are REGISTERING, TRAINING, SYNCING,
EVALUATING, STOPPING and PROCESSING ERROR.

Figure 12 depicts the aggregator and all its possible phases:

Figure 12 – Architecture stack of IBM’s federated learning

Source: Ludwig et al. (2020, p.8).

35

3.1.4 Party Stack

Similar to the aggregator stack, the party stack has a unique connection,
protocol handler, data handler, model, and local training. However, in this case, the
DataHandler is mandatory for all parties (LUDWIG et al., 2020).

For a party to join the FL, it must issue a REGISTER command provided in the
user interface. As soon as the registration is complete, the party waits for a message
from the aggregator with a query q to start running the LocalTrainingHandler.

Subsequently, L is executed based on the query q and produces a reply r. The
r is sent back to the aggregator. The process is repeated until the aggregator sends a
stop request to the FL process (LUDWIG et al., 2020).

3.2 DEPLOYMENT

The central concept of FL revolves around establishing communication among
several silos or devices with a central aggregator. However, the selected FL library has
several dependencies (that often require other external dependencies) that need to be
previously installed for it to function correctly. Additionally, the party devices may be
running in different software versions or hardware.

Initially, the proposition is to use edge devices, such as Raspberry Pi devices,
as parties. Therefore, a very lightweight deployment solution is required. The main
options discussed were virtual machines and containers. Containers were created to be
lighter than virtual machines since they only share the OS (Operating System) kernel
instead of a full copy of the OS (SULTAN; AHMAD; DIMITRIOU, 2019). Hence, for the
desired application, container deployment is the fit alternative.

Several tool managers like Docker, LXC, and RKT are available to manage
and deploy containers. Docker is consolidated as the predominant container runtime
environment and, therefore, has the most documentation and research available
(SULTAN; AHMAD; DIMITRIOU, 2019). Consequently, it is the chosen runtime
environment for the project.

3.2.1 Docker

Docker is an open platform for developing, shipping, and deploying an
application. It is written in the Go programming language 1 and uses several Linux
features to perform its tasks. It also uses a technology named namespaces that isolates
the container from the host system (DOCKER INC., 2023).

1 The Go programming language was created around 2008 by Rob Pike, Robert Griesemer, and Ken
Thompson at Google. The project was conceived due to the dissatisfaction with the C++ and Java
programming languages that were being used in Google at that time (MEYERSON, 2014).

36

Docker uses a client-server architecture that is depicted in Figure 13. The client
talks to the Docker daemon 2, who is responsible for building, running, and distributing
the containers. The client and daemon communicate through REST API over UNIX
sockets or a network interface (DOCKER INC., 2023).

Figure 13 – Docker architecture

Source: Docker Inc. (2023)

3.3 THIRD-PARTY EVALUATION TOOLS

The Keras library was utilized to acquire the desired metrics for the final model.
Keras is a high-level neural networks API that was originally developed in Python and
can run on top of several frameworks such as TensorFlow or Theano (ARNOLD, 2017).
It is one of the most popular neural network APIs because it supports all available
neural network models and is built to operate in modules, granting flexibility and speed
in research.

3.4 EXPERIMENT

The experiment itself consisted of training a model using a subset of the MNIST
dataset in each of the containerized silos and, afterward, evaluating the updated model
results.

2 The daemon is a background process that handles Docker API requests and Docker objects such as
images, containers, networks, and volumes 13.

37

3.4.1 Hardware

The main components of a FL platform are the main server, which contains
the aggregator and its respective clients’ devices. As seen in 1, the IBM FL library
supports horizontal data partitioning and a cross-silo device. Therefore, two devices
were selected as silos. Chart 2 illustrates the relevant hardware configuration for each
silo.

Chart 2 – Hardware comparison.

Hardware Description IPT-N-3011 IPT-N-0007
HDD [TB] 1 1

RAM Memory [GB] 4 8
Processing Unit 4-core @ 2.9 GHz 4-core @ 2.9 GHz

Linux Distribution Ubuntu 18.04 Ubuntu 18.04
Source: Author (2024)

Due to limited availability, the aggregator was run on several different computers
within the Fraunhofer network. Therefore, it is fruitless to describe each hardware
configuration individually. However, since the training is done locally in each client, the
model is transmitted through an internet connection and the dataset used is relatively
small, the aggregator hardware will not significantly impact the final results.

3.4.2 Dataset

The objective of this work is to deploy the platform. Therefore, a common
and easy-to-use dataset is ideal to test the platform. The Modified National Institute
of Standards and Technology (MNIST) dataset comprises a collection of 28x28 pixel
grayscale images of handwritten digits (0 through 9) and corresponding labels indicating
the digit they represent. It is commonly used as a test case for several machine learning
algorithms (NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2017).
Figure 14a depicts one image of the handwritten digit 3, whereas Figure 14b represents
several examples for all digit classes.

38

Figure 14 – MNIST digits

(a) MNIST digit 3 in the pixel scale.

Source: Chris Albon (2019)

(b) Subset of handwritten digits for all
classes.

Source: Lecun et al. (1998, p. 11)

The IBM FL library provides an algorithm that selects a random subset of
images for each party with a desired number of data points. The generated file is then
ready to be used in the training and testing procedure. Furthermore, 2000 images were
used for training, and 5000 were used for testing.

3.4.3 Training Model

The training model used in the experiment is a Keras CNN classifier, a built-in
feature in the FL library. Since this model aims to test the platform, the suggested
model in the IBM guide was used. It was configured to possess two convolutional layers
with activated ReLu, one pooling layer, one dropout, flatten, and two dense layers to
compose the fully-connected layers segment. Its architecture is depicted in Figure 15.

39

Figure 15 – Custom keras CNN detailed architecture

Source: Author (2024)

3.4.4 FL Parameters

To explore the platform’s capabilities, two categories of tests were conducted
and each test was repeated five times. The main difference between the tests was the
FL strategy, both FedSDG and FedAvg, used to get the results. Therefore, the constants
are model, data points, data set, epochs, rounds, and termination accuracy. Table 1
shows the training parameters and their values. It is worth noting that both parties had
the same amount of data points from different random subsets of the MNIST data set.

