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RESUMO

Na presente investigação, empregamos um banco de dados novo e meticulosamente estruturado, montado
por especialistas, englobando macrofungos coletados em campo no Brasil, contendo mais de 13.894
fotografias que representam 505 espécies distintas. O objetivo de utilizar este banco de dados é duplo:
primeiro, fornecer treinamento e validação para Redes Neurais Convolucionais (CNNs) com capacidade
para identificação autônoma de espécies de macrofungos; segundo, desenvolver um aplicativo móvel
sofisticado com uma interface de usuário avançada. Esta interface é especificamente projetada para
adquirir imagens e, utilizando as capacidades de reconhecimento de imagem proporcionadas pela CNN
treinada, oferecer identificações potenciais para as espécies de macrofungos representadas nas imagens.
Tais avanços tecnológicos democratizam o acesso aos Fungos do Brasil, aumentando o engajamento público
e a disseminação de conhecimento, além de facilitar contribuições da população para o crescente corpo
de conhecimento sobre a conservação das espécies de macrofungos do Brasil.

O projeto está detalhado no ANEXO A – ARTIGO PUBLICADO NO PEERJ
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ANEXO A – ARTIGO PUBLICADO NO PEERJ

Artigo sobre o projeto MINDFunga elaborado em conjunto com o laboratório de micologia da
UFSC.
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ABSTRACT
In the present investigation, we employ a novel and meticulously structured database
assembled by experts, encompassing macrofungi field-collected in Brazil, featuring
upwards of 13,894 photographs representing 505 distinct species. The purpose of
utilizing this database is twofold: firstly, to furnish training and validation for
Convolutional Neural Networks (CNNs) with the capacity for autonomous
identification of macrofungal species; secondly, to develop a sophisticated mobile
application replete with an advanced user interface. This interface is specifically
crafted to acquire images, and, utilizing the image recognition capabilities afforded
by the trained CNN, proffer potential identifications for the macrofungal species
depicted therein. Such technological advancements democratize access to the
Brazilian Funga, thereby enhancing public engagement and knowledge
dissemination, and also facilitating contributions from the populace to the expanding
body of knowledge concerning the conservation of macrofungal species of Brazil.

Subjects Biodiversity, Bioinformatics, Computational Biology, Conservation Biology, Mycology
Keywords Deep learning, Computer vision, CNN, Image classification, Fungi

INTRODUCTION
Fungi are ubiquitous organisms that play vital roles in virtually all terrestrial ecosystems.
Their diversity is represented by the term Funga, equivalently to Fauna and Flora, which
represent the diversity of animals and plants respectively (Kuhar et al., 2018). The
kingdom Fungi is one of the most diverse taxonomic groups, with mainly accepted
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estimates currently at 2.5 million species (Niskanen et al., 2023). Nevertheless, only a
fraction of the Funga is known, since less than 10% of these species are described (Antonelli
et al., 2020).

Fungi act as key nutrient recyclers and form essential mutualistic relationships with
several groups (Watkinson, Boddy & Money, 2016). Therefore, their ecological importance
contrasts with this vast knowledge gap. In addition, the slow process of species discovery
and knowledge construction worsens the Funga neglected scenario. It can take decades to
build well-founded knowledge regarding plant taxa (Haridas et al., 2020), a field that
arguably receives more attention than Mycology.

Hence, there is an urge to find ways to add up efforts and fasten the process of
describing the fungal species. The lack of knowledge about Funga reflects the negative
relationship between the general Brazilian public and fungi, which can be considered
mainly mycophobic (Góes-Neto Bandeira, 2003). Part of this repulsion to fungi could be
attributed to their role in decaying food and causing diseases (Irga, Barker & Torpy, 2018),
coupled with the lack of awareness about their ecological importance.

Furthermore, Funga has its significance downplayed even in higher education, with
Mycology frequently not being treated as a course, but as a section in related grades (Grube
et al., 2017). As the Funga is neglected and constitutes a key element in ecosystem health,
more efforts must be made to fill the knowledge gap in fungal diversity while making the
general public aware of its utter importance, as general awareness and affinity are
positively correlated with greater incentive for biodiversity protection (Awasthy, Popovic &
Linklater, 2012; Beery & Jørgensen, 2016).

