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“An equation means nothing to me unless it expresses a thought of God.”

(Ramanujan)



RESUMO

Neste trabalho, definimos os @-atratores pullback generalizados para processos de evolugao
em espagcos métricos completos, que sao familias compactas e positivamente invariantes,
com uma taza de atracao pullback determinada pelo comportamento de uma funcao
decrescente ¢ que se anula no infinito. Encontramos condi¢oes sob as quais um dado
processo de evolugao possui um @-atrator pullback generalizado, tanto nos casos discreto
quanto no continuo. Apresentamos resultados para os casos especiais para obter um atrator
pullback polinomial ou exponencial generalizado e aplicamos esses resultados para obter
tais objetos para uma classe de equacoes da onda nao-autoénomas.

Palavras-chave: p-atratores pullback generalizados. ¢-pullback k-dissipatividade. Equa-
¢ao da onda nao-auténoma. Processos de evolucao. Atratores pullback.

MSC2020: 35B41,35L20,37L25.



RESUMO EXPANDIDO

Introducao

Um importante campo de estudo pertencente a area de Sistemas Dinamicos é aquele
dedicado as equagoes e sistemas nao-autoénomos, que sao de fundamental importancia na
compreensao de problemas reais nas areas de Biologia, Fisica, Engenharias, entre outras,
ja que naturalmente os termos independentes que aparecem na modelagem sao forcas que
dependem do tempo. Nas tltimas décadas muitos pesquisadores tém dedicado esforgos ao
estudo de problemas dessa area e obtido avancos significativos. Como exemplo, destacamos
os trabalhos de (SELL, 1967a, 1967b; KLOEDEN; RASMUSSEN, 2011; CARABALLO;
LUKASZEWICZ; REAL, 2006; CARVALHO; LANGA; ROBINSON, 2013; BORTOLAN;
CARVALHO; LANGA, 2014).

Uma abordagem natural sobre esse tipo de problema passa pelo entendimento de seu
comportamento assintotico, cujos objetos principais sao os atratores. Mais especificamente,
quando nos referimos aos processos de evolugao associados aos problemas nao-auténomos,
uma dessas principais estruturas é o atrator pullback. O problema que aqui enfrentamos
é o seguinte: supondo que o atrator pullback exista, ndo ha informacao qualitativa sobre
sua respectiva taxa de atragao. Neste sentido, varios autores tém trabalhado recentemente
com a nocao de atrator exponencial pullback, que é uma familia compacta, positivamente
invariante, que atrai exponencialmente limitados do espago de fase (no sentido pullback),
e que possui dimensao fractal uniformemente limitada. Aqui ressaltamos o importante

trabalho de (CARVALHO; SONNER, 2013, 2014).

Por outro lado, trabalhos dedicados a problemas auténomos (através da estrutura de
semigrupos) tém sido realizados no sentido de explorar os conjuntos g-atraentes, que sao
conjuntos compactos, positivamente invariantes com relagao ao semigrupo e que contém
o atrator global, porém com taxa de atracao controlada por uma funcao ¢ que nao
necessariamente é a funcao exponencial, mas que satisfaz algumas condi¢oes adequadas.
Essa ideia foi inicialmente introduzida em 2022 por Zhao, Zhong e Zhu no trabalho (ZHAO);
ZHONG; ZHU, 2022).

Em outro trabalho recente, a saber (YAN et al., 2023), os autores estudaram uma versao
dessa teoria de y-atragdo para problemas nao-autéonomos por meio das solugoes de Shatah-
Struwe e com foco no atrator uniforme. Esta tese também busca ampliar a teoria de
p-atracao ao estudo de problemas ndo-auténomos (via processos de evolugao), porém aqui
nosso o foco reside na teoria pullback, conforme detalhado a seguir.

Objetivos

Inspirados pelos trabalhos ha pouco citados, e combinando seus respectivos resultados
com aqueles presentes em (ZHANG et al., 2017), nosso objetivo é expandir essa teoria
para o estudo do comportamento assintético de problemas nao-autonomos. O ponto de



partida reside na definicao dos p-atratores pullback generalizados, nosso principal objeto
de estudo deste trabalho.

Buscamos estudar quais condicoes estes processos devem satisfazer para que possamos
garantir a existéncia de tais atratores generalizados e também queremos entender a relacao
entre esse novo conceito de atracao e o tao conhecido e estudado atrator pullback. Por fim,
a ideia é aplicar essa nova teoria a uma equac¢ao da onda nao-autéonoma especifica.

Metodologia

A metodologia empregada nesta pesquisa é a usual para a drea de Matematica: leitura
e estudo intensivos de trabalhos e artigos cientificos como estratégia na identificacao
de lacunas e problemas em aberto. Tais trabalhos serviram como inspiragao para essa
adaptacao/generalizacado do conhecimento cientifico ja existente as novas abordagens mais
amplas ou complexas presentes nesta tese.

Parte do trabalho foi desenvolvida durante intercambio na Universidade de Sevilha, Es-
panha, sob financiamento do programa CAPES-Print, o que permitiu o contato com varios
pesquisadores de exceléncia na area e com excelente infraestrutura de pesquisa.

Resultados e Discussao

Como ja comentado, o objeto central desta tese é o p-atrator pullback generalizado, que é
uma familia M = {M,}, . de subconjuntos do espaco de fase X do processo de evolugao
S associado ao problema nao-auténomo (T denota R ou Z) satisfazendo:

e M, é compacto para todo t € T;
o S(t,s)Ms C M, para todos t,s € T com t > s (invaridncia positiva);

o Mé p-pullback atraente, isto ¢, existe uma constante w > 0 tal que para todo conjunto
limitado D C X et € T, existem C' = C(D,t) > 0 e 10 = 10(D,t) > 0 tais que

d(S(t,t —7)D,M;) < Cp(wr)  para todo 7 > 7o,

onde ¢ é uma fungao decrescente, que se anula no infinito (e sujeita & uma condigao
adicional que serd explicada em mais detalhes posteriormente).

Quando existe uma constante ¢ > 0 tal que a dimensao fractal de M; é menor ou igual a ¢
para todo t € R, dizemos que M é um p-atrator pullback, mas este objeto especifico nao
serd foco de estudo deste trabalho.

Como resposta a um dos objetivos estipulados para este trabalho, obtivemos resultados
de existéncia de tais atratores generalizados. Mais especificamente, inspirados por (CAR-
VALHO; SONNER, 2013, 2014), dividimos nosso estudo em duas partes: primeiramente
estabelecemos um resultado focado no caso discreto (veja Teorema 2.6) e, em seguida, e



como consequéncia do primeiro, enunciamos e provamos o resultado para o caso continuo
(veja Teorema 2.8).

Também inspirados nos resultados tedricos de (ZHAO; ZHONG; YAN, 2022), apresentamos
resultados especificamente desenhados para assegurar a existéncia de um atrator polinomial
pullback generalizado ou de um atrator exponencial pullback generalizado para um processo
de evolugao continuo (veja Teoremas 2.10 e 2.11).

Provamos ainda que quando existe um @-atrator pullback generalizado M = {M;},cr para
um processo de evolucao S tal que U,<; M, ¢ limitado para todo t € T, entao S também
admite um atrator pullback fl, com Ac M (veja Teorema 2.12).

Finalmente, como nosso principal resultado (veja Teorema 3.1), também inspirados por
(ZHAO; ZHONG; YAN, 2022), aplicamos essa teoria para provar a existéncia de um -
atrator pullback generalizado para uma classe de equagoes da onda nao-autéonomas dada
por:

utt<t’x) - Au(t,x) + k(t)”ut(t? ')H?ﬁ(ﬂ)ut(tw) + f(t’u(trr))
= || K@a)u(ty)dy + h), (t2) € [5.00) x 2,

u(t,x) =0, (t,x) € [s,00) x 0L,

u(s,x) = up(x), u(s,x) =u(z),xz € Q,

onde Q C R? é um dominio limitado com fronteira suave 99, em que ¢ é uma funcio com
decaimento polinomial quando p > 0 e com decaimento exponencial quando p = 0.

Consideragoes Finais

Os resultados esperados foram obtidos nesta pesquisa e, juntamente com aqueles obtidos
em (YAN et al., 2023), representam um ponto de partida para uma vasta teoria que
pode surgir no estudo de comportamento assintotico de problemas nao-auténomos. Um
sequéncia natural ao trabalho ja realizado seria estudar os y-atratores pullback, o que
exigiria um trabalho dedicado a dimensao fractal das familias atraentes. Outra possivel
linha de pesquisa seria a generalizacao dessa teoria e o desenvolvimento de aplicagoes para
problemas em espagos de fase tempo-dependentes.

Gostariamos ainda de ressaltar que dois artigos surgiram em decorréncia deste trabalho
(ainda em vias de publicagao até o momento da finalizacdo desta tese), cujos preprints
podem ser obtidos em

« M.C. Bortolan, T. Caraballo, and C. Pecorari Neto. Generalized ¢-pullback attractors
for evolution processes and application to a nonautonomous wave equation. arXiv, 2023.
https://doi.org/10.48550/arXiv.2311.15630.

o M.C. Bortolan, T. Caraballo, and C. Pecorari Neto. Generalized exponential pullback at-

tractor for a nonautonomous wave equation. arXiv, 2024. https://doi.org/10.48550/
arXiv.2401.06631.
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ABSTRACT

In this work we define the generalized p-pullback attractors for evolution processes in
complete metric spaces, which are compact and positively invariant families, with rate of
pullback attraction determined by the behavior of a decreasing function ¢ that vanishes
at infinity. We find conditions under which a given evolution process has a generalized
p-pullback attractor, both in the discrete and in the continuous cases. We present results
for the special cases to obtain a generalized polynomial or exponential pullback attractors,
and apply these results to obtain such objects for a class of nonautonomous wave equations.

Keywords: Generalized p-pullback attractors. ¢-pullback s-dissipativity. Nonautonomous
wave equation. Evolution processes. Pullback attractors.

MSC2020: 35B41,35L.20,37L25.
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1 INTRODUCTION

The study of nonautonomous problems has been the focus of many researchers
in the last decades, such as (SELL, 1967a, 1967b; KLOEDEN; RASMUSSEN, 2011;
CARABALLO; LUKASZEWICZ; REAL, 2006; CARVALHO; LANGA; ROBINSON, 2013;
BORTOLAN; CARVALHO; LANGA, 2014), for example. Nonautonomous equations and
systems are of fundamental importance to model and understand real problems in Chem-
istry, Biology, Physics, Economics and many other areas since, naturally, the independent
terms that usually appear in the models are time-dependent forces.

More specifically, we deal with the asymptotic behavior of such problems and, for
that, the key objects are the attracting sets and families. The well recognized existing
literature deals with attractors that, in general terms, represent the sets of limit states of
the solutions of the nonautonomous equations, and also contain all the bounded solutions
defined for all time, in other words, the attractors are the objects that contain the relevant
solutions, bearing in mind real world problems.

To be more precise about our goals in this work, we begin by presenting an overview
of the theory of evolution processes and their pullback attractors in metric spaces. In what
follows we write T to denote either the set of the real numbers (R) or the integers (Z).
We will also denote T* := {t € T: ¢ > 0}.

Definition 1.1 (Evolution process). By setting P = {(¢,s) € T?: t > s} and considering
(X,d) a metric space, we say that a two-parameter family S = {S(t,s): (t,s) € P} of
continuous maps from X into itself is an evolution process if

o S(tt)x =aforallz € X and t € T;

o S(t,r)S(r,s) = S(t,s) for all (¢,r), (r,s) € P, that is, t,r,s € Tand t > r > s;

o the map P x X > (t,s,2) — S(t,s)z € X is continuous.
The evolution process S is said to be a continuous' evolution process if T = R and a

discrete evolution process if T = Z.

The framework of evolution processes is what we call the nonautonomous framewortk,
due to the explicit dependence of both initial and final times s and ¢, respectively. When
there exists a family 7= {T'(¢t): t € T} such that S(t,s) = T'(t — s) for all (¢,s) € P, we
say that 7' is a semigroup and that S is an autonomous evolution process. This indicates
that S depends on the elapsed time ¢ — s and not explicitly on ¢ and s separately.

To mathematically introduce the framework of the pullback attraction theory, we
let § be the class of all families D = {D+},cr, where Dy is a nonempty subset of X for
each t € T. A family A € § is said to be closed/compact if A4, is a closed/compact

L We point out that all evolution processes have continuity properties, by definition. The name continuous

evolution process refers only to the time parameter being taken in R, to separate them from their
discrete counterpart.
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subset of X for each ¢t € T. Moreover, given 121,3 € § we say that Ac Bif A; C By for
each t € T.

Definition 1.2 (Pullback attraction). For an evolution process S in X, we say that a
family B € § is pullback attracting’ if for each bounded set D C X and ¢t € T we have

lim dg(S(t,s)D, B;) =0,

S——00
where

dg(U,V) = sup inf d(u,v)

welU VeV
denotes the Hausdorff semidistance between two nonempty subsets U and V' of X.

Consider a given evolution process S in X. We say that a family B is invari-
ant /positively invariant for S if for all (¢,s) € P we have S(t,s)Bs = By / S(t,s)Bs C By,

respectively. With these definitions, we can present the notion of a pullback attractor.

Definition 1.3 (Pullback attractor). For an evolution process S in a metric space X, we
say that A € § is a pullback attractor for 9 if:
(i) A is compact;
(ii) A is invariant for S;
(iii) A is a pullback attracting family;
(iv) A is the minimal closed family satisfying (iii), that is, if ' € § is a pullback attracting
closed family, then A c C.

The minimality condition (iv) is there to ensure that when a pullback attractor for
S exists, it is unique. This condition could be replaced by a number of other properties
such as, for instance, that for each ¢t € T the set Us<; A5 is bounded in X. When a family
satisfies this property, we say that it is a backwards bounded family.

The framework of pullback attractors is perhaps the most usual form of generalizing
the theory of global attractors for semigroups, to describe the asymptotic behavior of
nonautonomous problems. For a detailed study of this theory, we refer to (CARVALHO,;
LANGA; ROBINSON, 2013).

The problem that we face is the following: assuming that a pullback attractor A
exists, there is no qualitative information regarding the rate of attraction of A. To that
end, many authors (for instance, (CARVALHO; SONNER, 2013, 2014)) have worked with
the notion of a pullback exponential attractor, that is, a compact family M € § which is
positively invariant for S and exponentially pullback attracts bounded subsets of X, that

is, there exists a positive constant w > 0 for which for all D C X bounded we have

Er_n edeH(S<tJS>D7Mt) = 07

L' The term pullback attraction emphasizes that we are fixing a final time ¢ and taking the initial time

s — —oo. Hence, we are pulling back to the present time the solutions which are starting further in
the past.
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and, furthermore, the fractal dimension of M; is uniformly bounded for ¢ € T, that is,
there exists ¢y > 0 such that for all ¢ € T we have

dlmF(Mt) = lim # < Co,

where N(r,M;) denotes the minimum number of balls of radius » > 0 in X that cover
M;. The fractal dimension is an upper bound to both the Hausdorff dimension and the
topological dimension of K. One of its main use is the following: if dimg(K) is finite, then
K can be projected injectively in a finite dimensional space, with dimension larger than
2dimp(K) 4 1 (see (MANE, 1981)).

In the work done by Zhao, Zhong and Zhu in (ZHAO; ZHONG; ZHU, 2022), the
authors introduce the concept of compact p-attracting sets in the autonomous framework
(that is, for semigroups), which is a fixed set M that contains the global attractor of the
system and attracts bounded sets with rate of attraction given by a function ¢, which is
not necessarily the exponential function. More recently, in (YAN et al., 2023), the authors
studied a nonautonomous version of this theory, using the Shatah—Struwe solutions, but
focusing their efforts in the uniform attractor, which is a different framework than the one
of pullback attractors.

Inspired by those works, and combining the results with the ones of (ZHANG et al.,
2017), our goal is to expand this theory for the nonautonomous case and understand
the asymptotic behavior of nonautonomous problems (by means of evolution processes)
defining the generalized p-pullback attractors, which we present in what follows. To begin,
we will define the functions that will determine the decay rate of the pullback attraction,

and we chose to name them decay functions.

Definition 1.4 (Decay function). We say that a function ¢: [k,00) — [0,00), where k > 0

is an appropriate constant, is a decay function if ¢ is decreasing, tlim o(t) =0 and
— 00

t
lim sup M < oo forevery w>0andneR.

oo p(wt)
With that, given an evolution process S in a metric space X, we can define our

main object of study.

Definition 1.5 (Generalized p-pullback attractor). We say that a family MeFisa
generalized o-pullback attractor for S if M is compact, positively invariant and -
pullback attracting, that is, there exists a constant w > 0 such that for every bounded
set D C X and t € T there exist C' = C(D,t) > 0 and 79 = 19(D,t) > 0 such that

dg(S(tit —7)D,M;) < Cp(wr) for all 7 > 7.
When there exists a constant ¢ > 0 such that
dimp(M;) < ¢ forallt € R,

we say that M is a p-pullback attractor.
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Note that the parameter w > 0 is fixed, and works for all bounded subsets D of X
and t € T, thus, the function ¢(w-) is the one that controls the rate of pullback attraction
of the family M. Although we introduce the notions of generalized p-pullback attractors
and -pullback attractors, in this work we will focus only on the first concept. Whether
their fractal dimension are uniformly bounded or not is an open question, and a future
line of work.

In Chapter 2, we study what are the conditions these processes must satisfy to
ensure the existence of such generalized attractors. Inspired by (CARVALHO; SONNER,
2013, 2014), we divide our results in the discrete case (see Theorem 2.6) and the continuous
case (see Theorem 2.8). Also, inspired by the theoretical work presented in (ZHAO;
ZHONG:; YAN, 2022), we present results specifically designed to prove the existence of a
generalized polynomial or exponential pullback attractor for a continuous evolution process
(see Theorems 2.10 and 2.11). As expected from the usual theory of exponential pullback
attractors, we prove that when a backwards bounded generalized p-pullback attractor M
for an evolution process S exists, then S also has a pullback attractor /Al, with A ¢ M
(see Theorem 2.12).

As our main result (see Theorem 3.1 in Chapter 3), also inspired by (ZHAO;
ZHONG; YAN, 2022), we apply the abstract theory of Chapter 2 to prove the existence of

a generalized p-pullback attractor for a class of nonautonomous wave equations given by:

wn(tx) — Au(tz) + k() u(t, ) |[haguetx) + f(tult.e))
— /QK(:v,y)ut(t,y)dy + h(z), (L) € [s,00) X O,
u(t,x) =0, (t,x) € [s,00) x 09,

(NWE)

u(s,z) = up(x), u(s,x) =u(z),x € Q,

where 0 C R3 is a bounded domain with smooth boundary 02, where ¢ is a function
with polynomial decay, namely () = t_%, when p > 0, and with exponential decay when
p=0.

In order to maintain clarity and not impact the main scope of this work, cer-
tain technical results have been placed in Appendix A and will be referenced as needed
throughout the text.
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2 GENERALIZED o-PULLBACK ATTRACTORS

Now we generalize the theory presented in (ZHAO; ZHONG; ZHU, 2022) to the
nonautonomous pullback framework, in a useful manner. At first sight, one might want
to work with a map ¢(t,s) depending on both variables ¢ and s. This would imply that
for each final time ¢ the map ¢(t,s) describes the decay of the solution as s — —oo.
Since the behavior of ¢(t,s) can be different for distinct values of ¢ (for instance, it
could be polynomial for one parameter ¢ and exponential for another), there would be no
correct answer to the question: what is the rate of attraction? The answer would depend
heavily on the final time ¢, and even if we could do that, it would not be practical for
the applications. Thus, as defined in the introduction, we will work with single-variable
functions, which we call decay functions. To recall the reader (see Definition 1.4), a function
@: [k,00) = [0,00), where k > 0 is an appropriate constant, is called a decay function if
¢ is decreasing, tllglo @(t) =0 and

t
lim sup plwt £1) < oo for every w > 0 and n € R. (2.1)

oo p(wt)

Examples of decay functions ¢ are
p(t) =ce™™, pt)=ct™? and  p(t) =cln~7(t),

with ¢, 8 positive constants. Indeed, they are all decreasing and tend to zero at infinity.
For (2.1) we note that

ce~Plwtn) . clwt+n)P

In~?(wt
lim ———— =¢ . lim ———~— =1 and lim m

=1
t—oo  ce—Bwt) t—o00 C(wt)*ﬁ t=oo ¢ In—? (wt)

Condition (2.1) always occurs for a decreasing function ¢ when n > 0, but that is not
always the case when 1 < 0. Indeed, the function () = ¢!, although decreasing and 0
at infinity, does not satisfy (2.1) for n < 0, since

—wt—n
lim M = lim (

t—o0 (w{;) —wt T iS00

wt
t = o0.

We added (2.1) to avoid having to deal with translations of the function ¢, and thus
the rate of attraction will depend only on ¢ and w, but not on 1. We could have chosen
to work without this assumption, but since it is satisfied by the usual decay functions
(exponential, polynomial and logarithmic) we have decided to use it. It makes notation a
little easier on the eyes.

This definition of a generalized p-pullback attractor (see Definition 1.5), that is, a
family M € § which is compact, positively invariant and @-pullback attracts all bounded
subsets of X, is inspired by the one of an exponential attractor, and the word generalized

is there to emphasize that we are not asking hypotheses on the finitude of the fractal
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dimension. The question of what are the conditions required to obtain the bound for the
fractal dimension of such object is still an open problem.

Firstly, we show that the theory of generalized p-pullback attractors is meaningful
only when dealing with problems without properties of compactness on the evolution
processes. Recall that we say that a family Be § is backwards bounded if U, B; is
bounded for each t € T. For a subset A of X, we denote by A the closure of A in X.

Proposition 2.1. Let X be a metric space and S an evolution process in X. Assume the
following:
o S is an eventually compact evolution process, that is, there exists T > 0 such that

S(t,t —7) is a compact map for each t € T;

o there exists a backwards bounded pullback absorbing family B, that is, given
D C X bounded and t € T there exists sg < t such that S(t,s)D C By for all s <'s

Then, given any decay function ¢, S has a generalized p-pullback attractor.

Proof. Fix t € T and set B, := Us«Bs, which is bounded by hypotheses. Since B is
pullback absorbing, there exists sg := so(t) < t such that S(t,s)B, C B; for all s < s,

which implies, in particular, that
S(t,s)Bs C By for all s < sq.

It is clear that if t; <ty we can choose so(t1) < so(t2). We define the family C' by
U S(t.s)B
s<so(t)
Clearly C; C B; and, hence, it is backwards bounded. Also, since for s < t we have
so(s) < so(t), we have
S(ts)Cs= |J Str)B.c |J SEtr)B,=Cy,

r<so(s) r<so(t)
which proves that the family C is positively invariant. Furthermore, if D C X is bounded
then for each s € T there exists s; = s1(s) < s such that S(s,r)D C By for all r < sy
Thus if s < s1(s0(t)) we verify that

s<s1(s0(t))

S(t,s)D = S(t,s0(t))S(so(t),s)D  C = S(t,50(t))Bsyry C Cu,

which proves that C is pullback absorbing.
Now we define the family M by

M, =S(tt—71)C,_, foreachteT.

We claim that for any given decay function ¢, M is a generalized p-pullback attractor for
S. Firstly we note that, since Cy_, is bounded and S(t,t — 7) is compact, M, is compact.

Now for s < t, since S(t,s) is continuous from X into X, we have

S(t,s)M, = S(t,5)S(s,5 — 7)Csr C S5 — 7)oy
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=S(tt—71)S({t—71,5—T1)Cs_r C S(t,t —7)Ci_; = M,,

hence M is positively invariant. Lastly, if D is bounded and ¢ € R, since Cis pullback
absorbing there exists s = so(t — 7) such that S(t — 7,s)D C C;_, for all s < sg. Thus

for s < sg we have
S(t,s)D = S(tt —71)S(t—7,5)D C S(t,t —7)Cyr C M,

which proves that M is pullback absorbing and, therefore, it is a generalized p-pullback

attractor for any given decay function ¢. m

This result shows that for either finite-dimensional problems or problems in infinite-
dimensional spaces with compactness properties, the theory of generalized p-pullback
attractors, as is, is not that difficult, and the existence of a generalized @-pullback attractor,
for any given decay function ¢, can be achieved by simply showing that S has a backwards
bounded pullback absorbing family B°. Of course, if one add the hypothesis of finitude of
the fractal dimension of the family M, the situation changes and turns the problem into
a more difficult one. For now, as we already mentioned, we will not focus on the issue of
the finitude of the fractal dimension.

