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Abstract

Multiscale computational models based on representative volume elements (RVEs) consti-
tute a valuable tool for investigating the relationship between the mechanics of arteries and
biophysical phenomena that occur at smaller length scales. The microstructure of arterial
tissue results from the activity of vascular cells that can sense and respond to mechanical
stimuli through their extracellular matrix. In healthy arteries, this mechanism is responsi-
ble for maintaining tissue integrity and functionality, whereas in pathological conditions it
can induce microstructural changes in response to altered mechanics. In abdominal aor-
tic aneurysms (AAA), the localized bulging of the aorta is known to be associated with
elastin loss, smooth muscle cell apoptosis, and intense collagen fiber growth and remodel-
ing (G&R) promoted by mechanosensing cells.

In the present work, a new class of multiscale RVE-based models of arterial tissue is
proposed, based on a combination of computational homogenization and the embedded
elements technique. These models are then used to shed light on the formation of a neo-
adventitia on the abluminal side of AAAs, as demonstrated by recent experimental find-
ings. This cumulative dissertation consists of four scientific papers. The first study reviews
key aspects of vascular biomechanics at different length scales as well as previous RVE-
based models of arterial tissue. In the second study, the use of the embedded elements
technique in a multiscale setting is introduced and details of the corresponding numerical
implementation are presented, including a discussion on the influence of RVE size and of
different multiscale boundary conditions. In the third and fourth studies, RVEs of healthy
and aneurysmatic abdominal aortas are constructed and simulated under different biaxial
loading conditions to investigate how the formation of a neo-adventitia might be related to
mechanotransduction and G&R by vascular cells. The results suggest a possible protective
role of this new layer, especially in larger AAAs, and thus contribute to a better under-
standing of this serious disease, the pathogenesis of which is not yet fully understood.
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Zusammenfassung

Numerische Mehrskalenmodelle basierend auf repräsentativen Volumenelementen (RVEs)
stellen ein nützliches Hilfsmittel dar, um die Beziehung zwischen der Mechanik von Arte-
rien und auf kleinen Längenskalen ablaufenden biophysikalischen Phänomenen zu un-
tersuchen. Die Mikrostruktur des arteriellen Gewebes resultiert aus der Aktivität von
Gefäßzellen, die in der Lage sind, mechanische Reize über ihre extrazelluläre Matrix
wahrzunehmen und entsprechend zu reagieren. In gesunden Arterien ist dieser Mech-
anismus verantwortlich für die Aufrechterhaltung der Integrität und Funktionalität des
Gewebes, kann jedoch unter pathologischen Zuständen als Reaktion auf eine veränderte
Mechanik mikrostrukturelle Abwechslungen auslösen. Bei abdominalen Aortenaneurys-
men (AAAs) ist bekannt, dass die lokalisierte Aussackung der Aorta z. B. mit dem Verlust
von Elastin, der Apoptose glatter Muskelzellen und einer ausgeprägten Umstrukturierung
(growth and remodeling, G&R) von Kollagenfasern einhergeht, die durch mechanosen-
sorische Zellen vorangetrieben wird.

In der vorliegenden Arbeit wird eine neue Klasse von RVE-basierten Mehrskalenmodellen
für arterielles Gewebe vorgeschlagen, welche auf einer Kombination von numerischer
Homogenisierung und der Embedded-Element-Methode basieren. Diese Modelle wer-
den dann verwendet, um die Bildung einer Neoadventitia an der abluminalen Seite von
AAAs zu erhellen, wie dies in neuesten experimentellen Befunden nachgewiesen wurde.
Diese Manteldissertation besteht aus vier wissenschaftlichen Arbeiten. Die erste Veröf-
fentlichung gibt einen Überblick über die zentralen Aspekte der vaskulären Biomechanik
auf verschiedenen Längenskalen sowie einen Rückblick auf vorangegangene RVE-basierte
Modelle von arteriellem Gewebe. In der zweiten Studie wird die Anwendung der Embed-
ded-Element-Methode für Mehrskalenberechnungen eingeführt, und es werden Details zur
entsprechenden numerischen Implementierung präsentiert, einschließlich einer Diskussion
über den Einfluss der RVE-Größe und verschiedener mehrskaliger Randbedingungen. In
der dritten und vierten Veröffentlichung werden RVEs gesunder und aneurysmatischer
Bauchaorten generiert und unter verschiedenen zweiachsigen Lastbedingungen simuliert,
um zu untersuchen, wie die Bildung einer Neoadventitia mit der Mechanotransduktion
und dem von Gefäßzellen kontrolliertem G&R zusammenhängen könnte. Die Ergebnisse
deuten auf eine mögliche schützende Rolle dieser neuen Wandschicht hin, insbesondere
bei größeren AAAs, und tragen somit zu einem besseren Verständnis dieser schweren
Erkrankung bei, deren Pathogenese noch nicht vollständig verstanden ist.
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Resumo

Os modelos computacionais multiescala baseados em elementos de volume representa-
tivos (EVRs) são uma ferramenta relevante para investigar a relação entre o comporta-
mento mecânico das artérias e fenômenos biofísicos que ocorrem em menores escalas de
comprimento. A microestrutura do tecido arterial resulta da atividade de células vascu-
lares capazes de identificar e responder a estímulos mecânicos por meio de sua matriz ex-
tracelular. Em artérias saudáveis, esse mecanismo é responsável por manter a integridade
e a funcionalidade do tecido, ao passo que, em condições patológicas, ele pode induzir
mudanças microestruturais em resposta a alterações mecânicas. Nos aneurismas da aorta
abdominal (AAAs), sabe-se que a expansão localizada da aorta está associada à perda de
elastina, à apoptose das células musculares lisas e a uma intensa remodelagem das fibras
de colágeno (growth and remodeling, G&R) promovida por células mecanossensoras.

O presente trabalho introduz uma nova classe de modelos multiescala do tecido arterial
baseados em EVR, construídos com base em uma combinação de homogeneização com-
putacional e a técnica de embedded elements. Esses modelos são usados para lançar luz
sobre a formação de uma camada neo-adventícia no lado abluminal dos AAAs, conforme
demonstrado por resultados experimentais recentes. Esta tese cumulativa consiste de qua-
tro artigos científicos. O primeiro estudo traz uma revisão dos principais aspectos da
biomecânica vascular em diferentes escalas de comprimento, bem como de modelos an-
teriores de tecido arterial baseados em EVRs. No segundo estudo, o uso da técnica de
embedded elements em um contexto multiescala é apresentado, incluindo detalhes a re-
speito da correspondente implementação numérica e uma discussão sobre a influência do
tamanho do EVR e de diferentes condições de contorno multiescala. No terceiro e quarto
estudos, EVRs de aortas abdominais saudáveis e aneurismáticas são construídos e simu-
lados sob diferentes carregamentos biaxiais a fim de investigar como a formação de uma
camada neo-adventícia pode estar relacionada à mecanotransdução e ao G&R pelas célu-
las vasculares. Os resultados sugerem uma possível função protetora dessa nova camada,
especialmente em AAAs maiores, contribuindo portanto para uma melhor compreensão
dessa grave doença, cuja patogênese ainda não foi totalmente esclarecida.
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1 INTRODUCTION

Cardiovascular diseases (CVDs) remain the main cause of death worldwide [269], despite
being known and treated since ancient times [74]. In many cases, CVDs are associated with
or caused by diseased blood vessels: the buildup of atherosclerotic plaque in the luminal
side of arteries, e.g., can disrupt the blood supply to vital organs such as the heart or the
brain, leading to, respectively, ischemic heart disease and stroke [119], which together
were responsible for more than a quarter of all deaths around the globe in 2019 [269].

The main function of arteries is mostly a (bio)mechanical one, i.e., to transport pressurized
blood throughout the body. Thus, the mechanical behavior of arterial tissue is an essential
element of vascular physiology and, as such, has been studied from the early days of
solid mechanics: in particular, the strong correlation between the microstructure of arterial
tissue and its mechanical behavior has been recognized at least since the 17th century [17].
Arteries are composed mainly of vascular cells (e.g., fibroblasts and smooth muscle cells)
embedded in an extracellular matrix (ECM) of collagen, elastin and other proteins [43,
200]. Arising from this complex microstructure, the mechanical behavior of arterial tissue
is, in general, nonlinear, anisotropic and marked by residual stresses [105, 119].

To preserve this behavior over time, vascular cells constantly sense the mechanics of the
tissue via their surrounding ECM (mechanotransduction) [87, 122] and modulate their
activity to preserve homeostasis, i.e, the set of physical and chemical conditions that ensure
tissue integrity and functionality [23, 64]. Not surprisingly, then, persistent changes to
arterial mechanics are commonly accompanied by microstructural modifications in the
tissue: chronic elevations of blood pressure (hypertension), e.g., have been associated with
cellular alterations [5], increased collagen deposition by cells [275] and thickening of the
arterial wall [121]; the latter, in particular, could be interpreted as an attempt to drive wall
stresses back to pre-hypertensive (homeostatic) levels [6, 125].

In view of the above, it is clear that the (patho)physiology of arteries is strongly dependent
on the dynamic reciprocity [15, 140] between arterial mechanics and (mechano)biological
phenomena taking place at smaller length scales. Multiscale models of arterial tissue
can thus shed light on this interdependence and provide relevant insights to many as-
pects of vascular biomechanics. Of particular relevance to this purpose are computa-
tional models based on representative volume elements (RVEs), in which a geometric
model of the microstructure of the tissue (the RVE) is constructed and its deformation
is simulated with multiscale boundary conditions, usually by means of the finite element
method (FEM) [16, 49, 172]. As opposed to standard macroscopic constitutive models
of fibrous tissues, in which the kinematics at lower scales is, in general, postulated a pri-
ori [21], RVE-based models – despite their higher computational cost – offer much more
flexibility to explore micromechanical phenomena such as cellular mechanotransduction,
while still capturing the macroscopic behavior of the tissue via homogenization.
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2 1 Introduction

1.1 Motivation and objectives

An abdominal aortic aneurysm (AAA) is a pathological bulging of the infrarenal aorta to
more than 50% of its normal diameter. Despite their relatively low prevalence (1.3 – 8.9%
in men and 1.0 – 2.2% in women [211]), AAAs stand out among CVDs for being particu-
larly deadly: if untreated, an AAA might progress to a rupture of the aortic wall, an event
associated with mortality rates of 80 – 90% due to internal bleeding [122, 249]. Almost five
centuries after the first description of an AAA by Vesalius [212], the mechanisms behind
the initiation, progression and rupture of AAAs still remain elusive. An important contri-
bution to shed more light on the pathogenesis of AAAs was recently made by Niestrawska
et al. [185], who proposed a three-stage theory relating microstructural and mechanical
alterations along the course of the disease.

The main goal of the present thesis is to introduce a new class of RVE-based models
of abdominal aortic tissue, and use it to investigate a particular aspect of this mechano-
pathogenic theory, namely the formation of a neo-adventitial layer in the abluminal side of
the aneurysm – which could have important implications to the stability of the wall [185].
To this end, RVEs resembling the aortic tissue in health and disease are constructed, and
simulated via the FEM by combining a sound multiscale framework [16, 49] with the
embedded elements technique [67, 83]. The geometrical and constitutive assumptions
of the RVEs are solidly grounded in experimental observations, and particular attention
is given to the choice of RVE size and boundary condition. By subjecting the RVEs to
different biaxial loadings, macro- and micro-scale results are analyzed to explore a possible
link between the formation of the neo-adventitia and cellular mechanotransduction, since
this new layer originates from intense G&R promoted by cells that are known to respond
to mechanical stimuli [126, 185].

1.2 Organization of the PhD thesis

This cumulative dissertation is composed of four scientific papers related to the aforemen-
tioned leitmotif:

1. M. Dalbosco, E.A. Fancello, G.A. Holzapfel
Multiscale computational modeling of arterial micromechanics: a review, Com-
puter Methods in Applied Mechanics and Engineering, in press.
Serving as theoretical background to the thesis, this paper starts by reviewing key
aspects of the arterial microstructure and its relation to mechanics and mechanobi-
ology at different length scales. Subsequently, a number of RVE-based models of
arteries is reviewed, with emphasis on RVE geometries and simulation results at the
macro- and micro-scales. Finally, the paper discusses some directions for future re-
search based on the drawbacks and limitations of previous works.
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2. M. Dalbosco, T.A. Carniel, E.A. Fancello, G.A. Holzapfel
Multiscale numerical analyses of arterial tissue with embedded elements in the
finite strain regime, Computer Methods in Applied Mechanics and Engineering,
381:113844, 2021.
In this study, a novel class of finite element (FE) RVE models for arterial tissue
is proposed, consisting of one-dimensional truss elements (representing collagen
fibers) reinforcing three-dimensional elements (representing the non-collagenous
ground substance) by means of the embedded elements technique. The formal
derivation and numerical implementation of this approach in a multiscale setting are
detailed and, subsequently, applied to an RVE of the medial (intermediate) layer of
a healthy abdominal aorta. By simulating an equibiaxial deformation, the influence
of RVE size and multiscale boundary condition over the results at the macro- and
micro-scales is investigated; results suggest that, among the four classical multiscale
models, the assumption of periodic fluctuations on the boundary represents the best
choice for the proposed RVE, a fact that is used in the subsequent papers.

3. M. Dalbosco, T.A. Carniel, E.A. Fancello, G.A. Holzapfel
Multiscale simulations suggest a protective role of neo-adventitia in abdominal
aortic aneurysms, Acta Biomaterialia, 146:248–58, 2022.
This study investigates the mechano-pathogenic model of Niestrawska et al. [185]
by constructing three types of RVEs, representing the adventitial (outermost) layer
of a healthy abdominal aorta, the abluminal side of an early-stage AAA and the
neo-adventitia of a late-stage AAA. As in the previous paper, the RVEs consist of
one-dimensional collagen fibers embedded into a continuum ground substance, and
the network of collagen is stochastically-generated to resemble experimental mea-
surements for each of the three tissue stages. An equibiaxial deformation is sim-
ulated using periodic fluctuations on the boundary, and results are analyzed at the
macro- and micro-scales. By interpreting the deformation fields in the RVEs as
mechanotransduction cues, a possible protective role of the neo-adventitia in late-
stage AAAs is proposed. More specifically, it is hypothesized that the formation of
this new layer and the associated macroscopic stiffening of the tissue would drive
the level of microscopic deformation sensed by fibroblasts (which was disrupted in
early-stage AAAs) closer to the homeostatic target of the healthy adventitia.

4. M. Dalbosco, M. Terzano, T.A. Carniel, E.A. Fancello, G.A. Holzapfel
A two-scale numerical study on the mechanobiology of abdominal aortic aneu-
rysms, Journal of the Royal Society Interface, 20:20230472, 2023.
A drawback of the previous study was the assumption that both the healthy and dis-
eased RVEs were subjected to the same equibiaxial deformation gradient. Aiming to
fill this gap, in this paper macro-scale FE models of a healthy aortic ring and of early
and late AAAs of increasing size are constructed and simulated. The deformation
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gradient at the abluminal side of each model is extracted and used to simulate the
biaxial deformation of RVEs of each tissue stage, constructed in the same way as
in the previous study. The deformation fields are evaluated qualitatively and quanti-
tatively, and, in conjunction with the findings of the previous study, results suggest
that the macroscopic mechanics and the microstructure of the tissue evolve symbi-
otically in the course of the disease to maintain an approximately constant level of
microscopic deformation along disease progression and AAA expansion, even if, in
this case, this level is higher than the healthy one.

Further contributions from the author

In addition to the papers cited above, the candidate also co-authored the following publi-
cations:

1. M. Dalbosco, C.R.M. Roesler, P.G. Silveira, E.A. Fancello.
Numerical study on the effect of stent shape on suture forces in stent-grafts,
Journal of the Mechanical Behavior of Biomedical Materials, 110:103852, 2020.

2. M. Dalbosco, G.S. Lopes, P.D. Schmitt, L. Pinotti, D. Boing.
Improving fatigue life of cold forging dies by finite element analysis: A case
study, Journal of Manufacturing Processes, 64:349–355, 2021.

3. E. Klimstein, M. Dalbosco, G.A. Holzapfel.
Effects of disease progression on mechanical stresses in human abdominal aor-
tic aneurysms, in: G.R. Müller-Putz and C. Baumgartner (eds.), Proc. Annual
Meeting of the Austrian Society for Biomedical Engineering 2021, Verlag der Tech-
nischen Universität Graz, Graz (2021), pp. 25–29.

4. M. Dalbosco, D.C. Haspinger, K. Li, S.-I. Murtada, A. Pukaluk, M. Rolf-Pissarczyk,
S. Sherifova and G. Sommer.
Multiscale experimental characterization and computational modeling of the
human aorta, in: G. Sommer, K. Li, D.C. Haspinger and R.W. Ogden (eds.), Solid
(Bio)mechanics: Challenges of the Next Decade, Springer, Cham (2022), pp. 3–52.

5. S. Saeidi, M.P. Kainz, M. Dalbosco, M. Terzano and G.A. Holzapfel.
Histology-informed multiscale modeling of human brain white matter, Scientific
Reports, 13:19641, 2023.
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Finally, the author also contributed to the following conference presentations:

1. M. Dalbosco, T.A. Carniel, E.A. Fancello and G.A. Holzapfel.
Numerical investigation on the mechanobiology of collagen growth and remod-
eling in abdominal aortic aneurysms, in: XVI International Conference on Com-
putational Plasticity. Fundamentals and Applications (COMPLAS 2021), Barcelona,
2021.

2. M. Dalbosco, M. Terzano, T.A. Carniel, E.A. Fancello and G.A. Holzapfel.
Multiscale numerical study of the mechanobiology of abdominal aortic aneurysm
growth, in: 11th European Solid Mechanics Conference (ESMC 2022), Galway,
2022.
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2 MULTISCALE COMPUTATIONAL MODELING OF
ARTERIAL MICROMECHANICS: A REVIEW

Abstract. The mechanical properties of arterial tissue play a central role in healthy human
physiology and have therefore been extensively studied and modeled in recent decades.
These properties are closely related to the microstructural features of the tissue and at the
same time can have a significant influence on them, because the arterial microstructure
is maintained (and in some cases remodeled) at the microscopic level by vascular cells
that can sense and respond to mechanical stimuli. This review addresses multiscale com-
putational models based on representative volume elements (RVEs), which constitute an
excellent tool for studying this micro-macro relationship. First, a comprehensive discus-
sion on arterial biomechanics with emphasis on microstructural aspects is presented to
underpin the subsequent discussion of RVE-based models and examine their geometrical,
constitutive and kinematic assumptions. Second, a series of selected results is then pre-
sented to highlight the predictive and descriptive capabilities of the models. Finally, some
directions for future work are suggested.

2.1 Introduction

The mechanical behavior of blood vessels has been a subject of interest since the begin-
nings of solid mechanics. Giovanni Borelli, a contemporary of Galileo, already wrote
about the contractility of arteries due to the presence of ‘circular fibers’ (fibris circu-
laribus) [17]. This constitutes an early example of a core principle of arterial biome-
chanics, in which the microstructure of the tissue is strongly correlated with its mechan-
ical behavior. In fact, during his time as Chair of Mathematics at the University of Pisa
(a position previously held by Galileo [246]), Borelli worked closely with the physician
Malpighi [18], a pioneer of medical microscopy [190], which may have given him the
necessary knowledge about the microstructure of arteries.

Healthy arteries consist of three clearly distinguishable layers: tunica intima, tunica media
and tunica adventitia – the innermost, middle and outermost layers, respectively. Each
layer is characterized by a specific arrangement of numerous microconstituents such as
collagen fibers, elastin sheets, elastic fibers and proteoglycans, which form the extracellu-
lar matrix (ECM) [43, 119, 200]. The ECM not only gives arteries their shape and specific
mechanical properties, but also provides a scaffold for vascular cells such as fibroblasts
and vascular smooth muscle cells (vSMCs). The latter are responsible for the active (con-
tractile) behavior of the arterial wall, while the passive mechanical behavior of arteries is
mainly dominated by two ECM components, namely collagen and elastin [105, 119]. In
the context of their physiological function, arteries can be therefore be viewed as contrac-
tile tubes reinforced by collagen fibers, which represent the main load-bearing component
of the arterial wall in vivo [82, 199, 272].

7
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To fulfill their biomechanical role of conducting pressurized blood, arteries must be able
to maintain their microstructure over time. To this end, vascular cells constantly produce
and degrade ECM proteins, controlled by a combination of biochemical pathways and
mechanical signaling phenomena (mechanobiology) [87, 122], through which cells sense
the mechanical state of the tissue and respond accordingly by (re)shaping the ECM to
preserve mechanical homeostasis – the steady state of physical and chemical conditions
that ensure the integrity and functionality of the tissue [23, 64, 126]. Therefore, not only
the microstructure of the tissue influences its mechanical behavior, as Borelli observed,
but the opposite is also true. Not surprisingly, then, vascular disorders such as hyperten-
sion [5, 121, 214], atherosclerosis [168, 253, 262] and aneurysms [124, 185, 245], among
others, have been associated with changes both on the tissue mechanics and on its mi-
crostructure.

In terms of constitutive modeling, this multiscale nature of arterial mechanics promoted the
transition from early phenomenological models [75, 108, 139, 235, 247] to structurally-
motivated models [60, 79, 109, 113, 123, 149, 191], which incorporate microstructural
information into their formulation, thus providing clear physical and biological meaning
to their constitutive parameters. This family of arterial tissue models has achieved con-
siderable success over the past two decades due to their excellent descriptive capabili-
ties [92, 114], helping to reveal how the microstructure of an artery affects its macroscopic
mechanical behavior in health and disease [40, 134, 183, 217, 223, 226].

Conversely, using these models to investigate the influence of macroscopic arterial me-
chanics on microscopic phenomena (e.g., cell mechanotransduction) is more complica-
ted [231]; although they are more computationally expensive, multiscale models based on
representative volume elements (RVEs) are better suited for this. The RVE consists of a
characteristic representation of the microstructure of the material to be modeled, whose
(micro)mechanical behavior is simulated with multiscale boundary conditions, thus en-
abling analyses of countless phenomena on smaller length scales [42, 162, 239]. In this
case the macroscopic mechanical behavior can still be determined from numerical homog-
enization of the microscopic fields, ensuring a consistent connection between the macro-
and microscale mechanics [16, 100, 166].

Against this background, an overview of RVE-based models of arterial tissue is presented
here. This manuscript is structured as follows: in Section 2.2, key aspects of vascular
physiology are introduced, with an emphasis on microstructure (Section 2.2.1), mechan-
ical behavior (Section 2.2.2) and mechanobiology (Section 2.2.3) of arteries to support
the subsequent discussion. Different RVE-based models available in the literature are pre-
sented in Section 2.3, which briefly discusses the framework of multiscale computational
analyses (Section 2.3.1), followed by a review of the model features (Section 2.3.2) and
by some selected results on the macro- and micro-scales (Section 2.3.3). Finally, in Sec-
tion 2.4 conclusions are drawn from the reviewed knowledge and some possible directions
for future research are suggested.
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2.2 Arterial biomechanics

Since the pioneering work of Roy [207] in the 19th century, much has been investigated
about the biomechanical properties of arteries. To support the subsequent discussion of
RVE-based models, this section discusses some generally accepted facts of arterial biome-
chanics (without being exhaustive), with an emphasis on microstructural features and their
relationship to the macroscopic behavior of the tissue in health and disease.

2.2.1 Microstructure

The circulatory system of the human body consists of blood vessels with different diam-
eters from 20-30 mm (aorta) to 5-10µm (capillaries) [128]. Arteries can be classified as
elastic (larger vessels, located closer to the heart) or muscular (smaller vessels, located
more distally within the circulatory system) [109, 243]. Despite relevant microstructural
differences between the two types [133, 200], the three-layered structure of arteries is gen-
erally maintained along the arterial tree down to the single-layered capillaries [119, 276].
Figure 2.1 shows a healthy elastic artery (right) with its three characteristic layers and
illustrates the microstructure of each layer (left).

The intima consists of a single-layer of endothelial cells that lines the arterial lumen and
is supported by a basal lamina reinforced by collagen fibers [119, 200, 276]. In young,
healthy arteries the intima is quite thin. However, with increasing age, non-pathological
intimal hyperplasia may develop due to cell migration and ECM turnover [177, 213, 230].
This thickening process can lead to the pathological formation of lipid-rich atheromatous
plaques on the luminal side of the arterial wall (atherosclerosis) [111, 253], which is asso-
ciated with a number of cardiovascular diseases – e.g., myocardial infarction, stroke and
peripheral artery disease [119, 160].

The media is separated from the intima by the fenestrated internal elastic lamina, which
is 70-90µm thick [200]. It consists of concentric layers of spindle-shaped vSMCs with
a length of about 60µm and 5µm in width [161], which control the contractile behavior
of the arterial wall due to its ability to shrink and relax in response to chemomechanical
stimuli [43, 86, 180]. These cells are embedded in an ECM composed of interlamellar elas-
tic and collagen fibers as well as proteoglycans, organized into repeating medial lamellar
units (MLUs) with a characteristic thickness of ∼ 15µm [57, 188, 273]. In elastic arteries,
these layers are separated by thin (∼ 2µm), fenestrated elastin lamellae [57, 188]. Similar
to collagen fibers, vSMCs exhibit a helical orientation in the axial-circumferential plane
of the artery, with an additional radial tilt [161, 188]. However, in the course of some
pathologies, significant disruptions in the microstructure of the media can occur: in aor-
tic aneurysms, e.g., in the early stages of the disease there is a severe loss of elastin and
smooth muscle cells [94, 122, 175, 185], up to the point that the three-layered structure of
the vessel wall is largely lost [40, 183].
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Figure 2.1: The characteristic three-layered structure of arteries (right, adapted from [109])
with a schematic representation of the microstructure of each layer (left): in the
intima, a single layer of endothelial cells is supported by the basal lamina. The
media is located between the internal and external elastic laminae and consists
of medial lamellar units (MLUs) of smooth muscle separated by elastin lamel-
lae and reinforced by elastic and collagen fibers. The adventitia consists of
thick bundles of collagen fibers populated by fibroblasts. In muscular arteries,
the external elastic lamina is sometimes missing and the elastin in the media is
more fragmented [119, 276].

Compared to the (healthy) media, the adventitia has a rather simpler microstructure, con-
sisting mainly of thick bundles of collagen fibers embedded in an elastin-rich ground sub-
stance populated by fibroblasts and fibrocytes [35, 176, 198]. In larger arteries it is sepa-
rated from the media by the external elastic lamina, which is absent in more muscular arter-
ies (e.g., cerebral arteries) [119, 200, 276]. While the adventitia was previously thought to
play the passive role of protecting the arterial wall from overstretching [31, 109, 157], it is
now known that it also plays an important role in arterial (patho)physiology [93, 213, 275].
In larger arteries such as the aorta, the adventitia and the outer media are supplied by their
own network of blood vessels (vasa vasorum) [133, 176, 276].

In all three layers, collagen molecules (mainly types I and III) organize themselves into
stiff fibrils with diameters of 10-500 nm, which in turn form fibers with diameters of 0.5-
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3.0µm and finally fiber bundles of up to 20µm [126, 200]. The fiber arrangement within
the wall depends on the layer, as exemplified in Fig. 2.2(a) for the abdominal aorta. In the
intima, a carpet-like plexus of thin collagen fibers reinforces the basal lamina, as mentioned
above. In the media, two fiber families alternate transmurally with a certain degree of dis-
persion around the circumferential direction of the vessel (represented by the 0◦ angle in
the intensity plot, Fig. 2.2(b)), and in the adventitia, thicker bundles of collagen fibers are
organized into two families dispersed around the axial direction (90◦ in Fig. 2.2(b)) of the
artery. In the circumferential-radial plane, the fibers are tightly packed around the circum-
ferential direction, with a low dispersion which can be higher under certain pathological
conditions, e.g., in abdominal aortic aneurysms [183].
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Figure 2.2: Characteristic distribution of collagen in the abdominal aorta: (a) second-
harmonic generation images of collagen fibers in the intima (I), media (M)
and adventitia (A) and a cross-sectional (circumferential-radial) view of all
three layers. Scale bar = 100µm; (b) intensity plot depicting the orientation
of collagen fibers in the axial-circumferential plane; dark red indicates highly
aligned fibers with respect to the in-plane angle Φ and dark blue denotes no
fibers are aligned according to Φ . The angle values Φ = 0◦ and Φ = ±90◦

designate the circumferential and axial directions of the artery, respectively.
Figure adapted from [183].

Notably, similar collagen organization has also been observed in other locations of the arte-
rial tree, e.g. the subclavian, iliac [226], femoral [134] and femoropolipteal arteries [280],
suggesting a special organization of collagen in these blood vessels.
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2.2.2 Mechanical behavior

Collagen fibers, together with elastin, dominate the passive mechanical behavior of the ar-
terial wall [82]. The contribution of each of these two ECM proteins to arterial mechanics
is illustrated in Fig. 2.3(a), which shows data from the classical experiment on arterial ring
inflation by Roach and Burton [199]: the collagen-digested sample shows a more compli-
ant behavior characteristic of elastin, whereas the elastin-digested sample displays a highly
nonlinear behavior with gradual stiffening. The nonlinearity arises from the waviness of
the collagen fibers in the load-free tissue (as shown in Fig. 2.2), a configuration whereby
these fibers are usually considered to be incapable of withstanding tension [149]. Hence,
the mechanical behavior of the wall under small loads is dominated by elastin. As intra-
luminal pressure increases, the stiff collagen fibers gradually straighten and begin to bear
load, resulting in the characteristic J-shaped response of the control tissue (Fig. 2.3(a)).
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Figure 2.3: Passive mechanical behavior of arterial tissue: (a) inflation of elastin-digested,
collagen-digested and control iliac arterial rings. The characteristic J-shaped
response of the control tissue clearly arises from the combination of the highly
compliant elastin (collagen-digested sample) and the gradually recruited colla-
gen fibers (elastin-digested sample). Adapted from [103]; (b) uniaxial stress-
stretch responses of thoracic aortic strips: the anisotropy of the isolated media
and adventitia can be associated with the characteristic organization of the col-
lagen fibers (Fig. 2.2), while the response of the whole wall results from the
combination of the layers. Redrawn from [71].

This phenomenon of fiber recruitment is a central feature of the mechanical behavior of
arteries and has therefore been extensively studied and modeled in the last decades [4,
31, 37, 70, 149, 194, 195, 215, 263, 267]. However, it is important to note that even at



2.2 Arterial biomechanics 13

zero intraluminal pressure, the arteries are never fully unloaded due to the presence of
residual stresses that have a significant influence on the in vivo mechanics of blood vessels
[105, 112, 116, 125, 168].

In the physiological loading range, recruited collagen fibers are the most important load-
bearing component of arterial tissue [82, 199, 272] and therefore their organization within
the wall is crucial for vascular mechanics. In particular, the specific organization of colla-
gen (Fig. 2.2) results in a layer-specific anisotropic mechanical behavior, as illustrated in
Fig. 2.3(b), which shows data from uniaxial tensile tests performed on circumferentially
and axially oriented aortic samples, both from the entire wall and from the isolated media
and adventitia [71]. In the latter case, axial samples show a stiffer response than circum-
ferential samples, while the opposite is true for medial samples. This behavior agrees well
with the collagen organization for each layer shown in Fig. 2.2. It is noteworthy that the
anisotropic mechanical behavior of the entire wall in Fig. 2.3(b) is clearly due to the com-
bination of the specific layers, which may be related to the fact that samples shown in the
graph were received from the same donor [71].