The enrolment of the general public in efforts to access the Funga (e.g., citizen science
programs) has been proven to be effective in species detection and discovery (Heilmann-
Clausen et al., 2019; Crous et al., 2021; Hou et al., 2020), reaching much higher sampling
efforts than specialists can do (Heilmann-Clausen et al., 2016). Specifically, the use of
innovative techniques based on widely available strategies can speed up this process, such
as online education programs, interactive exhibitions, and applications that benefit from
cutting-edge technologies and algorithms (Grassini, 2023), such as Computer Vision (CV)
and Deep Learning (DL).

The general principle behind the Computer Vision paradigm is that an image
interpretation task starts frommeaningless pixels and moves stepwise toward a meaningful
representation of that image content (Duda, Hart & Stork, 2001). Computer vision
approaches can be roughly divided into Classic Computer Vision (CCV) and deep
learning-based computer vision (DL-CV).

CCV are performed as a pipeline of steps (Danuser, 2011), transforming the original
images and adding different levels of abstraction. The first transform in this pipeline
focuses on filtering and separating regions of interest (ROIs or foreground pixels) from
background pixels (I->I), mainly using digital image processing methods such as noise
filters, border detectors, and segmentation algorithms (Duda, Hart & Stork, 2001).
Subsequently, when the abstraction level grows, these transforms are performed from
images into models (I→M) that represent descriptions of specific elements or the content of
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these images, such as segment color, shape parameters, texture descriptors, and
mathematical and statistics models.

Posteriorly, these models are transformed into more abstract models (M→M) that
describe the meaning or classification of those objects, generally using a group of rules
modeling some desirable traits to perform the task (Duda, Hart & Stork, 2001). These rules
are strongly parameter-dependent and make these CCV pipelines extremely problem- and
image-type-specific constrained (Uchida, 2013), meaning that a processing pipeline that
works well for a given type of image content, e.g., classification of tree crowns, will not
work for agricultural weed detection. Often, the sensitivity of the parameters is so high that
even lightning and contrast differences caused by an outdoor ambient light in the same set
of images can be hard to tackle, requiring deep mathematical knowledge of the individual
methods or real-world solutions (e.g., acquire images at the same time of the day or night,
or yet, building some physical apparatus) to solve the problems. These characteristics make
CCV solutions less robust and highly image-quality-dependent, which has, for a long time,
limited the popularization of CV software for Biological Sciences as a whole, and more
specifically, for Mycology.

The advent of Deep Learning (DL) techniques has broken the CCV paradigm. Initially
proposed by LeCun et al. (1998) and popularized by Krizhevsky, Sutskever & Hinton
(2012), DL Convolutional Neural Networks (CNN) can learn sequences of convolution
operations that represent image transforms in all three image domains (value, space, and
frequency) and multiple levels of abstraction. Each of these convolution operations
encodes a customized image filter that was learned from the training data. Furthermore,
the nature of these convolution operations allowed for much deeper neural network
structures than was possible with traditional Artificial Neural Networks (ANNs). Thus,
due to their deep sequential structure, CNNs can also learn hierarchical transformation
and representation sequences (LeCun, Bengio & Hinton, 2015). In one single step, a DL
application can start from pixels and end with a representation of the meaning of a given
image (Ayyadevara & Reddy, 2020), DL also simplified the development process of CV
applications: the main steps of a CV solution can now be trained. Nonetheless, DL
solutions have the disadvantage of being black-box processes: the convolution operations
performed by the network are learned and then coded as data in the structure of a given
network, and not as separate processes, which can be isolated and individually analyzed.

Therefore, based on the urgent need to rapidly access Brazilian Funga and the
image-based classification possibilities enabled by CNNs, our study aims to: (i) use our
highly standardized and specialist-curated database of macrofungi occurring in Brazil
(Drechsler-Santos et al., 2023) to train and validate convolutional neural networks to
automatically recognize macrofungal species, and (ii) engineer a mobile application with
an advanced front-end interface designed to capture images and suggest names for
macrofungal species based on their images associated to a trained CNN, enabling the
general public access to the Brazilian Funga while leveraging awareness and allowing
citizens to contribute in knowledge construction regarding Brazilian fungal species.

Chaves et al. (2024), PeerJ, DOI 10.7717/peerj.17686 3/22



MATERIALS AND METHODS
This section describes our dataset and our approach to acquiring the images, building the
dataset, and curating it. We will also describe the image classification CNN we have
selected to develop our macrofungi image classifier, as well as the approach followed to
develop the web application to host the image classifier and the image dataset. Portions of
this text were previously published as part of a thesis (Chaves et al., 2023).