In the literature, see (ZHANG et al., 2017) for instance, although not always
explicit, there is a relationship between the existence of global attractors for semigroups
and the decay of the Kuratowski measure of non-compactness for its w-limits. Hence, the
work we present in what follows, inspired by (ZHANG et al., 2017), attempts to unify
the results of both (ZHANG et al., 2017) and (ZHAO; ZHONG; ZHU, 2022) for the

nonautonomous pullback setting. For what follows, unless clearly stated otherwise:
(X,d) denotes a complete metric space.
Recall that for a nonempty bounded subset C' C X, its diameter is defined as

diam(C) := sup d(x,y),

z,yeC

and we have diam(C') = diam(C'). For zy € X and r > 0, the open ball of radius r

centered in 7y will be denoted by
B (xg) :={x € X: d(x,x) <1},

and the closed ball of radius r centered in zy will be denoted by
B, (z0) :=={r € X: d(z,x0) <1}

When there is a need to highlight the space X in which the balls are being considered, we

will use the notation B:X(xq) for open balls in X and Ei((azo) for closed balls in X.
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Definition 2.2 (Kuratowski and ball measures of non-compactness). For a bounded set

B C X we define its Kuratowski measure of non-compactness by

k(B) = inf{é > 0: B admits a finite cover by sets of diameter

less than or equal to 0}.

In relation to the Kuratowski measure, we have the ball measure of non-compactness,

defined by
B(B) = inf {r > 0: B admits a finite cover by open balls of radius r} .

In order to keep the objectivity of our work, the main properties and results
regarding the Kuratowski and the ball measures of non-compactness are presented in the
Appendix A.

Remark 2.3. We could replace the “less than or equal to” in the definition of x with
“less than” without changing its values, and for 8 we could choose the covers consisting

by either open or closed balls (see Proposition A.1).

Definition 2.4 (p-pullback k-dissipativity). We say that an evolution process S in X is
p-pullback k-dissipative if there exists w > 0 such that for every bounded D C X and
t € T there exists C' > 0 and 79 > 0 such that

/<c< U St — a)D> < Co(wr)  forall 7 > 7.
oZ>T
As mentioned in the introduction, inspired by (CARVALHO; SONNER, 2013,
2014), we first construct generalized @-pullback attractors in the discrete case, that is,
when S = {S(n,m): n > m € Z} is a discrete evolution process in a complete metric space
X. After that, we use the results of the discrete case to prove the existence of generalized

p-pullback attractors for the continuous case.

2.1 THE DISCRETE CASE

When working in the construction of a generalized ¢-pullback attractor, it is easy
to realize that we need the existence of a pullback absorbing family. A deeper study,
when proving several results, shows the pullback absorption might not be enough, and we

require a stronger absorption property, which we define below.

Definition 2.5 (Uniform pullback absorption). Let S be an evolution process in a com-
plete metric space X. We say that Begis uniformly pullback absorbing if given
D C X bounded and t € T, there exists 7' > 0 such that S(s,s —r)D C B, for all s <t
and r > T.
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Theorem 2.6 (Existence of generalized p-pullback attractors for discrete evolution pro-
cesses). Assume that there exists a closed and backwards bounded family B = {Bi} ez
which is uniformly pullback absorbing and positively invariant for the process S, and that,
for a given decay function p, S is p-pullback k-dissipative. Then there exists a generalized
p-pullback attractor M for S, with M c B.

Proof. Let B as in the hypothesis. Since S is ¢-pullback k-dissipative, there exists w > 0
such that given k € Z there exist C' > 0 and an integer mgy > 1 where

n( U Stk — n)Bkn> < Cp(wm) for all m > my,.

n=m

For k € Z fixed
B (S(k,k —mg)Bk—my) < & (S(k,k —mo)B—_m,)

< U Sk =n)Biy ) < Clwmo),
nz=mo
which means S(k,k — mg)Bg_m, can be covered by a finite number of balls of radius
Co(wmyg). Thus, there exist points 2 e X fori=1,... ,7(myg) such that

r(mo)

S<k7k - mO)Bk*mo - U BC@(WWZO)(xz(mO))

i=1

)

and, consequently, there exists y;""*’ € Bj_p, for i = 1,...,7(mg) such that

r(mo)

S(kvk - mO)Bk—mo - U BQCtp(wmo)(Zz(mO))a

i=1

(mo+1)

where 2™ = S(k.k — mo)y™. Analogously, there exists y,

S Bk,(m0+1), for 1 =
1,...,r(mo+ 1), in such a manner that

r(mo+1)
Sk — (Mo + 1) Bi—gmory € U Bacp(wimoriy (™),

=1

where 2™ = S(kk — (mg + 1))y, and so on.

Now, for each k € Z and n € N, we define
Ti = {8k k — (mo +m))y™™ i =1, r(mo +n)},

recalling that the number my and the points y; depend on the value of k. We also define
K9 =70 and K} = J* U S(k,k — 1)K~ for each k € Z,n € N,n > 1. These sets satisfy,
for each k € Z and n,p € N, the following properties (which we will later prove - see
Proposition 2.7):

(1) jkn C S(k‘,k’ — (mo + n))Bk_(m0+n) C Bk7

(if) S(k,k = (mo + n))Br—(mo+n) C Uzegr Bacpwimo+n) (),
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(iii) S(kk— LR, € K,

)

(IV) ( (mO + n))Bk (mo+n) C UzeIC" B2C<p( (m0+'ﬂ))<z)7
(v) K¢ C S(k,k —n)By_,, C By,
(vi) S(k+ p.k)Kp C Kii?,

(vii) K C S(k,k —m)By_, for each m € Nen > m.

Lastly, we define the family £ = {Ei}yez b

Ey=|J K} for cach integer k € Z.

Now we prove that E is precompact, positively invariant, and ¢-pullback attracting. For
m € N, using (vii) it follows that U;2,, ., K C S(k,k —m)Bj_p,. Thus,

U Kp = U KU KL C ( U Kg) U S(kk — m) By
n=m-+1 n=0
If m > mg we obtain

K(Ey) < (( U /c") U S(kk — m)By_ m) max{ (U /cn> S,k — m) By m)}

n=0

= k(S(k,k —m)By_p) ( U S(k,k —n)Bi_ n) < Cop(wm),

nzm

and making m — oo we obtain k(FEj) = 0, which means that E} is precompact.

The positive invariance follows directly from (vi), since for k € Z and p € N, we
have

S(k +p.k) Ey, = S(k + p.k) U Ky = U S(k+pk)Ky C U Kiiy C U Kiip = Ertp-
n=0 n=0

For the ¢-pullback attraction, fix D C X bounded and k € Z. From the hypothesis
there exists an integer ¢ > 1 such that S(r;r —n)D C B, for all r < k and n > ¢. If
n > q + mg there exist a,b € N such that n = a+¢q, n = b+ mg, a > mg, b > g and

a =mgy+ b — g. Now we have

dH(S(/{Z,k - n)D, Ek) = dH(S(k,k —a— q)D,Ek)

J=0

— dy (S(k:,k —a)S(k—ak —a—q)D, fj ’Ci)

<dy (S(k,k —a)Bi—a, /c;;) < dy (S(kk — a) By, Ky %)

< 2Cp(w(mo +b —q)) = 2Cp(w(n — q)) = 20p(wn — wg),

where the last inequality follows from (iv), since

S(k.k — a)By—q = S(k,k — (mo + (b= q))) Bi—(mo+(b—q)
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C U Baogwmors—a)(2)-

zelCqu

By the conditions imposed on ¢ , there exists C'; > 0 such that
dy(S(kk —n)D, Ey) < 2Cp(wn — wq) < Cro(wn)

for n bigger than a sufficiently large number ny. This proves the @-pullback attraction
property of the family E.

Finally, we define the family M = {M.} ez, by My = Ej, for each k € Z. Since M,
is the closure of a precompact set Fj, the compactness of each M), is obvious. Also, since
E, C By, and B is closed, we have M, C By for each k € Z, that is, M C B. For the
positive invariance let k € Z and p € N. Then, by the continuity properties of S and the

positive invariance of F,

S(k + p,k)M;, = S(k+ p,k)Eyr, C S(k+ p,k)Ex C Egyp = Mty
Lastly, notice that if n > ny,

dut(S(kk —n)D,My) = dy(S(k,k —n)D,Ey)
< du(S(k.k—n)D, Ey) < Crp(wn).

This concludes the proof that M is a generalized ¢-pullback attractor for S. [

To conclude the proof, we just have to show properties (i)-(vii).

Proposition 2.7. The sets J' and K} defined in the proof of the last theorem satisfy the
properties (i)-(vii) therein.

Proof. (i). The result follows immediately from the definition of J;* and the positive
invariance of B.

(mo+n)

i

(ii) By the construction we did previously, there exist y

i=1,...,r(mg+ n), such that

€ Bk—(mo—i-n) ) for

r(mo+n)

S<k’k B <m0 T n>)Bk_(m0+”) C U B2Cs0(w(mo+n))(zz(m0+n))

i=1

where 2" = S(k.k — (mg + n))y™ "™, for i = 1,...,r(mg + n). Noting that J* =

i

{Zi(mﬁn) ci=1,...,7r(mg+ n)}, this item is also obvious.

(iii) For all k € Z and n € N, it follows from the definition of sets K} that

S(kk — DK, C JrPUS(kk — 1D)KE =Kt

(iv) It follows from (ii) and the fact that J;* C K} for all kK € Z and n € N.
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(v) For each integer k, it follows from (i) that K = J2 C By = S(k,k — 0)By_o.
Using the positive invariance of B and item (i) again we also have
Ky =Ty US(kk — 1)K = Ty US(kk — )T,
C S(kk — (mo + 1)) Be—(mg+1) U S(k,k — 1) B4
= S(k,k—1)S(k— 1,k —mo—1)Br_me—1 US(k,k —1)By_;
C S(k,k —1)Bg_1.
Now let k € Z fixed and suppose n € N,n > 1. By property (i), positive invariance of B

and the Principle of Induction on n,
= JPUS(kk—1)Kp)
C S(kk —mo—n)Br_me—nUS(k,k =1)S(k =1k —1—(n—1))Br_1-(n-1)
S(k,k —mo —n)Br_mg—n U S(k,k —n)Br_p
S(k,k —n)S(k —n,k —n —mgy)Br_n—m, US(k,k —n)Bx_,
S(k,k —n)Bg_p.

(vi) For p = 0 it is clear that S(k + 0,k)K} = KF and for p = 1 it is a immediate
consequence of property (iii), indeed S(k + 1,k)K} C Kﬁill Now, by the Principle of
Induction on p, and using (iii) again, we have

Sk+p+1LE)C, =5Sk+p+1Lk+p)Sk+pk)K;
C S(k+p+1Lk+pKi?

n+p+1
]Ck+p+1

(vii) Let m € N fixed. If n > m
Ky c S(k,k —n)By_, = S(k,k —m)S(k —m,k —n)By_,, C S(k,k —m)B_m,

where we have used property (v) and the positive invariance of B. O

2.2 THE CONTINUOUS CASE

Using the proof of the discrete case we are able to the obtain a result for the

continuous case.

Theorem 2.8 (Existence of generalized ¢-pullback attractors for continuous evolution
processes). Let S be a p-pullback k-dissipative continuous evolution process in X and
assume that there exists a closed and backwards bounded family B = {B:},cg, which is
uniformly pullback absorbing and positively invariant family. Suppose also that there exists

v > 0 such that for s € R and 0 < 7 < 7y there exists a constant L. o > 0 for which
d(S(s +71,5)x,S(s +7,5)y) < L, d(z,y) for all z,y € B.

Then there exists a generalized p-pullback attractor M for S, with M C B.
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Proof. Consider the discrete evolution process S, defined by
Sa(m,n) = S(ym,yn) for mn € Z with m > n.

Then Sy is a p-pullback x-dissipative discrete evolution process and there exists a uniformly
pullback absorbing, backwards bounded and positively invariant family H = {H} e
where Hj, = By, for each k. In the proof of Theorem 2.6, we verified that there exists a
precompact, positively invariant and ¢-pullback attracting family £ = {Ek} ey for the
discrete evolution process Sy, with EcH.

Now, define the family G = {G},cr by Gy = S(t,kv)E}, for t € [k, (k+1)7). Note
that Gy = L}, for each £ € N and G C B. We will prove that G is precompact, positively
invariant and o-pullback attracting for the process S.

The precompactness of each G; follows immediately from its definition, since Ej
is precompact and S(¢,kv) is continuous. Now, let t,s € R, t > s. We have s = py + p,
t = qy+ q1 where p,q € Z, ¢ > p and p1,q1 € [0,7). Then,

S(t,s)Gs = S(qv + qu.py + P1)Gpyap, = S(qy + qi,.py +p1)S(pY + p1.pY) Ey
= S(gy + q.p7)Ey = S(ay + ¢1,97)S(qv.py)E, C S(av + ¢1,97)Eqy
= Gfﬁﬂrlh =G,

since S(qv,py)E, = Sa(q.p)E, C E, by the positive invariance of family {E}}, ., related
to the discrete process Sy.

It remains to prove that G is p-pullback attracting for S. Let D C X bounded
and t € R (we can write t = ¢y + to where ¢ € Z and ty € [0,y)). Taking the time
q € 7Z, since Sy is p-pullback r-dissipative, there exist C' > 0 and mg € N, such that
K (Unsm Sa(q,q¢ — n)Hy_p) < Cip(wm) for all m > mg, where Hy = By,. Since B is
uniformly pullback absorbing, there exists 7" > 0 such that S(s,c —r)D C B, for all ¢ <t
and r > T. Let s = (mg + 2)y + T. It implies that s > v + T + t; and, then, there exist
p € N, t; € [0,9] such that s = py + T + to + t; and p = my. Now,

S(tt—s)D =St (q—py—T—-t)D
= S(t,qv)S(qv.(q — p)v)S((q — p)v.(g —p)y — (T +t1))D
C S(t,q7)S(qv,(a = p)7) Big—p)s

since (¢ —p)y <tand T +t; > T, and thus

dp(S(tit —s)D,Gy) = du(S(t,t —s)D, S(t,qv)E,)
< du(S(t,q7)S(qv,(q — P)7)B(g—p)r S (t,q7) Eq)

*

< Ldg(S(qv,(q — p)7)Blg—p)y, Eq) = Ldu(Sa(q,q — p)Hy—p, Ey), (2.2)

—
N

where in () we used the facts that S(qv,(¢ — p)7)B(g-p)y C Byy and B, = UpZo Ky C

H, = B,,, which are consequences of the positive invariance of B and item (v) of the proof
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of Theorem 2.6. Now, using item (iv) from the proof of Theorem 2.6, since p — mgy > 0,
we have
Sd(Qaq - p)Hq—p = Sd(Qaq - (mO + (p - mo)))qu(mo+(p*m0))
- U BéXCgo(wp)(Z)a

zekh ™™
where C' is an appropriate constant obtained from Theorem 2.6. This ensures that
dr(Sa(q,q — p)He—p, KTT™) < 2C0(wp). (2.3)
It follows from (2.2) and (2.3) that for s > (mg+2)y+ T,

dg(S(tt — s)D,Gy) < Ldy (Sa(q,q — p)Hyp, E,)
= LdH<Sd(Q7q p q—p> U ’Cn LdH Sd(q q p)Hq_pJCZ—mO)

< 2LCp(wp) = 2LCyp (w (S’T’%))
=2CLyp ( s — 2T —2(to + tl)) < 2CLy (%s - [%T + QwD :
By the conditions imposed on ¢, there exists C; > 0 such that dg(S(t,t — s)D,G;) <
Chy (%s) for s bigger than a sufficiently large number s,.
Finally, define the family M = {M,},.5 by M; = G, for each t € R. Since B is
closed and G C B , we have M c B. Furthermore, we have:

o Misa compact, since G is precompact,
o M is positively invariant, since for all ¢ > s we know that
S(t,s)M, = S(t,s)G, C S(t,5)Gs C Gy = M,,
o M is p-pullback attracting for .S, since for s > s,
du(S(tt — 5)D,My) = du(S(t,t — $)D,G;) < du(S(tt — 5)D,Gy) < Chp(£5).

O

2.3 EXISTENCE OF GENERALIZED EXPONENTIAL AND POLYNOMIAL PULL-
BACK ATTRACTORS

We first present a proposition that will be paramount for the proof of the existence
of a generalized polinomial (or exponential) pullback attractor for a process S satisfying

suitable conditions.

Proposition 2.9. Let B € § be a uniformly pullback absorbing family. Suppose that there
exist a decay function ¢ and w > 0 such that for each t € R there exist C' > 0, 19 > 0
such that

k(S(tt—7)Bi—r) < Co(wT) forallT > 1

Then S is p-pullback k-dissipative.
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Proof. Let D C X bounded and ¢ € R. Since Bis uniformly pullback absorbing, there
exists 7' > 0 such that S(s,s —r)D C By forall s <tandr >T. Take o >0+ 71 >0
>

and note that if s > 20, sincet — o <t and s — o > T, we have

S(tt—s)D=S(tt—0)S(t—ot—s)D
=S({tt—0)S(t—o,(t—0)—(s—0))D C S(t,t —o0)B;_,

which implies that Uz, S(t,t —s)D C S(t,t — 0)B;_,. Thus, since o > 19, it follows that

/@< U St — S)D> < K(S(tt — 0)Bi_y) < Cplwo)

s>20

for all 0 > T + 79. This is equivalent to

H< U S(tt — s)D) < Cy(27)

S=>T

for all 7 > 275 + 27", and the proof is complete. O

We now present two definitions that will serve us for what follows. Let X be a
complete metric space and B C X. A function ¢: X x X — R™ is called contractive on
B if for each sequence {z,},.y C B we have

lim inf ¢ (x,,2,,) = 0.

m,n—00
We denote the set of such functions by contr(B). Equivalently, a function 1) is contractive
on B if for each sequence {x,} C B there exists a subsequence {z,, } such that

klélin w(m‘nka%) =0.

Recall that a pseudometric in a set X is a function p: X x X — [0,00) that
satisfies:
o p(xz,x) =0 for all x € X;

o p(z,y) = p(y,x) for all z,y € X;

o plw.2) < play) + ply,2) for all zy,z € X.
Let p be a pseudometric on X and consider a subset @ # B C X. We say that p is
precompact on B if given § > 0, there exists a finite set of points {z1,...,x,.} C B such
that

T

B c | Bf(x;)

j=1
where Bf(z;) = {y € X : p(y,x;) < d}. It follows from Proposition A.13 that p is precom-
pact on B if and only if any sequence {x,} C B has a Cauchy subsequence {xn]} with

respect to p.
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2.3.1 Existence of a generalized polynomial pullback attractor

The purpose of this subsection is to prove Theorem 2.10, which will be used to
ensure the existence of a generalized polynomial pullback attractor for the nonautonomous
wave equation (NWE) in Chapter 3. To state this result, we make the following definition:
we say that a family B is uniformly bounded if U1 B; is a bounded subset of X.

This result for polynomial pullback s-dissipativity is somehow technical and, in
order to simplify the notation, for an evolution process S and a fixed t € R and T" > 0 as

in the statement of Theorem 2.10 we write
Sp,=8t—(n—-1)Tt—nT) foreach n € N. (2.4)

We point out that S,, depends on both ¢ and T', but since we consider them fixed, we trust

there is no confusion with the notation.

Theorem 2.10 (Existence of generalized polynomial pullback attractors for continuous
evolution processes). Let X be a complete metric space and S be a continuous evolution
process in X such that there exists a closed, uniformly bounded, and positively invariant
uniformly pullback absorbing family B for S. Suppose that there exists v > 0 such that for
each s € R and 0 < 7 < vy there exists a constant L, s > 0 such that

d(S(s+1,5)x,S(s + 7,5)y) < Ly sd(z,y) for all z,y € Bs.

Assume also that there exist § € (0,1), r >0, T > 0, C' > 0 satisfying: given t € R, there
exist functions g1, ga: (RT)™ — R, 1,19 X x X — RY and pseudometrics py,...,pm
on X such that:
(1) gi is non-decreasing with respect to each variable, ¢;(0,...,0) = 0 and it is continuous
at (0,...,0) fori=1,2;

(ii) For each n € N, p1, ... ,py are precompact on By_,r;
(1i7) 1,09 € contr(B;_,r) for alln € N;

(iv) for eachn € N and all x,y € B,_,v we have
d(Spw,Sny)" < d(zy)" + g1(p1(Ty),spm(2,y) + 1 (2,y);
and
d(Spx,Spy)" < C{d(:r,y)’” —d(Spz,Sy)"
+ 9101 (2,Y)e . pm(2,y)) + ¢1(1’,y)]5 + 92(p1(2,Y) - om (2,9)) + Pa(2,9),

where Sy, == S(t — (n — 1)T,t —nT) for each n € N.
Then S is p-pullback k-dissipative, with the decay function ¢ given by p(s) = STWB—U. Also,
S has a uniformly bounded generalized p-pullback attractor M.
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Proof. Consider the function u: RT — R¥ defined by u(s) = (3C)~/#s'/8 4 5. Since u is
an increasing bijective function, it has an inverse function that we will denote v: R* — R™,
which also is increasing. The composite functions u"™ and v™ are also increasing for n > 2
and satisfy v <v? < v <--- andv > 0v? > 03 > - for any s > 0.

To simplify the notation even further, we set D, (z,y) = d(S,z,5.y), Gi(z,y) =
g1(p1(z.y), -+ pm(z,y)) and Ga(z,y) = ga(p1(2,y), -+ ,pm(z.y)). Then,

Dy (z,y)" < d(z,y)" + Gi(z,y) + ¢ (,y)
and
Dn(x,y)T <C [d<xay)r - Dn(CL’,y)T + Gy (*T?y) + wl (xay)]ﬁ + GQ(‘TJy) + 1/12<$,y).

Observe that

< (30) 75 {C [d(w,y)" — Du(wy)" + Ga(wy) + i (2.9))° + Gala.y) + valz,y)}
+ Dy ()"
<3025 {CF [d(wy) — Dulwy) + Gilay) + i (w.y)] + [Galey) +vnley)]F )
+ Di(z,y)
2\ ¥ , , NP 1 1
= (5) [y - Dty + Grlag) + hate)] + (5) € 7F (Galwy) + nla)]?
+ Dp(z.y)"
INF 1.1 1 1
< dwy) = Daloy) +Giay) +vrlay) + (5) CF8F [Galw)? + vala)?]
+ Dy (2.y)"
C _% 1 C % 1
= d('rvy)r + Gl(xvy) + ¢1(I,y) + <2) 71/ B (2) ﬁ
where we have used the inequality (a + b)% 25~ Ya 5 b%) for a,b > 0, proven in
Proposition A.6.
Define g(av, -+ ,am) = g1(a, ..., o) + (%)73 g2(aq, ... ,am)%, where g is a func-

tion from (RT)™ to R*, and ¢: X x X — R" by ¢(z,y) = ¥1(z,y) + (%>_E wg(:v,y)%.
Note that ¢(0,...,0) = 0, g is continuous and non decreasing with respect to each variable.
Furthermore, ¢ € contr(B,_,r) for all n € N. Since v is the inverse function of u and it is

increasing, for G(z,y) = g(p1(x,y), ... .pm(x,y)) it follows that

D, (xy)" < v(d(az,y)r + G(z,y) + 1/1(:1:,3/)). (2.5)

For A C B,_r and € > 0, there exist sets Ey, - , E, such that

p
AC U E; and diam(E;) < k(A)+ecforj=1,--- p.