Table 1 – Parameters used
Parameters Values
Model Custom Keras CNN
Dataset MNIST
Training data points 2000
Testing data points 5000
Parties 2
Learning Rate 0.01
Rounds 20
Epochs 20
Termination Accuracy 0.9

Source: Author (2024)

40

3.4.5 Network Configuration

Since the party devices are meant to be geographically apart, and the
aggregation service runs in the Fraunhofer cloud network, the parties must connect to
the cloud to send the trained model. Therefore, a private VPN connection creates a
tunnel from the local network to the edge network.

A WebSocket connection between the FL Client App and the Web App backend
is also established. Furthermore, a Flask connection is established between the
aggregation and local training services. Figure 16 depicts these connections and the
final project architecture.

Figure 16 – Overall FL architecture

Source: Adapted from Rosa et al. (2023, p.7)

41

Figure 17 – Physical devices setup

Source: Author (2023)

3.4.6 Evaluation Criteria

A few criteria were set to be analyzed to test whether the platform was working.
In terms of hardware, it was chosen to monitor the CPU and RAM usage since the initial
application envisioned using edge devices. Additionally, the network traffic was also
studied to evaluate whether the parties were sending the updates accordingly.

In terms of model training, threshold metrics were used. A threshold metric
quantifies classification prediction errors, meaning it is a fraction or ratio of a class
classification and its expected classification. They are usually used when it is expected
to minimize the number of errors (BROWNLEE, 2021). The chosen ones were accuracy,
loss, precision, recall, F1 score, and the confusion matrix for each global model.

Accuracy is the most common threshold metric and is described by Brownlee
(2021) as Equation 8:

Accuracy =
CorrectPredictions

TotalPredictions
(8)

Precision is the rate of positively assigned cases divided by the number of
positive examples labeled by the system whereas recall measures the positively
assigned cases divided by the number of positive examples in the data set and the
F1 Score is the combination of precision and recall through a harmonic mean of both
metrics (SOKOLOVA; LAPALME, 2009).

42

Although the accuracy and recall metrics are important, it is convenient to use
precision as the guideline when it is desired to minimize the number of false positive
errors. On the other hand, it is useful to use recall as a guideline when false negatives
are more critical (BROWNLEE, 2021).

However, both precision and recall can be misleading when analyzed by
themselves. Therefore, the F1 Score metric was also chosen, which is one of the most
common metrics for imbalanced classification problems (BROWNLEE, 2021). Brownlee
(2021) describes these metrics for multiclass classification according to Equations 9, 10
and 11.

Precision =

∑cϵC TruePositivesc∑cϵC TruePositivesc + FalsePositivesc
(9)

Recall =

∑cϵC TruePositivesc∑cϵC TruePositivec + FalseNegativec
(10)

F1score =
2× Precision×Recall

Precision+Recall
(11)

Therefore, it can be stated that an ideal model would have a value of 1 for
precision, recall, and F1 Score. However, since the training was executed as a testing
method of the platform, an arbitrary threshold of 0.8 or higher was set for those three
metrics to be considered a successful training.

43

4 RESULTS AND DISCUSSIONS

This chapter addresses the achieved results and discusses how they compare
to the expected output from the platform setup. For the chapter, data was collected from
the first experiment from each FL strategy. The collection was conducted through a
Python script using the psutil and time libraries. The remaining results can be found
in Appendix A and Appendix B.

4.1 RESOURCE USAGE

The project’s initial proposition was to use edge devices such as Raspberry Pis
to perform the role of parties. Therefore, the main concern with the deployment was the
resources required to execute a full FL round since edge devices are known for having
limited hardware capabilities.

4.1.1 Evaluation of FedAvg Strategy

Figure 18 shows the CPU usage for devices IPT-N-0311 and IPT-N-0007,
respectively, while the FedAvg strategy is used during Experiment 1.

Figure 18 – CPU usage for FedAvg strategy in Experiment 1

(a) CPU usage from device IPT-N-0311
while in FedAvg

(b) CPU usage from device IPT-N-0007
while in FedAvg

Source: Author (2024)

Each CPU presents the same 20-peak behavior. Each peak represents one
round of the training stage of the model that happens locally in each silo. Therefore, it is
possible to conclude that the model training occurred as expected. The training phase
lasted 471 seconds for both devices, for the data set containing 5000 testing points, and
it used 100% of the CPU power. Hence, it is possible to assume that a regular edge
device would take a longer time since it is usually less powerful than a regular CPU.

44

The RAM has also been analyzed. Analogously, Figures 19 and 20 show the
RAM usage for both devices during Experiment 1.

Figure 19 – RAM usage on device IPT-N-0311 with FedAvg in Experiment 1

Source: Author (2024)

Figure 20 – RAM usage on device IPT-N-0007 with FedAvg in Experiment 1

Source: Author (2024)

45

Although the behavior in both figures is similar, the scale shows that device
IPT-N-0311 uses almost 600 MB/s more RAM than its counterpart party. That can
be attributed to device IPT-N-0311 having four extra gigabytes available, hence it can
allocate more memory for the training procedure. This behavior, however, may jeopardize
the initial proposition of using edge devices as the parties since they have limited RAM
resources.

The following criterion to analyze is the network traffic from both parties. Figures
21 and 22 depicts both devices network traffic. Since the training procedure encloses
receiving and sending the model parameters, peak patterns like CPU usage are also
expected.

Figure 21 – Network traffic on device IPT-N-0311 with FedAvg in Experiment 1

Source: Author (2024)

46

Figure 22 – Network traffic on device IPT-N-0007 with FedAvg in Experiment 1

Source: Author (2024)

Both figures show a very distinctive exponential-shaped curve from the network
traffic. That can happen due to a phenomenon entitled communication overhead,
which means that, after every round, the model gets more accurate, which means
that some parameters will no longer be altered. Therefore, the size of the exchanged
communication keeps getting smaller after every round.

4.1.2 Evaluation of FedSDG Strategy

The same analysis is made when changing the FL strategy to FedSDG. Figure
23 represents the CPU usage from IPT-N-0311 and IPT-N-0007 devices, respectively.
The training procedure in Experiment 1 lasted 607 seconds on both IPT-N-0311 and
IPT-N-0007 devices.