Due to the pulsatile nature of blood flow, the arteries are subjected to cyclic loading. In
large arteries such as the aorta, the energy dissipation in each cycle has been shown to
be quite small [71, 72, 129, 236], hence their characterization as elastic. Towards the
periphery of the vascular system, arteries become more viscoelastic, a fact often associated
with their higher smooth muscle content [33, 110, 151, 280], which is why they are also
referred to as muscular. In fact, micromechanical tests have demonstrated the viscoelastic
behavior of the spindle-shaped vSMCs, which differs along their long and short axes [169,
206, 270]. This anisotropy can be explained by the architecture of their cytoskeleton, in
which the contractile actomyosin units are preferentially aligned along the axial direction
of the cell [55, 58, 181]. The actomyosin units consist of thick myosin filaments that slide
like a ratchet against thin actin filaments. This movement is responsible for the contractility
of VSCMs and thus for the active mechanical behavior of arterial tissue [43, 105, 180].

Another important inelastic feature of arteries is the stress softening that takes place in
the supraphysiological loading range – e.g., during balloon angioplasty or arterial clamp-
ing. Experimental results [39, 167, 264, 265] suggest that damage to collagen fibers is
the main reason for the softening, which seems reasonable given that they represent the
main load-bearing component of arteries. Damage to arterial microconstituents can also
occur through pathophysiological processes. For example, it is known that the elastic fiber
degradation takes place with increasing age [132, 133, 138, 151] and also in connection
with the development of an abdominal aortic aneurysm [175, 185, 210].
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2.2.3 Mechanobiology

Given its central role in arterial mechanics, maintaining a (healthy) ECM is crucial to pre-
serve homeostasis, i.e., tissue integrity and functionality [23, 64, 126]. While elastin, the
major constituent of elastic fibers and lamellae, is remarkably stable (with a half-life of 40
to 70 years) and is rarely produced after maturity [6, 200, 249], collagen fibers in arteries
that continually renovate by vascular cells have a half-life of weeks to months [103, 119,
200]. The activity of these cells in the arterial tissue is controlled by a cascade of bio-
chemical signals (e.g., growth factors, cytokines and hormones, among others), which can
also originate from biomechanical cues [87, 93, 122, 130]. For example, endothelial cells
in the intima are constantly exposed to shear stress due to blood flow, which is mechan-
otransduced into biochemical signals that control a number of biological processes within
the arterial wall [87, 165, 196, 244].

Likewise, vSMCs and fibroblasts are able to sense the mechanical state of the ECM in
which they are embedded, which is also translated into biochemical signals that control
many cellular processes, e.g., migration [130, 135, 159, 222, 274], phenotypic changes [61,
84, 86, 221] and turnover of ECM proteins [126, 155, 158, 187, 225]. Thus not only
the mechanical behavior of the arterial tissue is affected by its microstructure, but the
opposite is also the case. This dynamic reciprocity [15, 140] enables arteries, and soft
tissues in general to adapt, at least to some extent, to changes in the loads to which they
are exposed (a fact referred to as Davis’ Law [45]), which is crucial for the long-term
maintenance of tissue functionality. What is also important is that there appears to be a
preferred mechanical state towards which the activity of vSMCs and fibroblasts is directed.
Therefore, changes in the (micro)mechanics of the tissue are sensed by the cells, which
might reorganize the ECM to return it to the homeostatic target [46, 63, 117, 126, 153].

Such changes can result from a number of pathophysiological conditions, e.g., atheroscle-
rosis, hypertension or aneurysm formation. Given the above, it is hardly surprising that
these diseases are associated with relevant microstructural changes [5, 121, 124, 168, 214,
245, 253, 262]. In some cases, the arterial microstructure can be permanently altered due
to chronic changes to tissue mechanics: in abdominal aortic aneurysms (AAAs), e.g., the
permanent dilatation of the aorta leads to significant changes in wall strains [44, 53] and
as a result of intensive growth and remodeling (G&R) of the collagen network, the ECM
configuration of the diseased tissue changes drastically [185]. Figure 2.4 summarizes a
particular mechanopathogenic theory by Niestrawska et al. [185] that correlates mechani-
cal and microstructural changes along AAA progression.
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Figure 2.4: A three-stage model of AAA pathophysiology: in the healthy abdominal aorta,
the three-layered organization of collagen (top, see also Fig. 2.2) leads to
a macroscopic mechanical behavior (bottom) that is initially dominated by
elastin, with a relatively moderate stiffening after a significant amount of colla-
gen fibers has already been recruited (see also Fig. 2.3(a)). The loss of vSMCs,
elastic fibers and elastic lamellae [94, 122, 175] at the onset of an AAA (Stage
I) decreases the initial macroscopic stiffness (bottom) and an aneurysm starts
to form. The bulging increases the circumferential load and the collagen fibers
realign towards the circumferential direction (top), and thus the three-layered
structure is lost. Due to the intense collagen G&R, a neo-adventitia, charac-
terized by randomly oriented (isotropic) collagen fibers, starts to form on the
abluminal side of the wall (Stage II, top). In Stage III, a thick neo-adventitia
can be seen (top) and the tissue becomes very stiff (bottom), which is likely to
be associated with a decrease in collagen waviness [186]. Adapted from [185].

2.3 RVE-based models of arterial tissue

In view of the above, it is clear that there is a strong and dynamic connection between the
macroscopic mechanics of arterial tissue and the microscopic phenomena that take place
at the cellular level. As discussed in the Introduction, RVE-based microstructural models
provide an excellent tool for investigating this relationship. This section provides a review
of such models, focusing on their multiscale capabilities.
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2.3.1 Multiscale framework

Let Ω ⊂ R3 be a deformable macroscopic continuum body in which every point X ∈ Ω

is associated with a microscopic representative volume element (RVE) Ωµ ⊂Ω (Fig. 2.5).
The RVE is a representation of the microstructure of Ω, which might be composed of
different material phases with dissimilar mechanical properties. While it is assumed that
there is a clear scale separation between Ω and Ωµ, the size of the RVE depends on the
dimensional scale of the phenomena or microstructure being modeled. For arterial tissue,
the macro-scale (artery) is usually measured in millimeters, while the micro-scale (RVE) is
commonly placed at the level of cells and ECM components, i.e., in the micrometer range
(see Section 2.2.1).
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Figure 2.5: Macro-scale continuum body Ω and microscopic RVE Ωµ at point X ∈ Ω,
which is deformed by the action of the macroscopic deformation gradient
F(X). The resulting deformation fields in the RVE strongly depend on the
chosen multiscale boundary condition.

Let F(X) be the deformation gradient that describes the kinematics of the material point
X ∈ Ω. To create a consistent mechanical multiscale model, a physically meaningful re-
lationship must be established between the deformations at the macro-scale and the RVE
(micro-scale) [16]. A robust way to do this is to apply the Hill-Mandel principle of macro-
homogeneity: in short, it requires that the stress power at the macro-scale be equal to the
volumetric average of the stress power at the micro-scale [49, 100, 166]. In the context
of computational homogenization, adherence to the Hill-Mandel principle can be ensured
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through a suitable choice of boundary conditions (BCs), i.e., of a specific multiscale model,
of which there are four classical types in the literature:

1. Taylor-Voigt, also known as uniform strain or rule of mixtures: in this case, the de-
formation is postulated to be affine (Fig. 2.5); i.e., the displacements at each point
Y ∈ Ωµ of the micro-scale domain are uniquely determined by the macro-scale de-
formation gradient F(X).

2. Linear boundary displacements or uniform boundary strain: similar to the previous
model, affine deformations are imposed, but only at the boundary ∂Ωµ of the micro-
scale domain, while the displacements in the interior of Ωµ are determined from the
mechanical equilibrium (Fig. 2.5).

3. Periodic boundary fluctuations or anti-periodic boundary tractions: in this case
there are also micro-scale displacements determined from mechanical equilibrium.
However, at the boundary ∂Ωµ it is postulated that they consist of the sum of an
affine part (as in the linear model) and of periodic displacement fluctuations that are
equal in each pair of symmetric boundary points (Y+, Y−) ∈ ∂Ωµ. This is equiva-
lent (for periodic RVEs) to the application of anti-periodic tractions (t+, t−) to the
boundary (Fig. 2.5).

4. Uniform boundary tractions, also known as minimally constrained: this model as-
sumes that uniform tractions t(Y) = P(X)N(Y) are applied at each boundary point
Y ∈ ∂Ωµ (Fig. 2.5), where N(Y) is the normal vector at Y and P(X) is the first
Piola-Kirchhoff stress tensor at the macro-scale point X ∈Ω.

Some authors [208] also include the Reuss-Sachs assumption of constant stresses in the
RVE among the classical multiscale models, although in this case the compatibility of
the deformation field in the RVE may be violated. In addition to the cited models, other
multiscale BCs (hereafter referred to as mixed) can also be adjusted to better reproduce the
micro-macro kinematic transfer in certain materials, see [28] for a notable example.

Regardless of the model chosen, the displacement field in the RVE can then be uniquely
determined for a given macroscopic deformation gradient F(X) while still complying with
the Hill-Mandel principle. The displacements – and thus also the stresses and strains –
are usually calculated by means of finite element (FE) simulations [16]. The macroscopic
stress tensor P(X) can then be determined by calculating the volumetric average of the
stresses in the RVE, or, equivalently, by integrating the boundary tractions. In a finite
deformation setting, other macro-stress measures (e.g., the Cauchy stress) can also be
calculated [49]. This allows the (local) macroscopic behavior to be assessed and, e.g.,
compared with experimental data while at the same time gaining important insights into
micro-scale phenomena. Of course, RVE-based models can also be used as constitutive
models in fully coupled micro-macro FE simulations. However, the applicability of this



18 2 Multiscale computational modeling of arterial micromechanics

approach (often referred to as FE2) is often limited due to the high computational cost asso-
ciated with running a full FE simulation for each iteration of each macro-scale integration
point [76, 228].

A more detailed discussion of the constitutive and numerical aspects of RVE-based (me-
chanical) multiscale modeling is beyond the scope of this review. The interested reader is
referred to the works of Miehe [172], de Souza Neto and Feijóo [49], Blanco et al. [16]
and Saeb et al. [208]. As a final remark to this section, it is pointed out that under the
Taylor-Voigt BC a numerical model of the RVE is actually not necessary, since the macro-
scopic stresses can be computed analytically. In fact, it can be shown that the hypothesis
of homogeneous strains in the RVE provides a simple rule of mixtures at the macroscopic
level [16, 49], on which many successful (macroscopic) constitutive models of arteries are
based. Such models have already been extensively reviewed [43, 104, 150] and are there-
fore not discussed here. The following sections will focus exclusively on RVE models
of arterial tissue based on computational homogenization and the finite element method,
which are presented in Table 2.1.

2.3.2 Model features

Geometry and constitutive models

As discussed in Section 2.2.1, arteries have an intricate microstructure characterized by
a complex arrangement of their many constituents, which can change with age or dis-
ease. Therefore, creating a characteristic representation of the arterial microstructure (a
necessary condition for RVE-based models) is a non-trivial task. In fact, it is often neces-
sary to characterize the microstructure of arteries using statistical distributions. A typical
example is the use of the von Mises distribution to describe the dispersion of collagen
fibers [113], which is crucial for arterial mechanics (see Section 2.2.2). As a result, RVEs
of arterial tissue are often stochastically generated to match experimental observations
[41, 42, 220, 238].

Given the above, it should come as no surprise that all RVE-based arterial models also
simplify the tissue microstructure to a certain extent. To illustrate the different levels of
simplification found in the literature, Fig. 2.6 presents some proposed geometries for the
tunica media, the most commonly modeled layer (Table 2.1). It can be seen that models
are often based on one-dimensional finite elements to simulate collagen fibers, aiming to
reproduce the above-mentioned variability in the orientation and waviness of collagen with
less computational effort. Speirs et al. [228] proposed an RVE consisting of a network of
superimposed trusses (collagen fibers) on 2D plane stress elements, which represent an
elastin-rich ground substance (Fig. 2.6(a)). The collagen fibers, that were oriented without
dispersion, were modeled by a logarithmic strain-energy function with recruitment stretch.
This is a common strategy to reproduce the gradual recruitment of fibers (see Section 2.2.2)
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Table 2.1: Overview of published RVE-based models of arterial tissue: M = tunica media;
A = tunica adventitia; M-A = media-adventitia composite; NA = neo-adventitia;
H = healthy; D = diseased; Disp. = dispersion; IP = in-plane (circumferential-
axial) dispersion; OP = out-of-plane dispersion; Exp = exponential; Log = log-
arithmic; RS = with recruitment stretch; Dam = with damage; Lin = linear;
Poly = polynomial; Helix = helical model [73]; HGO = Holzapfel-Gasser-
Ogden model [109]; GS = ground substance; EL = elastic lamella; IC = inter-
lammelar connections, AF = actin fibers; B = biaxial; U = uniaxial; S = shear;
L = linear boundary displacements model; T = Taylor-Voigt model; P = periodic
boundary fluctuations model; Mix = mixed multiscale BC; Min = minimally
constrained model.

Collagen fibers Boundary conditions
Paper Layer State Disp. Model Other comp. Macro MS Model
[232] M H IP/OP∗ Exp GS∗∗∗ FE2 L
[228] M H No Log+RS GS B T/P
[51] M-A H No Gent GS U/S P
[220] M H IP/OP∗ Exp+Dam GS∗∗∗ FE2 L
[238] M D IP Lin+RS EL, GS U Mix
[271] M H IP∗ Exp+Dam EL, IC, GS∗∗∗ FE2 L
[202] A H IP/OP∗ Poly - U Min
[239] M H/D IP Lin+Dam+RS EL, GS U Mix
[8] A H IP∗ Lin - U Mix
[14] M H IP∗∗ Yeoh GS B P
[143] M D IP∗ Exp+Dam EL, IC, GS∗∗∗ FE2 L
[178] M H IP/OP∗ Lin+RS EL, vSMC, GS U ?
[164] M H/D IP Lin+Dam+RS EL, GS B Mix
[162] M H/D IP∗ Helix EL, AF B/S L
[41] M H IP/OP Lin+RS GS B T/L/P/Min
[9] A H/D IP∗ Lin+Dam GS∗∗∗ U/B Mix
[3] M H/D No HGO GS FE2 P
[42] A/NA H/D IP/OP Lin+RS GS B P
[76] M/A H/D IP∗ Helix EL, AF FE2 L
[44] A/NA H/D IP/OP Lin+RS GS B P
[10] A H IP∗ Lin+Dam GS U Mix
∗ No study has been conducted on how representative the dispersion was compared to experimental data.
∗∗ The dispersion was accounted for at the macro-scale only by varying the orientation of the RVE.
∗∗∗ The ground substance does not interact with the other microconstituents.

in the tissue if their waviness is not explicitly taken into account in the RVE (Table 2.1).
A different value of recruitment stretch was assigned to each fiber (represented by the
different colors in Fig 2.6(a)) that mimics the different degrees of waviness in the tissue
(Fig. 2.2).

Another way to reproduce the characteristic J-shaped mechanical response of arterial tis-
sue (Fig. 2.3) is to use the classical exponential function [75, 109] as done by Shah et al.
[220], which modeled all fibrillar components of arterial tissue as a network of discrete,
interconnected 1D truss elements (Fig. 2.6(b)). Their model, based on previous work by
the same group [232], also took into account the possibility of fiber damage by exclud-
ing elements from the RVE that stretched beyond a certain point. This model was later
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Figure 2.6: Different RVE geometries proposed for the tunica media: (a) a 2D RVE con-
sisting of plane stress elements representing elastin superimposed by a network
of trusses that represent collagen fibers. Reproduced from [228]; (b) a discrete
network of trusses representing all fibrillar components of the arteries. Adapted
from [220]; (c) a 2D network of trusses representing collagen and elastin is
combined with a 3D truss network representing actin filaments (and, by ex-
tension, vSMCs). Adapted from [162]; (d) continuum (3D) elements repre-
senting the elastic lamellae (green) and an interlamellar ground substance (yel-
low), reinforced by two layers of collagen fibers, which reinforce the ground
substance via the embedded elements technique. Adapted from [239]; (e) an
elastin-rich ground substance (pink) reinforced by two families of collagen
fibers (red and blue) alternating along the radial (vertical) direction. Adapted
from [41]; (f) a 3D RVE consisting of two elastic lamellae and an interlamellar
ground substance, reinforced by 1D collagen fibers and containing a ellipsoidal
vSMC. Reproduced from [178]. The characteristic length of the RVEs ranges
from ∼ 10µm (c) to ∼ 3 mm (a).

refined to include additional microconstitutents, e.g., elastic fibers, interlamellar connec-
tions [143, 271] and actin fibers that represent smooth muscle cells [162] (Fig. 2.6(c)). The
latter included passive and active contributions to fiber stress. Importantly, the possibility
of growth and remodeling of actin and collagen within the network was also considered
in [162] and complemented by modeling residual stresses within the network in a subse-
quent study [76].

A drawback of the study by Shah et al. [220], which is also shared by other discrete mod-
els [9, 143, 232, 271], is the assumption that non-fibrillar components that form a neo-
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Hookean homogeneous ground substance do not interact with the fibers of the RVE. While
this hypothesis works quite well for macro-scale arterial models [104], it is questionable
whether this is actually the case at the microstructural level. In this context, DeBotton and
Oren [51] modeled both collagen fibers and ground substance as 3D elements. However,
the dispersion of fiber directions was not included. This issue was partially addressed in
[14], which also did not include dispersion of the 3D fibers within the RVE, but varied
the orientation of the RVE with respect to the macro-scale to account for different fiber
orientations.

An intermediate solution was proposed in [164, 238, 239], which modeled 1D fibers re-
inforcing a 3D ground substance using the classical embedded element approach initially
developed for concrete [83]. In their model of the medial aortic lamellar unit (Fig. 2.6(d)),
the embedded fibers were placed closed to the elastic lamellae, organized into two fiber
families (one for each lamella) and dispersed around two preferential angles, oriented sym-
metrically to the circumferential direction of the artery. However, only dispersion in the
circumferential-axial plane was considered. The out-of-plane dispersion, which is small
in healthy arteries but can be relevant, e.g., in aortic aneurysms [183, 223], was not mod-
eled, although the authors also employed the proposed RVE to model aneurysmal aortas.
Fibers were modeled as linear 1D elements with recruitment stretch, since fiber waviness
was not explicitly accounted for in the geometry of the RVE. However, a single value of
recruitment stretch was used for all fibers, whereas the fibers in the real tissue have varying
degrees of waviness (see Section 2.2.1). The fibers were embedded as reinforcements to
the neo-Hookean interlamellar ground substance, which contained other microconstituents
(e.g, proteoglycans and cells) but did not include active behavior of vSMCs. These issues
were partially addressed in [41], where the same embedded elements technique was used
to model an RVE of the media, including the out-of-plane dispersion of two families of
collagen fibers (red and blue in Fig. 2.6(e)). Different values of recruitment stretch, sam-
pled from a beta distribution, were assigned to each (linear) fiber. However, the active
part of arterial mechanics was also not modeled and, in contrast to [164, 238, 239], elastic
lamellae were not considered as a separate phase, but were included in the neo-Hookean
ground substance (pink in Fig. 2.6(e)).

In [178], a detailed model of a medial lamellar unit was proposed (Fig. 2.6(f)), which
includes elastic lamellae, a 3D ellipsoid vSMC and an interlamellar ground substance
reinforced by collagen fibers, which were modeled as 1D linear elastic reinforcements
with recruitment stretch. Although different fiber orientations (both in-plane and out-
of-plane) were considered, it is clear that such a small number of short fibers cannot
properly reproduce the variability of collagen orientations within the tissue (Fig. 2.2).
In this context, it is important to note that although most models take into account the
in-plane and/or out-of-plane dispersion of collagen fibers (Table 2.1), only a handful of
them [41, 42, 44, 164, 238, 239] provide a proper comparison between the statistical dis-
tribution of fiber orientations in the RVE and the modeled tissue, a topic that deserves more
attention in future work.
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Although less common (Table 2.1), some RVE-based models of arterial adventitia have
also been proposed and are exemplified in Fig. 2.7. Ayyalasomayajula et al. [8] proposed
a 3D RVE made of 1D fibers modeled as linear elastic beam elements with reduced bend-
ing stiffness. In the constitutive model of the fibers, no recruitment stretch was included
because the (varying) waviness of the fibers was explicitly accounted for (Fig. 2.7(a)).
However, only the in-plane dispersion of fibers was included and non-collagenous com-
ponents of the adventitia were not modeled. Similarly, the model by Gacek et al. [76]
consists of a network of 1D trusses (Fig. 2.7(b)), representing dispersed collagen fibers
whose constitutive behavior follows the helical model of Freed and Doehring [73]. While
the interesting possibility of collagen G&R was included, non-collagenous components
were also not explicitly modeled. Instead, at the macro level, the collagen fiber network
acts in parallel with an osmotic pressure component. Using the embedded element tech-
nique, Dalbosco et al. [42] proposed a model of the adventitia consisting of two families
of linear elastic trusses (red and blue in Fig. 2.7(c)) with different values of recruitment
stretch and embedded in a neo-Hookean ground substance (pink in Fig. 2.7(c)). A simi-
lar model with a more isotropic distribution of fibers was later used [44] to evaluate the
micro-mechanical state of the neo-adventitia in AAAs (see Section 2.3.3).

(a) (c)(b)

Figure 2.7: Different RVE geometries proposed for the tunica adventitia: (a) a 3D net-
work of 2D wavy collagen fibers discretized with 1D beam elements. Adapted
from [8]; (b) a discrete network of trusses representing collagen fibers.
Adapted from [76]. An elastin-rich ground substance (pink) reinforced by two
intertwined families of collagen fibers (red and blue). Adapted from [42].

Boundary conditions

In Table 2.1 it can be seen that all four classical multiscale BCs mentioned in the Sec-
tion 2.3.1 along with some mixed BCs, were used in computational RVE-based models of
arterial tissue. Despite the ongoing debate [144, 145, 231] about the degree of affinity at
the micro-scale of arterial tissue, it can be seen from Fig. 2.5 that for the same macroscopic
deformation gradient F(X) there is a significant influence of the boundary condition on the
deformations observed in the RVE and consequently on the macroscopic (homogenized)
response of the model.
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In this context, Chandran and Barocas [32] investigated the influence of the chosen BC on
a network of discrete trusses, but only compared the Taylor-Voigt model and linear bound-
ary displacements. The authors argued for the superiority of the latter over the former and
chose the linear model for their subsequent works [76, 143, 162, 220, 232, 271]. Other
multiscale BCs were not considered, a gap recently addressed in [202], which formally
defined the four classical models for discrete fiber networks using the principle of multi-
scale virtual power, a generalization of the Hill-Mandel principle proposed by Blanco et al.
[16]. In a later work [203] they included the possibility of damage to the fibers within the
network; the results are shown in Fig. 2.8. A band of weaker fibers (blue) was included
in the undeformed configuration of the RVE (Fig. 2.8(a)) and macroscopic stretching in
the horizontal direction was imposed by both linear boundary displacements (Fig. 2.8(b))
and uniform boundary tractions (Fig. 2.8(c)), with undamaged fibers shown in blue and
fully damaged fibers shown in dark red. It is clear that the strong assumption of affine
deformations at the boundary (Fig. 2.8(b)) leads to spurious boundary effects that result
in damaged fibers outside the weaker central area at the top and bottom of the deformed
RVE. In contrast, the minimally constrained model (Fig. 2.8(c)) provides a more realistic
deformed boundary and the damage is concentrated in the central band of weaker fibers.

(a) (c)(b)

Figure 2.8: The influence of the chosen boundary condition on a 2D network of trusses,
including the possibility of damage. The undeformed RVE (a) contains a cen-
tral band of weaker fibers (blue). When uniaxial deformation is imposed in
the horizontal direction, using a minimally constrained model (c) avoids spu-
rious boundary effects that occur when linear displacements are applied on the
boundary (b). Adapted from [203].

Dalbosco et al. [41] conducted a similar investigation on the influence of the chosen mul-
tiscale BC on RVEs simulated using the embedded elements technique. An equibiaxial
deformation of the RVE shown in Fig. 2.6(e) was simulated with linear boundary displace-
ments, periodic boundary fluctuations and uniform boundary tractions and the resulting
fields of von Mises strains in the ground substance of the RVE are compared in Fig. 2.9,
where the opposing effects of the affine boundary (Fig. 2.9(a)) and the minimally con-
strained models (Fig. 2.9(c)) can be seen. In the first case the strains tend to concentrate
in the interior of the RVE, while in the second case the opposite is observed, i.e., strains
concentrate on the boundary. Based on their results, Dalbosco et al. [41] argued for the
superiority of the periodic boundary fluctuations model (Fig. 2.9(b)) over the other three
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classical multiscale BCs (Section 2.3.1) and used this BC in subsequent micromechanical
analyses [42, 44, 209].

(a) (c)(b)
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Figure 2.9: The influence of different boundary conditions on the microscopic deforma-
tions in the ground substance of the medial RVE shown in Fig. 2.6(e). The
RVE domain was bisected to facilitate visualization of the strain fields. When
(a) the linear boundary displacements model is used, the strains are concen-
trated in the interior of the RVE. The opposite is the case if (c) uniform trac-
tions are applied. In the periodic boundary fluctuations model (b), the strains
within the RVE are more evenly distributed (but still very inhomogeneous), in-
dicating less intense boundary effects. Adapted from [41].

Given the above, it is clear that choosing an appropriate multiscale model for a given prob-
lem is not a trivial matter. However, the influence of the chosen BC is often overlooked in
RVE-based simulations of arterial tissue, since most works do not provide a rational for the
chosen multiscale BC. Furthermore, the mixed BCs used in a number of the models listed
in Table 2.1 often result from a rather arbitrary application of forces and displacements to
the boundary of the RVE, instead of being carefully designed with the aim of better rep-
resenting the micro-macro kinematic transfer in the tissue [28, 30]. Importantly, in many
cases [8–10, 14, 143, 164, 178, 220, 232, 238, 239, 271, 277] in which geometrical and
constitutive parameters of the RVEs are adjusted to fit macroscopic mechanical data, the
fact that the parameter values so obtained depend on the chosen multiscale BC and there-
fore could be different if another was used, is usually not discussed or even mentioned.

Regardless of the multiscale model chosen, RVEs can be used to simulate any type of
macro-scale deformation. As shown in Table 2.1, the most common types of macroscopic
BC are uniaxial and biaxial deformations, as well as some works using fully coupled
micro-macro simulations (FE2). Due to the high computational costs, the latter were either
applied to discrete RVEs [76, 143, 220, 232, 271] or limited to a small part of the macro-
scale dominion [3] (see Section 2.3.1). In the next section, some results from RVE-based
simulations at both macro- and micro-scales (or tissue and RVE levels) will be presented
and discussed to highlight the versatility of these models.
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2.3.3 Selected results

Biaxial macroscopic behavior

As discussed above and summarized in Table 2.1, RVE-based models available in the liter-
ature adopt different strategies to reproduce the gradual recruitment of collagen fibers that
characterizes arterial tissue (see Section 2.2.2). As shown in Fig. 2.10, these approaches
are generally able to reproduce the typical J-shaped (passive) mechanical response of ar-
teries on the macro-scale under equibiaxial loading (Fig. 2.10).

Witzenburg et al. [271] simulated equibiaxial tests on cruciform samples of the tunica me-
dia of porcine ascending aortic tissue using a fully coupled FE2 model. The RVE, which
acted in parallel (but did not interact) with a neo-Hookean ground substance, was similar
to that in Fig. 2.6(c). However, in this case only the passive behavior of the interlamellar
fibers (gold) was simulated and all fibrillar components were modeled with exponential
functions. The model-predicted circumferential (C) and axial components (A) of the ho-
mogenized first Piola-Kirchhoff stress (red curves) are compared in Fig. 2.10(a) with ex-
perimental data (black dots). It can be seen that the model provided a good approximation
of the mechanical response of the samples within the 95% confidence interval (error bars),
although with a slight overprediction of the degree of anisotropy. However, it must be said
that in [271] the same set of model parameters were used to fit different tests, namely,
uniaxial, peel and shear lap tests in addition to the equibiaxial ones. The fit could probably
be better if only the experimental data on Fig. 2.10(a) were taken into account.

Figure 2.10(b) shows the equibiaxial macroscopic response of the RVE model by Maiti
et al. [164] (Fig. 2.6(d)), in which a ground substance of 3D elements is reinforced by 1D
truss elements representing linear elastic collagen fibers with recruitment stretch, using
the embedded elements technique. As in the previous case, the circumferential direction
is stiffer than the longitudinal direction, as expected for the media (see Section 2.2.2).
However, in this case, the stresses in both directions follow a bilinear curve with a steep
increase at a stretch of about 1.25. This is because a constant value of recruitment stretch
is used for all collagen fibers, while the fibers in real tissue have different degrees of wavi-
ness (Fig. 2.2); a similar effect was seen in [178]. Dalbosco et al. [41] also employed the
embedded element technique in their model (Fig. 2.6e) to reinforce a neo-Hookean ground
substance with linear collagen fibers, which in their case were assigned different values of
recruitment stretch. As a result, the homogenized equibiaxial response (Fig. 2.10(c)) shows
a more gradual, J-shaped stiffening in both circumferential and axial directions, similar to
Fig. 2.3. Their results agree well with experimental data (shown in gray in Fig. 2.10(c))
and also illustrate the considerable effect of the chosen multiscale boundary condition on
the predicted macroscopic response, as discussed in Section 2.3.2.
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Figure 2.10: Some macro-scale (homogenized) equibiaxial stress-stretch responses of
RVE-based models: (a) equibiaxial loading of cruciform samples of porcine
aortic media. Experimental results (dots) in the circumferential direction (C)
and axial direction (A) with a confidence interval of 95% (error bars) are
compared to model predictions (red). Adapted from [271]; (b) equibiaxial
response of the medial RVE shown in Fig. 2.6(d) in the circumferential direc-
tion (CIRC) and axial direction (LONG). Since the model also includes dam-
age, the circle marks the peak stress. Adapted from [164]; (c) axial (top) and
circumferential (bottom) homogenized stress-stretch curves for the RVE of
Fig. 2.6(e) for different multiscale models plotted against experimental equib-
iaxial data of medial samples of the human aorta. Adapted from [41].

Fiber kinematics

In view of the above, one could say that RVE-based models have similar descriptive capa-
bilities regarding the macro-mechanical behavior of arteries as purely macroscopic consti-
tutive models. However, as explained in previous sections, they are generally better suited
to studying the microscopic phenomena that lead to this behavior. Macroscopic constitu-
tive models of fibrous materials are often based on the assumption of affine (Taylor-Voigt)
deformations at the micro-scale, and even when this is not the case, the kinematic assump-
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tions of these models are generally fixed [21]. RVE-based models, on the other hand, offer
significantly more flexibility, as discussed in Section 2.3.2, since depending on the cho-
sen multiscale BC, the same macro-deformation F(X) can lead to considerably different
deformation fields in the RVE (see also Figs. 2.8 and 2.9).

In this context, Fig. 2.11 presents some interesting results from RVE-based models re-
garding the kinematics of fibrillar components (e.g., collagen and elastin) in arteries. Shah
et al. [220] used a fully coupled FE2 to simulate equibiaxial (Fig. 2.11(a)) and uniaxial
(Fig. 2.11(b)) tests on dog bone and cruciform samples of the tunica media from porcine as-
cending aortic tissue. The constitutive behavior at each point of the tissue was determined
by the (non-interacting) combination of a neo-Hookean ground substance and an RVE of
discrete trusses that encompass all fibrillar components of the tissue (see Fig. 2.6(b)). For
the equibiaxial loading case (Fig. 2.11(a)), the model predicted little to no reorientation
of fibers within the RVE. This is consistent with the experimental results of Pukaluk et al.
[194] using multi-photon images to investigate the kinematics of collagen and elastin in
the media of human aortas deforming under equibiaxial loading.