=1
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If {z;} C A, there exists j € {1,--- ,p} and a subsequence {z;, } C E;, and thus

d(z;,,z;,) < diam(E;) < k(A) + ¢ for all k¢ € N. (2.6)
Since py, -+, pm are precompact on By_r and ¢ € contr(B;_7) we have
lirgligf G(z;,,x;,) =0 and li?$&f¢($ik’xif) = 0. (2.7)

Joining (2.5), (2.6) and (2.7), we obtain

1]16%1 inf D1 (ZEik,ZEZ’Z)T < lim infv(d(xik,xig)r + G([L’ik,iﬁie) + w($2k7$25)>
L—00

k,0— 00

< v ((K(A) +e)).
Since € > 0 is arbitrary, we conclude that for any sequence {x;} C A we have

liminf d(S(t,t — 1)y, S(tt —T)xy)" = Li%l_i)nf Dy ()"

m,p—00 S

< liminf Dy (x;,,2;,)" < v (k(A)").

k. —o00

Now, let A C B;_or, € > 0 and {x;} C A. As before, there exists a subsequence
{z;,} for which d(z;, ,z;,) < k(A) + ¢ for all k,¢ € N. Since py,- -, p,, are precompact on
B, 1 and B;_op, ¥ € contr(B;_7) N contr(B;_or) and SyBy_or C B;_r, we obtain

lllcr? inf G(Sgl’zk ,Szl’ie) - 07 lim inf G(‘Iikvxie) = 07
A—00

kf—o00

li?jgfw(SQxik,SQx”) =0 and lg?_i&fw(xik,xiz) =0.
Since for any x,y € By_or,
d(S(t,t —2T)x,S(t,t — 2T )y)" = d(S1522,5152y)" = D1(S2x,52y)"
< v(d(ng,Sgy)’" + G(S21,52y) + w(Sga:,Sgy)>
= v(Da(wy)" + G(S2,5y) + 1 (Sow,S2y))
<o(v(dwy) + Glay) + bay) + G(Shw.Sw) + ¥(S.5) ),

we obtain

liminf d(S(t,t — 2T)x,,,S(t,t — 2T )x,)"

m,p—00

< liminfd(S(t,t — 27)z;,,S(t,t — 2T)z;,)" < v* ((k(A) +¢)").

k,f— 00

Since € > 0 is arbitrary we conclude, for any sequence {x,} C A, that

liminf d(S(t,;t — 2T) 2, S(t,t — 2T)x,)" < v* (K(A)").

m,p—00

Inductively, for any n € N, A C B;_,r and {z;} C A we obtain

liminf d(S(¢t,t — nT)x,,S(t,t —nT)x,)" <" (k(A)"). (2.8)

m,p—00
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Denote by M a positive constant such that x(B;) < M for every t € R. We claim
that for n € N and A C B;_,r we have

k(S(tt —nT)A)" < 270" (k(A)") < 270" (MT). (2.9)
Assume that the first inequality in (2.9) fails. Then we can choose a > 0 such that
2"0"(K(A)") < a < k(S(tt —nT)A)".

Thus it implies that
1/r

6(S<t7t - TLT)A) > 9’

k(S(tt —nT)A) >

N | —

that is, S(t,t —nT') A has no finite cover of balls of radius less than or equal to “12”. Take an
arbitrary x; € A. Then, there exists xy € A such that d(S(¢t,t—nT)xy, S(t,t—nT)zs) > %ﬁ,

for otherwise S(t,t —nT)A C B 1/ (S(t,t —nT)x1). Following this idea, there exists r3 € A
T
such that d(S(t,t — nT)xs,S(t,t — nT)z;) > “oF
al/T

would be contained in the union of two balls of radius 5
{@i},en C A such that d(S(t,t — nT)x;,S(t,t —nT)x;) > a;ﬁ for all ¢ # j. Therefore

for i = 1,2, for otherwise S(t,;t —nT)A

. This process gives us a sequence

d(S(t,t —nT)x;,S(t,t —nT)x;)" > % > v (k(A)"),

which contradicts (2.8). The second inequality of (2.9) follows immediately from the fact
that v™ is non-decreasing.

From Proposition A.8, there exists ng € N, such that for n > ng we have

(M) < [0 = o) (5= 1) (14 30)F 4 05T

Hence, if n > ng and A C B;_,,7 we have

k(S(tt —nT)A) < 20" (M7

B
<2 {(n —no) (L —1) (1+3C)F 4 M )} B
In particular, for n > ny we obtain
L1 )]
K(S(tt — nT)Bynr) < 2 [(n —ng) (= 1) (14+30) F + M ] .

If s > (ng+1)T and n € N is such that 7 —1 < n < Z, we have n > ng and since
S(t - TLT,T, - S)Btfs - BtfnT7

K(S(tt—s)Bi_s) =k (S(tt—nT)S(t —nTt—s)B_s)
< k(S (t,t = nT) Bi_nr)

B
r(B=1) | 7(B—1)
B

N

2 [(n—no) (5-1)(1+3C)7 +M
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—
*
~

2[(5—1—no) (5 —1) (1+30) 3] 77

[} (-1) (1 +30) Fs— (1+no) (A1) (1 + 30)—?3} e

N

I
DO
sy

5
=2(ws —n)TED,

where

wzé(é—l) (14 3C)7% and n = (1 + no) (3-1) (1+30)77,

and in (%) we used the fact that the exponent ﬁ is negative. Now, there exist C; > 0
5 5

and so > 0 such that 2(ws — 7)™ 10 < Cy(ws)"@ D for s > sg. Then, taking s > s :=

max {so, (ng + 1)T'}, we have

K(S(tt — 8)By_s) < Cy(ws) @D

for s > s;.

It follows from Proposition 2.9 that S is ¢-pullback r-dissipative, with the decay
function ¢ given by ¢(s) = sﬁ, and therefore, from Theorem 2.8 there exists a
generalized @-pullback attractor M for S with M C B. Since B is uniformly bounded, so
is M. [

2.3.2 Existence of a generalized exponential pullback attractor

The result for exponential attraction is far less complicated than its polynomial

counterpart, as we can see in what follows.

Theorem 2.11 (Existence of generalized exponential pullback attractors for continuous
evolution processes). Let X be a complete metric space and S be a continuous evolution
process in X such that there exists a closed, uniformly bounded, and positively invariant
uniformly pullback absorbing family B for S. Suppose that there exists ~v > 0 such that for
each s € R and 0 < 7 < vy there exists a constant L, s > 0 such that

d(S(s +7,8)x,S(s + 7,5)y) < L, sd(z,y) for all z,y € Bs.

Assume also that there exist u € (0,1), T > 0, r > 0 satisfying: given t € R, there exist
functions g: (RT)™ = RY ¢ : X x X — RT and pseudometrics py,...,pm on X such that

(i) g is non-decreasing with respect to each variable, ¢(0,...,0) = 0 and g is continuous
at (0,...,0);

(ii) for each n € N, the pseudometrics ps,..., pm are precompact on By_pr;
(iii) 1 € contr(By_,r) for alln € N;

(iv) for eachn € N and x,y € B;_,r we have

d(Snz, Spy)" < pd(z,y)" + g(p1(2,Y),..., pm(T,y)) + (zy),
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where S, := S(t — (n — 1)Tt —nT) for each n € N.
Then S is p-pullback k-dissipative, with the decay function ¢ given by p(s) = p°.
Also, S has a uniformly bounded generalized p-pullback attractor M.

Proof. For A C By,_p and € > 0, there exist sets Ej,...,E, such that

p
AcE; and diam(E;) < k(A)+e for j=1,.p. (2.10)
j=1
If {z;} C A, there exists j € {1,--- ,p} and a subsequence {z;, } of {z;} such that
{z;,} C E;. Thus,

d(z;,,z;,) < diam(E;) < k(A) + ¢ for all k,l € N. (2.11)
Since py, -+, pm are precompact on B,_r and ¢ € contr(B;_r), we have
llicf}l_jglofg(pl (i iy)s s pm(Tiy,xi,)) = 0 and lllgr{l_}?ofw(x’k’x”) =0. (2.12)

Joining (2.11), (2.12) and hypothesis (iv), we obtain

liminf d(Syz;,,512;,)" = liminf d(S(¢t,;t — T)x;, ,S(t,t — T)x;,)"
k,l—oc0 k,l—oc0
< liminflud(w, )" + 9o (@isi)s s o (i) + (i, 2]
< p(r(4) +¢)",
and, since € > 0 is arbitrary, we conclude that for any sequence {x,},en C A we have

lim inf d(Syzy,S120)" < pr(A)".
kf—o0

Now, let A C B;_o7, ¢ > 0 and {z;} C A. As before, there exists a subsequence
{z;, } for which d(z;, ,x;,) < k(A) + ¢ for all k,l € N. Since py,- -, p,,, are precompact on
Bt—T and Bt_QT, w S COIltI‘(Bt_T) N COIltI'(Bt_QT> and SgBt_QT C Bt—T; we obtain

lllﬁgljgofg(pl<wzkawzl)a Tt apm(xik7xil)> = 0 ) lkf?jgof¢(mzk7xu) = 07
lllgr’}l_glofg(pl (SQCUZ'MSZL'%'Z)? e 7Pm(52$ik732$iz)) =0 ) lllg}l_glofl/)(SQka7S2xll) =0.
Since for any =,y € B;_or,
d(S(t,t - QT)ZL‘,S(t,t - QT)y)r = d(Sngx,Sngy)r
d(S21,52y)" + g(p1(S22,52Y); - - -, P (S22,52y)) + ¥(S27,52y)

7
plpd(z,y)" + g(pi(@,y), - - - s pm(2,y)) + U(2,9)]
+ 9(01(5290,529)7 S >Pm(52$,szy)) + @/)(52957529%

<
<

we obtain

liminf d(S(t,t — 2T)x;,,S(t,t — 2T)x;,)" < p?(k(A) +€)",

k,l—o00
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and, again, since € > 0 is arbitrary, we conclude that for any sequence {z, },en C A,

liminf d(S(t,t — 27) xS (t,t — 2T)x,)" < pPk(A)".

m,p—00

Inductively, for any n € N, A C B;_,r and {z, }nen C A we obtain

liminf d(S(t,t — nT)x,,,S(t,t —nT)x,)" < p"w(A)". (2.13)

m,p—o0

Denote by M a positive constant such that x(B;) < M for all t € R. We claim that
forn € Nand A C B;_,,r we have

k(S(tt —nT)A)" <2"u".k(A)" < 2"u"M", (2.14)

for which the proof is completely analogous to that one presented for (2.9). In particular,
we conclude that
k(S(t,t = nT)By_nr) < OMpu+  for n e N.

Finally, for s > T', if n € N is such that 7 —1 < n < #, from the positive invariance

of B we obtain

k(S(tt —s)Bi_s) =k (S (t,t —nT)S(t —nT,t —s) Bi_s)
< k(S (t,t — nT) By_pr) < 2Mp+ < 2Mpim ™+ < Cp,
where C' = 2M /f% and w = %T It follows from Proposition 2.9 that S is p-pullback
r-dissipative, with decay function ¢ given by ¢(s) = u®, and therefore, from Theorem 2.8
there exists a generalized p-pullback attractor M for S with M C B. Since B is uniformly
bounded, so is M. O

2.4 PULLBACK ATTRACTORS

In this section we want to relate the notion of a generalized p-pullback attractor
and the one of a pullback attractor, just as in the exponential case. For a different and
more detailed approach on this subject we refer to (CARVALHO; LANGA; ROBINSON,
2013). See also Definition 1.3 to recall the concept of the pullback attractor for an evolution

process. More specifically, we state and prove the following result:

Theorem 2.12. Let S be a ¢-pullback r-dissipative evolution process in X with a back-
wards bounded generalized -pullback attractor M. Then S has a pullback attractor fl,
with A c M.

As we know, in the autonomous theory of global attractors for semigroups (see
(LADYZHENSKAYA, 2022), for instance) the w-limit sets are the fundamental tool. Here,
things work analogously. Recall that for a nonempty subset D of X and (¢,s) € P we set
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S(t,s)D = {S(t,s)x: x € D}, and for a fixed t € T we define the pullback w-limit set
of the family D € F at the time ¢ by

and the pullback w-limit of D is the family w(D) = {w(D,t) }er. If D C X is any subset,
we analogously define its pullback w-limit set at time t € T by

w(D,t) = ﬂ U S(t,s)D,

o<t s<o

and the pullback w-limit w(D) = {w(D,t)}1er. As in the autonomous case (see (LA-
DYZHENSKAYA, 2022)), we have the following characterization:

Proposition 2.13. Let S be an evolution process in X, DeFandt €T. Then RS w(ﬁ,t)

iff there exist sequences s, — —oo and {x, }nen with x, € Dy, for each n € N such that

S(t,sp)xn — y. Moreover the pullback w-limit w(D) is closed.

Proof. If y € w(D,t) then y € U,, S(t,5)D, for all ¢ < t. Since y € Usey_q S(t,8) Dy,
there exist s; <t — 1 and x; € D;, such that d(S(¢,s1)z1,y) < 1. In the same way, since
y € Uscs_ S(t,5) Dy, there exist s, <t — 2 and xzy € D, such that d(S(t,s2)x2,y) < 3.

Continuing with this reasoning, we find sequences s, = —oo and {,}, . where z,, € D,

satisfying d(S(t,s,)n,y) < + for each n, which implies S(¢,5,)2, — y.

On the other hand, take y € X, sequences s, — —oo and {z,}, .y with z,, € Dy,
for all n € N and S(t,s,,)z, — vy, and fix ¢ < t. Since s,, — —o0, there exists ng € N such
that s, < o for all n > ng. Therefore, S(t,s,)x, € Uz, S(t,8)D; for all n = ng. Since
S(t,80)T, — y, it follows that y € U,, S(t,5)Ds. Since o < t is arbitrary, we obtain

s<o

ye () U S(ts)Ds =w(D,).

o<t s<o

]

We say that an evolution process S is pullback w-limit compact if for given
D C X bounded and ¢t € T we have

im s <5L<Jg S(t,s)D) = 0.

It is clear that S is a pullback w-limit compact evolution process if and only if given
D C X bounded, t € T and € > 0, there exists 75 > 0 such that

K (U S(t,t—a)D) < ¢ forall 7 > 7.

o>T

We have the following result:
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Proposition 2.14. If S is a ¢-pullback k-dissipative evolution process in X, then S is
pullback w-limit compact. If S is pullback w-limit compact, then for each t € T, a bounded

sequence {x, tnen in X and s, — —o0, we have {S(t,8,)xn, tnen relatively compact in X.

Proof. Let D C X a bounded subset, t € T and € > 0. Since S is @-pullback x-dissipative,
there exist constants ¢ > 0 and 7y > 0 such that x (U,>, S(t,t — o)D) < cp(wr) for all

T > 7. Since ¢ is a decay function, there exists « > wry such that cp(a) < e. Thus,

/{( U S(t,t — U)D> < ey (wj) =cp(a) <e,

U}%

which means that S is pullback w-limit compact.

Now suppose that the process S is pullback w-limit compact. Let ¢t € T, {z,}nen
be a bounded sequence and s, - —o00. Set D := {z,,: n € N}. Given ¢ > 0, there exists
so < t such that & (Uscq, S(t,5)D) < e. Since s, — —o00, there exist N € N such that

Sn < 8o whenever n > N, which implies

U S(t,sn)z, € |J Stsn)D C | S(t,s)D

n=>N n>N s<so

Thus, & (U,sny S(t,5n)2n) < € and hence

K (U S(t,sn)xn> (NulS tsn)z, U | S(tsn)x n)

neN n>N

< max {/i ( U S(t,sn) n) K ( UNS(t,sn)xn) }
= max {O, K ( U S(t,sn)xn) } <K ( U S(t,sn)xn) <e

Since € > 0 is arbitrary, we obtain & (U,en S(t,5,)%,) = 0, which proves that the sequence

{S(t,8n)xn tnen has a convergent subsequence.
O

The concept of pullback absorption is closely related to the one of pullback attrac-
tion (see Definition 1.2). It is easy to verify that if B is pullback absorbing (attracting)
and B C A then A is pullback absorbing (attracting). Clearly, if B is a pullback absorbing
family then B is a pullback attracting family. The converse does not always hold, but
the following result gives us a partial converse. For » > 0 and a nonempty set A C X we
define the r-neighborhood of A by

O,(A) ={z € X: d(z,a) <r for some a € A}.

Proposition 2.15. If B is a pullback attracting family for S, then for each r > 0 the
family A = {O.(By) }er is pullback absorbing for S.
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Proof. Let D C X bounded and ¢t € T. Since B is a pullback attracting family, we have

lim dy(S(t,s)D,B;) = 0.

S—r—00

This implies clearly that there exists a number sy such that S(¢,s)D C O,(B;) for all
s < sp, and A is a pullback absorbing family. O]

Lemma 2.16. Let S be a pullback w-limit compact process on X. If D C X is bounded,
then for eacht € T we have lim dy(S(t,s)D,w(D,t)) = 0.

Proof. Suppose the opposite, that is, there exist ¢g > 0 and sequences s, — —oo and
{@n},en € D such that

d(S(t,sp)rn, w(Dit)) =29 >0 forallneN. (2.15)

Since S is pullback w-limit compact, it follows from Proposition 2.14 that the sequence
{S(t,sn)Tn}, ey is relatively compact, thus it has a convergent subsequence (to some
y € X), in other words, y = jli_)rgo S(t,5n;)Tn,. Clearly y € w(D,t), which is a contradiction
with (2.15). O
Lemma 2.17. Let S be a pullback w-limit compact evolution process in X and BeFa

A

pullback absorbing family. Then w(B) is pullback attracting.

Proof. Firstly, for D C X bounded, we prove that w(D,t) C w(B,t) for all t € T.
Let zy € w(D,t). Then there exist sequences s, — —oo and {z,},.y C D such that
S(t,sn)Tn — To. Since B is pullback absorbing, given 7, — —o0 there exists {0y}, oy With
oy < T, such that S(7,,s)D C By, for all s < 0,,. We can take a subsequence of {s,}, .y,
which we will denote the same, such that s, < o, for all n € N. Thus,

Ty = 11113)10 S(t,sn)x, = nhﬁrgc> S(t,7)S(TnySn) Tn,

and, since S(7,,5,)2, € B, , it follows that z¢ € w(B,t) and this first claim is complete.
From w(D,t) C w(B,t) for all ¢ and the fact that lim dy(S(t,s)D,w(D,t)) =0

we conclude that

lim dy(S(t,s)D,w(B,t)) =0,

§——00

and the proof is complete. O
The next is a simple and useful topological lemma.

Lemma 2.18. Let K be a compact subset of X. If {x,}nen is a sequence in X with

d(xn,K) — 0, then there exists a subsequence of {xy}, .y converging to a point of K.

Proof. For each n € N we can choose z, € K with d(z,,z,) < % Since {2z, tnen € K and
K is compact, up to a subsequence we can assume that z, — z € K. Hence it is clear

that x,, — z, and the proof is complete. O
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Lemma 2.19. Let S be a pullback w-limit compact evolution process in X . Then for each

backwards bounded family BeFandte T, we have w(é,t) nonempty, compact,

A

lim dy(S(t,s)B,w(B,t)) =0 (2.16)

§——00
and the family w(B) is invariant.

Proof. Let t € T and B € § be a backwards bounded family. Let D = Us<t Bs, which
is bounded by hypothesis. If s,, = —o0 and {z, },en are sequences with z,, € By, , then
{Zn}nen C D and thus {z, },en is bounded. Thus, from Proposition 2.14, it follows that,
up to a subsequence, S(t,s, )z, — y for some y € X. Clearly y € w(B,t), and thus w(B,t)
is nonempty.

To show that it is compact, let {y, }neny C w(B,t). Thus for each n € N there exists
sp < —n and x, € B, with d(S(t,8,)xn,yn) < % From Proposition 2.14, there exists
y € X such that S(¢,s,)x, — vy, up to a subsequence. Clearly y € w(l%,t) and, along this
subsequence, ¥, — y. This shows that w(B,t) is compact.

Now we prove (2.16) for each fixed t € T. Suppose that this does not hold, that is,
assume there exist g > 0 and sequences s,, — —o0 and {z, },en C X with z,, € B, for
all n such that

d(S(t,sp)zn, w(Bt)) > ey forallneN, (2.17)

Since S is pullback w-limit compact, it follows from Proposition 2.14 that the sequence
{S(t,50)Tn}, ey is relatively compact, thus it has a convergent subsequence {s,, }jen (to
some y € X) of {8y }nen, in other words, S(t,s,;)7,, — y as j — oo. Clearly y € w(B,t),
which contradicts (2.17).

Lastly we prove that w(B) is invariant. We start showing that if ¢ > s then
S(t,s)w(B,s) C w(B,t). Indeed, let z € S(t,s)w(B,s). Then there exists y € w(B,s) such
that z = S(t,s)y. Since y € w(B,s), there are sequences s, — —oo and z,, € Bj, for all

A

n € N, such that S(s,s,)x, = y. Fort > s > s, we have
S(t,sn)xy, = S(t,5)S(s,5n)xn — S(t,s)y = z,

and thus it is clear that z € w(B,t). To show the negative invariance, let z € w(B,t) and
fix s < t. There exist sequences s, — —oo (which we can assume that s, < s for all
n € N) and {z,}, .y C X with z, € By, for all n € N such that S(¢,s,)z, — 2. From
what we have just proved, 7}1_}11010 d(S(s,sn)xn,w(é,s)) = 0 and Lemma 2.18 implies that, up
to a subsequence, {5(s,5,)%n}, oy converges to some y € w(B,s). This gives us
z= }i_)l]([)lo S(t,8n,)Tn, = jli_}r(r)lo S(t,5)S(5,8n,)Tn; = S(t,5)y,

which means z = S(t,s)y, where y € w(B,s). Therefore, z € S(t,s)w(B,s) and the proof is
complete. O
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Lemma 2.20. Let S be an evolution process in X and let B € be a backwards bounded
family. If C € § is a closed pullback attracting family, then w(B) c C.

Proof. Fix t € T and let z € w(B,t) and D = U, Bs, which is a bounded subset of X.
There exist sequences s, — —oo and x, € By, for all n € N such that S(¢,s,)x, — 2.

Since C' is pullback attracting, we have
d(S(t,sn)Tn, Cr) < du(S(t,$,)Bs,, Cy) < dy(S(t,sn)D,Ct) — 0 as n — 0.
Since S(t,8,)T, — 2, it follows that z € C; = C; and the result is proved. O

Joining Lemmas 2.16, 2.17, 2.19 and 2.20 we have sufficient conditions to obtain a

pullback attractor.

Proposition 2.21. Let S be a p-pullback k-dissipative evolution process in X with Bejg
a backwards bounded and pullback absorbing family. Then S has a pullback attractor A
given by A = w(é)

With that, we are able to present the proof of Theorem 2.12.

Proof of Theorem 2.12. Since M is a backwards bounded generalized p-pullback attractor,
given r > 0 the family B defined by By = O,(M;), is a backwards bounded and pullback
absorbing family for S, by Proposition 2.15.

Hence, from Proposition 2.21 it follows that S has a pullback attractor A = w(f?)
Lastly, since M is a closed pullback attracting family, it follows from Lemma 2.20 that
A =w(B) c M, and the proof is complete. ]

Note. In the next chapter, we will apply all this theory to the study of a class of
nonautonomous wave equations. The step-by-step of this application is as follows: first,
we prove the existence of a uniformly pullback absorbing family B for the given process,
which is closed and uniformly bounded. Next, we construct a family C' that satisfies the
same properties as B, but with the additional property of being positively invariant. With
this family C and suitable properties for the evolution process, we prove the existence of
a generalized -pullback attractor M. As a consequence, we ensure the existence of the
pullback attractor A.

This process leads us to a sequence of containments between these families, namely
A c M c C c B, as depicted in the Figure 1. Note that the closer to the center,
the stronger the properties of compactness and invariance become, but the weaker the
information on attraction rate becomes. In this sense, the generalized p-pullback attractor
- the central theme of this work - represents the structure that still maintains good
properties related to invariance and compactness, but with controlled and understood

attraction rate (in a qualitative sense).
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7~ Closed
Uniformly pullback absorbing

A

M

Compact

Positively invariant
Pullback attraction ¢

~ Compact

Invariant
Pullback attraction (unknown rate)

Closed
Positively invariant
Uniformly pullback absorbing

Figure 1 — Representation of the inclusion AcMcCcB.
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3 APPLICATION TO A NONAUTONOMOUS WAVE EQUATION

Inspired by the works (ZHAO; ZHAO; ZHONG, 2020a), (ZHAO; ZHONG; YAN,
2022), and (YAN et al., 2023), and following their main ideas, we study the nonautonomous
wave equation with non-local weak damping and anti-damping (NWE), and prove the
existence of a generalized polynomial pullback attractor when p > 0 and the existence of

a generalized exponential pullback attractor for the specific case p = 0. We recall that
(NWE) is given by

un(t.x) — Ault,z) + k(@)[Ju(t, )| 720w (t.z) + f(tultz))
= [ K@y)u(ty)dy + h(x), (t2) € [s,00) x 2,
u(t,x) =0, (t,x) € [s,00) x 0L,

u(s,x) = up(x), u(s,x) =uy(z),z €

where 2 C R? is a bounded domain with smooth boundary 9. Here, u represents the
displacement of a wave in €2, subjected to a non-local damping k(t)[[u(t,") |72y and an

anti-damping [, K (x,y)u(t,y)dy. We assume the following:
(Hi) p > 0;
(Hy) K € L*(Q x Q) and we set Ky = || K||12axq);

(H3) k: R — (0,00) is a continuous function satisfying 0 < ko < k(t) < ky for all t € R,
where ko,k; are constants, and when p = 0 we require that ky > Ky, where K is
the constant of (H,);

(H4) h € LQ(Q) and we set hgy := HhHLZ(Q),
(Hs) f € CY(R? R) satisfies

. Of
1|1ur|n—>loréf <%£ﬂ£8v(t,v)) > =)\, (3.1)
f(t,0) =0 for all ¢t € R, and there exists a constant ¢y > 0 such that for all t,v € R
we have
0
‘ai(t,v) < o1+ v)?) (3.2)
0
‘a{(t,v) < ¢, (3:3)

where A\; > 0 is the first eigenvalue of the negative Laplacian operator —A with
Dirichlet boundary conditions in , that is, of the operator A := —A: Hj(2) N
H?(Q) C L*(Q) — L?*(2), which is positive and selfadjoint, with compact resolvent;

(Hg) For t,v € R we define the function

Fitw) = [ f(t)d (3.4)
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for which we assume that ¢y > 0 previously defined is such that for all ¢ € R we

J

The main result of this chapter is the following:

have
oF

E(t,v) dv < ¢p.