Construction of the image dataset of macrofungi
The raw image dataset (Drechsler-Santos et al., 2023) is composed of images taken by the
team from the MIND.Funga/MICOLAB/UFSC research group, following the protocol by
Bittencourt et al. (2022) received via email or solicited for inclusion in the dataset, where
sources included partner mycologists, volunteers, citizen scientists, online mycology
groups, and past research projects (Ph.D. dissertations and M.Sc Theses) focused on
macrofungal species diversity. All images were submitted to a quality control and
treatment pipeline, which involved three critical steps: (i) removal of poor-quality,
unfocused images, and images with foreign objects (e.g., scales, human parts, knives, etc.);
(ii) specimen reframing to the image center, and (iii) 1:1 aspect ratio standardization.
Initially, images had their original background replaced with green and white backgrounds
(HEX codes) to improve CNN training and specimen recognition. As background
replacement did not significantly improve the CNN performance, new additions to the
background were not modified. When multiple images of the same specimen were
available, a subset that shows all specimen angles was selected. Whenever possible, several
images of the same macrofungal species from different sources were incorporated into the
dataset to enhance CNN predictions, accounting for contrasting scenarios (i.e.: different
lighting, angles, focal length, and other image-related variables).

The dataset is organized in individual taxon directory names with current accepted
scientific names for species or genera. Each taxon directory contains associated metadata
composed of taxonomy, morphology, phylogeny, ecology, and distribution information.

Image classification CNN
The recognition of macrofungal specimens in the wild is a typical image classification (IC)
task. In order to implement our approach, we have selected a state-of-the-art image
classification CNN, the Residual Convolutional Neural Network (ResNet) (He et al., 2016).
For our study, we selected a set of standard and well-proven ResNet architectures because
they are available as pre-trained networks, trained on the Imagenet dataset (Deng et al.,
2009) and; thus, present internal connections and weight structures that reflect image
features found on most natural and common objects. CNNs pre-trained on the Imagenet
dataset are much easier to train on a new data set and the procedure to use them as the
starting point in a new project has become the current practice in modern computer vision
projects.

In order to train the pre-trained ResNets on our macrofungi dataset, we followed the
standard two-stage procedure for adapting pre-trained CNNs to a new image domain
(Chaves, 2023):
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Transfer Learning (Stage 1): A new pair of fully-connected classification output
layers, customized for the number of classes of our image domain, was generated for
each network. The networks were then trained to allow learning only in the
connections from the network body to its input layer and in the last two fully-connected
classification layers. This first step is fast and maps the pre-trained network to the new
image data.

Fine Tuning (Stage 2): All connections of the networks were unfrozen and a full, much
longer, training cycle was performed. This second step adapts the whole network internally
to better reflect the characteristics of new image data. We additionally configured our
ResNet models with an ADAM optimizer (Kingma & Ba, 2014) and the cross-entropy loss
function.

In order to accelerate training and further automate the optimization of the learning
rates and network momentum during training, we applied the One Cycle Policy in both
training stages: transfer-learning and fine-tuning (Smith, 2018). Besides using the ResNet
model, a traditional model generally seen as a first line solution that was developed
employing the PyTorch-based fastai high-level DL API, we also used the state-of-the-art
neural network models EfficientNet, HRnet, and Mobilenet, which were developed directly
in the PyTorch framework (Chaves, 2023).

The evaluation of the models after the training was measured by the following metrics:
(i) Accuracy, which measures the ratio of the number of correct predictions to the total
number of predictions and is most useful for classification problems; (ii) Training Loss,
which is the error or cost measured on the training dataset, and, for classification purpose,
the Cross-Entropy was used; and (ii) Validation Loss, which was calculated on a separate
dataset that was not used in training (known as the validation set). This dataset is used to
simulate unseen, real-world data.

Development of the application for mobile phones
The app was developed using the Ionic framework (IONIC, 2022) with its front-end
written in HTML and SCSS and the logical parts in JavaScript (AngularJS). HTML files
display the elements on the screen whereas SCSS files configure the graphical properties of
the elements displayed in the HTML, and TS (Type Script) files change the state and values
of screen elements and communicate with the API. We have used TS files in the
development process before being compiled into JavaScript files for use in the web
environment. The architecture follows the MVC (model, view, and control) development
pattern.