For the uniaxial case (Fig. 2.11(b)), a study by Krasny et al. [144] using a similar exper-
imental setting as Pukaluk et al. [194] found that the realignment of medial collagen and
elastin under uniaxial loading was only moderate and, in general could be predicted by
affine (Taylor-Voigt) deformations, whereas in Fig. 2.11(b) a stronger realignment of the
fibers towards the loading direction was observed, which may also be related to the use of
linear boundary displacements that allow non-affine deformations within the RVE. A pos-
sible reconciling explanation is provided by Yu and Zhang [277], who modeled a single
layer of porcine aortic elastin fibers with a discrete network of beam elements. The au-
thors found that the amount and stiffness of fiber cross-links strongly influences the degree
of fiber reorientation within the RVE. Another possible explanation for the differences is
provided by the RVE model of the media by Thunes et al. [238] (similar to Fig. 2.6(d)), in
which the fibers are embedded in a ground substance of 3D finite elements. The model pre-
dicted a more moderate realignment of collagen fibers according to the loading direction
(Fig. 2.11(c)). In this case, it can be hypothesized that the presence of other microcon-
stituents (e.g., smooth muscle cells) could also hinder the reorientation of fibers. Finally,
it is emphasized that Krasny et al. [144] used rabbit carotid arteries (as opposed to porcine
aortas in [220]). Therefore, the differences between the results of the two works could be
at least partly related to the different species and locations from which the arterial samples
were harvested.

The adventitia model (Fig. 2.7(a)) by Ayyalasomayajula et al. [8] also predicted a strong
realignment of fibers towards the circumferential direction (0◦ in Fig. 2.11(d)) of the load,
in a very non-affine way. In contrast to the media, these results are consistent with those
of Krasny et al. [144], in which the experimentally measured fiber reorientation angles in
the adventitia were significantly higher than affine predictions.
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(a) (b)

(c) (d)

Figure 2.11: Model predictions of fiber reorientation at the tissue micro-scale: (a) the
model by Shah et al. [220] predicts almost no reorientation under equibi-
axial loading, but (b) a strong realignment under uniaxial loading. Ωθθ and
Ωzz are average orientation parameters of the network with respect to the cir-
cumferential and axial directions, respectively (Ω = 1 means full alignment).
Figures adapted from [220]; (c) the medial RVE by Thunes et al. [238] and (d)
the adventitial RVE by Ayyalasomayajula et al. [8] also predict a considerable
realignment of fibers towards the circumferential axis of the tissue (0◦) due to
uniaxial loading in this direction. The solid and dashed curves represent the
orientation of the fibers before and after deformation, respectively. Figures
adapted from [238] (c), and [8] (d).

Supraphysiological loadings

Another relevant aspect of arterial mechanics is stress softening that occurs due to sup-
raphysiological loading (e.g., balloon angioplasty or arterial clamping), see also Sec-
tion 2.2.2. Thunes et al. [239] modeled this interesting phenomenon by including in their
medial RVE (Fig. 2.6(d)) a linear decrease in collagen stiffness after a critical fiber stretch
was exceeded. The model was thus able to capture the softening behavior of the macro-
scopic mechanical response of healthy samples of human ascending thoracic aortas un-
der uniaxial loading (Fig. 2.12(a)). At the micro-scale, the RVE showed several highly
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stressed segments (red) and failed (white) fiber segments at the point of maximum macro-
stress (λ = 1.45), especially in fibers more aligned towards the circumferential (loading)
direction. Importantly, the stresses in the ground substance around the failed fibers were
consistently higher (see detailed view in Fig. 2.12(a)), which suggests that after collagen
failure, the more compliant ground substance in these regions took the load. In general,
these findings are in agreement with experimental results [39, 167, 264, 265], which corre-
late stress softening of arterial tissue at the macro-scale with damage and failure of collagen
at the micro-scale.
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Figure 2.12: Micro-scale simulations of macroscopic stress softening due to fiber dam-
age: (a) comparison between experimental results (gray curves) and model
predictions (red curve) of uniaxial loading along the circumferential direc-
tion of medial samples. The circle represents the average experimental tissue
strength and the x marks the stretch applied to the RVE shown right above the
curve (λ = 1.45). Figures adapted from [239]; (b) shear loading of a medial
RVE with delaminations due to failure of actin fibers. The red dot and error
bars each represent the mean experimental failure behavior with a confidence
interval of 95%. Adapted from [162].

Mahutga and Barocas [162] added a brittle damage model for actin, collagen and elastin
fibers in their discrete RVE (Fig. 2.6(c)) assuming that they lose their load-bearing capac-
ity immediately after a critical stretch value is exceeded (which varies depending on the
fiber type). An interesting result can be seen in Fig. 2.12(b), which shows the homoge-
nized mechanical response of different networks under shear along with a representative
network before (I) and after (II) the onset of fiber failure. It can be seen that failure initi-
ates in the network of actin fibers forming vSMCs and leads to local delamination (dashed
ellipse in Fig. 2.12(b)), similar to what was observed experimentally in [91] for healthy
bovine descending aortas and in [226] for diseased human thoracic aortas. Failure of actin
fibers occurs near the elastic lamella, which may indicate vSMC detachment with possible
negative effects on cell mechanotransduction [120]. Importantly, the macroscopic failure
stresses predicted by the model are much lower for shear loads compared to uniaxial loads,
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similar to what was measured in Sommer et al. [226] for aneurysmal and dissected aortic
tissue, suggesting a central role of shear loads on aortic wall failure in the course of these
diseases.

Growth and remodeling

A fairly common pathophysiological condition that leads to supraphysiological loading in
arteries is chronic hypertension, i.e., a persistent elevation of blood pressure. As discussed
in Section 2.2.3, vascular cells such as vSMCs and fibroblasts are able to sense the re-
sulting alteration in tissue mechanics via their ECM and respond accordingly to bring it
back to homeostatic values by promoting G&R of the arterial microstructure. In this con-
text, another interesting study was performed by Mahutga and Barocas [162], whose RVE
(Fig. 2.6(c)) included the possibility of growth and remodeling of actin and collagen fibers
with the effect of hypertension in a mouse aorta in an FE2 setting. At the macro-scale, the
model employed the theory of kinematic growth, which assumes a multiplicative split of
the macroscopic deformation gradient [2].

The results are shown in Fig. 2.13(a), where the RVE is shown immediately before (time =
135 days) and after (time = 300 days) the mean blood pressure was increased from 100 to
150 mmHg. After the increase, a considerable volumetric growth of the RVE is observed,
which is reflected on the macro-scale as the reference configuration (0 mmHg intraluminal
pressure) of the artery increases in diameter and thickness to restore baseline stress levels,
as observed in experimental studies [121]. This effect can be seen in Fig. 2.13(b), where
it is shown that after the increase in blood pressure, the G&R within the wall drives the
macroscopic stress in the circumferential direction (blue curve) back to homeostatic levels.
In particular, the stress level after the onset of hypertension is slightly higher than before,
which highlights the choice of the Greek prefix homeo (‘similar’) as opposed to homo
(‘same’) by Cannon when he introduced the concept of homeostasis in 1929 [23].

Figure 2.13(b) also shows that after the increase in blood pressure, the stiff collagen fibers
initially bear most of the additional load, but after intensive G&R the actin fibers increase
their share. This suggests that vSMCs play a central role in restoring homeostasis. In
this context, Fig. 2.13(c) shows the lateral view of a remodeled RVE, in which thick actin
fibers can be seen in the circumferential (horizontal) direction. It should be noted that the
remodeling process in the model does not account for deposition of new fibers, i.e., fibers
are only remodeled by altering their length and diameter. This drawback is discussed by
the authors [162] and could potentially lead to different results if the possibility of adding
new fibers to the network over the course of G&R was included in the model.

Another drawback of the model is that the artery was assumed to be formed only by the
media at the macro-scale. To investigate the role of the adventitia in hypertension, Gacek
et al. [76] created an FE2 model in which the macro-scale consisted of three layers of finite
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(a) (b)

(c)

Figure 2.13: Predictions of tunica media growth and remodeling due to chronic hyperten-
sion: (a) RVE state before (time = 135 days) and after (time = 300 days)
the increase of intraluminal blood pressure showing pronounced volumetric
growth reflected in the reference geometry of the artery, which thickens and
increases in diameter; (b) contributions of each fiber type to total stress; after
the onset of hypertension, the microstructure remodels and the homogenized
stress returns to a homeostatic level; (c) lateral view of a remodeled network
with thick actin struts aligned along the circumferential direction. Figures
adapted from [162].

elements representing the media, the micro-scale of which was modeled with a similar
RVE as in [162] (Fig. 2.6(c)) and an outer layer representing the adventitia, the RVE of
which consisted of trusses representing collagen fibers (Fig. 2.7(b)). In this case, the re-
modeling of the medial RVEs was more moderate and the adventitial layer absorbed much
of the additional load, consistent with the much discussed protective role of the adventitia
against overstretching [31, 109, 157].

Mechanobiology of AAAs

Another disease known to result in intense G&R of the arterial ECM is the formation and
progression of abdominal aortic aneurysms, as discussed in Section 2.2.3. In this con-
text, Dalbosco et al. [44] employed RVEs that consist of two families of collagen fibers
embedded in an elastin-rich ground substance (Fig. 2.7(c)), to evaluate the theory of AAA
pathogenesis proposed by Niestrawska et al. [185] (Fig. 2.4), with particular emphasis on
the formation of the neo-adventitia on the abluminal side of the aortic wall. The orientation
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of the collagen fibers was varied to match different stages of the disease, namely healthy
adventitia and stages I and III (Fig. 2.4), which represent, respectively, the tissue stage
before and after the development of the neo-adventitia due to the intense G&R of collagen
in the tissue. Five stochastic RVEs were generated for each microstructure. To ensure real-
istic loading conditions during disease progression, the macroscopic deformation gradient
F(X) (see Section 2.3.1) imposed on each RVE was determined from macro-scale tissue
simulations of a healthy aorta (for the adventitial RVEs) and AAAs of increasing size (for
stages I and III).

Figure 2.14(a) shows the resulting fields of maximum principal stretches λ1 in represen-
tative RVEs of the healthy adventitia and of the aneurysm tissue. The values of λ1 were
interpreted as possible mechanotransduction cues sensed by vascular cells – particularly
fibroblasts – since vSMCs are largely absent in AAA tissue [94, 122, 175, 185].

Qualitatively, it can be said that while strain levels in the diseased RVEs were consistently
higher than in the healthy tissue, they were remarkably similar between the early and late
microstructural stages of the disease (respectively, I and III), being only slightly higher for
the latter. Furthermore, only negligible changes were observed with increasing diameter.
This similarity is remarkable considering that both the geometry of the RVEs and the
macroscopic deformation gradient F(X) applied to them were different for each case.
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Figure 2.14: Prediction of micromechanical alterations in arterial tissue due to AAA patho-
genesis (λ1 = maximum principal stretch): (a) micro-scale AAAs of differ-
ent sizes are stretched more with respect to the healthy adventitia, both for
early (I) and late (III) microstructural stages, that are very similar as diam-
eter increases; (b) boxplots of the median values of λ1 for the seven groups
of five RVE simulations. The level of deformation of diseased tissue is sig-
nificantly higher than in the healthy RVEs, but remarkably stable along the
AAA growth. Gray asterisks indicate the results of the Mann–Whitney U test
for differences between each diseased group and the healthy group. Figures
adapted from [44].
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To better quantify the above differences, the median value of λ1 from each RVE was calcu-
lated and summarized in the boxplot shown in Fig. 2.14(b). The Mann-Whitney U-test was
used to examine differences between groups. It can be seen that the extent of deformation
in the diseased RVEs is actually significantly higher than in the healthy adventitia, as in
Fig. 2.14(a). Furthermore, there are no significant differences in the level of λ1 between
early and late microstructures, except for AAAs of 65 mm. These results suggest that as
the disease progresses, both the macroscopic mechanics of the tissue and its microstructure
change symbiotically due to the collagen G&R promoted by cells, with the aim of achiev-
ing an apparently new level of homeostatic mechanical state of their ECM. The significant
difference in the level of λ1 for the larger AAA diameter further suggests that the thick
neo-adventitia forming in the abluminal size of the tissue may have a stabilizing effect on
larger aneurysms, as the authors had suggested in a previous work [42].

2.4 Conclusions and future perspectives

As with most soft tissues, the mechanical behavior of arteries, which play a central role
in vertebrate physiology, is strongly related to their microstructure. This microstructure
is maintained – or adapted – by vascular cells, whose activity is controlled in part by
mechanobiology. In this context, the results discussed in the previous section highlight
the potential of RVE-based multiscale computational models in simulating the microme-
chanics of arteries while maintaining (via homogenization) good descriptive capabilities
at the macro-scale (tissue level). Thus, despite their higher computational cost, such mod-
els can simulate microscopic phenomena (and their consequences at the macro-scale) that
basically cannot be captured by macroscopic models, e.g., the delamination of the medial
layer at cellular level due to shear (Fig. 2.12(b)). Nevertheless, there are some key as-
pects that could be considered in future experimental and computational studies to further
improve RVE models of arteries:

• While histological and microscopy images have been paramount in establishing our
current knowledge of the arterial microstructure, available 3D information is still
limited. In this regard, advances in 3D imaging techniques and reconstructions [31,
188, 198] shall be crucial for the development of more realistic RVE geometries.

• In the same context, recent studies [31, 35, 36, 144, 145, 194, 195, 215] have pro-
vided detailed information on the kinematics of arterial microconstituents (partic-
ularly collagen fibers and elastin) under load, but appropriate multiscale boundary
conditions that could reproduce these experimental results are still missing. In any
case, as discussed in Section 2.3.2, future RVE-based simulations should always
take into account the considerable influence of the chosen boundary condition on
the predicted results.
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• As already mentioned in Section 2.3.1, the computational cost of RVE-based models
is much higher than purely macroscopic constitutive models, and for this reason a
fully coupled simulation (FE2) can easily become impractical due to the high num-
ber of degrees of freedom. Recently, some hybrid approaches [44, 76] have been
proposed to lower the computational cost of coupled multiscale simulations, but
improving the efficiency of such models – e.g., by using reduced order modeling
techniques [95, 279] – is certainly a crucial area for future studies.

• To the best of the authors’ knowledge, no RVE models of the tunica intima have
been proposed to date. Although it is mechanically irrelevant in young, healthy
arteries (see Section 2.2.1), the intimal layer of endothelial cells controls countless
biological processes within the arterial wall [87, 165, 196, 244]. RVE-based models
of the intima therefore have the potential to elucidate how arterial micromechanics
influences these processes.

Although cardiovascular diseases have been diagnosed and treated since ancient times [74],
they are still the leading cause of death worldwide [269]. The biological function of ar-
teries is intrinsically mechanical (i.e., the conduction of pressurized blood). Therefore,
the use of simulations has the potential of revolutionize cardiovascular healthcare [7]. In
this context, RVE-based models in combination with patient-specific simulations [143]
may provide a unique opportunity to visualize micro-mechanical phenomena that sim-
ply cannot be assessed experimentally using current techniques. The development of this
interesting field of computational biomechanics therefore has the potential to foster a bet-
ter understanding and treatment of cardiovascular diseases for the benefit of patients and
physicians.



3 MULTISCALE NUMERICAL ANALYSES OF ARTERIAL
TISSUE WITH EMBEDDED ELEMENTS IN THE FINITE
STRAIN REGIME

Abstract. Multiscale models based on representative volume elements (RVEs) might help
unraveling the ways in which macroscopic loadings affect the microstructure of tissues
reinforced by collagen fibers, and vice versa. Tissues such as arteries, however, are char-
acterized by a significant collagen dispersion. Therefore, many fibers have to be included
in the RVE to achieve a representative geometrical model of the microstructure. For this
reason, when the finite element method is employed in the numerical homogenization,
fibers are commonly modeled as 1D elements, either by considering a network of trusses
or the embedded elements technique. With regard to the latter, there has been little atten-
tion in previous works concerning the influence of the chosen multiscale boundary con-
ditions and RVE size. In order to address this issue, the present work combines a sound
multiscale framework with the classical embedded elements technique to simulate four
increasingly larger RVEs, which resemble the microstructure of the medial layer of the
arterial wall. Each RVE is modeled as a ground substance with embedded collagen fibers
and subjected to a macroscopic isochoric equibiaxial stretch up to 10%, according to four
classical multiscale boundary conditions: Taylor-Voigt, linear boundary displacements,
periodic boundary fluctuations and minimally constrained model. Results are evaluated
both at the macroscopic level (homogenized response) and the microscopic level (strains
in the ground substance and fiber stretches). At the macroscopic level, the homogenized
response for the periodic boundary condition seems to converge faster than the other three
with increasing RVE size. At the microscopic level, the periodic model is also less prone
to concentrated effects at the boundaries of the RVE. Therefore, among the four classical
multiscale boundary conditions, the periodic model seems to be better suited to simulate
the microstructure of fibrous tissues employing the embedded elements technique. Impor-
tantly, the resulting microscopic strain fields are characterized by a considerable degree of
inhomogeneity and some values are significantly larger than the macroscopic (imposed)
strain. That could help to shed more light on relevant mechanotransduction mechanisms,
e.g., cell signaling, that are known to happen in the arterial media and are linked to biolog-
ical processes such as growth and remodeling. Therefore, the framework herein proposed
may serve as a valuable tool for the investigation of microstructural phenomena that hap-
pen in arteries, or even other fibrous tissues.

3.1 Introduction

Among the different types of biological tissues that may be regarded as composite ma-
terials, connective tissues stand out as a broad category that encompasses, e.g., skin,

35
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tendons, cartilage and blood vessels [78, 149, 276]. Their mechanical behavior is usu-
ally anisotropic due to position, size, distribution and mechanical properties of reinforc-
ing collagen fibers embedded in a soft ground substance that comprises other microcon-
stituents [149]. The (healthy) arterial tissue, e.g., is composed of three clearly distin-
guishable layers – tunica intima, tunica media and tunica adventitia. Each one of them
is characterized by different collagen fiber arrangements, resulting in a complex layered
composite [105, 113, 183]. Due to their small size, the collagen fibers are not distinguish-
able from a macroscopic point of view. Therefore, a common modeling strategy involves
accounting only for the effect of the reinforcing fibers, by suitably modifying the consti-
tutive model in terms of invariants [102]. In the last few decades, this approach has been
extensively employed in the modeling of arteries and other fibrous tissues; for a recent
review see Holzapfel et al. [114] and references therein.

The mechanical behavior of the tissue under loading results from complex interactions be-
tween its microscopic constituents (e.g., collagen fibers, elastin layers and smooth muscle
cells in the arterial wall), which also trigger important mechanotransduction mechanisms
that might induce microstructural changes, pathological processes and, ultimately, alter the
macroscopic response [11, 34, 122, 126, 185]. These relevant microscopic phenomena are
more easily accounted for by means of multiscale models based on representative volume
elements (RVEs) of the tissue [14, 26, 27, 29, 51, 202, 220, 228, 232, 238, 239, 271], in
which a geometric model of the microstructure is built and simulated, and the macroscopic
response is obtained through homogenization of the microscopic fields; this approach has
the advantage of allowing not only for the comparison of the macroscopic response of the
tissue with experimental data, but also for the evaluation of, e.g., the mechanical interac-
tion between different microstructural material phases [27, 51, 228].

In this direction, a number of multiscale models were developed for a myriad of biolog-
ical tissues, e.g., tendons [26, 27, 29], bones [170, 254, 278] and arteries [14, 202, 220,
228, 232, 238, 239, 271]. With specific regard to the latter, the dispersion observed in
the collagen network of the tissue means that a large number of fibers must be included
in the RVE order to achieve a representative microstructure. Therefore, when the finite
element method (FEM) is employed, a common strategy involves modeling the collagen
reinforcement as 1D elements. Following this approach, Stylianopoulos and Barocas [232]
employed a two-scale approach to simulate the classical problem of ‘closing’ a stress-free
arterial segment, and then subjecting it to an axial stretch followed by intraluminal pres-
surization [109]. At each integration point of the macroscopic, continuum mesh, the stress
was calculated as the sum of a nearly-incompressible neo-Hookean ground substance and
the volumetric average of a set of exponential collagen fibers. This average was obtained,
via numerical homogenization, from an RVE made of a network of truss elements with
certain preferential directions (which are characteristic of arteries [113]). The results at
the macroscopic level were then compared with an experimental curve of pressure and
mean diameter.
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In subsequent works, the model was further specialized to include fiber damage [220] and
also the effect of elastin layers and interlamellar connections [271]. However, as pointed
out by Rocha et al. [202], none of these studies provide a detailed discussion on the kine-
matic relation between the macro- and micro-scales for the fiber network, and only the
multiscale linear boundary displacements model (addressed in Section 3.2.2) was consid-
ered. From a biomechanical point of view, the strong assumption that the fiber network and
the ground substance deform independently does not allow for a proper evaluation of the
interaction between the two at the microscopic level. It is also worth mentioning that the
computational costs involved in this kind of two-scale simulations tend to be considerably
high: all the numerical analyses of the cited studies were run on clusters [220, 232, 271].

Speirs et al. [228] constructed an RVE composed of an elastin sheet (discretized with plane
stress elements) overlaid with truss elements representing collagen fibers. The elastin
was modeled as an incompressible neo-Hookean material, while a tensile-only logarith-
mic strain-energy with recruitment stretch (different for each fiber) was assumed for the
collagen fibers. The trusses were oriented along two preferential directions, but the char-
acteristic fiber dispersion seen in arteries [113] was not taken into account. Employing
a sound multiscale framework, based on kinematic admissibility and energy consistency
between scales (see Section 3.2.2 for more details), the macroscopic stress was obtained
by means of a volumetric average of the microscopic stresses when the RVE was sub-
jected to biaxial isochoric deformations, considering boundary conditions of both Taylor
and periodic types. Since in this approach only the micro-scale is simulated, this allows
for much lower computational costs. Even so, the homogenized response still allowed for
a macroscopic evaluation of the mechanical behavior, which was then compared with two
different numerical models. However, experimental data was considered only indirectly in
their work and no analysis was performed on the resulting microscopic fields.

Following a different approach, Thunes et al. [238] modeled an RVE of the medial layer
of an artery using the classical embedded elements technique, in which a mesh of re-
inforcing truss elements (acting as elastin and collagen fibers) was embedded into a 3D
mesh (representing the ground substance), whose deformation is affected by the reinforce-
ment. The network of trusses was constructed based on experimental measurements of
fiber dispersion in tricuspid and bicuspid ascending thoracic aortic aneurysms published in
the literature. Nevertheless, the out-of-plane dispersion, which is considerably influential
to the mechanical response of aortic aneurysms [183], was not considered. The ground
substance was modeled as an incompressible neo-Hookean material, while collagen fibers
were modeled as tensile-only linear trusses with recruitment stretch. Each RVE was then
subjected to two numerical tests, corresponding to uniaxial stretches in the circumferential
and longitudinal directions of the artery, respectively. However, no discussion was made on
the kinematic relation between the (simulated) microstructure and the (averaged) macro-
scopic response, and the influence of different boundary conditions was not investigated.
Moreover, the averaged stress response, which was compared with experimental data, was
calculated from the reaction forces at the boundary nodes, as opposed to the more usual
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approach of volumetric averaging. Further studies specialized the model to include, e.g.,
fiber damage [164, 239], but did not address these issues.

Motivated by the fact that most of the multiscale models employing 1D elements do not in-
vestigate the effect of different boundary conditions, as discussed above, Rocha et al. [202]
developed a comprehensive framework based on kinematic admissibility and energy con-
sistency between scales that may be used for multiscale simulation of a network of trusses.
The minimally constrained space of admissible microscopic displacement fields was de-
fined and several aspects of the theoretical framework, including RVE size convergence
and the influence of multiscale boundary conditions over the macroscopic (homogenized)
response, were investigated. However, the fact that no ground substance was included in
the model hinders the evaluation of important interactions between the collagen fibers and
other microscopic constituents, which are known to play a crucial role in several biological
processes in fibrous tissues [11, 34, 122, 126, 185].

Based on the above considerations, the present work aims to investigate the effect of
boundary conditions and size on multiscale simulations of RVEs with the embedded el-
ements technique, which allows for the inclusion of the ground substance. To the best
of the authors’ knowledge, such issues have not been properly investigated in previous
works. The goal is to obtain a reliable framework for the investigation of micromechanical
phenomena (e.g. mechanotransduction mechanisms) in arteries, and possibly other fibrous
tissues. To that end, the RVE-based multiscale theory detailed in [49] is suitably adapted in
order to comply with the embedded elements formulation. The medial layer of the healthy
arterial tissue is employed as a representative example, and numerical experiments are per-
formed on RVEs constructed from a network of fibers resembling the characteristic fiber
organization seen in the tunica media of the arterial wall [113]. The influence of RVE size
and multiscale boundary conditions is then evaluated in terms of the macroscopic (homog-
enized) response, as well as the microscopic fields both at the ground substance and at
the fibers.

This paper is organized as follows: Section 3.2 recalls some important aspects of the em-
bedded elements technique [83], of the aforementioned multiscale theory [16, 50] and of
the characteristic collagen fiber dispersion observed in arteries [113]. Section 3.3 proposes
a series of numerical experiments on RVEs based in the medial layer of healthy arteries,
which aim to investigate the aspects discussed above. The results of such experiments are
presented and discussed in Section 3.4, and Section 3.5 summarizes the main conclusions
of the present work. Additional details are presented in the Appendices.
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3.2 Theoretical background

3.2.1 Embedded elements technique

As commented by Goudarzi and Simone [83], the embedded elements technique seems
to have been introduced by Phillips and Zienkiewicz [193], originally developed for the
simulation of reinforced concrete. Briefly, it consists in placing a ‘reinforcement mesh’ of
(usually 1D) finite elements inside a ‘host mesh’ of (2D or 3D) finite elements. A kinematic
bond is then imposed upon the reinforcement mesh by means of the shape functions of
the elements of the host mesh, which therefore may be generated independently of the
reinforcement layout [67, 77, 193].

This section recalls some main aspects of the method, which is implemented in most com-
mercial finite element (FE) codes. In the present approach, a ‘no-slip’ condition is assumed
between the reinforcement and the ground substance [90, 193]. Further details regarding
the FE implementation in terms of isoparametric elements in a large strain setting are pre-
sented in Appendix A.

Kinematics

Let Ω0 ⊂ R3 be a continuum body which deforms to Ω ⊂ R3 in a quasi-static manner
(Fig. 3.1). Let χ :Ω0→Ω be a smooth bijective map that describes the deformation of the
body, such that the spatial position x ∈ Ω is defined for all material points X ∈ Ω0 by the
relation x = χ(X). The displacement field u :Ω0→ R3 is then defined as

u(X) = χ(X)−X, ∀X ∈Ω0. (3.1)
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Figure 3.1: Quasi-static deformation of a continuum body Ω0 with NfT embedded fibers,
each one of them with initial volume V fi
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The deformation takes place due to the field U : ∂Ωu
0 → R3 of displacements prescribed

on the portion ∂Ωu
0 of the boundary ∂Ω0, combined with both the body load field B :

Ω0→ R3, and the surface traction field T : ∂Ωσ0 → R3 prescribed on the portion ∂Ωσ0 of
the boundary ∂Ω0 (where ∂Ωu

0∪∂Ωσ0 = ∂Ω0 and ∂Ωu
0∩∂Ωσ0 =∅). Using Eq. (3.1), the

deformation may be described at each point X ∈ Ω0 in terms of the deformation gradient
F(X), defined as

F(X) =
∂ χ(X)

∂X
≡ I+Gradu(X), ∀X ∈Ω0, (3.2)

where I is the identity second-order tensor and Gradu(X) is the gradient of the vector field
u(X) at the reference configuration.

Principle of virtual work

We assume henceforth that the body Ω0 consists of an hyperelastic ground substance g
with NfT hyperelastic embedded fibers, each one of them with initial volume V fi

0 ⊂ Ω0
(Fig. 3.1). Let π(u) be an energy functional such that

π(u) = πint(u)+πext(u), (3.3)

where the external energy functional πext(u) is defined, as usual [102], by

πext(u) =−
∫

Ω0

B ·udV −
∫

∂Ωσ
0

T ·udS, (3.4)

and the herein proposed internal energy functional πint(u) is defined by

πint(u) =
∫

Ω0\V
fT
0

ψg(F)dV +

NfT

∑
i=1

∫
V fi

0

ψfi(F)dV, (3.5)

where V fT
0 = ∑

NfT
i=1V fi

0 is the total (initial) volume of fibers. In Eq. (3.5) an additive decom-
position of the internal strain energy of the body is assumed, which means that it is divided
between the ground substance g (i.e., ψg), and the NfT embedded fibers (i.e., ψfi). Since
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the deformation gradient F is continuous over Ω0 (‘no-slip’ condition), Eq. (3.5) may be
rewritten as

πint(u) =
∫

Ω0

ψg(F)dV −
NfT

∑
i=1

∫
V fi

0

ψg(F)dV +

NfT

∑
i=1

∫
V fi

0

ψfi(F)dV, (3.6)

πint(u) =
∫

Ω0

ψg(F)dV +

NfT

∑
i=1

∫
V fi

0

ψci(F)dV, (3.7)

where ψci(F) = ψfi(F)−ψg(F) may be seen as a ‘correction’ strain energy, which ad-
dresses the known issue of volume redundancy in models with embedded reinforcement
(see, e.g., the discussion in Garimella et al. [77]). The principle of virtual work results from
the stationary condition of the energy functional, such that, if the directional derivative

Dδuπ(u)≡ δπ = δπint +δπext = δWint−δWext = 0, ∀δu ∈ V, (3.8)

where V = {δu : Ω0 → R3 | δu(X) = 0, ∀X ∈ ∂Ωu
0 } is the space of admissible virtual

displacements δu, then the displacement field u is the solution of the equilibrium problem.
By employing the chain rule in Eq. (3.8) and recalling the hyperelasticity of the fibers and
of the ground substance, we get

∫
Ω0

Pg : δFdV +

NfT

∑
i=1

∫
V fi

0

Pci : δFdV −
∫

Ω0

B ·δudV −
∫

∂Ωσ
0

T ·δudS = 0, ∀δu ∈ V, (3.9)

which is the principle of virtual work. In Eq. (3.9), Pg and Pci are the first Piola-Kirchhoff
stress tensors of the ground substance g and of the correction of the i-th fiber fi, respec-
tively, and δF = Gradδu is the first variation of the deformation gradient F.

The task of finding the displacement field u that satisfies (3.9) is normally tackled by means
of numerical methods such as the FEM. Implementation strategies with respect to the latter
are available in the literature, but usually in a small strain setting (e.g., [83, 90]). Therefore,
a FEM implementation suitable for finite strain simulations is presented in Appendix A.
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3.2.2 RVE-based multiscale theory

The past decades have seen the development of several multiscale theories, which aim to
relate the macroscopic behavior of continua to physical phenomena taking place at smaller
scales. In the field of solid mechanics, the works of Hill [97–100] and Mandel [166],
among others, have provided a robust framework for the estimation of the macroscopic
mechanical response of heterogeneous materials. More recently, theories based on the
concept of a representative volume element (RVE) have been developed within the con-
text of computational mechanics, often combined with the FEM, in which the stresses and
strains at the macro-scale result from the volumetric average (over the RVE) of their mi-
croscopic counterparts; for a comprehensive review, see Blanco et al. [16] and references
therein.

This section recalls some main aspects of a particular RVE-based multiscale theory de-
tailed in de Souza Neto and Feijóo [49], which will be employed in the present work. The
underlying concepts of the theory, which is based on kinematic admissibility and energy
consistency between scales, will be reviewed. The theory will then be specialized to the
context of embedded elements by assuming the same decomposition of the strain energy
between ground substance and fibers, as in the previous section, in order to obtain the
micro-scale equilibrium equation and the stress homogenization relation.

Kinematics

Let Ω0 ⊂ R3 be the reference configuration of a macroscopic continuum body (with char-
acteristic length l) that deforms to Ω⊂ R3 in a quasi-static manner (Fig. 3.2). We assume
that each point X ∈ Ω0 is associated with a representative volume element Ω

µ
0 ⊂ Ω0 with

characteristic length lµ� l, which deforms to Ωµ ⊂ Ω. The domains Ω0,Ω and Ω
µ
0 ,Ω

µ

are referred to as macro- and micro-scales, respectively. While the microscopic RVE Ω
µ
0

is considered small enough in order to be representative of the local behavior of the mate-
rial at the macroscopic level, it is assumed that it is large enough to still be regarded as a
continuum body and to be representative enough of the microstructure of Ω0.