Theorem 3.1. Assume that (Hy)-(Hg) hold true. Then the evolution process S associated
with (NWE) in X := H}(Q) x L*(Q) possesses a uniformly bounded generalized p-pullback

attractor M in X, where
1
(a) o(t)=t"» if p>0;

(b) p(t) =e " if p=0, where o := min{\/Ay, ko}.
Furthermore, S has a pullback attractor A, with A c M.

Our efforts from now on are dedicated to present the proof of this result. We point
out that when p > 0, the damping term k(t)[|u[|7> () us is effective, that is, it overpowers
the anti-damping term [, K (z,y)u(t,y)dy, whatever the positive lower bound k¢ of k(t)
might be (since the damping ||u||Pu; grows with power p + 1, and the anti-damping has
power 1). However, when p = 0, the damping term is k()u;, which becomes effective only
when it is stronger than the anti-damping term, which is why we require the condition

ko > Ky, since both of them grow with power 1.

3.1 AUXILIARY ESTIMATES

Now we present a few estimates regarding the functions f and F that will help us in
the sections to come. In what follows, unless stated otherwise, C' denotes an independent
positive constant for which its value may vary from one result to another, from one line to
another, and even in the same line. Also, from now on, we are assuming that conditions
(H;)-(Hg) hold true. To simplify the notation, we will omit the (€2) from the subscript of
the norms. For instance, we write || - ||z instead of || - ||z2(), || - [ g instead of || - || g1 (q),
and henceforth. Also, for a Banach space Z we will denote E}ZB the closed ball with radius
R centered at 0 in Z.

Proposition 3.2. For v € L*(Q2) we have

|[ Ky | < Kollolze
Q L2

Proof. Using Holder’s inequality, we have

[ Ky < [ Kol < ( [ Keplds) bl

Thus

2
d <// K(x, 2dyd 2
- 0 Q‘ (2,y)|"dydz||v]|7

2
LQ/Q

|| K@y

| K@yylydy
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= [ |K(zy)Pdyde|olfs = K]

Proposition 3.3. For all t,v,w € R we have:
(i) 1) < 2co(1 +[0]);
(ii) 1f(t) = f(tw)] < 2c0(1 + [o]* + [w]*)]v — w];
(iii) |F(t,w)] < 4co(1 + |v|b);
(iv) |F(tw) = F(tw)] < 8co(L + [v]* + [w]) v — wl;
(v) | % (t0) = 22 (tw)| < 2e0v — w.

Proof. Proof of (i). From (Hjs), we have

v af
/0 a(t,r)dr

<. |v|3+||
x 0 3

|f(tw)| < |f (t0)|+*00|v| + cov] < co + colv]* + colv],

|f(to)] = | f(0)] < |f(tw) — f(2,0)] =

< ‘/U co(1+ |r|*)dr
0

Therefore,

and thus
Ift0)| < co(1+ o] + [v]*)  for tw € R,

Since |v| < |v]* + 1 we have

|f(t0)] < 2¢(Jv]* +1)  for tw e R.

Proof of (ii). For t,v,w € R there exists a point r between v and w such that

|f(tw) — f(tw) |—‘ of (t,r)] v —w| < co(1+ |r*)|v — w).

Since |r| < |v| + |w], using Proposition A.6, we obtain
[f(tw) = f(tw)] < 2e0(1+ [v]* + [w]*)|v — w].
Proof of (iii). Using (i) we have

o) < | [ 15n)dr| < 20| [ (o + 1)dr
0 0

4
2%<U+M><zmwﬁ+wn<%drﬂwﬂ

< 209

since |v] < |Jv|* + 2.
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Proof of (iv). Again, using (i) and Proposition A.6, note that

/ ft,r)dr] <
<|[ 201+ [rP)ar <800(1—|—|U|3+|w| o — wl.

|F(t,v) — F(t,w)| <

|ft7” |dr

Proof of (v). Since % (t,v) — 98 (tw) = [ 88{ (t,r)dr, this item follows easily. O

In what follows, we use < to denote continuous inclusions and << to denote

compact inclusions.

Lemma 3.4. There exists a constant Lo > 0 such that
1£(t0) = Ftaw) i < Lo(L+ ol + leolZ)llo = wllmy  for all vaw € HY(Q).
In particular
1£(t0) = Ftw)lze < Lo(l + 283 |jv — wlly  for all v € Bd®.

Proof. From Proposition 3.3, since (a; + as + a3)? < 4(af + a3 + a3) for ay,as,a3 = 0, we
obtain
[f(tw) = fltw) < 16c5(1 + [v]* + Jw|)|v — w]?,

which, using Holder’s inequality, with exponents % and 3, gives us

(k) = fta)liF = [ 17(t0) = f(tw) Pda
< 1603/ v — w|dz + 160(2)/ lv[*|v — w|rdx + 1603/ lw|*|v — w|rdx
Q Q Q
< 16¢g]|v — wlZz + 16¢g||vollv — wllZo + 16¢5|w]| 76w — w]|7e

16¢2
< B2 lv — w3y + 166 ol v — w3 + 166wl o = wlff,

where in the last inequality we used the continuous inclusion Hg(Q)) < L%(Q2), with

constant ¢ > 0, and Poincaré’s inequality ||u|/z2 < )\%HUHHS for u € H} (). This implies,

for Lo := (max { 1§f3 ,166(2)06} )%, that

1£(t0) = Fta) 3 < L3+ Tollly + leoli)le - wl,.
and the result is proved, since v/a; + as + a3 < /a1 + /as + (/a3 for aj,as,a3 > 0. O]

Proposition 3.5. There exist 0 < pg < Ay and M = M(ug) > 0 such that

of
z%g 5 (t,w) > —po for all |v| > M.

Proof. This follows directly from the definition of lim inf. O

Proposition 3.6. For each M > 0 we have [, |f(tw)|dv < 8co(1 + M*) for allt € R.
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Proof. For t € R we have
M
M -M

M M
/ |f(tv)]dv < 260/ (1+ [v]*)dv = 400/0 (1 +v*)dv

M4
= 400 <M+ 4) < 8C0<1 + M4),

since M < M* + 2. O

Proposition 3.7. Fizing 0 < g < Ay and M = M (o) > 0 given by Proposition 3.5, we
have
F(tw) > —#t210? —8co(1+ M*)  for |v| > M and t € R,

and
|F(tw)] < 8co(1+ M*)  for |v| < M and t € R.

Proof. From Proposition 3.5 we know that %(t,v) > —pg > —%’\1 fort € Rand |v| > M.
By the Fundamental Theorem of Calculus, for v > M and t € R we have f(t,v) > —%v

and, consequently,

/M ft,r)dr > —/M wrdr > _/0 wrdr _ _WU?

Since from Proposition 3.6 we have

M M M 4
’/0 F(tr)dr </0 |f(t,r)\dr<[M]f(t,r)]dr<8co(1+M ),

we obtain
M v A\
Fltw) = / Fltr)dr + / F(tr)dr > 2002 g1 4+ ),
0 M

Analogously we prove the estimate for v < —M.
Now, for |v] < M and t € R,

M
</ |f(tr)] drr < 8co(1 + MY,
M

F(tw)] = ‘ /0 " F(tr)dr

and the proof is complete. O]

Remark 3.8. The hypotheses f(¢,0) = 0 is used to obtain the estimates as they appear
in Proposition 3.7. We could, alternatively, require only that |f(¢,0)| < ¢y for all t € R.
This proposition (and all the subsequent results) would remain true, but with a small
change in the constant —8co(1 + M*?).

Proposition 3.9. Fizing 0 < py < Ay and M = M(uy) > 0 given by Proposition 3.5,
there exists a constant eq > 0 such that

F(tw) <vf(tw)+ %UQ +ey  for|v] > M andt e R.
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Proof. From Proposition 3.5, we have %L(t,v) > —puo for |v] > M and t € R. Using

integration by parts, we obtain

v v o9
/ f(t,r) dr = vf(tw) —/ r—f(t, r) dr.
0 o Or
Ifv>M,
v M f v f
Flt, :/ t.r) dr = vf(t, —/ 914, d—/ Lt dr.
(o) = [ () dr=vf(e) = [ rShwr)y dr— [ S ) dr
M? . Mof
We choose a constant ¢ > #5— sufficiently large such that / ra—(t, r) dr > —c. Fur-
0 r
thermore,
v Of v _ pov® | M
/Mra(t,r) dr > —/Mr,ug dr = — 5 + 5
Then,
M2
F(tw) <vf(tw)+c+ %02 — 'u02 =vf(tw)+ %02 + eo,
where eg := ¢ — %W > 0. Analogously we prove the estimate for v < —M. O

Translation of the problem

Seeking to use our knowledge of the autonomous problem, presented in (ZHAO:;
ZHAO; ZHONG, 2020a; ZHAO; ZHONG; YAN, 2022), we use the translations of the
original nonautonomous problem in order to obtain a problem defined in [0,00) rather
than on [s,00). To be more specific, fixing s € R and setting v(¢,x) := u(t + s,z) for t > 0

and x € (), we formally have
v (t,w) = Av(t,x) + ko (t) ve(t, )72 ve(tx) + fo(E v(tx))
— [ K@y)ulty)dy - h(e)
=uy(t+s,x) — Au(t +s,2) + k(t + ) ||ue(t + s, )||72 ue(t + s, 2)
+ f(t+ su(t+ s,x)) — /Q K(zy)u(t + s,y)dy — h(z) =0,
where the boundary and initial conditions become
v(t,x) =u(t+s,x) =0 for (t,x) € [0,00) x O,
v(0,z) = u(s,x) = up(x), v(0,x) = w(s,x) = uy(x) for x € Q.
Thus, we will study the boundary and initial conditions problem
v (t,x) — Av(t,x) + ks(t) ||oe(t, ) [[F2 ve(tx) + fo(to(tx))
= [ K@y)u(ty)dy+hi), (ta) € [0,00) x 2,
v(t,x) =0, (t,z) € [0,00) x 052,
v(0,2) = up(z), v:(0,2) = wy(z), x € Q,

(tNWE)

instead of (NWE). This problem is equivalent to the initial one, but with the nonau-
tonomous terms being ks(-) = k(- + s) and fs(-,-) = f(- + s,) instead of k and f. Addi-
tionally, we denote Fy(-,-) = F'(- + s, ).
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3.2 WELL-POSEDNESS

We will use the classical Semigroups Theory to obtain the existence of local weak
solutions, continuous dependence on initial data and a result regarding the continuation
of solution. To that end, we transform (tNWE) into an abstract Cauchy problem in an
appropriate phase space.

Taking w = v; in (tNWE), we obtain

we = v = Ao — () Jullfave = fi(t0) + [ Klwy)ulty)dy +he),

and thus

d v —Ut B [ w

d’f[w] N wt] Av = k@)t Bav — futw) + Jo K(y)v(ty)dy + h(z)
o I|] 0 ]
A0 Jo K (@g)w(ty)dy + h(x) = f(tw) = ko(t) [w]ffzw]

Setting X := H{(Q) x LA(Q), V =[], Vo = [10], A= [{ {] and G(£,V) = [ et |,

where

v

GtV) = [ K(@gywlty)dy +h(@) = f(t) = £ ]z v,

we can represent (tNWE) by an abstract Cauchy problem

av

= AV +G(tV), t >0
dat gy, t> (ACP)
V() =V, € X.

Clearly X is a Hilbert space with the inner product defined by

([ar s [u3 ) x = <Ul7vQ>Hé(Q) + <w17w2>L2(Q)a

with associated norm

HEE11% = ol + [z

The operator A: D(A) C X — X has its usual domain D(A) = {[5] € X: A[Y] € X},

and we can characterize it completely.
Lemma 3.10. We have D(A) = [H*(Q) N HJ ()] x H}(Q).

Proof. Let [] € D(A). Then v € H}(Q), Av € L*(Q) and w € HJ(2). Therefore
v € H*(Q) (by elliptic regularity), which proves that D(A) C [H*(Q) N H(Q)] x H ().

Conversely, if [ 5] € [H*(2) N HJ(Q)] x Hi (), we have v € H*(Q) N Hy () and
w € H}(Q) C L*(Q). Clearly [{] € X and since v € H*(Q), we have Av € L*(Q2). This

proves the converse inclusion and completes the proof. O]
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The linear problem

It follows directly from the characterization of D(.A) that it is densely defined. If
we can prove that it is closed, dissipative and Im(/ — A) = X, we can apply the Lumer-
Philips Theorem (see (PAZY, 2012)) to show that A is the infinitesimal generator of a

C-semigroup of contractions {e**: ¢ > 0} in X.
Proposition 3.11. A is closed, dissipative and Im(I — A) = X.

Proof. To show that A is closed consider the sequence {[." |} C D(A) such that [, ] —
[o]in X, and also A[4" ] — [¥] in X. This means that

1 2 1 2
(i) v B (ii) wn =% w; (iii) w, 29 4 (iv) Av, Z9p,

From (ii) and (iii) is clear that w = y € H(f2). Now for a given test function
¢ € C5°(§2) we have

/Q boda /Q Avybdz = /Q vaAbdz — /Q vAdr,

which shows that b = Av € L*(Q), and since v € H}(Q2), we obtain v € H?(2). Therefore
[v] € D(A) and A[5] = [¥], which shows that A is closed.
Now if [ ;] € D(A) we obtain

(Alu] [alx = (&) [0 x = (W, v) gy + (Av,w) 12(q)
:/QVwVde+/QwAvdq;

:/VUdex—/ VoVwdx = 0,
0 0

which shows that A is dissipative.
It remains to show that Im(/ — A) = X, that is, given {H € X, we want to find
(4] € D(A) such that (I — A)[3] = [ﬂ This is equivalent to find v € H*(Q) N Hi(Q)
and w € Hg () such that
v—w=f,
{w —Av =g.

v—Av=f+g. (3.5)

Adding both equations we obtain:

If we can find v € H*(Q)NH}(Q) that solves (3.5), defining w := v— f we have w € H}(Q2)
and the problem is solved. Thus, our problem is that given f € H}(Q) and g € L*(Q2), we
want to find v € H?(Q) N H () such that v — Av =g + f.

Define the symmetrical bilinear form a: Hj(2) x Hg(2) — R by

a(hw) = /thdx + /Q VhVudr = (hv)r2(0) + (h, 0) g1 o)-
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Using the Poincaré’s inequality, we have
la(h,o)| < (L+ A7)l ol g

hence a is continuous. Also

CL(U,U) 2 HUHJQLI(}?

which means that a is coercive.
Define the linear functional ¢: H}(Q) — R by £(h) = / (9 + f) hdx. Again, using
Q

the Poincaré’s inequality we obtain

€] < AT (llgllzz + £l z2) 1Al g

which shows that ¢ is continuous. From the Lax-Milgram Theorem (see (BREZIS, 2011))
there exists a unique v € H{ () such that a(h,v) = £(h) for every h € H}(Q), that is

/QVvVhdx~|—/thdx:/Q(g+f) hdz.

If h € C§°(R2), we have
/ﬂV@Vhdx - /Q(g + f — v)hdz,

which means that Av =v — f — g € L*(Q). Since v € H}(2) we obtain v € H?*(2), and
thus, v — Av = f + g. Therefore, Im(/ — A) = X and the proof is complete. O

Thus, by the Lumer-Philips Theorem, A generates a C°—semigroup of contractions
{et: ¢ >0} C L£(X). Hence, from the results of (PAZY, 2012), for each V; € X, the map

[0,00) Dt eV e X

is the unique weak solution to the problem

av

— =AV,t>0
dt A Y > Y
V(0) = V.

The semilinear hyperbolic problem

Now we deal with problem (ACP), which is a semilinear problem of hyperbolic
type. To that end, we look into the nonlinear term G(¢,V').

Proposition 3.12. Given R > 0 there exists Lz > 0 such that
1G(t,V1) = G(t.Va)llx < LallVi — Vallx  for all Vi,Va € By, and t € R,

that is G: R x X — X is locally Lipschitz in the second variable, uniformly fort € R.
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Proof. Let Vi = [, ] and Vo = [ 2] taken in F;. We can assume, without loss of generality,
that ||wq||r2z = ||wal|r2. Note that

IG(EVE) = G121
< | [ K = w)(ta)dy

+ ks (0) [[[[wr [z = [Jwal[z2ws |l 2 -

o + ||f5(t,'U1) - fs(t’UQ)HLQ

The first term on the right hand side is estimated using Proposition 3.2:

‘ /QK (,y) (w1 — w2)(t,y)dy

Applying Lemma 3.4, we estimate the second term:

L < Koljlwy — wa| 2.

[ fo(tv1) = fo(tva)ll2 < Lo(1 + 2R%)[[or — vl gy,

)

— il
since v1,v9 € Bgo “) For the third one, it follows from Proposition A.10 that

o (0)]|l[ws 1201 = [fws 2w, , < By RP(L+ p)[lwr — w2

L2
Thus, we obtain
IG(#.V1) = G(t.Va)l[z2 < Lo(1 + 2R%)|lvr — val| g + (Ko + k1 RP(1 + p))[[wi — wal| 2.

Setting

D=

L = (2max{L2(1 + 2R%)?, (Ko + by R”(1+ p))*})?,
we obtain
IG(t.V1) = G(t,Va)[72 < Li(llvi — vallfp + lwi — wal[72) = L[IVi — VI,
and the result follows easily, since ||G(¢t,V1) — G(t,V2)||x = ||G(t,V1) — G(t,Va)]| 2. O
In the next result we will prove that G takes bounded subsets of R x X into bounded
subsets of X.
Proposition 3.13. Given R > 0, for all V € Ei,f and t € R, we have
|G V)llx < RLg + ho + col 2,
where Q)| denotes the 3-dimensional Lebesque measure of €.
Proof. From the previous proposition, for t € R and V € Eﬁ, we have
1G(t,V) = G(t.0)[x < LrllV|x < RLk.

Thus
IG(EV)lx < RLr +[[G(,0)||x
Since G(t,0) = h — fs(t,0), we have

1G(t0)1x = 1G(#.0)l|z2 < hllzz + [ f(£0) 22 < ho + ol 2.
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All these properties, when put together, using the results of (PAZY, 2012), give us
the following;:

Proposition 3.14. For any given Vi € X there exists a unique maximal weak solution
V(-,Vo): [0,Tmaz) = X of (ACP), that is, a continuous function such that

t
V(LVD) = Vo + [ ACIGEV(nVo)dr  for t € [0,Tmar),
0

such that either Tyae = 00 OT Tyae < 00 and limsup ||V (¢,Vh)||x = oo. This solution is
t—=Tmax

such that for each & € D(A*) the map (0,Tmaz) 2 t — (V(£,V0),£%) x x+ is continuously
differentiable and for all t € (0,Tyqz) it satisfies

d

%a/(t?%)?g*)X,X* = <V(t7‘/(])7A*€*>X,X* + <g(t7‘/0)>£*>X,X*7 (36>

where (-,-) x,x+ denotes the duality of X* in X.

Writing V (¢,V5) = M((?)] we can see that

v € O([0,7mae),Hy () and w € C([0,7maz ), L*(Q)).
Since w = v;, we conclude that
v e C([OaTmam>aH3 Q)N Cl([oaTmax)>L2<Q))

is the unique maximal weak solution to (tNWE). We will write (3.6) in the usual dis-
tributional sense and, to that end, we first note that X* = H~1(Q) x L?*(Q), where
H7Y(Q) = (H}(Q))*. We must describe the dual operator A*: D(A*) C H ' (Q)x L*(Q) —
HY(Q) x L¥(Q) of A If |2 ] € L*(Q) x D(A) then for each [§] € D(A), since A is self-
adjoint, we have
<A[gyc] ’ {$I}>X,X* - <[1‘§J’3] ’ [z*DXX = W+ (Any)
= (" g+ @Ay = (51,081 [ ]) .

hence {?j*} € D(A*) and A* [i*} = [‘i%i*} Conversely, if [z*} € D(A*) and A* [gi} =[z]
then for all [y ] € D(A) we have

(G [ = L[5 = G D (37)
Taking = € D(A) and y = 0 we have [§] € D(A) and (3.7) implies that

(Az,y*) = (x,2"),

which shows that y* € D(A) and Ay* = z*. Analogously, taking y € H} () then {8} €
D(A) and (3.7) implies that

<y>x*>Hé,H*1 = <yaw*>H3,H*17
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which proves that w* = z* € L*(Q). Thus D(A*) = L%(Q) x D(A) and for | 2] € D(A")
we have A* [zi} = H;f]

With this, (3.7) reads: for all [g} € L*(Q) x D(A) we have the map
(0,7maz) 2t (u(t),2") gy 1+ (ve(t),y7)

continuously differentiable, and for all ¢ € (0,7,,4.:) We have
4
dt
Since z* € L*(Q), Ay* € L*(Q) and v(t) € H}(Q) we have

(@03 g s + @(057)) = @O Ay s + (0 (02") + GV, 7).

d

(0.7 + @017 ) = @0 Ay) + (B.") + GV, ),

This means that taking * = 0 and y* = ¢» € D(A), the solution V(¢,Vp) = [i((tt))} satisfies

jt /Q vy (t)Ydz + /Q [s(tw(t)pdr + ks (t)|o(6)]17. /Q v (t)pde = /Q v(t) Avpda

+ K(m,y)vt(t,y)@b(:p)dydx+/Qh@/)dx,

QxQ

that is, for all ¢ € H}(Q) N H?(22) we have

jt /Q w(t)de + /Q Vu(t)Vibda + ky(t) o (£)]2 /Q w(t)dz + /Q Fo(t,0(t))da

= K(m,y)vt(t,y)w(a:)dydq:+/Qhwdx, (3.8)

QxQ
and by density, this last equality holds for all ¢» € H} (), which is the usual definition of
the weak solution for (tNWE).

The function vy.
For a weak maximal solution V (¢,Vy) = (v(t),v(t)) of (ACP) and ¢ € (0,7;,4.) fixed,
we define the linear functional A\: H}(Q) — R by
AW) = = [ Vo) Vode = k@ o Ol [ wtyvde — [ f(too)vde

+ K(m,y)vt(t,y)¢($)dydx—l—/th/de.

Qx

From the estimates we have and Poincaré’s inequality we obtain

_1 1
NI < lo@) g1l + k@A oI 19 g + A£Gzl
+ KoAy el z2llell g + A ol ]|y
which shows that A is continuous, that is, A € H~1(Q). From (3.8) we have

d

St = M),
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for all v € H}(Q). Thus, if we define vy, (t) = A € H~1(Q2), we can rewrite (3.8) in H~(Q)
as

(Voou() mp g = A(p)  forall ¢ € Hy(Q).

Thus, we can make sense of the function vy : (0,7max) — H () and we obtain

o (0)llr-1 < Mo ()l + ks OM oI + A2 (L fs(t0() 22

1 _1 (3.9)
+ KO)\l 2 ||Ut(t)||L2 + )\1 2h0.

Also, since %<¢,vt(t)>H57H_1 = 4y (t),¥) = (¥,04(t)) gt 15 v is the weak derivative of

v; in the distributional sense in H ().

Non-explosion in finite time

In order to prove that 7,,,, = oo for all V € X, we need to show that the second
condition cannot occur. This will be a consequence of some results we will present later
(see Remark 3.23) and we know that for each given V; € X the solution of (ACP) is
defined for all ¢ > 0.