47

Figure 23 – CPU usage for FedSDG strategy in Experiment 1

(a) CPU usage on device IPT-N-0311 with
FedSDG

(b) CPU usage on device IPT-N-0007 with
in FedSDG

The presented behavior is almost identical to the one observed using the
FedAvg strategy. However, since the FedAvg algorithm is a variation of the FedSDG, a
similar behavior was expected.

RAM usage in Experiment 1 has also been tracked and is shown in Figures 24
and 25 from devices IPT-N-0311 and IPT-N-0007, respectively.

Figure 24 – RAM usage from device IPT-N-0311 while in FedSDG

Source: Author (2024)

48

Figure 25 – RAM usage from device IPT-N-0007 while in FedSDG

Source: Author (2024)

Once again, the observed behavior is similar to the one observed within the
FedAvg strategy. However, compared to Figure 19, the first FedSDG experiment required
approximately 650 MB less RAM for device IPT-N-3011 and 300 MB less for device
IPT-N-0007. All other FedSDG experiments are within the same margin of RAM usage
and exhibit a similar pattern to the ones shown in Figures 24 and 25 as seen in Appendix
B.

Ultimately, the network traffic for Experiment 1 is analyzed, and the results are
shown in Figures 26, 27 for both IPT-N-0311 and IPT-N-0007 parties, respectively.

49

Figure 26 – Network traffic from device IPT-N-0311 while in FedSDG

Source: Author (2024)

Figure 27 – Network traffic usage from device IPT-N-0007 while in FedSDG

Source: Author (2024)

The network traffic again represents a similar pattern to the one observed in
the FedAVg. For device IPT-N-0311, the Mbps value is close for both FL strategies,
whereas for device IPT-N-0007, the value observed using the FedSDG is almost double

50

that observed using FedAvg.
Among the hypotheses is that all models are randomly initialized. Therefore, they

can already have some optimization during the weight randomization process, which
could explain why less information was changed from party IPT-N-0007. Additionally,
all other experiments had different traffic values sent, which supports the model
randomization hypothesis. Appendix B contains the remaining network traffic results
from the other experiments using the FedSDG strategy.

4.2 TRAINING RESULTS

To test the platform, it is imperative to evaluate whether the model was properly
trained on each device. Therefore, the final global model was exported and evaluated
with a different subset of 5000 data points randomly selected by the IBM sorting
algorithm.

4.2.1 Evaluation of FedAvg Strategy

The desired metrics are shown in Table 2, and the confusion matrix for
Experiment 1 is exhibited in Figure 28.

Table 2 – Global model metrics achieved with FedAvg strategy

Metrics Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Accuracy 0.8840 0.8782 0.8828 0.8806 0.8774

Loss 0.7848 0.8463 0.8284 0.8835 0.8283
Precision 0.8817 0.8728 0.8763 0.8771 0.8713

Recall 0.8734 0.8696 0.8706 0.8698 0.8662
F1 Score 0.8820 0.8755 0.8808 0.8781 0.8747

Source: Author (2024)

51

Figure 28 – Experiment 1 confusion matrix using FedAvg with F1-Scores

Source: Author (2024)

Figure 29 shows the confusion matrices of the remaining training experiments
with the F1-Score in its diagonals.

52

Figure 29 – Confusion matrices using FedAvg with F1-Scores

Source: Author (2024)

When observing Table 2, it can be seen that the F1 Score and Accuracy for all
five experiments were over 0.87, which is within the designated threshold and, therefore,
can be considered a good classification model for the project. Most models training with
the MNIST dataset achieve an accuracy of 98% (GUPTA, 2020). However, since a small
fragment of the dataset was used and a simple CNN architecture was implemented, the
concern for accuracy improvement was neglected.

In Figure 28, since the diagonal squares are clearly defined, it visually
represents the quality of the model achieved in Experiment 1 and that classes 0 and
1 had the best predictions. Figure 29 shows that the other models behave almost
identically to the one observed in Figure 28, especially in some incorrectly classified
classes, such as class 8 and class 9. That is expected since all experiments were
performed in the same way.

Furthermore, Table 3 shows the maximum variation in percentage for all metrics
during all experiments. It can be observed that the variation for the F1 Score was less
than 1%, which demonstrates the model’s and platform’s consistency.

53

Table 3 – Maximum difference for global model Metrics with FedAvg strategy

Metrics Max Difference (%)
Accuracy 0.75 %
Loss 6.39 %
Precision 1.18 %
Recall 0.83 %
F1 Score 0.83 %

Source: Author (2024)

The individual values of precision, recall, and F1 Score for each class can be
found in Appendix C.

4.2.2 Evaluation of FedSDG Strategy

The exported metrics are shown in Table 4, and the confusion matrix for
Experiment 1 is depicted in Figure 30.

Table 4 – Global model metrics achieved with FedSDG strategy

Metrics Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Accuracy 0.8802 0.8814 0.8772 0.8768 0.8838

Loss 0.7647 0.9040 1.0133 1.0645 1.0040
Precision 0.8813 0.8814 0.8793 0.8796 0.8838

Recall 0.8781 0.8792 0.8751 0.8750 0.8819
F1 Score 0.8781 0.8788 0.8746 0.8744 0.8813

Source: Author (2024)

54

Figure 30 – Experiment 1 confusion matrix using FedSDG with F1-Scores

Source: Author (2024)

Figure 31 shows the confusion matrices of the remaining training experiments
with the F1-Score in its diagonals.

55

Figure 31 – Confusion Matrices using FedSDG with F1-Scores

Source: Author (2024)

Similarly to the FedAvg experiment, when observing Chart 4, it can be stated
that all metrics are also within the established threshold. When looking at Figure 30, the
diagonal squares are visibly stated, and classes 1 and 3 had the best predictions. It
can also be seen that classes 5, 7, 8, and 9 had the most errors. Figure 31 depicts the
same pattern observed in Experiment 1, even for the best and worst predictions, which
is expected since all experiments were performed identically.