We now define a macroscopic displacement field u : Ω0 → R3 as well as a microscopic
displacement field uµ :Ω

µ
0 → R3 in the same way as in Eq. (3.1). These fields are related

by the kinematic averaging (homogenization) relationships [50]

u =
1

Vµ

∫
Ω
µ
0

uµ dVµ and F =
1

Vµ

∫
Ω
µ
0

Fµ dVµ, (3.10)

where F and Fµ are, respectively, the macroscopic and microscopic deformation gradi-
ents, defined in the same way as in Eq. (3.2), and Vµ is the volume of the RVE. It may be
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Figure 3.2: Deformation of a continuum body Ω0 and of the microscopic RVE Ω
µ
0 at point

X ∈Ω0.

shown [50] that these kinematic averaging relationships represent constraints on the micro-
scopic displacement field uµ, preventing, respectively, rigid body translations (Eq. (3.10)1)
and rigid body rotations (Eq. (3.10)2) of the RVE. Hence, only the microscopic displace-
ment fields uµ that comply with Eq. (3.10) may be candidate solutions for the equilibrium
of the RVE. This motivates the definition of the so-called minimally constrained space of
kinematically admissible microscopic displacements as [16, 28, 50]

Kmin
uµ ≡

uµ ∈ H1(Ωµ0 )

∣∣∣∣ u− 1
Vµ

∫
Ω
µ
0

uµ dVµ = 0 and F− 1
Vµ

∫
Ω
µ
0

Fµ dVµ = 0

 , (3.11)

where H1(Ωµ0 ) is the first-order Sobolev space. The corresponding space of virtual kine-
matically admissible microscopic displacements is then defined as

Vmin
uµ ≡

{
w = w1−w2 | w1,w2 ∈ Kmin

uµ

}
. (3.12)

By assuming, without loss of generality, a linear expansion of the microscopic displace-
ment field uµ in terms of the macroscopic deformation gradient F, de Souza Neto et al.
[50] have shown that Kmin

uµ (Eq. (3.11)) may be rewritten as

Kmin
uµ ≡

{
uµ = u+[F− I]Y+ ũµ, ∀Y ∈Ω

µ
0

∣∣∣∣ ũµ ∈ Vmin
ũµ

}
, (3.13)

where the higher-order terms ũµ are the so-called displacement fluctuations. As discussed
by the authors, while the space Kmin

uµ contains all the possible microscopic displacement
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fields that comply with the kinematic postulates of the present theory, it is perfectly accept-
able (and sometimes quite useful, as demonstrated, e.g., in [28, 29]) to further restrict this
kinematic space, provided that the resulting set of admissible microscopic displacements
is a subset of Kmin

uµ . While this implies that a large array of different kinematic models
may be constructed, four classical multiscale boundary conditions [50] will be considered
in the present work:

1. Taylor-Voigt model, also known as uniform strain or rule of mixtures: this model
assumes that the deformation at every point of the microscopic domain Ω

µ
0 is defined

by the macroscopic deformation gradient F; this corresponds to postulating that the
displacement fluctuations ũµ vanish over all the RVE domain, or

K tay
uµ ≡

{
uµ = u+[F− I]Y, ∀Y ∈Ω

µ
0
}
. (3.14)

2. Linear boundary displacements model, also known as uniform boundary strain: in
this case, it is assumed that the displacement fluctuations ũµ vanish only over the
boundary ∂Ω

µ
0 of the RVE, which is equivalent to postulating that the deformation

at every point of ∂Ω
µ
0 is controlled by the macroscopic deformation gradient F, or

K lin
uµ ≡

{
uµ = u+[F− I]Y+ ũµ, ∀Y ∈Ω

µ
0

∣∣∣∣ ũµ(Y) = 0, ∀Y ∈ ∂Ω
µ
0

}
. (3.15)

3. Periodic boundary fluctuations model: given an RVE with periodic boundaries ∂Ω
µ
0 ,

the displacement fluctuations ũµ are postulated to coincide in each pair of (Y+,Y−)
points, where Y+ is a point at one side (or surface) of the pair and Y− is the corre-
sponding, symmetric point at the other side (or surface). In mathematical terms, we
may write

Kper
uµ ≡

{
uµ = u+[F− I]Y+ ũµ, ∀Y ∈Ω

µ
0

∣∣∣∣ ũµ(Y+) = ũµ(Y−),

∀(Y+,Y−) ∈ ∂Ω
µ
0

}
. (3.16)

4. Minimally constrained model, also known as uniform traction on the boundaries:
in this case, no additional restriction is imposed and the space of admissible micro-
scopic displacements equals the one defined in Eq. (3.13). Then it may be shown
that this implies [49]

Pµ(Y)n̂(Y) = Pn̂(Y), ∀Y ∈ ∂Ω
µ
0 , (3.17)
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where Pµ and n̂ are, respectively, the microscopic first Piola-Kirchhoff stress tensor
and the boundary normal vector at Y. The macroscopic (homogenized) first Piola-
Kirchhoff stress tensor P (at the point X ∈ Ω0) is related to Pµ by an averaging
relationship similar to Eq. (3.10)2.

Principle of multiscale virtual work

Starting from the original theory, we will henceforth assume a decomposition of the micro-
scopic RVE domain Ω

µ
0 into a ground substance g and NfT embedded fibers, analogously

to what was done in Eq. (3.5). We emphasize that, since the displacement field uµ and the
deformation gradient Fµ are continuous over Ω

µ
0 (‘no-slip’ condition), the integrals in Eq.

(3.10) do not need to be decomposed and all the kinematic theory discussed in the previous
section remains valid.

In order to ensure energy consistency between the macro- and microscopic scales, we start
by considering the principle of multiscale virtual work derived by de Souza Neto et al.
[50] from the well-known Hill-Mandel principle of macro-homogeneity. The principle
states that the virtual work at the macro-scale coincides with the volumetric average of its
counterpart on the micro-scale, such that

P : δF =
1

Vµ

∫
Ω
µ
0

Pµ : δFµ dVµ, ∀δF;∀δuµ ∈ Vuµ, (3.18)

where δFµ = Gradδuµ and Vuµ ⊂ Vmin
uµ is an admissible multiscale model. By means

of the linear expansion of the microscopic displacement field uµ in terms of the macro-
scopic deformation gradient F (Eq. (3.13)), one can show that Eq. (3.18) may be rewritten
as [50]

P : δF =
1

Vµ

∫
Ω
µ
0

Pµ : (δF+Gradδ ũµ) dVµ, ∀δF;∀δ ũµ ∈ Vũµ. (3.19)

Now, by considering the same additive decomposition as in Eq. (3.5), we assume that
the virtual work at the micro-scale is divided between the ground substance g and the NfT

embedded fibers, such that
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P : δF =
1

Vµ

∫
Ω
µ
0

Pµg : (δF+Gradδ ũµ) dVµ+
NfT

∑
i=1

∫
V fi

0

Pµci
: (δF+Gradδ ũµ) dVµ

 ,
∀δF;∀δ ũµ ∈ Vũµ, (3.20)

where Pµg and Pµci are the first Piola-Kirchhoff stress tensors of the ground substance and
of the correction of the i-th fiber fi, respectively, as defined in Eq. (3.9). Since the varia-
tions of the fluctuations are arbitrary, we choose δ ũµ ≡ 0 and recall that the macroscopic
deformation gradient F is constant in all the microscopic domain Ω

µ
0 in order to write

P− 1
Vµ

∫
Ω
µ
0

Pµg dVµ+
NfT

∑
i=1

∫
V fi

0

Pµci
dVµ


 : δF = 0, ∀δF, (3.21)

and since δF is also arbitrary, we get

P =
1

Vµ

∫
Ω
µ
0

Pµg dVµ+
NfT

∑
i=1

∫
V fi

0

Pµci
dVµ

 , (3.22)

which is the stress homogenization relation. Similarly, we now choose δF ≡ 0 in Eq.
(3.20) in order to get the micro-scale equilibrium equation

∫
Ω
µ
0

Pµg : Gradδ ũµ dVµ+
NfT

∑
i=1

∫
V fi

0

Pµci
: Gradδ ũµ dVµ = 0, ∀δ ũµ ∈ Vũµ. (3.23)

By comparing Eq. (3.23) with Eq. (3.9) one can see that the embedded elements technique
described in Section 3.2.1 may be directly applied to solve the equilibrium problem of the
RVE using the FEM. We point out that since a ‘no-slip’ condition is assumed, no additional
degrees of freedom associated with the reinforcement mesh are added to the system (see
Appendix A for more details). Therefore, the implementation strategies available in the
literature (e.g., [49, 172, 208]) for the four classical multiscale models may be readily
employed.
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3.2.3 Collagen fiber distribution in arterial tissue

The healthy arterial wall is composed of three clearly distinguishable layers: the tunica
intima (innermost layer), tunica media (middle layer) and tunica adventitia (outermost
layer). Each layer is characterized by an intricate microstructure, composed of vascular
cells embedded in an extracellular matrix, a complex network of collagen fibers, elastic
fibers, elastin layers and other components [102, 103, 113, 200].

The (passive) mechanical behavior of the arterial tissue is dominated by the extracellular
matrix, particularly the elastin and collagen components [103, 149, 199]. At low stretches,
the highly compliant elastin bears most of the load; at higher stretches, the collagen fibers
– which are wavy in the unloaded state – get straightened up and start bearing load. This
phenomenon, known as fiber recruitment, leads to the characteristic J-shaped mechanical
response of the arterial tissue [176, 200, 234].

This response is usually anisotropic, since the distribution of collagen fibers is not uniform,
but rather oriented (with some degree of dispersion) along two preferential directions in the
circumferential-axial plane of the artery [113, 216]. These directions, which are usually
different for each layer, are represented by the ±α angles in Fig. 3.3(a). In the radial-
axial plane, the collagen fibers show a comparatively small degree of dispersion, which,
however, might get higher in diseased tissue (e.g., in aneurysms) [183].

e1

e2

e1

e3 e2

N

Φ

Θ

(a) (b)

+α
–α

Figure 3.3: Fiber families in the arterial media: (a) two symmetric fiber families in the
circumferential-axial plane; (b) fiber N described in terms of azimuthal (Φ)
and elevation (Θ ) angles.

In order to properly capture the complex mechanical behavior of the arterial tissue, it is
therefore crucial to suitably describe the collagen fiber distribution. To this end, we start
by fixing a coordinate system described by the basis vectors {e1,e2,e3}, which are aligned,
respectively, with the circumferential, axial and radial directions of an artery (Fig. 3.3(b)).
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The unit vector N along a fiber direction may be expressed in terms of two angles Φ

(azimuthal or in-plane angle) and Θ (elevation or out-of-plane angle), such that

N(Φ ,Θ) = cosΦ cosΘ e1 + sinΦ cosΘ e2 + sinΘ e3, (3.24)

where Φ ∈ [0, 2π] and Θ ∈ [−π/2,+π/2]. Aiming to describe the dispersion of the angles
Φ and Θ , Holzapfel et al. [113] introduced a bivariate von Mises distribution by assuming
independent probability distributions for each angle, given by

ρ(Φ ,Θ) = ρip(Φ)ρop(Θ). (3.25)

The authors then proposed two different π-periodic von Mises distributions for ρip(Φ) and
ρop(Θ), namely

ρip(Φ) =
exp[acos2(Φ±α)]

I0(a)
and ρop(Θ) = 2

√
2b
π

exp[b(cos2Θ −1)]
erf(
√

2b)
, (3.26)

where a and b are concentration parameters, α is the mean fiber in-plane angle, I0 is the
modified Bessel function of the first kind of order 0 and erf is the error function. Based on
experimental evidence, the mean out-of-plane angle is taken to be zero [113].

The concentration parameters a and b were also used to introduce two scalar quantities

κip =
1
2
− I1(a)

2I0(a)
and κop =

1
2
− 1

8b
+

1
4

√
2

πb
exp(−2b)
erf(
√

2b)
, (3.27)

that describe the degree of in-plane and out-of-plane dispersion, respectively. For a more
detailed discussion on the meaning of κip and κop, see Holzapfel et al. [113] and Nies-
trawska et al. [183].

3.3 Numerical experiments

The embedded elements formulation and the multiscale framework described in Sections
3.2.1 and 3.2.2, respectively, were implemented in a Fortran code, which was used to run
the numerical experiments described in the current section. Since the goal of the present
study is to propose a suitable method to investigate microstructural phenomena in arteries,
the tunica media is chosen as a representative example, as it constitutes the main load-
bearing layer under physiological conditions and plays a crucial role in mechanobiological
processes [105, 126]. We emphasize, however, that the method herein proposed could be
easily extended to the intima and the adventitia, or even to other fibrous tissues.
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3.3.1 RVE geometries

Starting from Wolinsky and Glagov [273], numerous authors have described the intricate
microstructure of the media. Briefly, it might be seen as a complex layered structure com-
posed of several lamellar units, which in turn are made up of collagen fibers, smooth mus-
cle cells (SMCs), elastin sheets and other microstructural components [57, 120, 176, 188].
In the present work, however, we will assume that, at the investigated length scale, colla-
gen fibers are the only distinguishable components, while all the other constituents form a
homogeneous ground substance. For the sake of clarity, we emphasize that the word ‘fiber’
is herein employed to refer to a bundle of collagen fibrils (which, in turn, are formed by
collagen molecules) [126, 200].

Based on this assumption, the characteristic microstructural geometry shown in Fig. 3.4
was created for the analyses. The black bounding box represents the ground substance,
to be meshed with 3D elements, whereas the blue and red lines represent the centerlines
of the collagen fibers, organized in two symmetric families, to be meshed with embedded
truss elements.

e1

e3

e2

12
0 

μm

240 μm
240 μm

A
M
I

Figure 3.4: Right: illustration of the healthy arterial wall showing the tunica intima (I), tu-
nica media (M) and tunica adventitia (A) (adapted from [109]). Left: represen-
tation of the microstructure of the medial layer, with two symmetric families
of dispersed collagen fibers (blue and red) and a ground substance (pink).

Care was taken to resemble the layered organization observed in the media of healthy
arteries, in which the fiber families are not intertwined, but rather alternate along the ra-
dial direction [183]. We point out that, in the present approach, no direct connection
was considered between the collagen fibers, as opposed to models that employ networks
of trusses [202, 220, 232, 271]. When the embedded elements technique is used, fibers
actually interact with each other, by construction, via the elastin-rich ground substance.
Experimental results do suggest that matrix-fiber interactions play an important role in the
kinematics of collagen fibers within the arterial tissue [145], but most importantly, such
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interactions are crucial for mechanobiology [105, 126]. As discussed in the Introduction,
this was the main reason for choosing the embedded elements technique over the truss
network approach.

The geometry shown in Fig. 3.4 was generated according to the stochastic procedure de-
tailed in Appendix B. Briefly, values are chosen for the volume size, the fiber diameter
d, the collagen volume fraction V F and the parameters α , κip and κop of the bivariate
von Mises distribution (Eq. (3.26)). Straight lines, representing the centerlines of collagen
fibers, are then added to the network at different orientations by randomly sampling in- and
out-of-plane angle values from the corresponding von Mises distributions, and the volume
fraction V F is updated by assuming a cylindrical shape for the fibers. The procedure stops
when the target volume fraction V F is reached.

Table 3.1 presents a characteristic set of parameters for the healthy media, which were
employed to generate the fiber network shown in Fig. 3.4. The volume size of 240×240×
120 µm, on the other hand, was chosen in order to ensure that the network is representative
of the desired von Mises distributions (i.e., that enough fiber directions are included); see
Appendix B for more details.

Table 3.1: Characteristic values of microstructural features of the healthy arterial media.
Param. Description Value Ref.

V F Volume fraction 30% [223]
d Fiber diameter 3µm [200, 238]
α Mean in-plane angle 6.91◦ [183]
κip In-plane dispersion 0.208 [183]
κop Out-of-plane dispersion 0.487 [183]

In this sense, Fig. 3.5(a) shows normalized histograms of the in-plane angle values Φ for
the two symmetric fiber families (red and blue) of Fig. 3.4, whereas Fig. 3.5(b) presents
a normalized histogram of the out-of-plane angle values Θ of all fiber directions. In
both cases, a good approximation of the target von Mises distribution (thick curves) was
achieved. The effective parameters of the fiber network, calculated by means of a max-
imum likelihood estimate (see Appendix B), were αeff = 7.37◦, κeff

ip = 0.211 and κeff
op =

0.486; these are fairly close to the target values presented in Table 3.1 and lie well within
the experimental limits reported by Niestrawska et al. [183] for the healthy arterial me-
dia.

In order to investigate the convergence of the macroscopic response for different multiscale
models with regard to RVE size, as well as its influence over the microscopic fields, the
fiber network of Fig. 3.4 was employed to construct four RVEs of increasing size, which
are presented in Fig. 3.6. RVE 4 coincides with the whole network, while RVEs 1 to 3 are
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Figure 3.5: Dispersion of fiber angles of a representative collagen network: (a) target (thick
curves) and effective (bars) PDF of the in-plane angle values for the two sym-
metric fiber families, dispersed around the angles +7.37◦ (red) and −7.37◦

(blue); (b) target (thick curve) and effective (bars) PDF of the out-of-plane an-
gle values for all fibers.

‘sliced’ from RVE 4 around the center of the volume. In all RVEs, red fibers belong to
the family dispersed around the mean in-plane angle +7.37◦, and blue fibers are dispersed
around −7.37◦.

FE meshes

Second-order tetrahedrons were employed to mesh the ground substance (black bounding
boxes in Fig. 3.6). After mesh convergence analyses (see Appendix C), the same character-
istic element size of 5µm was chosen for all RVEs, as illustrated in Fig. 3.7; this was done
to ensure consistent microscopic fields between different RVE sizes. Mesh sizes ranged
from 648 (RVE 1) to 331776 elements (RVE 4).

To mesh the fibers (red and blue lines in Fig. 3.6), second-order truss elements were used.
Care was taken to obtain a compatible discretization, which means that each 1D element
was completely contained within a 3D ‘host’ element, as required by Eq. (A.2). Mesh
sizes ranged from 686 (RVE 1) to 235225 truss elements (RVE 4). We recall that since
the 1D elements are embedded in the 3D elements and a ‘no-slip’ condition is assumed,
the truss elements do not add extra degrees of freedom to the system (see Appendix A for
more details).
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Figure 3.6: RVEs 1 (smallest) to 4 (largest) are constructed from the same microstructural
geometry, shown in Fig. 3.4. Red fibers are dispersed around the in-plane angle
α =+7.37◦ and blue fibers are dispersed around α =−7.37◦.
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Figure 3.7: 3D ‘host’ meshes employed to model the ground substance. The same element
size was used for all RVEs.
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3.3.2 Constitutive models

Ground substance

Following a common modeling strategy [104, 109, 220, 232, 238], the ground substance
was modeled as an isotropic nearly-incompressible neo-Hookean material, whose strain-
energy function ψg (Eq. (3.7)) is given in the decoupled form

ψg(C) =
Gg

2
(I1−3)+

Kg

2
(J−1)2, (3.28)

where C= J−2/3C is the modified right Cauchy-Green tensor (with detC≡ 1), J = detF>
0 is the volume ratio, Ī1 = C : I is the first invariant of C, Gg is the shear modulus of
the ground substance and Kg is a penalty (volumetric) parameter. In the present work, a
value of Gg = 16.08 kPa was used [183], whereas the penalty parameter was chosen as
Kg = 100Gg, which results in an apparent Poisson’s ratio of 0.495.

Collagen fibers

Considering that the characteristic waviness of the collagen fibers is not taken into account
in the RVE, the effect of fiber recruitment (as discussed in Section 3.2.3) was emulated
by choosing, for each i-th fiber, a correction strain-energy function ψci (Eq. (3.7)) of the
form

ψci(λ ) =

0, if 0 < λ < λ
i
r ,

Ef

2
(λ −λ

i
r )

2, if λ ≥ λ
i
r ,

(3.29)

where Ef = 54.3 MPa is the uniaxial stiffness of the fiber after recruitment [174], λ is
the stretch in the fiber direction and λ i

r is the recruitment stretch of the i-th fiber. We
emphasize that this simple strain-energy function could be easily extended to account for
other important microstructural characteristics, e.g., fiber damage [238, 239] and fibril
cross-linking within fibers [106, 107].

Since the amount of waviness might be different between fibers, in Eq. (3.29) we assume
each i-th fiber is characterized by a different value of λ i

r . Following a common modeling
approach [96, 127, 148, 267], we assume furthermore that the distribution of recruitment
stretches in the tissue may be described by a beta distribution [267] of the form

ρr(λr) =
(λr−λ1)

a1−1(λ2−λr)
a2−1

β (a1,a2)(λ2−λ1)a1+a2−2 (3.30)
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where a1 and a2 are shape parameters, with λ1 and λ2 being the limits of the distribu-
tion (respectively, the minimum and maximum recruitment stretches). The parameters λ i

r
were attributed to each i-th fiber by randomly sampling values from the beta distribution
with λ1 = 1.00, λ2 = 1.323 and a1 = a2 = 1.90 [267]. An overview of the constitutive
parameters used in the present work is given in Table 3.2.

Table 3.2: Constitutive parameters employed in the present work.
Param. Description Value Ref.

Gg Ground substance shear modulus 16.08 kPa [183]
Kg Penalty parameter 100Gg [-]
Ef Fiber Young modulus 54.3 MPa [174]

[λ1,λ2] Interval of recruitment stretches [1.000,1.323] [267]
a1 = a2 Shape parameters (beta dist.) 1.90 [267]

The normalized histogram of recruitment stretch values sampled for the whole network of
Fig. 3.4 is displayed in Fig. 3.8(a), where the solid curve represents the target beta distribu-
tion (Eq. (3.30)). The dispersion of recruitment stretches inside an RVE is exemplified in
Fig. 3.8(b), where an in-plane view of RVE 2 is shown. The circumferential and axial di-
rections are aligned with the horizontal and vertical axes, respectively, and fiber diameters
were scaled according to their depth within the volume. The color indicates the recruit-
ment stretch λ i

r assigned to each i-th fiber. We emphasize that these values are attributed
to the fibers before the FE discretization, so that the distribution of recruitment stretches is
independent of the mesh.

Multiscale boundary conditions

Each one of the four RVEs shown in Fig. 3.6 was subjected to numerical analyses simu-
lating a macroscopic in-plane equibiaxial stretch up to 10%, according to the macroscopic
deformation gradient Fmacro given, in matrix form, as

[Fmacro] =

λcirc 0 0
0 λaxial 0
0 0 λrad

=

1.10 0 0
0 1.10 0
0 0 0.826

 , (3.31)

which was applied in 20 steps. We emphasize that, at each step, λrad was calculated so that
detFmacro≡ 1, which means an incompressible behavior from a macroscopic point of view,
a common assumption in the mechanical modeling of arterial tissue (see, e.g., Holzapfel
and Ogden [104] and references therein).
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Figure 3.8: (a) Target (thick curve) and effective (bars) PDF of recruitment stretches
for the whole fiber network shown in Fig. 3.4; (b) representative in-plane
(circumferential-axial) view of recruitment stretches in RVE 2; the color in-
dicates the recruitment stretch assigned to each fiber, according to the scale
shown on the right. Fiber diameters were scaled according to their depth within
the volume.

The numerical experiment was repeated for each of the four classical multiscale models
described in Section 3.2.2, that is:

1. Taylor-Voigt model

2. Linear boundary displacements model

3. Periodic boundary fluctuations model

4. Minimally constrained model.

In total, 16 numerical experiments were performed. All simulations were run on a desktop
computer (8-core Intel® i9-9900K with 128 GB of RAM). Runtimes ranged from a few
minutes (for RVE 1) to 3-4 days (RVE 4).

3.4 Results and discussion

In this section, the results of the numerical experiments described above will be analyzed,
both at the macroscopic (homogenized) and the microscopic level.
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3.4.1 Homogenized results

In Fig. 3.9, the axial (top) and circumferential (bottom) components of the homogenized
Cauchy stress, which is obtained by means of a push-forward operation [102] on the
macroscopic first Piola-Kirchhoff stress calculated from Eq. (3.22), are plotted against
the macroscopic axial and circumferential stretches, respectively. The numerical results
(in color) are compared with experimental data (gray) from 13 samples of arterial media
tested under in-plane equibiaxial stretch. The dark gray dots correspond to the mean curves
for the 13 samples, whereas the gray shaded area represents the bounds of the data.
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Figure 3.9: Homogenized (macroscopic) stress response at the axial (top) and circumfer-
ential (bottom) directions, for increasing RVE size (left to right) and the four
multiscale models, is compared with experimental data. The curves obtained
numerically exhibit a convergence-like behavior with increasing RVE size.

By looking at the numerical results, we notice that for all RVEs and multiscale models, the
combination between the dispersed fiber directions and the (beta) distribution of recruit-
ment stretches yields homogenized stress curves that reproduce the characteristic J-shaped
mechanical response of the arterial tissue [176, 200, 234] both at the circumferential and
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axial directions. This phenomenon will be further explored in Section 3.4.4. Moreover, for
both directions, the Taylor model yields the stiffest homogenized response, whereas the
minimally constrained model yields the softest response, which is a well-known character-
istic of the multiscale theory discussed in Section 3.2.2 [49]. Furthermore, for all models
and RVE sizes, the circumferential response is stiffer than the axial one, as expected, since
collagen fibers in the media are preferentially aligned towards the circumferential direc-
tion.

In Fig. 3.9, the response of the four multiscale models shows a convergence-like pattern
with increasing RVE size (from left to right), which is expected, since the larger the RVE,
the more representative of the microstructure it is. Moreover, we point out that each model
converges to axial and circumferential curves that clearly lie within the bounds of exper-
imental data. Especially at the circumferential direction, we notice furthermore that the
periodic boundary condition seems to be converging faster to a (hypothetical) limit ho-
mogenized curve.

In order to further investigate this convergence-like behavior, the total internal work was
calculated, for each of the 16 experiments, by numerically integrating

W k = Pk
macro : Fk

macro (3.32)

along the (pseudo-)time, where Pk
macro and Fk

macro are, respectively, the homogenized first
Piola-Kirchhoff stress tensor (Eq. (3.22)) and the macroscopic deformation gradient (Eq.
(3.31)) at the k-th step. Results are plotted in Fig. 3.10 against RVE volume.
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Figure 3.10: Total internal work plotted against RVE volume for the four multiscale mod-
els. The curves exhibit a convergence-like behavior with increasing RVE size.

The trend observed in Fig. 3.9 is repeated in Fig. 3.10: with increasing RVE size, there
is a convergence-like pattern for all multiscale models. Reflecting the stiffer responses
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observed in the macroscopic curves, the Taylor and linear models yield higher levels of
strain energy when compared with the minimally constrained and periodic models. Once
again, the periodic model seems to be converging faster to a (hypothetical) limit value.

3.4.2 Microscopic strains

As discussed in previous sections, the main advantage of the multiscale theory herein
employed is the possibility of evaluating the microscopic deformation that is driving the
macroscopic (homogenized) response shown in Fig. 3.9, as well as the relation between
them. In the context of biological tissues, this evaluation might help unraveling the ways
in which important mechanobiological processes take place. In the arterial wall, e.g.,
there are different microconstituents that act as biological sensors, continually evaluat-
ing environmental cues and triggering biological processes accordingly to promote home-
ostasis (biological equilibrium) [105, 126]. Smooth muscle cells (SMCs) in the media
relax or contract to regulate, e.g., arterial diameter, blood pressure and blood flow distri-
bution [200]. They are also responsible for producing extracellular matrix components
(collagen and elastin), and, therefore, might induce medium and long-term changes to the
microstructural architecture in response to mechanical stimuli (e.g., cyclic stretches) or
pathological processes (e.g., aneurysm formation), a process known in the literature as
growth and remodeling [87, 103, 122, 150, 200].

To evaluate the influence of RVE size and multiscale model over the microscopic deforma-
tion field, the equivalent (von Mises) measure of the logarithmic (Hencky) strain εeq will
be employed. Since in the present model SMCs are included within the ground substance,
these strain fields might also indicate mechanical stimuli being captured by the cells.

For the Taylor model, the microscopic strain field is uniform by hypothesis (see Eq.
(3.14)), i.e., at 1.10 equibiaxial stretch the equivalent logarithmic strain equals 0.286
(macroscopic value, calculated from Eq. (3.31)) all over the RVE, independently of the
size. Therefore, this trivial case won’t be addressed here.

The middle part of Fig. 3.11 shows the strain fields for the linear boundary displacements
model at 1.10 equibiaxial stretch. Each of the four RVEs was sliced halfway through
the thickness (i.e., in the radial direction) and the top and bottom parts are displayed.
Moreover, in order to enhance visualization, a nonlinear color scale is employed, in which
each color represents 10% of the elements of each RVE. These deciles are also pictured
in the histograms shown in the bottom part of Fig. 3.11, which were plotted from the set
of equivalent logarithmic strains of all elements. Since each RVE has a different number
of same-sized elements, the histogram bars were normalized to yield an area equal to one,
resulting in an estimation of the probability density function (PDF) of strain values, for
each RVE. Finally, the macroscopic equivalent logarithmic strain is identified by an arrow
under the horizontal axis of each PDF.
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Figure 3.11: Distribution of equivalent logarithmic strains (middle) and corresponding
PDF histograms (bottom) for the linear boundary displacements model. RVE
size increases from left to right.

It can be seen that, for the two smallest RVEs, 80% of the elements is experiencing equiv-
alent strains within less than 3% of the imposed (macroscopic) value. This indicates a
Taylor-like behavior, which is also represented by the narrow PDFs. With increasing RVE
size, the histogram becomes wider and a clear tendency arises, namely, that the higher
strains concentrate in the interior of the domain. Both effects result from the imposed
displacements on the boundary: since the same element size was used for all simulations,
in RVEs 1 and 2 there is a larger proportion of boundary nodes with regard to the whole
mesh, meaning that a larger part of the domain has prescribed displacements, resulting in
an almost uniform strain field. On the other hand, in RVEs 3 and 4, the larger amount
of elements away from the boundary allows for higher strains (up to more than 100%) to
develop in the interior of the volumes, which also yields a broader PDF.

Figure 3.12 shows the logarithmic strain fields and corresponding PDFs for the periodic
boundary fluctuations model. One can see that the nonzero fluctuations on the bound-
ary allow for a considerably wide range of equivalent strain values, even for the smallest
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RVEs. This behavior may also be seen in the broader PDF graphs at the bottom of the
figure, which, furthermore, exhibit a convergence-like behavior: for increasing RVE size,
the PDFs seemingly tend to the same distribution of equivalent strains. Moreover, as op-
posed to the linear model, no clear boundary effect is seen: for all RVE sizes, large and
small strains – arising from the presence of the collagen fibers – are inhomogeneously
distributed throughout the volumes, both at the interior and the boundaries. Considering
that the microscopic fields should resemble a piece of microstructure being deformed by
the surrounding material, this boundary-independent behavior is desirable. Furthermore,
we notice that in all RVEs, at least 70% of the elements is experiencing strains above the
macroscopic (imposed) values; this highlights the relevance of this type of multiscale anal-
yses when micromechanical phenomena (e.g., mechanotransduction) are to be investigated
and simulated.
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Figure 3.12: Distribution of equivalent logarithmic strains (middle) and corresponding
PDF histograms (bottom) for the periodic boundary fluctuations model. RVE
size increases from left to right.

The logarithmic strain fields and PDFs for the minimally constrained model are pre-
sented in Fig. 3.13. Contrarily to the linear model, higher strains tend to arise at the
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circumferential-axial boundary of the volumes, while lower strains concentrate in the mid-
dle of the RVEs. The reason behind this behavior are the uniform tractions on the boundary
(see Eq. (3.17)) that characterize the minimal model, which are known to yield physically
unfeasible results at the boundaries of RVEs, especially when phases with strongly dis-
similar mechanical properties are present [29]. The same effect is also responsible for the
lack of a clear convergence trend in the PDFs: while for RVEs 1 and 2 the PDF is more or
less centered around the macroscopic value, for RVEs 3 and 4 the distribution is shifted to
the left, due to the higher proportion of elements away from the boundary, where higher
strains are concentrated.
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Figure 3.13: Distribution of equivalent logarithmic strains (middle) and corresponding
PDF histograms (bottom) for the minimally constrained model. RVE size
increases from left to right.