Fix s € R and Vj := (up,u1) € X. If V(-,15): [0,00) — X is the solution of (ACP),
we define for ¢t > s

S(t,s)(ug,ur) =V (t — s, Vo). (3.10)

Note that if, for t > s, we set (u(t),y(t)) = S(t,s)(ug,u1), then u(t) = v(t — s) and y(t) =
vi(t — s) = w(t). Thus (u(t),us(t)) is the weak solution of (NWE), and {S(t,s): t > s}
defines an evolution process in X associated with (NWE), provided we have continuity

with respect with initial data (which will be proven in what follows).

Continuous dependence on the initial data: a Lipschitz condition

Let V4,V, € X be the initial data for (ACP), taken in the closed ball E;, for a
given R > 0. Consider v, w the corresponding solutions for (tNWE) related respectively
to these initial data. Later, see Proposition 3.22, we will show that there exists a constant
cp = 0 such that for all ¢ > 0 we have

V(EW)|x <ecr and ||V (t,V2)|x < cr. (3.11)
IV (V1) = (v(t),ve(t)) and V(¢,Va) = (w(t),w(t)), setting z := v —w, formally we obtain
= Az (Ol — o) + £(t0) — filtw) = [ K(rg)ala)dy. (3.12)

Proposition 3.15. Given R > 0, there exists a constant vy = vo(R) = 0 such that for
t>0and V1,V5 € Pﬁ, we have

[V(EWV) = V(EVa)l[x < [Vi = Vallxe™.
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Proof. If Z(t) = V(t,Vi) — V(t,Va), then Z(t) = (2(t),2(t)) for each ¢ > 0. Multiplying
formally (3.12) by z; and integrating over {2, we obtain

/ﬂztzttdx—/QAzztdx—i-ks(t)||vt||’£2/9vtztdx—ks(t)||wt||]£2/ﬂwtztdx

—l—/ﬂ[fs(t,v) — fs(t,w)] zedx :/ K (z,y)2(t,y)z(t,2)dydz.

Qx

(3.13)

Now observe that, if (-, -) denotes the usual inner product in L*(Q), (3.13) becomes

(zt,20) — (Dz, 2¢) + ks@)(“”t“iﬂt - ||th’£2wt,zt>

Sl - L)) = [ KGgatpstodd. O
Since
S INZOI = 3 5 (1ol + lll3s) = (e ) — (A7, (3.15)
equation (3.14) writes
SN2k =2 [ Klag)altg)a(t)dyds - 24, (60)~ f(tw), =) 516
= 2k () (lvellTove — [lwel[}2w,24)-
It follows from Proposition A.11, in particular, that
(ol f2ve = llwellzawe,2e) = 0,
and hence
SN2 <2 [ Kg)altg)altr)dds - 2. (60) — fi(tw), 2).
Later (see (3.27)), we will see that
| K@y)alty)ata)dyde < Kol (3.17)
and, by Lemma 3.4 and (3.11), we have
—(fs(t,0) = fotw), z) < |[fs(t0) = fo(tw)]| 2|z 2 (3.18)

< Lo(1+ [[ollz + llwllzz) v — wllagllzellize < Lo(1 + 2¢k) 12l mg ll 2l 2

Therefore, for ¢t > 0, we obtain

£||Z( M < 2Koll 272 + 2Lo(1 + 2¢g) |2 my |2 2

(1)
< 2Ko|zllZ2 + Lo(1 + 2cg) (1211 + l2ell72) < (2Ko + Lo(1 + 2¢3)) 12 (1)1

where in (1) we use again the usual Young’s inequality. Applying Gronwall’s inequality

(Lemma A.9), we have
1Z®)]lx < 1Z(0)]xe™,

where 79 = Ko + %(1 + 2¢%), and the proof is complete.
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3.3 PROPERTIES OF UNIFORMLY PULLBACK ABSORPTION

In this section we prove the existence of a closed, positively invariant, uniformly
bounded and uniformly pullback absorbing family for the process related to the problem
(NWE) in the cases p > 0 and p = 0. This fact, together with the ¢-pullback x-dissipativity
of the evolution process S associated with (NWE) is essential to show the existence of a
generalized polynomial pullback attractor (when p > 0) and of a generalized exponential
pullback attractor (when p = 0). These facts, consequently, will imply the existence of a
pullback attractor for both cases.

We fix 0 < g < A\ and M = M (pp) > 0 given by Proposition 3.5. For a function
v € L*() we set

O ={zeQ:|jv(z))>M} and Qy={reQ: |v(x) <M} (3.19)
From Proposition 3.7, for each fixed t € R we obtain

/QF(t,U)dx = / F(ty)de + | F(tv)dx

Ql Q2
> —/ {%’“MQ + 8co(1 + M4)} dr — / 8co(1+ M*)dz > —#t21||v|12, — Oy,
Ql Q2

where C := 8co(1 + M*)|Q| > 0. That is, we obtained
/QF(t,v)da: + oA 12, 4 > 0, (3.20)

For each given initial data Vj = (ug,u1) € X, define the function Ey(-,V5): R - R
given by

Eo(tVo) = Hluala + ol + [ Fu(tode + 220002+ Gy, (3:21)

where Cj is the constant obtained in (3.20), and V (¢,Vy) = (v(t),v(t)) for ¢ > 0. For
simplicity, we write E(t) instead of F(t,Vp), but we must keep in mind that this function
depends on the initial data V € X since it depends on the solution V'(¢,V}).

Existence of a uniformly pullback absorbing family for the process S associated
with (NWE) when p > 0

In this section we will show that there exists a constant ry > 0 such that the family
B = {Bi}scr given by

B,=B) foreachteR (3.22)

To
is a uniformly pullback absorbing family for S. More precisely, we will prove the following

theorem:

Theorem 3.16 (Existence of a pullback absorbing family). There ezists ro > 0 such that
for each R > 0 there exists o = 19(R) = 0 with

1S5(tt = 7)(uo,ur) [ x < 7o,

forall T = 19, t € R and (up,uq) € X with ||(up,u1)||x < R.
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Note that for ¢ > s and Vy = (ug,u;) € X, from (3.20) and (3.21) we have
1S (t,5) (uo,un) |5 = V(¢ = s, Vo)l < 2E(t - s).

Hence, the study of the function F; is paramount, since this function bounds the norm
of S(t,s)(ug,u;) for t > s. The proof of Theorem 3.16 is not trivial, and to facilitate its

comprehension, we present a scheme that will help us with this goal.

Scheme.
(I) Define an auxiliary function V* and prove that it is equivalent to E in the sense of
(3.24), which is done in Proposition 3.17;

(IT) Using the function V* obtained in (I), prove that the function E remains bounded for
all times ¢ > 0, uniformly for initial data in bounded subsets of X. This result is achieved

in Proposition 3.22;

(IIT) Improve the result obtained in (II), and in Proposition 3.28 show that there exists a
fixed bounded subset of X such that F(t) is cointained in this subset if ¢ is sufficiently
large, uniformly for the initial data in bounded subsets of X;

(IV) Use the result from (III) to prove Theorem 3.16.

DEVELOPMENT OF (I).

For a fixed e > 0 and (v,v;) = V(t,Vp) a solution to (ACP) we define V*(-,V5): RT —
R by

W@%%:%W%{Hm%ﬂ+A¥memiémw+séwww (3.23)

As we did for the function Ej, to simplify the notation we simply write V*(¢) instead of
V2 (t,Vp). However, we must keep in mind that this function depends on the initial data
Vo € X, and all the comparisons that are done are using the same initial data V.

Our goal at this stage is to prove the following proposition.

Proposition 3.17. There exist ¢ > 0 and a constant dy > 0 such that for all 0 < e < &,
seR andt >0 we have

(1= 2) Ey(t) — do < V(1) < 2E(t) + do. (3.24)
The proof of this result is lengthy, and we firstly prove a few auxiliary lemmas.
Lemma 3.18. There exists a constant gy > 0 such that for all s € R and t > 0 we have
_Aﬂwmwg_Aa@mm—yﬁm@—qﬁi@gHMﬂ%+%
where Cy > 0 is given in (3.20).

Proof. Recalling the definitions for ; and Qy in (3.19), from Proposition 3.9 we obtain

—/Qfs(t,v)vdm = _/Ql fs(t,w)vde — /92 fs(t,v)vdx
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< —/ Fy(tw)de + — /Q 2dx—i—/ eodx—/ fs(t, v)vdx
:_/ Fy(tw) d:c—i—/ S(to)de + B |o||7, — & o, v?dr + el | —/Q fs(t,v)vdx

= —/ Fy(tw)dz + L v)l7 + ol |+/ s(t,v)dr — /Q dex—/Q fs(t, v)vde.

2

Obviously —£° [, v*dz < 0. Using Proposition 3.7 we have

/ﬂFs(t,v)d /|F(m)|dx 8co(1 -+ M| Qs],

2

and using Proposition 3.6 we obtain
[ fit0)de < / |fo(t, 0)|[o]da < 8Meo(1 + MY,
QQ Q2

since [v| < M in Qy. Therefore, setting g := eg|Q1]|+8co(1+M*)|Qa|+8 Mo (1+M*Y)+Cy >
0, we obtain
— [ ftw)de < = [ Fult,v)de+ 4ol + go = Co.

Using Poincaré’s inequality we obtain
— [ Fltwyde < = [ Fift,v)ds — 2580 o2 — Gy + 2ol + g0 + 25 )3,
<= [ Ftv)de = 25203 = Co+ § (42 +1) lolid + oo
O

Lemma 3.19. There exists a constant K* > 0 such that for all s e R, t > 0 and e > 0

we have

- me”—wwmm%AWMx

, (3.25)
+ eK* €
—holluallE® (1= < ol 57 ) + & (1 - 42) ol
Also, for all s e R, t > 0 and € > 0 we have
[ KGyyultyoltadyda] < 3 (1= 5) ol + 522 fulfs (3.26)
/Q QK(x,y)vt(t,y)vt(t,x)dydx < Kollve|72. (3.27)
X
Proof. Proof of (3.25). Using Hoélder’s and Poincaré’s inequalities we have
—mmm&kwkaﬂM|/me ol ol < P ol
1
- 1
= [ (1= )] P o ol 22 (1 - )] el
=a :b
Using Young’s inequality ab < aql —t qu with ¢ := fﬁ and ¢y := p+2, for which qil+qi2 =1,
we obtain

p+2

1 p+1
_k‘s(t)HthIzg /Qvtvdl’ < f% {j)l\—l [5’%22 (1 _ %)} p+2 ” t”p+ ||v||p+2}
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2
vt {2 (- )P )

pt2 1
- 2
= ot} (Lol [— (1= )] 2ol 7+ 2 (1 4) ol

= Kkl 7% v Hp*1-+-12 (1= 52) ol

with K* := kp“ Zi; (\/%\7)% [% (1 - ‘;—?)T# Thus, we obtain

— k(&) |[737 — kst [Juell} /Q vevdz
—kollenlzt? + Kkl ol 5 + 55 (1= 42) ol

< —hollull32? (1= ol 757) + 5 (1= 52) ol

Proof of (3.26). From (H,), using Holder’s and Poincaré’s inequalities, and using Propo-

sition 3.2, we have

| Kayuttgtadys < [ o) [ Kagolty) dy

<ol | [ K@yt dy| < Kalflalll < ledilel
1

= (1 ) ol K (1 ) ol
=a =b

Using the usual Young’s inequality ab < % + %, we obtain

1 3K3 2
| K@yudty)ota)dyde) < &5 (1= 52) fold + 525l

Proof of (3.27). This is trivial. O

Lemma 3.20. Fix ¢y : ‘ﬁ (1 (1)) > 0. Then, for all 0 < e < gy we have

[ vwde| < & (1= 8) (ol + 1ol

Proof. Indeed, for 0 < € < gq, applying Holder’s and Poincaré’s inequalities we obtain

8/ vvdx
Q

€o
< QTA_I(H%H%Q +lol3) = 5 (1= 5) (lweli32 + llvlZy).

9
< vl dr < elodles folle < =Nl ol

Lemma 3.21. We have

<15 (1= 50) ol + xR
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Proof. Note that using Holder’s, Poincaré’s and Young’s inequalities, we obtain

‘ / hvdx
Q

<4wmm<uwmwm;<%wﬂwm

(08 ) (50 1))

<15 (1= 5) ol + 576

Joining all these lemmas, we are able to present the proof of Proposition 3.17.

Proof of Proposition 3.17. Recall that
1
B(0) = 5 (lullfa + lolidy) + | Fultw)da -+ 2522 Jol[3a + Co.
We have ||v||fqé < 2E,(t) from (3.20), and

ol + Noliy) + [ Fuftodde = Eu(e) — 25 ol — Cy < Bu(t).
This, together with Lemmas 3.20 and 3.21, implies that

Vi) = %(Hvt||L2+||v||H1 +/ Fy(tv) dx—/ hvdx+6/ vyvdx
< Byt /hvd:c—%s/ﬂvtvdx

S E,() + 55 (L= 45 lolity 5t + 16 (1= 52) Uleellz + loll)

W—/
<2E,(t) <2E,(t)

Lohg < SE(t) + hi + Co.

>\1 —Ho

For the converse inequality, again applying Lemmas 3.20 and 3.21, we have
VE(t) = Ey(t) — 2322 |o|3. — Cp — / hvdx + 5/ vvdx
Q Q

> Bu(t) — 1 (1+52) lol}y — Co— & (1= %) vl — -
= & (1= ) (lweliZ + [lvl3)

> E(t) =3 (14 50) Bu) — § (1= %) B(t) = § (1= 52) Bu(®) = Co— 520

=1 (1= 82) Ba() = Co = 525514,

which completes the proof, choosing dy := Cy + /\1 —_n ——h2.

This concludes the proof of the goal established in item (I) of our scheme.

DEVELOPMENT OF (II).

Following our scheme, we want to prove the following result:

2
0
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Proposition 3.22. Given R > 0 there exists a constant cg > 0 such that
Eyt) <cr forallVye Fﬁ andt > 0.

As we did above, we will prove auxiliary lemmas that will come together to prove
Proposition 3.22. However, before that, we will present a remark to justify the existence

of global solutions.

Remark 3.23 (Solutions to (ACP) are global). Assume that Vj € X is given and consider
the unique maximal weak solution V' (-,Vy): [0,742) — X of (ACP). The computations
that will be presented, up until the end of the proof of Proposition 3.22, remain true for
V(t,Vp), or for Eg(t,Vy), when 0 < ¢t < Ty,4,. Hence, Proposition 3.22 shows that for some
constant ¢ > 0, we have Fy(t,Vp) < ¢ for all 0 < t < T4, Therefore, |V (t,V5)|x < ¢ for
all 0 <t < Ty and shows that if we assume 7,,,, < 00 we obtain a contradiction with

Proposition 3.14. Hence 7,4, = oo for all initial data V, € X.

Lemma 3.24. The function V2 satisfies:

d

s OF;
SV2(E) = —kOllnlE = ko @lulls [ vode + [ G2 v)da

+ [ K@yultguta)dyds - <ol +elul - = [ £t v
X

+ z—:/ K(zy)v(t,y)v(t,x)dyde + 5/ hvdzx.
QxQ Q
Proof. Formally multiplying (tNWE) by v; + v and integrating over €2 we obtain

/vttvtdx—/UtAvdx—i-k‘s(t)HthiQ/ Utvtdac—i—/ fs(t, v)vde
Q Q Q Q
+5/ vttvdx—s/ vAvdx+5k:s(t)||vt||’£2/ vtvdx+5/ fs(t,v)vdx
Q Q Q Q
:/Qvt(t,x)/QK(x,y)vt(t,y)dydx+/ﬂhvtdx

—i—g/ v(t,:z:)/ K(m,y)vt(t,y)dydx—i—a/ hvdz.
Q Q 0

Now, observe that

. 1d

(i) /Qvttvtdf = 5%”%”%2%

3 Ld, o
(i) —/qutAvdx = 5@”“”;13,

(iii) Since

d d
[ vda = 2 (00 0) = () + (o) = [ vveda +

and
—/QUAvdx = HUH%{(%,
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we have

d
5/Qvttvdm - 5/QvAvda: = 5%/Qvtvdx — ellvg||32 + 6||v||%{é;

(v) [ wte) [ Klputy)dyde = [ Kyolty)oto)dyds;

Q Q QxQ
(V) 5/ v(t,x)/ K(z,y)v(t,y)dyde = 5/ K (zy)ve(t,y)v(t,x)dyd;

Q 0 OxQ

: d

(vi) /thtdx = ﬁ/ﬂhvd:v,

d OF;
(vii) /Qfs(t,v)vtdx: %/ﬂFs(t,v)dx—/Q g (tw)dx;

Using (i)-(vii) together we obtain

1d p2 d OF
2 1 ' Fs 9 - )
5l 5 ol + kel 282 + 5 [ R o)de — [ )

+ ea/g’utvdx —e|lve||32 + 6”?)”%16 + ks (t)||ve]|7 2 /Qvtvdx + €/Qfs(t,v)vd:c
d
- /QXQ K (z,y)vy(t,y)ve(t,o)dyde + i /Q hvdx

+ 5/ K(xy)v(t,y)v(t,z)dydr + 6/ hvdzx,
OxQ Q

which concludes the proof. O]

Lemma 3.25. Ifeq > 0 is given as in Lemma 5.20, there exist constants dg,01 > 0 such

that for all 0 < e <eg, s € R and t > 0, we have
d

£V§( ) < —kollve||B5? (f — doe(V2(t) + d0)2(p4+1>> — 3 ( — &L(l)) eVE(t) + 6y.

Proof. Since, from (Hg), [ [92:(t, )‘ dx < cp, joining Lemmas 3.18; 3.19, 3.21 and 3.24,

for 0 < & < g9, we obtain

imx> ~kollorll5E2 (1 — Eol| ) + 5 (1 52 [lol% + o+ Kollurl3 — ellvlly
+eflur2a — z—:/QFS(t,v)dx — Xy, —eCy+ 5 (%0 + 1) flul%y + ego
S (1= lollZn + 2L o 32 + 5 (1 - 22) |lvll% + 2-h3
ool (1 — Ko 75 + CullorllB — 2 (1 22) ol
i

(1) Ills e | Fu(taddo — 252 ol +co — <Co + eago + 2513

+
(

( ) 2 * 2
—kolloell52 (1 — B lol| 7T) + B fonl[752 + Gy — 5 (1~ 4 (furliZa + [lol%)

—& /QFs(t7U>dm + WHU”L2 + CO] + ¢o + €090 + )\filoh(%a

(3.28)

where in (1) we added and subtracted the term 5(1 — ’;—‘1))||vt||%2, used the estimate

2
3eKj

Kollvillz2 + ellvillze + 525

loelle + 5 (1= 42) luill32 < Culleel3a,
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for C, := Ko+ g9 + f’\foﬁ) + 2 (1 — ’/\L—S), and Poincaré’s inequality. In (2) we applied

Young’s inequality ab < ﬁ + qu Wlth q = p+2 and ¢ = = + , noting that —i— = =1, 1in
order to obtain

2
Cillulze = (*452) ™

k +2
< Plloell7z” + 55 (k()(p+2))

oz (k0<p+z>)"” 01

2
P Cl — ko Hvt”erZ + 027

p+2

for Cy := 5 (ko(p+2 )”Cl
From Proposition 3.17 we have 2E(t) < 8(1 — §2)

(2E,(6) 70 < (52-) 0 (V2 (1) + do) 777,

A1—Ho

“Y(V2(t) + dy), which implies

Hence,
* p
—Follvg||54? (% - %(QES(IS)) 2(P+1>)

_P
||v,5||p+2<5 — Kl (Alsiim)g(pﬂ) (V2 (1) +d0)%>,

< -

which, since (3.21) holds, we have that [Jv]|g < (2E,(t))2, and then

—kOHUth+2 (1 eK*kl ” ||p+1> k‘oHthp+2(§ _ %(ZE ( ))72(;;1))

’ (3.20)
< —Hollol (3 = 58 (25) 7T (V20) + o) ),
Also observe that
5 (1= 8) (ol + o) + ) Fr(t)de + 25322 ol + G
= 3 (1= 42) (willz= + 1oll) + Bo(t) = 5(llvelze + oli7)
— B ([loelze + loll3) + Bo(t) > =4 B, (1) + Bo(t) = Eo(t) (1 - 42)
implying that
— 5 (1= ) (ol + o)) — e (/Q Fy(tw)da + 258 o2, + co) a0
3.30
3)
<—(1-8)eb(t) < =2 (1—52) eV2(t) + deo(1 — 42)do,
where in (3) we used Proposition 3.17. From (3.28), (3.29) and (3.30) we obtain
d . Kt T s _p
71 V2O < —ollonl 727 (5 — 28 (5255) ™77 (V2 () + do) 7057
— 41— 80) eV2(t) + deo(l — 42)do + co + £0go + 520 hd + Co,

and the result is proven, choosing

p
. Kk ( 8\ )2(p+1>
60 : ko A1—po

and

(51 = %Eo(]_ )do + Co + €090 + N E(’L h2 + CQ
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As a consequence of the previous result, we have the following lemma, which tell
us, in general terms, that a suitable estimate for the function V.’ at a time 7 gives us a

similar estimate for V* for all t > 7

Lemma 3.26. Assume that 0 < e < gg. If for 7 > 0 we have

2(p+1)

V2(T) < (200e) 7

€

515 do,

_ 3
4>\1 uo

then for all t > T we have
2(p+1)

VE(t) < (2002) 7 — do.

£

Proof. We fix 0 < ¢ < gy and set

2(p+1)

U(e) :=(200e)" » —dy, and (3.31)
B(e) = (200) 7 — I AoGie — do. (3.32)

Note that V2(7) < ®(¢) < ¥(e). By the continuity of [0,00) 3 ¢ — V(t), there exists
T > 7 such that V2(t) < U(e) for 7 <t < T. Let Ty = inf{t: t > 7 and V2(t) > ¥(e)}
and assume that Ty < oo. It is clear that Ty > T > 7, V2(t) < W(e) for 7 < ¢t < T and
VE(Ty) = W),

From Proposition 3.17 we know that V(t) +do > 1 ( - ‘;—‘f) Eq(t) > 0. Then, for
7 <t < T, we have

P 1
(V2(8) + do) T < (B(e) + do) 070 < 5—
2506

which implies that
L Goe(V2(t) + do)T5+D > 0, (3.33)
Using Lemma 3.25, for 7 <t < T and 0 < ¢ < gy, we obtain

d s 4 ) s
%Vs(t)—kg(l ko) eVA(t) < 6.

Using Gronwall’s inequality (Lemma A.9), for 7 < ¢t < Tj we obtain

518 !

516 < VZi(1) +

Ve < veme R g

< Pe) + 4/\1 u05€ 1—

5
4>\1 MO

()

Taking ¢ = T we obtain V*(Tj) < ¥(e), which is a contradiction. Thus Tj = oo and the

proof is complete. O

Remark 3.27. One aspect that we want to draw attention to is that we concluded that
if V2(7) < ®(¢e) then (3.33) holds for all t > 7

Now we can prove Proposition 3.22.
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Proof of Proposition 3.22. From Proposition 3.3 and the continuous inclusion Hj () <
LY(9), with constant ¢ > 0, we obtain

‘/QF(s,v)dx

g/ |F(s,v)|dm</4co(l+|v|4)dx
Q Q
= dco|Q + deolvllzs < 4eolQ] + deoc!||v]lf < (1 + [[vlljp),

where ay = 4comax{|Q|,c*}. Fix R > 0 and let Vy = (ug,u1) € X be such that V; € E;.

From the inequality above and Poincaré’s inequality, we deduce

E,(0) = 3 (luall 72 + lluollZ ) +/QF(87UO)de’ + 25 g7 + Co

VoI5 + o1+ fluollz) + 252lluollzy + Co
R? + aR* + M R? 4 o + C.

<1
\2

1
<3

By Proposition 3.17 we obtain
VE(0) < SEs(0) +dp < 2 (%1%2 +agR! + MR 4 + Oo) +do == Vg (3.34)

Consider the maps U,®: (0,00) — R defined in (3.31) and (3.32), respectively. Note that

2(p+1) p+2

(I)/(g) = _i (2(17;'1)(250)_ P g P — 2)\1)\_1 51) . (335)

e2

Setting

D
2(p+1) \ T pt2
o 5p
T (8(p+1 Py uoél( %) 7 > ’

we can see that 1 > 0, that ®'(¢) < 0 for 0 < ¢ < g1 and ®'(¢) > 0 for ¢ > ¢;. Hence
® is strictly decreasing in the interval (0,e1] and strictly increasing in [g1,00). It is clear
that lim ®(e) = —dp. On the other hand, since (p+1) > 1, we have E1;151 P (e) = oo. Hence
®(e1) < —dp < 0 and, from the Intermediate Value Theorem and the monotonicity of ®
in (0,e1], there exists a unique point 0 < 5 < &7 such that ®(g5) = 0 and ®(g) > 0 for all
0<e<es.
Observe that ®: (0, &3] — [0, 00) is bijective and take ap := min{eg, ' (75)} < ¢

Since ar < ®7'(yg) and @ is decreasing in (0, &), it follows from (3.34) that V*(0) <
vr < ®(ag). Thus, from Lemma 3.26 we obtain V*(t) < W(ag) for all ¢ > 0. From this

fact and Proposition 3.17, for all ¢ > 0 we obtain

Ey(t) < 3255 (VE() + do) < 57245 (W(ag) + do),

which completes the proof, defining cg := /\1%’\1;“)(‘1!(043) + dp). O

DEVELOPMENT OF (III).