The application uses the CNN through the endpoints of the Application Programming
Interface (API) developed by de Farias (2022). The API communicates between the
application and the image processing and identification part, as well as returns data stored
in the application’s database, such as species data, user data, and specimen information.
The API that is used by the app is divided into five endpoints: Curatorship, Species,
Specimen, Specimen Submissions, and Users.

Chaves et al. (2024), PeerJ, DOI 10.7717/peerj.17686 5/22



RESULTS
In this section, we presented relevant aspects of MIND.Funga image database (Drechsler-
Santos et al., 2023), the classification accuracy results with the CNN models, the online
macrofungal classification system developed to host the image dataset, and the CNNs,
allowing the users to classify their photographs and submit new specimens to the database.

MIND.Funga database
The raw Mind.Funga database is composed of 17,467 images of 580 macrofungal species.
Nevertheless, for training CNNs, we hadto the failur to discard 3,573 images associated to
75 species due the failure in passing our first nclusive/exclusive criterium ((removal of
poor-quality, unfocused images, and images with foreign objects (e.g., scales, human parts,
knives, etc.))). Therefore, CNN training was performed using a database with standard and
high-quality of more than 13,894 images representing 505 macrofungal species. These
database encompassed both morphological (Fig. 1) and taxonomic (Fig. 2) macrofungal
diversities, with a mean value of 27 images per species (Fig. 3).

CNN models
We used four Python libraries to train the neural networks: (i) Fastai (www.fast.ai);
(ii) Torch Vision (http://pytorch.org/vision/stable/index.html); (iii) Timm (http://github.
com/huggingface/pytorch-image-models/tree/main/timm); and (iv) Wandb
(http://wandb.ai/home).

Fastai was the base platform for the project since it defines the basic functions for
training, such as (a) setting the dataset, (b) batch size, (c) transformations, and (d) fit-one-
cycle. Both Torch Vision and Timm libraries were used to obtain neural network models
that had not been originally implemented on Fastai platform, such as HRNet, Efficientnet,
and Mobilenet. Moreover, a fourth library, Wandb, was used to plot and monitor the
evaluation metrics of different CNNs, enabling visualization and comparison across
various models.

The networks were trained using the MIND.Funga Project database (Drechsler-Santos
et al., 2023). This dataset, which has been developing for over 3 years, stands out from
many others due to its focus on species from Brazil, which were identified by mycologists
who are all experts in each one of the distinct fungal taxa. MIND.Funga Project database
currently contains 13,894 images, covering 505 macrofungal species. The dataset was thus
divided into Training (70%), Validation (20%), and Test (10%) subsets for convolutional
neural network training.

Six different networks from four different architectures were trained: (i) Resnet50,
(ii) Efficientnet B4, (iii) Efficientnet B7, (iv) Hrnet18, (v) Hrnet48, (vi) MobilenetV3.

The ResNet was utilized due to its popularity and frequent use as a base network.
Specifically, we selected the ResNet50 due to the complexity of the dataset, which features
505 classes (macrofungal species) and 13,894 images. The EfficientNets and HRNets were
selected based on their current relevance and their proven superior performance in similar
projects conducted by our research group. On the other hand, the MobileNetV3 was
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Figure 1 Some macrofungal species of the MIND.Funga database representing extensive
morphological diversity. (A) Gloeosoma mirabile (Berk & M. A. Curtis) Rajchenb., Pildain & C.
Riquelme 2021, (B) Aurantiopileus mayensis Ginns, D. L. Lindner & T. J. Baroni 2010, (C) Amauroderma
schomburgkii (Mont. & Berk.) Torrend 1920, (D) Laxitextum bicolor (Pers.) Lentz 1956, (E) Cladonia
didyma (Fée) Vain. 1887, (F) Hypocrella gartneriana Möller 1901, (G) Clavaria zollingeri Lév. 1846, (H)
Entoloma karstedtiae Blanco-Dios 2020, (I) Geastrum lageniforme Vittad. 1843, (J) Xylaria telfairii
(Berk.) Sacc. 1882, (K) Cookeina speciosa (Fr.) Dennis 1994, (L) Entoloma flavotinctum E. Horak &
Corner 1982. Photo credits (photos A–I): All the photographs (A–I) were taken by Prof. Dr. E. Ricardo
Dreschler-Santos (last author of the current article). Full-size DOI: 10.7717/peerj.17686/fig-1
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selected due to the need for a more efficient and lighter network, suitable for mobile
applications.