As a final remark to this section, we emphasize that the microscopic strain fields might be
quite different even when the macroscopic response is similar: compare, e.g., the similarity
of the macroscopic response for RVE 3 in Fig. 3.9 for the periodic and minimal models
with the differences in the corresponding microscopic strain fields shown in Figs. 3.12
and 3.13. This stresses the importance of suitably choosing the boundary condition and
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RVE size if meaningful results are to be obtained at the microscopic level: it is not enough
to simply compare the homogenized response with experimental data. With specific regard
to the four models analyzed, the lack of a strong boundary effect indicates that, among
the four classical models, the periodic boundary condition is likely the best option for
multiscale simulations of fibrous tissues employing the embedded elements technique. As
for the RVE size, if the periodic model is employed, the strain field of RVE 3 seems to be
already representative enough.

3.4.3 Fiber stretches

Since the ground substance is isotropic, the strain fields observed in Figs. 3.11-3.13 are
driven by the effect of the reinforcing collagen fibers, i.e., of the embedded truss elements.
In order to illustrate this relation, we choose RVE 3 as a representative example and present
(Fig. 3.14) the in-plane view of the distribution of stretches of the fiber segments, for the
four multiscale models studied. The circumferential and axial directions are aligned with
the horizontal and vertical axes of the figure, respectively. Fiber diameters were scaled
according to their depth within the RVE, and, once again, a nonlinear color scale was
employed, where each color represents 10% of the (truss) elements. These deciles are
also pictured in the PDF histograms shown in the bottom part of the figure. Aiming to
enhance visualization of the minimum and maximum values, transparency was added to
fibers according to their stretch: the closer to the median, the more transparent the fiber.

Given the homogeneous displacement field throughout the RVE, for the Taylor model, the
stretch of the fiber depends solely on its direction inside the volume; since fibers in the
media are oriented more towards the circumferential direction, it can be seen that almost
all fibers are subjected to stretches around the imposed macroscopic value of 1.10. For
the linear model, the PDF still shows a high number of fibers being subjected to stretches
close to the prescribed macroscopic value of 10%, albeit with a higher dispersion when
compared with the Taylor model. For the periodic and minimal models, the distributions
are similar and considerably broader than the ones observed for the Taylor and linear mod-
els; for the minimal model, in particular, the PDF is slightly shifted to the left, and there is
also a clear tendency of higher stretches concentrating closer to the boundaries. Overall,
we notice that the same tendencies observed for the strain fields of the ground substance
(3D mesh) are also present in Fig. 3.14, as expected, since ground substance and fibers
deform together.

3.4.4 Fiber recruitment

As briefly discussed in Section 3.2.3, the (passive) mechanical response of most connective
tissues is characterized by a phenomenon known as fiber recruitment, which arises from
the waviness of collagen fibers in the unloaded state. With specific regard to arteries, this
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Figure 3.14: In-plane (circumferential-axial) view of the distribution of fiber stretches in
RVE 3 for the four multiscale models (middle) and corresponding PDF his-
tograms (bottom).

behavior has been extensively studied and described both in experimental and numerical
settings [37, 96, 199, 234, 239, 267]. In the present study, the recruitment was simulated
by choosing a suitable strain-energy function (Eq. (3.29)) and assigning a different value
of recruitment stretch λ i

r to each i-th fiber.

In order to highlight the potential of the herein proposed multiscale technique as a means
to describe and investigate microstructural phenomena in arteries (and, potentially, other
fibrous tissues), Fig. 3.15 illustrates the fiber recruitment evolution in RVE 3 subjected to
periodic multiscale boundary conditions. In the graph of Fig. 3.15(a), the homogenized
mechanical response in the circumferential direction (thick black curve) is plotted against
the fiber (dashed curve) and ground substance (dotted curve) contributions, calculated by
homogenizing the stresses, respectively, only at the truss mesh (second term of Eq. (3.22))
and only at the 3D mesh (first term of Eq. (3.22)). The thick curve can be obtained from
the other two by considering the collagen volume fraction of 30%, and we notice that the
characteristic J-shaped response arises indeed from the effect of the fiber recruitment.

We emphasize the striking similarity with the inflation curves presented in the classical
experimental work by Roach and Burton [199] for fresh, elastin-digested and collagen-
digested arterial samples. Even so, it must be said that in the curves of Fig. 3.15(a) we
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merely separated the response of each phase, whereas eliminating one of the microstruc-
tural components like in [199] would surely change the microscopic strain fields, and,
potentially, influence the macroscopic response.
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Figure 3.15: Illustration of the effect of fiber recruitment over the macroscopic response:
(a) circumferential response (thick black curve) of RVE 3 combined with the
periodic model, emphasizing the ground substance (dotted curve) and fiber
(dashed curve) contributions; (b) active fibers (red) at 2.5, 5.0, 7.5 and 10%
of equibiaxial macroscopic stretch.

The shaded gray area in Fig. 3.15(a) represents the amount of truss elements that have
being recruited (i.e., whose recruitment stretch λ i

r was surpassed), whereas Fig. 3.15(b)
illustrates the gradual increase of recruited fibers (shown in red) for four stretch levels. At
an equibiaxial stretch level of 10%, about 25% of the fiber segments is bearing load. This
is in line with the results of the experimental work by Chow et al. [37], which reported
that collagen fibers in the medial layer are recruited up to 20% of applied (macroscopic)
stretch.

3.5 Concluding remarks

Multiscale models based on RVEs allow for the evaluation of microscopic phenomena
which, in general, are not accounted for in phenomenological models. In certain fibrous
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tissues such as arteries, however, there is a considerable amount of dispersion in the ori-
entations of the collagen fiber network, meaning that it might be necessary to include a
large number of fiber directions in order to achieve a representative microstructure. For
that reason, when the FEM is employed for the numerical homogenization, collagen fibers
are commonly modeled using 1D elements [164, 202, 220, 228, 232, 238, 239, 271]. This
might be accomplished either by simply considering a network of trusses [202, 220, 232,
271] or by using the embedded elements technique [164, 238, 239]. The advantage of the
latter with respect to the former is that the inclusion of a ground substance in which the
fibers are embedded may provide additional insights on the important interaction between
the collagen network and other microstructural components, such as mechanosensing cells.
We point out, however, that the kinematic bond imposed between 1D and 3D elements by
the use of the same shape functions might overshadow some of these interactions, espe-
cially at the fiber interfaces. Moreover, the use of truss elements implies that bending and
torsion of the fibers are neglected.

To the best of the authors’ knowledge, the influence of multiscale boundary conditions
and RVE size in the context of the embedded elements technique was not properly ad-
dressed before. Motivated by this fact, in the present study, the multiscale framework
(Section 3.2.2) introduced by de Souza Neto and Feijóo [49], based on kinematic admissi-
bility and energy consistency between scales, was combined with the embedded elements
technique to model the microstructure of the medial layer of the arterial tissue. Four RVE
sizes, obtained from the same characteristic microstructure, were subjected to a macro-
scopic isochoric equibiaxial stretch up to 10%; this deformation was applied according to
the four classical multiscale models: Taylor-Voigt, linear boundary displacements, peri-
odic boundary fluctuations and minimally constrained.

By employing a fiber recruitment strain-energy function for the fibers, it was possible to
capture the characteristic J-shaped mechanical response at the macroscopic (homogenized)
level for all RVE sizes and models, with a stiffer response in the circumferential direction,
as expected for the media. Moreover, a convergence-like behavior with increasing RVE
size is observed for all the four classical models analyzed and, among them, the periodic
boundary fluctuations model seems to converge faster to a (hypothetical) limit macroscopic
response (see Figs. 3.9 and 3.10).

At the microscopic level, on the other hand, the resulting strain fields in the ground sub-
stance show a strong dependency on the chosen multiscale boundary conditions. Impor-
tantly, even when two models yield similar macroscopic responses, the microscopic strain
fields might be quite different; this stresses the importance of properly choosing the multi-
scale boundary conditions if meaningful results are to be obtained at the microscopic level.
Of the four models analyzed, the periodic model seems to be less sensitive to changes in
RVE size and it is also less prone to localized effects at the RVE boundaries than the linear
and minimal models.
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Based on the above considerations, the periodic model seems to be the most suitable for in-
vestigating microstructural phenomena in arteries (or even other fibrous tissues) by means
of the embedded elements technique, at least among the four classical multiscale mod-
els. The biomechanical relevance of such analyses is illustrated, e.g., in Fig. 3.12, where
the strain amplification (with regard to the macroscopic value) and the inhomogeneity
observed in the strain fields of the ground substance might shed light on relevant mechan-
otransduction mechanisms (e.g., cell signaling). It is also exemplified in Fig. 3.15, which
provides a very simple demonstration of the gradual fiber recruitment and its influence
over the macroscopic response.

In the present work, a ‘no-slip’ condition was assumed between the collagen fibers and
the ground substance. Alternative formulations of the embedded elements technique that
include the possibility of relative sliding between fibers and matrix are available in the
literature [83, 90], and could be used to extend the current work, albeit at a higher compu-
tational cost (since, in this case, additional degrees of freedom associated with the 1D mesh
must be included in the problem). However, the analyses herein presented would probably
need to be redone, since adding slip would likely lead to changes in the results (especially
at the microscopic level), and possibly in the multiscale formulation itself. Nevertheless,
by incorporating this feature, other interesting phenomena could be investigated, e.g., fric-
tional sliding of collagen fibers.

Other future studies employing the approach herein presented could focus, e.g., on the
mechanobiological effects of structural changes in the collagen network, which are associ-
ated with pathological processes and growth and remodeling mechanisms in arteries [185].
The impact of supraphysiological loads (e.g., in stenting procedures) could also be investi-
gated, by suitably modifying the fiber strain-energy function to add damage mechanisms.
These and other possibilities might help unraveling the ways in which various cardiovas-
cular diseases develop, to the benefit of patients and physicians.

Appendices

A FE implementation of the embedded elements technique

This section presents a suitable implementation for solving the principle of virtual work
for the embedded elements technique (Eq. (3.9)) in the finite strain regime, employing the
FEM, in a total Lagrangian setting. For the sake of brevity, we will henceforth restrict our
attention to the case in which the body Ω0 deforms to Ω (Fig. 3.1) only due to the action
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of prescribed displacements U, i.e., there are no body forces B or surface forces T, which
means that Eq. (3.9) reduces to

δWint =
∫

Ω0

Pg : δFdV +

NfT

∑
i=1

∫
V fi

0

Pci : δFdV = 0, ∀δu ∈ V. (A.1)

FE discretization

We start by subdividing the body Ω0 into Nel continuum finite elements, so that the princi-
ple of virtual work (Eq. (3.9)) may be rewritten as

δWint =
Nel
A

e=1

∫
Ω
(e)
0

Pg : δFdV +

Nf(e)

∑
i=1

∫
V fi(e)

0

Pci : δFdV

= 0, ∀δu ∈ V, (A.2)

where Ω
(e)
0 is the (initial) domain of the e-th ‘host’ element,A is a suitable assembly oper-

ator and Nf(e) is the number of fiber (centerline) segments completely contained within the
e-th host element. It is therefore assumed that each embedded fiber fi may be subdivided
into smaller segments such that

V fT
0 =

Nel

∑
e=1

V fT(e)
0 =

Nel

∑
e=1

Nf(e)

∑
i=1

∫
V fi(e)

0

dV, (A.3)

where V fT(e)
0 ⊆Ω

(e)
0 is the total (initial) fiber volume contained within the e-th host element

and V fT
0 is the total fiber volume embedded in the ground substance g. By fixing the

coordinate system {e1,e2,e3}, Eq. (A.2) may be rewritten in matrix form as

δWint =
Nel
A

e=1

∫
Ω
(e)
0

[δF(e)]T[P(e)
g ]dV +

Nf(e)

∑
i=1

∫
V fi(e)

0

[δF(e)]T[P(e)
ci ]dV

= 0, ∀δu ∈ V. (A.4)
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In order to approximate [δF(e)], we recall that δF = Gradδu and approximate the field
of virtual displacements δu within the e-th host element Ω

(e)
0 by means of suitable shape

functions defined in terms of its nodes. After standard manipulations, we obtain

[fint] =
Nel
A

e=1
[f(e)int ] =

Nel
A

e=1

∫
Ω
(e)
0

[B(e)]T[P(e)
g ]dV +

Nf(e)

∑
i=1

∫
V fi(e)

0

[B(e)]T[P(e)
ci ]dV

≈ [0], ∀δu ∈ V

(A.5)

where [fint] is the global internal force vector and [B(e)] is the matrix of derivatives of the
shape functions of the e-th host element Ω

(e)
0 ; see, e.g., Belytschko et al. [13] for more

details on the derivation of the FEM.

Integration employing isoparametric elements

The integrals in Eq. (A.5) are more easily solved in terms of isoparametric elements; to
this end, for each e-th host element Ω

(e)
0 we make use of a map X(e)(ξ ), where [ξ ] =

[ξ1 ξ2 ξ3]
T are the coordinates of the isoparametric domain, as illustrated (for the 2D case)

in Fig. A.1

×
ξj

×ξk ×
X1

ξ1

ξ2

+1–1

–1

+1

ζ
+1–1 * *ηj

A0
fi (e)L0 , 

×

Xηj

X2

(e)

fi (e)

fi (e)

a0
fi (e)

Figure A.1: Illustration (for the 2D case) of the embedded elements technique. The effect
of the truss reinforcement is accounted for by means of suitably placed inte-
gration points at the isoparametric domain of the ‘host’ element e.
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Integration of the first term inside the brackets in Eq. (A.5) is performed in terms of NQξ
Gaussian integration points ξ k [13], from which we obtain

∫
Ω
(e)
0

[B(e)]T[P(e)
g ]dV ≈

NQξ

∑
k=1

[B(ξk)]T[P(ξk)
g ]det([J(ξk)])ωk, (A.6)

where [B(ξk)] are the derivatives of the shape functions of the isoparametric 3D element,
evaluated at each of the NQξ Gaussian quadrature points ξ k, [P(ξk)

g ] are the first Piola-
Kirchhoff stresses of the ground substance at the material point X(e)(ξ k), [J

(ξk)] is the
Jacobian matrix of the map X(e)(ξ k) and ωk is the weight of the k-th integration point ξ k.

On the other hand, in order to integrate the second term inside the brackets in Eq. (A.5),
we first make use of the isoparametric truss element in order to write

∫
V

fi(e)
0

[B(e)]T[P(e)
ci ]dV ≈ Afi(e)

0

NQfi(e)

∑
j=1

[B(Xη j )]T[P
(Xη j )
ci ]L0 jω j. (A.7)

In Eq. (A.7), Afi(e)
0 is the initial cross-sectional area of the i-th fiber segment inside the e-th

element and [B(Xη j )] are the derivatives of the shape functions of the physical e-th host
element Ω

(e)
0 , evaluated at the corresponding material points Xη j of the NQfi(e) Gaussian

integration points η j, each one associated with an (initial) fiber length L0 j and weight ω j.

Finally, [P
(Xη j )
ci ] are the first Piola-Kirchhoff stresses of the fiber correction at the material

point Xη j .

In order to evaluate the derivatives of the shape functions at the isoparametric domain
(similarly to what was done in Eq. (A.6)), it is necessary to invert the map X(e)(ξ ) in
order to find the points ξ j = X−1

(e)(Xη j), as shown in Fig. A.1. Elwi and Hrudey [67]
proposed at least two numerical ways of doing so; in the present work we have employed
the Newton-Raphson iterative method.

Finally, by substituting Eqs. (A.6) and (A.7) into Eq. (A.5) we recall the finite strain
version of the classical equation for the internal force vector of a continuum mesh with
embedded truss elements [90], that is

[fint] =
Nel
A

e=1

[NQξ

∑
k=1

[B(ξk)]T[P(ξk)
g ]det([J(ξk)])ωk+

Nf(e)

∑
i=1

Afi(e)
0

NQfi(e)

∑
j=1

[B(ξ j)]T[P(ξ j)
ci ]L0 jω j

]
, (A.8)
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where the derivative of the shape functions [B(ξ j)] are now evaluated at the isoparametric
host element. This means that the truss elements do not add extra degrees of freedom to
the system, but only additional integration points at the elements of the host mesh.

As a final remark to this section, we point out that since a global coordinate system
{e1,e2,e3} was fixed in order to write Eq. (A.4), the correction stress components [P(ξk)

ci ],
which are usually evaluated in the truss coordinate system, have to be rotated; this is
normally achieved by means of rotation matrices [77, 83, 193]. In the present work, an
equivalent approach is employed, in which it is assumed that the material is transversely
isotropic at each volume V fi(e)

0 , due to the strong directional properties arising from the dif-
ference between the stiffer fiber material and the softer ground substance. In mathematical
terms, this means that [102]

ψci ≡ ψci(C,afi(e)
0 ⊗afi(e)

0 ), (A.9)

where C is the right Cauchy-Green tensor and afi(e)
0 is the unit direction vector of the i-th

fiber in the material configuration (blue arrow in Fig. A.1). In this case, if ψci is written
in terms of the fiber stretch λ , the second Piola-Kirchhoff stress tensor Sci will be given
by [102]

Sci = 2
∂ψci

∂ I4
afi(e)

0 ⊗afi(e)
0 , (A.10)

where I4 = λ 2 = afi(e)
0 ·Cafi(e)

0 . Note that since Pci = FSci , we may see that, if the vector

afi(e)
0 is described in terms of the basis {e1,e2,e3}, calculating and writing the stresses

Pci in this coordinate system is a trivial task. It might be shown that this approach is
equivalent to the one that employs rotation matrices; however, in a large strain setting it
has the advantage of avoiding the recalculation of such matrices (due to changes in fiber
orientation) at each iteration; this rotation is accounted for by means of the deformation
gradient F.

Linearization of the principle of virtual work

Under finite strains, the problem of finding the displacement field that satisfies the principle
of virtual work is always of nonlinear nature. In order to solve it, an incremental/iterative



Appendices 71

solution method of Newton-Raphson type is usually employed, to which a consistent lin-
earization of the governing equation is required. To this end, we calculate the directional
derivative of Eq. (A.1), which results in

D∆uδWint(u,δu) =
∫

Ω0

D∆uPg : δFdV +

NfT

∑
i=1

∫
V fi

0

D∆uPci : δFdV, ∀δu ∈ V, (A.11)

where ∆u is an increment of the displacement field u. Applying the chain rule to Eq.
(A.11) yields

D∆uδWint(u,δu) =
∫

Ω0

∆F : Ag : δFdV +

NfT

∑
i=1

∫
V fi

0

∆F : Aci : δFdV, ∀δu ∈ V, (A.12)

where D∆uF(u) = ∆F = Grad∆u, and

Ag =
∂Pg(F)

∂F
and Aci =

∂Pci(F)
∂F

, (A.13)

are the first elasticity (fourth-order) tensors of the ground substance and of the correction
of the i-th fiber fi, respectively.

By employing the same FE mesh, the same interpolation functions and the same integration
points as in the previous case, one can show that Eq. (A.12) reduces to the finite strain
version of the classical expression for the stiffness matrix [KT] of a continuum mesh with
embedded truss elements [90], i.e.

[KT] =
Nel
A

e=1

[NQξ

∑
k=1

[B(ξk)]T[Ag][B(ξk)]det([J(ξk)])ωk

+

Nf(e)

∑
i=1

Afi(e)
0

NQfi(e)

∑
j=1

[B(ξ j) ]T[Aci][B
(ξ j) ]L0 jω j

]
. (A.14)
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B Generation of fiber networks

In order to employ the embedded elements technique, whose implementation was detailed
in the previous section, two geometries are needed: a solid geometry (to be meshed with
3D elements) and a description of the spatial position and orientation of the reinforcements
(to be meshed with 1D elements) within the solid. Therefore, aiming to represent a piece of
the microstructure of the arterial wall, we start by defining a right square prism with sides
LC,LA,LR, taken to be aligned with the circumferential, axial and radial directions of an
artery, respectively. This solid represents the isotropic ground substance, that encompasses
all the microstructural components, except for the collagen fibers. A random network of
lines is generated within the solid to represent the collagen fiber reinforcement, resembling
the distribution in the healthy arterial wall: two fiber families oriented (with some degree
of dispersion) along two preferential directions, which are taken to be symmetric with
respect to the circumferential axis [113, 216] – see Fig. 3.3(a). The stochastic generation
scheme is illustrated in Fig. B.1.

Φk

Θk

Nucleation
Fiber

point

LA

LR

LC

X1
k

X2
k

Figure B.1: Illustration of the fiber network generation algorithm. A random point is cho-
sen inside the defined volume and the fiber direction is defined by sampling
one in-plane angle Φ k and one out-of-plane angle Θ k from the bivariate von
Mises distribution (Eq. (3.26)).

The procedure starts by fixing a fiber diameter d, a collagen volume fraction V F and the pa-
rameters α , κip and κop of the bivariate von Mises distribution (Eq. (3.26)). Subsequently,
a random nucleation point inside the volume is chosen, and a fiber direction N(Φ k,Θ k)
(Eq. (3.24)) is defined by randomly sampling one in-plane angle Φ and one out-of-plane
angle Θ from the von Mises distribution; the in-plane angle sampling alternates between
the two symmetric fiber families (dispersed around +α and −α , respectively). The k-th
fiber centerline is then extended along the generated direction until it crosses the bound-
aries of the prism, and the so defined start and endpoints (Xk

1 and Xk
2 , respectively) of the

fiber are then stored. By assuming a cylindrical shape with diameter d, the total fiber vol-
ume is updated and the process is repeated until the target volume fraction V F is reached.
The sampled in- and out-of-plane angle values are then used to calculate the effective pa-
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rameters αeff, κeff
ip and κeff

op of the network by using a maximum likelihood estimate, in
order to allow for a comparison with the target values.

Algorithm 1: Generation of random fiber networks
Input: LC,LA,LR,V F,d,α,κip,κop,dt

Output: Xk
1 ,X

k
2 ,Φ

k,Θ k, ∀k = 1, . . . ,Nfibers
αeff,κeff

ip ,κeff
op

1 Vfiber = 0
2 V Fcurr = 0
3 k = 1
4 NL = LR/15
5 while V Fcurr <V F do
6 for n = 1, . . . ,NL do
7 zmin

n = 15(n−1)
8 zmax

n = 15n
9 if n = odd then

10 Sample in-plane angle value Φ k from the von Mises distribution (Eq.
(3.26)1) centered around +α

11 else
12 Sample in-plane angle value Φ k from the von Mises distribution (Eq.

(3.26)1) centered around −α

13 Sample out-of-plane angle value Θ k from the von Mises distribution (Eq.
(3.26)2)

14 Calculate fiber direction N(Φ k,Θ k) (Eq. (3.24))
15 Generate random nucleation point x0 = [x0

1,x
0
2,x

0
3] with

x0
1 ∈ [0,LC], x0

2 ∈ [0,LA], x0
3 ∈ [zmin

n ,zmax
n ]

16 x = x0

17 while x1 ∈ [0,LC], x2 ∈ [0,LA], x3 ∈ [zmin
n ,zmax

n ] do
18 x = x0−dtN
19 Xk

1 = x
20 x = x0

21 while x1 ∈ [0,LC], x2 ∈ [0,LA], x3 ∈ [zmin
n ,zmax

n ] do
22 x = x0 +dtN
23 Xk

2 = x
24 Lk

f = ||Xk
2 −Xk

1 ||
25 Vfiber =Vfiber +Lk

f (π/4)d2

26 V Fcurr =Vfiber/(LC LA LR)

27 Calculate αeff,κeff
ip from the set of Φ k values by maximum likelihood estimate

28 Calculate κeff
op from the set of Θ k values by maximum likelihood estimate
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In the media, which is the arterial layer being considered in the current study, the two fiber
families are not intertwined, but rather alternate along the radial direction [183]. Thus, the
volume is sliced along the radial dimension LR in NL layers 15µm thick (which is a char-
acteristic value for the thickness of a medial lamellar unit [57, 188, 273]), and generation
algorithm described above was applied to each layer separately. The procedure described
above, which was implemented in MATLAB® (The MathWorks Inc., Natwick, US), is
summarized in Algorithm 1.

In order to investigate which dimensions should be used for LC,LA,LR to obtain a repre-
sentative fiber network (i.e., how many fibers are needed), a stochastic numerical experi-
ment was devised. To this end, a set of values representative for the healthy arterial media
(shown in Table 3.1) was chosen for the parameters V F , d, α , κip and κop and five volume
sizes LC×LA×LR were investigated, namely:

V1: 30×30×15µm

V2: 60×60×30µm

V3: 120×120×60µm

V4: 240×240×120µm

V5: 480×480×240µm

Seventeen random networks were then generated for each size and the effective parameters
αeff, κeff

ip and κeff
op were calculated. The median and the first and third quartiles for the 17

realizations were then compared with the experimental values reported by Niestrawska
et al. [183] for 17 samples of healthy arterial media. The results are shown in Fig. B.2.
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0

5

10

15

20
Mean fiber angle α [°] 

V1 V2 V3 V4 V5
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In-plane dispersion κ    [-] ip

V1 V2 V3 V4 V5
0.48

0.485
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Out-of-plane dispersion κ    [-] op
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Figure B.2: Median (black squares), first and third quartiles (error bars) of the effective
parameters (a) αeff, (b) κeff

ip and (c) κeff
op calculated from 17 random networks

generated according to Algorithm 1 are compared with the median (dashed
gray line), first and third quartiles (solid gray lines) of the same parameters
obtained from 17 samples of healthy arterial media by Niestrawska et al. [183].
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The gray lines represent the experimental median (dashed) and first and third quartiles
(solid). The black data points are the median values obtained for the numerical experi-
ments, for each of the five sizes, and the error bars represent the first and third quartiles.

It may be seen that for the out-of-plane dispersion (Fig. B.2(c)), which is usually quite
low in the healthy arterial wall (i.e., most fibers are aligned with the circumferential-axial
plane), even the smallest volume V1 contains enough fibers to reproduce the experimen-
tal variation of the parameter κop. For the considerably higher in-plane dispersion κip
(Fig. B.2(b)), the volume V3 seems to be large enough to achieve a representative distri-
bution, whereas for the mean fiber angle α (Fig. B.2(c)), a volume of size V4 is needed.
Based on the above results, a single network of size V4 was generated and employed in the
construction of the four RVEs studied in the present work, as detailed in Section 3.3.1.

C Mesh convergence

As detailed in Section 3.2.1 and Appendix A, the embedded element technique employs a
‘host’ mesh of 3D elements, in which 1D elements are embedded by means of a kinematic
bond imposed via the shape functions of the continuum mesh. In the present work, second-
order tetrahedrons were used to discretize the matrix material (ground substance); in order
to choose a suitable element size, a mesh convergence analysis was performed for RVE 3,
whose size is 120×120×60µm (see Fig. 3.6).

Four meshes were constructed employing characteristic element sizes of 7.5, 6.0, 5.0 and
4.0µm; as a result, meshes 1 to 4 had, respectively, 18513, 35301, 60025 and 115351
nodes – resulting in a factor of approximately 2 between the mesh sizes. We recall the
fact that a compatible discretization of the fiber network must be done for each mesh (see
Eq. (A.2)). Therefore, the corresponding truss meshes had, respectively, 20311, 25494,
30478 and 38223 elements – which, however, do not add extra degrees of freedom to the
problem, see the discussion in Appendix A.

An equibiaxial isochoric stretch of 10% (see Eq. (3.31)) was then simulated for each mesh
with the periodic model. Similarly to Section 3.4.2, the equivalent (von Mises) measure
of the logarithmic (micro-)strain εeq was chosen to be analyzed. Results are shown in
Fig. C.1.

The resulting microscopic strain fields for the four meshes are shown in the middle part
of the figure. The meshes were sliced halfway through the thickness (radial direction) in
order to show also the inside of the RVE. As done in Figs. 3.11-3.13, each color of the
(nonlinear) contour scales was chosen to represent 10% of the elements of each mesh.
In the bottom part of Fig. C.1, normalized histograms show the distribution of equivalent
logarithmic strains for each mesh, and the contour colors representing the deciles are also
depicted. Finally, the arrow under the horizontal axis of each histogram identifies the value
of the macroscopic equivalent logarithmic strain.
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Figure C.1: Distribution of equivalent logarithmic strains (middle) and corresponding PDF
distribution (bottom) for RVE 3 simulated with different element sizes and the
periodic boundary fluctuations model. Mesh size increases from left to right.

From the results in Fig. C.1, we may see that the areas of higher and lower strains are
similarly distributed in the meshes 1 to 4, since they arise from the embedded fiber network
(which is the same for all meshes, albeit with different discretizations). The values of the
strain deciles are remarkably consistent between different meshes, with variations lower
than 3%, except for the minimum and maximum values. The larger variations observed
for the extremes of the distribution are likely due to local singularities arising from the
changes in the fiber network discretization. However, such local effects would probably
have a limited influence on the overall mechanobiological state of the tissue, which is our
main point of interest. Finally, we notice that only minimum changes can be seen in the
normalized histograms of equivalent strains when refining the element size from 5.0 (mesh
3) to 4.0µm (mesh 4). Therefore, a characteristic element size of 5.0µm was employed to
generate the ‘host’ meshes of RVEs 1 to 4 (Fig. 3.7).



4 MULTISCALE SIMULATIONS SUGGEST A PROTECTIVE
ROLE OF NEO-ADVENTITIA IN ABDOMINAL AORTIC
ANEURYSMS

Abstract. Abdominal aortic aneurysms (AAAs) are a dangerous cardiovascular disease,
the pathogenesis of which is not yet fully understood. In the present work a recent mechano-
pathological theory, which correlates AAA progression with microstructural and mechani-
cal alterations in the tissue, is investigated using multiscale models. The goal is to combine
these changes, within the framework of mechanobiology, with possible mechanical cues
that are sensed by vascular cells along the AAA pathogenesis. Particular attention is paid
to the formation of a ‘neo-adventitia’ on the abluminal side of the aortic wall, which is
characterized by a highly random (isotropic) distribution of collagen fibers. Macro- and
micro-scale results suggest that the formation of an AAA, as expected, perturbs the mi-
cromechanical state of the aortic tissue and triggers a growth and remodeling (G&R) reac-
tion by mechanosensing cells such as fibroblasts. This G&R then leads to the formation of
a thick neo-adventitia that appears to bring the micromechanical state of the tissue closer
to the original homeostatic level. In this context, this new layer could act like a protective
sheath, similar to the tunica adventitia in healthy aortas. This potential ‘attempt at healing’
by vascular cells would have important implications on the stability of the AAA wall and
thus on the risk of rupture.

4.1 Introduction

Abdominal aortic aneurysms (AAAs) are a life-threatening medical condition character-
ized by a localized pathological bulging of the infrarenal aorta, which is usually diagnosed
when the vessel diameter exceeds 30 mm [189, 249]. Among the cardiovascular diseases,
AAAs stand out as being particularly dangerous: blood pressure can drive a constant and
in many cases silent growth of the aneurysm sac up to rupture, with mortality rates of up
to 90% being reported [189, 240].

The risk of rupture can be reduced by elective surgery, especially in the case of larger
aneurysms [189, 211]. In view of the advanced age of most patients, however, the risk
of the surgical procedure itself (even with minimally invasive techniques [131]) must be
taken into account [68, 249]. To assess the need for intervention, medical criteria of an
empirical nature were developed, which are mainly based on the size of the aneurysm: as
a rule, intervention is typically advocated if the maximum diameter of the lesion reaches
5.0 cm in women or 5.5 cm in men, or if the diameter increases more than 0.5–1 cm in one
year [85, 89, 101, 152, 189]. However, reports of ruptured AAAs that are smaller than
this threshold, as well as larger AAAs that remain stable, have raised questions about the
suitability of such rough guidelines [122, 227, 256, 258]. The complex pathogenesis of the

77
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disease suggests that a better understanding of AAA evolution is needed to facilitate the
development of better surgical criteria.