Continuing our scheme, our goal for now is to prove the following result.
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Proposition 3.28. There exists a constant Ry > 0 such that for any R > 0 and s € R,

we have
lim sup( sup ES(T)> < Ro.

T—00 Vollx<R

Proof. Consider the function ©: [0,00) — (0,00) defined by
O(0) = min {50, ot (%0 + do)} for o > 0.

It is clear that © is a continuous and strictly decreasing function.
Now fix 7 > 0 and define € := ©(E4(r)). Note that 0 < € < g9, € < g9 and

e <O (3EL(r) +do) .

Since @ is decreasing in (0,e5], we have ®(¢) > 2E,(r) + dy > VZ(r). From Remark 3.27,
for all ¢ > r we obtain
L Soe(V2(t) + do) T > 0.

This information and Lemma 3.25, for ¢t > r, yield

d s s _p s
V(1) < —kollunll 7% (5 — B0V (1) +do) @7 ) — & (1 - 42) V() + 6,

< -1 (1-5) O(E(r)VE(E) + 0.

5 A1

Applying Gronwall’s inequality (Lemma A.9) we obtain

,%(1,;%)@(&(7"))@4) 45 a0 O(FE (7“))]71

4 M1 —po

Ve(t) S V2(r)e

for t > r. Using Proposition 3.17 we obtain

(1= ) B(t) = do < VE(r)e

4 A1

CIES
/
T
y‘t
= =]
N———
@
~
o
=}
<
=
=
3
=
ot
>
=
(=%
=
—
w»
—~
=
N—
S—
|
—

< (%Es(r) + do) e e

where we have used that, for a fixed R > 0, since Fq(r) < cg for all » > 0 and ©

is decreasing, ©(FE,(r)) > O(cg) > 0. Hence, for this given R > 0, setting v (t) :=
sup F(t) we obtain

Vollx<R

—2(1-59)0(cR)(t—r) _
§(1=52) vrs(t) = do < (3rms(r) +do) € (1o + 328 [0 (yr.(r)] 7

Consequently, if wg s := limsupyg(t), we obtain
t—o0

(1 8) wr, < 328 0 (wry)] 7+ do,

that is,

1 1 5
o (Zo3ie [O(wre) ™ +1) > & (1- 1), (3.36)
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Now, for z > 0, consider the function

G(z) =1 (&Afim) ©0:)]" + 1) .

Since ®~! is a positive decreasing function approaching to zero at infinity, we have
lim ©(z) = lim min {50, P12z + do)} = lim ®~1(22 +dp) = 0, and thus

Z—r00

5 (1 po\ Ma-1/5 -1
lim G(z) = lim 4do <1 l;?) [¢Zl(4z+d0)} +1

o,

B -w) M e

o2

where in (1) we applied the L’Hospital Rule and for (2) we note that

—2(p+1) p+2

2(p+1) —2e+D) 5 Moy |
7pp (200)" 7 o * —4/\11_;0} = 0.

lim —%q)' <l) L — lim 4

2
o—00 ag) o o500 D

Since G(wgs) = ﬁ (1 — ’;—?), this implies that there exists Ry > 0 such that wgr s < Ry
for all R > 0 (noting that the constant ﬁ( — &%) does not depend on R). O

DEVELOPMENT OF (IV).
With all the work done in items (I), (II) and (III), now the proof of Theorem 3.16

follows easily.

Proof of Theorem 3.16. Let R > 0. From Proposition 3.28 there exists 79 = m(R) > 0
such that for 7 > 79 we have sup E, (1) < 2R, for all t € R. Therefore, if 7 > 75

l[(uo,ur)llx <R
and Vy = (ug,uq), we have

1S(tt = 7)(uosun) |y = IV (Vo) % < 2B (7) < 4Ro,

1
and the proof is complete taking rg := 2R;. O

This implies, in particular, that the family B = {Bi}ier, with B, = Ffo for all
t € R, is a uniformly pullback absorbing family for .S.

Existence of a uniformly pullback absorbing family for the process S associated
with (NWE) when p =0

We consider again the energy function
E(t,Vo) = g(llvellz> + l[vllF) + /Q Fy(t)dz + 232 |[v]| 22 + Co, (3.37)
where Cj is the constant obtained in (3.20), and the auxiliary function

VE(Vy) = %(HUH%{& + Hvt||%z) —l—/QFS(t,v)dx - /Q hvdx + a/ﬂvtvdx, (3.38)
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where £ > 0 is a fixed constant. Remember that we denote Vj := (ug,u;) and V (¢, Vp) =
(v(t),ve(t)) for t > 0.

All the calculations we did in Lemmas 3.18, 3.19, 3.20 and 3.21 to obtain the
Proposition 3.17 remain identical when we assume p = 0 and we conclude from them that
there exist g9 > 0 and a constant dy > 0 such that for all 0 < e <eg, s€ Rand t > 0 we

have
1 Ho s )
- (1 - ) Ey(t) — do < V2(t) < 2E(t) + do. (3.39)
4 Al 4

The calculations in the proof of Lemma 3.24 also remain the same when we fix

p = 0. From this result we obtain

SV28) =~k — <ha(r) [

[ K@gultyulte)dyds — ol + el == [ . v)ods

+ 6/ K (z,y)v(t,y)v(t,x)dyde + 5/ hvdz.
OxQ 0

F
(t,v)dz

Lemma 3.29. There exist a constant 6y > 0 and a fized £ € (0, o] sufficiently small such
that for s € R and t > 0 we have

v < -5 (1-2) v+, (3:40)

Proof. Following the proof of Lemma 3.25 we obtain

d_ . .
FV20) < holleelF2 (1= B ) + 5 (1= 42) ol + co + Kolluellzz — ol

+elloel3s —e [ Fu(t,v)de — eXF0|o]3; — eCo + 5 (32 +1) o3 +e

tll L2 o s\by 4 L2 0 4\ Hé 90
e 3eK3 €

+1 ( - %) [vll7n + 5= llvellze + 55 ( - *) lollF + 55000
(1) * 3K2 _
< —holleellze [1 = 52 — = (F5 + 5+ s + 3ets)| - B (1 8) el

— (1 5) w3 - 5/QF5(t,v)dx — X |y||7, + o — £Co + cogo + 52-hi
(2)
< =5 (1= (o7 + o) - 6[/52 Fy(t0)de + 2582 |o]|72 + Co

+ o+ €00 + x=o-hg

ING

_%(1 - %)5‘/55(75) + %&J( - %’)do +co + 0go + xtohy

where in (1) we added and subtracted the term §(1 — £2)[|v;[|7. and used Poincaré’s

inequality. In (2) we choose a fixed ¢ € (0,g¢] sufficiently small such that

K*k 3K2 A — K
5( St t Oa—poyke T 22;0510) S Sl (3.41)

Here it is important to note that for the case p = 0 we are taking ky > Ky, and then,
1-— %’ is a strictly positive number. In (3) we used (3.30). The proof is done if we take
o = %50( )do+co+€ogo+ /\450 h?. O

1—H0
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The following lemma is an immediate consequence of an application of the Lemma
A.9 to the inequality (3.40).

Lemma 3.30. Fiz ¢ € (0,¢0] satisfying (3.41). There exist constants By, e > 0 such that
for every s € R and t > 0 we have

VE() < VE(0)e Pt 4 B,

£

Now, let R > 0 and take Vi = (ug,u1) such that ||[Vp||y < R. From (3.34), there
exists vg > 0 (depending on R) such that V*(0) < vg. Then, for 7 > 0 and s € R,

V2(r) < yre™ 7+ .
If 7 > 79(R) := max {O, lnmﬁ#}, we have
9 9 1) wo\ "L st
I1S(tt = 7)(wour) Iy = IV (r Vo)l < 2Be—r(r) < 8(L=42) (VI 77(7) + do)
-1
<8( —%) (262 + do)

where in (1) we applied (3.39).
This implies, in particular, that the family B = {Bi}er, with B, = Ffo for all

t € R, where
-1
7”0:\/8<1—'u0> (262+d0),
At

is a uniformly pullback absorbing family for S.

Existence of a closed, uniformly bounded and positively invariant uniformly

pullback absorbing family

Using any of the families B obtained above, we will construct a respective family C
that is closed, uniformly bounded, positively invariant and uniformly pullback absorbing
for S. Since Ei is bounded, there exists 7, > 0 such that S(¢,t — T)Efo C Ffo for all
7> 7 and t € R. Consider the family C' = {C}}, defined by

Ci=J Stt— T)Eii for each t € R.

T>T1

Theorem 3.31. The family C is closed, uniformly bounded, positively invariant and

uniformly pullback absorbing for S.

Proof. Clearly C' is closed, and C, C Eﬁi for all t € R, which implies U,eg C; C Pi(o, that
is, C is uniformly bounded. Now, let ¢ > s. Then we can write s =t — o for some o > 0.
Note that

S(t,s)Cs = S(t,t — 0)Cpy = S(t,t — o) | J S(t — ot —0 —7)Boy
T>T1
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c Stt—o) | S(t—a,t—cr—T)EiZ

T2T1

= |J St t—at—U—T)BXO

TZ>T1

X X

= Sitt—(o+7)B,,Cc |J Sktt—7)B,,

TZ>T1 TZ0+T]
C U S t — 7—) = Ot7

T2T1

which prove the positively invariance of the family C.

To see that C' is uniformly pullback absorbing, let D C HX(Q) x L*(Q) be a bounded
set. We know that there exist 79,71 > 0 such that S(t,t — 7)D C Ei(o for every t € R and
T > 719, and S(t,t — T)Eig C Eii foreveryt e Rand 7 > 7. If t € R and 7 > 79 + 7 then

T —T1 = To and we obtain

S(tit—71)D=S(tt—m)S({t—mn,t—71)D
=St —m)St—n,t—mn—(r—m))D C S(t,t — Tl)Fii c (4,

and the proof is complete. m

3.4 EXISTENCE OF A GENERALIZED POLYNOMIAL PULLBACK ATTRACTOR
WHEN p >0

In this subsection we aim to apply Theorem 2.10 in order to establish the existence
of a generalized polynomial pullback attractor for our problem in the case p > 0. As we can
see, this theorem is somehow technical and requires the verification of several hypotheses
involving precompact pseudometrics and contractive functions. With the goal of obtaining
such pseudometrics and functions, we initiate our work as follows.

Consider the closed, uniformly bounded, positively invariant and uniformly pullback
absorbing family C' obtained in Subsection 3.3. If s € R and Vi,V € Cy C Ei, from

Proposition 3.22 there exists a constant ¢,, > 0 such that
WViEtVD)|x <e¢, and [|[V(t,Vo)]x <c¢, forallt>0.

IV (V1) = (v(t),ve(t)) and V (£, V) = (w(t),w(t)), setting Z(t) = (2(t),z(t)) = V(¢t,V1)—
V(t,V3) we have z = v — w, and (3.12) holds. Defining

1 1
&) = 5125 = 5 (121 + 1122)

we have the following result.
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Lemma 3.32. For T > 0 we have

1
TE(T) = —< zt,z
1

T
[t = 3 [~ el 2)at
T
(fultw) - f;(tw )t + - / | K(wy)alty)=(ta)dydedt
0 2 axQ
T
- / R elave o, zdra (3.42)
_/ / (fs(T,0) = fo(T,w), z0)drdt
0 t
T T
* / / / K (,y)2(7,y) 2 (7.0)dydzdrdt.
0 t QxQ

Proof. Formally multiplying (3.12) by z;, as in (3.13), we obtain

/szztzttd$—/S)Azztdx+ks(t)||vt||’£2/gvtztdx—ks(t)||wt||1£2/ﬂwtztd:ﬁ

(3.43)
+ [[ft0) = fultw)lade = [ K(wy)alty)alt)dyde.
For T > 0, integrating from ¢ to T', we obtain
T
/ (zt,ztt)dT—/ (Az, 2 d¢+/ P erllZav, — NewelZaws, z)dr
+/ (fs(Tv) = fs(T)w), zp)dT —/ / )z (1,y) 2 (1,2)dydzdr = 0.
QxQ
Note that
T ( T T
EAT) = Et) = [ -&m)dr = [ (a2 — [ (A2, z)dr,
¢ dr t t
and hence we obtain
& T)+ [ kW oulav — el z)dr
(3.44)
—I-/ (fs(m,v) — fs(T,w), z)dT —/ /Q 5 ) ze(1,y) 2 (T,2)dydxdr.
X
Integrating (3.44) from 0 to 7" we obtain
TE,(T) :/0 t)dt — / / ) llvell2a ve — [|wil|Zaws, z)drdt
- / / (o) = folm, w), z)drdt (3.45)

+/ / / )z (1,y) 2 (1,2 dydxdrdt.
QxQ

On the other hand, we can formally multiply (3.12) by z, integrate in € and

integrate from 0 to 7" in order to obtain

T
/0 (ztt,z)dt—/ (Az, 2 dt+/ Y[velPave — wePatwy, 2)dt

, (3.46)
+ /0 (fo(t0) — fo(taw), 2)dt = /O /Q  K(@y)z(ty)s(ta)dyded.
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—2/ \thdet—i—Q/

Indeed, since (Az,z) = —||z||% 1 and 4 (2, 2) = ||ze||22 + (2u,2), we obtain

T T
CLAIM./ (ztt,z)dt—/ (Az, 2)dt = (z,2)
0 0

d
(arz) = (A2, 2) = — (=1, 2) = llallz + V272

d
(21, 2) = 2|allze + 285(2),

d 2 2 2
a2 = 2l + Nl + V23 = 2

dt<
which proves the claim.

Using this claim in (3.46), we obtain

—2 / z4ll2 dt +2 / t)dt + / O [loclav, — lfwyll2zw, =)dt

—i—/ (fs(t,w) — fs(t,w), z)dt = / / )z (ty)z(t,x)dydzdt,
QxQ

which implies

Zt,Z

T
[ &bt =~ (z2) + [ e - / (el v = e, 2)dt
0
. (3.47)
-5 <fs(tv) Foltw), 2)dt + 5 //QQ (2,9)2(t,9)2(t,2)dyddr.
Joining (3.45) and (3.47), we obtain (3.42). O

Proposition 3.33. For T > 0 there exist constants I'r1,I'ro > 0 such that

ET) < Tra sup [|=(0)]12 + Tra (£,(0) — £(T)
te[0,7]
T
+ 267«0/
0

T pT .
+%/0 /t <fs(7,w)—fs(T,U),zt>drdt‘+2%/0

Proof. Using Proposition A.11 we have

3
dt> (3.48)
L2

+ ‘/()T<fs(7—a U) - fs(Tv w)’ Zt>d7_ (x’y)zt(t’y)dy

/Q K(:U,y)zt(t,y)dyHL2 dt.

(loellZave = Nwelfawe, ze) = 277173, (3.49)

which implies that
lzale < 2095 (lonleve — wnllFawe, 200752,
Using the fact that [0,00) 3 7 +— 7 is a continuous concave function, Proposition A.12
implies that
T 2 1 T 2
| Weiliade < 725 2 [ lonlav — wn [, ) 7

2 (1 (T =
<12 (1 [l = ol e
; (3.50)

p+2

. T
= n) ([ ol = s, 2
2

() 2

P =2 T
< ary e ([ ko0l - ol )
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where in (%) we used the fact that = (t) > 1 for all t,s € R.
Now, using (3.44) and (3.49) , we obtain

0 </ E)l[vell72ve = lwell72we,ze)dt = E,(0) — E(T)

_ /0 (fs(m,v) — fs(r,w), z)dT + /OT/QXQ K (x,9) 2 (7,y) 2 (7,2 dydxdt

T (3.51)
<E0) = &) +| [ (lrv) = lrw), z)dr
T
+/ / K (x,y)z(7y)z(7,0)dydedt.
0 JOxQ
Since ||z¢]|r2 < 2¢,, for all £ > 0, using Holder’s inequality we have
T
[ Kagatratraddir < [ | [ Kegamis| lamold
QxQ Q L2
o (3.52)
< 2%/ (t,y)dyH dt,
0 L2
plugging (3.51) and (3.52) into (3.50) we obtain
T b T
/0 ”ZtHL2 dt < (4T) 2 k0p+2 <85(0) o 8S(T) + /0 <fs(7—v U) - fs(Tv ’LU), Zt>dT
] (3.53)
T pz
—|—2cr0/ /K(x,y)zt(t,y)dy dt)
o /e 2
Furthermore .
)| <26, sup 20, (3.54)
0 t€[0,T
and
1 r p p k T p p
3 [ RO~ e, 2 < 5 [ Gl — o anwe 2
T (3.55)
< (ol = Nwelow]| =@ ledt BT sup l2(E)],a
0 t€[0,7]
Using Lemma 3.4 we have
(T [T
=3 [ (tw) = fultaw) )t < 4 [ IR0 = £l et
3.56)
Lo(1+2¢2 ) [T Locry (14262 )T (
< 2D 2 (0) gy @l et < 22T sup 2 (6)).
0 te[0,7]
Using Holder’s inequality we obtain
T
[ Kyt aydydrdt < 5[ el
QxQ
(3.57)

X KOCTOT sup H’Z(t>HL27
te[0,7)

and

/ / / )z (1,y) 2 (1,2 dydxdrdt
QxQ
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T T
<hl
0 Jt

T
<26, T /
0

| K@parady| )l drd

/ K(fc,y)zt(t,y)dyH dt.
Q L2

Using all these inequalities in (3.42), we conclude that

T@@jg%mﬁmHdwhﬁwﬂm&%Jﬁamy¢aﬂ
te[0,7)

T T pi
%—LL (fulri) = S z)dr| 426, [ [ K@yt a)™
L
Locry (142¢2 )T
+ BT sup 2(t)] 2 + 2SR sup |l2(8)]|2 + Koer T sup [12(2)]122
te[0,T] te[0,T) t€[0,T)

+

/OT /tT(fs(T, v) — fs(7, w),zt)det‘ + 20, T /OT

/ K(x,y)zt(t,y)dyH dt,
Q L2

which, naming

Locrg (142¢7)
2

Ppp =4 <2cm + BT + Ty KOCTOT)

and Ty = 4757 (Tho) 772, gives us (3.48). O

Corollary 3.34. We have

€S(T) < 85(0) + dt.

L2

T
+ 2¢,, /
0

Proof. Tt follows directly from (3.53) and the fact that [j ||z|2.dt > 0. O

/OT<fs(7_v U) - fs(T’w)a Zt>dT

| K@ yya(ra)dy

Our goal for now is to use Theorem 2.10 to prove that the evolution process S
associated with (NWE) is polynomially pullback k-dissipative. So, from this point on, we

verify that we are in condition to use Theorem 2.10.
The pseudometrics p; and ps.

For V1,Va € X, setting Z(t) = (2(t),z:(t)) = V(t,V1) — V(t,Va), define the maps
p1,p2: X X X — RT as

T
p(ViVe) = e, [ | [ KGe)attapdy| e (3.59)
and
p2(V1,Va) = 2T'py sup |[|2(t)]| 2- (3.59)
te€(0,7T)

This part of our work is dedicated to prove the following result.

Proposition 3.35. The functions pi,ps are pseudometrics in X, which are precompact

. =X
in B, .
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It is clear that both p; and p; are pseudometrics. It remains to prove that they
are precompact in Pig. Recall that A = —A: H}(Q) N H*(Q) C L*(Q) — L*(Q) denotes
the negative Laplacian with Dirichlet boundary conditions, which is a positive self-adjoint
operator, with compact resolvent. Define the bounded linear operator A: L?(Q2) — L?(Q2)
given by

Av = /QK(x,y)v(y)dy for v € L*(2),

and let V be the completion of L?(Q) with respect to the norm

[ollv = |Av][g2 + (o]l -1

Since both A is a bounded linear operator in L*(Q) and L*(Q) — H'(Q), we obtain
L*(Q) — V — H'(Q). Furthermore, since A has compact resolvent, we have L*(Q)) <
V.

For each Vj € Ei(o, it V(t,Vy) = (v(t),v(t)), we denote

F = {us 01 @) Vo e By}

Note that for each v; € F, we have vy: (0,7) — H~(Q), and hence
ar
dt

Lemma 3.36. F, is relatively compact in L*(0,T;V).

— {vu: (07) —» H Q)| Vp € BY).

To

Proof. If v, € F we have
T
ooy = [ Ioe®llzzdt < e T,

hence F is bounded in L'(0,T; L?(£2)). Now for V; € Ei(o, from (3.9) we have

ol < ollmg + A2 (allenllZ5t + Kollegllze + 1fu(t0) o2 + ko). (3:60)
Since
1fs(Eu)lle < ([ fs(tv) = fs(80)[ 2 + ||fsl(t,0)HLz 1 (3.61)
< Lo(1+2¢2)|[vll g + ol Q12 < Lo(1 4 26}, )ery + ol 92,
we obtain

T
Vel 20,7 m-1) = /0 |vg (8) || g—1dt < T,

for some constant ¢ > 0. This means that %~ is bounded in L'(0,T; H=*()). From

(SIMON, 1986, Corolary) we obtain JF relatively compact in L*(0,T;V). ]

Proof of Proposition 3.35. We begin with p;. From Lemma 3.36, F is relatively compact
in L1(0,7;V) and given § > 0 there exist Vi,--- .V, € Eii such that

FcC U BL;(O,T;V)<Ut(z’))

i=1 4CTO
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where V (,V;) = (v®(2),08”(t)) for each i = 1,--- n. 1 Vg € By and V(£,V;) = (u(t),0,(t)),

then v, € F and thus v; € BLoTv) (v,fi)) for some ¢ € {1,--- ,n}. This implies that
4cr0
’ (i)
pl(‘/Oa‘/;) = 407"0/0 /QK(:an)[/Ut(tay) — U (t7y)]dy 12 dt

T . )
<dery [ lentt) = ol @) lvt = ey Jor = o ooy <0

that is,

which proves that p; is precompact in Ei.

Now we prove for py. If {V,,},en is a sequence in Pﬁg and {v(™}, cy is the sequence
of its corresponding solutions (that is, V(t,V,,) = (U(”)(t),vfn)(t))), we have {v(™},cn C
C(0,T; H3(2)) N CH0,T; L*(Q)). From the Arzela-Ascoli Theorem we have

C(0,T; Hy(Q)) N CH0,T; L*(Q)) <> C(0,T; L*(Q)),

which implies that {v(™},cy has a convergent subsequence {v™)},cy in C(0,T; L*(2))
(consequently a Cauchy subsequence in C(0,7; L*(2))). This means that given ¢ > 0,
there exists ng € N such that

p2(Vo:Va,) = 20y sup [0 (t) — 03 (1)]| 2 < e, (3.62)
te[0,T

for all k,j > no, that is, {V,, }ren is a Cauchy sequence with respect to ps. From Proposition

A.13, py is the precompact on Eﬁg. O

The contractive maps v, and .
As in the definition of p; and p,, for Vi,V5 € Efo, it V(t, V1) = (v(t),u(t)), V(E,Va) =

(w(t),ws(t)), setting Z(t) = (2(t),z:(t)) = V(t,V1) — V(t,Va) then z = v — w, 2z = vy — wy,
and we define ¢1,95: X x X — R* by

) =2 [ thr) = o) ] 369

¢2(‘/17‘/2> = 72—1

/OT /tT<fs(T, v) — fo(T,w), vy — wt>d7dt‘ . (3.64)

Our goal for now is to prove the following result.

Proposition 3.37. 11,1y € contr(Bii).

As we proceeded in previous sections, we will prove a sequence of auxiliary lemmas

to help us prove Proposition 3.37.
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Lemma 3.38. Let {V,},en C Ei{o and denote V(t,V,,) = (v(”)(t),vgn)(t)). For a fized

v € (0,1), up to a subsequence, we have

v\ o) = (v,uy) in L°°(0,T; X)),

v™ = v in C([0,T); H'(Q)).