Furthermore, Table 5 depicts the maximum difference in the percentage of all
metrics for all experiments. As observed for the FedAvg, the FedSDG also shows a
maximum v variation of less than 1%, solidifying the model and the fusion algorithm
capabilities.

Table 5 – Maximum difference for global model Metrics with FedSDG strategy

Metrics Max Difference (%)
Accuracy 0.79 %
Loss 31.41 %
Precision 0.51 %
Recall 0.78 %
F1 Score 0.78 %

Source: Author (2024)

Appendix D provides the individual values of precision, recall, and F1 Score for

56

each class.

4.2.3 Runtime

When considering the scaling options for industry applications, the training
runtime is a great feasibility indicator since the goal in any industrial process is to
minimize the time spent in production. Table 6 depicts the training time for all training
procedures using the FedAvg strategy.

Table 6 – Training time with FedAvg strategy

Experiment # Elapsed Time [s]
IPT-N-0007 IPT-N-0311

1 471.67 471.86
2 467.69 467.68
3 473.12 473.11
4 475.45 475.54
5 487.48 487.54

Source: Author (2024)

It is possible to see that the training intervals for both parties were almost
identical. Two main factors can explain that. The first is the party’s device similarities.
Therefore, the training is expected to exhibit similar behavior in both clients. Moreover,
the second factor is that the tests were all performed in the same geographic
environment, meaning that both of them had the same internet connection available
and, therefore, very similar communication feedback. Analogously, Table 7 shows the
time for the FedSDG strategy.

Table 7 – Training time with FedSDG strategy

Experiment # Elapsed Time [s]
IPT-N-0007 IPT-N-0311

1 607.15 607.17
2 576.46 574.54
3 578.30 578.34
4 591.14 591.10
5 590.04 590.10

Source: Author (2024)

For the FedSDG strategy, the same time similarity pattern is observed among
the clients, which is expected. However, there is a difference between the training time
using the FedSDG strategy that is, on average, 23% longer than the FedAvg strategy.
Since the FedSDG works with gradients instead of weights, that kind of information
implies slightly larger data to be transmitted to and from the aggregator, resulting in this
delay.

57

4.2.4 Takeaways

To illustrate a direct comparison between both strategies, the metrics’ mean
average for all experiments is shown in Table 8.

Table 8 – Metrics mean average

Metrics FedAvg FedSDG
Accuracy 0.8806 0.8799

Loss 0.8343 0.9501
Precision 0.8758 0.8811

Recall 0.8699 0.8778
F1 Score 0.8782 0.8774

Source: Author (2024)

Table 8 shows that FedSDG yielded a slightly better result than FedAvg.
However, all metrics are close to their counterparts. Therefore, it can be stated that
both strategies yielded a relatively similar model after the training procedure. It is worth
noting that the only plausible difference is seen within the loss parameter. Since FedAvg
differs from FedSDG in aggregating weights versus aggregating gradients, this algorithm
change can impact the convergence behavior of each model.

When comparing the experiments individually from both Table 2 and Table 4, the
same pattern of slightly better performance and also a greater loss value from FedSDG
is observed in each experiment.

58

5 CONCLUSIONS

This work aimed to deploy a federated learning library into an industrial platform
and test its functionalities so that it can later be adapted to train with data acquired and
transmitted from multi-sensory devices. To achieve the main objective, the library and
several other features, such as the dataset itself, were containerized and deployed in
each device that worked as a client in the training process through a Docker container.

Afterward, the Websocket and Flask connections were established, and minor
configurations, such as export model function buttons, were added. With the deployment
process completed, a set of five different global model training was executed using two
different FL strategies, the FedAvg and FedSDG.

When the project was first conceived, the main suggestion was to use edge
devices as clients, specifically two 3rd-generation Raspberry Pis, since they are cheaper
than regular computers and, therefore, more attractive to the industry and its everyday
struggle to minimize cost. However, after two months of testing and research, the
conclusion came that the IBM FL library (version 1.1.0) was not fully compatible with
the ARM architecture present in most edge devices. The same conclusion was found
within IBM’s GitHub repository issues tab 1.

Additionally, the library suggested using the Cent OS image to run it inside the
container due to its strong encryption and cybersecurity capabilities. Unfortunately, the
image also lacked support for ARM architectures and was discontinued in 2021, which
dashed hopes for any further assistance.

To contour this challenge, two ThinkPads with Arch x86 architectures were
replaced as the clients. The deployment ran successfully for them and the training
results proved that the platform works according to the initial expectations.

When comparing the employed FL strategies, both yielded a model with
similar classifying characteristics, showing hits and errors in the same classes. Hence,
regarding the final global quality, it is clear that both FedAvg and FedSDG strategies
can be used in the platform to provide a good standard for the model.

Nevertheless, when comparing the strategies hardware-wise, the results have
shown that the FedSDG strategy consumes higher network bandwidth, ranging from
30% to almost 70% more, depending on the analyzed experiment. Moreover, the
FedSDG took an average of 1,8 more minutes to finish the training procedure than the
FedAvg. For a test training with only two parties, two minutes does not impact the final
results. However, the whole concept of FL is to be able to train on dozens or hundreds

1 The issues can be found at https://github.com/IBM/federated-learning-lib/issues/97 and https://github.
com/IBM/federated-learning-lib/issues/74

https://github.com/IBM/federated-learning-lib/issues/97
https://github.com/IBM/federated-learning-lib/issues/74
https://github.com/IBM/federated-learning-lib/issues/74

59

of devices, meaning this network consumption can exceed the available network traffic
and impact on several more minutes of delay.

Consequently, since the output model yields similar results for both strategies
and the FedAvg consumes fewer network resources and finishes the process faster, for
this classification scenario, the FedAvg strategy is ideal for the application.

For future studies, a revision of this approach using more parties, such as five
clients, would prove useful in testing the network traffic and any possible bottlenecks
that may arise. For instance, multiple nodes may want to connect simultaneously to the
aggregator, slowing down the training process. This is one of the main challenges for
the federated learning approach (ROSA et al., 2023).

Furthermore, testing with more complex models using real-case scenario
datasets would also be suggested as a future study, to better evaluate the platform’s
conditions and training strategies in a possible industrial context.