Soft tissues such as the aortic wall are a remarkable example of the ‘form follows function’
principle in nature, since the arrangement of their microconstituents is generally closely
related to their biological function. In tendons and ligaments, e.g., the stiff collagen fibers
are strongly aligned with the load-bearing direction [25, 137, 229]. The healthy aorta, in
turn, is characterized by three well-defined layers: tunica intima, tunica media and tunica
adventitia – or the innermost, middle and outermost layers [109]. Each of the three contains
vascular cells embedded in a highly organized extracellular matrix (ECM), which consists
mainly of elastin and collagen. The result is a thick-walled tube, reinforced by a layered
fibrous helix, a configuration that is clearly related to the (bio)mechanical function of the
vessel [109, 215, 272].

The specific configuration of the ECM in soft tissues is maintained by cells that are able
to probe their mechanical environment and react accordingly by degrading and producing
ECM proteins – a characteristic example of mechanobiology [201, 233, 248]. The goal
of this physiological mechanism is to preserve mechanical homeostasis, i.e., to maintain
tissue integrity and functionality [23, 64, 126]. In the healthy aorta, smooth muscle cells
(SMCs) in the media and fibroblasts in the adventitia play this role [105]; in fact, several
in vitro studies with these cells have demonstrated their ability to sense changes in their
mechanical environment and react accordingly in order to (re)organize the ECM [12, 22,
63, 86, 142, 153, 155].

The concept of mechanobiology is directly related to the fact that soft tissues are able to
(re)model their structure (at least in part) according to the loads they are exposed to –
or changes thereof, e.g., during somatic growth or in case of an injury (e.g., a skin cut
or a torn ligament) [2, 179, 204, 237]. As summarized in the 19th century by Davis,
‘ligaments, or any soft tissue, when put under even a moderate degree of tension, if that
tension is unremitting, will elongate by the addition of new material; on the contrary,
when ligaments, or other soft tissues, remain uninterruptedly in a loose or lax state, they
will gradually shorten, as the effete material is removed, until they come to maintain the
same relation to the bony structure with which they are united that they did before their
shortening’ [45].

In this context, Niestrawska et al. [185] identified significant changes in both the mi-
crostructure and mechanical behavior of AAA tissue compared to healthy aortas. The
authors then proposed a three-stage model to describe the pathogenesis of the disease:
briefly, after an early loss of elastin and SMCs at the AAA site, the localized bulge starts
to form; this leads to a remodeling of the collagen fibers in the circumferential direction
and the healthy three-layer structure of the wall is lost. The expanding AAA also pushes
against the surrounding adipose tissue, triggering an inflammatory process on the ablumi-
nal side of the wall. Inflammatory cells and fibroblasts promote fibrotic, scar-like growth
and remodeling (G&R) of the collagen network, which stiffens the tissue considerably
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and leads to the formation of a ‘neo-adventitia’, characterized by a random orientation
(isotropy) of the collagen fibers on the abluminal side of the wall. For further details on
their findings, the interested reader is referred to the work by Niestrawska et al. [185].

On the basis of the above considerations one could ask whether the remodeling of the col-
lagen network in the AAA wall identified by Niestrawska et al. [185] is related to changes
in mechanical loads sensed by vascular cells in the course of the disease. In view of the
microscopic size of such cells, the present work aims to shed light on this possible con-
nection by means of multiscale simulations, using a finite element (FE) model recently
presented in [41]. Representative volume elements (RVEs) consisting of collagen fibers
embedded in a ground substance are constructed based on the microstructure of healthy
abdominal aortas [183], and various stages of AAAs identified by Niestrawska et al. [185].
A macroscopic equibiaxial stretch is simulated for each RVE. Then, the resulting micro-
scale deformation fields are analyzed to correlate changes in the microscopic mechanical
state of the tissue with possible cues sensed by cells that might drive G&R of the collagen
network along the AAA pathogenesis in the framework of mechanobiology.

4.2 Methods

This section describes the geometries, constitutive models and boundary conditions that
are used in the multiscale FE simulations.

4.2.1 RVE geometries

Fifteen RVEs were constructed, each representing a point of a healthy or diseased (aneurys-
mal) abdominal aorta. Each RVE geometry consists of a network of lines representing two
collagen fiber families (red and blue), roughly symmetrical with respect to the circumfer-
ential direction of the artery and embedded into a ground substance (pink), see Fig. 4.1.
The latter includes all non-collagenous constituents of the wall, e.g., elastin, proteogly-
cans and, above all, mechanosensing cells such as fibroblasts. Each of the three sets of five
RVEs shown in Fig. 4.1 represent the abluminal side of the wall:

• of a healthy aorta (tunica adventitia), the fibers of which are preferably aligned in
the axial direction of the vessel;

• of an AAA in the early stage, characterized by a reorientation of the fibers towards
the circumferential direction;

• of an AAA at a late stage, in which a strongly isotropic fiber distribution (neo-
adventitia) has developed as a result of the intense G&R promoted by inflammation
and fibroblasts.
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Figure 4.1: The fifteen RVEs considered in the present study. Each RVE represents a point
of a healthy adventitia (top), an early AAA (middle) and a late AAA (bottom).
The heatmaps (right) illustrate the experimentally measured orientation of col-
lagen fibers in the circumferential-axial plane of the artery: red and blue colors
indicate, respectively, high and low concentrations of fibers oriented in a cer-
tain direction. In this regard, the center and edges of the heatmap correspond
to the circumferential and axial directions of the artery, respectively. AL = ab-
luminal; LU = luminal. Heatmaps adapted from [185].

The RVEs shown in Fig. 4.1 were generated by adapting a stochastic algorithm that was
previously used in [41]; further details can be found in the Supplementary Material. In
short, after fixing the RVE size, fibers are added to the network until a collagen volume
fraction FT is achieved. The target values of FT are 40%, 60% and 60% for healthy adven-
titia, early AAA and late AAA, respectively [8, 183, 185]. The RVE size of 500×500×
100µm was chosen to ensure a representative network of fiber directions, i.e., so that there
are enough fibers for the selected collagen fractions.

Each fiber direction is described in spherical coordinates by two angle values Φ and Θ ,
respectively, the azimuthal angle, measured in the circumferential-axial plane of the artery,
and the elevation angle with respect to the same plane. Individual values for Φ and Θ

are sampled for each fiber from a bivariate von Mises distribution, which is defined by
the parameters α,κip and κop, each denoting, respectively, the mean azimuthal angle, the
amount of dispersion of the azimuthal angles around α and the amount of dispersion of the
elevation angles, the mean value of which is assumed to be zero. For further information
on the characterization of the collagen distribution in arterial tissues using the bivariate
von Mises distribution, the reader is referred to the Supplementary Material and the work
of Holzapfel et al. [113].
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Table 4.1 shows the target (experimental) and effective (numerical) parameters α,κip and
κop for the three stages of the tissue. All values are given as median and interquartile ranges
(IQR). The good agreement between experimental and numerical values indicates that the
fiber networks are sufficiently representative for each microstructure, as required.

Table 4.1: Parameters of the bivariate von Mises distribution for healthy adventitia (left),
early AAAs (middle), and late AAAs (right). All values are given in terms of
medians and interquartile ranges. Experimental (target) values were taken from
the literature [183, 185], while the numerical parameters were calculated from
the fiber networks in Fig. 4.1; see the Supplementary Material for more details.

Healthy adventitia Early AAA Late AAA
Exp. [183] Num. Exp. [185] Num. Exp. [185] Num.
(n = 16) (n = 5) (n = 6) (n = 5) (n = 6) (n = 5)

α
77.53◦ 72.23◦ 6.55◦ 7.04◦ 0.00◦ ∗ 0.00

[67.04◦-84.02◦] [71.91◦-73.99◦] [5.19◦-11.62◦] [5.76◦-9.75◦] [0.00◦-0.00◦]

κip
0.232 0.217 0.242 0.236 0.500 ∗ 0.500

[0.192-0.182] [0.200-0.225] [0.234-0.260] [0.232-0.236] [0.493-0.500]

κop
0.466 0.466 0.433 0.433 0.402 0.396

[0.459-0.479] [0.466-0.467] [0.425-0.441] [0.433-0.435] [0.379-0.421] [0.396-0.395]
∗ For a perfect in-plane isotropic distribution, κip = 0.5 and the mean in-plane angle α becomes superfluous.

The changes in collagen arrangement identified by Niestrawska et al. [185] and mentioned
at the beginning of this section are reflected in the values of Table 4.1, where the in-plane
distribution of collagen fibers, described by α and κip, shifts its preferential alignment from
the axial direction in the healthy adventitia to the circumferential direction in the early
AAAs, and subsequently remodels into a highly random (isotropic) distribution around
the circumferential-axial plane in late AAAs. It can also be seen that the out-of-plane dis-
persion of healthy adventitia increases until late AAA, since κop = 0.5 denotes a perfectly
planar distribution [113].

Constitutive models

As generally assumed in the literature [104, 109, 220, 232, 238], the ground substance was
modeled as a nearly incompressible neo-Hookean material whose strain-energy function
Ψg is given by

Ψg(C) =
Gg

2
(I1−3)+

Kg

2
(J−1)2, (4.1)

where J > 0 is the volume ratio, C is the right Cauchy-Green tensor, C = J−2/3C is the
modified right Cauchy-Green tensor (with detC ≡ 1), Gg is the shear modulus of the



82 4 Protective role of neo-adventitia in abdominal aortic aneurysms

ground substance, Ī1 = C : I is the first invariant of C, and Kg is a penalty (volumetric)
parameter, which was chosen to be Kg = 100Gg to ensure nearly incompressible behav-
ior. The value of the shear modulus Gg depends on the state of the tissue and is set to
3.77 kPa [183], 0.59 kPa and 3.78 kPa [185] for the healthy adventitia, the early AAA and
the late AAA, respectively.

As the characteristic waviness of the collagen fibers is not taken into account in the RVEs
shown in Fig. 4.1, a strain-energy function Ψfi of the form [41]

Ψfi(λ ) =


0, if 0 < λ < λ

i
r ,

E i
f

2
(λ −λ

i
r )

2, if λ ≥ λ
i
r

(4.2)

was assigned to each i-th fiber, where E i
f is the fiber stiffness, λ is the stretch applied to

the fiber and λ i
r is the recruitment stretch of the fiber. In Eq. (4.2) it is assumed that fibers

only bear load if they are recruited, i.e., if the applied stretch λ surpasses λ i
r . This gradual

fiber recruitment phenomenon is responsible for the characteristic J-shaped mechanical
response of the arterial tissue, as discussed in detail in the literature [103, 149, 199, 215,
234].

It is worth noting that the fibers are assigned different values of E i
f and λ i

r to account for
the stiffness and waviness variability between them. For the first parameter, Miyazaki and
Hayashi [174] reported a mean value of 54.3 MPa with a standard deviation of 25.1 MPa.
Assuming a normal distribution, a value for E i

f is sampled for every i-th fiber. In turn, the
fiber recruitment stretch λ i

r is assigned to each i-th fiber by sampling a value of the fiber
waviness parameter P i

s (see Fig. 4.2(a)) from a beta distribution of the form [186, 198]

ρr(Ps) =
Ps

a−1(1−Ps)
b−1

B(a,b)
, (4.3)

where B(a,b) is the beta function. The recruitment stretch of the fiber is then calculated as
λ i

r = Lf/L0 = 1/P i
s .

It is assumed that the parameters a and b in Eq. (4.3) change according to the state of
the tissue; from image analysis, Niestrawska et al. [186] found {a,b} = {4.84,1.54} for
the healthy adventitia and {a,b}= {3.29,0.635} for the abluminal side of AAA samples.
Since the authors did not differentiate between the stages of AAA when measuring Ps, it
was assumed that these parameters apply to late AAAs, and that the distribution of the fiber
waviness for early AAAs lies between the other two states, with {a,b} = {4.0,1.1}. In
the Figs. 4.2(b)-(d) the target distributions are compared with the normalized histograms
of the Ps values attributed to the fibers of each of the three RVE sets shown in Fig. 4.1.
Bearing in mind that a value of Ps = 1 indicates a perfectly straight fiber, it might be seen
that the fibers in the healthy adventitia (Fig. 4.2(b)) are, in general, much more wavy than
those found in AAAs (Fig. 4.2(d)).
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Figure 4.2: Second-harmonic generation image of a healthy abdominal aortic adventitia
showing the collagen fibers in green (adapted from [8]); for the fiber high-
lighted in yellow, Ps = 0.474 (a). Normalized histograms of Ps values for the
RVEs representing the healthy adventitia (b), the early AAA (c) and the late
AAA (d) are compared with the respective target beta distribution (Eq. (4.3))
obtained from experiments [186].

Mesh and boundary conditions

The ground substance of each RVE was meshed using second-order hexahedrons with a
characteristic size of 12.5µm, defined after a mesh convergence analysis (see Supplemen-
tary Material), for a total of 12800 elements per RVE. Fibers were meshed with second-
order trusses, so that each 1D element is completely included within a certain hexahe-
dron [41]. A kinematic bond (no-slip condition) is imposed between each 3D element and
the reinforcing truss elements that it contains. The effect of this kinematic bond, com-
bined with the recruitment stretch property of the fiber model (Eq. (4.2)), is illustrated in
Fig. 4.3.
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Figure 4.3: Illustration of the recruitment stretch fiber model combined with the embed-
ded elements technique. Each truss FE (light gray) represents a fiber with a
certain waviness (dark gray), embedded in the ground substance (continuum
FE, black). Both phases deform together, and when the stretch applied to a
particular truss element exceeds the recruitment stretch, the fiber is recruited
and begins to bear load (red), which gives directional stiffness to the 3D do-
main. Further details can be found in [41].

It is assumed that the (macroscopic) point of the tissue at which each RVE is located ex-
periences an incompressible equibiaxial stretch of 10% in the circumferential-axial plane,
i.e., that the deformation gradient F at this point is given, in matrix form, by

[F] =

λcirc 0 0
0 λaxial 0
0 0 λrad

=

1.10 0 0
0 1.10 0
0 0 0.826

 . (4.4)

A volume-averaging multiscale theory is used to simulate the corresponding microscopic
deformation of each RVE; details on this can be found elsewhere [16, 49, 50]. Periodic
displacement fluctuations are assumed at the boundary of the RVEs, as suggested in [41]
for multiscale simulations used in combination with the embedded element technique.

The 15 simulations were carried out with a custom FE code on a desktop computer (8-core
Intel® i9-9900K with 128 GB of RAM) [41]. Each simulation ran for about 4 hours.

4.2.2 Statistical analyses

In order to shed light on mechanobiological phenomena at the cellular level, relevant me-
chanical quantities were calculated at the micro-scale for each RVE and grouped according
to the three sets from Fig. 4.1. In general, a normal distribution of these quantities within
each group could not be assumed, therefore all results are given in terms of medians and
interquartile ranges (IQR), unless otherwise stated. Consequently, statistical differences
between the three groups were checked with the Mann-Whitney U test.
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4.3 Results

In this section, the results of the simulations are presented both at the macroscopic (tissue)
and microscopic (cellular) level.

4.3.1 Macroscopic results

For each RVE, the macroscopic (homogenized) Cauchy stress response was determined by
computing the volumetric average of the stresses in the deformed RVE domain; see [41]
for details. The homogenized stresses describe the mechanical response of the tissue at the
(macroscopic) point at which each RVE is located when, as explained above, it is subjected
to an equibiaxial stretch up to 10%.

The mean value (solid curves, red) and the bounds (dashed curves, red) of the circumfer-
ential (left) and axial (right) components of the macroscopic Cauchy stress were calculated
for the three RVE sets in Fig. 4.1, and are plotted in Fig. 4.4 against the imposed stretch
for (a) the healthy adventitia, (b) early AAAs and (c) late AAAs. For each of these three
stages, the numerical responses are compared with experimental data (gray) obtained from
equibiaxial tests on tissue samples in previous works [183, 185].

In Fig. 4.4(a) it can be seen that in the healthy adventitia the axial response (right) of the
RVEs is stiffer than the circumferential (left), which is related to the preferred alignment of
the collagen fibers in the axial direction, as shown in Fig. 4.1. The same anisotropy is ob-
served in the bounds (gray shaded area) of the experimental data, while the mean response
(gray dots) shows almost no anisotropy, at least up to 10% of equibiaxial stretch.

The opposite trend is present in Fig. 4.4(b): for the early AAA tissue, the circumferen-
tial direction (left) is stiffer, which corresponds to the fact that the collagen fibers are
preferably oriented in this direction (Fig. 4.1). Here, too, this anisotropic behavior is more
pronounced in the numerical data (red) and in the bounds of the experimental data (shaded
gray area) compared to the mean experimental response (gray dots).

The anisotropy observed in the previous two stages has largely disappeared for the late
AAA tissue, since in the curves of Fig. 4.4(c), the differences between the circumferen-
tial (left) and axial (right) responses are generally absent. This agrees with the random
(isotropic) organization of the collagen fibers, which is shown in Fig. 4.1. It is empha-
sized that the late AAA is significantly stiffer than the other two states: for the numerical
response, e.g., the stress in both directions at 10% stretch is approximately an order of
magnitude higher.
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Figure 4.4: Comparison between experimental [183, 185] (gray) and numerical (red)
Cauchy stress-stretch responses for (a) the healthy adventitia, (b) the early
AAA and (c) the late AAA. For the last stage (c), individual curves (in gray)
were plotted instead of the experimental mean and the bounds, since some sam-
ples did not reach a stretch of 10% before failing.
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4.3.2 Microscopic results

So far there is no consensus on the mechanical quantity cells sense in the course of a
mechanobiological process [65]. However, as argued by Humphrey [118], continuum
metrics such as stress and strain can be a useful tool to correlate cellular responses to
mechanical stimuli. In the present work the maximum principal stretcha λ1 is used to eval-
uate possible mechanical cues sensed by cells at the focal adhesions connecting them to
the collagen network, which are about one micrometer [88]. For all RVEs, this amount
was calculated at each integration point of the (continuum) ground substance, which, as
discussed above, comprises all the non-collagenous microconstituents of the tissue, includ-
ing mechanotransducing cells such as fibroblasts. Therefore, it is assumed that changes in
the overall levels of λ1 between the three RVE groups might indicate micromechanical
alterations sensed by such cells through their focal adhesions during AAA pathogenesis.
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Figure 4.5: Distribution of the maximum principal stretches λ1 (a) for RVEs of the healthy
adventitia (left), the early AAA (center) and the late AAA (right) under a
macroscopic equibiaxial stretch of 10%; the median (M) and quartiles (Q1;
Q3) of the λ1 values and the percentage of fibers recruited are given below each
RVE. Boxplots showing the distribution of the medians (b) and the interquartile
ranges (c) of the λ1 values as well as the percentages of fibers recruited (d) for
all RVEs (grouped according to the three sets of Fig. 4.1) under a macroscopic
equibiaxial stretch of 10%. Mann-Whitney U test: ** corresponds to p < 0.01.

a For a deforming continuum medium the maximum principal stretch at one point is defined as the largest
eigenvalue of the stretch tensors at this point; see [102] for further details.
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Figure 4.5(a) shows the distribution of λ1 in three examples of RVEs, one for each tissue
state, under a macroscopic equibiaxial stretch of 10%. The median (M) and the interquar-
tile range (IQR) of λ1 values were calculated for each RVE from all integration points of
the continuum mesh. In addition, the percentage of fibers recruited was calculated by di-
viding the number of load-bearing truss elements (i.e., whose recruitment stretch λ i

r was
exceeded, see Fig. 4.3) by the total number of elements.

The 15 median and IQR values of λ1 as well as the percentages of recruited fibers were
grouped according to the the three RVE sets from Fig. 4.1 and are shown in the boxplots
of Figs. 4.5(b)-(d), which indicate that the values are generally not normally distributed.
Therefore the Mann-Whitney U test was used to check for statistically significant changes
between the groups. The results are also depicted in Figs. 4.5(b)-(d), where significant
increases from the healthy adventitia to the late AAA are evident for all three metrics
under the same level of macroscopic stretch (10%).

λ

Healthy
adventitia
@ 10%

Late
AAA

@ 6%

10%

15%

20%

25%

30%

35%

40% **
45%

Healthy
adventitia
@ 10%

Late
AAA

@ 6%

1.10

1.12

1.14

1.16

1.18

1.20

M
ed

ia
ns

 (n
=5

)

p = 0.94

Healthy
adventitia 

@ 10%

Late
AAA

@ 6%

0

0.05

0.10

0.15

0.20

IQ
R

 (n
=5

) **

(b) (c)

Maximum principal stretch λ  [-]

1 [-]

Recruited fibers

(d)

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
2.40

Healthy adventitia @ 10% Late AAA @ 6%

M =
[Q1; Q3] =

Recruited fibers =

1.142
[1.125; 1.172]
16.0%

M =
[Q1; Q3] =

Recruited fibers =

1.145
[1.106; 1.209]
34.1%

(a)

1

Figure 4.6: Distribution of the maximum principal stretches λ1 for RVEs of the healthy
adventitia (left) and the late AAA (right), (a), under macroscopic equibiaxial
stretches of 10% and 6%, respectively; the median (M) and quartiles (Q1; Q3)
of the λ1 values and the percentage of fibers recruited are given below each
RVE. Boxplots showing the distribution of the medians (b) and the interquartile
ranges (c) of the λ1 values as well as the percentages of fibers recruited (d) for
RVEs of the healthy adventitia and the late AAA tissue under macroscopic
equibiaxial stretches of 10% and 6%, respectively. Mann-Whitney U test: **
corresponds to p < 0.01.
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However, considering that the late AAA tissue is substantially stiffer than the healthy
adventitia (see Fig. 4.4), it is hypothesized that under similar blood pressure levels the
stretches at the macroscopic (tissue) level would be higher in the healthy adventitia than
in the late AAA tissue. On that basis, in Fig. 4.6 the analyses of Fig. 4.5 were repeated,
now comparing the RVEs of the healthy adventitia and the late AAA under macroscopic
equibiaxial stretches of 10% and 6%, respectively. In this case, Figs. 4.6(a)-(b) indicate
that the overall level of deformation between the two groups is similar; in particular there
is no statistically significant difference between the median values of λ1 (p = 0.94), even
if the late AAA tissue contains a higher number of recruited fibers (Fig. 4.6(d)). The latter
seems to be related to the higher scatter of λ1 (measured by the IQR, Fig. 4.6(c)) within
the RVE domains of this group, which is also reflected in the higher heterogeneity of the
λ1 values in the example of a late AAA RVE (Fig. 4.6(a), right) compared to a healthy
one (left).

As a final remark to this section it should be emphasized that the choice of the maximum
principal stretch λ1 as a measure for the deformation on the micro-scale is not completely
arbitrary, since fibroblasts are known to react to tensile stimuli [22, 63, 153]. However, it
was verified that other deformation measures, e.g., the von Mises strain, give similar pat-
terns (results not shown here). Since a hyperelastic behavior is assumed for both material
phases, the use of a stress measure would certainly lead to the same results. As discussed
at the beginning of this section, the chosen continuum measure is used here just to compare
the micromechanical state of different RVEs.

4.4 Discussion

The aim of the present work is to elucidate mechanobiological mechanisms that could
drive changes in the microstructure of the aortic tissue along the pathogenesis of AAAs, as
identified by Niestrawska et al. [185]. Particular attention is paid to G&R of the collagen
network, which leads to the formation of a ‘neo-adventitia’, the fibers of which are more
randomly aligned in the circumferential-axial plane, which leads to a high in-plane isotropy
of the fiber directions. This G&R on the abluminal side of the aorta is mainly promoted by
fibroblasts in a scar-like, fibrotic inflammatory process [185].

Given the microscopic size of such cells, multiscale models are used; therefore, RVEs
were constructed and simulated, which represent the microstructure of the aorta in different
disease stages, see Fig. 4.1. It is pointed out that while the FE models only refer to the
micro-scale, the macroscopic response of the tissue (at a point represented by the RVE)
could still be assessed by numerical homogenization [41].

Overall, the obtained numerical Cauchy stress-stretch response agrees fairly well with the
experimental data for all stages, as shown in Figs. 4.4(a)-(c). The differences observed can
be explained, firstly, by the fact that both the constitutive parameters and the arrangement
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of the collagen network were obtained from micromechanical tests and imaging techniques
instead of being fitted to the macroscopic experimental data. Secondly, by recalling that
a wide range of values is reported in the literature for some of these parameters, e.g., for
the stiffness of the collagen fibers [176]. However, it is emphasized that adjusting the
constitutive parameters to achieve better fits could jeopardize the micro-scale results on
which this work is focused. Therefore, the reasonable agreement between numerical and
experimental (macroscopic) mechanical responses in Fig. 4.4 is considered sufficient for
the subsequent discussion of the microscopic results.

Under this premise, Fig. 4.5 indicates an important ‘multiplicative effect’ that occurs be-
tween the macroscopic (tissue) and the microscopic (cellular) level, since the median value
of the maximum principal stretch λ1 (Fig. 4.5(b)) within each RVE is consistently higher
than the macroscopic (imposed) value of 1.1 (Eq. (4.4)). This effect is directly related
to the (gradual) recruitment of collagen reinforcement: if no fibers were bearing load,
λ1 would correspond to 1.1 everywhere. These results agree with recent experimental
studies [136, 144, 145] on collagenous soft tissues, in which different kinematics were
observed on the macro and micro-scale.

Figure4.5(b) also suggests that under the same macroscopic mechanics, the degree of mi-
croscopic deformation increases significantly from one state of the tissue to another; this
seems to be associated with a higher amount of recruited fibers (Fig. 4.5(d)), which is to
be expected since the fibers in the AAA tissue are less wavy than in the healthy adventi-
tia [186], see Fig. 4.2. The higher proportion of recruited fibers also seems to be associated
with an increased scatter of λ1 values within the RVEs, as measured by the interquartile
ranges (IQR) in Fig. 4.5(c).

All of the above changes to the extent and distribution of deformations on the micro-scale
would have important effects on the mechanobiology of vascular cells – especially fibrob-
lasts, since the amount of smooth muscle cells in AAAs decreases significantly [94, 175,
185]. In this context, many in vitro studies [12, 46, 84, 117, 153, 154] have demonstrated
the ability of fibroblasts to probe the mechanical state of their ECM and to (re)model it
accordingly; in particular, these cells seem to have a homeostatic target [22, 63, 126] that
promotes tissue maintenance in health and triggers G&R reactions changes in loading due
to injury or disease. In the current work it is assumed that the (micro)mechanical state of
the healthy, fibroblast-rich adventitia represents the homeostatic target towards which the
mechanobiological activity of these cells would be directed.

Based on that premise, several conclusions can be drawn from the results. First, it can
be seen that more fibers are recruited (Fig. 4.5(d)) along the transition from the healthy
adventitia to the early AAA in combination with the shift in the preferred alignment of
the collagen fibers from the axial to the circumferential direction (Fig. 4.1). Both effects
are probably related to the increase in circumferential loads arising from the formation
of the AAA [185]. However, these microstructural changes do not lead to a pronounced
change in tissue stiffness (at the macro-scale) between these two stages, at least for the 10%



4.4 Discussion 91

equibiaxial stretch considered here (compare with Figs. 4.4(a) and (b)). Assuming that the
blood pressure does not change in the course of the disease, it is therefore hypothesized
that the macroscopic stretches on the tissue in both stages are likely to be similar. In this
case, the level of microscopic deformation (measured by the maximum principal stretch
λ1) would be higher for the early AAA compared to the healthy adventitia, as shown
in Figs. 4.5(a)-(c). As a result, fibroblasts in the early AAA would likely experience a
disturbed mechanical state and consequently promote G&R of their ECM aiming to bring
it back to the homeostatic level of the healthy adventitia. This could then explain the
subsequent changes in the microstructure of the aortic wall in the course of the disease, as
suggested by the mechanopathological model of Niestrawska et al. [185].

According to their theory, this G&R promoted by fibroblasts leads to the formation of
a thick neo-adventitia on the abluminal side of late AAAs, which is characterized by a
highly isotropic (random) distribution of the fiber directions in the circumferential-axial
plane [185]. Assuming that the rather fusiform shape of most AAAs [224] can be ap-
proximated locally by a pressurized sphere, where the in-plane loads are the same in all
directions, this G&R towards an isotropic fiber distribution makes sense from a mechanobi-
ological point of view. The results from Fig. 4.5 seem to point in the opposite direction,
however, as the RVEs of the late AAA tissue show the highest levels of deformation on
the micro-scale, which means that the cells would be even further away from their home-
ostatic target.

This apparent contradiction could be reconciled by assuming that in this case the same
blood pressure would lead to lower stretch levels compared to the healthy adventitia, due
to the considerable stiffening of the late AAA tissue at the macro-scale level (compare
Figs. 4.4(a),(b) with (c)). On this basis, the RVEs of the healthy adventitia and the late
AAA tissue were compared with macroscopic stretch levels of 10% and 6%, respectively
(Fig. 4.6). In this case there is a striking similarity between the distribution of the maxi-
mum principal stretches λ1 in the two RVE examples from Fig. 4.6(a), which is reflected in
the similar distribution of medians in both groups (Fig. 4.6(b)), albeit with a higher scatter
in the late AAA group (Fig. 4.6(c)). It is emphasized that since more fibers are recruited in
the late AAA tissue at 6% when compared to the healthy adventitia at 10% (Fig. 4.6(d)),
the similar deformation levels in Fig. 4.6 must be at least partially related to the differences
in the fiber arrangement.

Based on the above considerations, it seems safe to argue that, in our model, the microme-
chanical state of late AAA RVEs under a macroscopic equibiaxial stretch of 6% is closer to
that of the healthy adventitia under 10% than that of early AAA RVEs under 10%, which
seems to point to a potential mechanics-driven ‘healing’ effort within the aneurysm wall
in the course of the disease, a hypothesis that is illustrated in Fig. 4.7.
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Figure 4.7: A hypothetical ‘healing’ mechanism of AAAs: after the aneurysm has formed,
the fibroblast-rich tunica adventitia undergoes a remodeling of the collagenous
fiber network, the preferred orientation of which shifts from the axial to the
circumferential direction of the aorta as the loads in this direction increase.
However, since the resulting micromechanical state is still disturbed in rela-
tion to the homeostatic target of the (healthy) aorta, collagen G&R continues.
Subsequently, a neo-adventitia with a strongly isotropic collagen fiber distribu-
tion forms on the abluminal side of the wall and the tissue stiffens. Both effects
seem to drive the micromechanical state of the tissue closer to homeostatic lev-
els, which could suggest that the stability of the wall is related to the success
of collagen G&R and the associated formation of a neo-adventitia. Heatmaps
adapted from [185].

In short, the mechanical state of the healthy aorta is initially disturbed by the formation of
the aneurysm. Subsequently, in the course of an inflammatory, fibrotic G&R of the colla-
gen reinforcement, the preferred orientation of the fibers in the tunica adventitia shifts from
the axial to the circumferential direction (Fig. 4.1), which is probably related to increasing
circumferential loads. However, this change is not sufficient to bring the micromechanical
state of the ECM back into homeostasis (Fig. 4.5), and, therefore, fibroblasts continue to
remodel the collagen network, which leads to the formation of a strongly isotropic neo-
adventitia and to a considerable stiffening of the tissue. The combination of both effects
then brings the micromechanical state of the ECM closer to the healthy, homeostatic val-
ues of the tunica adventitia (Fig. 4.6). According to this hypothesis, the neo-adventitia
could play the role of a protective sheath, similar to the tunica adventitia in healthy arter-
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ies [119, 218]. It is important to note that Niestrawska et al. [185] observed that on some
of the late AAA samples, the thick neo-adventitia appeared fairly ‘healthy’ with virtually
no signs of inflammation, which could mean that the wall had actually reached a ‘stable’
configuration.