Proof. Since {(v™ ™)} ,en is bounded in L®(0,T; X) = [LY(0, T; H-1(Q) x L2(Q))]*,
where H1(Q) = (Hg(2))*, it follows from Alaoglu’s Theorem that, up to a subsequence
which we name the same, there exists (v,z) € L>(0,7; X) such that (v(”),vt(n)) = (v, 2)
in L>=(0,T; X), that is, for every ¢ € L*(0,T; H™') and ¢ € L*(0,T; L*(2)) we have

/OT<U(”) () = v(t), ¢(t)) g2 -1t — 0 as n — oo, (3.66)
/0T<v§n> (£) — 2(t), (1)) dt — 0 as n — oo.

Let ¢ € C5°([0,T]; C5°(Q2)). We have ¢’ € L'(0,T; L*(Q)) N LY(0,7; H~(Q)) and, for each
t € [0,T], we obtain

() = v(t),¢' (1) . = (W™ (1) = 0(1).8' (1)),

since (v,1) g1 g1 = (v;n) when v € Hy(Q) and n € L*(Q2). Therefore, using integration by

parts we have
[0 00, Oy = [ 000 — of0), 6 0t
= [, s - [
w5 [0, 6endt — [ o), 6 0y

On the other hand, since ¢’ € L*(0,T; H(2)), we obtain

T

(w(e), Ot = — [l 0), 600t — [ Gul0). /(1)

0

[ 6~ w6, Oy 0,

thus
[ . s @t = - [ 0,00t

which means that z = v, in L'(0,T; L%(2)). Therefore, (v v{™) = (v, v,) in L=(0,T: X).
With this subsequence we want to show that v — v in C(0,T; H"(R)). Consider
the family G = {v™: n € N}, which is bounded in L>(0, T; H}(2)). Since % = {v,gn): n e
N} is bounded in L?(0,T; L*(€2)), from (SIMON, 1986, Corollary 4) and the fact that
H}(Q) —— HY(Q) — L*(Q), it follows that G is relatively compact in C([0,T]; H7(Q)).
Hence, up to a subsequence which we name the same, there exists y € C(0,7; H?(2)) such
that v™ — y in C([0,T]; H?(2)). Therefore, for any ¢ € C5°([0,T]; Cs°(2)) we have

[ 10— o), 60

/OT@(n) (t) = y(t), () 2 1y dt‘ _
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< [ 10—y o sadt < C [ 1o () = (o) 9(6) 520

< CT sup Hv(”)(t) — y(t)’ . =0,

te(0,7)

which ensures that y = v in L'(0,7; H'(Q)). Since they are continuous, y = v in
C([0,T]; H(R2)) and, consequently, v™ — v in C([0,T]; H?(Q2)). O

Lemma 3.39. There exists a constant C' > 0 such that for allt > 0 and n € N we have

‘/S)F‘S(t’v(n)(t))dx_/QFs(t,v(t))d:p

< Co™(t) = v(®) o,

and
oF,

o Ot

< O™ () = o(t)l| -

an n
/Q o (L (1) dz - to(t))dz

Proof. From Proposition 3.3, using Holder’s inequality and the continuous inclusions

H}(Q) < L5(Q2) and HY(Q2) — L*(2), we have

[ Feo @i [ B < [

< 8co /Q<1 + [ OF + [o®) )™ (#) = v(t)|da

Fu(ta™(1) = Fu(to(t)| do

N

C ([ W+ o™ + (0] ) o ) = 0(t) 22
<O+ (™26 + ollFe) ™ (t) = v(t)l|12
< O+ o[ + [0l [0 () = v(t) 1 < Cllo™(E) = o) -,
where the constant C' > 0 changed from one line to another, and we used the fact that

o™ Ol g lo@) ) ap < e, for all ¢ > 0 (see Proposition 3.22).

For the second estimate, note that from Proposition 3.3 and Hoélder’s inequality we

obtain
F F
/Q aats (0™ (1)) dz — /Q aats (to(t))dz| < 26 /Q W™ (t) — v(t)|da
< 260 Q2 0™ () — v(B)]|z2 < ClV™ (£) — v(t)]| 11+,
for some constant C > 0. O

From Lemmas 3.38 and 3.39 we obtain the following result.

Corollary 3.40. We have

/Q Fo(t, 0™ (8))de "= /Q Fy(t, o(t))dz,

and

[ O o0y = [ O g (),
Q

uniformly for t € [0,T7.
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Lemma 3.41. For each t € [0,T] and £ € L'(0,T; H3() N HL(Q)) it holds that

/tT<fs<Tvv(n)(T)) - f8(77v<7))7€(7)>d i> 0.
Proof. First we note that since H(Q2) < L*>(Q), we have L'(Q) — (L>(Q))* — H3(Q).
Using Proposition 3.3 we obtain
1ot 0™ (@) = folt, o)) ][5 < Ol fo(t.0™ () = folt, o) |
< C/Q(l + [ O + o)) 0™ (t) — v(t)|de

e ([ b+ i) 100 - ool

<O+ o™ D)2 + v Z) 0™ () = v(t)]| 12

SO+ [P @)y + O 1F) 10 @) = v®) | < Clo™ () = v(B) |,
since HY(Q) < L*(Q), Hy(Q2) — L*(2) and the fact that [[v™ (&)]| g, o)l g < e for
all t > 0.

From Lemma 3.38 we conclude that

N

sup || fo(t, 0™ (1)) = fot, 0(8)) | g5 =3 0.
t€[0,7

Hence, if £ € L'(0, T, H*(Q) N H}(Q)) we have

[0 = Lot
< sup im0~ lra(e s [ 1 usdr

t€[0,T]

and the result is proven. O
Corollary 3.42. For each t € [0,T] we have
fo(m, 0™ (7)) 2 folm,0(7)) in L®(t, T; L*(Q)) as n — oo.

Proof. Let ¢ € L*(t,T; L*(Q)) and consider € > 0 arbitrary. Then, from Proposition A.14
we have L'(¢,T; H*(Q2) N HY(QY)) — L'(¢,T; L*(2), with dense inclusion, and thus there
exists & € LY(¢,T; H*(Q) N H} () such that

/ e Pl 2dr < e.

For such &, it follows from Lemma 3.41 that there exists ng € N such that for n > ny we

have
| Hlm o (@) = filr o) €

Therefore, if n > ng, using Lemma 3.4, we have

<E.

[ () = Fi(rvfr), ()




Chapter 8. Application to a nonautonomous wave equation 81

< / 172 (0)) = fulrw () 0(r) = €(7)z2dr + 2
c/ym )ladr + ¢ < (C + L),
which proves that
T
| ) (0) = £ w(m) b)) = o,

and completes the proof. O
Lemma 3.43. For each t € [0,T] and n € N we have

T T

[ o @)l @ dr "5 [0 (7)),

and

[ o ) @) =5 [ vl )b

Proof. Define &: [0,T] — L2(Q) by &(7) = fs(7,9"™ (7)) for each 7 € [0,T]. Note that
¢ e LY0,T; L*(%)), since

e lsaar = [

for some constant C' > 0. Since v\™ = v, in L=(0,T; L*(€)) as m — 0o we have

Fo(ra™(r)

dr < CT,
L2

[ €)™ )~ vl =5,

and the proof of the first item is complete.
For the second item, define &: [0,7] — L2(2) by &(7) = o™ (1) for each T € [0,77].
Clearly € € LY(0,T; L?*(f2)), since for some constant C' > 0 we have

/Hgnﬂm—/nw ) p2dr < CT,
and hence, since f(7,0™ (7)) = fo(r,0(1)) in L=(t,T; L*(Q)) as m — oo we have
T
| a0 ™) = f(rn(m).£()dr "= o,
and the result is proven. O]

Lemma 3.44. For each t € [0,T] we have

[ U e @) =5 [ o))
and

[ el oy =% [ (o))



Chapter 8. Application to a nonautonomous wave equation 82

Proof. Define (1) = v,(7). It is clear that £ € L'(0,T; L*(2)), since for some constant
C > 0 we have

T T
[ e zdr = [ fu)lzedr < OT.
0 0

From Corollary 3.42, we have

[ o) = fu(r vl 6 = o,

which proves the first item. For the second item define £(7) = fs(7,0(7)), and note that
&€ LY0,T; L*(Q)). Since Ut(n) 2o in L°(0,T; L2(2)) as n — 0o, we have

T
| (6@ (r) = u(r)ar = o,
and the proof is complete. O

Lemma 3.45. For each t € [0,T] we have

T

lim lim <fs(7' o™ (1)), U(m) (1))dr

n—0o0 m—0o0

—/F (Tw(T dx—/ (to(t dx—// ))drdzx,

lim lim T( Fo(r, 0™ (1) 08 (7)) dr

n—0o0 m—0o0 t

—/QFS(T,U(T))CZJJ—AFs(t,v(t))dx—/S)/tT ;FS(T,U(T))deJJ.

Proof. Since

and

/Qlfs(ﬂv(f))vt(T)ldﬂf < st o)z lod(m)lle < C,

for some constant C' > 0, we can apply Fubini’s Theorem to obtain
T T
[ [ frvoumdedr = [ [ 1 o()ulr)drda
t Ja QJt

[ Eomar [ Fo)ar - [ [ ' ;FS(T,U(T))dex.

The result is now a simple consequence of Lemmas 3.43 and 3.44. The proof of the second

item is analogous. O]

Corollary 3.46. We have

T

lim lim [ (f,(r0™ (7)) = fo(r 0™ (7)o (r) = o™ (7))dr = 0.

n—o0 Mm—0o0 0

Proof. Note that

(fo(r0™ (1)) = folr o™ (1)),0 (1) — o™ (1))
= (f,(r o™ ()0 (7)) — (fo(r 0™ (7)™ (7))
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— (£ (r™ ()0 (7)) + (fo (700 (7)) 0™ (7).
Using Fubini’s Theorem we have

/0T<fs(7,v(n)(7)),vt(”)(T)>d7 — /Q/OT Fulr 0™ T))v(")(r)dmg;

— / FA(T 0™ (T))dx — / F.(0,0™(0))dz — ))drda.
Q Q

Again, using Fubini’s Theorem we have

))drdr = ))drdz,

and from Lemma 3.39 and Lebesgue’s Dominated Convergence Theorem we have

T(‘?F

))drdx — ))drdzx.

Hence, again from Lemma 3.39 we have

[ r ™ @)l s

noy /Q Fy(T,0(T))dx — /Q F,(0,0(0))dz —

Using this fact and Lemma 3.45 with ¢ = 0, the result is proven.

Corollary 3.47. For each t € [0,T] we have

liy Jim [ ' ZT<fs<T,v<"> (1) = fo(r,0"™ (7)) 0 (r) = o™ (7)) drdt = 0.

n—0o0 m—0o0 0

Proof. The proof of the previous corollary works exactly the same with ftT instead of

fOT , and the result follows by applying once again Lebesgue’s Dominated Convergence

Theorem.

With all these lemmas, the proof of Proposition 3.37 is quite trivial.

]

Proof of Proposition 3.37. The contractiveness of 1; follows from Corollary 3.46, and the

contractiveness of 1, follows from Corollary 3.47.

]

The generalized polynomial pullback attractor: the proof of Theorem 3.1(a)

Proof. Consider the functions g;, g2: RT x R™ — R¥ given by ¢1(a, 8) = a and go(«,

a + . It is clear that g1, go are non-decreasing with respect to each variable, ¢;(0,0) =

92(0,0) = 0 and they are continuous at (0,0). Also, we observe that 2&,(0) = ||V} —
dx(V1,V2)? and for any s € R we have

28,(7) = | Z(D)|Ix = V(W) = V(T Vo) |k = [IS(7 + 5,5)Vi = S(7 + s5.5)Vall%

=dx(S(T + 5,5)V1, S(T + 5,5)Va)2.

2
V2HX =
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From Corollary 3.34 it follows that

dx (S(T + 5,8)V1, S(T + 5,5)Va)? = 2&,(T)
< 28,(0) + 41 (Vi, Vo) + pr(V1,V2)
= 2&E,(0) + 1 (V1,Va) + g1(p1 (V4,V2),p2(V1,V2))
= dx(V1,Va)* + 1 (V4,V2) + g1(p1 (V2,V2).p2(V4,V2)),

and from Proposition 3.33 it follows that

dX(S(T + 573)‘/17 S(T + Svs)‘/Q)2 = Qgs(T)

2

< 20 (£,(0) — E(T) + 1 (R13) + 3a(ViVa))

+ pl(‘/ly‘/Z) + p?(‘/la‘/?) + ¢2(%a%>

2

oy [; (263(0) C28.(T) + (Vi Va) + m(vl,vgﬂ e
+ p1(V17V2) + ,02(V1,VQ) + 1/)2(‘/1,‘/2)

2

p+2

< 2$FT,2 <2gs(0) - 255(T) + gl(pl(‘/la‘/?)#)?(‘/hvé)) + ¢1(%a%))
+ g2(p1<‘/17‘/2)7 p2(‘/17‘/2)) + wZ(‘/IJ/Q)
<270, <dX(V1, V3)? — dx (S(T + 5,5)Vi, S(T + 5,5)V3)?

2

+ 0 (p1<‘/17‘/é)>p2<‘/17‘/2)) + ¢1<%7%)> " + 92(101 (‘/1?‘/2)7 p2(‘/17‘/2)> + w2(‘/17‘/2)

Finally, Proposition 3.15 gives the last hypotheses for us to apply Theorem 2.10 and
guarantee that the evolution process S, associated with (NWE), is p-pullback s-dissipative,
with decay function ¢(t) = t_%, and that S has a bounded generalized p-pullback attractor
M. Furthermore, from Theorem 2.12, S has a pullback attractor fl, with A c M. O

NOTE

The theoretical results on generalized p-pullback attractors, as well as their ap-
plications in order to obtain a generalized polynomial pullback attractor for the non-

autonomous wave equation, both arising from this thesis, are highlighted in the work

M.C. Bortolan, T. Caraballo, and C. Pecorari Neto. Generalized ¢-pullback
attractors for evolution processes and application to a nonautonomous wave equation.
arXiv, 2023. https://doi.org/10.48550/arXiv.2311.15630.

which is in the process of publication up to the completion of this thesis.
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3.5 EXISTENCE OF A GENERALIZED EXPONENTIAL PULLBACK ATTRACTOR
WHEN p =10

Similarly to what was done in the previous subsection, here our goal is to verify
the hypothesis for the application of Theorem 2.11 in order to guarantee the existence of a
generalized exponential pullback attractor for our problem in the case p = 0. We proceed
as follows.

Consider the closed, uniformly bounded, positively invariant and uniformly pullback
absorbing family C previously obtained. If s € R and V3,V; € C C Eﬁi, we already know

that there exists a constant ¢,, > 0 such that
Vit V)x <e¢, and [|[V(tV2)|x <c¢, forallt>D0.

If V(t,V1) = (v(t),0:(t)) and V(t,Va) = (w(t),we(t)), setting again Z(t) = (z(t),z:(t)) =
V(t,V1) — V(t,V3) we have z = v — w and we formally obtain from (tNWE) that

2 — Az k(D)2 + fo(t0) — fo(tw) = /Q K(z,9)z(ty)dy. (3.67)

Our next goal is to use Theorem 2.11 to prove that the process S associated with
(NWE) possesses a generalized exponential pullback attractor. Note that for s € R and

T>0
AS(T + 5:5)Vi, S(T +5,5)Va)* = [ S(T +5,5)Vi = S(T + 5.5)Vall (3.68)
= [|V(TV3) = V(T V)|Ix = 11Z(D)|I% -

Then it is natural to study estimates for the function &(-, Zy): RT™ — R* given by

(1, 20) = 120 = 5 (=l + =0l2)
where Z(t,Zy) = (2(t),z(t)) for t > 0. Here, Zy = Vi — V5. It is clear that £(0, Z) =
5d(V1,V2)2. Again, we write &(t) instead of &(t, Zy) for simplicity, but keeping in mind
that this function depends on the initial data Z; € X.
In order to obtain a suitable estimate for &, we will use the auxiliary function V
defined by
Vilt) = E4(8) + 2 (2,20,

where €3 := min {\/)\1, k:o} > (0. We first present some lemmas.
Lemma 3.48. Fort > 0 we have

Es(t) S Vult) < 3E().

1
2 2

Proof. 1t follows immediately from the fact that

£o 1) & @ 1
< 5 el llzellze < SN 20y Nzl e < 5 Wzl N2l e

171 1

gff *sta
212 26()

where in (1) we applied Poincaré’s inequality and in (2) we used that g9 < v/A;. O

€0

5(2, 2t)

2 2
2l + l=zellz2) | =
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Lemma 3.49. There exists a constant C,, > 0 such that, fort > 0,

jtVS(t) + €0V5(t> < C’1“0 HzHL2 - <f5(t,1}) - f5<t’w)7 Zt> + C’1“0

Proof. Formally multiplying (3.67) by z + £z in L*(2), we obtain

/QK (z,y)2(t,y)dy L

€0 &0 2
/tatztdx — /taAzdx + 5 /Q zzpdr — 5 /Q 2Azdr + ky(t) || 2] 72
€0 €0
+ k) [ mede+ [ [f(t0) = fltwade+ 5 [ [£(t0) = b))z (3.69)

= [ K@yaty)ata)dyde+ 5 [ Kwy)alty)s(te)dyds.
QxQ 2 Jaxa
Since, as we already know, we have
. d /1 1 d
@L%%M—A@MM:ﬁ(Mﬂ%+2MMJ:ﬁ&@mﬂ

.\ € € go d € €
(ii) Eo/ﬂzzttdx — EO/QzAzda: = 50% A zpzdx — 50 12|52 + 50 Hszé,

adding ¢ || 2|7 + %(z, ;) to both sides of equation (3.69), we obtain

2

d € €
5 V() +eoVs(t) = —hs(t) lzell72 + o l|zll7> + 5°<zazt> — goks(tﬂz, zt)

— (fult0) = fultw), 2) = G{(0) = Filtw).2)

+ K(x,y)zt(t,y)zt(t,x)dydx
QxQ

€0

(3.70)

+ K(2,y)z(ty)z(tx)dydz.

2 Jaxo

Now observe that

() —ks(t) ll2ell72 + ol 72 < (20 = ko) Il 72 < 0
——

<0
g2 2 2
(i) 5 (z2) < 5 llellpe llzlle < 520 [121112 = enoei Il es

€ € €
(i) —501%(15)% 2) S 50’61 zell 2 W21 2 < 50/612% 12[] 12 = okacrg |21l 2

. €o €0
(iv) =5 (o) = fi(tw), 2) < o [1fsltw) = fst:w)llz 2] 2 < 2oLocre(1 4+ 267) (2] 12,
where L is the constant from Lemma 3.4;

() [ K@y)altyata)dyds < 2e, | [ Kay)atydy| s
QxQ Q L2
&

.~ €0 €0
(i) 3 [ Kl@y)a(ty)=(te)dyde < S Koo 2]z = coKoer 212

Taking C,, = max {croeg + eokicr, + coLocr, (1 +2¢2)) + e0Kocyy, QCTO} and insert-

ing the previous estimates into (3.70), we conclude

EV0) + Valt) < Coy 2l — (Sult) = Fit) 20+ Co | [ Klaattaiay]

dt

]
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Lemma 3.50. Let T > 0 fized. Then,

T
ET) < 3 TE(0) + 20, T sup 202 +2C, [ | [ K@y)attu)dy| e
t€[0,T] o /e L2

+2

[ D00 - ) o]

Proof. For every t > 0 we have

d eot __eot d
e = e (400 + (o)

1)
g 6‘EOtC’To ||Z||L2 - €€0t<f5(t,’u) - fS(t7w)7 Zt> + QEOtCTO

[ K@zt .

where in (1) we applied Lemma 3.49. Now, an integration from 0 to 7" provides

TV, (T) = V,(0) < T, / Bl 2 dt + 07C,, / 2)2(ty) dyH dt
+—A U (E0) = fultw) 2 ()t
which implies
VA(T) < e==TV,(0) +cm/ )l 2 dt+cm/ H/ K(2.)2(ty dyH dt

[T DG 40) — Fultaw) (o)),
0

and the proof is done if we apply Lemma 3.48 to the previous inequality and consider that

T
| @ e dt < T sup 2(0)] a
0 te[0,7)

The generalized exponential pullback attractor: the proof of Theorem 3.1(b)

From (3.68) and Lemma 3.50, we conclude that for s € R and a fixed T' > 0,

Ay (S(T + 5,5V, S(T + 5,5)V3)? < 3e~0Tdy (Vi,V)? + 4C,, T sup [|2(2)]]
te[0,7)
T T
+40,, [ | [ K@ty dr+ﬂ/ D (1) = fyltw), 2(0)de).
0 L2 0
Note that p := 3e~=°T € (0,1) if we choose a constant T > ;' In 3. For instance, taking
T =1+¢;"1In3, we have

0= 3e—c0(eg In3+1) _ g,-In3,—s0 _ ,—min{VArko}

Consider the function g: RT x RT — R given by g(a, ) = a + . It is clear that
g is non-decreasing with respect to each variable, ¢(0,0) = 0 and ¢ is continuous at (0,0).
Additionally, define the maps py,p2,%: X x X — RT by

T
o1 (Vi Va) = 4C,, /0

(x7y)zt(t,y)dy“ dt,
L2
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pa(V1,V2) = 4G, T sup [2(t)]] 2 ,

t€[0,T

BViV) = 4| [ D 10) — fultw) 2 (0)d],

where (v(t),v:(t)) = V(t,V1), (w(t),w(t)) = V(t,V2) and (2(t),2:(t)) = Z(t) = V(t,W1) —
V(t,Vz).
We already know from Proposition 3.35 that p; and p, are precompact in Ei(o

and that the process S associated with (NWE) in the case p = 0 satisfies the Lipschitz
condition required in Theorem 2.11. We just need to verify that ¢ € contr(?fo), for

which the proof is slightly different from Proposition 3.37. Let {V,}, .y C Ffo and denote
V(t,V,) = (™ (t),0{™(t)). Similarly to Lemmas 3.43 and 3.44 we have the following two

results.

Lemma 3.51. Forn € N we have

[ o @)l 2 [ 0 ) )

and

[ oD ) ol ) T [ oD, 0(r)) 0f” (1)

0 0

Proof. Note that defining &: [0,7] — L2(Q) by &(7) = =D f (7,0 (7)) for each
T € [0,T], we have £ € L'(0,T; L*(Q)), since

[ el = [
-

for some constant C' > 0. Since, by Lemma 3.38, v{™ = v, in L>(0,T; L*()) as m — oo

dr

S f (™ ()]

fs(T,U(n)(T)) dr < CT,

eso(T—T) ‘

L2

<1

we have

[ 1), u™ ) — w(ryar =5 0

For the second item, define £: [0,T] — L2(Q2) by &(7) = 0™ (1) for each
7 € [0,T]. Clearly £ € L'(0,T; L*(2)), since for some constant C' > 0 we have

T t t
[ 1e@llzzdr = [ 1106 () padr = [ D] o (7) | adr < CT,
0 0 0 —_———

<1

and hence, since f,(7,0™ (7)) = f,(r,0(7)) in L>(0,T; L*(Q)) as m — oo by Corollary
3.42, we have

/tT<fS(T,U(m) (7)) = fo(mo(1)).£(T))dr ™=5°0,

and the result is proven. O
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Lemma 3.52.

/OT eEO(T_T)<fS(T, ’U(n)(T)),Ut(T))dT e /T eEO(T_T)<fs(T, v(7)),v(7))dT,

0
and

[} D Gl e = [T )l

Proof. For the first item, define &(7) = %=y, (7). Since ¢ € L'(0,T; L*(Q)), we have

[ o) = fulr o), € =5 o0

For the second item, define £(7) = e®0=7) f,(7,v(7)), and note that & € L'(0,T; L*(2)).
O

Now we have

Lemma 3.53.

T
lim lim QEO(T_T) <fs (7_7 U(n) (T)) ,Ulgm) <T>>d7—

n—00 Mm—r0o0 0

T )
= lim lim eEO(T_T)<fs(T,U(m)(T))aUzEn (7))dr

n—o0 m—oo 0

:/FSTUT dx—e_EOT/F (0,v(0))dz

—50// e DE (ro(r dea;—// Fy(r,v(1))drdx.

Proof. From the previous two lemmas we conclude that

T
lim lim =0 (r=T) (fs(T, ™ (7)),U§m) (7))dr

n—oo m—oo 0
T
= lim lim eo(r=T) (fs(T, p™) (T)),Ugn)(T»dT

n—oo m—oo Jq
- /OT 650(7_T)<f5(771)(7'))7 v (7)) dr.