The networks were trained for 9 to 15 epochs, with termination based on the analysis of
the Training and Validation Loss graphs (Figs. 4 and 5, respectively), aiming to reach a

Figure 2 Taxonomic distribution of the images associated with MIND.Funga database. Both
Ascomycota and Basidiomycota phyla are well-represented with 164 and 416 species each, from distinct
genera, familes and orders. Full-size DOI: 10.7717/peerj.17686/fig-2

Figure 3 Relationship between number of images and number of macrofungal species. Each dot in
the figure represents a macrofungal species and its projection in horizontal axis represents its number of
images. The Box shows the values of the median and 25–75 percentiles, and other summary statistics total
number of images, species, mean, min and max are depicted at the right side.

Full-size DOI: 10.7717/peerj.17686/fig-3
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plateau. EfficientnetB7 architecture was prematurely halted as the Training Loss and
accuracy did not generate significant results while the Validation Loss merely increased.
The best performance was achieved by the EfficientnetB4, with an accuracy of 95.23%,

Figure 4 Training loss. The X-axis represents the number of epochs, and the Y-axis the loss value. Legend: (a) Hrnet48, (b) Hrnet18, (c) Effi-
cientnetB7, (d) EfficientnetB4, (e) MobilenetV3, (f) Resnet50-Stage2, (g) Resnet50. Full-size DOI: 10.7717/peerj.17686/fig-4

Figure 5 Validation loss. The X-axis represents the number of epochs, and the Y-axis the loss value. Legend: (a) Hrnet48, (b) Hrnet18, (c)
EfficientnetB7, (d) EfficientnetB4, (e) MobilenetV3, (f) Resnet50-Stage2, (g) Resnet50. Full-size DOI: 10.7717/peerj.17686/fig-5
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Figure 6 Accuracy. The X-axis represents the number of epochs, and the Y-axis the accuracy value. Legend: (a) Hrnet48, (b) Hrnet18, (c) Effi-
cientnetB7, (d) EfficientnetB4, (e) MobilenetV3, (f) Resnet50-Stage2, (g) Resnet50. Full-size DOI: 10.7717/peerj.17686/fig-6

Table 1 Functional requirements and their corresponding explanations.

Functional requirement Detailed explanation

RF01-log in The application must present the “Login” menu option menu option for identifying users in the system

RF02-identify fungus The application must offer the menu option “What fungus is this?”menu option, so that users can take photos and
identify fungi13

RF03-show map of records The application must present the menu option “Map of records” so that users can see the fungi identified on a map

RF04-view species The application must display the “Species” menu option, so that users can see information about the species
registered in the system. It can sort the species alphabetically and by category

RF05-edit species The user can edit an already registered species, by clicking on the name of the species, if they are a curator

RF06-register species Register species: Curator-type users can register a new species

RF07-proceed to curation The application should display the menu option
“Curator”, so that users of the Curator type can collaborate with corrections and edits to the registered
information.

RF08-manage users Users of the Administrator type will be able to
manage users via the “Manage Users” menu option. It should be possible to list all system users and edit
information about these users

RF09-show information about
MIND.Funga

The application must show
the “About MIND.Funga” menu option so that users can see the application’s
version of the application and obtain information about the MIND.Funga initiative, as well as information about
the project’s social networks

RF10-show photography tips The application must display the
“Photography tips” menu option, so that users can see the best ways to photograph fungi

RF11-view album Shows the specimens sent by the user with
date, substrate, observations, and location of the specimen sent

Note:
The first column lists the functional requirements of the application for mobiles, and, in the second column, are the detailed explanations of each one of the 11 functional
requirements.
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followed by the Hrnet18 at 94.11%, and the MobilenetV3 at 94.05% (Fig. 6). The
performance of the MobilenetV3 was particularly impressive compared to conventional
networks since it is a CNN designed to be lightweight and efficient for the mobile market.

App for mobiles
An Android Package (.apk) file, used for installing applications on Android operating
systems, was generated and used for installation on Android operating systems, used by
the MIND.Funga team, comprising mycologists specialized in various fungal groups, and
by non-specialist guests. Furthermore, the functional requirements, based on bi-weekly
meetings with the MIND.Funga research group, were also specified (Table 1):

Figures 7–9 depict, respectively, the cases of use, a general overview of interactions, and
the interface prototypes of the app (https://mindfunga.ufsc.br/app/).