Although the testing was a proof of concept made with only two parties,
when extending to dozens of clients, some other challenges may appear such as
the heterogeneity of data. Since each company is physically apart, the way data is
sampled can vary from party to party. However, achieving a good performance model
requires similar data sets in all parties (ROSA et al., 2023). Therefore, creating a pipeline
that sorts and feeds data to the platform would also be a future project worth working
on.

As the project unfolded, the federated learning approach seemed even more
fitting since one company could train a model with data from multiple branches,
enhancing the predictive maintenance schedule and mitigating production costs.
Moreover, this approach allows the company to retain all data within its storage
infrastructure, thereby ensuring the privacy and governance of each client’s data. Annex
A contains an article derived from this work.

60

REFERENCES

ANYOHA, R. The history of artificial intelligence. Harvard University, 2020.
Disponível em: https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/.
Acesso em: 11 mai. 2023.

ARNOLD, T. kerasr: R interface to the keras deep learning library. J. Open Source
Softw., v. 2, p. 296, 2017. Disponível em: https://www.theoj.org/joss-papers/joss.00296/
10.21105.joss.00296.pdf. Acesso em: 15 mar. 2024.

BEHERA, P. K. Leverage of multiple predictive maintenance technologies in root cause
failure analysis of critical machineries. Procedia Engineering, 2016.

BROWNLEE, J. (Ed.). Imbalanced Classification with Python: Choose better
metrics, balance skewed classes, and apply cost-sensitive learning. Machine
Learning Mastering, 2021. Disponível em: https://books.google.com.br/books?
hl=pt-BR&lr=&id=jaXJDwAAQBAJ&oi=fnd&pg=PP1&dq=A+gentle+introduction+
to+machine+learning+performance+metrics+brownlee&ots=CgHzfOPYYP&sig=
ZXDVXS7c6N6vDhG3nhM5Zg051fc#v=onepage&q=A%20gentle%20introduction%
20to%20machine%20learning%20performance%20metrics%20brownlee&f=false.
Acesso em: 22 abr. 2018.

CHRIS ALBON. MNIST Dataset. 2019. Disponível em: https://chrisalbon.com/Data/
MNIST+Dataset. Acesso em: 14 mai. 2024.

DOCKER INC. Docker overview. United States of America, 2023. Disponível em:
https://docs.docker.com/get-started/overview/. Acesso em: 08 mar. 2024.

FRAUNHOFER INSTITUTE FOR PRODUCTION TECHNOLOGY. AI-NET-
ANIARA: Beschleunigung des digitalen wandels in europa durch intelligente
netzautomatisierung – automatisierung von netzrandinfrastrukturen und -
anwendungen mit künstlicher intelligenz. Aachen, 2021. Disponível em: https:
//www.ipt.fraunhofer.de/de/projekte/ai-net-aniara.html. Acesso em: 18 abr. 2023.

GUPTA, J. Going beyond 99% — MNIST Handwritten Digits Recognition.
United States of America, 2020. Disponível em: https://towardsdatascience.com/
going-beyond-99-mnist-handwritten-digits-recognition-cfff96337392. Acesso em: 01 jul.
2024.

HERMAN, R. L. Introduction to Partial Differential Equations. R.L. Herman,
2015. 391-392 p. Disponível em: https://math.libretexts.org/Bookshelves/Differential_
Equations/Introduction_to_Partial_Differential_Equations_(Herman)/09%3A_
Transform_Techniques_in_Physics/9.06%3A_The_Convolution_Operation. Acesso em:
15 apr. 2024.

HEYDARNOORI, A.; MAVADDAT, F. Reliable deployment of component-based
applications into distributed environments. Third International Conference on
Information Technology: New Generations (ITNG’06), p. 52–57, 2006. Disponível
em: https://ieeexplore.ieee.org/document/1611570. Acesso em: 06 mai. 2024.

https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
https://www.theoj.org/joss-papers/joss.00296/10.21105.joss.00296.pdf
https://www.theoj.org/joss-papers/joss.00296/10.21105.joss.00296.pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=jaXJDwAAQBAJ&oi=fnd&pg=PP1&dq=A+gentle+introduction+to+machine+learning+performance+metrics+brownlee&ots=CgHzfOPYYP&sig=ZXDVXS7c6N6vDhG3nhM5Zg051fc#v=onepage&q=A%20gentle%20introduction%20to%20machine%20learning%20performance%20metrics%20brownlee&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=jaXJDwAAQBAJ&oi=fnd&pg=PP1&dq=A+gentle+introduction+to+machine+learning+performance+metrics+brownlee&ots=CgHzfOPYYP&sig=ZXDVXS7c6N6vDhG3nhM5Zg051fc#v=onepage&q=A%20gentle%20introduction%20to%20machine%20learning%20performance%20metrics%20brownlee&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=jaXJDwAAQBAJ&oi=fnd&pg=PP1&dq=A+gentle+introduction+to+machine+learning+performance+metrics+brownlee&ots=CgHzfOPYYP&sig=ZXDVXS7c6N6vDhG3nhM5Zg051fc#v=onepage&q=A%20gentle%20introduction%20to%20machine%20learning%20performance%20metrics%20brownlee&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=jaXJDwAAQBAJ&oi=fnd&pg=PP1&dq=A+gentle+introduction+to+machine+learning+performance+metrics+brownlee&ots=CgHzfOPYYP&sig=ZXDVXS7c6N6vDhG3nhM5Zg051fc#v=onepage&q=A%20gentle%20introduction%20to%20machine%20learning%20performance%20metrics%20brownlee&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=jaXJDwAAQBAJ&oi=fnd&pg=PP1&dq=A+gentle+introduction+to+machine+learning+performance+metrics+brownlee&ots=CgHzfOPYYP&sig=ZXDVXS7c6N6vDhG3nhM5Zg051fc#v=onepage&q=A%20gentle%20introduction%20to%20machine%20learning%20performance%20metrics%20brownlee&f=false
https://chrisalbon.com/Data/MNIST+Dataset
https://chrisalbon.com/Data/MNIST+Dataset
https://docs.docker.com/get-started/overview/
https://www.ipt.fraunhofer.de/de/projekte/ai-net-aniara.html
https://www.ipt.fraunhofer.de/de/projekte/ai-net-aniara.html
https://towardsdatascience.com/going-beyond-99-mnist-handwritten-digits-recognition-cfff96337392
https://towardsdatascience.com/going-beyond-99-mnist-handwritten-digits-recognition-cfff96337392
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/09%3A_Transform_Techniques_in_Physics/9.06%3A_The_Convolution_Operation
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/09%3A_Transform_Techniques_in_Physics/9.06%3A_The_Convolution_Operation
https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/09%3A_Transform_Techniques_in_Physics/9.06%3A_The_Convolution_Operation
https://ieeexplore.ieee.org/document/1611570