Along with recent clinical studies [1, 182] that identified a significant correlation between
inflammation and the rupture risk of AAAs, these results suggest an important relation-
ship between the ultimate fate of an AAA and mechanobiology: it is hypothesized that
increased inflammation suggests that intense G&R is taking place within the AAA wall,
which means that fibroblasts are still actively remodeling the ECM with the aim of bringing
its mechanical state back to homeostasis. This in turn would mean that a stable configura-
tion has not (yet) been achieved and thus the risk of rupture is higher. Interestingly, Nies-
trawska et al. [185] found no correlation between aneurysm diameter and stage of the
disease. Some large aneurysms still had the microstructure of an early AAA, while some
small AAAs had significant neo-adventitia and an increase in stiffness. Combined with
the previous hypothesis, this could help explain why some large aneurysms do not rupture
while some smaller ones do.

As a final note to this section, it is emphasized that while the computational results dis-
cussed herein provide important insights that would be difficult to observe in vivo, further
experimental and clinical studies are needed to support the hypothesis of a ‘healing’ mech-
anism (Fig. 4.7). Besides looking for additional evidence of neo-adventitia development
in AAA samples, it would be relevant to identify what happens to it on the long term,
e.g., whether the isotropic fiber distribution stabilizes or evolves to yet another arrange-
ment as the disease progresses. It would also be important to compare the microstructure
of ruptured and unruptured AAAs to correlate relevant changes with the likelihood of a
rupture event. In addition, it would be interesting to investigate such alterations also in the
context of other regions prone to aneurysm development, e.g., in the thoracic aorta or in
the brain. In this regard, the present study will hopefully serve as a motivation for future
experimental and clinical studies in these directions.

4.5 Limitations and outlook

Despite the important insights on the mechanobiology of AAA pathogenesis, some lim-
itations of the present study should be mentioned. First of all, it is emphasized that the
macroscopic stretches imposed to the RVEs may not be representative of the in vivo load-
ing conditions. In particular, the deformation at a point of the healthy adventitia is unlikely
to be equibiaxial. Since the shape of the aorta changes as the disease progresses (bulging),
the effects of tissue stiffening on macroscopic deformations must also be better investi-
gated. Nevertheless, the equibiaxial stretch of 10% depicted in Eq. (4.4) was chosen, on
the one hand, to enable a comparison with the macromechanical data from Niestrawska
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et al. [185] and, on the other hand, to separate the effect of different macroscopic mechan-
ics over the microscopic fields.

Future work will focus on re-evaluating the micromechanical state of the various disease
stages under more (patho-)physiological macroscopic stretch values. More specifically, it
shall be possible to examine the microscopic changes arising also from alterations to the
macroscopic stretches caused by, e.g., disease progression and AAA growth. Such studies
could also include the effects of other pathological phenomena associated with AAAs, e.g.,
arterial wall thickening, thrombus formation and the presence of calcium deposits, which
also affect the macroscopic mechanical behavior of the tissue.

It should also be noted that the geometry of the RVEs, consisting of a network of colla-
gen fibers and a ground substance comprising all other tissue components, clearly repre-
sents a simplification of the true microstructure of the tissue. However, since the model is
purely mechanical, it seems reasonable to separate the stiff collagen fibers from the other
microstructural phases (e.g., elastin and cells), which are much more compliant. Never-
theless, additional data on the microstructure of arterial tissue – e.g., the quantification
of changes in collagen waviness during AAA progression and the distribution of colla-
gen fiber stiffness in healthy and diseased tissue – would certainly contribute to improve
the model.

Finally, while the mechanopathological model of Niestrawska et al. [185] describes a mul-
titude of histological changes, this study focused on the formation of a neo-adventitia on
the abluminal side of the AAA. It is worth noting that this new layer is about 2/3 of the
wall thickness of late AAAs [185], indicating its central role in the G&R process along the
pathogenesis of AAAs. While this study addressed the strongly different collagen arrange-
ments along the AAA progression identified in [185], short-term microstructural changes
due to collagen turnover could also be investigated, e.g., by deleting and adding specific
fibers to the RVEs according to an appropriate evolution law.

4.6 Conclusions

In this paper, a mechanopathological theory of AAA progression proposed by Niestrawska
et al. [185] was evaluated using multiscale simulations. In particular, changes in the col-
lagen configuration on the abluminal side of the aortic wall were modeled and possible
mechanical cues sensed by vascular cells were evaluated by looking at the deformation
levels of the simulated RVEs on the micro-scale. The results highlight the central role
of mechanobiology in the G&R of the aortic wall in the course of the disease. In par-
ticular, the changes in the collagen network could be attributed to a possible healing
effort (Fig. 4.7), in which the formation of a protective neo-adventitia drives the (mi-
cro)mechanical state of the tissue back to a homeostatic level. The results of the present



Supplementary material 95

study can contribute to a better understanding of AAA pathogenesis, in particular the du-
bious role of inflammation.

Supplementary material

Abstract. This Supplementary Material provides additional information to the paper
‘Multiscale simulations suggest a protective role of neo-adventitia in abdominal aortic
aneurysms’, with an emphasis on generating the RVE geometries used in the multiscale
analyses and on the selection of the finite element sizes (mesh convergence analysis).

S.1 Bivariate von Mises distribution

As discussed in the main text of the paper, the RVEs considered in the present study for
both the healthy adventitia and the AAA tissue consist of a ground substance that is rein-
forced by two collagen fiber families. It is assumed that in the circumferential-axial plane
of the artery the fibers of each family are dispersed around two symmetric directions, which
are characterized by the mean fiber angle α , as illustrated in Fig. S.1.

e1

e2

e1

e3 e2

N

Φ

Θ

(a) (b)

+α
–α

Figure S.1: Fiber families in arterial tissue: (a) two symmetric fiber families in the
circumferential-axial plane, dispersed with respect to a preferred direction and
characterized by the mean fiber angle ±α; (b) fiber direction N, described in
terms of azimuthal (Φ) and elevation (Θ ) angles.

In Fig. S.1(b) the unit vector N of a collagen fiber direction is described by the angles
Φ (azimuthal or in-plane) and Θ (elevation or out-of-plane), measured with respect to a
coordinate system aligned with the circumferential (e1), axial (e2) and radial (e3) directions
of the aorta. Hence,

N(Φ ,Θ) = cosΦ cosΘ e1 + sinΦ cosΘ e2 + sinΘ e3, (S.1)
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where Φ ∈ [0, 2π] and Θ ∈ [−π/2,+π/2]. As proposed by Holzapfel et al. [113], it
is postulated that the distribution of the collagen fiber directions in an artery follows a
bivariate von Mises probability function, so that

ρ(Φ ,Θ) = ρip(Φ)ρop(Θ), (S.2)

where the in- and out-of-plane probability distributions ρip and ρop are assumed to be
independent. In the same paper the authors suggested two particular π-periodic von Mises
distributions to describe ρip and ρop, namely

ρip(Φ) =
exp[acos2(Φ±α)]

I0(a)
and ρop(Θ) = 2

√
2b
π

exp[b(cos2Θ −1)]
erf(
√

2b)
, (S.3)

where a and b are concentration parameters, I0 is the modified Bessel function of the first
kind of order 0 and erf is the error function. In Eq. (S.3)2, the mean out-of-plane angle is
taken to be zero, a hypothesis based on experimental evidence [113].

Two scalar quantities κip and κop were proposed in the same work to characterize the
degree of in-plane and out-of-plane dispersion; these refer to the parameters a and b by

κip =
1
2
− I1(a)

2I0(a)
and κop =

1
2
− 1

8b
+

1
4

√
2

πb
exp(−2b)
erf(
√

2b)
. (S.4)

For a more detailed discussion on the meaning of κip and κop, the interested reader is
referred to the paper of Holzapfel et al. [113].

S.2 Generation of fiber networks

For each RVE it is assumed that the ground substance has the shape of a right-angled prism
with the side lengths LC, LA, LR, aligned, respectively, with the circumferential, axial and
radial direction of the aorta, see also Fig. S.1. The collagen reinforcement is represented by
a network of straight lines, which is generated according to a stochastic process, illustrated
in Fig. S.2.

The stochastic procedure, analogous to the one used in [41], starts with the definition of the
volume LC×LA×LR of the RVE, the volume fraction of collagen FT, the fiber diameter
d and the tissue-specific values of the parameters α , κip and κop (Table 1 of the main
text). A nucleation point is then randomly selected within the RVE and a fiber direction N
(Eq. (S.1)) is determined by sampling one in-plane angle Φ k and one out-of-plane angle
Θ k from the bivariate von Mises distribution. The procedure alternates between +α and
−α in order to consider both fiber families, see Fig. S.1. Starting from the nucleation point,
the k-th fiber centerline is extended along N until it crosses the boundary of the RVE.
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Figure S.2: Generation of fiber networks. A fiber direction N is defined by sampling one
in-plane angle Φ k and one out-of-plane angle Θ k from the bivariate von Mises
distribution (Eq. (S.3)); the start and end points Xk

1 and Xk
2 of the fiber are

defined by extending the fiber centerline along N from a randomly selected
nucleation point within the volume.

The intersection points Xk
1 and Xk

2 defined in this way are stored and the fiber end-to-end
distance Lk

0 is calculated. The constitutive parameters (see Eq. (2) in the main text) of the
k-th fiber are then defined by sampling one stiffness value E k

f from a normal distribution
and a waviness value Pk

f from a beta distribution (Eq. (3) in the main text) with appro-
priate parameters. Finally, the arc length value Lk

f is calculated (see also Fig. 2(a) in the
main text) and the fiber volume is computed assuming a perfectly circular cross-section.
After updating the volume fraction of collagen, another nucleation point is selected and
the process is repeated until the target volume fraction FT is reached. After the fiber net-
work generation is completed, the set of Φ k and Θ k angle values is used to fit the bivariate
von Mises distribution of Eq. (S.3) by a maximum likelihood estimate, which leads to the
effective parameters αeff, κeff

ip and κeff
op of the network.

The procedure described above is summarized in the Algorithm 2 and was implemented in
MATLAB® (The MathWorks Inc., Natwick, US).
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Algorithm 2: Generation of RVE fiber networks
Input: LC,LA,LR,FT,d,α,κip,κop,dt

Output: Xk
1 ,X

k
2 ,Φ

k,Θ k, E k
f , Pk

f , ∀k = 1, . . . ,Nfibers
αeff,κeff

ip ,κeff
op

1 Vfiber = 0
2 Fcurr = 0
3 k = 1
4 while Fcurr < FT do

5 if k = odd then
6 Sample in-plane angle value Φ k from the von Mises distribution (Eq. (S.3)1)

centered around +α

7 else
8 Sample in-plane angle value Φ k from the von Mises distribution (Eq. (S.3)1)

centered around −α

9 Sample out-of-plane angle value Θ k from the von Mises distribution (Eq. (S.3)2)
10 Calculate fiber direction N(Φ k,Θ k), Eq. (S.1).
11 Generate random nucleation point x0 = [x0

1,x
0
2,x

0
3] with

x0
1 ∈ [0,LC], x0

2 ∈ [0,LA], x0
3 ∈ [0,LR]

12 x = x0

13 while x1 ∈ [0,LC], x2 ∈ [0,LA], x3 ∈ [0,LR] do
14 x = x0−dtN
15 Xk

1 = x
16 x = x0

17 while x1 ∈ [0,LC], x2 ∈ [0,LA], x3 ∈ [0,LR] do
18 x = x0 +dtN
19 Xk

2 = x

20 Sample stiffness parameter E k
f from a normal distribution (Eq. (2) in the main

text)
21 Sample waviness parameter Pk

f from the beta distribution (Eq. (3) in the main text)
22 Lk

0 = ||Xk
2 −Xk

1 ||
23 Lk

f = Lk
0 /Pk

f
24 Vfiber =Vfiber +(π/4)d2 Lk

f
25 Fcurr =Vfiber /(LC LA LR)

26 k = k+1

27 Calculate αeff,κeff
ip from the set of Φ k values by maximum likelihood estimate

28 Calculate κeff
op from the set of Θ k values by maximum likelihood estimate
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S.3 Representative volume size

A central requirement of the mutiscale theory used in the present work is that the RVE
must be small enough to be considered a point on the macro-scale, but still large enough to
be considered as a continuum body, and, more importantly, to be representative of the mi-
crostructure of the material [16, 50]. This requires a careful definition of the RVE size.

In particular, the stochastic generation of fiber directions described in the previous section
includes the sampling of angle values from a bivariate von Mises distribution, which is
described by specific (target) values of the parameters α , κip and κop. On the one hand, it is
clear that enough fiber directions must be included in the network so that it is representative
of the desired microstructure. On the other hand, the number of fibers is directly related
to the total volume of the RVE, the collagen volume fraction FT and the fiber diameter
d, as they control the termination criterion of the algorithm. In the present work, FT and
d were selected based on histological and microstructural evidence. As discussed in the
main text, FT is taken as 40%, 60% and 60% for healthy adventitia, early AAA and late
AAA, respectively [8, 183, 185]. For the sake of simplicity it was further assumed that all
fibers have a diameter of d = 10µm [8].

Since these parameters are fixed, a suitable RVE volume LC×LA×LR must be selected to
ensure a representative network. For this purpose a stochastic experiment was developed.
Five increasing volume sizes were defined, namely

V1: 175×175×35µm

V2: 250×250×50µm

V3: 350×350×70µm

V4: 500×500×100µm

V5: 750×750×150µm

with a ratio of approximately three between them. For each of the volume sizes V1-V5
given above, sixteen RVEs were generated with the target values α = 77.53◦, κip = 0.232
and κop = 0.466, which are the median values determined experimentally by Niestrawska
et al. [183] from 16 samples of healthy aortic adventitias, see also Table 1 of the main text.
For each RVE the effective parameters αeff,κeff

ip and κeff
op were calculated as discussed in

the previous section, and the median and interquartile ranges were determined for the set
of 16 numerical samples, for each of the 5 volume sizes. In Fig. S.3 the results are shown
and compared with the experimental values published by Niestrawska et al. [183].
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Figure S.3: Median (black squares) and interquartile ranges (error bars) of the effective
parameters (a) αeff, (b) κeff

ip and (c) κeff
op computed from 16 random networks

with volumes V1-V5 are compared with the median (dashed gray lines) and
the interquartile ranges (solid gray lines) of the same parameters, obtained
experimentally from 16 samples of healthy adventitias by Niestrawska et al.
[183].

It can be seen that an RVE with the dimensions 500×500×100µm (V4) is large enough
to ensure that all three parameters are within the experimental bounds. It is pointed out
that this size was also verified to be representative enough of the von Mises distributions
of the early and late AAAs (results not shown here). Therefore this size was used for all
RVEs in this work.

S.4 Mesh convergence analysis

The volume-averaged multiscale theory mentioned above was combined with the finite
element method to calculate the microscopic deformation fields within each RVE. For
this purpose, the (continuum) ground substance was meshed with second-order hexahe-
drons and the embedded collagen reinforcement was modeled with second-order trusses.
Care was taken to ensure that each truss element was completely contained in a hexahe-
dron [41].

A mesh convergence analysis was performed to select an appropriate size for the hexae-
drons. For this purpose, the ground substance of the same (late AAA) RVE was meshed
with element sizes of 25, 16.67, 12.5 and 10µm. The four meshes constructed in this
manner consisted of 1600, 5400, 12800 and 25000 hexaedrons, respectively, while the
compatible meshes of fiber reinforcements had 8179, 12257, 16373 and 20443 truss ele-
ments. An equibiaxial macroscopic stretch of 10% was simulated for each mesh, whereby
periodic fluctuations were assumed on the boundary. The results are shown in Fig. S.4,
where the maximum principal stretches λ1 within each mesh were plotted.
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Figure S.4: Distribution of the maximum principal stretches λ1 for different meshes of the
same (late AAA) RVE. Element size decreases from Mesh 1 to Mesh 4. The
median (M) and quartiles (Q1; Q3) of λ1 values and the percentage of fibers
recruited are given below each mesh.

The median (M) and quartiles (Q1; Q3) of λ1 values and the percentage of fibers recruited
are given below each mesh. The convergence threshold was defined as 5% for all quan-
tities, whereby one may conclude that Mesh 3, with an element size of 12.5µm, already
satisfies the convergence criterion. Since the late AAA RVEs are the ones exhibiting the
highest level of microscopic deformations (see Fig. 5 in the main text), it was assumed that
an element size of 12.5µm would also be sufficient to interpolate the deformation fields
in the RVEs of early AAAs and of the healthy adventitia. Therefore, in the present work,
this element size was used to perform all multiscale simulations, in combination with a
compatible embedded truss mesh for each of the RVEs.





5 A TWO-SCALE NUMERICAL STUDY ON THE
MECHANOBIOLOGY OF ABDOMINAL AORTIC
ANEURYSMS

Abstract. Abdominal aortic aneurysms (AAAs) are a serious condition whose patho-
physiology is related to phenomena occurring at different length scales. To gain a better
understanding of the disease, this work presents a multiscale computational study that
correlates AAA progression with microstructural and mechanical alterations in the tissue.
Macro-scale geometries of a healthy aorta and idealized aneurysms with increasing diame-
ter are developed on the basis of existing experimental data and subjected to physiological
boundary conditions. Subsequently, microscopic representative volume elements of the
abluminal side of each macro-model are employed to analyze the local kinematics at the
cellular scale. The results suggest that the formation of the aneurysm disrupts the mi-
cromechanics of healthy tissue, which could trigger collagen growth and remodeling by
mechanosensing cells. The resulting changes to the macro-mechanics and microstructure
of the tissue seem to establish a new homeostatic state at the cellular scale, at least for the
diameter range investigated.

5.1 Introduction

An abdominal aortic aneurysm (AAA) is a condition in which the shape of the abdominal
aorta is permanently altered. It is typically characterized by a local and irreversible bulging
of the vessel wall, which is recognized in clinical practice when the infrarenal aortic diam-
eter exceeds 30 mm [122, 249]. It is a life-threatening cardiovascular pathology that can
go unnoticed for years and has a high mortality rate if it progresses to rupture [189, 211].
Current treatment is based on surgical intervention, either with a traditional open abdom-
inal procedure or with endovascular repair by deploying a stent-graft into the aneurysmal
vessel [48, 212]. In any case, the risks associated with the procedure, which are often
amplified by factors such as advanced age and concomitant cardiovascular pathologies,
require specific medical criteria to evaluate the need for an intervention [258]. The most
commonly used criterion is based on a correlation between the probability of rupture and
the size of the aneurysm. In general, current guidelines recommend surgery when the
maximum diameter of the aneurysm reaches 55 mm in men or 50 mm in women, or when
it increases by more than 5-10 mm within a year [85, 89, 101]. However, autopsy stud-
ies and clinical reports have shown that small AAAs can still rupture [171, 173], while
some large ones do not [62, 146], suggesting that alternative approaches should be pur-
sued [227, 256, 258].

Various prospective studies have explored biomechanics-based indicators such as maxi-
mum wall stress and rupture potential index and, based on the analysis of large patient
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cohorts, have argued their superiority in relation to the diameter criterion [59, 69, 163,
251, 255]. Despite promising achievements, the reliability of these indicators depends
on the accuracy of the computational biomechanical simulations used to calculate them,
which are closely linked to the modeling framework. Significant advances have been
made over early models based on Laplace’s law, including the use of advanced constitutive
laws, three-dimensional patient-specific geometry, and fluid-structure interaction simula-
tions [38, 56, 205, 250, 257, 261]. Nevertheless, the complex pathogenesis of the disease
requires a more thorough examination of the mechanical behavior of the aortic wall. A
detailed study of the aortic wall microstructure and its components and how these evolve
during aneurysm growth can lead to the development of structure-based, multiscale con-
stitutive models with improved predictive abilities [197, 202, 228, 271].

The healthy human aorta can be described as a thick-walled tube composed of three lay-
ers (intima, media and adventitia), each of which has a specific hierarchical arrangement
of components at different scales ranging from molecules to cells, fibrils and fibers to
tissue [43, 105, 200]. As with other soft tissues, it is the extracellular matrix (ECM)
that maintains tissue integrity and provides the structural and biochemical environment in
which cells are embedded. The ECM of vascular tissues appears as a network of collagen
fibers, elastic fibers, elastin layers and proteoglycans [43, 194]. Their specific organization
is maintained by the mechanotransduction activity of smooth muscle cells and fibroblasts,
which can sense and respond to mechanical stimuli to maintain mechanical homeosta-
sis [64, 126]. More relevant to the present study is the disruption of this equilibrium and
the resulting changes in ECM structure and composition, as they may provide insights
into disease progression [268]. In the context of AAA pathogenesis, recent work by Nies-
trawska et al. [183, 185, 186] identified significant differences in the microstructure and
mechanical behavior of aneurysmal tissue compared to healthy aortas. The authors then
proposed a three-stage model for describing disease development [185], based on a widely
accepted pathophysiological theory of aneurysm formation and growth [122, 147]. In
summary, loss of elastic fibers and smooth muscle cells initiates dilatation, followed by
extensive growth and remodeling (G&R) of the collagen fibers and inflammation. The
later stage of AAAs is characterized by the presence of a thick neo-adventitial layer at the
abluminal side of the wall, which stiffens the tissue and shows a highly isotropic orienta-
tion of collagen fibers [185].

Given these recent findings, it seems obvious that an answer to the evolution of aneurysms,
and in particular to the mechanobiological aspects involved, suggests a multiscale model-
ing approach, where simulation and experiment go hand in hand. In this direction, Dal-
bosco et al. [42] recently evaluated the mechano-pathological theory of Niestrawska et al.
[185] by simulating the equibiaxial loading of representative volume elements (RVEs) of
the arterial microstructure in the healthy tissue and in different stages of AAA, with a spe-
cial focus on the changes in collagen arrangement. However, a major limitation of [42] is
that only the micro-scale of the tissue subjected to an equibiaxial, macroscopic deforma-
tion of 10% was modeled. In reality, given the bulging of the wall as the disease progresses
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and a thrombus is built up – observed in approximately 75% of AAAs [241, 252] – it is
to be expected that the macroscopic mechanics of the wall will also change, affecting the
microscopic mechanical state of the tissue.

To fill this gap, we propose here a two-scale computational finite element (FE) model
that describes the passive behavior of the abdominal aorta. The macro-scale is located
at the tissue level, and the micro-scale consists of RVEs in which a network of collagen
fibers is embedded in a ground substance identified as the non-collagenous part of the
tissue [41, 42]. First, the healthy abdominal aorta is simulated as a three-layered cylindrical
segment under in vivo loading conditions. The deformation of points at the abluminal
side of the vessel is then applied to (microscopic) RVEs whose geometry is based on
the collagen configuration of the healthy adventitia [42, 183]. The resulting deformation
fields in the RVEs are then interpreted as the homeostatic mechanical state experienced by
vascular cells, particularly fibroblasts, in the healthy non-aneurysmal tissue.

Subsequently, models of the aneurysms are created with an idealized fusiform geome-
try [66], including the presence of an intraluminal thrombus (ILT), for different disease
stages [42, 185] and varying diameters. As in the previous case, the deformation from
the abluminal side of each AAA is then applied to RVEs representing the microstructural
configuration of the corresponding disease stage. The resulting deformation fields at the
micro-scale are then compared to the healthy case and evaluated along AAA (stage) pro-
gression and diameter increase. The goal is to correlate changes in the micro-mechanical
state of the tissue with possible mechanobiological cues that might drive G&R through
vascular cells, with a focus on the formation of the neo-adventitia.

5.2 Methods

5.2.1 Macroscopic simulations

This section describes geometries, boundary conditions, and constitutive models employed
in the macroscopic simulations at the tissue scale. In such models, a distinction is made
between an unknown stress-free reference configuration Ωref, a load-free but residually
stressed configuration Ω0 which represents the ex vivo state of the vessel, and finally
the loaded current configuration Ω, which, e.g., can be observed through medical imag-
ing [109]. While inverse design analyses have been proposed to identify the reference con-
figuration of the FE model [80, 266], we instead chose a simplified approach combining ex-
perimental observations and simulations. All macroscopic analyses were performed with
the commercial FE software Abaqus/Standard 2018 (Dassault Systèmes Simulia Corp,
Providence, RI, USA) using the implicit static solver, custom Python scripts and a user
material definition.
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Healthy abdominal aorta

The healthy aorta in the load-free configuration Ω0 is modeled as a thick-walled cylindrical
segment with inner radius R0, thickness T0 and unit length in the axial direction [184]. A
three-layered structure including the intimal layer is adopted, which is thought to be repre-
sentative of elderly individuals – who are more prone to developing AAA [147, 189, 211]
– with non-atherosclerotic intimal thickening [47, 112]. The intima, media and adven-
titia correspond, respectively, to 20%, 50% and 30% of the wall thickness [112]. Only
a quarter of the aortic segment is simulated with appropriate boundary conditions to en-
force symmetry. The geometry is meshed using linear hexahedral elements with a mixed
stress-displacement formulation for material incompressibility and an appropriate mesh
refinement in the wall thickness to resolve the layer-specific stress fields.

The configuration Ω0 is characterized by the presence of unknown residual stresses. There-
fore, the finite element simulations consist of two different stages. First, residual stresses
are computed based on the concept of the opening angle, which can be measured ex vivo
on excised rings of the aorta [112]. From a biomechanical perspective, the role of residual
stresses is to reduce the stress gradient within each layer of the arterial wall in the physi-
ologically loaded configuration. In the absence of consistent information on the opening
angle for the layer properties of the aortic wall adopted in this work [183], we have identi-
fied an optimal value 2θref that minimizes the intramural layer-specific stress gradients in
the final deformed configuration [92]. In the unknown reference configuration, the healthy
aortic wall is described as an open circular segment with an inner radius Rref, thickness
Tref and unit length in the axial direction (Fig. 5.1a). Closing is simulated by specifying
displacements on a free edge of the ring, so that the load-free radius R0 corresponds to the
measured ex vivo value [112]. The stress field obtained defines the initial residual state,
i.e. a self-equilibrated stress state in the undeformed, load-free configuration Ω0 [24].

In the second stage, in vivo loading is simulated by applying an axial stretch and an internal
pressure with the load-free configuration Ω0 serving as a reference (Fig. 5.1b). The in vivo
axial prestretch λax contributes significantly to mechanical homeostasis as it allows the ax-
ial force in the artery to remain unchanged during the cardiac cycle [125]. Importantly, this
value is generally larger than the in situ stretch λax,0, which was determined experimen-
tally from the length of excised aortic segments [116]. Therefore, an iterative procedure
was adopted to identify the axial in vivo prestretch as the optimal stretch at which the
reduced axial force [109] remains approximately constant, in the range of physiological
pressures [92]. A summary of the quantities of interest employed in the FE simulations is
provided in Table 5.1.
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Figure 5.1: (a) Sketch of closure simulation on a healthy aortic segment with referential
inner radius Rref, thickness Tref and opening angle θref using a displacement ū,
to calculate residual stresses with the three-layered arrangement of intima, me-
dia and adventitia; (b) sketch of the main simulation on the residually stressed,
healthy aortic segment with initial inner radius R0 and thickness T0, which de-
forms to a final radius r and thickness t due to the effect of axial stretch λax
and intraluminal pressure p; (c) sketch of the simulation on the model with the
abdominal aneurysm consisting of three regions: the aneurysm sac, with initial
length L0,an and inner radius R0,an, a transition zone (neck) and a healthy cylin-
drical part with inner radius R0; the initial combined length of both is given by
L0 and the wall thickness T0 is assumed to be constant. The model also con-
tains an axisymmetric intraluminal thrombus (ILT) with initial thickness T0,ILT
at the luminal side of the aneurysm sac. The aneurysm is subject to the same
axial stretch λax and intraluminal pressure p as the healthy aorta, resulting in a
deformed outer diameter dan. In (b) and (c), the solid elements shown in yellow
are representative regions whose final deformation state is passed to the RVE
as input for the micro-scale simulations. Symmetry along the longitudinal axis
of the aorta is always assumed.
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Table 5.1: Parameters employed in the FE element simulations of the healthy abdominal
aorta. (Int = intima, Med = media, Adv = adventitia)

Geometry and loading
Parameter Description Numerical value Refs.

Rref (mm) Radius of the open segment 8.05
Tref (mm) Thickness of the open segment 1.46
2θref (deg) Opening angle 100.0
R0 (mm) Radius of aortic wall ex vivo 5.61 [112]
T0 (mm) Thickness of aortic wall 1.46 [112]
λax,0 (-) Axial prestretch in situ 1.07 [115]
λax (-) Axial prestretch in vivo 1.184
p (mmHg) Internal pressure 120.0

Material parameters
Parameter Description Int [183] Med [183] Adv [183]

µA (kPa) Shear modulus of matrix 6.88 30.52 3.77
k1 (kPa) Shear modulus of fibers 4.90 22.81 0.36
k2 (-) Exponential parameter of fibers 41.95 22.78 45.88
κip (-) In-plane fiber dispersion 0.261 0.208 0.232
κop (-) Out-of-plane fiber dispersion 0.484 0.487 0.466
α (deg) In-plane fiber mean anglea 3.25 6.91 77.53
a With respect to the circumferential direction

Abdominal aortic aneurysm

The abdominal aneurysm is defined as an axisymmetric solid with a fusiform section in
the axial-radial plane, described by

R(Z) = R0 +

(
R0,an−R0− c3

Z2

R0

)
exp
(
−c2

∣∣∣∣ Z
R0

c1
∣∣∣∣) , (5.1)

where R0,an is the maximum radius of the aneurysm in the reference configuration, and
c1,c2,c3 are geometric coefficients [205].

The initial length of the aneurysm L0,an = f1R0,an depends on the maximum radius by
a geometric parameter f1 [205] while the thickness T0 is here assumed to correspond to
the healthy aorta. Although aneurysms can lead to a thickening of the aortic wall, other
studies have found that a thrombus-covered wall can be significantly thinner [141]. More-
over, Niestrawska et al. [185] reported that the intima and media of some of their AAA
samples appeared to have split open and therefore, despite collagen accumulation and
formation of the neo-adventitia on the abluminal side of some specimens, there was no
significant difference in thickness between different tissue stages.
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The geometry extends in the axial direction for an additional length L0 = L0,an, which in-
cludes a portion of the healthy aortic wall and an intermediate transition zone (Fig. 5.1c).
To the best of the authors’ knowledge, there is no clear characterization of such a region
in the literature. However, it appears reasonable to define a zone corresponding to the geo-
metrical change from the healthy to the aneurysmal wall and include also here a transition
in terms of mechanical response, see Section 5.2.1 and Appendix A.

The intraluminal thrombus is simplified as a hollow, axisymmetric solid adjacent the lu-
minal side of the aneurysm sac. The reference thickness T0,ILT is computed from Tong
et al. [242] where experimental observations revealed an empirical correlation between the
maximum thickness of the thrombus and the maximum in vivo diameter of the aneurysm
dan. Both the wall and the ILT are each described by a single material layer. Only a quarter
of the model is simulated with appropriate boundary conditions to enforce symmetry. The
geometry is meshed using linear hexahedral elements with a mixed stress-displacement
formulation for material incompressibility. Preliminary studies of mesh convergence have
been performed.

In contrast to the simulations of the healthy aorta, the current configuration Ω of the
aneurysm under physiological loading is considered to be known, in particular the in vivo
maximum outer diameter dan, which is used in clinical practice to assess the risk of rupture
of AAAs [101]. The unknown reference configuration is determined by an inverse proce-
dure that finds the optimal value of the initial radius R0,an of the aneurysm such that the
deformed external diameter corresponds to dan. To illustrate the changes along the AAA
growth, three values of dan (45, 55 and 65 mm) were simulated. In order to estimate the
influence of mechanical and microstructural alterations along AAA pathogenesis, two dif-
ferent disease stages – the early and the late [42, 185] – were considered for each diameter
(six simulations in total). Since no relationship between tissue stage and aneurysm size
could be found [185], using the same diameters for different tissue stages was aimed at
investigating the interplay between microstructural remodeling and AAA growth.