DISCUSSION
This study represents our first investigation into the world of the automated image
classification of fungal specimens based upon both, in situ images and images from
herbaria/fungaria collections. We applied the standard, well-accepted process for the
development of image classification solutions based upon deep learning neural networks
and came upon a set of neural network models that worked very well and some others that
did not.

Our study has achieved a highly satisfactory performance from many convolutional
neural networks for macrofungal identification, particularly the Efficientnet B4
architecture. Furthermore, the most effective CNNs were not necessarily the most
complex, as the cases of EfficientnetB7 and Hrnet48, whose quality indices displayed
values significantly below average. Moreover, the MobilenetV3 training outcome was a
pleasantly surprising revelation since its performance mirrored that of the traditional and
larger CNNs, markedly surpassing its predecessor, MobilenetV2, which had been trained
during previous experiments. Therefore, our findings pointed out that the Efficientnet B4
and, to a lesser extent, MobilenetV3 CNNs were the most promising for classifying
macrofungi.

EfficientNet is a family of deep neural network architectures proposed in the article
(Tan & Le, 2019), designed to maximize both computational efficiency and model
accuracy. This is achieved through a scaling method composed of width, depth, resolution,
and efficient building blocks called MBConv. Therefore, the result is a highly efficient
architecture that can be easily adapted to different sizes and tasks. There are seven models
of this architecture, ranging from Efficientnet B0 to Efficientnet B7, which basically differ
in network depth. Furthermore, EfficientNets use a scaling coefficient to increase the
depth, width, and model resolution in a balanced way. First, a base model (EfficientNet-
B0) is trained using automatic neural architecture search to find the best network
architecture in terms of efficiency and accuracy. Subsequently, the base model is scaled to
different sizes (EfficientNet-B1 to B7) using compound model scaling.

On the other hand, MobileNetV3, introduced by Howard et al. (2019) in a 2019 article,
is the third version of the MobileNet series. The MobileNet architecture is known for its
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efficiency in terms of speed and size, making it ideal for use on mobile devices and other
applications with limited resources. The architecture uses a combination of expansive and
point convolutions to maintain efficiency, but also uses h-swish activation and h-sigmoid
activation, which are optimized for mobile devices. First, the input goes through a 3 × 3
convolution layer followed by batch normalization and h-swish activation. After the initial
layers, MobileNetV3 uses a series of point and expansion convolution modules and
Squeeze-and-Excitation (SE) modules, which are essential for the network to focus on
important features by dynamically adjusting the channel weights. The final layers of the
network include a point convolution and batch normalization, h-swish activation, and a
global average pooling layer. The output of this layer is then fed into a fully connected layer
to produce the final output of the network.

Figure 7 App: cases of use. This figure illustrates the cases of use related to the application for
mobiles. Full-size DOI: 10.7717/peerj.17686/fig-7

Chaves et al. (2024), PeerJ, DOI 10.7717/peerj.17686 12/22



Figure 8 App: interaction diagram. This figure illustrates a general overview of the interactions related to the application for mobiles.
Full-size DOI: 10.7717/peerj.17686/fig-8
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Figure 9 App: interfaces. This figure illustrates the interfaces related to the application for mobiles.
Note: As the app is initially intended to be used by lay person in Brazil, the interface is shown in Por-
tuguese. TRANSLATION: (order–up to down, left to right): (i) upper left panel: < which fungus is this?>,
, , (ii) upper right panel: , , , , (iii) lower left panel: , , , , (iv) lower right panel: , , , , <1. Check the framing of
your image>, <2. You can insert more than one image of a same fungus>, <3. More tips?>.

Full-size DOI: 10.7717/peerj.17686/fig-9
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In this study, we have tackled a problem for which there have already been ad hoc
solutions freely distributed as smartphone applications to classify macrofungi. Unfortunately,
the documentation about those solutions’ detailed scientific and technical background is
usually unavailable. Even if it seems extremely likely that those macrofungal identification
apps employ CNNs, the models they use and the precision rates they achieve, remain largely
unknown. Therefore, these issues preclude a direct comparison of our results with those of
many mushroom mobile apps.

Nevertheless, several Machine Learning methods (ML) have been used to classify and
identify fungi over the past 5 years in literature. Although most of the mobile applications
are devoted to the automatic identification of macrofungi, most of the articles in the
literature are more focused on the identification of microfungi, especially those that are
parasites and pathogens of both animals (including humans) and plants.