61

LECUN, Y. et al. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, v. 86, n. 11, p. 2278–2324, 1998. Disponível em:
https://ieeexplore.ieee.org/document/726791. Acesso em: 14 mai. 2024.

LUDWIG, H.; BARACALDO, N. (Ed.). Federated learning: a comprehensive overview
of methods and applications. Springer International Publishing, 2022. Disponível em:
https://doi.org/10.1007/978-3-030-96896-0.

LUDWIG, H. et al. IBM federated learning: an enterprise framework white paper. 2020.
Disponível em: https://doi.org/10.48550/arXiv.2007.10987. Acesso em: 01 mar. 2023.

MANIAS, D. Making a case for federated learning in the internet of vehicles and
intelligent transportation systems. IEEE Network, 2021.

MCMAHAN, H. B. et al. Communication-Efficient Learning of Deep Networks from
Decentralized Data. 2023. Disponível em: https://doi.org/10.48550/arXiv.1602.05629.
Acesso em: 10 out. 2023.

MEYERSON, J. H. The go programming language. IEEE Softw., v. 31, p. 100–103, 2014.
Disponível em: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6898707.
Acesso em: 08 mar. 2024.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. The EMNIST
Dataset. 100 Bureau Drive, Gaithersburg, MD 20899, 2017. Disponível em:
https://www.nist.gov/itl/products-and-services/emnist-dataset. Acesso em: 06 mai.
2024.

NBC NEWS. OPM: 21.5 million people affected by background check breach.
United States of America, 2015. Disponível em: https://www.nbcnews.com/tech/
security/opm-hack-security-breach-n389476. Acesso em: 01 mai. 2023.

NGUYEN, D. C. et al. Federated learning for internet of things: a comprehensive survey.
IEEE Communications Surveys Tutorials, v. 23, n. 3, p. 1622–1658, 2021.

NILSSON, A. et al. A performance evaluation of federated learning algorithms.
Proceedings of the Second Workshop on Distributed Infrastructures for Deep
Learning, 2018. Disponível em: https://dl.acm.org/doi/pdf/10.1145/3286490.3286559.
Acesso em: 13 out. 2023.

O’SHEA, K.; NASH, R. An Introduction to Convolutional Neural Networks. 2015.
Disponível em: https://arxiv.org/abs/1511.08458. Acesso em: 15 apr. 2024.

ROCHA, V. F. d.; LÓPEZ, J. An overview on homomorphic encryption algorithms.
2019. Disponível em: https://ic.unicamp.br/~reltech/PFG/2018/PFG-18-28.pdf. Acesso
em: 15 fev. 2024.

MELO ROSA, G. Laydner de et al. Architecture for Edge-Based Predictive
Maintenance of Machines Using Federated Learning and Multi Sensor Platforms.
2023. 11 p. Disponível em: https://www.researchgate.net/publication/370986976_
Architecture_for_Edge-Based_Predictive_Maintenance_of_Machines_Using_
Federated_Learning_and_Multi_Sensor_Platforms. Acesso em: 16 apr. 2024.

https://ieeexplore.ieee.org/document/726791
https://doi.org/10.1007/978-3-030-96896-0
https://doi.org/10.48550/arXiv.2007.10987
https://doi.org/10.48550/arXiv.1602.05629
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6898707
https://www.nist.gov/itl/products-and-services/emnist-dataset
https://www.nbcnews.com/tech/security/opm-hack-security-breach-n389476
https://www.nbcnews.com/tech/security/opm-hack-security-breach-n389476
https://dl.acm.org/doi/pdf/10.1145/3286490.3286559
https://arxiv.org/abs/1511.08458
https://ic.unicamp.br/~reltech/PFG/2018/PFG-18-28.pdf
https://www.researchgate.net/publication/370986976_Architecture_for_Edge-Based_Predictive_Maintenance_of_Machines_Using_Federated_Learning_and_Multi_Sensor_Platforms
https://www.researchgate.net/publication/370986976_Architecture_for_Edge-Based_Predictive_Maintenance_of_Machines_Using_Federated_Learning_and_Multi_Sensor_Platforms
https://www.researchgate.net/publication/370986976_Architecture_for_Edge-Based_Predictive_Maintenance_of_Machines_Using_Federated_Learning_and_Multi_Sensor_Platforms

62

SAIDANI, A. A systematic comparison of federated machine learning libraries. Faculty
of Information Systems. Technische Universität München, Munich, January 2023.
Disponível em: https://wwwmatthes.in.tum.de/file/xjrmj55uaqem/Sebis-Public-Website/
-/Master-s-Thesis-Ahmed-Saidani/230115%20Saidani%20Masters%20Thesis.pdf.
Acesso em: 05 mar. 2024.

SARMA, K. V. et al. Federated learning improves site performance in multicenter
deep learning without data sharing. Journal of the American Medical Informatics
Association: JAMIA, v. 28, p. 1259–1264, 2021.

SHARMA, P.; SHAMOUT, F. E.; CLIFTON, D. A. Preserving patient privacy while
training a predictive model of in-hospital mortality. 2019.

SHEA, R.; LIU, J. Network interface virtualization: challenges and solutions. IEEE
Network, v. 26, n. 5, p. 28–34, 2012. Disponível em: https://ieeexplore.ieee.org/
document/6308072. Acesso em: 27 feb. 2024.