In vivo loading is simulated by applying axial stretch to the healthy portion of the aorta
and internal pressure throughout the vessel (Fig. 5.1c). The in vivo axial prestretch λax
is taken from the previous simulation on the healthy wall, since no more detailed experi-
mental characterization on AAAs is available. For the same reason, residual stresses in the
circumferential direction of the aneurysm are neglected. A summary of the quantities of
interest employed in the FE simulations can be found in Table 5.2.
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Table 5.2: Parameters employed in the FE element simulations of abdominal aortic
aneurysms. (EAAA = early abdominal aortic aneurysm, LAAA = late abdomi-
nal aortic aneurysm, ILT = intraluminal thrombus)

Geometry and loading
Parameter Description Numerical value Refs.

EAAA LAAA
R0 (mm) Radius of healthy aortic wall 5.61 [112]
T0 (mm) Thickness of aortic wall 1.46 [112]
dan (mm) Maximum AAA diameter in vivo 45-55-65
R0,an (mm) Initial AAA radius (for each dan) 36.4-45.0-53.6 39.7-49.0-56.6
f1 (-) Geometric parameter 4.0
c1 (-) Geometric parameter 0.5
λax (-) Axial prestretch in vivo 1.184
p (mmHg) Internal pressure 120.0

Material parameters
Parameter Description EAAA [185] LAAA [185] ILT [241]

µA (kPa) Shear modulus of matrix 0.59 3.78 −
µI (kPa) Stress-like parameter for ILT − − 9.26
b (-) Non-dimensional parameter for ILT − − 1.62
k1 (kPa) Shear modulus of fibers 1.30 8.96 −
k2 (-) Exponential parameter of fibers 47.51 636.29 −
κip (-) In-plane fiber dispersion 0.242 0.224 −
κop (-) Out-of-plane fiber dispersion 0.433 0.402 −
α (deg) In-plane fiber angle a 6.55 22.90 −
a With respect to the local circumferential direction

Constitutive models

The mechanical behavior of both the healthy and aneurysmal aortic wall is described by
the anisotropic strain-energy function ΨA proposed by Holzapfel et al. [113] (the subscript
A stands for anisotropic), which contains two families of fibers with non-symmetric fiber
dispersion. Assuming incompressible behavior, the strain-energy function reads

ΨA =
µA

2
(I1−3)+ ∑

i=4,6

{
k1

2k2
exp
[
k2(I?i −1)2]−1

}
− p(J−1) , (5.2)

where µA > 0 and k1 > 0 are stress-like material parameters, and k2 > 0 is a dimensionless
parameter. In (5.2), I1 = C : I is the first invariant of the right Cauchy-Green tensor C,
where I is the second-order identity tensor, J =

√
detC > 0 is the volume ratio and p is a
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Lagrange multiplier that enforces material incompressibility. The invariant I?i with respect
to the stretch of a single family of fibers is expressed by

I?i = C : Hi , with Hi = AI+BMi⊗Mi +(1−3A−B)Mn⊗Mn, i = 4,6 , (5.3)

where Hi is a second-order symmetric structure tensor, Mi with ‖Mi‖ = 1 represents the
reference mean orientation of the i-th fiber family, Mn is an out-of-plane unit vector, and
A,B are coefficients related to the in-plane and out-of-plane dispersion of fibers κip and
κop [113].

The model described in (5.2) has been implemented as user material for the FE solver
Abaqus/Standard, with an analytic derivation of the Cauchy stress tensor and of the spatial
elasticity tensor. The material parameters adopted in the simulations of the three-layered
healthy aorta can be found in Table 5.1. Two sets of parameters were employed for the
aneurysmatic tissue to account for the different stages of the disease [42, 185], as shown
in Table 5.2.

The healthy portion of the wall in the geometry with the aneurysm was modeled as a
single layer with homogenized mechanical behavior, while in the intermediate region we
assumed a continuous transition from the behavior of the homogenized healthy wall to
the behavior of the aneurysm. We performed this homogenization process directly on the
stress-strain response of the tissue under equibiaxial tension (Appendix A), not on the
material properties, because of the nonlinear nature of (5.2).

Although a layered structure with an anisotropic luminal layer is observed in aged thrombi
[241], for simplicity the ILT is modeled as a single layer of homogeneous material with
isotropic properties. The layer-specific experimental data from biaxial tests reported in Tong
et al. [241] were homogenized using the same procedure mentioned above and fitted with
the exponential isotropic strain-energy function ΨI proposed by Demiray [52] (the sub-
script I stands for isotropic)

ΨI =
µI

2
[exp [b(I1−3)]−1]− p(J−1) , (5.4)

where µI > 0 is a stress-like material parameter and b > 0 is a non-dimensional parameter.
The model described in (5.4) has been implemented as a hyperelastic user material for the
FE solver Abaqus/Standard. The material parameters adopted in the simulations can be
found in Table 5.2.

5.2.2 Microscopic simulations

In this section, geometries, boundary conditions, and constitutive models for the multiscale
simulations of arterial tissue at the cellular level are described. The methods presented here
were previously employed by Dalbosco et al. [42]; therefore, only the main features of the
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multiscale model are presented. The goal of these simulations is to shed light on possi-
ble micro-mechanical cues sensed by vascular cells, especially fibroblasts, since smooth
muscle cells are largely absent in AAAs [175, 185]. Such cells are responsible for col-
lagen G&R during AAA pathogenesis and their activity is at least in partially driven by
mechanotransduction [22, 63].

Geometry, mesh and boundary conditions

RVEs, which represent a tissue-level point (Fig. 5.2) and consist of two families of colla-
gen fibers embedded in a ground substance of non-collagenous micro-constituents, were
constructed for three different stages of AAA pathogenesis, namely:

• the fibroblast-rich adventitia of a healthy aorta, whose collagen fibers are preferen-
tially aligned in an axial direction [42, 183] (Fig. 5.2a);

• the abluminal side of an early AAA [42, 185], in which there is a realignment of
collagen fibers towards the circumferential direction (Fig. 5.2b);

• the abluminal side of a late AAA [42, 185], with a stiff neo-adventitia characterized
by a highly isotropic distribution of collagen fibers in the circumferential-axial plane
(Fig. 5.2c).

Five RVEs for each stage were generated using a stochastic algorithm described in [42],
which gradually adds collagen fibers (red and blue lines in Fig. 5.2a-c) to the ground sub-
stance (shown in pink in Fig. 5.2a-c) by sampling the direction of the fiber from a specific
von Mises distribution, characterized by a mean fiber angle α , an in-plane dispersion pa-
rameter κip and an out-of-plane dispersion parameter κop. For each of the three stages,
values for these parameters were taken from the literature [183, 185]; these are the same
ones from our previous work [42] and in the macroscopic models (Section 5.2.1).

Each RVE measures 500× 500× 100 µm along the circumferential, axial and radial di-
rections of the arterial tissue. This size was chosen to ensure a representative network of
collagen fibers, accounting for volume fractions of 40% for the healthy adventitia and 60%
for the aneurysmatic tissue, see [42] for more details. After each RVE was generated, the
set of fiber directions was fitted to the von Mises distribution to obtain the effective values
of α , κip and κop for that particular RVE. In general, there is good agreement between the
microstructural parameters reported in the literature for each of the three stages and the
corresponding (effective) parameters for the three sets of 5 RVEs (Table 5.3), suggesting
that the fiber networks are sufficiently representative of each microstructure.
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Figure 5.2: The micro-scale model consists of representative volume elements (RVEs) of
(a) the tunica adventitia of a healthy aorta and AAAs at (b) an early and (c)
late microstructural stage. For each stage, 5 realizations of the microstructure
were created and simulated according to the deformation gradients F of the
macro-scale models with different diameters dan. The heatmaps in (a-c), re-
produced from [183, 185], illustrate the characteristic arrangement of collagen
fibers for each stage; the colors red and blue indicate high and low concen-
trations, respectively, of fibers aligned according to a specific in-plane angle
between the circumferential (circ) and axial (axi) directions of the tissue for
each radial (rad) layer between the luminal (LU) and the abluminal (AL) side
of the vessel. (d) Since the two fiber families in the RVEs are represented as
(red and blue) straight lines, the waviness of collagen in the real tissue is sim-
ulated by assigning a recruitment stretch λ i

r to each i-th fiber by sampling a
value Ps (ratio between the end-to-end distance L0 and the arc length Lf of a
wavy fiber) from a stage-specific beta distribution [42]; the probability density
functions (PDFs) ρr for each stage can be seen in the graph.
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Table 5.3: Experimental (target) and numerical (effective) parameters of the bivariate von
Mises distributions for the three microstructural stages of the arterial tissue
considered in the present study. Values are given as medians and interquar-
tile ranges.

Healthy adventitia Early AAA Late AAA
Exp. [183] Num. Exp. [185] Num. Exp. [185] Num.
(n = 16) (n = 5) (n = 6) (n = 5) (n = 6) (n = 5)

α (deg)
77.53 77.35 6.55 7.59 0.001 0.00

[67.04–84.02] [73.46-79.92] [5.19-11.62] [5.88-8.41] [0.00–0.00]

κip (-)
0.232 0.217 0.242 0.236 0.5001 0.500

[0.192–0.282] [0.205-0.239] [0.234-0.260] [0.231–0.259] [0.500-0.500]

κop (-)
0.466 0.468 0.433 0.432 0.402 0.401

[0.459–0.479] [0.465–0.471] [0.425-0.441] [0.432-0.435] [0.379-0.421] [0.400-0.403]
1Assuming an isotropic in-plane fiber dispersion, κip = 0.5 and the mean in-plane angle α becomes

superfluous.

The ground substance of each RVE is meshed with second-order hexahedrons. The ele-
ment size was defined as 12.5 µm after mesh convergence analyses [42]. The collagen
fibers are meshed with second-order truss elements in such a way that each fiber element
is fully contained in a particular hexahedron to which it is attached by a no-slip kinematic
bond – the so-called embedded elements technique, see [41, 42] for more details.

Since they represent a tissue-level point, RVEs are assumed to undergo incompressible
biaxial deformation in the circumferential-axial plane, characterized by the deformation
gradient [F] = diag(λcirc, λaxial, λrad), in which the principal stretches λcirc, λaxial and λrad
are obtained from the tissue-level simulations (Fig. 5.2).

A volume-averaging multiscale framework is used to simulate the biaxial deformation of
the RVEs while ensuring energy consistency between the macro and micro-scales; details
on this theory can be found elsewhere [16, 49]. As suggested in [41], periodic displacement
fluctuations are enforced at the boundary of the RVEs.

Constitutive models

The ground substance of the RVEs is modeled as a nearly incompressible neo-Hookean
material whose strain-energy function Ψg is given in the decoupled form

Ψg(C) =
Gg

2
(Ī1−3)+

Kg

2
(J−1)2, (5.5)
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where C = J−2/3C is the isochoric right Cauchy-Green tensor, with Ī1 = C : I its first
principal invariant, Gg is the shear modulus of the ground substance and Kg is a penalty
(volumetric) parameter, which was chosen to be Kg = 100Gg to ensure nearly incompress-
ible behavior. The values of the shear modulus for each of the three tissue stages are
summarized in Table 5.4.

Table 5.4: Constitutive parameters employed in the RVE simulations.

Material parameters
Parameter Description Numerical value Refs.

Healthy
adventitia

Early
AAA

Late
AAA

Gg (kPa) Shear modulus of ground
substance

3.77 0.59 3.78 [183, 185]

E i
f (MPa) Collagen fiber stiffness

(normal distribution)
54.3±25.1 (Mean ± Std) [174]

a (-) Waviness parameters
(beta distribution)

4.84 4.00 3.29
[42, 186]

b (-) 1.54 1.10 0.64

Since collagen fibers in the unloaded arterial tissue are wavy [186, 198], a fact not taken
into account in the geometry of the RVEs (Fig. 5.2a-c), each i-th fiber is assigned a strain-
energy function Ψfi of the form [41, 42]

Ψfi(λ ) =


0 if 0 < λ < λ

i
r ,

E i
f

2
(λ −λ

i
r )

2 if λ ≥ λ
i
r ,

(5.6)

where E i
f is the fiber stiffness, λ is the stretch applied to the fiber, and λ i

r is the recruitment
stretch of the fiber. Therefore, it is assumed that fibers only bear load when they are
recruited, i.e. when the stretch λ applied to the fiber is higher than λ i

r . This simulates
the well-known phenomenon of gradual fiber recruitment responsible for the characteristic
nonlinear mechanical response of arterial tissue [105, 149, 199].

To account for variability of waviness and stiffness between the fibers, each i-th fiber is
assigned to different values of E i

f and λ i
r . The former is taken from a normal distribution

with a mean of 54.3 MPa and a standard deviation of 25.1 MPa (Table 5.4), while the latter
is taken from a beta distribution with the form

ρr(Ps) =
Ps

a−1(1−Ps)
b−1

B(a,b)
, (5.7)

where B(a,b) is the beta function and P i
s is a measure of the waviness of the i-th fiber

with respect to its recruitment stretch λ i
r = 1/P i

s (Fig. 5.2d). The parameters {a,b}, which



116 5 Numerical study on the mechanobiology of abdominal aortic aneurysms

are different for each tissue stage, are given in Table 5.4. The beta distributions for each
parameter set are shown in Fig. 5.2d, where it can be seen that fibers tend to be straighter
(P i

s → 1) in diseased tissue as experimentally identified by Niestrawska et al. [186].

5.2.3 Statistical analyses

Simulation results were analyzed at the macro- and micro-scales; regarding the latter, re-
sults were organized in groups of 5 RVEs according to the three tissue stages (healthy, early
AAA, and late AAA) and the maximum diameter of the aneurysms (45, 55 and 65 mm).
Since normality of the data could not be assumed, the non-parametric Mann-Whitney U
test was used to check for differences between groups.

5.3 Results and discussion

The results of the finite element simulations are summarized in Fig. 5.3, where the field
of maximum principal stretches λ1 is plotted (a) for the healthy aorta and (b-g) for AAAs
with a maximum (deformed) diameter ranging from 45 to 65 mm. For the latter, results
are shown for each size for (b-d) AAAs at an early stage and (e-g) at a late stage, after
formation of the neo-adventitia ([42, 185], see also Fig. 5.2 and Table 5.2).

Macroscopic results show a fairly homogeneous deformation field in the healthy aorta
(a), resulting in a hoop stress of about 100 kPa in the medial layer, which is widely ac-
cepted as the physiological stress value in a healthy abdominal aorta [119]. However, the
AAA models (b-g) show important inhomogeneities in the deformation field due to the
altered mechanical properties of the wall and its fusiform shape. In both early (b-d) and
late (e-g) AAAs, the intraluminal thrombus, which is more compliant, deforms consid-
erably more than the aortic wall. This could indicate a protective (mechanical) function
of the thrombus, as previous works suggested [156, 261], although other concurrent ef-
fects (e.g., inflammatory processes [20] or hypoxia of the aortic wall due to isolation from
blood flow [259, 260]) associated with the presence of an ILT are not captured by the
present model.

Also in terms of the macro-models, the stretches in the aortic wall of early AAAs (b-d) are
higher than their late counterparts (e-g), consistent with the observations in Niestrawska
et al. [185], which reported a significant increase in the stiffness of the aortic tissue at a
later stage. For early AAAs, stretches tend to be higher at the neck region of the wall,
which has also been reported for real aneurysms [54]; on the other hand, the stretches in
the late AAAs are lower in this region. In this context it has to be taken into account that
the mechanical properties in the transition zone (i.e. the neck) are actually not derived
from experiments but are interpolated from the parameters of the healthy and diseased
tissue, see Section 5.2.1 and Appendix A. Moreover, the reference geometries for early
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Figure 5.3: Maximum principal stretch λ1 of the macro- and micro-scale models of (a) the
healthy abdominal aorta (AA) and of AAAs with diameters ranging from 45 to
65 mm with (b-d) an early and (e-g) late microstructure. Half of the intralumi-
nal thrombus (ILT) was hidden for each macro-scale model to better represent
the stretches in the wall, and only one (of five) exemplary representative vol-
ume element (RVE), simulated according to the macro-deformation gradient F,
is shown. M and IQR refer to the median and interquartile range, respectively,
of the λ1 values for each RVE. The color scale applies to all models.
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and late AAAs are different in order to have the same deformed diameter, as discussed in
Section 5.2.1. Both assumptions of the model might also influence these contrasting results
in the neck region, which however is not the region of interest in the present study.

The field of maximum principal stretches λ1 in the ground substance of exemplary RVEs is
shown at the micro-scale for each of the seven cases of Fig. 5.3. Since the ground substance
encompasses all non-collagenous micro-constituents of the tissue, including mechanosen-
sitive vascular cells such as fibroblasts, the microscopic deformations are interpreted here
as possible mechanotransduction cues [22, 63] sensed by cells, see Dalbosco et al. [42]
for a more detailed discussion on this particular choice. For the three exemplary RVEs
shown in Fig. 5.3, important differences between the healthy (a) and diseased (b-g) states
can be seen; on the other hand, these differences are much less pronounced in RVEs of
early AAAs (b-d) and late AAAs (e-g) with the same diameter. Likewise, there are only
negligible changes to the distribution of λ1 with increasing diameter for each disease stage,
at least qualitatively.

In order to quantitatively compare the seven cases from Fig. 5.3, the median (M) and
interquartile range (IQR) of the maximum principal stretches λ1 were calculated from all
integration points of each individual RVE mesh. These quantities were then organized in
groups of 5 RVEs according to the three tissue stages (healthy, early AAA, and late AAA)
and the maximum diameter of the aneurysms (45, 55 and 65 mm). Boxplots of M and IQR
values grouped according to the three tissue stages (healthy, early AAA, and late AAA) and
the maximum diameter of the aneurysms (45, 55 and 65 mm) are presented in Fig. 5.4.

From Fig. 5.4 one can see that in general both the median (Fig. 5.4a) and the IQR (Fig. 5.4b)
values of λ1 are significantly higher in the diseased tissue compared to the healthy aorta,
as indicated by the grey asterisks. This means that fibroblasts in AAAs would, on average,
experience higher and more dispersed levels of deformation than the levels of deformation
of the healthy adventitia, which could have mechanobiological implications. On the one
hand, it is known from in vitro studies [12, 46, 63] that fibroblasts can sense their mechan-
ical environment and respond accordingly – among other things, by promoting collagen
G&R – when it deviates too far from healthy, homeostatic levels. In this respect, the differ-
ences predicted by the model between the micro-mechanics of healthy and diseased tissue
could drive the changes in the collagen network in AAAs, as observed by Niestrawska
et al. [185]. Importantly, this G&R process could be enhanced by the activation of fibrob-
lasts to myofibroblasts (a cell phenotype often associated with pathological tissues), which
is known to occur in response to altered mechanics at the cellular level [61, 126, 219].

On the other hand, it can be seen that for all aneurysm diameters that the median and IQR
values of λ1 for RVEs of early and late AAAs are remarkably similar, although the geomet-
ric and material properties of each disease stage, as well as the macroscopic deformation
gradients applied to each of them (Fig. 5.3), are different. This motivates the hypothesis
that both the macroscopic mechanics and the microstructure of the tissue – according to
the mechano-pathogenic model of Niestrawska et al. [185] – change symbiotically in the
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Figure 5.4: Boxplots of (a) the median and (b) the interquartile range (IQR) values of the
maximum principal stretch λ1 grouped by the three microstructural stages of
the tissue and, in case of AAAs, also by maximum diameter. Each of the seven
groups contains the results of five representative volume elements (RVEs). For
both quantities, the grey asterisks indicate the results of the Mann-Whitney U
test for differences between each diseased group and the healthy group. When
comparing the AAA stages, the same test showed a significant difference only
for λ1 medians of an AAA with a diameter of 65 mm (black asterisk).

course of the disease in order to keep the level of deformation in the micro-scale approx-
imately constant. In this case, the fact that this level is above the healthy one could mean
that cells in the tissue have reached a new homeostatic state [64]. Importantly, a previ-
ous study using the same micro-scale model [42] showed significantly different levels of
λ1 when the same macroscopic deformation gradient is applied to RVEs of early and late
AAAs. Therefore, changes at both scales are required for the model to provide similar
deformation fields at the micro-scale.

Finally, one can see that for RVEs of early AAAs the levels of λ1 tend to be slightly higher
with larger diameters, although this increase is not significant (Kruskal-Wallis test: p =
0.26 for the medians, Fig. 5.4a, and p = 0.44 for the IQRs, Fig. 5.4b). Nevertheless, this
trend, which is mostly absent in RVEs of late AAAs, leads to a significantly higher level
of deformation in RVEs of early AAAs compared to their late counterparts for aneurysms
with 65 mm of diameter (Fig. 5.4a). Since this is not the case for smaller diameters (for p>
0.05), it could mean that the microstructure of early AAAs is less effective in maintaining
homeostasis at larger diameters than the late AAA microstructure with a thick abluminal
neo-adventitia (Fig. 5.2c). This in turn could be a reason why the microstructure of the
tissue continues to change from early to late as the aneurysm expands. It also underscores
a hypothetical protective function of the neo-adventitia in late AAAs, as proposed in [42]
– in this case especially for larger aneurysmal diameters. In fact, clinical evidence linking
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faster AAA growth to an increased rupture risk [85] may indicate a failure of the tissue to
adapt its microstructure to a rapidly changing geometry.

As a final remark to this section, it is emphasized that all seven models shown in Fig. 5.3
exhibit an important amplification effect from the macro to the micro-scale. For the healthy
wall, e.g., the median value of the maximum principal stretch λ1 of the exemplary RVE
3 shown in Fig. 5.3a is 80% higher than the value of λ1 in the macroscopic model. In
diseased tissue this difference is even more pronounced. This contrast between kinematics
at macro and micro-scales (i.e., tissue and cell levels), which has been observed experi-
mentally [144, 145] for arterial tissue, could have important consequences for microscopic
phenomena, e.g., cell mechanotransduction. Therefore, this should be taken into account
if meaningful results on the micro-scale are to be obtained [231].

5.4 Limitations and outlook

Despite the important insights into the mechanobiology of AAA pathogenesis provided by
the model, some limitations to the present work can be mentioned. In the macroscopic
simulations, an idealized geometry was used to model different AAA diameters, which
did not take into account possible changes in the overall shape of a real aneurysm dur-
ing its growth. Likewise, the thrombus was simplified into a homogeneous axisymmetric
solid with isotropic mechanical behavior, while in real AAAs it usually has an asymmet-
ric shape [89] and a three-layered structure with a certain degree of anisotropy [241]. In
this context, applying the same modeling strategy to more complex, potentially patient-
specific geometries of both the aneurysm and the thrombus could be the subject of future
works. In particular, regional variations in curvature and wall thickness, which are com-
mon in real AAAs [59, 261], could have a significant influence on the local deformation
gradient. This in turn would also change the results at the micro-scale, which could be
related to mechanobiological phenomena, e.g., the transition from fibroblasts to myofi-
broblasts [61, 219]. Likewise, considering the external support of the perivascular tissues
and spine [81, 192] could help to improve the fidelity of macro-scale models.

Another limitation is that the mechanical behavior in the transition zone between healthy
and diseased tissue in AAAs had to be inferred from their respective material properties
(Appendix A) due to the lack of specific experimental data. It is hoped that future studies
on the spatial variability of mechanical properties of AAA tissues will provide better inputs
to FE models like the present one.

Despite the intricate microstructure of arterial tissue [43, 105, 200], both in health and
disease, the RVEs employed in the present work were simplified to a network of collagen
fibers embedded in a ground substance, with all non-collagenous components of the tissue.
While this is reasonable from a purely mechanical point of view (since collagen is much
stiffer than the other micro-constituents), further refinements of the model could include,
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e.g., proteoglycans and elastin [43, 194] as separate phases. In particular, the inclusion
of elastin as a separate phase in the RVEs would make it possible, e.g., to investigate the
consequences of elastin degradation (which is known to occur already in early stages of
AAA formation [122, 185, 268]) on cell mechanobiology, which is also an interesting
question for future studies.

Finally, it should be noted that in the present model, only the passive behavior of the wall
was modeled at both scales. In this context, the active behavior of aortic tissue and chemo-
mechanical phenomena, among others, could also have important implications for AAA
pathogenesis and cell mechanotransduction. These concurring effects also represent an
interesting field of study for future work.

5.5 Conclusions

In this study, a two-scale FE model of the aortic tissue in health and disease was presented.
At the macro-scale (tissue level), the healthy aorta and AAAs of increasing size were
modeled to simulate their passive mechanical behavior in vivo. At the micro-scale (cell
level), the deformation gradient obtained from the macro-models was used as input to
simulate RVEs of the healthy and diseased tissues.

In the context of mechanobiology, the microscopic deformations observed in the RVEs
were interpreted as possible mechanotransduction cues sensed by vascular cells. The re-
sults suggest that the formation of an aneurysm disrupts the healthy micro-mechanical state
of the tissue and thus represents a possible reason for the collagen G&R by mechanosens-
ing cells (e.g., fibroblasts) along the AAA development [185]. After the formation of the
aneurysm, an attempt seems to be made to keep the level of the microscopic deformations
approximately constant with increasing diameter by altering both the microstructure and
the macroscopic mechanics of the tissue, which could mean that a new homeostatic state
was reached [64], at least for the diameter range investigated here.

Finally, it is emphasized that these conclusions are inextricably linked to the many hy-
potheses put forward to construct the model. However, since, to the best of the authors’
knowledge, the micro-mechanical state of the aortic tissue simply cannot be visualized in
vivo with current experimental techniques, the present numerical approach represents a
valuable tool to improve our understanding of the multiscale pathogenesis of AAAs.
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Appendix

A Mechanical properties of the transition zone

The geometries used in the macroscopic AAA simulations (Section 5.2.1) consist of a
healthy aortic cylinder and a diseased aneurysm sac. Since these two regions are mi-
crostructurally and mechanically different, it is reasonable to assume that there is a tran-
sition zone between them, which here was taken to coincide with the aneurysm neck
(Fig. 5.1c).

To the best of the authors’ knowledge, the material properties of this hypothetical transition
zone are not known from experiments. Therefore, they were derived from the equibiaxial
response of the healthy and diseased parts, calculated from the parameters of Table 5.1 and
Table 5.2, respectively, with the aim to model the transition zone as a mechanically graded
material. Assuming a single material layer in such a zone, the mechanical parameters of
the healthy wall were also averaged from the three different layers to obtain a consistent
transition.

Considering an incompressible equibiaxial stretch λ in the circumferential-axial plane
of the tissue, described by the deformation gradient [F] = diag(λcirc,λaxial,λrad) =
diag(λ ,λ ,1/λ 2), the second Piola-Kirchhoff stress tensor S was calculated from (5.2)
as [113]

S = 2
∂ΨA

∂C
− pC−1 = µAI+ ∑

i=4,6
2k1(I?i −1)exp

[
k2(I?i −1)2]Hi− pC−1 , (A.1)

where p is the Lagrange multiplier that enforces the incompressibility condition calculated
here from the plane stress condition (S33 = 0). Finally, the Cauchy stress tensor was com-
puted by a push-forward operation, i.e. σ = FSFT. The resulting stress-stretch curves are
shown in Fig. A.1 for the healthy aorta (grey), early AAA (purple) and late AAA (red).
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Figure A.1: Fitted equibiaxial mechanical response of the transition zone; (a) early AAAs
and (b) late AAAs.

A series of fictitious stress-stretch responses (dotted curves in Fig. A.1) was then interpo-
lated from the curves of healthy and diseased tissue. To get the constitutive parameters
for each generated response, the structural parameters α , κip and κop of the model (A.1)
were fixed to values between the healthy and diseased stages (Table A.1) and the mechan-
ical parameters µA, k1 and k2 were then fitted to each generated response. The results are
shown in Fig. A.1 as dashed curves, where it can be seen that a good fit (R2 ≥ 0.99) could
be achieved for all interpolated responses. The parameters obtained in this way for each
curve of Fig. A.1 are presented in Table A.1.
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Table A.1: Parameters of the interpolated curves shown in Fig. A.1.

Interpolated material parameters: Healthy aorta→ Early AAA
Parameter Numerical value

µA (kPa) 11.61 10.17 8.74 7.31 5.87 4.44 3.01 1.57
k1 (kPa) 18.80 16.62 14.44 12.27 10.09 7.92 5.74 3.58
k2 (-) 30.71 30.66 30.60 30.51 30.38 30.18 29.81 28.92
κip (-) 0.240
κop (-) 0.460
α (deg) 15.0

Interpolated material parameters: Healthy aorta→ Late AAA
Parameter Numerical value

µA (kPa) 5.61 5.87 6.10 6.30 6.49 6.66 6.79 6.88
k1 (kPa) 40.24 38.06 35.24 31.65 27.17 21.77 15.56 9.02
k2 (-) 36.70 44.76 55.33 69.51 89.11 117.2 159.6 228.5
κip (-) 0.230
κop (-) 0.440
α (deg) 23.5

The method described above was implemented in MATLAB (The MathWorks Inc.,
Natwick, US) to generate any desired number of interpolated curves. Based on the fi-
nite element mesh, each line of elements in the transition zone of macro-scale models is
assigned a different set of parameters, considering equally spaced intervals along the lon-
gitudinal direction from healthy to diseased properties to ensure a smooth transition of
deformation fields (Fig. 5.3) along the length of the AAA, as one would expect from a
biological material.



6 CONCLUSIONS AND FUTURE PERSPECTIVES

In this thesis, a novel class of RVE-based models of arterial tissue in health and disease
was proposed by combining a sound multiscale computational framework [16, 49] with the
embedded elements technique [67, 83]. The geometry of the RVEs consists of a network of
collagen fibers, discretized with truss elements, reinforcing a continuum ground substance
encompassing all non-collagenous microconstituents of the tissue. While the assumption
of a two-phase hyperelastic material is reasonable from a mechanical point of view [82],
the RVE clearly simplifies the intricate microstructure of arteries [43, 119, 200]. Con-
structing more realistic geometries and including other physical phenomena, especially
the active part of arterial mechanics due to smooth muscle cells, is an interesting area for
future studies.

In Chapter 3, the influence of different multiscale BCs on the macro- and micro-scale
results is investigated by submitting the proposed RVE to an equibiaxial loading. It is
argued that the assumption of periodic fluctuations on the boundary yields more realistic
results, with less boundary effects, when compared with the other three classical multiscale
models, a fact that is used in the subsequent studies. It must be said, however, that the
network of collagen fibers in the RVEs is not periodic, and, therefore, boundary effects
should also be expected when using the periodic BC, even if with less intensity than in
other multiscale models. To address this issue, future works could focus on constructing
specialized BCs aiming to reduce boundary effects.

In Chapters 4 and 5, the model was used to shed more light on the mechano-pathogenic
theory of AAA progression by Niestrawska et al. [185], focusing on the formation of a
neo-adventitia layer at the abluminal side of the wall and its relation to the mechanobi-
ology of vascular cells. RVEs were constructed for the fibroblast-rich adventitia of the
abdominal aorta and for early and late stages of AAA tissue, each with its characteristic
arrangement of collagen fibers as observed in experimental studies [183, 185, 186]. These
RVEs were subjected, first, to equibiaxial loadings (Chapter 4) and then to various biaxial
loadings obtained from suitable macro-scale FE simulations (Chapter 5). Taken together,
the results pointed to a possible protective role of the neo-adventitia, whose formation
could constitute an attempt by vascular cells to keep levels of microscopic deformation
in check, especially for larger AAA diameters. This hypothesis, of course, merits further
investigation by experimental studies, which hopefully can be motivated by the present
thesis.

We conclude by recalling the aphorism by the British statistician George Box: "All mod-
els are wrong, but some are useful." [19]. Despite the many simplifications involved in the
proposed RVE-based model, it provided a valid way to simulate micromechanical phenom-
ena that might be involved in the pathogenesis of AAAs, and which cannot be observed in
vivo with current techniques. The proposed model constitutes thus a valuable tool to help
advancing our understanding of vascular pathophysiology.
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