Since for 7 € [0,7] we have

/Q|€5°(7_T)fs(77U(T))vt(f)ldx < fs(m o)zl < C,

for some constant C' > 0, we can apply Fubini’s Theorem to obtain

//”Tfsm( (T dxdT—// D f (7, 0(7) vy (7)drdir.

Note that

d

et DR (ro(r)] = DR ru(n) + =D 2 Fr(r))
T

o ot

+ L eeotr-1) fo(mw(T))ve(7),
€0
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which, integrating from 0 to 7', implies

/(]Te€0(T_T)fS(T,U(T))Ut(T)dT = /OT dci' [eEO(T T)FS(T,U(T))]dT

T T 5
. eo(T—T) . eo(r=T) ~_
50/0 e Fy(ro(7))dr /0 e p Fy(r(7))dr.

Now the conclusion follows immediately. O

Corollary 3.54. We have

lim lim Te€o<T*T>< F£(rw™ (7)) = fo(r 0™ ()0 (1) — 0™ (7))dr = 0.

n—o0 Mm—oo 0

Proof. Note that

D (f (0™ (7)) = (o™ (7)o (7) = 0™ (7))
= T (f (0™ (1)) 0™ (7)) — T (f, (7™ (7))o (1)
— eS0T f (700 (7)) 0™ (7)) + 2T F (1™ (1)) £ (7)),

Using Fubini’s Theorem we have

/ LD f (™ (7)) ) (1) = L] " oD (0 (7)) 0 (7)dr
0
—/FTv") - EOT/FOU

—50// DE (10" (1 drdx—// (r= T)— Ey(1, 0™ (7))drdzx.

Again, using Fubini’s Theorem we have

T T
/Q/O eaO(T_T)aaijs(T,v”(T))dex:/o /Qes‘)(T_T)aaiS(T,v"(T))dex,

and from Lemma 3.39 and Lebesgue’s Dominated Convergence Theorem we have

/ / ))drdz "= / / (r- TaF 70(7))drdz.

W can also apply Lemma 3.39, Fubini’s Theorem and Lebesgue s Dominated Convergence

Theorem to obtain

50// D (0™ (1)) drde =5 50// D)y (r0(r))drd.
Hence, again from Lemma 3.39 we have
[T () 0 ()
’H—"S/F (T(T)) dx—e’eoT/F (0,0(0))d

—60// D E (r(r drdx—// (r= T)— Fy(1,v(7))drdz.

Using this fact and Lemma 3.53 the result is proven. O

With this previous result we conclude the contractiveness of ¢ in Eii- Now, Theorem
2.11 ensures the existence of a generalized p-pullback attractor for the process S associated
with (NWE) when p = 0, with the decay function ¢(t) = e~**, where o = min{\/\,ko}.
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NOTE

In the work

M.C. Bortolan, T. Caraballo, and C. Pecorari Neto. Generalized exponential
pullback attractor for a nonautonomous wave equation. arXiv, 2024. https://doi.
org/10.48550/arXiv.2401.06631.

which is in the process of publication up to the completion of this thesis, we define the
concept of generalized exponential D-pullback attractors, where D is a universe of families
of sets in X. We prove that for a specific universe, denoted by D¢+, the nonautonomous
wave equation studied in this thesis (with p = 0) has a generalized exponential De«-

pullback attractor. This, in turn, also implies the existence of the De«-pullback attractor

for such problem.
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APPENDIX A - AUXILIARY RESULTS

The following appendix contains technical results that are complementary to the
main theory presented in this work. While these results are important for a deeper under-
standing of the subject matter, they are not necessary for the main argument. As such,
they have been included here as supplementary material. Readers interested in delving
deeper into the technical details of the analysis may find the contents of this appendix
informative and insightful. However, for those who are primarily interested in the main the-
ory, the appendix can be safely skipped without affecting the coherence or understanding

of the main text.

A1 KURATOWSKI MEASURE OF NON-COMPACTNESS

Proposition A.1. For B C X bounded, let
R(B) =1inf {0 > 0: B admits a finite cover by sets of diameter less than 0}

and
B(B) = inf {r > 0: B admits a finite cover by closed balls of radius r} .

Then %(B) = r(B) and 5(B) = B(B).

Proof. Clearly k(B) < k(B). Now fix ¢ > 0 and assume that § > 0 is such that B C U ,C;
with diam(C;) < § < § + €. Hence R(B) < § + ¢, which implies that K(B) < k(B) + €.
Since € > 0 is arbitrary, we obtain K(B) = k(B).

We have directly that 5(B) < B(B). Fix € > 0 and assume that r > 0 is such that
B C U}_B,(z;). Thus B C U}_,B.y(2;), and hence, 3(B) < r + ¢. This implies that
B(B) < B(B) + ¢, and since € > 0 is arbitrary we obtain the equality. O

In what follows we present the main properties of the Kuratowski and ball measures

of non-compactness, and unless clearly stated otherwise, (X,d) is a complete metric space.
Proposition A.2. We have the following:
(i) if B, By C X and By C By then k(B;) < k(Bs);
(ii) k(B) = x(B);
(iii) k(B) =0 if and only if B is compact;
(iv) K(B1 U By) < max {x(B1),x(B2)};
(v) if (X,||-]) is @ Banach space and By,By C X, we have k(By + Bs) < k(By) + £(Bs).

Proof. Ttem (i) follows directly from the definition of .

(ii) From (i) it is clear that x(B) < k(B). Now if 6 > 0 and B C U™ ,C; with
diam(C;) < 6 for i = 1,-- - |n, then since diam(C;) = diam(C;) and B C U, C;, we obtain
x(B) < 4. Thus x(B) < x(B) and this item is proved.
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(iii) Since we are in a complete metric space, compactness equals to totally bound-
edness and closedness. Hence B is compact iff B is totally bounded, and it is not difficult
to see that B is totally bounded iff x(B) = 0. Using (ii), the proof of this item is complete.

(iv) Assume, without loss of generality, that x(B1) < k(Bz). Given € > 0 we have
By C UL, C; with diam(C;) < k(Bg) + ¢ for i = 1,--- ,n, and also By C UL, D; with
diam D; < k(By) + ¢ < k(By) + €. Hence By U By C UL ,C; U UYL, Dj, which proves that

li(Bl U Bg) < I{(BQ) +ée

and completes the proof, since € > 0 is arbitrary.

(v) Firstly we note that if C,D C X and X is a Banach space then diam(C + D) <
diam(C') + diam(D), since for ¢1,co € C and dy,dy € D we have

”01 + d1 - (CQ -+ dg)H < H01 — 02H + Hdl d2H dlam(C) + dlam(D)

Now given € > 0, we have B; C U}, C; with dlam(C’l) < K(Br)+eand By C UL, D;
with diam(D;) < k(Bz) +¢e. Thus {C;+ D;: 1 <i<n, 1 <j<m} is a finite cover of
By + By for which diam(C; + D;) < diam(C};) + dlam( D;) < k(B1) + k(Bsy) + 2¢. Since
)

e > 0 was taken arbitrarily, it follows that k(B + By) < k(By) + k(Bz2). O
Proposition A.3. For each bounded set B C X we have 5(B) < k(B) < 25(B).

Proof. Given ¢ > 0, there exists a family {C;}_; of balls of radius r that covers B, with
r < B(B) + €. Since diam(C;) < 2r for i = 1,...,n, {C;}7, is a finite cover of B by sets
of diameter less than or equal to 2r, which means x(B) < 2r. Thus, k(B) < 2(8(B) + ¢)
and by the arbitrariness of ¢ > 0 we conclude that x(B) < 26(B).

Now, given ¢ > 0, let {U;}, be a finite cover of B such that §; := diam(U;) <
k(B) + € for i = 1,...n. For each i € {1,...n}, take x; € U;. Then, U; C Bs,(z;) C
Bi(py+e(;) and thus {B(p)te(z:)}i, is a finite cover of B by balls of radius x(A4) + ¢
which implies 5(B) < k(B) + €. Again, by the arbitrariness of e, we conclude that
5(B) < w(B). .

We recall that for nonempty subsets U,V C X, the Hausdorff semidistance between
U and V is defined by
dy(U,V) = sup inf d(u,v).

uel VeV

Proposition A.4. Let K and B nonempty subsets of X, with K compact. If dy(B,K) < vy
then B is bounded and k(B) < 2.

Proof. Let € > 0. Given x € B, there exists y, € K such that d(z,y,) < v+ §. Therefore,

B | Bz (v) (A1)

zeB
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Let C = {y,: x € B}. Since C C K and K is compact, C is compact. Moreover

Cc U B:(y.) € U Bz (%),

zeB r€EB

and thus, there exist y1,...,4,, € K in such a manner that

CcCcB:(w) (A.2)
i=1
We claim that .
U Byrs(ve) € U Byss (i) (A.3)
z€B i=1

Indeed, let 2 € B,z (y,). From (A.2) there exists i € {1, ,m} for which y, € Be(y;).
Thus, d(z,y:) < d(2,Yz) +d(Ys,yi) < v+e/4+¢e/4 = ~v+e/2 which shows that z € B, (y:)
and proves (A.3).

Now, from (A.1) and (A.3) we have B C U2y By+5(y;), which shows that x(B) <
27 + €. Since ¢ > 0 is arbitrary, we conclude that x(B) < 2. O

Corollary A.5. If K C X is compact and r > 0 then x(O,(K)) < 2r.

Proof. Since dy(O,(K),K) < r, the result follows from the previous proposition. O

A2 SOME USEFUL INEQUALITIES

Proposition A.6. Let a,b > 0. For a > 1 we have

a® 4+ 0% < (a+b)* <27 (a® +b%),
and for 0 < a < 1 we have

271 a® +b*) < (@ + b)* < a® +b™.

Proof. Let a > 1. These inequalities are trivial if b =0 or « = 1. For b > 0 and a > 1,
taking ¢ = ¥, they are equivalent to

<(1+1t)
1+t

<29 fort > 0.

Setting f(t) = (1172; we see that f(0) = 1 and f(t) — 1 as t — oo. Hence f attains
its global maximum at its critical point ¢ = 1, where it takes the value 27!, since f is
increasing in the interval [0,1] and decreasing in [1,00). Hence f(t) € [1,2%7!] for all ¢ > 0.

For 0 < a < 1, the inequalities are trivial if b = 0. For b > 0, taking ¢ = ¢, they

are equivalent to

1+t)”
20‘*1<( +1) <1 fort>0.
14 te
Analogously as in the previous case, we set f(t) = % Note that f(0) = 1 and f(t) — 1

as t — oo. Hence f attains its global minimum at its critical point ¢ = 1, where it takes
the value 27!, since f is decreasing in the interval [0,1] and increasing in [1,00). Hence
f(t) €27t 1] for all t > 0. O
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Before the next result, we need a simple lemma.
Lemma A.7. Let § € (0,1). If b > a > 0, there exists 6 € (0,1) such that
b5 —a' = (1 L) [fa+ (1 0)b] 77 (b—a).

Proof. Consider the function f(t) = #'=% defined for ¢ > 0. From the Mean Value T heorem,
there exists a number ¢ € (a,b) such that f(b) — f(a) = f'(¢)(b — a). Since f'(t) =
(1 - %) t_%, we obtain 0% — a'"F = (1 — %) c_%(b — a). The results follows by taking
f= b= =

b—a’

Proposition A.8. Consider the function u: RY — R* given by u(t) = (3C)~ V518 ¢,
where C > 0 and 0 < § < 1 are constants. Let v: Rt — R be its inverse function and
fix a real number ty > 0. Then the sequence {t,} defined by t, = v"(ty) for each n € N
satisfies

(i) {t.} is non-increasing;
(it) tn = tos1 = (3C) VO (tnia) 7
(i) t, — 0 when n — oo;

(iv) there exists ng € N such that for all n = ng we have

(t)' 77 = (5= 1) (L430)77 ()

(v) with ng as in (iv) if n = ng and k € N we have

(tngr)' 7 =k (3 =1) (143C) 7P 4 (tn) 17
(vi) with ng as in (iv) if n = ng we have
8
ty = 0"(to) < |(n—no) (5 — 1) (1+3C)" 5+ (tg)" }" .

Proof. (i) Since u/(t) = (30)1/6# "4 1>0forallt>0,uis an increasing function and,
consequently, its inverse function v is also increasing. Then, since u(t) > ¢ for all ¢ > 0,
we have t = v(u(t)) > v(t) for all ¢t > 0. Now, it is clear that ty > v(ty) = t1 = v(t1) =

to > v(te) =t3 >
(ii) tn = u(tnsr) = BC) M8 (tn1)"? + toss.
(iii) Since {t,} is non-increasing we have t, — «. Assume that o« > 0. We have

tn—tny1 — 0and, from (ii), we have ¢, —t,41 — (3C)~"/Pa'/# > 0, which is a contradiction.

(iv) Since {t, } is non-increasing and t,, — 0, there exists ny € N such that ¢, —t, €
(0,1) for all n > ng. Furthermore, from (i), we have ¢, = (3C) (t,_y — t,)" for all n > 1.

Now, if n > ng we have

tnot =t + (tno1 — ) = (3C) (taer — tn)? + (tn1 — L)
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<3C (tno1 — )’ + (fnr — ta)” = (143C) (a1 — 1) .

Then, using Proposition A.6 and Lemma A.7, for n > ng we have

(t2)' 75 = (tar)'

=

= (1= 1) [0t + (1= 6)tu] 75 (b — tua)

<0

Z(tn—l)
_ 1

=

P (1 - %) (tn—l) E(tn - tn—l) > (% - 1) (1 + 30)_

concluding the proof of item (iv).

(v) The cases k = 0 and k = 1 are trivial from (iv). Suppose that (v) is valid for a

k € N. For k£ + 1 we have

—

_1
(tno-i-k)l g

WV

1
(tno+(k+1)>17'3 (% - 1) (1+3C)"

-

= (k1) (5= 1) (L4+30)7 + (1) 7.
(vi) Since % < 0, it is clear from (v) that if n > ng we have
1 1 il
t = v"(t0) < [(n = mo) (5 = 1) (143C) 7% + () ~#| ™

<[(n—no) (L =1) (1+30) 7% + (to)l_é}ﬁﬁl .

i
> (5-1) (1430) 75 44 (5= 1) (1430) 77 + (t)'

]

Lemma A.9 (Gronwall’s inequality). Suppose ¢: [a,b] — R a continuous function, con-

tinuously differentiable in (a,b), a # 0, 5 € R such that

&' (t) + ap(t) < B for allt € (a,b).
Then,

—a(t—a) é
(1) < ofa)e ) 4

Additionally, if o is assumed to be positive we have

(1-— e_o‘(t_“)).
8(t) < dla)et + 2.
Proof. We have for all ¢t € (a,b)

(eat¢(t)>/ — ecxt /(t) + aeat¢(t> < ﬁ@at.

Fix ¢ € (a,b) and t € (¢,b). Integrating this inequality from ¢ to ¢ we have

Gatgb(t) _ 6a0¢(0) < é(eat _ eac)’

Q
hence, we obtain

o(t) < glc)e 79 +

and the result follows by making ¢ — a™.

(1 o efoz(tfc))7

Ll
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Proposition A.10. If H is a real Hilbert space with inner product (-,-) and associate

norm || - ||, then for p >0 and u,v € PZ we have
[P = flo[Poll < (p + DR Ju = v]. (A.4)

Proof. When p = 0, (A.4) is a trivial equality. When v = 0 then (A.4) is also straight-
forward. Thus, we consider p > 0 and we can assume, without loss of generality, that
0 < ||v|| < |Jul|. Observe that (A.4) is equivalent to

[l P72 = 2ffulP[ol]Pu,0) + [0 < (p + 1R (Jul® = 2(u0) + [lo]*).  (A5)

Also note that ||ul]* — 2(u,v) + [[v]]* = 0 iff ||lu — v|| = 0 iff w = v, in which case the
inequality is also trivial. Thus we can also assume that u # v. Setting x = ||u|, y = ||v||
and z = (uw), we have 0 < y < z < R, —wy < 2z < 2y, 2% — 2z + y* # 0 and (A.5)
becomes

o2 2aPyPr + P L (p+ 1)2R¥ (2% — 22 + o). (A.6)

Case I. —zy < 2 <0.
In this case, since z < 0, 2 < (p+ 1)RP, and y* < (p + 1)RP, we have
pPE _20PyPr 4 P2 — (p+ 1)?R*P (2 — 22 + 3?)
= 2*[2" — (p+ DR)[” + (p+ DR+ y°[y" — (p+ DRI + (p + 1) RY]
— 22(a”y” — (p+1)*R¥) <0,
which proves (A.6).

CAseE II. 0 < z < ay.

Define ;c2p+2 _ prypz + y2p+2
flzy,2) = o
We have
g(x z) . (—pryp)(ﬂ ) P y2) + 2($2p+2 _ 2uPyPs y2p+2>
aZ Y - (]:2 _ 22 i y2>2 )
and since

(—22PyP)(2® — 22 + 9?) + 2(2* 2 — 22PyP 2 + P T?)
= 20P P2 (2P — yP) — 2P P2 (2P — yP) = 2(2P — yP) (2P — yPT?) > 0,

we have %(m,y,z) > 0. Thus, for each pair (x,y) satisfying the conditions mentioned above,
the function (0,zy] 3 z — f(x,y,2) is increasing and, consequently, f(x,y,2) < f(z,y,2y).

Set
x2p+2 _ 2xp+1yp+1 + y2p+2 (xp—&-l _ yp+1)2

g(ay) = flayzy) = = 20y + 4 D
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A direct application of the Mean Value Theorem to the function h(t) = t*** shows
that there exists £ € (y,z) such that

2=yt = (p+ DE(z —y) < (p+ Da"(z —y) < (p+ DR (2 —y),
which implies f(z,y,2) < g(x,y) < (p + 1)?R?*, and completes the proof. O

The next result is taken from (ZHAO; ZHAO; ZHONG, 2020b, Lemma 2.2), and
we present a slightly adapted proof.

Proposition A.11. If H is a real Hilbert space with inner product (-,-) and associate

norm || - ||, then for p > 0 and u,v € H we have
(lullPu = [[olPou = v) > 277 [lu — v][P*. (A7)

Proof. When p = 0, the inequality is trivial and Cy = 1. Hence we assume p > 0. Clearly
(A.7) is trivial when either v = 0 or v = 0. We can assume, without loss of generality, that
0 < |jv]| < |Ju]] and uw # 0. Note that (A.7) is equivalent to

p+2

[l + [l ll7*2 = (all” + ollP) ) = 272 ([Jul® + [Jol* = 2(u0) =

Dividing both sides by |[u|[P*? we obtain

2 2 22
. _<1+||v||p> ol (o) (HIIUII ol ) ) <

[[u[P+2 [/ flell el o]l I e Nl

Setting t = 14l € [0,1] and s = %% € [—1,1] we obtain

Jull [l 1]l

p+2

14 ¢P+2 (t +tp+1)3 > 2—p(1 +12— 2ts) 2. (AS)

Since 1+ t? — 2ts = (t — s)> + 1 — s> = 0 if and only if t = s = 1, we can prove (A.8) for
t €[0,1) and s € [—1,1), where 1 + t* — 2ts # 0. Define h: [0,1) x [-1,1) — R by
14 tPT2 — (¢t + tPT)s

h(t,s) = -
(£:) (1+ 2 —2ts)"=

We have
Oh . H(p+2)(L+72) = (L4 ) (L+ ) = p(t + 03]

—(t,8) = >
5s %) (1+ 2 —2ts)"=

)

and for s < 1 we have

(p+2)(1+772) — (1 + ) (1 + %) — p(t +t7T1)s
> (p+2)(1+t772) — (1 4+ t7)(1 + %) — p(t + 7).

Note that for all ¢ € [0,1] we have

(p+ 2)(1 +772) — (1 +)(1 + %) — p(t +t*1)
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=p(1—t""MA-t)+(1-)(1-¢*) >0
thus 2(t,s) > 0 for s € [~1,1) and ¢ € [0,1). Thus, for each fixed ¢ € [0,1), s — h(%,s) is
increasing and thus h(t,s) > h(t, — 1) for each s € [-1,1) and ¢ € [0,1). Set

A AR S |
t)=nh(t,—1) =

and note that for ¢ € [0,1] we have

(p+1HE+E"-1)
(1 + ¢t)pt3 =~

g'(t) =
Thus g is decreasing and hence
hts) > h(t,— 1) > g(t) > g(1) =27,
which proves (A.8) and completes the result. O

Proposition A.12 (Jensen’s inequality for concave functions). Let g: [0,00) — R a
concave and upper semicontinuous function. If T > 0 and h: [0,T] — R is an integrable

function then g o h is integrable and

;,/OTg o h(r)dr < g (; /OT h(T)dT) |

Proof. Define ¢: [0,00) — R by ¢(x) = —g(z), S = [0,1] and f: [0,1] = R by f(z) =
h(Tz). Then ¢ is convex and lower semicontinuous, |S| = 1 (where |S| denotes the
I-dimensional Lebesgue measure), and f is integrable. Using (HYTONEN et al., 2016,

Proposition 1.2.11) we have

o ([ r€de) < [ oo rie)ae,
and since ¢ = —g, we have
[ gonree <o [ nree),

and the change of variables 7 = T'¢ completes the proof. m

A.3 PRECOMPACT PSEUDOMETRICS

Proposition A.13. Let X be a complete metric space, & # B C X and p a pseudometric
on X. Then p is precompact on B if and only if any sequence {x,} C B has a Cauchy
subsequence {xnj} with respect to p, that is, given € > 0, there exists N > 0 such that
P(ZTn; Tn;) < € foralli,j > N.
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Proof. Suppose p is precompact on B and let {z,},en C B. There exists a finite set of
points {w!, ... wM} C B such that B C U;llef(wj(-l)). This implies that there exists
g1 € {1,---,r} for which the ball Bf(wj, ) contains infinitely many terms of {z, },en. Let
{Z1.n}nen be the subsequence of {xn}neN that lies in Bf(wy,).

Again there exists {w!?,....w 2} C B such that {z1,} € B C U2 1/Q(w(Z)),
which implies that there exists jo € {1,...,rs} for which the ball Bj /Q(wp) contains
infinitely many terms of {21, }nen, which we name {xs,, }nen.

Continuing this process inductively, we obtain a subsequence {y, }nen of {Z, }nen

where y,, = 2,,, and for each n € N we have
Yn € Bf(wjl) N Blp/2(wj2) M Bl/n(w]n)

Let e > 0 given and N > 2. If m,n > N we have Yy, Y, € BY/y(wjy ), which ensures

that
1 1 2

p(ym’yn)gp(y"’ij)+p(ij7ym)<N+N N<8

that is, {z, }nen has a Cauchy subsequence with respect to p.

On the other hand, assume that any sequence {x,},en C B has a Cauchy subse-
quence with respect to p. Let 6 > 0 given. Since B # &, we can pick a point y; € B. If
p(y1,2) < 0 for all z € B we have

B c Bi(y),

and the result is done. Otherwise, let yo € B such that p(y1,y2) = 0. If p(z,y1) < d or
p(z,y2) < 6 for all z € B, we have

B C Bi(y) U B§(y2),

and, again, the result is done. Otherwise, let y3 € B such that p(y1,y3) = ¢ and p(ys,y3) = 0.
We can continue this process only until a finite number of iterations. In fact, if this is not
the case, we can find a sequence {y, }nen C B such that p(y;,y;) = ¢ for every ¢ # j. Of
course such sequence does not have a Cauchy subsequence, which is a contradiction with

our initial assumption, and the result is complete. O

A.4 DENSITY IN BOCHNER SPACES

Proposition A.14. Let XY be two Banach spaces such that X — Y, with dense in-
clusion. If I C R is an interval and 1 < p < oo then LP(1,X) — LP(I)Y), with dense

inclusion.

Proof. 1t is clear that if £ € LP(1,X), since X < Y, then

Jlemigdr < [lemitar,

thus LP(I,X) < LP(I,Y).
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Now let ¢ = 3" ; y;xa, be a simple function in LP(S)Y), where y; € Y, A; C I for
eachi=1,...n, ANA; =@ifi# 7, and U’ A; = I. Given € > 0, there exists z; € X,
i =1,...,n such that ||z; — y]|} < 17> where [I| denotes the one-dimensional Lebesgue
measure of /. Consider n = >_I" ; ;X 4,, which is a simple function with values in X, hence
n € LP(I,X). Note that

J In(r) = (n)ldr < <.

Since the Y-valued simple functions are dense in LP(I,Y) (see (HYTONEN et al., 2016,

Lemma 1.2.19), for instance), the result is complete. [
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