SOKOLOVA, M.; LAPALME, G. A systematic analysis of performance measures
for classification tasks. Information Processing Management, v. 45, p. 427–437,
07 2009. Disponível em: https://www.researchgate.net/publication/222674734_A_
systematic_analysis_of_performance_measures_for_classification_tasks. Acesso em:
23 abr. 2018.

SULTAN, S.; AHMAD, I.; DIMITRIOU, T. Container security: Issues, challenges,
and the road ahead. IEEE Access, v. 7, p. 52976–52996, 2019. Disponível em:
https://ieeexplore.ieee.org/document/8693491.

TURING, A. M. Computing machinery and intelligence. Mind, Oxford University Press,
v. 59, n. October, p. 433–60, 1950.

UNITED STATES DEPARTMENT OF HEALTH & HUMAN SERVICES.
Anthem pays OCR $16 Million in record HIPAA settlement
following largest U.S. health data breach in history. United States
of America, 2020. Disponível em: https://www.hhs.gov/guidance/document/
anthem-pays-ocr-16-million-record-hipaa-settlement-following-largest-us-health-data-breach.
Acesso em: 01 mai. 2023.

WAN, Z. et al. Practical and effective sandboxing for linux containers. Empirical
Software Engineering, v. 24, p. 4034 – 4070, 2019. Disponível em: https:
//link.springer.com/article/10.1007/s10664-019-09737-2.

https://wwwmatthes.in.tum.de/file/xjrmj55uaqem/Sebis-Public-Website/-/Master-s-Thesis-Ahmed-Saidani/230115%20Saidani%20Masters%20Thesis.pdf
https://wwwmatthes.in.tum.de/file/xjrmj55uaqem/Sebis-Public-Website/-/Master-s-Thesis-Ahmed-Saidani/230115%20Saidani%20Masters%20Thesis.pdf
https://ieeexplore.ieee.org/document/6308072
https://ieeexplore.ieee.org/document/6308072
https://www.researchgate.net/publication/222674734_A_systematic_analysis_of_performance_measures_for_classification_tasks
https://www.researchgate.net/publication/222674734_A_systematic_analysis_of_performance_measures_for_classification_tasks
https://ieeexplore.ieee.org/document/8693491
https://www.hhs.gov/guidance/document/anthem-pays-ocr-16-million-record-hipaa-settlement-following-largest-us-health-data-breach
https://www.hhs.gov/guidance/document/anthem-pays-ocr-16-million-record-hipaa-settlement-following-largest-us-health-data-breach
https://link.springer.com/article/10.1007/s10664-019-09737-2
https://link.springer.com/article/10.1007/s10664-019-09737-2

63

APPENDIX A - HARDWARE TESTS RESULTS FOR FEDAVG

This appendix discloses the remaining hardware test results for CPU and RAM
usage and detected network traffic. The obtained results from experiment 1 are similar
to the ones found in the remaining experiments. Figures 32, 33, 34 and 35 display
experiments 2, 3, 4 and 5 hardware metrics for device IPT-N-0007 while using the
FedAvg strategy respectively.

Figure 32 – Hardware metrics for party IPT-N-0007 in experiment 2

Source: Author (2024)

64

Figure 33 – Hardware metrics for party IPT-N-0007 in experiment 3

Source: Author (2024)

Figure 34 – Hardware metrics for party IPT-N-0007 in experiment 4

Source: Author (2024)

65

Figure 35 – Hardware metrics for party IPT-N-0007 in experiment 5

Source: Author (2024)

Analogously, Figures 36, 37, 38 and 39, depict the hardware metrics from
experiments 2, 3, 4 and 5 for device IPT-N-0311 while using the FedAvg strategy.

Figure 36 – Hardware metrics for party IPT-N-0311 in experiment 2

Source: Author (2024)

66

Figure 37 – Hardware metrics for party IPT-N-0311 in experiment 3

Source: Author (2024)

Figure 38 – Hardware metrics for party IPT-N-0311 in experiment 4

Source: Author (2024)

67

Figure 39 – Hardware metrics for party IPT-N-0311 in experiment 5

Source: Author (2024)

68

APPENDIX B - HARDWARE TESTS RESULTS FOR FEDSDG

This next set of results aims to present the metrics achieved while adopting
the FedSDG strategy. Figures 40, 41, 42 and 43 depict the metrics obtained in device
IPT-N-0007.

Figure 40 – Hardware metrics for party IPT-N-0007 in experiment 2

Source: Author (2024)

69

Figure 41 – Hardware metrics for party IPT-N-0007 in experiment 3

Source: Author (2024)

Figure 42 – Hardware metrics for party IPT-N-0007 in experiment 4

Source: Author (2024)

70

Figure 43 – Hardware metrics for party IPT-N-0007 in experiment 5

Source: Author (2024)

Analogously, the set containing Figures 44, 45, 46 and 47, depicts the hardware
metrics for device IPT-N-0311 when adopting the FedSDG strategy.

Figure 44 – Hardware metrics for party IPT-N-0311 in experiment 2

Source: Author (2024)

71

Figure 45 – Hardware metrics for party IPT-N-0311 in experiment 3

Source: Author (2024)

Figure 46 – Hardware metrics for party IPT-N-0311 in experiment 4

Source: Author (2024)

72

Figure 47 – Hardware metrics for party IPT-N-0311 in experiment 5

Source: Author (2024)

73

APPENDIX C - TRAINING METRICS FOR FEDAVG

This appendix displays the individual values for precision, recall and F Score for
each classification class during the experiments using both strategies. Initially, Table 9
depicts the metrics for experiment 1 while using the FedAvg strategy.

Table 9 – Experiment 1 model metrics with FedAvg strategy
Metrics Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Precision 0.8931 0.9525 0.9560 0.8826 0.8792 0.9212 0.9103 0.8707 0.7556 0.7916
Recall 0.9597 0.9915 0.8555 0.8627 0.8577 0.7633 0.8980 0.8911 0.8463 0.8554

F1 Score 0.9252 0.9716 0.9030 0.8725 0.8683 0.8348 0.9041 0.8808 0.7984 0.8222

Source: Author (2024)

Next, Tables 10, 11, 12 and 13, depict the metrics for the remaining experiments
still using the FedAvg strategy.