Convolutional Neural Networks (LeNet5, Alexnet, VGG16, SqueezeNet, ResNet, and
proprietary architectures) have been explored for identifying (i) pathogenic microfungi
of medical or veterinary importance (Zieli�nski et al., 2020; Hao et al., 2019; Prommakhot
& Srinonchat, 2020; Gao et al., 2020; Liu et al., 2020; Sopo, Hajati & Gheisari, 2021;
Tang et al., 2023), (ii) pathogenic or symbiotic microfungi in plants (Gaikwad et al.,
2021; Marcos, Silva Rodovalho & Backes, 2019; Evangelisti et al., 2021), with quality
indexes usually a few higher than 90% accuracies. Additionally, other ML methods
(Decision Trees/Random Forest, Logistic Regression, K-nearest neighbor, SVM, and
Bayesian Networks) have been successfully used for identifying contaminant fungi on
mushroom-producing farms (Rahman et al., 2022).

CNN models have also been utilized for the discrimination of distinct fungal species in
taxa that comprise species complexes, both for microfungi (Billones et al., 2020) and
macrofungi (Bartlett et al., 2022; Serhat, Ökten & Yüzgeç, 2023), as well as identify fungal
species directly from their spores (Tahir et al., 2018). Moreover, instead of the traditional
RGB image type, other ones (e.g.: spectral images) were used as the input of CNN models
for identifying macrofungi (Dong et al., 2021). Besides the use of distinct image types as the
input of CNN models, quite new techniques, such as Vision Transformers, have recently
been applied to the task of macrofungal classification (Picek et al., 2022).

As in many other Artificial Intelligence (AI) systems, our CNN suffers from the
Closed-World Assumption (CWA) problem: in a formal system of logic used for
knowledge representation. CWA is the presumption that a statement that is computed as
true is also known to be true and that there cannot be data outside the universe known to
the system (Reiter, 1978). In an image classification CNN, this issue appears as the fact that
the CNN will always classify an image, answering with its most similar class, even if what
the image depicts lies completely outside the scope of the dataset used to train it. In some
cases, the probability associated with the highest-ranked answer can be high, contrary to
the common assumption that an image depicting a non-trained object will generate a
diffuse and non-specific answer from the CNN. This suggests that simply analyzing the
contrast between the CNN outputs for each class, where a significant disparity between the
highest value and the others signals certainty, and a more uniform distribution indicates an
unidentified object (as seen in methods replacing the Softmax function with the OpenMax
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function), does not assure that the image belongs to a recognized class (Bendale & Boult,
2015). Another limitation of our study is the imbalance among the classes, where some
possess significantly fewer images than others, potentially leading to a bias towards the
more represented species. Nonetheless, class imbalance is an intrinsic feature of biological
databases (Komori & Eguchi, 2019).

Additionally, the app for mobiles was successfully developed. Several tests were
performed with the members of the research team, as well as many revisions were made to
the developed app to adapt it to the feedback provided by the research group members
(specialists) and non-specialists, considerably improving its usability. Moreover, the
suitability of the interface elements requested by the group, as well as the suitability of the
use cases, raised were fully approved by all the selected users.

CONCLUSIONS
We have achieved a highly satisfactory performance from some CNN models but, by
far, the most promising one was the Efficientnet B4 for macrofungi identification.
Furthermore, the performance of the trained MobilenetV3 model even mirrored those of
the traditional and larger CNNs. The MobileNet architecture is known for its efficiency, in
terms of speed and size, making it ideal for use on mobile devices and other applications
with limited resources. Using these trained CNNs, we have developed an application for
mobiles that will facilitate not only the acquisition and modification of photographic data
but also enable the validation and scrutiny of information about these macrofungal species.
As the database is large, completely curated by experts in Mycology in various macrofungal
groups, and representative of neotropical macrofungal taxa, we envisage that it will be
useful amongst both experts and non-experts in Mycology, as well as a powerful
educational and conservational monitoring tool. Now that we have the general framework
of our research in place, we plan to focus on each of these components and go deeper into
all of them, performing also a quantitative field study in order to investigate both, user
acceptance and real world performance of our solution. In the field of deep learning neural
networks we plan to test vision transformer models and also to reevaluate the
convolutional models, testing different data augmentation strategies and also a plethora of
loss functions and training strategies, besides the FitOneCycle and ADAM training
strategies.
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