Table 10 – Experiment 2 model metrics with FedAvg strategy
Metrics Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Precision 0.8929 0.9372 0.9563 0.8396 0.8640 0.9284 0.9120 0.8403 0.8097 0.8341
Recall 0.9577 0.9915 0.8630 0.9119 0.8780 0.7673 0.9161 0.9008 0.8063 0.7996

F1 Score 0.9241 0.9636 0.9073 0.8743 0.8710 0.8402 0.9140 0.8695 0.8080 0.8165

Source: Author (2024)

Table 11 – Experiment 3 model metrics with FedAvg strategy
Metrics Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Precision 0.8782 0.9357 0.9563 0.8596 0.8889 0.9593 0.8936 0.8553 0.7632 0.8032
Recall 0.9597 0.9915 0.8612 0.9037 0.8293 0.7224 0.9138 0.8969 0.8547 0.8182

F1 Score 0.9171 0.9628 0.9062 0.8811 0.8580 0.8242 0.9036 0.8756 0.8064 0.8106

Source: Author (2024)

Table 12 – Experiment 4 model metrics with FedAvg strategy
Metrics Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Precision 0.9013 0.9433 0.9612 0.8410 0.8673 0.9619 0.9018 0.8506 0.7468 0.8207
Recall 0.9577 0.9915 0.8368 0.8996 0.8638 0.7204 0.9161 0.8969 0.8632 0.8037

F1 Score 0.9286 0.9668 0.8947 0.8693 0.8656 0.8238 0.9089 0.8731 0.8008 0.8121

Source: Author (2024)

Table 13 – Experiment 5 model metrics with FedAvg strategy
Metrics Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Precision 0.8968 0.9479 0.9563 0.8685 0.8770 0.9296 0.8923 0.8642 0.7834 0.8216
Recall 0.9637 0.9915 0.8630 0.8934 0.8699 0.7551 0.9206 0.8911 0.8526 0.8182

F1 Score 0.9291 0.9692 0.9073 0.8808 0.8735 0.8333 0.9062 0.8774 0.8165 0.8199

Source: Author (2024)

74

APPENDIX D - TRAINING METRICS FOR FEDSDG

Analogously, the metrics for the individual classes were also recorded for the
model using the FedSDG strategy. Table 14 depicts the metrics achieved in experiment
1.

Table 14 – Experiment 1 model metrics with FedSDG strategy
Metrics Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Precision 0.8966 0.9463 0.9660 0.8580 0.8991 0.9332 0.9067 0.8474 0.7857 0.8101
Recall 0.9617 0.9898 0.8518 0.8914 0.8516 0.7694 0.9252 0.8969 0.8568 0.8285

F1 Score 0.9280 0.9675 0.9053 0.8744 0.8747 0.8434 0.9158 0.8715 0.8197 0.8192

Source: Author (2024)

Following the same pattern, Tables 15, 16, 17 and 18, refers to the individual
metrics for the other four experiments using the FedSDG strategy.

Table 15 – Experiment 2 model metrics with FedSDG strategy
Metrics Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Precision 0.8810 0.9447 0.9574 0.8628 0.8803 0.9267 0.8672 0.8363 0.8193 0.8038
Recall 0.9698 0.9898 0.8443 0.8893 0.8374 0.7735 0.9184 0.9047 0.8400 0.7955

F1 Score 0.9232 0.9667 0.8973 0.8759 0.8583 0.8432 0.8921 0.8692 0.8295 0.7996

Source: Author (2024)

Table 16 – Experiment 3 model metrics with FedAvg strategy
Metrics Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Precision 0.8960 0.9607 0.9761 0.9021 0.8435 0.9256 0.8811 0.8290 0.8123 0.8259
Recall 0.9576 0.9825 0.8450 0.8838 0.8453 0.7636 0.8940 0.9158 0.8687 0.8422

F1 Score 0.9258 0.9715 0.9059 0.8928 0.8444 0.8369 0.8875 0.8702 0.8395 0.8340

Source: Author (2024)

Table 17 – Experiment 4 model metrics with FedSDG strategy
Metrics Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Precision 0.8723 0.9607 0.9555 0.9040 0.8518 0.9135 0.8637 0.8131 0.8614 0.8211
Recall 0.9657 0.9825 0.8430 0.8856 0.8388 0.7682 0.8960 0.9199 0.8630 0.8146

F1 Score 0.9166 0.9715 0.8957 0.8947 0.8452 0.8346 0.8796 0.8632 0.8622 0.8178

Source: Author (2024)

Table 18 – Experiment 5 model metrics with FedSDG strategy
Metrics Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

Precision 0.8929 0.9620 0.9459 0.8611 0.8745 0.9105 0.8671 0.8368 0.8222 0.8013
Recall 0.9574 0.9848 0.8184 0.8560 0.8366 0.7672 0.9113 0.9129 0.8723 0.8333

F1 Score 0.9240 0.9733 0.8775 0.8586 0.8551 0.8327 0.8886 0.8732 0.8465 0.8170

Source: Author (2024)

	
	Acknowledgments
	
	Abstract
	Resumo
	List of Charts
	List of Abbreviations and Acronyms
	Introduction
	Objectives
	General Objective
	Specific Objectives

	Background
	Federated Learning Overview
	Horizontal and Vertical Data Distribution
	Horizontal and Vertical Training Models
	Cross-Device Federated Learning
	Cross-Silo Federated Learning

	Federated Learning Algorithms
	Federated Stochastic Gradient Descent
	Federated Averaging

	Containerizing
	Neural Network Architecture Overview

	Methodology
	Federated Learning Libraries
	IBM FL General Concepts
	General Architecture
	Aggregator Stack
	Party Stack

	Deployment
	Docker

	Third-Party Evaluation Tools
	Experiment
	Hardware
	Dataset
	Training Model
	FL Parameters
	Network Configuration
	Evaluation Criteria

	Results and Discussions
	Resource Usage
	Evaluation of FedAvg Strategy
	Evaluation of FedSDG Strategy

	Training Results
	Evaluation of FedAvg Strategy
	Evaluation of FedSDG Strategy
	Runtime
	Takeaways

	Conclusions
	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D

